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Preface

Dear scientists, students, and readers,
The present book, Neuroeconomics, was originally intended as the cornerstone

of the Springer book series Studies in Neuroscience, Psychology and Behavioral
Economics. It was not our idea to write (or edit) a book before or close to retire-
ment. So it took a while before Springer, who had contacted MR to write a book on
Neuroeconomics, persuaded us to do it. One prerequisite for MR was that CM
agreed to do this jointly with MR, and CM did agree!! We have worked together
side by side for many years and become very close friends. Springer ultimately
convinced us, not only to publish this book, but to edit a whole book series.
Meanwhile a first book, Internet Addiction—Neuroscientific Approaches and
Therapeutical Interventions, which we edited, was published early in 2015, forming
the first publication of this series and more books will appear in the future.

Science has become more and more interdisciplinary and so new scientific
disciplines emerge—like neuroeconomics, which is a joint venture between neu-
roscientists, psychologists, and behavioral economists. The focus of interest in
neuroeconomics lies on human decision-making under an economic perspective.
“Economics” refers not only to monetary transactions, but also to all kinds of costs
and benefits associated with decisions. Before a decision is reached and an actual
action is exerted, cognitive and affective processes are active and these processes
originate in the brain. Therefore, if one is interested in the question why people
behave impulsively or rather rationally and in a manner guided by self-interest, the
role of the brain has to be taken into account. Differences in the hard-wiring
of the brain or functional differences in brain activity help to explain variation in
human decision-making. Research topics like this are at the core of the young
discipline of neuroeconomics.

Neuroeconomics has adopted and expanded games and paradigms from
behavioral economics and psychology, and uses concepts from diverse disciplines
like addiction research (e.g., reward or temporal discounting) and applies nearly all
kinds of neuroscience techniques to the study of human decision-making.

In 2009, the Center for Economics & Neuroscience (CENs) was founded at the
University of Bonn. There are three arms to the CENs; comprising a behavior
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economics lab (Armin Falk), an imaging center (Bernd Weber), and MR’s genetic
laboratories. The collaboration with the colleagues of the CENs has alerted us to the
problems related to interdisciplinary work in the field of neuroeconomics. Even the
statistical methods preferred to analyze a given data set differ between psycholo-
gists and economists. Finding a common language is sometimes cumbersome, but
at the same time offers researchers the chance to learn from our colleagues. This is
further outlined by an example: behavioral economists are particularly fascinated by
the opportunities offered by the neurosciences. However, they typically have not
come across these techniques during their undergraduate and postgraduate training.
We have often been asked for a scholarly introduction to molecular genetics, the
field in which we are specialized. A comparable demand exists for other neuro-
scientific techniques. Thus, we decided not only to publish a textbook on neuroe-
conomics, but to enrich the book by a broad methods section in which the most
common neuroscientific techniques, ranging from molecular techniques including
genetics and hormone analysis, to brain imaging are introduced in a scholarly
manner by experts in the field. This methods section is so far unique for a neu-
roeconomics book. We are convinced that many scientists and students will find
they have an interest in this methods section, even if they are not primarily inter-
ested in neuroeconomics. We hope that this potential readership becomes aware of
this special feature of the book.

The book comprises eight sections, starting with an introduction into neuroe-
conomics (1) followed by an overview on frequently applied experimental para-
digms (games) in neuroeconomic research (2). In the next section, the molecular
basis of human decision-making is addressed (3). Here, the focus is on the role of
hormones, neurotransmitters, and (their underlying) genes that have been reported
to be of relevance for the field. Section four focusses on environmental and situ-
ational factors (4) and section five on social contexts influencing human
decision-making (5). From the synopses of sections 3, 4, and 5, it becomes apparent
that the successful prediction of human behavior must include nature and nurture,
as well as situational factors related to the decision (e.g., framing effects).
Section six presents translational and developmental approaches to neuroeconomics
including, among other valuable contributions, chapters on decision-making in
children and among patients suffering from mental illness (6). An article on neu-
romarketing demonstrates how knowledge from neuroeconomics research can be
applied in real life. For this reason, this chapter has been labeled Applied
Neuroeconomics (7). Hopefully this section can be extended in the future; we are
very confident that the applicability of basic neuroeconomic research will
increasingly be acknowledged. The culmination of the present book constitutes the
above-mentioned methods section, in which eight different neuroscience techniques
are introduced (8).

The completion of this book took longer than planned, but now that it is finished,
we are very satisfied with the product. We are happy to have received contributions
from so many highly regarded experts in this field. Thank you all for your strong
contributions and for your patience. Big thanks also go to Éilish Duke, for her
critical redaction of our chapters.
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We thank all the readers interested in this work. We hope that we meet your
expectations and are thankful for your criticisms and comments.

We also want say thank you to our beloved wives [Anette (MR) and Susanne
(CM)] and to our families, friends, and colleagues for their never ending support
and love over all the years. Their support came long before this book project began.

Bonn, Germany Martin Reuter
Ulm, Germany Christian Montag
June 2016
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Chapter 1
Neuroeconomics—An Introduction

Martin Reuter and Christian Montag

Abstract The present chapter provides an introduction into the young discipline of
neuroeconomics and into the present Neuroeconomics book. Historical aspects,
core concepts and future research avenues are presented.

1.1 Historical Aspects

Neuroeconomics is a very young scientific discipline that constitutes an interdis-
ciplinary symbiosis of economics, psychology and the neurosciences. The general
aim of neuroeconomics is to study human decision-making with a focus on the
neural mechanisms thereof. The official establishment of the discipline was marked
by the foundation of The Society for Neuroeconomics in 2005.

Research in this field is prolific and of high quality, however, scepticism
remains, especially among those scientists who retain a purist vision of their
respective disciplines. History has taught us that great achievements are made
possible only by the combined expertise of scientists from different fields. For
example, only through such successful interdisciplinary research could man have
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flown to the moon; astronomers working in isolation could never have achieved this
dream, but with input from other disciplines (e.g. informatics, mathematics, phy-
sics, etc.) mankind’s dream of walking on the moon became a reality.

Cognitive neuroscience, which emerged during the 1970s, is the youngest
member of the neuroeconomic trio, while the disciplines of psychology and eco-
nomics have been around for over one hundred years. For decades the two disci-
plines seemed to live in an uneasy parallel, arguably ignoring each other. This is
surprising, given that the understanding of human behaviour is intrinsic to both
disciplines. Of note, the scientific worldviews and the methodological approaches
utilized by each discipline differ dramatically. Whereas economists try to establish a
formal theory explaining human behaviour in an axiomatic way, psychologists
build and refine theories through an empirical approach. Roughly speaking,
economists have traditionally favoured a theoretical—and psychologists an
empirical—approach. Since the launch of the journal of Experimental Economics in
1998 (and in view of the chairs for behavioural economics newly created at
Universities throughout the world), it is clear that this strict differentiation between
the theoretical economics and empirical psychology no longer holds. Nevertheless,
such historical traditions are of importance; even today the two disciplines show
marked differences that are far-reaching, which manifest in different theoretical
foundations and methodological and statistical approaches, all of which serve to
undermine successful interdisciplinary research efforts.

Whereas economics had not made direct acquaintance with the neurosciences
prior to the establishment of the new discipline of neuroeconomics, the idea of
investigating the role of the brain in human behaviour is an old one in psychology.
For decades psychologists have used electroencephalography (EEG; see the method
Chap. 19 by Debener et al. in this book) to investigate cognitive and emotional
processes. Therefore, the invention and scientific application of magnetic resonance
tomography (MRI; for an introduction see the method chapters on MRI by Markett
(fMRI; Chap. 20), Gaser (MRI; Chap. 21) and Rüber (DTI; Chap. 22) in this book)
in the 1990s proved a logical step for psychologists interested in subcortical pro-
cesses that are not explicitly measurable through EEG. The subdiscipline of
Biological Psychology makes use of all kinds of techniques that characterize the
neurosciences, incorporating, in addition to EEG and MRI, genetics, psychophys-
iology, endocrinology, etc. In order to help bridge the gap between the “subdis-
ciplines” of neuroeconomics, the present book deliberately features a broad
methods section, which gives a scholarly introduction into neuroscience techniques
relevant to this field (see PART VII of this book).

1.1.1 Economic Models and Their Parallels in Psychology

As mentioned above, economic models of human behaviour are axiomatic and try
to establish algorithms valid for all participants across different situations. This idea
is mirrored in classical experimental psychology, with the difference that
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experimental psychology uses experimental conditions to analyse behaviour. In
Personality Psychology, however, the central tenet recognizes that large variability
exists across participants, even in strictly controlled experimental settings or natural
environments; a phenomenon referred to as individual differences.

A prominent economic model in neoclassical economics is utility maximization.
According to utility maximization, people make their best choices according to their
desires, knowledge and resources. The term utility does not refer to a good’s
quantity or monetary value per se in determining the decisions of an agent, but to
the utility they obtain from the item. According to Marshall (1920, p. 78) “utility is
correlative to desire and want”, but desire and want can only be inferred indirectly
by “the price which a person is willing to pay for the fulfilment or satisfaction of his
desire”. Although utility maximization makes correct predictions in a wide range of
settings and situations including politics, markets and social life, its validity has
been questioned, e.g. by Prospect Theory (Kahneman and Tversky 1979). Whereas
the concept of expected utility, which originates from Utility Maximization Theory,
postulates that alternative choices are valued by weighting the hedonic utility of
possible outcomes against the chances of those outcomes actually occurring (e.g. in
gambles), Prospect Theory claims that people do not always show a numerical
evaluation of probabilities, but that outcomes are valued according to two aspects: a
reference point (reference-dependent value) and an absolute utility. The
reference-dependent value is thought to represent the valuation of past experiences
and future aspirations and is therefore related to learning (past) and motivation
(future). Most prominently, Prospect Theory explains why people grant more
weight to losses than to gains, a phenomenon called Loss Aversion. There is
empirical evidence across different cultures and ethnicities that, on average, losses
are valued about twice as large as equal-sized gains. Of note, Prospect Theory has
gained empirical support from the neurosciences. Using an fMRI study, Tom and
colleagues have demonstrated that different brain activity patterns are correlated to
the amount of gains and losses (Tom et al. 2007). Interestingly, they did not identify
different brain circuits coding for gains and losses, but instead identified a unique
system—the ventral striatum—that has become famous in the neurosciences as the
brain’s reward centre. Gains were expressed by an increase—and losses by a
decrease—of the BOLD (blood oxygen level dependent) response in the ventral
striatum.

Utility Maximization Theory focuses on economic decisions taken by a single
agent in isolation. In contrast, Game Theory has extended the idea of utility
maximization to social situations, e.g. it makes predictions of how the choices of
other peoples influence the choice of an individual. Behavioural economics (partly
influenced by psychology) has developed a battery of different games (e.g. Trust
Game, Public Goods Game, Prisoner’s Dilemma, etc.; for an introduction to eco-
nomic games see Chap. 2 by Civai and Hawes in this book), which test the
assumptions made by Game Theory. However, the empirical data do not always
yield support for the theory. Naturally, people take into account the choices—or
putative choices—of others when making their decisions, but their behaviour is
often incongruent with the traditional economic view of man as a homo
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economicus. It is stated that the homo economicus makes decisions guided by
self-interest (i.e. the maximization of personal benefit), that his decisions are
completely rational and that all information necessary for making a choice is
available. Results from the dictator game where player 1 (the dictator) has to split
an endowment with an anonymous person (player 2) show that people do not
behave in a manner congruent with that expected according to the view of man as a
homo economicus (i.e. to take all the money and to award no money at all to player
2) (Camerer 2003). Instead, cross-cultural studies have shown that the “dictator” is
far more cooperative, with mean allocations to the receiver (player 2) of about 28 %
(Engel 2011). Based on the fact that this game, in its original version, is played as a
‘one shot’ game, i.e. the dictator has no reason to fear punishment from player 2 in a
subsequent interaction; the dictator game is thought to be a measure of pure
altruism.

In addition to the influence of others on people’s choices (Game Theory), there
are other crucial factors that influence economic behaviour. One of the most
prominent factors studied in neuroeconomics is the relationship of the time lag
between the decision and its consequences, referred to as temporal discounting.
Interestingly, psychologists have investigated this topic for decades as delay of
gratification (Mischel et al. 1989). In his seminal ‘Marshmallow Study’ at Stanford
University in 1972, Mischel devised an experiment in which children were afforded
the opportunity to ‘earn’ marshmallows. If the children could resist eating the first
marshmallow they were offered, they were promised a second one, i.e. they would
receive two marshmallows instead of one. The duration each child resisted the
temptation to eat the initial marshmallow was analysed, and it was subsequently
investigated whether or not delaying gratification correlated with future success.
While the majority of the approximately 600 child participants attempted to resist
the urge to eat the first marshmallow, only one-third delayed gratification long
enough to get the second marshmallow. Analyses suggested that the age of the
children was a crucial factor in influencing the child’s success on this task. With
increasing age, the ability to defer gratification increases. These findings have since
been extended to adult samples, using various kinds of reinforcement. Intelligence
(positive association) and gender (females were superior in resisting an immediate
small reward in favour of a delayed bigger reward; evolutionary factors are dis-
cussed to account for this gender effect) turned out to be further prominent pre-
dictors of the ability to defer gratification. Under the label temporal discounting this
phenomenon was investigated by means of functional magnetic resonance imaging
(fMRI). McClure et al. (2004a) could identify distinct neural systems responding to
immediate and delayed rewards. Whereas the limbic system is activated by
immediate rewards (t = 0) the prefrontal cortex responds to both immediate and
delayed rewards (t > 0), but more so when the delayed option is chosen. These
findings hold true for monetary reinforcement as well as for primary rewards, e.g.
sex (McClure et al. 2004b). The dissociation between cortical and subcortical brain
regions with respect to immediate rewards supports the role of the limbic system
(comprising the ventral striatum that is also named “the reward centre”) for drives
and instincts and the role of the prefrontal cortex for impulse control and cognitive
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processes. The latter are essential for evaluating offers and for deferring rewards
until a future time point. There is plenty of evidence that the more a person dis-
counts a delayed reward, the more likely that person is to exhibit a range of
behavioural problems, including clinical disorders (e.g. drug addiction, impulse
control disorders). The ventromedial prefrontal cortex (vmPFC) has shown to be
involved in impulse control and in individual propensity to engage in risky beha-
viours (Bechara et al. 2000, 2002).

1.2 What We Have Learned from Animal Models

The crucial question when referring to findings from animal research is whether
results can be extrapolated to humans. Preclinical trials—typically conducted in
rodents—for the development of new drugs targeted at the treatment of human
diseases, clearly answer this question with “yes”. Excellent animal models for a
range of psychological phenomena, e.g. anxiety, are available and do allow for
predictions of the anxiolytic effects of a certain substance in humans. Even for those
more complex behaviours relevant to the field of neuroeconomics, animal model
exist. For example, Chen et al. (2006) were able to demonstrate that Capuchin
monkeys are able to use tokens to purchase food from experimenters and that they
prefer to trade with those experimenters who offer the best deals for their “money”.
In other words, even New World monkeys understand the principles of the market.
Nonetheless, it is evident that the transfer from animal model to human is not
always successful or feasible. Ethical concerns are a crucial consideration in this
respect.

The invention of imaging techniques [e.g. MRI, positron emission tomography
(PET)] has made it possible to study the human brain during task performance.
Although PET imaging requires the administration of a radioactive ligand into the
central blood system, it is a safe technique that can be used for research purposes
with humans. More invasive techniques, such as microdialysis (a sampling tech-
nique for the continuous measurement of free, unbound concentrations of neuro-
transmitters or hormones in the extracellular fluid of brain tissue) or single-cell
recordings (for assessment of the firing rate of neurons) in the living brain are, of
course, not possible in healthy humans for ethical reasons. However, the neuro-
sciences have provided many groundbreaking animal studies with broad relevance
to neuroeconomics. As mentioned above, reinforcement and reward are crucial for
decision-making, although other context variables also have a tremendous influence
on our choices. The biological system most prominently related to reward is the
dopamine (DA) system (Schultz et al. 1997). Its relevance was first identified in the
context of studies on drug addiction. It was suggested that the dopaminergic system
is the final common pathway of reward since almost all substances with the
potential of causing addiction act via the DA system, either directly or indirectly
(Spanagel and Weiss 1999). These findings could be extended to naturally occur-
ring rewards (primary reinforcers like food or sex). The crucial question of how the
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DA system could encode signals of reward is best studied in animal studies (for a
review see Schultz 2013).

In a seminal study by Tobler et al. (2005), the activity of midbrain dopamine
neurons in Macaque monkeys was recorded while cues signalled the probability of
receiving a primary reinforcer (juice) of varying magnitude. This experiment tried
to explain how the brain disentangles the probability and magnitude of reward.
Keeping the probability of reward constant, the firing rate of the DA neurons
increased monotonically with the expected liquid volume. The DA neurons were
also able to encode the expected reward value, i.e. the combination of magnitude
and probability. In a further step the authors conducted an experiment in which the
reward outcomes were explicit rather than probabilistic. They used conditioned
stimuli that explicitly predicted various amounts of liquid (p = 1). For example, a
conditioned stimulus normally indicates the deliverance of 0.15 ml juice. They
subsequently followed the conditioned stimulus with an unpredicted stimulus;
either a smaller (0.05 ml) or larger (0.50 ml) volume of liquid; in response to which
the firing rate of the dopaminergic neurons decreased or increased respectively. In a
final experiment, Tobler et al. used one stimulus that predicted the delivery of either
a small or a medium volume of juice with equal probability and a second stimulus
that predicted a medium or a large volume with equal probability. Results indicated
that for both conditioned stimuli, the deliverance of the, respectively, larger stim-
ulus resulted in an increase—and that the deliverance of the, respectively, smaller
stimulus resulted in a decrease—of the neuronal firing rate. Surprisingly, the
identical medium volume delivery had opposite effects on neuronal activity,
depending on the prediction. The prediction is in turn influenced by a framing
effect. A medium amount of juice is attractive when compared to a small volume of
juice, but unattractive in comparison to a large volume. The authors argue that,
given the infinite number of reward values that are possible, this is an adaptive
process. Thus, the firing rates of the dopaminergic neurons adapt to the coding of
reward value in order to have a greater capacity for coding the likelihood of reward
outcomes. Results showed that dopaminergic neurons encode a combination of
magnitude and probability; the so-called expected reward values and that the
response of the dopaminergic neurons depends on framing effects (for a concise
review on the behavioural dynamics and neural basis of the framing effect please
see Chap. 9 by X.T. Wang et al. in this book).

The effects of expected reward have a discrete neural signature in human
decision-making, as demonstrated in a seminal study by Preuschoff et al. (2006).
Using a simple gambling task in an fMRI setting, the authors varied expected
reward and risk in an uncorrelated manner. Risk is a consideration because many
decisions in daily life have to be made under conditions of uncertainty. Expected
reward and risk were both represented in dopaminergic innervated brain regions,
however, there was a temporal dissociation in their processing. The brain first
processes information related to reward expectancy and later risk information.
Besides the aforementioned study by Preuschoff et al., there are numerous examples
in the literature of findings from animal studies being mirrored in neuroeconomic
studies on humans. For example, Roiser et al. (2009) investigated the influence of
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framing effects on human decision-making and its neural activation patterns. They
found that amygdala activation was stronger in those trials where participants made
choices in congruence with—compared with those made counter to—the frame, but
that this effect was only apparent in subjects carrying the short allele (s-allele) of the
serotonin transporter polymorphism (5-HTTLPR; for more information on genetics
see Chaps. 4 and 23 by Reuter and Montagin this book), a genetic variant related to
neuroticism, depression and anxiety (Roiser et al. 2009).

1.2.1 Validation of Theoretical Models on Human Decision
Making in Animals

As described above economists have developed theories (e.g. utility maximization;
game theory, etc.) to predict human decision-making. Researchers from cognitive
psychology and mathematics have established such theoretical models, albeit with a
different focus. The best studied of these models try to explain choices via the
simplest form of decision an individual can make—the choice between two alter-
natives. The focus here lies on the interdependency of choice probability and
response time (RT). The most familiar expression of this relationship is the speed–
accuracy trade-off, which characterizes the decision-maker’s dilemma of being
forced to negotiate between the competing demands of response speed and response
accuracy (Bogacz et al. 2010). Many decisions are based on information that
accumulates over time. Although the probability of making a correct or favourable
decision increases with the amount of information we have gathered, sometimes we
are forced to make quick and ill-informed decisions (e.g. to prevent harm). The
development of Sequential Sampling Models has increased the theoretical under-
standing of such decision processes, however, it was the empirical validation in
animal models (i.e. single-cell recordings in monkeys) that initially helped to test
and refine these models. David Sewell and Philip Smith (see Chap. 14) provide a
thrilling and comprehensive introduction to a research area in which theoretical
mathematical frameworks and computational neuroscience meets empirical neu-
rophysiological animal research. Through recent advances in imaging techniques,
these models have now also been successfully tested in humans (Forstmann et al.
2010).

1.3 Ecological Validity

One of the most severe criticisms of neuroeconomic research is the frequent lack of
ecological validity in studies. What can we learn from human decisions that are
registered in fMRI scanners; a loud environment where movement is extremely
restricted and where social interaction partners are presented—if at all—via video
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glasses (Mäki 2010). Imaging techniques like MRI, and PET are fantastic tools for
allowing us to register brain activity, even in subcortical brain regions, while stimuli
are processed. However, these techniques are not made for field studies, in which
participants are observed in their natural environment. However, history has
demonstrated that experimental approaches applied in the laboratory can indeed
provide valuable insights into human behaviour and have thereby helped to legit-
imize the discipline of experimental economics. The same success is demonstrable
for neuroeconomic studies using imaging techniques. Neuroeconomics permanently
strives to establish ecological validity in any way possible. Implementing monetary
reward in the behavioural games is one of these provisions. Decisions must be
related to real consequences for the decision-maker, in order to be ecologically
valid. It can be assumed that engagement in an economic game, which is played for
monetary stakes, allows even the (fMRI) scanner environment to fade into the
background.

Imaging studies are still common in neuroeconomics and have greatly boosted
the success of the discipline. However, alternative neuroscientific techniques that
are not limited to scanner facilities or laboratories are becoming increasingly
prevalent. Molecular genetics is a key example in this instance. Behaviour can be
studied in participants’ natural environment and the participant subsequently pro-
vides a cell sample (e.g. by means of a noninvasive buccal swap) for genetic
analyses. This approach ensures that participants are not influenced by the exper-
imenter while exhibiting their natural behaviour. Most economists embarking upon
neuroeconomic study are initially unaware that molecular genetics can provide
information on the brain. Genes code for neurotransmitters, hormones, receptors
and enzymes relevant for brain metabolism. Static genetic variants, called poly-
morphisms, exert a permanent influence on these gene products, by modulating the
expression or the structure of gene products. In recent years a new field has grown
from molecular genetics: epigenetics. Epigenetics dispels the ancient myth that
genes are like an unstoppable computer programme, started at the moment when the
semen and egg of our parents have fused. Prior to the introduction of epigenetics,
genetic research often occasioned strong resentment among the general population,
as it was considered synonymous with fatalism—a thing you cannot change.
Epigenetic research has served to change this view of genes as destiny.
Epigeneticists have demonstrated that the environment can and does influence our
genes; not the static genetic polymorphisms, but rather the expression of our genes,
by changing the methylation patterns of the genes. Thus, the relationship between
genes and behaviour/environment is bidirectional (for a more detailed introduction,
please see the genetics Chap. 23 in the methods section of this book and Chap. 4
“Genes and Human Decision Making”).

Genetic approaches are not limited to field studies, but are also suitable for
laboratory experiments. Neuroeconomics studies have used this method success-
fully and it will certainly become more and more important in the field. In a seminal
study, Israel et al. (2009) have reported an association of a single nucleotide
polymorphism (SNP; rs1042778) on the oxytocin receptor gene (OXTR) and
prosocial fund allocations in the dictator game. This finding was replicated in an
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independent sample and serves to corroborate animal and human studies in
demonstrating the pivotal role of the hormone oxytocin for prosocial behaviour (for
a review see Ebstein et al. 2009).

1.4 Future Perspectives in Neuroeconomics

No matter how strongly neuroeconomists strive to improve prediction models on
human decision-making through use of neuroscientific methods, criticism will
always be present. It is impossible to convince every sceptic that biological vari-
ables can help us to better understand human behaviour and that neuroscientific
approaches are helpful in verifying and refining theoretical economic models. On
the whole, however, most criticism pertains to serious concerns, which must be
taken seriously. The exciting possibilities offered by neuroscientific methods carry
with it the risk of overselling the findings (Rubinstein 2008). The mass media
contributes to this by exaggerating its reports of solid scientific work. We take this
opportunity to discuss two such examples. We recently published a neuroeco-
nomics study entitled “Investigating the genetic basis of altruism: The role of the
COMT Val158Met polymorphism” (see a detailed description of this study in
Chap. 4 in this book). The newspapers wrote articles on this study with headlines
like this: “Altruism gene makes people generous”. It is obvious that altruism is not a
monogenetic phenotype, but is subject to influence both from many genes, and from
environmental effects. Therefore, there cannot be “an (a single)” altruism gene. The
second example demonstrates that researchers sometimes tend to oversell their
scientific findings. Kuhnen and Chiao (2009) published an article based on a sample
of 65 participants entitled “Genetic determinants of financial risk-taking”. The
Scientific American reported this study with the headline “My genes made me
invest: DNA implicated in financial risk-taking”. One can debate the connotations
of the word “determinants”, but it is obviously related to “determinism”, implying
that there are no other sources of variance relevant for risk-taking, besides the
5-HTTLPR polymorphism investigated in this study. For the sake of Scientific
American, it must be noted that the word “implicated” reflects the scientific value of
this study very well, much better, in our opinion, than the phrase “genetic deter-
minants”. Thus, a modest interpretation of scientific results in the field of neuroe-
conomics is essential to increase the respectability of the discipline.

It is obvious that the methodological spectrum of neuroscientific techniques has
dramatically increased over the last years. Neuroeconomics is no longer limited to
fMRI studies. We see EEG-, genetic-, endocrinological-, and TMS—studies, to
name but a few methods, and the use of such methods will dramatically increase in
future research. The paradigms and games used in neuroeconomic research will also
become more and more elaborate in the endeavour to disentangle the subcompo-
nents involved in economic decision making. Finally, the introduction of field
studies will further enrich the spectrum by allowing researchers to test laboratory
hypotheses in “real life”.
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Part I
Games in Experimental Economics



Chapter 2
Game Theory in Neuroeconomics

Claudia Civai and Daniel R. Hawes

(Spade): If you kill me, how are you going to get the bird? If I
know you can’t afford to kill me till you have it, how are you
going to scare me into giving it to you?
(Gutman): “Well, sir, there are other means of persuasion
besides killing and threatening to kill.”
(Spade): “Sure, but they’re not much good unless the threat of
death is behind them to hold the victim down. See what I mean?
If you try something I don’t like I won’t stand for it. I’ll make it
a matter of your having to call it off or kill me, knowing you
can’t afford to kill me.”
(Gutman): “I see what you mean. That is an attitude, sir, that
calls for the most delicate judgment on both sides, because, as
you know, sir, men are likely to forget in the heat of action where
their best interests lie and let their emotions carry them away.”

—The Maltese Falcon

Abstract Game theory and contemporary decision theory provide the mathemat-
ical foundation of economics. Neuroeconomics, which principally concerns itself
with the integrative study of brain, mind and behavior, builds on this mathematical
foundation while also drawing heavily from the repository of experimental para-
digms that have grown out of economic game theory and behavioral economics.
Game theory is central to neuroeconomics primarily because it constitutes a formal
mathematical framework with which to bridge insights occurring at different levels
of neuroeconomic analysis. In particular, game theoretic principles can be used to
express neuroscientific ideas about the brain, psychological concepts regarding the
human mind, and economic predictions of human behavior, thereby making these
different ideas more rigorously relatable to each other. In this chapter we provide a
nontechnical introduction to game theory and its relation to neuroeconomics. It has
been written as an overview of the basic concepts most likely to be encountered in
neuroeconomic research. The first part of the chapter introduces the reader to the
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basic concepts and philosophical underpinnings of game theory in relation to
neuroeconomics. The second part is an introduction and discussion of common
games, including the games featured in the other chapters of this book.

2.1 Introduction

In the well-known movie “The Maltese Falcon” (Wallis and Huston 1941)
Humphrey Bogart’s character (Spade) attempts to ‘call bluff’ on his adversaries’
threats. He does so by what amounts to game theoretic reasoning—namely by
putting into relation each man’s objectives, their individual beliefs, and their shared
knowledge of the situation—and deduces that the adversary, Gutman, cannot
possibly afford to kill him for risk of never learning the Maletese Falcon’s
whereabouts. Gutman of course concludes with the cautioning appeal to keep in
mind the potential for internal conflict between reason and emotion, and how
rational objectives may become lost in its wake.

Neuroeconomics relates to this scene as an extension of economic analysis,
traditionally preoccupied with the prediction of behavior, into the realm of the brain
and the mind (the internal processes that give rise to behavior). Neuroeconomics is
inherently interdisciplinary, but draws most heavily from economic decision theory,
psychology, and neuroscience. Game theory, as the mathematical foundation of
economic decision theory, is central to neuroeconomics, because of the relatively
new disciplines’ intellectual history (i.e., because neuroeconomics lends from
economics, and economics uses game theory), but also because it has the potential
to function as the mathematical foundation upon which neuroeconomic theory
might be developed further into a discipline of its own right (i.e., the properties of
game theory make it an attractive candidate for trying to develop an integrative
theory of brain, mind, and behavior).

The purpose of this chapter is to introduce researchers coming to neuroeco-
nomics from fields other than economics to the basic principles and ideas that
feature in game theory. While outlining the basic tenets of game theory, we also
attempt to draw philosophical and historical connections that link game theory to
the goals and of neuroeconomics.

Game theory, generally speaking, is the study of mathematical objects whose
states and properties interact. At the level of neuroscience, game theory could be
used to describe the interactive or competitive firing of neuron populations. At the
level of psychology, game theory could be used to describe the emergence of
mental states in relation to interacting cognitive processes, or the emergence of
behavior from competing mental states. Traditionally, in economic analysis, game
theory has been used to predict the behavior of multiple, interacting, intelligent
decision-makers. Hence, game theory can be viewed as a general tool for the logical
consideration of strategic and nonstrategic relationships at multiple levels of
analysis, as long as the concepts being used have representation as numbers and the
relationships are closed or bounded correspondences. Economic examples, which
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represent the mathematical objects of game theory as the behaviors of intelligent
decision-makers, are generally intuitive, instructive, and easy to develop, wherefore
this consideration forms the common approach in most textbooks, and also in this
chapter. However, we hope to draw the reader’s attention to the fact that game
theory itself, being a mathematical language and logic system, has far wider
application and that fundamental issues regarding measurement of utility through
games, and how this relates to theory development in physics, remains outside of
the scope of this chapter. The classic book Theory of Games and Economic
Behavior (in particular chapter 1) remains invaluable on this account
(von Neumann and morgenstern 1944).

As neuroeconomics becomes more consolidated as a stand-alone discipline, we
expect the importance of game theory for neuroeconomics to increase, and have
reasoned hope for the potential of game theory to function as a bridge across
different levels of brain–mind behavior analysis. This latter part, concerning the
future of game theory in neuroeconomics, remains personal conjecture and is only
hinted at or mentioned in passing throughout this chapter; however, it informs much
of our thinking in choosing which elements of game theory to focus on for this
introduction, and how to present the basic principles. It makes sense, therefore, to
provide a quick note on our definition of neuroeconomics.

Neuroeconomics as an interdisciplinary scientific approach aimed at discovering/
creating a unified theory of human behavior and cognition, via integrative study of
mind, brain, and behavior relationships.

Practically, the neuroeconomic enterprise combines concepts, methods, and
technological tools from neuroscience (see Chap. 8) with formal analysis of
decision-making, typically drawing heavily from economic decision theory as well
as psychology.

As a procedure, neuroeconomics aims to experimentally link the neurophysio-
logical and behavioral constituents of the decision process to each other, and then
conceptually relate these links to psychological concepts of mental activity via
formal models, typically in the tradition of economics and decision theory.

With this definition of neuroeconomics in place, the formal models developed
within game theory enable mathematically precise descriptions of the decision
process, which in turn allow prediction, specification, and comparison of neural
activity presumed to underlie decision-making. Additionally, experimental para-
digms developed within experimental game theory (i.e., games) are prominently
featured in neuroeconomics research, where the goal is often to differentiate
between competing economic models of the decision process (Glimcher and
Rustichini 2004; Rustichini 2005; Camerer et al. 2005), or to investigate competing
descriptions of mental processes thought to underlie a particular kind of decision or
behavioral phenomenon.

Because it is a common source of confusion, the final note of this introduction
points to game theories’ conceptual birth in expected utility theory and connection
to the economic idea of rational decision-making (Mongin 1997): As will be
discussed later, strict economic rationality is not necessary for game theoretic
inquiry, and many game theoretic applications in neuroeconomics are explicitly
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geared toward understanding decision processes for which individuals systemati-
cally violate the predictions of rational choice theory and expected utility maxi-
mization in one way or another. Furthermore, the interested reader is encouraged to
consider differences in the economic meaning of rationality compared to the
noneconomic colloquial meaning of rationality, for example, by consulting
Anthony Downs’ book “An economic theory of democracy.” (1957).

The remainder of this chapter elaborates on the basic elements described in the
above introduction. It concludes with a compendium of games most commonly
encountered in the neuroeconomics literature, including a digest of each of the
games featured in this book.

2.1.1 Basic Terms and Definitions

This chapter is a nontechnical introduction to game theory1; however, the main
strengths of game theory derive precisely from its mathematical exactness and
rigorous definitions, wherefore some minimal recourse to formal terminology
appears unavoidable. We therefore begin by introducing some basic terms and
definitions that will appear throughout this chapter, first among which are those that
describe an economic Game.

A formal game consists of three basic objects:

1. Players are independent decision-makers, mathematically represented in terms
of their utility functions; i.e., by a function that assigns ordinal preference rank
to all possible outcomes of the game.

2. Actions are full descriptions of the actions each player may take during the
game. These action descriptions may differentiate between different points of
time, situational circumstances or—more generally—stages of the game.

3. Payoffs are full descriptions of the outcome (and consequently utility) experi-
enced by each player for each possible combination of actions that may occur
during the game.

Additional objects used to describe games may include

(a) Information Sets are full descriptions of the information available to each
player in each stage of the game. Information pertains to the actions available
to the players, their utility functions, as well as the current history and possible
trajectory of stages in the game.

(b) Environments are nonstrategic mechanisms capable of influencing any of the
above elements of the game, typically in a probabilistic manner. For example,
the environment may impose random restrictions on what type of actions are

1Comprehensive, technical treatments can be found for example in Myerson (2013) and Osborne
and Rubinstein (1994).
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available at a given stage of the game, or may influence the payoff distribution
for game outcomes.

(c) Strategies are probability distributions over all actions for each stage of the
game. Strategies are full descriptions of what action should be chosen for each
possible stage of the game. A strategy can describe a specific action for each
stage, in which case it is referred to as a pure strategy. Alternatively, a strategy
may assign probabilities to multiple actions for any given stage, in which case
it is referred to as a mixed strategy. Importantly, a strategy specifies an action
or mixture of actions for every possible contingency of the game.

In nondegenerate2 games, the actions taken by all of the players collectively
interact to determine the payoffs and consequent utilities experienced by each
player individually. This gives rise to the strategic considerations, which lie at the
heart of game theory.

The major objectives of game theoretic inquiry may therefore be described as the
aim to:

1. Formulate applicable game descriptions for real-world decision problems;
2. Develop and apply solution concepts to positively describe or normatively

prescribe the strategic reasoning processes that are used by players in game
situations;

3. Develop, refine, and apply equilibrium concepts that describe stable patterns of
strategic reasoning and behavior between the players.

4. Identify the existence and properties of such equilibriums.

The above elements of a game are described and presented in either a so-called
Extensive Form, or as a so-called Normal Form representation.

Extensive Form representations are depictions of games by the way of math-
ematical graphs. In these graphs the nodes represent the different stages of the
game, and the edges (the lines connecting the nodes) represent the actions that lead
to each stage. Extensive Form games specify exactly the possible sequence of
actions and their resulting outcomes for a game, and are therefore particularly useful
when the order in which players choose during the game is relevant to its outcome.
An annotated example is given in Fig. 2.1a.

Normal Form representations of games are more commonly used for games in
which the order of moves is irrelevant, as is the case in so-called one-shot,
simultaneous move games, i.e., games in which the resulting outcome is determined
by considering all chosen actions simultaneously.3 Normal Form games are pre-
sented as matrices, with each cell of the game matrix containing a vector of final

2That is, games that can not be reduced to sets of mere one-player decision problems in which the
actions of other players are irrelevant to each players utility.
3Think for example of a secret ballot election, in which each player enters a vote into a computer,
and the computer then decides the election outcome by considering all such submitted votes.
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payoffs for each possible combination of actions (for all players) that may occur in
the game.4 An annotated example is given in Fig. 2.1b.

The well-known Prisoner’s Dilemma (PD) provides a useful example for
demonstrating the concepts introduced thus far, and both Fig. 2.1a, b are depictions
of this game. The PD is a one-shot, simultaneous move game between two players.
Each player in the game has two actions available to him or her. We call these

Fig. 2.1 a Generic Prisoner’s Dilemma (normal form). Rows indicate actions available to Player 1
({C, D}) and columns indicate actions of Player 2 ({c, d}). Cells list the utility of each
combination of actions. Utility to player 1 is listed first in black font. Utility to player 2 is listed
second and using red font. We have highlighted the Nash equilibrium outcome in the bottom right
cell, corresponding to choice of D, and d by the two players. b Generic Prisoner’s Dilemma
(extensive form). For illustration we also show a strategic form version of the PD. Nodes indicate
players’ “turns” in the game. Player 1 moves first at the initial node of the game (open circle).
Edges indicate actions available at each node ({C, D} for player 1, {c, d} for player 2). Dotted
lines connecting nodes indicate information sets. Two nodes belonging to the same information set
cannot be distinguished by the player. Hence, player 2—at the time of her move—does not know
whether player one has chosen C or D. Final nodes contain the utility to each player. We have
again highlighted the Nash equilibrium for this game. Although the extensive form and strategic
form of the prisoner’s dilemma are equivalent, not all extensive form games can be transformed
into an equivalent normal form game

4Note that all extensive form games can be transformed into normal form, but not all normal form
games may have an equivalent extensive form; hence there also exists a qualitative difference.
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actions {C} and {D} for player 1, and {c, d} for player 2. The intuition behind the
PD was originally suggested by Flood and Dreshner in the 1950s, later formalized
by Albert Tucker (Poundstone 1992), and goes as follows: two criminals are being
questioned by the police; both are facing the choice of whether to defect ({D} or
{d}) on their partner in crime by providing incriminating evidence to the police, or
to remain cooperative ({C}, or {c}) by not revealing any information during
interrogation. The possible actions to each player are therefore to cooperate or to
defect ({C, D}) for player one, as well as for player two ({c, d}). In the case that
both prisoners remain cooperative ({C, c}) the police lacks evidence for a full
conviction and both criminals go to jail for only a short period of time; in the case
that both prisoners defect on each other ({D, d}), they both land in jail. The
interesting scenario that creates the dilemma results from what happens when one
player defects while the other remains cooperative ({C, d} or {D, c}): in this case
the defector goes free entirely, while the defected upon goes to jail for an extended
period of time. The possible outcomes to the game are therefore ({C, c},{C, d},{D,
c}, and {D, d}), and the payoffs are given by the utility experienced for the differing
amounts of jail time (in the example we let these utilities be 0, 2, 4, and 6).
Assuming that both players prefer less time in jail to more time in jail (i.e., they
prefer higher utility values among the outcomes in Fig. 2.1b), each player in this
game fares best when he or she is the only one to defect, and worst if he or she is the
only one to cooperate. Additionally, each player also prefers the outcome of mutual
cooperation to the outcome of mutual defection.

Standard game theoretic reasoning predicts an equilibrium outcome for the
Prisoner’s Dilemma in which both players defect. This is because the outcome from
meeting cooperation by the other player with defection (i.e., the best outcome) is
preferred to the outcome from mutual cooperation; at the same time meeting
defection by the other player with defection also is preferred to being the only
cooperator in the game (i.e., the worst outcome). Hence defecting is a best response
to whatever the other player does, and thus mutual defection becomes an equilib-
rium response in the game.

The terms best response and equilibrium deserve special note in this context, as
they relate to a very particular solution concept in game theory, known as Nash
Equilibrium, Nash Solution Concept, or Best Response Equilibrium. This concept
defines equilibriums for finite noncooperative5 games as instances in which each
player is playing a best response given the strategies being played by all other
players in the game. A strategy, in turn, is defined as a best response if and only if
its expected utility is at least as large as that obtained from any other possible
strategy the player may play.6 Hence, in Nash equilibrium no player has any

5Game theory divides games into cooperative and noncooperative types. All of the games in this
chapter are noncooperative games, and we therefore do not spend a lot of time discussing the
difference between the two classes of games, which can be found elsewhere (e.g., Myerson 2013).
6The concept is named after John Nash, among other contributions, for his work on such equi-
librium points in n-person games (Nash 1950).
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incentive to unilaterally change his or her chosen response in the game, since it is a
best response to what all other players are choosing at the time.

Returning to the PD, it is also worth noting that defection is a so-called dominant
strategy for both players. This means that defecting is optimal regardless of what
other players choose. Not all games have dominant strategies, however, and they
are not necessary for Nash equilibrium. We will see examples of such games later in
this chapter.

2.1.2 Rationality and Expected Utility Maximization

Standard game theoretic solutions to decision situations such as the Prisoner’s
Dilemma prescribe the optimal behavior of a rational decision-maker with unlim-
ited analytical resources under the goal of utility maximization. However, human
analytical resources are necessarily limited, introspection may be noisy, preferences
may be uncertain, and any host of context-dependent affective responses may
contribute to the decision process. Furthermore, decision-makers may rely on
heuristics and intuitions (i.e., emotions or gut feelings) in order to reduce cognitive
costs (Simon 1972, 1990; Tversky and Kahneman 1974; Damasio et al. 1991;
Gigerenzer 2004; Glöckner and Betsch 2008; Glöckner and Hochman 2011). Such
psychological features and behavioral strategies may be behaviorally indistin-
guishable from rational choice behavior in some contexts, but lead to systematic
biases and inconsistencies in others. Investigation of such behavior has a long
history in economics (e.g., Allais 1979; Ellsberg 1961; Loomes and Sugden 1982),
and has given rise to extensions (e.g. Friedman and Savage 1948; Aumann 1997),
and modifications such as bounded rationality (Selten 1990) and Prospect Theory
(Kahneman and Tversky 1979). Consequently, economic theory has produced a
wealth of models and theory refinements that individually address instances in
which standard economic model possess poor predictive validity.7 To the extent
that none of these competing models and refinements approaches the economic
ideal of a unified theory of human behavior, neuroeconomics is seen as a disci-
plined approach to answering unresolved questions in economics: for example by
juxtaposing competing models [e.g., by investigating whether a unified system, or
separate systems compute the value for present versus future rewards (McClure
et al. 2004)]; by investigating the rules that govern for whom, when and under
which circumstances one model, or model specification, is more applicable than
another [e.g., by generating insights into the neurobiology underlying different
types of decision-makers (Coricelli and Nagel 2009; Bhatt et al. 2010), and learned
strategic behaviors (Hawes et al. 2012)]; or by helping to establish the precise role

7Note that Economic Theory is primarily concerned with generalizable predictive validity, and that
content validity regarding the process via which a decision is actually made, is at best secondary,
but probably irrelevant, to as-if modeling in economics.
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of affect and social sensitivity during decision-making (Van’t Wout et al. 2006;
Civai et al. 2010).

Despite being strongly linked to expected utility theory as formulated by Von
Neuman and Morgenstern, game theory features prominently in the neuroeconomic
endeavors described above, as game theory itself allows for any number of pos-
tulatory models of players behaviors, and the details of the behavioral models used
to describe the decision-maker may differ across studies. For example, players may
be thought to be entirely rational8 and self-interested, while updating their beliefs in
complete accordance to Bayes rule, eventually converging on Nash equilibrium
behavior (Kalai and Lehrer 1993). Alternatively, players may be modeled as pos-
sessing bounded rationality, may be compassionate to others, or may update beliefs
with respect to subjective probability representations (Rabin 1993; Camerer et al.
2011). Similarly, different definitions for what comprises equilibrium behavior
(i.e., different types of equilibriums) exist in game theory, therefore extending and
generalizing the concept of Nash equilibrium (e.g., Perfect Nash Equilibrium in
dynamic games, Correlated Equilibrium, Trembling Hand Equilibrium, etc.).

Despite this flexibility of game theory, rational choice and expected utility
theory remain the principal departing points for most neuroeconomic investigations
of behavior, where, at the very least, expected utility theory functions as a
benchmark for comparison for any neuroeconomic investigation of alternative
models. Because of this, and because the games discussed in this book are con-
ceptually founded in the expected utility framework, our concluding compendium
considers each game with respect to expected utility maximization and Nash
equilibrium. Before explaining precisely what these terms mean, we want to add
brief mention of some alternative frameworks that feature prominently in neuroe-
conomics, but are only peripherally considered in the compendium of games that
concludes this chapter.

2.1.3 Alternatives to Expected Utility Theory

Insights developed under the frameworks of Bounded Rationality, Prospect Theory,
and under the research agenda often labeled Behavioral Economics, are particularly
relevant to the research domains we have mentioned above, and have been con-
sequentially influential in neuroeconomics, and neuroeconomic research on games:
Bounded Rationality as introduced originally by Simon (1955) and Gigerenzer and
Selten (2002) takes into account cognitive limitations of the decision-maker. The
theory posits that human beings are limited in their capacity for solving complex
problems and for processing large quantities of information, wherefore useful game

8Rationality in the economic sense means that the decision-maker has preferences that are com-
plete and transitive, or acyclical. This means that the decision-maker can rank all alternatives
according to an ordinal metric, and that within this ranking whenever A is preferred to B, and B is
preferred to C, then A will be preferred to C also.

2 Game Theory in Neuroeconomics 21



theoretic descriptions must include explicit consideration of how players decide
upon which information to consider, which information to ignore, and when to rely
on simpler heuristics for decision-making. Such questions of which types of
information are attended to during the decision process and how integration occurs
for information derived from multiple sources, or pertaining to multiple dimensions
of the decision problem, lay at the core of neuroeconomic research. Additionally,
researchers have recently begun to investigate stable individual differences in how
individuals use information during decision-making (e.g., Burks et al. 2009;
Engelmann and Tamir 2009).

Prospect Theory, developed by psychologists Kahneman and Tversky (1979) in
the context of risky decision-making is similarly central to neuroeconomics. In a
nutshell, Prospect Theory argues that utilities of losses are computed differently
from utilities derived from gains, and that objective probabilities undergo a sub-
jective weighting during the decision process. The precise nature in which value
and probability are represented in the brain continues to be a core theme of neu-
roeconomic research. Various psychological phenomena have been explained
within Prospect Theory, such as the framing effect, which considers differences in
choice behavior depending on whether the same problem is described in terms of
gains or losses, and the endowment effect, also known as the fact that people ascribe
more value to things that they own. These cognitive biases have also been subject
of neuroeconomics investigation (De Martino et al. 2006; Knutson et al. 2008).

Finally, a large body of recent work spearheaded by researchers such as Colin
Camerer, George Loewenstein, Matthew Rabin, Ernst Fehr, and Simon Gächter has
tried to go even further than Prospect Theory in its attempt to import insights from
Psychology into economic thinking. This research has drawn strongly from insights
in Personality Psychology and Social Psychology to investigate the way in which
humans respond to incentives and formulate beliefs during complex
decision-making, especially social interactions. Influential work in this field has
tried to explain the role of nonreciprocal altruism, perceptions of fairness, inequity
aversion, and competitive motives during the choice process, and has thus provided
novel insights to neuroeconomics regarding the investigation of a person’s utility
(e.g., Rabin 1993; Fehr and Schmidt 1999; Camerer 2003). Work in this field also
investigates social phenomena such as the occurrence of economic bubbles in
bidding competitions, or how beliefs about other player’s mental abilities influence
the level of reasoning and information processing that is applied to game situations.
As evidenced by other chapters of this book, economic games, such as multi-person
auctions or the Ultimatum Game (see Sect. 2.2.6 of this chapter), feature promi-
nently in this type of research, and are also used as tools in neuroeconomic
investigations of the role of social context and cognitive skills during
decision-making.
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2.2 Compendium of Common Games

The main body of this book chapter has introduced game theory as a powerful and
flexible, philosophically rich framework for neuroeconomic research on
decision-making. We have purposefully emphasized the distinction between game
theory and the economic (as-if) notion of rationality, since we have found that
conflation of these two concepts can confuse non-Game Theorists about the
applicability of game theory to the as-is investigation of human behavior. Hoping to
have thus preempted such confusion, we will however continue our discussion of
games with reference to the common framework within which players are thought
to be rational expected utility maximizers in the Von Neumann and Morgenstern
sense. This means, first, that players consider a probability distribution of possible
outcomes and their attendant payoffs. Second, the expected utility of an action is
then determined by integrating the utility of the payoffs with respect to these
probabilities. In the discrete case, this means that the utility from each possible
outcome following an action is weighted by the probability assigned to it by the
action. Finally, the sum of these weighted utilities then forms the players expected
utility. Players are expected utility maximizers if they compute expected utilities
in this way and always choose the action that results in the highest expected utility.
Players are considered rational in the economic sense if they have complete, and
transitive, preferences.

Furthermore, unless stated explicitly, we will consider only Nash equilibrium
solutions to the games we discuss. Nash equilibriums are defined for finite non-
cooperative games, and constitute instances in which each player is playing a best
response given the strategies being played by all other players. A strategy, in turn,
is a best response if, and only if, its expected utility is at least as large as that
obtained from any other possible strategy.

2.2.1 Matching Pennies

Intuition: The Matching Pennies game features two players with identical choice
between two actions. One player receives a preferred outcome whenever both
players match on their actions, and incurs a less preferred outcome whenever they
mismatch on their actions. The other player incurs the preferred outcome as a result
of the mismatch, but incurs the less preferred outcome from a match. In the notation
of the example (Fig. 2.2), matches occur when player 1 chooses U and player 2
chooses L, or when player 1 chooses D and player 2 chooses R. All other com-
binations produce mismatches.

In the matching pennies game, the actions that lead to a preferred outcome for
one player, lead to the less preferred outcome for the other. This property is typi-
cally referred to as zero-sum (since the properties of the game remain under payoffs
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that add up to zero for each outcome), and the Matching Pennies game is often cited
as a quintessential example of such games.

Equilibrium Solutions: The Matching Pennies game is a two-action version of
popular games such as “Rock, Paper, Scissors”, “Morra”, or “oddsandevens”. Like
with these common games a player’s most promising strategy in Matching Pennies
is to remain unpredictable to the opposing player while also exploiting any pre-
dictability they may observe with their opponent. More concrete, the Matching
Pennies game does not have best response equilibrium in pure strategies. Using the
notation of the normal form example in Fig. 2.2, whenever player 1 plays a strategy
in which U is played with a probability p > 0.5 player 2 may improve his payoffs
by always choosing R. And whenever player 1 chooses U with probability p < 0.5,
player 2 can exploit this by always choosing L. The same is true in likeness for
player 2 choosing either L or R with probability different from p = (1 − q) = 0.5.
Crucially, whenever player 1 randomizes between U and D with equal probability
(p = q = 0.5) player 2 is entirely indifferent between any probability over R and L.
Likewise player 1 has equal expected utility from U and D whenever player 2
chooses L and R with equal probability p = q = 0.5. Consequently, the only Nash
equilibrium exists in mixed strategies for both players randomizing between their
available actions with probability p = q = 0.5.

Insights: According to Nash equilibrium a player playing multiple games of
Matching Pennies against a single opponent should try to randomize his or her
actions, while also being sensitive to whether the opponent’s choices follow any
sort of predictable pattern. Two types of predictability are of interest here, the first
being predictability based on a perceived pattern (e.g., every fifth choice of player 1
is U), the second being predictability based on random processes9 with probabilities
that deviate from p = q = 0.5. Exactly how subjects identify patterns or keep track

Fig. 2.2 Generic Matching Pennies. Player 1 chooses between U(p) and D(own), while player 2
chooses between l(eft) and r(ight). Player 1 wins when actions match ({U, l} and {D, r}), player 2
wins under the alternative outcomes

9Independent and identically distributed.
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of shifting probabilities during repeated decisions remains an active question for
neuroeconomic inquiry. Interestingly, recent research in monkeys has shown that
simple reinforcement learning may be capable of explaining optimal matching
pennies behaviors in equilibrium (Lee et al. 2004). More generally, reinforcement
learning seems to underlie preference learning and decision in various social and
nonsocial contexts, suggesting particular relevance of these models to neuroeco-
nomics (Frank and Claus 2006; Seo and Lee 2012).

2.2.2 Prisoner’s Dilemma

Extensive and normal form descriptions, as well as the intuition and equilibrium
solution to the prisoner’s dilemma have been provided in the main text and in
Fig. 2.1a, b.

Insights: Few games have been as extensively studied as the Prisoner’s
Dilemma, yet substantial disagreement remains regarding whether or not humans
meaningfully deviate from rational behavior in experimental and real world PD
scenarios. Certain seems that in experiments and in real life, human
decision-makers cooperate (and avoid the Prisoner’s Dilemma outcome) more often
than can be explained by mere noisy decision making10 (Cooper et al. 1996).

Unclear is what kind of cognitive architecture promotes such cooperative
behavior. Given the relative simplicity of the Prisoner’s Dilemma, explanations that
impose cognitive constraints on the decision-makers’ ability to identify the
expected utility maximizing solution would appear spurious. Instead, human
decision-makers appear to systematically compute larger expected utility from
cooperative behavior given certain parameterizations of the game.

One interpretation that has been offered for this is that human subjects view even
one-shot prisoner’s dilemma games as potentially repeated interactions. Once the
probability of repeated interaction is increased beyond zero, the space of Nash
equilibrium solutions is capable of sustaining any given rate of cooperative
behavior, and cooperation becomes explainable within the common framework.
This explanation possesses considerable face validity, in the light of experiments
involving actual repeated games and the possibility of building reputations, which
support the basic idea that humans are responsive to the prospect of repeated
interaction and reputation building. The same explanation can be made differently
by recourse to decision-makers placing some positive probability of being observed
by at least one person with whom they may interact in the future. This makes the
idea conceptually very difficult to repudiate (but see Cooper et al. 1996). However,
the important question of whether this kind of behavior is supported by a cognitive
architecture that supports truly altruistic behavior remains of interest to neuroeco-
nomics. Special interest has been given to one particular way in which such an

10Economic models exist, which relate such behavior to rational choice under uncertainty
(e.g., Neyman 1985; Kreps et al. 1982).
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architecture may be expressed, namely in the form of other regarding preferences,
or social utility. The importance of other regarding preferences lies in the obser-
vation that an ostensible prisoner’s dilemma may not always possess the conceptual
incentive structure of a prisoner’s dilemma to the actual decision-maker. Since one
of the avenues for understanding decision-making rests obviously in understanding
how incentives and feasibility constraints are represented in the mind of the
decision-maker, cooperative behavior (in prisoner’s dilemma games and beyond)
remains an active area of research in this respect (Fehr and Camerer 2007; Sanfey
2007; Houser and McCabe 2009).

2.2.3 Public Goods Game (with and Without Costly
Punishment)

Intuition: The Public GoodsGame is an n-person Prisoner’sDilemma (with n > 2) in
which each person faces the choice between contributing to a shared community pool,
or free riding on the contributions of others. Contributions to the pool are multiplied
and shared equally among all group members, however, the return to the individual
is always smaller than the contribution, so that contributing adds to the overall welfare
of the group, but subtracts from the welfare of the individual (Fig. 2.3). Like the

Fig. 2.3 Generic Public Goods Game. Solid triangles indicate a player’s choice of a continuous
value x within some interval. Each player moves without knowledge of what value has been
chosen by the other players in game (illustrated by the dotted lines along the intervals). For an
arbitrary number N players, payoffs are determined as a function of some initial endowment E and
a multiplier κ in [1, N). Each player receives exactly their initial endowment less their donation to
the public good, x, as well as their share of the κ-multiplied sum of total contributions by the group
as a whole
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Prisoner’s Dilemma, the Public Goods Game is a paragon for games that investigate
the emergence of collaboration and altruistic behavior. The game is often played with
an added option of costly punishment. In the Public Goods Game with costly pun-
ishment, players play a second round duringwhich theymay incur a small cost in order
to subtract earnings from the final payoffs of other group members.

Equilibrium Solution: In the Public Goods Game, the individual’s payoffs are
increasing in the contributions made by others, and decreasing in the contributions
he or she makes herself. The dominant strategy for the individual is therefore to not
contribute. In equilibrium, nobody contributes, and group payoffs are minimized.

In the one-shot game with costly punishment, the same equilibrium solution
obtains through backward induction. In the final round, the action of punishing
reduces the individual’s payoffs (i.e., it is costly), hence no player should ever
punish. Consequently, the threat of being punished for free riding should not enter
the player’s decision in the first round.

Insights: As in the two-person Prisoner’s Dilemma actual behavior in experi-
ments and real life often violates the equilibrium prediction for the Public Goods
Game. In particular subjects consistently contribute amounts larger than zero to the
public good (Chaudhuri 2011). Additionally, subjects frequently punish free riders,
even in the one-shot game approximations, and (supposedly anticipating this)
humans contribute more in games in which the threat of punishment exists (Fehr
and Gächter 2000; Dreber et al. 2008). Interestingly, punishment has also been
found to be used against contributors in some experiments (so-called antisocial
punishment) (Rand et al. 2011).

As discussed for the Prisoner’s Dilemma, a neural architecture promoting
cooperative behavior is likely to be sensitive to social outcomes, such as payoff
equity, distributive fairness, and reciprocity in behaviors. The Public Goods Game
with punishment is especially interesting in this regard, as it indicates player’s
willingness to pay for a more even, or fair distribution of outcomes. Chapter 5
discusses such punishment behaviors.

Interesting insight comes also from a set of carefully designed behavioral
experiments by David Rand and colleagues involving several versions of the
Prisoner’s Dilemma, including the n-person public goods version (Rand et al.
2012). Across these experiments the authors show cooperation to occur sponta-
neously under conditions of low reflection and intuitive decision-making. Inducing
subjects to reflect consciously on their decisions, on the other hand, reduced
cooperative behavior. These data suggest that cooperative behavior may not be
entirely explainable by social preferences that promote socially beneficial out-
comes, but that such behaviors depend on the mode of cognitive engagement with
the decision. To the extent that different networks are involved in these different
types of cognitive engagement, these results present important questions for neu-
roeconomics. Chapter 5 discusses in particular the role of the prefrontal cortex for
behaviors involving reciprocal fairness.
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2.2.4 Centipede Game

Intuition: The Centipede Game is a classic example of a group of games that can be
solved using backward induction. At its core it describes a finitely often repeated,
sequential prisoner’s dilemma. In one popular version of the game one or more
players take turns deciding whether to take a given monetary reward, or to pass the
move on to the next player. Whenever a player decides to take the money, the game
ends that round, the taking player receives a large reward and all other players end
with smaller or even zero rewards. Whenever the move is passed on, the overall size
of the monetary pie grows, and the next player gets to make the decision of taking
the money or passing. Critically, if the moving player in round n of the centipede
game decides to take the money, then the payoff in round n to the player who
passed in round n − 1 is smaller than his or her payoff would have been had he or
she taken the money in round n − 1 instead of passing on the move (Fig. 2.4).

Equilibrium Solution: The dilemma of the centipede game, and games like it,
arises because the game is played finitely many rounds, i.e., there will be a final
stage in which one player has a strictly dominant choice in taking the money, and
the players know this about the game. Using this information, it can be deduced that
the last player to move will take the money. This implies that the second to last
player may improve his expected utility by not passing on the second to last turn.
By extension the third to last mover should not pass on the third to last turn, and
eventually this iteration implies that the very first mover should take the money and
end the game on the very first turn. This solution is so-called sub-game perfect,
meaning that it considers each of the sub-game11 components of the centipede game
and identifies a strategy for each player that is an equilibrium strategy for each of
the sub-games.

Fig. 2.4 Generic Centipede Game: at each node, the moving player may T(ake) the reward, or
P(ass) the move along. Overall rewards increase with each passing decision. Conceptually, each
choice of passing costs the passing player 1 utility point, but gains the other player 2 utility points
in the depiction shown here

11A sub-game is strictly defined as any subset of a game which has a uniquely identified initial
node (i.e., the initial node does not share an information set with any other node), and contains all
nodes that follow the initial node in the complete game as well as all successor nodes to these
nodes. An additional condition is that all the nodes included in an information set of the sub-game
must also be included in the sub-game.
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Insights: The Centipede Game is significant to economic theory, because its
Nash solution implies a notion of rationality that seems counterintuitive, or even
alienating to most human decision-makers (e.g. McKelvey and Palfrey 1992). In
fact, the term “Paradox of Backward Induction” has been used to describe the
intuition that most decision-makers would prefer passing on earlier moves, and
would expect their counterparts to do likewise at earlier positions in the game. In
fact, this intuition has fueled rich intellectual debates on the nature of economic
rationality, and backward induction in games (e.g., Aumann 1992, 1995; Binmore
1996). For example, it may be deemed rational for a player to have beliefs about his
opponents that violate strict economic rationality once this player has been
observed to make a move that would be inconsistent with it. In other words, once
the first player passes on the first move of the Centipede Game it is not irrational for
the second mover to believe that the first mover will pass again on his next move.
Consequently, the second mover may prefer passing on her move, given that she
may now rationally believe that the first mover will also pass again. Knowing this,
it may be rational and strategic for the first mover to initially pass; thus essentially
sending a signal to the second mover. Experimental games show that human
subjects rarely take the money on the very first round of the Centipede Game
(McKelvey and Palfrey 1992).

Actual behavior in the Centipede Game holds numerous insights for neuroe-
conomists. For one, the backwards induction solution disciplines the way in which
a player must iteratively think about the potential outcomes of his actions. Hence,
behavior in games that require backward induction may be indicative of the extent
of iterated reasoning that a player applies to a decision. Additionally, the notion of
rationality we have described indicates the important role of second order beliefs for
behavior in the game. That is, it is important for the behavior of player 1, what he
thinks that player 2 thinks about the beliefs of player 1. The process of
self-referential belief formation and its neural correlates have been investigated by
Bhatt and Camerer (2005), and experiments investigating a subject’s depth of
reasoning (and the depth of reasoning he or she attributes to others) appear to hold
important insights for understanding multi-person strategic interactions (Coricelli
and Nagel 2010; De Martino et al. 2013).

2.2.5 Stag Hunt Game

Intuition: The Stag Hunt Game is the prototype of the social contract, and a trust
dilemma: In A Discourse on Inequality written in 1754, Jean-Jacques Rousseau
describes a situation in which two individuals go on a hunt, and each of them has to
choose one of two possibilities: hunt a hare, which leads to a small personal gain,
regardless of the behavior of the other player, or hunt a stag, which leads to a large
gain, but will only be successful if both players join forces in doing so. Catching the
stag and obtaining the large payoff for both players therefore requires spontaneous
cooperation and mutual trust (Fig. 2.5).
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Equilibrium Solution: The game may look similar to the Prisoner’s Dilemma,
in that there are two players that have to choose simultaneously whether to coop-
erate or not. However, this game does not have a strictly dominant strategy, and
possesses two Nash equilibriums in pure strategies (as well as mixed strategy
equilibrium): Strategies in which both players always hunt the stag, or always hunt
the hare, are both equilibrium solutions to the game. Depending on the actual
payoffs used in the game, a mixture can be found, for which the other player will
become indifferent to which action they choose, and when both players mix their
actions in this way, a mixed strategy equilibrium is reached.12 The pure strategy
equilibriums obtain because hunting the stag is a best response when the other
player hunts the stag, and hunting the hare is a best response when the other player
hunts the hare. Hunting the stag, which involves social risk taking, however, also
constitutes the social optimum, as it gives the higher payoff to both players.

Insights: The Stag Hunt Game allows the investigation of individuals’ attitude
toward social risk taking involved in coordinating on mutual trust in the game. This
feature of the game is comparable to many social and physical environments in
which joint coordination of trusting behavior is required for the attainment of goals.
In repeated games, people additionally gain knowledge of other player’s intentions
to cooperate through repeated interactions, and applying Theory of Mind
(ToM) (Premack and Woodruff 1978) can infer other people’s cognitive states,
make predictions on their moves and act consequently. As for the Trust Game
(Sect. 2.2.8), having some knowledge about the other player helps to shape one’s
strategy: if we know that the other agent is risk-taking, we might predict that he/she

Fig. 2.5 Generic Stag Hunt. Each player chooses between a hunting a S(tag), or a H(are).
Coordinated stag hunts ({S, s}) generate the highest payoffs for both players. A single stag hunt
({S, h} or {s, H}) does not produce positive utility for the player choosing S(tag). Choosing H(are)
always produces an intermediate utility to the player, irrespective of the other player’s action

12For the values used in the schematic Fig. 2.5, the mixed strategy equilibrium has both players
hunting the stag with probability 1/3 and the hare with probability 2/3.
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will probably choose to hunt the stag, and we can act consequently. From a neu-
roscientific perspective, a study from Yoshida et al. (2010) shows that, on one hand,
knowledge acquired by updating the beliefs on the other agent through repeated
interactions requires the activation of medial prefrontal cortex (the higher the
activation the higher the uncertainty of belief inference); on the other hand,
choosing a strategy according to the level of sophistication of thinking, meaning
how many orders of belief we apply for choosing our strategy, involves the dor-
solateral prefrontal cortex, whose activity positively correlates with the level of
sophistication.

2.2.6 Ultimatum Game

Intuition: The Ultimatum Game is the classic “take-it-or-leave-it” scenario in game
theory. It features two players, the proposer and the responder. The proposer is
endowed with an amount of money, e.g., 10 dollars. The proposer moves first, and
makes an offer to the responder on how to divide the money; the responder has to
accept or reject the offer knowing that, accepting, the money will be divided as the
proposer has decided, whereas rejecting neither player will receive anything. For
example, if the proposer offers 2 dollars and the responder accepts, the proposer
gets 8 dollars and the responder gets 2 dollars; if the responder rejects, they both
gets 0. The game is one-shot, meaning the interaction between the two players
occurs only once, eliminating the opportunity for reciprocity, and stripping rejec-
tions from their potential power of being negotiating tools (Fig. 2.6).

Equilibrium Solution: If the total amount available is x, then the proposer must
choose an amount p [0, x] to keep for himself. The responder chooses between two
solutions for determining the outcomes: “accept” is equal to x − p for him and to p

Fig. 2.6 Generic Ultimatum Game (continuous donation). Player 1 is the proposer and chooses
some value x along a continuous interval. After proposing x, player two may accept or reject.
Acceptance leads to player 1 receiving the remainder of his initial endowment (E − x), and player
2 receiving x. If player 2 rejects, both players receive 0
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for the proposer; “reject” is equal to 0 for both. A strategy profile where the
responder accepts an offer if and only if it is larger or equal to p − x, and the
proposer offers p − x, is a Nash equilibrium. If one adopts a more restrictive
concept, i.e., the sub-game perfect equilibrium, then equilibrium of this game of
perfect information is found by backward induction and is unique, if a zero offer is
not allowed. In this equilibrium, the responder accepts any offer, given that getting
something is better than getting nothing; the proposer, knowing that, offers the
minimum amount.

Insights: A large number of experiments, beginning with Güth et al. (1982),
used monetary payments and found behavior substantially different from the offer
of a minimal amount by the proposer and acceptance of any positive amount by the
responder. It has been repeatedly demonstrated that proposers tend to make fair
offers and responders tend to reject offers that are considered to be unfair, such as 1
or 2 dollars out of 10; theories of social preferences have accounted psychological
phenomena such as inequity aversion (e.g., Fehr and Schmidt 1999) or negative
reciprocity (e.g., Rabin 1993) for the rejections.

The deviation of actual behavior from Rational Choice has opened the discus-
sion on the ultimate psychological and neural mechanism that leads to a rejection.
Negative emotions in response to unfairness have been claimed as responsible for
the behavior (Pillutla and Murnighan 1996), and evidence in support to this theory
has been collected extensively (e.g., Sanfey et al. 2003; Van’t Wout et al. 2006);
however, recent findings challenge this account, in that emotional arousal seems to
be not necessary in order to trigger rejections (Civai et al. 2010). Moreover, a
crucial role is played by expectations, which interact with the unfairness level to
influence significantly the rejection rate, as shown by Chang and Sanfey (2013).
Overall, the UG, together with Dictator Game (DG), Trust Game (TG) and their
manipulations, remains one of the most effective tasks to investigate the cognitive
and neural basis of social norm’s compliance.

Fig. 2.7 Generic Dictator Game (continuous donation). A degenerate game in which player 1
distributes an initial endowment E between herself and player 2. Player 1 receives E − x, while
player 2 receives the donated amount x
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2.2.7 Dictator Game

Intuition: Forsythe et al. (1994) introduced the Dictator Game (DG), a variant of
the UG, which features two players, the dictator and the recipient. The dictator is
endowed with an amount of money, e.g., 10 dollars. The dictator is asked to divide
his/her endowment with the recipient; the recipient’s role is entirely passive, as
he/she must accept the offer made by the dictator. For example, if the dictator
allocates 2 dollars to the recipient, the dictator gets 8 dollars and the recipient gets 2
dollars. Unlike the UG, in the DG the recipient has no strategic input, and, in this
sense, the DG is a degenerate game. This game is useful to investigate the behavior
of the UG’s proposer when ruling out the strategic thinking, as in the DG the
dictator does not have to worry about potential rejections (Fig. 2.7).

Equilibrium Solution: The dictator maximizes his payoffs by keeping the
largest amount possible.

Insights: Rational Choice theory predicts that the dictator will offer 0; however,
as for the UG, this is not the case in experimental settings. Although the amounts
and frequencies of nonzero offers in the DG are less and lower than in the UG,
demonstrating that strategic motivations have an effect in the UG, giving behavior
in the DG is consistently and significantly larger than zero, and players are often
observed to give up to the 50 % of their endowment to the recipient (Forsythe et al.
1994). Interestingly, anonymity and social distance play a very important role in
shaping the amount of giving (Hoffman et al. 1994, 1996; Charness and Gneezy
2008): the larger is the degree of anonymity and the social distance, the lower is the
average amount of money given by the dictator.

As for the UG, the DG is a useful tool to investigate fairness concerns. In
particular, given its peculiar nature of degenerate game, where the recipient has no
active role and cannot decide on anything, this game is useful to disentangle actual
altruistic motivations from the strategic thinking that may characterize the pro-
poser’s offers in the UG. Interestingly, the fact that people still give some money to
the recipient opens the discussion about different types of altruism (for a specific
discussion, see Chaps. 11 and 12 of this volume).

2.2.8 Trust Game

Intuition: The simple Trust Game (TG) (Berg et al. 1995) features two players, the
investor and the trustee. The investor starts with a certain amount X, e.g. 10 dollars,
and has to decide how much to keep for him/herself, and how much to give to the
trustee. The investor knows that the amount received by the trustee will be tripli-
cated, so that if T is the investment, the trustee receives 3T. At this point, the trustee
must decide how much to return to the investor, from 0 to 3T. The TG is considered
to be an extended DG, as in this case the investment earns a return, and it is widely
employed to investigate the issue of trust/social capital (Fig. 2.8).
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Equilibrium Solution: Both players are better off with full investment, but the
investor has to take the risk in trusting the trustee. In the one-shot version of the
game, the sub-game perfect equilibrium would be for the trustee to keep all,
wherefore the best response of the investor would be to invest nothing.

Insights: Although Rational Choice predicts the opposite, investors show a
surprisingly high amount of blind trust: the average amount invested is half of
X. The average amount of return is 1/3 of 3T, so that the investor ends up, on
average, with T. Cochard et al. (2004) found that investors invest more and trustees
return a higher percentage in the finitely repeated trust game with fixed matches
(7 rounds) as compared with the one-shot version; in particular, they found two
different types of trustee, i.e., those returning 2/3 of T and those returning 0.

The TG has been widely employed to investigate the psychological and neural
underpinnings of trust among strangers; interestingly, it has been possible to show
how trust is modulated both by the characteristics of the trustee and by those of the
investors. For example, studies manipulating the moral character of the trustee
showed that investors were much more likely to make risky investments with
“good” partners (e.g., Delgado et al. 2005); on the other hand, it has been shown
that administering the neuropeptide oxytocin increases trust in the investor, who is
willing to invest more money in the trustee. In particular, Kosfeld et al. (2005)
manipulated the nature of the trustee, having a human trustee in one condition and a
computer in another, and showed that this increase was not due to a general increase
in the willingness to take risks (computer condition), but was specific to the social
risks involved in interpersonal interaction (human condition).

Fig. 2.8 Generic Trust Game (continuous donation): Player 1 entrusts some amount x1 between 0
and E to player 2. This amount is multiplied by κ, after which player 2 may return some amount x2
between 0 and κ times x1 to player 1. Player 1 receives the part of the endowment he kept for
himself plus the amount retuned by player 2. Player 2 receives the κ—multiplied amount of player
1s initial trust less the amount returned
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Chapter 3
Hormones and Economic Decisions

Amos Nadler and Paul J. Zak

Abstract Hormones are chemical messengers released into the body that change
the probability of behavior. Because hormones are both measurable and manipu-
lable they lend themselves to experimental methodology that can establish causal
relationships. Neuroeconomics studies have shown hormones’ influence on
decision-making using quantifiable treatment and outcome variables in economic
and social contexts. This chapter provides background and methodology for hor-
monal research in neuroeconomics and reviews significant studies on how oxytocin,
testosterone, arginine vasopressin, dopamine, serotonin, and stress hormones
impact decisions, and how research can be used to improve decisions and the
business of life.

3.1 Introduction

The traditional approach to economic research employs a set of simplifying
assumptions on human behavior from which to describe and predict choices. These
assumptions provide a rigid framework for analyzing decision-making and facilitate
models that generate predictions that can be empirically tested. For the second half
of the twentieth century, theoretical modeling of people as ‘rational agents’ was
economics’ state-of-the-art methodology. However, as much as simplifying
assumptions make questions analytically tractable, they also obviate the richness in
behavior from the very element under analysis: human beings (Vercoe and Zak
2010).
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Neoclassical economic models of decision-making involve rational and pre-
dictable economic agents who have specific and well-defined utility functions based
on ordered, transitive preferences. Yet observation of actual people shows the
opposite—rapid, heuristic-driven decisions, and decades of psychological and
neuroscientific studies show that memories, cues, primes, and emotions affect
decisions (Camerer et al. 2005). Fortunately, economics has continued to evolve by
producing richer and more accurate models of human behavior, with more realistic
assumptions, greater conformability with empirical data, and deviations from
rationality. Models have advanced and new tools have been (cautiously) adopted,
such as functional magnetic resonance imaging (fMRI), neurophysiology, genetics,
and direct manipulation of hormones. While ignored until recently, hormones have
been shown to initiate and mediate changes in the central and peripheral nervous
systems and affect economic decisions (Zak 2013; Kandasamy et al. 2014; Camerer
et al. 2005).

Economists have traditionally been constrained by the type of data at their
disposal and relied on archival (i.e., secondary) data to generate findings. In con-
trast, the natural sciences produce models largely based on primary data from which
causal relationships are identified—data informs the model, not the other way
around. Instead of the formation of a multitude of models bearing similar
explanatory power, this inductive method offers what Francis Bacon called a “se-
lective process of elimination among a number of alternative possibilities’’ (1895,
III, p. 340). The experimental approach to studying economic behavior produces
primary data from which to draw conclusions. In particular, hormonal and physi-
ologic research offers a robust inductive method to study biological influence on
economic decision-making and produce neurally informed models of human
behavior (Zak 2010). Most importantly, direct manipulation of hormones and
physiologic states has begun to identify biological mechanisms motivating specific
behaviors.

Over the course of evolution mammals developed two integrated communication
systems—one faster, and one slower—to respond to changing environments and
regulate homeostasis (i.e., physiologic stability). The nervous system communicates
rapidly through neurotransmitters and neuromodulators while the hormonal system
uses molecular messengers which cause both temporary and permanent changes in
the body . In essence, hormones are chemical messengers that change the proba-
bility of a behavior or biological function and are the focus of this chapter.

Hormones have long been known to influence physiologic states, physical
development, and genetic transcription in humans and animals yet recent devel-
opments show hormones impact cognition, mood, and, most recently, economic
decision-making. Neuropeptides, such as oxytocin and arginine vasopressin, and
steroid hormones, such as testosterone and estradiol, play a central role in humans
in a variety of behavioral and social domains (McCall and Singer 2012).
Economics’ founding father, Adam Smith, connected emotions and morality to
prosperity; Thorstein Veblen stated that economics should be thought of as a field
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of biology and that only social science shaped by biology could be considered
‘scientific’ (Hodgeson 1998). Alfred Marshall, one of the exponents of mathe-
matical rigor within economics, wrote that, “the Mecca of the economist lies in
economic biology rather than in economic dynamics” (1890). By putting human
beings back at the center of economic analysis, neuroeconomics returns economics
to its roots.

3.2 Hormones Defined

Hormones are chemical messengers that circulate in biofluids (e.g., blood) to reg-
ulate physiologic activity and maintain homeostasis (the ability to maintain and
regulate internal physical equilibrium regardless of external changes) by acting on
targets organs. Hormone production is regulated by the brain and mostly produced
by organs in the periphery of the body, such as the kidneys, pancreas, and gonads
(although some hormones and their precursors are made in the brain itself). Most
hormones have receptors in the brain that allow them directly affect neural activity.

For example, in men, testosterone (T) is produced primarily by the Leydig cells
in the testes in response to hormonal signaling from the brain (Midzaka et al. 2009).
T is synthesized from cholesterol and released into the bloodstream. Further, it
crosses the blood-brain barrier in small quantities due to high lipid solubility,
modulating neural activity in the brain that changes, for instance, the threshold for
aggression (Schwartz and Pohl 1992). T is also made by women, though at 5–10 %
the levels in men, and has similar effects (Carré et al. 2010). For those interested in
the assessment of hormones and related methodological issues we recommend
Chap. 24, “Hormones” by Robert Miller and Clemens Kirschbaum in this book.

3.3 Mechanisms of Action

Once produced and attached to cell receptors, hormones initiate changes in the body
at two levels: genomic1 and non-genomic (also called classical and nonclassical,
respectively). Genomic action occurs when a hormone attaches to a target cell
receptor and initiates genetic transcription; this occurs on a time scale of hours to
years (Falkenstein et al. 2000). For example, testosterone influences transcription of
genes by interacting with receptors on the outside of the cell, initiating muscle
growth and secondary sexual characteristics in males (Beato 1996). Non-genomic
action, on the other hand, occurs by changing characteristics of cells themselves,

1Hormones differ in their endogenous release patterns and active half-lives (Santen and Bardin
1973). Genetic factors mediate receptor availability and molecular metabolism, meaning that no
two people are precisely the same in the way they respond to the same hormone; this aspect can be
measured in some studies (Crabbe et al. 2007).
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and acts much more rapidly, on the scale of seconds to minutes (Lösel et al. 2003;
McEwen 1991; Falkenstein et al. 2000). Evidence of this has been demonstrated
experimentally with T, whereby infusion reduces anxiety in many animals,
including humans (van Honk et al. 2005; Frye and Seliga 2001).

Studying hormonal influences on decision-making requires a comprehensive,
multi-pronged approach. The ‘basal model’ proposed by Mazur and Booth (1998),
uses endogenous (‘within the body’), or basal levels as predictors of behavior,
whereby participants’ unaltered hormone levels are measured and used as
explanatory variables. This model assumes that measurements over time represent
short-term fluctuations near characteristic levels. For example, Sapienza et al.
(2009) study basal levels among MBA students to predict risk aversion and career
choice.

An approach better suited to identifying causation, is the exogenous (‘outside the
body’) manipulation method, whereby participants are given a specific amount of a
drug to increase their levels of a hormone (or block the action of a hormone or
neurotransmitter on receptors). This methodology tests ‘activational’ properties of a
hormone, provides a clear treatment that can be compared to placebo, and lends
itself to rigorous manipulation verification through biofluid assay. For example,
Kandasamy et al. (2013) test the influence of cortisol (a stress hormone) on risk
preferences by increasing participants’ stress hormone levels through hydrocorti-
sone dosing and measuring changes in risk preferences over time.

A related method is through precursor manipulation, which can enhance or
impair availability of the specified molecule. For example, a study tested the effects
of dopamine (abbreviated ‘DA’) inhibition by administering participants naltrexone
(a DA receptor blocker) in an asset trading experiment to test how impaired DA will
affect behavior and market bubbles (Efremidze and Zak, in press). Also, modulation
of chemical precursors are also used in experiments, such as tryptophan depletion or
enhancement (Crockett and Fehr 2013).

Another approach evaluates changes in levels as predictors of behavior. This can
be applied to both endogenous and exogenous contexts, where instead of using
basal levels, percent change or absolute change from baseline is used as an
explanatory variable. Apicella et al. (2014) test the influence of changes in T on
willingness to compete and find a positive relationship.

In addition to explaining behavior, changes in hormones are used to measure
physiologic response to an event, such as competition, winning, and losing (Booth
et al. 1989). Understanding the process fully—the hormonal response to an event
and the subsequent change in behavior motivated by a change in hormones—
clarifies the hormonal role in dynamic human decision-making.

Findings are generally not as strong for basal levels relative to exogenous
methods (Schipper 2015; Apicella et al. 2008; Cueva et al. 2015). Also, matching
endogenous range with exogenous amounts can be challenging due to difficulties in
measurement of endogenous amounts and clear understanding of receptor sensi-
tivity and regulation under various conditions.

Experimentally manipulating a single hormone can produce changes in behavior,
yet behavior is jointly driven by downstream interactions between hormones,
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neurotransmitters (chemical messengers in the brain), neural activity, and physio-
logic tone. Thus, conclusions drawn from pharmacologic manipulations are con-
ditional on basal physiologic states and interactions with other biological factors
(Zak 2004, 2005, 2011; Breedlove et al. 2007, p. 123). As a result, a thorough assay
of basal physiology is necessary, which can also be assessed using electroen-
cephalograms (EEGs), electrocardiograms (ECGs), and galvanic skin response
(GSR). Unfortunately, neurotransmitters are difficult to measure directly without
invasive and risky approaches (such as lumbar punctures to harvest spinal fluid) and
are therefore typically indirectly assessed in human studies through, for example,
urine collection to measure breakdown products.

A convergent approach is necessary to fully understand how hormones affect
human decision-making. The first step is to assess basal physiologic state. Step two
measures endogenous hormonal response to stimuli. The final step establishes
causation by exogenously administering or inhibiting a hormone and measuring
changes in behavior. This comprehensive approach is necessary because all
physiologic systems are noisy and this approach helps avoid false-positive results.
In this way, endogenous effects are demonstrated as well as causal relationships
established. This method is summarized in Fig. 3.1.

Fig. 3.1 A complete assessment of the role of hormones on decisions requires showing that
(1) the endogenous hormones affect a particular behavior, and (2) that manipulating the hormone
changes the behavior
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3.4 Laboratory Experiments

Despite the abundance and history of hormone research in medicine and biology,
the literature on hormones and economic decision-making is in early stages (Zak
2004). Hormonal neuroeconomics experiments were pioneered after animal
research suggested related hormonal roles in human behavior. Findings have been
both mixed and consistent in terms of convergence and replicability—some studies
show contradicting results and non-replicability for the same hormones, while other
hormones show corroborating patterns. In addition to testing for behavioral effect,
hormone research requires understanding the precise pathways, half-lives, inhibit-
ing and promoting qualities, and effect on other hormones, all of which are an
ongoing scientific endeavor. Among the multitude of hormones produced in the
human body, a subset is studied most closely and the majority of behavioral
research has focused on oxytocin, testosterone, estrogen, glucocorticoids (stress
hormones), arginine vasopressin, serotonin, and dopamine.

Tasks commonly used in neuroeconomics research include the trust game
(TG) that measures trust and reciprocity, the ultimatum game (UG) that measures
generosity or selfishness and theory of mind, the dictator game (DG) that measures
unilateral altruism, and double auctions of assets (DAA) where participants trade an
asset of known value. The TG, UG, and DG measure by the amount of money
people choose to share with others under various experimental situations. The
participant who makes the first decision is called Decision Maker 1 (DM1), and the
person receiving the transfer or responding is called Decision Maker 2 (DM2).
DAA experiments allow participants to buy and sell financial assets in simplified
dynamic markets which simulate trading in financial markets by allowing one to
make real-time decisions that respond to prices determined by the traders them-
selves (Smith et al. 1988). For a detailed overview on economic games we rec-
ommend reading of Chap. 2 “Games in Experimental Economics” by Claudia Civai
and Daniel R. Hawes in this book.

3.5 Specific Hormones

3.5.1 Oxytocin

Oxytocin (abbreviated ‘OT’) is a hormone named for its role in mammalian
reproduction (oxytocin means quick birth in Greek). In 1909, the English phar-
macologist and neurophysiologist Sir Henry Hallett Dale showed it causes uterine
contractions and isolated it, earning him the Nobel Prize in Physiology or Medicine
in 1936. Produced by the hypothalamus and secreted by the posterior pituitary
gland, OT is one of the few hormones that are directly synthesized in the brain and
released in the brain, peripheral circulation, and various organs including gas-
trointestinal tract and heart (Zak 2011; Kiss and Mikkelsen 2011).
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Starting in the late 1970s animal research showed OT release was associated
with positive social behaviors and a groundbreaking study showed OT injection
initiated maternal behavior in rats toward biologically unrelated offspring (Pederson
and Prange 1979; Gimpl and Fahrenholz 2001). Convergent evidence pointed
toward likely analogous influences on human behavior, leading to incorporation in
economic decision tasks that provide active, measurable, and meaningful measures
of greed, prosociality, trust, and profit maximization. By measuring and manipu-
lating hormones in these tasks, an understanding the role of OT in human social
behaviors has begun to emerge.

The first neuroeconomics study measuring and endogenously manipulating OT
in relation to economic decisions is by Zak et al. (2004) who show that the receipt
of trust signal is associated with higher peripheral OT. This study indicates
intentional trust in the TG was associated with higher OT levels as measured in
blood compared to individuals who received the same amount of money determined
by random draw. Further, the level of OT predicted the amount of money that was
reciprocated to the person who had shown trust. An analysis that extended the
sample size using the same protocol corroborated the findings (Zak et al. 2005a).

A subsequent study was designed to causally connect OT to trusting behaviors
by manipulating intranasal administration. In a double-blind protocol, 24
International Units (IU) of synthetic OT or an equal quantity of placebo were
administered to participants who made decisions in four rounds of the TG with
random rematching with other participants each round (Kosfeld et al. 2005). Those
who received OT exhibited more than double the trust (as measured by monetary
transfers) compared to those who received the placebo. Decisions in control tasks,
such as choices among lotteries, as well as assessments of cognitive function were
unchanged between conditions. It is important to point out that OT infusion did not
increase allocations of money when the return on investment was determined by
chance, showing that administration affected only social decision-making.

In similar studies, Baumgartner et al. (2008) found that the OT group did not
send more money to DM2, although they did send more money after being given
feedback about others’ monetary transfers. Klackl et al. (2012) and Ebert et al.
(2013) find that OT infusion did not increase trust in the TG and the latter propose
OT acts as a modulator of social interaction rather than a prosocial neuropeptide.
Yao et al. (2014) show no main effect of OT trust restoration, yet the design and
objectives differ markedly, making the study incomparable to Kosfeld et al. (2005).
In a study of basal OT (i.e., without exogenous manipulation) Christensen et al.
(2014) test whether endogenous OT affects trust in an iterated DG and found no
association between repeated sampling and trusting decisions.

Subsequent research found that 40 IU of intranasal OT increased generosity in
the UG, complementing findings regarding its effects on the TG (Zak et al. 2007).
In this study, OT did not affect decisions in unilateral DG. The authors included the
DG as a control task because it does not require an understanding of another’s
intentions to make a decision. This finding shows the importance of context and
structure to hormonal neuromodulation. A study by Mikolajczak (2010) showed
that OT does not affect people indiscriminately—participants in the OT condition
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made larger monetary transfers but only to others who had trustworthy character-
istics. This suggests that multiple brain systems are involved in decisions and OT
interacts with neural inputs that influence choice, and extensive work shows OT
plays an influential role in proximal and distal prosocial behaviors.

Endogenous OT release was stimulated using a video featuring a child with
terminal brain cancer and a change in OT correlated with the subjective experience
of empathy for the characters in the video (after controlling for distress) (Barraza
and Zak 2009). High levels of empathic concern predicted larger donations to the
charity that produced the video. This study identified a psychological mechanism
behind the effect of OT on behavior, and connected its findings to large literatures
in psychology and moral philosophy regarding the role of empathy in prosocial
behaviors (see Zak 2011). The causal effect of OT on distal prosocial behaviors was
demonstrated by Barraza et al. (2011) who show a causal yet conditional effect of
OT of increased donations to known charities among those who donated. Other
studies show exogenous OT increases gaze to the eyes (Guastella et al. 2010),
enhances social memory (Guastella et al. 2010), as well as improving emotional
recognition among youth with autism (Guastella et al. 2010).

The mechanism by which hormones are released throughout the body and, most
importantly, pass the blood-brain-barrier and reach the brain, is central to this area
of research (McEwan 2004). Carson et al. (2015) show that plasma OT concen-
trations significantly and positively predict cerebrospinal fluid (CSF) OT concen-
trations while Kagerbauer et al. (2013) show no correlation. In a small study,
Striepens et al. (2013) tested the effects of exogenous OT on CSF and plasma and
show differential time-courses following administration: plasma concentrations
peaked 15 min after administration and CSF levels were significantly higher
75 min later with no significant correlation between the two biofluids. Relatedly,
OT half-life is between 3 and 4.5 min (Rydén and Sjöholm 1969). Given the broad
distribution of OT receptors throughout the body it is likely that release between
brain and other organs is related but not necessarily coupled. The mechanism by
which exogenous administration increases physiologic levels is still under inves-
tigation with several feasible explanations.

Further studies have brought closer attention to measurement methodology in
hormone research. The extraction method long used in biomedical research was
eschewed in the early 2000s, which complicates clear interpretation of data from
those studies. Extraction is the process of removing distinct physical products prior
to assay extraction by separation of OT from its biological matrix (e.g., saliva). This
facilitates avoiding measuring compounds resembling the substance of interest as
unextracted samples contain molecules similar to OT and can drastically distort its
measurement—extracted and unextracted OT measurements differ by orders of
magnitude. McCullough et al. (2014) discuss the evolution of measurement stan-
dards and the incommensurate results stemming from lack of standardization and
distortions in measurement caused by measuring unextracted samples. Christensen
et al. (2014) test differential sensitivity between ELISA (enzyme-linked
immunosorbent assays) and RIA (radioimmunoassay) to extraction as part of
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their experimental paper and, although both methods show significant sensitivity,
the former has higher sensitivity to extraction.

The path of oxytocin research is exciting and exemplifies the importance of
assessing if, why, and how endocrinological mechanisms impact decisions. In
addition to understanding the basic biology underlying OT release, half-life, and
physiologic distribution, researchers need reliable behavior paradigms for testing
the effects of OT on decision-making. As with any type of biological research, OT
studies require adaptation and inclusion of new technology and a movement toward
standardization to advance research to fully understand its function.

3.5.2 Testosterone

Testosterone (abbreviated ‘T’) is a gonadal hormone present in both sexes, with a
receptor for it in every cell in the body. T varies seasonally as well as daily,
producing a diurnal cycle that peaks in the early morning and declines throughout
the day (Brambilla et al. 2009). Gonadal hormones can be both slow and fast acting,
causing both long- and short-term effects. Long-term effects are caused by passive
diffusion into cells where they bind to steroid-receptor complex, then DNA, and
change gene transcription; fast action is caused by direct action on neurons with
corresponding receptor cells. T affects not only the path of neuroanatomic and
physiologic development (organizational effects) in mammals but also behavior
throughout the lifespan (Thilers et al. 2006). Men’s T levels peak around age 20 and
decrease with age.

T has been extensively studied in medicine in relation to physical development,
puberty, fertility, and pathology. It has been shown to affect mood, aggression,
sexuality, and more recently, financial behavior (Nadler et al. 2016; Cueva et al.
2015). In addition to affecting—and being affected by—aggressive behavior,
gonadal hormones are related to competition, spatial tasks, memory, certain sen-
sation seeking scales, and risk preferences (Cherek et al. 1996; Roberti 2004;
Apicella et al. 2008; Sapienza et al. 2009; Goudriaan et al. 2010).

3.5.3 Basic Biology of Testosterone

Steroid hormones are synthesized from precursors in the smooth endoplasmic
reticulum, processed further in the mitochondria, and returned to the smooth
endoplasmic reticulum for completion. Both steroid and steroid-like hormones are
not stored in vesicles and simply diffuse out of cells after synthesis at a rate
governed by production. Leydig cells produce T in response to hormonal signaling
from the pituitary gonadotropin luteinizing hormone (LH) (Midzaka et al. 2009;
Haider 2004; Mendis-Handagam 1997). Adult Leydig cell production depends on
the pulsatile secretion of LH into peripheral circulation by the pituitary gland (Ellis
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et al. 1983). T (which is produced in the ovaries in women) is a precursor to
estrogen, and estrogen is a metabolite of T (the testes produce some estrogen).
Despite the stereotype, T is not an exclusively male hormone, as estrogen is not
exclusively female, and their proportions vary by gender and (wildly) by species.

3.5.4 Types of Testosterone

There are three types of T frequently analyzed in medical and behavioral literature:
total T, Free T, and DHT (androstenedione is discussed primarily in medical lit-
erature2). T circulates in the body primarily bound (98 %) to serum proteins, mostly
sex hormone-binding globulin (SHBG) and albumin; only 1–2 % of serum T is not
protein-bound (Dunn et al. 1981). Due to the fact that SHBG binds T with high
affinity and the off time of T bound to SHBG is remarkably slow, SHBG-bound T is
considered unavailable for dissociation to act onto target tissues via classical
androgen receptor mechanisms (Pardridge et al. 1979). Albumin-bound T is
low-affinity and dissociation is rapid (Manni et al. 1985). Consequently, both
albumin-bound T and free T are considered available for androgen action, and are
called ‘bioavailable’ or ‘non-SHBG-bound’ T (Matsumoto and Bremner 1984).

3.5.5 Total T

Serum T, also known as Total T (TT), plays an important role in the clinical evaluation
of numerous common endocrine disorders, such as hypogonadism, and delayed or
precocious puberty in males, as well as a variety of conditions in females. Routine
assays began approximately 40 years ago and required chromatographic separation.
Today, assays are more precise, specific, require less blood, and nonradioactive
methods (Stanczyk and Clarke 2010; Matsumoto and Bremner 1984).

3.5.6 Free T

Forty-four percent of circulating T is bound to sex hormone-binding globulin
(SHBG), 50 % to albumin, and 3–5 % to cortisol binding globulin, leaving about

2Androstenedione (A), also known as ‘Andro’, is a steroid hormone produced in the gonads and
adrenal glands in men and women. Androstenedione an intermediate step in the biochemical
pathway that produces T and estrone and estradiol. This hormone was at the center of controversy
of baseball players and androgen use in the 1990s. Leder et al. find that sufficiently high doses
(300 mg) oral A increase serum T and estradiol in some healthy men, supporting the rationale of
the ban issued by the World Anti-Doping Agency (2000).
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2–3 % T free (FT). Bioavailable T is the free circulating in addition to the
albumin-bound portion. Salivary T represents the portion of plasma T that diffuses
passively across salivary glands (Arregger et al. 2007). It is from this small percent
of total T that FT can be aromatized via 5-alpha reductase to dihydrotestosterone.

3.5.7 Dihydrotestosterone

Dihydrotestosterone (DHT) is converted from T through the action of 5-alpha
reductase in peripheral tissue. Both T and A are precursors of DHT (Ito and Horton
1971). As mentioned above, of total T, there is but a small amount of free T
available for conversion. As discussed earlier, androgens act at transcriptional
levels of gene expression via classical androgenic processes by passively diffusing
through cell membranes and ‘locking’ into their respective receptors. Yet evidence
has accumulated that some steroids may also alter neuronal excitability through
interactions with specific neurotransmitter receptors at the scale of milliseconds to
seconds (Rupprecht and Holsboer 1999). DHT binds faster (Hemat 2004) and
remains in the cell longer (Grino et al. 1990) than TT due to higher receptor affinity,
thereby likely to have more significant behavioral effects.

3.5.8 T in Behavioral Experiments

Behavioral studies involving T include basal levels, changes in endogenous levels,
and exogenous administration. Burnham (2007) found that DM2 males with higher
T rejected low offers more than their lower T counterparts in the UG. Endogenous
variations in T have been shown to increase patience for monetary rewards for
non-impulsive participants, while reducing discount rates for impulsive partici-
pants, showing an inverted-U-shape (Takahashi et al. 2006). Higher T males were
also more likely to make utilitarian decisions in ‘trolley car’ problems (lives sac-
rificed to save other lives) compared to lower T males (Carney and Mason 2010).

Apicella et al. (2014) find that participants who showed an increase in T were
more willing to compete. These findings may suggest ‘hormonal typology’ among
individuals, making behavior partly explainable by baseline levels and reactivity to
particular hormones. Zak et al. (2005b) showed that men had a rise in DHT when
distrusted by receiving small amounts of money as DM2 in the TG. High DHT
levels were associated with little or no reciprocation, and partially explain the
gender gap in reciprocity in the TG in which women reciprocate more money on
average than men.

The challenge with relying on endogenous levels or changes is that hormone
release is noisy and subject to interindividual heterogeneity, thereby yielding
unreliable control and identification. Using extensively studied exogenous treat-
ments helps solve these problems as their pharmacokinetics and associated risks
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have been extensively studied in medical research (Swerdloff et al. 2000).3 For
example, typical starting dosage is 50 mg of T (and often increased to 100 mg),
providing researchers with a basis for administering quantities with a predictable
effect on circulating levels. Providing insight about immediate changes of exoge-
nous T, Eisenegger et al. (2013) test the effects of T (and estradiol) administration in
young men and demonstrate a rapid rise with a peak in serum T reached at 3 hours
post-administration. Tuiten et al. (2000) show sublingual T caused sharp rise in
serum T within 15 min (with a return to baseline after 90 min) and lagged increases
in genital arousal in women. In another pharmacokinetics study of females, van
Rooij et al. (2011) show sublingual T showed dose-dependence and peak levels
reached in 15 min and return to baseline within 2.5 h. Yet despite vast medical
literature on androgens, behavioral studies with exogenous T are limited.

Zak et al. (2009) manipulated T pharmacologically in male participants playing
the UG. In this within-subject s study, participants received 10 g of Androgel®

(1 % testosterone gel) on one visit and a placebo gel on another. Blood samples
were obtained before and after substance administration to quantify the rise in T as
well as to assess parametric effects of T on behavior. The authors showed that T
decreased DM1 offers as well as increased the minimum acceptable offers by
DM2 s. Both these effects scaled positively with three measures of T (T, free T,
DHT). This finding is consistent with a known physiologic mechanism in which
high levels of T inhibit the release of OT (Insel et al. 1993). A similar paper with
females only by Eisenegger et al. (2010) purported to show the opposite effect. In
the study, 0.5 mg of sublingual T or placebo was administered to women in a
between-subjects study, absent an assessment of the rise in T (baseline T was
measured). The authors found no main effect of T on UG offers or rejections when
compared to placebo, yet found that T increased UG offers if one controls for the
substance participants believed they received (Eisenegger et al. 2010, online sup-
plementary material).

Additional manipulation studies include Bos et al. (2010), who tested the rela-
tionship between T and distrust among women in a placebo-controlled
within-subject design and found that T reduced ratings of trustworthiness when
viewing pictures of men’s faces. Boksem et al. (2013) study the effects of exoge-
nous on trust and reciprocity and show it inhibits trust and promotes reciprocity.
Hermans et al. and Goetz et al.’s fMRI studies show that T increases neural
reactivity to threat. Wibral et al. (2012) study lying and find that T reduces it
relative to placebo. The role of T in asset trading behavior was assessed using a
DAA paradigm (Nadler et al. under review) who found the sessions with high T
traders resulted in larger asset bubbles compared to placebo sessions due to higher
T participants bidding higher prices. Cueva et al. (2015) show that participants who

3Due to the rise of easily obtainable drugs and associated advertising to remedy “low testosterone
syndrome” or “andropause”, a large and growing proportion of men is currently using Androgel®
(and similar generics), and many inject even higher doses (Baillargeon et al. 2013; Handelsman
2013). In fact, the proliferation of these drugs among financial professionals allows our experiment
to mimic the “testosterone shock” in real-world asset markets such as the NYSE.
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received exogenous testosterone had a higher willingness to invest in high-variance
stocks. Nave et al. (under review) show exogenous T reduced men’s ability to
inhibit instinctive and incorrect responses in the Cognitive Reflection Task while
having no impact on mathematical skills, task engagement, or motivation in a large
(n = 243) sample of young men. This result, supported by previous evidence of T
increasing impulsivity, suggests T ‘nudges’ decision-making toward rapid and
intuitive processing.

A related mechanism for these findings is that T correlates with willingness to
engage in competition and decrease risk aversion via allosteric modulation of
GABAA receptors (Reddy and Jian 2010; Carré and McCormick 2008). In addition,
dopamine, which is associated with risk-taking, positively co-varies with T and may
contribute to the sensation seeking aspect of financial trading though further work is
needed to identify T’s effect on risk per se (Szczypka et al. 1998).

3.5.9 2D-4D Ratio

The ratio of second to fourth finger (2D:4D) has been (inconsistently) shown to
negatively correlate with prenatal T exposure and that men have a lower 2D:4D
ratio than women (Manning et al. 2004, 1998). Apicella et al. (2008) found that
2D:4D does not significantly correlate with economic risk-taking and Apicella et al.
(2015) show males displaying higher ratios than women among Hadza tribe
members. Contrarily, Sapienza et al. (2009) reported that 2D:4D ratio and salivary
T negatively correlated with risk aversion and that high T individuals chose higher
risk professions (finance, broadly defined). Coates (2012) found that 2D:4D ratio
predicted high-frequency traders’ long-term profitability as well as duration of
employment in the profession. Brañas-Garza and Rustichini (2011) find that lower
2D:4D ratios are associated with greater risk-taking and higher abstract reasoning
scores among females (188 participants, 72 female).

3.5.10 Arginine Vasopressin

Arginine vasopressin (abbreviated AVP’) is a hormone synthesized in the
hypothalamus and stored in vesicles in the posterior pituitary. One of its primary
functions is water regulation in the body and has been shown to have behavioral
influences. Despite being molecularly similar to OT and lends itself to the same
endogenous and exogenous approaches to being studied, AVP has different
behavioral influences. Whereas OT facilitates bonding and trust, AVP is associated
with reactive aggression, stress-responses, and mate- and nest- guarding
(Bester-Meredith et al. 2005; Young and Wang 2004; Young et al. 1999). Coccaro
et al. (1998) show that AVP is positively associated with aggressive behavior for
men with personality disorders. AVP administration increases physical arousal,
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biasing individuals to respond aggressively to neutral stimuli (Shalev et al. 2011;
Ebstein et al. 2009; Thompson et al. 2004). In regard to social perception,
Uzefovsky et al. (2012) show AvP administration leads to significant decrease in
men’s recognition of others’ emotional states, while Kenyon et al. (2013) showed
no significant effect of AVP in the same task.

Rilling et al. (2011) found that AVP increased reciprocation after cooperation
with human partners as well as functional connectivity between the amygdala and
the anterior insula. Israel et al. (2012) found no influence of AVP on cooperative
behavior in a public goods game. Similarly, blood levels of AVP were unrelated to
distrust in the TG (Zak unpublished data). In addition, an AVP infusion study
produced no differences when compared to a placebo for a variety of economic
decisions (Zak 2011). Determining how AVP affects economic decisions will
require additional studies.

3.5.11 Dopamine

Dopamine (abbreviated ‘DA’) is a neurotransmitter (a chemical released by nerve
cells to communicate with other nerve cells) with a central role in human func-
tioning considered the ‘gas pedal’ to pursuing reward. Cell bodies of DA neurons
are mostly in the midbrain and release DA with nerve impulses (Moore and Bloom
1978). The DA system broadly encodes abstract information about reward. The
majority of midbrain dopamine neurons respond in unison to unpredicted rewards,
with remaining neurons unresponsive to stimuli (Tobler et al. 2005).

The DA system encodes value and provides a signal of ‘pure reward’ vis-à-vis
its expectation. Put differently, it responds not to absolute rewards, but to their
reward relative to its expectation—the difference between them is known as reward
prediction error (RPE). Delivery of unexpected rewards increases phasic midbrain
activity while its absence decreases it (Schultz 2004). Together, the DA system
forms a reinforcement learning system that guides behavior and attention toward
optimal reward guided by experience and predictions of unknowns (For a com-
prehensive review see Schultz 1998). Based on an this extensive literature of animal
studies, neuroeconomics research has successfully shown DA’s role in predicting
and responding to monetary reward (Preuschoff et al. 2007).

Pharmacological studies include increasing DA as well as blocking its receptors
and precursors. Menon et al. (2007) tested differential effects on BOLD responses
and found amphetamine treatment—which increases DA—caused larger BOLD
reward prediction errors in the midbrain. Efremidze and Zak (in press) test effects
on learning by blocking DA receptors with naltrexone in a DAA experiment and
find interrupted reinforcement learning and larger and longer lasting price bubbles.
This result is consistent with Pessiglione et al. (2006) who show that participants
given L-DOPA (DA-promoting drug) performed better than those who received
haloperidol (drug that binds to DA receptors as an agonist but induces the opposite
response). Sevy et al. (2006) showed that tyrosine (a DA precursor) depletion
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impaired performance of the Iowa Gambling Task by increasing the weight to
temporally proximal outcomes. Thematically similar, Scarná et al. (2005) demon-
strate that participants underweighted magnitude of bad outcomes when given the
same branch chain amino acid (BCAA) mixture.

Despite the multitudes of studies on this neurotransmitter, Rogers (2011) sum-
marizes the complicating factors associated with interpreting DA studies, which
include; (i) uncertainty about the pre versus postsynaptic actions; (ii) lack of
specificity of medications between receptor subtypes (pharmacological studies are
hamstrung by limited specifity of agents administrable to humans); and
(iii) uncertainty about interaction of effects with participants’ ‘baseline’ abilities.
Also, ensuring experimental double-blind treatment is difficult given the sometimes
nauseating effects of tryptophan depleting BCAA liquid given to participants
(Crockett and Fehr 2013).

As mentioned earlier, biological systems are interconnected, and specific
molecules can promote as well as inhibit other molecules, as illustrated by DA and
serotonin; Daw et al. (2002) provide a summary of their opponency, and Cools
et al. (2011) discuss their complementarity.

3.5.12 Serotonin

In 1948 Maurice Rapport, Arda Green, and Irvine Page at the Cleveland Clinic
discovered a vasoconstrictor substance in blood serum affecting vascular tone and
named it serotonin (Abbreviated ‘5-HT’ due to its chemical formula). About 90 %
of it is in the gastrointestinal tract where it regulates intestinal movements and the
rest is synthesized in serotonogenic neurons where it regulates mood, appetite, and
sleep and plays important roles in cognition and learning (Berger et al. 2009).

Experiments testing 5-HT on decisions suggests it affects risk-taking with
probabilistic outcomes, time discounting, impulsivity, and cooperation. In a study
of the effects of increasing 5-HT, Murphy et al. (2009) find a significant three-way
interaction between treatment, size of possible gains, and size of possible losses,
and suggest 5-HT modulates non-normative decision-making under uncertainty.
Doya (2002) proposes that 5-HT controls the time scale of reward prediction in a
theoretical model of integrated neuromodulatory learning, which is experimentally
supported by Crockett et al. (2010) who deplete 5-HT’s amino acid precursor
(tryptophan) and find increased impulsive choice in a discounting task. They also
find it jointly increased impulsive choice and altruistic punishment (i.e., rejecting an
unfair albeit nonzero offer), suggesting that 5-HT modulates self control and
impulsivity. In the same experiment, Crockett et al. (2008) show the 5-HT depletion
protocol increased rejection rates among unfair offers. Wood et al. (2006) find that
5-HT depletion caused significant reduction in cooperation in the PD on day 1 of a
cross-over, within-subject study.
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3.5.13 Stress Hormones

The body responds to physical and psychological demands by releasing hormones,
and virtually all people can attest to their focusing and motivating effects in the
urgency of a deadline or exigency of a crisis. Stress hormones prepare the body to
engage in challenging tasks by focusing attention, increasing cardiovascular tone,
energy availability, and suppressing the immune system (Born et al. 1990; Axelrod
and Reisine 1984). Stress hormones have long been known to affect physiology and
new research shows their impact on economic and social decision-making.

Mammalian physiology has complex and specific responses to the multitude of
threats and scenarios organisms are likely to face. Specific stress hormones are
released as follows: Adrenocorticotropic hormone (ACTH) from the anterior
pituitary, glucocorticoids (GCs) from the adrenal cortex, epinephrine from the
adrenal medulla, and norepinephrine from sympathetic nerves. Instead of a
one-size-fits-all stress response, the body has an evolved ‘set’ of hormonal
responses ranging from fast release and brief influence to slower release with effects
of longer duration. The neural path, known as the sympathetic adrenomudullary
system, acts immediately upon exposure to stress, and releases adrenaline (epi-
nephrine) and noradrenaline (norepinepherine) from the adrenal medulla (Elmadjian
et al. 1957). The sympathetic nervous system reacts by temporarily increasing heart
rate, blood pressure, and perspiration, then returning them to baseline within
approximately 10 min (Het et al. 2009). The slower system involves reactions along
the hypothalamic-pituitary axis (HPA), starting with the release of
corticotrophin-releasing hormone, which stimulates release of hormones from the
adrenal cortex and precipitating changes in physiologic state that last 10–60 min
and sometimes longer (Sapolsky et al. 2010).

Stress hormones have also recently been shown to affect decision-making and
risk preferences. A study using the Iowa Gambling Task (IGT) showed that men
with elevated levels of cortisol, a long-acting stress hormone, performed more
poorly while women show an inverse relationship, performing best with slightly
elevated levels (van den Bos 2009). Putman et al. (2009) showed that elevating
stress hormones pharmacologically increased risky decision-making involving
potentially large rewards as well as risk-seeking choices when probability of loss
was high. A related study using the Balloon Analogue Risk Task (BART) showed
that under high levels of stress, men tended to increase risk-taking while women
reduced it (Lighthall 2012). Kandasamy et al. (2013) also show that chronically
high stress hormones increase risk aversion, though acute elevation of stress hor-
mones does not.

