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Preface

We are pleased to present the proceedings of the 16th Annual Conference on
Computer Engineering and Technology (NCCET 2012). Over its short sixteen-
year history, NCCET has established itself as one of the major national con-
ferences dedicated to the important and emerging challenges in the field of
computer engineering and technology. Following the previous successful events,
NCCET 2012 provided a forum to bring together researchers and practition-
ers from academia and industry to discuss cutting-edge research on computer
engineering and technology.

We are delighted that the conference continues to attract high-quality sub-
missions from a diverse and national group of researchers. This year, we received
108 paper submissions, among which 27 papers were accepted. Each paper re-
ceived three or four peer reviews from our Technical Program Committee (TPC)
comprised of a total of 55 TPC members from academia, government, and in-
dustry.

The pages of this volume represent only the end result of an enormous en-
deavor involving hundreds of people. Almost all this work is voluntary, with some
individuals contributing hundreds of hours of their time to the effort. Together,
the 55 members of the TPC, the 12 members of the External Review Committee
(ERC), and the 10 other individual reviewers consulted for their expertise wrote
nearly 400 reviews.

Every paper received at least three reviews and many had four or more.
With the exception of submissions by the TPC, each paper had at least three
reviews from the TPC and at least one review from an outside expert. For the
second year running most of the outside reviews were done by the ERC, which
was selected in advance, and additional outside reviews beyond the ERC were
requested whenever appropriate or necessary. Reviewing was “first read double-
blind”, meaning that author identities were withheld from reviewers until they
submitted a review. Revealing author names once initial reviews had been writ-
ten, allowed reviewers to find related and previous material by the same authors,
which helped greatly in many cases in understanding the context of the work,
and also ensured that the author feedback and discussions at the PC meet-
ing could be frank and direct. For the first time in many years, we allowed PC
members to submit papers to the conference. Submissions co-authored by a TPC
member were reviewed exclusively by the ERC and other external reviewers, and
these same reviewers decided whether to accept the PC papers; no PC member
reviewed a TPC paper, and no TPC papers were discussed at the TPC meeting.

After the reviewing was complete, the Program Committee met at the Na-
tional University of Defense Technology, Changsha, on June 15th and 18th, to
select the program. Separately, the ERC decided on the PC papers in email and
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phone discussions. In the end, 27 of the 108 submissions (25%) were accepted
for the conference.

First of all, we would like to thank all researchers who submitted manuscripts.
Without these submissions, it would be impossible to provide such an interesting
technical program. We thank all PC members for helping to organize the confer-
ence program. We thank all TPC members for their tremendous time and efforts
during the paper review and selection process. The efforts of these individuals
were crucial in constructing our successful technical program. Last but not least,
we would like to thank the organizations and sponsors that supported NCCET
2012. Finally, we thank all the participants of the conference and hope that you
have a truly memorable NCCET 2012 in Shanghai, China.

October 2012 Xu Weixia
Fu Yuzhuo

Zhang Minxuan
Xiao Liquan
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A Method of Balancing the Global Multi-mode Clock 
Network in Ultra-large Scale CPU 

Zhuo Ma, Zhenyu Zhao, Yang Guo, Lunguo Xie, and Jinshan Yu 

School of Computer,  
National University of Defense Technology,  

Changsha, Hunan,  
410073 China 

{ouhzam,zhaozhenyu,guoyang,xielunguo,yjs}@nudt.edu.cn 

Abstract. It is a long-time discussed problem that the balancing of global multi-
mode clock tree is. And there are many potential problems caused by the unba-
lanced clock tree, such as timing violations, density and power comsuption. In 
this article, an innovative balance method is opened by adopting the redundance 
clock mux. The basic idea of it is to maximize the reuse of the clock tree for 
other modes and keep the sub-clock tree within the sub-blocks unchanged.  
A demo chip on 40nm process has this balance skill verified, and makes the 
density, leakage and power comsuption deeply decreased. 

Keywords: Ultra-large Scale, CPU, clock tree, balancing, multi-mode. 

1 Introduction 

As the chip size increasing and the function of chips to complicate, the design of 
clock network becomes more and more difficult.  

For example, for a chip on 40nm process of which the die size is about 10x10mm2, 
the latency of global clock tree is more than 3ns. And the point is not only for the 
latency, for such a big chip, to build a global balanced clock tree is almost unachieva-
ble in general. Because the maximum skew of the clock could not be well-controlled, 
and also this issue may cause a lot of big hold violations[1]. 

Facing this problem, for most of large scale chips, building a group of local clock 
domains is a solution which is frequently used[2]. But the clock skew between two 
local clock domains is still big enough, especially in multi-mode designs[3]. 

The researching in this article fouced on openning a method, with which to build a 
global balanced clock network for each mode within a big chip is available. In section 
2, the detailed problems now faced are list, and the deep-seated impacts are also pro-
vided. In section 3, the main skills of this paper are opened. In section 4, a detailed 
real chip is provided to be the demostrate. And finally, the conclusion is drawn in 
section 5. 
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2 Problem Faced 

Chip size increasing is quantitative change to qualitative change. To make it clearly, 
Fig.1 shows a typical clock network with multi-mode. There are several blocks  
belong to three clock domains, and three clock sources drive these loadings through 
three clock mux. 

As a routine method, there should be synchronizers between each clock do-
mains[4]. The following lists three cases: 

Mode 1: set [ModeSelect0/1/2] to 000. Obviously, the clock latency of BlockA is 
4.7ns, while that of BlockB is 4.4ns, so a lot of 0.3ns delays should be inserted after 
hold timing fixing. On the other hand, BlockC to other two domains is asynchrounous 
and to be false path, so it is no need to fix the timing between them. 

 

Fig. 1. A structure of Mult-mode Clock Network 

Mode 2: set [ModeSelect0/1/2] to 111. Under this mode, all the sinks get the clock 
from ClockSourceC. This means all the registers on the chip belong to a same clock 
domain. It is important that the clock latency to each register need to be well matched. 
But with Fig. 1, it could be found that gaps of clock latency between these blocks are 
extreamly huge for fixing. 

Then, inconvenient things will come if the design is carried on based on this  
structure. 

First of all, because there are three clusters of registers in the design, of which the 
clock latency is 4.8ns, 3.4ns and 6.5ns respectively, the max clock skew for those 
registers is about 3.1ns and hard to be fix by ajusting the clock path only. In 40nm 
process, the delay of BUF1X is no more than 10ps in fast corner, and the delay of 
DELAY500 is no more than 500ps in fast corner, so 6 DELAY500 cells and 7 
BUF1X cells are going to be inserted to fix the hold violation caused by that 3.1ns 
skew with signal integrity considered. If the number of datapath violations are  
massive, the cell count of inserted cells is enormous. 
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On the other hand, a lot of inserted cells make the density increasing fast, also the 
leakage power and dynamic power increasing fast. For the demo chip released in this 
paper, the increase of density will be 12 percents, which of leakage power will be 
11.7 percents, and that of the total power consumption will be almost 20 percents. 
Fig. 2 shows the difference of the same area between preFixed stage (partA) and 
postFixed stage (partB). Because of the unbalanced clock structure, the density  
increased fast obviously. 

   

              <A>                                         <B> 

Fig. 2. Density Comparison between preFixed and post-Fixed 

To settle the above problems, a better way is to balance all the clock sink in glob-
al[5]. But this seems to be a very difficult mission[6]. A simplified mode of this issue 
is shown in Fig. 3. This mode is consist of two registers, two clock muxes and a 
couple of clock buffer chains. When ModeSelect is 0, both of these two flip-flop are 
driven by ClockSource0, otherwise they are driven by ClockSource1. 

Because Reg0 and Reg1 are both the startpoint and endpoint of true pathes, these 
two clock sinks should be balanced. So under mode 0 (set ModeSelect to 000), the 
delay of two clock pathes should be the same, which is shown in equation (1). 

 0 0 2 1preDelay postDelay preDelay postDelayt t t t+ = +
       (1) 

According this, the delay chains, including preDelay0, postDelay0, preDelay2 and 
postDelay1, are fixed after the clock pathes has been balanced. When the clock mode 
switches, another relation needs to be matched, which is shown in equation (2). 

 1 0 3 1preDelay postDelay preDelay postDelayt t t t+ = +    (2) 



4 Z. Ma et al. 

 

Fig. 3. A Simplified Mode of Multi-mode Clock Tree 

To balance the clock skew under mode 1 (set ModeSelect to 1), only chains preDe-
lay1 and preDelay3 could be adjust for the reasons list above, while chains preDelay0 
and preDelay1 are fixed. For a small scale design, manually adjusting the preDelay* 
for each clock muxes is achievable. Once the scale of the design getting larger, it will 
be more than the ability designers could handle. 

3 Balancing Method 

A better way to settle this problem is to build a wide balanced clock tree for multi-
modes, and this structure is called Multi-Mode Balanced Clock Tree (MMBCT). A 
simplified structure of MMBCT is shown in Fig. 4. 

 

Fig. 4. The Multi-Mode Balanced Clock Structure 
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To summarize the MMBCT, the key points could be list as following: 

• Use hierarchical design flow, and build the local clock tree for one mode; 
• Localize all the intrinsic mode-select clock mux at the start point of the clock tree, 

and no any clock mux in blocks; 
• Add redundance mode-select clock mux, and placed these muxes close to the 

block; 
• Compensate the gap of the latency between clocks at the I1 pin of the redundance 

mux. 

There is no difference when implement the block design. All the clock tree within the 
blocks will be reused for all the modes. 

For details, the structure in Fig. 4 could be an example. Use the same analysis to 
the above. when the mode is set to Mode 1 [ModeSelect is set to 000], the clock la-
tencies of BlockA/B/C are 3.6ns/2.5ns/4.7ns respectively, because those three clock 
muxes CKMUX are localized. In general, the redundance muxes R-MUX have no 
impact on the clock function of this mode. 

But the exact scenario is in the other mode, when the mode is set to 0 (set ModeSe-
lect to 111), the clock pathes to all the registers are going to be balanced as well. All 
the clock chains from top to the blocks boundary and internal the blocks are fixed. 
There is another flexible point at the I1 pin of  R-MUX, which is used to compensate 
the clock skew under this mode. To modify the latency of DelayA/B/C is easy to bal-
ance all the clock pathes, which is described in equation (3). 

 2.2 1.4 1.7 0.8 3.1 1.6DelayA DelayB DelayCns t ns ns t ns ns t ns+ + = + + = + +    (3) 

In this case, the latencies of DelayA/B/C could be set to 1.1ns/2.2ns/0ns, then the 
latency from ClockSourceC to all the sinks are the same. 

There are some advantages by adopting such a methodology. First of all, the clock 
tree under the other mode are fully reused, there is no need to have the original clock 
pathes or devices modified. Then, because almost all the clock sinks are balanced, 
there will be little hold violations within inter-blocks. And the third, the increased 
power is very small. 

4 Demo and Result 

A demo chip was build based on the above idea. Fig. 5 shows the snapshot of the 
fullchip, and the red line highlights the clock tracks. The logical structure of this 
demo chip is very similar to what is shown in Fig. 4. A pll here plays the role of clock 
source, and the mode select mux is placed close to it. There are ten R-MUXes which 
are placed near the clock port of each blocks and are highlighten in red frame respec-
tively. An important parameter should be empasized that the size of this demo chip is 
over 12mmx13mm. 
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Fig. 5. The Snapshot of the Demo Chip 

Table 1. Detailed Clock Information of the Demo Chip 

Block 
Name 

Internal 
latency 

TOP 
lantency 

Compensate 
Delay 

Talk 
Relations 

Block0 0.8ns 2.3ns 2.2ns Block4 
Block1 0.8ns 2.1ns 2.4ns Block4 
Block2 0.8ns 2.1ns 2.4ns Block4 
Block3 0.8ns 2.3ns 2.2ns Block4 
Block4 0.6ns 1.6ns 3.1ns Block1~8 
Block5 2.8ns 2.5ns 0ns Block4 
Block6 2.8ns 2.5ns 0ns Block4 
Block7 2.8ns 2.5ns 0ns Block4 
Block8 2.8ns 2.5ns 0ns Block4 
Block9 1.1ns 3.7ns 0.5ns Block5/6 

Block10 1.1ns 3.7ns 0.5ns Block7/8 

In Table. 1, the detailed information of this demo case is list. The “Internal laten-
cy” column shows latencies of the sub-clock tree for each blocks. While the “TOP 
latency” column shows the delay from clock source to the clock port of each blocks. 
And because there are R-MUXes beside clock ports, to compensate the latency  
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differency is possible, and the compensatd delay values are list in column “Compen-
sate Delay”. 

According to Table. 1, the implementated clock structure is the same to the original 
mode 0, but all the clock sinks have been balanced under the other mode 1. As a re-
sult, because there is few of hold violations at inter-blocks, the increases of density, 
leakage power and total power are 7%, 5.5% and 11%. Compared to the calculated 
result which are shown in section 2, the MMBCT method impoves the performance of 
ultra-large scale chips rapidly. 

5 Conclusion 

The balance issue is a traditional problem on multi-mode clock trees. In most of the 
cases, it is not easy to satisfy all the requirements for each mode, and this will cause 
the problems, such as density, leakage, power. In this article, an innovative method, 
MMBCT, was opened to build a balanced clock tree in multi-mode applications. The 
basic idea of MMBCT is to maximize the reuse of the clock tree under each mode, 
and then the issues of density, leakage and power will be relieved. 

Acknowledgements. Financial supports from the Natural Science Foundation of Chi-
na (NSFC) under award 61076036 and 61076025 are greatly acknowledged, also 
greatly thankful to the KJ-11-04 project. 
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Abstract. Random numbers are extremely important to the scientific and com-
putational applications. Mersenne Twist(MT) is one of the most widely used 
high-quality pseudo-random number generators(PRNG) based on binary linear 
recurrences. In this paper, a hardware architecture for the generation of parallel 
long-period random numbers using MT19937 method was proposed.  Our de-
sign is implemented on a Xilinx XC6VLX240T FPGA device and is capable of 
producing multiple samples each period. This performance let us obtain higher 
throughput than the non-parallelization architecture and software. The samples 
generated by our design are applied to a Monte Carlo simulation for estimating 
the value of π, and we achieve the accuracy of 99.99%. 

Keywords: MT 19937 method, Hardware architecture, parallel generation, 
FPGA. 

1 Introduction 

High quality random numbers are epidemical applied in the domains of scientific 
applications[9]. One of the extremely important instances is the Monte Carlo method, 
such as particle transport in computational physics, quantum thermodynamic calcula-
tions and aerodynamic calculation. However, with the increasing complexity of the 
calculation model and calculation accuracy, the amount of Monte Carlo calculation to 
be done is growing. As all we known, the quality of random numbers has a significant 
impact on the accuracy of the Monte-Carlo simulations results. 