Stress hormones have been shown to play a role in discounting future gains, with
men showing a negative relationship between discounting and stress hormones, and
women showing a positive relationship (Takahashi 2010). Moral reasoning, too, has
been shown to be sensitive to stress, with higher stress correlating with less utili-
tarian choices among hypothetical personal moral dilemmas such as making a
life-or-death decisions (Youssef et al. 2012).
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ACTH in particular has been shown to be a neurochemical signal that sustains
and increases visual attention (Born et al. 1990). Testing this in a consumer neu-
roscience paradigm, Lin et al. (2013) show that attending to a public service
announcement (PSA) causes significantly higher ACTH release in both men and
women. The authors posit that ACTH sustains attention to the PSA and is requisite
for preparing action in market decisions.

Together, these results suggest stress hormones are instrumental to species perpet-
uation by focusing attention on salient and relevant information and new evidence
shows tilting decisions toward outcomes more likely to ensure survival. Further, these
finding are in line with the proposition that stress hormones have an inverted-U effect
on cognition, affect and behavior—deficient and excessive amounts of stress hinder
cognition while intermediate levels improve it (McEwan and Sapolsky 1995). Future
work will likely explore the interaction between stress and other hormones to better
understand their mutual influences on economic decisions.

3.5.14 Female-Specific Hormonal Influences

Sex differences exist in the brain, both in morphology and function (Cahill 2006).
For example, receptor affinity for glucocorticoids is half as great in females than
males, which has implications for the direction and magnitude of their influence
between genders (Madeira and Lieberman 1995). Several studies show sex differ-
ences in the serotonin system as well as the analgesic effect of opioid peptides
(Nishizawa 1997; reviewed in Craft 2003). The prefrontal cortex, responsible for
executive function, has sex hormone receptors including the highest concentration
of estrogen receptors in the brain (Bixo et al. 1995). For a review of differences in
gender due to sex hormones see Collaer and Hines (1995).

In addition to differences in neuroanatomy and function, hormonal variations drive
behavioral differences between men and women in decision-making. Buser (2012)
finds that women show less trust in the TG than men in menstrual and premenstrual
phases, but have similar trust to men in the middle stages of their cycles. As mentioned
above, Zak et al. (2004) showed that women in the luteal phase of their menstrual cycle
were less trustworthy in the TG than either men or women in the follicular phase.
Women’s satisfaction with life varies over the menstrual cycle through the interaction
of estradiol, progesterone, and OT (Grosberg et al. in review).

Senior et al. (2007) found that women allocate more resources to
dominant-looking men during the follicular phase of their cycles, and allocate less
to non-dominant men during the luteal phase, suggesting a hormonal role for
resource allocation as a sexual signal. Miller et al. (2007) found that women
working in gentleman’s clubs earned more money during fertile phases of their
cycle. Zethraeus et al.’s (2009) randomized study of postmenopausal women found
no effect of T or estrogen in a modified DG, UG, TG, and risk aversion. Further
work is needed in ascertaining the hormonal role in gender differences in devel-
opment as well as activational properties of specific hormones.
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3.6 Field Studies

Lab work builds the basic science underlying neurobehavioral influences on
decision-making and is the right place to start. However, we cannot faithfully
assume that people’s behavior in the lab will perfectly represent behavior outside
the lab; thus the field is next frontier that offers radical improvement in ecological
validity. Fieldwork requires running studies outside tightly controlled environments
as well as learning how to interpret the surviving influences of biological vectors in
complex scenarios. Translating data from lab experiments is an integral aspect of
science and thus further work is needed to bring theory and reality into greater
congruence and be able to improve practice (See Harrison and List (2004) for a
thorough exposition of economic field experiments). However, the significant
challenge of adapting field experiments to lab studies is ethical feasibility of
pharmacologic manipulation. For example, one could not use the same double-blind
T protocol used by Nadler et al. on actual traders at a trading firm without intro-
ducing substantial risk to the individual traders, employer, and the market.

In one of the few field studies involving hormones and economic behavior,
Coates and Herbert (2007) studied the relationship between T, stress hormones, and
trading performance in professional stock traders. They found that higher morning
T was associated with higher average returns (relative to recent trading perfor-
mance), and that cortisol increased with market volatility. The T finding is con-
sistent with greater risk-taking producing larger returns (following the security
market line), while the cortisol finding matches the neurophysiologic measurements
of foreign exchange traders in Lo and Repin (2002). Lo and Repin’s experiment
tested reactivity of securities traders by their quantifiable physiologic responses
driven by cognitive-emotional interactions during live trading and found hetero-
geneity in responses based on trading experience.

Zak (2012) reports that a variety of rituals, such as soldiers marching, rugby
teams’ pre-match warm up, and a war dance by indigenous peoples in Papua New
Guinea are associated with increases in both OT and T. In these studies, OT was
associated with a sense of group affiliation, while changes in T appeared to rise due
to potential competition, consistent with the challenge hypothesis of T (Wingfield
et al. 1990). This indicates that such rituals facilitate in-group bonding in response
to out-group aggression, demonstrating the interactive effect of hormones on
behavior.

More fieldwork is needed to assess the influence of hormones on
decision-making as it occurs in complex environments, and especially to translate
laboratory findings into problem-solving applications and intelligently inform
policy.

58 A. Nadler and P.J. Zak



3.7 Summary, Conclusions, and Future Directions

Hormones do much more than regulate homeostasis and initiate physiologic and
developmental changes. From moderating trust in strangers, to affecting how much
people pay for financial assets, to shifting risk tolerance, hormones play an
important role in our economic and social lives.

However, modeling hormonal influences on behavior is complicated. Many
hormones assert influence in nonlinear ways, often displaying inverted-U rela-
tionships between the quantity of a hormone and behavior (Zak 2010). Further,
hormones are released in pulses, can respond rapidly to environmental stimuli, and
vary dramatically over time meaning that hormonally based models will be com-
plicated (Santern and Bardin 1973). Finally, hormones vary in their timeframe of
effect and are influenced by and interact with agonist and antagonist hormones
(Breedlove et al. 2007, p. 123; Jackson et al. 1997) further complicating model
building. For example, despite clear results in the asset trading paradigm, T has
been shown to act as an allosteric modulator of GABAA receptors as well as
positively correlating with DA, which complicates simplistic modeling of its
influence through a simple, single channel. Another important question is whether
specific hormones affect high-level cognition, or whether they modulate lower level
processes and manifest as experimental shift variables (e.g., T increases risk-taking;
OT increasing trust). For these reasons we caution that adopting a mechanistic
perspective linking hormones to decisions that does not consider holistic neural
activity is likely to produce inaccurate predictions.

Neuroeconomics studies of hormonal influences on decisions follow the
approach in the biological sciences where convergent evidence corroborates
hypotheses using a variety of methods. When studying hormones and
decision-making, we believe it is critical to use the three-stage process outlined
above: establish baselines, measure endogenous hormone changes, and assess the
impact of pharmacologic manipulation on specific, measurable behavior. Further,
hormones can be radio-tagged to show how they affect neural activity using PET,
and genetic assays can reveal relationships between different alleles and hormone
function, methods that are covered elsewhere in this book.

An application of hormonal effects on behavior is in the design of institutions.
Institutions can mitigate risk, off-load cognition for difficult decisions, and provide
external resources. Well-functioning institutions can reduce stress, increase OT, and
optimize performance and satisfaction. However, one of the significant risks of this
research is simplistic interpretation and direct application to complex situations
without careful translation. For example, one of the most common questions we get
regarding the T and asset trading experiment is, “If testosterone causes men to trade
irrationally, and if women have less testosterone than men, why don’t you just have
women trade along with the men?” There is scientific (and anecdotal) evidence why
this ‘solution’ is unlikely to effectively reduce risk-taking among men, and actually
more likely to increase it (see Ronay and von Hippel 2010).
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Nobel Prize winner Ronald Coase stated that, “the degree to which economics is
isolated from the ordinary business of life is extraordinary and unfortunate” (2012).
Neuroeconomics provides positive and normative improvements to the business of
life by identifying the mechanisms underlying economic decisions. By judiciously
applying its methods to extant problems, neuroeconomics can improve institutions,
individual happiness and performance, and society.
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Chapter 4
Genes and Human Decision-Making

Martin Reuter and Christian Montag

Abstract The present chapter aims to give a concise overview of the genetics of
human decision-making. The focus will be on studies that can be considered within
the field of neuroeconomics. Although genetic studies in neuroeconomics are scarce
to date, interest in and use of, genetic designs is increasing. This popularity is based
on the huge potential of genetic research. The collection of data is more naturalistic as
it is not restricted to the laboratory, and genes convey information on brain meta-
bolism relevant to decision-making. The widespread belief, that genetic information
is already determined before birth and therefore, is not subject to influence or change
over the lifespan, has recently been revised. The young discipline of epigenetics has
shown that environmental factors can influence the activity of genes throughout life.
Therefore, investigating the interaction between genes and environment on a
behavioral, as well as a, molecular level is a promising direction for research. The
empirical neuroeconomics studies published to date have adopted a candidate gene
approach. This means researchers have identified theory-driven, distinct gene loci
relevant for decision-making in economic contexts, from the literature. These pioneer
studies are reviewed and discussed below. For those readers who are not familiar with
molecular genetics, we recommend the chapter on genetics contained in the methods
section of this book as a complementary introduction.
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4.1 The Molecular Genetic Basis of Human
Decision-making

Every day we make numerous decisions that influence both our current actions and
which can also have strong implications for our future. The choice between cheese
cake and apple pie for dessert is obviously not a big thing, but the decision whether
or not to invest in high-risk stocks promising enormous profit, may lead to wealth
or to financial ruin. From the media and from our own observations, we are well
aware that there is great variability in the way people make their decisions. There is,
in fact, much greater variability in decision-making behavior between—rather than
within—people. This means that individuals typically show a rather stable pattern
of behavior—referred to as personality. Some people are notoriously prone to
making risky decisions, whereas others tend to procrastinate over a decision and
make their choices after considering the alternatives very carefully. Impulsivity and
risk-taking on the one hand, and anxiety and reflectiveness on the other, seem to
represent two opposing aspects of personality in decision-making (Zaleskiewicz
2001). However, often our decisions do not only influence our own fortune, but also
that of others. Man, as a social individual, takes decisions that also have conse-
quences for others and in the same way our own decisions are influenced by the
opinions and actions of our fellow human beings (Kaplan and Miller 1987).
Therefore, personality traits like cooperativeness, characterizing a person’s attitude
towards prosocial behavior, are also of great interest to the investigation of human
decision-making. It is presumed that the genetic underpinnings of such personality
traits build the biological basis for stable patterns in decision-making that seem to
be rather invariant across situations and, therefore, allow the prediction of a deci-
sion even in rather specific situations. Of course these predictions will not be perfect
because we know, e.g., from laboratory experiments, that instructions can mold
performance (Wickelgren 1977; see the discussion of the speed-accuracy-tradeoff
in simple decisions in Chap. 14 of this book) and that states (e.g., current mood)
also have a strong impact on decision-making. However, personality traits are
highly heritable (up to 50 %; e.g., Tellegen et al. 1988). For the reasons outlined
above, genes related to personality prove excellent candidate genes for human
decision-making.

Even before neuroeconomics was established as an autonomous scientific dis-
cipline, neuroscientists had used genetic approaches for investigating human
decision-making. This work was in part triggered by an interest in psychiatric and
neurological diseases in which decision-making in patients is strongly impaired.
Those patients with brain lesions in clearly defined neural structures, e.g., of the
ventromedial prefrontal cortex, offered insights into brain regions relevant for
decision-making. A famous paradigm used in such studies is the IOWA Gambling
Task, which measures the ability of a person to prefer constant small rewards under
low risk of losing money, compared to seldom occurring high rewards under high
risk of losing money (IGT; Bechara et al. 2000). The ventromedial prefrontal cortex
is essential in impulsive decision-making, with patients with lesions in this area
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demonstrating a preference for smaller immediate rewards, rather than for larger,
delayed rewards. The same pattern of behavior is observed in individuals with a
drug addiction, a disorder marked by a lack of impulse control (e.g., Ert et al. 2013;
van der Plas et al. 2009). To date there exist numerous genetic association studies in
different patient samples and in samples of healthy subjects, that try to explain
differences in IGT performance by means of candidate gene polymorphisms. The
serotonin transporter linked polymorphic region (5-HTTLPR), an insertion/deletion
polymorphism marked by the presence or absence of 43 base pairs in the promoter
region of the serotonin transporter gene, has been most extensively studied in this
context. Subjects with at least a deletion on one chromosome (genotypes SS and
SL) were referred to as S-allele carriers and showed a threefold decrease in mRNA
expression compared to subjects with no deletion on either chromosome (genotype
LL) (Lesch et al. 1996). In a sample of N = 885 healthy Chinese college students,
subjects homozygous for the S-allele had significantly lower IGT scores in the first
40 trials than L-allele carriers (He et al. 2010). The IGT task comprises 5 blocks
with 20 trials each. The first two blocks (trials 1–40) indicate decisions under
uncertainty, whereas blocks 3–5 represent decisions under risk. The main effect of
5-HTTLPR on IGT performance could not be replicated in healthy Caucasian
samples (Lage et al. 2011; Stoltenberg and Vandever 2010). In patients with
obsessive compulsive disorders, da Rocha et al. (2008) reported significantly lower
IGT scores in S-allele carriers, however, in contrast to the study by He et al. (2010),
only in the third, fourth, and fifth blocks, i.e., those blocks related to impulsive
decision-making.

The IGT has strong parallels to research questions in neuroeconomics, where
decisions under ambiguity and under risk are of scientific interest. Neuroscientists
also have a long tradition in differentiating subcomponents of the decision-making
process by means of biological variables. Cognitive processes related to informa-
tion processing, memory, and executive control are the prevailing dependent
variables. The best supported gene locus with respect to working memory capacity
is the COMT Val158Met polymorphism, located in exon 158 of the catecholamine-
O-methyltransferase (COMT) gene. COMT degrades monoamines (e.g., dopamine)
in the synaptic cleft. The catabolizing activity of Met-allele carriers is about three-
to fourfold lower than that of Val-allele carriers (Lachman et al. 1996). The
Met-allele is associated with higher working memory capacity and better executive
control abilities more generally (Goldberg and Weinberger 2008). However—and
of interest for neuroeconomics—the Val-allele is related to higher positive emo-
tionality (PE), as compared to the Met-allele (Montag et al. 2012; Reuter and
Hennig 2005; Wacker et al. 2012). PE comprises personality traits like extraversion
and novelty seeking, as well as other characteristics related to risk-taking and
reward-seeking (e.g., Krebs et al. 2009; Smillie 2013).

These examples of genetic association studies have direct implications for the
decision processes under investigation in neuroeconomics. Moreover, the gene
markers outlined above are among the best studied polymorphisms in neuroeco-
nomic research. It must be noted that we identified thousands of genetic association
studies from different disciplines in the literature relating candidate gene loci to
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various phenotypes. However, for most of these polymorphisms the proof of
functionality is missing. The 5-HTTLPR and the COMT Val158met polymor-
phisms related to altered mRNA expression and differences in metabolic enzyme
activity, respectively, are laudable exceptions.

4.2 Molecular Genetics in Neuroeconomics

4.2.1 Ultimatum Game (UG)

Behavioral economists have developed paradigms—so called games—that permit
the investigation of human decision-making under experimentally controlled con-
ditions (for an in depth overview of games in neuroeconomic research see Chap. 2
by Civai and Hawes in this book). One of the most prominent paradigms in neu-
roeconomics is the Ultimatum Game (UG), which provides a framework for the
study of prosocial behavior in two players interacting anonymously with each other;
Player 1 (the proposer) has to split an endowment with player 2 (the responder).
Player 2 can either accept or reject the offer from player 1. If player 2 accepts the
offer, the money is split as proposed by player 1. Should player 2 reject the offer,
both players receive nothing (Camerer 2003). Thus, the UG represents a classic
“take it or leave it” situation. The responder has to either accept the offer of the
proposer in its present form or must reject it outright. There is no opportunity for
negotiation. The UG played in the laboratory perfectly parallels real life situations.
Often we are confronted with such “take it or leave it” situations. For example, if
we apply for a job in public service where income brackets are fixed, we have to
either accept the salary or leave it and look for a job on the free market. The Greek
debt cut is a prime example of a real life UG. A group of banks and investors in
Greek government debt had the choice between exchanging their debt for new
bonds worth about 70 % less than the original, or encounter the total breakdown of
the Greek finance system, resulting in the complete loss of their invested money.

There is a general agreement in the literature that responder behavior in the UG
represents fairness preference. If an offer is judged as unfair we are likely to
dispense with the offer altogether rather than be satisfied with a small proportion of
the pie. Punishing a proposer for an unfair offer (i.e., a low offer that is greater than
zero) is not rational and contradicts economists’ view on man as a homo eco-
nomicus. It is suggested that the homo economicus is merely guided by self-interest
and always tries to maximize his profit. In order to do so, he only makes strictly
rational decisions (Persky 1995). However, the behavior of the proposer is far more
complex than that of the responder. It is a mixture of fairness preference on the one
hand and strategic consideration on the other hand: to be a social human being
capable of taking the perspective of the responder (theory of mind) and strategic
considerations (maximize own profit while minimizing the risk of being punished
for an unfair offer).

70 M. Reuter and C. Montag

http://dx.doi.org/10.1007/978-3-642-35923-1_2


An initial twin study from Sweden showed that more than 40 % of the variation
in subjects’ rejection behavior in the UG, is explained by additive genetic effects
(Wallace et al. 2007). These data underline the strong genetic basis for the etiology
of fairness preferences. However, the heritability estimates for proposer behavior
were negligible in this study. To date, two existing molecular genetic studies have
tried to identify candidate genes for behavior in the UG. The first study was
published by Zhong et al. (2010), who found that the dopamine D4 receptor
(DRD4) gene explains at least a small proportion of variance in the UG responder
behavior. The DRD4 gene consists of 3400 base pairs (bp) and is located at
chromosome 11p15.5. In exon III of this gene a highly polymorphic variable
number of tandem repeats (VNTR) polymorphism has been identified, which is
characterized by a repetitive sequence of 48 bp (between 2 and 11 repeats) (van Tol
et al. 1992). Three alleles are most common; the 2-repeat, the 4-repeat, and the
7-repeat; the ancestral 4-repeat allele is most frequently occurring across all eth-
nicities. In Caucasians, the 7-repeat is more frequent than the 2-repeat allele.
However, in Asians the 7-repeat allele is extremely rare and is typically not con-
sidered in Asian genetic association studies.

Besides reported associations between the DRD4 exon III polymorphism and
various phenotypes related to decision-making behavior, like impulsivity, novelty
seeking, gambling behavior and attention-deficit hyperactivity disorder (ADHD),
the functionality of this polymorphism has been further demonstrated (Strobel et al.
1999; Ebstein et al. 1996; Eisenegger et al. 2010; Nikolaidis and Gray 2010).
The VNTR region of the DRD4 gene encodes a portion of the third intracellular
loop region of the transcribed receptor protein that spans the nerve cell membrane
and mediates interaction with second messenger proteins. The 2-repeat allele shows
a 50 % reduction in the production of cyclic adenosine monophosphate (cAMP), as
compared with the 4-repeat and 7-repeat alleles (Asghari et al. 1995). Regarding
decision-making behavior in the UG, Zhong et al. (2010) reported that carriers of
the 4/4 genotype stated a 25 % higher minimum acceptable offer in the role of the
second mover, as compared with carriers of the 2/4 and 2/2 genotypes. Notably,
these results came from a Chinese sample, where the 7-repeat allele is very rare and
was therefore not considered in the analysis. The authors did not find an association
between the DRD4 exon III polymorphism and the UG proposer behavior. This is
in line with the fact that there are no heritability estimates for UG proposer behavior
available in the literature to date. Although Zhong et al. reported a significant
association between the DRD4 gene and fairness preference as assessed by the UG,
the proportion of explained variance is rather small. This is typical for quantitative
traits and underlines the necessity of identifying further genetic variants that
influence behavior in the UG. With this aim in mind, a second genetic association
study focusing on the dopaminergic system’s influence on behavior in the UG was
devised (Reuter et al. 2013). The DRD2 receptor gene has been linked to various
facets of prosocial behaviors like cooperation, attachment style, mentoring, paternal
parenting, and positive emotionality, to name but a few (Walter et al. 2011; Gillath
et al. 2008; Shanahan et al. 2007; Lucht et al. 2006; Reuter et al. 2006). Two
polymorphisms, for which functionality has been established, are most investigated
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in genetic association studies; the DRD2/ANKK1-Taq Ia (rs1800497) and the
DRD2 C957T (rs6277) polymorphisms. The DRD2/ANKK1-Taq Ia polymorphism
is a restriction fragment polymorphism on chromosome 11 at q22–q23 (Noble
2003). Three genotypes of the dopamine DRD2/ANNK1-Taq Ia locus can be dif-
ferentiated: The A1A1 genotype (also referred to as TT genotype), the A1A2
genotype (also referred to as TC genotype), and the A2A2 genotype (CC genotype).
Due to the small prevalence of the A1A1 genotype (3 % in healthy Caucasians),
A1A1 and A1A2 subjects are commonly grouped as A1 + subjects, whereas A2A2
subjects are referred to as A1– subjects. The prevalence of at least one A1 allele
(A1 + group) leads to a reduction of up to 30 % in D2 receptor density (e.g.,
Pohjalainen et al. 1998). The direct impact of the DRD2/ANKK1-Taq Ia poly-
morphism on D2 receptor density has recently been questioned, since this single
nucleotide polymorphism (SNP) is located about 10 kb downstream of the DRD2
gene, within a protein-coding region of the adjacent ANKK1 gene (Neville et al.
2004). Zhang et al. (2007) investigated 23 SNPs within the DRD2 gene and found a
decreased expression of the short splice variant of the D2 receptor compared to the
long splice variant, caused by two intronic SNPs (rs2283265 and rs1076560).
Interestingly, in the study by Zhang et al. (2007) the minor alleles of the two SNPs
show strong linkage disequilibrium with the A1 allele of the DRD2/ANKK1-Taq Ia
polymorphism (D′ = 0.855). These data indicate that, due to linkage, the
DRD2/ANKK1-Taq Ia polymorphism is indeed a marker for dopamine receptor
density.

The above-mentioned study by Reuter et al. (2013) replicates the findings by
Zhong et al. (2010). In this study, the 4/4 genotype was associated with signifi-
cantly higher minimum acceptable offers (20 % higher) as compared to carriers
without the 4/4 genotype and, similar to the Zhong et al. study, the DRD4 exon III
polymorphism was not related to the proposer behavior. In addition, Reuter et al.
detected an association between a haplotype block, spanning 15 kb of the
DRD2/ANKK1 region, consisting of the rs18000497 (also known as
DRD2/ANKK1-Taq Ia) and rs2283265 SNPs, and the first mover offer in the UG.
Carriers of at least one TT haplotype offered significantly less money in the UG
(first mover-proposals) than carriers without a TT haplotype. This haplotype effect
explains about 6 % of the variance in proposer behavior. The TT haplotype indi-
cates that a subject has, at least on one chromosome, the minor alleles of both gene
variants. Both minor alleles have been associated with lower DRD2 receptor
density or decreased relative expression of DRD2s mRNA respectively
(Pohjalainen et al. 1998; Zhang et al. 2007). On the other hand the
second-mover-behavior was not related to genetic variations in the DRD2/ANKK1
region. One may wonder why there is a positive molecular genetic association with
proposer behavior in the UG, when heritability estimates from a twin study suggest
zero heritability for this distinct behavior (Reuter et al. 2013; Wallace et al. 2007).
This is indeed a contradiction. However, the same standards apply to both quan-
titative genetic studies (twin studies) and molecular genetic studies: only an inde-
pendent replication can reduce the probability of false positive or false negative
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findings. While the DRD4 results were successfully replicated, it remains to be
clarified whether replication of the twin and the DRD2-proposer data is possible.

The DRD4 exon III effect is unambiguously related to fairness preference (re-
sponder behavior, i.e., size of minimum acceptable offer), whereas the
DRD2/ANKK1 effect is far more complicated to explain. As described above, the
proposer behavior constitutes a mixture of fairness preference and strategic con-
sideration. Future experiments investigating the UG and the related dictator game
(DG) in a within-subject design could disentangle these two facets of proposer
behavior. In the DG two anonymous players interact with each other. However, the
“interaction” is limited to the first mover. He has to split a certain amount of money
between himself and the other player. In contrast to the payoff in the UG, which is
dependent on the acceptance/rejection of the first mover’s proposal by the second
mover, the first mover in the DG (for a full description of the dictator game, please
see Chap. 2 by Civai and Hawes in this book), also known as “the dictator”, makes
a proposal that is implemented independently of the second mover, i.e., the second
mover cannot reject the dictator’s offer. The identification of distinct gene loci
related to the proposals in the UG and in the dictator game would help to clarify this
issue.

4.2.2 Dictator Game (DG)

As mentioned above, the decision-making process of the dictator in the DG is
assumed to reflect prosocial behavior (generosity; altruism; the dictator has not to
fear punishment for an unfair offer) and is therefore more straightforward to
interpret than the ambiguous first mover behavior in the UG. Whereas genetic
association studies in the UG concentrate on dopaminergic gene loci, so far all
available studies on the dictator game report associations with the classic prosocial
hormones, vasopressin, and oxytocin. Vasopressin and oxytocin are phylogeneti-
cally very old neuropeptides, consisting of nine amino acids (they are thus referred
to as nonapeptides). The two hormones differ only in two amino acids. Invertebrates
also possess antecedent forms of oxytocin and vasopressin, which indicates the
evolutionary importance of these two hormones. Their relevance for prosocial
behavior was impressively demonstrated when differences in social behaviors and
related biological systems between prairie (Microtus ochrogaster) and meadow
voles (Microtus pennsylvanicus) were discovered (Lim et al. 2004). These two
kinds of voles, although from the same species, are marked by extreme differences
in pair bonding and fostering of offspring. Male prairie voles are monogamous, are
engaged in parental care and exhibit a stable social structure, whereas the closely
related meadow voles are solitary, polygamous, and do not care about rearing the
offspring. Lim and colleagues discovered that the arginine vasopressin 1a receptor
(AVPR1a) mRNA expression in the ventral forebrain is significantly higher in the
monogamous prairie voles than in the promiscuous meadow voles. Interestingly,
the insertion of a viral AVPR1a gene vector into the ventral forebrain of male
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meadow voles reduced promiscuity and increased preference for an individual
partner. This same genetic region was the focus of interest in the first human genetic
studies investigating social behavior by means of the dictator game. In a seminal
study of 203 university students who played an online version of the DG, Knafo
et al. (2008) demonstrated that allocation of funds in the Dictator Game (DG) was in
part determined by length of the arginine vasopressin 1a (AVPR1a) RS3 promoter
repeat region. The RS3 polymorphism is one of three promoter region
microsatellites (the other two are (GT)25 and RS1). Microsatellites represent small
repeats of DNA bases, also known as simple sequence repeats (SSR). All three
polymorphisms in this study were SSRs, i.e., repetitive DNA sequences charac-
terized by a short base-pair motif that is repeated several to many times in tandem
(e.g., CACACACA). It has been demonstrated that such SSRs can exert an influ-
ence on the translation and transcription of a gene (Beckmann et al. 2007). In the
study by Knafo et al. dictators with short versions (308–325 bp) of the AVPR1a
RS3 repeat allocated significantly smaller amounts of money to the other player
than participants with long versions (327–343 bp). Additionally, the length of the
RS3 repeat region was related to the amounts of AVPR1a mRNA expression in
hippocampal postmortem specimens. Long AVPR1a RS3 repeats were associated
with higher AVPR1a hippocampal messenger RNA levels than short RS3 repeats.
This proof of functionality (although demonstrated in brain tissue of only n = 15
individuals) shows that the association of the AVPR1a RS3 polymorphism is not
correlative in nature, but that this genetic variant has an influence on central nervous
vasopressin receptor metabolism. Results indicate that higher mRNA levels of the
APPR1a receptor are related to more generous behavior. In a further study using a
modified version of the DG, the initial positive association between AVPR1a RS3
polymorphism and generosity was replicated in a sample of 3.5-year-old twins
(Avinun et al. 2011). Children were required to allocate sticker charts instead of
money, as in adult games. The findings demonstrate that prosocial behaviors
develop earlier in life than is usually expected. Preschoolers at the age of 3.5
already behave socially.

A third study by the same group tested the influence of the oxytocin receptor
gene on behavior in the DG (Israel et al. 2009). The human OXTR gene is located
on chromosome 3p25.3 spanning approximately 19 kbp, and consists of three
introns and four exons (Inoue et al. 1994). The rationale for extending the search for
prosocial genes to the oxytocin system is straightforward. Independent studies have
demonstrated that both vasopressin and oxytocin promote social behaviors in dif-
ferent mammalian species including humans (for an overview see Ebstein et al.
2009). Vasopressin and oxytocin exert overlapping functions, in part caused by
mutual effects on their respective receptors. This is possible because both hormones
seem to have comparable receptor affinities (e.g., Landgraf and Neumann 2004;
Ragnauth et al. 2004; Pedersen and Boccia 2006).

Israel et al. (2009) investigated N = 203 Israeli students with the DG and
genotyped for 15 single tagging SNPs across the oxytocin receptor gene (OXTR).
Three of these SNPs showed an association with the allocations of the dictator, of
which rs1042778 exhibited the strongest effect. Carriers of the G allele (genotypes
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GG and GT) as compared to the T allele carriers (genotype TT), split their
endowments more generously. Noteworthy, the positive effects of rs1042778 were
replicated in an independent study of N = 98 female participants (Israel et al. 2009).
Unfortunately these findings were not replicated in a sample of N = 684 Swedish
twins (Apicella et al. 2010).

4.2.3 Trust

Trust is the prerequisite for all successful social interactions, no matter whether
these take place on a dyadic (lovers, couples, friends) or on a more complex level
(groups, companies, societies, countries) (e.g., Zak and Knack 2001). From an
evolutionary perspective, trust is adaptive and has promoted the development of the
human species (Kümmerli and Brown 2010). Of relevance to neuroeconomics,
studies exist that suggest trust is related to the prosperity of societies (Knack and
Keefer 1997). Trust behavior and altruism alike can be subsumed under the term
“prosocial behaviors”. Therefore, it is not surprising that similar biological systems
are involved in altruism and trust behavior. A seminal study by Kosfeld et al.
(2005) found that administration of nasal oxytocin increases trust in humans and
that this association was not related to risk proneness. In a placebo-controlled
pharmacological study, they used the Trust Game. This famous economic game is
played in the laboratory and represents a one-shot interaction between two
anonymous interaction partners. Participants were randomly assigned the roles of
either an investor or a trustee. Both start the game with an initial endowment
(monetary units, MU). In the first stage of the game, the investor can send any even
number of MUs to the trustee. The amount sent by the investor is tripled by the
experimenter. Then, the trustee decides how much money to return to the investor.
Any back transfer between 0 MU and the maximum amount available to the trustee
is feasible. To obtain measures of trust and trustworthiness (i.e., the size of the back
transfer) for each participant, the trust game, in some versions, is played under role
uncertainty. First, each player makes the decision in the role of the investor and
subsequently must decide as a trustee, how many MUs to send back for any
possible amount sent by the investor. After all decisions have been made, a ran-
domization device determines which player in a given pair actually had the role of
the investor and which player had the role of the trustee. Players’ decisions were
then implemented and subjects were paid according to their decisions (for a full
description of the Trust Game and other economic games, please see Chap. 2 by
Civai and Hawes in this book).

One may argue that the data of Kosfeld and colleagues show that administration
of oxytocin increases trust, but that this laboratory experiment does not reflect a
natural setting in which no drugs are consumed. However, in addition to the main
effect of drug (placebo vs. oxytocin), the data also show large variability in the
amount of trust in the placebo condition. A genetic approach may be adopted to
investigate this variability in behavior under natural conditions (i.e., free of drug
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intake). A Swedish twin study of more than 2000 twin pairs showed that trust is
indeed heritable. Heritability estimates were 0.33 for males and 0.39 for females
(Oskarsson et al. 2012). However, it must be noted that trust was assessed via a
self-report measure, using one single item (“Generally speaking, would you say that
most people can be trusted, or that you can’t be too careful in dealing with peo-
ple?”). If oxytocin does play a role in trust behavior, as demonstrated by Kosfeld
et al. (2005), then it is likely that genetic variants of the oxytocin system are related
to individual differences in trust behavior. The first study investigating polymor-
phisms on the OXTR gene was conducted by Apicella et al. (2010). In their study
(outlined above), they investigated both the DG and the Trust Game. The authors
did not find an association between any of the nine OXTR SNPs under investigation
and participant’s behavior in the trust game. In another trust study by Krueger et al.
(2012), a SNP in intron 3 of OXTR (rs53576), characterized by an adenine (A) to
guanine (G) transition, was related to trust behavior but not to trustworthiness, in a
sample of N = 108 US students. Participants with the homozygous GG genotype
showed higher trust behavior than individuals with at least one A-allele (genotypes
AG or AA). This finding is in line with another study reporting higher behavioral
and dispositional empathy in carriers of the GG genotype as compared to the
A-allele carriers (genotypes AA or AG; Rodrigues et al. 2009). Unfortunately there
exists no test of functionality for the rs53576 SNP so far. In a trust study of N = 100
healthy Caucasian subjects, the present authors tested nine SNPs—mainly in the
promoter region of the OXTR gene—for an association with trust behavior (Reuter
et al. 2009). Haplotype analyses (a mathematical method from bioinformatics used
in genetics to look for a putative linkage between several SNPs located in close
proximity on the same chromosome) revealed a 6-SNP haplotype block or a 3-SNP
haplotype block, dependent on the mathematical algorithm used to estimate the
haplotypes. The smaller haplotype was included within the larger haplotype. The
6-SNP haplotype was obtained by a more liberal haplotype estimation method.
Both haplotypes were significantly related to trust and explained between 6 and
10 % of the observed variance. It turned out that the SNP rs2268498, located in the
promoter of OXTR, is the driving force in both haplotype blocks. In order to prove
the functionality of these genetic variations, we conducted mRNA expression
analyses in hippocampus specimens of pharmaco-therapy resistant temporal lobe
epilepsy patients, from whom we also obtained blood samples for genotyping.
Results showed that carriers of the haplotype that had been associated with high
trust in the laboratory experiment showed a 50 % reduction in OXTR mRNA
expression, as compared to the haplotypes that were related to low trust (Reuter
et al. 2016). In line with the behavioral data, mRNA expression analyses showed
that rs2268498 is the SNP that essentially influences functionality.

Tabak et al. (2014) used an iterated Prisoner’s Dilemma in order to investigate
behavioral and affective responses following a betrayal of trust. Participants were
told to interact with an anonymous partner. In reality they played with/against a
computer program that initially exhibited a cooperative tit-for-tat strategy and then
began to defect over a series of consecutive trials. The dependent measures were the
time point at which participants started to betray even though the computer was
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cooperative, and when they started to retaliate to unfair decisions made by the
computer. Emotional responses to betrayal and retaliation were also assessed. Three
different haplotypes on the OXTR were identified that were related either to faster
retaliation after betrayal, or with high or low post-betrayal satisfaction, respectively.

4.2.4 Altruism

Many neuroeconomic studies using the dictator game interpret the first mover’s
(i.e., the dictator’s) decision as a marker for generosity or altruism. Therefore, the
findings reported in the above section on the dictator game can also be viewed as
molecular genetic association studies on altruism. However, the question arises of
whether the decision-making in the DG is really altruistic behavior. There exist in
the literature countless definitions of altruism. One definition, encompassing many
different facets of the concept, defines altruism as the selfless concern for the
welfare of others. However, there is a great debate in the literature as to whether
true altruism really exists (Fehr and Fischbacher 2003). Pure altruism is giving
without regard to reward or the benefits of recognition and need. People who doubt
the existence of pure altruism argue that helping others is intrinsically rewarding for
altruistic persons and therefore they are pursuing their personal interest, rather than
the interests of others. In other words helping others makes them feel good, e.g., by
enhancing their self-esteem. This line of argument overcomes the apparent
incompatibility with economic concepts like the homo economicus, postulating that
humans are selfish, rational beings, motivated merely through self-interest (Ng and
Tseng 2008). In order to disentangle genetic and environmental (e.g., upbringing,
education, etc.) influences contributing to the widely acknowledged variability in
altruistic behavior, twin studies are considered the gold standard method. These
behavioral genetic studies mostly rely on self-report data: A twin study by Rushton
et al. (1986) on 563 pairs of monozygous (MZ) and dizygous (DZ) twins using an
altruism scale, reported that 50 % of the variance in altruism was due to genes and
the remaining 50 % due to environmental factors. Noteworthy, the total environ-
mental variance came from nonshared environmental sources (e.g., epigenetic
factors, peer influences, etc.), not from shared ones. A second study by Matthews
et al. (1981) found 72 % heritability for a self-report adjective checklist measure of
empathy in 114 MZ and 116 DZ middle-aged male twins. In an additional twin
study of 322 pairs of twins, Rushton (2004) replicated the strong genetic effects on
prosocial behavior. He reported heritability estimates of 0.40 for females and of
0.50 for males for social responsibility. In contrast to the study from 1986, shared
environmental factors accounted for about 23 % of this variance, whereas in the
previous studies, environmental effects were exclusively due to nonshared envi-
ronmental factors.

Two independent groups have investigated the role of the DRD4 Exon 3
polymorphism on self-report measures of altruism and arrived at similar results:
Bachner-Melman et al. (2005) observed significantly higher altruism scores in
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carriers of the 4-repeat allele and Anacker et al. (2013) found significantly higher
altruism scores in carriers of the 4/4 genotype. Mertins et al. (2011) used a repeated
public goods game (for a detailed description of the public goods game please see
Chap. 2 in this book by Civai and Hawes) in order to study genetic effects on
altruistic behavior and found evidence for the role of a functional repeat poly-
morphism in the promoter region of the monoamine oxidase A (MAO-A) gene. In
the public goods game participants have to decide whether to give money to a
community pool or to take their money for themselves, while also profiting from the
donations of the other community members. The money in the community pool is
multiplied by the experimenter and shared equally among the community members,
irrespective of whether they have contributed. Noteworthy, the return to the indi-
vidual is always smaller than their original contribution. Therefore, investing in the
community pool is considered an altruistic behavior. In addition, the public goods
game was not conducted as a single shot game, but in a dynamic setting of
increasing information about the other players’ contributions. The findings show
that male participants carrying the low activity alleles were significantly less
altruistic (i.e., gave less money to the community pool) than carriers of the high
activity alleles. Interestingly the genetic effects became smaller with increasing
information about the other players’ behavior in the public goods game. However,
in female participants carrying two low activity alleles of the MAO-A polymor-
phism, the opposite behavior was observed. In females, the low activity alleles were
related to higher altruistic decisions. Gender differences with respect to the MAO-A
promoter repeat polymorphism must be interpreted with caution, given the fact that
the MAO-A gene is located on the X-chromosome. This means that men have only
one allele at the polymorphic region (as they possess only one X-chromosome),
whereas women have a genotype with an allele on each of their two X-chromosomes.
The polymorphism, which is located 1.2 kb upstream of the MAO-A coding
sequences, consists of a 30 bp repeated sequence present in 3, 3.5, 4, or 5 copies.
Functional studies have shown that the 3.5 and 4 copy alleles (i.e., the high activity
alleles) are transcribed 2–10 timesmore efficiently than the 3 or 5 copy alleles (i.e., the
low activity alleles) (Sabol et al. 1998). However, it is not yet proven how strong the
functional impact of the second allele is in women compared to the one allele in men.
At least the location of the MAO-A polymorphism on the X-chromosome could be a
potential explanation for contradictory results based on gender.

In a laboratory study with N = 101 healthy Caucasian participants, we investi-
gated altruism in a donation experiment (Reuter et al. 2011). Altruism was not
assessed by a classic economic game, but by the amount of money donated to a
poor child in a developing country, after participants earned money through par-
ticipation in two straining computer experiments. The focus was on the dopamin-
ergic system, because dopamine has proven to be—in addition to the prominent
neuropeptides oxytocin and vasopressin—crucial for prosocial behaviors like
cooperation, attachment style, mentoring, paternal parenting, and positive
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emotionality, to name but a few (Lucht et al. 2006; Reuter et al. 2006; Shanahan
et al. 2007; Gillath et al. 2008; Walter et al. 2011). The functional Val158Met
polymorphism was significantly associated with the size of the donations. Carriers
of at least one Val-allele donated about twice as much money, compared to those
participants without a Val-allele (genotype Met/Met). The functional COMT SNP
together with the personality trait cooperativeness, as assessed by the Temperament
and Character Inventory (TCI; Cloninger et al. 1993), explained about 15 % of the
variance in donation size. The Val-allele, which is characterized by high altruism
and also by high catabolic activity with respect to the degradation of dopamine, is
the ancestral allele at the polymorphic region in codon 158 on the COMT gene.
Today we have equal allele frequencies for the Val- and the Met-allele in Caucasian
populations, indicating that the allele frequency of the Met-allele must have dra-
matically increased over the last 100,000 years. Therefore, it can be concluded that
altruism (as represented by the Val-allele) is less adaptive than selfishness (repre-
sented by the absence of the Val-allele; i.e., the presence of the Met/Met genotype).
However, from the perspective of evolutionary psychology, altruism was the pre-
requisite for mankind’s’ success and increases inclusive fitness. Eldakar and Wilson
(2008) contributed an interesting model to this debate. Their model identifies a
strategy called “selfish punisher” that involves behaving selfishly in first-order
interactions and “altruistically” in second-order interactions by punishing other
selfish individuals. The act of punishing other selfish individuals can be considered
a form of second-order altruism. The idea behind this is that selfish punishers limit
selfish behavior and thereby enable altruists to coexist in a stable equilibrium.

Strobel et al. (2011) investigated a related construct named altruistic punishment
(for more details, please see Chap. 12 on altruistic punishment by Alexander
Strobel, in this book). Altruistic punishment refers to a behavior in which indi-
viduals punish others for unfair actions (e.g., free-riding, defection, noncoopera-
tion) at a cost to themselves and for the sake of others or the community. According
to this definition, altruistic punishment indeed meets the criterion for altruism. The
authors conducted a combined fMRI-genetics study. Besides the major finding that
brain regions related to cognitive and affective functioning (DLPFC, ACC, insula)
were essentially involved in altruistic punishment, they reported an allele load effect
(Met/Met > Val/Met > Val/Val) with respect to the BOLD-response (contrast
punishment vs. nonpunishment) in the cingulate gyrus, the nucleus accumbens and
the insula. Strobel et al. discuss this finding as suggestive in favor of the hypothesis
that the evolutionarily younger, Met-allele, is favored in societies where reciprocal
behavior—in this case punishment of unfair behavior—is the social norm. Given
that, the Met/Met genotype could be related to less altruism (Reuter et al. 2013), but
in the study by Strobel et al. to more pronounced brain activity during altruistic
punishment, it cannot be taken for granted that altruism and altruistic punishment
are highly correlated, although both constructs represent prosocial behavior. Future
studies should test this hypothesis in a within-subject design.
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4.3 Summary and Perspectives

The present chapter on genes and human decision-making gives an overview of
prominent genetic studies that have been published in the field of neuroeconomics
to date. It becomes apparent that all studies adopt a candidate gene approach, i.e.,
they derived their hypotheses for testing specific gene loci from the general liter-
ature on genes and human decision-making. Besides the oxytocin and the vaso-
pressin receptor genes, dopaminergic gene loci have been a particular focus of
interest. Positive associations between these polymorphisms and economic con-
structs like trust, altruism, generosity and reciprocity, support results from quanti-
tative genetic studies (twin studies) demonstrating that human decision-making in
economic contexts is substantially influenced by genetic factors. However, the
explained variance in the phenotypes under investigation is rather small, as is
common in genetic association studies. New techniques in molecular genetics like
genome wide association studies (GWAS; for an overview please see the methods
chapter on genetics in this book), provide the hope of unraveling new gene loci
associated with economic decision-making.

As outlined in the introduction to this chapter, the genetic approach in neuroe-
conomics offers the possibility of assessing biological variables in ecologically
valid situations. This is a clear advantage over MRI studies, which provide a rather
artificial—and simultaneously, extreme—laboratory setting. Time will tell whether
interest in this new and promising genetic approach will increase in the field of
neuroeconomics.
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Chapter 5
Monoamines and Decision-Making
Under Risks

Hidehiko Takahashi

Abstract Past neuroeconomics studies using neurophysiology methods (mainly
fMRI) have revealed the neural basis of “boundedly rational” or “irrational”
decision-making that violates normative economics theory. It is expected that the
field of neuroeconomics will be merged with neurotransmitter research and clinical
neuroscience. Here, we provide an overview of recent molecular neuroimaging
studies to understand how central monoamine transmission is related to “irrational”
decision-making. Empirical evidence suggests that central dopamine transmission
might be related to distortion of subjective reward probability and noradrenaline
and serotonin transmission might influence aversive emotional reaction to financial
loss. Positron emission tomography (PET) is a powerful tool to understand the
neurochemical basis of decision-making in vivo in human. This approach seems to
be a promising direction to understand the neurobiology of impaired decision-
making in neuropsychiatric disorders and may help to develop novel pharma-
cotherapy for them.

5.1 Introduction

In normative economics theory, decision-makers are assumed to be “rational” and
purely self-interested. However, we are not always rational, and sometimes show
“boundedly rational” or “irrational” decision-making. Laboratory and field evi-
dence from behavioral economics has shown that decision-makers systematically
depart from normative theory (Camerer and Loewenstein 2004; Camerer and Fehr
2006; Takahashi et al. 2012b). Because behavioral economics deals with the effects
of cognitive and emotional factors on economic decisions, not surprisingly, it has
been merged with neuroscientific studies about cognition and emotions, and this
interdisciplinary approach is called neuroeconomics.
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Over the last decade, neuroeconomics utilizing neurophysiology methods (fMRI
or EEG) has been advanced, revealing the neural basis of “boundedly rational” or
“irrational” decision-making that violates normative theory. Past neuroeconomics
studies have demonstrated that, in addition to cortical regions such as the prefrontal
cortex (PFC), subcortical emotion-related brain areas are involved in “irrational”
decision-making (Sanfey et al. 2003; Singer et al. 2006; Takahashi et al. 2009;
Yamada et al. 2012). The next question is how neurotransmission modulate these
central processes (Trepel et al. 2005; Rangel et al. 2008). In this chapter, we provide
an overview of recent research to understand the neurochemical basis of “irrational”
decision-making under risks.

5.2 Nonlinear Probability Weighting

One type of systematic departure from normative economic theory is that subjective
weights on probabilities appear to be nonlinear. Decision-makers often overestimate
low probabilities (e.g., playing lotteries) and underestimate high probabilities.
A leading alternative to normative theory (expected utility theory) is the prospect
theory (Tversky and Kahneman 1992). One of the important components of the
prospect theory is nonlinear probability weighting, where objective probabilities, p,
are transformed nonlinearly into decision weights w(p) by a weighting function
(Fig. 5.1).

Experimental studies suggest that the weighting function is regressive, asym-
metric, and inverse S-shaped, crossing the diagonal from above at an inflection
point (around 1/3) where p = w(p). Although several functions have been proposed
to express nonlinear probability weighting, the one-parameter function derived
axiomatically by Prelec (1998), w(p) = exp{−(ln(1/p))α} with 0 < α < 1, is widely
used. In an inverse S-shaped nonlinear weighting function, low probabilities are
overweighted and moderate to high probabilities are underweighted. The function
neatly explains the typically observed pattern of risk-seeking for low probability
gain and risk-aversion toward high-probability gain.

Paulus and Frank (2006) investigated the neural substrates that are related to
nonlinear probability transformation using fMRI with a certainty equivalent pro-
cedure. During this procedure, a gamble’s certainty equivalent, the amount of sure
payoff at which a player is indifferent between the sure payoff and the gamble, was
determined. The authors found that differential anterior cingulate activation during
estimation of high probabilities relative to low probabilities was positively corre-
lated with Prelec’s nonlinearity parameter α across subjects. Another fMRI study
with risks of negative outcomes (electric shocks) found similar nonlinear response
in brain regions including the caudate/subgenual anterior cingulate (Berns et al.
2008). However, it was reported that the dorsolateral PFC was involved in over-
weighting low probabilities and underweighting high probabilities, and that the
ventral frontal regions showed the opposite pattern (Tobler et al. 2008). More
recently, Hsu et al. (2009) reported that the degree of nonlinearity in the neural
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response to anticipated reward in the striatum reflected the nonlinearity parameter
as estimated behaviorally. The discrepancies regarding the loci of activation are
thought to stem from differences in the task (probability range, context, etc.) and
analysis of parameter estimation. However, it seems to be promising to investigate
the role of the dopamine (DA) system in nonlinear probability weighting, because
DA is linked to risk-seeking behavior (Leyton et al. 2002) and excessive DA release
was observed in pathological gambling in Parkinson’s disease patients (Steeves
et al. 2009). Trepel et al. (2005) hypothesized in an insightful review that DA
transmission in the striatum might be involved in shaping probability weighting.
Taking advantage of in vivo molecular neuroimaging [positron emission tomog-
raphy (PET)], we investigated the relationship between central DA transmission
and nonlinear probability weighting.

Certainty equivalents were determined outside the PET scanner, and we esti-
mated probability weighting using the Prelec’s one-parameter function. There was
positive correlation between striatal D1 receptor binding measured by [11C]
SCH23390 PET and the nonlinearity parameter α of weighting function (Fig. 5.2)
(Takahashi et al. 2010a). No correlation was found between D2 receptor binding
measured by [11C]raclopride PET and nonlinearity parameter α. That is, subjects
with lower striatal D1 receptor binding tend to show more pronounced

Fig. 5.1 Hypothesized model showing the contribution of central DA transmission to nonlinear
probability weighting. A smaller value of α (closer to 0) means a more nonlinear inflected
weighting function and a higher value (closer to 1) means a more linear weighting function. At
α = 1 the function is linear (dashed line). DA transmission might play a central role in distorting
probability weighting function nonlinearly. Excessive DA transmission might cause exaggerated
overestimation of low probability and underestimation of moderate to high probabilities (black
arrow)
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overestimation of low probabilities and underestimation of high probabilities. [11C]
SCH23390 is a selective radioligand for D1 receptors, but it also has some affinity
for serotonin (5-HT) 2A receptors. 5HT2A receptor density in the striatum is
negligible compared to D1 receptor density. However, 5HT2A receptor density is
never negligible in extrastriatal regions (Ekelund et al. 2007). Future studies with a
more selective radioligand are recommended to test the role of extrastriatal (cor-
tical) D1 receptors in nonlinear weighting.

Mis-estimation of probabilities, especially of low probabilities, might be related
to some problematic behaviors in neuropsychiatric disorders. Clinical studies have
reported the emergence of pathological gambling in Parkinson’s disease patients
taking DA agonist medication (Gallagher et al. 2007; Dagher and Robbins 2009),
and such patients showed increased DA release in the ventral striatum measured by
[11C]raclopride PET during gambling (Steeves et al. 2009). Although pathological
gambling is a heterogeneous disorder and cannot be solely attributed to misesti-
mating probability, these clinical observations can lead to the hypothesis that
excessive DA transmission might cause distortion of subjective probability weights
for gains (positive outcomes) (Fig. 5.1) (Takahashi 2012, 2013). However, non-
linear probability weighting is a combination of risk-seeking (overestimation of low
probability) and risk-aversion (underestimation of high probability). In fact, a recent
study reported that pathological gamblers demonstrated an overall shift towards
risk, rather than excessive distortion of nonlinear probability weighting in
decision-making under risks (Ligneul et al. 2012). From a psychological point of
view, the overweighting of low probability gains may reflect the hope of winning,
and it is reasonable to link DA tone and an overall shift towards risk.

Fig. 5.2 Striatal DA D1 receptors and nonlinear probability weighting. Left panel shows
parametric image of DA D1 receptor binding potential measured by [11C]SCH23390. Right panel
shows positive correlation between striatal D1 receptor binding and nonlinearity parameter α of
weighting function
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Underweighting of high-probability gains may reflect the fear of losing a “near sure
thing”. Thus, the shape of weighting function, especially in the high-probability
portion, should be determined by multiple neurotransmitters other than DA
(Takahashi et al. 2010b), such as 5-HT (Takahashi et al. 2005) and norepinephrine
(NE) (Onur et al. 2009), which are also known to modulate the emotional reaction
of fear. Furthermore, the role of neurotransmitters in nonlinear probability
weighting for losses (negative outcomes) should be tested as well.

5.3 Loss Aversion

Pain derived from losing a certain amount of money appears to be greater than the
pleasure derived from gaining the equivalent amount. Imagine having a chance to
participate in a coin-flip game of chance. Using a fair coin, if the outcome is heads,
you will win $100, and if the outcome is tails, you will lose $100. Are you willing
to participate in this gamble? Typically, most people would say “no”. Well, how
about the following gamble? If the winning prize is increased to $200, while the
potential loss remains $100. In this case, some people would say “yes”. This means
that, typically, losses have at least twice the impact of equivalent gains, a tendency
called loss aversion (Tversky and Kahneman 1992). Loss aversion is a robust
phenomenon, and many laboratory and field studies have found evidence in
monkeys for food rewards, and in humans for financial outcomes, features of
consumer goods, food rewards, game show winnings, and apartment sales (Camerer
and Loewenstein 2004; Chen et al. 2006; Knutson et al. 2007). In prospect theory,
this is expressed by a value function of losses that is steeper than that of gains
(Fig. 5.3).

An fMRI study has shown that the PFC and striatum are involved in loss
aversion (Tom et al. 2007). On the other hand, brain lesion studies have reported
that amygdala lesion patients showed diminished loss aversion (De Martino et al.
2010). Sokol-Hessner et al. (2009) have shown that physiological arousal response
(skin conductance response) to losses was greater than to equivalent gains on
average. This finding indicates that losses are more emotionally laden and salient
than equivalent gains. The study also reported that individuals with greater arousal
response to losses versus gains tend to be more loss-aversive. More recently, the
same research team, using fMRI, reported a correlation between behavioral loss
aversion and amygdala activation in response to losses relative to gains (Sokol-
Hessner et al. 2012).

It is known that 5-HT plays an important role in modulating emotional response
or affective state, and enhancing central 5-HT transmission by selective serotonin
reuptake inhibitors (SSRIs) decreases amygdala activation in response to aversive
stimuli (Takahashi et al. 2005). Although there are no PET studies investigating the
relationship between 5-HT transmission and loss aversion directly, empirical evi-
dence suggest that central 5-HT tone might be associated with loss aversion.
Enhancing 5-HT transmission by tryptophan load reduced the “reflection effect”
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(Murphy et al. 2009). “Reflection effect” refers to the fact that decision-makers tend
to prefer the sure $50 gain to a 50/50 gamble to win $100 or no gain at all, showing
risk-aversion. However, decision-makers tend to prefer a 50/50 gamble to lose $100
or no loss at all to the sure $50 loss, showing risk-seeking. Loss aversion can partly
account for “reflection effect” and “framing effect”. De Martino et al. (2006)
reported that susceptibility to the framing effect was associated with amygdala
activation. Then they reported that genetic variation in the promoter region of the
5-HT transporter gene (5-HTTLPR) predicted the susceptibility to the framing
effect. Homozygosity for the minor s-allele showed greater amygdala activation
during decision-making and stronger framing effect than l-allele carriers (Roiser
et al. 2009). More recently, large-sample behavioral economics studies in an Asian
sample also showed that homozygosity for the s-allele showed higher loss aversion
than l-allele carriers (He et al. 2010). It is difficult to estimate pre-and post-synaptic
(and net) 5-HT transmission exactly by genetic variation in 5-HTTLPR (Shioe et al.
2003), but 5-HT neurotransmission seems to attenuate the aversion to financial loss
(Fig. 5.3) (Takahashi 2012, 2013).

In addition to 5-HT, a line of evidence suggests that norepinephrine (NE) might
be involved in loss aversion. The role of NE in arousal is well established (Berridge
and Waterhouse 2003), and it was reported that physiological arousal response was

Fig. 5.3 Hypothesized model showing the contribution of central 5HT and NE transmission to
loss aversion. 5-HT and NE might contribute to shaping the slope of value function for loss. 5-HT
might ease the slope of value function for loss (loss tolerance: gray), and NE might intensify the
slope (loss aversion: black). The value function is usually assumed to be a power function v
(x) = xσ, but we used common simplifying assumptions that σ is 1 for both value functions in gain
and loss domains. The ratio (loss/gain) of the slope of linear functions was indicated as λ
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associated with behavioral loss aversion (Sokol-Hessner et al. 2009). Blocking
central NE transmission by propranolol attenuated the sensitivity to the magnitude
of possible losses at gambles (Rogers et al. 2004). Lack of appropriate PET radi-
oligand has prevented us from investigating the role of central NE transmission in
cognition, emotion, and decision-making in vivo. However, (S,S)-18F-FMeNER-
D2 has recently been developed as a radioligand for the measurement of NE
transporter (NET) for PET (Schou et al. 2004; Arakawa et al. 2008). (S,S)-
18F-FMeNER-D2 is a reboxetine analog and has high affinity and high selectivity
for NET. We utilized PET scans with (S,S)-[18F]FMeNER-D2 to investigate the
relationship between NET in the brain and loss aversion. A NET-rich region
available to PET imaging with this ligand is the thalamus. The amygdala and PFC
are also innervated by NE, but the relatively low expression of NET prevented
reliable measurement of their NET binding.

Loss aversion parameters were determined outside the PET scanner using a
50:50 mixed gamble (gain–loss). This parameter λ is similar to the parameter in
prospect theory but makes the common simplifying assumptions of a linear rather
than curvilinear value function (Fig. 5.3), and identical decision weights for a 0.5
probability of a gain or loss. The finding was that there was a negative correlation
between λ and NET binding in the thalamus (Fig. 5.4) (Takahashi et al. 2013). In
other words, individuals with low thalamic NET are likely to show pronounced loss
aversion. Although NE has been implicated in arousal, previous studies also sug-
gest that NE affects processing of salient information (Berridge and Waterhouse
2003). Neurons of the locus coeruleus (LC), the major source of NE in the brain, are
physically evoked by salient or emotional stimuli (Aston-Jones et al. 1994), and
phasic LC activation also increases NE release in target sites (Berridge and

Fig. 5.4 NET in the thalamus and loss aversion. Left panel shows average of spatially normalized
summed PET image of (S,S)-[18F]FMeNER-D2. Right panel shows negative correlation between
NET binding in the thalamus and loss aversion parameter λ
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Waterhouse 2003). Enhancing NE tone by NE reuptake inhibitor improves detec-
tion of emotional stimuli (De Martino et al. 2008), and blocking central NE
transmission by propranolol predominantly impairs processing of negatively
emotional stimuli (Cahill et al. 1994). Thus, PET findings suggest that individuals
with low NET in the thalamus might show enhanced effect of NE released by
salient stimuli due to low reuptake, and consequently show exaggerated emotional
or arousal response to losses relative to gains. Thalamic NET might be an indirect
mediator of the relationship between NE transmission and loss aversion. Similarly
to 5-HT systems, Rasch et al. (2009) reported that a genetic variation of ADRA2B,
the gene encoding the α2b-adrenergic receptor, predicted the amygdala responsivity
to negative stimuli. Future studies with a more appropriate radioligand for mea-
suring NET in the amygdala and PFC, which are implicated in loss aversion, are
recommended. For the present, it is not unreasonable to suppose that central NE
tone plays a role in shaping the slope of the value function in the loss domain
(Fig. 5.3) (Takahashi 2012, 2013).

In a clinical setting, NET blocker, atomoxetine, is widely used in the pharma-
cotherapy of Attention-deficit hyperactivity disorder (ADHD). ADHD patients are
known to show impulsive and reckless decision-making and have high comorbidity
rates of drug addiction and gamble addiction (pathological gambling) (Pattij and
Vanderschuren 2008; Breyer et al. 2009). Our finding suggests that atomoxetine
might shift ADHD patients’ decision-making from reckless (less loss-aversive) to
more cautious (more loss-aversive) by blocking NET. Although pathological
gambling is a heterogeneous disorder with various social and biological back-
grounds, one can make a prediction that NET inhibitors might be beneficial for a
subgroup of pathological gambling who show diminished aversive responses to
financial losses (Takahashi 2013). Compared to the DA system, the role of the NE
system in reward processing has been less studied, and specifically, the research
field that would elucidate the role of NE in decision-making in normal and
pathological populations is worthy of further development.

5.4 Conclusion

The PET technique is a powerful tool to understand the neurochemical basis of
decision-making in vivo in human (Takahashi et al. 2012a). However, pharmaco-
logical studies as well as animal studies are necessary for a better understanding of
the detailed mechanism. It is expected that the field of neuroeconomics will be
merged with pharmacological/neurotransmitter research and clinical neuroscience
(Rangel et al. 2008). This approach seems a promising direction to understand the
neurobiology of impaired decision-making in neuropsychiatric disorders and
develop novel pharmacotherapy for them (Takahashi 2012; Takahashi et al. 2012b;
Takahashi 2013).
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Chapter 6
Decision-Making Under Uncertainty

Dominik R. Bach

Abstract All decision-making takes place under uncertainty, even in controlled
laboratory circumstances. The Bayesian brain hypothesis, a widely accepted the-
oretical framework of brain function, prescribes that the brain uses probability
distributions to store parameter values, rather than point estimates, and is thus able
to use uncertainty on various parameters. This allows for investigating value-based
decision-making under natural circumstances when information needs to be
extracted from noisy input, and it may also impact on decisions based on propo-
sitional information. In this chapter, I present experimental approaches to neural
representations of uncertainty in value-based decision-making.

6.1 Introduction

Economists often distinguish risk from uncertainty. Risk quantifies the uncertain-
ness of outcomes to be realised from a decision. Uncertainty denotes all imprecision
on propositional aspects of a decision-making situation. Following this distinction,
many economic theories treat decision-making under uncertainty as a special case.
However, for biological agents, all decision-making takes place under uncertainty.

Imagine a controlled laboratory experiment where an agent can make a simple
choice between two options. Option A is to win either €10, or €20, depending on
whether we draw a black or a white ball from an urn with 50 black and 50 white
balls; option B is a sure amount of €15. B. There is no uncertainty in this abstract
presentation of the decision problem, other than the risk associated with the out-
come of the urn draw, if option A is chosen. To analyse this situation, classic
economic theories will rely on the propositional information given to the
decision-maker. Consequently, experimenters will try to convince agents that the
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abstract, propositional information given to them is accurate, such that classic
theory is applicable.

However, human’s brains are equipped to solve far more complex problems,
extract information from noisy input, and infer the structure of the world. Moreover,
typical adults will have multiple experiences with situations similar to the labora-
tory choice. For example, why should they believe that the urn used by the
experimenter really contains equal numbers of black and white balls?

In the next section, I will review a probabilistic framework for how the brain
retrieves and stores information, to form the basis for a model of economic
decision-making. The neural implementation of these algorithms has been reviewed
both on a microscopic/neuronal (Pouget et al. 2013) and on a macroscopic level
(Bach and Dolan 2012). Here, I will give an overview of the different kinds of
uncertainty that are experimentally manipulated in neuroeconomic investigations.

6.2 A Probabilistic Model for Economic Decisions

Abstract models of value-based decision-making often assume that a
decision-making agent receives propositional information in the form of particular
numbers, such as values, utilities, probabilities, risk attitudes and so on, and a
problem structure that links these numbers. The agent uses this information, for
example, to maximise utility. The figures that define the decision problem either
arise from current information (for example, the possible outcomes of the urn draw)
or from stored values (for example, risk attitudes). Of course, under everyday
circumstances, most information is not provided in the form of abstract, proposi-
tional information. This begs the question: how does a biological agent extracts the
relevant economic information from a continuous stream of sensory input? How
does it store and update this information to yield stable preferences and attitudes?
This question is relevant also for controlled laboratory experiments because
decision-making usually relies on attitudes or preferences acquired previously in
real-world contexts—such as a risk preference in our initial example.

It turns out that biological agents use two fairly general principles of processing
information: probabilistic computing, and hierarchical causal structures (Dayan and
Hinton 1996; Dayan et al. 1995; Friston 2010). Our sensors provide information
that is both very noisy and redundant (Kording and Wolpert 2006; Vilares and
Kording 2011). This is a challenge for any system, biological or man-made. In
order to make inference on the outside world given rich and noisy input, the task is
to combine information from various noisy sources. As an example, imagine you
are in price negotiations on a bustling street market when the trader announces his
final price, and a bystander steps forward to grab the opportunity and buy the item.
You have to make a quick decision whether or not to express your interest, but your
sensory system is not quite certain whether what the trader said was “thirteen” or
“thirty”. Although we are never consciously aware of this, our sensory system will
combine the auditory information with visual information from observing the
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traders mouth, and with previous information on the course of the price negotia-
tions. This integration of redundant information reduces noise. In order to make the
best possible inference, it is necessary to take the level of uncertainty on each
information source into account: more reliable information should be given more
weight. The auditory information should count less when it is noisy; but if it is dark,
on the contrary, then the visual information should be discounted. A principled
framework for making inference under these circumstances is Bayesian Decision
Theory (Orban and Wolpert 2011; Trommershauser et al. 2011).

In Bayesian statistics, probabilities represent degrees of belief. This makes it
possible to represent uncertainty on parameter values (Fig. 6.1). In an inference
problem, a parameter value is given but unknown to us—it needs to be inferred.
Classical statistics represents an estimate of a true parameter value as point esti-
mate. For example, if we want to know whether the urn in the initial example is fair,
we can draw many times and calculate the probability of drawing white from the
sample mean. This is one single number, hence it is called a “point estimate”
(Fig. 6.1). Bayesian statistics allows directly expressing our beliefs in particular

Fig. 6.1 Illustration of point estimation for a parameter value (left) and probabilistic represen-
tation of parameter values as in Bayesian statistics (right). In the initial example, an agent is told
that the urn contains 50 black and 50 white balls. He then samples 20 balls and receives 11 white
balls. A point estimate of the number of white balls is 55 (black, left). The agent has to decide
whether to follow this estimate, or the propositional information (dark grey, left). A probabilistic
estimate expresses the uncertainty associated with the limited number of samples (black, right).
The agent may also combine the sampling information with a strong belief that the propositional
information on the urn is correct (dark grey, right) or with his private belief that the experimenter
will actually fob him off with an urn that just contains 30 white balls (light grey, right). The
dispersion of these distributions corresponds to the uncertainty on the number of balls
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parameter values, and updating them from experience. For example, from our
knowledge, we may start with a strong prior assumption that the urn is fair, and
update this after each draw. This will give us a probability distribution over dif-
ferent probabilities of drawing white. Importantly, we are now also able to express
skewed priors—for example, because we think that the experimenter will fob us off
with a biased urn. We may therefore express an initial belief that the urn contains
only 30 white balls, and update this with experience. It appears from sensorimotor
research that neural systems compute with probability distributions (Pouget et al.
2013), and use them to express prior beliefs (Brouwer and Knill 2009; Kording
et al. 2004; Kording and Wolpert 2004; Tassinari et al. 2006), some of which may
be in-built or acquired early during development (Parise et al. 2014). This has been
proposed as a general computing principle of the brain (Friston 2009, 2010; Knill
and Pouget 2004).

The principle of probabilistic computations provides a particular view on eco-
nomic decision-making. Take, for example, the famous St. Petersburg paradox
(Bernoulli 1738; Camerer 1995). This describes a gamble against a casino with
unlimited resources. The player tosses a fair coin until heads appear for the first
time. If heads appear on the first throw, he gets €1. If heads appear on the second
throw, he gets €2, on the third throw €4, €8 on the fourth throw and so on. Because
the casino has infinite resources, the coin tossing can continue forever, until heads
appear. It is possible to mathematically show that the expected value of this gamble
is infinite. Yet, most people would pay only a very limited amount of money to play
this kind of lottery, despite the expected infinite value. This appears paradoxical.
Expected utility theory explains this with the assumption that people do not max-
imise expected value; instead they maximise expected utility. Given a particular set
of utility functions, the difference in utility between any two subsequent coin tosses
becomes smaller and smaller (a phenomenon called “diminishing marginal utility”,
Fig. 6.2), and hence the expected value of this gamble can be shown to be finite.
Hence people only pay a finite (and rather small) amount of money. While this is a
widely accepted explanation of this paradox, there is an alternative interpretation.
This is based on the commonsensical notion that there exists no casino with
unlimited resources. Using Bayesian statistics, one may formulate prior assump-
tions about possible payout values, and the possibility of magnitudes above a
certain threshold will be assigned zero probability. Combining these prior
assumptions with the actual data (the description of the St. Petersburg gamble) will
yield a probability distribution for every possible gamble outcome—this distribu-
tion describes how likely the outcome will have this or that monetary value. The
mean of this distribution will have finite value, different from the abstract infor-
mation about the problem. Thus, in a Bayesian framework this paradoxon can be
explained without invoking non-linear utility functions.

Experimental research has focused on how the brain stores and manipulates
probability distributions, and their associated uncertainty. In the following sections,
I will review experimental approaches from economic and noneconomic contexts.

102 D.R. Bach



6.3 Uncertainty of Decision Outcomes

Uncertainty of decision outcomes is arguably the most investigated type of
imprecision in value-based decision-making. Given the irreversibility of time, there
appears an epistemic difference between uncertainty of future outcomes which are
unknowable, and uncertainty on present and past events which are in principle
knowable. Most empirical research is on future outcomes, but it is not clear whether
decision-making systems make this distinction, for example, whether they represent
the risk of a past lottery different from the risk of a lottery to be played out in the
future. I will first consider economic approaches, and then briefly discuss the
non-economic aspects.

(a) Risk in expected utility and finance theory: The dispersion of predicted
utility or value is usually termed risk in economic (von Neumann and
Morgenstern 1944) and finance theory (Markowitz 1952), and quantified as

Fig. 6.2 Example of a non-linear utility function which transforms objective value—here in €—
into utility. The lines indicate values with equal intervals of €5. However, because the utility
function is non-linear, the corresponding utilities have unequal spacing—the intervals become
smaller with increasing utility. This phenomenon is termed “diminishing marginal utility”. Ticks
on the utility axis indicate expected utilities of three different situations. The utility corresponding
to a value of €15 (light grey line) is larger than the expected utility corresponding to a 50 % chance
of obtaining €20 and a 50 % change of obtaining €10 (medium grey lines)—this is the initial
example in the text. The expected utility of a 50 % chance of obtaining €20 and a 50 % change of
obtaining €10 (dark grey lines) is even smaller. Given a choice between any of these three
situations, a utility-maximising decision-making agent would choose the situation with higher
utility, and this corresponds to the situation with lower outcome uncertainty (risk). This explains
how risk preference (in this case, risk aversion) can be explained with a non-linear utility function
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variance of the outcome distribution. A large body of evidence indicates that
risk influences choice behaviour (Camerer 1995). Standard economic models
(expected utility theory, EUT, and its variants) explain this with non-linear
utility functions (Fig. 6.2), without an explicit notion of risk. Risk-return
models in finance theory, on the other hand, directly represent risk in calcu-
lations (Markowitz 1952). Overt choice behaviour can be equally well
described in both frameworks. However, to implement EUT neurally, an agent
must explicitly encode magnitudes and probabilities of all possible outcomes,
while to implement a risk-return model, only mean and variance of the out-
come distribution need to be encoded (d’Acremont and Bossaerts 2008).
Encoding all possible outcomes might be feasible in a structured economic
gamble, but is inefficient when the number of possible outcomes becomes
large. Interestingly, implementing EUT, or risk-return models, makes different
predictions for exploration behaviour, which were tested experimentally
(d’Acremont and Bossaerts 2008). Participants played a repeated lottery. Each
time, they were instructed about the magnitudes of all possible outcomes, but
not about their probabilities. By paying some money, they could sample from
the lottery to experience the probabilities of these outcomes. Then, they were
given a chance to bet on that lottery in order to gain money. In some trials,
outcome probabilities and magnitudes changed from the previous trial. In
other trials, participants were informed that outcome magnitudes had changed
from the previous trial, but that outcome probabilities were held constant. Had
participants encoded all the outcome probabilities from the previous trial, there
would have been nothing to gain from sampling the new lottery (because the
magnitudes, the only thing that changed, were stated explicitly). However, in
about half of these trials, participants did sample the probabilities, which
suggest that they did not encode all individual outcome probabilities. To be
risk-sensitive nevertheless, they would have encoded mean and variance of the
outcome distribution. This connects neuroeconomics to reinforcement learning
theory: Biological agents can learn with experience to predict the mean of an
outcome distribution. To do so, they appear to use algorithms that compute a
difference between predicted outcome and actual outcome, termed prediction
error (Mackintosh 1983; Pearce and Hall 1980; Rescorla and Wagner 1972;
Sutton and Barto 1998). When the outcome distribution has a high dispersion,
prediction errors are expected and do not imply that the prediction is wrong;
when the outcome dispersion is low, prediction errors are more informative.
Hence, the dispersion of the outcome distribution is important for reinforce-
ment learning and has been termed “expected uncertainty” (Yu and Dayan
2005). To acquire a notion of outcome dispersion, update algorithms have
been suggested that rely on “risk prediction errors” (d’Acremont et al. 2009;
Preuschoff et al. 2006).

(b) Uncertainty on future states: A simplifying model of the world is to describe
it as a series of discrete states that are connected by transition probabilities (a
Markov chain). If the future state is one with economic value, then this model
captures a typical economic gamble, but this framework is more general. One
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can, for example, quantify uncertainty over future states as entropy (Aron et al.
2004).

(c) Motor uncertainty: Value-based decisions in biological environments usually
involve motor actions. Sensorimotor control theory is concerned with the
planning and implementation of uncertain motor action under uncertain sen-
sory guidance (Orban and Wolpert 2011). For example, when catching a ball,
if we observe longer, we will have more precise information on the ball
trajectory—but if we initiate the movement earlier, the movement will be more
precise. Choosing the optimal observation interval requires integrating the
uncertainty of the future movement with the uncertainty of past observations
(Battaglia and Schrater 2007; Faisal and Wolpert 2009). More generally, when
the result of a decision is implemented with an uncertain motor action, nor-
mative accounts mandate that motor uncertainty is factored in for the decision.
This may be relevant for economic experiments done in non-human species.

How does the brain represent uncertainty of decision outcomes? Phasic firing in
dopaminergic midbrain neurons is consistent with prediction error signals during
reinforcement learning (Schultz et al. 1997); and these signals are scaled by out-
come uncertainty (Tobler et al. 2005), consistent with a reinforcement learning
account of expected uncertainty. Neurons in orbitofrontal cortex carry outcome
uncertainty signals in their firing rate, independent of value signals (O’Neill and
Schultz 2010), although see Ogawa et al. (2013). Third, BOLD fMRI studies have
implicated more than ten distinct brain regions as representing outcome uncertainty
in various different experimental situations (Abler et al. 2009; Dreher et al. 2006;
Fitzgerald et al. 2010; Mohr et al. 2010; Preuschoff et al. 2006; Rolls et al. 2008;
Symmonds et al. 2010, 2011; Tobler et al. 2007). These heterogeneous findings
may justify speculating that neural encoding of outcome uncertainty depends on the
process by which the outcome distribution is estimated (Fig. 6.3).

6.4 Uncertainty on Decision Circumstances

Most decision circumstances are known to the decision-maker only with some
imprecision. In the context of value-based decision-making, uncertainty of gamble
probabilities has been investigated most. A related concept from reinforcement
learning is volatility (Behrens et al. 2007; Mathys et al. 2011). Another is the
presence of rule violations indicating reinforcement rule change, and thus, uncer-
tainty on the rules; this situation has been termed “unexpected uncertainty” (Yu and
Dayan 2005). Because the impact of such uncertainty on value-based decision-
making is less well known, I will focus here on uncertain gamble probabilities and
the related economic concept of ambiguity (Ellsberg 1961).

Imagine a lottery in which outcome probabilities are not explicitly stated—
instead they can take several particular values. This situation is often termed
“ambiguity” and leads to the famous Ellsberg paradox (Ellsberg 1961). Let’s say
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our initial urn A contains 100 balls, half of which are black, and the other half
white. Another urn B contains 100 balls with unknown proportion of black and
white. Would you rather bet on black in urn A or B? Some people may say A, so
under assumptions of EUT, one can infer that they think the probability of winning
from black in urn A (which has p = 0.5) is larger than of winning from black in urn
B (which has therefore p < 0.5). Further, would you rather bet on white in urn A or
B? Again, the same people may say A, so that the probability of winning white
from urn B is again p < 0.5. The proportion of black and white balls in urn B hence
does not add up to 1, which constitutes the paradox. Following this thought
experiment, empirical investigations have demonstrated that most people avoid
ambiguity, even when this does not maximise utility; for example, if one has to pay

Fig. 6.3 Illustration of a gamble involving uncertainty on outcome probabilities (Bach et al.
2011). A A grey “bowling” ball appears on the screen. The agent is instructed that it may have
come from one of two players (orange, blue) with dispersion indicated by the colour gradients
below the grey ball. Orange and blue balls have different probabilities of winning from the
gamble. The uncertainty (Shannon entropy H) associated with the ball position is indicated on top.
B A corresponding gamble with no uncertainty. The grey ball may have come from either of two
blue players, such that the outcome probabilities correspond to “blue” and are known
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extra money to bet on urn A (Becker and Brownson 1964; Curley et al. 1986; Keren
and Gerritsen 1999; MacCrimmon and Larson 1979; Pulford and Colman 2008;
Slovic and Tversky 1974; Yates and Zukowski 1976).

How can we resolve the paradox? Urn A constitutes a single-stage lottery. By
contrast, urn B can be understood as a two-stage lottery. There is a bet on the
distribution of balls in urn B, termed second-order distribution (Bach et al. 2011;
Klibanoff et al. 2005), and a bet on the outcomes of a draw from this distribution.
EUT posits that a rational decision-maker should collapse the two stages of this
lottery (Camerer 1999). In the absence of further information, one should assume a
uniform second-order distribution (that is, all 100 possible compositions in urn B
have probability p = 1/100). For each possible urn composition, one should mul-
tiply the ensuing first-order probabilities of a black or white draw, multiply them
with its second-order probability and finally add up all probabilities for black and
white across all urn composition in order to make a decision. It turns out that in this
case, the expected outcome is the same for both urns.

The Ellsberg paradox however is only a paradox if we assume this reduction of
the two-stage bet to a single-stage one. If we assume that people treat the lottery as a
full two-stage bet, we can invoke a number of reasons to explain ambiguity aversion.
A very simple reason would be that decision-making agents have a prior belief that
the number of balls in urn B is not uniformly distributed, and unfavourable urn
compositions are more likely. Indeed, restricting the range of possible urn compo-
sition reduces ambiguity aversion (Keren and Gerritsen 1999; Larson 1980).

However, ambiguous and non-ambiguous gambles differ across other factors as
well. For example, by making a choice between urn A and urn B, people reveal their
knowledge and belief about gambles and probabilities, something that might have
additional (positive or negative) utility. When people are asked to make their choice
publicly in a group, ambiguity aversion is larger than when they make the same
choice, but write it down on a piece of paper that is only later to be read by the
experimenter (Curley et al. 1986). In line with this, instructing individuals that their
choices are going to be evaluated increases ambiguity aversion (Muthukrishnan et al.
2009). Also, when people gamble on getting one of two movies, where the experi-
menter asks which of the two they prefer, they avoid gambles of type B. However, if
the experimenter does not know which movie they prefer, there is no ambiguity
avoidance (Trautmann et al. 2008). In this latter case, the experimenter cannot judge
people’s choices because he does not know what they want to obtain from the
gamble. This is a purely social factor that may explain ambiguity aversion but has no
relation to uncertainty. Interestingly also, ambiguity aversion (Chow and Sarin 2002)
—and also brain responses to ambiguous gambles (Bach et al. 2009)—depend on the
fact that something is hidden from the observer rather than completely unknowable.

In summary, ambiguity is a good example how the categorical contrast certainty
versus. uncertainty can be imbued with conceptual confounds. At the same time,
this type of gamble allows for an elegant manipulation of uncertainty. We can
simply use the entropy of the second-order probability distribution (i.e. the prob-
abilities that a certain outcome probability will be realised) to quantify rule
uncertainty. In a repeated gamble on aversive outcomes, we presented a “bowling
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ball game” gamble to participants. A grey ball would appear somewhere on the
screen—it could either come from player type 1 or player type 2. Balls from the two
player types represented gambles with different outcome probabilities—but the
same outcome magnitudes. Now if the ball was close to player type 1, it was more
likely to have come from player 1, and if it appeared right in the middle of the
screen, it was equally likely to have come from either of the players. Hence, the
latter situation involves more uncertainty than the former, and we can realise many
ball positions with different rule uncertainties. Indeed, it turned out that gambles are
avoided to a degree that depends on the amount of rule uncertainty (Bach et al.
2011). This avoidance of uncertain situations with higher uncertainty appeared to
be due to overweighting of the more unfavourable possibility when rule uncertainty
was high (Bach et al. 2011). A neural representation of this uncertainty was found
in the posterior cingulate cortex. In contrast, neural responses to the contrast
ambiguity versus non-ambiguity—possibly not reflecting uncertainty—are consis-
tently reported in a different brain area, namely in the posterior parietal cortex (Bach
et al. 2009, 2011; Huettel et al. 2006).

6.5 Sensory Uncertainty

Value-based decisions are often based on abstract, propositional information—here,
sensory uncertainty is often irrelevant. In many biological situations, however,
information has to be extracted from low-level physical information. This includes
a plethora of neuroeconomic experiments done on non-human animals (Camerer
1995). The influence of sensory uncertainty on value-based decisions is illustrated
by the certainty effect. When faced with a choice between €4 with p = 0.2 and €3
with p = 0.25, an agent might choose the €4 lottery. But when given the choice
between €4 with p = 0.8 and €3 with p = 1, he may flip his preference and go for
the certain €3 option. According to EUT, these are incompatible choices (von
Neumann and Morgenstern 1944), and this discrepancy has been termed the cer-
tainty effect. However, sometimes the reverse is observed: a decreased propensity to
choose the certain option. It has been demonstrated that a certainty effect can be
reversed by manipulating the imprecision on outcome magnitude information
(Shafir et al. 2008). Noisy sensory information will also occur in economic trans-
actions that are made under time pressure (think of a stock market), and in eco-
nomic decisions involving nonmonetary goods.

6.6 Summary and Conclusions

In this chapter, I have discussed how a probabilistic account of the brain can be
integrated with economic accounts of decision-making. It becomes clear that in
natural environments, the brain must extract all information from noisy sensory
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data, and take account of uncertainty on all levels of a neural hierarchy. In this
process, information sources are combined with each other and with prior knowl-
edge. This can also be relevant for situations in which propositional information is
provided as basis for a decision—because even this abstract information may be
combined with prior assumptions. Experimental approaches to neural representa-
tion of uncertainty in economic variables have focused on the concepts of risk and
ambiguity. Sensory and motor uncertainty is less often investigated but may be
crucial to understand value-based behaviour in non-human species. It is likely that
neuroeconomic investigation of decision-making under uncertainty is going to be a
fruitful approach to study the brain, and human decisions.
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Chapter 7
Emotion Regulation and Economic
Decision-Making

Renata M. Heilman, Andrei C. Miu and Daniel Houser

Abstract Emotion plays an important role in human social and economic
decision-making. Only in the last few decades has this view been accepted in
mainstream research by economists and psychologists studying decisional pro-
cesses. Many studies now provide compelling evidence that the experience of
various different emotions influence changes in decisional outcomes. Emerging
research on emotion regulation, however, highlights that humans typically make
efforts to control emotion experiences. This leaves open the possibility that decision
effects attributed to acute emotions may be affected by regulatory strategies. If so,
this raises the additional possibility that different regulation strategies could have
different implications for economic decisions. Researchers have recently begun to
study these possibilities and discovered that emotion regulation can indeed mod-
ulate effects that task-related and incidental emotions have on decisions. In this
chapter, we provide a review of the empirical studies that have investigated the
effects of regulatory strategies on social and economic decisions. We present an
overview of the concept of emotion regulation by referring to the different types of
regulatory strategies and their cognitive and behavioral effects. We proceed to
review empirical studies relevant for various types of decision-making, such as risk
and ambiguity, susceptibility to framing, and economic bargaining. We conclude by
discussing practical implications of this rapidly evolving research topic.

R.M. Heilman � A.C. Miu
Department of Psychology, Babes-Bolyai University,
37 Republicii, 400015 Cluj-Napoca, CJ, Romania

D. Houser (&)
Department of Economics and Interdisciplinary Center for Economic Science,
George Mason University, 4400 University Drive, MSN 1B2,
Fairfax, VA 22030, USA
e-mail: dhouser@gmu.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Reuter and C. Montag (eds.), Neuroeconomics, Studies in Neuroscience,
Psychology and Behavioral Economics, DOI 10.1007/978-3-642-35923-1_7

113



7.1 Introduction1

Emotion plays an important role in human social and economic decision-making
(see, e.g., Elster 1998; Loewenstein 2000; Peters et al. 2006). People evaluate
objective features of alternatives in a subjective way (Edwards 1962; Kahneman and
Tversky 1979), and emotions influence these subjective evaluations (Loewenstein
and O’Donoghue 2004; Naqvi et al. 2006; Slovic et al. 2007). Emerging research on
emotion regulation (henceforth, ER), however, highlights that humans typically
make efforts to control emotion experiences (Gross 2002). This leaves open the
possibility that decision effects attributed to acute emotions may be affected by ER
strategies. If so, this raises the additional possibility that different regulation
strategies could have different implications for economic decisions. Only very
recently, however, have scholars begun to investigate these possibilities, and in
doing so have discovered that ER can indeed mediate effects that task-related and
incidental emotions have on decisions (Crockett et al. 2008; Kahneman and
Frederick 2007; Miu and Crişan 2011; Heilman et al. in preparation).

The intrinsic role of emotion in decision holds greater importance when the value
of prospects (i.e., actions with uncertain rewards) is computed in “emotion-cognition
brain hubs” (Pessoa 2008) thought to include midbrain dopaminergic regions and
their targets (e.g., ventral and dorsal striatum, ventromedial and ventrolateral pre-
frontal cortex, anterior cingulate cortex). For this reason, neuroeconomists have
emphasized that the interaction of emotion and decision-making is profitably studied
in environments that include risk (where the decision-maker has perfect information
regarding the stochastic relationship between actions and outcomes) and uncertainty
(where the decision-maker does not have full information about the stochastic
environment; see, e.g., Rangel et al. 2008).

When a human anticipates or experiences an emotion, s/he will often use
strategies to control that experience. It follows that ER, a concept subsuming the
processes controlling which emotions we have, when we have them, and how we
experience and express them (Gross 2002), could be crucial to decision-making as
well as other cognitive processes (e.g., memory; Richards and Gross 1999, 2000).
This chapter discusses the impact of ER on a variety of behaviors of particular
interest to economists, including environments that involve strategic and
non-strategic risk. Despite the fact that research in ER is relatively new, our chapter
cannot begin to cover the rapidly expanding literature in this area. Our approach has
been to include reviews of key findings connected to economic decision-making.

Economists, and especially cognitive economists, will be especially interested in
understanding ER. A reason is that ER can be trained, manipulated, and controlled.
Moreover, different ER strategies generate predictable systematic differences in
people’s decisions in the face of the same emotion. An implication is that one might
be able to design decision support tools, or more generally economic institutions,
that encourage specific types of ER. This would seem to carry particular value when

1This section draws in part from Heilman et al. (2010, pp. 257–258).
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decisions must be made in high-stress situations that create acute emotional
responses.

The remainder of this chapter is organized as follows. In the next section we
discuss in greater detail the concept of emotion regulation. Following this is a broad
overview of ER’s impact on cognition and decision. The next section proceeds to
explain why and how ER can confound our inferences about the impact of emotion
on decision. The subsequent three sections discuss what we know about the impact
of ER in three specific contexts: choice under risk, choice under different frames,
and choices in bargaining environments. The final section is a concluding
discussion.

7.2 What Is Emotion Regulation?

Obviously, people are not at the whim of their emotions. They can use a number of
regulation strategies designed to alter their emotional reactions. One of the most
influential current approaches in the study of emotion and emotion regulation
(ER) is the process model of emotions (Gross 1998a, b, 2002). The starting point of
Gross’s process model of ER is a concept of emotion that is shared with a number
of prior theorists (Ekman 1972; Frijda 1988). According to this model, it is the way
that we interpret or appraise external or internal events that mediates the emotional
impact that such events have on us. Such appraisals can be very rapid and do not
necessarily require our conscious awareness. An emotional response is triggered
whenever a situation is interpreted as presenting important opportunities or chal-
lenges. In the following phase, a biologically based emotion program is started and
its nature depends upon how the situation has been appraised (Lazarus 1991). As
soon as an emotional program has been triggered, changes at the behavioral, sub-
jective, or physiological levels prepare the individual for an adaptive response to the
situation that s/he has perceived (Ekman 1992). Although these response tendencies
help people respond quickly and adaptively, they can not enforce any given action
(Frijda 1988) due to the fact that emotional response tendencies can be modulated
(e.g., exaggerated, diminished, or even entirely inhibited) before they are expressed
as observable behaviors, emotion self-reports, or physiological changes (Gross and
Munoz 1995).

ER is a construct that subsumes all the actions that people take in order to control
which emotions they have, when they have them and how they experience or
express those emotions (Gross 2002). Although the line of research on ER was
initially related to the developmental literature (Campos et al. 1983, 1989;
Thompson 1990, 1991), the adult literature on ER has rapidly expanded in the last
decade (e.g., Gross and Levenson 1993; Izard 1990; Ochsner and Gross 2005;
Gross and Thompson 2007).

Because emotion unfolds over time, regulatory strategies can be distinguished in
terms of when they have their primary impact on the emotion-generative process
(Gross and John 2003). Generally, it is assumed that an emotion increases in
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intensity over time and that the sooner one starts downregulating that emotion, the
more effective that intervention would be. Therefore, according to a generic timing
hypothesis of ER, early interventions would be more effective than late interven-
tions (Sheppes and Gross 2011). More specifically, the process model of ER dis-
tinguishes between antecedent-focused ER and consequence-focused ER strategies.
The antecedent-focused strategies occur before appraisals give rise to full-blown
emotional response tendencies and involve modifying the inputs to the emotional
system—that is, changing the external or internal environment, whereas
response-focused ER occurs after the responses are generated and refers to altering
the behavioral manifestations associated with the emotional response (Gross and
Munoz 1995).

Within these two broad classes of ER, more fine-grained distinctions can be
made (Frijda 1988; Gross 1998b; Gross and Thompson 2007). On one hand,
antecedent-focused ER includes situation selection, in which one avoids people or
situations that might trigger an emotional reaction; situation modification, in which
one modifies the environment so as to alter its emotional impact; attention
deployment, associated with turning the attention away or toward something in
order to influence emotions; and cognitive change, that means the re-evaluation of
the situation one is in or one’s capacity to manage the situation to the purpose of
altering the emotional response. On the other hand, response-focused ER includes
strategies that intensify, diminish, prolong, or curtail ongoing emotional experience,
expression, or physiological responding (Gross 1998b). In the context of the gen-
eric timing hypothesis, it is thought that antecedent-focused ER strategies are more
effective in changing an emotional outcome than response-focused strategies due to
the fact that the former ER strategies come into act much sooner than the latter,
when the emotional response has not yet reached it’s highest intensity levels.

A recent alternative to the generic timing hypothesis is the process-specific
timing hypothesis (Sheppes and Gross 2011). This hypothesis has the following
main ideas: (a) time of the initiation of a regulatory process is essential for some of
the ER strategies and not so important for others; and (b) higher levels of emotional
intensity reduce the effectiveness of late ER strategies. Based on this perspective, it
is possible to further distinguish between the costs and benefits of different ER
strategies among the antecedent-focused category. More specifically, recent
investigations were aimed at comparing distraction, as an early selection strategy
and reappraisal, as a late selection strategy (Sheppes and Gross 2011; McRae et al.
2010; Ochsner and Gross 2005). So far, the main results indicate that early selection
regulation strategies are relatively uninfluenced by the intensity of the emotion,
whereas the effectiveness of late selection strategies is reduced for intense emotions,
although the impact of intense emotions is moderated by the relative strength of the
ER strategy that is being used (Sheppes and Gross 2011). In the following section
we will present empirical results most relevant to economics that compare the
effectiveness of distraction, reappraisal, and suppression.
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7.3 Cognitive and Behavioral Effects of Emotion
Regulation

Until recently, most of the research done in this area was focused on comparing the
cost and benefits of antecedent and response-focused ER. One form of
antecedent-focused ER that has received particular attention is cognitive reappraisal
(Gross 2002; John and Gross 2007; Ochsner and Gross 2007; Siemer et al. 2007).
This strategy implies changing the situation’s meaning so that it alters its emotional
impact. From the response-focused ER strategies category, expressive suppression
is the most studied, which involves inhibiting ongoing emotion-expressive
behaviors (Gross 1998a, b; John and Gross 2007; Ochsner and Gross 2007).

Individual differences in ER (e.g., the habitual use of expressive suppression or
cognitive reappraisal) have been shown to impact affect, social functioning,
well-being, cognitive functioning, and physiological activation (John and Gross
2004). Habitual suppressors experience more negative than positive emotions, they
have poorer interpersonal functioning, and report reduced well-being in comparison
to habitual reappraisers (Gross and John 2003). Suppressing negative emotions is
associated with decreased emotion expression and unchanged emotional experi-
ence, whereas reappraisal decreases both the emotional experience and expression
of negative emotions (Gross 1998b). In contrast, suppression of positive emotions
diminishes both their expression and experience (Gross 1998b; Gross and Levenson
1997; Stepper and Strack 1993; Strack et al. 1988). Neuroimaging data indicates
that suppression increases activation in the emotion-generative brain regions, such
as the insula and the amygdala, whereas reappraisal is associated with increased
early prefrontal cortex responses, frequently activated in executive cognitive control
tasks (Goldin et al. 2008).

In a study that investigated the cognitive demands of reappraisal and suppres-
sion, Richards and Gross (2000) concluded that suppression, as opposed to reap-
praisal, resulted in memory impairment for social information presented while
participants were regulating their emotions. Academic performance was shown to
be decreased in suppressors, but not cognitive reappraisal, through a mechanism
that involved working memory decrements (Johns et al. 2008). The cognitive costs
of suppression are accompanied by social and physiological costs as well, for it was
experimentally shown that interacting with a partner who used suppression was
more stressful than interacting with a partner who used reappraisal, as indexed by
increases in blood pressure (Butler et al. 2003). Moreover, a series of studies (Gross
and Levenson 1993, 1997) indicated that suppression produces a mixed pattern of
physiological responses, including decreased somatic activity and heart rate, but
increased signs of sympathetic activation of the electrodermal and cardiovascular
systems.

Motivated by the theoretical support of the process-specific timing hypothesis,
several studies also contrasted reappraisal and distraction. Distraction is an early
selection regulatory strategy that involves diverting attention away from an
emotional situation by loading working memory with independent neutral contents
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(Van Dillen and Koole 2007). In consequence, distraction acts like a very powerful
filter that prevents the processing of an emotional stimulus.

The upside effects of using distraction compared to reappraisal include down-
regulating both high-and low-intensity negative emotions (Sheppes and Meiran
2007), and minimal cognitive resources requirements even under high levels of
emotional intensity (Sheppes et al. 2009; Sheppes and Meiran 2008). In contrast,
reappraisal can successfully reduce only the impact of low-intensity negative
emotions, whereas the reappraisal of high intensity negative affect might result in
counterintentional increases in negative emotional states and a resulting inability of
further regulating these escalating emotional states (Sheppes and Meiran 2007).
Nevertheless, when reappraisal was given more time to operate, it successfully
reduced high-intensity negative emotions (Sheppes et al. 2009; Sheppes and Meiran
2007, 2008).

The use of distraction to downregulate negative emotions might also have some
downside effects. For instance, participants who were instructed to distract them-
selves while watching a sad movie demonstrated impaired memory for the emo-
tional details of the movie; meanwhile, reappraisers had intact memory both for the
emotional and neutral details of the movie (Sheppes and Meiran 2007, 2008).
Another possible problem with distraction might stem from its long-term use: even
though distraction is highly effective in reducing participants’ sadness on the short
run, it does not change the way participants evaluate and respond to negative
emotional experiences in the long run (Kross and Ayduk 2008).

7.4 Emotion Regulation: Confound in the Effect
of Emotions on Economic Decision-Making?

Because ER is widespread in our daily lives, it is possible that it might actually
mediate the involvement of emotion in economic decision-making. Most of the
previous studies on emotion and decision-making have not controlled for ER.
Therefore, effects on economic decision-making, ranging from “coloring” the
content of thoughts to interfering with information processing, which have been
previously attributed to acute emotions might actually be mediated by ER strategies
such as cognitive reappraisal or expressive suppression.

The important role of ER in decision-making is supported by at least four lines
of evidence: (1) emotions are frequently regulated, in a spontaneous or incidental
manner; the ubiquity of ER in situations that trigger emotions makes difficult the
isolation of the direct and specific effects of emotion; (2) the distinct effects of
specific emotions on decision-making are explained by differences in the under-
lying pattern of appraisals, particularly on the certainty and control dimensions
(Lerner and Keltner 2000; also see the next paragraph); by effectively downregu-
lating emotion experience, ER contributes to an increased sense of emotional
control that might influence decision-making; (3) recent neuropsychological studies
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indicated that certain brain lesions (e.g., ventromedial prefrontal cortex) have
detrimental effects on both economic behavior (e.g., bargaining behavior) and
emotion regulation (e.g., Koenigs and Tranel 2007); at the same time, pharmaco-
logical manipulations of serotonin signaling, which very likely affect prefrontal
functioning, influence both inequity aversion in economic bargaining, and ER (e.g.,
Crockett, Clark, Tabibnia, Lieberman, and Robbins 2008); and (4) both ER, and
decision-making dimensions that are critically influenced by emotions (e.g.,
risk-taking, susceptibility to framing, bargaining behavior) depend on similar
emotion-cognition brain hubs (Pessoa 2008), such as increased functional coupling
prefrontal-amygdala circuits (e.g., Goldin et al. 2008; De Martino et al. 2006).
A recent review documented the common neural mechanisms that underlie ER and
decision-making, by focusing on the involvement of ventrolateral, medial, dorso-
medial, and dorsolateral prefrontal cortex in both ER strategies and reversal
learning (i.e., the capacity to alter choice behavior when the value of response
options change) (see Mitchell 2011).

There are at least two mechanisms by which ER can influence economic
decision-making. One, an “emotional” route, stems from differences between
reappraisal and suppression in their effectiveness in mitigating the experience of
negative and positive emotions (Gross 2002). The second, a “nonemotional” route,
stems from differences in the level of effort (cognitive load) required to implement
reappraisal or suppression, which could perhaps be related to differences between
their respective contributions to ego depletion (Baumeister 2003; Richards and
Gross 1999). For instance, in comparison to cognitive reappraisal that diminishes
emotion at an early stage and without the need of sustained effort over time,
expressive suppression instead involves increased efforts to actively inhibit prepo-
tent emotional responses (Gross and Thompson 2007). Richards and Gross (1999,
2000) have invoked the “nonemotional route” (i.e., differences in computational
resources taken away by ER from online information processing) for explaining why
expressive suppression, but not cognitive reappraisal, impairs declarative memory.
In one of our studies (Heilman et al. 2010), we tested the influence of two ER
strategies (i.e., cognitive reappraisal and expressive suppression) on the effects of
negative and positive emotions on economic decision-making under uncertainty and
risk. The regulation of negative affect allowed us to contrast cognitive reappraisal,
which effectively reduced the experience of emotion, and the ineffective expressive
suppression. Cognitive reappraisal, but not expressive suppression reduced the effect
of negative emotions on economic decision-making. The regulation of positive affect
offered a situation in which both cognitive reappraisal and expressive suppression
are effective in reducing the experience of emotion, so the only difference that
remained was in the cognitive load associated with each of these ER strategies. In
this condition, both reappraisal and suppression influenced the effects of positive
emotions on decision-making. Therefore, this study suggests that ER impacts
economic decision-making by its effects on reducing the experience of emotions
(the emotional route), rather than ego depletion.
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7.5 Emotion Regulation and Economic Risk-Taking

Risk is defined as the probability, size or subjective “negative utility” of a potential
loss (Vlek and Stallen 1980). Although scientists have distinguished
decision-making under uncertainty or risk based on the completeness of informa-
tion about the prospects (i.e., probabilities of costs and benefits associated with the
alternatives), most decisions involve some degree of risk in the sense that
action-outcome associations are probabilistic (Rangel et al. 2008). Various mea-
sures of economic risk-taking exist, ranging from questionnaires such as the
Domain-Specific Risk-Taking questionnaire (Blais and Weber 2006) to behavioral
tasks such as the Balloon Analogue Risk Task (BART) (Lejuez et al. 2002) or
gambling tasks that allow the estimation of utility functions that drive choices (e.g.,
Tom et al. 2007). These and other similar measures are the workhorses of a growing
literature that investigates the effects of emotion, and more recently emotion reg-
ulation on economic decision under risk.

Studies first focused on the effects of a single emotion on economic risk-taking,
or contrasted emotions of different valence (i.e., pleasant vs. unpleasant). For
instance, Gaul (1977) was probably the first to report that anxiety biased attention to
losses in a task that involved choosing between different lotteries (see also Lauriola
and Levin 2001; Miu et al. 2008). It was suggested that valence is the crucial
dimension that determines the direction of the effects of emotion on economic
decision-making. Therefore, distinct emotions of the same valence (e.g., sadness,
anger, fear) were assumed to have similar effects of decision-making. Based on the
cognitive-appraisal theories of emotion, Lerner and Keltner (2000) argued that
emotions of the same valence, which differ in their underlying appraisals of the
target stimulus, would exert different effects on decision-making. Particularly, the
appraisal dimensions of certainty and control would influence risk perception
because they map onto the factors of “unknown risk” and “dread risk” that deter-
mine risk assessments (see Slovic et al. 1986). Therefore, fear and anger would
influence risk-taking in opposing directions because the former is supported by
appraisals of low certainty over an outcome and low control over a situation,
whereas the latter is supported by appraisals of high certainty and high individual
control (Lerner and Keltner 2000; see also Smith and Ellsworth 1985). In a similar
vein, Raghunathan and Pham (1999) argued that emotions of the same valence, but
differing in their underlying appraisal pattern, would have distinct effects on
decision-making because they may activate different implicit goals. They tested the
effects of anxiety and sadness on performance in a task that involved choosing
between a gamble associated with a lower risk and a lower reward, and one
associated with a higher risk and a higher reward. They hypothesized that anxiety
would bias preferences toward low-risk/low-reward options because the appraisal
pattern underlying this emotion may activate an implicit goal of uncertainty
reduction and risk avoidance. In contrast, sadness would bias preferences toward
high-risk/high-reward options because this emotion activates an implicit goal of
reward substitution (since sadness is based on the perceived loss or absence of a
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cherished object or person). Their results confirmed these predictions, and further
showed that anxiety and sadness influenced economic risk-taking only when the
participants evaluated the gambles from their own perspective, and not when they
evaluated the gambles as if they were making the decision for someone else
(Raghunathan and Pham 1999). Therefore, anxiety and sadness seem to impact
risk-taking by a consciously controlled monitoring of feelings, when people use a
“What would I feel better about…?” heuristic to assess the implications of decisions
that would affect themselves—presumably, feelings are less relevant when one
makes decisions on behalf of someone else. These results, together with those of
Lerner and Keltner (2000, 2001), indicated that appraisal dimensions and their
motivational influences explain the distinct effects that emotions of the same
valence may have on economic risk-taking, and emphasized the need to examine
the effects of specific emotions on decision-making.

By modulating emotional experience, ER strategies contribute to an increased
sense of emotional control that might influence risk-taking. Considering that people
typically make efforts to control their emotions (Gross 2002), it is thus possible that
ER dampens effects of acute emotions on decision making. This possibility was
extensively tested by our group in a couple of studies that directly investigated the
influence of two of the most commonly used ER strategies on the effects of
emotions on economic risk-taking (Heilman et al. 2010). The first experiment
compared the influence of cognitive reappraisal and expressive suppression that the
participants were instructed to use in order to regulate the fear and disgust induced
by two film clips. In line with Lerner and Keltner’s approach (Lerner and Keltner
2000), we were interested in fear and disgust because they fall at opposite ends of
the certainty dimension of appraisal. After viewing the emotion-inducing films, the
participants played BART, a measure of risk-taking in which financial rewards are
earned by pumping balloons with variable explosion thresholds, presented on a
computer screen. Risk-taking is defined in terms of mean pumps per unexploded
balloon. The main finding from this study was that the use of cognitive reappraisal,
which effectively downregulated fear and disgust, also mitigated against the risk
aversion associated with these negative emotions. In a second study, we tested
whether this effect also held for the incidental use of cognitive reappraisal in a
natural situation that triggered positive and negative affect. The results confirmed
that cognitive reappraisal effectively reduced the negative affect induced by learning
the previously overestimated results of an exam, and consequently decreased risk
aversion in a BART that was played immediately after learning the exam result. In
summary, these studies showed that by downregulating the experience of negative
emotions, cognitive reappraisal reduces economic risk aversion. Based on previous
functional neuroimaging studies on cognitive reappraisal (Goldin et al. 2008) and
BART performance (Rao et al. 2008), we suggested that the effects of cognitive
reappraisal on economic risk-taking might be supported by increased functional
coupling between frontal and mesolimbic brain regions (Heilman et al. 2010).

Several recent studies have investigated emotion regulation strategies that are
similar to cognitive reappraisal. Two of these studies focused on the regulation of
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reward expectancy, by relaxing imagery (Delgado et al. 2008; Martin and Delgado
2011). This approach is based on the assumption that ER of reward-related emotions
such as anticipation or excitement could prevent approach-related behaviors asso-
ciated with such positive emotions from becoming maladaptive (e.g., drug seeking,
compulsive gambling) in the long-term. Down-regulating the emotional response to
a conditioned stimulus that predicted a monetary reward, by thinking of an image
that helped calming down, effectively decreased physiological arousal (i.e., skin
conductance responses) linked to the anticipation of rewards (Delgado et al. 2008).
This imagery-focused regulation strategy also attenuated the cerebral activation in
the striatum that was triggered by reward-predicting conditioned stimuli. Building
on this study, Martin and Delgado (2011) examined whether a similar
imagery-focused strategy during the presentation of a cue that preceded a financial
decision-making phase affected economic risk-taking. Briefly, participants were
presented with one of two cues: the image of a slot machine, which predicted that a
monetary decision between a safe and a risky lottery followed, or the image of a
stamp machine, which predicted a non-monetary choice between stamps. During the
presentation of the cues, each participant was prompted to imagine a calming (e.g., a
sunny day in the park) or exciting scene (e.g., a roller coaster ride), and think of the
same image each time the word “relax” was presented above the picture. In the
control condition, the participants just thought about the decision that followed,
either financial or non-financial. The main findings from this study (Martin and
Delgado 2011) were that the imagery-focused strategy that downregulated the
response to the anticipation of monetary gambles reduced the number of risky
choices in the decision phase, and attenuated the activation of the striatum to risky
choices. Therefore, regulating the emotional response by means of relaxing imagery
modulated the neural response (i.e., striatum activation) to the anticipation of
monetary rewards, and promoted goal-directed behaviors (i.e., less risky choices).

A third study (Sokol-Hessner et al. 2009) investigated a different regulation strategy
that involved taking the perspective of a trader who would treat each monetary
decision, even those associated with losses, as one of many decisions, which will be
summed together to produce a portfolio. This type of perspective taking resembles
cognitive reappraisal in that it involves an intentional reinterpretation of the stimulus.
Using an economic game in which participants made forced choices between a binary
gamble (i.e., mixed valence gambles with positive or negative outcomes, and
gain-only gambles with positive or zero outcomes) and a guaranteed amount (i.e., zero
or positive amounts), Sokol-Hessner et al. (2009) found that taking the perspective of a
trader reduces behavioral loss aversion, and the physiological arousal to losses.

7.6 Emotion Regulation and Susceptibility to Framing

For centuries, economists referred to the normative models when judging whether a
decision is rational or not. Although the definition of rationality has been largely
debated, there is a general agreement that rational choices should, among others,
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satisfy an invariance requirement (Tversky and Kahneman 1981). According to the
invariance principle, the preference between options should be independent of their
description (Tversky and Kahneman 1986). In other words, when the options of the
same situation are presented in different frames, this presentation should not
influence people’s preference for one option or another. However, an extensive
body of evidence piles against the rationality of the decision-maker by proving that
people do not act according to this principle and they are, in fact, predisposed to
persistent decisional biases.

One of the most studied violations of the invariance principle is the framing
effect, where extensionally equivalent descriptions lead to different choices by
altering the relative salience of different aspects of the problem (Kahneman 2003).
This effect was first demonstrated using the Asian Disease Problem (Tversky and
Kahneman 1981), which showed that people display risk aversion when alternatives
are framed as gains, and risk seeking when objectively equivalent alternatives are
framed as losses (Tversky and Kahneman 1981). Ever since the first appearance of
this classic problem, hundreds of studies have been published that provide further
support for this general decisional bias.

Among the task-related aspects that were invoked to explain this decisional
preference, in the last decade scholars have turned their attention to the role that
emotions might play in the evaluation of the options (Kahneman 2003) and even
more recently ER became part of the explanation. A study conducted by De
Martino et al. (2006) supported the role of emotions in the framing effect, by
showing that this decisional bias was associated with increased amygdala activity
and was negatively predicted by orbital and medial prefrontal cortex activity. Thus,
the authors conclude that the framing effect might be the consequence of an affect
heuristic by which individuals incorporate emotional information in their decisional
process (De Martino et al. 2006). However, this interpretation was recently chal-
lenged by another study (Talmi et al. 2010). These recent results showed that
patients with selective amygdala lesions resulting from Urbach-Wiethe disease
display the same framing effect as neurologically intact controls, with the sole
difference that the patient group manifested a higher frequency of risk-taking in
both frames. Other studies provide further support for the ER-decisional processes
interaction by implying that ER impairments due to ventromedial prefrontal cortex
lesions (Koenings and Tranel 2007), dysfunctional serotonin signaling (Crokett
et al. 2008), or a common genetic polymorphism of the human serotonin transporter
gene (Crisan et al. 2009; Roiser et al. 2009) might account for irrational economic
decisions.

Miu and Crişan (2011) conducted the first study that directly tested the effects of
ER on the susceptibility to framing in a gambling task (see De Martino et al. 2006).
These results indicated that the use of cognitive reappraisal, but not expressive
suppression during the gambling task reduced the susceptibility to framing
(i.e., it increased decision invariance). Building on these results, we further
investigated the effects of individual differences in ER on risk attitudes in framing
problems that addressed aspects related to health, financial, and nature issues
(Heilman and Miclea 2016). In accordance with the large majority of studies that
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have observed a framing effect, we also found that participants showed a significant
preference for risky choices in the loss frame and a reduced preference for these
choices in the gain frame, for all the three problem domains. More importantly, our
results indicated a major impact of ER on risk preference, with ER strategies
accounting for up to 46.9 % of the total variance. By analyzing each category of
framing problems, we found that regulatory strategies were more relevant for
domains related to human life, such as financial or health related issues, than
nature-related aspects (Heilman and Miclea 2016). To the best of our knowledge,
this is the first study to have investigated the complex interaction between ER and
framing effects in problems that mimic various real life situations.