Due to the advantages of high performance and reproducibility, pseudo-random 
number generators (PRNGs) based on linear recurrences modulo 2 are widely adopted 
in such simulations. One prevalent F2-linear PRNG is the Mersenne Twister (MT) 
[3], which is highly suited to simulation for its long period, multi-dimensional equidi-
stribution, and high performance. 

For large scale computing, one trend is the development of the parallelism of ap-
plications and building structure with the available parallel hardware resources, such 
as in FPGAs[10][11]. In modern system, providing fast streams of statistically reliable 
random numbers is the key component of many scientific applications, and designing 
parallelism PRNGs structure is the critical part. 
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Most hardware implementations of MT19937 are straightforward non-parallelized 
implementations of the original C-code [7], [8]. Shiro[1] proposed a hardware frame-
work implement MT19937 in parallel by using 624 registers, but this is not area-
efficient. Ishaan L.Dalal and Deian Stefan[2] developed a hardware architecture for 
generating parallel pseudo-random numbers, this method decrease the cost of hard-
ware but the structural details of the multi-ported RAM and pipeline registers are 
not revealed. 

In this paper, we develop a parallelized hardware framework for MT19937. More 
specifically, we make the following contributions:  

1. We design a hardware architecture for parallel generating long-period random 
numbers using MT19937. 

2. We implemented various degrees of parallelization architecture on a Xilinx Virtex 
6 device. 

3. We evaluate the proposed architecture using Monte-Carlo simulation for estimat-
ing the value of π. 

2 Algorithmic Backgrounds  

2.1 Mersenne Twister Method 

The Mersenne Twister Method, which is a pseudorandom number algorithm based on 
a matrix linear recurrence over F2, is developed by Makoto Matsumoto in 1997[3]. 
The sample generation process of MT method is illustrated in Fig.1.  

 

Fig. 1. Generation process of MT method 

Where Sn represents the current state and Sn+1 is the next state. The state vector 
contains N words, each words contains w-bit. Three words in current state go through 
the Generator transform to the next state with a series of logic operation XOR and 
shift.  

We could express the transform process in Fig.1 in the form of Eqn. (1) 

 Ax[M])x[1]|(x[0]x[N] rrw ⋅⊗= −  (1) 
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In the equation x[0]w-r stands for “the upper w-r bits” of x[0], and x[1]r means “the 
lower r bits” of x[1]. So (x[0]w-r|x[1]r) means the new words consisted of the “the 
upper w - r bits” of x[0] and “the lower r bits” of x[1] . 

The matrix A in the Eqn. (1) is the twist transformation matrix and defined in the 
form of Eqn. (2). 
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In order to get the long period and good equidistribution, the Mersenne Twister is 
cascaded with a tempering transform to compensate for the reduced dimensionality of 
equidistribution, the temper is defined in the case of Mersenne Twister as Eqn. (3) 
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Where b and c are bitmasks and u, s, t and l are constant integers. Period reaches the 
theoretical upper limit 2Nw-r-1. 

In this paper, we use MT19937 algorithm and the coefficients for MT19937 are 
N=624,w=32,r=31,M=397,the period of MT19937 is 219937-1.Thease characters could 
meet the demands for the simulation. 

3 Hardware Architecture for MT19937 

Fig.2 illustrates the overview of hardware architecture which we propose for 
MT19937 algorithm. It is composed of four components, i.e. the Address Unit, the 
Transform Unit, the Temper Unit, and the parallelized configuration consisted of 
BRAMs and registers.  

The Transform Unit and the Temper Unit correspond to the Transform and Temper 
processes described in Eqn. (1) and Eqn. (3), respectively. The responsibility of the 
Address Unit is producing the appropriate addresses for the BRAMs. The connection 
and configuration of BRAMs and registers are the key points of parallelized architec-
ture. They ensure the correctness of the generating results. We introduce the design 
details of BRAMs and registers in the next sub-section.   

Two advantages of our parallel architecture are shown below:  

1. Due to the capability of producing multiple random samples per clock cycle, we 
can obtain the high throughput.  

2. The whole system can be built inside a single FPGA device so that the external  
resources such as off-chip memory are not required. 
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Fig. 2. The hardware architecture for MT19937 

3.1 Structural Details for BRAMs and Registers 

We use dual-port BRAMs in FPGA for the implementation and 3 degrees paralleliza-
tion will be introduced as an example. 

624 seeds are needed at the initial state of MT19937, we use one 206ൈ32-bit, two 
207ൈ32-bit dual-port BRAMs and four registers to ensure state consistency for the 
given parallelized configuration. The initial vectors are distributed as Fig.3. 

 

Fig. 3. The initial state of BRAMs and registers 

It cost 3 read operations and 1 write operation for generating one random number 
using MT19937 method. We use two dual-port BRAMs in READ_FIRST mode to 
achieve.  In READ_FIRST mode, data previously stored at the write address on the 
output latches, while the input data is being stored in memory (read before write). 

Based on this character, the R/W details during the first 3 clock cycles is illustrated 
in Fig.4, vectors in bracket are the output data of the corresponding port. During the 
initialization, all I/O port of three BRAMs are in read mode. The numbers of address 
in the BRAMs (addr0,addr131,etc.) of Fig.4 correspond to the R/W addresses, which 
are controlled by the address unit and mapped to the proper BRAMs .During runtime, 
one port of BRAM is in read model and the other one is in write mode. Each of 
BRAMs R/W addresses is updated by the different counter synchronously. 
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In a single clock, because the BRAM is in READ_FIRST mode, the output data of 
the port in write mode is the previous data which was stored in the current write ad-
dress and will be transformed to the appreciate register. Therefore, no more than 2 
accesses will be required for each BRAM in a single clock cycle and we get all the 
vectors needed in one generation. Fig.5 depicts the hardware implementation of our 
proposed architecture. 

 

Fig. 4. R/W details during first 3 clocks 

 

Fig. 5. Hardware architecture of 3 degree parallelization for MT19937 
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4 Implementation and Testing 

This section presents the implementations and evaluations of the proposed architec-
ture and framework using FPGA technology. 

4.1 Implementation of Hardware Architecture  

We implemented the architecture described in Section 3 on a Xilinx Virtex-6 
XC6VLX240T (hosted on the ML605 evaluation board) FPGA device. The designs 
were coded in Verilog HDL and synthesized with Xilinx ISE 12.2. The initial design 
is simulated in Modelsim SE 6.5 to ensure functional correctness. 

The BRAMs are configured in READ_FIRST mode. The output data of the port in 
write mode of BRAM which will be used in next iteration is transformed to the cor-
responded registers, meanwhile the output data of the other port and the old data in 
register were bypassed to the generator directly. The whole system is fully pipelined.     

We have implemented a non-parallelized and four different (of degrees 2,3,4,6) 
long-period RNGs in various parallelization configurations for MT19937 .  

Table 1 summarizes the resource usage and maximal performance statistics for 
each of these configurations. Hardware implementations have a better performance in 
throughput than the software. And as the result shown in Table 1, when we want to 
get more than one random number in one cycle, simply duplicating multiple instances 
of non-parallelized implementation will consume more resource than the parallelized 
architecture.  

Table 1. Resource usage for various degrees of parallelism for MT19937 

 Software None 2-d 3-d 4-d 6-d 
Flip-Flops N/A 94 102 148 194 264 
LUTS N/A 152 167 245 323 405 
BRAMs N/A 2 2 3 4 6 
Freq(MHZ) N/A 312.0 260.3 253.9 238.3 232.2 
Thruput(Gbps) 6.03 10.0 16.7 24.4 30.5 44.6 

We also plot corresponding throughput vs. area for 2-d, 3-d, 4-d, 6-d as shown in 
Fig. 6. We can see that the throughput/area efficiency roughly remains constant as the 
degree of parallelism increases. 

 

Fig. 6. Throughput vs Area for various parallel degrees 
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4.2 Application for Testing 

Two standard statistical test suites, Diehard[11] and Crush which is from TestU01[12] 
were applied to test the quality of random numbers generated by the framework pre-
sented in Fig.5.  

The implementations passed all the Diehard tests. All tests in Crush were passed 
except for two linear complexity tests. The reason is that all F2-linear PRNGs produc-
ing bit sequences follow liner recurrences, thus they cannot have the linear complexi-
ty of a truly random sequence [4] and will fail the two tests. 

For the purpose of checking the framework further , we apply the architecture to a 
practical application that Monte-Carlo simulation to estimate the value of π for fur-
ther test. The basic principle of it is to generate points in the quarter unit square ran-
domly, and then count the number of points falling inside the quarter unit circle. The 
value of π can be estimated by the Eqn. (12) 

 π ൌ 4 ൈ ୮୭୧୬୲ୱ ୧୬ୱ୧ୢୣ ୲୦ୣ ୡ୧୰ୡ୪ୣ୲୭୲ୟ୪ ୮୭୧୬୲ୱ ୧୬ ୱ୧୫୳୪ୟ୲୧୭୬  (4) 

The implementation of this Monte-Carlo application is shown in Fig. 7, and we chose 
10000 points generated by the architecture proposed as the test samples. The esti-
mated value of π is 3.141593 and this already achieve the accuracy of 99.99%. We 
believe that if we increase the number of sample points, the estimated value will be 
more accuracy. 

 

Fig. 7. Framework for estimating the value of ૈ  

5 Conclusion 

In this paper, we have developed a hardware architecture for generating parallel long-
period pseudo-random numbers using MT19937 method. 

We implemented various degrees of parallelization architecture and a non-
parallelization architecture for comparison on a Xilinx XC6VLX240T FPGA device. 
Due to the capability of capable of producing multiple samples each period, our archi-
tecture obtain higher throughput than the no parallelization architecture and software.  

Finally, we apply the Monte-Carlo simulation for estimating the value of π for 
testing our architecture successfully. 
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Abstract. With the widely application of multi-core multi-thread processor in 
various computing fields, simulation and verification of processors become in-
creasingly important. In this paper, a multi-level hybrid verification platform 
called MGTE is designed and developed for a 16-core processer PX-16. MGTE 
supports software simulating and hardware emulating in module level, sub-
system level or full-chip level, which is capable of verifying the processor dur-
ing all the design periods from details to the whole. Also, MGTE supports the 
hybrid verification of behavior models, RTL codes and net lists, which is capa-
ble of improving the simulation performance. It’s proved that MGTE can effec-
tively ease the functional verification and preliminary performance evaluation 
of PX-16 processor. 

Keywords: Multi-core Multi-thread Processor, Multi-level Hybrid Verification, 
Verification platform 

1 Introduction 

Processor is the core of a modern computer system. With the widely application of 
multi-core multi-thread processors in various computing fields, the growing size and 
complexity make the verification of the multi-core multi-thread processor more and 
more important [1]. Meanwhile, as the cost of processor manufacture keeps rising, 
simulation and verification of the processor should preliminarily evaluate the perfor-
mance and power consumption before taping-out the initial assessment. 

In this paper, a multi-level hybrid verification platform called MGTE (Making a 
Good Testing the Environment) is proposed for a 16-core processor PX-16. MGTE is 
based on the existing simulation and emulation tools, and is capable of either verify-
ing the function or evaluating the performance and power of the processor. 

                                                           
* This work is supported by National Natural Science Foundation of China (NSFC) under grant 

No.61070036 and No.61103011, and HGJ Project of China under grant No. 2009ZX01043-
003-002. 
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PX-16is a 16-core processor, which focuses the design on enhancing the system 
throughput. It employ sin-order issue mechanism to reduce the complexity of the 
processor core, so that the chip can integrate more processor cores. Fig. 1 shows a 
block diagram of the PX-16 processor. 16 general-purpose multi-thread processor 
cores (Core) with private L1 and L2 caches share a 4-bank L3 cache. Each bank of L3 
cache connects to a directory controller (DCU) and a memory controller (MCU). PX-
16 also integrates an on-chip interconnection network(NOC), a clock and reset control 
unit (CRU),a partial mode unit (PMU) and an IO controller (IOU). 

 

Fig. 1. PX-16 Block Diagram 

2 Related Work 

Verification is an important method for the successful implementation oftoday's 
CPUs. According to the objective of verification, it can be divided into functional 
verification and timing verification. According to the stage of verification, it can  
be divided into pre-silicon verification and post-silicon verification. Moreover,  
pre-silicon verification can be subdivided into pre- synthesisverification and post-
synthesis verification.According the verification level,it can be divided into the archi-
tecturelevel verification, behavioral level verification, register transfer level (RTL) 
verification, netlist level verification, and prototype-chip level verification.According 
to themethodologyof verification, it can be divided into formal verification, simula-
tion verification, FPGA verification, prototype system verification, coveragedriven 
verification, assertion verification, pipeline behavior verification, and hardware and 
software co-verification. A single verification method is notenough to guarantee the 
correctness of the processor design, so a variety of verification methods are requi-
redthrough the processor design [1]. 

Simulation verification ensures the correctness of processor design by modeling 
the design at different abstraction levels and observing the response of the model 
under the external test stimulus. 
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Simulation verification tools can model the processor with high-level language 
(such as the C language, System-Verilog language, etc.), such asSAM [2] architecture 
simulatorfor OpenSPARC T2[3] and SimpleScaler architecture simulator for general-
purpose processor.SAM models not only the processor design but also the disk, off-
chip memory, multi-processor system etc. SimpleScaler [4] is able to simulate 
the CPU, cache, memory system, computer architecture etc. It adopts MIPS/DLX-like 
instruction set, provides compile tool chain and a number of test programs,  
and supports the analysis of the processor and cache system. High-level languagesi-
mulation cannot accuratelyreflect the details of the processor architecture.But it is 
usually fast and the simulation speedcan reach MHz or more.Therefore,the simulation 
at this level is usually used for software development.  

Simulation verification can also model the processor with hardware description 
language (i.e. Verilog, VHDL, etc.). For example, Sims [5] is a simulator for OpenS-
PARC T2 including thousands of assembly test programs, which is capable of model-
ing real hardware architecture with the supports of specific EDA tools (i.e. VCS [6] 
from Synopsys inc. or IUS [7] from Cadence inc.). Hardware logic-level simulation 
serves a relatively low level abstraction, which can accurately reflect the details of the 
processor architecture, but the simulation speed is usually slow, which is usually only 
a few hundred Hz to several thousand Hz. 

Simulation verification can also be done on hardware emulator (i.e. PXP from Ca-
dence inc., EVE from EVE inc., etc.). The processor design can be loaded into the 
hardware emulator to run a real operating system and applications.The log and wave-
form records the hardware status and results for further analysis. Compared with the 
previous two verification methods, hardware emulation verification can accurately 
reflect the detail structure of the processor, but also has a fast simulation speed around 
MHz-scale. However, the hardware emulation platform is usually expensive, and 
limited by the number of logic gates. Moreover,the debug process is relatively  
complex and more time-consuming. 