7.7 Emotion Regulation and Economic Bargaining

Cooperation between genetically unrelated people has evolved as an adaptive
mechanism for the survival of the species, since many objectives are achieved more
efficiently if people cooperate. However, successful cooperation requires compli-
cated decisions on how resources should be divided among collaborators (Van den
Bergh and Dewitte 2006). For this purpose, fairness norms are particularly
important. The Ultimatum Game (UG) illustrates the tension between self-interest
and reciprocity and equity motives in a social decision situation (Guth et al. 1982).

The standard form of the UG involves two players. One of them, known as the
proposer, has to make a monetary offer to the second player, the responder, con-
cerning an amount of money that the two must split between them. The responder
can either accept or reject the offer. If the offer is accepted, then the money is split
as proposed. But if the responder rejects the offer, then neither player receives
anything. Both players are fully aware of the rules and consequences of the game.
The UG is typically played with real money, provided by the experimenter. Based
on the two major economic assumptions regarding human nature, namely, the
decision-maker’s rationality and his/her self-regarding preferences (Camerer and
Fehr 2006), the normative solution for this decision-making task would be for the
proposer to offer as little money as possible and for the responder to accept any
nonzero offer. Nevertheless, the large majority of the proposers offer about 50 % of
the pot to the responders, and responders accept roughly only half of the unfair
offers, defined as 30 % or less of the total amount of money (Camerer 2003).

Numerous scholars advanced theories in attempt to explain these violations of
the economic predictions. Some of the most influential theories of UG behavior
focus on inequity aversion (Bergh 2008; Bolton and Ockenfels 2000; Fehr and
Schmidt 1999). An UG player displays inequity aversion if s/he dislikes and
sanctions outcomes that are inequitable, particularly when they are to his/her dis-
advantage (Fehr and Schmidt 1999). The original models of inequity aversion and
UG behavior neglected “non-consequentialist” reasons for reciprocally fair action
(Falk et al. 2003, 2008; Falk and Fischbacher 2006). They have thus been modified
to include essential aspects such as the consequences of actions and the underlying
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intentions (Falk and Fischbacher 2006). Nonetheless, even these expanded models
fail to a certain degree to describe and predict decision-making accurately. The
impact of a number of variables (e.g., property rights, social sharing, emotions, and
biological influences) has been investigated and we will review some of the major
findings in the following paragraphs.

When facing an unfair offer, the cognitive goal of gaining money and the affective
goal of resisting unfairness are in conflict (Sanfey et al. 2003). As a consequence,
negative emotional reactions to ultimatum offers might prevail over self-interest
motives and result in higher rejection rates. For instance, previous studies found that
the probability of rejection is positively correlated with the intensity of self-reported
negative emotions (Pillutla and Murnighan 1996; Bosman et al. 2001; Oechssler
et al. 2008). In particular, incidental sadness results in lower acceptance rates (Harle
and Sanfey 2007), whereas another study found that clinical depression is associated
with increased responders’ rationality, by accepting more frequently unfair offers
(Harle et al. 2010). Furthermore, Xiao and Houser (2005) found that rejection rates
fall when responders can express their negative emotions directly to proposers. Other
scholars have investigated various biological correlates of behavioral responses in
the UG. For instance, emotional responses at the physiological level have also been
associated with offer acceptance, indicating that the rejection of unfair offers from
human proposers triggers a higher skin conductance response, compared to the
electrodermal activation in response to unfair offers randomly generated by a
computer (van’t Wout et al. 2006). High rejection of unfair offers is also associated
with lower serotonin levels (Crockett et al. 2008; Emanuele et al. 2008), lower levels
of serum omega-3 fatty acids (Emanuele et al. 2009) and it also seems to have a
genetic component (Wallace et al. 2007). So far, the studies revealed that sex hor-
mones have mixed effects for men and women. While high levels of testosterone or
estrogen have no effects on women’s acceptance rates (Zethraeus et al. 2009), men
who reject low offers have significantly higher testosterone levels than those who
accept (Burnham 2007), and lower 2D:4D digit ratio, known as an index of prenatal
exposure to androgens (Van den Bergh and Dewitte 2006). Neuroimaging studies
highlighted several brain areas relevant for responders’ behavior. A study conducted
by Sanfey et al. (2003) indicated that rejection of unfair offers is associated with
activation in the anterior insula, which scholars have linked to the experience of
anger and disgust, Koenigs and Tranel (2007) found that patients with ventromedial
prefrontal cortex lesions rejected more unfair offers compared to the control group,
whereas another research group showed that temporary inhibition of the right dor-
solateral prefrontal cortex reduces responders’ willingness to reject their partners’
intentionally unfair offers Knoch et al. (2006, 2008).

While extensive research has been conducted on responders’ behavior, affective
aspects of the proposers’ behavior have been almost entirely disregarded
(Cappelletti et al. 2008). For instance, whether or not a proposer is relying on
his/her personal emotions affects his/her offer to the responder (Stephen and Pham
2008). Other factors were also investigated in relation to proposers’ offers. More
specifically, a higher frequency of unfair offers was correlated with low levels of
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serum omega-3 fatty acids (Emanuele et al. 2009) and low serotonin levels
(Emanuele et al. 2008).

Since numerous studies in behavioral economics and neuroeconomics demon-
strate that emotions have an impact on UG behavior, it is reasonable to assume that
ER might also influence decision-making. Even though this line of research is still
in its infancy, scholars have already acknowledged that ER might mediate the
effects that task-related and incidental emotions have on UG and other types of
decision-making (Kahneman and Frederick 2007; Crockett et al. 2008). For
instance, one study found that individual differences in ER explain 55 % of the
variance in negotiators’ profit in a simulated negotiation (Yurtsever 2008).
However, only recently was directly addressed a possible mediating effect of ER on
the complex relation between emotion and decision-making. In a recent study we
used an experimental manipulation that allowed us to test the impact of ER
strategies on ultimatum decisions under an anxiety condition. We discovered that
habitual suppressors accept more unfair offers than non-habitual suppressors. In
addition, the habitual use of expressive suppression and anxiety seem to interact,
with the result that habitual suppressors make more unfair offers when they are
anxious, and accept more unfair offers when they are not anxious (Heilman et al. in
preparation). Therefore, efficient ER strategies might be the key to enabling one to
accept unfair offers (Crockett et al. 2008).

7.8 Conclusion

Humans routinely use ER strategies to alter their emotional reactions. This chapter
described and discussed several of these strategies. We reviewed a substantial liter-
ature showing that the effect of any particular emotion on economic decision-making
varies systematically with the type of ER it triggers. For example, we reviewed
research showing that ERmoderates the impact of fear and disgust on risky decisions,
as well as the impact of anxiety on decisions in bargaining. The import of these results
to economists derives in part from the fact that ER can be controlled, and even trained.
This may have implications for the design of economic institutions to promote
improved economic decision-making and so enhance social welfare.

There are a large number of economic environments where ER might be
expected to be especially important, but where to the best of our knowledge
research has not yet been conducted. Consider, for example, situations that involve
temptation. These are important because tempting desires can interfere with the
ability to attain one’s long-term goals. Consequently, the ability to resist temptation
is a necessary skill. Unfortunately, self-control is difficult. It seems of particular
interest, and of especially high social value, to understand how different ER
strategies might impact the ability to successfully implement self-control in order to
avoid succumbing to temptation.

Temptation is one among many economic domains where continued research in
ER is sure to be profitably conducted. All such research is fundamentally
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interdisciplinary in nature, bringing together leading scholars in economics, psy-
chology, and neuroscience. We look forward to the results of these synergistic
interactions, and share an optimistic excitement for the many discoveries that lie
ahead.
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Chapter 8
How the Experience of Time Shapes
Decision-Making

Marc Wittmann and Martin P. Paulus

Abstract We present an outline of a model for how the subjective experience of
time influences decision-making. First, an individual’s time perspective determines
how strongly attention is directed to time. A stronger emphasis on the present
perspective at the expense of the future perspective—as seen in impulsive indi-
viduals—leads to a stronger focus on the passage of time in waiting situations. This
in turn causes longer estimates of duration. In intertemporal decisions, a relative
overestimation of duration can lead to the perception of delayed rewards lying too
far in the future. As a consequence, the value of a future commodity is discounted
and more immediate but less valuable rewards are preferred. We present empirical
evidence on the relationship between time perception and intertemporal
decision-making and discuss these findings within the respective psychological and
neural models.

8.1 Introduction

Time plays a pivotal role in decision-making. Several temporal aspects can be
identified which are relevant for different processing stages in decision-making
(Ariely and Zakay 2001; Klapproth 2008). For example, time can be a scarce or
abundant resource when making decisions: how much time do I have before I must
choose an option? Time is a commodity and subject matter of decisions: how many
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days of vacation do I take? In both examples, subjective estimates of duration
influence our decisions. Duration and the passage of time are either experienced at
present (“at the moment I have plenty of time”) or they are anticipated as future
intervals (“tomorrow I won’t have enough time”). Moreover, future intervals are
anticipated in relation to the momentary experience of time, i.e., as waiting time
until the occurrence of an event or as waiting time until the end of an ongoing
event.

In a classification of subjective time at least three interrelated dimensions can be
discerned, which are important for decision-making (Wittmann 2009a): (1) the time
perspectives of past, present, and future; (2) an individual’s time estimation abilities
as measured by the accuracy in estimating clock time; (3) time awareness as the
subjective impression of time passing relatively fast or slow. Typically, we flexibly
switch between time perspectives, either focusing on the past to evaluate present
options or imaging the future to create alternative goal states. Decisions thus are
based on the tripartite structure of temporal experience with past, present, and future
(Zimbardo and Boyd 1999). Choices are also related to the explicit estimation of
duration and the awareness of the passage of time experienced just now and as
anticipated for future time intervals. Do we stand in line at the post office or do we
move on to run some other errands? At what point in time do we complain when the
waiter does not bring the ordered meal? When purchasing goods on the Internet do
we pay an extra sum in order to receive the product earlier?

In this chapter, we show how the three interrelated dimensions of subjective time
are subject to modifications and how this influences our decisions. In short, we
propose that a more pronounced present perspective at the expense of the future
perspective leads to a stronger focus on the momentary passage of time, which
results in longer duration estimates. A relative overestimation of duration, the
feeling of having to wait too long, consequently leads to choices with short-term
outcomes over those with long-term consequences (Wittmann and Paulus 2008,
2009). Such shortsightedness in decision-making can lead to negative consequences
in the long run, subjective time strongly affecting life achievements (Mischel et al.
1989). Thereafter, the ability to delay gratification is to a certain extent dependent
upon the temporal perspective as well as the consequent experience of duration.

In this chapter, we will discuss models of time perception and show how
experienced time is subject to alterations. Investigations with impulsive individuals
have led the way for understanding the relation between time perception and
decision-making. As a paradigmatic example of how modifications of time occur
and how these modifications influence decision-making, we will specifically
highlight research on addiction. Individuals who are substance dependent show a
profound change in subjective time, which is associated with maladaptive
decision-making. The empirical findings on additive behavior will be related to
models of time perception. Finally, we will summarize results from neuroimaging
studies showing how similar brain systems are involved in the estimation of
duration and the anticipation of future intervals in intertemporal decision-making.
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8.2 Modifications in the Experience of Time

An individual’s time perspective dynamically changes according to transient situ-
ational demands. Present choices are made for future outcomes, reasoning that
depends upon past experiences. However, a dominance regarding one of the tem-
poral perspectives can manifest itself as a consequence of life events. Sudden
critical life events, i.e., unexpected unemployment or a life-threatening illness (van
Laarhoven et al. 2011) can dramatically shorten the future perspective of a person
and lead to the dominance of the present perspective as only short-term plans
become relevant (Carstensen 2006). In addition, the relative dominance of the
present perspective at the expense of the future perspective can be seen as a per-
sonality trait in impulsive individuals (Zimbardo and Boyd 1999). Impulsive
behavior is defined as reacting to the immediate situation without thinking about
future consequences. That is, impulsivity is conceptualized as extreme temporal
shortsightedness.1 For example, a stronger focus on the present at the expense of the
future is strongly related to impulsive behavior such as gambling, having unpro-
tected sex, risky driving, or using drugs (Zimbardo et al. 1997; Keough et al. 1999).

In cognitive models of time estimation and, related, of time awareness,
prospective and retrospective time is distinguished (Zakay and Block 1997, 2004).
Prospective time estimation is concerned with the perception of duration or the
passage of time as presently experienced. An observer directs more or less attention
to the passage of time while a particular duration is judged. If more attention is
directed to time during an explicit duration estimation task, a temporal interval is
experienced as lasting comparatively longer than when attention is distracted from
time (Conti 2001). In retrospective time, when we judge the passage of time of an
interval that already has passed, duration is reconstructed from memory. The more
contextual changes and events experienced during that time span (which are stored
in memory and later retrieved), the longer that interval appears to have lasted in
retrospect (Flaherty et al. 2005; Bailey and Areni 2006). Similarly, the more event
markers defining the duration between the present moment and the past event are
remembered, the longer retrospective time (Zauberman et al. 2010). Whereas
prospective time perception only applies to intervals up to a few minutes—an
assumed prospective timing mechanism has an upper limit of temporal integration—
retrospective time estimation can refer to memory contents of an individual’s life time
(Wittmann and Lehnhoff 2005).

In prospective time two factors lead to modifications in the estimation of
duration as explained within the framework of pacemaker-accumulator models

1In this context one has to differentiate between an impulsive present orientation and
present-mindedness as trained through meditation techniques. The former is associated with a
strong urge to act in the present moment, whereas the latter is associated with an observational
state associated with more self-control. This is important because meditation is now being con-
sidered as a way of treating drug-addicted individuals. The value for meditation is that it can
disconnect experience from impulsive action leading to more self-controlled behavior.
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(Gibbon et al. 1984; Treisman 1963; Zakay and Block 1997). In these models a
pacemaker produces a regular series of pulses that are fed into an accumulator. The
number of pulses that has been recorded for a given time span represents experi-
enced duration. However, pulses are only accumulated when attention is actually
directed to time. Therefore, and since the number of collected pulses represents
duration, more attention to time leads to longer duration estimates. Additionally, an
increased arousal level is related to a higher pacemaker rate which in turn leads to
greater accumulation of pulses during a given time period—thus causing longer
estimates of duration (Burle and Casini 2001; Droit-Volet and Meck 2007;
Wittmann and Paulus 2008).

Modifications of subjective duration caused by emotional states are interpreted
within the framework of the pacemaker-accumulator models (Droit-Volet 2009;
Noulhiane et al. 2007; Wittmann 2009b). First, and related to attention, patients in
psychological distress such as those with depression (Bschor et al. 2004) or cancer
patients with high levels of anxiety (Wittmann et al. 2006) perceive a slowing of the
pace of time and overestimate duration. The presence of emotional distress in these
individuals diverts attentional resources away from ongoing thoughts and actions to
the passage of time (Twenge et al. 2003). Second, and related to transient arousal
states in healthy subjects, stimuli with emotional content are typically judged to last
longer than more neutral stimuli (Droit-Volet and Gil 2009). These findings are
explained by heightened arousal levels of subjects judging the duration of stimuli
with emotional content. For example, participants who watched footage of the 9/11
events perceived the duration of the film to last longer than a more neutral film with
the same duration (Anderson et al. 2007). In another study, young healthy male
college students first had to rate photographs of sexually attractive female lingerie
models. In a following session, subjects anticipated future intervals to last longer
than subjects who had previously rated less exiting photographs (Kim and
Zauberman 2012).

Studies with impulsive individuals provide the empirical basis for conceptual
explanations of how subjective time influences decision-making. Experimentally,
analyzing performance in intertemporal decision tasks can reveal the temporal
shortsightedness in impulsive individuals. Participants have to choose between
smaller rewards that can be consumed earlier and rewards that can be obtained only
later. Most of people have the tendency to discount future rewards, the subjective
value of future rewards decreases considerably with increasing waiting time
(Ainslie 1975; Prelec and Loewenstein 1997). Given the choice, individuals are
more likely to prefer an immediate reward over a later reward (even when it has
greater value). This tendency becomes stronger when waiting times for the delayed
reward increase. The discounting function is steeper at shorter delays (the rate of
discounting is higher) and becomes flatter as the delay of the reward increases (the
rate of discounting is lower). This specific hyperbolic discounting pattern is dis-
cussed as stemming from the fact that people’s estimates of duration do not cor-
respond to objective time in a linear way, but that objective time is perceived
logarithmically (Takahashi 2005; Wackermann 2007; Zauberman et al. 2008).
Thereafter, hyperbolic discounting of delayed rewards is dependent upon the
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psychophysical characteristics of subjective time. The diminishing sensitivity to
longer time intervals, as delays are perceived logarithmically, thus contributes to the
degree of hyperbolic discounting (Kim and Zauberman 2009).

The propensity to even more strongly discount delayed rewards (an even
stronger preference for immediate consumption) is one of the key findings in
studies with impulsive individuals (Kirby et al. 1999; Barkley et al. 2001). Behavior
of impulsive individuals in delay discounting tasks has been related to alterations in
subjective time (Wittmann and Paulus 2008, 2009): Impulsive individuals more
strongly attend to time due to their increased focus on the present moment at the
expense of the future perspective. Stronger attention to the passage of time leads to
an overestimation of duration. A general overestimation of duration in turn causes
the impression that delayed events lie too far in the future—as a consequence value
of future commodities is discounted and more immediate rewards are preferred. For
example, children and adults with attention deficit hyperactivity disorder (Rubia
et al. 2009) and subjects who are transiently more impulsive through sleep depri-
vation (Reynolds and Schiffbauer 2004) overestimate duration in the multiple
seconds range and they discount more strongly future rewards. That is, a relative
overestimation of duration caused by a stronger present time orientation may
underlie the shortsighted choices in intertemporal decision-making.

8.3 An Excursus: Time Experience in Addiction

Findings in addiction research shed light on core questions of neuroeconomics.
Within the context of conceptualizations related to impulsivity and self-control, an
addicted individual shows strong preference changes which are based on alterations
in the representation of “value” and “decision utility” (Monterosso et al. 2012).
Specifically, a drug addict’s altered sense of time could be one reason for a stronger
decay of value of temporally delayed rewards. Drug-dependent individuals might
opt more often for smaller and immediate rewards over delayed but higher rewards
because they anticipate the temporal delay to last longer than do people who have
no addiction (Wittmann and Paulus 2008, 2009).

The conceptualization related to an altered experience of time in individuals with
addiction has at least three component processes related to trait impulsivity: First,
these individuals show a stronger emphasis on the present time perspective (as
opposed to the future perspective). Second, attention is directed more strongly to
the momentary passing of time. Third, allocating attentional resources to the here
and now leads to a subjective slowing of time and an overestimation of future time
intervals. Resulting from this experience of time, drug-dependent individuals will
discount delayed rewards more strongly as these rewards lie subjectively too far in
the future.

Several studies suggest that chronic drug users exhibit a stronger present time
perspective. First of all, individuals who have a stronger focus on the present time
and less focus on the future perspective are also more likely to use alcohol, tobacco,
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and other drugs (Keough et al. 1999). Moreover, alcohol-dependent persons have a
less extensive future perspective as compared to social drinkers (Smart 1968).
Similarly, drug-dependent patients enrolled in a drug treatment program are less
motivated for the future than control subjects (Lavelle et al. 1991); heroin addicts
are less likely to predict events far into the future as they have shortened time
horizons (Alvos et al. 1993). Evidence suggests that a trait-related focus on the
present time is strongly related to trait impulsivity. For example, heroin addicts,
who score significantly lower on a future orientation scale, also show more
impulsive behavior in decision-making. These individuals were more likely to play
from a deck of cards that contained immediate gains but that resulted in large,
delayed punishers and overall net losses (Petry et al. 1998). A similar pattern of
impulsive behavior emerged in a study with substance abusing pathological gam-
blers (Petry 2001). Thus, a shortened future time perspective, that is, a poor per-
ception of events in the future, may explain drug-addicted individuals’ persistent
drug use despite future adverse consequences. A shortened time horizon could
increase the likelihood of opting for behavior associated with an immediate benefit
(the pleasurable state induced by the drug) over behavior that leads to delayed
rewards (long-term health).

There is some consensus that drug users show an altered temporal horizon of
risks and benefits which is consistent with a steeper delay discounting function, i.e.,
the more a reward is delayed in time the stronger the value of the reward decreases
for drug using individuals as compared to controls (Kirby and Petry 2004; Madden
et al. 1999). This tendency to discount values of delayed rewards more rapidly than
comparison subjects has been identified in different types of substance users
(Vuchinich and Simpson 1998; Reynolds 2004). Future rewards are more strongly
discounted as a function of the number of illicit drugs used and the age onset of first
taking substances (alcohol, nicotine, marijuana) in a sample of college students
(Kollins 2003).

According to the pacemaker-accumulator models of time perception,
drug-dependent individuals who may experience distress because habitual impul-
sive acts of drug taking cannot be instantiated allocate more attentional resources to
the passage of time and, additionally, are in a state of increased physiological
arousal. Both factors in combination lead to an overestimation of experienced
duration. For example, smokers who felt craving for a cigarette but were asked to
wait through a certain time interval before they were again allowed to smoke
experienced time to pass more slowly (Sayette et al. 2005).

However, it is noteworthy that there are only few studies concerning the esti-
mation of duration in patients with drug addiction. In one study, a significant
relative overestimation of an interval in the multiple-second range in patients with
methamphetamine or cocaine dependence as compared to matched controls was
attributable to increased self-reported impulsivity (Wittmann et al. 2007a).
Moreover, patients with heroin addiction showed stronger under-reproductions
of 12-second intervals as compared to controls, a behavior which varied as a
function of withdrawal duration (Aleksandrov 2005). A more pronounced under-
reproduction of duration, essentially an indication that subjective duration has
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elapsed faster, is a typical behavior seen in impulsive individuals (Wittmann et al.
2011). Future research on addiction will have to combine the assessments of
subjective time and of behavioral tests in one study in order to more precisely
understand the relationships between time perspective, duration estimation, and
intertemporal decision-making.

8.4 The Neural Correlates of Subjective Time

Individual state- and trait-related modulations of the time perspectives are associ-
ated with subjective estimates of duration, which in turn affects temporal
decision-making. The dynamical relation within the dimensions of subjective time
determines time-related preferences and behavioral choices. If intertemporal deci-
sions are so strongly dependent upon the perception and anticipation of duration,
then research in the neurosciences should reveal activation of similar underlying
brain structures for time perception and for intertemporal decision-making.
However, the neural basis underlying subjective time and temporal preferences in
decision-making remains controversial. That is, a large number of brain areas and
systems have been identified as underlying the experience of duration as well as
governing behavior in intertemporal decision-making. For reviews of functional
neuroimaging studies on the perception of duration, see Lewis and Miall (2003);
Wiener et al. (2010); for neuroimaging reviews on intertemporal decision-making,
see Monterosso and Luo (2010) and Carter et al. (2010).

Here we want to focus on two brain areas, which have repeatedly been shown to
be coactivated in functional neuroimaging studies, and which might specifically be
related to the processing of time: the striatum and the insular cortex. Functional
neuroimaging studies of time perception show how the striatum and the insular
cortex are activated during the perception of shorter duration in the
millisecond-to-a-few-seconds range (e.g., Livesey et al. 2007; for a review of
studies see Wittmann 2009b) as well as during the perception of multiple-second
intervals (Wittmann et al. 2011). Also related to intertemporal decisions, both the
striatum and the insula are often activated as related to different component pro-
cesses (McClure et al. 2007; Wittmann et al. 2007b). Tanaka et al. (2004) provided
the most compelling evidence that the insular cortex and the striatum code for the
selection of immediate and delayed rewards. Ventroanterior regions of these two
brain areas were more activated for immediate choices, dorsoposterior regions were
more activated when subjects learned to choose delayed rewards. In another study
with choices between immediate and delayed rewards in the multiple-second range,
the anterior insula and the striatum were both activated when subjects chose either
the immediate (smaller) or the delayed (larger) option (Wittmann et al. 2010a).

The insular cortex and the striatum are strongly related to expectation and
anticipation. That is, these two areas are part of brain systems whose functioning is
inherently related to time. The striatum is not only involved in reward evaluations
guiding goal-directed behavior as it tracks perceived value (Gregorios-Pippas et al.
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2009; Kable and Glimscher 2007); it is strongly involved in reward expectation
(Hassani et al. 2001). Similarly, the insular cortex plays a fundamental role in the
neural decision-making system, integrating visceral sensations and emotional states
to modulate decisions (Craig 2002). That is, the insula integrates interoceptive
information as a basis for judging prospective reward value. More specifically, the
anterior insula, together with the striatum, has been associated with the anticipation
of rewards and the expectation and evaluation of upcoming events (Lovero et al.
2009). In this line, the anterior insula has been discussed as generating a predictive
model, which provides an individual with a signal of how he or she will feel (Paulus
and Stein 2006).

The close connection between the insular cortex and the integration of ascending
body signals on the one hand (Craig 2002) and findings of modulations of insular
cortex activation and physiological changes of the body affecting time perception
on the other hand (Wittmann et al. 2010; Meissner and Wittmann 2011) have led to
the hypothesis that the accumulation of physiological changes in the body is the
basis for the experience of duration (Craig 2009). Similarly, body states and vis-
ceral factors are strongly involved in decision-making. Drive states such as hunger,
thirst, sexual desire, or the craving for drugs lead to an intense desire that can
dominate the decisions we make (Loewenstein 1996). But emotion- and
body-related signals, changes in visceral states, are to some extent inherently
involved in all of our decisions, not only when self-control is compromised by
overwhelming desires (Damasio 1994; Reimann and Bechara 2010). Complex
decisions related to time and experiences of duration are governed by emotions and
feeling states attributable to processes associated with the striatum and the insula.

8.5 Summary

In order to anticipate upcoming events and to adjust to environmental demands an
individual has to adequately process temporal information. How long do I have to
wait for something to happen or to end? Do I have enough time to prepare for an
exam? Decisions are made between possible outcomes that are perhaps minutes
apart: should I wait for the elevator, do I take the stairs? Human decision-making in
the context of economic planning can encompass the anticipation of outcomes that
lie years or even decades ahead: should I start now to save for retirement? The
human brain constantly generates predictions about present versus future outcomes:
should I now watch TV or go running for long-term physical fitness? The way time
is perceived and how subjective time is modified is an important factor for
understanding how decisions pertaining to the temporal properties of outcomes are
made.

Knowledge of how a present bias causes the discounting of delayed benefits can
lead to supportive measures of self-control. Humans intend to be self-controlled but
when faced with concrete options in the here and now they often give into
impulsive acts. For example, due to temporal shortsightedness one might not want
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to deduct a considerable amount of money for a saving option the bank is offering
from now on. However, one might now agree and sign a contract on a plan with
monthly payments that starts in 1 year. If a commitment to act is shifted from the
present to the future more abstract reasoning sets in; when events are temporally
distant, they become psychologically more abstract and people are more inclined to
act according to their more self-controlled reasoning (Trope and Liberman 2003).

The ultimate test concerning our outline of a model on the relationship between
subjective time and decision-making would be through conducting intervention
studies. Would it be possible to influence maladaptive decision-making through
modifications of state- and trait-related experiences of time? Intervention programs
could be developed that manipulate the temporal delay of rewards and restructure
the temporal perspective on events and the experience of time in order to promote
desired decision-making.
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Chapter 9
Framing Effects: Behavioral Dynamics
and Neural Basis

Xiao-Tian Wang, Lilin Rao and Hongming Zheng

Abstract Research on framing effects has been one of few multidisciplinary
endeavors joined by psychologists, economists, political scientists, and manage-
ment and marketing researchers. Framing effects epitomize the power of linguistic
subtlety in regulating decision-making, showing that different ways of framing,
phrasing, or presenting virtually identical choice options systematically affect risk
preference, evaluation of experience, and persuasiveness of messages. Given its
central role in the studies of decision biases, the framing effect has been used as an
experimental probe for understanding general mechanisms of human judgment and
decision-making. Researchers have proposed various models explaining the fram-
ing effect. However, it was not until recently that research of framing effects started
to focus more on psychological mechanisms above and beyond phenomenology.
We conducted a meta-analysis of neural correlates of framing effects. The topo-
graphic convergences from a total of 26 foci found in the fMRI studies of framing
effects revealed two key brain areas underlying framing effects: the left anterior
cingulate cortex (ACC) and the right inferior frontal gyrus (IFG). Together with
behavioral findings, these results suggest that valence framing as a secondary cue
becomes most salient and effective when primary contextual or social cues are
absent or incongruent. The processing of choice problems under these conditions
call for an ambiguity-reducing and conflict-monitoring function, which would result
in the ACC activation. Second, the right IFG activation suggests that the nature of
valence framing is both semantic and hedonic, involving not only verbatim lin-
guistic analysis, but also interpretation of its affective tones and metaphorical
implications.
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9.1 Behavioral Studies of Framing Effects

9.1.1 Framing and Framing Effects: Definition
and Typology

Since the seminal work by Kahneman and Tversky (1979), Tversky and Kahneman
(1981), framing effects have been widely studied by researchers from across the
social sciences for over 30 years. Research on framing effects has been one of few
multidisciplinary endeavors joined by psychologists, economists, political scien-
tists, and management and marketing researchers. Framing effects epitomize the
power of linguistic subtlety in regulating decision-making, oftentimes without
awareness of the decision-maker. Different ways of framing, phrasing or presenting
virtually identical choice options systematically affect risk preference, evaluation of
experience, products or job candidates, and persuasiveness of arguments in nego-
tiation and communication. A meta-analysis has shown that among some primary
predictors of risky choice, framing condition was the top predictor (partial r = 0.44)
followed by the value of risky payoff (partial r = 0.14), and type of good at stake
(partial r = 0.13) while gain or loss condition and probability of payoff were not
significant in predicting choice preference (Kühberger et al. 1999, p. 213).

Tversky and Kahneman (1981) used the term ‘decision frame’ broadly to refer to
“the decision-maker’s conception of the acts, outcomes, and contingencies asso-
ciated with a particular choice” (p. 453). Later definitions of framing effects, despite
the differences in their connotations and coverage, pinpoint two typical features:
equivalency in choice outcomes and opposing valences in presentations of the
choice outcomes. That is, framing effects occur when frames that cast “the same
critical information in either a positive or a negative light” cause individuals to have
different choice preferences (Chong and Druckman 2007; Druckman 2001; Levin
et al. 1998, p. 150).

Consider the well-known Asian disease problem demonstrated first by Tversky
and Kahneman (1981). In the cover story of the problem, the respondents were
asked to imagine that “the US is preparing for the outbreak of an unusual Asian
disease, which is expected to kill 600 people. Two alternative programs to combat
the disease have been proposed.” The outcomes of the disease-combating plans
were then framed (phrased) differently. In the positive frame the respondents were
told: “If Plan A is adopted, 200 people will be saved. If Plan B is adopted, there is a
one-third probability that all 600 people will be saved, and two-thirds probability
that none of them will be saved.” Given a binary choice between the two alternative
plans, the majority of the respondents (72 %) were risk averse, preferring the sure
option (Plan A) over its gamble equivalent (Plan B). However, when the same
outcomes were ‘negatively framed’ in terms of lives lost (“If Plan A is adopted, 400
people will die. If Plan B is adopted, there is a one-third probability that none of
them will die, and two-thirds probability that all 600 people will die.”), the majority
of the respondents (78 %) were risk-taking, preferring the gamble option (Plan B)
over its sure-thing equivalent. This classic framing effect has been reliably
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replicated with different samples and across cultures and disciplines (e.g., see
Kühberger 1998; Kühberger et al. 1999).

Such risk preference reversal due to valence framing of virtually equivalent
choice outcomes raises radical doubts about basic assumptions in economic theories
of rationality. How can decision agents make consistent and rational choices when
empirical evidence of choice preference appears to be so malleable, so vulnerable to
framing effects? The classic framing effect is thus viewed as an irrational decision
bias and a cognitive illusion because it violates the invariance axiom of expected
utility theory, which requires a rational decision-maker to have a consistent pref-
erence order among identical choice prospects independent of the way the prospects
are presented or framed.

As illustrated in the Asian disease problem, equivalent choice outcomes can be
framed with either positive valence or negative valence (e.g., lives saved vs. lives
killed, survival rate vs. mortality rate, gain vs. loss, opportunity vs. threat, success
vs. failure, benefits vs. costs). A cumulative body of evidence has shown a wide
range of behavioral consequences due to framing of decision problems (Chong and
Druckman 2007; Kühberger 1998; Levin et al. 1998). Based on their meta-analysis
of different kinds of framing effects, Levin et al. (1998) proposed a well-adopted
typology. They proposed three types of framing effects: (1) Risky choice framing,
as illustrated by the Asian disease problem where framing of choice outcomes
affects risk preference (risk averse or risk seeking) of the decision-maker;
(2) Attribute framing, where framing of attributes or characteristics of an object
or event affects the evaluation of the object (e.g., a sample of ground beef was rated
as better tasting when it was labeled as ‘75 % lean’ rather than ‘25 % fat’, see Levin
and Gaeth 1988); and (3) Goal framing, where framing of either the positive
consequences of performing an act or the negative consequences of not performing
the act affects implicit goals an individual adopts and persuasiveness of a message.
A well-known example of goal framing effects has been documented by
Meyerowitz and Chaiken (1987), showing that women were more apt to engage in
breast self-examination when presented with information stressing the negative
consequences of not engaging in this action than when presented with information
stressing the positive consequences of engaging in this action.

As stated in the title of the paper by Levin et al. (1998), all frames are not created
equally. Similarly, not all framing effects are the same. Some involve irrational
preference reversals (e.g., the opposite choice preferences under different framings)
while others involve a shift in choice preference (e.g., making one option even more
attractive than another). A choice shift differs from a choice reversal in that the
proportion of risky choices differs across framing conditions but is not significantly
greater than 0.5 under one framing condition and significantly less than 0.5 in an
alternative framing condition. Wang (1996a) makes the distinction between bidi-
rectional framing effects which involve a reversal in risk preference and unidi-
rectional framing effects which involve a preference shift (e.g., from risk seeking to
even more risk seeking under negative framing, or from risk averse to even more
risk averse under positive framing).
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9.1.2 Theories of Framing Effects

Given its central role in the studies of decision biases, the framing effect has been
used as an experimental probe for understanding general mechanisms of human
judgment and decision-making. Researchers have proposed various models
explaining framing effects.

1. Prospect Theory

An initial and prevalent explanation of framing effects is based on the prospect
theory’s (Kahneman and Tversky 1979) S-shaped value function which is separated
by a zero point (status quo) with a gain region above the status quo and a loss
region below the status quo. Tversky and Kahneman (1981) theorized that framing
manipulation determines whether outcomes are encoded as gains or losses and that
this encoding determines which portion of the S-shaped value function would
contribute to the risk preference of the decision-maker. For gains implicated in the
positive framing condition, the subjective value function is concave and promotes
risk aversion, whereas for losses implicated in the negative framing condition, the
value function is convex and promotes risk seeking. However, this prospect of
theoretical account of framing effects is limited to risky choice framing. In case of
attribute framing where the presence of risk is not essential, valence of framing
(e.g., success rate vs. failure rate) may either evoke favorable or unfavorable
associations in memory (Levin and Gaeth 1988) or evoke different reference points
(goal or minimum requirement rather than status quo, Wang and Johnson 2012).

2. Fuzzy-Trace Theory

Another famous account of framing effects is derived from fuzzy-trace theory pro-
posed by Reyna and Brainerd (1991, 1995, 2011). The theory posits that people form
two types ofmental representations about a past event, called verbatim and gist traces.
Gist traces are fuzzy representations of a past event (e.g., its bottom-line meaning),
whereas verbatim traces are detailed representations of a past event. Although people
(adults) are capable of processing both verbatim and gist information, they prefer to
reason with gist traces rather than verbatim traces. In the case of encoding choice
outcomes of a sure thing and a gamble of equal expected value in the Asian disease
problem, the gist translations boil down to choosing between (a) saving some people,
(b) saving some people or saving no one under the positive (gain) frame, and choosing
between (c) some people die, and (d) some people die or none die under the negative
(loss) framing. Reyna and Brainerd (1991, 1995) showed that relational gist of
quantities (e.g., some, all, none) was sufficient to replicate the classic framing effect.
Thus, framing effects can be seen as a result of translating expected choice outcomes
to gist representations of quantities with positive or negative connotations. These
nonnumerical framing effects demonstrated that numbers, which are essential to
predictions of prospect theory and all other utility theories, were not necessary to
observe the framing effect. Moreover, according to prospect theory or other expected
utility theories, the outcome of zero in the gamble option literally contributes nothing
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to predictions of choice behavior because the value of zero, based on the S-shaped
value function, is also set at zero. However, when the information about the zero
outcomes was removed from the classic Asian disease problem, framing effects
disappeared (see Reyna and Brainerd 2011).

3. Asymmetry in Dual Processing

Another approach to theorizing framing effects emphasizes the interplay between
two distinct processing systems or asymmetry in affective or cognitive processing.
Dunegan (1993), for example, proposed that framing may act as a catalyst for
different modes of cognitive processing. Characteristics of controlled cognitive
modes were found when information was negatively framed; characteristics of more
automatic processing were found when information was positively framed, sug-
gesting that positive framing may be perceived as a default with a lower cognitive
processing load. Kuo et al. (2009) employed eye tracking to measure cognitive
effort in a framing study. Their results suggest an asymmetry in cognitive effort, as
indicated by eye fixation and eye-movement time per word, due to positive and
negative frames. More effort was observed in the negative framing condition than in
the positive framing condition. However, a study by Whitney et al. (2008) found
that working memory load slightly reduced risk-seeking tendency but not framing
effects, suggesting that valence framings did not have differential effects on cog-
nitive processing effort.

Another account of framing effects proposed by McElroy and Seta (2003, 2004)
focuses on the asymmetry between analytic processing and holistic processing. This
model assumes that analytic processing is insensitive to the influence of framing,
whereas holistic processing is more susceptible to framing. By behaviorally
inducing selective hemispheric activation, framing effects were found when the
right hemisphere was selectively activated, whereas they were not observed when
the left hemisphere was selectively activated.

4. Ambiguity-Ambivalence Hypothesis

There are other limits and constraints to framing effects in addition to hemispheric
dominance. Meta-analyses (Levin et al. 1998; Kühberger 1998) show that the effect
of framing is overall significant but not as ‘pervasive’ or ‘robust’ as previously
believed. Many researchers have explored the premise and moderators of framing
effects. Some examples of the moderators are sex of the decision-maker (Fagley and
Miller 1990, 1997), cognitive ability (Stanovich and West 1998), personal
involvement (Levin et al. 1998, p. 160), reflection on and rationale for the decision
(Takemura 1994; Fagley and Miller 1987; Miller and Fagley 1991; Sieck and Yates
1997), personal knowledge about risks involved (e.g., Bohm and Lind 1992; Levin
and Chapman 1990), perceived ambiguity of the values presented in the problem
descriptions (Kühberger 1995), task context (e.g., medical vs. statistical, Bless et al.
1998), need for cognition (LeBoeuf and Shafir 2003), perceived interdependence
between individuals at risk (Bloomfield et al. 2006; Wang et al. 2001), and social
group size and composition (Bloomfield 2006; Shimizu and Udagawa 2011a;
Wang 1996a, b; Zhang and Miao 2008).
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The aforementioned studies focusing on the variables that can enhance, limit, or
even eliminate a framing effect have taken into consideration individual as well as
situational factors that determine the magnitude as well as process of framing
effects. This line of research calls for an overarching theory of framing effects that
addresses these ecological, social, and dispositional constraints on and premises of
framing effects. This led to the development of an ambiguity-ambivalence
(AA) hypothesis of framing effects and decision biases (Wang 2008). The AA
hypothesis assumes that (1) decision cues are selected and used in accordance to
their priorities. (2) Cue priority reflects ecological and social validity of a cue in
predicting specific risks, beyond the stated values and probabilities of outcomes in a
choice task. Primary cues are valid ecological, social, and life-history variables
(such as kith-and-kin relations, social group size, sex, age, health, socioeconomic
status, and mating/reproductive cues, etc.). Secondary cues in decision-making are
mainly communicational, such as verbal framing, facial expression, tone of voice,
etc. (3) Primary cues determine the settings of decision reference points (e.g., goals
and bottom lines) and anchor decision preference while secondary cues (and
individual dispositional factors) fine tune the settings of reference points and choice
preference. (4) Decision biases, such as framing effects, tend to occur as a result of
secondary cue use when primary cues are either absent in risk communication (i.e.,
an ambiguity condition) or when primary cues elicit conflicting preferences (i.e., an
ambivalence condition).

From this perspective, framing effects would occur as a result of ambiguity and
ambivalence in decision cues and preferences. Similar ideas can be seen in
fuzzy-trace theory (Reyna and Brainerd 1991) and the discussion on the use of
probabilistic mental models (Gigerenzer et al. 1991) to deal with informational
ambiguity as a premise of framing effects (Chang et al. 2002; Kühberger 1995).

As predicted from the AA hypothesis, framing effects occurred when making
life–death decisions in evolutionarily novel and socially unfamiliar large group
contexts but disappeared when the same problems were scaled down to a small
group context with a handful of people (Bloomfield 2006; Shimizu and Udagawa
2011a; Zhang and Miao 2008; Wang and Johnston 1995; Wang 1996a, b).
Moreover, work experience in large organizations reduced sensitivity to framing
manipulation in large group contexts (Shimizu and Udagawa 2011b). Interestingly,
framing effects in a small group reappeared when the small group included both
strangers and kin relatives, thus creating ambivalence in risk preference between a
“we all live or die together” risk-seeking preference for kith-and-kin and a more
risk-averse preference for strangers (Wang et al. 2001).

150 X.-T. Wang et al.



9.2 A Neuroscience Approach to Understanding Framing
Effects

The discussion so far summarizes behavioral studies of framing effects. These
studies leave open the possibility for more theoretical development and better
understanding of underlying processes that produce or inhibit framing effects. It
was not until recently that research on framing effects started to focus more on the
underlying psychological mechanisms above and beyond phenomenology, owing
to rapid development in neuroimaging technology. Neuroscience and neuroimaging
can help forward our understanding of framing effects in at least four different yet
coherent ways.

First, the neuroscience approach would allow us to evaluate framing theories by
mapping the framing-related brain activations against the key brain areas implicated
by different theories of framing effects. Second, many hypothetical mechanisms and
post-hoc explanations based on behavioral effects can be better understood, veri-
fied, or disproved by using the brain imaging technique. Third, neuroimaging
studies often shed light into puzzling or conflicting findings from behavioral studies
of framing effects. Fourth, brain imaging studies capture online neural activities of
the entire brain during the decision-making. This brain map of activation or
deactivation may highlight uncharted brain areas and provide insights and new
leads for future investigations.

In the following sections of the chapter, we illustrate the use and usefulness of
the neuroscience approach to framing effects by generating predictions about neural
correlates of framing effects based on different theoretical viewpoints, and by
conducting a meta-analysis of the fMRI studies of framing effects. We end the
chapter with a summary and conclusions regarding the status quo of behavioral and
neuroimaging studies of framing effects.

9.2.1 Contrasting and Evaluating Theories of Framing
Effects

As illustrated in Table 9.1, theories of framing effects make overlapping but dis-
tinctive predictions about brain regions underpinning the proposed functions. The
predictions presented in Table 9.1 are by no means meant to be thorough or
systematic.

Table 9.1 is only a sketchy outline to exemplify how theories of framing effects
can be tested with neuroimaging studies. For a more specific example, consider an
fMRI study of framing effects by Gonzalez et al. (2005). The authors proposed a
cognitive–affective tradeoff model which can be classified as one of the ‘asymmetry
in dual processing models’ as listed in Table 9.1.

The cognitive–affective tradeoff model assumes that the framing effect occurs
due to a tradeoff between the cognitive effort required to calculate expected values
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of an alternative and the affective value of the alternative. The model predicts that
decision-makers prefer choice options that are cognitively less effortful to process
or/and affectively more pleasant. In a positive frame, the compromise between
maximizing hedonic feeling and minimizing cognitive effort is easier to achieve.
For instance, selecting the option in which “200 people will be saved” feels more
positive in an emotional sense and is less effortful (i.e., no calculations are nec-
essary). In contrast, such a compromise is more difficult to attain in the negative
frame. Although the option in which “400 people will die” requires little calcula-
tion, the relatively bad outcome makes it less attractive due to a stronger feeling of
displeasure. Thus when selecting among options presented in a negative frame,
individuals are more willing to undertake the cognitive effort demanded to assess
the more risky option in order to get the hedonically less unpleasant outcome.

Previous studies have shown that individuals take longer to make decisions
when the options are framed as losses rather than gains (Payne et al. 1993).
However, it is still unknown whether it is a result of a greater cognitive effort in the
negative than in the positive frame or a result of a larger affective cost. To answer
these questions derived from the cognitive-affective tradeoff model, the authors
conducted an fMRI study which revealed that the cognitive effort required to select
a sure gain was considerably lower than the cognitive effort required to choose a
risky gain. The fMRI results, although not directly correlated with the behavioral
framing effects, showed significantly higher activation levels in the frontal and
parietal lobes when making risky rather than certain choices under positive frames.
This finding is consistent with their theoretical view that the sure gain is a default
choice over its gamble equivalent when considering cognitive processing effort.

9.2.2 Neuroimaging Tests of Alternative Behavioral
Accounts of Framing Effects

Behavioral studies of framing effects have yielded interesting results that are often
open to alternative explanations. These alternative accounts of behavioral findings
can be further evaluated in neuroimaging studies. A recent fMRI study by Zheng
et al. (2010) on group- size-dependent framing effects illustrates such a value of the
neuroimaging approach.

In a series of studies (Wang 1996a, b; Wang et al. 2001), we examined the
appearance and disappearance of framing effects when the size of the group (the
total number of lives at stake) was systematically manipulated. The same life–death
problem was framed either in terms of lives saved or in terms of lives lost. The
framing effect was evident, but it occurred only when the problem was presented in
a large, anonymous, and thus ambiguous group context involving 600 lives or
more. The framing effect disappeared when the size of the endangered group was
within a two-digit number (<100), and the majority of the participants
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unambiguously preferred the gamble option under both the saving lives and losing
lives framing conditions.

These findings suggest that the small size of a social group signals a higher
interdependence between group members and evokes a kith-and-kin rationality that
guides a live-or-die together risk preference. In contrast, risk preference of a
decision-maker becomes erratic when prioritized group cues are absent in a large
anonymous group context. When risk preference is ambiguous, secondary cues
such as verbal framing are attended and used to direct choices. However, an
alternative hypothesis of group size-dependent framing effects based on a utility
theory would posit that people are more competent in calculating small numbers
than large numbers when evaluating risky outcomes, and thus are less ambiguous in
their choice preference and less susceptible to framing manipulation.

To evaluate these rival accounts of group size-dependent framing effects, Zheng
et al. (2010) conducted an fMRI study. The results of this study, as shown in
Table 9.2, help to evaluate the two alternative hypotheses.

Group size difference was captured by activation in the middle frontal gyrus.
Verbal framing in the large group context was associated with activation of the right
inferior frontal gyrus while the same valence framing in the small group context
was associated with activation of different brain structures, including the insula and
an area in the parietal lobe. These differential activations were all located in the
right hemisphere. Note that the right inferior frontal gyrus includes the homologue
of the Broca’s area.

These results support the group size account rather than the numerical size
account of framing effects. First, behavioral framing effects only occurred in the
large group context and were associated with the right IFG activation. In contrast,
the disappearance of the framing effect in the small group context was associated
with activation of different brain structures (e.g., the right insular). Second, the
group size-dependent framing effect was restricted in the right hemisphere, thus was
unlikely an explicit numerical processing effect. If numerical processing played a
major role in determining appearance or disappearance of framing effects, the left
hemisphere and the brain structures related to numerical processing should be

Table 9.2 Brain activation by framing in large and small group contexts (from Zheng et al. 2010)

Brain Area Experimental
Condition

Hemisphere Cluster size
(voxels)

Z
max

MNI coordinates

x y z

IFG P600 minus N600 Right 9 3.35 33 29 −8

Insula P6 minus N6 Right 12 3.61 33 −13 13

Parietal lobe P6 minus N6 Right 17 3.42 33 −31 52

MFG 600 minus 6 Right 23 3.70 24 32 -8

Note: IFG Inferior frontal gyrus, MFG Middle frontal gyrus. P denotes positive frame, and
N denotes negative frame. The number (600 or 6) represents the number of people at stake. The
montreal neurological institute (MNI) coordinates are used to map images. The activation under
positive framing was larger than that under negative framing condition in both 600 and 6 group
size conditions. The differences were all detected at the level of uncorrected p < 0.001
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differentially activated (e.g., Piazza et al. 2004; Pinel et al. 2004). Additional
behavioral results further exclude the ‘large-number’ account of framing effects.
Wang (1996a) demonstrated that framing effects occurred in large groups of 6000
as well as 600 people, and disappeared in small groups of 60 as well as 6 people.
The tenfold difference between the two large groups and between the two small
groups did not make a difference in choice preference. Further evidence comes from
the Wang, et al. (2001) study, where the classic framing effect occurred in the
context of 6 billion human lives but disappeared in the context of 6 billion ET
(extraterrestrial) lives. Thus, the framing effect is not likely a large number effect,
but is human group size sensitive.

Our findings overall are consistent with the predictions of the AA hypothesis:
distinct brain areas are recruited for solving ambiguity or ambivalence caused by
the lack of primary social or relational cues in a large anonymous group context. In
contrast, framing effects diminished in a small group context while the insula and
parietal lobe in the right hemisphere were distinctively activated, suggesting an
important role of emotion in switching choice preference from an indecisive mode
to a more consistent risk-taking inclination.

The brain imaging findings are interesting in that they suggest that the framing
effect is both linguistic and implicit. The affective component of valence framing
may direct a holistic, right hemispheric process while the cognitive connotation of
framing activates implicit linguistic processing in the right hemisphere in addition
to activation of the common linguistic processing regions in the left hemisphere.
Previous studies show that the right IFG is involved in response inhibition and
impulse control (Aron et al. 2003, 2004; Asahi et al. 2004). Thus, the higher
activation found in the right IFG under positive framing suggests a greater control
effort induced by using positive framing than negative framing in making hypo-
thetical life–death choices.

9.2.3 Gaining New Insights from Brain Imaging Studies
of Framing Effects

The findings from neuroimaging studies of framing effects often provide new
insights and new research directions. In this section, we report several new findings
derived from a current analysis of an fMRI study of framing effects, in which we
examined brain activations when making hypothetical risky choices.

The risky choice problems, adopted from those used in the study by Wang
(1996a), involved monetary investment (either 600 or 60,000 Chinese Yuan) and
property (either 6 or 600 precious oil paintings) at stake. The structure of the choice
problems used in this study was identical to that of the Asian disease problem. The
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participants were asked to make a binary choice between a sure outcome (framed
either as saving one-third of a total amount or losing two-thirds of the total amount)
and a gamble of equal expected value. Twenty-one participants (8 males) took part
in this study. The procedure was the same as that used in Zheng et al. (2010).

The behavioral effects of valence framing were significant in the painting sce-
nario (risk-seeking choices increased from 47.8 % under positive framing to
57.6 % under negative framing), χ2(1) = 7.617, p = 0.0058. The framing effect was
not significant in the money investment scenario (the risk-seeking choice = 55.7 %
under positive framing and 62.2 % under negative framing; χ2(1) = 0.246,
p = 0.620).

The results of the fMRI data analysis are shown in Table 9.3 and Fig. 9.1. The
left inferior frontal gyrus and the left superior frontal gyrus were identified to have a
higher activation level under negative framing than positive framing while the left
medial temporal cortex showed a higher activation under the positive framing than
negative framing. These results are consistent with some previous findings. The
inferior frontal gyrus is also found to be associated with framing effects in our
previous study (Zheng et al. 2010). In addition, the left medial temporal cortex and
the left superior frontal gyrus identified in the present analysis are geographically
close to two of the activation regions reported by De Martino et al.’ (2006): the left
medial temporal gyrus and the left superior frontal sulcus, respectively.

Human neuropsychological studies have highlighted the importance of both
frontal cortex and the medial temporal cortex, including the hippocampus in
memory encoding and retrieval (e.g., Cohen and Eichenbaum 1993; Tulving et al.
1994). Previous studies also suggest that effortful and strategic memory processes
are mainly mediated by the frontal lobes, whereas automatic associative memory
processes are mainly mediated by the medial temporal lobes and hippocampus
(MTL/H) (e.g., Moscovitch 1994). Thus, our results suggest a differential activation
pattern by framing where the negative framing involves more elaborative encoding
in the frontal lobe and the positive framing elicits more holistic encoding in the
medial temporal cortex.

Table 9.3 Brain regions associated with framing effects

Cluster size Region BAs Peak T value MNI coordinates

Frame: positive > negative

122 Left medial temporal cortex 20 4.61 −39 −21 −21

Frame: negative > positive

120 Left superior frontal gyrus 6 −2.85 −15 −21 75

41 Left inferior frontal gyrus −2.89 −57 21 9
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9.2.4 A Meta-Analysis of Neuroimaging Studies of Framing
Effects—Toward a Better Understanding of Framing
Effects

In the field of neuroscience, there have not been many neuroimaging studies on
framing effect so far. We carried out a systematic search using the keywords
‘framing effect’ and ‘MRI’ to identify relevant studies included in the PubMed and
PsycINFO databases; the search was conducted in December 2012, and no time
span was specified for date of publication. Our inclusion criteria were that: (1) the
studies presented coordinate-based analyses of the data; (2) all or most of the brain

Fig. 9.1 Brain regions showing the effect of frame. Abbreviation IFG Inferior frontal gyrus; MTC
Medial temporal cortex; SFG Superior frontal gyrus. Error bars denote standard errors. The
statistical significance was determined by Monte Carlo simulations to obtain a P-corrected value
<0.05, after correcting for whole brain comparisons. The corrected threshold corresponds to a
P-uncorrected value <0.005 with a minimum cluster size of 1080 mm3 (a gray mask with 55,342
voxels was used)
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was imaged; and (3) participants were asked to choose in different frames. The
fMRI studies obtained from this search are summarized below in Table 9.4.

As shown in Table 9.4, the choice tasks involved both life–death and monetary
and other types of problems. The behavioral framing effects were all significant,
either bidirectional or unidirectional. Non-verbal valence framing had similar
behavioral effects. Guitart-Masip et al. (2010) adopted a unique valence framing by

Table 9.4 Functional MRI studies of framing effects

Study Behavioral framing effects
inside the scanner

Main neural correlates n Foci

De Martino
et al. (2006)

Used monetary problems.
The percentage of
risk-seeking choices
=42.9 % in positive frame
=61.6 % in negative frame

The framing effect was
associated with amygdala
activity; but reduced by
ACC, OMPFC, and right
OFC activity

20 6

Gonzalez
et al. (2005)

Used life–death, monetary,
and other problems. The
percentage of risk-seeking
choices
=33 % in positive frame
=59 % in negative frame

Higher activation in
positive–gamble choices
than in positive–certain
choices in the right
DLPFC, posterior
precentral sulcus, and
multiple areas in the
parietal cortex

15 7

Guitart-Masip
et al. (2010)

Used monetary problems
with visual (conditioned
stimuli) valence frames. The
risk-seeking choices
(in the last session)
=40 % in positive frame
=50 % in negative frame

The framing effect was
associated with activation of
the left amygdala, right
caudate, and right insula

24 3

Roiser et al.
(2009)

Used monetary problems.
Framing susceptible and in-
susceptible participants
differed in the size of the
alleles at 5-HTTLPR. The
risk-seeking choices
=43.3 % in positive frame
=56.7 % in negative frame

Framing effects-prone
individuals had higher
activation in the left
amygdala, whereas
insusceptibility to framing
was associated with ACC
activation.

30 4

Zheng et al.
(2010)

Used life–death problems.
The risk-seeking choices
=52 % in positive frame
=65 % in negative frame

The framing effect was
correlated with activation in
the right IFG. The
reduction of the framing
effect was associated with
activation in the right
insula and an area in the
right parietal cortex

22 3

Note: ACC Anterior cingular cortex; OMPFC Orbital and medial prefrontal cortex; DLPFC Dorsal
lateral prefrontal cortex; 5-HTTLPR serotonin transporter-linked polymorphic region; OFC The
orbitofrontal cortex; IFG inferior frontal gyrus
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associating visual stimuli (different texture patterns printed on a card) with gains or
losses before using them as valence frames for framing choice outcomes. When the
sure-thing outcome of a choice is either presented on a ‘gain’ card (positive frame)
or on a ‘loss’ card (negative frame), classic monetary framing effects occurred.

Brain regions which were reported to contribute to the appearance of framing
effects include the amygdala (De Martino et al. 2006; Guitart-Masip et al. 2010), the
insula, and the right IFG (Zheng et al. 2010).

Some brain regions inhibit or reduce framing effects. De Martino et al. (2006)
found that greater activity in the orbital and medial prefrontal cortex (OMPFC)
predicted a reduced susceptibility to the framing effect across participants. The
anterior cingulate cortex (ACC) was also implicated in reduced framing effects (De
Martino et al. 2006; Roiser et al. 2009).

The ACC is thought to reduce framing effects by acting as a teaching signal
(Botvinick 2007). Because ACC activation was greater when participants’ choices
were incongruent with frame effects (De Martino et al. 2006), it may modulate the
motivational influence of the amygdala on choice. This possibility is supported by
the greater coupling between the ACC and the amygdala in participants who were
less susceptible to the frame (Roiser et al. 2009). A similar role might be attributed
to the orbital frontal cortex (OFC), a region which correlates with resistance to
monetary framing effects (De Martino et al. 2006), and with which the ACC has
strong reciprocal connectivity (Kringelbach and Rolls 2004).

Interestingly, researchers discovered that susceptibility to framing is related to
genetic variation in the serotonin transporter gene (the 5-HTTLPR). Individuals
homozygous for the short allele at the 5-HTTLPR rather than individuals
homozygous for the long allele were found to be more susceptible to valence
framing when making hypothetical monetary risky choices. This susceptibility to
framing effects is associated with altered amygdala activity and lack of prefrontal
regulatory control (Roiser et al. 2009). However, this finding has been challenged
by a follow-up study. Talmi, Hurlemann, Patin, and Dolan (2010) reported that two
patients with Urbach-Wiethe disease, a rare condition associated with congenital,
complete bilateral amygdala degeneration, exhibited an intact framing effect.
However, choice preference in these patients did show a qualitatively distinct
pattern compared to controls, as evidenced by a significantly increased risk-seeking
preference. These findings suggest that the amygdala does exert an overall influence
on risk-taking but may not play a causal role in framing effects.

We then conducted our meta-analysis by entering the coordinates of all the foci
that were reported in the above fMRI studies of framing effects to get their topo-
graphic convergences. The goal of coordinate-based meta-analysis of neuroimaging
data is to identify brain areas where the reported foci of activation converge across
published experiments. In this meta-analysis of neural correlates of framing effects,
we adopted a widely used technique for coordinate-based meta-analyses of neu-
roimaging data, called activation likelihood estimation (ALE). ALE assesses the
overlap between foci based on modeling them as probability distributions centered
at their respective coordinates. ALE maps are then obtained by computing the union
of activation probabilities for each voxel. To differentiate true convergence of foci
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from random clustering (i.e., noise), a permutation test is applied: to obtain an ALE
null distribution, the same number of foci as in the real analysis are randomly
redistributed throughout the brain (see Eickhoff et al. 2009; Turkeltaub et al. 2002).
In other words, the meta-analysis determines if the clustering is significantly higher
than expected under the null distribution of a random spatial association of results
from the considered experiments.

Our analysis was implemented using GingerALE Version 2.1.1 (available at
http://brainmap.org/ale). The meta-analysis was performed using the Montreal
Neurological Institute (MNI) stereotactic coordinates derived from the studies listed
in Table 9.4. Coordinates published in Talairach space were transformed to the
Montreal Neurological Institute (MNI) template according to the Lancaster trans-
form (icbm2tal) in GingerALE. Statistical significance was determined using a
permutation test of randomly generated foci. No assumptions were made con-
cerning the distribution or spatial separation of these random foci; however, clusters
of activity were required to exceed 200 mm3 in volume. The test was corrected for
multiple comparisons using the false discovery rate (FDR) method (Genovese et al.
2002). Anatomical labels of final cluster locations are provided by the Talairach
Daemon.

Initially, a total of 23 foci were analyzed. The ALE meta-analysis showed that
high ALE values were observed in the left ACC and the right IFG (see Table 9.5;
Fig. 9.2), indicating these two brain regions are the key neural correlates of framing
effects.

We then added into the ALE meta-analysis the coordinates of the three foci
associated with framing effects as reported in the previous section of this chapter.
The brain localization results for framing effects based on the 26 foci remained the
same.

Neurobiological studies of the right IFG have shown some converging evidence
for its unique role in ‘semantic selection’ by which competing activated concepts
are sorted out, inhibiting competing concepts while selecting one concept for
action, particularly when the concept to be selected involves atypical usage. For
instance, when people are given a common noun (e.g., cake) and asked to produce a
typical use (‘bake’ or ‘eat’), the left IFG is strongly active; but when asked to
produce an unusual use (e.g. ‘sell’) of such nouns, the right IFG is more strongly
active (see Jung-Beeman 2005 for a review). Both the left and the right IFG play a

Table 9.5 Neural correlates of framing effects derived from ALE meta-analysis

Cluster Region BA Talairach
coordinates

ALE (×10−2) Volume (mm3)

x y z

1 Left ACC 24 −4 36 −6 1.16 408 (880)

2 Right IFG 47 32 30 −8 0.90 216 (216)

Note: ACC Anterior cingulate cortex; IFG Inferior frontal gyrus, BA Brodmann area. The values in
parentheses are the results after adding four foci from the study reported in this chapter in the prior
section
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unique role in understanding the figurative meaning of a metaphor beyond semantic
analysis (Rapp et al. 2004). In addition, the right IFG is active in response inhibition
and selection. The go/no-go task, which taps the ability to inhibit prepotent
response tendency (for instance, stop pressing a button when a red signal appears),
has consistently activated the lateral prefrontal cortex, particularly the right IFG
(Aron et al. 2003; Asahi et al. 2004; Chikazoe et al. 2007). Some researchers
consider the right IFG the most important prefrontal structure that exerts inhibition
and cognitive control over subcortical structures of the brain (Aron et al. 2004). The
same area is also implicated in risk aversion: higher risk aversion is correlated with
higher activity at the right IFG (Christopoulos et al. 2009).

Coupled with the results of our meta-analysis, these findings suggest that the
right IFG is a unique neural correlate of framing effects. It plays an integrative role
in evaluating risk-related cues and in regulating risk preference and choice selection
based on both semantic and affective meanings imbedded in choice problems.

Researchers have suggested a variety of ways to interpret the neuroimaging
findings of the framing effect. De Martino et al. (2006) suggested that the framing
effect is driven by an affect heuristic underwritten by an emotional system. From the
perspective of a dual-system framework, Kahneman and Frederick (2006) inter-
preted these findings as evidence that different frames evoke distinct emotional
responses that different individuals can suppress to various degrees. Similarly,
Gonzalez et al. (2005) proposed a model which tries to incorporate a tradeoff
between the cognitive effort required to calculate expected values of an alternative
and the affective value of the alternative to explain the choice process underlying
the framing effect.

Fig. 9.2 Meta-analysis results of neural correlates of framing effects. a Topographic convergences
from the foci reported in the studies in Table 9.4. b Topographic convergences from the foci
reported in the studies in Table 9.4 plus additional foci reported in this chapter
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Based on our meta-analysis and the AA hypothesis of framing effects, we pro-
pose a new view on neural mechanisms of framing effects. First, valence framing as
a secondary choice cue becomes most salient and effective when primary contextual
or social cues are absent or incongruent. The processing of choice problems under
these conditions calls for an ambiguity-reducing and conflict-monitoring function,
which would result in the ACC recruitment and activation. Second, the right IFG
activation suggests that the nature of valence framing is both semantic and hedonic,
involving not only verbatim linguistic analysis but also interpretation of its affective
tones and metaphorical implications.
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Chapter 10
The Influence of Costs, Benefits and Their
Interaction on the Economic Behaviour
of Consumers

Luca Panzone and Deborah Talmi

“Tis the sharpness of our mind that gives the edge to our pains
and pleasures.”

—Michel de Montaigne

Abstract Recent neuroscientific research on economic behaviour of consumers
explores how individuals translate information into value in their brain, and what
mechanisms underlie this process. The typical aim of this research is to establish
how single attributes are valued and combined into a single utility, neglects findings
in multi-attribute utility theory on how utility is achieved when both costs and
benefits are involved. This chapter argues that it is important to consider how the
marginal utility of costs and benefits changes in the respective presence of one
another. This point is discussed by reviewing behavioural and brain imaging data
that illuminate this interplay, with a focus on the implications on econometric
models of consumer behaviour.

10.1 Introduction

Any gain in utility comes at the expense of an initial loss, a concept recognised by
the adage ‘No pain, no gain’. For instance, consumers accept the payment of a price
(a cost) because they expect a gain in hedonic satisfaction through product quality
(a consequent benefit). Similarly, current policies targeting behavioural change
impose a trade-off between effort (an immaterial cost) and a reward associated with
that effort, e.g. a health improvement (a private benefit), or an environmental
improvement (a public benefit) (Steg and Vlek 2009). How the brain estimates the
overall utility of a person facing the cost and the reward prospect and converts them
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into a single value is not yet fully understood (Camerer et al. forthcoming; Levy and
Glimcher 2012; Louie and Glimcher 2012; Vlaev et al. 2011).

There is a growing literature on the neural representation of value, i.e. how
individual consumers determine the value of choice options. Yet some of the recent
discoveries on brain valuation activity have not been integrated into a coherent
economic theoretical framework. The aim of this chapter is to understand how
individuals convert costs and benefits into utility in their decisions to consume,
particularly focusing on understanding how these combine into a final valuation of
utility. Costs and benefits are defined as anticipated consequences of the acceptance
of a choice, whereby they respectively increase (benefits) or decrease (costs) the
subjective value of the choice in the decision-making process. This definition
hinges on the nature of these phenomena, since benefits (such as rewards) induce
positive feelings of pleasure (Schultz 2000), while costs (such as effort or pain) are
an aversive feature associated with consumption (Kivetz 2003).

In the most basic model of optimal decision-making, an individual chooses by
introspectively estimating the expected amount of satisfaction (e.g. happiness,
utility) that a good can deliver upon consumption. This process entails the evalu-
ation of the intrinsic quality provided by each of the characteristics within a good
(Lancaster 1966), which are then integrated into a single value for each option in
the choice set. The resulting choice then corresponds to the option delivering the
highest overall value (Vlaev et al. 2011; Kahneman et al. 1997) or the option with
the highest probability of a positive outcome at consumption. Because quality is
estimated before consumption, these stages are limited by cognitive bounds that
reduce consumer efficacy: consumers use heuristics to determine quality, and
contextual stimuli influence their final decisions (Vlaev et al. 2011; Kahneman
2003). It is important to keep in mind that heuristics and external stimuli span
across attributes, reinforcing the links between them.

This simple model of behaviour assumes independence of product attributes.
However, when goods provide ‘mixed prospects’, i.e. those associated both with
costs and with benefits, valuation is more complex than what has been described so
far. For instance, the purchase of an energy-efficient appliance requires the trade-off
between high environmental quality together with prospective savings (two bene-
fits) and a price premium (cost). The extra money consumers are willing to pay for
the ‘green’ (i.e. energy-efficient) choice depends both on the expected benefits from
energy efficiency and on the utility of money. Consumers with high utility from
money (e.g. low-income households) would switch to energy-efficient appliances
only when deriving high levels of utility from energy conservation. Instead, envi-
ronmentally motivated consumers are likely to switch even at a very high premium.
Individuals face such dilemmas frequently in non-purchasing decisions as well: for
example, when they decide whether to go to the gym regularly (effort cost) to lose
weight (benefit), or decide to walk to the recycling bin instead of throwing their
paper into the regular bin (effort cost) to improve the quality of the environment
(benefit).

Neuroscientific research typically explores the representation of reward and
punishment separately (see e.g. Schultz 2006; Montague and King-Casas 2007;
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Seymour et al. 2007), and how they are integrated during goal-directed behaviour is
relatively unexplored (Phillips et al. 2007; Walton et al. 2007). Goal-directed
behaviour engenders conflict when trading the prospect of an appetitive gain against
an equal prospect of an aversive cost. This conflict is represented empirically by the
dynamic interaction of costs and benefits in the brain, a concept that Multi-Attribute
Utility Theory (MAUT) describes through the use of an interaction term. This point
received empirical support in the pattern of activation of the ventral striatum and the
subgenual cingulated gyrus in the brain. Talmi et al. (2009) reported a positive
correlation between BOLD signal and reward when participants are offered money
(a benefit) to accept mild electric stimulations (low-cost condition); the correlation
was attenuated when the electric stimulation was painful (high-cost condition)
(see also Talmi and Pine 2012). This decreasing correlation is indicative of a
nonlinear relation between costs and benefits.

The remainder of this chapter will proceed as follows. The next section reviews
the representation of costs and benefits in economic modelling, with a focus on
utility theory, and describes how costs and benefits interact in the final determi-
nation of utility. The analysis focuses on decisions between outcomes with a limited
number of attributes (one cost and one benefit) in a single context. The reason for
this rather narrow focus is that the integration of many attributes into a single utility
may exceed cognitive bounds: evidence (Vlaev et al. 2011) suggests that in com-
plex multi-attribute choices consumers may not be able to determine the overall
utility, and the simple model described in this section might not hold. The model
presented here will, therefore, be more valid when only two characteristics are used.
Section 10.3 describes the same interaction between costs and benefits in a neu-
roscientific model of decision-making. The microeconomic implications of the
model described in Sect. 10.3 are discussed in Sect. 10.4 to extend current
microeconometric models of choice, examining its influence on estimable param-
eters of consumer choice through a simple simulation exercise. Finally, Sect. 10.5
concludes by summarising the key issues emerging from the chapter.

10.2 The Economic Perspective of Cost and Benefits

Economic models of choice and one-person decision problems are an important part
of economic theory. According to the Hicksian model of utility maximisation
(Hicks 1939), individual consumers value goods for the utility they derive upon
consumption. For instance, a consumer derives consumption utility from good i of
characteristic Xi in the form Ui ¼ f ðXiÞ. More precisely, the total value of a good
corresponds to the sum (in utility terms) of the values assigned to the quantity of
each attribute the good provides (Lancaster 1966). Specifically, the consumer
compares two or more options i (where i = 1, 2,…, I) that differ in their cost Ci and
benefits Bi in terms of their consumption utility Ui ¼ f ðCi;BiÞ, where the matrix
Ci;Bi½ � corresponds to Xi. Given income y and price p, the consumer then chooses
by solving the utility maximisation problem.
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max
C;B

Ui ¼ UðCi;BiÞ s:t: pi � yj ð10:1Þ

The marginal utility of costs and benefits is expected to be negative and positive,
respectively.

This general economic model of utility maximisation assumes that consumers
determine the value of a good in three steps. First, they gather information on each
attribute constituting the good with certainty, e.g. what is the environmental impact
of refrigerators rated A+ over those rated A. Second, they ‘convert’ this information
into a measure of utility, e.g. assuming goods do not differ in any other dimension,
they determine the utility derived from the lower carbon footprint associated to
A+ refrigerators and the net present value of prospective savings, and the disutility
of the price premium required by an A+-rated refrigerator. Third, they sum the
utility of each attribute to determine the total value of each option. The choice then
needs to fit within a budget constraint and requires the trade-off between costs and
benefits, which can be observed through the Marginal Rate of Substitution (MRS),

MRS ¼ @Ui
@Bi

.
@Ui
@Ci

, a measure of how much utility from one unit of benefit is needed

to compensate the utility of one unit of cost.
The general utility function of Eq. (10.1) can take different functional forms.

Psychological and neuroeconomic models of internal valuation generally base their
analysis of decision-making on a von Neumann–Morgenstern utility function (von
Neumann and Morgenstern 1947), which models utility under risk. This function,
known as expected utility function, assumes that rational consumers estimate the
utility of costs and benefits perfectly, with certain knowledge of the probability of
occurrence of an outcome. In this model, the subjective value U of an action
corresponds to the sum of the utility (u) of each outcome, evaluated separately,
multiplied by the corresponding probability π. The value of a mixed outcome based
on one beneficial (B) and one costly (C) attribute corresponds to

U ¼ UðCi;BiÞ ¼ pCi � uðCiÞþ pBi � uðBiÞ ð10:2Þ

A positive U resulting from Eq. (10.2) favours a decision to act, and in a choice
set the alternative with the greatest U is always preferred.

In Eq. (10.2), when costs and benefits are exclusive of each other pCi þ pBi ¼ 1.
More generally, when costs and benefits are not the only two possible outcomes that
exists but rather two characteristics of only one outcome in the space pCi þ pBi can
differ from 1. For instance, total probability is below 100 % if an A+ refrigerator
costs an extra £100 with pCi = 0.99 and the subjective belief of an environmental
improvement is pBi = 0.001. Likewise, if a consumer believes that the refrigerator
certainly helps the environment (pBi = 1) and is certainly expensive (pCi = 1), total
probability is above 100 %. Similarly, optimistic consumers might overestimate the
probability of a gain much more than they underestimate the complementary
probability, and pessimistic consumers might do the same for losses.
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Expected utility theory (EUT), described by Eq. (10.2), is a restrictive model for
decision-making under uncertainty because it assumes an objective probability π.
Prospect theory (PT) extended this utility function by fitting a subjective probability
function that fits empirical data better than EUT (Kahneman and Tversky 1979;
Tversky and Kahneman 1992). In particular, PT indicates that accessibility (the way
individuals perceive signals), reference-dependence (the reference point used to
evaluate a signal) and framing (the way the signal is presented) are crucial deter-
minant of behaviour (Kahneman 2003). Consumers then make decisions based on
expected subjective probability rather than objective one, as

U ¼ xðpCi Þ � uðCiÞþxðpBi Þ � uðBiÞ ð10:3Þ

where ω are subjective decision weights. Empirically, this utility function is con-
cave in the gain domain and convex in the loss domain with a steeper slope in the
latter (i.e. the disutility of a loss is greater than the utility of a gain), a phenomenon
known as loss aversion (Kahneman and Tversky 1979).

Equations (10.2) and (10.3) do not define a functional form for the utility of
costs, uðCiÞ, and benefits, uðBiÞ, but impose a linear integration of these functions
into a single value. This restriction complies with the independence assumption:
the utility derived from the consumption of a good is independent from the utility
derived from other goods. This assumption might hold when the consumption of
two goods is self-exclusive, e.g. the consumer has budget to purchase either a
refrigerator or a washing machine. Its existence is more controversial when con-
sidering product characteristics (e.g. energy-efficiency class against a price pre-
mium), or costs and benefits of the same action. In fact, consumers pursue a certain
number of consumption goals that are satisfied through product characteristics that
are rarely self-exclusive (see e.g. Khan et al. 2004; Dhar and Simonson 1999). For
instance, the goal of environmental friendliness in a refrigerator requires both a
positive utility for high efficiency (a benefit) and positive willingness to pay for it (a
cost), making these two characteristics dependent on each other.

Importantly, the independence assumption applied to Eq. (10.3) implicitly
assumes that costs reduce (and benefits increase) the subjective value derived from
benefits (costs) by a constant amount, regardless of how valuable those benefits
(costs) are. However, an increase in costs can increase or decrease not only the
utility expected by the consumer, but also the utility derived from a unit increase in
benefits; similarly, an increase in benefits can modulate the utility derived from a
unit increase in costs. For instance, Kivets (Kivetz 2003) observes that the impo-
sition of an effort requirement (the cost) for a loyalty reward scheme influences the
expected utility of the reward (the benefit): small effort leads to expectations of an
immediate, certain, but small reward; considerable effort instead causes expecta-
tions of a large, even if uncertain, reward. While in a linear model an increase in
costs can lead to higher expected benefits, Kivets observes that an increasing effort
requirement influences the disutility derived from effort itself as well as the
expected marginal utility of the reward, a relation suggesting that these two vari-
ables interact in a utility function. This “synergic effect” implies that a change in
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costs and benefits does not only impact total utility directly (as intercept shifters),
but the final joint effect is higher or lower than the sum of both effects, depending
on the existing relation between them.

Multi-attribute Utility Theory (MAUT, see e.g. Keeney and Raiffa 1993) pro-
vides some theoretical background for the representation of the interaction between
costs and benefits in a utility function. MAUT maintains that individual charac-
teristics might have a synergic influence on utility. As a simple example, a con-
sumer might have a negative utility from the price of a piece of cake, and a low but
positive utility for its size; nonetheless, utility for size can become very high when
the dessert is particularly expensive—an interaction between size and price.
Following MAUT, the utility function in (10.3) can then be then generalised as

U ¼ xðpCi Þ � uðCiÞþxðpBi Þ � uðBiÞþxðpC�B
i Þ � uðCiÞ � uðBiÞ ð10:4Þ

where xðpC�B
i Þ is the subjective probability that costs and benefits interact. The

subjective value U as a function of the utility u of costs (the same applies to
benefits) is portrayed in Fig. 10.1, under the assumption of linear functions u:
unlike the additive model, an interactive model allows for a shift in both intercept
and slope of total utility.

The key difference between Eqs. (10.3) and (10.4) is the ability, unique to
interactive models, to allow the sensitivity of benefits to vary as a function of the
costs associated with the choice, and vice versa (Talmi and Pine 2012). In partic-
ular, the marginal utility of costs and benefits from Eq. (10.4) correspond to1

@U
@Ci

¼ xðpCi Þ �
@uðCiÞ
@Ci

þxðpC�B
i Þ � uðBiÞ � @uðCiÞ

@Ci
ð10:5aÞ

and

@U
@Bi

¼ xðpBi Þ �
@uðBiÞ
@Bi

þxðpC�B
i Þ � uðCiÞ � @uðBiÞ

@Bi
ð10:5bÞ

Returning to the choice of an energy-efficient refrigerator, assume two otherwise
identical refrigerators, differing only in their efficiency rating (A and A+) and price
(£100 higher for the A+ option). According to additive models (Eq. 10.3), the
higher price reduces the likelihood of purchasing the efficient option regardless of
the value the decision-maker assigns to the environmental characteristic. By con-
trast, the interactive model (Eq. 10.4) accounts for the dependence between the
value consumers may assign to price premium and efficiency rating. This

1Equations (10.5a) and (10.5b) could be further generalised to account for loss aversion, which
affects the derivative of costs, so that the change in cost influences benefits in a different way
compared to how the change in benefits influences costs. However, this point would complicate
the argument presented in this article, and it is left for future research.

172 L. Panzone and D. Talmi



generalisation allows, for instance, for the possibility of a lower disutility from the
cost for those consumers who deem energy conservation to be very valuable.

An important feature of an interactive model is the possibility to test whether the
assumptions of attribute independence is valid by comparing the additional variance
explained by the interactive model and the additive model. In fact, because the
interaction term is nested within the additive model, its contribution can be tested
using a Student’s t-test or a Fisher’s F test, or comparable statistics for maximum
likelihood and Bayesian models such as likelihood ratio test, or Akaike or Bayesian
Information Criteria. Through a model-comparison exercise, earlier research sug-
gested that two-way interactions (the interaction of pairs of attribute) in linear
regressions account for 5–15 % of the overall variance of the model, while other
interactions (the interaction of three or more attributes) are negligible in their
predictive power (see Louviere et al. 2000). However, to our knowledge there is no
measure of the statistical importance of interaction terms on models of choice,
implying the absence of estimates on the relevance of the interaction between costs
and benefits on utility.

As described in the next section, recent behavioural and neuroimaging findings
support the challenge to the independence assumption by corroborating the exis-
tence of an interaction term. In fact, the presence of mixed outcomes is processed in
the brain differently from the simple presence of costs or benefits alone, a point that
calls for a reconsideration of the simple additive model of costs and benefits. The
next section reviews the existing evidence indicating that interaction terms increase
the predictive accuracy of a model and reflect the cognitive process of valuation.

Additive model

Interactive model

u(C)

U

Fig. 10.1 Value according to additive and interactive models
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10.3 A Neuroeconomic Model of Choice
with Costs and Benefits

There is a general agreement on the potential of neuroscience to explain the
mechanisms that underlie economic phenomena (Fehr and Rangel 2011; Camerer
et al. 2004, 2005). Current economic and econometric models of choice and
behaviour simplify the processes underlying economic valuation tasks.
Neuroscience can utilise this knowledge in experimental design and analysis, as
well as provide converging evidence for these models by rooting behaviour in
biology. Another role for neuroscientific data could be to challenge and improve
economic models by noting discrepancy between these models and experimental
observations. However, this synergy is generally rare, with the interaction term in
Eq. (10.4) being a case in point. On the other hand, economic models are rarely
challenged on the basis of behavioural or neural evidence, which supports inter-
active over additive models. This section presents a review of some of this evi-
dence, and proposes how this area of research might contribute to economic theory
and extend current models of behaviour. On the other hand, neurobiological
research of cost–benefit analysis often ignores value integration functions available
in utility theory, an issue reviewed by Talmi and Pine (2012).

Neuroeconomics supports the usual assumption that consumer choice is the
result of a process of valuation in the brain. Therefore, understanding value rep-
resentation can help understand consumer behaviour. This area of research showed
major recent advances (Dayan, Dayan 2012), identifying a key role for the striatum
and the ventromedial prefrontal cortex (Levy and Glimcher 2012). Earlier work
explored the process of valuation in animals (e.g. Premack 2007). This research
identified a network of brain regions involved in the decision to accept a cost,
usually physical effort, in order to attain a benefit, usually food (e.g. Floresco et al.
2008). Animals’ decision in this situation relies on the dopamine system and the
nucleus accumbens (NAc) as well as the anterior cingulate cortex (ACC) and the
amygdala (Phillips et al. 2007; Salamone et al. 2007; Floresco et al. 2008). Animal
models do not provide strong support for the notion of a single representation of
utility in the brain (Roesch and Bryden 2011), and controversy remains on whether
costs and benefits share representations (Fehr and Rangel 2011; Rilling and Sanfey
Rilling and Sanfey 2011).

Levy and Glimcher (2012) identify one possible mechanism for the
decision-making process in the human brain, portrayed in Fig. 10.2. Their model is
based on the controversial yet common assumption in neuroscience (see e.g. Vlaev
et al. 2011) that the final neural representation of value uses a single ‘neural
currency’. According to this model, in a first step information from all cortical and
all subcortical structures is processed and aggregated into a single value. This first
step identifies the expected utility of external stimuli using incoming sensory
information and internal signals (e.g. satiety). In a second step, this aggregate utility
estimate is combined with the same initial sensory and internal stimuli to make a
final choice through a motor control circuitry. This final choice reveals the good
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with the highest expected utility. The second step can be more or less optimal: for
instance, the food chosen could be determined by product attributes and level of
hunger, but the colour of the package and the level of hunger may also have a direct
influence on the final choice.

These models identify a general process of choice and value integration, but do
not illuminate how mixed prospects are evaluated. The first published empirical
work in cognitive neuroscience examining the assumption of a simple additive
utility of costs and benefits is Talmi et al. (2009). They tested non-additive valu-
ation by comparing the fit of two models, one additive (as in Eq. 10.3) and one
non-additive (as in Eq. 10.4), to the same set of behavioural and neural data. In the
experiment, participants were offered choices that incorporated simultaneous
rewarding and punishing consequences, namely monetary gain (a benefit) and
physical pain (a cost) (Fig. 10.3). The paradigm required participants to ‘accept’ or
‘reject’ a series of offers comprising of mixtures of costs and benefits; outcomes
were delivered at a specified percentage of times, and levels of monetary reward
were manipulated parametrically. The experimental design enabled testing whether
pain attenuates the neural representation of reward, providing evidence for a sig-
nificant interaction between costs and benefits. However, the study did not explore
the impact of reward on the neural representation of pain.

The effect of the interaction term on choice can be observed in the drift function
portrayed in Fig. 10.4 from Talmi et al. (2009). This figure represents the path
leading to a choice for an individual participant. Circles represent empirical data on

Fig. 10.2 Neuroscientific
model of choice. Source:
Levy and Glimcher (2012).
Note: 1 vmPFC; 2 OFC; 3
DLPFC; 4 insula; 5 primary
motor cortex (M1);
6 posterior parietal cortex; 7
frontal eye fields; 8 visual
cortex; 9 amygdala; 10
striatum
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choice frequency (a function of money offered and pain), while line graphs rep-
resent modelled choices for pain in the additive (left) and interactive (right) models.
Black refers to trials where the stimulation was painful, and gray refers to trials
where the stimulation was mild. The interactive model allows for a change in the
slope of the sigmoid function caused by pain, while the additive effect of pain is
only a rightward horizontal shift. Figure 10.4 clearly shows that the additive model
was a better predictor of choice for this individual, a result supported by statistical
tests of model fit across the whole sample (see Talmi et al. 2009, for more detail and
interesting individual differences).

Fig. 10.3 Experimental task
requiring the trade-off
between pain and money.
Source Talmi et al. (2009)

Fig. 10.4 Empirical and
modelled choice behaviour
for a single participant.
Source Talmi et al. (2009)
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Talmi et al. (2009) supported the interactive model by demonstrating that the
interaction of costs and benefits engaged a brain system implicated in value learning
(dopaminergic target structures), namely the ventral striatum, which is thought to be
involved in reinforcement learning when processing appetitive (O’Doherty et al.
2004; Tobler et al. 2007) as well as aversive (Iordanova et al. 2006; Hoebel et al.
2007) outcomes. It also engaged the subgenual ACC, which processes optimal
decisions as well as appetitive and aversive choice (Walton et al. 2007), and works
with the ventral striatum in the valuation of costs and benefits in rats (e.g. Salamone
and Correa 2002; Walton et al. 2003; Schweimer et al. 2005).

Some of Talmi et al.’s (2009) results have been independently replicated by Park
et al. (2011). Both studies find that the interactive model is superior to an additive
model in modelling observed behaviour. However, while Talmi et al. (2009) only
modelled a linear utility function u, Park et al. (2011) compared linear and non-
linear utility functions, showing that the interaction term contributes significantly to
explaining behaviour only when utility is modelled linearly. Nevertheless, their
neurobiological data also fit the interactive model better than the additive model
regardless of the utility function used. Finally, Prevost et al. (2010) also provide
supporting evidence for the behavioural and neural interaction between costs and
benefits in a study where participants were invited to exert physical effort in order to
gain erotic pleasure. The functional form of the interaction term in Prevost et al.
(2010) differed from Talmi et al. (2009) and Park et al. (2011), as did the neural
substrate serving this interaction, a discrepancy that deserves further research.
Strikingly, only a handful of studies on cost–benefit analysis in cognitive neuro-
science engaged in model comparison, but those who tested the interaction of costs
and benefits found clear supporting evidence.

The paradigms in the three neuroeconomic studies reviewed in this section were
somehow limited: they focused on a single type of cost (pain or effort); and the
model-comparison exercise used a limited number of functional forms for the utility
function u(�). Furthermore, results are based on experimental evidence, hence
limited by the absence of real-world equivalents. Nonetheless, these works open
future research on the interaction between costs and benefits. For instance, research
can expose participants to a differentiated series of consequential real-world deci-
sions that include both primary reinforcers (either positive, e.g. food; or negative,
e.g. pain) and secondary reinforcers (e.g. money), which recruit different brain
systems (Dreher 2012), to test for possible differences in their interaction.
Regrettably, neuroeconomic experiments require expensive data collection, inevi-
tably slowing the pace of current research. Furthermore, the typical use of time
delay between the decision and outcome delivery (Kurniawan et al. 2010; Park et al.
2011), employed to separate the neural signal of valuation from the neural
processing of outcomes, alters the value of prospects (Loewenstein 1987), a limit to
the practical implementation of Eq. (10.4) that should be addressed in future
research.
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10.4 Cost, Benefits, and Their Interaction
in Microeconomic Models of Consumer Behaviour

The previous section discussed its influence on behavioural and neurobiological
data from a neuroscientific perspective. This section discusses the microecono-
metric side of mixed prospects and how the interaction between costs and benefits
can best be incorporated in econometric analysis, with a focus on models of utility
such as choice models. In particular, the objective is to understand the implications
of neuroscientific research for econometric models of consumer behaviour, which
describe how consumers make decisions by trading-off attributes. This extension of
modelling can be of interest to several areas of research concerned on consumption,
such as for instance environmental public policy and sustainable consumption,
which is discussed in a separate box.

To understand the microeconomic problem, imagine a consumer j of demo-
graphic Dj considering several options where each option i is characterised by
monetary or non-monetary costs Ci and benefits Bi. In a generic utility function as
in Eq. (10.1), the utility derived by consumer j from option i corresponds to a
deterministic (observable) component Vij, and a random (unobservable) component
νij (see e.g. Burton et al. 2001), as

UijðBi;Ci;DjÞ ¼ VijðBi;CiÞþ mijðBi;Ci;DjÞ ð10:6Þ

Consumers trade-off between costs and benefits (given personal preferences) and
choose the option with the highest utility. In a two-option set, the probability of
consumer j choosing option 1 is

P½ðVj1 þ mj1Þ�[P½ðVj2 þ mj2Þ� ð10:7aÞ

which implies

P½ðVj1 � Vj2Þ�[P½ðmj2 � mj1Þ� ð10:7bÞ

Consumers then choose option 1 whenever the difference in deterministic utility
is larger than the difference in random utility. The same result applies for larger
choice sets.

Assuming random coefficients (consistent with Eq. 10.7b), the utility function of
a consumer can be modelled using a Random Parameter Logit model2 (RPL) (see
Berry 1994). In the case of independence of costs and benefits (as in Eq. 10.4),
utility corresponds to

2The RPL is a general choice model used in applied econometrics. The utility function used to
estimate demand parameters can be simplified on the basis of the assumption made by the
investigator (e.g. nested logit, conditional logit, simple logit). See Berry (1994).

178 L. Panzone and D. Talmi



Uij ¼ a0;j � Cij þ a1;j � Bij þ eij ð10:8Þ

where for each of the k coefficients ak;j ¼ �ak þ dk � Dj þ rk � ek;j, and eij and ek;j are
residuals. Equation (10.8) assumes that the utility u(�) from Eq. (10.4) is linear for
both costs and benefits, but more general options can be also applied. In a binary
decision (buy versus no-buy), utility can be derived as choice probability and
reveals the point with the highest utility as3

Uij ¼ 1 if 0\U�
ij\þ1

Uij ¼ 0 if �1\U�
ij � 0 ð10:9Þ

so that the probability terms xð�Þ in Eq. (10.3) are captured in the coefficients. To
relax the assumption of independence of C and B, Eq. (10.8) can be extended to
include an interaction term as in Eq. (10.4), to obtain the regression

Uij ¼ a0;j � Cij þ a1;j � Bij þ a2;j � ðBij � CijÞþ eij ð10:10Þ

where ak;j ¼ �ak þ dk � Dj þ rk � ek;j. Noticeably, interaction terms should always
accompany main terms to avoid omitted variable bias, and the possible endogeneity
of C or B is treated using usual econometric methods (see Ozer-Balli and Sorensen
2010).

Interactions between independent variables are not infrequent in applied econo-
metric models of utility (both choice models and contingent valuations). However,
these models tend to treat costs as a single variable (price), while benefits (quality)
are disaggregated into a variety of benefits. For instance, the quality of a refrigerator
is not included as a single measure, but as a matrix of variables representing its
product characteristics (e.g. energy-efficiency class, size, colour, brand). Thus, the
interaction between product characteristics generally corresponds to reward-reward
interactions and captures synergies between benefits (e.g. the size of a refrigerator
and its efficiency), and makes no reference to the literature presented in the previous
section. However, more frequently the difficulty of implementing full factorial
designs in experimental tasks justifies the exclusion of interaction terms, particularly
in light of their relatively low explanatory role observed in linear models (Dawes and
Corrigan 1974; Louviere et al. 2000). However, it remains unclear what conse-
quence their exclusion has on the explanatory power of models of choice.

Importantly, the inclusion of an interaction term allows for a changing marginal
utility of costs and benefits. Equation (10.8) assumes consumers have a constant

marginal utility from costs and benefits equal to @Uij

@Ci
¼ a0;j and @Uij

@Bi
¼ a1;j.

A nonlinear functional form (e.g. logarithmic) for u(�) in Eq. (10.4) would give a
marginal utility changing in its argument (i.e. a marginal utility of costs depending
on costs), but with no impact on the independence assumption. In the interactive

3Contingent valuation methods allow the inclusion of a scale of probability in Eq. (10.9) to
account for hypothetical bias (see Wang 1997).
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model of Eq. (10.10), the marginal utility of costs depends on the benefits and that

of benefits depends on costs: these equal, respectively, @Uij

@Ci
¼ a0;j þ a2;j � Bi and

@Uij

@Bi
¼ a1;j þ a2;j � Ci. This difference implies a different MRS: it is constant and

equal to MRSB;C ¼ a1;j
a0;j

in an additive model; while in an interactive model it cor-

responds to MRSB;C ¼ a1;j þ a2;j�Ci

a0;j þ a2;j�Bi
. Importantly, while economic theory expects

a0\0 and a1 [ 0, the sign of the marginal utility and MRS in an interactive model
depends also on a2 and on the level of costs and benefits observed. Note that for
purely monetary costs, the absolute value of the MRS measures the marginal
willingness to pay for B.

Figure 10.5 explores the economic meaning of an interaction term. In the figure,
δ refers to the marginal utility of the combination of costs and benefits, and the sum
of the δs in a diagonal equals the coefficient a2 of Eq. (10.10). In particular, a
negative interaction term indicates a movement along the δB–δC axis and a negative
synergy between costs and benefits: the marginal utility of a benefit declines with
increasing costs and vice versa. On the contrary, a positive interaction term cor-
responds to a movement along the δA–δD axis and a positive synergy of costs and
benefits: the marginal utility of benefits increases or decreases together with costs.
Each individual component δ can be identified by an appropriate experimental
design that separately assesses consumer response in each of the four conditions in
Fig. 10.5 through, for instance, a choice experiment.

To understand the practical implications of these considerations, take a consumer
who is contemplating the trade-off between energy-efficiency (benefit) and the price
premium (cost) associated with the label in the market for efficient refrigerators.
Coefficients of costs and benefits in both the additive and the interactive models
(10.8) and (10.10) indicate a negative contribution of the price premium alone
(a0;j\0) and a positive contribution of the energy-efficiency label alone (a1;j [ 0)
(see Ward et al. 2011). The interaction term would indicate the relation between
these attributes, which is possibly negative: individuals with high utility for energy
efficiency would probably show a low sensitivity to the market premium required
(δC); similarly, consumers with high utility from money (low-income households)
would give low value to technology (δB).

Figures 10.6 and 10.7 show the difference in results using the parameters esti-
mated for energy-efficient refrigerators in Ward et al. (2011), i.e. α0 = −0.008

C
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Benefits

High Low

High δA δB

Low δC δD

Fig. 10.5 Possible
combinations of an interaction
between costs and benefits
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(for price) and α1 = 2.146 (for the efficiency label). Ward et al. (2011) report no
interaction term, so the simulation uses an arbitrary value α2 = −0.001. Intervals
chosen for the axis account for the nature of the experimental task in Ward et al.
(2011): they use a dummy variable for the label, going from zero to one; and they
use a price going just above $1000. Figures 10.6a and 10.6b show that the additive
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models. a Additive model. b Interactive model. Note Estimates based on α0 = −0.008, α1 = 2.146,
and α2 = −0.001
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model imposes a constant marginal utility, while in an interactive model the mar-
ginal utility declines as costs and benefits increase. Similarly, Fig. 10.7 shows on a
tri-dimensional space how the MRS changes for varying levels of price and label.
Again, while this value is constant for an additive model (a flat surface), it varies for
the interactive model. A change in the coefficient α2 could give substantially dif-
ferent figures from those presented here, but would not modify the essence of the
argument.

Using an interaction term for costs and benefits comes with two main difficulties
in the empirical application. First, consumer models treat C as a single variable
(price) and B as a matrix of product characteristics (a proxy for quality). An
important reason for this practice is the need to observe the economic trade-off
between goods and money, particularly with the objective of measuring willingness
to pay through the MRS. However, consumers face a series of non-monetary losses
alongside price, such as for example effort, which needs to be included in a matrix
of costs C. This point applies for instance to the decision to purchase readily
prepared vegetables against the natural product, which require different levels of
effort and preparation time once price is considered. The vector C in this case
includes as costly characteristics price as well as the effort required (e.g. in time
terms) to prepare the vegetables for consumption. This distinction between costs
and benefits should be clearly outlined in modelling exercises, to provide a fruitful
understanding of results from a behavioural perspective besides the pure econo-
metric viewpoint.

A second limitation is the difficulty in the ex-ante classification of product char-
acteristics as costs or benefits, which is not always straightforward in an empirical
analysis of market behaviour. For instance, organic can be viewed as a benefit for its
impact on food quality and as a cost because of its possible implications on global
food security. Similarly, energy-efficiency can be seen as a benefit in terms of energy
conservation, but can be seen as a cost whenever the change in standard requires an
effortful change in behaviour (e.g. an energy-efficient machine requiring
low-temperature wash) or adaptation (e.g. the longer warm-up time of energy-
efficient lightbulbs). These differences can be rarely separated into two different
coefficients, causing difficulties in the identification of the impact on consumers. This
complication implies the definition of a correct interaction between costs and benefits
might not always be straightforward to define, and in some instances might require
preliminary exploratory research, for instance through a qualitative analysis, to fully
understand consumer perception of a specific characteristic.

The Interaction Term and Environmental Public Policy
As described in the main text of this chapter, the inclusion of a term to
account for the interaction for costs and benefits can provide a more complete
representation of consumer behaviour. Research in behavioural science to
date has typically explored the trade-off between private goods, for instance
pain or effort versus money or pleasure (Park et al. 2011; Prevost et al. 2010;
Talmi et al. 2009). A rather unexplored area of research regards choices
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requiring a trade-off between public and private goods, a concern to envi-
ronmental economists and policymakers. For instance, a consumer deciding
whether to recycle trades the environmental improvement (a public good)
against a loss of time (a private good). Public goods are an important feature
of consumption because the individual making a choice or behaviour does not
fully pay for, or benefit from, the consequences of his negligence or
thoughtfulness, sharing them instead with the society. As an example, a firm
discharging toxic waste (a private good) in a river (a public good) causes an
environmental damage that primarily affects other individuals using the river
(e.g. fishermen, swimmers, kayakers, etc.). Noticeably, shared recipients or
victims could be very distant in both space and time.

Environmental public policy aims to preserve the environment as a public
good. In particular, to change behaviour in a desirable direction, policies need
to increase individuals’ intrinsic motivation for the preservation of the public
good, changing their implicit attitudes (Beattie and Sale 2011) and intrinsic
values (Blankenship et al. 2012). To achieve its objective, public policy uses
specific instruments (e.g. a subsidy, a tax, a ban or a penalty) in order to increase
the individual benefits from socially desirable actions, or increase the costs of
socially undesirable actions of firms and consumers (Gneezy et al. 2011).
However, these instruments are often designed without clear consideration of
the behavioural implications (Gneezy et al. 2011). For instance, earlier research
established that extrinsic rewards such as prizes decrease long-term intrinsic
motivation and effort; while intrinsic rewards such as personal satisfaction
increase long-term intrinsic motivation (Gneezy et al. 2011; Kaplan and
Oudeyer 2007). Similarly, there is generally no attention to the interaction
between costs and benefits in the empirical evaluation of a policy instrument.

An understanding of the role of costs and benefits in consumer utility is
crucial for a correct use of economic policy instruments to address environ-
mental consumption. In fact, cost–benefit decisions lead to an internal conflict
because a person’s goal to achieve the benefit may clash with the goal of
avoiding the cost (Locke et al. 1994), leading to high physiological arousal
(Talmi et al. 2009). Because policy instruments directly influence costs and
benefits, the way consumers integrate them into a value will have conse-
quences to the consequent effectiveness of the policy. As an example, a carbon
tax on meat decreases the utility from its consumption by increasing the price
of purchase against a positive utility for the environmental benefit. However,
the marginal utility of the effort in consumers with high preferences for the
environmental sustainability benefit would be expected to increase with the
price. In other words, an environmentally sensitive consumer may react pos-
itively to the tax when this is targeting a good like meat with a high carbon
footprint, showing a positive interaction that is only captured through the term
a2;i in Eq. (10.10). The extent to which recent findings in neuroscience on
private goods can apply to environmental policy requires further research.
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10.5 Conclusions

A quote attributed to G.E.P. Box states that “All models are wrong, but some are
useful” (a thought brought forward also in Box 1976). In fact, while the large
amount of quantitative data available in the current information age stimulates the
creative development of behavioural model of choice and decision-making, those
do not always incorporate the underlying neurobiological mechanisms. This limi-
tation detracts from the ability of such models to inform policy and research.
Particularly, although neuroscience developed a good understanding of how the
brain represents pleasure and pain separately, there is relatively little knowledge on
how they are integrated into a final utility function, and how they lead to decisions
and choices. While the prevalent strategy in the presence of mixed outcomes is to
model the impact of costs and benefits independently, cognitive neuroscience
indicates that costs and benefits interact. This chapter shows that the potential gain
from this area of research to decision-making science is a transformation of the way
cost–benefit analysis research is conducted in humans and animals, particularly
integrating interdisciplinary knowledge from economics and cognitive
neuroscience.

The valuation of mixed prospects is of great interest to cognitive neuroscientists,
a point made evident in a large body of work on this topic. Despite the potential
synergy of economics and neuroscience in the development of neuroeconomics
(Camerer et al. 2004, 2005), neuroscience has seen the greater influence in the field,
while economics has so far struggled to incorporate the recent developments on
how the brain makes decisions into appropriate modelling. Applied economic
research often assumes additive integration of costs and benefits out of conve-
nience, without questioning the validity of this assumption. Instead, economics
could benefit from the integration of experimental psychological findings into
economic models of human decision-making. The discussion presented in this
chapter provides an overview of the benefits from incorporating interaction terms
through simulated data. Applying this model can be done in a straightforward
manner through the collection of primary data or through the observation of market
behaviour, a task left for future research.

More generally, future research should aim at better understanding of the
functional form of utility, exploring and improving the validity and robustness of
existing models. In particular, more attention should be given to the potential
interactions between costs and benefits, and to the influence of perceived risk
(outcome probability), as well as to delay (time between decision and outcome) on
costs, benefits and their interaction. Neuroscientific research should aim at gener-
alising the current Von Neumann–Morgensten type of utility function while sup-
porting functional needs that comply with economic theory, rooting economic
behaviour in biology. We hope that this chapter will prove useful by providing an
understanding the status quo of current research, and outlining areas of research that
require further exploration. In fact, the overall objective of this chapter is to enhance
the understanding of economics, neuroscience, as well as their interaction.
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Part IV
Decision Making in Social Contexts



Chapter 11
Individual Differences in Decision-Making:
A Neural Trait Approach to Study Sources
of Behavioral Heterogeneity

Kyle Nash and Daria Knoch

Abstract People display rich heterogeneity in decision-making, but from where do
these individual differences originate? And what are the processes that underlie
decision-making heterogeneity? In this chapter, we explore a ‘neural trait approach’
in which neuroscience measures of meaningful dispositional differences are used to
illuminate the sources of variability in decision-making. We begin by outlining the
neural trait approach, with a focus on two methods: resting state electroen-
cephalography and structural magnetic resonance imaging. Next, we review inno-
vative studies that have used these methodologies to explore time and social
preferences in decision-making. We then outline future research considerations and
close by discussing certain opportunities and challenges afforded by this research
and the neural trait approach in general.

11.1 Introduction

Behavioral heterogeneity in decision-making is ubiquitous. One person struggles
with temptation and another effortlessly resists the same enticement. One individual
takes a bold risk and another person eschews tempting chance. One person shows
charity and another shows little to no regard for others. Given the same choices in
the same situation, it is relatively assured that people will not act uniformly and will
instead display a rich variety of responses. Economic models of decision-making,
however, primarily describe the ways in which the average person will approach a
given choice (Sanfey 2007; Smith and Huettel 2010; Wischniewski et al. 2009).
Such an approach is uniquely capable of revealing general processes in
decision-making and has been immensely powerful in predicting behavior across
groups (Camerer 2003). Given the manifest heterogeneity of behavior, though,
individual differences have been somewhat underemphasized and represent a ‘final
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frontier’ that, if explored, can deepen our understanding of decision-making pro-
cesses (Appelt et al. 2011; Braver et al. 2010; Heatherton 2011; Kanai and Rees
2011; Levallois et al. 2012; Wischniewski et al. 2009). Key questions include:
From where do these (often stark) differences in decision-making originate? And
once these sources are discovered, what can be inferred about the psychological
processes that lead to such behavioral heterogeneity?

Prior work on individual differences in economic decision-making has often
focused on conceptually relevant personality traits. Notable traits include the Big 5
(Becker et al. 2012; Kurzban and Houser 2001; Lu and Argyle 1991), behavioral
inhibition and behavioral activation systems (BIS and BAS, respectively; Carver
and White 1994; Scheres and Sanfey 2006), Machiavellianism (Christie and Geis
1970; Spitzer et al. 2007; Wilson et al. 1998) and social value orientation (Van
Lange 1999, 2000). For example, Scheres and Sanfey (2006) examined whether
BIS (trait aversive motivation) and BAS (trait approach motivation) predicted
behavior in the Dictator game (DG) and the Ultimatum game (UG). They found that
trait levels of approach motivation amongst proposers predicted a strategic shift
from low offers in the DG to higher, even-split offers in the UG (Scheres and Sanfey
2006). People scoring high on Machiavellianism prefer exploitative over cooper-
ative strategies (Wilson et al. 1998), such as opportunistic defection in a bargaining
game (Gunnthorsdottir et al. 2002). And a recent study by Becker et al. (2012)
found that Big 5 traits in general showed small degrees of association with classic
economic preferences, including patience, risk, positive and negative reciprocity,
trust in others, and altruistic tendencies.

These and many other studies have shown that variance in decision-making
behavior can be partially explained by personality trait questionnaires. However,
this approach is not without certain limitations. Questionnaire research is somewhat
restricted by the degree to which people can access and accurately judge personality
processes. For example, in the classic paper by Nisbett and Wilson (1977), people
demonstrated that they are sometimes unaware of stimuli that lead to their behavior,
unaware of the behavior itself, and unaware of the stimulus → behavior link.
Essentially, people may not know why they act in certain ways, which poses a large
problem for self-report. Additionally, self-report is vulnerable to bias. People tend
to respond in socially desirable ways, may respond randomly, and may change their
responses based on their estimation of an experiment’s purpose (Edwards 1957;
Nichols and Maner 2008). Finally, personality measurements that precede depen-
dent variable measurements could introduce statistical noise. For example, people
who fill out questionnaires that make certain preferences more salient may act
differently in subsequent economic games. Conversely, people who play an eco-
nomic game may respond differently on subsequent questionnaires.

As an alternative to the questionnaire, we hold that neuroscience methods
uniquely allow for objective measurement of meaningful dispositional differences
that could shed light on the sources of variability in decision-making, particularly in
terms of key economic preferences (Berkman and Falk 2013; Kanai and Rees 2011;
Levallois et al. 2012). This chapter, which details the neural trait approach in
neuroeconomics, is composed of four sections. The first outlines the neural trait
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approach. The second section highlights contemporary studies that have specifically
utilized the neural trait approach to explore preferences in decision-making. The
third section highlights future research considerations on the neural trait approach to
individual differences in decision-making. The final section outlines certain
opportunities and challenges afforded by this research and the neural trait approach
in general.

11.2 The Neural Trait Approach

We define a neural trait as a quantifiable brain-based characteristic that is stable
over time and capable of influencing economic and/or social preferences. In the
field of neuroeconomics, most studies that have employed the neural trait approach
have focused on the characteristics of brain structure or resting state brain activity.
Generally, the neural trait approach involves two steps; (1) indexing
task-independent, brain-based differences and (2) examining whether these neural
trait indices predict behavior in decision-making or processes directly relevant to
decision-making. The first and most salient objective of this approach is to deter-
mine sources of behavioral heterogeneity (Braver et al. 2010; Kanai and Rees
2011). As previously stated, economic models of decision-making typically
describe aggregate behavior across individuals (Levallois et al. 2012; Scheres and
Sanfey 2006; Wischniewski et al. 2009). However, individuals can evidence quite
divergent behavior in the same scenarios. Smith and Huettel (2010) note that even
in Kahneman and Tversky’s (1979) work on decision-making biases, sizable
minorities within their sample displayed behavior that directly opposed funda-
mental decision-making phenomena. Traits, and neural traits in particular, can
explain this remarkable amount of variance in decision-making. The second
objective of the neural trait approach is to add an additional level of analysis that
can supplement and be informed by task-dependent analyses of neural and psy-
chological processes (Berkman and Falk 2013). Based on prior literature it can be
stated that neural traits can help researchers infer why differences in
decision-making may occur (though interpretation should be cautious, see the
Cautions and Implications section below). In sum, neural traits associated with
certain functions can demonstrate how and suggest why people differ in their
preferences.

11.3 Neural Trait Measurement

What makes an effective neural trait measure, then? We suggest that such a measure
must meet certain criteria. First, to be able to capture dispositional differences the
neural trait must be stable over time. For example, the measure should demonstrate
high test–retest reliability. Second, the measure should be unique or specific to that
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individual, or, in other words, highly capable of recognizing a person based on the
measure.

We focus on two methods that thoroughly fulfill these criteria and have been
used in neuroeconomic research. The first is resting state electroencephalographic
(rsEEG) activity (for a general description of the EEG method see the chapter of
Debener et al. in this book). Essentially, this method involves recording brain
electrical activity on the scalp when the participant is at rest (as little as 2 min of
recording is needed). As such, rsEEG reflects baseline patterns of brain activity that
are not related to any particular task. Within neural trait research, rsEEG is typically
analyzed by computing power values for different frequency bands. Importantly,
these frequency-based measures of resting EEG activity are relatively stable in the
adult brain, revealing test–retest reliabilities of up to 0.8 over a period of 5 years
(Dunki et al. 2000; Näpflin et al. 2007), are heritable (estimates ranging from 70 to
96 % heritability; see de Geus 2010; Smit et al. 2008; van’t Ent et al. 2009; Zietsch
et al. 2007), and are unique or specific to the individual (i.e., it is possible to predict
who the individual is based on the particular pattern of EEG activity—at up to a
99 % recognition rate; Dunki et al. 2000; Näpflin et al. 2007). These findings
comprehensively demonstrate that rsEEG can effectively capture dispositional
differences in neural functioning. Additionally, rsEEG overcomes a significant
limitation of neuroscience research—one that is particularly germane to individual
difference research: the limitation of small sample size (Button et al. 2013). Larger
sample sizes are needed to detect individual sources of variability, and rsEEG is a
relatively inexpensive and efficient neuroscience method.

The second measure that fulfills the criteria for a good neural trait is structural
magnetic resonance imaging (MRI) of brain anatomy (for a general description of
the MRI method see the chapters 8c (fMRI), 8d (VBM), and 8e (DTI) in this book).
Neuroanatomical differences can be quantified through measuring and analyzing
MRI data (i.e., high resolution images of the brain) with gray-matter approaches
(such as voxel based morphometry, VBM, or vertex-based analyses, for example
with the freesurfer image analysis suite) and white-matter approaches (such as
diffusion tensor imaging, DTI). Whereas gray-matter approaches typically yield
regionally specific estimations of cortical/subcortical volume, thickness, or surface
area (Ashburner and Friston 2000), white-matter approaches quantify features of the
neural connections or pathways in the brain (Basser 1995). The basic notion behind
both gray- and white-matter approaches is that these brain differences reflect dif-
ferent functional or processing capacity (Boyke et al. 2008; DeYoung et al. 2010).
Unsurprisingly, cortical volume (i.e., the combination of cortical thickness and
surface area) is highly stable in the adult brain (DeYoung et al. 2010; Han et al.
2006), heritable (estimates ranging from 80 % heritability; Thompson et al. 2001;
Panizzon et al. 2009) and highly specific to the individual (Mechelli et al. 2005).
White-matter outcome variables have also demonstrated excellent test–retest reli-
ability (Benson et al. 2007; Buechel et al. 2004) and are highly heritable too
(estimates from 75 to 90 % heritability; Chiang et al. 2009). Much like resting
EEG, then, structural MRI measures are ideal to quantify brain-based
inter-individual differences (Kanai and Rees 2011). Moreover, structural
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measures have the added benefit of being able to image cortical and subcortical
anatomy with a high degree of spatial precision.

Research utilizing the neural trait approach, either with rsEEG or with structural
MRI, carries with it further advantages. First, because resting EEG and structural
MRI can be measured separately from behavioral performance, researchers can then
measure behavioral performance in more ecologically valid environments—that is,
outside of the MRI scanner or without being hooked up to EEG-electrodes.
Relatedly, the separation of behavioral measurement from neural measurement
permits multiple tasks to be administered to the same set of subjects. Therefore, it is
distinctively possible to link superficially different preferences, such as risk, time,
and social preferences, to some common neural circuitry and/or common psycho-
logical process.

11.4 Neural Trait Research and Decision-Making

In this section, we review a number of studies that applied the neural trait approach
to investigate the sources of individual differences in economic decision-making.
Note that the following explication is not exhaustive. We instead focus on con-
temporary research that has utilized the neural trait approach to investigate sig-
nificant preferences in economic decision-making; namely time preferences and
social preferences.

11.4.1 Time Preferences

Time preferences describe the degree to which a person favors rewards or behav-
ioral options as a function of time (Berns et al. 2007). Generally, people overlook or
‘discount’ future rewards in favor of smaller, sooner rewards, depending on the
amount of delay of the future reward. A reduced preference for sooner rewards is
critical in forgoing immediate temptations to reach longer term goals (Casey et al.
2011; Mischel et al. 2011). Time preferences are highly variable across individuals
(Peters and Büchel 2011). Moreover, such individual differences in time preference
are stable and predict a wide range of impulsive, yet consequential, every-day
behaviors, like smoking, infidelity, and food consumption (Beck and Triplett 2009;
Casey et al. 2011; Mischel et al. 2011; Reimers et al. 2009). However, relatively
little is known about the sources of these individual differences (Olson et al. 2009;
Peters and Büchel 2011; Shamosh et al. 2008). Thus, the neural trait approach
appears well suited to explore such heterogeneity, as was demonstrated in a recent
study by Gianotti et al. (2012). In this study, participants first had resting EEG
activity measured. After, participants completed a task in which they made a series
of decisions between smaller–sooner rewards and later–larger rewards that differed
in magnitude and delay. In their analyses, the researchers used a source localization
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technique to identify the brain regions that generated the rsEEG activity
(sLORETA; Pascual-Marqui 2002) and correlated this estimated neural activity
with time preferences. Results demonstrated that approximately 14 % of the vari-
ance in time preferences was explained by rsEEG source localized to the left
DLPFC. Specifically, lower levels of baseline activity in this region were associated
with increased delay discounting (see Fig. 11.1). Thus, in using a task-independent
measure of baseline neural activity, which allowed quantification of a trait-like
neural signature of each individual’s brain function at rest, the authors were able to
explain a sizable degree of heterogeneity in intertemporal choice. Notably, this is
not the only example of using the neural trait approach to predict time preferences.
Bjork et al. (2009) employed structural MRI to measure gray matter volume in
prefrontal regions to determine whether anatomical differences in the PFC predict
behavioral heterogeneity in a similar measure of time preference. Mirroring the
resting EEG findings, Bjork et al. (2009) found that a greater degree of delay
discounting was associated with reduced PFC cortical volume, including reduced
volume in lateral PFC regions. Similarly, Yu (2012) used whole-brain voxel-based
morphometric analysis to examine white-matter volume and time preferences.
Results demonstrated that delay discounting was negatively associated with lateral
PFC subgyral white-matter volume and positively correlated with
parahippocampal/hippocampal white-matter volume. Olson et al. (2009) used a
similar method and examined the relationship between delay discounting and
white-matter integrity using DTI. They found that delay discounting was negatively
associated with increased white-matter integrity in several regions, including lateral

Fig. 11.1 Adapted from Gianotti et al. (2012): On the left the graph shows the significant
correlation between delay discount rate and beta 3 activity level in the DLPFC assessed by rsEEG.
Beta 3 activity is associated with increased cortical activity. Higher numbers on the Y-axis indicate
higher delay discounting rates and higher numbers on the X-axis indicate higher levels of resting
brain activity in left DLPFC. On the right locations of the voxels that showed negative significant
correlations are indicated in red in a sagittal view of the brain. A anterior; P posterior
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PFC regions (Olson et al. 2009). In all four studies, then, higher lateral PFC
functioning capacity (increased resting activity, cortical volume, white-matter
volume, and white-matter integrity) predicted lower levels of delay discounting.
These resting EEG and structural results are further complimentary with studies that
have experimentally modulated lateral PFC functioning. For example, reducing
activity in the left lateral PFC through transcranial magnetic stimulation (TMS)
causes an increase in delay discounting (Figner et al. 2010). Because this region has
been related to self-control in other decision-making processes, these findings thus
converge to support speculation that dispositional differences in the lateral PFC
might reflect differences in a more general ‘self-control capacity’ (p. 6, Gianotti
et al. 2012).

11.4.2 Social Preferences

Social preferences are predominantly defined as the degree to which an individual
positively or negatively accounts for the well-being or material gains and losses of
other people (Fehr 2009). A large body of research demonstrates that people are
heterogeneous in their social preferences, including preferences for cooperation
(Fehr and Gächter 2000), rejection of unfair offers (Güth 1995; Roth 1995), and
altruism (Andreoni and Miller 2002). For example, the DG is regarded as a puta-
tively ‘pure’ measure of prosocial preference (Camerer and Fehr 2002; for an
introduction into behavioral economic games see the Chap. 2 by Civai and Hawes
in this book). In this game, roughly 80 % of proposers do offer more than nothing
to their interaction partner and up to 20 % offer an even-split (Forsythe et al. 1994),
indicating a wide range of social preferences. In the UG, modal offers tend toward a
fair split, yet the mean offer is typically around 40 %, again indicating significant
individual variation (Camerer 2003). We thus turn to neural trait research that has
begun to delve into the sources of heterogeneity in social preferences.

11.4.3 Prosocial Behavior and Altruism

Often defined as behavior that benefits another individual or group at a personal
cost to the actor (Camerer 2003; Fehr and Fischbacher 2003; Henrich et al. 2006),
altruism is a strong other-regarding tendency as a large proportion of people help
unrelated strangers (Camerer 2003). However, such altruistic yet costly behavior is
characterized by ‘enormous individual heterogeneity’ (p. 73, Morishima et al.
2012). For example, Andreoni and Miller (2002) found that people could be
classified into three very different groups based on behavior in a modified DG; a
purely selfish group, a more strategic group, and a fair group. Similarly, Kurzban
and Houser (2005) found that 63 % of players in a public goods game could be
classified as conditional cooperators, 13 % as altruists, and 20 % as selfish
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free-riders. Nonetheless, variables such as sex, wealth, age, and education are poor
predictors of individual differences in altruistic behavior (Camerer 2003; Henrich
et al. 2006). To fill this empirical gap, Morishima et al. (2012) used structural MRI
to explore whether anatomical differences in the temporo-parietal junction
(TPJ) predicted individual differences in altruism, as measured with dictator and
reciprocity games. The TPJ has been repeatedly linked to perspective-taking—the
ability to account for other peoples’ thoughts, emotions, and goals (Saxe and
Kanwisher 2005; Young et al. 2010). Differences in TPJ structure, and thereby
differences in perspective-taking, were hypothesized to predict altruism, as mea-
sured with a game in which participants allocated money between themselves and
an anonymous partner. The researchers found that increased TPJ volume predicted
an increased tendency to act altruistically (i.e., assign money to their partner at a
personal cost), particularly in situations when the participant was in an advanta-
geous position relative to other individuals (Morishima et al. 2012). Thus, this study
not only provided a link between individual differences in brain structure to pref-
erences for altruism, but it also suggests that altruism is dependent upon an indi-
vidual’s capacity to engage in perspective-taking, as evidenced by TPJ volume.

11.4.4 Costly Punishment

The threat of punishment plays an important role in norm compliance. A key reason
that the threat of punishment is so effective is that many people are willing to
enforce the fairness norm by delivering punishment, even at a cost (Fehr and
Gächter 2000). Unsurprisingly, given that such behavior requires sacrifice, pref-
erences for costly punishment behavior are characterized by significant variation
(Herrmann et al. 2008). For example, Fischbacher et al. (2013) used a unique
approach in which they examined responders’ reaction times to decisions made in a
modified UG to characterize heterogeneity in costly punishment behavior. They
found that strictly selfish respondents and respondents who displayed social pref-
erences showed distinct reaction times to unkind and unfair offers. This empirically
demonstrates a large degree of heterogeneity in costly punishment behavior.
Findings from the few attempts to explain sources of such behavioral heterogeneity
have been mixed, however. Gender, income, wealth, and education have low
predictive power that varies strongly according to the idiosyncrasies of the different
study designs (Camerer, 2003). On the other hand, up to 40 % of variation in costly
punishment behavior can be attributed to genetic components (Wallace et al. 2007),
hinting that stable and objective dispositional differences might be uniquely capable
of explaining heterogeneity in costly punishment. Knoch et al. (2010) thus utilized
the neural trait approach to index such stable and objective differences. In their
study, participants first had rsEEG activity measured. After, participants then played
as the responder in the UG. As the responder, participants accepted or rejected a
proposed division of 20 CHF from 12 anonymous, ostensibly different interaction
partners. A rejection ensures that both parties get no money at all. Thus, the
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responder can punish the proposer, but at a personal cost. Knoch et al. (2010)
conducted a whole-brain correlational analysis between source localized resting
EEG activity and costly punishment behavior. Results demonstrated that the
propensity to punish was predicted by baseline cortical activity in the right DLPFC.
That is, higher resting state activity in this area predicted higher levels of costly
punishment behavior. Strikingly, this pattern of rsEEG activity explained approx-
imately 50 % of the variance in costly punishment. Because there is considerable
evidence that the lateral PFC is linked to self-control processes (Aron et al. 2003;
Miller and Cohen 2001) and given that costly punishment conflicts with economic
self-interest, the authors surmised that resting state activity in the DLPFC might
predict costly punishment because such activity reflects a capacity to implement
self-control to overcome self-interested choices. This is further supported by brain
stimulation research in which disrupted lateral PFC functioning caused reduced
costly punishment behavior (Baumgartner et al. 2011; Knoch et al. 2008; Knoch
et al. 2006; van’t Wout et al. 2005).

11.4.5 Impartiality and Intergroup Bias

People can and do act with impartiality. This is certainly not always the case,
however, as ingroup bias or favoritism may be the default response (Brewer 1999).
Thus, behavior in an intergroup context can run the gamut from fierce parochialism
to stoic impartiality. In general, personality measures have been relatively poor
predictors of heterogeneity in impartiality and intergroup bias (Hewstone et al.
2002). To better explain sources of individual differences in the propensity for
impartiality, it would appear that more objective individual markers, as afforded by
the neural trait approach, would be more apposite. Recently, Baumgartner et al.
(2013a, b) examined whether impartiality may be explained by structural differ-
ences in the brain. They used structural MRI and measured impartiality by having
participants—in the role of a third-party—view a series of prisoner’s dilemma
interactions between dyads of ingroup and outgroup members. In this game, the
interacting players simultaneously decided whether to cooperate and transfer points
or defect and keep points which were later turned in for real money. The
‘third-party’ participants viewing the interactions could then deliver punishment (or
not). Administering punishment was costly, as participants had to give up points to
strip the other player of their points. Impartiality was computed as the differences
between punishments of ingroup members versus punishment of outgroup members
in situations of unilateral defection. Intriguingly, Baumgartner et al. (2013a, b)
found that increased dmPFC volume was associated with increased impartiality or
fairness (see Fig. 11.2). In addition, Baumgartner and colleagues used the dmPFC
volume to split participants into three separate groups (low, medium, and high
dmPFC) and examined punishment levels of both ingroup and outgroup defectors.
As expected, these three groups demonstrated strong differences in impartiality.
Those with low dmPFC volumes demonstrated ingroup favoritism (reduced
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punishment of the ingroup) and outgroup prejudice (increased punishment of the
outgroup). Those with medium levels of dmPFC volume demonstrated ingroup
favoritism but not outgroup prejudice. Finally, those with high levels of dmPFC
volume demonstrated equal treatment of ingroup and outgroup defectors (i.e.,
ingroup perpetrators were punished just as strongly as outgroup perpetrators). Thus,
heterogeneity in impartiality was tightly bound to dmPFC volume. These findings
point to a potential psychological mechanism as, much like the TPJ, the dmPFC has
been repeatedly implicated in social cognition and perspective-taking processes
(Adolphs 2003; Van Overwalle 2009). Thus, the ability to overcome ingroup
favoritism and outgroup prejudice may depend on the capacity to engage in
perspective-taking equally for ingroups and outgroups—a capacity that may be
largely determined by dmPFC volume.

11.4.6 Deception

Lying and deception are ubiquitous in social interactions. Typically, people deceive
others for personal gain, but the propensity to deceive is highly variable amongst
individuals (Gino and Pierce 2009; Kashy and DePaulo 1996). Attempts to explain
this heterogeneity have primarily focused on self-reported personality traits (e.g.,

Fig. 11.2 Adapted from Baumgartner et al. (2013a, b): On the left the scatter plot shows the
significant negative correlation between the partiality score and gray-matter volume in the
dorsomedial prefrontal cortex (DMPFC), which is adjusted for several covariates (e.g., age and
brain size, see article for details). High values on the partiality score indicate that third-parties
strongly differed in the punishment of outgroup and ingroup perpetrators, whereas low values
indicate that third-parties demonstrated an impartial punishment pattern, i.e., they equally punished
outgroup and ingroup perpetrators. On the right locations of voxels in the DMPFC that showed
significant negative correlations with the partiality score are indicated in yellow color in a sagittal
view of the brain
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Phillips et al. 2011). However, personality traits tend to have low predictive power
of deception (DePaulo 2004). A neural trait approach might prove a better pre-
dictive tool. As evidence of this, Baumgartner et al. (2013a, b) recently used source
localization of resting EEG to examine whether trait levels of neural activation
might explain differences in deceiving others. They used an ecologically valid
measure of self-initiated deception with real, monetary consequences. In this task,
participants promised whether or not they would return money to real partners in a
trust game, but were later given the opportunity to break that promise (i.e., keep the
investment). A cluster analysis revealed three groups; (1) dishonest subjects that
had uniformly high promise rates but uniformly low return rates; (2) moderately
dishonest subjects that had relatively lower promise rates and moderate return rates;
and (3) honest subjects that had high promise rates and high return rates.
Heterogeneity in deception was thus easily discernible. In their primary analyses,
they found that the tendency to deceive was associated with reduced resting state
activation in the anterior insula. The higher the neural baseline activation in this
area is the lower individuals’ propensity to deceive. This resting state activation in
the insula accounted for 23 % of the variance in deceptive behavior. Furthermore,
they found that the same pattern of baseline anterior insula activation that was
associated with reduced deception was also associated with trait levels of negative
affect and dispositional tendencies to avoid aversive emotional situations. As such,
these findings are a good example of the power of the neural trait approach as they
suggest who lies and who remains honest. One might primarily expect that people
who are less inclined to deceive have strong prosocial preferences, as opposed to
those who deceive, an expectation which future research could explore. This study
revealed a unique relationship, however. Honesty was related to more resting
activity in a brain area associated with mapping internal bodily states and in rep-
resenting emotional arousal and conscious feelings (Craig 2009). Thus, people with
heightened baseline insula activity may be predisposed towards honesty because
their hyperactive emotional system could make a deceptive act too aversive. In this
case, the examination of neural traits indicated predisposing psychological pro-
cesses that may have otherwise been unknown or considered relatively unimportant.

In sum, across these studies, even in the highly complex domain of social
preferences, neural traits are demonstrably capable of explaining behavioral
heterogeneity in decision-making. In the next section, we explore how the neural
trait approach may be adapted for future research.

11.5 The Neural Trait Approach in Future Research

This chapter has explored the neural trait approach to explaining dispositional
differences in decision-making with a particular focus on time and social prefer-
ences. In addition to explaining behavioral heterogeneity in decision-making,
however, we further contend that the neural trait approach holds promise as a key
component in fuller research designs.

11 Individual Differences in Decision-Making: A Neural Trait … 201



For example, prior research has primarily emphasized contextual or situational
factors that determine decision-making behavior or explain economic preferences.
Given the twin advantages of stability and objectivity, neural traits have the ability
to powerfully augment contextual research by uncovering brain-based individual
differences and examining whether these differences interact with situational vari-
ables. Such an approach is not new, as it was classically formulated by Kurt Lewin
in his now famous equation describing (B)ehavior as a function of (P)erson × (E)
nvironment (Lewin 1946). We argue that modern forms of this ‘equation’ could
include neural trait measures of (P) in combination with experimental manipula-
tions (E) known to impact decision-making behavior (B). For example, subtle or
even subliminal cues can shift behavior from selfish to prosocial behavior and vice
versa (Bargh et al. 2001; Bateson et al. 2006; Rand et al. 2012). Neural traits
associated with differences in self- and other-regarding preferences should moderate
reactions to economic and social cues. That is, neural traits associated with
self-regarding preferences might predict reactions to monetary cues; whereas neural
traits associated with other-regarding preferences might predict reactions to social
cues (see also Declerck et al. 2013, for similar reasoning). Future research para-
digms that combine neural trait measures and situational manipulations could
deepen our understanding of decision-making processes.

Future research may also utilize the neural trait approach as a unique component
in fuller analyses of genetic → brain → behavior pathways. In parallel with the
neural trait approach, a number of researchers have examined individual differences
in decision-making by assessing potential genetic contributions (e.g., Boettiger
et al. 2007; Cesarini et al. 2009; Kuhnen and Chiao 2009; for an overview on genes
and human decision-making, see also Chap. 4 in this book). The question is, how
do these genes then affect behavior? More specifically, what are the mechanisms?
The answer, proposed as the intermediate phenotype model, is that genes impact
behavior through neural mechanisms (Meyer-Lindenberg and Weinberger 2006).
The basic notion is that genes influence an individual’s behavior through their
effects on the brain. To be an effective, brain-based intermediate phenotype, certain
criteria have been articulated. Central amongst these criteria are the characteristics
of stability and heritability (Gottesman and Gould 2003; Green et al. 2008). As
noted previously, resting EEG activity and structural MRI are both highly stable
and heritable. Neural traits are thus ideal intermediate phenotypes.

As an example, Gianotti et al. (2012) also employed the intermediate phenotype
approach in the aforementioned time preference research. In addition to measuring
resting EEG, these researchers genotyped participants on the COMT Val158Met
polymorphism, which has been related to dopamine levels in the PFC and delay
discounting in prior research (Boettiger et al. 2007; Paloyelis et al. 2010). Results
demonstrated that participants with more Val alleles (greater COMT activity and
lower dopamine levels in the PFC) exhibited greater delay discounting. This effect
was mediated by the baseline activation levels in the left lateral PFC: Higher
numbers of Val alleles lead to lower baseline activation which, in turn, biases
choices towards greater impatience. More studies such as this could provide a
mechanistic understanding of the contribution of specific gene variants to individual
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differences in neural traits and behavior that goes beyond simple biomarker iden-
tification (see Fig. 11.3).

11.6 Cautions and Implication

One should be cognizant of potential issues involved in the neural trait approach.
Detecting neural traits that relate to certain behaviors can often involve examining
activity throughout the entire brain. Thus, the probability of finding a spurious
relationship is greatly inflated unless the researcher uses appropriate corrections for
multiple testing. One should also be aware that there is a temptation to
over-interpret neural trait findings. By relating decision-making behavior to certain
brain areas, there is an inclination to ‘guess’ at the psychological process that
mediates the brain—behavior link. Indeed, this potential was often discussed in this
chapter as an advantage of the approach. To be clear, however, inferring the psy-
chological mechanism is more appropriate when a brain region has been tightly
linked to specific, germane functioning. To address this issue, one can also provide

Fig. 11.3 From Gianotti et al. (2012): a demonstration of the intermediate phenotype approach.
Pictured is the path diagram that illustrates that baseline EEG beta 3 activity level in the left
DLPFC mediates COMT-determined differences in steepness of delay discounting
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supplementary evidence. Recall the deception research in which Baumgartner et al.
(2013a, b) found that the same pattern of baseline anterior insula activation that
predicted reduced deception also predicted higher levels of trait negative affect.
This supports their inference that people with high resting activity in the anterior
insula are predisposed to be honest due to a hyperactive emotional system at rest
which could make a deceptive act too bothersome.

There are also a number of exciting broad implications. For example, even
though neural traits are highly stable, they may not be immutable. Indeed, enduring
changes can be made to neural structures and mechanisms through training. For
example, techniques such as neurofeedback, meditation, or repeated practice of
certain skills have the capacity to increase cortical volume or cortical baseline
activity in specific brain regions (e.g., Ghaziri et al. 2013; Lazar et al. 2005;
Takeuchi et al. 2010). Thus, targeted training manipulations of specific neural traits
might allow researchers to effect longer lasting changes to even the most complex
of preferences or decision-making behaviors, such as adherence to social norms.

Finally, we propose that the neural trait approach has the ability to synthesize
decision-making phenomena that, on the surface, appear distinct but in reality may
be partly explained by the same or similar neural traits. For example, several studies
outlined above demonstrate that dispositional differences in the DLPFC predict
behavioral heterogeneity in decision-making preferences; i.e., heterogeneity in time
preferences (Gianotti et al. 2012), risk preferences (Gianotti et al. 2009), costly
punishment (Knoch et al. 2010), and norm compliance (Spitzer et al. 2007;
Steinbeis et al. 2012). Given that this region has been strongly implicated in
self-control (Cohen and Lieberman 2010; Coutlee and Huettel 2012; Figner et al.,
2010; Heatherton and Wagner 2011; Miller and Cohen 2001), it is a tantalizing
possibility that these disparate decision-making domains could be linked to a
common neural trait and/or psychological capacity. Future research could take
advantage of the neural trait approach to potentially demonstrate a shared basis
between risk, time, and social preferences.
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Chapter 12
Altruistic Punishment

Alexander Strobel

Abstract Altruism can be regarded as one crucial challenge in the neuroeconomic
study of human behavior. This challenge is at least threefold: First, altruism needs
to be defined properly; second, its diverse behavioral expressions require elucida-
tion; and third, its underlying mechanisms need to be delineated in order to
understand why individuals behave altruistically. The present chapter therefore
aims at providing a working definition of altruism and at focusing on one particular
behavioral expression—namely altruistic punishment—and its role in human
cooperation. It proceeds with exemplifying several experimental paradigms in the
study of altruistic punishment and finally summarizes key findings on its neuro-
scientific underpinnings. A special emphasis will be on neuroimaging and psy-
chophysiological studies and on an outlook on potential neuromodulatory
influences. In doing so, this overview can by no means be exhaustive; rather, it is
intended to provide a general impression of the current state of the neuroscientific
study of the complex trait of altruism.

12.1 Introduction

12.1.1 A Working Definition of Altruism

Among the diverse definitions of altruism, the present outline favors the view of De
Quervain and et al. (2004), who—referring to Sober andWilson (1998)—distinguish
between a biological and a psychological definition of altruism. The biological
definition regards altruistic behavior as any costly behavior that confers an economic
benefit to other individuals, regardless of the motives behind such behavior. The
psychological definition, in contrast, requires that such behavior is driven by a
non-hedonic motive. A bee, which sacrifices itself for the sake of the beehive by
stinging an intruder, acts altruistically, but as we cannot know about any motive
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behind this behavior, we have to refer to the biological definition of altruism. A nun,
who sacrifices herself for the sake of the poor, acts altruistically as well, and here, we
could assume some non-hedonic motive behind this behavior, and thus, could refer
to the psychological definition of altruism. Still, however, the nun might expect
some reward for her behavior—in her community, in the clergy, or in the “kingdom
to come,” and as we cannot know for sure about the motive behind her behavior, we
need to refer to the biological definition of altruism as well—as costly behavior that
confers an economic benefit to other individuals, regardless of the motives behind
such behavior. While some of the neuroscientific studies summarized below also set
out to elucidate the motives behind altruistic behavior, relying solely on neurobio-
logical data cannot address the question of the motives of altruistic behavior prop-
erly. Nevertheless, such a neurobiological approach can provide empirical evidence
that can back up discussions on the motives presumably underlying altruistic
behavior.

Therefore, throughout the present chapter, the term altruism, if not otherwise
specified, is used synonymously with “altruistic behavior.” Thus, a biological
perspective is taken, thereby abstracting from potential psychological motives
behind altruistic behavior—without assuming there might be none.

12.2 Altruistic Punishment

Altruistic behavior can be observed not only in humans, but in several other species
as well, and can often be explained based on genetic relatedness or benefits arising
in repeated interactions (Bowles and Gintis 2004; Fehr and Gächter 2002). Such
accounts, however, cannot explain why humans show altruistic behavior and
cooperation even in anonymous, unattended, and/or one-shot interactions with
strangers. The strong reciprocity account (Bowles and Gintis 2004) provides an
explanation for these situations: It is based on so-called altruistic punishment, i.e.,
the costly punishment of norm violations without any personal benefit for the
punishing individual, but with potential benefit for other individuals.

Altruistic punishment can be observed across a wide variety of cultures (Henrich
et al. 2006; Herrmann et al. 2008), rendering it a plausible mechanism underlying
human cooperation throughout different societies. It may have developed by gene-
culture coevolution (Gintis 2003), i.e., a possible genetic propensity to internalize
norms strengthened these norms and evolutionarily favored individuals who
exhibited such a propensity (see also Henrich et al. 2006, p. 1770). Indeed,
experimental and simulation studies have shown that cooperation can be maintained
even in larger groups and in one-shot interactions, if there is the possibility to
punish defectors (e.g., Fehr and Gächter 2002; Boyd et al. 2003; Fehr and
Fischbacher 2003). Before discussing the details of these studies, however, it is
necessary to outline several experimental paradigms that can be used to study
altruistic behavior in general and altruistic punishment in particular.
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12.3 Experimental Paradigms for the Study
of Altruistic Punishment

Figure 12.1 depicts four economic games, i.e., abstract social situations where
interacting individuals exchange some goods, usually money or so-called monetary
units (MU). A rather simple game is the Dictator Game, where one player A, the
“Dictator” receives a certain amount of MU (here: 20) part of which he or she can
share at his or her discretion with another player B, the “Recipient.” Player B has to
accept any assignment made by player A—hence the name of the game. In the
Dictator Game, altruism can be operationalized as the amount of MU which player
A transfers to player B, as he or she is not bound to share, and sharing means
bearing a cost without a benefit—at least in one-shot interactions between two
players that do not know each other. In Fig. 12.1, player A would be considered as

Fig. 12.1 Four paradigmatic economic games for the study of altruistic behavior and altruistic
punishment. Solid lines indicate monetary exchange, (red) dashed lines indicate punitive acts. See
text for details
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less altruistic, as most of the 20 MU is kept, and only 1 MU is shared with player B.
In a modified version of this game, player B can be given the opportunity to punish
player A, e.g., via assigning MUs from a separate account as punishment points,
thereby reducing the financial outcome of player A, but at the same time bearing a
cost, as the separate account will eventually been paid out in cash to player B.
Hence, punishing unfair assignments in the one-shot Dictator Game can be seen as
an operationalization of altruistic punishment, as the punisher bears a cost without a
financial benefit—but a potential benefit for other individuals, as player A might
behave differently in future exchange situations to avoid punishment.

A related, but slightly more complex game is the Ultimatum Game, the name of
which derives from the fact that player A acts as “Proposer” of a split of a sum of
MU, and player B, the “Respondent” decides whether this offer is acceptable. If
player B rejects the offer of player A, both players end up with nothing. Hence, it is
in the self-interest of player A to propose a rather fair or at least not too unfair share.
This disqualifies the amount of MUs offered by player A as operationalization of
altruistic behavior. Rather, the behavior of player B is of interest: in the case of a
19:1 offer, it would be rational to accept, as 1 MU is better than 0 MU. By rejecting
this unfair split, player B bears a cost (an opportunity cost) without a benefit, but
again, with some potential benefit for other individuals interacting with player A in
the future in similar situations. Thus, the rejection rate by player B can be conceived
of as an operationalization of altruistic punishment.

In a third game, the Trust Game, both players A and B are endowed with a sum
of MUs (20 in the example in Fig. 12.1). Player A, the “Truster” now has to decide
whether or not to transfer part or the entire sum to player B, the “Trustee.” If he or
she trusts player B and transfers MUs (the whole sum in the example), the MUs will
be multiplied (quadrupled in Fig. 12.1) and given to player B. Player B can back
transfer some of his or her MUs (now 100 MU), but needs not to so (as in the
example). Player A’s trust has been betrayed (he or she ends up with 0 MU), and
again, if this is a one-shot interaction and there is an option to punish, the amount of
punishment points invested can be used as an operationalization of altruistic
punishment.

Finally the fourth game, the Public Goods Game, can be seen as an extension of
the Trust Game. Here, a group of players receives an initial endowment that can be
invested in some public good. The sum invested is multiplied (doubled in the
example), and the resulting sum is evenly paid out to the group. An individual who
invests most or all of the endowment is usually called “Contributor,” an individual
who contributes little or nothing is often called “Freerider”—as he or she does not
contribute as much as the others, but receives the same pay-off and, thus, will
eventually end up with more MUs than the contributors. If the “Freerider’s”
behavior is made transparent to the “Contributors” and if there is an option for
punishment, the amount of punishment points invested by the “Contributors” can
again be viewed as an operationalization of altruistic punishment.
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12.4 Maintenance of Cooperation
by Altruistic Punishment

In the already-mentioned experiment by Fehr and Gächter (2002), groups of par-
ticipants played several rounds of a Public Goods game, which was designed in a
way that it was in the material self-interest of the players to act as “Freeriders.”
Varying group compositions ensured the one-shot nature of the interaction. In
sessions where the individual contribution was made transparent to the others and
punishment was possible, cooperation started at a higher level and increased, while
in sessions where no punishment was possible, it started at a rather low level and
even decreased. Thus, even in situations where freeriding is reasonable, altruistic
punishment appears to maintain cooperation. This has also been substantiated by
simulation studies, which have shown that altruistic punishment (and the more so
punishment of non-punishers) maintains cooperation even in large groups (Boyd
et al. 2003; Fehr and Fischbacher 2003). This view has not gone without criticism,
either based on other simulation protocols (Ohtsuki et al. 2009) or on a review of
the literature on experimental versus field studies on the factors that maintain
cooperation (Guala 2012). Altruistic punishment therefore should be viewed as one
possible, but by no means the most important or efficient way to ensure cooperation
in human societies. Nevertheless, it has been proven to be a particularly useful
approach for the study of the neurobiological correlates of altruistic behavior, which
will be exemplified in the following.

12.5 The Role of Emotion-Related Brain Areas
in Altruistic Punishment

One of the first studies investigating the neural bases of economic decision-making
was a functional magnetic resonance imaging study by Sanfey et al. (2003) who
scanned their participants while they had to decide whether to accept or to reject fair
or unfair monetary offers in a sequential one-shot Ultimatum Game. As mentioned
above, the rejection of unfair offers bears a cost without a benefit and can thus be
seen as an operationalization of altruistic punishment. The main finding of this
study was that right dorsolateral prefrontal cortex (DLPFC), anterior cingulate
cortex (ACC), and anterior insula exhibited stronger activation during unfair offers.
Moreover, the activity of the anterior insula was positively correlated with rejection
rates for unfair offers. This result was interpreted based on the prominent role of the
DLPFC in cognitive control processes, of the ACC in monitoring of—both cog-
nitive and affective—conflict, and of the insula in subserving emotional processing
via representations of signals of internal states.

This result highlights the importance of emotions in economic decision-making.
Indeed, recent evidence supports the view that insular representations of emotional
states (Singer et al. 2009) may serve as bias signals in economic decision-making.
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This may drive the motivation to reject unfair offers and thereby to punish norm
violations (see Montague and Lohrenz 2007). The role of emotions in altruistic
punishment is further substantiated by a lesion study by Koenigs and Tranel (2007),
who showed that individuals with lesions in the ventromedial/orbitofrontal cortex
(OFC) were more likely than control subjects to reject unfair offers in the
Ultimatum Game. As OFC damage has been associated with emotional dysregu-
lation and failures in emotion-guided decision-making (e.g., Bechara et al. 2000),
this evidence suggests that OFC lesions might impair downregulation of (negative)
emotional responses when facing unfair offers, which could lead to economically
irrational behavior such as the rejection of unfair, but nonzero offers. Thus, this
interpretation fosters the notion that (negative) emotional processes play a promi-
nent role in altruistic punishment, which in turn also suggests that non-altruistic
motives can drive costly punishment.

12.6 The Role of Cognition-Related Brain Areas
in Altruistic Punishment

Coming back to the study of Sanfey et al. (2003), one result deserves further
consideration. While in that study, DLPFC activation was observed during the
presentation of unfair offers, it was not directly correlated with rejection rates.
However, another line of evidence nevertheless suggests a causal role for DLPFC in
the rejection of unfair Ultimatum Game offers. In a study by Knoch et al. (2006),
transcranial magnetic stimulation (TMS) was applied over the right and left DLPFC
of respondents in an Ultimatum Game. The authors showed that as compared to a
sham condition, transient disruption of right, but not left DLPFC activity resulted in
reduced rejections of unfair offers, while fairness ratings remained unaffected. Thus,
although participants still viewed offers as unfair, they were more likely to accept
them and, hence, to exhibit reduced altruistic punishment behavior. Comparable
results were obtained by this group in a later study using transcranial direct current
stimulation (tDCS; Knoch et al. 2008); again, transient inhibition of the right
DLPFC resulted in reduced rejection rates while fairness ratings remained unaf-
fected. In another study, they examined electroencephalogram (EEG) alpha activity
at rest, which in the setting of that study was conceived as a trait-like (inverse)
indicator of cortical activation. In line with their earlier observations, they found
higher right frontal resting alpha activity to be associated with reduced rejection
rates during an Ultimatum Game (Knoch et al. 2010). Taken together, these results
argue for a causal role of the integrity of especially the right DLPFC, a region that
has been implicated in exerting cognitive control, particularly the inhibition of
prepotent responses (e.g., Aron et al. 2004).

Interestingly, if (TMS- or tDCS-induced) disruption of the right DLPFC results
in reduced rejection rates as shown by Knoch et al. (2006, 2008), then the “pre-
potent response” when facing unfair Ultimatum Game offers appears to be to reject
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them. This could be viewed as an economically irrational, but socially desirable
behavioral act that suggests an important influence of cultural norms on altruistic
behavior, which may be interpreted in terms of the above-mentioned gene-culture
coevolution. Yet, a study by Crockett et al. (2010) suggests other plausible
explanations: In that study, the authors assessed their participants’ impulsive choice
(via a delay discounting task) and altruistic punishment (operationalized as rejection
of unfair Ultimatum Game offers) both during serotonin reduction via tryptophan
depletion as experimental condition and during placebo as a control condition. They
found that across both conditions, the magnitude of impulsive choice correlated
with altruistic punishment, and that increases in impulsive choice after tryptophan
depletion correlated with increases in altruistic punishment after tryptophan
depletion. Given this experimental evidence, cultural norms need either be so
deeply internalized that it requires less self-control to abide by them, or altruistic
punishment may be driven by other motives that are associated with less
self-control. A study by de Quervain et al. (2004) indeed points in the latter
direction, as will be outlined in the following.

12.7 Is Revenge Indeed Sweet? Retribution as a Potential
Motive for Altruistic Punishment

The studies summarized so far all used the Ultimatum Game, where the cost of
altruistic punishment is to abstain from a gain from so far unavailable monetary
resources. This might involve quite different internal processes than to actually
deploy available monetary resources for the sake of punishment. Hence, a study by
de Quervain et al. (2004) deserves mention, as these authors performed a more
direct investigation of the neural processes underlying altruistic punishment using a
Trust Game. Their participants—all in the role of a betrayed truster—underwent
positron emission tomography while they could use part of their financial reim-
bursement to punish betraying trustees. Four conditions were realized: First, the
betrayal of trust was intentional and the punishment was costly (IC), that is, the
betrayed player had to invest own resources to punish the betrayer whose financial
outcome was reduced; second, the betrayal of trust was intentional, but the pun-
ishment was free of costs, i.e., no own resources had to be invest to impose
punishment with the effect of reducing the trustees financial outcome (IF). Third,
the betrayal of trust was intentional, but the punishment was only symbolic (IS),
that is, it was neither costly for the punisher nor did it reduce the betrayer’s financial
outcome; and fourth, there was a condition, where a random device had generated
the decision not to transfer back any money from the trustee to the truster. If the
punishment option was chosen, then both the truster and the trustee—who was not
responsible for the decision—had to bear a cost.

At the behavioral level, this setting produced high pay-off reductions imposed on
the trustee in the IC condition, even higher reductions in the IF condition, but no or
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only marginal pay-off reductions in the IS and NC conditions. At the neuronal level,
an activity difference was observed in the caudate nucleus, with the IC and IF
conditions being accompanied by higher, and the IS and NC conditions by lower
caudate nucleus activation as compared to mean activation. Moreover, the amount
of MUs invested for punishing in the IC condition correlated with caudate activity
in both the IC and the IF condition. The authors suggested that—as the caudate
nucleus has been implicated in reward processing (e.g., Delgado et al. 2003)—the
motivation to punish defectors could be partly due to feelings of satisfaction when
social norm violations are punished and justice is reestablished. Thus, this result
points to revenge as a potential motive underlying altruistic punishment in direct
one-shot interactions.

However, two issues in this seminal study require further examination. First, in
the study by de Quervain et al. (2004) as well as in the other studies referred to so
far, participants were directly affected by the unfair behavior of the other players,
the offers of whom they could reject or whom they could punish directly (which
will be referred to here as first-party punishment). In such situations, punishment
may be driven by anger and revenge-like motives, thus presumably reflecting
conditions where punishment is subjectively beneficial via satisfaction through
revenge. To test this interpretation, it would be important to contrast such condi-
tions with others where the punisher is not directly affected by unfair behavior, so
that revenge-like motives cannot account for punishment. Several studies have
therefore employed third-party punishment (with the potential punisher being not
directly affected by the unfair behavior of the other player; see, e.g., Fehr and
Fischbacher 2004). Here, the punishment of unfair behavior should not be moti-
vated by the satisfaction of revenge.

Second, in the de Quervain et al. (2004) study, caudate activation was stronger in
the two conditions where punishment was effective (i.e., IC and IF) and was
reduced in the conditions where punishment was ineffective (IS) or was no pun-
ishment at all, as the trustee was not responsible for the “betrayal” (NC). Yet, only
the IC condition was an operationalization of altruistic–i.e., costly–punishment.
This leaves open the question whether the caudate nucleus activation might have
been associated with effective rather than with altruistic punishment.

12.8 Third-Party Punishment

In an own functional magnetic resonance imaging study (Strobel et al. 2011), we
therefore addressed these two issues in order to provide a more differentiated basis
for a neuroscientific account of the motives underlying altruistic punishment. To
this end, we used a variant of the Dictator Game, where player B (the “Recipient”)
had to accept even very unfair offers, but could exert punishment from a separate
account of punishment points. Indeed, evidence suggests that individuals tend to
punish norm violations even when they are not affected by the norm violation
themselves, but are watching social exchange situations from a third-party
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perspective (Fehr and Fischbacher 2004). Thus, we were interested in whether there
were differences in brain activation during punishment acts where individuals might
pursue some subjective benefit such as satisfaction through revenge (i.e., punish-
ment for norm violations affecting one self, or first-person punishment) as com-
pared to punishment acts where individuals seemingly do not pursue any subjective
benefit (i.e., punishment for norm violations affecting other people, or third-party
punishment). Hence, we compared two conditions where players B were either the
recipients themselves or were “watching” interactions between the Dictators and
some players C.

Our second question was whether caudate nucleus activation during punishment
acts would be associated with effective rather than with altruistic punishment.
Hence, we compared two conditions where the punishment—with equal costs—
was either highly effective (strong punishment, resulting in a substantial reduction
of the Dictator’s payoff) or rather less effective (weak punishment, resulting in
marginal reduction).

Analyses were performed for predefined regions of interest that were based on
the literature reviewed above (see Fig. 12.2, left panel): Insula, ACC, and DLPFC
as derived from the results by Sanfey et al. (2003) and Knoch et al. (2006); OFC as

Fig. 12.2 Altruistic punishment in the dictator game: functional magnetic resonance imaging
results from Strobel et al. (2011) at MNI coordinates (xyz) 10, 12, 0. The first panel from the left
shows the regions of interest (ROIs) defined on the basis of the available literature (see text):
NCd = caudate nucleus; CG = cingulate gyrus (displayed here is the anterior cingulate cortex,
ACC); DLPFC = dorsolateral prefrontal cortex; Ins = insula; NAc = nucleus accumbens. The
next panels show the clusters within these ROIs that were significant at a false discovery rate
corrected level of significance of P < 0.05 for the contrasts “punishment > no punishment” (with
all predefined ROIs being significantly more active in the punishment condition), “first
person > third party”, (where along with ACC, NAc was significantly more active in the
first-person condition), and “strong > weak punishment” (with NCd being significantly more
active in the strong punishment condition)
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derived from the results of Koenigs and Tranel (2007; not displayed in Fig. 12.2 as
unfortunately, due to technical reasons, OFC signals could not be captured properly
in our study), and caudate nucleus as implicated in altruistic punishment by de
Qvervain et al. (de Quervain et al. 2004). Moreover, as these authors argued for a
role of reward processes in altruistic punishment, we additionally included another
region of interest: the nucleus accumbens, which plays a prominent role in reward
processing (see, e.g., Robbins and Everitt 1996).

To summarize the results, our behavioral data indicated that altruistic punish-
ment showed medium correlations with self-reported altruistic tendencies as
assessed with the Altruism facet of the revised NEO Personality Inventory
(NEO-PI-R; Costa and McCrae 1992), thereby substantiating the notion that eco-
nomic games such as the one employed here indeed capture individual behavioral
tendencies that protrude over the laboratory. The imaging data revealed that, as
expected, all predefined regions of interest were significantly more active in trials
where our participants punished as compared to trials without punishment (see
Fig. 12.2, second panel from the left). This substantiates the role of
cognition-related areas (DLPFC, ACC) and emotion-related regions (Insula) in
altruistic punishment. Furthermore, when comparing the first person with the
third-party condition, nucleus accumbens (along with ACC) showed stronger
activation in the first-person condition (Fig. 12.2, third panel from the left), and
when comparing strong (i.e., effective) with weak (i.e., less effective) punishment,
we selectively observed caudate nucleus activation (Fig. 12.2, right panel) in almost
the same region as that reported by de Quervain et al. (2004). The latter result
therefore argues for a role of the caudate nucleus in effective rather than in altruistic
punishment per se.

Summarizing, the pattern of results shows that brain regions involved in
cognitive-affective processing and in altruistic punishment in previous studies were
also more active during altruistic punishment in the present study (DLPFC, ACC,
insula). Moreover, regions implicated in reward processing were more involved
when punishment had a strong effect (caudate nucleus) or when the punisher was
directly affected (nucleus accumbens). Thus, on the basis of these results, revenge
as a motive for punishing social norm violation cannot be ruled out, but might not
be the only determinant.

Indeed, another factor impacting on the propensity for altruistic punishment
appears to be group membership of the punisher and the defector of a social norm:
Baumgartner et al. (2012) observed that individuals showed less third-party pun-
ishment of defecting members of their ingroup as compared to those of an
outgroup. While punishing outgroup members correlated with the connectivity
within a functional brain network implicated in sanction-related decision-making
(right orbitofrontal an lateral prefrontal regions as well as right caudate nucleus),
punishing ingroup members was correlated with the connectivity within a brain
network involved in mentalizing processes. The authors interpreted the latter
finding as presumably indicative of their subjects’ efforts to understand the
defective behavior of their ingroup members. Most interestingly, the authors could
demonstrate that the activity in the mentalizing network was negatively correlated
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with the activity of network nodes of the punishment network, pointing to a sup-
pressive influence of the former on the latter.

The study by Baumgartner et al. (2012), thus, broadens our perspective on
altruistic punishment by shifting the focus from single brain regions and their
presumed role on the modulation of behavior to brain networks and their correlated
activity during altruistic punishment. This network perspective can be expected to
considerably further our understanding of the processes underlying altruistic pun-
ishment. Yet, even this approach falls short of one crucial further aspect of the
complex phenomenon under investigation: its process nature on a micro-timescale.
Due to the low-temporal resolution of methods such as functional magnetic reso-
nance imaging, fast computational processes underlying altruistic punishment—
e.g., some calculation of a violation of a personal or social norm that needs to be
performed ahead of cognitive-affective processes in order to trigger altruistic
punishment—cannot readily be captured. Hence, methods that allow for a better
temporal resolution are an important means to further our understanding of the
neurocognitive processes during altruistic punishment. EEG is one such method
(see the EEG chapter by Debener et al. in the methods chapter of this book for a
detailed description of this method), as it provides a high-temporal resolution (albeit
at the cost of a lower spatial resolution). Moreover, EEG is less costly, allowing for
larger samples and, thus, for the detection of smaller effects as those typically to be
detected in imaging studies.

12.9 The Feedback-Related Negativity as a Predictor
of Altruistic Punishment

Besides EEG analyses in the frequency domain (see the above mentioned study by
Knoch et al. 2010, who observed—presumably habitual—right frontal EEG alpha
activity to be associated with the rejection of unfair offers in the Ultimatum Game),
EEG analyses in the time domain are capable of capturing even very fast neural
processes. By means of so-called event-related potentials (ERP), changes in neu-
ronal activity following some critical event can be tracked at the millisecond level.
The ERP approach has already been successfully applied to the study of the pro-
cesses underling the propensity to reject unfair offers in the Ultimatum Game. One
key study will be outlined in the following.

Hewig et al. (2011) investigated the role of the so-called feedback-related
negativity (FRN) in Ultimatum Game bargaining. The FRN is a negativity in the
ERP that is maximal over frontal recording sites. Based on source localization
studies, it is assumed to be generated by the ACC when feedback in experimental
conditions deviates from an individual’s expectation and, thus, might be an indi-
cator of processes underlying reinforcement learning (Holroyd and Coles 2002). In
the case of the Ultimatum Game, unfair offers can be considered as deviations from
some (individual or social) norm, which may prompt rejection of these offers,
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probably based on prediction error computations that are indexed by the FRN.
Indeed, the authors could show that the rejection of unfair offers could be predicted
by the magnitude of the FRN (to fair offers). Together with self-reported subjective
emotion ratings and objectively measured skin conductance levels, 84 % of the
rejection of unfair offers could be predicted. This supports the view that the
detection of norm violations and the resulting (or at least accompanying) emotional
processes as indexed here in emotional ratings and psychophysiological arousal
measures trigger altruistic punishment.

So far unpublished own data based on a sample of 44 volunteers substantiate the
results by Knoch et al. (2010) and Hewig et al. (2001): in an Ultimatum Game, the
FRN significantly predicted the rejection rate (as in Hewig et al. 2011), but only for
a first-person condition; in a third-party condition, it was resting frontal alpha (as in
Knoch et al. 2010, but bilaterally) that predicted rejection rates. If replicable, these
results would suggest that feedback-related and, thus, state-like (bottom–up gen-
erated) event-related perturbations in cortical (ACC) activity are more predictive of
the rejection of unfair offers when the subjects are directly involved, while trait-like
characteristics such as resting frontal EEG alpha activity are more important when
subjects are acting as witnesses of unfair behavior in a perhaps more top–down
controlled way.

12.10 Neuromodulatory Influences on Altruistic Behavior

While, as shown, there is ample evidence on the neural correlates of altruistic
punishment, a so far less extensively investigated topic in this context is the role of
neuromodulators in altruistic punishment. The already mentioned study by Crockett
et al. (2010) is one of few studies that have implicated neuromodulators in altruistic
punishment. Their result that serotonin depletion-induced increases in impulsive
responding correlated with increased altruistic punishment can easily be reconciled
with the reviewed evidence on the role of emotional responses to unfair behavior in
economic games: Perceived norm violations trigger prepotent negative emotional
responses to unfairness that—under conditions of heightened impulsivity and, thus,
reduced inhibition of these prepotent responses via serotonin depletion—can out-
weigh economic considerations (as, e.g., in the context of the Ultimatum Game, it
would economically reasonable to accept even the least nonzero offer).

However, evolutionarily, an enhanced impulsive responding that favored pre-
potent responses would not enhance cooperation, unless the prepotent response
favored cooperation. Rather, in order to enhance cooperation, a violation of a social
norm that hinders cooperation needs to be detected and correcting behaviors need to
be at hand even at economic costs. Such behavior might be in addition otherwise
rewarding, e.g., because a contingency between such behaviors and personal or
social rewards had been learned. Here, another neuromodulator comes into play that
has been associated with prediction error coding and reinforcement learning. FRN
that was associated with altruistic punishment by Hewig et al. (2011) has been
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suggested as a reward prediction error signal and has also been associated with
dopamine signaling (Holroyd and Coles 2002). Moreover, activity of brain regions
activated during altruistic punishment, e.g., DLPFC, ACC, insula, and caudate
nucleus—although likely to be serotonergically modulated as well—are prominent
targets of dopaminergic projections from the midbrain that have been implicated in
prediction error signaling (Schultz 1998) and reward processing (Robbins and
Everitt 1996). Therefore, in view of the gene-culture coevolution assumption,
genetic variation in dopamine function could be expected to impact on, first, neural
responses to norm violations, and second, the expectation of possible future rewards
derived from the punishment of unfair behavior, be it via the personal reward of
satisfaction derived from revenge or via learned contingencies between punishment
behavior and social rewards or both.

Therefore, in our study reviewed above (Strobel et al. 2011), we also examined
the possible role of genetic variation of dopamine function in the modulation of
neural responses during altruistic behavior. To this end, we included a widely
studied genetic variation of dopamine function into our analyses: a G to A single
nucleotide polymorphism in the gene encoding the dopamine-degrading enzyme
catechol-O-methyltransferase (COMT) that results in the substitution of the amino
acid valine (Val) by methionine (Met) at amino acid position 158 of the COMT
enzyme. This so-called Val158Met polymorphism impacts on the COMT enzyme’s
thermostability: Met allele homozygotes exhibit only one-fourth of the COMT
activity than Val/Val homozygotes, which likely results in higher levels of synaptic
dopamine (Lachman et al. 1996; Chen et al. 2004). The COMT Val158Met poly-
morphism has been associated with prefrontally modulated cognitive and affective
processing (see Mier et al. 2010, for a review and meta-analysis). Interestingly, it
has also been implicated in reward processing, as in a study by Dreher et al. (2009),
Met allele carriers exhibited higher activation in the ventral striatum and the
DLPFC during reward anticipation.

While we could not identify a COMT genotype-related difference in DLPFC
activation, we observed a punishment-related genotype effect at the level of nucleus
accumbens activation: Carriers of the Met allele and, thus presumably higher
synaptic dopamine activity, showed higher punishment-related nucleus accumbens
activation. We interpreted this finding as indicative of a COMT Met allele-related
bias of ventral striatal integration of input signals from DLPFC, ACC, insula, and
other regions that results in higher reward anticipation for the decision to punish
unfair behavior. Such an interpretation, however, would require that individuals
have internalized contingencies between norm-enforcing behavior and social
rewards, with COMT Met allele carriers being more susceptible to social signals of
reward and, thus, more likely to adapt their behavior to attain such rewards (see
Strobel et al. 2011).

While in our report, we regarded this finding as a first empirical support for the
gene-culture coevolution assumption (which could be viewed as being further
substantiated by the fact that the COMT Met allele appears to be a comparably
recent variant unique to humans; Palmatier et al. 1999), several caveats need to be
considered. First, our sample was comparably small (twenty-four subjects), and
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second, generalization of this effect on other forms of prosocial behavior is not
readily possible given conflicting evidence from a study by Reuter et al. (2011) who
observed COMT Met/Met genotype carriers to be less likely for charitable donation
of money in an experimental setting. While this apparent discrepancy could be
explained by different experimental settings, different internalized social norms for
costly punishment of unfair behavior versus costly giving to a charity, and/or
different expectations of personal or social rewards associated with the respective
behaviors, further work is needed to resolve this discrepancy.

However, both these studies demonstrate a critical role of genetic variation in
dopamine function in prosocial behavior, a role that is further substantiated by
another study from our group: We observed carriers of a variant of the dopamine
D4 receptor gene exon III polymorphism, which has been associated with
impulsivity-related personality traits and behavioral tendencies (Ebstein et al. 1996;
Kluger et al. 2002; Swanson et al. 2000), to report less altruistic behavior on the
Altruism scale of the NEO-PI-R (Anacker et al. 2012).

Taken together, evidence on neuromodulatory influences on altruism/altruistic
punishment is scarce and partly inconsistent, but nevertheless suggests that neu-
romodulators such as serotonin and dopamine play a prominent role in altruistic
punishment. Yet, their exact roles in different contexts remain to be elucidated.

12.11 Conclusions and Further Directions

Taken together, the evidence reviewed in this chapter underscores the role of brain
regions implicated in both cognitive processes, most likely such involving the
inhibition of prepotent responses (Knoch et al. 2006, 2008, 2010) and affective
processes in altruistic punishment (Koenigs and Tranel 2007). Negative emotional
states such as anger (Sanfey et al. 2003; see also Seip et al. 2009), the expectation of
satisfaction by revenge (de Quervain et al. 2004; Strobel et al. 2011), and, thus,
spiteful motives (Jensen 2010) may drive altruistic punishment just as may group
membership (Baumgartner et al. 2012). Other factors may influence altruistic pun-
ishment as well such as ‘physical’ factors like the size of societies (Marlowe and
Berberesque 2008) or egalitarian motives even in the absence of cooperation to be
reinforced (Dawes et al. 2007), but so far have not been examined neuroscientifically.

The mentioned cognitive-affective processes are likely preceded by a compu-
tation of a violation of a personal or societal norm, which to some extent can be
captured by the magnitude of the FRN as a neural signature of a deviation from
one’s expectations (Hewig et al. 2011). A perceived norm violation then can trigger
prepotent negative emotional responses to unfairness that under conditions of
reduced inhibition of these prepotent responses can outweigh economic consider-
ations. Such reduced inhibition may stem from increased impulsive responding,
which may be due to altered serotonin activity as shown by Crockett et al. (2010),
but could also be assumed to be linked to stress, as it was recently shown that acute
psychosocial stress increased various prosocial behaviors (von Dawans et al. 2012),
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or to stable personality characteristics. They, in turn, might be partly genetically
modulated, as might be the sensitivity to social signals of reward as speculated in
the context of the study by Strobel et al. (2011) who observed an association of the
COMT Val158Met polymorphism with nucleus accumbens activity during altruistic
punishment. Thus, genetic variation in the function of neurotransmitters and neu-
romodulators might have a twofold impact on altruistic punishment: first, with
regard to the acquisition and internalization of norms and the formation of prepotent
responses when norms are violated, and second, with regard to the trait- or state-like
propensity to inhibit or disinhibit such prepotent responses. Especially the latter
issues are expected to attract attention in future studies.

Discerning readers will have noticed that in the present summary, terms like
“may” or “might” are used quite often, as are phrases like “this points to” or “this
suggests”—and, indeed, they were chosen intently: Neuroimaging and other neu-
roscientific techniques provide a valuable means for the study of the brain processes
and neural mechanisms underlying altruistic behavior—but, itself, they cannot
inform about the motives driving such behavior. The activity of some brain region
or even a brain network during altruistic punishment can only suggest or point to
such motives: If activity in a brain region X previously activated during reward
expectation is also observed during altruistic punishment, one cannot readily
deduce that altruistic punishment has to do with reward expectation (unless reward
expectation is the only process that has been associated with the activity in X—
which for a “multi-purpose device” such as our brain and for a complex
cognitive-affective process such as reward processing is quite unlikely). One can
only state that, because region X has also been implicated in reward processing, it
cannot be ruled out that the activity in X during altruistic punishment might be
suggestive of a role of reward expectation during altruistic punishment.

Researchers using neuroimaging and other neuroscientific approaches always
need to be aware of the danger of such so-called “reverse inferences” (Poldrack
2006)—i.e., to infer a cognitive process underlying a given task from the activation
of some brain region during that task, unless it is highly specific—but also of its
potential use: to generate new hypotheses; and to adequately test these hypotheses,
one cannot rely on elaborate neuroscientific tools alone, but need to employ carefully
designed experimental paradigms, which rule out alternative explanations. Thus, the
studies reviewed in this chapter have only begun to scratch at the surface of the
complex phenomenon of altruistic punishment—yet, while its driving forces still
remain to be elucidated, they have provided important clues and directions for future
research.
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Chapter 13
Brain SEEKING Circuitry
in Neuroeconomics: A Unifying Hypothesis
for the Role of Dopamine-Energized
Arousal of the Medial Forebrain Bundle
in Enthusiasm-Guiding Decision-Making

Jaak Panksepp and Cristina G. Wilson

Abstract Affective shifts are critical factors in our decision-making with respect to
all our survival concerns, including high cognitive ones such as those related to our
economic investments and divestments. A critical emotional system, not commonly
considered in neuroeconomics, is our primary process subcortical SEEKING sys-
tem that regulates our exploratory-investigatory urges, including the eager antici-
pations of our higher mental processes. In economic decision-making, our
SEEKING urge motivates us to consider the diverse opportunities and risks that are
inherent in life-supportive decision-making. This state of mind, at normal levels of
activity, energizes focus on cognitive details that can promote opportunities for
success as well as avoid costly mistakes. However, excessive activity in this system
may also promote faulty (addictive?) decision-making that is common in gambling,
when hopes outweigh consideration of risks (as might be mediated by the cognitive
representatives of FEAR and PANIC system). It is well known that all drug
addictions are mediated by the feelings of euphoria that the SEEKING system can
promote. Clearly, the ancient emotional systems of the brain need to be considered
as motivators of neuroeconomic decisions, but they also need to be understood as
primal motivations which need to be disciplined by higher decision-making
capacities that emerge developmentally as a function of the losses and gains that
have resulted from the vicissitudes of living in at times predictable but also
unpredictable social (and physical) worlds. Without developmentally emergent
cognitive discipline, the SEEKING system can promote delusional thinking.
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As the Victorian Scottish philosopher and satirical writer Thomas Carlyle viewed it,
economics was the “dismal science”—largely amounting to the flow of goods and
money in highly competitive marketplaces, bringing both misery and riches, to
those whose insights were deficient or insightful, respectively. During the past
dozen years, the dismal social science of ‘supply and demand’ has been brightened
considerably in the light of human, as well as cross-species neuroscience: we can
now envision how economic decisions are crafted by both affective hopes and
cognitive calculations of the brain’s mind. However, there are many societal pat-
terns that are still better fathomed by the flow of money as assessed by statistical
(non-experienced) electronic computations rather than the software of the experi-
enced mind, whether affective or cognitive. In the current chapter we argue that the
perennial critical affective states of mind remain the intermediary brain
decision-making processes, many shared by all mammals that we discuss here. We
will largely focus on what has traditionally been called “the brain reward system,”
even though anyone paying attention should know that this system does not
mediate sensory pleasures, but rather, the appetitive foraging, arising from a very
precious brain system—the Medial Forebrain Bundle (that we call the SEEKING
System) that allow us to pursue pleasures and satisfactions (including avoidance of
negative events/states) with a joyful attitude that is full of enthusiasm.

Thereby, we will also focus heavily on the affective state-control contributions
in decision-making, for that is where even the cross-species animal work provides
considerable illumination. We will not consider the many cognitive “computa-
tions” that go into the making of life-supportive choices, but simply make the
case that without the affective underpinnings, arising from lower (primary pro-
cesses) of the brain, the cognitive ‘‘computations’’ would have no values to guide
them. Our position will be evolutionary—namely, that individual economic
decision-making could not operate without the enthusiasms, hopes, and wishes of
the various evolutionary ‘‘layers’’ of the brain (Figs. 13.1, 13.2 and 13.3). We
will designate the most fundamental substrates as being “primary” since they are
constituted of various evolved emotional systems within our brains, that not only
engender various affective states, but concurrently generate various states of
action readiness. Thus, the mentally experienced aspects of primary process
emotions mediate not only various affective states, but they are action oriented:
Both features code for basic survival issues: all ‘‘good’’ feelings (“desirable”
states-of-being at higher mental levels) predict that individuals are on survival
trajectories, while all ‘‘bad’’ feelings (to be avoided) predict that one may be on
the down-hill course of destruction (Panksepp 1982, 1998). Of course these
simple minded, but all-important, feeling states need to guide learning and
memory—namely, the deeply unconscious secondary processes (Solms and
Panksepp 2012) that distribute feelings not only in external space and time (based
on past experiences in the world), but also provide the raw materials for thinking.
The tertiary processes of the brain, concentrated in thought-promoting neocortical
reaches of the mind, is where higher, cognitive decision-making is finalized, after
weighting the pros and cons for one’s own interests and thriving.
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While it is obvious that most human economic decision-making is heavily a
neocortical thinking-related affair, we would be sorely mistaken to neglect the
primary process affective (valuative) foundations upon which our higher
decision-making processes were constructed in brain-evolution and individual
development. Indeed, there are several conceptual kinds of intrinsic value systems.
Some are homeostatically based, such as the basic consummatory mechanisms of
HUNGER and THIRST, not to mention the many other intrinsic bodily needs such
as thermoregulatory values (Cabanac 1992) and various other bodily survival states.
Other affective value systems are sensorially based, such as the wonderful smells
and tastes of the culinary world that still guide our post-modern “foraging” patterns
in diverse food establishments, whether cafes, markets, or fancy restaurants. Yet,
the category of affects that has the widest purview in everyday economic
decision-making is the emotional values—the evolutionarily constructed, intrinsic
needs of the brain itself that we will primarily focus on here.

If one had to select a single emotional system from the seven outlined by
cross-species affective neuroscience research (Panksepp 1998)—namely
SEEKING, RAGE, FEAR, LUST, CARE, PANIC and PLAY—that is more
important for human decision-making than any other, it would surely be SEEKING.
(Please note, capitalizations are used as a formal nomenclature convention for
labeling “primary-process” psychobehavioral emotional/motivational systems of
the brain). The SEEKING network is a general-purpose appetitive system that many
of the other emotions and affects utilize, and it is the only one, if damaged severely,
that compromises life itself for it depletes foraging/enthusiasm resources. This
system courses through the Medial Forebrain Bundle (MFB, see Fig. 13.1 for
original depiction) which was only recently visualized in humans with modern
diffusion tensor imaging (Coenen, et al. 2012)—for overall summary of major
connectivities see Fig. 13.2. When the MFB is damaged bilaterally it leads to an

Fig. 13.1 A drawing of the Medial Forebrain Bundle (MFB), illustrating the main trajectory of
the SEEKING system (classically referred to as “the brain reward system”). It runs up from the
midbrain, through the lateral hypothalamus (LH), into more rostral neural regions. Other neural
regions pictured: optic chiasm (Ch), olfactory bulbs (O.B.), olfactory peduncle (O.P.),
paraolfactory area (P.A.), olfactory tract (O.T.), diagonal band of Broca (D.B.), anterior
commissure (A), pituitary gland/the hypophysis (Hyp.), and mammillary bodies (M). (Figure from
LeGros Clark et al. 1938)
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amotivational organism that is no longer capable of fending for itself, and will die
without nursing (Teitelbaum and Epstein 1962). It is small wonder that this system
has been implicated in the burgeoning field of neuroeconomics (e.g., Knutson and
Greer 2008; Glimcher 2011a, b), but not enough effort has been devoted to make
clear that this general purpose emotional-motivational system, which encourages
animals to explore and forage in their environments for all things needed for
survival, has a much broader scope than neuroeconomics, and it certainly is poorly
conceptualized as “the brain reward system” (the traditional historical label, that
still lingers, despite its narrow-mindedness). In fact there are many rewarding
systems in the brain, and the general-purpose SEEKING urge (for an extensive
historical discussion, see Panksepp 1981) does not mediate sensory pleasure, but
more likely feelings of “enthusiasm”—an essential psychological ingredient in
getting what you want (which of course already reflects the transition from a
primary aspect of mind to related higher mental processes).

Beside recognizing the above conceptual naming error, carried forward to this
day (e.g., Haber and Knutson 2009), we must initially consider, in any disciplined
discourse, that the brain (and the mind) is an evolutionarily layered organ, with at

Fig. 13.2 Diagrams showing different aspects of the SEEKING system in the rat brain. a Shows
ascending projections from the midbrain Ventral Tegmental Area (VTA) a10 dopamine neurons
that innervate the nucleus accumebs (NAS) and prefrontal cortex (PFC) among other regions.
b Efferents (descending) of the nucleus accumbens, mostly GABAergic. c The major afferent
projections to the NAS. d Afferent projections to the VTA. Other abbreviations: Amygdala
(AMY), bed nucleus of stria terminalis (BST), caudate-putamen (C), corpus callosum (CC),
diagonal band of Broca (DB), dentate nucleus (DN), dorsal raphe (DR), entopeduncular nucleus
(ET), frontal cortex (FC), hippocampus (HC), inferior colliculus (IC), lateral hypothalamus (LH),
lateral preoptic area (LPO), mesopontine reticular nuclei (MPR), olfactory bulb (OB), periaque-
ductal gray (PAG), prefrontal cortex (PFC), parabrachial nucleus (PN), superior colliculus (SC),
substantia innominate (SI), substantia nigra (SN), thalamus (TH), ventral pallidum (VP).
(Figure from Ikemoto and Panksepp 1999)
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least three global progressions which, if not kept semantically clear, will lead to
abundant communicative confusions. Indeed, as soon as one understands the
conceptual problems with the classic hand-me-down concept of “the brain reward
system” one is hard put not to consider alternative terminologies that can be
deployed without psychological confusion, which respect not only behavioral brain
functions but tightly related psychological phenomenologies as well. Although our
goal is to discuss how this MFB-based brain network participates in human
decision-making, especially in the economic realm, we must first deal with per-
sistent conceptual issues that need to be addressed when we study of evolutionarily
layered brain-mind processes.

For didactic convenience, we divide the brain and mind into three evolutionary
layers of organization, as has been common in the history of neuroscience; for
example Paul MacLean’s (1990) “Triune Brain” view, commonly detested by
behavioristic reductionists, but defended by those interested in the mind (Panksepp

Fig. 13.3 Nested hierarchies of psychobehavioral control within the brain—a synopsis of the
hierarchical bottom–up (right) and top–down (left) circular control that reflect evolutionary and
developmental control in all primal brain emotional system. In order for higher Mind-Brain
functions (such as neuroeconomic decision-making) to mature they initially have to be integrated
with the lower affective Brain-Mind functions. Primary processes are depicted as squares
(SEEKING level), secondary-process learning as circles (Berridge’s “wanting” level of analysis),
and tertiary processes (Schultz’s “reward prediction level of analysis,”) by rectangles. This
schematic summarizes how bottom–up evolution of nested-hierarchies can integrate lower brain
functions with higher brain functions, so as to eventually exert top–down regulatory control.
Bottom–up controls prevail in early-infancy and early childhood development. Top–down control
emerges as individuals approach adulthood
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1998, 2002, 2011a, b), who believe that a nuanced neuromechanistic understanding
of brain emotional functions is essential for clarity at the neuropsychological level.
Continuing in this vein, the “solution” advanced here is to first consider the primary
process function of the MFB-based “behavioral-foraging to cognitive-expectancy
system” (Fig. 13.1, recently envisioned in humans Coenen et al. 2011, 2012),
which is here labeled formally, and we believe conceptually correctly, as the
SEEKING system. The SEEKING system operates at an unconditional instinctual
level to promote survival in the sense of providing a general-purpose urge to
explore, investigate, and pursue all types of pleasurable rewards and avoid various
negative affects that index fundamental survival issues. Another more recently
suggested view is Berridge’s (1996) ‘wanting’ system, which is very synergistic
with the above concept, but perhaps not an appropriate label for the unconditional
emotional-psychobehavioral, primary-process level of analysis, since it implies a
learned appetitive-directedness toward specific items in the world. ‘Wanting’ is an
excellent secondary- or even tertiary-process concept, reflecting psychological
process aroused once animals have learned what objects in the world satisfy their
needs, where the forward-directed enthusiasm was initially and unconditionally
aroused by the SEEKING system. For a conceptual diagram explaining these levels
of control, see Fig. 13.3.

Of course in neuroeconomics, where most consider human higher
decision-making processes, investigators typically concern themselves with
tertiary-process functions of the brain, a topic that has been superbly taken up by
Rolls (2014) in his recent monograph on “Emotions and Decision-Making.” The
great interest in cognitive neuroscience, is to focus on such higher brain functions
through human brain imaging, and clearly such higher order tertiary processes,
cannot be easily studied in animals. Still, excellent neurophysiologists such as
Wolfram Schulz, who pursued single-unit studies of ventral tegmental dopamine
neurons—one of the headwaters of the SEEKING system (without acknowledging
such a system)—found how robustly DA neurons responded to the anticipation of
cue-predicted rewards, and how they diminished in activity when rewards were
withheld, namely, what would traditionally be called a ‘‘frustration response.’’ After
being educated in psychologically relevant brain functions by an esteemed
learning-oriented experimental psychologist, Tony Dickinson of Cambridge
University, Schulz conceptualized this frustration-disappointment response of the
ascending DA-pathways in computation terms, namely as a “reward prediction error”
signal. That concept rapidly became a meme among computationally oriented
scholars interested in higher order decision-making processes, who chose not to
consider affective shifts in decision-making. In any event, those higher processes,
highly dependent on what should be considered secondary processes (i.e., learning
and memory) arise from diverse prior life experiences, which are constituted of
various unconditional ‘‘rewarding’’ and ‘‘punishing’’ states of the nervous system
(i.e., confrontation with various world events that generated primal internal ‘‘val-
ues’’, or affective states). The memory of those experiences, and related world out-
comes prompt the SEEKING system to continue to pursue specific paths, because
there are memories of past pleasurable or satisfying experiences that have already
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guided the appetitive learning of behavior patterns. Tangentially, from a practical
human sociological point of view, this way of thinking supports our recommendation
that teachers need to keep linking new learning to prior knowledge in ways that
sustain enthusiasm, the key affect of the SEEKING system. Not only does the
emerging cognitive sophistication reflect mental maturation, but it highlights how the
brain comes to be an enthusiastic decision-making machine in the marketplace (aka,
neuroeconomics). Thus, let us briefly consider the mechanisms of decision-making.

13.1 Economic and Other Decision-Making

Decision-making, though complex and varied, maintains a general input
choice-feedback structure (Ernst and Paulus 2005). Input refers to the gathering and
assessment of relevant decision information that assists in the formation of pref-
erences. Choice refers to the behavior carried out and the anticipation of conse-
quences; and feedback is the experience and appraisal of the consequences of the
behavior. Cold (reflective) and hot (intuitive) processes differentially contribute to
choice during each decision phase. Cold processes are typically slow, conscious,
and rule governed, while hot processes are fast, automatic and associative.
A distinction between hot and cold processes in judgment and decision making has
been made by many scholars (e.g., Kahneman 2002; Slovic et al. 2005; Stanovich
and West 2000), and there are different hypotheses as to how hot and cold influ-
ences interact (for a review see Evans and Stanovich 2013). For the purposes of
this chapter we will simply assume that both hot and cold processes play important
and neccessary roles in decision making, and avoid specific claims about how
processes interact. During the input stage, emotionally salient information forms
unreflective, but affectively driven choice preferences (hot), which with the emer-
gence of higher cognitive episodic and prospective memories, can promote choice
options that are consciously reasoned through (cold). Thus, during the choice stage
there are bound to also be phenomenally conscious feelings of
anticipation/motivation (hot), which can lead to cognitively driven choices (i.e.,
cold decisions). During the feedback stage, hot and cold processing are both used to
integrate new information into existing knowledge/expectation structures.
Historically, hot processes have been characterized as an impediment to rational
choice behavior. The literature on judgement and decision making has primarily
focused on hot processing as the source of decision bias (e.g., Kahneman and
Frederick 2007), and there is substantial evidence that reliance on hot, intuitive
influences can lead to sub-optimal choice. The view that emotion is an impediment
to decision-making has also been perpetuated in popular culture: in Star Trek, for
example, the Vulcan species is portrayed as logically superior to humans because of
their ability to control and minimize emotional influences. However, modern
neuroimaging studies provide strong evidence that affective processing in emo-
tional integration (orbitofrontal cortex, amygdala), bodily arousal (anterior cingu-
late cortex), and anticipation/motivation substrates (ventral striatum—nucleus
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accumbens) can lead to more efficient and effective navigation of the decision
environment (Levine 2009; Minati et al. 2012; Platt and Huettel 2008). Despite this
evidence, few neural models of decision-making exist that incorporate affective
substrates (Levine 2009), and little effort has been made to integrate them with
existing animal models of basic emotional systems.

Our goal here is to frame our existing neuroscientific knowledge of
decision-making within primary process emotion research, specifically the
SEEKING system (Panksepp 1998; Panksepp and Biven 2012). To do so, we will
first provide some more detailed background on the SEEKING system, focusing on
the role of the nucleus accumbens since this substrate is important in the
decision-making process. Then, building on this information, we will discuss the
converging lines of evidence that support the role of the SEEKING system in each
stage (input, choice, feedback) of decision-making: namely, enhanced activation of
the nucleus accumbens to salient stimuli during input, delineation in activation
between motivation and consumption during choice, and activation resulting in
incentive learning during feedback. Finally, we will discuss the interaction of
SEEKING and decision-making in the pathology of addiction.

13.2 The SEEKING System

The SEEKING system, also known as the brain reward system, was originally
discovered by Olds and Milner (1954). In their seminal study, Olds and Milner
(1954) found that rats would continuously press a lever that applied electrical
stimulation to the septal area of the brain and the nearby nucleus accumbens. Since
the stimulation was all that was needed to reinforce behavior, and reinforcement
was equivalent to when natural rewards (e.g., food) were used, they concluded that
these brain areas must process reward. An explosion of follow-up research has
supported the role of these brain areas, especially the nucleus accumbens, in
reward-related functions and dopamine appears to be the primary mediator of a
distinct “rewarding” state in the brain. Specifically, researchers have found that
animals will repeatedly self-administer dopamine agonists into the nucleus
accumbens (Carlezon et al. 1995; Hoebel et al. 1983; Ikemoto et al. 1997; Phillips
et al. 1994) and exhibit place preferences for environments where dopamine has
been administered into the nucleus accumbens (Carr and White 1983, 1986; White
et al. 1991). However, more recent research indicates that the dopamine-mediated
activation of the nucleus accumbens is only instrumental in the
anticipation/approach phase of reward; that is, it is necessary for the seeking of
reward, but not the consumption (Ikemoto and Panksepp 1996, 1999). This con-
clusion is supported by lesion studies which have been unable to produce consistent
deficits in reward consumption via nucleus accumbens damage (Liu et al. 1998;
Sokolowski and Salamone 1998), and by participation of dopamine release within
the nucleus accumbens during aversive (nonrewarding or punishing) experiences
(Salamone 1994; Salamone et al. 1997). If the nucleus accumbens was involved in
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reward consumption we would expect consistent, large deficits in reward con-
sumption with lesioning, and zero activation during punishment. Thus, the label
“brain reward system” seems to be an inaccurate descriptor of the emotional process
mediated by nucleus accumbens dopamine (Salamone et al. 2005).

Because of such problems and to better reflect the anticipatory nature of this
process, Panksepp (1982, 1998) relabeled this foraging substrate the SEEKING
system. Simply put, the SEEKING system motivates us to interact with our envi-
ronment and to harvest the resources needed for survival (Panksepp and Biven
2012). Since the system is purely emotional/motivational, it does not change as a
function of the behavioral goal; that is, activation of the system motivates organ-
isms to engage with their surroundings, while not being tied to a specific
reward/punishment or sensory modality, at least not until patterns of learning have
emerged. In other words, the unconditional neural activation of this system has an
enormous number of possible goal-directed manifestations after learning, including
diverse economic decision-making processes in humans (Knutson and Greer 2008).

Anatomically, the hub of the SEEKING system is in the ventral tegmental area,
and from there it projects to three major areas: the MFB and lateral hypothalamus,
the nucleus accumbens, and the medial prefrontal cortex (Panksepp and Biven
2012). Within the nucleus accumbens, there are at least three distinct SEEKING
manifestations: (i) flexible foraging responses which, with learning, lead to
(ii) various unconscious habit responses which help program (iii) higher frontal
cortical declarative-perceptual decision-making abilities. The declarative-perception
system detects salient stimuli and can consciously contrast them with previously
experienced stimulus-event relationships via projections from the nucleus accum-
bens to frontal cortical areas. The flexible SEEKING response systems (along with
secondary and tertiary elaborations) is involved in unconditioned as well as
eventually anticipatory/investigatory behaviors, which can be used as information
for declarative-perceptual system, providing overall coherence for incentive
learning. Thus, stimuli associated with previously life-sustaining or life-impairing
events will result in higher nucleus accumbens activation leading to more energized
approach or avoidance responses that are included in routine individual economic
decision-making, but also establishing societal infectiousness within available
marketplaces, including runs on stocks. Finally, the habit response system allows
for the development and maintenance of procedural performance (i.e.,
stimulus-response learning); however, once habits/conditioning have been devel-
oped, nucleus accumbens activation may be no longer necessary for behavior
expression, with evidence from animals indicating that behavioral control often
shifts to dorsal-striatal (caudate-putamen) habitual responding. So, anticipation
brought about by SEEKING guides our immediate approach/avoidance behaviors
(flexible foraging responses), and creates/updates stimulus-event associations
(declarative-perception) to facilitate learning until behavior often become
automatic-procedural (habit response).

13 Brain SEEKING Circuitry in Neuroeconomics … 239



13.3 The Role of the SEEKING System in Economic
and Related Decision-Making

Before detailing the evidence supporting the role of SEEKING in higher
decision-making, it may be useful to briefly reiterate the difference between pri-
mary, secondary, and tertiary processes: Basic emotional systems, like SEEKING,
are known as primary processes because they are evolutionarily older (subcortical)
unconditional (i.e., “instinctual”) structures that are homologous in animals
(Panksepp 2010). Primary processes are expressed as pure feelings (entailing no
necessary higher order analysis, but gradually, with learning, promoting that). For
example, SEEKING activation in non-human animals is typified by apparently
“purposeful” (i.e., coherent, intrinsically well organized) movements characterized
by intense exploration of the environment, while deep-brain stimulation activation
in humans can lead to feelings of eager, initially goalless enthusiasms and antici-
pation (Panksepp and Biven 2012) that can be sufficiently robust to lead to an
antidepressive tonic elevation of mood, which is accompanied by hopes for the
future (Panksepp et al. 2014; Schlaepfer et al. 2013; Wright and Panksepp 2012).
Secondary processes are those that arise from simple (conditioned) learning and
memory processes, which may be largely unconscious (Solms and Panksepp 2012).
While some stimuli are inherently rewarding or punishing to animals, most
stimulus-response relationships are learned via subcortical structures (Panksepp
2010). Finally, tertiary processes, like decision-making, are unique to animals
possessing developed cortical structures (Panksepp and Biven 2012; Rolls 2014).

Of course, these levels of control are not independent, but highly interactive
(Fig. 13.2). Primary processes can have a role within tertiary processes; for
example, SEEKING system dopamine pathways only ascend to frontal cortical
regions in “lower” mammals, but in “higher” mammals the pathways also ascend to
sensory-perceptual cortices (Panksepp and Biven 2012). Thus, SEEKING has a role
in higher order (tertiary) processes not so explicitly evident in “lower” mammals.
Likewise, secondary processes usually have a role within tertiary processes since
learning and memory are essential for most higher order cognitive functions. In
decision-making (tertiary), learning (secondary) and SEEKING (primary) are
necessary process components at each stage of the development of complex psy-
chobehavioral processes.

Input stage. Compared to the other stages of decision-making, the role of
SEEKING in the input stage of economic decision-making may seem to be rela-
tively minor in mature organisms; the declarative-perception subsystem detects
salient stimuli which shape cognitive preferences. Abundant evidence for such top–
down processing comes from fMRI studies in humans (Hamman et al. 2004;
Knutson et al. 2001a, b; Knutson et al. 2005; Zink et al. 2004). However, bottom–

up regulation is still present, especially in the presence of unconditionally com-
pelling stimuli. For instance, Hamman et al. (2004) found that nucleus accumbens
activation was maximized in men and women when anticipating viewing sexual
(salient) versus nonsexual interactions. Zink et al. (2004) extended this finding to
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monetary rewards showing that anticipation of salient (response-dependent) options
elicited higher nucleus accumbens activation than anticipation of minimally salient
(response-independent) options. The salience manipulation was confirmed via
self-report and skin conductance response measurement: response-dependent
options were reported to be more arousing and pleasurable, and elicited higher
skin conductance responses than response-independent options. Similarly, Knutson
et al. (2001a, b, 2005) found that activation of the nucleus accumbens during a
monetary incentive delay task increased as a function of anticipation of reward
magnitude. Activation was highest when anticipating large-magnitude gains and
losses and was independent of option probability (Knutson et al. 2005). The
declarative-perception SEEKING subsystem connects salient stimuli with previous
experiences via neural projections to frontal cortices; thus, we would expect
accompanying activation of these structures during stimuli detection. Of the
aforementioned studies, only Zink et al. (2004) and Knutson et al. (2005) reported
on the activation of cortical structures. Both found significant complementary
activation of the orbitofrontal, dorsolateral prefrontal, and anterior cingulate cor-
tices during detection of salient stimuli. These areas will be important to our later
discussion of incentive learning during the feedback stage of decision-making.

Choice stage. What human brain imaging suggests is that the SEEKING system
continues to play a substantial role even during the cognitively mediated choice
stage of decision-making. Since the flexible SEEKING response subsystem initiates
primary-process appetitive motivation/anticipation, it sustains its role even as
higher order cognitive systems come into play. A large body of research supports
differential neural activation of anticipation, and consumption during
decision-making; with anticipation being primarily mediated by nucleus accumbens
activity (Bjork et al. 2004; Knutson et al. 2001a, b; Schultz et al. 1993). In a series
of human fMRI studies, Knutson et al. (2001a, b) demonstrated dissociations in
neural activation during anticipation and consumption using a monetary incentive
delay task; anticipation was correlated with nucleus accumbens activity while
“consumption” was correlated with ventromedial frontal cortex activity. Using a
similar procedure on both adolescents and adults, Bjork et al. (2004) also found
activation of the nucleus accumbens during anticipation of monetary choice,
regardless of age; although consumption was associated with medial prefrontal
cortex activation. These results are consistent with electrophysiological findings in
primates. Using monkeys trained on a delayed stimulus-response task, Schultz et al.
(1993) found that dopamine projections from the ventral tegmental area to the
nucleus accumbens were selectively activated during stimulus (juice) anticipation.
Note that this is the exact anatomical projection of the SEEKING system described
earlier, providing strong evidence for its role in decision-making.

Further evidence is provided by research detailing SEEKING during choice
across different reward modalities. Since the SEEKING system is not modality
specific, nucleus accumbens activation should be present in all reward types.
Research using monetary rewards (Bjork et al. 2004; Knutson et al. 2001a, b) has
already been discussed in detail, but utilization of other abstract rewards has pro-
duced analogous activation (Aharon et al. 2001; Azim et al. 2005). Nucleus
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accumbens activation was produced by Aharon et al. (2001) in anticipation of
attractive faces, and by Azim et al. (2005) in anticipation of humorous stimuli.
Studies using primary rewards in decision-making (as in Schultz et al. 1993) have
also reported anticipatory nucleus accumbens activation (Berns et al. 2001;
Gottfried et al. 2003; McClure et al. 2003; O’Doherty et al. 2002, 2004). Nucleus
accumbens activation in humans was produced by Gottfried et al. (2003) in
anticipation of pleasant olfaction, and by Berns et al. (2001), McCluree et al.
(2003), and O’Doherty et al. (2002, 2004) in anticipation of juice. O’Doherty et al.
(2004) also found that activation was produced regardless of task difficulty; that is,
activation was the same during anticipation of passive and active choice. This result
contrasts research by Salamone et al. (2005) and Salamone et al. (2007) which
provided evidence for dopamine-mediated nucleus accumbens activation in rats
during effortful (active) choice, but not passive choice. Conflict between these
results may be a product of anatomical SEEKING differences between “lower” and
“higher” mammals, as previously discussed; however, more research is needed to
confirm the role of active versus passive choice on SEEKING anticipation.

There is also conflicting evidence for valence dissociation in anticipation of
choice (Knutson and Cooper 2005). Since the SEEKING system is goalless,
nucleus accumbens activation should be present in reward approach and punish-
ment avoidance. Yet, while some research indicates no difference in neural acti-
vation between anticipation of reward and punishment (Rogers et al. 2004), other
research suggests that the nucleus accumbens is only activated in anticipation of
reward (Knutson et al. 2001a). Seymour et al. (2007) proposed a unifying inter-
pretation of these conflicting results; namely, trial-by-trial fMRI analysis is not
sophisticated enough to detect nucleus accumbens activation during anticipation of
punishment. Using a temporal difference learning model, Seymour et al. (2007)
found that anticipation of both reward and punishment are processed in the ventral
striatum (housing the nucleus accumbens), but reward is processed in the anterior
portion and punishment in the posterior portion. This anterior–posterior gradient
interpretation supports recent findings in rat research. A series of studies by
Reynolds and Berridge (2001, 2002, 2003) demonstrate that artificial excitation of
anterior and posterior portions of the ventral striatum produces appetitive (i.e.,
feeding) and aversive (i.e., paw treading, burying) anticipatory behaviors, respec-
tively. Presumably such differences should be evident also in human economic
choices, reflecting wins and losses in the marketplace.

Finally, with regard to anticipatory choice, there is some debate over whether
nucleus accumbens activation can be alternatively explained by motor demands. As
previously mentioned, Zink et al. (2004) found greater activation of the nucleus
accumbens during motor response-dependent (salient) input versus motor
response-independent (passive) input; a finding that could be interpreted as the
result of motor demands during anticipation of response-dependent choices
(Knutson and Cooper 2005). However, other research shows that nucleus accum-
bens activation is still maintained in anticipatory choice during low-demand motor
tasks (Ernst et al. 2004; Ramnani et al. 2004). Using a passive monetary task,
Ramnari et al. (2004) found that anticipation of reward resulted in nucleus
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accumbens activation while passive experience of reward activated the medial
prefrontal cortex. Ernst et al. (2004) found similar results using a risky choice wheel
of fortune game; choice (initial wheel spin) activated the anterior cingulate cortex,
parietal cortex, and supplementary motor area, and anticipation of reward (wheel
spinning) activated the nucleus accumbens. Thus, there is fairly strong evidence
that activation of the nucleus accumbens during the choice stage is due to
SEEKING anticipation and not task-related motor demands.

Feedback stage. Information received during the feedback stage of
decision-making activates the SEEKING system to modulate incentive learning. The
flexible-response system is active in early learning, with salient feedback stimuli
leading to more energized subsequent approach/avoidance responses; then, later in
learning, once behavior becomes procedural, the habit response system is activated.
This process is hypothesized to occur through a difference in dopamine neuron value
coding between expected versus experienced outcomes; in other words, deviations
from expectation act as learning signals, with greater deviations promoting greater
learning (Montague et al. 1996). This hypothesis is supported by electrophysiological
research in primates (Schultz et al. 1993), as well as neuroimaging studies in humans
(Berns et al. 2001; McClure et al. 2003; Zink et al. 2004). Schultz et al. (1993) found
that firing rates of dopamine neurons within the nucleus accumbens increase in
response to unpredicted reward, are maintained in response to predicted reward, and
decrease in response to expected reward that does not occur. Similarly, fMRI research
shows greater activation of the nucleus accumbens during unpredicted outcome
versus predicted outcome (Berns et al. 2001; McClure et al. 2003), with compli-
mentary activation of frontal cortical structures (Zink et al. 2004).

Frontal cortical activation is both expected and necessary during this decision
stage as information received via feedback is contrasted with experiences in
memory, and learning schemas are updated. In particular, the orbitofrontal and
dorsolateral prefrontal cortices appear to be important substrates in incentive
learning (O’Doherty et al. 2003; Singer et al. 2004). Using a Prisoner’s Dilemma
game, Singer et al. (2004) found complimentary activation of the nucleus accum-
bens and the dorsolateral prefrontal cortex when subject’s viewed faces of persons
who had previously cooperated; activation further increased if cooperation was
intentional versus nonintentional, but disappeared when viewing control faces.
Alternatively, using a risky choice task, O’Doherty et al. (2003) found activation of
the nucleus accumbens and the orbitofrontal cortex during feedback about monetary
rewards; activation in the orbitofrontal cortex was magnified with reward salience.
These results provide support for the role of the flexible-response SEEKING
subsystem in incentive learning; and, in addition, they align with research indi-
cating that the dorsolateral prefrontal cortex also operates in moral decisions
(Greene et al. 2001), and the orbitofrontal cortex integrates reward information with
future expectation (Siddiqui et al. 2008), both types of mentation being of obvious
importance in economically significant decisions.

Since there is a tradeoff between the flexible and habit response SEEKING
subsystems once learning becomes procedural, nucleus accumbens activation
should be present early in learning, but decrease or disappear as experience grows.
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Preliminary research in rats indicates this pattern (Cardinal et al. 2001; Schoenbaum
and Setlow 2003). Specifically, Cardinal et al. (2001) found that lesions in the
nucleus accumbens resulted in a preference for small immediate rewards over large
future rewards, the potential result of impaired learning; and Schoenbaum and
Setlow (2003) found that nucleus accumbens lesions impaired improvement of
response latency in a learned discrimination task. At least one study has been
conducted exploring this issue in humans: Using a monetary choice task, Tanaka
et al. (2004) found that short-term reward prediction (early learning) was correlated
with nucleus accumbens activation, while long-term reward prediction (procedural
learning) was not. Thus, the proposed switch between flexible and habit response
SEEKING subsystems is supported by the limited existing research.

In summary, the SEEKING system is integral in each stage of decision-making.
During input, information relevant to choice is gathered, with salient stimuli leading
to stronger SEEKING activation and formations of preference. In choice, motivation
to engage with the decision environment and the anticipation of consequences,
regardless of reward modality or valence, is driven by SEEKING. During feedback,
consequences are assessed, with salient (unexpected) outcomes leading to greater
SEEKING activation and incentive learning. Thus, SEEKING is part of normative,
day-to-day choice experience; it operates continuously whether making financial,
consumer, or health decisions. Yet, SEEKING also has significant clinical relevance;
in particular, it appears to play an important role in the pathology of addiction.

13.4 Addiction, SEEKING, and Decision-Making

In a sense, individual economic decisions have relationship to addictive behaviors,
which may help explain why cattle-type crowd behaviors may influence large scale
boom and bust economic patterns. Addiction, either behavioral (e.g., gambling) or
substance-linked (e.g., alcohol), is the process in which behavior becomes com-
pulsive and takes precedence over other activities, leading to maladaptive
decision-making (Robinson and Berridge 2000). Traditionally, addiction has been
explained in terms of a positive/negative reinforcement model analogous to the
brain reward hypothesis (Olds and Milner 1954), where the motivation to take
drugs (craving) is brought about by either, (1) the positive rewarding effects of the
drug experience, or (2) the desire to avoid negative effects of withdrawal (Robinson
and Berridge 2000). Yet, as previously discussed, this hypothesis has limited
explanatory value, and, with regards to addiction, cannot explain why addicts seek
drugs when the amount will not be sufficient for pleasure, crave drugs before and
after withdrawal, and continue to use drugs that do not produce strong, aversive
withdrawal symptoms (e.g., psychostimulants). Conversely, some researchers posit
that addiction occurs because the addictive stimuli are, in and of themselves,
positive reinforcers (i.e., stimuli that increase the behaviors they immediately fol-
low) (Jaffe 1992). However, this is hardly an explanation of addiction, just circular
reasoning (e.g., addicts take drugs because drugs promote drug-taking).
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Although these popular and established explanations of addiction are problem-
atic, the mediating neural mechanism behind the addictive process is quite clear;
namely, an increase in dopamine in the nucleus accumbens (Di Chiara 1999; Everitt
and Robbins 2005). Given the role of the nucleus accumbens in SEEKING, and the
compulsive “wanting” experienced by addicts (“a hallmark principle of addiction”;
Everitt and Robbins 2005), it is reasonable to hypothesize that addiction is mediated
by SEEKING. If this is the case, there should be dissociation between motivation to
engage in the addictive behavior and consumption of the addictive stimuli, with the
former being accompanied by nucleus accumbens activity. Evidence for such dis-
sociation, specific to addiction, is provided by non-human animal research (Di
Ciano and Everitt 2004; Hutcheson et al. 2001; Ito et al. 2004; Park et al. 2002).
Hutcheson et al. (2001) found that lesioning the nucleus accumbens in rat’s con-
ditioned to self-administer heroin, impaired their heroin-SEEKING behavior. Ito
et al. (2004) replicated these results using cocaine. Also using cocaine, Di Ciano
and Everitt (2004) and Park et al. (2002) found that SEEKING was impaired by
blocking dopamine receptors in the nucleus accumbens of rats conditioned to
self-administer the drug. Collectively, these results indicate a role for nucleus
accumbens-mediated SEEKING in the motivational aspects of addiction, and have
implications for its treatment. If wanting of the addictive stimuli can be reduced via
nucleus accumbens antagonism, then the cycle of addiction is broken. However,
selectively impairing SEEKING for stimuli, and not creating a global deficit, may
prove difficult and remains a challenge to be addressed.

The SEEKING system also appears to be directly involved in the pathology of
addiction. Research has revealed that addiction produces reliable neuroadaptations to
SEEKING structures such as the nucleus accumbens (Letchworth et al. 2001; Nader
et al. 2002). Examining dopamine binding in monkeys conditioned to self-administer
cocaine, Letchworth et al. (2001) found that extended exposure to cocaine produced
increased binding in the nucleus accumbens. Using a similar procedure, Nader et al.
(2002) found that dopamine 1 receptors increased in the nucleus accumbens after
prolonged cocaine exposure, but decreased dopamine 2 receptor density. Thus, there
appears to be a neural sensitization of the nucleus accumbens, mediated by dopamine
1 receptors, during addiction. In their incentive-sensitization theory of addiction,
Berridge and Robinson (1998) propose that this sensitization is responsible for the
compulsive wanting behavior in addiction. Sensitization pushes SEEKING into
over-drive which is behaviorally displayed in addiction as focusing on the addictive
stimulus-response relationship. For example, crack cocaine addicts who have run out
of drugs exhibit a behavioral phenomenon known as “chasing ghosts” in which they
compulsively search for and closely examine anything resembling a particle of the
drug, despite reporting that they know it is a useless behavior (Berridge and Robinson
1998). This process is presumably reliant on continuing arousals from the SEEKING
system, as it pulls information from previous associations from addictive behavior
patterns to inform continued attempts at consumption. This can result in phenomena
like place preference, where cravings for the addictive stimuli increase in relation to
their previous contextual, spatial, or temporal associations (Robinson and Berridge
2000). In sum, the pathology of addictionmay be dependent on the sensitization of the
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SEEKING system, which produces compulsive wanting behavior and contributes to
the disease’s continuing vicious cycle.

The adaptation of the nucleus accumbens—a substrate essential to
decision-making—during addiction results in some decision-making deficits in
addicts. Most research on this topic has focused around performance on the Iowa
Gambling Task (IGT), developed by Bechara et al. (1994). In this task, participants
make choices between four decks over multiple trials; two decks are “good” leading
to better outcomes over time, and two decks are “bad.” The goal of the task is to
learn deck properties via experience and maximize hypothetical winnings. Bechara
and colleagues (2001, 2002a,b) found that addict’s IGT performance was similar to
patients with ventromedial prefrontal cortex (VMPFC) damage, both demonstrate
“myopia” for the future by choosing mostly from the bad decks which yield high
immediate gains but higher future losses. Interestingly, decision making impair-
ments were not present in all addicts, between 32–37% had performance consistent
with controls and this grouping was not predicted by differences in stimulus
addiction (Bechara at al. 2001, 2002a). A follow-up study found that, of the addicts
with poor IGT performance, a small sub-group (about 36% of sample) demon-
strated insensitivity to future consequences consistent with VMPFC damage, but a
much larger sub-group (about 64%) demonstrated a hypersensivity to reward
(Bechara et al. 2002b).These results were interpreted in-line with classic explana-
tions of addiction, where “myopia” for the future can arise from either primary or
secondary processes. Primary processes generate a strong response to the delivery
of the reward, which reinforces the selection of choices with high short term gains,
but higher long term losses. Secondary processes produce the same pattern of
choice by generating thoughts about gaining rewards. We propose that addiction-
related decision making differences in the IGT may instead be the result of sensi-
tisization of the SEEKING system. Compulsive wanting behavior produced by
SEEKING could drive the selection of high short term reward choices, and since
SEEKING is independent of the actual consumption of choice outcomes, addicts
would continue to select high short term reward choices despite higher long term
losses. However, more research on the impact of addiction on decision making is
needed (with additional paradigms) to verify the role of SEEKING.

13.5 Conclusion

Our SEEKING system keeps us in a general state of engagement with the world;
feelings of anticipation, regardless of the intended goal, drive us toward action. In
decision-making, SEEKING motivates us to explore choice options and assists in
learning, so choices can improve over time. Thus, without this SEEKING urge, we
as decision-makers would be doomed to repeat our same mistakes over and over
again. Addiction, which is characterized by a similar repetition of mistakes, may be
the product of neural sensitization of the SEEKING system, leading to compulsive
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wanting behavior; however, more research on the exact interaction between the
SEEKING urge and economic decision-making is needed.

From this perspective, it is important to remember that the modern era of neu-
roeconomics was strongly grounded in the study of animal emotional circuits.
Perhaps the very first modern neuroeconomics study was done by Brian Knutson,
soon after he departed from a year of postdoctoral work in the primary author’s lab
back in 1994, to work at a lab doing the first human-brain imaging at the American
National Institutes of Health in Bethesda, Maryland. At our lab, he had learned
much about the SEEKING system and its role in appetitive eagerness (Knutson
et al. 1998, 1999, 2002), which provided lasting insight into the animal foundations
of human nature. With remarkable enthusiasm, Brian translated those insights into
the first brain imaging studies of neuroeconomic decision-making in humans
(Knutson et al. 2000, 2001a, b), which has become a booming field of research, that
has wisely sustained its linkages to the fundamental issues that have been best
illuminated through animal research… albeit the market-share of discussions in the
field still utilize the original hand-me-down and somewhat off-the-mark concept of
“The Brain Reward System.” All who have been paying attention realize that the
brain has many rewarding systems, so neuroeconomics needs a more sophisticated
discussion of what is actually happening psychologically in the brain (for abundant
perspectives, see Glimcher 2011a, b; Glimcher and Fehr 2013), and the utility of
“reward prediction error signals” although still the rage (e.g., Hart et al. 2014), does
not well describe what the Mesolimbic Dopamine system is actually doing, psy-
chologically, within the brain. It is essential to return to the actual affective pro-
cesses that these subcortical neural systems actually engender within the brain and
mind (e.g., Hayes et al. 2014; Panksepp 1998; Panksepp and Biven 2012).

So, returning to fundamentals, it is important to realize that the SEEKING system
which lies at the very heart of organismic coherence (Teitelbaum and Epstein 1962),
and which generates feelings of enthusiasm in both mice and men, guides all survival
aspirations, including feelings that are often depleted in clinical depression (Panksepp
et al. 2014, Panksepp 2015, 2016), as well as within in the larger societal purview of
economic depressions. This does not mean that the boom and bust fluctuations of
economic cycles have a critical subcortical basis, but simply that down deep within
brain emotional systems, the economics of survival are still coded as affects. Those
facets of mind are critical for individual feelings of well-being, and they do influence
the flow of traffic in the diverse economic marketplaces invented by humans.

To the best of our knowledge there is nothing in the brain that evolved under the
influence of economic pressures that emerged with the utilization of money as a
shared standard of economic value. This is important to remember, for that means
that the “dismal sciences” of neither macroeconomics nor microeconomics have
strict rules within evolved regions of human brains. Thus, it may be worthwhile to
return to a satirical remark from Thomas Carlyle: “There are good and bad times,
but our mood changes more often than our fortune.”

http://www.brainyquote.com/quotes/authors/t/thomas_carlyle.html#VXVSS6cL
fzoe1oxl.99
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Chapter 14
The Psychology and Psychobiology
of Simple Decisions: Speeded Choice
and Its Neural Correlates

David K. Sewell and Philip L. Smith

Abstract In this chapter, we provide a tutorial review of the class of sequential
sampling models of two-choice decision-making. These models, which have been
developed in cognitive and mathematical psychology over the last 50 years, pro-
vide a detailed quantitative account of performance in simple, speeded choice tasks.
The models explain the major findings from a wide variety of behavioral decision
tasks, including the relationship between choice probabilities and response time
(RT), the speed-accuracy tradeoff, the shapes of RT distributions, and the relative
speed of correct and error responses. More recently, electrophysiological recordings
from decision-related brain areas in awake behaving monkeys have revealed a
correspondence between patterns of neural firing and the statistical processes of
evidence accumulation assumed in the psychological models. We discuss the the-
oretical relationship between the cognitive process of evidence accumulation and
neural firing rates and show how neural data can constrain behavioral models.
Importantly, constraints from neurophysiological data can be used to test between
models that are otherwise difficult to distinguish. The convergence of psychological
theory and neurophysiological data suggests that a common theoretical and math-
ematical framework is sufficient to account for simple decision-making data at
neural and behavioral levels of analysis.

14.1 The Psychology and Psychobiology of Simple
Decisions: Speeded Choice and Its Neural Correlates

The simplest decision an organism can make involves choosing between two
alternatives. The importance of such two-alternative forced choice (2AFC) deci-
sions is reflected in the extent to which they have been studied in psychology and,
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more recently, in behavioral economics. For both psychologists and economists,
the fundamental theoretical questions involve what is chosen, as a function of
the discriminability or desirability of the alternatives, how long it takes to make the
choice, and what mechanisms determine the choice. A wealth of 2AFC data col-
lected over the last 50 years has led to detailed analyses of the relationship between
psychology’s two ubiquitous dependent variables: choice probability and response
time (RT). Probably the most familiar expression of this relationship is in the speed-
accuracy tradeoff, which describes people’s ability to trade speed against accuracy
in decision-making tasks (e.g., Luce 1986; Wickelgren 1977). In psychology, the
theoretical understanding of the choice-RT relationship has been guided by the
development of the influential class of sequential sampling models. According to
these models, decisions are made by summing, or accumulating, samples of noisy
evidence over time. Statistical variability in the moment-to-moment quality of the
evidence is assumed to reflect noise in the cognitive or neural processes that code
for different response alternatives. A response is initiated only after sufficient evi-
dence for a decision is obtained. Successful sequential sampling models, such as
Ratcliff’s (1978), Ratcliff and McKoon (2008) diffusion model, account for
behavioral data at the level of choice probabilities and the shapes of correct and
error RT distributions. The model’s ability to provide very detailed accounts of data
suggests that decision-making in simple decision tasks does indeed occur via a
process of accumulating evidence to a criterion.

The characterization of decision-making as a process of accumulating evidence
over time has attracted the attention of neuroscientists studying the neural correlates
of decision-making. Using analogs of 2AFC decision tasks, in which monkeys
respond to visually presented stimuli by making saccadic eye movements, neuro-
scientists have uncovered striking similarities between the firing rates of neurons in
lateral intraparietal area (LIP), superior colliculus (SC), and the frontal eye fields
(FEF) on the one hand, and the dynamics of evidence accumulation postulated by
sequential sampling models on the other. Neurons in these brain areas are part of the
oculomotor control circuit that is active when making saccadic eye movements. This
invites the theoretical linking proposition (Schall 2004; Teller 1984) that activity in
this circuit provides an online reflection of the accumulating evidence state prior to
executing an eye movement. Indeed, patterns of neuronal firing rate data in regions
involved in perceptual decision-making appear to reflect the temporal integration, or
accumulation, of evidence over relatively long time scales (e.g., Shadlen and
Newsome 1996; for a review see Gold and Shadlen 2007). The correspondence
between psychological theory and neurophysiological data suggests that phenomena
at both cognitive and neural levels of analysis may be understood in terms of a
common theoretical and mathematical framework (Smith and Ratcliff 2004). The
principal benefit of such correspondence is that insights at one level of analysis
impose constraints on the other. The development of sequential sampling models
from psychology has guided neurophysiological empirical investigations (e.g.,
Ratcliff et al. 2003, 2007), and neurophysiological data have proved diagnostic in
testing between models that are otherwise difficult to distinguish on the basis of
behavioral data alone (e.g., Purcell et al. 2010; Ratcliff et al. 2011).

254 D.K. Sewell and P.L. Smith



In this chapter, we use models of simple decision-making as a link between
psychological and neurophysiological levels of analysis. We focus particularly on
the similarities between the time course of neural firing rates preceding an eye
movement response and the time course of the process of evidence accumulation
estimated from sequential sampling models. Although most of the studies we dis-
cuss involved neural data collected from monkeys performing simple perceptual
decision tasks, sequential sampling models have also been successfully applied to
behavioral data from other kinds of tasks involving higher order cognitive judg-
ments including, but not limited to, recognition memory (e.g., Ratcliff 1978),
lexical decision (e.g., Ratcliff et al. 2004), as well as tasks involving more complex
value-based decisions (e.g., Busemeyer and Townsend 1993; Roe et al. 2001). For
these kinds of “one-shot” tasks, a decision is usually made within a second or so
after stimulus presentation. Because performance in these tasks is well described by
sequential sampling models (e.g., Ratcliff and Smith 2004), we argue that the
relationship between these sequential sampling models and neural processing
dynamics likely extends beyond perceptual decision-making to other domains.

The chapter is organized into two parts. In the first part, we discuss the
benchmark patterns of empirical results that have been used to evaluate competing
sequential sampling models in psychology. We then provide a nontechnical tutorial
overview of the main classes of sequential sampling models that have been
developed in cognitive and mathematical psychology, and discuss how different
models succeed or fail in addressing the benchmark results. Different models reflect
differing assumptions about the architecture of the decision process: whether evi-
dence is represented in continuous or discrete quantities, is sampled in continuous
or discrete time, and whether there is competitive interaction among decision units.
We discuss the empirical and theoretical implications of these distinctions in fairly
general, qualitative, terms and omit the technical details. Readers interested in these
details are referred to the sources cited herein.

As we discuss below, models that assume that evidence is accumulated by a
diffusion process provide a better account of behavioral data than models that
assume it is accumulated by other kinds of processes (Ratcliff and Smith 2004).
This provides strong support for the class of diffusion models, as opposed to
plausible alternatives like accumulator and counter models. However, more recent
neurally inspired models have successfully combined elements of diffusion models
with decision architectures traditionally used in accumulator and counter models
(e.g., Ratcliff et al. 2007; Smith 2000; Usher and McClelland 2001). Throughout
our discussion, we focus on Ratcliff’s (1978), Ratcliff and McKoon (2008) diffu-
sion model, as it has been tested extensively, and has been shown to provide a good
account of decision-making in simple cognitive tasks (Ratcliff and Smith 2004). We
then discuss recent theoretical developments showing that the simulated behavior of
neural network circuits provides a biologically plausible basis for implementing a
diffusion decision process in the brain (e.g., Smith 2010; Wang 2002). These
studies provide a theoretical basis for understanding the neural computations that
underpin decision processes, and provide an account of why diffusion models have
proved successful in accounting for behavioral data.
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In the second part of the chapter, we review findings that identify patterns of
firing rates in LIP, SC, and FEF neurons as neural correlates of evidence accu-
mulation processes. In a variety of perceptual decision tasks, shortly after stimulus
presentation, firing rates in these brain areas exhibit systematic ramping to a
threshold (e.g., Churchland et al. 2008; Hanes and Schall 1996; Purcell et al. 2010;
Ratcliff et al. 2003, 2007, 2011; Shadlen and Newsome 1996, 2001), consistent
with accumulation of evidence to a decision criterion. Much of the work we review
here focuses on neural data collected from populations of macaque LIP neurons
while the animals completed variants of a random dot motion direction discrimi-
nation task developed by Newsome, Shadlen, and colleagues (see Gold and Shadlen
2007, and Huk and Meister 2012, for reviews and discussion). In this task, a
monkey is presented with a random dot motion stimulus, where some proportion of
the dots move coherently in a single direction. To indicate the perceived direction of
motion, the monkey makes a saccadic eye movement to a response target (see
Fig. 14.1).

A striking aspect of the response of LIP neurons in tasks like these is that
direction-specific firing rates remain elevated even after the stimulus is extinguished
(e.g., Gnadt and Andersen 1988; Shadlen and Newsome 1996, 2001). When viewed
in terms of the general theoretical distinction between categorical and precategorical
stimulus representations, the asymptotic level of firing can be identified with for-
mation of a response-related categorical representation of the stimulus, whereas the
ramping of activity toward asymptote can be related to the evolving state of a
precategorical representation. This is consistent with the idea that aspects of LIP

Fig. 14.1 Overview of two versions of the random dot motion direction discrimination task
developed by Newsome, Shadlen, and colleagues. In the response time version of the task (left
panel), a monkey fixates the cross in the center of the screen. Two saccade targets corresponding to
different response alternatives are presented. One of the targets is positioned in the receptive field
of an LIP neuron. The random dot stimulus is then presented. Once the monkey makes a decision
about the direction of coherent motion in the stimulus, it makes an eye movement to one of the
saccade targets. The procedure is similar in the fixed viewing duration version of the task (right
panel) with the exception that there is an experimenter-enforced delay between offset of the
random dot stimulus and when the monkey is allowed to make a response. Reproduced from
Roitman and Shadlen (2002)
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activity reflect memory for the outcome of a decision process. Importantly, this
sustained neural activity can also be distinguished from activity related to planning
a specific oculomotor response, reinforcing the idea that decision outcomes have
explicit—and experimentally identifiable—neural correlates (Bennur and Gold
2011).

Beyond identifying neural correlates of the decision process, several studies
have attempted to provide a joint account of behavioral and neural data through
mathematical modeling (e.g., Purcell et al. 2010; Ratcliff et al. 2003, 2007, 2011).
These studies bring to bear constraints from the neural data themselves, which have
proved useful in distinguishing sequential sampling models that mimic each other at
a purely behavioral level of analysis. We conclude the chapter with a brief dis-
cussion of outstanding questions, and future directions for research.