During the whole process of CPU design, these three verification methods will be 
collaborative at different stages. MGTE simulation verification platform supports 
both logic-level simulation on common computer servers and hardware emulation on 
hardware emulators. 

3 MGTE Verification Platform 

MGTE verification platform is mainly composed of the software environment and the 
hardware environment. Thesoftware environment is responsible for configuring the 
processor, compiling the test cases and controlling the simulation process.The hard-
ware environment is responsible for the synthesis of the processor design codes, off-
chip DDR memory model, FLASH memory model and the off-chip I/O device model, 
as well as loading the PLI libraries, the initialization codes, the hardware moni-
tor/checker and simulating on the hardwareemulator platform. 
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Fig. 2. The workflow of MGTE simulation verification platform 

3.1 Workflow of MGTE 

Fig. 2 shows the workflow of MGTE verification platform. 
At first, the software compiler converts the test case and the software function li-

brary into some intermediate files, including binary executable files, the symbol table, 
and the disassembled codes with instruction and data addresses. The symbol table 
contains the instruction addresseswhere the program exits normally and abnormal-
ly.The disassembled codes are used to debug errors. IO and memory image generator 
converts the binary executable files to the machine codes and data and divides them 
according to the address space.The codes and data in IO space are stored in two files: 
Rom0.image and Rom1.image. The codes and data in memory space are stored in 
Mem.image. At the same time, the hardware design codes of the processor, together 
with the initialization code, PLI libraries, checkers and monitors,are compiled by the 
hardware synthesizerand the hardware intermediate codes are generated. 

After compiling, the verification can begin. When the hardware codesstart to work, 
the IO and memory image files and the arguments extracted from the symbol table 
will be loaded into the simulator or emulator. The hardware status and results will be 
printed to the server screen and the log files. Once the real-time errors in hardware 
design are detected by the checkers, the simulator will pause and invoke a debug in-
terface to check the errors. After the simulation or emulation is finished, the software 
environment will re-analyzethe logs and hardware dump files.If the test case exits 
from the bad address or if the hardware status is inconsistent, MGTE platform will 
report the sequence of the error instructions from the logs or the address sequence of 
the inconsistentdata for troubleshooting. 
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3.2 MGTE Hardware Environment 

MGTE hardware environment refers to the PX-16 processor full-chip design codes 
and simulation related codes, including the global flow control module, processor 
model, memory model, Flash model, the IO reference design model, global initializa-
tion module and global checkers and global monitors, as shown in Fig. 3. 

 

Fig. 3. MGTE the hardware environment structure 

The global flow control module is mainly responsible for controlling the work flow 
of the processor, loading the test cases, initializing the processor, starting the global 
checker and the global monitors. 

The processor design codes contain RTL codes and some behavior models.  
The RTLcodesare real hardware design, and the behavior models are used for fast  
simulation. 

The off-chip DDR memory model, abbreviated as the memory model, contains not 
only the clock accurate DDR models, but also a fast DDR behavioral model. Its initial 
data are loaded from Mem.image. 

The flash model is responsible for the simulation of the off-chipflash chips, which 
supplytwo extraFlash chips to store the system initialization machinecodes and binary 
data. The flash model also contains a real clock accurate model and a fast behavioral 
model.Its data areloaded fromRom0.image and Rom1.image. 

The IO reference design model is responsible for the simulation ofthe off-chip IO 
devices, which can supply two simple IO devices. 

The global initialization module is responsible for the fast initialization of the full 
system. In a real system, the initialization process is done by hardware instructions, 
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which is extremely slow.In order to speedup the initialization process, most units of 
the processor can be fast initialized by forcing a set of signals or embedding some 
hardware behavioral initial codes. The fast initialization units includes Dl3, MCU, 
L2Cache, CRU, PMU and other miscellaneous modules such as the memory model, 
the FLASH model and the IO reference design model. 

The global checkersare basically responsible for fast error detection and hardware 
debug by checking the status and results of the simulation. For examples, Golden 
Memory checker (GM) uses a memory reference model to check the correctness of 
memory subsystem; Golden Directory checker (GD) usesL1C directory model to 
check the protocol correctness of the L1 Cache coherency and consistency; Golden 
Packet checker (GP)checks the correctness of the input and output packets through 
NOC; Golden Cache Coherencychecker (GCC)usesa hardware modelto check the 
protocol correctness of L2Cache coherency and consistency; Golden MCU checker 
uses a behavioral DDR model under L3Cache to check the correctness of MCU; Gol-
den DCU checker checks the correctness of the DCU internal protocol; Golden L2C 
checker checks the correctness of the L2Cache internal protocol. 

The global monitorsare responsible for not only monitoring the processor simula-
tion but also collecting the statistical system performance, including the average on-
chip memory access bandwidth, the average off-chip memory access bandwidth, the 
DMA-accessbandwidth and processor computing resource utilization. Based on these 
statistics, programmers or hardware designers can analyze the characteristics of the 
applications and find out the hardware and software bottlenecks for improvement. 

3.3 Advantages of MGTE Platform 

MGTE is a multi-level hybrid simulation verification platform that covers from simu-
lation to emulation. It can meet the processor verification requirements at different 
design stages,and make a lot of optimizations for simulation performance. 

1) Supporting Multi-level Cross-Platform Verification 
MGTE platform supports multi-level simulation verification.It supports both full-
system simulation but also sub-system simulation, including the processor core  
sub-system simulation, the memory sub-system simulation, and the IO sub-system 
simulation.It also supportsmodule-level simulation, including the Core module simu-
lation,the L2Cache module simulation, the NOC module simulation, the L3Cache 
module simulation, the MCU modulesimulation and the IOU module simulation. All 
the simulation and emulation levels can be selected by a run-time parameter. 

MGTE platform also supports cross-platform verification. It not only supports 
software simulation on IUS environment or VCS environment, but also supports emu-
lationon the PXP or EVE platform. Through the support of the cross-platform simula-
tion and emulation verification, MGTE platform can process pseudo-assembly-level 
test cases on module level and subsystem level software simulation, assembly-level 
test caseson full-chip simulation and real applications on full-chip emulation after 
loading operating system. 



22 X. Yan et al. 

Multi-level cross-platform simulation verification method makes the processor ve-
rification unified, structured and parameterized and eases the verification of the PX-
16processor from the details to the whole system. 

2) Supporting Hybrid Simulation Verification 
MGTE platform uses different configuration files to achieve hybrid simulation of the 
behavior models, RTL codes and netlists. The configuration entryfollows the form 
"mod_select: <mod_name=mod_type>", wheremod_namecan be the name of the 
module with multiple implementations (such as "mcu" for the module MCU), 
the name of the subsystem with multiple implementations (such as "mem_subsys"for 
the memory subsystem) or the name of the common components with multiple im-
plementations (such as "regfile"for the register files,"ram" for theon-chip rams, 
"clockgate" for the clock gating modules, etc.); mod_type is the configuration of the 
hardware modules, subsystems or components: "real" means thereal RTL codes 
areused, "model"means a null model is used, "sim"means a behavioral model is used, 
and "netlist"means the netlist model is used. For example, if MCUis required to be 
configured as a behavioral model, the line "mod_select: <mcu=sim>" should be insert 
into the configuration file. In addition, the number of processor cores can be confi-
gured too.For example, "mod_num: <corenum=1>" means the processor is configured 
to be a single-core processor, and the other 15 coreswill usenull models. 

MGTE platform analyzes the hardware configuration file, and dynamically gene-
rates a compile file list, whichis further compiled by the IUS or VCS hardware compi-
ler. The parameter conf is used to select the hardware configuration file, which is  
customized according to the simulation requirements. For example, the hardware 
configuration file"fastcmp16.conf" is used for the hybrid fast simulation of a 16 core 
system by setting the parameter conf as "fastcmp16". 

The hybrid simulation of behavioral models, RTL codes and netlists greatly in-
crease the simulation performance.The fast behavioral modelsare used for the mod-
ules whose functional correctness isguaranteed, and the empty models are used for the 
unused modules, so that thechip complexity is reduced, and the bugs in the hardware 
logic can be exposed rapidly. 

In addition to these two important characteristic, the MGTE platform also has the 
following advantages:  

• Easy to use. MGTE platform provides a few parameters to flexiblyselect a part or 
whole test cases for convenient regression testing.In addition, MGTE platform can 
simulate multiply tasksparallelly.Most operations of MGTE platform need only 
onesingle command, which greatly simplifies the human-computer interaction. 

• Convenient to troubleshoot.MGTE platform supports automatic checkpoint, 
which automatically saves the state of a long-run test case in a fixed time interval 
for re-running and troubleshooting. In addition, MGTE platform supplies a rich 
number of online and offline checkers to check the status and results of the simula-
tion. The online checkers includea lot of PSL assertions andhardware checking log-
ic. The offline checkers include the L1/L2 coherency and consistency checking 
toolsbased on the dumpedinternal RAM data and the error path analysis tools based 
onthe log files. 
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4 SimulationExperiments 

MGTE platform is designedto guarantee the correctness of PX-16 processor and to 
evaluate its performance preliminarily. Three kinds of test cases are used on MGTE 
platform: the pseudo-assembly-level test cases,the assembly-level test casesas well as 
the application-level test cases. 

Pseudo assembly-level test casesare used to observe the system status through forc-
ing the internal interface signals, which are mainly for the subsystem level and mod-
ule level verification, as shown in Table 1. 

Table 1. Pseudo assembly-level test cases running on MGTE platform 

Name Count Functionality 
core_sim 726 test the processor core and core module 
mem_sim 253 test on-chip memory subsystem 
io_sim 126 test IO subsystem and IO module 
l2csim 19 test L2 Cache module 
Nocsim 37 test NOC module 
l3csim 39 test L3 Cache module 
Mcusim 25 test MCU Module 

 
Assembly-level test cases are used mainly in the full-chip software simulation, 

which are designed to test the traditional functions, to verify the new features of PX-
16 processor, to evaluate the performance preliminarily of PX-16 processor as well as 
to do some random tests.Thesetest cases are shown in Table 2. 

Table 2. The assembly-level test cases running on MGTE platform 

Type Name Count Functionality 
traditional 
function 

Cmp1 881 Single-core, 8-core and 16-core basic functionality; 
core,ISA, virtual memory management, error han-
dling, performance management, exception han-
dling, memory access, and other miscfunctionality. 

Cmp8 654 
Cmp16 276 

directed func-
tion 

SIMD 68 SIMD functionality 
DMA 36 DMA functionality. 
CReg 10 Control registersfunctionality. 
Reset 1 Chip reset functionality. 
PM 16 Partial mode functionality. 
IPI 2 Inter-processorinterruption functionality. 
HardAtom 2 Hardware atomic instructions functionality. 

Performance 
Evaluation 

Stream 12 Performance of Stream program. 
Ld 1 Memory accesslatency at different levels. 
Dd 18 DMA performance under different situations. 
Linpack 1 Performance of LINPAC. 
Atom 12 Performance of locks and barrier 

Random Test MixISA * Random instruction sequence. 
MixCC * Random critical region and randomsynchronization. 
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Application level test casesare mainly used on PXP and EVE emulation platform 
after loading the operating system.These benchmarks contain SPEC CPU2006, SPEC 
OMP2001, NPB, Stream, Matrix multiplication and LINPACK. 

4.1 Simulation Interface 

The entrance program of MGTE platform ismgte_run.There are two types of parame-
ters for the program: action parameters and options parameters. There are three action 
parameters: "run" indicates to run some testcases; "help" indicates to print help infor-
mation; "merg" represents to merge the coverage data; "clr" is used to empty the tem-
porary directory. 

Somebasic option parameters are as follows: 

sim=*: * indicates the type of simulation, such assim=chip,chip_vcs, pld_chip, 
eve_chip, core_sim, mem_sim, io_sim, coresim, l2csim, nocsim, l3csim, mcu-
sim,iosim and so on. 

conf=*: * specifies a particular hardware configuration name.The default value is the 
norm, meaning to use RTL codesfor the whole system. 

T [n]: n is a number or a rangelike"m-n", indicating which test group(s) will be tested. 
The bracket is not required when inputting the command line. 

test=*: * indicates the names of the test cases, where wildcards can be used. 

nproc=*: * indicates the number of processes to run the test task. The default value is 1. 

Fig. 4 and 5 give the consoles of the MGTE platform for serial single-task simulation 
and parallel multi-tasking simulation. 

 

Fig. 4. The console for single-task test on MGTE 
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Fig. 5. The console for parallel multi-task test on MGTE 

4.2 Simulation Results 

MGTE platform is used through all the stages of PX-16 processor verification, from 
module level to full-chip level. With the help of MGTE platform, 16459 bugs are 
fixed and the bug distribution is shown in Table 3. 

Table 3. The bug distribution found by MGTE platform 

Simulation 
level 

Bug 
count 

Bug type 

Module Level 11895 Syntax, logic design, new function, pipeline, environment, 
etc. 

Subsystem 
Level 

4321 Subsystem interface, L2Cache coherency and consistency, 
logic design, environment, etc. 

Full-Chip Level 243 Full-chip interface, L2/L1 Cache coherency and consistency, 
logic design, IO consistency, environment, etc. 

MGTE platform greatly increases the simulation speed bymixing the real RTL 
codes and behavioral modelsin simulation verification. Table 4 shows the simulation 
speed in the hybrid mode compared with the real RTL codes mode. Only the real RTL 
codes emulation is performed on PXP and EVE platform. AIntel Xeon server is used 
in the software simulation, configured with 4 Xeon E5540 CPUs operating at 
2.53GHz and 8MB on-chip Cache within each CPU. 

Table 4. Simulation performance atdifferent levels 

Simulation 
level 

Simulation Speed(Hz)* 
Test cases 

Real Hybrid 
Module level ≈200 ≈2000 Pseudo assembly benchmarks 
Subsystem 
level 

≈50 ≈500 Pseudo assembly benchmarks 

Full-chip 
level (soft) 

≈10 ≈100 Assembly benchmarks 

Full chip on 
PXP 

300k~1.5M - OS and applications on full-chip mode 

Full chip on 
EVE 

1M~3M - OS and applications on partial mode 

* thespeed is measured as number of cycles per second in processor core clock domain. 
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5 Conclusions 

MGTE is a multi-level hybrid verification platform based on hardware design codes, 
which supportsboth software simulation and hardware emulationfor the module level, 
sub-systemlevel and full-chiplevel.It eases the verification during all the stages of 
processor design, from the details to thewhole system. It also supports the hybrid 
simulation of behavioral models, RTL codes and netliststo improve the simulation 
performance. MGTE effectively supports the functional correctness verification and 
preliminary performance evaluation of the PX-16 processor. 
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Abstract. In this paper, we propose an efficient parallel SURF algorithm for 
multi-core processor, which adopts data-level parallel method to implement 
parallel keypoints extraction and matching. The computing tasks are assigned to 
four DSP cores for parallel processing. The multi-core processor utilizes QLink 
and SDP respectively to deal with data communication and synchronization 
among DSP cores, which fully develops the multi-level parallelism and the 
strong computing power of multi-core processor. The parallel SURF algorithm 
is fully tested based on 5 different image samples with scale change, rotation, 
change in illumination, addition of noise and affine transformation The 
experimental results show that the parallel SURF algorithm has good 
adaptability for various distorted images, good image matching ability close to 
the sequential algorithm and the average speedup is 3.61.  