14.2 Sequential Sampling Models

In this section, we review the three major classes of sequential sampling models that
have been studied in psychology. Following Ratcliff and Smith (2004), we sum-
marize the key benchmark effects that have been used to assess the models, along
with how well-different classes of models address such data. A complementary
evaluation of sequential sampling models was conducted by Bogacz et al. (2006),
who examined how closely different model classes approached optimal behavior—
defined in terms of maximizing the rate of reward during an experiment—and the
conditions under which the different models are formally equivalent. As we do not
cover the broad scope of their review here, the interested reader is referred to their
work for discussion.

All sequential sampling models of decision-making assume three common ele-
ments: (1) an encoded representation of the stimulus or evidence that drives the
decision process, (2) a mechanism that integrates, or accumulates, evidence over
time, and (3) a stopping rule that determines when to halt evidence accumulation
and initiate an appropriate response. Figure 14.2 shows a taxonomy of sequential
sampling models. Individual models outlined in the figure are obtained by varying
assumptions about these common elements.

Historically, the major distinction among sequential sampling models was in
terms of decision architecture, which refers to the number of simultaneous evidence
totals assumed in the model, or equivalently, whether decisions are based on
absolute or relative levels of evidence. Models based on random walk and diffusion
processes—the left-hand branch in Fig. 14.2—assume only a single signed evi-
dence total is accumulated over the course of a trial. The single evidence total
implements a decision rule that is based on the relative level of evidence. For
example, in Ratcliff’s diffusion model, a decision is made only when the difference
in the amount of evidence favoring one response over the other exceeds a criterion.
By contrast, the decision architecture assumed by accumulator and counter models
—the right-hand branch in Fig. 14.2—assumes that evidence for competing
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responses is accumulated in separate evidence totals. According to these models,
there is a separate accumulator for each response alternative. The value of each
accumulator’s evidence total reflects the level of evidence supporting that response.
The first accumulator to accrue a criterion amount of evidence determines the
response, implementing a decision rule based on absolute levels of evidence.

The second major distinction among sequential sampling models is whether time
and evidence are represented as discrete or continuous quantities. These factors
define the statistical properties of the evidence accumulation process. For example,
random walk models (e.g., Edwards 1965; Laming 1968; Link and Heath 1975;
Stone 1960) assume continuous-valued evidence that is sampled in discrete time
steps. As we discuss below, different assumptions about decision architecture and
the nature of the evidence accumulation process lead to differences in the abilities of
models to predict key benchmark effects like the shapes of RT distributions and the
relative ordering of correct and error response times. A third distinction, which
applies to more recently developed hybrid diffusion-accumulator models (e.g.,
Usher and McClelland 2001; Ratcliff et al. 2007, 2011; Smith 2000), is whether
accumulators for different response alternatives compete by mutually inhibiting one
another. We defer discussion of this distinction to when we discuss neurophysio-
logical data, as the relevant models are difficult to distinguish with just behavioral
data (see Ratcliff and Smith 2004). Before discussing the different model classes,
we review the key benchmark effects that must be addressed by any successful
model of choice-RT.

Fig. 14.2 Taxonomy of sequential sampling models. The branch on the left depicts random walk
and diffusion models. The branch on the right depicts different accumulator and counter models.
The class of models listed in the lower right of the figure are hybrid diffusion-accumulator models
that combine aspects of diffusion models within a multi-accumulator architecture
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14.2.1 Behavioral Benchmarks for Evaluating Sequential
Sampling Models

In the cognitive and mathematical psychology literature, three benchmark effects
have guided the development of models of decision-making. These are the
speed-accuracy tradeoff, the right-skewed shape of RT distributions, and differences
in the relative speeds of correct and error response times. Ratcliff and Smith (2004)
examined how well different models accounted for these benchmark effects.

Speed-Accuracy Tradeoff. A common experimental manipulation in many kinds
of tasks requires participants to differentially favor response speed and accuracy,
and it is well known that participants are responsive to such instructions (Luce
1986; Wickelgren 1977). When speed is emphasized, responding is faster, but more
error-prone. When accuracy is emphasized, accuracy increases, along with response
time. Across conditions, the differences in performance can be quite striking. For
example, accuracy varies by around 10 %, whereas mean RTs can differ dramati-
cally across speed- and accuracy-emphasis conditions. In some cases, mean RTs in
conditions emphasizing accuracy are double those in conditions emphasizing speed
(Ratcliff and Rouder 1998). The pattern of changes in accuracy and mean RT across
speed and accuracy conditions, when combined with the other empirical benchmark
phenomena discussed below, impose powerful constraints on sequential sampling
models.

Shape of Response Time Distributions. Accounting for the shapes of RT dis-
tributions has proved particularly diagnostic in evaluating sequential sampling
models because the shapes of RT distributions impose more constraints than
summary measures like mean RT. Typically, the mean and standard deviation of
empirical RT distributions increase roughly in proportion to one another
(Wagenmakers and Brown 2007). A characteristic property of RT distributions
obtained from experiments with human participants is that they are right-skewed:
Relative to median RT, the difference between the fastest RTs in different experi-
mental conditions is much smaller than the difference between the slowest RTs.
Moreover, as stimulus difficulty increases—for example, by increasing stimulus
confusability—increases in mean RT are primarily associated with changes in the
tails of the RT distribution. The fastest RTs—those that define the ‘leading edge’ of
the RT distribution—change very little as difficulty increases, whereas the slowest
RTs slow down dramatically.

Correct and Error Response Times. Early comparisons of sequential sampling
models focused primarily on their ability to predict the empirical orderings of mean
RTs for correct and error responses. In experiments where accuracy is stressed or
the task is very difficult, error RTs tend to be slower than correct RTs. By contrast
when speed is stressed, or task difficulty is low, error RTs tend to be faster than
correct RTs (Luce 1986). Moreover, in some cases, there is a crossover pattern, in
which error RTs are slower than correct RTs in some conditions, but faster in other
conditions of the same experiment (e.g., Ratcliff and Rouder 1998; Ratcliff and
Smith 2004; Ratcliff et al. 1999; Smith and Vickers 1988). Accounting for these

14 The Psychology and Psychobiology of Simple Decisions … 259



different RT orderings has been one of the biggest theoretical challenges in
developing sequential sampling models. We now introduce the major classes of
sequential sampling models investigated by Ratcliff and Smith (2004), noting how
well each model class addresses the benchmark phenomena.

14.2.2 Accumulator and Counter Models

According to accumulator and counter models, separate evidence totals for each
response alternative are incremented until one of the totals exceeds a response
criterion. In a 2AFC task, there are two separate evidence totals, one for each
response alternative. In accumulator and counter models, the decision process can
be conceptualized as a race between evidence accumulators to reach a decision
threshold. The response is controlled by the accumulator that wins the race,
implementing an absolute decision rule.

One of the earliest models of choice-RTwas LaBerge’s (1962) recruitment model,
which assumed that evidence for different response alternatives is sampled in unit
increments at discrete, equally spaced time steps. At each time step, one of the two
counters is incremented by one unit. The probability that the counter receiving the
increment is the one associated with a correct response is a function of the stimulus
discriminability. When discriminability is high, one of the counters increments at a
much faster rate than the other; when discriminability is low, the two counters
increment at more similar rates. The class of accumulator (e.g., Audley and Pike
1965; Smith and Vickers 1988; Vickers 1970, 1979) and counter models (e.g.,
LaBerge 1994; Pike 1966; Smith and Van Zandt 2000; Townsend and Ashby 1983)
can be viewed as extensions of the recruitment model. According to these models,
evidence accumulation for different response alternatives proceeds in parallel.

The class of accumulator models developed by Vickers and colleagues (e.g.,
Smith and Vickers 1988; Vickers 1970, 1979) retained the recruitment model’s
assumption of a constant sampling rate in discrete time, but assumed
continuous-valued evidence. Figure 14.3 illustrates the mechanics of the Vickers
accumulator model. At each time step, evidence is sampled from a continuous
distribution, which is usually assumed to be Gaussian, as shown in the figure—
although Smith and Vickers (1988) also considered a model with a double-
exponential distribution of evidence, and showed its predictions were similar to
those of the Gaussian model. The strength of the evidence favoring different
alternatives is controlled by the parameters of the evidence distribution. For a
Gaussian distribution, the mean is set to μ, which is a function of the discrim-
inability of the stimulus alternatives, and the standard deviation is set to 1. The
standard deviation determines within-trial variability in the accumulation process,
meaning that different samples will provide different levels of evidence. A sensory
referent determines how evidence samples are classified. Samples falling above the
referent increment one accumulator; samples falling below the referent increment
the other accumulator. In either instance, the increment to the accumulator is the
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absolute value of the difference between the sample and the referent. Once an
accumulator has accrued a criterion amount of evidence, the corresponding
response is initiated. To allow for trial-to-trial variability in the efficiency of
stimulus processing (e.g., stimulus encoding), for the accumulator model and other
models of different classes, some model parameters are allowed to vary across
trials. Between-trial variability reflects the assumption of noise in the encoding
process, which results in variability in the representations of nominally identical
stimuli across different trials of an experiment. This assumption is a standard one in
psychology and is fundamental to statistical decision frameworks such as signal
detection theory (Green and Swets 1966). In the accumulator model, there is
trial-to-trial variability in accumulation rates. Across trials, the accumulation rate μ
is assumed to be Gaussian distributed with standard deviation rl, making the model
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Fig. 14.3 Overview of the Vickers accumulator model. On each trial, continuous-valued evidence
is sampled at a fixed rate, in discrete time. At each time step, a sample is drawn from a Gaussian
distribution of sensory evidence with mean µ and standard deviation 1. The stimulus alternative
the sample provides evidence for depends on the value of the sample relative to a sensory referent,
and the corresponding accumulator is incremented by the appropriate amount. The response is
controlled by the first accumulator to reach a criterion (set to 10 here). Response time is
determined by the number of steps required to reach the criterion. Sample trajectories from two
trials are shown. On one trial, the response is determined by Accumulator 1 (solid line), on the
other trial, Accumulator 2 controls the response (dashed line)
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doubly stochastic. The accumulation rate for a single trial is determined by a
random sample from this distribution.

The time and evidence assumptions of the Poisson counter model (LaBerge
1994; Pike 1966; Smith and Van Zandt 2000; Townsend and Ashby 1983) are
complementary to those of the Vickers accumulator model. Unlike the accumulator
model, evidence is accumulated in unit increments, as assumed in the recruitment
model, but is sampled in continuous time. Figure 14.4 illustrates the properties of
the Poisson counter model. The name of the model derives from the fact that, for
each response alternative, the arrival times between consecutive evidence samples
are exponentially distributed with means 1=a and 1=b. The relative magnitudes of
the parameters a and b depend on stimulus discriminability. For each response
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Fig. 14.4 Overview of the Poisson counter model. Discrete valued evidence is accrued in separate
accumulators in continuous time. Waiting times between successive evidence samples are
exponentially distributed with different mean interarrival times for the two alternatives. In this
case, α > β, resulting in shorter periods between arrival times for Accumulator 1. The response is
determined by the first accumulator to accrue a criterion number of evidence samples, set here to
10. Response time is determined by the sum of the interarrival times for the fastest accumulator.
Two simulated evidence accumulation trajectories are shown in the figure. In both cases,
Accumulator 1 determines the response
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alternative, the number of evidence samples accrued in some interval of time is
therefore described by a Poisson process with respective intensities a and b. Like
the Vickers accumulator model, when a criterion amount of evidence for one
alternative has accrued, the corresponding response is initiated.

Speed-Accuracy Tradeoff. Accumulator and counter models, like all sequential
sampling models, account for the speed-accuracy tradeoff in the same way, by
varying the decision criterion across conditions. Under speed instructions, the cri-
terion is relatively low, requiring only a small amount of evidence before a response
is initiated. Because the accumulation process needs less evidence to reach the
criterion, responses are faster. However, the low response criterion makes
the process susceptible to decisions being initiated by random perturbations in the
accumulation process, resulting in a greater proportion of errors. Under accuracy
instructions, the decision criterion is relatively high. This means the accumulation
process needs more evidence before a response can be initiated, resulting in longer
RTs. However, responding becomes more accurate because the increased evidence
sampling provides the accumulation process with more opportunity to average out
the effects of momentary fluctuations due to noise.

Shapes of RT Distributions. Capturing the shapes of empirical RT distributions
has proved especially difficult for counter and accumulator models. For example,
the original recruitment model (LaBerge 1962), predicted negatively skewed RT
distributions under some circumstances, and RT distributions that became more
normally distributed with increasing response criterion. The latter prediction is
inconsistent with data from studies emphasizing accuracy, which typically show
that increases in RT with changing stimulus discriminability are primarily due to
changes in the tails of the distributions rather than a change in central tendency
(e.g., Ratcliff and Rouder 1998). In Ratcliff and Smith’s (2004) evaluation of
sequential sampling models, both the Poisson counter model and the Vickers
accumulator model, were found to underestimate the extent of right skew in data,
especially at low stimulus discriminabilities. Although the Vickers accumulator
model could be made to better capture the shapes of RT distributions by assuming
long-tailed (exponential) distributions of response criteria, the Poisson counter
model could not. The reason for the difference is because the evidence totals in the
Poisson counter model are independent of one another, whereas in the accumulator
model there is an implied dependency between the totals because only one accu-
mulator is incremented at any time step.

Correct and Error RTs. An appealing feature of the early accumulator and
counter models (e.g., LaBerge 1962; Townsend and Ashby 1983; Vickers 1970)
was that they predicted mean error RTs to be slower than correct RTs, as found in
many studies with difficult to discriminate stimulus alternatives. However, as noted
above, this is only one of the patterns that have been observed in data. Under
speed-emphasis in tasks with highly discriminable stimuli, error RTs are typically
faster than correct responses. Pike (1973) suggested that trial-to-trial variability in
accumulation rate allowed counter and accumulator models to predict faster error
RTs, but Ratcliff and Smith (2004) found that the error RTs predicted by both the
Poisson counter model and the Vickers accumulator model were only marginally
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faster than correct RTs, and that both models underpredicted the magnitude of the
effect. Ratcliff and Smith (2004) also found that the Poisson counter model was
unable to account for crossover patterns in mean RT orderings. For the Vickers
accumulator model, assuming between-trial variation in both the criterion and rate
of evidence accrual can allow the model to account for crossover effects in some
(Smith and Vickers 1988), but not all circumstances (Ratcliff and Smith 2004).

Summary of Accumulator and Counter Models. To summarize, accumulator and
counter models only provide a partial account of the existing behavioral data.
Although they address the speed-accuracy tradeoff and slow error RTs, they cannot
provide an accurate account of the shapes of RT distributions without additional ad
hoc assumptions about the distribution of response criteria, nor can they account for
fast errors.

14.2.3 Diffusion and Random Walk Models

Unlike the counter and accumulator models discussed above, random walk and
diffusion models assume a decision architecture involving a single signed evidence
total, or equivalently, a relative decision rule (e.g., Edwards 1965; Laming 1968;
Link and Heath 1975; Ratcliff 1978; Stone 1960). That is, evidence for one
response alternative is simultaneously evidence against the other. The decision rule
in these models can be viewed as initiating a response once the difference between
two absolute evidence totals exceeds a criterion.

Early random walk models (Edwards 1965; Laming 1968; Stone 1960) were
influenced by Wald’s (1947) sequential probability ratio test (SPRT). The SPRT is
an optimal way of choosing between two competing hypotheses: For any desired
level of accuracy, the SPRT takes the minimum expected time to reach a decision.
In the context of decision-making, the optimality property of the SPRT addresses
costs associated with both time and accuracy, which is what initially recommended
it as a psychological model of the decision process. The relationship between
decision-making and optimality, as formalized in the SPRT, continues to influence
researchers interested in the neuroscience of decision-making (Bogacz 2007;
Bogacz et al. 2006; Gold and Shadlen 2001, 2002). The SPRT works by accu-
mulating log-likelihood ratios in discrete time steps. To frame the SPRT in terms of
perceptual decision-making, stimulus information is sampled at a constant rate by a
mechanism that evaluates which response alternative is favored by each sample. In
the SPRT, the evidence provided by each sample is computed by taking the
log-likelihood of the ratio of probabilities of obtaining the sample, given the truth of
each response alternative.

A limitation of early random walk models based on the SPRT was that they
predicted mean RTs for correct and error responses would be equal, which is
inconsistent with data. (A notable exception to this was a study by Green et al.
(1983), who collected RTs from very highly practiced participants and found no
difference between RTs for correct responses and errors, but their findings are
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atypical.) To account for the relative orderings of mean RTs for correct and error
responses, (Link and Heath 1975), in their relative judgment theory, proposed a
random walk model that omitted computation of likelihood ratios. In their model,
noisy evidence samples are accumulated by the decision process directly, in much
the same way as in the Vickers accumulator model. The relative judgment model is
illustrated in Fig. 14.5. At the first time step, the initial state of evidence accu-
mulation is set to z. The evidence total required to initiate a response is determined
by a boundary separation parameter, a, which sets the decision criterion. At each
time step, a new sample of evidence is accumulated, which moves the process
toward either the upper or lower response boundary. When the process reaches one
of the boundaries, the corresponding response is initiated.

Whereas random walk models sample evidence at a constant rate in discrete
time, diffusion models sample evidence continuously in time (Ratcliff 1978; Ratcliff
and McKoon 2008). In the Wiener diffusion model of Ratcliff, the accumulation of
evidence can be described mathematically by the stochastic differential equation,

dXt ¼ mdtþ rdWt: ð14:1Þ

Equation 14.1 describes the change in accumulated evidence, dXt, in an
infinitesimal time interval, dt. Like the random walk model, evidence accumulation
starts at some point, z, situated between response boundaries at a and 0. The mean
rate at which evidence accumulates toward a response boundary is defined by the

Fig. 14.5 Random walk and Wiener diffusion model. Relative evidence for two alternatives is
accumulated from some starting point, z, toward one of two response boundaries at a and 0. The
rate of evidence accumulation is defined by the drift rate of the diffusion process, which varies
between trials according to a Gaussian distribution with mean ν and standard deviation η. The
response is determined by the first boundary the process reaches. Two simulated evidence
accumulation trajectories are shown. In one case, the upper boundary is reached, resulting in an ‘A’
response (solid line). In the other, the lower boundary is reached, resulting in a ‘B’ response
(dashed line)
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drift rate, which is normally distributed across trials with mean ν and standard
deviation η. This means the diffusion model, like the version of the accumulator
model described by Smith and Vickers (1988) is doubly stochastic.

In Eq. 14.1, ν controls deterministic changes in the quantity of accumulated
evidence. In addition to this deterministic change, diffusion models incorporate
moment-to-moment stochastic changes in the accumulated evidence. This is
modeled as a white noise process, dWt, which is the formal derivative of the
Brownian motion, or Wiener diffusion, process. The variance of the stochastic part
of Eq. 14.1 is determined by the diffusion coefficient of the process, σ2. In Ratcliff’s
model, both the drift rate and diffusion coefficient are constant over the course of a
trial, but other authors have proposed models with time dependencies in both drift
rate and diffusion coefficient (e.g., Sewell and Smith 2012; Smith et al. 2010; Smith
and Ratcliff 2009). The reason for introducing time dependencies is to try to capture
the temporal properties of the perceptual and memory processes that encode the
evidence in some cognitive tasks.

In principle, a limitation of the Wiener diffusion model is that, unless trial-to-trial
variability in drift rate is assumed, the model allows accuracy to grow unboundedly
as decision time increases (Smith 1995; Usher and McClelland 2001). This implies
that decision-makers can achieve any desired level of accuracy, regardless of the
discriminability of the stimulus alternatives, by setting sufficiently high-decision
criteria. One way to impose a bound on accuracy without assuming between-trial
parameter variability is to add a decay term to the drift. Augmenting the model in
this way leads to an Ornstein-Uhlenbeck (OU) diffusion process (Busemeyer and
Townsend 1993), which is described by the stochastic differential equation

dXt ¼ ðm� bXtÞdtþ rdWt: ð14:2Þ

The −βXt term in Eq. 14.2 is interpreted psychologically as a ‘leak’ or temporal
decay on the accumulated evidence total. This reflects the idea that the evidence
available to the decision process may not be integrated perfectly over time.
Mathematically, the decay term serves as a restoring force that pulls the accumu-
lated evidence total toward the starting point. When β = 0, the OU process becomes
the Wiener diffusion process, and evidence is integrated, without loss, over the
course of an experimental trial. In practice, when fitting the OU model to behavioral
data, the best fits are often achieved when the model mimics the Wiener diffusion
model (i.e., when the decay term approaches 0; Ratcliff and Smith 2004). Ratcliff
and Smith concluded that the decay term in the OU model is usually not necessary
for modeling behavioral data in decision architectures with a single evidence total,
but it can lead to improved fits in other decision architectures, like the dual diffusion
model discussed subsequently (Smith and Ratcliff 2009).

Speed-Accuracy Tradeoff. As mentioned previously in relation to accumulator
and counter models, diffusion and random walk models account for the
speed-accuracy tradeoff by varying the position of the decision criterion. In these
models, this is accomplished by allowing the boundary separation parameter to
differ under speed and accuracy instructions. Under speed instructions, boundary
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separation is small, which means that, geometrically, the starting point of the
decision process is much closer to the two response boundaries. The process does
not need to accumulate as much discriminative evidence to reach a response
boundary, resulting in reduced RT, but because the process is more susceptible to
random moment-to-moment perturbations in the accumulation process, it also leads
to a higher proportion of errors. Under accuracy instructions, boundary separation is
large, meaning that the process must accrue a relatively large amount of discrim-
inative evidence before reaching a response boundary. This results in longer RTs
and higher accuracy, as the effects of moment-to-moment noise are small, relative
to the distance between the starting point of the accumulation process and the
response boundaries.

Shapes of RT Distributions. In contrast to counter and accumulator models, the
shapes of RT distributions are naturally predicted by the geometry of diffusion
processes. Both diffusion and random walk models predict right-skewed RT dis-
tributions without requiring any additional assumptions. The effects of between-trial
noise can be illustrated by progressively decreasing drift rate and projecting
accumulation trajectories onto one of the response boundaries (see Fig. 14.6a).
When drift rate is incrementally decreased, the expected finishing times of the
decision process becomes progressively longer. This geometric constraint on dif-
fusion model predictions was discussed in detail by Ratcliff (2002), who showed
that his diffusion model was unable to fit simulated data that were not right-skewed.
This showed that the good performance of the model is not a function of its
flexibility, but rather, because it predicts a restricted range of RT distribution shapes
that happen to be precisely those usually found in empirical data.

More recently, Ditterich (2006) showed RT distribution data collected by
Roitman and Shadlen (2002) from monkeys performing the motion direction dis-
crimination task (see Fig. 14.1) were highly symmetrical, and could not be
accommodated by Ratcliff’s diffusion model. Ditterich’s result is interesting as the
monkey RT data from that task differ from data from human participants per-
forming the same task, who produce right-skewed RT distributions that are well
described by Ratcliff’s model (Palmer et al. 2005; Ratcliff and McKoon 2008).
However, highly symmetric RT distributions are sometimes found with human
participants who are required to respond to an external deadline (e.g., Van Zandt
et al. 2000). We discuss the implications of Ditterich’s result in more detail below,
but note that symmetrical RT distributions are not characteristic of all monkey data.
For example, the RT distributions from monkeys performing brightness discrimi-
nation tasks and gap discrimination tasks are well described by diffusion models
(Ratcliff et al. 2003, 2007, 2011).

Correct and Error RTs. Accounting for any differences between correct and error
RTs proved difficult for early random walk models, which predicted equal mean RTs
(Stone 1960). Indeed, an appealing feature of the early accumulator and counter
models (e.g., LaBerge 1962; Townsend andAshby 1983; Vickers 1970) was that they
predicted mean error RTs that were slower than correct RTs. Ratcliff (1978) later
showed that introducing trial-to-trial variability in drift rate allowed his diffusion
model to predict error RTs that are slower than correct RTs. This prediction follows
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from the geometry of the diffusion process (see Fig. 14.6a). When there is
between-trial variability in drift rate, accuracy, and RT for any individual trial is
determined primarily by the drift rate sampled for that trial. When drift rate is low and
takes on a value near 0, evidence accumulation is slow, and the probability of an error
increases.When drift rate is high, evidence accumulation is fast, and the probability of
an error is reduced. Combining data from individual trials with different drift rates
results in slower mean error RTs because a greater proportion of the error responses
are from trials with lower drift rates, and hence, slower RTs. This is illustrated in the
table included in Fig. 14.6a. Diffusion models based on the OU process account for
slow errors in the same way as Ratcliff’s model.

Trial-to-trial variability in drift rate, however, is only a partial solution to the
problem of orderings for correct and error RTs. To account for fast error responses,
a different sort of trial-to-trial variability is required. For random walk models,
Laming (1968) showed that trial-to-trial variability in starting point sufficed to
predict mean error RTs that were faster than correct RTs. This was subsequently
confirmed for Ratcliff’s diffusion model (Ratcliff et al. 1999; Ratcliff and Rouder
1998; Ratcliff and Smith 2004). With variability in the starting point of the accu-
mulation process, fast errors arise in the diffusion model for the same kinds of
geometric reasons as slow errors are predicted with drift rate variability (see
Fig. 14.6b). When the decision process starts near the incorrect response boundary,
correct responses will be relatively slower and less frequent: The process must
travel further to reach the correct boundary, and is more susceptible to random
moment-by-moment perturbations leading it to terminate at the error boundary. By
contrast, under the same conditions, error responses will be faster and more
probable. The increase in the proportion of fast errors when the process starts near
the incorrect boundary combined with the decrease in proportion of slow errors
when the process starts near the correct boundary results in the overall mean error
RT being faster than the mean correct RT (Ratcliff and Rouder 1998). To account
for crossover patterns in mean RT orderings, the diffusion model requires both drift
variability and start-point variability (Ratcliff et al. 1999; Ratcliff and Rouder 1998;
Ratcliff and Smith 2004).

b Fig. 14.6 Illustration of how variability in drift rate (top panel) and start-point (bottom panel)
determine the relative speed of correct and error responses in Ratcliff’s diffusion model. In each
panel, the top and bottom response boundaries are associated with correct and error responses,
respectively. The top panel illustrates how trial-to-trial variability in drift rate allows the diffusion
model to account for errors that are slower than correct responses. When drift rate varies across
trials, some decision processes will be driven by a drift rate close to 0. For these trials, evidence
accumulation will be slow, and more error prone. Because of the larger proportion of error trials
driven by low drift rates, combining data from trials with different drift rates results in error
responses that are, on average, slower than correct responses. To account for errors that are faster
than correct responses, trial-to-trial variability in start-point is needed. When the decision process
starts near the correct response boundary, errors will be very slow, but far less frequent. By
contrast, when the process starts near the error boundary, the errors will be much faster, and occur
with much higher probability. The result is an overall mean error RT that is less than that for
correct responses
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14.2.4 Hybrid Diffusion-Accumulator Models

More recently, models that combine elements of accumulator and diffusion models
have been proposed. In these hybrid models, there are separate accumulators for
different response alternatives, but unlike the Vickers (1970) accumulator model,
the accumulation process is modeled as a diffusion process. Decision-making in
these models is determined by the first of multiple racing diffusion processes to
reach a criterion (Ratcliff et al. 2007, 2011; Ratcliff and Smith 2004; Smith 2000;
Usher and McClelland 2001). Although the majority of hybrid models use an
absolute decision rule, models with relative decision rules have been investigated
by Ratcliff and Smith (2004), and make similar predictions. Hybrid models have
been motivated, at least in part, by the pursuit of increased neural plausibility (e.g.,
Usher and McClelland 2001).

Perhaps the most well-known hybrid diffusion-accumulator model is the leaky
competing accumulator (LCA) model of Usher and McClelland (2001; see
Fig. 14.7). In this model, separate accumulators integrate evidence for different
response alternatives. The accumulation process is modeled using a coupled pair of
racing OU diffusion processes. In the LCA model, the two accumulators mutually
inhibit each other with strength proportional to the amount of evidence in each
accumulator. With two accumulators, i and j, the stochastic differential equation that
describes the change of evidence in accumulator i in the LCA model is

dXi ¼ ðmi � bXi � kXjÞdtþ ridWi; i 6¼ j: ð14:3Þ

Ratcliff and Smith (2004) explored several alternatives to the LCA model that
were all based on Eq. 14.3. For example, a racing accumulator model with leakage
but no competition is obtained when k = 0, and the model reduces to a race between
two independent OU diffusion processes. As these variations on the LCA model
produced similar fits to behavioral data, Ratcliff and Smith (2004) concluded that
the existing behavioral data were insufficient to distinguish different hybrid models.

Speed-Accuracy Tradeoff. Like other sequential sampling models, hybrid
diffusion-accumulator models account for the speed-accuracy tradeoff by adjusting
decision criteria in response to speed and accuracy instructions.

Shapes of RT Distributions. Because evidence accumulation is modeled as a
diffusion process, hybrid models are able to account for the shapes of RT distri-
butions in the same way as standard diffusion models. That is, the geometry of the
accumulation process, which is characterized by within-trial noise, naturally pro-
duces right-skewed RT distributions without requiring additional assumptions.

Correct and Error RTs. Depending on specific assumptions, hybrid
diffusion-accumulator models can account for the relative speeds of correct and error
RTs in different ways. Mutual inhibition between accumulators accounts for slow
error RTs inUsher andMcClelland’s (2001) LCAmodel,whereas variation in starting
point—because it is accompanied by inhibition—allows it to predict fast error
responses. Indeed, Ratcliff and Smith (2004) found the LCA model to be highly
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sensitive to initial start-point conditions. The accumulator that started with the larger
amount of initial evidence almost always controlled the response for that trial. When
there is no inhibition between accumulators, hybrid diffusion-accumulatormodels can
predict slower error RTs if the accrual rates for each accumulator are constrained to
sum to a constant, imposing the condition that the overall rate at which evidence
becomes available to the decision process is constant. The mechanism for predicting
slow errors is then identical to that in standard accumulator and counter models: The
accrual rate for the error response is lower than that for the correct response. To predict
fast errors, starting point variability is also required.
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Fig. 14.7 Overview of the leaky competing accumulator model with moderate values of decay, β,
and inhibition, k. The quality of perceptual evidence drives separate accumulators coding for
different response alternatives. The accumulators interact competitively by inhibiting each other
with strength proportional to the current value of the decision variable, X(t). In addition to mutual
inhibition, there is passive decay, or leakage from each accumulator. The response is determined
by the first accumulator to accrue a criterion amount of evidence, set here to 1. Two example
evidence accumulation trajectories are shown. In one case, Accumulator 2 determines the response
(solid lines), and in the other, Accumulator 1 determines the response (dashed lines). The effect of
inhibition can be seen in the accumulation trajectories. As the level of accumulated evidence for
one response increases, the level of evidence for the other decreases
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Summary of Diffusion and Hybrid Diffusion-Accumulator Models. Both diffusion
and hybrid diffusion-accumulator models provide a complete account of benchmark
behavioral data. They account for the speed-accuracy tradeoff, the shapes of RT
distributions, and the relative speeds of correct and error RTs. A complication in
evaluating these models with just behavioral data is that they can be quite difficult
to distinguish. Later on in the chapter, we discuss how neurophysiological data
might assist in selecting among these different kinds of models.

14.2.5 Relating Neurocomputational Principles
and Sequential Sampling Models

The behavioral phenomena discussed above converge to show that models
assuming diffusive accumulation of evidence provide the best account of human
behavioral data. Diffusion models, including hybrid diffusion-accumulator models,
predict the shapes of empirical RT distributions, the differences in performance
under instructions emphasizing speed or accuracy, and the relative ordering of
correct and error RTs. By contrast, counter and accumulator models can only
partially handle these data. The evidence for diffusive evidence accumulation at a
behavioral-level places a strong constraint on neurocomputational models of simple
decision-making: In order to simultaneously account for data at neural and
behavioral levels of analysis, computations carried out at the neural level need to
make predictions at the behavioral level that are well described by diffusion models.
Before we review neurophysiological data that bear on this issue, we briefly
summarize recent theoretical work that has shown that biologically plausible net-
work models can exhibit behavior that is consistent with the predictions of diffusion
models.

The issue of how behavioral data characterized by diffusion processes are
realized by neural firing processes was addressed analytically by Smith (2010). He
proposed the Poisson shot-noise process as an idealized model of neural
population-level firing rates. The shot-noise process describes the aggregated effect
of a large number of small, independent, time-varying disturbances or perturba-
tions, each of which occurs according to a Poisson process. In the shot-noise model,
the Poisson process represents a sequence of action potentials in a bundle of neural
fibers and the disturbances represent the flux in postsynaptic potentials in the
population of cells on which the action potentials impinge. In Smith’s model, pairs
of excitatory-inhibitory shot-noise processes code evidence for different response
alternatives. The difference between these pairs of processes is integrated until a
criterion is reached, after which the corresponding response is initiated. Smith’s
analysis drew on the weak convergence properties of excitatory-inhibitory
shot-noise pairs to an OU velocity process at high firing intensities. When the
OU velocity process is integrated over time it becomes a model for behavioral-level
evidence accumulation. At the long time scales of behavioral data, the integrated
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OU process has similar statistics to the Wiener process in Ratcliff’s (1978) diffusion
model. Smith showed that simulated data generated by the shot-noise model were
well fit by Ratcliff’s model, providing evidence that aggregated neural processing
dynamics give rise to evidence accumulation processes of the kind that can be
characterized by diffusion models.

An issue that was not addressed by Smith’s (2010) analysis is how the neural
representation of accumulated evidence is maintained over time. Indeed, one of the
difficulties in linking behavioral-level data with neural mechanisms arises from the
discrepant time scales on which behavioral and neural processes operate. Models of
behavioral decision-making data assume integration of evidence over time scales
measured in hundreds of milliseconds, whereas intracellular integration processes,
operate on time scales around an order of magnitude less—no more than 50 ms
(Wang 2001, 2002; Wong and Wang 2006). The question then is how the long time
scale integration needed to support decision-making is realized by short time scale
neural processes. Smith’s (2010) integrated OU model assumed long time scale
integration as a theoretical primitive of the model, but gave no account of how such
integration could be realized neurally.

Wang (2001, 2002), Wong and Wang (2006) has investigated models that
attempt to address the time scale issue by incorporating slow reverberative feedback
in the neural circuits involved in the decision process. In Wang’s models, accu-
mulated evidence is represented by patterns of firing rates in spiking neuron net-
works. These models, which incorporate recurrent activation and inhibitory
feedback, produce attractor dynamics that result in patterns of firing activity that are
sustained within the network. The sustained activity serves to maintain a short-term
memory representation of the stimulus for the second or so required to make a
decision, which is consistent with behavioral-level modeling of data from simple
decision-making experiments (e.g., Ratcliff and Rouder 2000; Sewell and Smith
2012; Smith et al. 2004, 2010; Smith and Ratcliff 2009). Recent extensions of the
spiking network model have incorporated a burst-cell mechanism for implementing
detection of when the decision process reaches a response threshold, producing a
more comprehensive account of how decision-making might be implemented in
such circuits (Lo and Wang 2006).

The analysis of Wang and colleagues was complemented by a recent study by
Smith and McKenzie (2011), who showed that very simple, stochastic, recurrent
loop architectures exhibit the same dynamic properties as Wang’s larger scale
spiking network model. Smith and McKenzie extended the Poisson shot-noise
model of Smith (2010) by adding a loop in which previously emitted spikes were
maintained by recurrence, and new spikes were added by superposition. Whereas
the dynamics of the Poisson shot-noise process served as a model of the short time
scale integration of individual neurons, the recurrent loop dynamics served as a way
of modeling long time scale dynamics exhibited by populations of neurons. Smith
and McKenzie showed that the Poisson superposition model exhibited similar
information accumulation properties to the integrated OU process derived from the
shot-noise model. They also fit the recurrent loop model to group-averaged data
from one of the experiments reported by Ratcliff and Smith (2004) and found the fit
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to be quantitatively similar to that of Ratcliff’s diffusion model. These results
support Smith’s (2010) conjecture that behavioral data that are well described by a
Wiener diffusion process may be generated neurally by an integrated OU process.

The analyses of Wang and colleagues (Lo and Wang 2006; Wang 2001, 2002;
Wong and Wang 2006) and Smith and colleagues (Smith 2010; Smith and
McKenzie 2011) provide insight into the relationship between sequential sampling
models in psychology and computations performed in the underlying neural pop-
ulations. Spiking network models and the Poisson shot-noise networks implement
neurally plausible decision processes that characterize important aspects of
behavioral data. In the next section of this chapter, we discuss how neurophysio-
logical data and choice-RT modeling that directly incorporates neurophysiological
data as input provide a complementary perspective on relating psychology and
neuroscience.

14.3 Neurophysiological Correlates of Decision Processes

As noted in the introduction, a large number of studies have identified a link
between patterns of neural firing rates in oculomotor brain circuits and the
dynamics of evidence accumulation during decision-making. The key finding
relating neural activity to evidence accumulation is the characteristic ramping of
firing rates to a threshold level prior to initiating a saccade response. Using a variety
of stimuli and tasks, it has been shown that neurons in FEF (Hanes and Schall 1996;
Thompson et al. 1996, 1997), LIP (Shadlen and Newsome 1996, 2001), and SC
(Ratcliff et al. 2003, 2007) all exhibit this ramping behavior. The consistency of the
firing rate data in the face of considerable variation in stimulus and task properties
suggests that this activity reflects the evolution of a visual decision-making process
rather than simple sensory processing. In this section, we first discuss some of the
research that has linked neural patterns of activity with cognitive representations of
decision processes. We then focus on several recent studies that show how neural
data can impose strong constraints on sequential sampling models, and can con-
sequently be used to select among models that are very difficult to distinguish by
behavioral data alone.

14.3.1 Identifying Decision-Related Neural Activity: The
Case of LIP

A common task used to study the neural correlates of visual decision-making is the
motion direction discrimination task developed by Newsome, Shadlen, and col-
leagues (see Fig. 14.1; for recent reviews, see Gold and Shadlen 2007; Huk and
Meister 2012). Monkeys judge the global direction of motion of a random dot
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stimulus and make a saccade-to-target response to indicate their choice. Task dif-
ficulty is manipulated by varying the proportion of dots that move coherently in one
direction. For these stimuli, it is well-established that motion coherence correlates
closely with activity in macaque visual area MT (an extrastriate visual cortical area
also known as V5), and that this activity forms the sensory basis for
decision-making in this task. The response rate of MT increases roughly linearly
with motion coherence, exhibits a time course that is tightly coupled with the onset
of the stimulus, and quickly reaches a constant firing rate during stimulus viewing
(e.g., Britten et al. 1993). However, MT firing rates are tightly linked to the
presence of the stimulus on screen, and only correlate somewhat weakly with
behavioral indices of judged direction of motion (Britten et al. 1996). For example,
microstimulation of direction-selective MT neurons during stimulus viewing speeds
responses favoring the preferred direction, and slows responses for the opposite
direction (Ditterich et al. 2003), but the influence of microstimulation on behavioral
choice becomes progressively weaker as the delay between stimulus offset and
onset of microstimulation increases (Seidemann et al. 1998).

Perhaps the most striking distinction in activity patterns between MT and LIP
neurons is that only the latter exhibit gradual ramping of firing rates to a threshold
following presentation of a stimulus (e.g., Shadlen and Newsome 1996, 2001),
making LIP activity, but not MT activity, consistent with the kinds of evidence
accumulation processes assumed by sequential sampling models. A simple
hypothesis linking LIP activity with evidence accumulation is that the two are
related linearly (e.g., LIP activity reflects discriminative perceptual evidence,
integrated over time). The implication is that the rate of increase in LIP activity—or
more generally, activity closely related to the decision process—would be reflected
in the rate of evidence accumulation, corresponding to the drift rate in a diffusion
decision model (e.g., Ratcliff 1978; Ratcliff and McKoon 2008), which indexes the
average quality of stimulus information driving the decision process, and sets the
average rate at which the evidence total changes over time. Although drift rate is
commonly estimated as a free parameter from data in human behavioral studies, for
the motion direction discrimination task, it is possible to derive estimates of drift
rate directly from the motion coherence of the stimulus because the neural repre-
sentation in MT is well approximated by a linear transformation of the motion
signal (Britten et al. 1993). Deriving drift rates from the motion signal in this way
has proved successful in modeling data from the motion direction discrimination
task (Ditterich 2006; Mazurek et al. 2003). We now discuss several strands of
research that provide convergent support for directly linking neural firing rates with
the process of evidence accumulation.

Figure 14.8 shows neural firing rate data averaged across 104 LIP neurons of
macaques performing the random dots task from a study by Shadlen and Newsome
(2001). Monkeys viewed the stimulus for a variable amount of time before it was
extinguished. After a variable retention interval, during which fixation had to be
maintained, the monkeys indicated their response by making a saccadic eye
movement. The data are presented in two ways: In the left panel, firing rate for
different levels of motion coherence is presented relative to the onset of the
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stimulus. In the right panel, the neural response is presented relative to initiation of
the saccade. The key findings are that (1) increasing the viewing time increases the
level of spiking activity, (2) increases in spike rate occur faster with higher levels of
motion coherence, and (3) prior to initiating a saccade, spike rates reach a common
asymptote regardless of motion coherence. Results such as these led Gold and
Shadlen (2001) to suggest LIP neurons might be performing a ‘read out’ function
from sensory neurons in MT, integrating relative levels of evidence for different
response alternatives. Although these results are intriguing, a limitation of the
original version of the random dots task was that monkeys made their decisions
after an experimenter-enforced delay, which meant the task did not yield the kind of
RT data that have been used to test sequential sampling models in psychology.

Roitman and Shadlen (2002) subsequently investigated an RT version of the
motion direction discrimination task that allowed the monkey to respond imme-
diately upon making a decision. The findings from the RT task replicated the main
findings from the original task: LIP firing rates increased as a function of stimulus
viewing time at a rate determined by motion coherence, reaching a common
threshold firing rate prior to making a saccade. Because monkeys initiated a saccade

Fig. 14.8 Population response of 104 LIP neurons recorded from macaques performing the
motion discrimination task. Solid lines are for responses to saccade targets within the neuron’s
receptive field, dashed lines are for responses to targets outside the receptive field. The left panel
shows firing rates for stimuli at different levels of motion coherence, aligned on stimulus onset.
The right panel shows firing rates aligned on the saccade response. Reproduced from Shadlen and
Newsome (2001)
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upon making a decision, additional RT-related aspects of the data could be
examined. Consistent with the notion of LIP activity reflecting evidence accumu-
lation to a criterion, both behavioral RTs and LIP ramping activity were system-
atically dependent on motion coherence. At higher levels of coherence, LIP firing
rates more rapidly approached asymptote, and behavioral RTs were shorter. The
relationship between behavioral RT and ramping of LIP activity is shown in
Fig. 14.9, which plots response-aligned LIP activity associated with different RT
bands. Whereas the slowest RTs exhibit gradual ramping of LIP activity approxi-
mately 700–800 ms prior to a saccade, the fastest RTs are associated with LIP
ramping commencing only 300–400 ms prior to a response.

The issue of whether LIP represents the time integral of perceptual evidence was
tested experimentally by Huk and Shadlen (2005). They presented monkeys with a
random motion texture overlaid with the familiar random dots stimulus. During
stimulus viewing, motion coherence was briefly perturbed by adding a 100 ms
pulse of coherent motion to the texture. The direction of the motion pulse either
matched or opposed that of the random dot stimulus. Consistent with the time

Fig. 14.9 Population
response of LIP neurons
recorded from macaques
performing the response time
version of the motion
discrimination task.
Responses are grouped
according to behavioral
response time, and are aligned
on initiation of a saccade
response. Note that the rate at
which activity approaches the
threshold firing rate varies
according to response time.
Reproduced from Roitman
and Shadlen (2002)

14 The Psychology and Psychobiology of Simple Decisions … 277



integration hypothesis, the motion pulse not only biased decision outcomes, but
also exerted a sustained influence on LIP activity for up to 800 ms. This result was
extended by Kiani et al. (2008), who showed that the timing of the motion pulse
delivered during stimulus viewing was critical. When the motion pulse was added
around the onset of the stimulus, the direction of motion affected both behavioral
choice and LIP activity. However, when the pulse was delivered toward the end of
stimulus presentation, choice probability and LIP firing rates were unaffected. Kiani
et al. interpreted their results as showing that evidence accumulation does not occur
indefinitely for fixed duration stimuli, but that integration only occurs until a
response criterion is reached. When the motion pulse was presented late in the trial,
the monkey had most likely already made a decision, and apparently discounted
subsequently presented stimulus information.

Microstimulation studies provide further insight into the relationship between
LIP activity and decision-making that go beyond the correlational results discussed
so far. Whereas the studies reviewed so far have observed a correlation between LIP
activity and decision processes, microstimulation allows for more direct causal
influences, as LIP activity is manipulated directly. Ditterich et al. (2003) established
the causal connection between MT neurons and direction of motion decisions by
showing that microstimulation of MT neurons induced a bias in choice behavior
and RT favoring the preferred direction of the stimulated neuron. Hanks et al.
(2006) adopted a similar approach for neurons in LIP. By applying microstimula-
tion to neurons with receptive fields overlapping the response target, Hanks et al.
showed that decision-making could be biased in a way similar to that demonstrated
by Ditterich et al. Crucially, however, microstimulation to LIP produced smaller
effects on choice and RT than MT stimulation. This is consistent with the idea that
MT codes for the sensory data that provides the input to the decision process,
whereas LIP codes for the value of the decision variable itself (i.e., the current level
of accumulated evidence). In diffusion model terms, MT stimulation affects the drift
rate of the diffusion process, which characterizes the quality of the perceptual
evidence and determines the rate of evidence accumulation at the decision stage. By
contrast, LIP stimulation does not influence drift rate, but instead adds a constant to
the decision variable, moving the process closer to one response boundary. This is
tantamount to biasing the starting point of the accumulation process without
influencing the quality of the perceptual evidence or the rate of evidence
accumulation.

An alternative way to use microstimulation to investigate decision-making is to
use it to evoke a saccade that is spatially orthogonal to the locations of the response
targets and to assess the extent to which the evoked saccade deviates toward one
response or another (Gold and Shadlen 2000, 2003). If the motor program
expressing the monkey’s decision is incrementally updated based on the level of
accumulated evidence, then the deviations of the evoked saccades should system-
atically relate to the monkey’s final, voluntary, saccade response. The logic of this
approach resembles that of the response-signal procedure used with human par-
ticipants (e.g., Ratcliff 1988, 2006; Wickelgren 1977). In the response-signal task,
decision-making is interrupted by a response signal, which prompts the observer to
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immediately make a response. In the case of evoked saccades, microstimulation
serves as a response signal, which elicits a response directly. Gold and Shadlen
(2000) applied microstimulation to FEF neurons while monkeys performed the
random dots task. By varying the timing of the microstimulation, they were able to
map the time course of evoked saccade trajectories, and indirectly trace the growth
of decision-related information. Motion coherence and viewing duration had strong
and systematic effects on the deviation of the evoked saccade toward the response
target ultimately selected by the monkey: Stimuli with higher motion coherence that
were viewed for longer produced larger deviations in the evoked saccades.

Results from experiments using the motion direction discrimination task provide
convergent support for the idea that LIP firing rates reflect the time integral of
perceptual evidence. Manipulations of the input to the decision process, via the
stimulus itself (e.g., Huk and Shadlen 2005; Kiani et al. 2008) or brain areas
responsible for coding stimulus properties (Ditterich et al. 2003) influence both the
speed and accuracy of responses. Importantly, these behavioral effects are reflected
in the firing rates of LIP neurons, and are detectable even when the nature of the
response mapping is not known in advance of stimulus onset (Bennur and Gold
2011). That firing rates preceding a saccadic response increase to a common
threshold level (Roitman and Shadlen 2002; Shadlen and Newsome 1996, 2001)
lends strong support to the idea that LIP activity reflects bounded evidence accu-
mulation, as postulated by diffusion models.

14.3.2 Diffusion Modeling of Decision-Related Neural
Activity

The striking similarity between decision-related neural activity and the accumula-
tion of noisy evidence to a criterion invites the obvious question of whether a single
model can simultaneously account for both neural and behavioral data. In the
context of the motion direction discrimination task, a number of studies have shown
that key aspects of the behavioral data can be accounted for within a diffusion or
hybrid diffusion-accumulator modeling framework. Mazurek et al. (2003) proposed
a hybrid diffusion-accumulator model driven by two populations of simulated MT
neurons coding for different response alternatives. The time integral of the differ-
ence in activation between MT populations was modeled with two evidence
accumulators. The levels of activation in the accumulators were assumed to cor-
respond to the spike rates of neural populations in LIP. The first accumulator to
reach a criterion determined the response. The model is closely related to Ratcliff’s
(1978) diffusion model in that the inputs to the two accumulators are anticorrelated
—evidence for one alternative is evidence against the other. Behaviorally, the
Mazurek et al. model successfully accounted for accuracy data and mean RTs for
correct responses. The model was also able to capture presaccadic ramping of
neural activity to a threshold. However, it was not able to predict error RTs, nor was
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it fit to RT distributions. Ditterich (2006) subsequently showed that the model made
incorrect predictions for the RT distributions from Roitman and Shadlen’s (2002)
study. He modified the model by transforming the difference in MT activations
using a sigmoidal time-dependent gain function prior to integration in LIP. By
modifying the LIP input in this way, Ditterich showed that the model could account
for choice probabilities, correct and error RT distributions, and the pattern of LIP
activations simultaneously.

Ditterich’s (2006) success with the modified Mazurek et al. (2003) model is
interesting because Ratcliff’s (1978) diffusion model has been shown to account for
behavioral data from the motion direction discrimination task with human partici-
pants (Palmer et al. 2005; Ratcliff and McKoon 2008). More generally, Ratcliff’s
diffusion model (and the related dual diffusion model), has been shown to account
for data from monkeys performing other simple decision tasks, such as gap dis-
crimination (Ratcliff et al. 2003) and brightness discrimination (Ratcliff et al. 2007,
2011). The important distinction between the Ratcliff diffusion model and that of
Ditterich is that the drift rate in the former is constant over the course of a trial,
whereas it is time-varying in the latter. By scaling the drift rate and diffusion
coefficient by a common time-dependent gain—affecting ν and σ in Eq. 14.1—the
model was able to account for the error RT data and produce RT distributions that
were more symmetrical than they otherwise would be. The intuition for why the
shapes of the distributions change in this way is that the moment-to-moment
changes in evidence accumulation become larger in size (due to the increase in drift
rate), but more irregular (due to the increase in noise in the accumulation process
brought on by the change in the diffusion coefficient). This increases the likelihood
that momentary noise will abruptly terminate the process by pushing it toward one
of the decision boundaries. Because gain increased as a sigmoid function of time,
slower RTs would be affected more than faster RTs, terminating faster than they
would under stationary drift. Changing the drift and diffusion coefficients in this
way serves to truncate the tails of the RT distributions, resulting in more sym-
metrical predictions. Psychologically, this account is of interest because it suggests
that humans and macaques may be performing the task somewhat differently. One
possibility is that monkeys performing the motion direction discrimination task may
reduce their decision criterion over the course of a trial. Smith (1995, 2000) pointed
out that many diffusion processes with time-varying drift rate (such as the OU
process) can be modeled as processes with constant drift, but time-varying decision
criteria—a form of model mimicry. Although this was not Ditterich’s preferred
account for his result, time-varying response criteria have been proposed in other
tasks like visual search, where exhaustive search of distractor arrays can be very
time-consuming (e.g., Thornton and Gilden 2007). Ditterich’s explanation for
time-dependent drift, which was couched in terms of maximizing reward rate, is
consistent with the idea of observers seeking a balance between time spent on a
single trial and reward rate within an experiment by manipulating their response
criterion (cf. Bogacz 2007; Bogacz et al. 2006). Whether dynamically adjusting
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response criterion within a single trial provides a theoretically complete account of
maximizing reward rate remains to be seen.

Whereas Ditterich (2006) successfully modeled behavioral and spike rate data
from LIP, Ratcliff, and colleagues have examined neural data from SC alongside
behavioral data from a variety of perceptual tasks (Ratcliff et al. 2003, 2007, 2011).
SC is part of the same oculomotor decision circuit as LIP, and some SC neurons
display many similar ramping to threshold characteristics as their LIP counterparts,
as we discuss below. Ratcliff et al. (2003) investigated the relationship between the
information processing dynamics of the diffusion model to SC firing rates in
monkeys performing a gap discrimination task. In Ratcliff’s diffusion model, a
single accumulator integrates relative evidence for different response alternatives.
By simultaneously recording from SC neurons associated with each response
alternative, Ratcliff et al. (2003) were able to operationalize relative evidence in
neural terms as the difference in firing rates. By fitting the standard two-barrier
diffusion model to the choice-RT data, and then simulating sample evidence
accumulation trajectories from the fitted model, they were able to compare the
accumulation of relative evidence in the diffusion model with the difference in firing
rates between competing SC neurons. An interesting feature of their data was that
the time course of the growth of the difference in SC spike rates—a neural repre-
sentation of accumulated discriminative evidence—was strongly predictive of
behavioral RT (see Fig. 14.10; cf. Roitman and Shadlen 2002). Fast and slow
responses were related to fast and slow growth of the difference in firing rates,
respectively. Figure 14.10 shows simulated evidence accumulation pathways for
fast, slow, and intermediate responses against (relative) SC firing rates. The model
very closely reproduces the key features of the data, lending support to the idea that
SC neurons are accumulating evidence in a manner similar to how the diffusion
model characterizes the decision process.

A limitation of the Ratcliff et al. (2003) study is that the standard diffusion model
is silent on the firing rates of the individual SC neurons that code for the different
response alternatives. By showing a correspondence between neural data and evi-
dence accumulation trajectories in the two-barrier diffusion model, Ratcliff et al.
(2003) could only relate its information processing dynamics to the difference in
firing rates. To address the neural data in more detail, and to generalize their
findings to a different perceptual task, Ratcliff et al. (2007) examined firing rates of
individual SC neurons in macaques performing a brightness discrimination task. To
account for these data, they used a hybrid diffusion-accumulator model, suggested
by Smith (2000) and developed by Ratcliff and Smith (2004), which they termed
the dual diffusion model. This models the decision process as a race between two
independent diffusion processes to reach a criterion. The resulting model can be
thought of as a diffusion process implementation of an independent race model, like
the Poisson counter model discussed previously. After fitting the dual diffusion
model to the behavioral choice-RT data, Ratcliff et al. (2007) simulated decision
trajectories from the fitted model. Not only was the model able to account for the
individual neural firing rates, it was also able to account for the difference in firing
rates between SC neurons. This result provided a more direct interpretation of the
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original Ratcliff et al. (2003) result, supporting the idea that the accumulation of
discriminative evidence is reflected in the relative firing rates of different neural
populations.

14.3.3 Using Neural Data to Constrain Model Selection

The sequential sampling models developed in cognitive psychology have now
reached a point at which they are able to quantitatively account for all the key
features of choice-RT data observed behaviorally (Ratcliff and Smith 2004). As
noted by Ratcliff and McKoon (2008), this is a remarkable accomplishment for
psychology, where developing quantitatively precise theories is intrinsically diffi-
cult. Part of the success of sequential sampling models has come from adding

Fig. 14.10 Comparison of simulated evidence accumulation trajectories from Ratcliff’s diffusion
model with population response of SC neurons recorded from macaques completing a gap
discrimination task. The top panel shows simulated accumulation trajectories for fast, interme-
diate, and slow responses based on model parameters derived from fitting the diffusion model to
the behavioral data. The bottom panel shows the difference in accumulation trajectories for the two
response alternatives (gray lines) alongside the difference in firing rates for neurons coding for
different response alternatives (black lines). Reproduced from Ratcliff et al. (2003)
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between-trial parameter variability like variability in start-point (Laming 1968;
Ratcliff et al. 1999), and drift rate (Ratcliff 1978). This necessarily increases the
complexity (and flexibility) of the models. A consequence of this increased com-
plexity is that it has become quite difficult to distinguish models purely on the basis
of fit to behavioral data. As Ratcliff and Smith reported, a variety of hybrid
diffusion-accumulator models could produce fits to behavioral data that were
quantitatively very similar to Ratcliff’s diffusion model. Importantly, these hybrid
models emphasized different psychological mechanisms. For example, Usher and
McClelland’s (2001) LCA model was shown to account for behavioral data by
assuming some combination of competition between accumulators and leakage (or
decay) of evidence during the decision process. Although fits of these models
typically show that decay is not needed to account for behavioral data (i.e.,
best-fitting estimates of decay parameters are typically quite small, exerting mini-
mal influence on model behavior; Ratcliff and Smith 2004), it is possible that decay
may operate at a neurophysiological level, but remain undetectable in behavioral
data. Indeed, the effects of short time scale decay that characterizes cellular
membrane potentials may be masked by long time scale integration that serves to
sustain spiking activity in a cortical network. The long time scale integration
assumed by cognitive models explains why Ratcliff’s diffusion model can fit data
generated by a Poisson shot-noise model, as shown by Smith (2010), even though
the former does not involve decay, whereas the latter does. Given the biological
reality of short time scale decay at the cellular level, the key question concerning
the role of decay in choice-RT models is whether there is an additional level of
decay that operates over the longer time scales that characterize the time course of
the decision process.

By collecting neural firing rate data, it becomes possible to evaluate claims that
long time scale decay and mutual inhibition are needed to account for neural data.
Ratcliff et al. (2011) investigated the role of inhibition, recording from pairs of SC
neurons that coded for different response alternatives in a brightness discrimination
task and found no evidence of inhibition among SC neuron pairs. When condi-
tioned on the firing rate of the neuron coding for the target response, there was little
difference in the firing rate for the neuron coding the nontarget response, whereas an
inhibition account would predict a decrease. Ratcliff et al. also found that the dual
diffusion and LCA models provided similarly good fits to the behavioral choice-RT
data, but that the amount of inhibition predicted by the LCA model was minimal.
As these conclusions were based on fits to behavioral data, this result might have
been expected on the basis of similar fits reported by Ratcliff and Smith (2004). To
investigate whether inhibition was needed to account for the neural data, simulated
evidence accumulation trajectories were generated from both models. As with the
behavioral data, both models closely captured the underlying neural dynamics.
Because the dual diffusion model assumes no inhibition, and the simulated LCA
trajectories also incorporated minimal inhibition, the result suggests that inhibition
was not needed to account for the neural data. Indeed, by increasing levels of
inhibition in the LCA model and generating simulated evidence accumulation
trajectories, Ratcliff et al. showed that the model produced poorer fits to behavioral

14 The Psychology and Psychobiology of Simple Decisions … 283



data and, contrary to the data, predicted negatively correlated firing rates in target
nontarget SC neuron pairs. They concluded that if inhibition were involved in
decision-making in SC neurons, the strength of the inhibition was so low as to be
undetectable.

The studies by Ratcliff et al. (2003, 2007, 2011) illustrate one of the advantages
of using both behavioral and neural data in model testing. By fitting models to
behavioral data and examining whether the model dynamics resemble the under-
lying neural dynamics, it is possible to draw strong conclusions about the rela-
tionship between the underlying cognitive and neural processes. In the case of
simple decision-making, combining analysis of neural data with mathematical
modeling of behavioral data provides support for the linking hypothesis that evi-
dence accumulation processes described by cognitive sequential sampling models
are functionally related to firing rates in the underlying neural populations. By
examining data at the neural level, it is also possible to resolve model mimicry
problems that appear at the behavioral level. Whereas hybrid diffusion-accumulator
models are able to provide competitive fits to behavioral data, they do so by
invoking different psychological mechanisms (e.g., mutual inhibition). While, it is
possible to appeal to neural plausibility to argue for the inclusion of certain pro-
cessing mechanisms, the requirement to account for neurophysiological and
behavioral data simultaneously allows these assumptions to be tested directly.

Neurally Constrained Modeling. A new development in integrating neural and
cognitive-behavioral levels of analysis is that of neurally constrained modeling of
choice-RT data (e.g., Purcell et al. 2010). Like the approach of Ratcliff et al. (2003,
2007, 2011), who showed that models fitted to behavioral data also predict neural
firing rates, this approach investigates the relationship between firing rates and
sequential sampling models. However, instead of treating accumulation rates as free
parameters, this approach uses empirical spike trains recorded from early sensory
areas as inputs to the decision process. By using neural data directly to constrain the
model parameters, this approach provides a direct way to test assumptions about
how neurons coding for different perceptual representations influence subsequent
decision process.

Purcell et al. (2010) compared a range of sequential sampling models on their
ability to account for combined behavioral and neurophysiological data from
macaques performing a visual search task. In this task, the monkeys were required
to make a saccade response to a singleton target stimulus embedded in an array of
distractors (e.g., a red target among green distractors). Behavioral accuracy and RT
data were collected. While the monkeys performed the task, recordings from two
kinds of FEF neurons were made. Single-unit recordings from visual neurons in
FEF, which were assumed to code for the perceptual representations of the stimuli,
were collected. The spike trains recorded in these neurons were used as the input to
the decision process in the models. Recordings were also made from movement
neurons in FEF, which are responsible for executing the saccade response. Purcell
et al. assumed that spike rates for these neurons coded for the integration of per-
ceptual evidence over time.
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Purcell et al. (2010) considered a number of different model architectures
including correlated, independent, and competitively interacting diffusion pro-
cesses, and examined the effect of different assumptions on the predicted evidence
accumulation process. Evidence accumulation was either perfect (as in Ratcliff’s
diffusion model; Eq. 14.1), leaky (as in the OU diffusion process; Eq. 14.2), or
required a threshold level of visual FEF activity prior to the onset of evidence
accumulation by movement neurons, which they termed a gated accumulation
model. Purcell et al. found that both leaky and gated accumulation models provided
the best account of the behavioral data. Because visual FEF neurons were assumed
to provide a continuous stream of perceptual evidence to movement neurons—
including the period before the neuron successfully discriminated the target—the
models that assumed perfect integration failed to account for behavioral data, as
they integrated input noise for the bulk of the trial. By contrast, the leaky and gated
accumulation models were able to account for the behavioral data because leakage
and the gating threshold counteracted the effects of input noise early in the trial.
Using model parameters that optimized fit to behavioral data, Purcell et al. simu-
lated evidence accumulation trajectories and compared them with the firing rates of
movement neurons during the task. They considered several aspects of the move-
ment neuron dynamics: the time at which spike activity increased from baseline
levels, the speed with which spike rate increased, the baseline firing rate, and the
threshold firing rate corresponding with initiation of a saccade. Whereas the leaky
and gated accumulation models both provided good fits to the behavioral data, only
the gated accumulation model was able to account for the full suite of neural data.

The work of Purcell et al. (2010) shows the value of neural constraints in
evaluating sequential sampling models. However, the properties of their proposed
gating mechanism have yet to be investigated in other settings. Their gating
mechanism represents one possible way to limit the accumulation of noise prior to
stimulus presentation, first discussed by Laming (1968) and recently investigated by
Ratcliff and Smith (2010). Ratcliff and Smith investigated decision-making in a task
in which letter stimuli were presented in dynamic noise and found that the effect of
noise was to shift the leading edge of the RT distribution later in time. The shift was
interpreted as a delay in the onset of evidence accumulation by the decision process.
Their results showed that the onset of evidence accumulation by the decision
process must be sensitive to the temporal stability of the stimulus representation.
When stimuli are embedded in dynamic noise, the process of forming a stable
representation of the stimulus is slowed, resulting in delayed onset of
decision-making. It is not yet clear whether Purcell et al.’s gating mechanism can
also provide an explanation of the delay in the onset of evidence accumulation
produced by noise in Ratcliff and Smith’s (2010) task.

To summarize, by making very simple assumptions about how neural activity
relates to coding of perceptual evidence, it is possible to simultaneously model data
at both behavioral and neurophysiological levels of analysis. From a theoretical
perspective, addressing both kinds of data has become increasingly important, as
different kinds of model architectures have proved equally capable of accounting
for behavioral data (Ratcliff and Smith 2004). Although there are a number of open
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theoretical issues that remain to be settled, this approach to analyzing combined
neural and behavioral data constitutes a significant methodological and theoretical
development.

14.4 Summary and Conclusions

In this chapter, we have attempted to provide an overview of the development of
different classes of sequential sampling models in cognitive and mathematical
psychology, and how they relate to data collected from single-unit recordings in
neural oculomotor circuits. Sequential sampling models are among the most rig-
orously tested models in psychology, and after many decades of refinement, the
best models can account for all of the major behavioral phenomena of interest
(Ratcliff and McKoon 2008; Ratcliff and Smith 2004). One of the side effects of this
theoretical progress is that several classes of models (e.g., diffusion and hybrid
diffusion-accumulator models) have been shown to provide comparably good fits to
behavioral data, and are consequently very difficult to distinguish. This is a salient
issue because the assumptions of some models—such as those involving decay and
mutual inhibition—are motivated by appeals to neural plausibility. While we
appreciate such considerations, we note that such assumptions, like any theoretical
assumptions, must be subject to empirical test. It is clear from recent work that there
is much to be gained from the theoretical exchange between psychologists and
neuroscientists interested in decision-making. The rich history of choice-RT
research in cognitive and mathematical psychology provides a theoretical frame-
work for studying the neural basis of decision-making. Reciprocally, constraints
from neural data provide an opportunity to test and refine decision models in ways
that would not have been possible using behavioral data alone.

14.4.1 Outstanding Questions and Future Directions

Despite the substantial progress that has been made over the last decade or so in
identifying neural correlates of decision processes and relating these two compo-
nents of successful sequential sampling models, there are a number of issues that
remain open. We briefly discuss three of these issues here.

One Decision Architecture or Many? Although the studies reviewed above have
consistently shown links between neural firing rates in oculomotor areas and evi-
dence accumulation rates in decision models, there are subtle differences in some of
the specific details of models associated with different brain areas. For example, for
SC neurons in monkeys performing a brightness discrimination task, Ratcliff et al.
(2011) found no functional role for mutual inhibition among decision neurons,
suggesting that models like the LCA, which ascribe a central role to inhibition, may
not be appropriate for modeling decision processes executed in SC. An open
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question is whether other brain areas show evidence for inhibition at the level of
decision processes, and whether an LCA-like model might be suitable for neurons
outside of SC.

Recent work by Purcell et al. (2012), extended their previous study of FEF
movement neurons in monkeys performing a visual search task. Whereas, their
initial study only allowed modeling of correct RT distributions (Purcell et al. 2010)
their follow-up examined RT distributions for both correct and error responses
using the same neurally constrained modeling approach. In contrast to what Ratcliff
et al. (2011) found for SC neurons, Purcell et al. (2012) found support for a gated
accumulation model that involved mutual inhibition among accumulators. The
implication of these studies is that decision-making architectures and dynamics,
though fundamentally very similar, as they draw on common principles of evidence
accumulation, may vary in significant ways across different brain areas. Additional
work is needed to better understand how and why neural decision architectures
might vary.

Modeling Evidence Integration. The results from the neurally constrained
modeling approach of Purcell et al. (2010, 2012) provide support for a simple
linking proposition about the neural representation of perceptual evidence. Using
empirical spike train data to drive a decision mechanism is an important first step in
developing a comprehensive neurocomputational account of decision-making.
However, this is only a partial solution. As the work of Wang and colleagues (e.g.,
Lo and Wang 2006; Wang 2001, 2002; Wong and Wang 2006) and Smith and
McKenzie (2011) highlighted, the question remains as to how temporal integration
of evidence is realized neurocomputationally. Owing to the large differences in time
scales between individual neurons involved in decision-making and the overall
decision-making process itself, the neural mechanism that integrates evidence over
behaviorally relevant time scales needs to be developed further. As with other
theoretical approaches (e.g., Ditterich 2006; Mazurek et al. 2003; Purcell et al.
2010, 2012; Ratcliff et al. 2003, 2007, 2011; Smith 2010), temporal integration of
perceptual evidence is assumed to be a theoretical primitive of the models. The
spiking neuron models developed by Wang and colleagues and recurrent loop
models, like Smith and McKenzie’s, suggest some theoretical possibilities for how
evidence might be integrated over long time scales. Combining such a theoretical
decision architecture with the neurally constrained approach provides an interesting
avenue for further development, as it could provide a strong test of the principles of
recurrence and superposition used by Smith and McKenzie.

Neural Correlates of Bias and Reward. In addition to the work reviewed above
that has investigated neural correlates of evidence accumulation, recent work has
begun to use choice-RT modeling to investigate the neural correlates of prior
knowledge and bias effects in simple decision tasks in humans (e.g., Bode et al.
2012; Forstmann et al. 2010; Mulder et al. 2012) and monkeys (e.g., Rao et al.
2012; Rorie et al. 2010).

For example, Rao et al. (2012) studied LIP responses of monkeys performing the
motion direction discrimination task. Using cues indicating the most likely direction
of motion for an upcoming stimulus, they observed systematic shifts in LIP firing
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rates following cue presentation, but no effect on the rate at which activity
approached a threshold firing rate. A similar effect on LIP response was observed
by Rorie et al. (2010) who used a reward-based manipulation. For both studies,
choice-RT modeling revealed an effect on the start-point of the evidence accu-
mulation process.

In human studies, Forstmann et al. (2010) had people complete a cued version of
the motion discrimination task similar to that used by Rao et al. (2012). Using
fMRI, Forstmann et al. found that cues produced changes in cortico-striatal brain
circuits, but only after accounting for the effects of response bias—as measured by
fitting an accumulator model to behavioral data (Brown and Heathcote 2008). This
work has recently been extended by Mulder et al. (2012), who manipulated prior
probability with cues and reward using payoffs. Their fMRI analysis revealed
common effects of bias and reward on cortico-parietal decision circuits, which
produced changes in response bias—indexed by the estimated starting point of
evidence accumulation—in Ratcliff’s diffusion model.

In a similar vein, Bode et al. (2012) investigated sequence effects in a perceptual
decision-making task, involving stimuli presented briefly in noise. They combined a
model-based behavioral analysis with a pattern-classification analysis of EEG data.
Using Ratcliff’s diffusion model, Bode et al. showed that sequence effects in the
behavioral data were consistent with changes in the starting point of the evidence
accumulation process, reflecting a bias favoring the response made on the previous
trial. Consistent with this response bias account, it was also found that prestimulus
activity in the EEG trace was predictive of people’s responses on catch-trials where
only noise was presented.

Taken together, these investigations into the neural correlates of bias and prior
knowledge effects add to the growing body of evidence that both neural and
behavioral choice-RT data can be accommodated by a common sequential sampling
framework.

14.4.2 Conclusion

With the recent refinement of techniques for recording spike rates from monkeys
performing simple perceptual tasks, it has become possible to directly evaluate
modeling assumptions made on the basis of neural plausibility. A number of
research groups, using a variety of tasks and methods, have provided converging
evidence that the spiking dynamics of neurons in FEF, LIP, and SC bear a striking
resemblance to the evidence accumulation dynamics postulated by sequential
sampling models of decision-making. By recording from oculomotor areas known
to be involved in the processing of perceptual stimuli and preparation of saccadic
responses, one can evaluate the degree of convergence between cognitive theory
and neural data. Assumptions made in cognitive models have provided a basis for
testing hypotheses about how the brain integrates perceptual evidence over time,
and, importantly, how neural data can be used as a tool for model selection.
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Chapter 15
A Neurocognitive Perspective
on the Development of Social
Decision-Making

Geert-Jan Will and Berna Güroğlu

Abstract In this chapter, we review evidence for the hypothesis that developmental
changes in cognitive control and perspective taking are crucial in understanding
age-related changes in social behavior. Studies that have examined the develop-
mental roots of prosocial behavior using experimental economic games show that
other-oriented concern and a preference for fairness emerge early in development.
Continued development of intentionality understanding and strategic behavior in
bargaining situations suggest that perspective taking and cognitive control undergo
extended development and continue to contribute to changes in social behavior well
into adolescence. Functional neuroimaging studies have shown that these behavioral
changes are accompanied by an increased recruitment of brain regions implicated in
cognitive control (e.g., dorsolateral prefrontal cortex) and perspective taking (e.g.,
temporoparietal junction). Together these studies show that developmental changes
in cognitive control and perspective taking and their underlying neural circuitry are
associated with progressively more strategic thinking and an increased incorporation
of other’s perspectives into social decision-making across development.

Beginning early in ontogeny humans show levels of sociality that surpass those of
other species (Tomasello and Vaish 2013). For example, 1-year-old toddlers help
others to achieve a goal by picking up objects that are needed to successfully
complete an action without any explicit request or reward (Warneken and
Tomasello 2006). Despite the early emergence of key social tendencies, social
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behavior continues to develop and grow in complexity across childhood and ado-
lescence. Children expand their behavioral repertoire with social tactics, such as
teasing and deception, and they increasingly learn to take other people’s feelings
into account in their social responses (Burnett and Blakemore 2009b). For instance,
whereas preschoolers mainly use deception to their own benefit, school-aged
children increasingly start to use deception to protect other’s feelings (e.g., telling
‘white lies’) (Talwar et al. 2007).

Developmental changes in social behavior are thought to be supported by
developmental changes in general cognitive functions like impulse control and
specific social cognitive functions such as the ability to adopt another person’s
perspective (e.g., perspective taking). Cognitively controlling impulses is of crucial
importance for the regulation of social behavior and continues to develop across
childhood and adolescence (Davidson et al. 2006; Rueda et al. 2005). Children
acquire a core component of perspective taking when they develop an under-
standing that other people’s mental states might differ from their own (Wellman
et al. 2001). Even though this ‘theory of mind’ emerges before adolescence, more
advanced forms of perspective taking needed to act on the understanding of other
people’s mental states continue to develop during adolescence (Dumontheil et al.
2010; Selman 1980). This rather protracted development of both impulse control
and perspective taking is likely to contribute to developmental changes in social
behavior across adolescence and into adulthood. This implication is central in the
neurobiological models of social development which posit that continued structural
development of the brain is associated with functional changes in brain networks
implicated in cognitive control and social cognition, which in turn contribute to
developmental changes in social behavior (Blakemore 2008; Crone and Dahl 2012;
Nelson et al. 2005).

In this chapter, we review evidence for the hypothesis that the gradual devel-
opment of impulse control and perspective-taking skills are associated with pro-
gressively more strategic thinking and an increased incorporation of other’s
intentions in social decision-making. In the following sections, we first describe
why paradigms from behavioral economics provide valuable tools to study devel-
opmental changes in social behavior and its underlying mechanisms (Sect. 15.1).
Subsequently, we describe the age-related behavioral changes in these games
(Sect. 15.2), followed by evidence linking these behavioral changes to children’s
developing abilities to control selfish impulses and to take other people’s per-
spective (Sect. 15.3). Next, we focus on functional neuroimaging studies showing
that social decision-making in adults relies on separable, but interacting, networks
in the brain (Sect. 15.4). Finally, we review recent neuroimaging studies demon-
strating differential development of the brain networks involved in social
decision-making (Sect. 15.5), supporting the proposition that increased intention-
ality understanding and strategic motivations in social decision-making are asso-
ciated with developmental changes in these networks.
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15.1 Why Use Economic Games to Study Social
Development?

To investigate the psychological and neural mechanisms underlying social
decision-making, psychologists and neuroscientists have turned to game theoretical
paradigms derived from behavioral economics (Rilling and Sanfey 2011). These
paradigms offer a context of social interactions where the decisions people make
have actual consequences for their own and their interaction partner’s outcomes.
Two of these games, namely the Ultimatum Game and the Dictator Game, have
proven to be valuable tools to study concerns about fairness (for a detailed
description of these games please see Chap. 20 in this book). In these two-player
exchange games one player (i.e., the proposer) is given a set of valuable rewards,
such as money, candy or stickers and is given the opportunity to propose a split of
the rewards between themselves and a second player. In the Ultimatum Game, the
second player (i.e., the responder) can either accept or reject the proposal. If the
proposal is accepted, both players receive their part of the stake as proposed. In case
of rejection, neither of the players receives anything (Güth et al. 1982). The Dictator
Game is different in the sense that the responder (i.e., the recipient in this case) does
not have the power to reject the proposal and thus passively receives the amount of
rewards that the first player transfers (Forsythe et al. 1994).

Game theoretical models assume that humans are rational decision-makers who
act to maximize personal outcomes (Camerer 2003). Accordingly, game theory
predicts that Ultimatum Game proposers would make the smallest offer possible
and that responders would accept any offer greater than zero. However, findings
show that (adult) proposers and responders do not follow the game theoretical
predictions: proposers offer most often an equal split and responders usually reject
offers smaller than 20 % of the stake (Camerer 2003). In the Dictator Game, there is
no possibility for reciprocation or retribution for the recipient, so game theory
would predict that proposers would keep the entire set of rewards to themselves.
Interestingly, proposers in the Dictator Game rarely act in accordance with these
predictions. Adult humans transfer on average 20–30 % of the stake to anonymous
others with 50 % of the stake typically being one of the most frequently occurring
offers (Forsythe et al. 1994; Hoffman et al. 1994). These deviations from the game
theoretical predictions suggest that people not only have an interest in maximizing
their own payoffs but also have a concern for the other person’s outcomes.
Importantly, whereas the positive offers in the Dictator Game reflect
other-regarding concern, the comparatively larger offers in the Ultimatum Game
suggest that strategic considerations aimed at reducing the possibility of rejection
also play a role in decisions about fairness. In addition, the consistently found
rejections of unfair Ultimatum Game offers suggest an aversive response to
receiving less than the proposer (known as ‘disadvantageous inequity aversion’)
and rejection of the offer possibly provides the responder with a way of correcting
such inequity (Fehr and Schmidt 1999).
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Using these games for developmental research offers several advantages
(Gummerum et al. 2008a, b). First, an important advantage is that the same para-
digm can be used across a wide age range (from children as young as 3 years old to
adults), enabling meaningful comparisons between different age groups. Second,
the structured nature of the games makes it possible to quantify complex social
behavior, which makes them useful for neuroimaging research. Third, these games
allow for experimental manipulations where subcomponents of social
decision-making, such as understanding another person’s intentions and controlling
selfish impulses, can be disentangled. Such subcomponents of decision-making
might be differentially sensitive to developmental change. For example, emotional
reactions to unfairness might mature earlier than an understanding of an interaction
partner’s intentions, which might depend on slowly developing cognitive functions.
Psychological and neural mechanisms underlying such subprocesses can further be
investigated by relating age-related and age-independent individual differences in
behavior and neural activation to external measures of cognitive control (e.g.
inhibition tasks) or perspective taking (e.g. ‘theory of mind’ tasks). By doing so,
one can examine how different cognitive functions and their underlying neural
substrates are involved in developmental changes in social behavior.

15.2 Development of a Preference for Fairness

Concern for another person’s wellbeing has strong developmental roots and
emerges at very young ages. Twelve- to 18-month-old infants willingly engage in
instrumental helping of an adult who has dropped (Warneken and Tomasello 2006)
or misplaced (Liszkowski et al. 2008) an object that is needed to complete an action
and during the second year of life toddlers start to comfort others in distress
(Zahn-Waxler et al. 1992). Nonetheless, infants and toddlers are much more
reluctant to show prosocial behavior when it is costly, i.e., when they have to give
up some of their own possessions to benefit another person (Svetlova et al. 2010).
Developmental studies employing the Dictator Game have shown that although
children tend to keep most of the resources to themselves, the size of their donations
increase with age between the ages of 3 and 8 (Benenson et al. 2007; Blake and
Rand 2010; Smith et al. 2013) and by age 9 no longer differs from donations made
by adults (Gummerum et al. 2008a, b; Güroğlu et al. 2009; Steinbeis et al. 2012).

Interestingly, this developmental increase in costly sharing is not due to
developmental differences in explicit knowledge about what constitutes a fair (i.e.,
in most cases equal) distribution of resources. Infants as young as 15 months
already expect resources to be distributed equally as indicated by prolonged eye
gazes in situations when resources are distributed unequally between two recipients
compared to situations where both recipients receive an equal amount of resources
(Schmidt and Sommerville 2011; Sloane et al. 2012). A recent study showed that,
although 3-year-olds do not differ from 8-year-olds in their judgments about what
constitutes an equal division of rewards, they still tend to keep more than half of the
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rewards to themselves in a Dictator Game and the willingness to give away half of
the rewards increases between the ages of 3–8 (Smith et al. 2013). Furthermore,
converging evidence from developmental investigations of rejections of unequal
distributions confirms that the willingness to incur costs to avoid unequal outcomes
(“I’d rather receive nothing than less than the other”) increases between age 3 and 8
(Blake and McAuliffe 2011). Also when distributing resources, 8-year-olds appear
not to choose a distribution that favors a peer; even when this has no consequences
for their own outcomes (Fehr et al. 2008; Shaw and Olson 2012; Shaw et al. 2013).
Taken together, these findings suggest that a developing sense of fairness makes
children increasingly enforce equality when this is costly, but that it does not make
them necessarily more generous or tolerant of higher outcomes for a peer.

Investigations of proposer behavior in the Ultimatum Game show that not only a
prosocial concern about the other person’s profits or equal outcomes plays a role in
fairness considerations, but also that strategic considerations aimed at reducing the
possibility of rejection come into play. That is, adults tend to offer higher shares of
the stake (closer to an equal split of the rewards) when the second player can punish
unfair offers (e.g., by rejecting them in an Ultimatum Game) (Fehr and Fischbacher
2004; Spitzer et al. 2007). As such, the difference in Ultimatum Game and Dictator
Game offers provides a measure of strategic social behavior. During late childhood
(age 7–10), children start making higher Ultimatum Game proposals compared to
Dictator Game allocations, but their Ultimatum Game proposals are still smaller
than those proposed by adults (Harbaugh et al. 2003). During adolescence, the
difference between Ultimatum Game and Dictator Game offers becomes progres-
sively greater, suggesting a developmental increase in strategic behavior across
adolescence (Güroğlu et al. 2009; Leman et al. 2009). The results from these studies
also demonstrate that the increasing discrepancy between Ultimatum Game and
Dictator Game offers is driven by increasingly higher Ultimatum Game offers and
that Dictator Game offers made by children in late childhood do not differ from
adult Dictator Game offers (Güroğlu et al. 2009; Steinbeis et al. 2012). Taken
together these studies show that a prosocial tendency to share resources with
another person emerges early in development, but also that social behavior
becomes increasingly strategic across childhood and adolescence.

15.3 Cognitive Mechanisms Underlying Developmental
Change in Strategic Social Behavior: Impulse
Control and Perspective Taking

Strategic bargaining depends on the notion that unfair Ultimatum Game proposals
can be punished, while Dictator Game proposals cannot. Crucially, strategic bar-
gaining—assessed as the difference between Ultimatum Game and Dictator Game
offers—develops across childhood and is associated with the developing capacity to
control impulses (Steinbeis et al. 2012). That is, the difference between the number
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of rewards transferred in the Ultimatum Game and in the Dictator Game increases
between the ages of 6 and 14 (see Fig. 15.1a) and irrespective of age, children, and
adults who were better at controlling a prepotent motor response in a stop-signal
reaction time (SSRT) task, also showed more strategic bargaining (see Fig. 15.1b).
These findings suggest that strategic social behavior relies on the capacity to
implement behavioral control over a selfish impulse of keeping all resources to
oneself in situations where selfish behavior can be punished.

In addition, it has been argued that proposers have to take the responder’s
perspective in order to infer what kind of offers are likely to be rejected (Singer
2006; Singer and Fehr 2005). Indeed, 4–5 year old children who passed a
false-belief task (a task to probe the acquisition of a ‘theory of mind’), more often
proposed a fair offer in the Ultimatum Game than same-aged peers who failed to
pass this task (Takagishi et al. 2010). Furthermore, children with deficits in per-
spective taking such as children with autism spectrum disorders tend to propose
self-serving unfair offers in the Ultimatum Game (Sally and Hill 2006).
Interestingly, a prosocial tendency to share at least some part of one’s resources
with a peer in a Dictator Game is no different in children with autism spectrum
disorders, suggesting that perspective-taking abilities are especially important when
social interactions have a strategic component.

(c) (d)

(a) (b)

(e)

Fig. 15.1 Age-related changes in strategic behavior and recruitment of the left dorsolateral
prefrontal cortex (dlPFC): a Strategic behavior (Ultimatum Game (UG) proposals—Dictator Game
(DG) proposals) increased with age; b More strategic behavior was associated with better
performance on a measure of impulse control (lower stop-signal reaction times [SSRTs] represent
enhanced impulse control); c Older children recruited the left dlPFC to a larger extent when
making offers in the UG compared to the DG; d More strategic behavior was associated with
higher activation in left dlPFC when making offers in the UG compared to the DG; e Higher levels
of impulse control were associated with higher activation levels in left dlPFC when making offers
in the UG compared to the DG. Adapted from Steinbeis et al. (2012) reprinted with permission
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Further evidence for a role of perspective taking in decisions about fairness
comes from studies that have shown that identical unfair Ultimatum Game offers (in
terms of monetary outcomes) are rejected at different rates, depending on the
alternative offer that was available to the proposer (Falk et al. 2003). Specifically,
an unfair offer is less often rejected when the proposer had no better alternative
(e.g., a less unfair distribution of the stake) compared to cases where the proposer
had a fair alternative to share the stake equally. This suggests that responders not
only judge the fairness of an offer by its absolute value or the relative profits in
comparison with the proposer’s profits, but also in terms of the proposer’s inten-
tions behind an unfair offer. Several studies examining developmental differences in
responses to unfair Ultimatum Game offers with varying alternative options indeed
showed interesting age differences in such intentionality understanding in fairness
considerations (Güroğlu et al. 2009; Sutter 2007). A comparison of four age groups
in distinct phases of development (9-year-old preadolescents, 12-year-old early
adolescents, 15-year-old mid-adolescents and 18-year-old late adolescents/young
adults) showed that rejection rates of an unfair offer where the proposer had no
other alternative decreased between the ages of 9 and 18. Furthermore, 9-year-olds
rejected monetarily identical unfair offers regardless of whether the proposer had a
fair alternative, no alternative or an even more unfair alternative. With increasing
age, adolescent proposers and responders flexibly adapted their bargaining behavior
in accordance with the alternative that is available to an unfair distribution, sug-
gesting an age-related increase in the incorporation of the proposer’s intentionality
behind an unfair offer (“it is unfair, but there was no better alternative”) into the
decision-making process (Güroğlu et al. 2009).

The role of perspective taking in social decision-making has also been investi-
gated using another economic game called the Trust Game (for a detailed
description of Trust Game please see Chap. 20 in this book) (Berg et al. 1995). In
the Trust Game, the first player (the trustor) is given the choice of either splitting the
stake with a second player (the trustee) or transferring the entire endowment to the
trustee and let the trustee split the stake. When the trustor decides to trust the trustee
by transferring everything, the stake is multiplied (usually by 3 or 4). The trustee
can reciprocate trust by sharing this higher stake equally, or defect trust and keep all
the money. Developmental studies have shown that the frequency of trusting the
second player continues to increase during adolescence (Sutter and Kocher 2007;
van den Bos et al. 2010). Furthermore, young adults and older adolescents show
higher levels of reciprocity than early adolescents and children (van den Bos et al.
2010). Moreover, these age differences are most pronounced in situations where the
trustor takes a larger risk of losing money by trusting the second player (van den
Bos et al. 2010). Trust-decisions become riskier when the amount of money that
can be lost in case of defection increases. In adults, riskier trust-decisions are met by
higher levels of reciprocity, which possibly reflects a recognition of the trustor’s
positive intentions and an appreciation of the risk the trustor took by investing in
the trustee (Malhotra 2004; Pillutla et al. 2003). Van den Bos et al. (2010) showed
that 9-year-olds did not reciprocate more when the trustor took a larger risk than
when he/she took a relatively lower risk. This ‘risk-dependent’ reciprocity gradually
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increased across adolescence, again suggesting a continuing increase in the sensi-
tivity to other people’s intentions well into adulthood.

Taken together, behavioral studies employing different economic exchange
paradigms consistently show that cognitive development related to both impulse
control and perspective taking play a crucial role in understanding age-related
changes in social behavior. In the following sections, we will review results from
neuroimaging studies that show that developmental changes in neural circuitry
implicated in impulse control and perspective taking contribute to developmental
changes in social decision-making.

15.4 Neural Networks Involved in Social Decision-Making

Neuroimaging studies have elucidated a role for three distinct, but interacting, brain
networks in social decision-making: a basic affective network, a cognitive regula-
tory network, and a ‘mentalizing’ network (see Fig. 15.2) (Rilling and Sanfey
2011). We will first briefly summarize findings that provide support for the notion
that these three networks contribute to social decision-making. Subsequently, we
will review the evidence from developmental functional magnetic resonance
imaging (fMRI) studies that show that these networks are differentially sensitive to
developmental change. Findings from these studies support the hypothesis that
asynchronous development of these systems is associated with age-related increases
in strategic social behavior and intentionality understanding in social interactions.

First, neural structures implicated in the processing of basic positive and negative
affect, such as the anterior insula (Sanfey et al. 2003), ventral striatum (Tabibnia

Fig. 15.2 Schematic representation of brain networks involved in social decision-making: basic
affective network (pink), cognitive-regulatory network (blue) and mentalizing network (green).
TPJ = Temporoparietal junction; STS = Superior Temporal Sulcus; TP = Temporal pole;
dlPFC = dorsolateral Prefrontal Cortex; vlPFC = ventrolateral Prefrontal Cortex; ACC = Anterior
Cingulate Cortex; dmPFC = dorsomedial Prefrontal Cortex; vmPFC = ventromedial Prefrontal
Cortex
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et al. 2008), and the amygdala (Haruno and Frith 2010) are involved in biasing
social decisions, i.e., whether certain social stimuli should be approached (associated
with a positive emotional signal) or avoided (associated with a negative emotional
signal). For example, increased activation of the anterior insula, a brain region that is
involved in encoding representations of the physiological state of the body and
negative affect, such as disgust, anger, and sadness, has been associated with
unreciprocated trust (Rilling et al. 2008) and receiving unfair offers in an Ultimatum
Game (Sanfey et al. 2003). Interestingly, the anterior insula is activated not only
when people receive unfair offers, but also when people observe someone else
receiving an unfair offer (Corradi-Dell’Acqua et al. 2013) and when people have to
divide resources unequally themselves (Hsu et al. 2008). In contrast, activation of the
ventral striatum, a region important for processing rewards, has been associated with
mutual cooperation in a prisoner’s dilemma (Rilling et al. 2002, 2004b) and
receiving an equal split of the stake in the Ultimatum Game (Tabibnia et al. 2008).
Based on such findings, it has been argued that brain structures involved in basic
emotion processing might play a role in signaling pleasantness (ventral striatum) and
unpleasantness (anterior insula) of social interactions and consequently might give
rise to the maintenance or elimination of such interactions.

Second, brain regions that are involved in the processing of basic positive and
negative affect interact with a cognitive regulatory network including the dorsal
anterior cingulate cortex (dACC) and regions in the prefrontal cortex (PFC), such as
the ventrolateral prefrontal cortex (vlPFC) and the dorsolateral prefrontal cortex
(dlPFC) (Rilling and Sanfey 2011). Activation in this cognitive regulatory network
has been associated with cognitive control over selfish impulses and allows indi-
viduals to act in a goal-directed manner when there is a conflict between
self-interest and social norms (Knoch et al. 2006; Sanfey et al. 2003). For example,
activation in lateral regions of the PFC has been associated with strategic bargaining
(Spitzer et al. 2007) and temporarily disrupting activity in the dlPFC using repet-
itive transcranial magnetic stimulation decreases rejection rates of unfair offers in an
Ultimatum Game, while leaving explicit fairness judgments unaffected (Knoch
et al. 2006). These findings suggest that control-related brain regions are of crucial
importance for the regulation of (strategic) social behavior.

Third, when making social decisions, affective, and cognitive regulatory regions
interact with a third system, namely the ‘mentalizing’ network. The mentalizing
network includes the left and right temporoparietal junction (TPJ), superior tem-
poral sulci, ventral, and dorsal regions of the medial PFC and the temporal poles
(Frith and Frith 2010; Saxe et al. 2004). Regions in this network are consistently
identified in tasks that probe reasoning about other people’s mental states (i.e.,
mental state reasoning or mentalizing), for instance when people have to infer other
people’s thoughts, beliefs or desires (Blakemore et al. 2007; Saxe and Kanwisher
2003). Moreover, taking other people’s perspective in economic exchange has
repeatedly been associated with activation in regions of the mentalizing network,
such as the TPJ (Güroğlu et al. 2010) and the dorsomedial PFC (Rilling et al.
2004a; van den Bos et al. 2009).

15 A Neurocognitive Perspective on the Development … 301



15.5 Understanding Changing Social Behavior
from a Developmental Neuroscience Perspective

Longitudinal research examining changes in brain structure over time has shown
that different brain regions reach maturity at different ages (Giedd et al. 1999;
Gogtay et al. 2004; Shaw et al. 2008; Sowell et al. 2003). That is, sensorimotor
regions in the occipital and parietal lobes reach maturity first, followed by other
parts of the cortex in a posterior to anterior direction. In particular, the dlPFC and
the TPJ are among the brain regions latest to fully mature, developing well into
early adulthood, which in turn might (partially) explain a similar protracted
developmental pattern in their associated functions, such as cognitive control
(dlFPC) and perspective taking (TPJ). Indeed, models of functional brain devel-
opment have posited that structural brain development might underlie emerging
contributions of later maturing brain networks to social behavior (Blakemore 2008;
Crone and Dahl 2012). Importantly, whereas affective networks including sub-
cortical brain structures might reach maturity during childhood or puberty, regions
of the cognitive regulatory network and the mentalizing network show continued
structural changes well into the second and third decades of life (Goddings et al.
2013; Mills et al. 2012). This interplay between structural and functional brain
development could underlie a developmental asynchrony between earlier maturing
affective reactions to unfairness (associated with activity in basic affective network)
and continued development of strategic considerations and intentionality under-
standing in social decision-making (associated with later maturing cognitive reg-
ulatory and mentalizing networks).

To investigate developmental changes in the neural networks involved in
fairness-related decision-making Güroğlu et al. (2011) examined the neural corre-
lates of intentionality understanding in reactions to unfairness in four phases of
development: 10-year-olds, 13-year-olds, 16-year-olds, and young adults aged 20.
Their results showed that age was positively associated with TPJ and dlPFC activity
when participants were confronted with an unfair offer where the proposer had no
alternative to making an unfair offer (see Fig. 15.3a). Rejection rates of such unfair
offers decreased across adolescence, which again suggests that with age, adoles-
cents become increasingly sensitive to the proposer’s intentions behind an unfair
proposal. Furthermore, mediation analyses showed that age-related decreases in
rejection rates in this ‘no alternative’ condition were fully mediated by activation in
the dlPFC (Fig. 15.3b) and the TPJ (Fig. 15.3c). Moreover, no developmental
differences were observed in dACC and bilateral insula activation during reactions
to unfair proposals. Together these findings suggest that the detection of violations
of fairness norms and underlying neural responses in the insula and dACC mature
prior to entering adolescence and that the continued development of intentionality
understanding in fairness decisions across adolescence is accompanied by
age-related increases in neural activity in brain regions important for perspective
taking (i.e., TPJ) and impulse control (i.e., dlPFC).
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The importance of the emerging contribution of dlPFC to the development of
strategic social behavior was elegantly demonstrated by Steinbeis et al. (2012) in a
study where they asked children (aged 6–13) to be a proposer in both the Ultimatum
Game (where unfair offers can be punished) and a Dictator Game (where there is no
sanction to unfair offers). They showed that activity in both left and right dlPFC
when making Ultimatum Game proposals compared to Dictator Game proposals
correlated positively with two measures of strategic behavior: (1) the difference
between Ultimatum Game and Dictator Game offers (Fig. 15.1d) and (2) the dif-
ference between Ultimatum Game offers and the proposers’ beliefs about the
smallest acceptable offer to the responder. Moreover, they also showed that activity
in the left dlPFC when making Ultimatum Game proposals compared to Dictator
Game proposals increases between the ages of 6 and 13 (Fig. 15.1c).

The involvement of brain regions in both the cognitive regulatory network (e.g.,
dlPFC) and the mentalizing network (e.g., the dorsomedial prefrontal cortex and the
TPJ) in social interactions has also been studied using the Trust Game.
Neuroimaging studies with adult participants have demonstrated the involvement of

(a)

(b)

(c)

Fig. 15.3 Age-related changes in intentionality understanding in fairness are mediated by
age-related increases in recruitment of the dorsolateral prefrontal cortex (dlPFC) and the
temporoparietal junction (TPJ): a Rejection rates of unfair offers when the proposer could not
make a fair offer decrease with age; b Rejection of unfair offers when the proposer could not make
a fair offer is associated with increased recruitment of the dlPFC (b) and TPJ (c); the age-related
changes in behavior are mediated by neural activation in these regions. Adapted from Güroğlu
et al. (2011) reprinted with permission
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the dorsomedial prefrontal cortex (dmPFC) in decisions to trust (Rilling et al.
2004a), as well as in decisions to defect (McCabe et al. 2001; van den Bos et al.
2009). Given the involvement of the dmPFC in self-referential thinking (Amodio
and Frith 2006), it has been suggested that these findings reflect an increased
attention to one’s own outcomes because both decisions maximize payoffs (i.e.,
trust-decisions lead to a multiplication of the stake and defect decisions lead to sure
gains). Decisions to trust another person have also been shown to coincide with TPJ
activation, which increases with age into adulthood (Fett et al. 2013). In addition,
TPJ activity has been associated with receiving trust, in particular in situations in
which people received trust from a trustor who took a larger risk by trusting them
(van den Bos et al. 2009), suggesting that the TPJ is involved in shifting attention to
the trustor’s perspective when evaluating the risk he/she took.

To investigate the development of the neural correlates of reciprocity and the
role of perspective taking herein, van den Bos et al. (2011) examined trustee
behavior in three different age groups (early adolescents aged 12–14 years;
mid-adolescents aged 15–17 years; and young adults aged 18–22 years). They
showed that receiving trust (compared to receiving no trust) was associated with
increased activation in the left TPJ and right dlPFC and that activation in these
regions increased linearly with age. Importantly, higher levels of risk taken by the
trustor were associated with higher levels of activation of the TPJ and the dlFPC
during reciprocity choices. Moreover, they showed that participants of all ages
activated the dmPFC during defection, but that early adolescents also activated the
dmPFC when they reciprocated trust. This latter result corroborates findings from
developmental neuroimaging studies that show an age-related decrease in dmPFC
activity across adolescence during mentalizing in ‘theory of mind’ tasks
(Blakemore et al. 2007; Moriguchi et al. 2007) and an age-related increase in
functional specificity of the TPJ to processing information about people’s mental
states compared to other forms of social information (Gweon et al. 2012; Saxe et al.
2009). It has been suggested that the age-related shift in the relative contributions of
the dmPFC and the TPJ to social reasoning might tip early adolescents toward more
self-oriented choices (associated with higher mPFC activation) and late adolescents
toward more other-oriented choices (associated with higher TPJ activation) (Crone
2013).

15.6 Conclusions and Future Directions

In this chapter, we reviewed evidence for the notion that the abilities to control
impulses and to take others’ perspectives when making social decisions undergo
extended development, and that these behavioral changes can be traced to brain
networks involved in social decision-making developing at different rates. Much of
this evidence comes from studies employing experimental paradigms with eco-
nomic games, which have proven to be valuable tools for studying the development
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of social behavior and in particular for successfully dissecting subprocesses
involved in social decision-making. Behavioral studies show that other-oriented
concern and a preference for fairness have strong developmental roots. Greater
sensitivity to others’ intentions and more strategic behavior in bargaining situations
provide evidence that continued development in perspective taking and impulse
control contribute to changes in social behavior that occur across adolescence.
Finally, these behavioral changes are accompanied by an increased recruitment of
regions involved in impulse control (e.g., dlPFC) and perspective taking (e.g., TPJ)
in decisions where perspectives of interaction partners have to be weighed against
self-interest and social norms.

While elucidating developmental differences in recruitment of the dlPFC and
TPJ and their involvement in social decision-making is a crucial first step, many
fundamental questions remain unanswered. First, it is important not only to
understand how the different brain regions (such as the TPJ or the dlPFC) are
differentially recruited across development, but also how these regions interact and
communicate with one another. For example, increased functional connectivity
between regions of the mentalizing network (e.g., pSTS/TPJ) and brain structures
implicated in the computation of value (e.g., ventral MPFC) has been associated
with higher levels of prosocial behavior in adults (Hare et al. 2010). Functional
connectivity in the cognitive regulatory network (Fair et al. 2008) and the men-
talizing network (Burnett and Blakemore 2009a; Klapwijk et al. 2013) changes
across adolescence, suggesting that developmental changes in functional connec-
tivity may further contribute to changes in social behavior.

Second, the majority of developmental functional neuroimaging studies are
based on cross-sectional data sets with participants of different ages. Although
cross-sectional studies are an excellent first step to demonstrate developmental
differences, there is a great need for longitudinal studies of social brain develop-
ment. Longitudinal designs rule out the role of possible cohort differences and can
give us insight on actual developmental changes within participants. One of the
major questions in the field of developmental neuroimaging centers around the
specific contributions of maturational processes relative to environmental or societal
influences on the development of (social) behavior. For example, children who are
accepted by their peers during childhood express higher levels of prosocial behavior
and show advanced development of empathy and ‘theory of mind’ compared to
children who are rejected by their peers (Slaughter et al. 2002). Longitudinal studies
can provide insights on how developmental trajectories of individual characteristics
(such as long-term peer acceptance or rejection by peers) are related to social
cognitive development and how they relate to developmental trajectories of both
brain structure and function. An increased understanding of this intricate interplay
between a dynamic social context and a maturing brain will be crucial for devel-
oping interventions that can help children and adolescents in navigating their social
worlds.
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Chapter 16
Neuroeconomic Approaches
in Mental Disorders

S. Lis and P. Kirsch

Abstract Approaches from neuroeconomy have recently received increased
attention in the investigation of mental disorders. In this chapter, we will give an
overview of concepts and paradigms from neuroeconomics that have been applied
in different mental disorders and summarize first results in this emerging field. We
focus, thereby, on ‘social decision-making’ which constitutes one of the main
concepts of neuroeconomy. First findings suggest that these approaches may prove
to be promising research tools in the investigation of social functioning, which is a
prominent symptom domain in many mental disorders. In contrast to self- and
observer-based questionnaires that have provided information on how interaction
behaviour is subjectively perceived by the patients themselves or their social
environment, the variety of exchange games from behavioural economy allow for a
direct and, thus, unbiased assessment of interaction behaviour. So far, findings
suggest that neuroeconomic tools are suited to uncover alterations in social inter-
action behaviour in mental disorders, such as anxiety disorders, depression, bor-
derline personality disorder, attention-deficit/hyperactivity disorder, but also
schizophrenia and autism. However, the investigation of social interaction beha-
viour in mental disorders poses particular challenges. Deficits in basal or complex
cognitive functions, such as working memory, deficits in basal social cognitive
processes, such as the recognition of emotional facial expressions and a lower
socioeconomic status due to long periods of illness and unemployment can be
assumed to affect interaction behaviour. These have to be disentangled for the
purpose of characterizing social decision-making in mental disorders and under-
standing the causes underlying its alterations. The combination of neuroeconomic
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approaches and their elaborated quantitative models with methods from experi-
mental psychology und cognitive neurosciences seems a promising avenue to
achieve this goal.

16.1 Introduction

Neuroeconomics has been defined as a discipline originated by merging economics,
psychology and neuroscience (Glimcher and Rustichini 2004), combining their
theoretical and methodological approaches. From behavioural economics, this new
discipline inherited the demand to define a unified theory of human
decision-making or even human behaviour. However, when taking mental disorders
and the related altered behaviours into account, it becomes obvious that this
demand is almost unapproachable within this context. Clinical sciences are far away
from defining single theories which account for all behavioural alterations, even
when only focusing on one particular mental disorder. Therefore, it is obvious that
neuroeconomic approaches to mental disorders cannot provide theories explaining
their whole etiology. However, with the emergence of neuroeconomics, a number
of central concepts, mainly adopted from economics, came into the focus of neu-
roscience. These may provide a theoretical and methodological framework and,
therefore, be of great value when describing impaired behaviours in patients suf-
fering from mental disorders and searching for their neurobiological underpinnings.

A variety of avenues by which neuroeconomic approaches can foster the
investigation of alterations in decision-making and its cerebral correlates in mental
disorders are discussed in a recent series of commentaries addressing disorders,
such as depression (Ernst 2012), anxiety disorders (Hartley and Phelps 2012),
addiction (Monterosso et al. 2012) and attention-deficit/hyperactivity disorder
(Sonuga-Barke and Fairchild 2012). A comprehensive review on the usability of
neuroeconomics for psychiatric research (Hasler 2012) characterized these central
concepts, such as utility, expectation, uncertainty and gain-loss-asymmetry in
relation to mental disorders. Hasler (2012) outlined the link between specific
neuroeconomic parameters and behavioural correlates which bear a special
importance within the context of different mental disorders. These parameters, such
as specific coefficients of value function, time discounting function or utility
function, rely on a broad database of studies in healthy subjects. They constitute not
only specific quantitative measurements of behaviour, but also allow for linking
them to certain neurobiological systems, such as specific cerebral structures or
neurotransmitter systems.

Three different main domains can be distinguished in neuroeconomics: ‘social
decision-making’, ‘decision-making under risk and uncertainty’ and ‘intertemporal
choice’ (Loewenstein et al. 2008). From these domains, social decision-making has
attracted most attention in the context of psychiatric research. However, the
methodology to investigate this domain of functioning still needs to be developed. It
can be assumed that neuroeconomic approaches will be able to fill the gap by
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providing ecologically valid paradigms that allow the probe of those functions
regarded as crucial for most mental disorders (Sharp et al. 2012): Alterations in
social interaction constitute a significant symptom domain, e.g. in social phobia or
borderline personality disorder (BPD), they modulate the extent of symptoms
within other domains of psychopathology, or affect recovery and long-term out-
comes (see King-Casas and Chiu 2012). This chapter will, therefore, focus on the
application of neuroeconomic approaches to social functioning in mental disorders.

The importance of alterations in social cognition for the psychopathology, and
especially for the often pronounced impairments of everyday functioning in the
context of mental disorders, has been noticed with growing interest during the last
years. Recently, it has been emphasized that the study of social cognition should be
extended to a second person perspective (Schilbach et al. 2013): it allows to take
into account that particular social cognitive deficits in mental disorders might only
be observable in real interpersonal interactions as they are used in neuroeconomic
games. However, the possible usefulness of neuroeconomic approaches, particu-
larly using the approach of social exchange games, to study social decision-making
received attention only very recently. Due to this, the number of available studies
that apply such games in the investigation of mental disorders remains sparse. This
particularly holds true when compared to the boom of these approaches in the social
neurosciences in general. However, the interest in these approaches is momentarily
drastically increasing which becomes evident in the growing number of both
empirical studies and theoretical papers that emphasize the usefulness of these
approaches for the understanding of mental disorders in the context of cognitive,
affective and social neuroscience (Kishida et al. 2010; Hasler 2012; Kishida and
Montague 2012; Sharp et al. 2012).

Beyond the availability of well-founded computational models of social
exchanges, these approaches may constitute ecologically valid and well-defined test
settings to study single social cognitive processes and their importance for social
interactions. Social exchanges require a multitude of different cognitive, affective
and social processes. Thus, Carter (2012) emphasized that social ‘choice behaviour
relies on the integration in the brain of a diverse array of specialized processes that
vary according to changing context’ (see also Loewenstein et al. 2008). With that,
neuroeconomic approaches allow the study of single specific social cognitive
functions, such as emotion recognition processes or mentalizing that are assumed to
be altered in mental disorders. However, alterations of these processes are here
investigated in a complex interplay with other processes during social interactions.
This is in contrast to analyzing them in isolation in a highly artificial manner as it is
done, e.g. in traditional multiple choice emotion recognition tasks. Beyond the
consideration of specific social cognitive processes being part of a complex func-
tional network, this approach extends the study of social cognition by taking the
goal, i.e. the ‘why’, of processing into account in that it investigates overt or covert
behaviour within a specific social interaction context (Willems 2011).

Interestingly, while there are a number of recent behavioural studies using social
exchange games in clinical research, only a small number of them have applied
neuroscientific methodology. In the next section, we will summarize the findings
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separately for a number of mental disorders. Finally, we will discuss their appli-
cability for clinical social neuroscience.

16.2 Exchange Games in Specific Mental Disorders

From the variety of paradigms available, the majority of studies have applied
approaches that focus on the assessment of trust and fairness and the perception of
social norms.

The most often applied exchange games are the ultimatum game (UG), and the
trust game (TG) (for a detailed description of economic games please see Chap. 2
of this book). These approaches were applied in the investigation of alterations of
social interaction behaviour in schizophrenia, depressive disorders, borderline
personality disorder, anxiety disorders, social phobias, psychopathy,
attention-deficit-hyperactivity disorder and autism spectrum disorder. The majority
of studies focus on virtual interaction situations within dyads, in which the beha-
viour of an alleged social interaction partner is simulated by computer algorithms.
Studies that actually measure the behaviour of real partners constitute a minority
(e.g. Agay et al. 2008; Chiu et al. 2008; King-Casas et al. 2008; Zhang et al. 2012).

Studies differ in regard to whether exchanges are investigated as a single
exchange with several partners or as multi-round games, i.e. as repeated exchanges
with the same partner, shifting the emphasis from certain cognitive processes (e.g.
trust) to others (e.g. the maintaining of interpersonal relations involving the
building of reputation). In most exchange games, the roles of the partners differ in
regard to the cognitive processes involved, e.g. taking the role of the investor or the
trustee during the TG, or of the proposer or the responder in the UG. Studies differ
in regard to whether the patient’s behaviour is studied in fixed or varying roles
within the single exchange games, e.g. BPD patients always represent the trustees
in a multi-round trust game (e.g. King-Casas et al. 2008), or schizophrenic patients
act as proposers as well as responders in an UG (e.g. Agay et al. 2008). Several
studies suggest that the occurrence of alterations in social behaviour depends on the
specific role during the exchange game, as e.g. patients show behavioural alter-
ations as responders but not as proposers (e.g. Agay et al. 2008). Thus, it is
important to take the details of the realization of neuroeconomic approaches into
account when assessing heterogeneity and homogeneity in the still limited number
of neuroeconomic studies in mental disorders.

16.2.1 Schizophrenia

Agay et al. (2008) conducted the first study with schizophrenic patients applying
the UG as a neuroeconomic exchange game. They found a comparable exchange
behaviour in patients and healthy subjects in the role of the responder, but
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alterations of behaviour in the patients’ group in the role of the proposer. After
rejection of an offer, both groups increased their offer in the second round.
However, in case of an accepted offer, healthy subjects reduced their offer in the
subsequent trial, while the schizophrenic patients did not adjust their behaviour.
Approximately 20 % of the patients exhibited nonstrategic behaviour, in that they
further reduced their offer after a rejection or increased their offer after acceptance
in the previous trial. Such behaviour was observed in none of the healthy subjects.
A study by Billeke et al. (2015) supported this finding of altered strategic behaviour
in schizophrenic patients when taking the role of the proposer during an UG. In
general, the patients made more often hyperfair offers and showed a higher varia-
tion of behaviour towards the alleged human co-players, but also when playing with
a computer. During the course of the interaction, the pattern of adaptation to risk
was opposite in healthy subjects and patients when taking the social and nonsocial
condition into account. Moreover, the authors were able to link these differences to
alterations in neural processing during the anticipation of the responder’s choice,
i.e. to brain oscillatory activity in frontal and temporoparietal brain regions.