Keywords: parallel, SURF, image matching, multi-core processor. 

1 Introduction 

With the rapid development of digital image processing and microelectronics 
technology, image matching is used widely in aided navigation of aircraft, face 
recognition, image stitching, image retrieval, medical diagnosis, natural resource 
analysis, and weather forecasting[1][2]. These applications require highly efficient 
and even real-time image matching algorithm. Lowe's SIFT (Scale Invariant Feature 
Transform)[3] algorithm is a nice image matching algorithm for scale change, 
rotation, illumination, noise and even affine transform images, but the SIFT suffers 
from high computation complexity. Herbert Bay presents SURF (Speed Up Robust 
Features)[4] algorithm with fast computing speed, robust keypoints and high 
parallelism. However, the SURF algorithm on a single chip can not meet the needs of 
real-time applications. With the emergence of multi-core processors, it becomes an 
effective method to improve performance of algorithms by developing parallel 
algorithm based on multi-core processors. 
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2 The Architecture of Multi-core Processor 

YHFT-QDSP [5] is a high performance heterogeneous multicore processor, which is 
shown in Fig.1. It combines four enhanced YHFT-DSP/700 cores and a RISC 
(Reduced Instruction Set Computing) core in one chip. All of the cores can play their 
roles quite well with the advantage of high bandwidth and low delay of the multi-core 
on-chip structure. The memory space of each core is independent individually. The 
RISC core runs embedded operating system and provides a number of external 
interfaces for dealing with user interaction, peripheral device management, while the 
DSP(Digital signal processing) cores are mainly used to improve data processing. 

 

 

Fig. 1. Architecture of YHFT-QDSP 

A multi-core system that runs parallel applications well needs a highly efficient 
communication mechanism. YHFT-QDSP provides two data communication between 
DSP cores: (1) A FSDP (fast shared data pool) is proposed for scattered data transfer 
between different DSP cores, it is designed for high bandwidth communication with 
hardware synchronization and suitable for data flow applications.(2) A link-crossbar 
Switch-PCIE named QLink is designed for bulk data transfer among the DSP cores. 
The Qlink data path consists of a link port, a crossbar switch and a PCIE. A data path 
is established by linking ports from the source to the destination through the crossbar 
switch. The applications of loosely coupling computation can benefit from Qlink, 
since Qlink does not disturb the CPU during data transmission process. 

3 The Serial SURF Algorithm 

The basic principle of SURF is similar to that of the SIFT algorithm. But compared to 
SIFT algorithm, the computational speed of SURF algorithm is improved greatly, 
mainly due to the use of the box filers and haar wavelet based on integral image, 
which makes the computation time a constant independent of the changing of filter 
size. Integral image further saves a lot of redundant computing. 
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Fig. 2. The implementation process of SURF algorithm 

As shown in figure 2, the implementation process of SURF algorithm includes: 
calculating the integral images, establishing scale space, detecting maximum value, 
localizing keypoints and filtering, and computing the orientation and descriptor of 
keypoints. 

3.1 Calculating the Integral Image 

Though the integral image theory is proposed by Viola and Jones[6], it is firstly 
applied to box filters by Simard [7]. The value of integral image element is the sum of 
the rectangle area pixel values between the point and the origin, that is, the sum of 
value of all pixels in the upper left. For instance, for an image I and a point P (x, y), 
the integral image value of the point P is the sum of pixel values within the 
rectangular area in which the origin point and point P are on the diagonal, shown as 
formula 1: 
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In an integral image, the sum of all pixels is calculated using four values within the 
rectangular area, and the computation complexity is independent of the rectangle size. 
For example, to calculate the sum of pixels of the rectangular region whose vertices is 
A, B, C, D, the result is shown as formula 2. Regardless of the size of the rectangle, 
all four values can be calculated, and the computational time is a constant. That 
explains how integral image can  greatly improve SURF computing speed, especially 
for the large-scale images. 

CBDAsum −−+=                               (2) 

3.2 Establishing the Scale Space 

Similar to the SIFT, SURF presents image scale space using image pyramid. In a 
certain sample step, a series of boxes with different sizes are used to calculate 
DoH(Determinant of Hessian) at each sample point, which generates the first octave 
of scale space; then the sample step is increased, and a series of boxes with different 
size are used to calculate DoH at each sample point, which generates the second 
octave of scale space. In a similar way, the third and the fourth octave of scale space  
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are obtained. SIFT algorithm’s new octave is obtained by sampling the middle image 
layer of old octave, while SURF generates new octave through increasing the sample 
step for the integral image. The size of the box filter is shown in formula 3: 

)1)1(*2(*3 )1( ++= + il o                          (3) 

Where l is the size of the filter, o is the octave order of scale space, i is image layer 
order of octave. When the filter box size is 9, corresponding to Gaussian standard 
deviation 1.2, if different sizes of box filers have to maintain a certain layout of the 
filter, the corresponding standard deviation of the Gaussian can be calculated as shown 
in formula 4: 
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3.3 Detecting Keypoints 

SIFT adopts DoG approximately to present the LoG, while SURF algorithm uses the 
box filters to simplify the DoH. DoH is a keypoint detecting operator, which is the 
determinant of formula 5. 
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Where f (x, y) is continuous function. The determinant of HESSION is capable of 
detecting the minimum and maximum values of function f (x, y). SURF applies it to 
detect the extreme of an image: the function f (x, y) is replaced by the image I (x, y), 
correspondingly, the second derivative of f (x, y) is replaced by the convolution of the 
image and the second derivative of Gaussian kernel, which are shown in formula 6: 
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Where ),,( σyxLxy , ),,( σyxLxx  and ),,( σyxLyy  present the image 

convolution at point (x, y) with the second derivative of Gaussian kernel. SURF 
algorithm uses a box filter with weights to approximate the Laplace operation of 
HESSION matrix. 

3.4 Keypoints Detecting, Localizing and Filtering 

When scale space construction is completed, the local maximum value point can be 
detected in each octave. Only if the DoH of a sample point is greater than 8 adjacent 
sample points in the same layer image and 9 sample points respectively in the adjacent 
scale correspondingly, the sample point is treated as candidate keypoint. 
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Localizing and filtering keypoints: in scale space, the Taylor expansion at the 
candidate keypoint ),,( σyx  is shown in formula 7. 
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The derivation of the formula 7 is done and makes it zero, find the extreme position of 
the keypoint, as shown in formula 8: 
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If three directions offset between the extreme point ),,( σyx  and the candidate 
keypoints are all less than 0.5, the interpolation ends; Otherwise, adjusting the position 
of the keypoint interpolation continues until the iteration times are greater than the 5 or 
three offsets are all less than 0.5. If interpolation is successful, the location of keypoint 
is accurate than before in scale space. If the DoH value of a sample point is smaller 
than a certain threshold,  the keypoint is removed. 

3.5 Computing the Orientation 

Similar to SIFT algorithm, SURF feature also needs orientation for ensuring rotation 
invariance, while computing the orientation of SURF is based on Haar wavelet. Haar 
wavelet computes the gradient for image area, which enjoys very good resistance to 
noise. 

In a circle using keypoint as the center and 6s (s presents the scale of keypoint) as 
radius, calculate Haar wavelet with the size of 4s, denoted as haarX, haarY; and 
multiply the weight w (as in formula 9) with factor 2s, denoted as WhaarX, WhaarY, 
making the sample point’s haar wavelets that close to keypoint have great contribution 
to orientation. Similarly, the sample point far from keypoint has little contribution to 
orientation. The direction of the keypoint is the arc tangent of WhaarX and WhaarY. 
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First, in the above circle that uses keypoint as the center and 6s as radius, the direction 

of sample point within
3

~0
π

, Haar wavelet is weighted and summed, donated as  

WhaarX ,  WhaarY . Then, making fan-shaped area rotate 0.15 radians, or, 

the direction of sample point being ranged within
3

15.0~15.0
π+ , its weighted 

haar wavelets are accumulated. Repeating the above process, when the fan-shaped area 
around the keypoint is in one circle, select the largest group accumulated 

sum 22 )()(  + WhaarYWhaarX , and the arc tangent between 

WhaarX  and WhaarY is the orientation of keypoint. 
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3.6 Computing Keypoints’descriptors 

Similar to the calculation of the keypoint, keypoint’s descriptors need to calculate haar 
wavelets which use the keypoint as the region center. Compute keypoint’s descriptor as 
follows: 

First, a 20s×20s region with the keypoint as the center is taken, which is divided 
into 16 sub-regions with a size of 5s × 5s, and coordinate axes is rotated 
counterclockwise to orientation of keypoint. Then, haar wavelets relative to orientation 
are calculated at each sample point in each sub-region, and multiply Gaussian weight 
with the factor 2.5s, denoted by dx, dy; the dx, dy are accumulated to four 

componentsdx , dy ,  dx ,  dy . When the sampling points of the 

entire sub-regions are traversed, four components are multiplied by Gaussian weight 
relative to 4 × 4 sub-regions. For the other sub-regions, similar calculation is done; 
therefore, each keypoint can form 16*4 = 64 dimensions descriptors. Finally, it was 
normalized to remove its sensitivity to light. 

After keypoints’ extraction is completed, the traversing method is used to find 
matching point, that is, each keypoint of the real-time image finds the keypoints that 
minimum Euclidean distance or near minimum Euclidean distance in the reference 
image; If the ratio of two distance is less than 0.7, then the keypoint in real-time image 
and keypoint in reference image are taken for matching points. 

4 Parallel SURF Algorithm  

4.1 Parallel Extracting Keypoints 

YHFT-QDSP consists of four DSP cores; and each core has independent storage space. 
The parallel algorithm based on YHFT-QDSP is mainly divided into two ways: task-
level parallelism and data-level parallelism. According to characteristics of application, 
the corresponding parallel way can be adopted. Task-level parallelism is favored if the 
process of the algorithm is partitioned according to the consuming time of each sub-
process, so the entire program is implemented in pipeline way. On the other hand, 
Data-level parallelism is suitable if the processed data are evenly distributed into four 
DSP cores, so data parallel processing is implemented. 

It can be seen in section 3 that SURF algorithm has high computational complexity. 
Since all sub-processes of the algorithm are closely connected, even splitting the 
algorithm is difficult. Meanwhile, for the task-level parallelism of SURF algorithm, the 
intermediate result  needed to be transferred to other core is large, which will hinder 
the speedup improvement. Therefore, we use the method of data-level parallelism to 
segment the integral image for parallel extraction of keypoints. Due to the extracted 
keypoints of SURF are the local features of image, the method of segmenting the 
integral image for extracting keypoints is feasible. 

As shown in Figure 3, the basic idea of SURF algorithm for data-level parallelism 
is: First, all DSP cores calculate integral image for the loaded image; then, each DSP 
calculates DoH only on a quarter of the integral image: establishing scale space, 
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detecting the maximum value points, generating descriptors. The calculation of 
coordinates of keypoints on four DSP cores are handled differently, that is, no special 
handling of keypoints on the DSP0 is needed; Keypoints’ abscissa on the DSP1 must 
add the width of scale space where keypoint is located; Keypoints’ ordinate on the 
DSP2 must add the height of scale space where keypoint is located; Keypoints’ 
abscissa and ordinate on DSP3 must respectively add the width and height of scale 
space where keypoint is located. Therefore, SURF has well parallelism and is suitable 
for YHFT-QDSP multi-core architecture. 

 

Fig. 3. Parallel extracting keypoints based on segmenting image 

When parallel SURF algorithm is implemented on YHFT-QDSP, two images are 
loaded to storage space of each DSP core, which are called reference image and real-
time image respectively. Each DSP core reads the corresponding part of the image 
according to its ID (the range is 0, 1, 2, 3), computes the integral image and extracts 
keypoints independently. When keypoints are extracted, the four DSP have a set of 
keypoint in reference image, denoted by A0, A1, A2 and A3, and a collection of 
keypoints in real-time image, denoted by B0, B1, B2 and B3, which are stored in some 
designated memory space in DSP core for the subsequent matching. 

4.2 Parallel Matching Keypoints 

In order to ensure the accuracy of image matching, each keypoint in real-time image 
searches its matching point in the whole keypoints set in reference image. Assuming 
that the number of real-time image keypoint set B0, B1, B2, B3 is n0, n1, n2, n3, 
respectively, and the total number is n; the number of reference image keypoint set A0, 
A1, A2, A3 is m0, m1, m2, m3, respectively, the total number is m, the total number of 
keypoint matching can be calculated as in formula 10: 
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As can be seen from the above formula, the matching keypoints can be distributed to 
four DSP cores for parallel processing. According characteristics of YHFT-QDSP 
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architecture, we designed the parallel keypoint matching based on data-level method, 
that is, four DSP cores act as the master node in turn, and each DSP core implements 
parallel computing tasks and returns results to the master DSP core, as in Figure 4. It 
utilizes QLink and SDP respectively to deal with data communication and 
synchronization among DSP cores, where QLink is suitable for bulk data transfer and 
SDP is suitable for little fast data transmission and data synchronization. The multi-
level parallelism of YHFT-QDSP is fully developed and hence image matching speed 
is improved. 

 

Fig. 4. Parallel keypoints matching based on YHFT-QDSP 

The following is the process flow for DSP0 as the master node, which illuminates 
details of multi-core parallel keypoints matching: 

(1)The descriptors set B0 is sent to DSP1, DSP2, DSP3 by DSP0 through QLink; when 
transmission is completed, the number of descriptors B0 is sent to the DSP1, DSP2, 
DSP3 by the SDP, meanwhile light signal to the three DSP cores to indicate data 
transmission is completed. 

(2)The smallest Euclidean distance and the second smallest Euclidean distance of each 
keypoint of B0 are found in descriptors set A0, which are stored in C0. When DSP1, 
DPS2 and DSP3 detected signals sent by DSP0, read data and close signals; Then, 
DSP1, DSP2, DSP3 search the smallest Euclidean distance and the second smallest 
Euclidean distance of B0’ keypoint in descriptors set A1, A2, A3, respectively. When 
calculation is completed, the results of three DSP cores are sent to DSP0 through the 
QLink, which are stored in the C1, C2, C3 in DSP0, respectively, and turn on the 
signals for DSP0. 