Other studies suggest that schizophrenic patients differ also as responder during
UG exchanges: patients accepted more unfair offers than healthy subjects (Csukly
et al. 2011; Wischniewski and Brune 2011). Such a behaviour was also observed in
subjects with a high level of interpersonal schizotypal symptoms (van’t Wout and
Sanfey 2011). These results have been interpreted as an indication of a reduced
sensitivity towards unfairness to their own disadvantage in schizophrenic patients
(Wischniewski and Brune 2011), and a blunted emotional response (van’t Wout and
Sanfey 2011). However, it seems worth pointing out that the socioeconomic status
of patients that suffer from chronic mental disorders is quite often reduced com-
pared to healthy controls. Thereby, the value of the gain at risk may differ between
groups and thus, differentially influence the exchange behaviour of these groups.
Until now, the majority of studies do not take this presumably important factor into
account.

Wischniewski and Brune (2011) suggest that in general, the exchange behaviour
of schizophrenic patients seems to be determined by the same rules as that of
healthy subjects (see also de la Asuncion et al. 2015). In both groups, rejection rates
increased with the unfairness of offers. Similarly, both groups equalled in regard to
the likelihood of punishing unfairness of a proposer when they watched two
individuals during the dictator game (DG). Based on their finding, they conclude
that moral value appreciation is not affected in schizophrenia.

In contrast, Csukly et al. (2011) found higher acceptance rates of unfair pro-
posals and lower acceptance rates with fair proposals in the schizophrenic patients
during an UG. This contradicts an overall increased tendency to accept offers
independent of their height due to a higher need caused by a lower socioeconomic
status. In contrast, these data agree with a general lack in differential reactions
during social interactions. A reduced influence of the partner’s fairness has been
confirmed by subsequent studies: investment were not influenced by the trustee’s
fairness during an UG (de la Asuncion et al. 2015) or during a trust game (Lis et al.
2011; see also Fett et al. (2012) for similar findings in a mixed group of patients
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with different psychotic disorders). Beyond the partners’ fairness, emotional facial
expressions may provide socially relevant context information and may serve as
cues towards the partners’ future behaviour. Studies that investigated the influence
of emotional expressions on the adaptation of behaviour, consistently suggest
impairments in schizophrenia (Csukly et al. 2011; Lis et al. 2011; de la Asuncion
et al. 2015). All studies revealed that the interaction behaviour is modulated by the
facial expression of the social partner in healthy subjects, but not in schizophrenic
patients. This holds true for the responder behaviour in the UG and the investor
behaviour in the TG. The behavioural alteration towards facial expressions seems to
be particularly relevant to the case in which they serve to guide behaviour during
social interactions, since no deficits were observed in a simple emotion evaluation
task (Lis et al. 2011). However, caution is necessary when interpreting these
findings as deficits specific for using emotional cues to adapt social behaviour.
None of the studies applied a control condition to exclude, as an underlying
mechanism, more general cognitive impairments in the adaptation of behaviour to
complex cues, i.e. to context information without a social and emotional content.

16.2.2 Depressive Disorders

During the last few years, the interest in neuroeconomic tasks has tremendously
increased in the investigation of social dysfunctioning in depressive disorders (see
for a recent review Wang et al. 2015). In contrast to studies in schizophrenia,
studies focused more often on the affective responses to fair and unfair reactions.

As it was reported for patients suffering from schizophrenia, alterations in the
behaviour of patients with major depressive disorder depend on the role taken
during an UG (Destoop et al. 2012). While no alterations were observed when the
patients acted as the responder, they offered a higher percentage of their account
when in the role of the proposer compared to healthy subjects (see similar findings
Scheele et al. 2013). Destoop et al. (2012) interpreted this behaviour as a strategy to
avoid rejection which agrees with an enhanced rejection sensitivity in individuals
with depressive disorders (Rosenbach and Renneberg 2011).

However, findings are not consistent regarding the behaviour when in the role of
the responder during UG. In line with findings from Radke et al. (2013b), Wang
et al. (2014) reported, in general, a lower rate of acceptance in patients with major
depressive disorders (MDD). Moreover, in the case of unfair offers, there was no
differential response towards an alleged human co-player in contrast to a computer
control condition in MDD, suggesting that this behavioural alteration is not char-
acteristic for social interactions: while healthy participants particularly rejected
more often the very unfair offers from a human partner, MDD patients rejected very
unfair offers from both the human partner and the computer (Wang et al. 2014). In
contrast, Scheele et al. (2013) found more rejections only in the case of slightly
unfair offers. When studying student populations with depressive symptoms, no
behavioural alterations were found (Gradin et al. 2015; see also Pulcu et al. 2015) or
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even increased acceptance rates (Harle et al. 2010). This suggests that altered
interaction behaviour in clinical samples is not solely attributable to the effects of
depressive symptoms.

Alterations of exchange behaviour seem to not be caused by impaired judge-
ments of fairness in general. Data from Scheele et al. (2013) found no evidence
towards altered perception of fairness, although data of Wang et al. (2014) suggest
that patients may tend to be more sensitive in the case of very unfair offers when
fairness is evaluated independently of an interaction.

Several studies consistently revealed altered emotional responses during inter-
actions in depressive disorders. Unfair offers during an UG elicited stronger neg-
ative emotions (Harle et al. 2010) and higher guilt (Pulcu et al. 2015) and defection
during a PD evoked stronger feelings of betrayal (Gradin et al. 2016). Moreover,
depressive participants reported lower satisfaction in the case of cooperative
behaviour of both the participant and the partner during a PD (Gradin et al. 2016)
and reduced levels of happiness to fair offers during an UG (Gradin et al. 2015).
These alterations were accompanied by alterations in brain activation during
interactions suggesting altered processing of fairness and reward as well as linked
emotional responses. Depressive participants showed a reduced activation in the left
dorsolateral prefrontal cortex, which was correlated with the experience of
increased guilt when the participant defected and the partner cooperated during PD
(Gradin et al. 2016). Increasing engagement of the nucleus accumbens and the
dorsal caudate with increasing fairness of an offer during UG was attenuated in
depressive participants resulting in a lower activation in these brain area compared
to healthy subjects (Gradin et al. 2015). In contrast, increasing unfairness of offers
was linked to increasing activation of the dorsal anterior cingulate and the insula in
both groups (Gradin et al. 2015).

Zhang et al. (2012) used a modified trust game to investigate the effects of
altruism and risk-taking on social interaction behaviour in depressive subjects. All
subjects played as trustees. They were informed that during each exchange they
would play with a different real co-player, while actually, the investments were
determined by the experimental setting. In this modification of the trust game, the
investor asked the trustee to repay a specific ratio of the amount at his/her disposal
(“beneficial” with 20 %, “equal” with 50 % and “unfair” with 80 %). Participants
could choose to repay exactly the amount requested, more than requested (“altru-
istic” behaviour) or less than requested (“deceptive” behaviour). Additionally, the
probability (25 or 75 %) with which the investor would detect whether this
investment differed from the requested amount was given. If deception was
detected, the monetary units earned in the single trial were confiscated as punish-
ment. Subjects with a depressive disorder differed qualitatively in their preference
of choice options, in that they chose altruistic repayments in the case of beneficial
and equal requests less often, and also deceptive repayments in the case of unfair
requests less often. Thus, effects of previous exchanges seem to be weaker in
depressive patients who were less generous in the case of benevolent partners, as
well as less punishing in the case of malevolent partners. Beyond that, risk of
deception affected the patients’ behaviour as well: they chose deceptive responses
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less frequently than healthy subjects when the risk for detection was low. This
finding was interpreted as indicating enhanced risk avoidance in depressive
disorders, but also suggests that these patients might have problems with integrating
information from different domains, such as risk-taking, inferring the intentions of
others and decision-making. When looking on deceptive behaviours of the partic-
ipants themselves, Shao et al. (2015) identified a reduced efficiency in the inte-
gration of lateral prefrontal-striatal/limbic networks in MDD patients, although
during this modified trust game behavioural alterations in MDD could not
unequivocally be confirmed.

Besides studies that point to alterations in specific aspects of interaction beha-
viour during economic tasks in depressive disorders, others suggest that
decision-making in social interactions is determined by mechanism similar to those
in healthy subjects. Examples are the effects of emotional expressions and the
influence of offer alternatives (Radke et al. 2013b; see also for an attenuated effect
of smiling faces as cues for fair behaviour of a trustee in case of a comorbid
depressive disorder in BPD, Franzen et al. 2011).

Data suggest that alterations in social interaction behaviour in depressive dis-
orders can be quantified by exchange games. However, future studies have to
address the underlying causes of these alterations, such as an increased rejection
sensitivity as suggested by Destoop et al. (2012), or an inability to convert anger
into a social action like a ‘fight back’ towards a partner linked to neuroanatomical
alterations in nucleus caudatus or the anterior insula activations as suggested by
Zhang et al. (2012). Moreover, interaction behaviour may be differentially affected
by the participants’ gender, possibly modulated by specific symptoms, such as
suicidal ideations (Caceda et al. 2014). It seems obvious that exchange games have
to be combined with approaches from experimental psychology that stress different
cognitive and social cognitive processes during an exchange situation to understand
the mechanisms responsible for altered interaction behaviour and altered emotional
responses.

16.2.3 Anxiety Disorders

Applying an UG, Grecucci et al. (2012) found altered behaviour of subjects with
anxiety disorder in the responder’s, but not the proposer’s, role. Patients accepted
more unfair offers than healthy subjects. This effect depended on the clinical sub-
type, being observable in those patients with generalized anxiety disorder, but not
with panic disorder. Additionally, the pharmacological treatment modulated inter-
action behaviour: treatment with serotonin reuptake inhibitors normalized these
behavioural alterations. The authors discuss the relevance of interpersonal factors
and assertiveness in decision-making of patients with anxiety disorders.

As an alternative approach, a TG was used to investigate social interaction
behaviour of patients with social anxiety disorders in the role of the investor
(Sripada et al. 2009). Interaction during a multi-round trust game played with a
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human partner was associated to an attenuated activation in medial prefrontal cortex
in patients with an anxiety disorder compared to healthy subjects (Sripada et al.
2009). The authors linked this result to deficits in mentalizing, since no comparable
pattern of altered cerebral activation was observed when playing with a computer.
However, during the computer game, subjects knew they had a 50 % chance to
receive a fair repay, while there were three virtual ‘human’ partners that differed in
regard to their probability of splitting the investment (with a repayment of 75, 50 or
25 %). Thus, the alleged human interaction was linked to a higher uncertainty of
exchange behaviour, a factor well known to influence decision-making during
exchange games.

A study by McClure et al. (2007) addressed social interaction behaviour in
adolescents with anxiety and mood disorders (A/D) who were free of psychotropic
medication during the time of testing. The authors applied the Prisoners’ Dilemma
(PD) to directly measure pro-social, submissive and hostile or competitive beha-
viours together with self-reports on anger and the experience of cooperativeness.
Alterations in play behaviour suggest a priority on maintaining positive interper-
sonal interactions by choosing pro-social behaviour, but not conflict avoidance:
A/D patients more often cooperated compared to their healthy controls when the
co-player had cooperated in the preceding round. However, there were no differ-
ences between groups in regard to reactions to noncooperative behaviour of the
co-players. In contrast, a PD study by Rodebaugh et al. (2013) reported that patients
with generalized social anxiety give less during a PD interaction and tended to show
less reaction to defection. Interestingly, female patients reported a higher extent of
anger after defection by the partner (Sripada et al. 2009). Yet, this self-report was
not accompanied by an increased probability for choosing a defecting strategy in
the following round. As the authors note, at first glance, such an altered interaction
pattern does not appear to be the reason for interpersonal dysfunction. However,
social interactions are complex feedback-oriented systems. Within these systems,
comparable behavioural patterns might be perceived by social partners in different
manners depending on modulating factors, such as expectations and expectation
violations intertwined with specific personality traits. Until now, there has been a
lack of studies that address the mechanisms of the interpretation of social actions,
such as the interpretation of self-protective behaviour as limited self-disclosure or
an enhanced vulnerability by reduced self-assertiveness, especially in the context of
a mental disorder in one of the interaction partners.

16.2.4 Personality Disorders

16.2.4.1 Borderline Personality Disorder

Deficits in social interactions constitute one of the central psychopathological
features of BPD. The diagnostic criteria of the DSM-IV-TR describe the impair-
ments in social relationships as ‘frantic efforts to avoid real or imagined

16 Neuroeconomic Approaches in Mental Disorders 319



abandonment’, ‘pattern of unstable and intense interpersonal relationships charac-
terized by alternating between extremes of idealization and devaluation’ and
‘inappropriate, intense anger or difficulty controlling anger’. A multitude of studies
confirm the existence of alterations in social relationships in BPD (for review see
Lis and Bohus 2013).

The most prominent neuroeconomic study in BPD was done by King-Casas
et al. (2008). They applied a 10-round trust game with real interactions, while
measuring the BOLD response. While the investor was always a healthy subject,
the trustees’ role was taken by a BPD patient or a healthy subject. Dyads including
a BPD trustee showed less cooperation over the course of the game. This was due to
those exchange rounds in which the investor transferred a very low amount of
monetary units. In these rounds, healthy trustees often repaid a high sum. Such
behaviour might aim at encouraging the investor to be more cooperative and
transfer greater investments in subsequent trials. In contrast, BPD trustees reacted
with a low repayment, i.e. they showed a less generous behaviour and, thereby, an
inability to “repair” the cooperation. These findings are in line with those applying a
PD: BPD patients showed a lower proportion of cooperative responses than healthy
controls and patients with a bipolar disorder when playing with an alleged partner
(Saunders et al. 2015). Since the partner’s behaviour was preprogrammed to follow
a tit-for-tat strategy, a break of cooperation by the BPD patient was followed by a
defection by the partner. This choice may result in a permanent break of cooper-
ation as described by King-Casas et al. (2008) if the patients did not initiate a repair
of the relation themselves by switching to a cooperative behaviour after defection of
the partner. This implies that particularly reconciliation after problems in social
relations may represent a core deficit in this mental disorder. However, further
studies must test whether this interpretation for the emergence of uncooperative
behaviour in specific social constellations holds true.

The study by King-Casas et al. (2008) linked alteration in overt interaction
behaviour in BPD to alterations in cerebral activation, especially a lack in the
modulation of the activation in the anterior insula by the height of the received
investment in the BPD group. The authors interpreted this finding as a lack in the
perception of the violation of social norms in the behaviour of social partners, and
speculated that this might be linked to negative expectations during social inter-
actions. However, a subsequent study by Franzen et al. (2011) suggests that the
perception of social norms does not differ between BPD patients and controls.
When asked to assess the fairness of a trustee’s behaviour during a trust game, the
BPD patients’ ratings differentiated the degrees of fair and unfair behaviour in the
same manner as healthy subjects. This suggests that the ability of recognizing
unfairness is uncompromised in BPD. Further studies are necessary to clarify
whether the findings of King-Casas et al. (2008) can indeed be explained by an
altered expectancy on the fairness of social partners in BPD.

It can be assumed that context information is essential for the formation and
adaptation of expectancies in social encounters. Findings of Franzen et al. (2011)
suggest that BPD patients use context information to guide social interaction
behaviour differently from healthy subjects. Social context might be given by a

320 S. Lis and P. Kirsch



potential break-down of a cooperation (see Meyer-Lindenberg 2008), but equally
by social cues, such as the emotional facial expressions of interaction partners. In
healthy subjects, the presence of emotional facial cues strongly affects interaction
behaviour: they ignore the overall fairness of an interaction partner and transfer
equal investments to fair and unfair partners with varying emotional expressions
(Franzen et al. 2011; Lis et al. 2011, 2013). In contrast, BPD patients adapt their
investment behaviour not only to the emotional facial cues signalling the expected
repayment in the single round, but also simultaneously integrate the preceding
experiences with the fairness of a trustee, i.e. they transferred less money to unfair
than to fair partners, while simultaneously taking the specific provided social cues
in a single round into account. An altered influence of emotional facial expression
on exchange behaviour was also found by Polgar et al. (2014): while healthy
subjects accepted more offers during an UG when the partner displayed a happy
facial expression, this held true for the BPD patients only in the case of fair offers.
Thereby, BPD patients accepted more offers overall than healthy controls.

The only study with a nonsocial control task applied a trust game (Unoka et al.
2009). Over the course of five rounds, healthy investors increased the amount of
transferred monetary units, while BPD patients did not change their investment
behaviour. This finding suggests that BPD patients failed to develop trust.
However, this study did not provide any feedback on the interaction partner’s
behaviour during the game. Thus, one may argue that it does not measure inter-
action behaviour, defined as a two-way encounter during which the behaviour of
one individual influences that of the other and that uncertainty about the behaviour
of the partner may contribute to this finding. Nevertheless, Unoka et al. (2009)
confirmed that the behavioural alteration seen in BPD is specific for a social
encounter, since no comparable behaviour was observed in a control task that asked
subjects to play with a computer.

The findings of the various studies using the trust game in BPD all suggest
altered interaction behaviour. Thus, further studies seem promising to gain further
knowledge on the underlying mechanisms and modulating variables. A recent study
by Lonnqvist et al. (2012) points to the importance of personality traits for the
behavioural pattern seen by King-Casas et al. (2008): the inability to repair ruptured
cooperation seems to be linked to a combination of high neuroticism and low
agreeableness, i.e. the interplay of two personality dimensions identified by the
five-factor model (see also Thielmann et al. 2014).

Although these findings suggest a high importance of personality traits for the
exchange behaviour in BPD, other findings suggest a different link between per-
sonality traits and exchange behaviour in healthy individuals and BPD subjects.
Wischniewski and Brune (2012) applied the dictator game and found a diverging
effect of personality traits in BPD compared to healthy subjects. In the healthy
group, selfish behaviour was linked to high Machiavellianism and low agreeable-
ness. An opposite pattern was observed in the BPD group. Additionally, high
extraversion and high openness went along with less costly punishment and higher
neuroticism was linked with higher punishment in the BPD group, but not in
healthy subjects. The authors interpreted these results in BPD as—as they state
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—‘angry retaliation’ which is motivated by identification with the victim’s per-
spective, suggesting different motivations for the observed behaviour in BPD
patients and healthy subjects.

In an alternative approach, Bartz et al. (2011) investigated the effects of the
‘pro-social’ peptide oxytocin on interaction behaviour in BPD. They applied a
three-round “assurance game” to investigate cooperation and trust. In this social
dilemma paradigm, the virtual partner was programmed to behave cooperatively.
Comparably to the PD, the subject can decide whether to cooperate or defect, and
the gain is determined by the interplay of cooperation and defection of both players.
BPD patients cooperated more often than healthy individuals. This is in accordance
with the findings of Franzen et al. (2011) that point to overall higher investments in
BPD. Surprisingly, oxytocin did not modulate the exchange behaviour. However, it
affected whether the participant expected the co-player to be trustworthy. Again,
surprisingly, oxytocin did not increase trustfulness, but led to less trusting expec-
tations in BPD patients. Although this finding suggests that the oxytocin system
might be affected in BPD, the data of Bartz et al. (2011) do not suggest a simple
lack in trust explained by a lower oxytocin level. Instead, the authors propose that
oxytocin may affect the salience of social cues, and, thereby, trigger positive or
negative social emotions based on the social repertoire of the individual and/or the
social context. It has to be emphasized that oxytocin modulates the self-reported
expectations towards a social partner, but not the actual exchange behaviour. This
discrepancy in the self-report of emotional experiences and motivations and actual
interaction behaviour underlines the importance of applying interaction paradigms
to extend our understanding of social dysfunction in mental disorders. It agrees with
other studies, e.g. McClure et al. (2007), that similarly depicts a gap between
self-perceived behaviour and the actually chosen social actions. Considering the
often discussed bias in perceiving oneself and others that is assumed to exist in
BPD, but also in other mental disorders, such as depression, this discrepancy seems
to be expectable and should be taken into account in investigating alteration in
social functioning, as well as in the development of psychotherapeutic interventions
and cognitive training programs (see also Lis and Bohus 2013).

16.2.4.2 Psychopathy

Although psychopathic behaviour is characterized by the violation ofmoral standards
and many studies have aimed at identifying deficits in moral reasoning, the number of
studies that try to capture alterations of moral behaviours with neuroeconomic tasks is
sparse. Koenigs et al. (2010) investigated quite a small sample of six primary and six
secondary psychopaths compared to 22 non-psychopaths with a DG and an UG. Only
primary psychopaths offered lower amounts during the DG than during the UG.
Beyond that, they accepted fewer unfair offers in the role of the responder in the UG.
Since the authors found a comparable behavioural pattern in subjects with lesions in
the vmPFC, they argued in favour of an involvement of this cerebral structure in
primary psychopathy and hypothesized that deficits in regulating anger and
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frustration may underlie these alterations. However, a subsequent study of the
behaviour in the role of the responder during anUGdid not replicate altered behaviour
in criminal offenders with psychopathy (Radke et al. 2013a). Further studies are
necessary that disentangle cognitive and affective processing during exchange
behaviour together with its psychophysiological and neuronal correlates.

16.2.5 Attention-Deficit/Hyperactivity Disorder

Although high levels in interpersonal dysfunction are well known to characterize
adults with Attention-Deficit/Hyperactivity Disorder (ADHD), up to date, only a
few studies have addressed alterations in social cognitive processes and used
exchange games to study interpersonal functioning in this clinical group. Lis et al.
(2013) used a trust-game to explore behavioural alteration during social interactions
in adults with ADHD. They manipulated the overall fairness together with the
availability of social cues that signalled the likely fairness of the repayment during a
single exchange in four virtual trustees. ADHD patients were equally generous
toward all social interaction partners independent of their partners’ fairness. This
behaviour was beneficial in respect to maximizing a gain when playing with a fair
partner, but resulted in a disadvantage when playing with unfair partners.
Alterations were not caused by deficits in more basal cognitive or social cognitive
processes, since these abilities were controlled for in the study. Thus, a general
inattentiveness as a cause of interaction problems in ADHD, as it has been dis-
cussed in the past, has been excluded in this study. One line of interpretation of
these findings is that of altered reward sensitivity in ADHD, which results in
overemphasizing value, but ignoring the probability of reward. Thereby, it agrees
with other approaches applying paradigms from behavioural economics that do not
focus on social exchanges, but on decision-making under risk and uncertainty or
intertemporal choice (Sonuga-Barke and Fairchild 2012).

A recent study identified the relevance of a comorbid conduct disorder for
alterations in adolescents with ADHD (Northover et al. 2015). This subgroup
rejected moderately unfair offers in the role of the responder during an UG more
often than ADHD patients without this comorbid disorder or healthy controls.
Thereby, the rejection rate was closely linked to the severity of the comorbid
conduct disorder. The authors propose deficits in emotion regulation as underlying
mechanism in this subgroup of ADHD patients.

16.2.6 Autism Spectrum Disorder

As in psychopathy or ADHD, the number of studies applying an exchange game in
autism spectrum disorder (ASD) is sparse. In contrast to the large number of studies
in schizophrenia, depression or BPD, this seems surprising since alterations in
social cognition and social interaction behaviour form a core symptom domain of
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ASD. Thus, the DSM-IV defines qualitative impairments in social interaction as
one of the diagnostic criteria which may manifest itself in a lack of social or
emotional reciprocity.

The study by Chiu et al. (2008) is one of the few actual neuroeconomic studies
investigating social exchange behaviour in mental disorders. The authors measured
BOLD responses during a 10-round iterative TG. Adolescents or young adults with
high-functioning ASD and healthy subjects took the role of the trustee while
playing with a healthy subject as investor. The ASD patients’ behavioural pattern
during the exchange equalled that of the healthy controls, but differed from healthy
subjects regarding hemodynamic response patterns along the anterior-posterior axis
of the cingulate cortex. The authors postulate that a TG trial can be divided into two
phases. They separate a decision of the partner, in this case the decision of the
investor, from the decision of the player his/herself, in this case the decision to
repay a specific ratio of the monetary units as trustee. Neural activity revealed
robust “self’’ and ‘‘other’’ response patterns along cingulate cortex for these distinct
phases in healthy subjects. In contrast, the ASD patients’ “self” response pattern,
i.e. a relatively greater activation in middle cingulate domains and less activation in
the anterior and posterior ends of the cingulate cortex, was absent. The observed
activation during the “self” decision phase in ASD equalled that of healthy subjects
during a non-social control condition, i.e. playing with a computer. Thereby, the
attenuation of the neural “self”-pattern was stronger with the extent of symptom
severity in the ASD patients. The alterations of brain activation were confined to the
“self”-related decisions since the brain patterns during the investor’s decision were
comparable in both groups.

In the past, autism has been primarily linked to impairments in Theory-of-Mind
tasks and the inability to infer other’s emotions and intentions. However, the
authors proposed that their data might be interpreted as an impairment in the ability
to represent their own intentions, but an intact ability to represent the intentions of
social partners. This shifts the locus of dysfunction to introspection and
self-referential processes in ASD. Nevertheless, it seems worth considering that an
alternative interpretation might be that the self-phase is also determined by inferring
the intentions of others, in that the own repay might influence the future investment
behaviour of the partner. Comparably, the processing during the investors’ decision
phase might be affected more strongly by an evaluation of the actual observable
investment behaviour and less by the inference of future intentions of the partner.

Altered social interaction behaviour in high-functioning autism (HFA) seems to
not be caused by deficits in moral reasoning (Li et al. 2014): HFA children dif-
ferentiated between hypothetical characters described in stories and even assessed
individuals harming others as worse than healthy control children. Nevertheless,
these judgements did not affect the patients’ cooperation in a subsequent PD. In
contrast, healthy children were more cooperative towards partners to whom they
had previously attributed more positive moral features. These findings suggest that
autism might be linked to a lack in taking context information into account.
Whether this may also hold true for the use of other cues, such as emotional facial
expressions, has to be investigated in future studies.
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The relevance of studies using neuroeconomic tasks for the explanation of
everyday functioning in autism has been shown by Edmiston et al. (2015). They
linked altered engagement of neural structures during a PD to playground behaviour
of autistic children. Both ASD and healthy subjects did not differ in the ratios of
cooperative and defective responses when they played the PD with a child they had
previously met during a naturalistic peer interaction playground paradigm.
However, the engagement of a social salience network including brain regions such
as the insula, the temporoparietal junction and the caudate was attenuated in ASD
children, particularly during defection of a human partner. Beyond these alterations
specific for social interaction, altered neural activations, particularly in the insula,
were observed during defection in the PD when subjects interacted with both a
human partner and a computer during a nonsocial control condition. Across groups,
both the engagement of the insula as well as the temporoparietal junction during
defection by a human partner was linked to behaviour and stress responsivity
during the playground paradigm. These findings suggest that the identification of
altered neural activations during standardized economic tasks actually contributes
to a deeper understanding of dysfunctional behaviour in naturalistic social
interactions.

16.3 Summary

As Carter (2012) stated, ‘it is unlikely that there will be neuroeconomic disorders’.
Nevertheless, the limited number of studies that applied economic exchange games
in clinical research to date paints a promising picture of these approaches as a
toolbox for the investigation of alterations in social functioning in mental disorders.
So far, findings can be summarized in that exchange games are suited to uncover
alterations in social interaction behaviour together with its neuronal correlates.
Beyond that, these approaches enable the investigation of specific social cognitive
functions as emotion recognition or Theory of Mind embedded in an ecologically
valid context: single processes are analyzed as components within a broader
functional network of diverse cognitive and social cognitive processes that influ-
ence each other with the final goal to successfully cope with social relationships.
These processes have to be continuously adjusted during the interaction depending
on the partner’s action and reaction. This becomes particularly important if eco-
nomic tasks are not realized as one-shot games, but require a repeated interaction
with the same partner over multiple rounds. Further, studies have to address the
involved cognitive and social cognitive processes in more detail. Thereby,
exchange games with virtual partners and a controlled variation of single modu-
lating factors within a carefully chosen experimental design might provide a useful
tool to get further insight into the underlying mechanisms and the identification of
the impairment linked to a specific function and its relevance for a specific mental
disorder. However, due to the still very small number of empirical studies, it is too
early to assess whether the theoretical frameworks and experimental approaches
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will contribute to the understanding of the causes underlying mental disorders. This
holds true especially since—from a methodological point of view—the existing
studies are rather heterogeneous in regard to, e.g. sample sizes, concomitant psy-
chopharmacological treatments, different comorbidities and the control of poten-
tially modulating factors, such as socioeconomic status and cognitive impairments.
All these factors may be of particular relevance when investigating impairments of
social interactions in mental disorders (see Fig. 16.1) and add to heterogeneity of
findings that goes beyond that of the specific realization of exchange games with its
consequences for the related cognitive functions.

It seems worth summarizing some aspects that might improve future research
with economic exchange games in mental disorders. First of all, one of the main
advantages of this scientific approach is that it provides testable quantitative
models. None of the studies in clinical research so far have made the attempt to use
this strength to prove theoretical assumptions about dysfunctions in specific
domains of interaction behaviour. Closely connected to this is the lack of studies
that use quantitative parameters of these models to actually link them to altered
behavioural correlates and neurobiological systems. In general, the majority of
studies strongly relied on the measurement of overt behaviour and did not apply
neuroscientific methods. Thus, studies that aim to characterize the alterations in

Fig. 16.1 Factors contributing to heterogeneity in investigations of social decision-making in
clinical samples

326 S. Lis and P. Kirsch



mental disorders by using these strengths of neuroeconomic approaches are
strongly needed.

Beyond that, exchange games aim towards measuring interaction behaviour.
However, social interaction is defined as a dynamic sequence of social actions
between individuals or groups. These actions are continuously adjusted according
to the perceived past and anticipated future behaviour of the interaction partner.
This implies that an analysis of interaction behaviour requires the analysis of
interdependencies of social actions between partners. Yet, not all of the studies that
claim to apply exchange games actually take these interdependencies into account,
in that they do not provide feedback about the partner’s behaviour or focus more on
general performance than on the adaptation to the partner’s behaviour. This might
affect findings of alterations in mental disorders since taking the second person’s
perspective into account seems to be essential for the detection of alterations in
social cognitive processes. Furthermore, only few studies measured interactions
between real partners. One might argue that virtual partners allow for an experi-
mental control of the partner’s behaviour and are, thereby, the basis to gain insight
into the relevance of specific social cues or behavioural pattern for the development
of an interaction. We fully agree with this argumentation, since—particularly in
clinical samples—the patients’ behaviour might lead to specific interactional pat-
terns that prevent the analysis of factors that modulate interactions and might
constitute promising target behaviours for therapeutic interventions. Nevertheless,
the programming of virtual partners requires a precise knowledge in regard to
realistic interaction behaviours to allow for plausible modelling and experimental
manipulation of behaviour of virtual partners. To achieve this goal, we need a close
orchestration between the different sub-disciplines combined in the field of neu-
roeconomy to improve approaches in clinical research based upon the knowledge of
healthy interaction behaviour.

Finally, it has to be mentioned that clinical samples are often characterized by
dysfunctions in quite basal cognitive processes that might affect basal processes of
perception and action, but also more complex functions such as working memory or
attention. The separation of alterations genuinely linked to social cognition from
those in other domains of cognitive functioning constitutes a particular challenge in
the use of approaches from neuroeconomy in clinical research. So far, studies that
apply appropriate nonsocial control condition constitute the minority.

Although we have to deal with a variety of problems in the use of neuroeconomic
approaches in clinical research, a growing number of studies add to our under-
standing of the important domain of social functioning in mental disorders. In the
past, the main sources of information about social interaction behaviour in clinical
samples have been self- and observer-based questionnaires that provide information
on how interaction behaviours are subjectively perceived. Neuroeconomic approa-
ches add objective behavioural and neurobiological descriptions of the interaction
behaviour itself and thus allow a new perspective in the investigation of interaction
problems in mental disorders.
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Chapter 17
Consumer Neuroscience
and Neuromarketing

Bernd Weber

Abstract Consumer choices represent one of the most abundant decisions people
make. Within the field of neuroeconomics a focus has developed investigating the
behaviour of consumers at the interface of psychology, marketing and neuro-
science. While in the earlier years mostly the underlying computational neurobio-
logical processes of simple, value-based consumer choices have been increasingly
understood, more recently applied questions have received increased attention. Is it
possible to derive additional information on consumers’ preferences by integrating
neurophysiological data in addition to classical market research to increase its
predictive value for real market behaviour? What are the most promising neuro-
physiological tools enabling new insights in consumer behaviour and choices? This
chapter tries to illustrate this broad spectrum of consumer neuroscience, from
understanding to prediction of behaviour.

17.1 Introduction

The investigation of human decision processes as a multidisciplinary approach
between fields like economics, psychology and neuroscience has over recent years
extended its agenda to the study of consumer decisions. The focus on this important
domain of individual decisions has gained a lot of attention by media and com-
mercial companies, being it justified or certainly in many ways also hyped. Mainly
driven by the scientific community, the field has somewhat parted into a com-
mercial focus with specific market research questions, which is usually termed
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neuromarketing, and a more research-driven agenda, consumer neuroscience
(Hubert 2010; Plassmann et al. 2010).

Many different motives are involved when investigating consumer decisions.
The motivation of marketers is mainly driven by the hopes to have a new tool at
their hands which will provide new—and hopefully more cost-effective—insights
into the needs and preferences of consumers. More classical tools of market
research, e.g. focus groups, questionnaires or simulated choices and market tests all
have their disadvantages (and advantages), which explains the need of marketers to
look for new methods and insights (Ariely and Berns 2010).

On the other hand also policy makers show a growing interest into the mecha-
nisms driving human (consumer) decisions, incorporating models and theories from
different disciplines. Initiatives like Mindspace (http://www.instituteforgovernment.
org.uk) try to inform policy makers based on the understanding of individual decision
processes about possible effects and effectiveness of interventions and regulations.

One of the strongest motivations of academic consumer researchers to get
involved in neuroscience is the understanding that models based on biology-free
assumptions may not be as useful as previously thought. Most models in social
sciences, i.e. also in economics and marketing, are ignoring insights about the
black-box brain or biology per se. While it may seem intuitive to assume that
knowledge about biological processes is useful to inform behavioural researchers,
there are strong notions against this assumption (Gul and Pesendorfer 2008), but
also strong support with even special issues in renowned marketing journals (Shiv
and Yoon 2012).

Within this chapter I want to highlight three major topics for which the appli-
cation of neuroscientific tools and insights may be useful for investigating con-
sumer behaviour. The first topic is the growing understanding of valuation
processes in the brain. How does the brain assign values to specific choice options
and how are they integrated into actual choices. Second, it is of utmost importance
to understand individual differences, i.e. heterogeneity in choices between (and
within) consumers to be able to better model and predict their behaviour and
reactions to interventions. This leads to the third issue I want to tackle in this
chapter, i.e. the use of neuroscientific tools for the prediction of choices and
behavioural changes.

I want to conclude with an outlook of how the two fields, i.e. neuroscience and
behavioural consumer research may establish an even stronger cooperations in the
future.

17.2 Neuroscience of Valuation and Decision Biases

To perform a consumption decision, values to each choice option of the menu have
to be assigned and compared. Over recent years our knowledge about how the brain
performs these processes has grown tremendously (Rangel et al. 2008; Rangel and
Hare 2010; Bartra et al. 2013).
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In one of the earliest studies in the field of consumer neuroscience, Brian
Knutson and colleagues had subjects perform simple purchase decisions of items in
a functional MRI environment (Knutson et al. 2007). They observed that during the
time of viewing the product, activity in the nucleus accumbens (NAcc) was posi-
tively correlated with the product preference. Activation in the medial prefrontal
cortex (mPFC) was positively correlated with the price-differential, i.e. the net value
of the product during price presentation. During the actual choice, bilateral anterior
insula activity was negatively correlated with choice, while ventromedial prefrontal
activity (vmPFC) was positively correlated with the decision to buy the product.

A variety of follow-up studies have used this framework to better understand
valuation processes in the brain. It is a very consistent finding that the choice value
of an option is coded in the vMPFC (Plassmann et al. 2007; Chib et al. 2009;
Rangel and Hare 2010; Fehr and Rangel 2011).

Very interesting studies building on valuation processes have shown how
willpower or self-control can modulate the choice value presented in the vmPFC.
Todd Hare and colleagues had dieters perform choices between healthy and
unhealthy food items in an MRI scanner. Subjects with high as well as low
self-control abilities were investigated. The authors again observed a goal-value
signal of the respective products in the vmPFC which was down regulated if
subjects were able to successfully exert self-control by activity in the dorsolateral
prefrontal cortex (dlPFC). Similar results have been observed in a more recent study
by Hutcherson et al. (2012) showing the effect of cognitive regulation strategies on
value signals in the vmPFC and dlPFC during food choice.

A fascinating phenomenon in consumer behaviour is the effect of external cues
on consumption experience and behaviour, nicely termed marketing placebo effects
by Shiv and colleagues (Shiv et al. 2005). The beliefs of consumers about aspects of
a product like quality, prices, brands or packaging can influence the perception of
the product itself, even above and beyond the pure physical consumption (Ariely
and Norton 2009). Expectancies in the consumers mind about the consumption of
products may even influence the efficacy of medical products (Waber et al. 2008).
In this study, Waber and colleagues presented subjects with differently priced
placebo analgesic pills and could show that the placebo which was given at a higher
price had a stronger effect on pain reduction than lower priced placebos. The
application of neuroscientific methods now allows not only to describe this effect
but to actually show the neural mechanisms underlying these placebo effects and to
discern which processes in the brain are actually influenced by these different
placebos (Atlas and Wager 2012; Geuter et al. 2012; Wager and Atlas 2013).

In a study performing wine-tasting in an fMRI environment, Plassmann and
colleagues showed that price information can influence the hedonic experience of
wines (Plassmann et al. 2008). The authors presented the same wines at different
prices via a pumping system to the subjects in the scanner. The identical wine led to
higher activation in the orbitofrontal cortex and increased taste-pleasantness ratings
when presented at a higher price. The high price, probably perceived as a quality
signal, actually changed the perception of the same physical properties during taste.
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Other kinds of external cues have also been shown to influence neural processes
underlying valuations of products. Linder and colleagues performed a study on
organic food labelling and could show that organic labelling, in comparison to
conventional food, led to an increase in willingness to pay for food items accom-
panied by increased activity in valuation regions, i.e. the NAcc and the dlPFC
(Linder et al. 2010).

All of these studies show that the understanding of human valuation processes
leads to an increased knowledge about consumer behaviour. Beyond the effects on
choices and ratings, neuroscience methods allow to observe the processes which are
actually influenced during marketing actions. This may lead to different models and
predictions about consumer behaviour.

One nice example is a study by Wadhwa et al. (2008). They investigated the
effect of food sampling on subsequent consumer behaviour. They hypothesized that
increasing reward-related activity (and therefore motivation-related dopamine
activity) by having subjects sample high-valued food items should increase the
consumption of other products. This was actually the case. Subjects who received
samples with high incentive value (like a flavoured beverage) not only consumed
more of other drinks (like Pepsi) but even unrelated but rewarding activities, like a
massage or chocolate.

17.3 Understanding Heterogeneity of Subjects

Consumers differ in their needs and preferences. They do not only differ between
individuals but also between different time points within themselves. Understanding
the sources of these inter- as well as intraindividual differences is highly relevant for
consumer researchers. Marketers have traditionally tried to address these issues by
population segmentation based on classic demographic data, such as income,
education, geographic location, sex, etc. (Keller 1993). More recent approaches
include attitudes of consumers towards brands or products (Churchill Jr and
Iacobucci 2009). What these models are missing are the individual heterogeneity in
the decision process itself or the underlying biology, variables that today are in the
focus of neuroscience (Hariri 2009) and which might help to improve consumer
segmentation (Yoon et al. 2012).

People differ with respect to their underlying biology which influences their
personality and behaviour (Benjamin et al. 2008). In the domain of decision-making
it has for example been shown that variations in the dopamine-related gene COMT
influence the ability of subjects to adapt to changing environments in a
reward-learning task or their susceptibility to confirmation biases (Krugel et al.
2009; Doll et al. 2011). It is especially important but beyond the scope of this
chapter to note that these genetic variations do not deterministically lead to dif-
ferences in behaviour, but that the environment has a strong impact on the effects of
the genetic variations (Caspi and Moffitt 2006).
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Recent developments in statistical analyses of functional MRI data have also
shown that the way in which people differ when performing cognitive tasks can be
visualized and used to classify people into distinct groups (Poldrack et al. 2009).

Venkatraman et al. (2012) have applied this idea to the domain of brand man-
agement. They propose a framework for a neural market segmentation which goes
beyond classical market research approaches and which accounts for additional
heterogeneity of consumers, invisible to classical measures. The authors propose to
increase the differentiation of consumers not only based on their behaviour or
questionnaire data but to integrate neural data. They assume that consumers
showing identical observable behaviour might show differences in underlying
neural processes. This heterogeneity could be used to further sub segment
consumers.

Intraindividual differences, e.g. related to stress, hormonal or vigilance levels are
also of interest to consumer research. In a classical study, Ariely and Loewenstein
(2006) investigated the effect of sexual arousal on different decision-making and
judgment tasks. When being sexually aroused the male college students exhibited
higher willingness to engage in risky or morally questionable behaviour as com-
pared to a non-aroused state. Stress effects on decision-making have also gained a
lot of focus in recent years (Starcke and Brand 2012). Porcelli and Delgado (2009)
showed for example that people under stress showed a stronger reflection effect, i.e.
an increase of risk taking for financial decisions in the loss domain and a decrease in
the gain domain.

Hunger also strongly influences our decision-making. Mehta and colleagues
examined neural responses to food stimuli in a satiated and hungry state. They
observed that reactions in valuation regions of the brain to food stimuli in a satiated
state were significantly reduced and that the amount of reduction predicted food
choice in a buffet after the experiment (Mehta et al. 2012). The effect of hunger
does not only hold for acute choices. Read and van Leeuwen showed that hungry
people preferred unhealthy over healthy food products significantly even when
making advance choices, i.e. choices that would be implemented in a week from the
decision itself (Read and Van Leeuwen 1998).

Taken together, inter- as well as intraindividual heterogeneity and its biological
foundations are very important to understand consumer decision-making. The
combination of different approaches and methods, i.e. hormonal measures, genetics
and neuroimaging, will help to further clarify our understanding of this
heterogeneity.

17.4 Prediction of Choice and Behavioural Change

Beyond the improvement of understanding consumer behaviour, the prediction of
choices and changes in behaviour are important goals in consumer research. In the
above mentioned study of Knutson and colleagues, the authors tried to examine the
additional value of neural measures to predict actual choices of the subjects
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(Knutson et al. 2007). In this first attempt they showed that adding neural measures
to a logistic regression including self-reported preferences and net values of
products did actually increase the predictive power of the model beyond the
self-report measures. Although the improvement of the model by adding functional
MRI data was only marginal it did show that there may be an application of fMRI in
predicting choices of consumers [and later reanalysis of the data did actually
improve its predictive value (Grosenick et al. 2008)]. Tusche and colleagues used a
multivariate classifier approach on fMRI data to show that preferences even for
unattended stimuli could be detected in brain activation significantly above chance
(Tusche et al. 2010). Functional MRI classifiers are algorithms which are trained to
distinguish different patterns of neural activity related to different cognitive states.
These classifiers can then be used to analyse unknown fMRI data and “read-out”
the cognitive states the participants are in. They presented pictures of cars to
subjects in the scanner and tried to predict later (hypothetical) choices on prefer-
ences for the cars based, on neural activity during the picture presentation. The
regions which provided information for the classifier were again the mPFC and the
insular cortex, consistent with previous findings. Levy and colleagues used func-
tional MRI activity in the NAcc and mPFC during the presentation of products
without the need to perform any choice to predict later binary choices between the
products (Levy et al. 2011).

One study by Berns and Moore took this approach even one step further and
tried to predict real market data based on activation levels in a sample of subjects. In
a first study Berns and colleagues showed that activity in the NAcc and OFC while
subjects listened to songs in an MRI scanner, correlated with individual preferences
for the songs (Berns et al. 2010). In a follow-up study, the authors presented data
showing that activity in these regions actually correlated to the number of albums
sold in the US market through 2010 (Berns and Moore 2012). These results very
strongly suggest the possible use of fMRI data even in smaller samples for pre-
diction of real market data. But certainly replications also in other domains are
necessary.

Besides the ability to predict consumer choices, the effects of market campaigns
on the behaviour of consumers are another very important topic. A line of research
using health campaigns investigated the use of functional MRI data to predict the
individual effectiveness of the advertisements on the actual behavioural change of
subjects. In a first study using ads from a health campaign on sunscreen use, Falk
and colleagues presented ads for sunblocker use to subjects (Falk et al. 2010). The
authors observed that activity in the mPFC while watching the ads explained 23 %
of the variance in actual sunscreen use over the next week beyond the variance
explained by self-reported attitudes and intentions. In a similar study, using
smoking ads, the authors showed that again activity in the mPFC while viewing
smoking-cessation ads doubled the explained variance in levels of carbon monoxide
as a measure for recent smoking compared to self-stated attitudes and intentions
(Falk et al. 2011).
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17.5 Outlook

In the present chapter I wanted to show that there is growing evidence suggesting
the additional value of functional MRI data (or other neuroscience methods) in
understanding and predicting consumer behaviour. While certainly more studies are
needed, especially relating to real market data, there is little doubt that the com-
bination of neuroscience, psychology and economics in consumer research has
already proven its usefulness and will become more established in the field of
consumer science. One has to be aware that the knowledge created in this research
should not only be used by market researchers and companies but to inform policy
makers to build an environment that helps consumers to perform the choices that
best fit to their needs and preferences.
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Part VII
Neuroscience Methods in Neuroeconomics



Chapter 18
Skin Conductance Measures
in Neuroeconomic Research

Dominik R. Bach

Abstract Skin conductance responses (SCR) are an established component of the
psychological methods toolkit, and increasingly popular in neuroeconomics. This
chapter discusses how SCR are generated by the sympathetic nervous system, the
underlying central processes, and provides practical guidelines for SCR research.
These guidelines are based on the existing methodological literature and recom-
mendations by the Society for Psychophysiological Research. Analysis strategies
for SCR are presented in the light of contemporary, model-based approaches that
yield optimal statistical power to make inference on central states. The chapter then
gives an overview over applications of SCR in neuroeconomics and outlines current
research directions. Because emotional, cognitive, and motor processes can all elicit
SCR, interpretation in economic experiments is sometimes challenging. It is
therefore recommended to experimentally control possible cognitive and motor
confounds. Finally, it would be useful to complement SCR with other peripheral
measures of sympathetic/parasympathetic activity, in particular heart period and
pupil size.

18.1 Background

Sweat glands primarily serve thermoregulation. However, as many people have
experienced during exams, sweating in some parts of the body increases under
particular states of affective or cognitive arousal. This has been termed ‘emotional
sweating’ and occurs especially in palmar, plantar, facial, genital and axillary
regions (Boucsein 2012). Palms and soles have received most scientific interest, as
they are easy to access. Across the body, sweat glands are innervated by sympa-
thetic—and to a very limited extent, parasympathetic—nerve fibres. From their end
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terminals, acetylcholine is released as transmitter and diffuses locally to reach the
sweat glands. These nerves are termed sudomotor as they drive the sweat glands,
and are orchestrated by the hypothalamus, which thereby controls thermoregula-
tion, in line with a general function in maintaining homeostasis. For control of
emotional sweating in particular, the hypothalamus is an output relay under control
of higher subcortical and cortical areas (Boucsein 2012; Critchley 2002).

Changes in sweat expulsion can be easily measured by recording the conduc-
tance of the skin. In a nutshell, more sweat means more electrolytes which results in
lower resistance. Commonly, conductance is reported, i.e. the reciprocal of resis-
tance. Different indicators of emotional sweating have been developed; two are
widely used. One is the amplitude of short, phasic conductance increases with 1-2 s
latency to an event, and 30–60 s duration; these are usually termed event-related or
evoked skin conductance responses (SCR). SCR are regarded as indicators of
event-related arousal. When SCR occur spontaneously in the absence of external
events, they are called spontaneous fluctuations (SF) or non-specific SCR (NS.
SCR), and their number per time unit (nSF) is a common measure of tonic arousal
(Boucsein 2012). SCR and SF have a roughly similar shape (see Fig. 18.1).1

Phasic SCR are elicited by a wide range of stimuli, including pain, emotionally
arousing (positive and negative) stimuli, events requiring cognitive resources, or
motor actions. Equally, SF is observed in various situations, including anticatory
anxiety and mental load. The reader is referred to Boucsein (2012) for an in-depth
review. Thus, there is no specific cognitive process causing SCR.

One may relate the amplitude of event-related SCR, or the number of SF, to a
state of the sudomotor (sympathetic) nervous system, which we have termed
(phasic or tonic) ‘sympathetic arousal’ (Bach and Friston 2013). It is currently not
precisely known whether sympathetic arousal is globally regulated, or whether
arousal is specific to sympathetic subsystems such as the sudomotor system.2

Sympathetic arousal is a descriptive but useful construct: it relates more directly to
psychological processes that elicit it than the observed SCR themselves. This is
because the latter are also influenced by a number of peripheral factors that induce
measurement noise. Contemporary model-based analysis methods seek to estimate
sympathetic arousal from observed data, and relate these estimates to experimental
manipulations, as reviewed in Bach and Friston (2013). In the field of behavioural
economics, research on what elicits sympathetic arousal is ongoing, and is reviewed
in the final part of this chapter.

1Further measures of tonic arousal include the tonic skin conductance level (SCL) and area under
the curve (AUC) which I will not discuss in this chapter—interested readers are referred to (Bach
et al. 2010c; Boucsein 2012).
2The fact that SCR indices can dissociate from heart rate might indicate that there is no global
sympathetic arousal (Boucsein 2012); but the heart rate is under control of the parasympathetic
system as well.
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18.2 Methodology

The methodology of acquiring SCR is fairly standard nowadays; interested readers
are referred to Boucsein (2012) for technical details and recent developments, and
to Boucsein et al. (2012) for current recommendations by the Society for
Psychophysiological Research (SPR). Exosomatic DC recording is the most

Fig. 18.1 a Shape of a typical skin conductance response after band-pass filtering. This canonical
shape was derived from 1278 phasic SCR in 64 individuals (Bach et al. 2010b). b Example for a
skin conductance time series. This is a 60 s data segment from an experiment involving public
speaking anticipation (Bach and Erdmann 2007). c From the observed skin conductance time
series, the (unobservable) sudomotor nerve activity can be estimated. The example here used a
model for spontaneous fluctuations (SF), which specifies that sudomotor activity occurs in a finite
number of compact bursts. One can see that the ensuing sudomotor nerve time series has a higher
temporal resolution: for example, the first bump in the skin conductance time series is likely to be
caused by two subsequent bursts of sudomotor firing. Tonic sympathetic arousal, the underlying
unobservable construct, can now be quantified as the number of sudomotor bursts per time unit
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commonly used method in the field. A constant voltage is applied to the skin, and
the ensuing direct current (DC) measured.3 Resistance (R), conductance (G),
voltage (V) and current (I) are related by Ohm’s law:

I ¼ V
R
¼ V � G

Hence, when applying a constant voltage to the skin—typically between 0.5 and
3 V, a change in resistance/conductance leads to a change in the measured DC.
Most measurement devices record voltage, such that a coupler is used to translate
current into voltage—typically nowadays by a differential amplifier. From the
recorded voltage, the underlying skin conductance can be inferred. The relationship
between conductance and output voltage is linear in most couplers unless one uses
resistive electrodes—for example in MRI environments—such that the series
resistance RS has to be taken into account. Also it is important to note if there exists
an offset voltage (for example, for optical transduction in MRI environment). The
transfer function—the relation between measured voltage and underlying skin
conductance—is given by

G ¼ 1
c

V�offset� R

Here, c is a transfer constant of the coupler that determines the factor by which
the measured conductance is multiplied by the device to yield the output voltage.
When there is no series resistor and no offset, this collapses to

G ¼ V
c

If the transfer function is linear (i.e. in the absence of series resistors), it is
possible to analyse the output data of the coupler without knowledge of the transfer
function, and report results in arbitrary units. However, it is good practice to report
results in conductance units and this is mandatory when absolute cutoff values are
used (for example for counting nSF). Sometimes, the coupler sensitivity is adjusted
to individual SCL, such that each individual might have a different transfer
function.

Palm and sole possess the highest density of sweat glands responding to
non-thermoregulatory central influences, with no difference in SCR shape (Bach
et al. 2010b). Typical measurement sites are thenar/hypothenar, or medial/distal
phalanges of two different fingers—distal phalanges show higher SCR (Boucsein

3This is different from the infrequently used methods of endosomatic recording, which measures
the skin potential response (SPR) without applying an external voltage, and from exosomatic
measurements with alternating voltage, measuring alternating current (AC). A further method, not
recommended by the SPR, is to use constant current, measuring voltage.
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2012). If both hands are needed to make responses, or in a magnetic resonance
imaging (MRI) scanner, it might be useful to record from the inner arch of the foot
(Boucsein 2012). According to consensus guidelines, there is no need to pre-treat
the recording sites; in particular, no soap should be used. For theoretical reasons
and out of practical considerations, it is recommended to use Ag/AgCl cup elec-
trodes filled with skin-isotonic gel (usually 0.3–0.5 % NaCl) (Hygge and Hugdahl
1985). There is no recommendation on electrode size; standard electrodes available
from lab equipment providers are 6–10 mm in diameter. In between-subject
designs, it is important to keep electrode type, size, gel and ambient
temperature/humidity constant, as these can influence measurements (Boucsein
2012).

18.3 Data Acquisition and Preprocessing

Traditionally, it was standard to filter analogue data before conversion to a digital
signal, in order to allow low sampling rates and to reduce the dynamic range of
responses. Contemporary acquisition systems with large dynamic range and cheap
memory make this strategy dispensable, and allow for direct A/D-conversion and
storage of raw data. When unfiltered data are A/D-converted, it is important to
choose a sampling frequency generously higher than the signal of interest—to
reduce aliasing of high noise frequencies. The signal of interest is in a frequency
range below 5 Hz, and 100 Hz would be a typical sampling rate. Filters can then be
applied digitally (see below).

After data acquisition, it is useful to visually inspect the time series for artefacts.
In practice, subject motion, loose electrodes, and equipment malfunction often
cause artefacts. In fMRI environments, two additional sources of artefacts are
gradient noise and currents induced by subject motion in the static field. The first
usually has a high frequency and is therefore easier to filter out. Subject motion in
the static field is a more important concern and should be minimized by restricting
subject motion and fixing wires wherever possible. It is current practice to
band-pass filter the data before analysis. A typical low-pass cutoff would be 5 Hz,
to reduce high-frequency noise and allow downsampling to 10 Hz. A typical
high-pass cutoff is 0.015 Hz, in order to reduce slow signal drifts. Model-based
analysis prefers slightly different filters (Bach et al. 2013; Staib et al. 2015).

18.4 Analysis

Traditionally, researchers used paper-and-pencil approaches to measure the
amplitude of SCR peaks in a post-stimulus time-window, or to count SF over a
period of time (Boucsein 2012). This approach makes the assumption that SCR
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occur in a particular post-stimulus window, and that their peak amplitude or number
is at least monotonically related to a psychological process of interest. Early
computerized analysis packages softwares emulated this strategy. Over the last two
decades, more sophisticated methods emerged. A practical motivation was that
developments in cognitive neuroscience often mandated rapid event-related
experimental designs. SCR have a long tail (about 30–60 s) such that they over-
lap in such circumstances (Barry et al. 1993). This has lead to the development of
model-based methods (Alexander et al. 2005; Bach et al. 2009, 2010a, b, c, 2011;
Benedek and Kaernbach 2010a, b; Lim et al. 1997). These methods estimate, by
different algorithms, the underlying sudomotor nerve activity, which offers a higher
temporal resolution and makes peak separation easier. It turned out that causal
models of this sort have a number of more fundamental advantages over traditional
data analysis (Bach and Friston 2013).

In particular, any ‘operational’ definition of dependent measures makes
assumptions. To neuroeconomists, SCR are not interesting by themselves, but
because they relate to central processes. The precise relation between SCR and
central processes is not precisely specified in operational approaches, and
assumptions on this relation may vary from publication to publication. Specifying
these implicit assumptions mathematically in a causal model has two important
consequences: first, it is then possible to empirically test the assumptions. Second,
we can now infer the central process quantitatively by model inversion. This allows
the experimenter to test quantitative relationships of this central process with other
variables—asking, for example, whether outcome variance or entropy better
explains sympathetic arousal.

A major faultline runs between two particular model-based approaches (Bach
and Friston 2013). The first one contains only a mapping from sudomotor nerve
activity to skin conductance (peripheral model). Algorithms using this approach
deterministically compute a time series of sudomotor activity directly from
observed SCR. This sudomotor time series does not directly relate to the experiment
and needs to be further analysed using peak-scoring methods (Alexander et al.
2005; Benedek and Kaernbach 2010a, b). A freely available software representing
this approach is Ledalab. The second approach contains a peripheral model and a
neural model—the latter constraining what sudomotor activity to expect in a given
experiment. Probabilistic algorithms then estimate the most likely parameters of the
neural model, given the data and a sudomotor model (Bach et al. 2009, 2010b,
2011; Bach and Staib 2015). This is similar to standard methods for fMRI analysis
(see Chap. 20). The software PsPM (Psychophysiological Modelling) represents
this approach.

Probabilistic model-based methods offer a further advantage over traditional
peak-scoring methods: higher precision. For example, specifying a neural model of
when to expect SCR, renders estimation of SCR amplitude more precise.
Sympathetic arousal estimates from probabilistic approaches have been shown to
separate different experimental conditions better than peak-scoring (Bach 2014;
Bach et al. 2013; Staib et al. 2015), and also better than deterministic methods, such
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as Ledalab (Bach 2014; Green et al. 2014). In the following, I will refer only to
methods using probabilistic model inversion.

Crucially, probabilistic model inversion is the process of finding the most likely
parameters of a model, given some data and some prior knowledge. The goal of this
procedure is not to precisely explain the observed SCR data using many parameters.
Instead, the method establishes plausible estimates of sympathetic arousal and
ignores variance that is presumably not caused by experimental manipulation.
Therefore, probabilistic model inversion uses, to varying degree, information about
the experimental timing, and plausible prior assumptions about the sudomotor
system. It is therefore important to think about what model to use and what
information to give to the model inversion process. The more information the
model has about known causes of sudomotor nerve responses, the more precise the
estimated sympathetic arousal estimates will be.

Because probabilistic models aim to incorporate as much knowledge as possible
into the model without being biased with respect to research hypotheses, there are
different models for different situations. Phasic sympathetic arousal causes short
firing bursts of the sudomotor nerve (SN). On a practical level, one needs to
distinguish two cases. One is when SN firing occurs with constant latency after a
short (<1 s) stimulus—we have termed this ‘evoked SN responses’, and the ensuing
peripheral responses ‘evoked SCR’. Phasic arousal corresponds to the amplitude of
the SN response and can be estimated in a general linear convolution framework
under the assumption of a constant latency (Bach et al. 2009, 2010b, 2013), much
like in fMRI analysis (see Chap. 20). Another situation is when SN responses are
elicited by experimental events, but their onset is not precisely known and needs to
be estimated, too. Such event-related SN responses can be modelled using nonlinear
methods; we have implemented this in the inversion framework of dynamic causal
modelling (often used to estimate effective connectivity, an altogether different
application) (Bach et al. 2010a; Staib et al. 2015). Tonic sympathetic arousal, on the
other hand, can be quantified as the number of SN responses per time unit.
Estimation of this number has been implemented in the inversion framework of
dynamic causal modelling (Bach et al. 2011), or as a computationally faster
alternative, with a matching pursuit algorithm (Bach and Staib 2015).

18.5 Neuroeconomic Research: The ‘Somatic Marker
Hypothesis’ and Beyond

Traditionally, SCR and SF have been used in the study of emotion and rein-
forcement learning, and in applied and clinical psychology. In the context of
neuroeconomics, one application is therefore to infer emotional influences on
value-based decisions. An important proposal for such research has been the
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‘somatic marker hypothesis’ (SMH). It is discussed here because it has generated a
wave of SCR research in economic decision-making.

The SMH states that decisions are guided by preconscious signals elicited by
each contemplated choice option (Damasio 1994). These signals are conveyed to
the decision-making system by a mechanism that orchestrates particular bodily
states, so called ‘somatic markers’. These somatic markers are perceived by the
decision-making system and preconsciously bias a decision into the right direction
before conscious knowledge on the best strategy is formed. This means, instead of
directly wiring the preconscious signal to the decision-making system, this signal
takes a loop over a somatic state. In rehearsed situations, the anticipation of somatic
markers suffices to bias a decision, such that the somatic markers are not actually
generated. Of the three stages of this model (preconscious appraisal, elicitation of
somatic states, perception of these states influences a decision), the first one is more
or less established. Preconscious appraisal mechanisms are an integral aspect of a
wide range of appraisal theories of emotions (Lazarus 1982, 1984; Scherer et al.
2001); these however usually assume that the preconscious appraisal directly
influences decisions or actions. Also, the second stage—elicitation of somatic states
—is an established finding: emotions have physiological correlates (Coan and Allen
2007), and some have proposed that the subjective experience of emotions is based
on the perception of these body states (James 1884; Reisenzein 1983; Schachter and
Singer 1962). The interesting aspect of the SMH was that the perception of body
states guides value-based decisions, and that this is required for optimal
decision-making.

This proposal was tested in a series of studies using the Iowa Gambling task
(IGT) in which participants repeatedly bet on one of four lotteries (realised as card
decks) and learn, via feedback, the statistics of each card deck, see, e.g. (Bechara
et al. 1996, 1997). Two card decks have a negative expected value, the other two a
positive expected value. As soon as participants can gauge the expected loss and
gain, it would be optimal to mostly bet on the decks with positive outcome,
although some exploration might still be necessary in order to learn more about the
negative decks (Dunn et al. 2006). In studies in which SCR were recorded (Bechara
et al. 1996, 1997), anticipatory SCR during decision and outcome anticipation were
higher on trials on which a deck with negative expected outcome was chosen,
compared to a positive deck. During the course of learning, these increased SCR
were observed when participants started preferring to bet on the positive decks but
before participants verbally reported knowledge of the advantageous strategy
(Bechara et al. 1997). That is, they mostly made advantageous choices and had
increased SCR when making disadvantageous choices, but when asked what they
knew about the task, they did not state different value of the decks, or a coherent
strategy. Patients with ventromedial prefrontal lesions lesions who do not learn to
pick the card decks with positive expected outcome did not show this SCR signal
(Bechara et al. 1996, 1997).

The SMH has received much attention and also criticism (Dunn et al. 2006).
Here I will only discuss whether SCR constitute a somatic marker that is used for
decision-making. Two hypotheses appear relevant: (a) Advantageous decisions in
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the IGT are taken before explicit knowledge is reported; hence there must be
preconscious decision biases. (b) These preconscious biases are conveyed by
somatic states; i.e. somatic states have a causal influence on decisions.

The first point is somewhat unclear in the original studies because people were
not explicitly questioned about the statistics of the four card decks, in order to assess
their conscious knowledge. They were only asked to report anything they had
gathered about the task (Bechara et al. 1997). In further experiments with more
explicit questions, people were actually aware of the statistics in the IGT at the
moment when they started making advantageous decisions (Bowman et al. 2005;
Maia and McClelland 2004). This may mean that preconscious signals are not
required to make optimal decisions in this task. The SMH authors have addressed
these findings by arguing that somatic markers would even guide decision-making
when there was conscious knowledge (Bechara et al. 2005). To substantiate this
assertion, one could investigate whether somatic markers are more closely related to
decisions than explicit knowledge. Indeed, explicit knowledge and elevated SCR
during choice of bad decks in the IGT have been reported (Guillaume et al. 2009).
However, it is not known whether SCR explain variance in the decisions that is
unexplained by declarative knowledge. In summary, as yet there is no clear evidence
that preconscious biases—conveyed via somatic states or otherwise—are used to
guide behaviour in the IGT, over and above an influence of declarative knowledge.

The second question is whether potential preconscious influences are conveyed
via somatic states during deliberation (the ‘body loop’) (Damasio 1994). Of course
it would be highly inefficient if the brain computed values preconsciously, sent a
message to the body, and used sensors to pick up those body states to come to a
deliberate decision; the brain could wire this signal directly to the decision-making
system (Rolls 1999). Indeed, according to the SMH, preconscious signal may also
be conveyed by anticipation of somatic states (the ‘as-if’-loop) (Damasio 1994).
For the body loop, somatic states would have to be generated before a decision is
being made. It turns out that the IGT studies are not ideally suited to determine
whether SCR were generated before or after decisions. The reason is that partici-
pants were instructed to ponder their decisions for at least 15 s and were then
instructed by the experimenter to rapidly indicate their selection (Bechara et al.
1996, 1997) such that it is not known when participants made a decision in their
mind. Hence, SCR could have been elicited before or after a decision. For example,
in a simple Go/NoGo task, incorrect choice are followed by larger SCRs before
feedback is given (Whitney et al. 2007). This appears to reflect post-decision error
monitoring and is not a pre-decision response.

One conclusion that might be drawn from the original IGT study is that the
anticipation of negative monetary outcomes is reflected in larger SCR. However,
there is a twist to the IGT: in the original version, the two lotteries with negative
mean outcomes are associated with a larger outcome variance than the two lotteries
with positive expected outcome. In another replication study, this confound was
reversed: here, the two positive lotteries were associated with the larger outcome
variance. In this study, larger SCR were observed in responses to choosing the
positive lotteries (Tomb et al. 2002). Taking this and the initial study together, this
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suggests that sympathetic arousal might be associated with variance of the pre-
dictive distribution rather than with its mean—variance is a measure of the pre-
dictive uncertainty (see Chap. 6 in this book). However, a study that independently
varied mean and variance of outcome distributions has reported somewhat incon-
clusive results on this question (Yen et al. 2012).

18.6 Current Use of SCR in Neuroeconomic Research,
and Framework for Future Studies

Phasic SCR are currently used in a plethora of neuroeconomic investigations; very
few studies report tonic SF. There is still research on the implications of the somatic
marker hypothesis (Botvinick and Rosen 2009; Crone and van der Molen 2007;
Hinson et al. 2006; Miu et al. 2008; Visagan et al. 2012; Wagar and Dixon 2006).
Many studies examine affective influences on decision-making, for example
influences of empathy (Hein et al. 2011), negative emotional arousal (Sarlo et al.
2012; Sokol-Hessner et al. 2009; Van’t Wout et al. 2006), anxiety (Engelmann et al.
2015), and stress (Heereman and Walla 2011). Other researchers were interested in
the opposite relation: the effect of decision outcomes on affective state (Bediou et al.
2011). Some investigators have used SCR to index the success of aversive learning
(Delgado et al. 2011), to assess the integration of positive and negative outcomes
(Talmi et al. 2009), or to measure cognitive effort (Salvia et al. 2012).

Other research has elucidated economic variables that impact on SCR. SCR
amplitude covaries with expected outcome (Studer and Clark 2011; Studer et al.
2016; Wu et al. 2016), with outcome undertainty in various forms of gambles (de
Berker et al. 2016; Tomb et al. 2002), and with counterfactual reasoning after
decision outcomes (Wu et al. 2016).

The richness of these different approaches reflects the relatively unspecific nature
of phasic sympathetic arousal and points to a methodological difficulty: sympathetic
arousal measures can only be interpreted if there is experimental control over its
antecedents, and competing antecedents can be kept constant. For example, if
phasic sympathetic arousal is taken to index emotional processes, then cognitive
effort, vigour of motor responses, and other sources of sympathetic arousal need to
be controlled. Importantly, economic decisions can involve different levels of
cognitive effort as a possible confound—depending, for example on the number of
choice possibilities, or the difficulty of computations to determine statistics of
outcome distributions.

An interesting issue is the specificity of body states. One corollary of the SMH is
that bodily states can convey highly specific economic signals. No such specificity has
yet been found. However, this idea relates to the early proposal of emotion specificity
in bodily signals, discussed at least since James (1884). The combination of con-
temporary multivariate techniques has brought some fresh air into this research field
(Stephens et al. 2010). In order to better identify pattern of bodily states in economic
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decision-making paradigms, it would be useful to acquire other indicators of auto-
nomic arousal togetherwith SCR.Recently, model-based analysismethods have been
developed for event-related changes in heart period (Castegnetti et al. 2016; Paulus
et al. 2016), respiration (Bach et al., 2016), and in pupil size (Korn and Bach 2016).
These approaches are simple to implement, and this may facilitate the use of such
measures in neuroeconomic research

To summarise, it is desirable to experimentally constrain possible sources of
sympathetic arousal such as cognitive effort and motor responses, in neuroeconomic
research. As measure of sympathetic arousal, SCR may be complemented by other
peripheral measures of autonomic nervous activity such as heart period or pupil
size. This could also lead to a better understanding of the pattern of bodily states
induced by economic variables. Nevertheless, SCR, and the underlying sympathetic
arousal, can be a very useful measure in decision-making experiments, and it is not
surprising that it is currently as popular as ever.
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Chapter 19
Electroencephalography: Current Trends
and Future Directions

Stefan Debener, Cornelia Kranczioch and Maarten De Vos

Abstract Since Hans Berger, a German psychiatrist, discovered in 1929 at Jena
that brain activity can be recorded from the human scalp noninvasively, the elec-
troencephalogram (EEG) has fascinated generations of neuroscientists. How com-
plex mental functions such as attention, memory, language, or decision-making are
implemented in the brain are fundamental questions in cognitive neuroscience, and
the EEG technology provides information, which may be crucial in answering those
questions. Indeed, understanding the neural underpinnings of cognitive functions
would help developing effective treatments for patients suffering from various brain
dysfunctions. We argue here that, among maybe a dozen or so technologies, the
scalp-recorded EEG among the most informative ones when it comes to under-
standing the mind–brain relationship. Moreover, next generation EEG technology is
unobtrusive, smartphone operated, and useable outside of the laboratory environ-
ment. This helps to advance applied fields such as brain–computer interfaces,
neuroergonomics, and neurorehabilitation.
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19.1 Introduction

Modern EEG technology has unique advantages and, for many applications, these
advantages put EEG into the driver’s seat when compared to all other brain activity
monitoring technologies. EEG signals measure brain activity with millisecond
resolution, and EEG technology is potentially mobile. We speculate that, in the near
future, these advantages will make it possible to develop truly intelligent assistive
technologies. Future EEG technology will make it possible to make use of implicit
information derived from brain activity monitoring in various work and clinical
settings. Moreover, based on EEG it will also be possible to modify ones’ brain
activity patterns and aim for better cognitive performance and emotion regulation,
either to compensate for existing dysfunctions, or to further enhance normal cog-
nitive skills.

This chapter provides an introductory overview of acquiring EEG signals. This
will be followed by an introduction to event-related potentials (ERP), which has
been the gold standard for the study of cognitive functions via EEG. However,
scientists also discovered that event-related brain oscillations provide information
that is neglected by the ERP approach. Access to this type of information requires a
different analysis approaches. How brain oscillations may serve human cognition is
currently an important field of neuroscience research. We will illustrate the rele-
vance of considering both types of information, ERPs and oscillations, by dis-
cussing the attentional blink (AB) phenomenon, a short moment of visual
inattention. A person is usually not aware of those brief moments of inattention, but
lapses of attention can have dramatic, life-changing consequences, for instance
while driving a car. Following this example, future developments and applications
of the EEG technology will be presented. Specifically we argue that further
miniaturization, combined with a real-time EEG analysis approach, may enable us
to monitor brain activity, and thus the neural correlates of mental processes, outside
of the lab and in real-life situations. This development will lead to new assistive
technologies, for instance for achieving vigilance and cognitive performance
monitoring. Our own first steps toward those mobile EEG applications will be
summarized, and the requirements toward achieving those goals will be defined.

19.2 EEG Acquisition and Recording Environment

EEG signals are typically recorded with electrodes attached to the scalp. These
electrodes are connected to a shoebox-sized biopotential amplifier controlled by a
computer, which also stores the data for subsequent analysis. The recorded signals
reflect voltage fluctuations over time, with amplitudes in the microvolt range, and
frequencies in the range of near DC to approximately 80 Hz. It is important to
understand that the recorded signal consists of a mixture of an unknown number of
brain and non-brain sources. The non-brain source contributions are called artifact
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and could be of technical origin (e.g., line noise interference, electrode motion, etc.)
or reflect non-brain electrical activity (e.g., electrical heart beat activity; eye blinks,
etc.). A typical recording consists of the (linear) summation of all instantaneously
active artifact and non-artifact sources. Figure 19.1 shows a typical raw EEG
recording. In addition to artifacts, oscillatory brain activity is evident.
Approximately 10/s posterior alpha oscillations have been related to visual per-
ception, vigilance, and attention (Klimesch 2012) but are difficult to quantify during
the occurrence of artifacts. The simultaneous recording from various scalp sites
(typically ranging between 32 and 128) enables a careful spatial examination of the
data and helps to tease apart the signal of interest (e.g., brain oscillations) from
other contributions. EEG alpha activity is prominent in eyes closed, awake resting
conditions. Alpha activity has a direct relationship to several cognitive processes
(Klimesch 2012), and shows an abnormal spatial pattern in for instance depression
(Debener et al. 2000), to name only one condition that has been linked to this
prominent brain oscillation.

Figure 19.1 inset also shows a typical recording cap, which is needed to hold
electrodes at predefined locations on the scalp. In most lab conditions, a separate
amplifier and several computers are needed for data acquisition and the control of
experimental events (e.g., presentation of sounds or visual events) and the collec-
tion of subject behavior (e.g., button presses to target events). As illustrated, usually
two or more experimental stimulations are presented and the brain activity in
response to those events is analyzed (color-coded time windows). Most
research-EEG recordings are conducted with this type of setup and in a highly
controlled laboratory environment, to allow for constant light, temperature, and
noise conditions. Importantly, subjects are usually required to minimize movement
during recording, as movement of electrodes and/or electrode cables causes massive

Fig. 19.1 Ongoing EEG recording (64 electrodes, 10 s). Large-amplitude deflections refer to eye
blink artifact. Approximately 10/s oscillatory activity is spatially and temporally focused and
reflects brain activity in the EEG alpha (8–13 Hz) frequency range. Colored shaded areas indicate
epochs of interest for event-related analysis, such as ERPs
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interference artifacts and usually renders analysis of the underlying brain activity
next to impossible. All body movements underlying overt behavior are controlled
by muscle activity. The corresponding electrical muscle activity can be measured as
electromyogram (EMG) and propagates to the EEG electrodes, thus posing another
strong source of artifact. For these reasons, most behavioral observations that have
been linked to EEG-recorded brain activity are based on heavily constrained
behaviors such as button presses, not on real-life behavior. As we will show later,
more recent advances in EEG amplifier technology have made it possible to
overcome this important drawback. This is a fundamental development, since all
other currently available noninvasive brain activity and neuroimaging technologies
suffer from the very same limitation—they do not tolerate movement, and thus it is
poorly understood how natural mental processes and behavior relate to brain
activity.

Another practical drawback of the EEG technology is that the application of
electrodes takes time, as gel is applied and skin needs to be prepared to ensure a
stable contact between electrodes surface and skin. Since the upper layer of the skin
is poorly conductive, EEG signal quality can be improved by careful abrasion of the
upper skin layer (by using a cotton web and abrasive paste with a peeling effect).
This lowers electrode impedance and thereby attenuates the influence of electro-
magnetic environmental noise on the resulting EEG recordings. Depending on the
number of electrodes used, this process can easily take between 20 and 90 min.
However, recent developments in amplifier and electrodes design aim at over-
coming the limitations of gel use and skin preparation.

19.3 Event-Related Potentials

Ongoing, or spontaneous brain activity is based on contributions from many brain
areas, and the resulting amplitudes can easily exceed the range of ±100 μV. The
processing of a particular event on the other hand, say an auditory or visual stimulus
as illustrated in Fig. 19.1, contributes much smaller signals to the EEG, which
typically range between 1 and 15 μV. Thus there is a signal-to-noise problem in
analyzing event-related brain activity, and improving the signal-to-noise ratio
(SNR) is the primary aim of most signal processing steps that need to be applied to
recorded EEG data. One way of improving the SNR is by averaging across trials.
By presenting the same event repeatedly (as illustrated in Fig. 19.1), and recording
the exact point in time each event was presented, it is possible to average all EEG
traces or trials (sometimes also called epochs, or segments). The resulting average is
the event-related potential (ERP), a systematic wave consisting of positive and
negative going deflections reflecting neurocognitive processing steps in the brain
time-locked to the stimulus presentation. Figure 19.2 illustrates the averaging
process and the underlying concept, the additive ERP model. As illustrated, the
averaging process on the one hand reveals time-locked brain responses, which are
assumed to take place of every single-trial level. On the other hand, the averaging
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process suppresses all non time-locked activities like the ongoing EEG, and thereby
increases the SNR. In effect, this averaging is necessary to make the ERP visible, or
make it “come out” of the noise.

Trial-averaged ERPs are easy to calculate and very reliable. They provide a rich
set of information about mental processes related to perception, cognition, and
emotion. Indeed, experimental task manipulations often come with specific and
reliable changes in ERP deflections, and the underlying ERP components are very
informative with regard to the processing (and processing stage) differences between
the experimental conditions applied. With this approach it is often possible to tell
whether the difference in performance between two task conditions is due to an early
perceptual processing, subsequent object processing, later decision-making or a
motor output preparation level of processing. Drawing similar inferences from
behavioral observations alone, or from other noninvasive measures of human brain
functions (such as functional magnetic resonance imaging) is typically not possible.
As an example, in Hewig et al. (2011) it was investigated why humans often deviate
from rational choices when making decisions. In this experiment the Ultimatum and
Dictator games were used to examine the role of affect on decision-making. It was
found that the feedback-related negativity, an ERP component related to reinforce-
ment learning, predicts the decision to reject unfair offers in the ultimatum game.
These and further findings led to objective evidence that decision-making is guided
by subjective affective markers (Hewig et al. 2011). It is easy to see the practical
potential of this result: by feeding back brain signals such as the feedback-related
negativity, individuals could be trained to follow rational rather than affective signals
and learn to gain control over implicit decision-making processes.

Fig. 19.2 The additive ERP model assumes that the event-related response is independent from
ongoing brain activity, and that the evoked response is invariant across trials, that is, across
repeated presentation of the same event. Averaging across trials therefore improves the
signal-to-noise ratio, as ongoing activity sums up to near zero (i.e., is “averaged out”), whereas
the evoked response (i.e., the ERP) is preserved, hence across trials it “comes out of noise”
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The downside of the ERP approach however is that it does not capture all
event-related brain activity but rather a glimpse of it. Indeed, the approach has
difficulties disentangling spatiotemporally overlapping processes and thus biases
interpretations toward a simplified view of the brain as a serial information pro-
cessing machinery. ERPs may be inadequate in capturing parallel information
processing, and it is well known from invasive electrophysiological studies that
parallel (and feedback) processing is the rule rather than the exception (for a review
with regard to emotion processing, see for instance Pessoa 2008). All higher order
cognitive processes seem to depend on the temporally fine-tuned, dynamic interplay
of several regionally distinct brain areas. How these areas communicate to each
other to implement cognitive acts is a fundamental question. Complementary to
ERPs, event-related brain oscillations seem better suited in addressing this issue.

One example that illustrates the gain of information that can be achieved by
going beyond the classical ERP approach is a study by Kranczioch et al. (2007) that
investigated neurophysiological correlates of the attentional blink (AB). The AB is
a temporary deficit in visual awareness that can arise when chunks of important
information have to be picked out of a continuous stream of irrelevant information.
In the lab such a situation is created by presenting a stream of pictures at a rate of
about 10 per second. A volunteer is asked to detect or identify two of the pictures.
For example, the stream may consist of black capital letters, and the participant is
asked to identify a single green capital letter presented within the stream and to
detect whether a black X follows the green letter. Typically volunteers easily
identify the green letter, denoted as the first target or T1, while they frequently miss
the subsequently presented black X, denoted as T2. This deficit can be observed in
particular if T2 follows T1 by about 200–500 ms, but it is often absent or greatly
reduced if T2 follows T1 by about 100 ms (cf. Fig. 19.3a).

One interesting aspect of the AB is that it does not occur invariantly. That is, even
if in two runs of the laboratory task the stimulus stream and the two targets are
virtually identical, in the first run a volunteer might detect T2 while in the second she
might miss it. Kranczioch et al. (2007) where interested in whether this difference is
reflected in the P3 ERP component, which is related to attentional resource alloca-
tion. They observed that when T2 was detected it was associated with a larger P3 then
when it was missed. Importantly, the P3 evoked by T1 showed the opposite pattern in
that it was smaller when T2 was missed as compared to when it was detected. This
pattern of results is illustrated in Fig. 19.3b. This finding indicates that the distri-
bution of attentional resources between T1 and T2 relates to whether T2 falls victim
to the AB or not. But what might cause the different distribution of resources?

In their study Kranczioch et al. also investigated studied event-related brain
oscillations, both before and during the appearance and processing of T1 and T2,
asking why in some trials participants detect T2 while in others they miss it. The
most striking difference between trials in which T2 was detected and in which T2
was missed was found in the dynamics of connectivity patterns between electrodes.
Already before the appearance of T1, EEG activity before T2 would be missed was
characterized by a connectivity pattern suggesting a strong focus on processing the
stream of nontargets. In contrast, runs in which T2 would be detected where
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associated with a connectivity pattern compatible with a stronger focus on the task,
that is, inhibiting the nontargets and searching for and processing of the targets
(Fig. 19.3b). These and related findings (e.g., Gross et al. 2004) provide clear
experimental evidence for the idea that whether an AB occurs is related to the state
of the brain an incoming target meets, which in turn depends on the dynamic
interplay of distinct processes and brain areas. This insight was made possible
solely by complementing the classical ERP approach by the idea of event-related
brain dynamics, a concept that will be in the focus of the next section.

Fig. 19.3 a Behavioral pattern in a typical attentional blink (AB) task as compared to a control
task. In the AB task T1 and T2 are task relevant. T2 detection rate is reduced as compared to a
control task in which only T2 is task relevant while T1 can be ignored. When in the AB task T2 is
presented at around 100 ms after T1, T2 detection is frequently found to be less impaired then at
longer intervals. Figure adapted with permission from Kranczioch et al. (2007). b Amplitudes of
the P3 ERPs evoked by T1 and T2 in trials in which T2 was detected (green) and in trials in which
T2 was missed (red). Figure adapted with permission from Kranczioch et al. (2007).
c Spatiotemporal connectivity pattern observed for trials in which T2 was detected (green) and
in which T2 was missed (red). The measure of connectivity is the phase-locking value (PLV).
Trials in which T2 was missed where characterized by a relatively higher PLV at a frequency of
around 10 Hz that started well before the presentation of T1. Trials in which T2 were detected
were characterized by an increase in PLV at a frequency of around 20 Hz, in particular at and
around target presentation. The head plots illustrate the corresponding spatial connectivity patterns
at exemplary time points. Figure adapted with permission from Kranczioch et al. (2007)
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19.4 Event-Related Brain Dynamics

In 2004 Makeig et al. presented the event-related brain dynamics (ERBD) model,
aiming to relate the different measures of event-related EEG analysis to each other
(Makeig et al. 2004). The ERBD model comprises a 3-D signal space (Fig. 19.4).

One axis refers to the change in EEG amplitude an event may cause. It is known
that in some conditions oscillations in response to an event increase in amplitude,
whereas in other conditions they decrease in amplitude. This is usually the case in a
small frequency band. Note that frequency refers to another axis in the ERBD
model. Since changes in EEG amplitude may primarily reflect a change in the
degree of synchrony between neurons, those amplitude changes are known as
event-related synchronization (ERS) and event-related desynchronization (ERD).
Both axes, amplitude change and frequency, ignore the temporal consistency of
these processes across trials. In the frequency domain this is called phase-locking
and can be quantified with a measure called inter-trial coherence (ITC). In the time
domain, this would be called latency consistency (or latency jitter), but the

Fig. 19.4 Event-related brain dynamics model. Event-related brain responses can take any
position within this 3-D volume. The additive ERP, as illustrated in Fig. 19.2, captures the upper
right-hand corner, as it adds power (x-axis) in a very small frequency range (z-axis), and this
is consistent across trials (y-axis). ITC = inter-trial coherence; ERSP = event-related spectral
perturbation; ERS/ERD = event-related synchronization/desynchronization; PPR = partial phase
resetting. Figure adapted from Makeig et al. (2004) with permission from the publisher
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frequency-domain procedure offers the advantage of looking at this measure for
different frequencies independently. ITC spans the third dimension in the ERBD.
To the extend that the additive ERP model as illustrated in Fig. 19.2 applies, the
ERP takes the upper right-hand corner of the ERBD: it adds power to the ongoing
brain activity, is usually limited to the low frequency range, and happens with very
high consistency across trials. It is however also known that the reorganization of
phase in the absence of power changes can contribute to the trial-averaged ERP
(Makeig et al. 2004), which is called partial phase resetting (PPR). While difficult to
prove, PPR has been implicated as a crucial cortical operation for several cognitive
functions. For instance, recent neurocognitive theories of speech processing assume
that PPR of ongoing oscillations in auditory cortex is required to process connected
speech signals.

Another important aspect of the ERBD model is that, in order to detect and study
regionally circumscribed or local brain dynamics with scalp-recorded EEG, it is
necessary to first unmix, or linearly decompose the measured data into its under-
lying source signals. This effort can only by a good guess, or a modeling effort, as
the true source configuration of the measured data is generally unknown.
The ERBD suggested the use of independent component analysis (ICA) to unmix
brain signals from artifacts. ICA also promises to tease apart different brain signals
from each other (Makeig et al. 2004). While all unmixing approaches including
ICA come with theoretical pitfalls and practical difficulties and are far from perfect,
the ICA approach has been found to be particularly helpful in SNR improvement in
the absence of trial averaging (De Vos et al. 2012). That is, the ICA decomposition
is achieved on the continuous, or single-trial data, and thereby enables to study
single-trial brain responses. Single-trial analysis of EEG data is fascinating for at
least two reasons. First, it allows us to relate physiology to mental processes on a
trial-to-trial basis. Since physiological and behavioral measures fluctuate across
trials, as illustrated in the AB above, the trial-by-trial approach provides a means to
study how closely they are coupled to each other. Second, the single-trial analysis
approach enables a (near) real-time access to the brain response. This is a funda-
mental requirement for brain–computer interface and neuro-feedback procedures,
where users get access to their online brain signals to operate a technical device or
learn to modulate their brain signals by means of studying its online feedback.

19.5 Brain–Computer Interfaces

The brain–computer interface (BCI) technology offers a direct communication
pathway between brain activity and a technical device (for an overview, see
REF BOOK Springer). BCIs could be used to restore the loss of voluntary control
over muscles, as in locked-in patients, which can learn to communicate with a BCI.
Probably the most popular BCI application is the EEG P3 matrix speller. The P3 or
P300 signal is a positive going centroparietal deflection typically lasting several
hundred milliseconds and peaking at approximately 300 ms post stimulus onset.
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The P3 can be detected on a single-trial level and is partly under user control.
Task-relevant events (i.e., those events an individual considers important, or those
that have some importance in a particular context) drive the P3 amplitude and
different attentional processes give rise to different subcomponents of the P3
(Debener et al. 2005). A common view is that the P3 reflects the voluntary
deployment of attentional resources (see Polich 2007, for review). Accordingly, in
the BCI framework, this EEG signal can be used to control a device. In the
P3-speller rows and columns of a 6 × 6 matrix of letters are randomly flashed, and
users selectively focus their attention on a particular letter that is to be selected, for
instance by silently counting the number of occurrences this letter is flashed. Using
a machine learning approach it can be decoded from the brain signals which letter a
subject attended to, albeit with less than 100 % accuracy on a single-trial level.

Bringing BCI paradigms to practical application is challenging, however, for a
number of reasons. Among others, further challenges are caused by the practical
limitations inherent in the EEG technology. For instance, dedicated hardware is
required, electrode caps have to be positioned, gel has to be applied and skin
prepared. Another, maybe even more serious challenge is that the SNR is usually
not good enough to operate the P3 speller without averaging over a few trials. That
is, it takes in practice several seconds to spell a single letter with the P3-speller,
making it rather cumbersome to write for instance a full sentence by thought alone.
A further challenge is the paradigm itself and the mental process required to gen-
erate a brain signal that can be detected. In the P3-speller paradigm it is not the
thought of the user, but rather the selective attention to a single letter, that evokes a
detectable brain response. BCI paradigms relying on brain signals evoked by some
events are called reactive BCI (Zander and Kothe 2011). In contrast, active BCIs do
not require a particular external stimulus. Motor imagery BCIs are an example of an
active BCI. Here brain signals related to the imagery of a particular motor act can be
detected and the signal generated used to operate a BCI or a neuro-feedback system.
The corresponding sensorimotor ERD signal can be implemented in the absence of
an external stimulus, hence the name active BCI. Both active and reactive BCIs
however rely on the user to voluntarily generate a brain signal, and this is a
demanding, effortful task. A more practical, highly innovative complementary
approach would be to use brain signals that are generated without explicit user
control to operate a BCI. To name a few, those signals could be evoked by an
automatic orienting response (thereby revealing information about automatic
attention processes), an emotional response (reflecting the emotional involvement
of a user), or an error-related signal (informing about whether a user became aware
of an incorrect behavior). Note that these signals are generated without explicit user
awareness or voluntary contribution, hence the name passive BCI.

It is beyond the scope of this chapter to cover the achievements made in the field
of BCI research and outline the practical limitations of this approach. However, one
important limitation refers to virtually all EEG applications, including BCI. The
recordings have to be done in the absence of gross movements. In other words,
EEG recordings are confined to the laboratory, or rather artificial setups outside of a
laboratory, and participants cannot behave naturally during recording. In the next
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chapter, we summarize our first efforts toward a fully mobile EEG system aiming to
overcome this limitation. With miniaturized hardware a mobile EEG can be build
that is largely tolerant to participant movement. At present only prototypes of such
systems are available, but they already demonstrate that it is possible to develop a
fully mobile BCI system. For the near future this promises cognitive enhancement
assistive technology, achieved by means of a mobile, passive BCI approach.

19.6 Toward a Fully Mobile EEG System

Several years ago, we discovered that the modification and combination of con-
sumer EEG hardware with standard laboratory EEG electrodes and caps enable
creating a very small, lightweight EEG system (Debener et al. 2012). The resulting
amplifier is shown in Fig. 19.5. It has less than half of the size and weight of a
modern smartphone and can be mounted onto an electrode cap. Moreover, because
of the amplifier technology used, electrode preparation is minimal and it thus takes
only very few minutes to set up a 14 channel recording session with our system.

Signal transmission to a nearby computer or smartphone is possible by means of
a wireless protocol. Because of the very low weight and wireless transmission users

Fig. 19.5 A new wireless, fully head-mounted EEG system developed at Oldenburg University,
Germany (Debener et al. 2012). The system allows for truly mobile EEG recordings, data can be
recorded with a smartphone. Note that the cable is used for sound stimulus delivery, not for signal
acquisition
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can freely move around nearly unconstrained during recording. Importantly, the
distance between recording electrodes and amplifier is very short, and all cables are
tightly fixed onto the cap, avoiding movement of cables relative to each other. In
our experience these two measures taken together dramatically reduce the amount
of interference artifact that otherwise heavily corrupts conventional, wired EEG
recordings.

In a first validation study (Debener et al. 2012), we recorded EEG data from 16
participants performing a selective auditory attention task. In one condition data
were recorded indoors, in a seated office scenario. In the other condition, subject
went for a walk outdoors on Oldenburg university campus. Each recording session
lasted approximately 11 min and order was balanced out across subjects. In this
auditory oddball task subjects had to silently count the occurrence of a rare target
tone, which generates a P3 ERP response (e.g., Debener et al. 2005). We asked two
questions: First, is it possible to measure the trial-averaged P3 response while
subjects walk outdoors. Second, is it possible to reliably identify the P3 even on a
single-trial level? Our results revealed clear and reliable P3 ERPs for both indoor
seated and outdoor walking conditions. Interestingly, the outdoor walking P3 ERP
was approximately 30 % smaller in amplitude. Further analyses led us to conclude
that this was mainly due to a larger degree of cognitive distraction in the outdoor
condition. This strongly suggests that we can monitor brain activity meaningfully,
as the degree of cognitive distraction on the primary task (auditory selective
attention) could be quantified. Moreover, using a single-trial analysis approach with
ICA as preprocessing and linear discriminant analysis for the statistical evaluation,
we also found that the P3 response to auditory target events can be reliably iden-
tified above chance level, both in indoor and outdoor conditions. To the best of our
knowledge, this is the first study demonstrating a single-trial EEG analysis of
cognitive potentials during a freely moving outdoor recording condition. In our
most recent protocols, we made use of more advanced wireless amplifier technol-
ogy (www.braintrain.com) and developed screen-printed electrodes, which can be
worn around the ear (Fig. 19.6). We found that unobtrusive, printed electrodes can
give rise to good EEG signal quality (Debener et al. 2015).

The P3 response to single trials is at present probably the most popular brain
signal for steering a BCI. Thus we believe that our mobile EEG studies and the new
sensor technology represent a step forward toward truly mobile BCI systems.
Current technology features smartphone operates signal acquisition (Stopczynski
et al. 2013) and stimulus presentation already (Mathôt et al. 2012). The next steps
will be to close the BCI loop, which requires adding real-time signal processing on
smartphone and the delivery of meaningful feedback signals to the user (imagine an
alertness monitoring device analyzing brain signals for patterns of sleepiness and
sending warning signals when necessary). In any case, the combination of a
miniaturized, wireless head-mounted EEG amplifier with printed electrodes and
smartphone-based signal recording may be a substantial step forward toward a fully
mobile BCI system. Future generations of EEG amplifiers could be made even
smaller and fit behind the ear, like current hearing aids. The remaining challenge
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then is to close the BCI loop by showing that (passive) BCI applications are feasible
in daily-life situations.

19.7 Conclusion

Cognitive neuroscience research relies heavily on noninvasive procedures for the
study of the neural correlates of human cognition and behavior. Unfortunately all
currently established procedures require that human volunteers remain still during
recording and minimize (head and body) movement. Accordingly, the risk of a
cognitive neuroscience relying on “finger movements” (Baumeister et al. 2007) as
representing natural behavior is substantial. How well laboratory results can be
generalized to real-life scenarios should therefore be questioned. We propose here
that recent advances in technology, such as the advent of powerful smartphones,
will allow us to overcome this limitation and explicitly test for the ecological
validity of neurocognitive and neuroeconomic theories. We argue that laboratory
cognitive neuroscience needs to be complemented with a new era, field cognitive
neuroscience. We envision that this exciting new possibility will also help bridging
the gap between fundamental and applied cognitive neuroscience approaches.

Fig. 19.6 The cEEGrid, a flex-printed array of miniature EEG electrodes placed with an adhesive
around the ear. This approach enables, unobtrusive, near invisible EEG acquisition (Debener et al.
2015)
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The most promising candidate for achieving this goal is the EEG technology. It
is beyond doubt that EEG signals provide rich information about cognitive func-
tions, from temporal fluctuations of attention to implicit influences on
decision-making processes and prediction of future behavior. Well-established
procedures such as cognitive ERPs can now be detected on a single-trial level
thanks to advanced signal processing (Blankertz et al. 2011), enabling the near
real-time access to brain correlates of cognition. EEG technology is well estab-
lished, noninvasive and relatively low priced. As our work shows that next gen-
eration EEG systems offer the unique potential of being near invisible (Debener
et al. 2015) and tolerating daily-life actions (Debener et al. 2012). Future EEG
technology could be made very small and user friendly. We envision transparent
EEG systems. Note that the concept of transparency is bidirectional. It refers to a
user forgetting about wearing the technology (like many forgetting they wear
glasses) and individuals in the environment not noticing someone to use EEG
technology. In addition to these practical requirements, a key to success will be
advanced signal processing. Spatial filter procedures such as ICA help de-noising
the data to some extent, but more powerful, robust and adaptive procedures are
needed to reliably decode brain signals, achieve high information transfer, and
quickly adapt to different recording situations. We believe that the small, wireless
and smartphone-based BCI technology holds great potential for basic research in
cognitive neuroscience, clinical applications and may constitute the basis for future
applied assistive technologies.
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Chapter 20
Functional Magnetic Resonance
Imaging (fMRI)

Sebastian Markett

Abstract Functional magnetic resonance imaging (fMRI) is undoubtedly one of
the most common techniques used in the cognitive neurosciences and neuroeco-
nomics. The methods section of fMRI papers are oftentimes filled with jargon. We
hope to clarify this jargon by defining and explaining the most fundamental con-
cepts. The present chapter has been written to target a broad audience of scholars
and students and explains the principles of fMRI: The reader will learn what signals
are measured in fMRI, how this measure relates to neural activity, and how fMRI
data are most commonly analyzed. This includes a brief summary of physical,
physiological, and statistical ideas. We further present a comprehensive step by step
guide through a typical fMRI data analysis to provide scholars and students with the
appropriate knowledge to understand basic fMRI methodology in research papers
and to judge whether the presented analysis is meaningful and appropriately pro-
tected against the most common pitfalls in the field of neuroimaging.

20.1 Introduction

Functional magnetic resonance imaging (fMRI) has been the major backbone of the
cognitive neurosciences since their very early days. Therefore, it is of little wonder
that this method has become extremely popular in the field of neuroeconomics as
well. A search with the keywords “functional magnetic resonance imaging” and
“neuroeconomics” carried out in Google scholar in early 2016 returned 3120 hits,
approximately a quarter of the hits of a search for “neuroeconomics” on its own.
What has made this research approach so popular? There are four certain reasons:
(a) fMRI has an excellent spatial resolution that allows for the precise anatomical
location of neural activation within the brain (b) fMRI comes with sufficient tem-
poral resolution to detect neural correlates of behavior on the basis of experimental
trials (c) fMRI is very sensitive and can therefore measure subtle differences in
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neural activation between experimental conditions which is a prerequisite to test
theories on human behavior, and (d) fMRI is noninvasive and safe to use in human
research participants because it does not require any pharmacological contrast
agents or the lowering of signal detecting devices into the cranium.

There is probably a fifth reason less persuasive to the critical scholar but with
great impact for the presentation of research results: fMRI outputs beautiful and
intuitively comprehendible images. Even though there are many different ways to
present fMRI data, the most common approach to visualize the results is to mark
activated regions with red- and yellow-colored blobs on an otherwise greyscale
brain. It is these images that has led to the popular notion that fMRI enables the
researcher to observe the living brain in action. This might be true to some extent
but carries one misconception: The colored blobs themselves are no physiological
signals returned by the MRI scanner.1 They stand at the end of many time-
consuming processing and statistical analysis steps and are nothing more than
statistical parameters that reflect differences in signal strength between experimental
conditions. It is only after the analysis that these statistical parameters are color-
coded and then spatially overlaid on a three-dimensional image of the brain. This
explains why this approach to neurophysiological data has been labeled statistical
parametric mapping and the resulting images statistical parametric maps (Friston
et al. 1995).

This chapter is organized in two parts. The first part will focus on the fundamentals
of fMRI to answer the question what signal fMRI scanners actually measure and how
this signal relates to psychological processes. Understanding the fMRI signal requires
some basic knowledge of physics and cell physiology which we hope to cover up in a
comprehensive way for readers who have a background in behavioral economics and
psychology. The second part will focus on data analysis and will deal with the
processing pathway from the raw fMRI data that come out of the MRI scanner to the
well-known statistical parametric maps mentioned earlier. Understanding the anal-
ysis of fMRI data requires some basic knowledge in psychological experimental
design and statistics which we hope to cover up in a comprehensive way for readers
without a background in behavioral economics or psychology.

20.2 Fundamentals of fMRI

fMRI is a four-letter acronym. In the introduction, we have already dealt with the
fourth letter, the i for imaging, and established that fMRI outputs images of the
brain. As a fact, fMRI outputs functional images of the brain. This is what the f
stands for and it means that the images acquired in an fMRI scanner allow for
inferences on brain function, in this case on neural activity. The opposite (or better

1fMRI is a special case of magnetic resonance imaging. Functional (fMRI) and structral
(MRI) images are acquired on the same scanning device.
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the compliment) to fMRI would be structural MRI, an approach not sensitive for
brain function but for brain anatomy (see the chapter by Christian Gaser in this
edition for the role of structural MRI in the context of neuroeconomics). The
remaining two letters in fMRI, the m and the r, stand for magnetic and resonance
respectively. They refer to the means by which an fMRI scanner acquires the
images: fMRI scanners measure magnetic properties of atomic nuclei in the brain
which they accomplish by applying magnetic fields oscillating at the resonant
frequency of these nuclei. We will come back to this later in more detail.

The main question we seek to answer in this part of the chapter is how fMRI
scanners measure neural activity. As a matter of fact, we can answer this question
quite easily on the spot: They do not. This information might come surprising
because we usually speak of neural activity revealed by fMRI but it is true: fMRI
scanners do not measure neural activity directly. What they do measure, however, are
magnetic properties of brain tissues that depend on physiological processes that are
most strongly correlated with the neural activity underlying psychological processes.

20.2.1 The Magnet

All fMR imaging starts with a magnet. We have established earlier that fMRI relies
on the measurement of magnetic properties of atomic nuclei in the brain. This may
sound odd at first glance: If you ever tried to attach a magnet (like the ones that
people use to stick notes to their fridge) to your head it will probably come off
instantly. This is because the head and the brain have no magnetic properties by
themselves. What has magnetic properties, however, are the nuclei of atoms in the
brain. MR image acquisition is based on the fact that some atomic nuclei spin
around themselves. Hydrogen—the most abundant atom in the brain—has such a
spinning nucleus and can therefore be measured by MRI. The nucleus of a
hydrogen atom consists of only one positively charged proton. Because of its
positive charge, the proton creates a tiny magnetic moment when it spins around
itself. This magnetic moment points in the same direction as the proton’s spin axis.
Under normal conditions, the protons’ spin axes will point in random directions,
which mean that the same will apply for the magnetic moments. MR imaging does
not measure the magnetic moments of single nuclei but the sum of all magnetic
moments which is called the net magnetization. Thus, if we tried to measure the
magnetic moments under these normal conditions, we would not be able to pick up
any signal because the moments would cancel each other out. This is where the
magnet enters the stage: If we put our sample (with the containing hydrogen atoms)
into a magnetic field, the spins will start to revolve around an axis that is parallel to
the magnetic field. This additional spin is called precession spin. You can think
about a nucleus’ behavior in the magnetic field and the two spins (the regular and
the precession spin) as a spinning top (like the ones you may have used to play with
as a kid). A spinning top does not only spin around its own axis, it also precesses
around a second axis parallel to the earth’s gravitational field. If you would watch
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the spinning top from above you would see that the precession spin traces a circle
perpendicular to the gravitational field. The precession spins of the nuclei behave in
a similar way, only that they do not align with the earth’s gravitational field but with
the magnetic field applied by the MRI scanner. The axis around which the nuclei
precess is called the longitudinal direction and the plane in which they precess is
called the transversal plane (see Fig. 20.1).

The precession axes align with the magnetic field in two different ways: Either
parallel or antiparallel to the magnetic field. The two states differ regarding their
energy levels: The parallel state is a low-energy state and is therefore the preferred
state of the nuclei. Nonetheless, at each point of time, many nuclei will also spin in
the high-energy antiparallel state. Every now and then each nucleus will change its
state and flip from the parallel to the antiparallel spin and vice versa.

The more nuclei spin in the parallel relative to the antiparallel state, the higher is
the net magnetization in the sample. To get MRI to work we therefore need all (or
most) of the nuclei in the parallel state. This can be accomplished by two means.
The first approach would be to cool down the sample to the point where no or only
little molecular motion occurs. This, however, would be way too cold for the living
brain and is therefore not practical for our purpose. The other approach is the one
used in MRI scanners: If we dramatically increase the field strength of our magnet,
the vast majority of nuclei will align their precession spins with the magnetic field
in parallel. The field strength of strong magnets is given in Tesla (T). MRI scanners
approved for human research participants have field strengths between 1.5 and 9.4T
(to give you an idea of how strong such magnetic fields are: the electromagnets
used to lift cars in junk yards have field strengths of approximately 1 T).
Fortunately, strong magnets do not harm biological tissue which make them safe to
use in human research participants (as long as participants remove all ferromagnetic
objects like glasses, belts, or certain jewelry).

20.2.2 Resonance

With the vast majority of spins in the parallel state, the net magnetization in the
sample points into the same direction as the magnetic field. At this point, however,

Fig. 20.1 Spin of a hydrogen
nucleus around its own axis
(a). When a magnetic field is
applied (b), the nucleus falls
into an additional precession
spin in the transversal plane
(c)
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we have no chance to measure it. In order to do this, controlled changes in net
magnetization need to be observed over time. This is where the resonance (the r in
fMRI) comes into play: The idea behind the r is to attach energy to the nuclei which
forces them leave the low-energy parallel state and flip toward the high-energy
antiparallel state. This process is called excitation and is achieved by applying
additional oscillating magnetic fields to the sample. It is important that the addi-
tional magnetic fields oscillate with the same frequency as the nuclei do. The spin
frequency of a nucleus is called its lamor frequency. The lamor frequency depends
on the amount of protons in the nucleus (which is the same in all hydrogen atoms)
and the strength of the magnetic field. Because the magnet’s field strength is
known, the excitation signals can be adjusted to match the lamor frequency of
hydrogen nuclei. As a result, energy is attached to the nuclei and they flip from their
parallel spin toward the antiparallel spin. When the oscillating magnetic fields are
switched off again, the nuclei will start to flip back into the parallel state while
emitting the attached energy. This energy can be measured by reception coils in the
MRI scanner. The emitted signal is affected by different tissue types and physio-
logical processes. From the behavior of the nuclei returning into the parallel state,
we can infer on properties of the brain tissue. Therefore, it allows for inferences in
brain structure and function.

As outlined above, the nuclei precess around the longitudinal axis parallel to the
magnetic field and precess in the transversal plane that is perpendicular to the
magnetic field. The net magnetization (i.e., the sum of all magnetic moments) that is
measured by MRI can be split up in longitudinal and in a transversal component.
Without excitation of the spin system by oscillating magnetic fields, the transversal
components of the net magnetization cancel each other out and only the longitu-
dinal component parallel to the magnetic field prevails. The excitation pulses are
usually designed to flip the net magnetization by 90° into the transversal plane. In
consequence, the longitudinal component of the net magnetization is set to zero. As
soon as the net magnetization is tipped into the transversal plane, the nuclei’s
precession spins will start their spins at the same starting point. In consequence, the
transversal component of the net magnetization can be measured. After the exci-
tation signals wear off, the nuclei will start to flip back into the parallel state. Two
different components can be measured by the signal detection coils of the MRI
scanner. First, the longitudinal component of the net magnetization will recover
while the spins flip back. The longitudinal recovery is governed by a time constant
that is labeled T1. Second, the spins’ coherence in the transversal plane will start to
dephase until the transversal component of the net magnetization cannot be mea-
sured anymore. The transverse relaxation is governed by a time constant labeled T2.
Different tissue types (grey matter, white matter, cerebrospinal fluid, blood vessels,
and bone) lead to different T1 recovery and T2 relaxation values. In order to con-
struct images, spatial information must be provided along with the information on
recovery or relaxation. You may recall that the lamor frequency of nuclei depends
on the field strength of the magnet. Additional gradients that vary the field strength
gradually across space can therefore be combined with excitation pulses at different
frequencies to allow for a space dependent coding of the signal. This approach
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ensures that one two-dimensional slice of the brain is measured at a time.
A three-dimensional image of the brain can be mathematically reconstructed from
the spatial distribution of T1 or T2 values across different slices.

20.2.3 From Physics to Physiology

MRI protocols that are sensitive to T1 or T2 contrasts provide anatomical images of
the brain. To measure brain function, however, a different signal is needed. Recall
that after the application of excitation pulses, the spins start to precess at the same
starting point in the transversal plane, thus giving rise to the transversal component
of the net magnetization. The dephasing of the spins that leads to transversal
relaxation depends on interactions between the spins of nuclei. This intrinsic factor
is directly reflected in the loss of T2 signal across time (T2 decay). Additionally, the
dephasing is also influenced by an extrinsic factor. Because the spin frequency
(the lamor frequency) depends on the field strength, slight inhomogeneities in the
external magnetic field do also contribute to dephasing. The combination of the
intrinsic and extrinsic factor leads to a signal loss in transverse magnetization that is
governed by a time constant labeled T2

*. Local inhomogeneities in the external
magnetic field can depend on physiological processes in the brain. Therefore, MRI
protocols sensitive to T2

* are the backbone of functional MRI.
How do physiological processes affect the local homogeneity of the magnetic

field? To answer this question we need to discuss energy consumption of the brain.
The cellular basis of psychological processes can be traced to the activity of nerve
cells (neurons). Neurons communicate by short transient changes of their electric
resting potential across the cell membrane. This process does not rely on external
energy. What does require energy, however, are housekeeping tasks of neurons
such as maintaining their resting potential and restoring the resting potential after an
electric signal has traveled along the cell membrane. The energy currency of the
brain is a tiny molecule called adenosine triphosphate (ATP). ATP is synthesized
from glucose, a sugar absorbed from food sources. This synthesis is most efficient
in the presence of oxygen. Both oxygen and glucose need to be delivered to the
brain via the blood stream because the brain cannot store either of the molecules.
Blood is pumped through the vascular system by the heart. On its way from the
heart to the brain, blood is first circulated through the lungs where oxygen is bound
to hemoglobin, the oxygen transport protein in red blood cells. Then, the blood with
the oxygenated hemoglobin is pumped through arteries into all parts of the body
including the brain. The brain is supplied by four major arteries. After entering the
cranium, arteries branch out into smaller arteries that eventually become arterioles
and then capillaries. The capillaries form a fine net of tiny blood vessels that enable
the exchange of oxygen, glucose, and their metabolites between the bloodstream
and nerve cells. At this point, the hemoglobin trades oxygen for waste carbon
dioxide and becomes deoxygenated hemoglobin.
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When you put your hand onto your neck you can feel the dilatation of the
arteries in response to your heartbeat. Before entering the capillaries, the pulsatile
blood supply needs to be slowed down by high-resistance blood vessels to ensure a
steady blood flow. Otherwise, the fine capillaries would burst from peaks in blood
pressure. Where supplying arteries branch out, muscular sphincters control the
blood flow into arterioles and capillaries. When nerve cells in a circumscribed
region increase their activity level and thereby their energy consumption, the
sphincters expand the arterioles to increase blood flow into respective regions in
order to meet the temporally enhanced requirements for glucose and oxygen. That
is, locally confined neural activity leads to a locally confined increase in blood flow
with blood that is rich in oxygenated hemoglobin. fMRI exploits the fact that
hemoglobin has different magnetic properties that depend on the binding of oxygen.
Oxygenated hemoglobin is diamagnetic while deoxygenated hemoglobin is para-
magnetic. Generally, objects with paramagnetic properties cause spin dephasing
when introduced into a magnetic field. An increase in blood flow leads to an
increase in oxygenated hemoglobin relative to deoxygenated hemoglobin. In turn, it
leads to less spin dephasing and in consequence to slower transversal relaxation and
a stronger T2

* signal. That is, MR protocols sensitive to T2
* can use oxygen as an

intrinsic contrast agent of the brain for the mapping of neural activity. In this case,
we speak of blood oxygen level dependent fMRI, or in brief, of BOLD fMRI.