(3)When DSP0 detects signal, read data and close signal; for each keypoint b in 
descriptors set B0, it has 8 keypoints’ information that DSP cores have computed (the 
coordinates of keypoint and the distance between the keypoint and keypoint b). 
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Choosing the smallest distance and the second smallest distance, if the ratio less than 
0.7, the two points are considered as the matching points; otherwise, they don’t match. 
When DSP0 has processed all the keypoints completely, turn on signal to DSP1. 

When DSP1, DSP2, DSP3 are acted as the master node, similar steps (1), (2), (3) are 
repeated. All the calculations are done; matching points of reference image and real-
time image are obtained. Finally, mismatch points are removed through RANSAC 
algorithm. 

5 Performance Evaluation and Analysis 

The main criteria for evaluating the parallel image matching algorithm are the speedup 
and repetition rate. Speedup is the ratio of time consumed when the same task runs in 
the single-processor systems and in the multi-processor system, which is used to 
evaluate performance of parallel system result of parallel algorithm. In this paper, the 
speedup = TDSP / TYHFT-QDSP, where TDSP is the time that SURF serial algorithm 
consumed in the single core DSP, TYHFT-QDSP is the time that parallel SURF algorithm 
consumed in the multi-core YHFT-QDSP. The repetition rate is the ratio between the 
matching points of two images and the average number of keypoints that two images 
extracted, which is used to measure the ability of image matching algorithms. 
repeatability K = C (I1, I2) / N, where C (I1, I2) presents the number of matching points 
of two images, N refers to the average number of keypoints that the two images have 
extracted. The repetition rate = KDSP / KYHFT-QDSP, where KDSP is the repetition of the 
serial SURF algorithm on single-core DSP, KYHFT-QDSP is the repetition of the parallel 
SURF algorithm on YHFT-QDSP. The repetition rate reflects the matching ability of 
the parallel algorithm in comparison with the serial algorithm. The closer the repetition 
rate is to 1, the closer the image matching ability of parallel algorithms is to sequential 
algorithm. 

In this section, 5 deformation image samples with scale change, rotation, 
illumination changes in light and dark, noise and affine transformation are used to 
evaluate and test the designed parallel algorithm. We analyzed and evaluated the 
parallel SIFT algorithm according to the repetition rate and speedup. The image sample 
size is 360x144 and the format is pgm in the experiment. 

Figure 5 (a) and (b) compare the image matching results of the serial and parallel 
SURF algorithm for scale change image. Figure 5 (c) and (d) compare the image 
matching results of serial and parallel SURF for rotation image. Figure 5 (e) and (f) 
compare the image matching results of serial and parallel SURF algorithm for 
illumination image. Figure 5 (g) and (h) compare the image matching results of serial 
and parallel SURF algorithm for noise image. Figure 5(i) and (j) compare the image 
matching results of serial and parallel SURF algorithm for affine transformation 
image. 

Table 1 summarizes the matching performance results of 5 different deformation 
images. As can be seen from Table 1, the average speedup of parallel SURF 
algorithm is 3.61, where the noise image gets the maximum speedup, achieving 
remarkable acceleration. The average value of the repetition rate is 92%, which 
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indicates that the image matching ability between parallel SURF algorithm and serial 
SURF algorithm is close, especially for the affine transform, illumination change and 
rotation image. It can be seen from Figure 5 that SURF parallel image matching 
algorithm works well in meeting the matching requirements. 

 

Fig. 5. Compare the image matching results of the serial and parallel SURF algorithm 
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Table 1. Matching performance result of different deformation images 

Parameters 
\image type 

scale 
change 

rotation illumination 
change 

noise affine 
transformation 

average 

speedup 3.56 3.65 3.57 3.69 3.57 3.61 

repetition rate 87% 88% 97.8% 87.8% 100% 92% 

6 Conclusions 

This paper presents an efficient parallel SURF algorithm for multi-core processors, 
and data-level parallel algorithm for keypoint extracting and keypoint matching are 
designed. Based on the characteristics of YHFT-QDSP architecture, various 
computing tasks are processed in parallel in multiple DSP core. And  Qlink is used in 
combination with SDP to deal with data communication among DSP cores, Keypoints 
are transferred by QLink when it is suitable for bulk data transmission, and the 
number of keypoints and data synchronization signals are transferred by SDP when it 
is suitable for light and fast data transmission. The method we have presented can 
fully develop multi-level parallelism of YHFT-QDSP architecture, and accelerate the 
speed of parallel SURF algorithm. The parallel SURF algorithm is fully tested using 5 
different image samples for scale change, rotation, change in illumination, addition of 
noise and affine transformation. Experimental results show that the parallel SURF 
algorithm has good adaptability for various kinds of deformation images, and the 
matching capability of parallel SURF algorithm is close to the serial SURF algorithm 
with the average speedup of 3.61. 
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Abstract. Stream architecture is a newly developed high performance processor 
architecture oriented to multimedia processing. FT64 is 64-bit programmable 
stream processor and it aims at exploiting the parallelism and locality of the ap-
plications. In this paper, first, we inspect the memory access characteristics of 
FT64 with cache and without cache. Second, we propose an improved cache 
design method. Making use of the feature of stream data type used by FT64, the 
improved method avoids loading data from memory when the stream store in-
struction fully modifying cache block misses. The experiments show the per-
formance has been improved by 20.7% and 25.8% when a normal cache and an 
improved cache are used respectively. Finally, we study on the performance  
influence of cache capacity and associativity. The results show that better  
performance can be achieved when we use a small cache and an associativity of 
2 or 4. 

Keywords: stream processor, FT64, cache, memory access, fully modify. 

1 Introduction 

At present, stream application is becoming the main workload of processor, whereas 
the architecture of general purpose processors cannot satisfy the current demand. 
Most of the chip area has been used to conceal memory access latency, which results 
in deficiency of computing ability. In recent years, many stream architectures aiming 
at stream application have been proposed [1-6], and they have obvious advantages in 
domains of signal processing, multimedia and scientific computing. The main idea of 
stream processing is organizing the stream to data streams and computation kernels, 
utilizing the locality and parallelism of the application to conceal memory access 
latency. The key of stream architecture is to provide powerful computing ability and 
hide the memory access latency at the same time. 

In order to conceal memory access latency, different stream processors use differ-
ent methods. For example, VIRAM[7] puts DRAM into the chip, Imagine[1-2] and 
Merrimac[3] adopt multilevel memory structure. We design a 64-bit programmable 
stream processor FT64(Fei Teng 64)[8], which aims at exploiting the parallelism and 
locality of the applications in domains of signal processing, multimedia and scientific 
computing. FT64 inherits some characteristics of other stream processors, such as 
stream programming model and multilevel memory structure. FT64 adopts  
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multi-level memory structure including inter-cluster local register file (LRF), four 
clusters shared stream register file (SRF), cache and off-chip memory to conceal 
memory access latency. 

Memory access of typical stream applications has poor temporal locality. The same 
set of data is generally loaded from memory only once and sent to the computation 
unit for multiple times of process, then the output data are produced and stored in the 
memory, the input and output data will generally not be used again. Many papers 
have studied the cache behavior when the processor runs the stream application. In 
FT64, there are two stream buffers connected with the cache, what we are interested 
in is the cache’s behavior under this condition and how to make use of the feature of 
stream programming model in the cache design. 

To perform our evaluation, we collect results from several programs including two 
SPEC CPU2000 benchmarks and six important multimedia and scientific computing 
programs. These programs are reprogrammed with stream model to suit for FT64. 
The results are collected with a cycle-accurate simulator of FT64. 

In the experiment, first, we inspect the characteristic of FT64’s memory access 
without cache, the results show that the memory access latency cannot be concealed 
totally, and memory access is the bottleneck. Second, we study the performance when 
using a normal cache. Because huge speed gap exists between cache and off-chip 
memory, and every valid cache block can be hit several times, the advantage of using 
cache is apparent. We also notice that most stream store instructions write data to the 
continuous addresses. When a stream store instruction misses in the cache, it is mea-
ningless to load the data from memory if the corresponding cache block will be fully 
modified by the store instruction, we can make use of the feature that FT64 supports 
stream data type, and store the data straight into the cache block when such stream 
store instruction appears. This improved cache design can further decrease the memo-
ry access latency. The results show the performance has been improved by 20.7% and 
25.8% when a normal cache and an improved cache are used respectively. Finally, we 
study on the performance influence of cache capacity and associativity in the im-
proved cache design. The results show that better performance can be achieved when 
a small cache is used and the associativity is 2 or 4. 

2 Background 

Our research is based on a 64-bit programmable stream processor FT64, which we 
design for exploiting the parallelism and locality of the applications in domains of 
signal processing, multimedia and scientific computing. FT64 supports stream pro-
gramming model. In this model, an application is represented by a set of computation 
kernels which consume and produce data streams. Each data stream is a sequence of 
data records of the same type. Each kernel is a program which performs the same set 
of operations on each input stream element and produces one or more output streams. 
Stream applications consist of stream-level programs and kernel-level programs. A 
stream-level program specifies the execution order of all kernels and organizes data 
into sequential streams passed from one kernel to the next. A kernel-level program is 
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generally a loop structure that processes record elements from each input stream and 
generates output streams. 

FT64 is mainly composed of a stream controller (SC), a stream register file (SRF), 
a micro controller (UC), four ALU clusters, a stream cache (SC), a DDR memory 
controller (DDRMC), a host interface (HI) and a network interface (NI), as illustrated 
in Figure 1.  

 

Fig. 1. Block diagram of FT64 

FT64 has multi-level memory: LRF, SRF, cache and off-chip memory. LRF is dis-
tributed in the clusters' FU, and is used to buffer input and intermediate data. LRF of 
different ALU clusters can access SRF simultaneously through a crossbar. The total 
capacity of LRF is 19KB. SRF is used to buffer data streams and kernel-level pro-
grams. SRF has two ports, and both can access cache through a separate stream buf-
fer. The total capacity of SRF is 256KB. The off-chip memory is controlled by 
DDRMC, which is in charge of loading and storing data streams.  

3 Our Work 

In FT64, the cache is between SRF and memory, it has two pipelines which are con-
nected with the two ports of SRF, and each port has a stream buffer, so the cache can 
handle two accesses simultaneously. What we are interested in is the cache behavior. 
The experiment shows the performance has been improved by 20.7% when a normal 
cache is used. 

The cache interfaced with off-chip memory usually adopts write allocate policy. 
When cache misses, the data will be loaded from memory to cache before load or 
store instruction operates. But for a processor that supports stream data type, if a 
stream store instruction writes data to the continuous addresses, and the data size is 
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much larger than the size of cache block, then multiple cache blocks will be fully 
modified, it is meaningless to load data from memory to these cache blocks when the 
store instruction misses, we only need to load data to partial modified cache block. 
Next, we will explain how to realize this idea in FT64. 

What is executed in SRF is stream instruction. Stream instruction supports stream 
data type which is a sequence of data records of the same type. The format of stream 
memory instruction is shown as Table 1. 

Table 1. The format of stream memory instruction 

valid bit operating mode start address stream length stride 

 
The operating mode indicates what operation, load or store, the stream instruction 

will perform. Start address is the beginning address of the stream data. Stream length 
is the byte number of the stream data. Stride indicates the organization mode of the 
stream data, maybe it is an address continuous stream or an address jumped stream. 

A stream instruction must access continuous addresses if its stride value is 1. If it is 
a stream store instruction, we can split the instruction into three parts at most: head, 
middle and tail. The head only exists when the beginning address of the store instruc-
tion doesn’t align with that of some cache line. The tail only exists when the ending 
address of the store instruction doesn’t align with that of some cache line. The middle 
handles the entire cache line and it only exists when at least one cache line will be 
fully modified by the store instruction. When a store instruction misses in the cache, 
we apply normal write allocate policy to head and tail parts, and store the stream data 
straight into corresponding cache lines for the middle parts. Certainly, the replaced 
cache lines shall be written back in advance if it is dirty. The algorithm is showed in 
Fig.2. 

 

Fig. 2. Algorithm of stream store operation 
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The improved cache design described above is appropriate only when the stride 
value of the stream store instruction is 1, instructions with other stride values must be 
handled with normal cache operation. But we find that stride value equaling 1 is 
overwhelming for most of the programmers using stream model. This is profitable for 
our method to get better results. 

The idea of the improved cache design is enlightened by the idea proposed by Shi-
wen Hu [9]. He adds a store fill buffer (SFB) in general purpose processor. If a store 
instruction misses, the data are put straight into the SFB. If some cache block is af-
firmed to be fully modified, it will be filled into cache from SFB. Supporting stream 
data type makes FT64 more feasible to realize the function than [9]. A stream store 
instruction of FT64 includes multiple successive store operations, and then we can 
make judgment that which cache line will be fully modified and prepare all necessary 
operations in advance. The hardware cost of our method is trivial.  

In next section, we will compare the performances of using normal cache design 
and improved cache design, and study on the performance influence of cache capacity 
and associativity.  

4 Performance Evaluations 

4.1 Experimental Environment 

To perform our evaluation, we collect results from several programs including two 
SPEC CPU2000 benchmarks (Swim and Lucas), two NPB benchmarks (EP and MG), 
a multimedia program (Mpeg2) and three important scientific application kernels 
(FFT, Laplace and NLAG-5). (NLAG-5 is a nonlinear algebra solver of two-
dimensional nonlinear diffusion of hydrodynamics). These programs are repro-
grammed with stream model to suit for FT64. The results are collected with a  
cycle-accurate simulator of FT64. The data sizes of some programs are too small, so 
we change their data sets and execute the programs several times to get the results.  