Because the recorded signal in fMRI relies on blood flow dynamics in response
to changing neural events, the signal is called the hemodynamic response. The
typical hemodynamic response as revealed by BOLD fMRI starts with a temporal
offset of 1–2 s to the neural activity that triggered the response. The reason for this
time lag reflects the time window until the feedback loop between active neurons
and their supplying blood vessels has increased the local blood flow. After a steep
rise, the hemodynamic response peaks about 4–5 s later and then falls steadily over
another 5–6 s until it falls below baseline 12–13 s after the triggering neural
activity,. The BOLD signal returns to baseline level approximately 20 s after the
onset of the neural events. From this timing information, we can see that the
hemodynamic response lags the neural events behind and is rather slow compared
to psychological processes that often take only a couple of hundred milliseconds to
finish. Nevertheless, neural correlates of even short-lived psychological processes
can be traced by BOLD fMRI, given individual experimental trials are sufficiently
spaced.

The sampling rate of the MRI scanner needs to be set in a way that sufficient
information on the hemodynamic response will be acquired. The time between
successive excitation pulses of the scanner is called repetition time (TR) and
quantifies the acquisition speed of the scanner in a given experiment. Modern fMRI
scanner that uses echo planar imaging (EPI) pulse sequences can scan the majority
of the brain with a TR of 1–2 s while retaining a sufficient spatial resolution
(usually 3 mm3 voxels). It has been demonstrated that sampling rates below
0.5–1 Hz do not substantially improve the measurement. That is, a TR of 1–2 s
provides an appropriate temporal resolution for fMRI even if the examined psy-
chological processes follow a faster time scale.
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The EPI pulse sequences acquire data in two-dimensional slices from which a
three-dimensional image of the brain can be reconstructed. The brain spans about
12.5 cm from the brainstem to the most dorsal part of the parietal lobe. With
3-mm-slices spaced by a 0.3 mm gap, it would require 38 slices to image the entire
brain. Because the TR depends critically on the number and the spacing of these
slices, the temporal resolution can be improved by omitting parts of the brain during
image acquisition, in most cases the brain stem and the cerebellum. This is a feasible
approach especially in neuroeconomical studies, because cortical or midbrain
structures lie in main interest of most investigations. In the following, we will refer to
functional images acquired in one TR as “volumes” and not “brains” to emphasize
that the processing steps are applied to the functional data irrespective of the degree to
which the entire brain is covered during imaging. Figure 20.2 shows a T1-weighted
anatomical and a T2

*-weighted functional volume from the same participant.

20.2.4 Summary

In the first part of this chapter, we have established that fMRI measures magnetic
properties of brain. Furthermore, we have discussed how vascular activity in the
brain gives rise to the blood oxygen-dependent signal that can be measured by MRI
scanners and allows for inferences on neural activity. We have concluded with
remarks on temporal and spatial properties of the hemodynamic response. This part
was supposed to give a brief overview on the physical and physiological basis of
fMRI. For more in-depth information on the physical and physiological basis of
fMRI, we refer to the excellent textbook by Huettel et al. (2009). In the following,
we will deal with the statistical analysis of the acquired volumes in the context of
statistical parametric mapping.

20.3 Analysis of fMRI Data

The analysis of fMRI data can be separated into three consecutive steps: (a) pre-
processing of functional images (b) first-level analysis of fMRI time series, and
(c) second-level (or higher order) analysis. Preprocessing describes necessary

Fig. 20.2 A high-resolution
T1-weighed anatomical MRI
scan and a BOLD fMRI
image (T2

*-weighed) from the
same participant
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analysis steps that are carried out to ensure that all data are in the same
five-dimensional coordinate space which is a prerequisite for statistical analysis (we
will explain the five dimensions in the following). Then, the first-level analysis is
carried out separately for each participant. It outputs statistical parameters that are
eventually fed into the second-level analysis that aggregates the data across par-
ticipants for statistical inference on activation patterns between groups or in the
population the sample of study participants has been drawn from. All three analysis
steps can be carried out in freely available analysis software tools. The two most
popular tools in the neuroimaging community are Statistical Parametric Mapping
(SPM) that is issued by the Wellcome Trust Centre for Neuroimaging (http://www.
fil.ion.ucl.ac.uk/spm/) and FSL, issued by the Oxford Center for Functional
Imaging of the Brain (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Both imaging software
packages can be downloaded for free from the respective websites and come with
detailed documentation and example data sets.

Before we start to discuss preprocessing and first- and second-level analyses in
more depth, we start with some general remarks on experimental design, as this is
the prerequisite to understand what is going on during the analysis steps.

20.3.1 Experimental Design

One inherent property of the BOLD signal is that it is no absolute signal: We
always need to compare the signal to some sort of baseline or control condition.
This control condition can be implicit, that is the hemodynamic activity evoked by a
task is compared to hemodynamic activity while there is no task. This, however,
might come with the downside that the task and the control condition differ in many
different aspects. Let us assume we are interested in hemodynamic activity evoked
by the feedback about the second mover’s behavior in the trust game. In the
experimental condition, the research participants in the role of the proposer face an
information screen that states whether the responder is defected or not. To ensure
that the participants actually process the information on the display, they are asked
to execute some sort of manual response to the information. The evoked hemo-
dynamic response could be compared to a condition were the participants did
nothing. Such a condition, however, would not only differ in the decisive variable
(cooperation versus defection) but also in physical appearance of the display, the
lack of a motor response, and the absence of a monetary outcome. Thus, hemo-
dynamic activity associated with these factors cannot be easily disentangled from
the actual activity inherent to the trust game. Therefore, it is a better idea to contrast
the task condition with an explicit control task that differs only in one aspect critical
to the study. In our example, this could be a computer-raffled lottery where the
participants either loose or win but that most critically lacks the social component of
the trust game (for example, see Delgado et al. 2005). This experimental design
relies on the pure insertion principle inherent to subtractive experimental methods:
Different processes are assumed to be additive. By subtracting the hemodynamic
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response during one process (computer lottery) from the hemodynamic response
during another process (outcome of the trust game), the mere difference in hemo-
dynamic activity between both processes survives the subtraction (neural response
to cooperation or defection). This approach can be very powerful and useful, it
disregards, however, the possibility of non-additivity in the sense of interactions
between task conditions. One way to study such interactions is the use of factorial
designs in which all combinations of two or more independent variables with two or
more levels are administered. If, for example, one would want to study the effect of
absolute versus relative income, possible independent variables are absolute income
(receiving a high or a low amount of money) and relative income (receiving more,
less or just as much as somebody else). In consequence, six different conditions
arise that allow to disentangle additive and interactive effects of absolute and rel-
ative income on reward related hemodynamic activity (see Fliessbach et al. 2007,
for example).

A further comparison strategy is parametric designs. In parametric designs, the
covariation of the BOLD response with a parametrically manipulated independent
variable is examined. If, for example, we are interested in neural correlates of
decision utility during gambles, we could vary the possible gains associated with
the gambles parametrically and examine whether the BOLD signal in a given brain
region responds contingently (see for example Tom et al. 2007).

The previous considerations all dealt with comparison strategies. A further
thriving issue concerns the temporal sequence of stimulus presentation. There are
two main approaches to stimulus timing in BOLD fMRI experimental design:
blocked versus event-related presentation. In a blocked design the research par-
ticipants are asked to alternate between blocks of many trials in the experimental
and the control task. Ideally, the length of the blocks corresponds to the length of
the hemodynamic response (about 10 s). With shorter time intervals, the BOLD
response cannot return to its baseline and the differences between experimental and
control conditions become blurry. With longer blocks, on the other hand, scanner
drift can inflate the differences between experimental and control blocks by intro-
ducing noise to the data. In blocked designs, many experimental trials contribute
linearly to the recorded hemodynamic response. Therefore, blocked designs come
with a high power to detect differences in activation between conditions. The
downside, however, is that temporal information on the hemodynamic response
cannot be analyzed. Furthermore, many research questions cannot be operational-
ized in blocked designs. Many research designs do not allow for an a priori
specification of task and control conditions. Let as assume we are interested in
examining hemodynamic activity associated with continued gambling to recover
previous losses, a phenomenon called “chasing losses”, which is maladaptive
decision behavior common in pathological gambling (Cambell-Meiklejohn et al.
2008). Participants are confronted with the outcomes of gambles and decide
whether they want to continue or quit gambling after experiencing losses. In such
an experiment, the participants’ decision behavior determines if a given experi-
mental trial is assigned to the task (chasing losses) or to the control condition
(quitting gambling). If this research question would be addressed in a blocked
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design, the researchers would need to tell participants to chase losses in one block
of trials and to quit gambling in others. This, however, would eliminate the critical
behavior under the researchers’ scrutiny: Participants would not make the decision
to continue gambling by themselves and no neural activity associated with the
decision making process could be recorded. Because decision-making is one of the
main research interests in neuroeconomics, most studies in the field adopt
event-related designs. In event-related designs, the evoked hemodynamic response
to single experimental trials is examined. The advantage of event-related designs is
that events can be assigned to experimental conditions post hoc. It is also possible
to exclude certain trials from the analysis, for instance error trials or trials in that the
participant fails to respond in a given time window. Furthermore, event-related
designs allow for a precise temporal characterization of the hemodynamic response.
Compared to blocked designs, however, they lack a high degree of detection power.
A further potential drawback is that subsequent presentation of the same events can
introduce an artificial blocked design, where the BOLD response saturates and
becomes equivocal to different task conditions. To counteract this problem, the
interstimulus interval (ISI) should be large and jittered which means that it is
randomly varied in its duration across experimental trials (e.g. a randomly chosen
ISI between 3500 and 6000 ms).

Now that we have established, how experiments can be designed to be suitable
for fMRI we can go on with a discussion how to analyze the data.

20.3.2 Preprocessing

As we have discussed earlier, the best way to think about fMRI data is in voxels.
Each functional volume lies within a three-dimensional grid comprising a large
number of voxels with one activation value assigned to each of them. Each fMRI
run comprises many of these volumes which are acquired consecutively over time.
This results in an activation time series for each voxel (see Fig. 20.3) and, if we
look at all voxels and all time-points at once, one-four dimensional data set (x by y

Fig. 20.3 The BOLD time
series as measured from one
gray matter voxel over a time
period of approximately ten
minutes
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by z by time). We acquire such a four-dimensional data set for each participant in
our experiment. That is, we can think of the data of an entire experiment as a
five-dimensional matrix (a three dimensional brain scanned across time and across
participants, see Fig. 20.4).

Now imagine a perfect world: We can expect various things from a perfect
world: First, we would expect that all voxels in one volume were sampled at the
same time (that is, at a given point in time, for a given participant, all data along
the first three dimensions of our matrix are acquired simultaneously). Second, along
the time dimension, we would expect that data measured in the same voxel merely
reflects changes in activation (and not sampling error) at the same precise
anatomical location (and not that of a neighboring location). And at last, we would
expect the brains of all participants to match spatially, that is, we would expect that
along the fifth dimension (the participants) a given voxel always corresponded to
the same neural structure. Alas, the world is not perfect, especially not for neu-
roimagers: The EPI pulse sequences used for fMRI measure a volume one slice at a
time. With a TR interval of two seconds, this implies that the temporal offset of two
voxels in a single volume can be as large as two seconds. Furthermore, even the
best research participants with the highest motivation to keep still during the
experiment will move their heads no matter how tightly we constrain them
mechanically. Along the time dimension, every millimeter of motion will move
consecutive volumes further away from the first volume, slowly but dramatically
distorting our data across time. Finally, we can intuitively agree that our expectation
on the uniformity of brains across participants cannot hold: It is not only that
peoples’ heads and brains vary in size. There are also individual differences in the
brains’ gyri and sulci.

Fig. 20.4 The five-dimensional nature of BOLD fMRI experiments. The first three dimensions
refer to the three-dimensional brain that is scanned across time (dimension 4). The fifth dimension
refers to different participants who undergo the same imaging protocol
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Given these constraints on our data, we need to come up with an idea to resolve
these issue. Otherwise we would not be able to meaningfully analyze our data.
Fortunately, there are powerful algorithms available to correct for temporal and
spatial distortions within single volumes, across time and across participants.
However, we should be aware that we substantially alter our data during prepro-
cessing and that in consequence, statistical inferences on brain activation are not
carried out based on data as they were initially measured. Therefore, all prepro-
cessing should be applied carefully and with high caution. Preprocessing steps are
nevertheless necessary means to correct for deviations from our perfect neu-
roimaging world: They ensure that subsequent statistical analysis will be
meaningful.

Usually, preprocessing steps include (1) slice timing, (2) head motion correction,
(3) coregistration/normalization, and (4) spatial smoothing. Temporal bandpass
filtering and detrending can be applied as additional but not necessary steps.

Slice timing refers to the correction of acquisition delays between slices within
the same volume. For the slice timing correction, the user specifies a reference slice
for each volume. Then, an algorithm analyzes the time course in each voxel across
volumes and interpolates how the data points in every other slice of a given volume
would have looked like if they would have been acquired at the same time as the
reference slice. The further away a given slice lies from the specified reference slice,
the stronger the data are altered by the algorithm. Therefore, it is a wise idea to
choose the slice in the middle of the volume as reference. In many cases, the slices
of a single volume are not acquired in ascending or descending order but inter-
leaved (that is, all even slice numbers are imaged before the odd ones). In this case,
slice timing correction is always recommended. In cases where the scanner has
acquired the slices consecutively, slice timing can be omitted if steps are taken to
control for slice acquisition offsets later on during statistical analysis (and the TR is
not too large).

Motion correction provides an algorithm to correct for spatial distortions across
volumes within a single participant because of head motion. Fortunately, we can be
sure that our participants’ heads do not change their size or form during the rela-
tively short fMRI run. That is, all gross deviations between heads across volumes
are almost exclusively attributable to head motion. In the scanner, a head can move
up and down, from left to right and back and forth. That is, it can translate along
three dimensions. Furthermore, it and can rotate around three axes (nodding,
shaking and tilting). We can therefore align the heads within all subsequent vol-
umes with the head in the first volume with a six-parameter transformation. Because
the head itself does not change during transformation, we call this a rigid-body
transformation which has six degrees of freedom. Usually, the parameters for each
volume are saved so that they can be used as covariates (nuisance regressors) during
later statistical analysis. The motion parameters should also be examined for out-
liers. If single participants have moved too excessively during scanning it might be
wise to exclude them from further analysis (usually, translations less than three
millimeters and rotations less than three degrees are considered tolerable).
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Coregistration and normalization are two consecutively applied preprocessing
steps that ensure comparability of the data across participants. As mentioned earlier,
peoples’ brains to not only differ in size but also in gyrification and sulcification.
Therefore, a rigid body transformation as discussed above or a linear transformation
are both not suitable to match one brain with the others. The solution is an affine
transformation with twelve degrees of freedom in total. That is, twelve parameters
are needed to match an individual brain with a group. This process is called nor-
malization. One way to do this would be to choose one representative participant
from your sample (maybe the one who is closest to the mean of demographics like
age or education and a member of the more frequent sex). The next step would be to
apply the affine transformation. During this process all other brains are resized,
squeezed and dragged until they match the reference brain most closely. After the
transformation, each voxel in each volume will contain information on the acti-
vation level of exactly the same neural structure across participants. This approach
of choosing a representative reference brain from the study sample, however, would
come with two major downsides. On the one hand, the researcher would be in need
of a high degree of anatomical skill to precisely identify what structures are acti-
vated during later analysis. On the other hand it would be quite tricky to compare
results across different experiments and across publications. For that reason, neu-
roimagers have agreed on a standard reference brain in a standard coordinate space.
This standard brain has been issued by the Montréal Neurological Institute (MNI).
It unifies anatomical information from 152 white individuals and should therefore
be a close reference template to most brains from healthy individuals of European
descent. Other reference brains are available for individuals from other populations.
Practically, we need to deal with one problem during normalization: As you can see
from Fig. 20.2, the spatial resolution of functional EPI images is not as good as the
spatial resolution of anatomical T1-weighted scans. If the normalization algorithm
was fed by anatomical information from the functional volumes alone, it would lack
detailed information. Coregistration prior to normalization is a recommended res-
olution for this problem. Coregistration takes advantage of two facts: First, it is
relatively easy to precisely align a high resolution anatomical T1-weighted image
with functional volumes from the same person because it requires only a rigid-body
transformation (see above). Second, it is also relatively easy to normalize a T1-
weighted image of a study participant to a T1-weighted reference brain in standard
coordinate space because of the high anatomical detail of the individual T1-image.
For this purpose, a high resolution T1-weighted anatomical image is usually
acquired along with the functional volumes. Then, the functional volumes are
aligned with the individual anatomical image. In a second step, the individual
anatomical image is normalized to the reference brain and the resulting twelve
transformation parameters are then applied to every single functional volume. In
easier words, the individual anatomical image “piggybacks” the individual func-
tional volumes to obtain the best normalization results possible.

Spatial smoothing is the last strongly recommended preprocessing step. The
rationale behind smoothing is to use the information of neighboring voxels to
smooth the signal from each voxel in a volume. As a result, the images become
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more blurry, but also increase in their signal-to-noise ratio. Smoothing leads to an
increase in statistical power of subsequent statistical tests because the error terms of
the test statistics are reduced and because single peak activation foci will more
likely merge to robust activation clusters. Smoothing takes advantage of the fact
that the time courses of adjacent voxels are highly intercorrelated because for most
psychological processes, the spatial resolution of fMRI scanners exceeds the
functional resolution required to image their neural correlates. Testing theory states
that each measurement is additively composed of a true value and an error term.
The error terms are thought to be independent from each other and have an
expected value equal to zero. Thus, if we average the signal measured in neigh-
boring voxels, we effectively decrease the error term while the true values are more
or less left as they are. The averaging procedure during smoothing applies
weighting to neighboring time series in a way that the time courses of more nearby
voxels contribute more strongly. The weighting is accomplished by applying a
three-dimensional Gaussian kernel that has its peak on the voxel to be smoothed.
The size of the Gaussian kernel is given by its full width at half maximum
(FWHM). The recommended size depends on the resolution of the functional data
(and the neural structures and psychological processes that are imaged). In most
cases, the kernel size varies between 6 and 12 mm FWHM.

This concludes the strongly recommended steps. Additional preprocessing can
include detrending and temporal bandpass filtering. Detrending corrects for linear
trends apparent across the entire time series because such linear trends are most
likely attributable to MRI scanner drift. Bandpass filtering removes frequencies in a
specified frequency band from the time series because certain frequencies do not
reflect neural activity and are therefore most likely attributable to scanner artifacts
or introduced by cardiorespiratory activity of the research participants. In most
cases, a high pass filter of 0.008 Hz is applied, that is, all oscillations in the
frequency bands below this threshold are removed from the data.

20.3.3 First-Level Analysis

A typical first-level analysis aims at the isolation of activation differences between
our experimental conditions of interest on the level of single participants. In con-
sequence, the first-level analysis is carried out for each participant separately. The
most common approach in the context of statistical parametric mapping is to set up
a statistical model that explains the acquired neurophysiological data best and then
conduct inferences on activation differences based on the parameters from this
model. In simple words, the activation data are correlated with the temporal
sequence of experimental events voxel by voxel and inferences are subsequently
conducted based on the correlation coefficients. Usually, a mass univariate approach
is applied: Parameter estimation and statistical inference are conducted separately
for each voxel and results are only combined in the very last step.
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20.3.3.1 Model Specification and Parameter Estimation

The statistical model most widely applied in neuroimaging is called the general
linear model (GLM). In a GLM analysis, a dependent variable (in our case the
neurophysiological data) is predicted by a set of predictors that are linearly (ad-
ditively) combined. In the most simple case, the model equation of a GLM is
y = mx + n, where y refers to the dependent variable, x to one predictor, m to a
weight attached to the predictor (the model parameter) and n to an intercept (a
constant value added to the equation). You may notice that this equation resembles
the linear equations you have solved in high school. Further predictors can be added
to the model (like y = mx1 + px2 + zxn + n) if we believe that this leads to a better
prediction of y. In the context of fMRI, the dependent variable is the BOLD time
series from one voxel. This time series has as many entries as there are volumes in
our fMRI run (in the following we will refer to these time series as vectors). The
model equation needs to be designed in a way that the predictors and their corre-
sponding weights output values for y that come closest to the values in the time
series vector. The experimental conditions in the experiment serve as predictors
with one predictor for each condition. In the simplest case one experimental con-
dition (for instance tapping with the right index finger) is compared with a control
condition (doing nothing; most critically, no tapping with the right index finger).
A basic GLM for this design would be y = mxtapping + pxnothing + n. Let us assume
that the participant in this example experiment alternated between the two tasks
(tapping versus doing nothing) every 20 s for seven times in total. This experiment
would last for 280 s. If we choose to image the brain at a TR of two seconds, we
would acquire 140 functional volumes in the experiment, leaving us with a vector
with 140 entries per voxel. These 140 observations per voxel serve as the criterion
variable y. What do the predictors look like? As mentioned earlier, we plan to
correlate the neurophysiological data with the temporal sequence of experimental
events. Therefore, we need vectors for each predictor that have as many entries as
the BOLD vectors holding the criterion variable. In the simple case of our example,
we will code the onsets of the experimental condition with 1 and leave the value to
1 for the entire duration of the experimental block. That is, the vector of the first
predictor will hold a 1 whenever the participants performed on the tapping task and
a 0 whenever they did nothing. Thus, the first 10 entries of the vector will hold
ones; the next 10 entries will hold zeros and so on. The onset vector for the second
condition (resting) will hold ones whenever the participants are resting, and zeros
whenever the participants perform on other tasks (in our case, tapping their right
index fingers). Now that we have modeled all experimental conditions, further
predictors could be added that are of no interest for the research question per se but
might enhance the model fit by explaining systematic noise in the data. For
example, we could use the six parameters from the motion correction during pre-
processing as six additional predictors. Neuroimagers refer to these control pre-
dictors as covariates of no interest or as nuisance regressors. Note that we are still
dealing with the data of one participant. Therefore, nuisance covariates such as age
or gender that vary across participants cannot be entered to the model at this point.
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After the specification of all predictors, we end up with an m × n matrix, where
m refers to the number of functional volumes and n to the number of predictors. In
this simple case, we have coded our experimental conditions in a binary mode (that
is we have only used ones and zeros). If we believe that the BOLD signal increases
stronger in different realizations of our predictor variable (for example, we measure
brain reactivity to economic gambles and believe that BOLD activity increases with
increasing gains), we could modulate the predictor’s vector with a parameter. In the
example with the gambles, one predictor would carry ones and zeros (whenever the
gamble was shown) and a further predictor would carry the modulator (the potential
gain of the gamble as an integer) whenever the former vector carried a 1.

There is reason to believe that the BOLD signal does not rise and fall in a way
the binary predictors suggest. Figure 20.5 depicts a function that describes the
hemodynamic response that is usually measured in response to stimulation. To
achieve a better fit between the empirical data and the predictors from the GLM, the
onset vectors are convolved with such a hemodynamic response function (HRF). In
most cases, a canonical HRF is used that is distributed along with the analysis
software packages. A further widely applied option is to additionally convolve the
predictors with the HRF’s first temporal derivative. This additional step is a good
means to account for temporal variability of the onset of the hemodynamic
response. In case that slice timing is omitted during preprocessing, this method is
highly recommended.

After the GLM is specified and all regressors in the equation (experimental
conditions, parametric modulators and nuisance covariates) are convolved with the
canonical HRF (and its temporal derivative) the regression weights (called beta

Fig. 20.5 The canonical hemodynamic response function as distributed alongside the SPM
software package
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weights) need to be estimated. This is done by a least square approach: The beta
weights are set in a way that the sum of the squares of the deviations between the
predicted values (the y values) and the empirical data (the BOLD time series) is
minimized. At the end of this process, we end up with one beta weight for each
predictor for each voxel. Call yourself in mind that we are still dealing with single
subjects. The process of setting up the GLM and estimating the corresponding beta
weights is repeated for each participant in the sample. In our simple example
experiment, the temporal layout of experimental conditions is essentially the same
for all participants; i.e., the same GLM with exactly the same predictors (except for
nuisance covariates that are specific for individuals) can be used. In case of more
complex experimental designs, (for instance an event-related design with events
presented in random order), the GLM itself (that is the columns of the m × n ma-
trix) would be the same, the onsets (and modulators), however, would be different
for each participant.

20.3.3.2 Contrasts

Now that we have ended up with beta weights, we can conduct statistical inference
on these weights. This is still carried out separately for each participant. The
question addressed by first-level inferences is: In which voxels and to what extend
do given experimental conditions lead to activation differences? In the most simple
and most widely used case this question is answered by a t-test. A t-test is a
statistical test that contrasts two measurements and assesses whether the difference
is significantly larger as the general variability in the data set. In the case of a
first-level inference, the t-test looks if the difference between the beta weights of
two experimental conditions is larger than an error term that is calculated from the
variability of the fMRI data the GLM cannot explain (while also taking the number
of observations and predictors in the model into account). In more formal terms, the
t-test outputs a t-value that is a quotient of the difference between the beta weights
divided by this error term (sum of squared residuals of the GLM minus number of
functional volumes minus number of all predictors in the GLM). These t-values
follow a t-distribution. Because t-distributions are well-known probability distri-
butions, we can look up the probability by which the obtained t-statistic suggests a
difference between the beta values even though there is not one. If this probability is
sufficiently low, we conclude that the beta weights differ significantly. Different t-
distributions differ from each other in their degrees of freedom (df). For first-level
inferences, the df that correspond to the t-test can be calculated from the number of
data points (number of functional volumes) minus the number of predictors in the
model.

Let us consider our example experiment once again: We would definitely want
to look where activity increases during finger tapping as compared to the resting
condition. For the first contrast, we would therefore subtract the beta value of the
resting-regressor from the beta value of the tapping-regressor for each voxel and
assign this difference to the nominator of the t-value. If we would also be interested
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in activity decreases during motor tapping, we would calculate a second contrast for
which we subtract the beta value of the tapping-regressor from that of the
resting-regressor. The error term is essentially the same for both contrasts, but
differs slightly across voxels: For each data point in our dependent variable we
would calculate the difference between the actual BOLD activity and the value
predicted by our GLM (the residuals). These differences are squared to control for
different signs and then summed up across data points. Finally, we would subtract
the number of data points (240) and the number of regressors in the GLM (two
conditions plus six motion regressors of no interest equals eight) from the sum of
squared residuals. This whole term would then be assigned to the t-value’s
denominator. This step is repeated for all voxels in the brain and then for all
participants in our sample. Thus, we would end up with one map per contrast and
participant that maps the t-values on the brain. Finally, we would calculate the
amount of degrees of freedom for our statistical test (240 data points minus eight
regressors equals 232 degrees of freedom) and look up the corresponding proba-
bility values (p-values) to each t-value that tells us the probability by which the
difference in the beta values can be attributed to chance. Because we want to be sure
to not assume a significant difference between experimental conditions when there
is none, we would want this probability to be low, for example below 0.001 %.
With a t-distribution with 232 df, the t-value would need to be as high as 1.651 to
be considered significant.

This, however, would us only leave with an assessment of statistical significance
between experimental conditions within subjects. In order to assess significance
across or between subjects, we would need to perform additional analyses.

20.3.4 Second-Level Analysis

The rationale behind the second-level analysis is to combine the results from the
first-level analyses of all participants and assess statistical significance across par-
ticipants. Various statistical inferences are possible: In the simplest case, one would
want to examine whether neural activity differences between the conditions
observed on the first-level are idiosyncratic to single participants or can be found in
the majority of participants. This could be accomplished by a one-sample t-test.
A one-sample t-test tests whether the mean of a dependent measure that is calcu-
lated across participants differs significantly from a given value. In the context of a
second-level fMRI analysis, this t-test looks if the mean of activation in one voxel is
significantly different from zero. Different statistical models can be set up,
depending on the research question asked: If, for instance, a group of pathological
gamblers is compared with a group of healthy control participants regarding their
neural response to risky choice, a two-sample t-test that tests for differences in the
mean of neural activity between the two groups is the appropriate statistical test.
Multiple linear regressions and multifactorial models are also possible for more
complex experimental paradigms. Please note that in the vast majority of cases,
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second-level analyses model participants as random effects. This statistical
approach assumes that participants were sampled from an underlying population
and ensures that any inference drawn from the data can be generalized to this
population.

Up to this point, we have not specified on which values the second-level analysis
is carried out. The first-level analysis outputs a t-value for each voxel. This t-value,
however, is not the best means to quantify activation differences between experi-
mental conditions. As outlined previously, the t-values depend not only on the
difference in the beta values but also on the number of data points (i.e., functional
volumes) and predictors in the model. It is a better idea to use a standardized
measure to quantify activation differences. Such a standardized measure is the effect
size that can be calculated for each statistical test on the first level. The effect size
quantifies the magnitude of the activation differences in units of measurement and is
fed into the statistical tests on the second level. For that purpose, the mean (or
differences in means) and the variability of the effect sizes are calculated and
compared in a term such as the t-term. The corresponding df for the t-distribution
can be calculated from the sample size and the number of cells in the experimental
design.

For the second-level analysis, we are more interested in assessing whether an
observed activation difference in our sample reflects a true relationship in the
population than in estimating the size of the effect. Therefore, the statistical
parameters mapped for the visualization of results are usually the test statistics
(such as t-values) rather than the effect sizes of the second-level tests. The test
statistics are thresholded at a given probability (e.g., p < 0.001) which means that
only parameters are considered that are high enough to let us assume that the
observed activation difference cannot be attributed to chance. For visualization
purposes, the statistical parameters that survived the statistical thresholding are
color coded and projected onto a structural MR image in standard coordinate space.
Besides from this height threshold, an extend threshold can be applied additionally.
Because it is very likely that the statistical parameter of a single spatially isolated
voxel exceeded the threshold by chance, it is recommended to specify a minimum
cluster size in voxels (e.g., k > 8) and ignore clusters of adjacent voxels if the
number of co-jointly activated voxels does not exceed this minimum cluster size.

At the end of all these processing steps (preprocessing, first- and second-level
analysis including thresholding) stands one statistical parametric map that informs
us about activation differences between experimental conditions. However, this
approach comes with one major downside that will be discussed and resolved in the
next paragraph.

20.3.4.1 Multiple Comparison Correction

In 2009, a wave of gloating newspaper articles was published in the popular media
sarcastically criticizing functional MRI. The opinions were based on an a study that
had been presented at the Annual Meeting of The Organization for Human Brain
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Mapping (OHBM) earlier that year. What had happened? In the study that is
available online as a conference poster (Bennett et al. 2009) the authors had put a
dead Atlantic salmon (originally bought for food consumption) into the scanner and
run structural and functional MRI on it. While the salmon was in the scanner, the
authors presented visual stimuli and “asked” the salmon to perform a task. Even
though the salmon did not respond to the task behaviorally (most certainly because
it was dead), the authors still ended up with BOLD time series and temporal
information on the sequence of task events that was eventually correlated with the
neurophysiological data. The authors set up a GLM and processed the data up to the
first level (because there was only one salmon involved) as discussed earlier, cal-
culated a contrast between experimental conditions and thresholded the resulting
t-map at p < 0.001 with an extend threshold of three adjacent voxels. Given that the
salmon was not alive during scanning and the task more suitable for human research
participants, results were strikingly surprising: Significant clusters lit up in both the
salmon’s brain and its spinal cord! Clearly, these results were easy bait for the
popular media and fueled skepticism toward neuroimaging in general. How can we
trust neuroimaging results in human research participant when even a dead fish
shows brain activity which looks like it was evoked by an experimental task? To
answer this question we need to take a closer look at a problem called the multiple
comparison problem and how it can be resolved in the context of fMRI.

As outlined in the previous paragraph, the rationale behind statistical hypothesis
testing is to calculate a probability by which the empirically observed difference (or
relationship) in the data was obtained given that there is no such relationship in
reality. If this probability is sufficiently low (e.g., below 0.001 %), we conclude that
the observed effect must reflect a true relationship. However, we should be aware
that in one out of 1000 cases, this conclusion would be wrong—simply because a
very low probability only makes things become unlikely but does not rule them out
entirely. A typical fMRI volume consists of ten-thousands of voxels. Because the
analysis is run separately for each voxel, the number of statistical tests is as high as
the number of voxels. Across all tests, the probability of erroneously assuming a
true relationship because of a very low p-value increases dramatically. Such errors
are called false positives (or alpha-errors) and describe a situation where we decide
to accept a statistic as evidence for a difference between experimental conditions
even though there is none in reality. The problem that arises from the massive
amount of statistical tests run during fMRI analyses is called the multiple testing
problem, or alpha error inflation. This is what happened in the dead salmon study:
Because of the mere number of comparisons, some voxels lit up by chance because
the high t-values suggested an activation difference even though the salmon was not
paying attention to the task (which we can infer from the behavioral data and the
fact that it was dead). Luckily for the neuroimaging community, there are various
methods that can be used to eliminate (or at least minimize) the multiple com-
parison problem.

When we conduct statistical inferences on second-level data we want to make
sure that we do not erroneously assume that a single voxel is active even though it is
not. Furthermore, we want to make sure that across all statistical tests, the chance of
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obtaining a false positive result is very low as well. We can ensure this by cor-
recting for the number of tests conducted. Because we control the alpha error
probability for a family of statistical tests, this procedure has been labeled family
wise error (FWE) rate correction. The standard method for this is the Bonferroni
correction, which accepts a family of statistical tests (such as in the entire brain) as
significant if the alpha error probability of each test in the family is below a
specified significance level that is divided by the number of tests in the family. That
is, if we consider a false positive rate of 0.05 % as acceptable and there are 10,000
voxels in our data set, we would consider a voxel active if the error probability of its
t-value fell short of 0.05/10,000 = 5.0e − 6. Applying the Bonferroni procedure
effectively minimizes the risk of false positive results but it comes with a major
downside. It is very conservative: Whenever we conduct a statistical test, there is
not only the risk of committing an alpha error (i.e., assuming a difference even
though there is none in reality) but also the risk of committing a beta error (i.e.,
assuming no relationship although there is one in reality). Both types of error
depend on each other: With an increasing statistical threshold, the probability of
committing an alpha error decreases but beta errors on the other hand become more
likely. Therefore, Bonferroni correction admittedly controls for alpha error com-
mission but it also increases the chance of committing a beta error. In the context of
fMRI there is reasonable doubt that the Bonferroni correction is the gold standard
for multiple comparison correction. The Bonferroni correction is appropriate for
families of independent statistical tests. In fMRI data, however, full independence
between all tests cannot be assumed: As outlined earlier, data points from neigh-
boring voxels are highly intercorrelated and these correlations are further amplified
by spatial smoothing during preprocessing. Therefore, the number of test families
that require correction is substantially lower than the amount of voxels in the brain,
leaving Bonferroni correction as a too conservative approach. The more appropriate
routine is the application of Gaussian random field theory (RFT) to control the
family wise error rate. RFT is a research body in mathematics that deals with
smooth statistical maps (such as our t-maps). RFT provides tools to estimate the
overall smoothness of the fMRI data set which depends on the degree of spatial
correlations between voxels in the raw data and the size of the Gaussian kernel
applied during smoothing. If the overall smoothness is known, the number of
resolution elements (resels) in the data set can be calculated. The number of resels
equals the number of independent observation in the data set and gives the amount
of test families for that we need to correct. From the number of resolution element,
we can determine the expected Euler characteristic (EC). In the context of func-
tional imaging, the EC gives the number of expected clusters in a smooth statistical
map after thresholding. Because the expected EC depends on the statistical
threshold, it is approximately equivalent to the probability of committing a family
wise error. Thus, the statistical threshold for the second-level analysis that corrects
for multiple comparisons by controlling the family wise error can be inferred from
the EC. This method has been implemented in most analysis software packages. To
come back to the dead salmon in the scanner: After controlling the FWE according
to Gaussian RFT no active voxel could be observed in its central nervous system.
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When we ask how we could trust neuroimaging results when even dead fish show
neural activation contingent with experimental tasks, the answer clearly is: When
we control for multiple comparisons!

20.4 Conclusion

The purpose of this chapter was to give an overview on how fMRI works. We have
covered the physical and physiological basics of the BOLD signal and discussed
processing steps and statistical analysis of BOLD time series in the context of
statistical parametric mapping. It would have been beyond the scope of this chapter
to discuss more advanced functional imaging methods than the mass univariate
approach which is the most common way to analyze fMRI data. For more in-depth
information on statistical parametric mapping, multivariate approaches to BOLD
fMRI data and the analysis of functional connectivity between different brain
regions during task performance, we would like to refer to the SPM textbook by
Friston et al. (2007) and the textbook by Huettel et al. (2009).
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Chapter 21
Structural MRI: Morphometry

Christian Gaser

Abstract Human brains are characterised by considerable intersubject anatomical
variability, which is of interest in both clinical practice and research. Computational
morphometry of magnetic resonance images has emerged as the method of choice
for studying macroscopic changes in brain structure. Magnetic resonance imaging
not only allows the acquisition of images of the entire brain in vivo but also the
tracking of changes over time using repeated measurements, while computational
morphometry enables the automated analysis of subtle changes in brain structure. In
this section, several voxel-based morphometric methods for the automated analysis
of brain images are presented. In the first part, some basic principles and techniques
are introduced, while deformation- and voxel-based morphometry are discussed in
the second part.

21.1 Introduction

The Jena psychiatrist Hans Berger became famous for the discovery of electroen-
cephalography. Less known, however, are Berger’s imaginative studies of brain
morphometry. He tried, for example, to estimate the cortical surface by gluing small
metal plates onto a post-mortem brain. Since the area and weight of a single metal
plate were known, the total weight of the plates was used in order to estimate the
total area of the cortex. Nowadays, computer-based methods use the same idea with
so-called triangulation. However, now the metal plates are replaced by small tri-
angles forming a computerised mesh that renders the shape of the cortical surface
and allows a reliable and accurate measurement. This new approach belongs to the
recently developed methods for the automated analysis of brain structure that are
referred to as ‘computational morphometry’ (Takao et al. 2010).
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Besides the use of computer algorithms, the availability of new imaging methods
played a seminal role in morphometry. These new imaging methods not only allow
the acquisition of images of the entire brain in vivo but also the tracking of changes
over time using repeated measurements. Thus, they represented a real advance
because previously post-mortem examinations were the only way to examine brain
structures.

The first imaging method that allowed mapping of cerebral structures in vivo
was pneumoencephalography. This procedure involved drainage of most of the
cerebrospinal fluid (CSF) from around the brain and replacement with air. The
ventricular system of the brain could then be identified on an X-ray of the skull.
However, this method proved to be very invasive and painful. It took until the70s of
the last century before computed tomography provided images of the brain in three
dimensions. The real breakthrough in imaging techniques, however, came with
magnetic resonance imaging (MRI), which allowed a much higher spatial resolution
without ionising radiation. This method has become the standard tool of macro-
scopic anatomy, both in clinical practice and in research. Another advantage of this
imaging method is that variable image contrasts can be achieved by using different
parameters for longitudinal (T1) and transverse (T2) relaxation times and proton
density. The signal intensities on T1, T2 and proton density relate here to specific
tissue contrasts. The most commonly used imaging sequence for MR-morphometry
is T1-weighted imaging because of its high contrast for brain parenchyma (see
Fig. 21.1). Other imaging sequences can be used to evaluate CSF spaces, oedema
or subacute stroke (T2 weighted), to enhance parenchymal abnormalities, such as
low-grade glioma (fluid-attenuated inversion recovery [FLAIR]), or to visualise
acute ischaemia (diffusion weighted).

In addition to the various methodological developments, morphometry has
gained increasing importance in the field of neuroscience because completely new

White matter 

Grey matter 

CSF

Fig. 21.1 T1-weighted MRI
scan. The small image (top
right) shows the location of
the axial slice (main image).
This sequence reveals a high
contrast for brain parenchyma
and the different signal
intensities relate to grey and
white matter and
cerebrospinal fluid
(CSF) [modified from (Gaser
2005)]
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applications have become possible. While in the early days the applications were
limited to the quantification of global parameters such as brain weight or brain
volume, nowadays a wide spectrum of applications is supported. This ranges from
the investigation of local morphometric changes in certain diseases up to the
detection of brain plasticity.

In this chapter, two different morphometric methods for the analysis of MR
images of the brain are presented. In the first part, some basic principles and
techniques are introduced, while two morphometric methods are discussed in the
second part that both work on a voxel-wise level.

21.2 Basic Principles

21.2.1 Spatial Normalisation

Brains are characterised by considerable intersubject anatomical variability. In order
to analyse brains across different subjects, an adjustment to a reference system
using a stereotactic or spatial normalisation is required. This permits the analysis of
brains in a standardised space or coordinate system. However, this procedure is also
useful for brain morphometry and consequently a variety of methods based on this
idea exists.

In order to spatially normalise brain images, it is first necessary to define a
standardised coordinate system by using specific anatomical landmarks. The most
widely used reference system is the Talairach atlas proposed by Talairach and
Tournoux (1988). The basic idea is to define the anterior and posterior commissures
and several points relative to them to align and scale a brain image. The anterior
commissure is the origin of the coordinate system and all locations within the brain
can now be defined with standardised coordinates in millimetres (Fig. 21.2). This
allows the comparison of anatomical localisations between different brains and even
different studies.

The adjustment due to spatial registration can be achieved in different ways
(Fig. 21.3). The simplest procedure is to only correct the position of the images, for
which displacements and rotations are applied. The image size (or brain size)
remains unchanged, which is necessary, for example, for brain images of the same
subject, in longitudinal (serial) measurements over time. Since image size is not
changed, this special case is also referred to as ‘rigid body transformation’. In
contrast, images of different subjects need to be additionally corrected for image
size by scaling or resizing the image. Furthermore, for a full affine transformation,
an additional shearing of the image can be applied (Fig. 21.3). Since the adjustment
is done for the entire image in the same way (or linearly), the term ‘linear spatial
normalisation’ is used.

In contrast to linear normalisation, nonlinear normalisation also corrects for local
differences between two brains. For this, images are locally warped (deformed)
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y

Fig. 21.2 Talairach coordinate system. The coordinate origin of the Talairach space is defined by
the anterior commissure (CA). From here, all locations in the brain can be specified as coordinates
in millimetres. The line through the anterior and posterior (CP) commissures is used for aligning
the coordinate system. The image shows the extent in the y-direction (anterior-posterior) and
z-direction (inferior-superior). The x-axis (not shown here) determines the left-right direction
[modified from (Gaser 2005)]

Translation Scaling 

Rotation Shearing 
Linear (affine) normalisation Non-linear normalisation 

Fig. 21.3 Linear and nonlinear spatial registration. The left side of the figure shows the four
possible linear transformations that are applied to the entire image. A special case is the so-called
rigid body transformation. Here, the image is adjusted only by translations and rotations. An
additional change in image size can be achieved by scaling and shearing the image. The
aggregation of these linear transformations is known as ‘affine normalisation’. In contrast to linear
normalisation, nonlinear normalisation also corrects for local differences between two brains (right
side of the figure). For this, images are locally warped (deformed) until the differences between
them are minimised (modified from (Gaser 2005))
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until the differences between them are minimised (Fig. 21.3). The cost of com-
puting such local deformations is much higher and increases with the required
spatial resolution of the deformations. The advantage of nonlinear normalisation,
however, is the greater accurate adjustment of the brains to the reference brain.

Linear and nonlinear normalisation can be performed using different normali-
sation algorithms [a detailed overview is given in (Toga 1999)]. Landmark-based
methods use manual label points (landmarks) in the brain. These corresponding
points are defined in all brains and are then aligned. Contour-based methods use not
just a few points or landmarks but the whole contour of a region, such as the outline
of the corpus callosum in the sagittal plane or even the entire surface of the cortex
as a three-dimensional contour (Thompson et al. 1997). Finally, intensity-based
methods exist which use the local image intensity in order to achieve a spatial
alignment between the images. Here, the squared sum of the signal intensity dif-
ferences is used, for example, as an indicator of the similarity between two images.
By minimising these intensity differences, an alignment of both images is achieved.

21.2.2 Segmentation

Segmentation algorithms are among the most commonly used methods in brain
morphometry. The aim of these methods is to segment an image into separate
anatomical tissue compartments, such as grey matter, white matter and CSF, after
removing non-brain parts. With more sophisticated approaches, it is also possible to
segment pathological changes, such as tumours, lesions or stroke-affected regions.
However, in addition to the T1 images, this usually requires MR sequences, such as
T2 weighting or FLAIR, where the pathological changes can be better differentiated.

A plethora of semi-automated and automated algorithms exists, such as intensity
thresholding, region growing, classifiers, clustering, Markov random field models,
artificial neural networks, deformable models or atlas-guided approaches (Pham
et al. 2000). From all of these examples, one of the most commonly used methods
will be presented here in detail: the Gaussian mixture model, which belongs to the
group of classifiers (Ashburner and Friston 2005). First, an intensity histogram of
the image is estimated that plots the frequencies of the image intensities on the
y-axis (Fig. 21.4, bottom left). The simplified example in Fig. 21.4 shows only four
different intensity distributions. Here, the smallest image intensities are assigned to
the background (left part of the histogram), followed by CSF, grey and white matter
with the highest image intensity in the right part of the histogram. Gaussian curves
that can differ with regard to height and width are now fitted into this intensity
distribution. The maximum of each of these four Gaussian curves represents the
mean intensity value for the respective tissue compartment. For the example of grey
matter, this means that at the peak maximum the probability that this image voxel
belongs to grey matter is largest. The more the image intensity deviates from this
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value, the less likely it is grey matter and is rather CSF (at lower intensity) or white
matter (with higher intensity).

The intensity distributions for each tissue compartment overlap because at a
common voxel size of 1 × 1 × 1 mm3 any given voxel might contain more than
one tissue. This is referred to as ‘partial volume effect’ and most often occurs at the
border between brain parenchyma and CSF, at boundaries between grey and white
matter, and in structures where white matter fibres cross the grey matter. These
partial volume effects can be modelled explicitly in order to estimate a more
accurate segmentation (Tohka et al. 2004).

To guide tissue segmentation, additional tissue probability maps can be used to
consider prior anatomical knowledge about the spatial distribution of different
tissues (Ashburner and Friston 2005). Image intensity and prior knowledge can then
be combined via a Bayes estimator. In fact, prior anatomical knowledge is used to
drive and restrict the tissue segmentation algorithm (Fig. 21.4, right). While this
may be valuable as long as the prior probability maps match the subject’s tissue
distribution, it might lower segmentation accuracy in all populations that deviate
from these maps (e.g. children, Alzheimer’s disease patients) (Wilke et al. 2008).

Estimated grey matter
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Fig. 21.4 Image segmentation using a priori information. First, the image intensities of the T1
image (upper left) are used to plot their frequencies in a histogram. Several peaks—corresponding
to different image intensities of the tissue compartments—can be differentiated. In the next step,
Gaussian mixture curves for each tissue compartment are fitted into the histogram in order to
estimate the probability that a voxel belongs to that tissue (lower left). A map for grey matter is
shown (upper right) with the estimated probability for two selected locations (red circles). Based
solely on a similar image intensity, the cerebral and extracranial circles exhibit a similar probability
for belonging to grey matter. This can be adjusted by combining the image intensity-based
information with prior information (below) using a Bayesian approach [modified from (Gaser
2005)]
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21.3 Voxel-Based Methods

Voxel-based methods allow the analysis of each voxel in the MR data. This
voxel-wise analysis is possible because all brains are adjusted by means of a spatial
normalisation to a standard anatomical space. Thus, each voxel relates to the same
corresponding anatomical structure across all brains, which can be assumed if a
high-dimensional nonlinear spatial normalisation is applied.

While different voxel-wise measures can be used for that approach, the most
common approach is to segment brains into different tissue compartments and
analyse the local distribution for a specific tissue. This method is referred to as
‘voxel-based morphometry.’ Another approach is to analyse the deformations that
are necessary in order to non-rigid deform a brain to adapt it to another brain.
Because this approach is based on deformations, it is known as ‘deformation-based
morphometry.’

Prior to statistical analysis, the images have to be spatially smoothed (filtered)
with a Gaussian kernel. The reason for this is threefold. First, parametric tests
assume that the data follow a Gaussian distribution and after smoothing with a
Gaussian kernel the data are more normally distributed according to the central limit
theorem (Nichols and Hayasaka 2003). Second, smoothing accounts for small
interindividual differences in local brain anatomy that remain after spatial nor-
malisation. Finally, smoothing enables greater sensitivity for effects that approxi-
mately match the size of the smoothing kernel according to the matched filter
theorem (Ashburner and Friston 2000).

In the next step, smoothed images can then be compared in each voxel
(Fig. 21.5). For statistical analysis, usually a general linear model is used. This
model—the equivalent of a multiple regression—incorporates a number of different
statistical models ranging from simple correlation to repeated measures ANOVA in
longitudinal designs. The result is a statistical parametric map, which allows a
statistical statement about the initial hypothesis in each voxel. However, due to the
mass-univariate approach, a correction for multiple comparisons has to be applied.
The most frequently used correction is based on the Gaussian random field theory
(Worsley et al. 1996) that enables a correction on the voxel or cluster level
(although a correction on the more theoretical set level is also possible) (Friston
et al. 1996). Another option for the consideration of the issue of multiple com-
parisons has become very popular in recent years. This method is based on the
adaptive control of the false discovery rate (FDR) and was originally proposed for
microarray data to identify genetic effects (Benjamini and Hochberg 1995). Finally,
permutation tests do not assume normally distributed data and enable a correction
for multiple comparisons particularly for small sample sizes. They use random
shuffles of the data to attain a correct distribution of a test under a null hypothesis
(Nichols and Holmes 2002). Again, a correction on the voxel or cluster level is
possible. Another possibility is to use a correction based on threshold-free cluster
enhancement (TFCE) that combines both levels by accumulating cluster-like local
spatial support at a range of cluster-forming thresholds (Smith and Nichols 2009).
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Since the analysis is made on a voxel-wise level, this approach offers several
advantages over conventional morphometry. One such advantage is the reduction of
partial volume effects, since a structural change can be detected in each voxel of the
brain and not only in the entire structure. Thus, structures that are only partially
altered can be detected with higher sensitivity compared to region-based methods.
Furthermore, an analysis can not only be carried out in predefined regions but also
throughout the brain. Large sample numbers can be examined with high reliability
due to the automated measurement. These advantages might explain the great
popularity of these methods in recent times.

21.3.1 Deformation-Based Morphometry (DBM)

DBM is based on the application of nonlinear registration procedures to spatially
normalise one brain to another one. The simplest case of spatial normalisation is to
correct the orientation and size of the brains. In addition to these global changes, a
nonlinear normalisation is necessary to minimise the remaining regional differences
by means of local deformations. If this local adaptation is possible, the deforma-
tions now reveal information about the type and localisation of the structural dif-
ferences between the brains and can undergo subsequent analysis (Fig. 21.6).

General linear 
model

Reference 
brain 

Individual 
brains 

Individual voxel-
wise measurements 

Statistical
parametric map . . . . . . 

Fig. 21.5 Principle of a voxel-based analysis. For a voxel-wise analysis, it is first necessary to
spatially register all brains to a reference brain. Now, in each voxel a morphometric parameter (e.g.
grey matter volume) is estimated that can be statistically analysed using a general linear model.
The result is a statistical parametric map which allows a statistical statement about the initial
hypothesis in each voxel [modified from (Gaser 2005)]
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Figure 21.6 shows an example for a single patient with schizophrenia. A first
baseline scan was acquired at the beginning of his first psychotic episode and a
subsequent scan was acquired after 7 months where the enlarged ventricles are
visible with the naked eye. The second image is warped to the baseline scan by
introducing high-dimensional deformations. Differences between both images are
minimised and are now coded in the deformations. Finally, a map of local volume
changes can be quantified by a mathematical property of these deformations–the
Jacobian determinant. This parameter is well known from continuum mechanics
and is usually used for the analysis of volume changes in flowing liquids or gases.
The Jacobian determinant allows a direct estimation of the percentage change in
volume in each voxel and can be statistically analysed (Gaser et al. 2001). This

Baseline After 7 months Jacobian determinant 
(volume changes) 

Zoom Zoom 

Fig. 21.6 Principle of DBM. Left This example shows two T1 images of a male patient with
schizophrenia at his first episode and a subsequent scan after 7 months. In the enlarged views
shown underneath, the larger lateral ventricles at the second time point can be clearly seen. The
principle of DBM is to warp the second scan to the baseline scan by introducing high-dimensional
deformations. Once this is achieved, the differences between both images are encoded in the
deformations applied for the warp. These deformations can then be used to calculate volume
changes by using the Jacobian determinant (right images) [modified from (Mietchen and Gaser
2009)]
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approach is also known as ‘tensor-based morphometry’ because the Jacobian
determinant represents such a tensor.

A deformation-based analysis can be carried out not only on the local changes in
volume but also on the entire information of the deformations, which also includes
the direction and strength of the local deformations (Gaser et al. 1999). Since each
voxel contains three-dimensional information, a multivariate statistical test is nec-
essary for analysis. A multivariate general linear model or Hotelling’s T2 test is
commonly used for this type of analysis (Gaser et al. 1999; Thompson et al. 1997).

The principle of DBM can be applied to both cross-sectional and longitudinal
data. In a cross-sectional design, typically brain images of two groups are warped to
a reference image. Thereafter, the different deformations to the reference image
between the two groups can be compared. On the other hand, longitudinal data
comprise measurements of the same subject at different time points. Here, the idea
of DBM is slightly modified. Now, the baseline image at the first time point serves
as a reference image. All subsequent images of a subject are warped to this baseline
image and the individual changes over time can be obtained. This allows the
tracking of subtle changes over time, which cannot be detected by conventional
morphometry.

21.3.2 Voxel-Based Morphometry (VBM)

VBM provides the voxel-wise estimation of the local amount or volume of a
specific tissue compartment (Ashburner and Friston 2000). VBM is most often
applied to investigate the local distribution of grey matter, but can also be used to
examine white matter. However, the sensitivity for detecting effects in white matter
is limited due to the low intensity contrast in large homogeneous white matter
regions with only small changes in intensity. The concept of VBM incorporates
different preprocessing steps: (1) spatial normalisation to a reference brain (tem-
plate), (2) tissue classification (segmentation) into grey and white matter and CSF
and (3) bias correction of intensity non-uniformities. Ashburner and Friston (2005)
proposed an approach whereby all three steps are combined within the same gen-
erative model. This model is based on a mixture of Gaussians and additionally
considers smooth intensity variations and nonlinear registration using tissue seg-
mentations. This approach allows for more accurate and reliable results than simple
serial applications of each single step.

Further improvement can be achieved if high-dimensional spatial registration
techniques such as diffeomorphic registration approaches are used. Diffeomorphic
registrations are based on a large-deformation framework and not only provide a
number of elegant mathematical properties but generally allow for a better accuracy
of the spatial registration (Ashburner 2007).

Local deformations are now used in order to reduce structural differences between
original and template images. This facilitates a precise comparison within brain
regions between different subjects. However, existing structural differences between
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the brains are now largely reduced and the sensitivity for detecting these effects in
the statistical analysis is therefore minimised. Thus, the volume of a particular tissue
within a voxel has to be preserved. This is attained by multiplying (or modulating)
voxel values in the segmented images by the Jacobian determinants that are derived
from the spatial registrations. This process is referred to as ‘modulation.’
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Chapter 22
Diffusion Tensor Imaging
(DTI) and Tractography

Theodor Rüber, Christian Erich Elger and Bernd Weber

Abstract Diffusion Tensor Imaging is a Magnet Resonance Imaging-technique that
allows for the non-invasive in vivo assessment and delineation of white matter tracts.
TheMagnetResonance signal is sensitized to thenatural diffusionprocessofprotonsand
a tensor model is fitted to the resulting data. By following the direction of the diffusion
maximum across the brain, the process of tractography yields three-dimensional
reconstructions of white matter tracts, which may be microstructurally analyzed by
means of diffusivity parameters. Before the advent ofDiffusion Tensor Imaging, studies
of connectional anatomy in humans could only be conducted post-mortem. Diffusion
Tensor Imaging has shifted neuroscientific attention from single brain regions to the
networks connecting them. This, however, has not only extended our knowledge on
brain networks but also on single loci being part of these networks. Although the
biological substrates of Diffusion Tensor Imaging-derived parameters remain unclear to
a certain extent, Diffusion Tensor Imaging and tractography have successfully informed
many studies in the field of age- or training-related neuronal changes. In addition, it has
been found to be applicable in clinical settings. However, Diffusion Tensor Imaging
studies covering the fields of neuroeconomics and behavioral psychology are sparse.
Two pioneer studies from these fields have successfully related personality character-
istics of interest to Diffusion Tensor Imaging- and tractography-derived measures. This
chapter tries to give an introduction to themechanisms ofDiffusion Tensor Imaging and
will work to explain its utilization while highlighting limitations of Diffusion Tensor
Imaging as well as examples of its successful applications.

22.1 Introduction

Diffusion Tensor Imaging (DTI) is a modern Magnet Resonance Imaging (MRI)-
method which allows to examine the microstructural status of white matter in vivo
and non-invasively. Tractography is a modeling technique which uses DTI data to
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three-dimensionally reconstruct white matter pathways. The advent of DTI and
tractography has revolutionized neuroscience in the last 25 years by opening an
avenue for the study of white matter connections in living human subjects. Before
that, white matter studies in humans could only be conducted post-mortem. Tracing
neuronal connections in the brain dates back to the work of the nineteenth century
neuroanatomists: Carl Wernicke was among the first to relate clinical pathologies to
lesions of neuronal connections (Wernicke 1874). Joseph Jules Dejerine used
myelin stains to study (so-called Wallerian) degeneration in patients which hap-
pened anterograde and retrograde to focal lesions (Dejerine and Dejerine-Klumpke
1895). Modern techniques of tract tracing exploit the active axonal transport
mechanisms of neurons in animals (Dauguet et al. 2007; Johansen-Berg and
Rushworth 2009; Mesulam 2005). Here, a tracer substance including small
fluorescent molecules, neurotoxins, latex microspheres, or viruses is injected into a
region of interest and taken up by the cell. This procedure is followed by a waiting
period of several days in which the tracer is either transported from the cell body to
the axon terminals (anterograde tracing) or from the axon terminals to the cell body
(retrograde tracing). The animal is then sacrificed; the brain is fixed, sectioned and
post-processed to allow for visualization of the tracer substance (Johansen-Berg
and Rushworth 2009). The results may be used to localize neurons of origin,
visualize pathways “hidden” in white matter, and to spot terminal fields. For
obvious reasons, this procedure cannot be applied to humans. Thus, core questions
of human neuroanatomy had to remain unanswered. In their editorial published
1993 in Nature, Francis Crick and Edward Jones concluded that “Human neu-
roanatomy is so backward because we cannot use the common tracer methods on
humans […]” and underlined the need for new techniques to the study of the human
brain (Crick and Jones 1993). DTI has been named as “most concrete response to
their appeal” (Catani 2007). Functional MRI (fMRI) had shifted attention to cortical
areas and their functions leading to what has been termed a “new sort of
phrenology” (Mesulam 2005), and to the consideration of white matter only as
passive infrastucture. DTI and tractography have pushed white matter back in the
focus of neuroscientific attention after a long time of stagnation. This is voiced in
the common alteration of the colloquialism “gray matters” to “white matters” in the
neuroscience community.

A detailed introduction to the mechanisms and applications of DTI is beyond the
scope of the current chapter. Rather, this chapter aims to provide a preliminary
understanding of DTI, allowing the reader to value the opportunities but be aware
of the limitations of this recent imaging modality. Emphasis of this chapter will be
analysis approaches to DTI data and applications of DTI and tractography in order
to give it a practical thrust. The principles of DTI will be briefly reviewed before
introducing its most commonly used measures. Tractography will then be discussed
and common approaches of DTI-tractography data analysis will be presented,
including pitfalls and limitations of this method. Furthermore, common DTI
applications for clinical purposes as well as research studies of anatomy and
plasticity will be reviewed. Finally, two DTI-studies related to the field of neu-
roeconomics will be discussed and a conclusion from this chapter will be drawn.
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22.2 Basic Principles

DTI is a specific modeling technique of diffusion-weighted datasets (Basser et al.
1994b; Pierpaoli and Basser 1996). Diffusion-Weighted Imaging (DWI) is a variant
of conventional MRI (Le Bihan et al. 1986; Taylor and Bushell 1985). DWI/DTI
may be performed with existing MRI technology without the additional use of new
equipment or contrast agents. The advantages related to MRI, thus, also apply to
DTI: It is non-invasive, may be performed in vivo, is harmless to the subject as long
as security guidelines are being followed, is widely available and relatively inex-
pensive. In DWI, the MRI signal is sensitized to the tissue water diffusion rate.
From the atomistic point of view, molecular diffusion is defined as a random walk
of molecules that is driven by thermal energy. Diffusion of particles was first
observed by the Scottish botanist Robert Brown in 1827 who interpreted the
movement as “essence of life”; scientific explanation of molecular diffusion was
given by Albert Einstein almost 80 years later (Einstein 1905). The process of
diffusion may well be pictured by means of a simple experiment: Some drops of ink
are carefully poured into a glass of water. At first, the ink will be clearly distin-
guishable in one area of the glass but will then diffuse all over and be uniformly
dissolved. In the middle of the glass, molecules are not hindered by the container.
Their diffusion process is nondirectional, whereas close to the container walls,
diffusion is directional. Directionally unrestricted diffusion is described as isotropic,
whereas directional diffusion is described as anisotropic. It is easy to see how
diffusion will be anisotropic in coherent white matter bundles, such as in the
internal capsule, where connections descend from the cortex to the spine, and how it
will be isotropic in the fluid-filled ventricles. By means of a magnetic field gradient,
the MR signal may be sensitized to diffusion. The most basic form of diffusion
imaging, DWI, relies on a model of a three-dimensional isotropic Gaussian dis-
tribution and only yields a scalar measure of the diffusion rate, the so-called
apparent-diffusion coefficient (ADC), indicated on a grayscale specifically for every
voxel. A voxel (volumetric pixel) is one of many rectangular volume elements
constituting a regularly segmented three-dimensional space. In brain imaging, one
full measurement of the head consists of many thousands voxels and is termed
volume. In a diffusion-weighted volume, fluid-filled ventricles appear dark, whereas
regions of restricted diffusivity such as gray matter or white matter fiber bundles
look bright. However, diffusion-weighted datasets may also be used to model the
underlying diffusivity characteristics in each voxel. The most common
three-dimensional model mapping of anisotropic diffusion as a function of spatial
location is the diffusion tensor, introduced by Basser et al. (1994a, b). In this model,
the tensor is fully described by a 3 × 3 matrix of variances and covariances.

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
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Anisotropic diffusion has six degrees of freedom. This is why at least six dif-
fusion measurements of the whole brain in several different directions (i.e., six
volumes) are needed to derive the diffusion tensor matrix. However, it is intuitive
that diffusion measurements in more than six directions will yield a more accurate
diffusion tensor model and are most commonly applied (Hasan et al. 2001;
Papadakis et al. 2000). In any case, one additional volume without diffusion-
weighting, the b0, has to be acquired in every sequence which serves as a reference
image. Once the tensor model is fitted, one can estimate the diffusivity in any
arbitrary direction. Diagonalization of the tensor matrix results in a set of three
orthogonal eigenvectors ê1, ê2, and ê3 representing the major, medium and minor
principle axes of diffusivity modeled. The corresponding eigenvalues λ1, λ2, and λ3
quantify the apparent diffusivities along these axes. It is the most basic premise
underlying DTI that molecular diffusion happens easier along the axis of coherent
white matter bundles, but will be hindered by axon membranes and other white
matter barriers perpendicular to it (Hagmann et al. 2006; Pierpaoli et al. 1996). The
major principal eigenvector ê1 indicating the direction of the greatest apparent
diffusivity λ1 is thus thought to be parallel to tract orientation (Moseley et al. 1990).
Since the three vectors are orthogonal to each other, the medium and minor prin-
ciple eigenvectors ê2 and ê3 are perpendicular to the tract orientation. The diffusion
tensor is best visualized by an ellipsoid pointing in the direction of maximal dif-
fusivity. In this illustration, the eigenvectors (ê1, ê2, ê3) define the directions of the
principle axes and the respective radii are defined by the eigenvalues (λ1, λ2, λ3).
The ellipsoid will be orbital if diffusion is isotropic and may be cigar-shaped if
diffusion is anisotropic (Fig. 22.1).

In this context, it is important to note that the same combination of eigenvalues
(i.e., an ellipsoid with the same shape) may be caused by different neuroanatomical
underpinnings. Anisotropy, as modeled by the diffusion tensor, may be low because
of “truly” isotropic diffusion (such as in the fluid-filled ventricles) or because of
orthogonal but highly coherent fiber bundles crossing within the respective voxel.
From this perspective, it becomes obvious how limits are set to the validity of
tractography by the inadequacy of the tensor model (please see paragraph on
BIOLOGICAL SUBTRATES OF DTI). Another problem concerns the display as
well as the interpretation of a 3 × 3 matrix for every one of several thousand voxels
within a brain volume. It is often tried to simplify things by converting the diffusion
tensor matrix to a scalar measure. The most commonly used scalar DTI measures
include fractional anisotropy (FA), mean diffusivity (MD), axial and radial diffu-
sivity (AD, RD). Importantly, these measures may inform researchers about the
underlying white matter status since the diffusion tensor from which they are
derived does not only model the orientation of anisotropic diffusion (which these
scalar measures do not contain) but also the magnitude and the degree of diffusion
anisotropy. In neuroscience research, FA is the most commonly used scalar. It is
rotationally invariant, ranges between 0 and 1 and describes the degree of the
anisotropy of the diffusion process.
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Values close to 0 indicate that diffusion is isotropic (λ1 ≈ λ2 ≈ λ3), whereas
values close to 1 mean that it is anisotropic [(λ1 ≫ λ2 Ʌ λ3) V (λ1 Ʌ λ2 ≫ λ3)].
However, these extreme values are not reached in physiological environments. In the
brain, minimal FA values (approx. 0.1) are normally measured in the ventricles and
maximal FA values (approx. 0.85) in the splenium of the corpus callosum (Pierpaoli
and Basser 1996). FA is claimed to sensitively detect white matter alterations such as
degeneration or plastic remodeling (Pierpaoli and Basser 1996; Pierpaoli et al.
1996). A common albeit not always correct notion is that aging and a loss of
cognitive functions is associated with decreased FA values, whereas learning and
rehabilitation is accompanied by increased FA values (Bengtsson et al. 2005; Engvig
et al. 2012; Landi et al. 2011; Lebel et al. 2012; Lindenberg et al. 2010). This FA
decrease/increase is usually explained by increased/decreased diffusivity perpen-
dicular to the principal diffusion direction. It is thought to reflect decreased/increased
fiber organization or myelination on a microstructural level. However, as outlined
below one should be wary of inferences on neuroanatomical underpinnings of DTI
measures (please see paragraph on BIOLOGICAL SUBTRATES OF DTI).

Fig. 22.1 Illustrations of the diffusion eigenvectors (left), the corresponding tensor ellipsoid
(middle), and a schematic grid of voxels (right). The grid of voxels illustrates a fractional
anisotropy map with additional tensor ellipsoids which are depicted as ellipses. The grayscale
indicates fractional anisotropy ranging from close to zero (black) to almost one (bright gray).
Diffusion in the upper right corner is isotropic and apparent diffusivity is rather low as it would be
expected in gray matter. In the lower left corner diffusion also is isotropic; however, here apparent
diffusivity is rather high as it would be expected in the ventricles. From the upper left corner to the
lower right corner, diffusion is anisotropic and most major principal eigenvectors are oriented
along this diagonal axis. This is how a diffusion tensor image of a fiber tract descending this way
may look

22 Diffusion Tensor Imaging (DTI) and Tractography 415



Beside FA, MD is another rotationally invariant scalar. It measures the total diffusion
within a voxel.

MD ¼ 1
3
ðk1 þ k2 þ k3Þ

In many cases, MD is inversely related to FA. It typically ranges between
approximately 2 × 10−3 in the ventricles and 0.7 × 10−3 in white matter. It is not as
commonly used in neuroscience research as FA, however, MD in the clinical
practice has proven useful for the early detection of ischemia (lack of blood supply
leading to stroke) in white matter (Mori and Barker 1999). It is important to note
that even measures of anisotropy, such as FA, cannot represent the tensor shape.
Just as for the diffusion tensor, the same FA value may be caused by different
combinations of eigenvalues. For example, a disc-shaped and a cigar-shaped
ellipsoid are properly described by the same FA value. See Fig. 22.2 for an illus-
tration of the described DTI indices.

In the search of scalar measures being more tightly connected to the tensor shape
and distribution, the use of AD and RD has been suggested (Song et al. 2002). AD
is equivalent to the major principal eigenvalue and RD is equivalent to the average
of the medium and minor principal eigenvalues.

AD ¼ k1

RD ¼ k2 þ k3
2

AD and RD are often subjects to a second look at the data which is taken to shed
light on the microstructural correlates of previously observed FA alterations.
However, for reasons given below, their use has been heavily criticized (please see
paragraph on BIOLOGICAL SUBTRATES OF DTI).

22.3 Tractography

Just as diffusion-weighted data becomes a lot more interesting when tensor models
are applied, diffusion tensor data becomes a lot more interesting with the applica-
tion of tractography (Basser et al. 2000; Jones et al. 1999; Mori et al. 1999; Mori
and van Zijl 2002). Tractography is a powerful aid for the interpretation of DTI
data. It has been developed “to clarify the orientational architecture of tissues by
integrating pathways of maximum diffusion coherence” (Hagmann et al. 2006).
Tractography is built on DTI’s most basic premise that the major principal eigen-
vector ê1 is oriented parallel to tract orientation. By following the direction of
the diffusion maximum from voxel to voxel across the brain, the process of trac-
tography yields beautiful three-dimensional models of white matter pathways
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(see Fig. 22.3) which show striking correspondence with classical neuroanatomical
descriptions (Catani et al. 2002; Catani and Thiebaut de Schotten 2008).

Tractography is, however, not only a means of visualization, but may, even more
importantly, be used as delineator for regions of interest (ROI) in the analysis of
DTI measures (see paragraph on ANALYSIS OF DTI DATA). Furthermore,
tractography is not only a method for qualitative analysis (that is, answering the
question whether a certain white matter voxel belongs to a tract or not) but also a
quantitative method: As set out below, tractography yields measures quantifying the
degree of connectivity. The process of tractography may be structured along three
keywords (Soares et al. 2013): seeding, propagation, and termination. Seeding
describes the delineation of one or several voxels as a ROI from which the tracts
will be drawn. ROIs may be delineated manually or derived from brain atlases and
registered to the individual brain (exactly as it is done for quantitative analysis of
diffusivity parameters; see paragraph on ANALYSIS OF DTI DATA). Once
tractography is started, fiber pathways, also termed “streamlines,” are initiated in
every voxel included in the seed ROI and gradually propagated through the tensor

Fig. 22.2 Different displays of a DTI brain volume of a 25 year old healthy female. In the upper,
middle brain the lines as well as the colors indicate the orientation of the major principal
eigenvectors. The colors do so according to the most basic red-green-blue (RGB) color coded
scheme (Pajevic and Pierpaoli 1999). Voxels in which the principal direction of diffusion is
oriented along the left-right, anterior–posterior, or superior–inferior axes are visualized in red,
green, or blue. Abbreviations: FA fractional anisotropy; L1: λ1; L2: λ2; L3: λ3; MD mean
diffusivity. Please note how coherent and unidirectional fiber bundles (such as the corticospinal
tract) appear bright in L1 but rather dark in L2 and L3 (i.e., it shows high axial but low radial
diffusivity values)
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field. Common tractography algorithms fall in two main categories: deterministic
and probabilistic tractography (Chung et al. 2011; Descoteaux et al. 2009; Mori and
van Zijl 2002). In deterministic tractography, streamlines simply follow the
direction of the major principal eigenvector ê1 in three dimensions. Whenever the
streamline reaches the edge of another voxel, it is reoriented according to ê1 of this
other voxel. However, signal noise, subject movement, and artifacts as well as the
inherent inadequacy of the tensor model (see paragraphs on BASIC PRINCIPLES
above and BIOLOGICAL SUBSTRATES OF DTI below) produce uncertainty,
which is ignored by deterministic algorithms. Probabilistic tractography on the
other hand incorporates the uncertainty of the estimation. Hence, it does not result
in well-defined binary maps (“tract” or “no tract”) but in a probability map rep-
resenting the likelihood of any voxel to be connected with the seed region. These
probability maps are most commonly generated by iterations of the streamline
process. In other words, the local tensor is interpreted as a probability density
distribution and many random samples are drawn from this distribution (Behrens
et al. 2003b; Koch et al. 2002). The more streamlines emanating from the seed
region cross a certain voxel on their way through the tensor field, the higher the
so-called structural connectivity between this voxel and the seed region is.
However, it should be kept in mind that these connectivity values are “best possible
guesses” and that they should not be interpreted as anatomical fiber count, which is
commonly done (Jones et al. 2013). One valuable feature of probabilistic tractog-
raphy is that it may be applied with multi-fiber models (Behrens et al. 2007). These
models have been developed to tackle the problem of fiber tracking in a
multi-orientation field (e.g., regions where fibers cross). Anatomical regions rep-
resented by voxels with several “major” principal eigenvectors are completely

Fig. 22.3 Two-dimensional (left) and three-dimensional (right) rendering of two corticospinal
fiber tracts reconstructed by means of probabilistic tractography. The tracts presented are canonical
tracts: probabilistic tractography had been applied to several subjects and the resulting individual
tracts were normalized, converted to binary images and then summed. Color brightness indicates
the degree of voxel-by-voxel overlap of the individual normalized tracts. The canonical tracts are
superimposed onto a template brain from the Montreal Neurological Institute. FSL’s diffusion
toolbox (FDT) was used for image preprocessing and tractography (Behrens et al. 2003b; Smith
et al. 2004)
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meaningless as a subject to deterministic tractography. It is important to note that in
the majority of cases more than one seed ROI is necessary to single out a specific
tract of interest. For this purpose, additional ROIs have to be defined and related to
the seed ROI with logical operators such as “AND,” “OR,” and “NOT.” For
example, in FSL’s diffusion toolbox (Behrens et al. 2003b; Smith et al. 2004) one
may define a “waypoint mask,” “exclusion mask,” or a “termination mask.”
“Waypoint masks” are related with a logical “AND” to the seed ROI. That is, all
tracts have to pass this ROI on their way through the tensor field, while all others
are being discarded. If several “waypoint masks” have been defined, the logical
“AND” may be set to a logical (inclusive) “OR,” meaning that all tracts have to
pass at least one of the “waypoint masks” in order to be kept. “Waypoint masks”
and “exclusion masks” are both connected to the seed region with a logical “NOT,”
however, there is one crucial difference: Whereas pathways that have come in touch
with “exclusion masks” will be discarded as a whole, pathways that have contact
with “termination masks” will only be stopped but not discarded. That is, the
pathway from the seed ROI to the “termination mask” will be kept as result but
cannot propagate any further. Obviously, pathways are not only stopped by “ter-
mination masks” but streamlining is also aborted based on criteria inherent to the
respective tractography algorithm used. These criteria have been introduced to
prevent streamlines from propagating through vectorial fields with great uncertainty
of estimation. Common termination criteria include a minimum FA threshold of 0.2
and a turning angle threshold of roughly 60°.

22.4 Biological Substrates of DTI

It is unquestionable that DTI and tractography yield useful insights into neu-
roanatomy. However, big challenges lie in the verification of virtual fiber bundles as
well as in the interpretation of diffusivity measures in terms of their underlying
neuronal substrates. Approaches to face these challenges include DTI of objects of
known structure, such as physical phantoms (Perrin et al. 2005) and validation
against anatomical data acquired by the use of other methods (Johansen-Berg and
Rushworth 2009; Lawes et al. 2008). It is easy to see how even the most complex
physical phantom will fail as an adequate model of neuronal tissue. The direct
validation of DTI indices and tractography performance against anatomical
knowledge gained by the application of complementary methods is, thus, indis-
pensable. One elegant study (Dyrby et al. 2007) has validated tractography in post-
mortem brains of three minipigs by comparing the results of probabilistic tractog-
raphy with results obtained from two established tracer methods. When inspecting
virtual fiber bundles in the light of fiber trajectories identified by one of the tracers,
overlaps of around 80 % were reported. Disjunct parts were due to false-negative as
well as false-positive tractography results. Tractography had difficulties identifying
the termination point of tracts originating from/terminating in subcortical gray
matter, which lead to false-positive results. False-negative, “spurious” fibers were
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observed in anatomical regions of high fiber complexity (fibers crossing, kissing,
spreading…). It should be noted that approximately one- to two-thirds of all voxels
within a skull-stripped DTI brain volume has been estimated to cover these
anatomical regions with high fiber complexity (Behrens et al. 2007; Jeurissen et al.
2012). This sets limits to tractography’s role as in vivo dissector of white matter
macrostructures. On a microstructural scale, the relation between diffusivity
parameters such as FA, MD, AD, as well as RD and their biological substrates
remains to be elucidated. However, it should be noted that the missing link between
DTI indices and their microstructural underpinnings is not only due to a lack of
research findings in this field; also constraints inherent to DTI and MRI such as its
resolution (with each voxel containing several ten thousand neuronal connections)
restrict the usage of DTI as physiological tool. It is important to keep in mind that
there is no one-to-one relationship between any DTI index and a single white matter
component (Johansen-Berg and Rushworth 2009). Distinct microstructural pro-
cesses may lead to the same DTI observations. Alterations of DTI indices, thus,
have to be interpreted with great caution. A common inference that is made in many
DTI papers is that alterations in diffusivity mirror changes in the degree of
myelination. However, as Jones and colleagues (Jones et al. 2013) correctly point
out “the anisotropy in a region may also be lower because here is a larger axon
diameter (Takahashi et al. 2002), a lower packing density (Takahashi et al. 2002)—
both of which mean fewer barriers to diffusion in a given space—or it could be due
to increased membrane permeability (reducing the effectiveness of a boundary).”
Indeed, it soon became clear that myelination is no requirement for diffusion ani-
sotropy in white matter (Beaulieu and Allen 1994). Rather one may think of several
barriers hindering isotropic diffusion in white matter including microtubules,
myelin, axon membranes and neurofilaments (Beaulieu 2002). On the contrary,
damaged or absent myelin is reliably mirrored in reduced diffusion anisotropy
(Blaschek et al. 2013; Klawiter et al. 2011; Mukherjee et al. 2001; Werring et al.
2000). Gulani and colleagues have compared excised spinal cords from myelin-
deficient rats with spinal cords from age-matched controls (Gulani et al. 2001) and
came to conclude that myelin may modulate FA by up to 20 %. One difficulty in
determining the relative contribution of myelin to the measured anisotropy lies in
the fact that any direct comparison between myelinated and non-myelinated nerve
fibers is flawed because tissues differ in their whole structural composition (Assaf
and Pasternak 2008). Axial and radial diffusivities may be helpful when trying to
explain the emergence of observed FA alterations. Decreased axial diffusivity has
been related to the growth of neurofibrils (Kinoshita et al. 1999), whereas several
studies have linked a decrease in radial diffusivity to demyelination (Budde et al.
2007; Klawiter et al. 2011; Song et al. 2002, 2003). However, in their seminal
paper, Wheeler-Kingshott and Cercignani argue that one should be wary of inter-
preting tensor eigenvalues as “axial” or “radial” and of relating these measures to
microstructural properties, such as myelin (Wheeler-Kingshott and Cercignani
2009). The crucial point the authors make is that comparing eigenvalues across
subjects without checking for the alignment of the corresponding eigenvector with
the underlying tissue structures is pointless. In particular, this correspondence may
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be called into doubt when comparing tracts affected by some pathology with tracts
from healthy controls and in voxels in which more than one principal direction is
present. In the former case, it is well conceivable how a certain pathology may
change the direction of the principal eigenvector from what would be expected in
healthy tissue architecture; in the latter case, represented by an oblate diffusion
ellipsoid, the “principal” eigenvalue may not differ much from the other eigen-
values (i.e., there are more than one principal eigenvectors), thus, making the
analyses of “axial” and “radial” diffusivities completely meaningless. It may be
concluded that DTI and tractography offer a unique way to gain insights into human
neuroanatomy. However, over those “pretty pictures” (Johansen-Berg and Behrens
2006) and their tempting inferences on neuroanatomical underpinnings, one should
not forget that DTI and tractography, like any other recently developed research
method, urgently require validation and a precise definition of its scope.

22.5 Analysis of DTI Data

In the following, three common approaches to quantitative analysis of DTI data will
be reviewed: ROI analysis (I), voxel-by-voxel analysis (II) and tract-based spatial
statistics (TBSS; III). The first two analyses may be performed with most common
analysis programs; TBSS is part of FSL (Smith et al. 2006). ROI analyses (I) can be
performed in several ways but it is common to all of them that diffusivity param-
eters of every voxel within a two- or three-dimensional ROI are averaged and used
for statistical analysis. ROIs may be defined manually on each individual brain
(I.1), they may be taken from publicly available atlases (I.2) or they may be
delineated by means of tractography (I.3). Manual definition of ROIs (I.1) is done
directly on FA maps or on anatomical volumes and then transferred to diffusion
space, depending on where the respective anatomical structure is best identifiable.
When drawing ROIs on FA maps, it might be helpful to superimpose diffusion
color maps indicating the main diffusion direction. ROI definition solely on FA
maps, however, is prone to preferably include high FA voxels since they are best
visible and, thus, are taken as landmarks for orientation (i.e., there is an influence of
anisotropy on ROI borders). Squared or orbital ROIs are different in this regard and,
furthermore, less time-consuming to define but these uniform ROIs also account
less for the individual forms of anatomic structures. Overall, it may be said that its
accountancy for individual anatomy is the most important advantage of manual ROI
definition, whereas on the other side its operator-dependency as well as the fact that
the manual definition work is time-killing and nerve-racking are among its disad-
vantages. The usage of atlas ROIs (I.2) is different in this regard. Here, anatomical
template regions from publicly available atlases [Harvard-Oxford cortical and
subcortical structural atlases (Caviness et al. 1996), John Hopkins University
DTI-based white matter atlas (Hua et al. 2008), Freesurfer (Fischl et al. 2002)] are
mapped on the individual brain. This approach is neither operator-dependent nor
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particularly time-consuming; however, it has other difficulties: The anatomical
template region is generated from one or (in most cases) more brains and made
available in a three-dimensional standardized, or “stereotaxic,” coordinate space. It
has to be transferred to individual, or “native,” space in order to align with indi-
vidual anatomy using a mapping function. Individual’s brain anatomy, however,
may not correspond to the anatomy of the template brain; moreover, the mapping
function will never work perfectly leading to misalignment. [See paper by Evans
et al. (2012) for a recent review of brain atlases and their problems]. When con-
sidering the pros and cons of manually defined ROIs versus atlas-derived ROIs, in
many cases ROIs delineated by tractography (I.3) will yield the best of both worlds
(Fig. 22.4): This procedure is not as operator-dependent as manual ROI definition
(making it somewhat more “objective”) and it does consider individual anatomy,
since it is run for every single subject. Tracts resulting from tractography are
thresholded (excluding low probability voxels) before diffusivity parameters of all
voxels within the respective maps are averaged. However, it is obvious that not all
anatomic regions which may be subject to DTI analysis can possibly be recon-
structed using tractography. In general, it shall not be dismissed that ROI analyses
have two systematic problems that may not be overcome: First, depending on the
size of the ROI, variation of diffusivity parameters within it is lost since all voxel
values are averaged, second, it is not feasible to investigate the whole brain
expressing a need for strong a priori hypotheses.

Fig. 22.4 Illustration of
tractography-based Region of
Interest analysis of fractional
anisotropy (FA). Tracts
resulting from tractography
are thresholded (excluding
low probability voxels) before
FA values of all voxels within
the respective tracts are
averaged [yielding “tract
specific FA”] and used for
statistical analysis
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Voxel-wise analysis (II) as well as TBSS (III, see below) resolves these issues.
In these analyses, all DTI volumes are normalized. Normalization describes the
process of registering an individual brain to a template brain using a mapping
function. Every voxel is assigned a specific “address” (Snook et al. 2007). The
crucial premise is that, after normalization a certain “address” corresponds to a
certain anatomical structure. That is, all brains and their parts align well to each
other. The standard method of brain normalization includes two steps (Ashburner
and Friston 2000; Jenkinson and Smith 2001; Snook et al. 2007): The first step, a
linear transformation, warps the brain in order to account for global brain differ-
ences (size and position); the second step applies a nonlinear transformation which
estimates internal brain deformations. After normalization, analyses are run inde-
pendently including every voxel with the same “address,” under the assumption that
all voxels with the same “address” represent the same anatomic location across
subjects (Fig. 22.5). This enables comparison of diffusivity parameters between
groups and correlation analysis with variables of interest. The advantages of voxel-
wise analyses are obvious: They are fast, fully automated, operator-independent and
investigate the whole brain without the need for a priori ROI definition. However,
voxel-wise analyses are also connected with disadvantages. It is not surprising that
the registration of healthy brains will never work perfectly, let alone the registration
of lesioned brains (Jones and Cercignani 2010; Mukherjee et al. 2008). To alleviate
some of the registration problems faced, one normally smoothes the normalized
brains using a low pass filter. It shall not be dismissed, that smoothing FA maps is
prone to cause problems, since most white matter tracts are thin, might thus be
“washed out” by the smoothing and the selection of the right low pass filter is rather
arbitrary but influences the results of voxel-wise analyses (Jones et al. 2005).
Additionally, it is obvious that the need for brain normalization of low-resolution,
high-contrast FA maps introduces problems: Smallest shifts between groups may
incorrectly be interpreted as FA differences between groups. Furthermore, effects of
partial volumes may challenge the analysis. Partial volume effects occur when a
single voxel contains two or more tissue types but is presumed to only contain one
that is white matter (Assaf and Pasternak 2008). This is especially likely to occur in
white matter regions near the ventricles where high FA voxels are located just on
the side of low FA voxels. Certain patient groups are particularly vulnerable to
partial volume effects: Schizophrenic patients, for example, exhibit enlarged ven-
tricles as compared to healthy controls (Honea et al. 2005). Another challenge of
voxel-wise analysis concerns the sheer amount of statistical tests being performed.
A skull-stripped FA map of somewhat good resolution contains approximately
250,000 voxels. A whole-brain voxel-wise analysis, thus, comes along with a
gigantic problem of multiple comparisons (Loring et al. 2002). This problem may
be tackled with statistical correction methods. In analysis of MRI data, most
commonly correction for family-wise error (FWE) is applied (Friston et al. 1994;
Worsley 2005). A complementary, though not alternative way, is to apply
voxel-wise analysis only within certain ROIs. One might, for example, reconstruct
white matter tracts by means of tractography in native space; normalize FA maps
and use the resulting transformation matrices to also normalize white matter tracts.
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Fig. 22.5 Illustration of voxel-wise analysis of fractional anisotropy. After normalization of all
volumes, statistical analyses are run independently for every voxel with the same “address” of a
skill-stripped volume. The number of statistical comparisons may be reduced by only running
voxel-wise analysis within a Region of Interest (which may be delineated by tractography as
illustrated here)
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These normalized tracts are then used to build a canonical tract, which may be
thresholded based on the voxel-by-voxel overlap of the individual normalized tracts
(Rüber et al. 2012). Another way to reduce the number of statistical comparisons, is
to restrict voxel-wise analysis to white matter by using white matter masks. These
masks may be derived from anatomical volumes with FreeSurfer (Dale et al. 1999;
Fischl et al. 1999) or other automated tools for segmentation and then transferred to
diffusion space.

TBSS (III) has been developed to face two of the biggest challenges of con-
ventional voxel-wise DTI analysis (Smith et al. 2006): multiple comparison and
alignment. Voxel-wise analysis in TBSS is only confined to the FA skeleton, which
represents the centers of all white matter tracts common to the study group. This FA
skeleton is used as an alignment-invariant feature to mitigate any residual
misalignment after a common mapping function has been applied. The TBSS
processing works as follows: First, individual FA maps are normalized applying a
nonlinear transformation (similarly as described above). Based on all normalized
brains, a mean FA map (in standard space) is generated and used to create the
pseudo-anatomical white matter skeleton (it is pseudo-anatomical since white
matter is segmented only based on FA and not on anatomical volumes such as T1 or
T2). Next, the skeleton is projected on the individual FA map (in standard space),
but is deformed based on a constrained local search for maximal FA values
(Fig. 22.6). Lastly, voxel-wise testing may be performed within the skeleton as
described above. Hence, TBSS is built on the strategy that the alignment of a
skeleton containing maximal FA voxels to local FA maxima in the individual FA
maps will mitigate the residual misalignment of previous nonlinear registrations.
However, it has been criticized that this strategy primarily leads to correspondence
of FA values but not to anatomical correspondence (Zalesky 2011). In other words,
local FA maxima do not necessarily correspond to the same anatomical locations
across subjects. In addition, if crude registration errors occur, they are difficult to

Fig. 22.6 Fractional
anisotropy (FA) template
brain and the respective FA
skeleton as generated by
TBSS. Please note how the
FA skeleton aligns to the
white matter but only covers
the centers and, thus, reduces
the number of multiple
comparisons
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identify in the skeleton (Jones and Cercignani 2010). Another disadvantage of
TBSS concerns the fact that white matter regions exhibiting low FA values are not
included in the analysis. Also, crossing fiber regions exhibit low FA values but are
crucial from a neuroanatomical perspective. In newer versions of TBSS, one may
choose to use models that incorporate fiber-specific measures (Jbabdi et al. 2010)
which enhances analysis of crossing fiber regions. It may be concluded that TBSS is
a powerful tool that successfully deals with some problems that come along with
traditional analysis approaches to DTI data.

It is important to acknowledge that TBSS is not the only attempt to deal with the
shortcomings of brain registration. However, one general problem of common
registration algorithms is their dependency on “unidimensional” scalars, such as FA
(Zalesky 2011). Conversely, DTI yields ellipsoids that are fully described by six
independent parameters, and these parameters are lost when vectors are mapped to
rotationally invariant scalars. Thus, anatomical information made available by DTI
is not considered in common brain registration algorithms. Multichannel registra-
tion algorithms which depend on all six parameters of the tensor have been pro-
posed (Guimond et al. 2001), but are not widespread.

22.6 Connectional Anatomy

DTI is a boon to modern neuroscience not only for allowing the examination of
white matter as such, but also for tractography and its potential to study connec-
tional anatomy. The human brain consists of 100 billion neurons of which 20
billion have been estimated to be located in the cerebral cortex (Azevedo et al.
2009; Noctor et al. 2007). On average, every cortical neuron builds 7000 con-
nections with other neurons and 150,000–180,000 km of myelinated fibers are
believed to be part of the brain (Drachman 2005). Connectional anatomy, however,
does not solely yield insights into white matter circuits. Keeping in mind that
“nothing defines the function of a neuron more faithfully than the nature of its
inputs and outputs” (Mesulam 2005), it becomes clear that structure and function go
together in neuroscience (Blits 1999) and how DTI may inform the study of neu-
ronal mechanisms underlying cognitive functioning (ffytche and Catani 2005).
Without any doubt, in the last decade has neuroscientific attention shifted from
single loci to the networks connecting them. This has not only extended our
knowledge on brain networks but also on single loci being part of these networks.
For example, network analysis has opened an avenue for using tractography to
provide information of gray matter parcellation (Behrens and Johansen-Berg 2005).
Traditionally, cortical or subcortical regions are defined based either on cytoar-
chitectonic boundaries or on gross-anatomical landmarks. However, cytoarchitec-
tonic boundaries do not necessarily correspond to gross-anatomical landmarks
(Geyer et al. 2000). Thus, another basis for the definition of great matter boundaries
is favored and connectivity-based parcellation has been named as a convincing
candidate for this purpose (Le Bihan and Johansen-Berg 2012). The underlying
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notion of connectivity-based parcellation is that cortical and subcortical subregions
may be distinguished according to their so-called connectivity fingerprint
(Passingham et al. 2002). Connectivity fingerprints delineate clusters of voxels with
similar connection patterns (Fig. 22.7). Several studies have compellingly
demonstrated the potential of this novel approach by yielding connectivity-based
parcellations of the thalamus (Behrens et al. 2003a), amygdalae (Bach et al. 2011),
basal ganglia (Menke et al. 2010), cingulate cortex (Beckmann et al. 2009), of
Broca’s Area (Anwander et al. 2007), of the lateral premotor cortex (Tomassini
et al. 2007), and supplementary motor area (Johansen-Berg et al. 2004). Results
obtained by means of fMRI have yielded good correspondence with some of these
parcellations, providing validation of this approach and underlining the functional
relevance of connectivity-based boundaries (Johansen-Berg et al. 2005; Schubotz
et al. 2010; Tomassini et al. 2007).

Tractography pushed DTI to another new field of study called connectomics
(Hagmann et al. 2008; Sporns et al. 2005), the comprehensive studies of neural
connections in the brain. In 2009, NIH has announced a Request for Applications
for the so-called Human Connectome Project. One year later, grants totaling $40
million were awarded to two collaborating consortia. The overarching purpose of
the project is to acquire and share data about human brain connectivity. It is hoped
that “a deeper understanding of human brain connectivity and its variability will
provide valuable insights into what makes us uniquely human and what accounts
for the great diversity of behavioral capacities and repertoires in healthy adults”
(Van Essen et al. 2012).

Fig. 22.7 Connectivity-based parcellation of the striatum according to its connections to several
cortical and subcortical regions [Fig. 22.1 from Cohen et al. (2009); permission for reproduction
by Nature Publishing Group]
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22.7 Clinical Applications

Clinical applications of diffusion MRI broadly fall into three categories: lesion
interrogation, tissue characterization, and tract reconstruction (Huston and Field
2013). The benefits of diffusion MRI are investigated in the context of many
diseases including stroke, brain development disorders, epilepsy, dementia, psy-
chiatric disorders, demyelinating diseases such as multiple sclerosis, and brain
tumors. While diffusion MRI has contributed a lot to our understanding of the
pathologies underlying these illnesses and is used as a complementary method of
diagnosis in many cases, it is only in the case of acute brain ischemia that diffusion
MRI has really found its way into clinical routine (Dubey et al. 2013). DWI may
detect brain infarcts several hours before conventional anatomical sequences
(Munoz Maniega et al. 2004), which is why it is endorsed in the diagnosis within
the first 12 h after acute brain ischemia (Schellinger et al. 2010). The infarct core
volume, as estimated by DWI, has also been suggested to be an important predictor
of clinical outcome and treatment efficacy (Gonzalez 2012; Schellinger et al. 2010).
Even more than the volume, its degree of overlap with the corticospinal tract or the
arcuate fasciculus seems to be a predictor of motor and language impairment,
respectively (Marchina et al. 2011; Zhu et al. 2010). Indeed, diffusivity parameters
of the corticospinal tract could reliably be related to the degree of motor impairment
(Lindenberg et al. 2010; Schaechter et al. 2009). As mentioned above, diffusion
MRI may detect pathologic tissue alterations with a higher sensitivity as conven-
tional anatomical sequences in some cases. However, the low pathologic specificity
of its measures has set boundaries to its clinical usefulness in tissue characterization
(Huston and Field 2013). Its application in pre-surgical diagnostics seems to be
more promising: In neurosurgery, preoperative reconstructions of white matter
tracts may lead to a better understanding of their individual anatomy and may, thus,
facilitate their preservation during resection. A recent study with patients under-
going anterior temporal lobe resection (Yogarajah et al. 2009) revealed that the
extent of one part of the optic radiation as determined by preoperative tractography
was related to the degree of complication by superior visual field deficits. Even
more convincing, Wu et al. (2007) found that 118 patients with a highly aggressive
tumor survived on average 7.2 months longer than 120 control patients with the
same tumor if preoperative tract mapping had been performed.

22.8 Genetics/Environment/Age

White matter status may be thought to depend on genes, environment and age. It is
an intuitive notion that white matter alterations happen within the framework of
genes. This framework changes across the lifespan leaving more or less room for
the white matter effects of environment in development and adulthood. DTI may
detect even subtle white matter alterations; however, it remains challenging to
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specifically attribute these alterations to the influence of genetic factors, environ-
ment or age. Especially, it is difficult to differentiate between the influence of genes
and environment (so-called nature–nurture debate) as will be shown below.

The influence of genes may well be studied through comparison between
identical and nonidentical twins. In these studies, the excess in the pair correlation
of identical twins over the pair correlation of nonidentical twins is attributed to
genetic effects. Chiang and colleagues (Chiang et al. 2009) found that close to 80 %
of FA variance may be explained by genetic factors, especially in parietal brain
regions. Furthermore, the authors reported correlations between measures of
intellectual performance and FA values. An overlapping set of genes seems to
influence IQ scores as well as diffusivity parameters, since the authors were able to
more accurately predict IQ by using FA values in the group of identical twins than
they were in the group of nonidentical twins. In another DTI twin study (Jahanshad
et al. 2010), 20–40 % of FA brain asymmetry was found to be genetically deter-
mined. Using a group of 705 twins and their siblings, Chiang et al. (2011) inves-
tigated factors moderating the heritability of white matter features as measured by
FA. They found that higher heritability was associated with younger age, male sex,
higher intellectual performance, and higher socioeconomic status. Some of the
causal mechanisms behind their finding could only be subject to speculation. The
observation of white matter heritability decreasing along age may be interpreted as
increasing environmental influences on white matter microstructure.

Neuroplasticity is a term first introduced by the polish neuroscientist Jerzy
Konorski in 1948 to describe the brain’s ability to functionally and structurally adapt
to changing environmental demands. Long enough, the brain was believed to be
static after development but this conception has been substantially revised in the last
decades (Jancke 2009): “[…] there is a continuous interaction between experiential
process and brain structure. Over time, experiences are sedimented in the form of
organic habits, dispositions and interactive schemes that eventually constitute the
individual’s personality.” (Fuchs 2009) Additionally, white matter is no longer seen
as passive infrastructure but as a plastic component of the brain. Using DTI,
“neuroarcheology” (Le Bihan and Johansen-Berg 2012) may be performed to study
the lasting effects of past experiences and to keep track of their neuronal correlates.
Impressive associations between diffusivity characteristics of white matter and
experience have been reported in highly trained experts in sensorimotor skills
(Dayan and Cohen 2011). Bengtsson and colleagues reported higher FA values in
professional pianists as compared to non-musicians in the posterior limb of the
internal capsule (Bengtsson et al. 2005). Even more, the authors found several white
matter regions exhibiting a positive correlation between the amount of hours prac-
ticed and FA values. DTI-studies have also reported evidence for white matter
plasticity in response to the acquisition of other sensorimotor skills, such as ballet
dancing or playing golf. Furthermore, neuronal white matter correlates of high
cognitive abilities have been found by means of cross-sectional DTI-studies. Floel
et al. (2009) found that individual subject’s performance in an artificial learning task
was related to FA values surrounding Broca’s area (a cortical region in the left
frontal lobe which traditionally has been implicated in language processing) and
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within fibers arising from this area. Tsang et al. (2009) showed that variations in
performance in a mental arithmetic task reflect variability of FA values in a central
chunk of the anterior superior longitudinal fascicle. This tract connects the inferior
parietal lobe with precentral and inferior frontal regions—cortical regions that have
been shown to be coactive by means of fMRI in subjects performing mental arith-
metic tasks. As the studies presented above are cross-sectional, it remains unclear
whether the white matter alterations reported are the cause or the consequence of the
respective expertise (i.e., are people with altered diffusivity characteristics more
likely to play golf or do the alterations occur as people pick up golf playing skills).
The results of cross-sectional studies, thus, always have to be discussed in the light
of the so-called nature–nurture debate (Stiles 2011) and no ultimate inferences on
the direction of causality can be made. Longitudinal studies are clearer in this regard
and have become the gold standard for neuroimaging studies examining neuro-
plasticity. Some longitudinal DTI-studies have been run and offer intriguing insights,
since they enable the observation of the brain during the acquisition of new skills.
One of the first longitudinal DTI-studies reported an increase of FA values in the
subcortical white matter underlying the intraparietal sulcus after subjects learned to
juggle within 6 weeks (Scholz et al. 2009). FA values in the cluster reported
increased slightly after 4 weeks without juggling but still were higher than before
subjects learned to juggle. Longitudinal studies have also found FA changes after
intensive memory training (Engvig et al. 2012; Landi et al. 2011; Takeuchi et al.
2010). Keller and Just (2009) found lower FA values in the anterior left cerebral
white matter in a group of eight to 12 year old children classified as poor readers
compared to good readers at the same age. Poor readers then were randomly
assigned to either an intervention group undergoing an intensive 100 h program of
remedial reading instruction or to a control group. Children who had undergone the
100 h program showed significantly increased FA values in the anterior left cerebral
white matter. Even more, this FA change correlated with improvement in phono-
logical decoding. Children in the control group did not show significant FA changes
between the first and the second scan. Schlaug et al. (2009) found that effective
melodic intonation therapy of aphasic patients after stroke was related to an increase
in structural connectivity in the contralesional arcuate fasciculus (a white matter
pathway implicated in language processing). A recent study (Langer et al. 2012)
investigated patients whose right arm injury required limb immobilization for at least
14 days. They applied DTI to examine structural integrity of the corticospinal tracts
and, furthermore, measured cortical thickness of sensorimotor regions based on
high-res anatomical volumes, they had acquired. The authors found reduced cortical
thickness and decreased FA values in the left sensorimotor regions and left corti-
cospinal tract, respectively. The opposite changes were observed on the right side,
which may indicate a skill transfer from the left hemisphere (controlling the right
injured hand) to the right hemisphere (controlling the left non-injured hand) being
caused by a compensatory use of the non-deprived hand.

It is an interesting notion that most of the training-induced plastic white matter
alterations described above are represented by comparably higher FA values and,
hence, contrast an age-related decrease in FA values observed after the maturational
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peak. Many recent studies employ DTI to investigate the neurobiology of aging
determining this maturational peak, when maturation turns into degeneration
(Kochunov et al. 2012; Lebel et al. 2012; Sullivan et al. 2010; Westlye et al. 2010).
A link between white matter changes in the aging brain, cognitive decline and
degenerative diseases such as Alzheimer’s disease have been established, commonly
referred to as “disconnection hypothesis” (Bartzokis 2004; O’Sullivan et al. 2001).
Generally, an increase in FA/a decrease in MD until the third and fourth decade are
observed which is followed by a decrease in FA/an increase in MD. White matter
volume seems to reach its peak ten to 20 years later in life than FA (Salat et al. 2009;
Westlye et al. 2010). However, diffusivity parameters generally seem to be the better
indicator of white matter maturation. It has been proposed that the inverted u-shaped
(quadratic) course of FA along the lifespan is largely dependent on the degree of
white matter myelination (Abe et al. 2002; Bartzokis et al. 2010; Gao et al. 2009).
Keeping in mind that cognitive efficiency relies on the myelination of white matter
fibers, this proposition provides a possible link between the changes of diffusivity
parameters on one end and the alterations of cognitive functions in the aging human.
Indeed, the zenith of FA values largely concurs with the age range in which cog-
nitive performance has been found to reach its peak (Salthouse 2009). Indeed,
alterations of cognitive processing abilities, verbal memory, and motor skills along
the lifespan have been related to diffusivity parameters (Bartzokis et al. 2010;
Hedden et al. 2005; Salthouse 2000). Recently, it was shown that age-related
over-recruiting of frontal lobe structures when completing a task-switching paradigm
were negatively correlated to FA of these structures (Zhu et al. 2013). Further studies
are warranted in this field which derives its importance from the therapeutic
potentials based on a better understanding of the aging brain.

22.9 DTI-Studies in Neuroeconomics

DTI-tractography has rarely been used in the field of neuroeconomics. In the fol-
lowing, two exemplary studies on associations between DTI measures and per-
sonality traits will be discussed: Olson et al. (2009) found several frontal and
temporal white matter regions which showed correlations between FA values and
results of a delay discounting task in a group of 79 adolescents. Using
DTI-tractography, Cohen et al. (2009) showed that structural connectivity between
the striatum and certain cortical as well as subcortical regions was related to
self-reported individual differences in personality traits such as novelty seeking and
reward dependence. Both studies are based on two premises: (1) That white matter
structural architecture reflects personality characteristics (as determined by delay
discounting tests and self-reports, respectively) and (2) that this may be measured
by means of DTI. Whereas the first premise appeals to an intuitive notion (be-
havioral differences have to have a structural equivalent somewhere in the brain), it
is more surprising that they can actually be measured (second premise) by com-
parably coarse-grained methods such as DTI. In the study by Olson and colleagues,
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79 adolescents between the age of 9 and 23 underwent DTI and, among other tests,
a delay discounting test. Delay discounting describes individual’s choice to prefer
an immediate reward over a larger delayed reward (Ainslie 1975). Mature delay
discounting behavior emerges in adolescent’s development and has been shown to
correlate with age and verbal IQ (Olson et al. 2007). Equally, myelination of white
matter is thought to occur as part of neuronal maturation (Arain et al. 2013) in
adolescence and may be measured by diffusivity measures (Song et al. 2002). The
aim of the current study was to relate delay discounting behavior to diffusivity
measures. Previous fMRI studies had implicated the role of frontal, parietal and
temporal regions in delay discounting (McClure et al. 2004; Wittmann et al. 2007)
which is why the authors expected to find structure-behavior correlations in these
regions. However, they performed a whole-cerebrum voxel-wise regression anal-
ysis. Results were not corrected for multiple comparisons, but the threshold of
significance was set to p < 0.001 and an extent threshold of 25 voxels was applied.
The application of neuroimaging data analysis not corrected for multiple compar-
isons has been heavily criticized (Bennett et al. 2009). It shall, however, not be
dismissed that the authors applied a hypothesis-free whole-brain approach albeit
having well-founded a priori hypotheses on where structural–behavioral correla-
tions may be found which partly legitimates less conservative significance testing.
Indeed, the authors could report clusters indicating a positive FA─delay dis-
counting correlation in several white matter regions primarily in the frontal and
temporal lobes: The higher the FA values, the more the subject preferred higher
delayed rewards over lower immediate rewards. In addition, regions with associ-
ations between MD and delay discounting were found. These correlations were
negative: The lower the MD values, the more the subject preferred higher delayed
rewards over lower immediate rewards. Based on these analyses, it cannot be ruled
out that, delay discounting as well as diffusivity measures both vary under the
influence of a third (confounding) variable but are not actually related with each
other. The authors mention age and verbal IQ as possible confounding variables and
enter both as covariates into the regression equation. Several clusters remained
significant after controlling for age and/or verbal IQ, thus, giving evidence that the
observed relation between diffusivity parameters and delay discounting is not
completely due to the general influence of neurodevelopmental maturation indi-
cated by age or part of a more general cognitive process measured by a verbal IQ
test. Consequently, observed structural–behavioral associations may be seen as
partly age-dependent and partly age-independent. To rule out that these associations
do reflect general processes of decision-making, the cluster-wise averages of
FA/MD were correlated with the outcome of a probability discounting task which
did, except for one cluster, not yield significant results. Observed white matter
diffusivity characteristics may, thus, be viewed as specific microstructural correlate
of delay discounting. Unfortunately, the authors missed to perform additional
regression analyses for directional diffusivities. This would have been of special
interest under the premise of radial diffusivity reflecting the degree of myelination
and with regard to the fact that the frontal lobe becomes increasingly myelinated
during adolescence. Lastly, the authors related the anatomical location of clusters to
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common white matter tracts implicating their role in delay discounting. The tracts
were not individually modeled using tractography but probability masks from a
common tractography white matter atlas (Wakana et al. 2004) were used. It may be
summarized, that the study by Olson and colleagues compellingly illustrates some
of the structural white matter correlates of delay discounting and their development
in adolescence.

The second exemplary study discussed also suggests white matter circuitry to
underlie certain personality traits. However, this study by Cohen and colleagues
uses a different methodological approach: Variations in diffusivity measures are
not found to be relevant here, rather structural connectivity as determined by
tractography was found to correlate with novelty seeking and reward dependence
in 20 healthy adults. This study as well as the study by Olson and colleagues
relied on previous studies linking the personality traits of interest to neuronal
circuitry. Cohen and colleagues mention evidence from studies linking novelty
seeking and reward processing to a hippocampus-ventral striatal-midbrain loop
and to prefrontal-striatal connections, respectively (Hollerman et al. 2000; Lisman
and Grace 2005). They, thus, applied tractography to parcellate the striatum
according to its connections to several cortical and subcortical regions (see this
chapter’s paragraph on connectional anatomy and Fig. 22.7). These regions were
defined using a common atlas (Tzourio-Mazoyer et al. 2002). Voxels in the
striatum were then labeled according to the region they were most strongly
connected to. The connectional strength between these voxels and their respective
regions were found to correlate with novelty seeking in the case of connections to
the amygdala as well as the hippocampus and with reward dependence in the case
of a network to cortical regions including medical and lateral orbitofrontal cor-
tices, dorsolateral prefrontal cortex and supplemental motor area. Connections
which correlated with novelty seeking did not correlate with reward dependence
and vice versa. As intriguing as these findings are, it remains unclear which
microstructural characteristics cause the altered connection strength. Even func-
tional inferences of these microstructural characteristics in terms of neuronal
efficiency have to be made with great caution. The authors conclude that
“although it is tempting to speculate that individuals with higher tract strength
values can transmit information more efficiently between regions, further work is
needed to confirm this interpretation.” The explanatory gap between white matter
features as measured by DTI and character traits as defined by psychology
remains unsurpassed also by the most advanced DTI-studies.

22.10 Conclusion

The advent of DTI and tractography has paved the way to one of the most flour-
ishing fields of today’s neuroscience: The non-invasive in vivo assessment and
delineation of white matter tracts. As this chapter has tried to show, DTI has made
immense contributions to distinct areas of neuroscientific research just as it has
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changed our perspective on the brain as a whole. However, 25 years of experience
with DTI has forced the community to increasingly recognize the limits of this
imaging modality. In particular, the interpretation of DTI findings in terms of their
neuronal underpinnings has been proven difficult. In their very readable review,
Jones and colleagues point out that “the only thing that we can say with any
certainty in diffusion MRI is that we measure a signal change when a
motion-sensitizing gradient is applied along a given axis. Inferring anything else is
dependent on the quality of the model and the quality of the data” (Jones et al.
2013). As outlined above, the tensor model is thought to be inadequate in some
regards. More promising models of diffusion data are on hand; however, they are
not in common use since most of them are connected to special hardware
requirements as well as long acquisition times and a lack of experience in ongoing
research. Hence, some of the main reasons for the continuously growing success of
DTI may well be called pragmatic. Nonetheless, MRI hardware development will
continue to push the field of diffusion imaging forward which most likely will
compensate for some of the drawbacks of newer diffusion models. Approaches
other than the tensor model will, therefore, play a more prominent role in future
times: Diffusion Spectrum Imaging (DSI), High Angular Resolution Diffusion
Imaging (HARDI), and Q-Ball Imaging (QBI) have all been named as promising
candidates (Tournier et al. 2011).