4.2 Experimental Results 

The overlap between computation and memory access is an important factor that im-
pacts on a stream processor's performance. Fig.3 demonstrates the proportions of the 
kernel execution time and memory access time to the total execution time when cache 
is bypassed. The kernel execution and memory access of FT64 can execute simulta-
neously, but under this condition, memory access is still the bottleneck in most of the 
programs. For memory-intensive programs, such as Swim and NLAG-5, computation 
can be well hidden by memory access, thus memory access time is approximately the 
total execution time. For compute-intensive programs, such as EP, with huge compu-
tations and small memory accesses, memory access can be well hidden by computa-
tion, so kernel execution time is approximately the total execution time. To some 
programs with small proportions of memory access and kernel execution, most of the 
time is consumed in SRF allocation and memory access preparation. 
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Fig. 3. Proportions of kernel execution time and memory access time 

Fig.4 shows the proportions of access latency of LRF, SRF and memory when 
cache is bypassed. In average, the proportion is 23:2.4:1. The programs with large 
computations and good data locality can fully make use of LRF and have high propor-
tions, such as MG, the proportion is 60:5:1, and EP, 33:2:1. Some programs, such as 
Laplace, NLAG-5 and Lucas, have low proportions of 12:2:1, 11:3:1 and 11:2:1 re-
spectively, because their executions are limited by memory access. The access latency 
of LRF is in average 9.4 times that of SRF, and the access latency of SRF is just 2.4 
times that of memory in average. The gap between SRF access and DRAM access is 
quite narrow, which can’t make the memory access concealed in most of the cases, 
and leads the memory to be the bottleneck.  
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Fig. 4. Proportions of access latency of LRF, SRF and memory 

Next, we will study the case in which cache is used. To what degree we can benefit 
from the improved method described previously is related to two factors, the propor-
tion of store instructions to total memory instructions and the proportion of fully mod-
ified cache lines to all the cache lines modified by a store instruction. Fig.5 shows the  
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distribution of memory access types. The proportion of the store instructions to all 
memory instructions is nearly 26% in average, Swim’s is the biggest, 50.3%. Almost 
all the store related cache lines can be fully modified. 
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Fig. 5. Distribution of memory access types 

Fig.6 shows the performance improvement by using a normal cache and an im-
proved cache of 16K bytes respectively, in comparison with the performance of not 
using cache. (Not using cache doesn’t mean that only one word will be loaded to SRF 
once memory is accessed, instead, a 64-byte buffer is used to buffer the loaded data 
temporally, this buffer can be thought as a 64 bytes, one set, direct mapped cache.) The 
cache’s block size is 64 bytes and cache’s associativity is 4. The performance of each 
program is related to its memory access proportion and the distribution of its memory 
access types. Among all the programs, Swim has the largest quantity of memory ac-
cesses, and the proportion of store instructions is very high, so it has the biggest per-
formance improvement, up to 44% and 67%. Whereas EP, with small quantity of 
memory accesses, its performance improvement is no more than 1% after a cache is 
used. In average, the performance improvement is 20.7% and 25.8% respectively. 
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Fig. 6. Performance improvement by using a normal cache and an improved cache of 16K 
bytes 
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Now we can see the proportion variation of kernel execution and memory access 
after we use a 16K bytes improved cache in Fig.7. Convenient for comparison, the 
memory access latency in Fig.7 includes the cache and memory access latency. The 
proportion of kernel execution increases a little because of decrease of total execution 
time caused by the use of cache. Except Swim, the memory access latency of almost 
all the programs can be concealed. 
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Fig. 7. Proportion of kernel execution time and memory access time when using an improved 
cache 

Fig.8 shows the proportions of access latency of LRF, SRF, cache and memory af-
ter a 16K bytes improved cache has been used. In average, this proportion is 
105:11.6:2.5:1. Compared with Fig.4, memory access latency has been shortened 
greatly. The hit rate of the cache is 89% in average. Since stream programs have poor 
data locality during memory access, this hit rate is comparatively low when compared 
with that of general purpose processor. The latency of cache hit is only one quarter of 
that of memory access, which makes the whole latency shorter. 
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Fig. 8. Proportions of access latency of LRF, SRF, cache and memory 



46 C. Ma and Z. Zhao 

Fig.9 shows the performance influence of cache capacity. (In Fig.9, we suppose 
that the execution time of each program is 1 when cache capacity is 2K bytes, then we 
can compare the execution time with other capacities). Here, cache associativity is set 
to 4. The result shows that a cache of 8K or 16K bytes can attain the best performance 
for most of the stream programs. Since the data loaded into cache will seldom be used 
after initial continuous accesses, and the data stored to cache will scarcely be loaded 
again (data transferred between kernels is handled in SRF), a small cache in FT64 can 
achieve required result. 
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Fig. 9. Performance influence of cache capacity 

Fig.10 shows the performance influence of cache associativity used in 16K bytes 
improved cache design. (We suppose that the execution time of each program is 1 
when cache associativity is 1, then we can compare the execution time with other 
associativities). Associativity of 2 or 4 has the best results. It is because the stream 
number that most programs load or store simultaneously will not surpass 4, in most 
cases it is 1 or 2. The results get worst when cache associativity is increased to 8 or 
16, because higher associativity will decrease the set number for a fixed cache capaci-
ty, and enlarge the conflict miss rate. 
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Fig. 10. Performance influence of cache associativity 
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5 Related Work 

Stream models are studied and applied in domains of graphics, multimedia and signal 
processing, where many architectures and processors supporting stream models have 
emerged, such as AIFSP [4], SAT [6], Imagine[1], RAW [5], VIRAM [7] and TRIPS 
[10]. In some researches, stream models have been applied to scientific computing, 
such as Merrimac [3]. In addition, Cell [11] also supports stream models and is 
claimed to have tremendous computing ability. 

Some novel ideas of the stream memory system are proposed during the researches 
of stream architectures. The VIRAM[7] architecture uses PIM technology to combine 
embedded DRAM with a vector co-processor for exploiting its large bandwidth po-
tential. The Imagine[1-2] architecture provides a stream-aware memory hierarchy to 
support the tremendous processing potential of SIMD controlling VLIW clusters. 

At the same time, there are many researches on stream applications in general pur-
pose processor. Sermulins proposes a cache aware optimization method of stream 
programs [12]. Lee proposes a hardware prefetching technique that is assisted by 
static analysis of data access pattern with stream caches for multimedia applica-
tions[13]. Iacobovici analyzes the behavior of cache-missing loads in SPEC CPU2000 
and proposes a multi-stride prefetcher that supports streams with up to four distinct 
strides[14].  

6 Conclusion 

In this paper, first, we inspect the memory access characteristics of FT64 with cache 
and without cache. Second, we propose an improved cache design method. Making 
use of the feature of stream data type used by FT64, the improved method avoids 
loading data from memory when the stream store instruction fully modifying cache 
block misses. The experiments show the performance has been improved by 20.7% 
and 25.8% when a normal cache and an improved cache are used respectively. Final-
ly, we study on the performance influence of cache capacity and associativity. The 
results show that better performance can be achieved when we use a small cache and 
an associativity of 2 or 4. 

In our research, we only focus on decreasing memory access through optimizing 
cache design, while other methods can obtain similar results, such as scheduling data 
streams during stream programming and stream-level compiling, which can be left for 
further researches. 
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Abstract. To efficiently maintain cache coherence in a many-core processor 
remains a big challenge today. Traditional protocols either offer low cache miss 
latency (like snoopy protocol) or not depending on bus-like interconnects (like 
directory protocol). Recently, Token Coherence has been proposed to capture 
the main characteristic of traditional protocols. However, since Token Cohe-
rence relies on broadcast-based transient request and inefficient persistent re-
quest, it is only suitable for small system. In order to make Token Coherence be 
scalable in many-core architectures, in this paper we introduce a dynamically 
reconfigurable mechanism to Token Coherence. Basing on sub-net, this me-
chanism can significantly reduce the average execution time and communica-
tion cost in 16-core processor. Therefore, this dynamically reconfigurable  
mechanism makes Token Coherence applicable in many-core architecture. 

Keywords: cache coherence, token coherence, dynamically reconfigurable, 
sub-netting. 

1 Introduction 

Today, Chip multiprocessors have become a promising choice for keeping up perfor-
mance with integration density [1, 2, 3]. The number of cores integrated on a chip has 
reached a hundred now, and in the near future, there will probably be thousands of 
cores. Therefore, the era of many-core processor is in close proximity. 

To keep the view of memory coherent across different nodes, a many-core proces-
sor requires a cache coherence protocol which plays an important role on system per-
formance. However, thanks to the large number of cores and the complexity of  
on-chip network, to efficiently support cache coherence in a many-core processor 
suffers from the problem of “coherency wall” [4]. Considering cache miss latency, 
network traffic and area overhead as the key attributes of cache coherence protocol 
[5], many-core processors need a protocol which has low cache miss latency and low 
network traffic. Traditional protocols either offer low cache miss latency (like snoopy 
protocol) or not depending on bus-like interconnects (like directory protocol). Snoopy 
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protocol offers low cache miss latency due to direct communication between different 
cores, but it needs ordered network and the network traffic based on broadcast is  
also tremendous; Directory protocol does not rely on an ordered network because of 
the indirect node (directory) which otherwise increases the cache miss latency on 
average. 

In order to gain the main characteristics of traditional protocols, recently, Token 
Coherence [6] has been proposed. Compared with snoopy protocol, Token Coherence 
does not rely on a totally ordered network which is not possible in many-core archi-
tecture. Meanwhile, Token Coherence avoids the indirect node (directory) in directory 
protocol, and therefore gain low cache miss latency. However, Token Coherence has 
some defects as well. First, the requests transmitted in the network are usually based 
on broadcast; As a result, the network traffic will be unacceptable if we introduce 
Token Coherence to many-core processors. Second, the persistent request mechanism 
used to resolve protocol races is inefficient and broadcast-based. The broadcast me-
chanism and persistent request make Token Coherence only suitable for small system. 
So, for the purpose of adapting Token Coherence to many-core processors, in this 
work, we propose a dynamically reconfigurable mechanism based on sub-netting. 
This mechanism can reduce the number of cores who will receive a broadcast mes-
sage at one time. Actually, those messages will only reach a subnet which is a region 
in the network. In this way, we largely reduce the network traffic and the cost of using 
persistent request. 

The rest of the paper is organized as follows: In Section 2, we give some back-
ground about Token Coherence. Section 3 presents our dynamically reconfigurable 
mechanism for Token Coherence. In Section 4, we describe the simulation environ-
ment and the results are shown in Section 5. Finally, Section 6 concludes the paper. 

2 Token Coherence and Related Works 

2.1 Token Coherence 

Traditional protocols are based on basic coherence state transitions like MOESI, 
above which there are specific implementations of the protocol, so the protocol model 
includes two layers. Different from that, Token Coherence replaces the former model 
with a model which has three layers [6, 7]. Above MOESI, there are correctness sub-
strate and performance policy. The correctness substrate ensures the accuracy of state 
transitions and prevents starvation. Since the correctness of protocol has been consi-
dered, the performance policy only aims at improving the efficiency of the protocol. 

Token Coherence ensures the accuracy of state transitions through token counting. 
This mechanism can be summarized as following rules: At all time, every memory 
block in system holds a fixed number of tokens (usually equals to the number of 
cores). A core can write a block only if it gets all tokens. A core can read a block only 
if it has at least one token of that block. 

In Token Coherence, cores request tokens or data by transient requests which are 
unordered messages. Since token counting does not ensure the completion of transient  
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requests, they may cause starvation. Token Coherence uses persistent request to pre-
vent starvation. When the starved node broadcasts a persistent request, the nodes who 
receive that message will finally give all the tokens and data of the destination block 
to the starver. Then the starved node will eventually get enough tokens and data to 
complete the operations. 

Different from token counting and persistent request, the performance policy aims 
at efficiency no matter whether the protocol plays right. Currently, there are three 
kinds of performance policies: TokenB, TokenD and TokenM. In our work, we use 
the TokenB performance policy which has not any indirect nodes in system. 

2.2 Related Works 

Martin [6] proposed a prediction mechanism to convert broadcast messages to multi-
cast messages, and it will obviously improve the scalability of Token Coherence. 

Blas Cuesta, Antonio Robles and Jose Duato proposed several improvements to 
Token Coherence, including priority request [9] which aims at replacing persistent 
request, multicast coherence message [10] which can take advantage of the benefits 
offered by priority request, and message packing methods [8] to reduce the harm of 
broadcast message. 

3 Dynamically Reconfigurable Token Coherence 

In this section, we describe the main attributes of our dynamically reconfigurable 
mechanism and its implementation in the Gem5 Simulator [13]. First, we explain how 
this mechanism reduces the cost of broadcast. Then, we describe the implementations 
in Gem5 for the purpose of realizing the mechanism. 

3.1 Reducing the Cost of Broadcast 

In Token Coherence, when a core wants to store something, it will firstly search the 
L1 Cache for the related memory block. If the L1 Cache does not hold enough tokens 
and data for that block, then the L1 Cache will broadcast a transient request to all 
nodes including L2 Cache and memory (Fig. 1(a)). Those nodes will eventually send 
all tokens and data to the requestor. However, Broadcasting transient requests and 
persistent requests is obviously a huge cost. 

According to the characteristics of parallel applications, we can dynamically recon-
figure the whole network to several regions named subnet, each of which can run an 
application independently. Therefore, we can convert the broadcast-based transient 
requests and persistent requests to subnet-based broadcast messages. So, if a core in 
subnet 1 wants to store something, in the preceding case, the broadcast messages will 
be limited in a region (Fig. 1(b)). The NI in Fig. 1is able to filter the destination when 
L1 Cache broadcasts messages. 
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Fig. 1. Broadcast in Token Coherence, (a) before subnetting, (b) after subnetting, 
L/S=Load/Store, TR=Transient Request, NI=Network Interface 

3.2 Implementations in Gem5 

In order to realize the dynamically reconfigurable mechanism in Gem5, we have  
to change several specific components including message definition and coherence 
controllers. 

Coherence Message 
To support the filtering work of NI, we change the structure of coherence messages 
(Fig. 2) which are transmitted from one node to another in the network. Therefore, in 
the situation described above (Fig. 1(b)), the NI writes the “Subnet ID” when it rece-
ives the transient request from the L1 Cache, moreover, it change the “Destination” 
from “All nodes” to “Subnet 1”. As a result, only those nodes in subnet 1 receive 
request message from the requestor. 

 

Fig. 2. Structure of transient request message 
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Directory and L2 Cache 
In Gem5, Token coherence is specified by SLICC (Specification Language for Im-
plementing Cache Coherence) which describe the behavior of coherence controllers. 
In our work, there is only one L2 Cache Controller and one Directory Controller. So, 
as shown in Fig. 3, after subnetting, different subnet will share these resources. 

L1$ L1$ L1$ L1$ L1$ L1$

L2$

Mem

Dir

subnet 1 subnet 2

starvation

L2 cache miss 

L1$ L1$

Subnet 3

transient request

persistent request  

Fig. 3. Different subnets share l2 and directory, L1$=L1 Cache Controller, L2$=L2 Cache 
Controller, Dir=Directory Controller 

The Directory Controller manages a directory which records the information of 
those memory blocks being used. Since it will receive messages from different subnet 
now, we should change the structure of directory. In our work, we add a “StateTo-
kenTable” to each item recorded in directory. After the change, when directory rece-
ives a request message, it uses the “addr” and “subnet id” to get token and state  
information corresponding to a particular subnet (Fig. 4). In our system, as we assume 
that different applications work independently, we do not ensure the coherence among 
different subnets. Therefore, different “ID” corresponds to one “Data Block”. We 
make a similar change to l2 cache memory managed by the L2 Cache Controller. 

 

Fig. 4. Structure of directory 

Data Structure 
In coherence controllers, there are some structures such as “TBETable”, “PersistentT-
able” and “TimeTable” which use “address” as key words. Since there are several 
subnets in our system now, we should make “subnet id” as key word simultaneously. 
As a result, we use two layer hash table to construct these structures instead of the 
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original one layer hash table. Besides, we should also make all functions in SLICC 
adapt to the new data structures. 

After the changes mentioned above, all subnets can get maximum resources (to-
kens and data) of a particular block at the same time, comparing to the old system. 
The changes do improve the performance of Token Coherence by means of limiting 
the destinations of broadcast. 

4 Simulation Environment 

We evaluate our mechanism by means of the System-Call Emulation (SE) Mode of 
GEM5 Simulator which offers a detailed memory system model and a precise net-
work model. In our many-core simulation system, there are 16 cores which corres-
pond to split L1 Caches and unified L2 Caches in the ruby memory system. Table 1 
shows the system parameters. 

Table 1. System parameters 

GEM5 Parameters 
Processor frequency 
Cache hierarchy 
Cache block size 
Split L1 I&D Caches 
Unified L2 Cache 
Directory latency 
Memory controller latency 

2GHz 
Non-inclusive 
64 bytes 
L1I: 32KB, L1D:32KB, 2-way, 2 cycles 
2MB, 8-way, 5 cycles 
5 cycles 
12 cycles 

Taking “load/store ratio” and “local/share ratio” as the decisive input, we generate 
thousands of instructions which will be used in our system as the evaluation traces. 
Now, we have already found that the “load/store ratio” of SPECint2000 and 
SPECfp2000 ranges from 1.5 to 28 [11]. We also find that the “cache miss rate” in 
NAS Parallel Benchmark ranges from 5.2% to 16% when there are 16 cores in pro-
cessor and the cache size is 32KB [12]. By approximately using “cache miss rate” to 
calculate “local/share ratio”, we choose some numbers which falls in the above range 
as the input value. The traces correspond to these inputs will truly imitate the memory 
access of actual benchmark. In the next section, we compare the performance of our 
proposal with Token Coherence and Directory Coherence under such traces. 

5 Evaluation Results 

In this section, we compare our proposal with Token Coherence and Directory Cohe-
rence. First, we show our mechanism has great impact on average execution time. 
Second, we study the network traffic in each protocol. In the next section, we  
summarize these results and draw a conclusion. 
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5.1 Impact on Execution Time 

Fig. 5 shows the average execution time for the traces which correspond to different 
inputs mentioned in Section 4. Because of the avoidance of indirection [5], Token 
Coherence reduces the average execution time when compared with Directory Cohe-
rence. In most situations discussed in Fig. 5, Token Coherence obtains improvements 
of 4% compared to Directory Coherence. On the other hand, since our proposal limits 
the broadcast messages to several regions, the persistent requests and transient re-
quests can be completed easier than before. So, the average execution time is reduced 
too. In the following figure, we can see our mechanism (Token-DR) gains average 
improvements of 10% compared to Token Coherence. 

 

Fig. 5. Average execution time 

5.2 Impact on Network Traffic 

Under the testing environment mentioned in Section 4, Fig. 6 discusses the network 
traffic generated by protocols. We can find that Token Coherence need more network 
traffic than Directory Coherence, because it relies on broadcast messages. However,  
 

 

Fig. 6. Total network traffic 
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by the using dynamically reconfigurable mechanism, the cost of broadcast is largely 
reduced. Therefore, our mechanism shows tremendous improvements compared to 
Token Coherence. 

6 Conclusions 

Many-Core architecture has recently become a probable choice for designing proces-
sors. In this paper, we propose a dynamically reconfigurable mechanism for Token 
Coherence. Unlike the original Token Coherence, this mechanism limits the receivers 
of each broadcast message. This fact contributes to the reduction in network traffic 
and average execution time which compensate for the defects mentioned in Section 1. 
Therefore, combing with the dynamically reconfigurable mechanism, the cost of 
transplanting Token Coherence to many-core processors can be acceptable. It will 
gain main advantages of Token Coherence while avoiding its defects. 

Acknowledgements. Our work is supported by the IBM Shared University Research 
(SUR201102X). 
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Abstract. Efficient task scheduling for a series of applications on Mesh based 
many-core processors is very challenging, especially when resource occupation 
and release are required in some running task phases. In this paper, we present a 
dynamic and online heuristic mapping for efficient task scheduling based on 
Virtual Computing Group (VCG), and an algorithm managing free resources 
based on rectangle topology is proposed as well. This method quickly finds 
proper rectangle resources for a task, partitions processing elements (PEs) into a 
Virtual Computing Group by constructing a subnet, and maps communicating 
subtasks on adjacent PEs according to data dependency and communication de-
pendency. Compared with the existing algorithms, our mapping algorithm can 
reduce the total execution time and enhance the system throughput by 10% in 
simulations. 

Keywords: Many-Core architecture, Virtual Computing Group, Dynamic and 
online reconfiguration, Task mapping, Resources management. 

1 Introduction 

Many-core processors have a set of processing elements (PEs), and are capable for 
parallel computing in current applications. It’s widely used for multi-threads parallel 
computation in large complex applications. However, as PEs in processors increase, 
the current core utilization is low and the performance can’t rise significantly [1]. 

An efficient solution is task scheduling based on reconfigurable system [2][3]. Ac-
cording to different task, task scheduler divides free PEs into domains. To some ex-
tent, this reconfigurable method improves system performance. The decision where a 
task is mapped determines the fragmentation of the whole area and it may leads to 
resources competition between other tasks in some bad cases. So the efficient task 
scheduling algorithm which takes subtasks mapping and free resources management 
into account is the key point to reduce total execution time and enhance throughput of 
the whole system. 

Mapping subtasks onto the many-core processors includes two aspects, (a) initial 
mapping: mapping at the time when tasks need to run at the initial time and (b) Phase 
Mapping when specific phase reconstruction of tasks happens, which will be  
discussed in Section 3.  
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In this paper, we focus on the phase mapping and the resulting irregular topology 
resources management, as there are lots of researches on dynamic initial mapping and 
regular resources management. The main contributions of this paper are as follows: 

• Introduce a new task model, and the related task phase, data dependency and 
communication dependency of subtasks. 

• Research on a new online task mapping method based on reconfigurable many-
core architecture. 

• Develop free resources management based on rectangles, especially in some irre-
gular topology when online reconfiguration tasks place. This method is based on 
the partition way of [4]. 

Section 2 reviews related work. Section 3 introduces the system architecture and the 
task model. Section 4 and 5 discuss free space partition and task mapping, respective-
ly. Section 6 presents simulation results and related analysis. Section 7 concludes the 
paper. 

2 Related Work 

Task mapping techniques in many-core processors are presented in many research 
papers. Static mapping in [9] find fixed placement of tasks at design-time with a well 
known computation and communication behavior between subtasks. Therefore, these 
mapping heuristics are not suitable for dynamic applications of which information is 
unknown. Briao et al.[10] present dynamic task allocation strategies based on bin-
packing algorithms for real-time applications in homogeneous Multiprocessor Sys-
tems-on-Chip(MPSoC). While in the MPSoC platforms, Amit Kumar Singh et al. [11] 
proposed communication-aware mapping method to deal with the congestion in chan-
nels and workloads for traffic. Carvalho et al.[12] present on the fly mapping heuristic 
for dynamic mapping in NoC-based heterogeneous MPSoC. Wei Chen et al. [13] 
summarize an algorithm which proposes the systematic way in the area of task de-
composition and partition and reconfiguration in many-core processor. And Cao YJ et 
al. [14] present an adaptive scheduling algorithm based on dynamic core resource 
partitions for many core processor systems. On the aspect of free resources manage-
ment, the heuristic in [4] proposes a fast template placement for tasks in reconfigura-
ble systems, and provide us an efficient way to manage free rectangle resources.  
Herbert Walder et al. [15] investigate task placement and footprint transform ap-
proach in their paper. Li Tao et al. [16] develop the TT_KAMER algorithm for more 
efficient placement in FPGA. 

3 Architecture and Task Model 

3.1 Architecture 

The system used in this paper is a 2D mesh based many-core system, which is  
illustrated in figure 1(a). The architecture contains a Manager Processor (MP) and a 
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series of PEs, which communicate with each other via NoC. And each PE is capable 
of supporting only one subtask (thread). The subnet reconstruction according to map-
ping is the key to construct a VCG for a task and isolate task crosstalk. The MP,  
running operating system, is responsible for task mapping, resources management, 
reconfiguration control and so on. 

 

Fig. 1. 6*6 many-core system and task mode 

3.2 Task Model 

Tasks’ phase property is clearly illustrated in [5][6][7][8]. That is, threads’ behavior, 
interacting with each other in tasks or programs, can be divided into two categories, 
communication dependency and data dependency [17], explained in figure 1(b).  

• Communication Dependency: The relationship between threads which communi-
cate with others by using certain programming model such as MPI and so on.  

•  Data Dependency: The relationship between threads which may pass parameters 
to another when one is finished. 

Because of communication and data dependency, all subtasks (threads) can’t run in 
parallel at one time. And a set of subtasks which compose a Task Phase can run at the 
same time. Because phases have different number of subtasks, the resources may vary 
at different phases. Reconfiguration between phases, called phase reconstruction or 
phase mapping, can meet the flexible requirement. So it’s necessary to research on 
phase reconstruction and the resulting resource management. 

4 Free Resource Management Based on Rectangles 

Our goal is designing a fast but not necessarily optimization method for management. 
Bazargan et al. [4] proposed an efficient Bin-Packing algorithm for placement. Based 
on it, we develop a more suitable way for our task model and phase reconstruction. 
And it takes O(n) time to research free rectangle resources and O(1) time for inserting 
them in the worst case. This method is consisted of two parts: (a) new task mapping 
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and free rectangle division, (b) phase reconstruction, including releasing some nodes, 
adding nodes from task’s free neighbors, and resources reclamation when a task  
finishes.  

We use data structures of tree and list in this paper, explained in figure 2(b).  

 

Fig. 2. Resources and the corresponding data structure after initial mapping 

Only leaf node can be selected for task mapping. Each leaf symbols a free rectan-
gle, and it’s consisted of row and column size, PE ID at the top-left corner of a rec-
tangle. And each node, which points to Class Rectangle, is the same as a node of list. 
So if a new task needs to map, MP will search a free rectangle in list with no neces-
sary to search it from tree’s root to suitable leaf. After top-left mapping and adding 
corresponding task ID from root to node selected, the selected rectangle resources will 
be divided into small rectangles. Then theses rectangles are the leaves of the original 
node. 

4.1 New Task Mapping 

New task mapping, of which details are mentioned in [4], is the top-left mapping 
heuristic with First Fit (FF), Best Fit (BF) and Worst Fit (WF) in this paper. And 
what‘s different with Bazargan is that irregular topology, such as L shape, illustrated 
in figure 3(c), should be taken into account, because of the number of subtasks in 
Phase One. As a result, the free rectangle remained should be divided into 3 small 
rectangles. And these leaves are inserted to the original node’s sub-tree and free rec-
tangle list after division.  

We have tried different heuristics for how to partition the original free resources 
into several rectangles. Horizontal division is dividing a rectangle along task’s the 
top/bottom edge, while vertical division is dividing rectangles along task’s left/right 
edge, L division is dividing rectangles along the inner corner of L. Then the heuristics 
can be defined in terms of rectangle size as follows: 

• Largest Rectangle (LR): the biggest one in one heuristic is bigger than the ones in 
the other two heuristic. Then this heuristic is selected, as the biggest one could  
accommodate more tasks than others. 
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• Square Rectangle (SR): the biggest one in one heuristic is closest to squares than 
these in the other two heuristic. The reason favoring SR is it’s more likely to con-
tain tasks with the irregular topology or a high ratio between its row and column. 

 

Fig. 3. Split rules 

4.2 Phase Reconstruction 

Phase reconstruction includes two aspects: (a) release free PEs, and (b) add some PEs 
from its rectangle neighbors, which can be easily found in the task node’s sub-tree. 

Release Free Resources/PEs 
When the previous phase is completed and a task needs to release nodes, according to 
task list, the MP will find the deepest task node in the tree. Only free PEs which is 
neighbors of the deepest node’s leaves will be released, and then the adjacent nodes 
are merged into a small rectangle. After merging, all rectangles are inserted into the 
task node’s sub-tree, and free rectangle list updates. In good cases, the leaf rectangle 
may become big one after merging PEs. In bad cases, all scattered neighbor nodes, 
which lead to plenty of fragment, are directly inserted into the deepest node’s sub-
tree. The process is explained in figure 4(a). 

When all phases are completed, all resources in the task need to be reclaimed. 
Based on our data structure, it’s easy to recycle all rectangles used in this task. What 
we should do are deleting task ID in the tree, treating child nodes with empty task list 
as leaves, and deleting all child nodes below them. 

Add Free Resources and Split Rectangle Resources 
When a task needs to add some resources/PEs, according to task list, the deepest task 
node will be picked. And one of its free rectangle leaves will be selected according to 
the rule First Fit (FF)/Best Fit (BF)/ Worst Fit (WF). Assume BF is needed in this 
paper. After picking a free rectangle, the neighbor nodes of the task in it are chosen as 
the edge of added topology, and the other edge length is computed like this: assume 
M is row, and S is the number of subtasks which need new PEs, then the column N 
and remainder R are 
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 ܰ ൌ ቔ S M ቕ (1) 

   R=mod(S, M ሻ (2) 

If R is 0, the topology is a rectangle, then the column is N. Vice versa, the topology is 
L, and its column is N+1.  

In bad cases, although the selected rectangle size is enough to accommodate all 
subtasks, its column is not bigger than the new topology’s column due to the number 
of neighbors, M. Then our rule will change: Let the picked rectangle’s row be the row 
of the added topology, and the column and remainder are computed according to the 
equation above. And the whole process is illustrated in figure 4(b).After deciding the 
new topology, the next step are adding task ID in this selected node, inserting sub-tree 
nodes into this node after rectangle division and update free rectangle list, which are 
mentioned in the section above. 

 

Fig. 4. Phase reconstruction 

5 Mapping Strategies  

Input is data/communication dependency graph and PE ID asking for one subtask. 
Output is subtask ID list and PE ID list, of which element corresponds to each other 
after mapping.  

5.1 Initial Mapping 

The initial mapping maps the subtasks of Phase 1 onto a block, which is consisted of 
free PEs. And the topology of block is decided by MP according to the number of 
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subtasks. Then a block of PEs is occupied and VCG is formed by constructing a  
subnet. The initial mapping detail is as follows. First, map the subtask which has max-
imum communication with others in the center of VCG. Second, map its communica-
tion subtasks, according to amount of communication, from one hop to several hops 
around the center until the subtasks are totally mapped in the predetermined area. 