This chapter has provided an introduction to the mechanisms of DTI and worked
to explain its utilization while highlighting its limitations and examples of suc-
cessful applications. Notably, DTI has not yet found an established place in neu-
roeconomics. However, there is no reason why this should not be the case in times
to come. Even higher cognitive functions have already been shown to be at least
partly constituted by white matter, which makes DTI a promising tool in behavioral
psychology. It is our hope that this chapter will encourage neuroeconomists to use
DTI in their research.
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Chapter 23
Molecular Genetics

Martin Reuter, Andrea Felten and Christian Montag

Abstract This chapter presents a concise introduction to molecular genetics. While
readers familiar with the field of genetics may find this article trivial, those readers
less experienced in the area may consider this a kind of ‘refresher’, still others may
be new to the area, having not heard about this topic since their biology classes at
school. Our aim is to provide all of our readers with new knowledge—or at least a
different perspective—on molecular genetics, with a particular emphasis on the
neuroeconomics framework. Being mindful of the varying levels of familiarity with
genetics our readership may have, we want to provide a ‘crash course’ that starts
with the very basics in genetics and concludes with the most recent developments
and perspectives in the field. Our own experience from interdisciplinary cooperative
projects is that our colleagues from other disciplines, such as economics, often ask
for a simple introduction to behavioral genetics. Unfortunately, we were unaware of
any reference to date that fits this description. It is for this reason we decided to
write this chapter and to ask experts in other neuroscientific fields to do the same in
this book for methods like EEG, MRI, etc.
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23.1 Introduction

Molecular genetics is a very broad field encompassing a group of different methods
that are applied by different scientific disciplines with diverse research foci.
Whereas some researchers are interested in the structure of the genes and the
genetic code, others want to unravel how the transcription (“reading”) of the genes
is influenced or how protein biosynthesis is accomplished. Another focus of
research, known as behavioral genetics, investigates how genes influence our
behavior. The later aspect is relevant for neuroeconomists who are, by definition,
interested in the biological basis of human decision making—hence also in
behavior.

A large proportion of the population holds a rather naïve view of genes as
something obscure, unchangeably fixed before birth, that determines our lives in a
fatalistic way. Most people are not aware that genes simply represent a blueprint for
constructing all kinds of proteins that are necessary for our organism to function
properly. This implies that at every moment of our life genes in different tissues of
our body are active in order to produce “gene products” (e.g. proteins, enzymes,
hormones, neurotransmitters, etc.). This production process—known as protein
biosynthesis—does not work blindly, but is regulated by the demands of our body.
In turn, what our body needs largely depends on environmental stimuli. For
example, eating a huge portion of spaghetti at lunch demands that carbohydrates
must be metabolized. The hormone responsible for this is insulin. Therefore, the
external stimulus of having spaghetti for lunch initiates the production of insulin. In
our genome, on the short arm of chromosome 11, we have a gene that provides the
relevant information on how to produce insulin. This gene is necessary so that our
body ‘knows’ how to build insulin. Our genome is the entirety of our genetic
information. This information is mainly present in our genes. The genes are located
on the chromosomes.1 A gene is a distinct part of a chromosome that provides the
information for the synthesis of a specific gene product (e.g. insulin). So if we think
back to our spaghetti example, the need for insulin initiates certain molecules,
referred to as transcription factors that bind to the promoter region of the insulin
gene. The promoter is a part of a gene that functions like a switch. If this switch is
turned on by the transcription factors, it initiates the reading (transcription) of the
gene. Our chromosomes are located in the nucleus of each cell of our body,
however, the “factories” that build up the gene products, called ribosomes, are

1The human genome consists of 23 pairs of chromosomes, which are divided into gonosomes and
autosomes. Gonosomes (the X and the Y chromosomes) refer to the chromosomes defining human
sex. The XX genotype marks the female and the XY genotype the male gender. Autosomes are all
other chromosomes which are not gonosomes. There is also additional genetic information on
mitochondrial DNA.
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located in the cytoplasm of the cells. Therefore, the blueprints showing how to
produce the gene product (i.e. which amino acids have to be chained up) must be
transferred from the nucleus into the cytoplasm.2 The transfer of information is
done by the messenger ribonucleic acid (mRNA), a single stranded copy of the
deoxyribonucleic acid (DNA). The DNA is a double-stranded molecule that pro-
vides the genetic information within genes. This information is written in a rather
simple language, the genetic code. The genetic code consists of only four letters, A
(adenine), T (thymine), C (cytosine), G (guanine) that are in fact nucleotides,
molecules composed of a nucleobase, a five-carbon sugar and at least one phos-
phate group that form the DNA. The gene transcription is the process of reading and
translating those parts of a gene (exons and introns, the latter spliced out in mature
mRNA) into mRNA that are essential for the synthesis of the gene product. Here it
is important to know that the DNA consists of two antiparallel strands forming the
DNA double helix, stabilized by hydrogen bonds and base stacking: The nucleotide
A is always paired with a T and C is always paired with a G (see Fig. 23.1). The
transcription of DNA into mRNA means that if there is an A on the DNA the
mRNA will contain uracil (U), a G is translated into a C, a C into a G, and a T is
translated into A. The structure of uracil is very similar to that of thymine. In the
open reading frame of exonic regions, the sequence of three nucleotides codes for a
distinct amino acid. Such a triplet of nucleotides/bases is called a codon. With the
exception of three stop codons, each codon codes for a distinct amino acid, how-
ever, an amino acid can sometimes be coded by different codons.

The short mRNA that conveys the information for the synthesis of one protein at
its maximum leaves the nucleus of the cell and migrates into the cytoplasm. At the
ribosomes, the information of the mRNA must be translated into a chain of amino
acids forming a protein. Here another form of RNA, the transfer RNA (tRNA)
comes into play. The tRNA has two functions, first it carries an anticodon that is the
complementary nucleotide sequence to a given codon on the mRNA, and second
the tRNA picks up the appropriate amino acid in the cytoplasm that is coded by the
mRNA. Step by step the codons are translated into amino acid chains until the gene
product, i.e., the protein, is built up. In sum, a protein consists of a chain of amino
acids and the order of this amino acid chain, is provided by the blueprint that is our
genes.

2Cytoplasm refers to both cytosol and the organelles. Cytosol is the fluid substance in the cell
separated from the outer cell wall by the cell membrane. Organelles refer to structures such as
ribosomes within the cell.
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Fig. 23.1 The structure of
the DNA double helix as first
identified by James Watson
and Francis Crick in 1953.
The DNA double strand that
comes in the form of a wound
helix gets its stability by
knitting the two single strands
together. The nucleotide A is
always paired with a T and C
is always paired with a G
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23.2 Genetic Variability—Polymorphisms

This rough overview of the protein biosynthesis is crucial to our understanding of
how genetic variations can cause individual differences in behavior. It must first be
mentioned that there is a 99.9 % overlap in the genome of two unrelated humans.
This means that most of the sequences of base pairs constituting our genome (a total
of 3.2 billion bases/nucleotides/letters) are invariant across individuals! In other
words, tiny variations among the remaining 0.1 % (corresponding to 3,000,000
bases) may have huge effects. This great similarity in the genetic code across
individuals is the prerequisite for belonging to the same species, i.e., we have
comparable metabolic, motor, cognitive, etc., processes. However, the small dif-
ferences in the DNA sequence across individuals cause the thrilling differences in
personality, abilities, and behavior. If two people, let us call them Peter and Bob,
met to compare their DNA sequences, they would only detect differences on
average in every thousand letters. For example, at position 1003 of a certain gene,
Peter has an A and Bob has a T. Adenine (A) and Thymine (T) are called alleles at
position 1003. Loci on the DNA where there is no variation in the population are
called monomorph and have only one possible allele. However, a gene locus where
there is variability is called polymorphism if it occurs at least in 1 % of the pop-
ulation. If the prevalence of such a base exchange is lower than 1 %, it is called
“mutation.” In other words, polymorphisms are mutations that are rather wide-
spread in a population. A mutation occurs by chance through a deficient
self-reproduction of genetic material. Only when such a “mistake” of nature occurs
in the gametes they are transferred to the next generation, i.e., they are heritable.
The “Out of Africa Hypothesis” postulates that every living human being is des-
cended from a small group we immodestly call Homo sapiens (“wise human”) in
Africa, who then dispersed across the globe and successfully conquered the world
(while other forms of the genus homo such as Homo erectus or the newly dis-
covered Homo denisova or Homo naledi did not survive to the present day). The
migration of Homo sapiens started about 70,000 years ago. Since this time, the
Homo sapiens population has dramatically increased and accordingly, the more
humans that exist, the higher is the probability that a “mistake” in DNA redupli-
cation or DNA repair takes place. If an individual inherits a mutation that is not
adaptive for survival or reproduction, the probability that this individual will pass
this mutation on to the next generation is low. This is the process known as natural
selection. Therefore, polymorphisms, which are widely distributed mutations,
cannot be completely disastrous. The opposite might even be more accurate—these
mutations will bring advantages in certain environmental niches.

There exist different kinds of polymorphisms. By far, the most widespread form
is the single nucleotide polymorphism (SNP) that is defined by an alteration in a
single nucleotide/base (as in the example of Peter and Bob). The deletion of a base
can be fatal if it occurs in a coding region (located in an exon) that is translated into
an amino acid sequence. By the deletion of a single base, the reading frame is
destroyed, i.e., all ensuing codons are translated incorrectly or the translation
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process ends too early (see Fig. 23.2b in comparison to Fig. 23.2a: a cytosine at
position 3 has been deleted). Therefore, deletion polymorphisms in exons that
change the reading frame are very rare, because the consequences are so disastrous
that the organism can likely not survive without the production of this protein. Base
pair transitions as depicted in the comparison of Fig. 23.2a, c (there is a G to T
transition at codon No. 2, resulting in production of an alternative amino acid) are
rather frequent and mostly do not prevent the production of the protein. However,
this base pair transition may have consequences on the structure and functionality
of the protein (e.g. reducing its thermostability3). SNPs do not only occur in coding
regions but can also be observed all over the genome. We have just observed that
polymorphisms in the coding region of a gene are very likely to have an effect on
the gene product if it is related to an amino acid exchange. An exception is the
presence of a silent mutation, as depicted in the comparison of Fig. 23.2b, c. Some

Fig. 23.2 Consequences of a single nucleotide polymorphism (SNP). Depicted is a small
sequence from the coding region of a gene. a DNA strand with exclusively wild-type alleles;
b deletion SNP in the third base of codon 1. Although the first amino acid of the polypeptide
remains unchanged, because both codons—ACC and ACG—code for the amino acid threonine,
the rest of the codons lead to other amino acids. Most severe, the transcription ends with codon 4
because TAG is a stop codon. Lysine is no longer considered. The protein cannot be synthesized
c a SNP where there is a transition from G to T in the first base of the second codon. Leucine
instead of valine is inserted into the polypeptide. Typically, such a SNP does not prevent the
production of the protein, but alters its functionality

3Thermostability describes how stable a certain structure is in the face of rising temperature.
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amino acids can be coded by different codons. The codons ACC and ACG both
code for threonine (1st codon). Silent mutations are less likely to result in alter-
native gene products with altered functionality, although this may happen.

Another hot candidate for changes in functionality of a gene is the promoter
region. The promoter initiates the transcription of a gene. Polymorphisms in the
promoter region of a gene may have an influence on the efficiency of transcription
factors to bind to the DNA, disturbing transcription complex assembly, and
recruitment of RNA Polymerase II. Therefore, polymorphisms in the promoter
region can affect the mRNA expression. Lower levels of mRNA expression are
often related to a lower amount of the gene product (e.g. number of expressed
neurotransmitter receptors in the brain).

Another form of polymorphism is the variable number of tandem repeats
polymorphism (VNTR). Here, a sequence of bases is repeated several times on a
gene. Individuals may differ in the number of these repeats. The dopamine trans-
porter polymorphism DAT1-VNTR belongs to this family of polymorphisms. The
most common alleles observable are a 9 and a 10 times repeat of a sequence of 40
bases in the 3′ un-translated region (3′UTR) of the dopamine transporter gene
(SLC6A3), however, the number of repeats possible can range from 3–11
(Vandenbergh et al. 1992). Although results are controversial, the 10-repeat allele is
most commonly related to an increased level of DAT1 expression (Heinz et al.
2000). Within the category of VNTRs which belongs to the simple sequence repeats
(SSRs) polymorphism, also known as microsatellite polymorphism or short tandem
repeats (STRs). Here, very few bases, normally 2–6 bases, are repeated many times.
The SSRs are often analyzed for kinship or population diversity analyses.
A prominent example for the role of SSRs for social behavior is the microsatellite
polymorphism in the promoter region of the arginine vasopressin 1A receptor
(AVPR1A) gene, that influences partnership satisfaction in humans and explains
bonding differences between the monogamous prairie vole and the promiscuous
meadow vole (Walum et al. 2008; Lim et al. 2004).

Copy-number variations (CNVs) constitute alterations in the genome charac-
terized by a variation in the number of copies of one or more sections of the DNA.
CNVs correspond to relatively large regions of the genome that have been deleted
(fewer than the normal number of copies) or duplicated (more than the normal
number of copies). Reasons for CNVs are incorrect DNA duplications or insertional
transpositions (gain in copy number) or deletions (losses of copies), as well as more
complex rearrangements of the DNA. CNVs account for about 12 % of human
genomic DNA and each variation may range from about one kilobase (1 kb = 1000
bases/nucleotides) to several megabases (1 Mb = 1,000,000 bp) in size. The
functionality of a gene can be altered by CNVs through disruption of a regulatory
element (e.g. an enhancer or suppressor site) or by causing functional loss of a gene
by a deletion. As with traditional polymorphisms, some CNVs do not have phe-
notypic effects, e.g., the CNV does not result in an observable change at the level of
behavior. Meanwhile, some prominent CNVs have been successfully related to
psychiatric diseases like schizophrenia, attention-deficit hyperactivity disorder
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(ADHD), autism spectrum disorders (ASDs) or Williams–Beuren syndrome
(WBS) (for an overview see Cook and Scherer 2008).

23.3 Extraction of DNA

Before we can analyze polymorphisms located on the genome, the DNA has to be
extracted. Eukaryotic organisms (humans, animals, plants, fungi, and protists) store
most of their DNA inside the nucleus of the cells (genomic DNA) and some of their
DNA in organelles (e.g. mitochondria in humans and chloroplasts in plants).
Therefore, the cell wall and the cell nucleus must be separated prior to analysis.
This is done using an enzyme, proteinase K, in the presence of a chaotropic salt,
which immediately inactivates all nucleases (nucleases can degrade the DNA).
After cell lysis, the sample is pipetted into a reaction tube containing a filter
composed of glass fibers. The DNA binds selectively to the glass fibers in the tube.
Bound DNA is purified in a series of rapid “wash-and-spin” steps to remove
contaminating cellular components (e.g. organelles). Finally, low salt elution
releases the purified DNA from the glass fibers. Today DNA extraction kits con-
taining the filter tubes and all necessary reagents are commercially available. In
addition, only pipettes and a centrifuge are necessary to conduct the DNA
extraction. In modern labs, DNA extraction is typically performed by robots. These
automated DNA extraction machines rely on alternate techniques that do not use
filter tubes but instead rely on magnetic beads or vacuum units.

23.4 Genotyping

Genotyping is the process of determining the given alleles at a certain polymorphic
locus in our genome. Due to the fact that we have a diploid set of chromosomes,
each individual has two alleles at a distinct gene locus. For example, with respect to
a SNP characterized by an A → G transition, an individual can have two identical
alleles across the two chromosomes (AA or GG) or different alleles (AG) on each
chromosome. AA, AG, and GG represent the three possible genotypes at this
polymorphic site and the two alleles are named A and G.

The revolutionary invention of the polymerase chain reaction (PCR) by Kary
Mullis in 1983 provided the starting point for molecular genetics research by
making genotyping possible. The main problem in genotyping a polymorphic
region on the genome is how tiny the information is that one is interested in: In the
case of a SNP one out of three billion bases is exchanged. Furthermore, we have to
keep in mind that the DNA is located in the small nucleus of a cell. In other words,
the information we are interested in is unbelievably small. In order to solve this
problem we have to amplify the “signal” to enable us to decide whether a certain
polymorphic region contains, for example, an A or a G at a particular locus. PCR is
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conducted by a PCR machine that is simply a copy machine for nucleic acids (DNA
or RNA). In brief, the principle of PCR—a series of repetitive chemical reactions
running in a reaction tube—is as follows:

At first, you must mark the region on the DNA where the polymorphism is
located. This is done by designing two oligonucleotides (a chain of about 17–25
bases), called primers, that are complementary to the original DNA strand. The
forward primer binds to the 3′ → 5′ strand and the reverse primer to the 5′ → 3′
strand. The two primers mark a region of about 200 base pairs, along which the
SNP is located (i.e. the target region). The experimenter has to verify that the
sequence of the primers—although very small—does not occur anywhere else in
the genome, i.e., the primer sequence is specific to the region of interest. The aim of
the PCR is to make more than a billion copies of the target region. So if you want to
build up new copies you need to insert nucleotides (A, C, T, and G) into your
reaction tube. As with other PCR reagents, these synthetic nucleotides are also
commercially available from biotech companies. Reduplication of DNA is a pro-
cess that is constantly ongoing in the living organism. PCR imitates this process.
The crucial ingredient of a PCR reaction mix is a polymerase that does the
amplification process. Most common is the Taq polymerase.4 Finally, you must put
a few ng/µl of DNA (the template) into the tube. The PCR contains the repetition of
at least 30 PCR cycles. Each PCR cycle consists of three phases; denaturation,
annealing, and elongation, each requiring a different temperature. During denatu-
ration the temperature is raised to 95 °C to divide the two complementary DNA
strands. Once the DNA strands are separated, the primers can anneal to the single
DNA strands at a temperature of about 60 °C. Note, the exact annealing temper-
ature can vary depending on the PCR protocol used and the sequence of the bases
and primers in the target region. Then the temperature is raised up to 72 °C
allowing the Taq polymerase to work.5 The Taq now elongates its own sequence by
incorporating the synthetic nucleotides previously added to the PCR reaction mix.
The PCR starts with double-stranded template DNA. After the first PCR cycle we
have two copies, after the second cycle four copies, after the third cycle eight
copies, and so forth (see Fig. 23.3). The number of PCR copies per PCR run is
calculated as 2n, with n indicating the number of PCR cycles. Therefore, a PCR run
with 30 cycles would result in over 1 billion copies of the target region. The aim of
a PCR is to amplify the signal of the polymorphic regions by producing billions of
copies. However, a conventional PCR does not provide the genotype information,
but only creates the prerequisites for genotyping. Genotyping is achieved by putting

4This thermostable enzyme called Thermus aquaticus (Taq) has not been “invented” by a scientist,
but has been extracted naturally from a hot thermal spring called Morning Glory Pool in the US
national park Yellowstone.
5The great variance of temperatures in a PCR explain why a thermostable enzyme is needed and
scientists are lucky to have found such an enzyme in nature.
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the DNA amplicon (resulting from the described PCR process) on a
gel-electrophoresis unit. If the polymorphism constitutes a VNTR, this indicates
that the alleles differ with respect to the amplified fragment length. For example, the
9 repeat allele of the dopamine transporter polymorphism DAT1 is 40 bases shorter
than the 10 repeat alleles. Using an electric field, shorter PCR amplicons move
faster through the matrix of the electrophoresis gel (often made out of agarose) than
longer amplicons. By labeling the PCR product with a dye (typically ethidium
bromide), the different bands on the gel can be visualized later by means of a UV
light. Samples of subjects who are heterozygous exhibit two bands, one upper band
indicates homozygosity for the long allele and one lower band indicates homozy-
gosity for the short allele (see Fig. 23.4). Of note, the direction of flow of the DNA
fragments in Fig. 23.4 goes from the pockets to the bottom of the picture. In order
to use gel-electrophoresis for genotyping SNPs (the PCR amplicons do not differ in
size if there is a base exchange at a certain gene locus) the PCR amplicon has to be
treated with an enzyme digest. Here, a specific restriction enzyme is able to cut the
DNA strand into two shorter pieces in the presence of a certain allele (e.g. the G
allele), but does not affect the DNA in the presence of the alternate allele (e.g. A).
By means of the enzyme digest we yield two different strand lengths dependent on
the absence or presence of the respective allele and this can be visualized/genotyped
by means of gel-electrophoresis (this works similar to the mechanism described in
Fig. 23.4). Today, more elaborate techniques like Real-Time (RT) PCR are avail-
able that allow amplification and genotyping in one PCR run. The advantage of
RT-PCR is that the time-consuming gel-electrophoresis is no longer necessary. In
brief, during the RT-PCR amplification additional oligonucleotides labeled with
fluorescent dyes (the so-called ‘probes’) are annealed to the target region. The
probes are either complementary to the wild type (the typical allele) or to the mutant
(non-standard) allele and by means of a melting curve analysis following the last
PCR cycle, the genotypes can be determined with perfect reliability (for a detailed
description of Real-Time PCR see Reuter et al. 2005). A disadvantage of RT-PCR
is that mainly SNPs can be genotyped with this method.

cFig. 23.3 Schematic overview on polymerase chain reaction (PCR). a The starting point is a
double-stranded DNA template. The lens glass highlights the region on the genome where a single
nucleotide polymorphism (SNP; red letter) is located. It is apparent that the two DNA strands are
complementary to each other (a G is paired with a C and an A is paired with a T). b The
DENATURATION phase is portrayed. Heating the reaction tube up to 95 °C separates the two
complementary DNA strands. c The ANNEALING phase is depicted. Lowering the temperature to
about 60 °C allows the primers to bind to the single-stranded DNA. The bases of the primers are
complementary to the DNA strands. d The ELONGATION phase is portrayed. At 72 °C the Taq
polymerase can elongate the primers by incorporating synthetic nucleotides available in the
reaction tube. e The status after the first PCR cycle is depicted. A double-stranded DNA template
has been copied and results in a double-stranded DNA
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23.5 The Candidate Approach

Behavioral genetics started in the 1990s with the so-called candidate gene approach.
Due to the restricted throughput of PCR machines at this time, scientists chose
distinct genes for their analyses (genotyping) according to findings from the liter-
ature. For example, if individual differences in reward processing was the pheno-
type under investigation then dopaminergic genes were the best starting point,
because dopamine has (and is) postulated to be the final common neural pathway of
reward (Spanagel and Weiss 1999). As a consequence polymorphisms located on
genes coding for dopamine receptor genes (e.g. DRD2), the dopamine transporter
gene or enzymes involved in the metabolism of dopamine (e.g. COMT) were
genotyped. In sum, the candidate gene approach is theory driven and therefore it is
a deductive method (Montag and Reuter 2014). Nowadays, technical advances in
PCR machines and PCR product analyzers make it possible to analyze many
essential SNPs across whole genes in reasonable time.

Fig. 23.4 Results of a gel-electrophoresis for the VNTR dopamine transporter polymorphism
DAT1. The most common alleles observable are a 9- and a 10-times repeat of a sequence of 40
bases in the 3′ un-translated region (3′UTR) of the dopamine transporter gene (SLC6A3), however,
the number of possible repeats ranges from 3–11 (Vandenbergh et al. 1992). Genotypes are made
visible under an UV light. Column 1 (from left to right) indicates a sample being homozygous for
the 9-repeat allele (genotype 9/9), in columns 2 and 7 the samples are homozygous for the
10-repeat allele (genotype 10/10), in columns 3–6 and column 9 the samples are heterozygous
(genotype 9/10), and column 8 shows the DNA ladder used to mark the size of the
PCR-amplicons. Flow direction of the DNA fragment is from the upper to the lower part of
the figure. The DNA fragment is inserted in the pocket at the upper part of the figure and then
floats through the gel after the running buffer is set under electricity
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23.6 Sequencing

Sequencing is a technique that allows reading of the original genetic code, i.e.,
through sequencing the precise order of bases within a DNA or RNA molecule can
be determined. In contrast, genotyping only allows the determination of genotypes
at a particular polymorphic region. In 1977, Frederick Sanger and colleagues
developed a sequencing technique, the Sanger sequencing method, popularly used
for over 25 years and which is still in use today. This method is based on the
selective incorporation of chain-terminating dideoxynucleotides (ddGTP, ddATP,
ddTTP, and ddCTP) by DNA polymerase during in vitro PCR. This means that
after a dideoxynucleotide has been inserted in the nucleotide chain during the
elongation process (see PCR), no further nucleotide can be incorporated and
amplification is terminated. To get information on the order of the nucleotide
sequence of a distinct DNA strand, the experimenter has to run four separate PCR
reactions. Each reaction contains all four deoxynucleotides (dATP, dGTP, dCTP
and dTTP—i.e. one dNTP for each base A, G, C and T), but only one of the four
dideoxynucleotides. The results of the DNA amplification is made visible by put-
ting the PCR products of the four PCR runs on separate lanes on an electrophoresis
gel (see Fig. 23.5, left).

Sequencing was revolutionized by the invention of the dye-terminator
sequencing method, which is currently used by high-throughput DNA sequence
analyzers. By labeling the ddNTPs with fluorescent dyes, like in RT-PCR analysis,
sequencing depends on just one rather than four PCR reactions. The fluorescent
dyes emit light at different wavelengths that are measured by a sequencer machine
(see Fig. 23.5, right).

23.7 Genome Wide Scan Technique

Besides following the already described candidate gene approach, genome wide
scans (GWS) are often conducted to grasp as much variation as possible across the
complete DNA to spot genetic variants associated with a phenotype of interest. For
example, if researchers are interested in identifying which genetic variants are
responsible for anxiety, they could draw participants from a large genetic databank
based on their anxiety scores gathered via self-report (e.g. high and low anxiety
scores). In a second step, researchers test the frequency of millions of allelic
variants in the anxious versus the non-anxious group: significant higher/lower
statistical prevalence rates of a particular SNP in the comparison of low and high
anxious humans could be seen as an association with anxious behavior.

GWSs conducted to cover genetic variations across the genome which differs in
terms of fine granularity. The greater coverage of the DNA required, the more
expensive the procedures are. If the researchers aim for a complete coverage of
genetic variation of a single person, the complete genome must be sequenced. This
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means that basically every base of a person’s DNA is read out (see Sequencing).
Clearly this is a very costly endeavor, which is usually prohibitively expensive.
Therefore, researchers need to choose between a range of chips (e.g. available from
companies such as Illumina) giving information on up to five million SNPs of a
single participant. Among these SNPs are up to 4.2 million TagSNPs. The first
TagSNPs were derived by sequencing the DNA of N = 270 participants from four
populations in the International HapMap project. In contrast to the major success of
having sequenced the complete human genome of two persons in the year 2000, the
HapMap project provided for the first time a sufficient number of participants to
reliably detect common genetic variants on the human DNA. TagSNPs take
advantage of the linkage disequilibrium between SNPs lying closely to each other
on the genome. Specifically, SNPs located in adjacent areas are likely to be
inherited together. A perfect linkage equilibrium is characterized by r2 = 1.
Knowing the genotypes of a series of TagSNPs covering a larger genomic area
gives researchers information on which genetic variants to expect without having
genotyped every single one of the known SNPs in this area. TagSNPs can be

Fig. 23.5 Schematic overview of sequencing results. Left Sanger sequencing. For each of the four
nucleotides (A, T, G, C) a separate analysis has to be run. The product of each reaction is spotted
in a separate lane on an electrophoresis gel. The nucleic acid molecules are separated by applying
an electric field to move the negatively charged molecules through a matrix of agarose or other
substances like polyacrylamide. Shorter molecules move faster and migrate further than longer
ones, because shorter molecules migrate more easily through the pores of the gel. Right
Dye-terminator sequencing: The ddNTPs are labeled with different fluorescent dyes, which emit
light at different wavelengths and are measured by an optical unit of the sequencing machine
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inferred by means of haplotype analyses. These are mathematical algorithms that
calculate the linkage between SNPs in a certain gene region on one chromosome.

The newest large international genomic project is called 1kGP and investigates
the human genome of a much larger group consisting of N = 2500 participants from
25 populations around the globe. By sequencing this large number of participants it
will be possible to get more detailed insights into the variability of human DNA,
detecting alleles with a minor allele frequency of >1 % in the population. A large
number of the aforementioned 4.2 million TagSNPs were detected by this new
project. It has been suggested that it is possible to cover up to 35 million SNPs with
5 million TagSNPs. Among the 5 million SNPs covered, about 2 million SNPs can
be found in genic regions. The rest of the covered SNPs can be found in intergenic
regions—the vast areas lying between genes. These areas have been known as ‘junk
DNA’ for a long time, because researchers thought that intergenic regions are
evolutionary relics on our DNA and no longer of importance. This view has
changed in recent years, as these intergenic regions appear responsible for much of
the regulatory processes of gene activity.

23.8 Matrix Assisted Laser Desorption Ionization—Time
of Flight Mass Spectrometry (MALDI-TOF-MS)

MALDI-TOF-MS is a technique that can be used for high-throughput genotyping.
However, the throughput, i.e., the number of genotypes assessed per run (about
15,000), is much lower than in GWS studies (GWS; see above). Therefore, the
choice of which method to use for genotyping (PCR, Sequencing,
MALDI-TOF-MS or GWS) depends on the size and the aim of the planned project.
Clearly, the available funding for a project also plays an important rule, because
GWS—although providing fine-grained information on each participant—are still
more costly than analyzing a number of SNPs of a person by means of
MALDI-TOF-MS. Results of GWS studies often come up with only a very small
number of polymorphisms that hold the massive correction for multiple testing.
Often nothing is known about the gene on which these SNPs are located. The
straightforward strategy is now to screen these genes by covering at least all
TagSNPs. In addition, a further approach would be the investigation of all relevant
genes of a certain neural pathway by means of Tag-SNP analysis. For example, if a
researcher is interested in reward processing, he or she could investigate all
pathway-based genes of relevance for dopaminergic signaling. Here,
MALDI-TOF-MS is the method of choice.

Before conducting a MALDI-TOF-MS analysis there are several preprocessing
steps. The scientist has to set up a list of SNPs he/she is interested in. By software
supported in silico6 analysis the primers for the PCR analysis and so-called

6In silico means that the designs are conducted on a computer.
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extension primers for an ensuing extension reaction have to be designed and tested
for compatibility. The best possible result is to “plex” up to 40 different SNPs in
one reaction. When using a 384-well PCR plate it is possible to get 40 by 384
(=15,360) genotype results. Before the actual analysis, the preprocessed samples
(preprocessing encompasses three different biochemical reactions including PCR)
must be spotted by a nanodispenser on a microchip, which is then inserted into the
mass spectrometer. Using a laser each well of the microchip is then fired and the
molecules fly high through the wind tunnel of the mass spectrometer, which is
under a vacuum. The time it takes for the molecules to fly to the top of the wind
tunnel (time-of-flight) gives information on the size of the molecules, e.g., smaller
molecules fly high faster. Using earlier plex designed in silico, it has been ensured
that each of the genotypes of the approximately 40 SNPs has a distinct molecular
size. The mass spectrometer is capable of detecting DNA fragments within a range
of 4500–9000 Da, and can distinguish between analytes separated by 16 Da or
more (analytes are typically 18–25 nucleotides).

23.9 Epigenetics

Genetic research had—and often still has—a bad image among the public.
Although people are aware that genetic research can prospectively promote the
development of new medical therapies, the fear of the misuse of genetic information
remains prevalent in the minds of many. For example, the perception that important
phenotypes such as Intelligence, which is proven to be causally related to profes-
sional success, are strongly and genetically determined (heritability estimates for
intelligence range between 0.50 and 0.70; Bouchard et al. 1990), makes many
people uncomfortable, because it means that our own influence on our fate is
limited. A strong heritability for psychiatric diseases has also been proven
(McGuffin et al. 2001). However, the fact that many disorders, such as depression,
are influenced by many genes makes identification of the polymorphisms involved
very complicated. The same is true for intelligence and other complex phenotypes,
such as those studied in Neuroeconomics. In contrast to monogenetically caused
disorders, such as the neurological condition Huntington’s disease, a complex
concert of hundreds of genes influences the aforementioned psychological pheno-
types. It can be assumed that each of the single genetic markers merely represents a
genetic risk factor, which only comes into play when additional risk factors—not
just genetic ones—are also present. These risk factors can be environmentally
conditioned. For example, stress, financial worries, relationship problems, the ill-
ness of one’s child, etc., can trigger the onset of a psychiatric disease if a genetic
risk factor is given.

On the other hand, we know that environmental factors, e.g., treatments, train-
ings, or therapies can ameliorate or cure a disease. It could be shown that therapy
outcome can be dependent on the genetic makeup of an individual. For example,
Knuts et al. (2014) reported that a sample of agoraphobia patients those carrying the
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5-HTTLPR low expression genotypes had a more favorable response to exposure
therapy two weeks following treatment, compared to patients with other genotypes.
Using a slightly different approach, Caspi et al. (2003) demonstrated that the risk
for depression is dependent on 5-HTTLPR genotype but only in the presence of
critical life events. The risk for depression increases only exponentially in carriers
of the 5-HTTLPR ss-genotype. If no critical life events are present, carriers of the
ss-, the sl-, and the ll-genotype do not differ with respect to their risk for depression.
The study by Caspi et al. is one of the first and most prominent studies demon-
strating a gene by environment interaction. At this point in time the molecular
mechanisms of how environmental factors can influence genes were totally
unknown. Interestingly, the term “epigenetics” had already been coined in 1942 by
the British developmental biologist Conrad Hal Waddington. At this time even the
structure of DNA was still unknown. Epigenetics denotes processes that act outside
the regulation of gene expression, but that affect it (Epi stems from an old Greek
word meaning “over” or “outside of”). Epigenetics is a field of biology that
investigates what factors determine the activity of a gene and thus the development
of the cell temporarily and whether some of these changes are inherited by the next
generation. In molecular genetics, epigenetic analyzes focus mostly, in addition to
histone modifications, on methylation analysis. DNA methylation is a modification
of DNA that occurs through the addition of a methyl group to the 5-carbon position
of a cytosine ring (see Fig. 23.6a). Notably, DNA methylation only occurs if the
cytosine base (C) is followed by a guanine base (G). Adjacent cytosine and guanine
bases are knitted together by a phosphodiester bond (p). This is the reason why the
sequence of a cytosine-phosphoguanine is designated as CpG-site (see Fig. 23.6b).
CpG islands are regions in the human genome where the prevalence of CpG-sites is
very high (i.e. >50 %) and the observed-to-expected CpG ratio is greater than
60 %. CpG islands represent about 1 % of the genome (see Fig. 23.6c). A strongly
methylated gene has a low or no expression rate. Hypermethylated genes are
densely “packed,” which prevents the transcription factors from binding. This is the
reason why genes that are not expressed in a certain cell type are hypermethylated.
For example, the insulin gene is strongly methylated in a neuronal cell in which
insulin is not produced. Therefore, cell differentiation is closely related to
methylation.

Two methods are widely used to assess the percentage of CpG methylation in a
given DNA region: Bisulfite-Sequencing and MALDI-TOF-MS. Both techniques
demand bisulfite treated DNA. Treatment of DNA with bisulfite converts cytosine
residues to uracil (U), but leaves 5-methylcytosine residues unaffected. In other
words, if a CpG site is methylated the 5-methylcytosine is unchanged, whereas in
the case of no methylation, a uracil replaces the cytosine base. After the DNA
sequence is bisulfite treated, the Bisulfite Sequencing is run as in normal
sequencing. However, MALDI-TOF-MS needs a special chemistry to finally allow
quantification of the percentage of methylation for discrete CpG sites. However, the
principle of MALDI-TOF-MS remains unchanged.
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Chapter 24
Hormones

Robert Miller and Clemens Kirschbaum

Abstract With the advent of readily available, convenient, and cost-efficient bio-
chemical tools, the analysis of hormones has become a valuable approach to gain
deeper insight into physiological processes, which influence human behavior.
Neuroeconomic research has benefited from this development as indicated by a
continuously growing number of publications during the past 20 years, relating
variation in various endocrine systems to human decision-making. However, an
informed reception and interpretation of such research relies heavily on knowledge
about endocrine physiology and methods. Therefore, the present chapter aims to
serve as a primer for endocrine methods by providing an overview about the most
relevant aspects of design and data acquisition, as well as biochemical, and sta-
tistical methodology for hormone analyses. Proceeding from the brief delineation of
endocrine systems’ properties, various approaches to the measurement of hormone
concentrations and to the inference on endocrine process components are presented
in order to enable the reader to take part in this promising field of research.

24.1 Introduction

With the advent of readily available, convenient, and cost-efficient biochemical
tools, the analysis of hormones has become a valuable approach to gain deeper
insight into physiological processes, which influence human behavior.
Neuroeconomic research, in particular, has benefited from this development as
indicated by a continuously growing number of publications during the past
20 years, which is exemplarily illustrated in Fig. 24.1. This growing research
interest is discussed by Amos Nadler and Paul Zack in Chap. 3 of the present book,
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who provide a comprehensive, content-related review on the most relevant findings
relating variation in various endocrine systems to human decision-making.

However, an informed reception and interpretation of the respective research
results, and even more importantly, active participation in this promising field of
research, relies heavily on knowledge about endocrine physiology and methods.
Therefore, the present chapter aims to serve as a primer for endocrine methods by
providing an overview about the most relevant aspects of design and data acqui-
sition, as well as biochemical, and statistical methodology for hormone analyses. As
such, we do not intend to discuss specific endocrine systems and functions, but
occasionally illustrate their features by selected examples.

24.2 Characteristics of Endocrine Systems

Endocrine systems are mostly defined by complex interaction patterns of different
molecules that serve, in contrast to neuronal signal transduction, to unfold some
lagged physiological impact over time. Some of these molecules, which are
involved in endocrine signal transduction, are called hormones. Hormones differ in
their physical and chemical properties due to their specific molecular structure (see
Table 24.1). They are secreted by various glands and distributed by the blood in
order to serve as chemical messengers altering cell function at remote target sites,
mostly by activation of their associated intracellular or membrane-bound receptor
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Fig. 24.1 Number of hormone-related publications on decision making per year as listed by
Scopus (Elsevier, 2013)
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molecules. After secretion and distribution, hormones are bound by specific plasma
proteins (i.e., binding globulins) and/or continuously degraded to their respective
metabolites by enzymes. Finally, they are cleared from the blood and excreted by
the kidneys (renal clearance) and/or the liver (biliary clearance).

Table 24.1 List of selected hormones (adopted from Knox et al. 2011)

Chemical formula Hormone Also known as Acronym

Peptide/protein hormones (large molecules, water-soluble)

C257H387N65O76S6 Insulin – –

C43H67N15O12S2 Vasopressin Arginine vasopressin,
antidiuretic hormone

AVP/ADH

C207H308N56O58S Corticotropin Adrenocorticotropic hormone ACTH

C990H1532N262O300S7 Somatropin Somatotropin, growth hormone GH

C208H344N60O63S2 Corticoliberin Corticotropin-releasing
hormone/factor

CRH/CRF

C55H75N17O13 Gonadoliberin Luliberin, gonadorelin,
gonadotropin-releasing
hormone,
luteinizing-hormone-releasing
hormone

GnRH/LHRH

C1014H1609N287O294S27 Lutropin Luteinizing hormone LH

α:
C437H681N121O135S13
β:
C975H1513N267O304S26

Follitropin Follicle-stimulating hormone FSH

C21H40Cl2O2S2 Prolactin Lactropin, lactotrophic
hormone

PRL/LTH

C43H66N12O12S2 Oxytocin – OXT

α:
C975H1513N267O304S26

Thyrotropin Thyroid-stimulating hormone TSH

Amine hormones (small molecules, rather water-soluble)

C9H13NO3 Adrenaline Epinephrine –

C8H11NO3 Noradrenaline Norepinephrine –

C15H11I4NO4 Thyroxine – T4

C15H12I3NO4 Triiodothyronine – T3

Steroid hormones (small molecules, lipid-soluble)

C21H28O5 Aldosterone – –

C21H30O5 Cortisol Hydrocortisone, compound F F

C19H28O2 Dehydroepiandrosterone Androstenolone, prasterone DHEA

C18H24O2 Estradiol Oestradiol E2

C18H22O2 Estrone Oestrone E1

C18H24O3 Estriol Oestriol E3

C21H30O2 Progesterone – P4

C19H28O2 Testosterone – –
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All endocrine systems involve the secretion and elimination of several hormones
that serve “communication” between their respective physiological components. Such
components interact by feed-forward and feedback loops, enabling self-regulation
toward a systemic equilibrium. For instance, the hypothalamic-pituitary-adrenal
(HPA) axis, is formed by the three endocrine organs: (1) the paraventricular nucleus of
the hypothalamus, (2) the pituitary gland, and (3) the adrenal cortex, which interact by
CRH, ACTH, and cortisol. Upon deflection from the equilibrium state (e.g., by stress
experience or external zeitgebers), the hypothalamus releases CRH into the pituitary,
which in turn releases ACTH that signals the adrenal cortex to synthesize cortisol.
Thus, a feed-forward loop is established. Cortisol, however, inhibits further release of
CRH and ACTH by a feedback loop. In consequence, complex and oscillating signal
cascades are established, which are present not only in the HPA axis, but in any
endocrine system. For a more detailed in-depth discussion of specific endocrine sys-
tems the reader shall be referred to Barrett (2005).

An explicit consideration of these properties is crucial, if one intends to inves-
tigate the influence of hormones on human decision-making processes. The major
issues that arise from these properties and that ought to be taken into account for
designing such a study shall be summarized as follows:

(a) Operationalization of endocrine constructs: Any study investigating hormone
effects, needs to appropriately quantify the construct of interest. Endocrine
activity, however, is a continuous process, rather than a fixed state, which
involves many physiological subprocesses that unfold their impact across time
(e.g., the speed and the magnitude of hormone secretion, and the speed of
hormone metabolization and excretion). Thus, only extensive sampling and
hormone measurement can provide a basis for inference on such subprocesses
(although it also bears the danger of having to deal with huge amounts of data,
which can be analyzed and interpreted in various ways). If one, for instance,
assumed that an experimental intervention altered exclusively the amount of a
secreted hormone, the sampling of two specimens might be considered suf-
ficient in order to assess this hypothesis; a first specimen at the concentration
nadir and a second at the concentration peak (as illustrated in Fig. 24.2). If we,
however, concurrently wanted to investigate competing hypotheses (e.g., that
the same intervention did not alter the amount of a secreted hormone, but
rather the secretory speed), the sampling of two specimens would be insuffi-
cient. This is due to the presumed convolution of multiple endocrine sub-
processes; the change of hormone concentration in between two sampling
occasions could be interpreted as a difference in the amount of secreted hor-
mone although it was actually generated by another mechanism (Fig. 24.2,
blue line). To avoid such interpretative biases, an appropriate study design is
required that adequately considers available knowledge about the hormone
kinetics and dynamics, and rules out alternative mechanistic effect
explanations.
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(b) Pacemakers and zeitgebers: Most endocrine systems exhibit pronounced
ultradian, circadian, and infradian (e.g., terrestrial or lunar revolution)
rhythms, which presumably serve to maintain physiological adaptability of the
investigated organism to environmental changes. In consequence, all mea-
sured hormone concentrations fluctuate and therefore encompass only a low
amount of trait variance. This is an inherent problem of hormone measurement
that can only be partly alleviated by rigid monitoring and controlling for
possible confounding state variables (e.g. sampling time, season, menstrual
cycle and the intake of oral contraceptives in case of female participant sex,
time of awakening, currently and previously encountered phases of stress, or
recent intake of meals or legal drugs; Kirschbaum et al. 1997), are well-known
sources for deflected hormone signals. Another countermeasure to account for
such unwanted variance components is to perform repeated hormone sampling
in similar settings, as has been for instance proposed for the reliable assess-
ment of trait-specific variability in the acute HPA axis activity (Hellhammer
et al. 2007; Kirschbaum et al. 1990).

(c) Time lags: Delays between hormone secretion and corresponding psy-
chophysiological responses restrict the time window, in which humoral effects
on information processing in the central nervous system could be observed.
Such delays are in particular problematic, when the physiological effect me-
diators are located more “downstream” from the measured/manipulated hor-
mone. For the HPA axis, such an endocrine signal cascade is exemplarily

Fig. 24.2 Example of how an inadequate operationalization of endocrine constructs may promote
misleading data interpretation. The dot-dashed lines represent the change of hormone concen-
trations (a and b) in between two specimens (red dots) that are sampled in each of two
experimental conditions (black and blue lines). As a differs from b, one might infer that the
amount of secreted hormone (doses) differs between both conditions. However, a varying speed of
hormone secretion caused the observable difference by selectively shifting the concentration peak
in the blue condition, whereas the hormone doses actually remained unchanged
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depicted in Fig. 24.3. The issue is further intensified by within-brain metabolic
and/or transport mechanisms, which are still subject to further research. For
instance, Droste et al. (2008) found that stress-induced corticosteroid secretion
peaks in the brain about 30 min later than in blood plasma. In humans, the
corresponding peak of peripheral cortisol levels is commonly observed about
30–40 min after stress induction (Dickerson and Kemeny 2004), which results
in a time lag of at least 60 min that needs to pass before the associated
humoral stress effects are likely to be detectable. Finally, there is
tissue-specific hormone metabolization (e.g. fat tissue has been shown to
locally convert physiologically inactive cortisone to cortisol; Andrew et al.
2005), which may further alter the temporal delay of hormonal feed-forward
and feedback loops and thus differentially change the oscillatory dynamics of
the endocrine system.

(d) Hormone structure and kinetics: Hormones primarily rely on blood perfusion
in order to reach their target sites. However, some parts of biological tissue are
more richly perfused than others (e.g. fat vs. muscle tissue) which may result
in a varying concentration of hormones at different target sites (depending on
the hormone’s molecular structure and corresponding properties). Small,
lipophilic hormones can easily penetrate tissue and therefore bypass their
exclusive distribution by the blood stream to a certain degree. By contrast,
comparably large, hydrophilic peptide hormones (e.g. Oxytocin) cannot ben-
efit from this property, which has serious implications for specimen selection
and the availability of the hormone to target sites such as brain tissue, which is

Fig. 24.3 Transit-compartment model (Bonate 2011) illustrating the kinetics of HPA hormones
after stimulation by bolus CRH administration. The model was informed by data from Schürmeyer
et al. (1984). Assuming a direct correspondence of CRH/ACTH elimination to ACTH/cortisol
secretion, ACTH is predicted to peak 9 min after challenge whereas the cortisol blood
concentration peaks 41 min after challenge
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probably most relevant to the field of Neuroeconomics. In this regard, the
blood brain barrier that is formed by endothelial cells covering the interior
surface of blood vessels, should be taken into particular account. This barrier
prevents large molecules, and peptide hormones in particular, to enter the
blood vessels of the brain from the peripheral blood stream and vice versa.
Consequently, central peptide hormone levels differ from levels in peripheral
specimens (e.g. saliva) and ought to be measured in specimens such as the
cerebrospinal fluid. Conversely, central peptide hormone levels cannot be
altered by peripheral pharmacological challenge. Instead, the blood brain
barrier needs to be bypassed as for instance by intranasal substance admin-
istration (e.g. Guastella et al. 2013).

24.3 Measurement of Hormone Concentrations

24.3.1 Selection of Specimen and Analytes

In analytical chemistry, the term specimen is used to refer to any sample of a certain
compound, which is to be analyzed. Any specimen contains a certain amount of
hormones (i.e., the analyte), which is to be determined by some measuring system.
The remains of the specimen form the so-called matrix, which can in turn influence
the measurement of the analyte. Proceeding from the cursorily outlined properties
of endocrine systems (see Sect. 24.2), there are various options of which and how
many specimens within a certain time period are to be assayed for what analyte by
what measurement system. Regarding specimen and analyte selection, the inclined
researcher has to consider three design parameters, which determine the adequacy
of endocrine activity assessment.

First, specimen selection is supposed to rest upon theoretical considerations. The
most proximate choices for specimens comprise biochemical compounds contain-
ing an analyte that is most likely indicative for activity of the investigated endocrine
system. According to the physiological knowledge about endocrine systems in
general, blood and excrements (urine and feces) are the most reasonable options.
While blood is presumably the most suitable type of specimen for monitoring
currently bioavailable hormone concentrations, it is barely suited for monitoring
long-term hormone exposure. Conversely, excrements can serve quite well for such
a purpose, but any measured analyte concentration within these specimens is
dependent on the volume of food and fluid being ingested by the participant.
Consequently, these confounders have to be controlled. Depending on the avail-
ability of knowledge about specific metabolic processes, however, other specimen
might as well be taken into consideration. The most prominent example for such a
specimen forms saliva for the monitoring of current hormone concentrations. Saliva
is particularly useful to determine steroid hormones, but larger hormones have also
been found to be present in saliva although these rely on active transport

24 Hormones 469



mechanisms (Gröschl 2008; Vining et al. 1983). Furthermore, many salivary hor-
mones do not seem to be (mostly steroids, but no peptides; Hofman 2001) influ-
enced by the flow rate of saliva. The popularity of saliva sampling is mostly due to
the ease of its collection (by commercially available sampling tools; e.g. Gröschl
et al. 2008) and its noninvasiveness, which results in a substantially facilitated
implementation process as compared to blood sampling. Hair has also been shown
to contain considerable amounts of steroid analytes (e.g. Gao et al. 2013). With a
barely interindividually varying growth rate of 1 cm per month has been proposed
to reflect cumulative hormone expose across time periods (Stalder and Kirschbaum
2012), that are substantially longer than those covered by feces or urine. However,
the mechanism of analyte incorporation into hair needs still to be unveiled.

The second design parameter concerns to the number of specimen, which should
be sampled from each subject. This is not only of practical importance, as hormone
determination for many specimen and analytes can be quite costly (see Fig. 24.4),
but also closely linked to the choice of specimen, as the number of specimen per
subject is (given a reliable measurement) only relevant with regard to the time
period required to infer on the construct of interest (as has been mentioned in the
previous section). Example given, 3 cm of hair are supposed to contain an analyte
concentration, which reflects cumulative hormone expose during the last 3 months.
If this cumulative hormone exposure is the construct of interest, only one specimen
is required. If one, by contrast, intends to infer on the change of cumulative hor-
mone exposure due to some experimental intervention at least two specimens need
to be taken at an appropriate time interval. Analogous deliberation is particularly
important, if subprocesses of endocrine activity are to be investigated (e.g. the
speed of hormone secretion and concurrent elimination). Such a research question
needs at least three specimens covering reasonably distant sampling points and
containing analytes, which reflect the organism’s current hormonal status (i.e. blood
or saliva). With complex endocrine systems acquisition of only two specimens
bears the risk, that the construct of interest is not reasonably assessed. This is due to

Fig. 24.4 Relation between
study cost, number of
sampled specimens per
subject, and number of tested
subjects. While the costs
increase linearly with the
number of sampled
specimens, more subjects
increase the study cost in a
quadratic fashion
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the fact that endocrine activity can hardly be, at least from a physiological point of
view, characterized by only two parameters (i.e., the mean and variance of hor-
mone level change in between two sampling occasions). Similarly, research
questions that involve the assessment of hormonal rhythms, should similarly con-
sider at least three specimens during the phase of rising hormone levels, around the
expected peak, and during the phase of decreasing hormone levels.

The third design parameter concerns the choice of analyte in the specimens,
which is to be measured. Apart from the directly measuring the hormones being
involved signal transduction of the investigated endocrine system, endocrine
activity is not only indicated by hormones that directly unfold their associated
physiological effects but also by their metabolites, which are concurrently present
within the same specimen. Such considerations may become important, if the
kinetics of the respective target hormone require special precautions, which com-
plicate the process of specimen collection. Adrenaline and noradrenaline form
prominent examples for such a case, as their half-lives amount to less than five
minutes, which requires that specimens are to be preprocessed and frozen imme-
diately after collection. Their metabolites metanephrine and normetanephrine,
however, persist much longer and may also serve to indicate activity of the sym-
pathetic nervous system. In a similar fashion, it is reasonable to choose those
analytes that are directly involved in endocrine signal transduction and easily
obtainable, but yield a longer half-life than the other hormones being involved in
the respective endocrine system (e.g., cortisol is eliminated much slower than CRH
or ACTH). Another occasion, where metabolite assessment may become handy,
concerns study designs, in which endocrine activity is induced pharmacologically
and the specimens are to be obtained from the same route that is used for substance
administration (e.g. oral administration of cortisol and saliva collection; see
Perogamvros et al. 2010).

24.3.2 Laboratory Methods

The determination of hormones from blood, saliva, urine, or any other specimen
requires highly sensitive biochemical methods, since the concentrations of these
analytes are typically in the nanomolar to picomolar (10−9–10−12 M) range. Thus,
even minute quantities of endocrine substances must be captured with high preci-
sion and reproducibility. Following seminal work by the nobel-laureate Rosalyn
Yalow in the 1970s, a rapid acceptance and increasing use of immunological
approaches, which show just these characteristics, has been seen (Wild 2013).
Today, almost any endocrine parameter can be assessed by so-called immunoassays
and literally hundreds of commercial test kits are available on the market.
Immunoassays are today probably the most frequently employed method of mea-
suring hormone levels in a given matrix.

The measurement principle of any immunoassay is based on the use of proteins
generated by the B lymphocytes of the immune system, i.e., the antibodies. In our
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body, these proteins bind foreign materials (“antigens”) that may jeopardize the
integrity and health of an organism. Millions of different antibodies can be gen-
erated by the immune systems, allowing us to become “immune” to virtually every
pathogen or foreign material on earth. With certain biochemical tricks, antibodies
against any hormone can be generated by injecting the hormone into a different
species (like sheep or swine). After repeated injection, or “immunization,” high
concentrations of antibodies produced against the particular human hormone can be
found in this host. Attaching a biochemical label to such an antibody now allows
for its use to quantify the amount of the hormone in plasma, serum, urine, feces,
saliva, cell extracts, or supernatants. The nature of the biochemical label gives the
name to the specific immunoassay: Attaching a radioactive compound to the
antibody will result in a radioimmunoassay (RIA), enzymes as labels will produce
enzyme immunoassays (EIA or ELISA), depending on the specific composition of
the test, while light-emitting labels will result in fluorescence or chemiluminescence
immunoassays (FIA or CLIA), respectively.

Immunoassays typically require sample volumes between 10 and 200 microliters
per determination, which are used in singlet or duplicate (with the mean of the two
replicates serving as the measured concentration). The reproducibility of an
immunoassay result is reflected in the intra- and interassay coefficients of variation.
Defined as the standard deviation of repeated assays performed from the same
specimen divided by the average concentration measured, these coefficients should
not exceed 12–15 % for reliable and reproducible results. Most modern assay
systems are able to deliver much better performance, the better kits give interassay
CVs below 5 %.

While immunoassays are the first choice for reliable and rather inexpensive
analysis, they sometimes lack the required specificity. Since a given antibody will
not bind exclusively to the molecule it has been raised against, a certain crossre-
activity with matrix components of similar molecular structure is usually seen.
Crossreactivity may be sufficiently low so that the ‘true’ analyte concentration is not
significantly overestimated. For example, most immunoassay for cortisol will also
detect its metabolite, cortisone, with a crossreactivity between less than 1 % to
more than 10 % (the latter posing a significant source of measurement error; see
Miller et al. 2013). An even more difficult situation arises with a much higher
crossreactivity to certain glucocorticoids used for the treatment of certain medical
conditions (e.g., inflammatory disorders). One of such glucocorticoids, pred-
nisolone, is detected by anticortisol antibodies with 50–80 % crossreactivity! If a
reliable differentiation between those steroids is required, other analytical methods
need to be employed.

Among the most specific biochemical methods available to date for analysis of
molecules in a complex matrix, the measurement of hormones using liquid chro-
matography coupled with tandem mass spectrometry (LCMS/MS) is becoming the
gold standard for such analytic purpose. With this method, the analytes are not
detected after binding, but rather identified on the basis of its molecular mass. It is
therefore superior to immunoassays due to much greater specificity. Despite this
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clear advantage, this methodology is unsuited for most smaller research labs, since
LCMS/MS equipment is still prohibitively expensive, requires highly trained per-
sonnel, and allows for rather low throughput.

24.4 Data Analysis

Given that alteration of an endocrine system can be achieved by simple experi-
mental manipulations (e.g. by intranasal injection of Oxytocin; Guastella et al.
2013, or by brief inhalation of carbon dioxide; Wetherell et al. 2006), and that one
intends to use some measured hormone concentration C only as means to check for
intervention efficacy (i.e., to use C as a dependent variable), analyses of endocrine
data are comparably straightforward. Here, the general linear model (GLM, see
Everitt 2009) is particularly straightforward to implement, and can be easily
interpreted as long as its prerequisites are considered (Miller and Plessow 2013). If
one, however, intends to use endocrine activity as an explanatory variable, data
analyses becomes much more complex, as an adequate quantification of the con-
struct of interest requires specification an appropriate statistical (measurement)
model. In biobehavioral studies, the application of two major options for quan-
tification of endocrine activity is observable: (a) data-driven quantification
approaches, which can in most cases be related to the calculation of change scores,
and (b) theory based approaches (including area-under-the-concentration-curve
calculations), which have been originally developed for pharmacological studies
but are also about to become more prominent in the field of Neuroeconomics.

24.4.1 Data-Driven Quantification of Endocrine Activity

Considering that hormone levels fluctuate continuously across time due to the
inherent properties of the respective endocrine system, a large variety of models
have been proposed to infer on the status of the investigated system from a limited
number of specimens, which have been sampled at discrete points of time. Such
data are called panel data. Statistical models for the analysis of panel data can be
roughly differentiated into models in which the change of hormone concentration
per unit of time is considered explicitly (being referred to as continuous-time
models) and models in which time is considered implicitly (being referred to as
discrete-time models).

Continuous-time models commonly incorporate estimation of a time-related
parameter. In the present context, the simplest form of such a model is a linear
regression (see formula I below) that relates C at two different points in time t0 and
t1 to the time on its original scale.
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Cðt0; t1Þ ¼ aa � timeþ ca

Such a simple model, however, assumes that the change that occurs in between
t0 and t1 is the same for each time unit, which is quite unrealistic considering the
inherent nonlinear kinetics of endocrine markers. In case a third data point C(t2) is
added to the present example, which deviates from the projected linear trajectory of
C across time, one could sufficiently account for it by adding an additional quad-
ratic term (see formula II below). This model also implies that any continuous
change that occurs in between t0 and t2, can be reasonably approximated by the
given equation.

Cðt0; t1; t2Þ ¼ ab � timeþ bb � time2 þ cb

By contrast, discrete-time models do not assume a continuous trajectory of
C across time. Proceeding from the examples mentioned above, the simplest model
for analyzing panel data of such kinds is a repeated-measures analysis of variance
(ANOVA). As such ANOVA also belongs to the GLM-class, its model equation is
quite similar to the listed regression models, but uses dummy-coded sampling times
as predictors. Consequently, the equation for the C(t0, t1) example is the same as in
formula I, but different for the C(t0, t1, t2) example represented by formula II.

Cðt0; t1; t2Þ ¼ ac � time t0; t1ð Þþ bc � time t0; t2ð Þþ cc

These outlined examples illustrate, that the distinction between continuous- and
discrete-time models is of a rather conceptual kind, because all examples belong to
the same model class. Differences between them mostly relate to the coding of time
and thus to the interpretation of the model coefficients. From a content perspective,
however, continuous-time modeling yields a major advantage as compared to
discrete-time modeling of hormone time series: Given an adequate theoretical
foundation, they enable a precise quantification of endocrine activity at any point in
time, which is formed by occasional (or forced) secretory events and concurrent
hormone elimination. By contrast, endocrine parameters that have been obtained by
discrete-time models can only be used to infer on endocrine activity at the time of
sampling, which restricts their comparability with the results reported by other
studies (i.e., its interpretability) for the benefit of a more convenient usability.

Any statistical model for hormone time series relies on appropriate theoretical
assumptions on the construct being investigated. In the most basic and popular, but
rather data-driven case, change of C can be formalized as ΔC(ti) = C(ti) − C(ti−1)
occurring in between two points in time ti and ti−1, at which specimens have been
sampled. Although ΔC can serve as a convenient and easily interpretable indicator
of endocrine activity, it relies on discrete points in time (i.e., any informative
change of in-between and outside of bounds of specimen sampling is disregarded).
Although this problem can be alleviated by sampling of more than two specimens,
the analytical complexity would concurrently increase because the number of
possible ΔCs grows in a quadratic fashion the more specimens are sampled.
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Continuous-time modeling of ΔC can provide a solution to this problem,
although no mechanistic and physiological knowledge about endocrine functioning
used. A key aspect of the continuous-time modeling of endocrine activity rests on
the idea that any ΔC(ti) within a certain, fixed time window (Δt = ti − ti−1) also
contains information about ΔC within any other Δt. By rescaling ΔC(ti) according
to length of its corresponding time window Δti, a difference quotient ΔCi/Δt can be
obtained that denotes any change of hormone levels within one unit of its time
scale. This quotient can be interpreted similar to the regression parameter aa in
formula I (see above). Furthermore, any ΔCi can be modeled by an autoregression
that predicts C(ti) by C(ti−1) [or its rearranged form C(ti − Δt); (see Bollen and
Curran 2004)]. The integration of both trains of thought implies the difference
equation given below, where A as a matrix containing all autoregression parameters
relating the difference quotient ΔCi/Δt to any sampling point:

DCðtiÞ
Dt

¼ A� Cðti � DtÞ

If we now let Δt converge toward zero, the autoregression matrix A will define
the slope of C at any point in time, and thus become a matrix containing the
local change (or drift) parameters of C(ti). This is formalized by the deterministic
differential equation given below. Solving this formula yields a nonlinear regression
function where t0 represents the beginning of the time series (i.e., the initial sam-
pling point):

dCðtÞ
dt

¼ A� CðtÞ

C tð Þ ¼ C t0ð ÞeAðt�t0Þ

Implementation of such a model and its extension by randomly occurring
deflections of C that can be related it to the change of concurrently assessed psy-
chological constructs, has been extensively elaborated by Voelkle et al. (2012) and
shall therefore not be discussed any further.

24.4.2 Theory-based Quantification of Endocrine Activity

Although the previously presented model may render useful to merely describe the
change of C across time, it fails to adequately account for endocrine activity in
response to a certain experimental intervention due to lack of the incorporation of
knowledge that may cause corresponding change of C (by its underlying subpro-
cesses). As has been mentioned above, the adequate formalization of such mech-
anisms relies on substantive theory. For the modeling of endocrine time-series in
particular, the pharmacokinetic compartment theory might serve as a reasonable
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starting point. This theory has originally been developed for the analysis of sub-
stance absorption, distribution, metabolism, and excretion within and between
different physiological compartments (Bonate 2011; Gabrielsson and Weiner 2007).
Each of such compartments (e.g., the adrenal glands and the blood) contains a
specific amount of the investigated substance at each point in time, which is
determined by the exchange of substance between those compartments (being
indicated by various kinetic parameters ki). Proceeding from this reasoning, one can
directly specify differential equations for each compartment that can be integrated
into a single physiologically plausible model of the whole system: If we assume,
for instance, that a certain amount of substance within the adrenal glands (C1:
compartment 1) entered the blood (C2: compartment 2) unidirectionally, we would
specify two differential equations; with Ci(t) representing the substance concen-
tration at any time in the respective compartment i, ka representing the substance’s
transfer (or absorption) rate from C1 to C2, and kel representing the substance’s
elimination rate from C2.

dC1ðtÞ
dt

¼ �kaC1ðtÞ
dC2ðtÞ
dt

¼ kaC1ðtÞ � kelC2ðtÞ

Notably, specimen sampling from C1 is optional, as ka and C1(t) can be esti-
mated as well from C2 specimens being sampled across time. Using Laplace
transforms (Mayersohn and Gibaldi 1970), both differential equations can be solved
and integrated to a nonlinear regression function. Similar to the solution of the
data-driven continuous-change differential equation in the previous section, such a
function relies on information about the initial state of the system. This is indicated
by C1(t0); the need to estimate an initially available concentration of target sub-
stance in C1.

C2 tð Þ ¼ C1ðt0Þ ka
ka � kelð Þ � e�kelt � e�kat

� �

Adopting the compartment model outlined above for hormone analysis by
assuming that C2 corresponded to the blood compartment, from which hormones
were measured [i.e., C(t) = C2(t)], C1 could be regarded as a latent compartment
containing the fraction of hormone to be secreted (before feedback inhibits any
further feed-forward hormone release). However, its implementation is (yet) im-
plausible, because the blood compartment C(t0) would contain no hormone at all at
the beginning of specimen sampling. Such an assumption is inconsistent with the
empirically observable patterns of continuously oscillating endocrine activity (e.g.,
Brown et al. 2001; Klerman et al. 2003) that cause hormone concentrations to
deviate substantially from zero at any point in time. Within a conventional panel
design comprising blood sampling in temporal proximity to a single secretory
event, we could use a generalization of the derived formula for estimating C(t) after
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n previous substance administrations (Gabrielsson and Weiner 2007), that is, C(t0)
is assumed to converge toward some steady state gives a fixed phase τ (that defines
the elapsed time period before C1(t0) is reinstated). The corresponding equation is
provided below:

C2 tð Þ ¼ CðtÞ ¼ C1ðt0Þka
ka � kelð Þ �

1� e�nkels

1� e�kels

� �
e�kelt � 1� e�nkas

1� e�kas

� �
e�kat

� �

As n increases toward infinity and given the substance has been completely
transferred to C2 as t approaches the phase duration τ, the minimal C(t0) can be
calculated by the following formula, with t0 denoting a point in time that is found
between the initial sample and the first observable rise of hormone levels.

C t0ð Þ ¼ C1ðt0Þka
ka � kelð Þ �

e�kels

1� e�kels

� �

Fitting of such a model can nowadays be conveniently be implemented via
commercially available nonlinear regression tools (e.g. R, NONMEM, or SAS) or
utilization of generic Markov-Chain Monte-Carlo methods (e.g. WinBUGS; see
Lunn et al. 2002, or STAN). We illustrate such a model in Fig. 24.5, that has been
fitted to the mean cortisol concentrations being obtained before, during, and after
stress-induction by von Dawans et al. (2011).

Proceeding from such a model, one can also estimate the overall extent of
endocrine activity by calculating the amount of hormone that is additionally
available as compared to a scenario, where endocrine stimulation was unsuccessful.
Such a measure can be quantified as the difference between the area under the
concentration curve (AUCC) given a pulse was present (within the time period from
t0 = 0 to phase duration τ, see solid line in Fig. 24.4) and AUCC given no pulse was
present (i.e., the time period from t0 = τ to twice the phase duration 2τ, see dashed
line in Fig. 24.4):

AUCC ¼ C1ðt0Þka
ka � kelð Þ

� Zs

0

1� e�nkels

1� e�kels

� �
e�kelt � 1� e�nkas

1� e�kas

� �
e�katdt

 

�
Z2s
s

1� e�nkels

1� e�kels

� �
e�kelt � 1� e�nkas

1� e�ka�s

� �
e�katdt

1
A

Conditional on the validity of the proposed model for mapping the kinetics of C,
this AUCC to actually quantifies endocrine activity on a theoretical basis. In contrast
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to the ΔC operationalization of endocrine activity, which crucially depends on the
time specimens are sampled, the AUC is easily interpretable and represents a more
holistic operationalization of individual endocrine activity. Due to the complexity
of its calculation from such parametric models, however, nonparametric AUC
variants have been proposed (e.g., AUCi and AUCg being calculated from trape-
zoidal C decomposition; Fekedulegn et al. 2007; Pruessner et al. 2003), which are
based on linear interpolation between all discrete points in time. Consequently,
these variants are no real, but rather discrete-time indicators of endocrine activity, as
the sampling time of specimens is crucial to recover the data generating mechanism.
Despite of this shortcoming, they can be regarded as convenient data-driven
approximations to the information being provided by continuous-time AUCs (given
a sufficient number of available specimens). Finally, their utility with regard
to measuring endocrine activity has been supported by (Fekedulegn et al. 2007),
who showed that a combination of AUCi and AUCg may serve well to account for
the major fraction of time-series variance in hormone concentrations.

Fig. 24.5 Empirical salivary cortisol concentrations and the predicted salivary cortisol trajectory
before, during, and after HPA stimulation by a stress-protocol (TSST-G; see von Dawans et al.
2011). Model fitting yielded the following parameters: the amount of cortisol being secreted
relative to the volume of distribution C1(t0) = 26.06 nmol/L, the rate of cortisol secre-
tion ka = 0.083, and the rate of cortisol elimination ke = 0.026. The dotted line denotes the
steady state C(t0), that is, the concentration that needs to be reached before the cortisol in C1(t0) is
secreted again (after τ minutes). The dashed line shows the predicted trajectory of cortisol
concentrations in case no endocrine response would have been elicited due to the stress-protocol
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Chapter 25
Eye Movements

Ulrich Ettinger and Christoph Klein

Abstract The study of eye movements may provide a “window to the soul”, that
is, a unique opportunity to investigate the mind and brain of humans and animals. In
this chapter we argue that the study of eye movements may also be of use in
neuroeconomics research. We first describe the types of eye movements that are of
relevance in this context and outline their neural correlates. We then outline the key
oculographic methods that are likely to be applied in neuroeconomics experiments
and point out the advantages of oculomotor research over manual motor experi-
ments. We address the long researched issue of the association between eye
movements and visual attention. That research supports the benefit of studying eye
movements as a concurrent level of analysis in addition to manual responses in
order to better understand the temporal and spatial features of attention. We then
review key literature on the pupil, which shows a close relationship between pupil
dynamics and various cognitive and affective states. Finally, we summarise some
important findings from oculomotor research in the field of neuroeconomics. It is
concluded that the study of eye movements represents a convenient, objective and
reliable method that may yield important additional data to better understand
economic decision-making processes as well as their neurophysiological correlates.
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25.1 Introduction

It has long been suggested that the eye is the “window to the soul”. Wade and Tatler
(2005, p. 1) in their comprehensive history of oculomotor research quote De
Laurens in a writing from the sixteenth century as stating “Orpheus called the eyes,
the looking glasses of nature: Hesichius, the doores for the Sunne to enter in by:
Alexander the Peripatecian, the windowes of the mind, because that by the eyes we
doe cleerely see what is in the same, we pearce into the deepe thoughts thereof, and
enter into the privities of his secret chamber”.

The notion that the eye may offer privileged access to the study of the mind, i.e.
to human and animal cognition, motivation, emotion, ability and personality as well
as psychopathology, has been reiterated in modern times (Stern and Dunham 1990).
The eye offers a wealth of information about ongoing cognitive and emotional
processes, first and foremost of course about where the person is directing their
overt visual attention (see below). Additionally, the measurement of eye blinks as
well as the characterisation of the more subtle features of the eye such as the size of
the pupil can be used profitably to make inferences about state variations in the
viewer’s arousal levels as well as demands on information processing (see below).

Together, the eye and its internal as well as external movements presents an
easily accessible model system that can be studied across species—a microcosm
within which to explore the interactive processes of perception, cognition and motor
control as well as their neural substrates, their modulation by emotion and their
impairments in disease (Leigh and Zee 2006; Liversedge et al. 2011).

Historically, the scientific study of eye movements can be broadly structured into
four eras (Duchowski 2002; Rayner 1998). First, in the nineteenth century and in
the early twentieth century, basic facts about the oculomotor system were discov-
ered. These discoveries include fundamental eye movement characteristics such as
saccadic latencies (reaction times) as well as the phenomenon of saccadic sup-
pression, i.e. the reduction of visual perception during saccades which facilitates a
stable representation of the visual world despite changes to the retinal image during
fast ocular movements. The second phase, from the 1930– 1950s, a time when
psychology was dominated by the behaviourist paradigm, saw a stronger focus of
applications of eye movement research. A third major impetus into oculomotor
research could be observed in the 1970s to the late 1990s, due to the increasing
availability of ever more accurate oculographic methods. Fourth, we are today in
the fortunate position to be able to draw upon a range of easily available and highly
sophisticated oculographic hardware and software systems. These allow us not only
to record eye movements with never seen temporal and spatial resolution but also to
perform interactive experiments, for example, by modifying the visual input on the
basis of eye movements or eye position (Duchowski 2002). An additional devel-
opment with major impact on applied as well as basic research is the measurement
of eye movements outside the laboratory in everyday life situations (Holmqvist
et al. 2011). Finally, significant recent advances in the development of oculographic
methods include the availability of eye-trackers that are compatible with magnetic
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resonance imaging (MRI) scanners, thus allowing precise recording of eye move-
ments simultaneously to the acquisition of brain images.

In this chapter, it will be proposed that the study of eye movements may inform
neuroeconomics research. To do so, different types of eye movements will first be
described and fundamental methodological issues in their study will be detailed.
The key oculographic methods are then reviewed before it will be argued, thus the
study of eye movements offers significant advantages in neurocognition research in
comparison to standard manual motor experiments. Next, the processes of visual
perception and attention and their interactive relationships with movements of the
eyes will be outlined. Finally, literature on eye movements and neuroeconomics
will be discussed.

25.2 Types of Eye Movements

The human eye movement repertoire can be classified into different types of eye
movements along various lines. A widely recognised functional classification by
Leigh and Zee (2006) distinguishes between saccades, fixation, smooth pursuit,
vestibular eye movements, optokinetic eye movements, the quick phase of nys-
tagmus and vergence eye movements.

Another commonly made distinction is that between gaze stabilising and gaze
shifting eye movements (Gilchrist 2011). Gaze stabilizing eye movements are those
that maximise stability of foveal processing during target movement, head move-
ment or both, such as vestibular, optokinetic and smooth pursuit eye movements.
Fixation, although not characterised by overtly observable eye movements, is also
considered a mechanism of oculomotor gaze stabilisation. The primary gaze
shifting movements on the other hand are saccades, i.e. rapid eye movements that
serve to bring the image of an object of interest onto the fovea. Of most relevance to
oculomotor paradigms in experimental psychology and cognitive neuroscience are
saccades, smooth pursuit eye movements and fixation.

Saccades (from the French word “la saccade”, meaning “jerk”) are fast, jerk-like
and ballistic eye movements with durations of 20–50 ms and a maximal velocity of
up to 600°/s. In everyday situations humans efficiently explore their visual envi-
ronment by making approximately 3–4 saccades per second (or about 12,000 per
hour) with maximal amplitudes of approximately 15°, beyond which gaze shifts are
more likely to be implemented by head movements (Gilchrist 2011). Saccades can
also be elicited very easily in experimental settings by instructing the observer to
shift their gaze from one (e.g. central) target to a sudden-onset target at another
location (e.g. in the periphery). This basic “prosaccade” task, which is considered to
involve largely automatic processing, can be experimentally modified in order to
tap specific cognitive processes (Hutton 2008). For example, spatial working
memory can be assessed by asking a saccade to the location of a briefly flashed
peripheral target to be executed after a short delay interval (Crawford et al. 1989;
Ettinger et al. 2005; Sawaguchi and Goldman-Rakic 1991). Temporal and/or spatial
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prediction abilities can be challenged by requiring the execution of saccades to a
target that is displayed in different locations in a temporally and/or spatially pre-
dictable manner (Allman et al. 2012; Joiner and Shelhamer 2006). Another variant
is the so-called antisaccade task, in which a saccade to the opposite location of a
peripheral target is requested, thus requiring cognitive control functions (Hutton
and Ettinger 2006; Munoz and Everling 2004). Importantly, non-human primates
can also be trained to make saccades in different experimental paradigms, allowing
the development of cross-species model systems of cognitive processes (see below).

Prosaccades are controlled by a neural network involving posterior parietal
cortex, frontal and supplementary eye fields, superior colliculus, striatum, thalamus
and cerebellum, whereas volitional saccades recruit increased activation levels in
these areas and involve additional activations, such as in the dorsolateral and
ventrolateral prefrontal cortices (for reviews, see Johnston and Everling 2008;
McDowell et al. 2008; Muri and Nyffeler 2008). See Fig. 25.1 for an illustration of
some of the areas mediating prosaccades.

Smooth pursuit serves to keep the image of a slowly moving object on the fovea
by matching smooth eye velocity to target velocity as closely as possible (Barnes
2008, 2011). Pursuit typically involves a combination of smooth eye movements
and saccades. The latter may be compensatory, reducing position error when eye
velocity is higher or lower than target velocity or intrusive, occurring in segments of
otherwise good pursuit, for example by anticipating future target movement. The
neural control of smooth pursuit eye movements (Fig. 25.2) involves motion sen-
sitive neurons in the visual cortex (V5 in humans, MT/MST in monkeys), the
posterior parietal cortex, the frontal and supplementary eye fields, the cerebellum
and pontine, vestibular and oculomotor nuclei (for reviews, see Ilg and Thier 2008;
Lencer and Trillenberg 2008; Sharpe 2008).

Fixation occurs in periods when the eyes are relatively still and when most visual
information is gained from the environment, primarily by foveal but also parafoveal
and peripheral visual processing. Movements of the eyes do in fact occur during

Fig. 25.1 Neural correlates
of saccadic eye movements.
The figure shows clusters of
significant activation
(p < 0.05 corrected cluster
level) in a prosaccade task in
healthy humans measured
with fMRI at 3T field
strength. Unpublished data
(Herweg, Weber and
Ettinger). FEF frontal eye
fields; IPS intraparietal sulcus
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fixation, particularly tremor, drift and microsaccades (Martinez-Conde et al. 2013).
These are small movements, however, and are not usually noticed by the viewers
themselves or by untrained observers.

The reason for the interest of experimental psychology in saccades, pursuit and
fixations lies primarily in the close relationship of these types of eye movements
with overt visual attention. The link between these will be elaborated upon later in
this chapter, after oculographic recording methods and their advantages have been
delineated.

25.3 Oculographic Methods

At present,1 researchers interested in the study of eye movements can choose
between a range of different recording methods. Good current overviews of these
oculographic methods have recently been published (Eggert 2007; Haslwanter and
Clarke 2010; Holmqvist et al. 2011; Shelhamer and Roberts 2010); older but still
insightful reviews can be found in Yarbus (1967) and Young and Sheena (1975).
The methods most commonly used in psychology and neuroscience include
video-based combined corneal reflection and pupil tracking, infrared limbus ocu-
lography, electro-oculography (EOG), dual Purkinje tracking and the scleral search

Fig. 25.2 Neural correlates of smooth pursuit eye movements. The figure shows clusters of
significant activation (p < 0.05 corrected voxel level) in a smooth pursuit task in healthy humans
measured with fMRI at 3T field strength. Unpublished data (Meyhöfer, Steffens, Weber and
Ettinger). FEF frontal eye fields; SEF supplementary eye fields; IPS intraparietal sulcus; V1
primary visual cortex; V5 motion sensitive area in visual cortex

1The history of methods in oculomotor research is summarised in detail by Wade and Tatler
(2005).
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coil technique. In the context of neuroeconomic experiments with eye movement
recordings, where saccades and fixations are likely to be the most relevant oculo-
motor events, video-based combined corneal reflection and pupil trackers, infrared
limbus trackers as well as the older EOG are suggested to be the most suitable
methods, as they have good temporal and spatial performance characteristics, are
non-invasive and relatively quick to set up and calibrate. These methods are
described in the following.

EOG involves the placing of surface electrodes lateral to each eye as well as to a
reference region such as the forehead. The method exploits the observation that the
human eye represents an electrical dipole, with the retina being more negative than
the cornea (hence the term “corneo-retinal potential”), and whose axis is approxi-
mately collinear with the optical axis of the eye. There is a small difference in
potential due to electrical activity of retina cells at the fundus of the eye. Given that
the electrical dipole moves with every rotation of the eye, differences in electrical
potential at the skin surface can be used to detect changes in eye position.

Advantages of EOG include the accurate recording of horizontal eye movements
over a relatively large amplitude range (up to ±40°; Leigh and Zee 2006) whilst
being non-invasive and causing only minimal discomfort to participants.
Disadvantages primarily include the presence of (electrical, electro-cortical and
electro-myographic) noise as well as eyelid artefacts. Additionally, vertical eye
movements are measured much less reliably than horizontal eye movements due to
the concurrent movement of the eye lid.

Infrared limbus oculography (e.g. Reulen et al. 1988) uses emitter/detector
arrays placed directly in front of the eye, usually by being fixed to a headset. The
emitters shine infrared light onto the eye, from where it is reflected back onto the
detectors. The intensity of the reflected light differs between iris and sclera and,
accordingly, the distribution of light across the array of sensors of reflected light
changes when the eye moves. This signal can be used to measure eye movements
with high temporal and spatial performance characteristics. Disadvantages of the
method include artefacts due to movements of the head or the headset, discomfort
from wearing the headset and blocking of the visual field due to the emitter/detector
arrays.

Video-based combined corneal reflection and pupil trackers are currently
amongst the most widely used oculographic methods in psychology. Unlike other
methods, these eye-trackers work on a combination of two different signals, viz. the
image of the pupil and the reflection of infrared light from the cornea (the first
Purkinje image; see Fig. 25.3). These signals together yield a precise and accurate
measure of the point of regard with excellent temporal and spatial resolution. Such
eye-trackers often work remotely, that is the infrared light source and camera are
placed away from the participant, e.g. below the computer screen that displays the
experimental stimuli (see Fig. 25.4 for an example), thus posing zero discomfort to
participants. A further advantage of these eye-trackers is the possibility of not only
obtaining eye position data but simultaneously also a measure of pupil size with
every sample (see below).
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Video-based combined corneal reflection and pupil trackers tend to be user
friendly and quick to set up. However, this scientific method still requires precise
operating and attention to detail in order to yield valid data. In this context, a
number of laboratory conditions have to be considered (Holmqvist et al. 2011). In
brief, an ideal eye-tracking laboratory is a quiet room with dim but strictly con-
trollable light conditions. Complete darkness should be avoided as it may lead to
enlarged and more variable pupil size, which can pose problems for pupil tracking.
Additionally, the infrared light source may become visible in complete darkness
and pose a source of distraction for participants. When a light source is used to

Fig. 25.3 Pupil and corneal reflection images. The pictures show images of the pupil (in blue) and
the first corneal reflection (in yellow) obtained by a video-based combined pupil and corneal
reflection tracker (EyeLink 1000; SR Research Ltd., Ottawa, Ontario, Canada). Picture used with
permission from SR Research Ltd.

Fig. 25.4 Setup of a remote eye-tracker. The picture shows as an example of a laboratory setup
the EyeLink 1000 eye-tracker (SR Research Ltd.). The infrared light source and camera are placed
remotely, beneath the monitor that displays the stimulus for the participant. A chinrest is used to
minimise head movements. Picture used with permission from SR Research Ltd.
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moderately illuminate the laboratory it should be placed such that no direct light
falls onto the eye, the camera or the computer screen.

Other factors that need to be considered when applying this method are certain
participant characteristics that may reduce the ease with which data can be collected
or the quality of the collected data. Makeup such as mascara may lead to the
detection of signal mistaken as pupil and should thus be avoided. Droopy eyelids
may cover the pupil thereby causing partial signal loss. Glasses may usually be
worn without preventing accurate recordings; however, they can also produce
signals that may be mistakenly interpreted as pupil or corneal reflection.

25.4 Methodological Advantages of Oculomotor Research

Psychologists and cognitive neuroscientists wishing to study certain cognitive
processes often face the problem of operationalising their measurement. A typical
experimental setup involves presenting a stimulus (input), which then arguably
engages the individual in a certain cognitive process, and recording the response to
that stimulus (output). Most often the output that is studied is a manual motor
response, such as a button press or a joystick movement, or a verbal response.
Whilst this standard procedure is being successfully employed in the pursuit of
numerous research questions, the study of ocular movements as an alternative
motor response may offer certain advantages over manual responses. These
advantages have been put forward most clearly in the context of research on psy-
chiatric and neurological patients (Klein and Ettinger 2008), but they also hold in
other research settings.

First, oculomotor responses and associated cognitive processes have been
studied intensively with unit recordings in non-human primates and other animals,
providing a rich set of comparative data and background knowledge on the neural
mechanisms of such cognitive processes. A prime example of this is the investi-
gation of spatial working memory and its correlation in the dorsolateral prefrontal
cortex (DLFPC) using the oculomotor delayed response task in non-human pri-
mates (Sawaguchi and Goldman-Rakic 1991) as well as humans (Sweeney et al.
1996). The ability to perform the same tasks in both experimental animals and
humans provides a comprehensive and systematic description of the relevant
cognitive and neural processes.2

Second, eye movements can be observed directly and without much technical
artefacts. Specifically, movements of the eyes, which involve only six muscles, are
more easily recorded and interpreted than movements of the limbs, which involve
dozens of muscles. The high precision of measurement stems from the fact that the
eyeball can rotate only within the socket. The resultant oculographic recordings
allow for the derivation of a manifold of meaningful, specific and reliably

2See also the work of Glimcher et al. (2005) on saccadic decision making discussed below.
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measurable parameters (Holmqvist et al. 2011). This holds both for eye movements
recorded in the laboratory and in the “field”, that is in ecologically valid situations
such as during domestic tasks, whilst moving through the environment, whilst
driving a car or operating a plane or when engaged in sports (for reviews, see Land
and Tatler 2009; Duchowski 2002).

Third, oculomotor tasks are hands- and language-free, they typically utilise
simple stimuli and instructions and they are shorter than complex neuropsycho-
logical assessments of cognitive function. These tasks are therefore culture fair and
they have proven highly acceptable to a diverse range of individuals from the
general population, including children and older participants as well as cognitively
impaired patients.

Fifth, nowhere in the human brain can the complex interaction of perception and
action—elaborated in the “Gestaltkreis” theory by von Weizsäcker (1996)—be
studied more directly than in the oculomotor system. And due to the dynamic nature
of this interplay an important feature of the interaction between “mind” and “world”
becomes visible and analysable that remains completely concealed during the
simple measurement of manual reaction times: the process nature of these inter-
actions. In order to understand the structure of such processes, however, it is
required to understand the interplay between vision, attention and eye movements
(see below).

Together these methodological advantages of oculomotor research reiterate its
importance in the operationalisation of the measurement of specific cognitive
processes in basic and applied research situations where manual motor responses
would otherwise be used to indicate the output of the organism.

25.5 Eye Movements, Attention and Vision

Before we investigate the interaction of eye movements, attention and vision in
more detail, we need to ask why we move our eyes at all. Or, as Delgado-García
(2000) put it: “Why move the eyes if we can move the head”? The answer to this
question lies in the observation that eye movements serve at least two important
purposes: (1) By shifting the point of gaze, they allow swift, high-acuity, foveal
processing of visual stimuli without the need to perform conspicuous—and com-
paratively clumsy—head movements. (2) They stabilise visual perception by
compensating for head or body movements.

Both arguments point to the important role of eye movements in supporting
visual perception, a point expanded by Findlay and Gilchrist (2003) in relation to
the importance of eye movements in visual attention. The primary role of the eye
amongst all human sensory organs, in turn, is buttressed by the dual observations
that the eyes take in more information (bits) than any other sensory organ and that
approximately 50 % of human neocortex responds to changes in the visual envi-
ronment. Thus, eye movements serve to maximise the quality and structure of the
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information intake of the most important of human sensory modalities. But why
should this be the case? The answer is revealed by the mere anatomy of the eyes.

Figure 25.5 provides an illustration of the visual system of primates. Through
the pupil, light reaches the photoreceptors (i.e. rods (dim light) and cones (bright
light, colours)) on the retina. Transduction in the photoreceptors translates light
information from a spotlight into an electric signal. The highest density of cones
enabling the most precise viewing can be found in the central fovea, a roughly
1.5 mm small area located about 5° temporally to the visual axis. From the pho-
toreceptors the neural impulses are sent via retinal ganglion cells to the lateral
geniculate nucleus of the thalamus and from there to the primary visual cortex V1
and further to the visual association cortices V2–V5, from where visual information
spreads out to be processed by various cortical and sub-cortical regions. With
regard to the intricate link between eye movements and visual attention, the mere
fact that the central fovea comprises less than 1 % of the retinal size but projects to
over 50 % of the visual cortex to process the light that comes from only the central
2° of the visual field makes clear how strongly the selective nature of visual
attention is anatomically “embodied”.

(a) Fovea centralis: 

Source:

http://en.wikipedia.org/wiki/Fovea_centralis

(b) Diagrammatic representation of the visual 
system in primates, showing the visual information 
processing pathways. (Image by Prof. Peter 
Schiller. Used with permission.)  

Source: MIT Open Courseware

Fig. 25.5 The visual system
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Whilst these (functional) anatomic considerations underline the importance of
the visual system as a system of information selection, many of the close and
complex relationships between eye movements and visual attention have over the
decades been unveiled by experimental research in human and non-human primates
(for a recent review primarily of the experimental literature, see Kowler 2011).
Here, two fundamental questions can be asked. First, how do “top-down” and
“bottom-up” factors interact; and second, how important are low-level features such
as contrast, colour or motion compared to other higher level stimulus structures
such as objects or gist (Einhäuser et al. 2008)?

One of the answers to the second question has been the concept of “saliency
maps” suggested by Koch and Ullman (1985) as a spatial distribution of local
contrasts of features such as colour, luminance or movement. The higher the
physical salience of a location in the visual field, the greater is the likelihood that it
is attended and fixated. The corresponding rather low-level perceptual analyses are
thought to take place at early stages of information processing in the visual system.
The concept of saliency maps is certainly intriguing as a theoretical approach that
enables precise predictions of fixation locations. On the one side, such models have
indeed been shown to outperform random models of fixation location (Foulsham
and Underwoord 2008). On the other side, however, multiple other factors in
addition to such “outstanding” features are involved in determining our gaze
position that emphasise in different ways top-down aspects of gaze control,
including strategic decisions (Najemnik and Geisler 2005), specific interests
(Birmingham et al. 2009; Einhäuser et al. 2008) or specific tasks (Buswell 1935;
Yarbus 1967).

Amongst the different top-down factors, strategic decisions may aim for opti-
mising task performance. This may include gazing at locations that maximise the
probability of finding a searched target (Najemnik and Geisler 2005) or aligning
gaze near the centre position in a scene to identify large portions of the scene with
this single optimal viewing position (Tatler 2007). Specific interests such as interest
in relevant social information, in addition, may override perceptual saliency and
direct an observer’s gaze to heads and eyes in complex social scenes (Birmingham
et al. 2009). Similarly, objects that can be identified as “interesting” because they
can be recalled retrospectively by the participants, explain the allocation of attention
and fixations better than early perceptual saliency which, however, may impact on
an object’s saliency and thus contribute to an object’s “interestingness” indirectly
(Einhäuser et al. 2008). In line with the implied interaction of top-down and
bottom-up factors, Cerf et al. (2008), too, found that the combined influences of
face preference (top-down) and low-level salience (bottom-up) improve the pre-
diction of gaze positions. The aforementioned examples thus indicate that visual
attention is in fact controlled both by exogenous bottom-up processes of perceptual
saliency and endogenous top-down processes (Chica et al. 2013).

One of the crucial issues in understanding the dynamics of eye movements refers
to the spatial sequencing of saccades during the exploration of visual scenes.
According to Kowler (2011), two concepts have been important here. The first, the
“winner-takes-all” principle, defines how saccadic goals are chosen; the second
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principle, called “inhibition of return”, specifies how the currently fixated area is
left again to fixate another goal. According to the first principle, the region with the
momentarily highest “strength” (e.g., due to its saliency) attracts the attention, but
quickly loses its strengths for other regions to be fixated, according to the second
principle. During such sequences of saccades, (covert) visual attention moves to the
location that is about to be fixated next before the eyes move to that location
(Henderson et al. 1989). The strength of the coupling of movements of attention
and of the eyes has also been shown by experiments demonstrating that it is not
possible to orient attention to one location whilst moving the eyes to another
(Hoffman and Subramanian 1995).

This sequence of alternations between attending a certain location, followed by
its inhibition and the focussing of the next salient location, generates a scan path of
fixations and saccades across a stimulus of interest (Liechty et al. 2003). Scan paths
have been described since Noton and Stark’s (1971) seminal observation that when
participants look at visual stimuli (here: different patterns) their gazes follow
repeatedly a fixed path that is characteristic of an individual subject. These
researchers also observed that different individuals develop different scan paths for
the same pattern, and each individual develop different scan paths for different
patterns, but that each scan path remained consistent across different presentations
of the same pattern. The “replication” of scan paths developed during viewing
conditions in the absence of the stimulus under conditions of visual imagery is
certainly amongst the clearest demonstrations of top-down factors in gaze control.

According to some authors, there are two different states of covert visual
attention during the exploration of complex stimuli, viz. local and global (Liechty
et al. 2003). During states of local visual attention, short saccades are employed to
extract information from specific and adjacent locations of a stimulus; during states
of global visual attention, long saccades are used to extract and integrate infor-
mation from various locations of a complex stimulus (Liechty et al. 2003). Local
and global visual attention is thought to be controlled by the inferior temporal and
posterior parietal cortex, respectively; their interaction is thought to be controlled by
the prefrontal cortex (Liechty et al. 2003).

To conclude, the anatomy of the human eye with the central fovea as a small
area of outstanding visual acuity “dictates” the dynamics of visual attention and eye
movements as a temporal-spatial process that is co-determined both by perceptual
bottom-up factors and cognitive-motivational top-down influences. Needless to say
that no technique is better suited to investigating these dynamics of visual infor-
mation processing than oculographic methods.

25.6 Pupillometry

Information processing through eye movements is inevitably associated with
complex cognitive and emotional processes and their central and autonomous
correlates. Modern eye-trackers can measure one particular facet of this complex
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response in addition to the proper eye movements, namely the pupil size and its
changes and fluctuations. This classical psychophysiological parameter has been
shown to be sensitive to a range of cognitive and affective states that may be
relevant at the workplace or in confrontation with stimuli from an economics
context, such as signals of financial rewards.

Pupillary responses manifest either in increase or decrease of the pupil diameter.
The increase in pupil diameter is called dilation or “mydriasis” and is caused by the
iris dilator. The iris dilator is a muscle bundle composed of radially arranged muscle
fibres that is controlled by sympathetic innervation from the superior cervical
ganglion, which is itself under tonic excitatory control descending from the
hypothalamus (Kandel et al. 2000). The decrease in pupil diameter is called con-
striction or “miosis” and is effected by the iris sphincter muscle. This muscle is
composed of circularly arranged muscle fibres and is innervated by the parasym-
pathetic nervous system exerting its effects through the mesencephalic Nucleus
Edinger-Westphal that innervates the ciliary ganglion cells through the oculomotor
brain nerve III (Kandel et al. 2000).

More recently, pupil size has been shown to co-vary intra-individually with the
firing rate of the locus coeruleus (LC), one of the brain’s two origins of nora-
drenergic neurons. The LC, which is located in the pons, has been associated with
general arousal through its widespread afferent projections but is not directly or
anatomically linked with the pupil (Aston-Jones and Cohen 2005). According to
Aston-Jones and Cohen (2005), the LC provides a tonic mode of firing that can vary
between low activity in inattentive, non-alert states and high activity in distractible
states that promote task shifting. This structure, in addition, provides a phasic mode
of firing when the subject is engaged in a task. The tonic and phasic modes interact
in that prominent phasic LC firing which takes place during phases of moderate
tonic firing, that is, when the subject is neither drowsy nor distracted and shifting to
another task. According to Aston-Jones and Cohen (2005), these patterns of LC
firing are controlled by the anterior cingulate (ACC) and orbitofrontal cortices
(OFC), both of which are thought to monitor task-related utility.

In one experiment, worthwhile to be described in some detail, these researchers
presented human participants with a discrimination task, in which task difficulty and
rewards for correct responses continually increased. Initially, the reward value
increased faster than task difficulty and thus error rates; after several trials, however,
the increase in task difficulty led to increased number of errors and reduced reward
rate. In line with the tonic-phasic distinction of LC firing, the authors observed a
steady rising of baseline (tonic) pupil diameter with increasing task difficulty, and a
decrease in phasic discrimination-related pupil dilation. When discrimination suc-
cess declined and participants abandoned the current task series to start a new one,
baseline pupil diameter was greatest. This pattern of findings, which confirms
Wilder’s “Law of Initial Values” (Wilder 1958), exemplifies nicely some of the
features of the pupillary dynamics: it is sensitive to both cognitive and
affective/motivational processes (which may be as fundamental as those proposed
by Aston-Jones and Cohen 2005); it encompasses both tonic and phasic responses;
it is controlled both by more proximal (N. Edinger-Westphal) and more distal

25 Eye Movements 493



(hypothalamus) brain structures and may be correlated with the activity in
anatomically not directly related brain regions (LC, ACC, OFC). Therefore, the
dynamics of the human pupil can be expected to be sensitive to a wide range of
tasks, situations and states and hence they may help in interpreting the findings of
eye movement studies that employ the experimental variation of conditions, situ-
ations or states.

In line with this overall summary, dilation of the pupil, in comparison to
appropriate control conditions, has been associated with high task load/difficulty
(Beatty 1982a; Hess and Polt 1964; Kahneman and Beatty 1966; Moresi et al. 2008;
Steinhauer et al. 2004), high stimulus presentation rate (Poock and Noel 1975), low
stimulus probability (Reinhard and Lachnit 2002), processing of ambiguity
(Ben-Nun 1986; Schluroff et al. 1986), exploratory versus exploitative gambling
choices (Jepma and Nieuwenhius 2011), emotional excitement or emotional
valence (Goldwater 1972; Partala and Surakka 2003), (un)pleasantness of verbal
passages (White and Maltzman 1978), pleasantness of pictures (Metalis and Hess
2013), positive or negative emotional baby voices (Partala and Surakka 2003),
interest value (Hess and Polt 1960) or aesthetic liking (Johnson et al. 2010).
Conversely, decreases in task-evoked phasic responses or smaller tonic pupil
diameters have been reported with increasing time-on-task (Beatty 1982b) or in
insomniacs (Lichtstein et al. 1992). Sleepiness, however, is not only associated with
miotic responses but also with faster oscillations of the pupil diameter (McLaren
et al. 1992).

These examples amply illustrate that pupil recordings may provide valuable
additional insights into the processing of difficulty or effort-related aspects of
stimuli in a wide range of settings of relevance to decision making and experimental
economics.

25.7 Oculomotor Research in Neuroeconomics

Neuroeconomics is an interdisciplinary scientific endeavour that aims to understand
human decision making, particularly in the context of economic choices. The goal
of neuroeconomics is thus to use neuroscientific data in order to better understand
the deliberation process in decision-making situations with the ultimate goal of
improving economic models.

Accordingly, the methods of neuroeconomics are drawn from its constituent
scientific fields, namely neurobiology, behavioural and experimental economics as
well as cognitive, social and evolutionary psychology (see Part 8 of this book).
They include behavioural experiments in which participants can obtain financial
rewards, “games” where participants’ rewards depend on the behaviour of other
(simulated or real) participants, recordings of heart rate and skin conductance,
electroencephalography (EEG), magnetoencephalography (MEG), positron emis-
sion tomography (PET), functional magnetic resonance imaging (fMRI), animal
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studies involving single-neuron recordings and, of course, oculography, viz. the
recording of eye movements.

Here we argue that the recording of eye movements (with or without concurrent
recordings of neurophysiological activity) may be one particularly useful method to
inform our understanding of the neural and cognitive processes taking place during
economic decision making. This argument is based on the methodological advan-
tages of oculography detailed above as well as our understanding of the association
between attentional processes and eye movements and their neural mechanisms.
Indeed, oculographic recordings in the study of decision making were first made in
the 1970s (Russo and Rosen 1975) and have since been used profitably to elucidate
the underlying processes. In the following we will not provide a comprehensive
overview of the published work in neuroeconomics that has used oculographic
methods; instead, we will give some examples selected to illustrate the richness of
oculographic approaches in neuroeconomics and refer the reader at this point to
further relevant articles (see e.g. Causse et al. 2011; Costa-Gomes et al. 2001;
Glöckner and Herbold 2011; Krajbich et al. 2010; Lohse and Johnson 1996;
Middlebrooks and Sommer 2011; Reutskaja et al. 2011; Ross et al. 2011; Stritzke
et al. 2009).

In one recent example, Arieli et al. (2011) recorded eye movements in a decision
task where participants had to choose amongst two lottery scenarios with differing
prizes and probabilities. They aimed to compare two possible procedures that may
be implemented in the decision-making process, viz. the holistic and component
procedures. In the holistic procedure, participants treat the two alternatives holis-
tically, for example by evaluating the certainty equivalent of each alternative and
selecting the one with the higher certainty equivalence or by computing the
expectation of each of the two alternatives and selecting the one with the higher
expectation. In the component procedure, it is thought that participants compare the
prizes and the probabilities as separate components. Using eye movement record-
ings, Arieli et al. (2011) found that the more difficult of these problems were
associated with saccades between the same components of the two alternatives,
suggesting a component procedure, whereas in easier problems saccades between
elements within the same alternative were more frequent, suggesting a holistic
processing approach. That study thus nicely demonstrates how the investigation of
eye movements can provide valuable information on the likely cognitive processes
taking place during decision making.

Similarly, Camerer and colleagues (e.g. Bhatt and Camerer 2005) have used
oculographic methods to distinguish between different neuroeconomic theories
which make similar predictions at the behavioural level. As these theories could not
be distinguished purely in terms of the participants’ behavioural decisions, the
recording of eye movements provided an additional level of analysis that helped to
rule out alternative explanations.

In addition to serving as a tool to enrich behavioural experiments by providing
an additional level of explanation, eye movements have also been studied in the
search for the neural substrate of economic decision making in non-human pri-
mates. An impressive example of this approach is the work by Glimcher and
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colleagues (see e.g. Glimcher et al. 2005; Glimcher 2009). These researchers have
developed a neurobiological model of decision making that is based on utility
theory from economics and makes prominent use of eye movement behaviour and
neurophysiology in monkeys.

In this model, the final stages of saccadic decision making involve the selection of
that action from a number of alternatives that is judged to be most desirable in a
“winner-takes-all” process, resulting in a saccade in a certain direction. Work by
Schall and colleagues (Hanes and Schall 1996; Schall and Thompson 1999) has
shown that frontal eye field (FEF) neurons display topographic firing over the
stimulus position in a “winner-takes-all” fashion that encodes the direction of the
saccade; when the level of activity at that location exceeds a certain threshold, a
saccade is executed. Of importance to an understanding of saccadic decision making
are, however, also the processing steps that lead up to this decision in the FEFs.

For example, in studies using moving stimuli, Newsome and colleagues (Parker
and Newsome 1998) observed that the topographically arranged neurons in MT are
motion sensitive. It was also shown that the outputs of these neurons are passed on
to neurons in the posterior parietal cortex, where they are mathematically inte-
grated, thereby generating a topographic map of motion direction from which they
extract a decision variable which is then passed on to the FEFs.

This process is not just a model of primitive, low-level decision making, but
likely a model of much more complicated decisions with relevance to neuroeco-
nomics was shown in a study by Platt and Glimcher (1999). In that study, monkeys
were trained to make saccades to the right or left, and both the likelihood and the
magnitude of reward for these saccades were manipulated experimentally. It was
found that the firing of neurons in the lateral intraparietal area (LIP) accurately
represented the expected value of a saccade, thus yielding a directly measureable
neural substrate of economic choice. In other words, area LIP represents a topo-
graphic map in which the relative expected value or utility of each possible saccade
is coded.3

Glimcher and colleagues also draw upon work by Schultz et al. (1997) on
dopamine release in the striatum in order to explain from where LIP neurons receive
information about the physiological expected utilities. Schultz et al. (1997) observed
that dopamine neurons code what is called reward prediction error in learning theory
(Sutton and Barto 1998), that is, these neurons receive inputs on expected and on
actual reward, calculate the difference (the so-called reward prediction error) and
transmit the results to cortical and basal ganglia neurons using dopamine as neuro-
transmitter. As such, the outputs of the computations of these neurons may explain
how physiological expected utilities are generated in parietal neurons.

On the basis of the observation of neuronal encoding in LIP of relative expected
utility under such fairly straightforward experimental conditions, Glimcher and

3Of note, a recent study by Leathers and Olson (2012) showed that LIP neurons encode not just the
reward value of saccades but also an incurred penalty, suggesting that these neurons represent not
the action value but the motivational salience of the stimulus (see, however, Newsome et al. 2013).
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colleagues went on to investigate how their firing patterns would respond when an
action, i.e. the choice of saccade direction, was less clearly related to an expected
value than in the above studies.

In a series of experiments, Dorris and Glimcher (2004) engaged both humans and
monkeys in a version of the inspection game, a strategic game from game theory
where one participant, the inspector, verifies the another participant, the inspectee,
adheres to certain rules. The monkeys played against a computer in a saccadic choice
version of the game. At the behavioural level, the experiments showed that the
monkeys’ dynamic behaviour closely resembled that of humans, supporting the cross-
species validity of the oculomotor model of this game. At the neurophysiological
level, the research showed that the brain topographically encodes, in directly mea-
surable neural activity patterns, the relative desirabilities of all possible actions (which
are of course directly and unambiguously measurable via oculographic methods). As
Glimcher et al. (2005) argue, it may be these topographic maps in LIPwhich represent
the neural substrate of economic decision making.

The implications of the development of oculomotor model systems of economic
choice are wide ranging. Given the availability of cross-species models and the
above described advantages of studying the eye movement system of further models
could be developed allowing the study of a wide range of influences on economic
decision making, from state factors such as pharmacological challenges to trait
factors such as genetics (cf. the chapters by Reuter and Montag in this book).

Glimcher and colleagues also draw conclusions from these studies concerning the
historical tension between prescriptive and descriptive approaches to the study of
economic decision making (see Chap. 1, by Reuter and Montag, in this book).
Prescriptive approaches emphasise the optimal and efficient decisionmaking of homo
economicus, whereas descriptive approaches, based on data collection, often obtain
evidence of irrational economic decisions leading to poor utility maximising.
Neuroeconomics as a discipline may contribute to the debate between these approa-
ches by studying the mechanisms of decision making in the brain using experimental
model systems, some of which may involve saccadic eye movements as the means to
indicate the outcome of the decision-making process. According to Glimcher et al.
(2005), the neurobiological work on primate saccadic decision making provides
evidence against the dual-systems view held by some economists, that decisions arise
out of a conflict between two interacting systems, one being clearly utility based (and
evolutionarily recent) and the other being irrational (and evolutionarily old). Instead,
the work by Glimcher and others has identified direct evidence of neural activity
representing—in many situations—classical expected utility.

25.8 Conclusions

The present chapter has provided an introduction to the study of eye movements as
a method in neuroeconomics research. We have described different recording
techniques, highlighted the history of oculomotor research, and listed advantages of
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oculography over other behavioural measurements of cognition. An important
aspect of oculomotor research concerns the complex interplay between eye
movements and visual attention that underlies the cycle of saccades and fixation.
Furthermore, we touched upon the sensitive dynamics of pupil responses, the
measurement of which can be obtained “for free” when using modern eye-trackers,
and gave examples of how neuroeconomic research may benefit from eye move-
ment recordings. Overall, we hope to have raised interest in this method in
researchers in neuroeconomics.

What can be concluded from the work described in this chapter? We will phrase
our answers to this question in the form of theses and proposals for future eye
movement research in the field of neuroeconomics.

1. The study of eye movements provides a rich body of behavioural and neuro-
scientific evidence that can be incorporated into neuroeconomics research. This
applies especially to the work on attention and decision making as well as their
neural correlates.

2. Neuroeconomics research may benefit from the systematic integration of eye
movement recordings in more or less all research settings, be it the behavioural
lab, the MRI scanner or the field. As described, such recordings may provide an
additional level of analysis with which it may be possible to separate competing
accounts of economic decision making.

3. The availability of cross-species models of economic decision making provides
a highly innovative model system which builds upon animal neurophysiology,
behavioural oculomotor research and human neuroeconomics. Such work pro-
vides an important foundation for extending research into utility theory and
neuroeconomic decision making into animal behaviour and neurophysiology,
for example involving direct pharmacological interventions to modulate the
reward system, by drawing upon the method of recording eye movements.
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Appendix A
Neuroanatomy

See Figs. A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8 and A.9.

Fig. A.1 Explanation of the orientation in the human brain
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Fig. A.2 Different perspectives on the human brain
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Fig. A.3 Medial sagittal section through the brain. a Midsagittal section. b MRI image (mid-
sagittal section). 1 Corpus callosum (callosal commissure), 2 Gyrus cinguli (cingulate cortex), 3
Fornix, 4 Thalamus, 5 Chiasma opticum, 6 Infundibulum hypophysis, 7 Hypophysis, 8 Corpus
mamillare, 9 Epiphysis, 10 Mesencephalon (midbrain), 11 Aqueductus mesencephali (only in a),
12 Lamina tecti, 13 Ventriculus quartus, 14 Pons, 15 Medulla oblongata, 16 Velum medullare
superius (MRI image from the University clinic in Freiburg, by Dr. J. Klisch, Department of
Neuroradiology)
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Fig. A.4 Lateral view of the cerebrum. Frontal lobe in red, parietal lobe in blue, occipital lobe in
green, temporal lobe in purple. 1 Parasagittal cortical zone, 2 Sulcus frontalis superior, 3 Sulcus
frontalis inferior, 4 Gyrus frontalis superior, 5 Gyrus frontalis medius, 6 Gyrus frontalis inferior, 7
Pars orbitalis, 8 Pars triangularis, 9 Pars opercularis, 10 Frontal pole, 11 Sulcus centralis, 12 Sulcus
precentralis, 13 Gyrus precentralis, 14 Sulcus postcentralis, 15 Gyrus postcentralis, 16 Sulcus
lateralis, 17 Gyrus supramarginalis, 18 Gyrus temporalis superior, 19 Gyrus temporalis medius, 20
Gyrus temporalis inferior, 21 Sulcus temporalis superior, 22 Sulcus temporalis inferior, 23 Gyrus
angularis, 24 Lobulus parientalis superior, 25 Lobulus parientalis inferior, 26 Occipital pole, 27
Temporal pole (modified according to Spitzer, in Duus: Neurologisch-topische Diagnostik,
Thieme 1990)
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Fig. A.5 Medial view of the cerebrum. Frontal lobe in red, parietal lobe in blue, occipital lobe in
green, temporal lobe in purple, Cyrus cinguli in yellow. 1 Corpus callosum, 2 Gyrus cinguli, 3
Sulcus centralis, 4 Lobulus paracentralis, 5 Sulcus pararietooccipitalis, 6 Sulcus calcarinus, 7
Precuneus, 8 Cuneus, 9 Visual cortex, 10 Gyrus parahippocampalis, 11 Uncus, 12 Fornix, 13 Tela
choroidea, 14 Commissura anterior, 15 Septum pellucidum, 16 Isthmus gyri cinguli, 17 Gyrus
dentatus, 18 Thalamus, 19 Adhesio interthalamica (modified according to Spitzer, in Duus:
Neurologisch-topische Diagnostik, Thieme 1990)
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Fig. A.6 Basal view of the cerebrum. Frontal lobe in red, occipital lobe in green, temporal lobe in
purple. 1 Fissura longitudinalis cerebri, 2 Gyri orbitales, 3 Gyrus rectus, 4 Bulbus olfactorius, 5
Tractus olfactorius, 6 Sulcus olfactorius, 7 Substantia perforata anterior, 8 Gyrus temporalis
inferior, 9 Gyrus parahippocampalis, 10 Uncus, 11 Chiasma opticum, 12 Corpora mamillaria, 13
Midbrain (modified according to Spitzer, in Duus: Neurologisch-topische Diagnostik, Thieme
1990)
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Fig. A.7 The most important inner structures of the cerebrum (frontal section). 1 Cerebral cortex,
2 Corpus callosum, 3 Ncl. caudatus, 4 Putamen, 5 Globus pallidus, 6 Thalamus, 7 Claustrum of
insula, 8 Capsula interna, 9 Lateral ventricles, 10 Third ventricle, 11 Fissura longitudinalis cerebri,
12 Sulcus lateralis, 13 Fossa lateralis, 14 Insular cortex

Appendix A: Neuroanatomy 509



Fig. A.8 View on the limbic system
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Fig. A.9 Projections of the limbic system
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