5.2 Mapping before Phase Reconstruction 

The subtask has characteristic of data dependency and communication dependency as 
discussed in Section 3. This feature directly decides the schedule order of subtasks. 
Our algorithm is illustrated as follows. When subtasks get scheduled, other subtasks 
which communicate with the scheduled ones must raise their communication priority. 
On the other side, in subtask pairs with data dependency, one must raise its data prior-
ity when the depended one gets scheduled. As a result, the free PE gets different sub-
task according to different priorities. We can choose one of them: 

• Communication priority first:  the subtask that has the largest amount of commu-
nication with those which were scheduled in the VCG gets schedule first, until all 
of them get scheduled, because one key subtask may lead to congestion and task 
pause in some situations. 

• Data priority first: the subtask gets scheduled right after the depended one finished. 
Because of cache coherency, subtasks get data with no need to access memory off-
chip. 

5.3 Phase Mapping 

The phase mapping takes place when the subtasks of previous phase are totally fi-
nished. And the MP checks which subtasks can be scheduled next. If the number of 
subtasks is smaller than the number of current free PEs in VCG, free PEs in this VCG 
will be released and VCG will be reconstruct. Vice versa, MP will decide which free 
rectangle is suitable for adding PEs. And the basic rule is the selected rectangle must 
be a neighbor of the task, because traffic workload and communication reduction 
must be taken into account. There are alternatives as follows, choose the biggest rec-
tangle or the smallest rectangle. 

If releasing resources is needed, those which will be released are the neighbors of 
free rectangles around the task, given topology must be kept as regular as possible and 
fragment should be little. What’s more, the nodes released, along with their rectangle 
neighbor, may merge into a bigger rectangle if their size is equal to original neigh-
bor’s row or column. In the bad case, PEs released can merge into a big rectangle 
with each other if they are adjacent. Then VCG becomes smaller after reconstruction. 

If there’re not enough resources in the original task, MP will find a free rectangle, 
assume the smallest one, which has enough resources for phase reconstruction, among 
the task’s neighbor. From the neighbor nodes to the other side of the selected one, 
subtasks will be mapped according to the initial mapping rules. Then new resources 
are added into the task and the former rectangle is divided into smaller one and VCG 
changes after mapping. 
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6 Simulations 

Experiments are performed on the GEM5simulation platform. Our simulations are 
evaluated on 4*4 and 6*6 many core platforms. The evaluated scenarios are randomly 
generated applications using Task Graph For Free [18], and each subtask contains 
instruction flow. And computation instructions and load/store instructions compose 
the instruction flow.  

Figure 5 shows total execution time using different mapping heuristics (A) and di-
vision rules (B). It shows the total time in 6*6 is less than the one in 4*4. In most 
cases, the performance using Best Fit (BF) and First Fit (FF) are almost the same, and 
they are better than the one using Worst Fit (WF), about 10% gains totally. WF leads 
to reduction to PE utilization and the total throughput is lower than the others. Be-
cause of shape requirement, square division leads to lower throughput. 
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Fig. 5. Execution time 

Because of different task sizes and mapping methods, BF can accommodate more 
tasks than WF and more PEs can run at one time. As a result, BF performs sometimes 
better than FF, and the difference between them is not significant. On average, BF 
improved the PE utilization by only 11.75%, illustrated in figure 6.The reason why  
 

 

Fig. 6. PE utilization in 4*4 and 6*6 platforms 
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PE utilization is not very high is that the scatter PEs which are not neighbors of free 
rectangles in a task will not released in phase reconstruction, given that fragment 
won’t increase dramatically using this heuristic. 

Table 1 shows gains improved by many heuristics. And most heuristics mentioned 
above bring in system improvement compared to the random mapping algorithm on 
many-core systems without VCG and subnet. 

Table 1. Improvement using different algorithms 

Execution Time Best Fit 
with 
VCG 

Worst 
Fit with 

VCG 

Best Fit 
without 
VCG 

Worst 
Fit 

without
VCG 

Random 
mapping 
without  
VCG 

Cycles 91054 97952 101341 102876 111254 

Gains(%) compared 
to Random mapping 
without VCG 

18.5 11.6 9.0 7.5 0 

 
Execution Time Best Fit 

with 
VCG 

Worst 
Fit with 

VCG 

Random 
mapping 
without  
VCG 

Cycles 91054 97952 111254 

Gains(%) compared 
to Random mapping 
without VCG 

18.5 11.6 0 

7 Conclusion and Future Work 

This paper describes some new mapping strategies and a modified method based on 
free resources management based on rectangles for our task model. And we have 
evaluated several heuristics which enhance system throughput and PE utilization in 
4*4 and 6*6NoC-based platform. We clearly demonstrate that the newly proposed 
method can consistently provide notable reduction in total execution time and com-
munication overhead and enhance throughput in many-core processors. 

Based on our mapping method, we plan to evaluate real time benchmarks on 
GEM5 and devise techniques for online task migration and improve our free  
resources management. 
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Abstract. Architecture Description Language (ADL) can model many comput-
er related problems and is widely used in software and hardware design. When 
used in processor design, lots of institutes and companies use ADL as processor 
quick prototype design language and use it to generate processor simulator, test-
benches and compiler utilities. This paper analyzes and compares three proces-
sor description languages. We also give the disadvantages of modern ADL 
when used in high performance processor design and give some suggestions for 
further ADL development. 

Keywords: ADL, High-Performance Processor Design, PML. 

1 Introduction 

Recently, the design of high performance processor becomes more and more compli-
cate. The processor design techniques developed from scalar, single-core to super-
scalar, multi-cores, multi-threads. The complexity of processor design increases. 
More and more I/O controllers are integrated into high performance processor and 
also bring forward higher challenge to design. Some other factors such as testability 
design, silicon area and power consumption also increase the complexity of the de-
sign. In summary, the design complexity of high performance processor becomes 
higher and higher than ASIP (Application Specific Integrated Processor) or SoC (Sys-
tem on Chip) processors.   

The process of high performance processor design is: scheme design, logic design, 
logic verification, physical design and physical verification. Such process has some 
problems, such as: consideration of processor silicon area is not comprehensive, the 
set of performance parameters is not reasonable, logic design is complex, logic verifi-
cation and physical verification are not comprehensive. There may be more chal-
lenges in designing multi-core, multi-threads processors, such as: memory protocol 
defects, verification of memory coherence, design and verification of NOC (Network 
on Chip). These problems cannot be solved completely by existing design methods or 
the cost of solving such problems is too high. So we need to change the methodology 
in high performance processor design. We need to consider various problems of  
design, verification and application of processors at the beginning of the processor 
design. 
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PML (Processor Modeling Language) is a kind of ADL. The concept of ADL was 
put forward in 1960s and it was used to implement software automation or software 
test. With the development of ADL and the increase of complexity of processor de-
sign, PML began to be used in processor design [1], from then on, the categories and 
application scope is developed vigorously [2]. In this paper, we use ADL to represent 
PML as a more general terminology. 

 

Fig. 1. ADL and its Usage in Processor Design 

According to styles of description, ADL can be classified as structural description, 
hybrid description and behavioral description. According to the usage, ADL can be 
classified as synthesis oriented description languages, verification oriented description 
languages, compiling tools oriented description languages and simulation oriented 
description languages [3]. This paper will introduce and compare the ADLs used in 
high performance processor design.    

In high performance processor design, ADL can be used in model simulation, au-
tomatic test and automatic generation of software tools and so on. With ADL, we can 
simulate the architecture and instruction set of processor at the beginning of processor 
design and explore the design space of processor. Using ADL, we can implement the 
automatic generation of test programs and test code; we can improve the test of pro-
cessor and detect the bugs in processor design. In addition, current ADL can support  
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the generation of tool chain and can automatically generate compiler, assembler, and 
linker. Developing processors with ADL can decrease the human cost in processor 
design and accelerate the time for coding, verification, taped out and the development 
of applications.   

Currently, there are various ADLs to support processor design, such as 
MIMOLA[4], nML[5], LISA[6], BlueSpec[7], EXPRESSION[8], ASIP Meister[9], 
TIE (Tensilica)[10], MADL[11], ADL++[12], ArchC[13], MAML[14], GNR[15], 
RADL[16] and so on. These description languages can be used in modeling, automat-
ic generation of compiling environment, test-bench and RTL (Register Transfer Lan-
guage) code. The support is different for various languages. This paper focuses on 
three popular description languages and compares these three ADLs in description 
abilities and toolset functions. 

Firstly, this paper introduces the application of ADL in high performance processor 
design. Section 2 introduces three popular ADLs. Section 3 compares these languag-
es. Section 4 describes the lack of these languages in current high performance  
processor design. The last section is the conclusion of this paper. 

2 Introduction of Three ADLs 

2.1 LISA 

LISA is a processor description language designed by CoWare and is used in the 
products named CoSy compiler design environment. LISA is an instructions driving 
language. It can describe general processors, RISC processors, DSP, ASIPs (Applica-
tion Specific Instruction-Set Processors) and so on. LISA can describe cycle-accurate 
and non-clock-accurate processor models. It can also generate a set of software devel-
opment environment, includes assembler, linker, compiler, simulator and debugger. It 
can generate RTL code. It can make the development, test and verification of proces-
sors more convenient. The original intention of LISA is to construct optimized compi-
ler, so it provides good support to the description of instruction set and the definition 
of the function of instructions. The constructing tool of compiler can generate opti-
mized compiler according to the function of instructions and the characteristics of 
processor pipelines. CoSy has various compiler optimizing modules. It can support 
the construction of compilers for CISC、RISC、VLIW and SIMD instruction sys-
tem. Today, more than 100 companies’ products use CoSy to construct compiling 
system, include the scope from 8bit single-chip to 256bit VLIW DSP. The CoSy ex-
press is integrated into PD (Processor Designer) of Synopsys. PD can be used to im-
plement design and verification of processors, the construction of development  
environment and so on. On one hand we can use it to explore the design area of pro-
cessors; on the other hand we can use it to implement iterative design, as shown in 
Fig.2. 

Besides supporting description of instruction set, LISA supports various peripher-
als and interfaces. It also supports the timing model of underlying hardware.  
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Fig. 2. Using LISA in Processor Design 

2.2 ArchC 

ArchC is an open source ADL designed by LSC (Computer System Laboratory) of 
Campinas. ArchC uses SystemC as the construct tool of simulator. ArchC uses GNU 
GCC and Binary Utilities to implement the mapping of ArchC description to compi-
ler, assembler, linker and debugger. The design process is shown in Fig.3. ArchC is  
departed into two parts: AC_ISA and AC_ARCH. AC_ISA describes instruction set,  
instruction function, instruction pipeline and AC_ARCH describes the resources of  
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architecture. ArchC provides “acstone” to support the automatic generation of test-
bench. Although the current version is not perfect, using of automatically testing tools 
can improve the coverage of test and decrease design risk that may occur. 

Currently, ArchC implement the description of MIPS-R3000、PowerPC、LEON
、 SPARC-V8、 Intel8051 and PIC. With TLM extension, ArchC can describe  
multi-cores processors. 

2.3 MAML 

MAML（Machine Markup Language）is used in BUILDABONG system of Pader-
born and it is a kind of ADL based on XML. It can be used to model, simulate and 
construct compiling environment for processors of special applications. The characte-
ristics of MAML include the support to the description of multi processors  
architecture and the support to complete design exploration and optimization semi-
automatically. In BUILDABONG system, lots of tools can be put together to  
complete the design of software and hardware. 

MAML can be used to describe multi-processors model. Interconnection methods 
and communication models are also defined in MAML. It supports BUS, MESH, 
Cross-Switch, Fat-Tree and other network topology. 

3 Comparing of Three ADLs 

The comparing of the three kinds of ADL introduced in previous section is shown in 
Table 1. The comparing focuses on the abilities of description and the toolsets  
functions using these ADLs. 

Table 1. Comparing of Three ADLs 

 LISA ArchC MAML 

Description Abilities 

Instruction Function Yes Yes Yes

Pipeline description Yes Yes Yes

Memory Hierarchy Yes Yes No 

System and IO Yes Yes Yes

Multi-Cores Yes Through TLM Yes

Multi-Threads No Through TLM No 

NoC N/A Through TLM Yes 

Toolsets Functions 

Instruction Set Simulator Yes SystemC Yes

Cycle-Accurate Simulator Yes SystemC Yes

Test bench Generation Yes Yes N/A 

Compiler Environment Private GCC LCC 

Debugger Private1 GDB N/A 

Synthesizable RTL Code Verilog/VHDL N/A Verilog/VHDL 

Optimize for Area and Power Yes No No 

                                                           
1 Support generation of JTAG in hardware and software debugger. 
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We can conclude from Table 1 that the commercial ADL can all support automatic 
generation, but ArchC is not good at it. According to the abilities of description, the 
three kinds of ADL cannot provide full description for current multi-cores, multi-
threads processors and the complex interconnection structure. With TLM, ArchC 
needs to program specific source code for different behaviors. Although it can com-
pensate the lack of the description abilities, it violates the original intention of ADL.   

4 Advantage and Disadvantage of ADL 

Through the introduction of the challenge of high performance processor design and 
the comparing of various ADLs, we can see current ADL technology can support fast 
modeling, simulation, verification and construction of compiling environment and so 
on. It can describe instruction set, pipeline, peripheral and so on. But ADL has some 
disadvantages as follows: 

1. The description abilities for multi-cores and multi-threads processors are not 
enough. 
Current ADLs cannot model multi-threads processors and cannot include threads 
execution model or virtual core/processor for virtualization. Although most modern 
processors provide virtualization support, the ADL cannot model the Hypervisor, 
Supervisor and User mode execution model. 

2. The support to evaluate typical silicon process is limited. 
The silicon foundry provides Nano-meter techniques and supports more and more 
transistors in one chip. The Nano-effect affects the yield of single wafer and makes 
technologies faults more obvious, so the ADL should better provide the abilities to 
model Nano-meter silicon process for the silicon evaluation. 

3. Cannot evaluate and optimize the power consumption for the lack of power model. 
More complicated processors consume more power and emit more heat; these af-
fect the design of the package and the system. It also goes against the Green Com-
puting. The ADLs can use foundry standard cell library and IP library to evaluate 
the power consumption before the implementation of the processor. 

4. The auto design space exploration is not enough.  
Only LISA can evaluate multi design corner automatically for applications, the 
other ADLs need manual intervention. This function can greatly reduce the time of 
architecture design. The toolsets better support specific applications such as H.264 
encode/decode and Soft-defined Radio to evaluate the ASIP and give the design 
parameters like cache size, buffer size, register size and computing resources etc.  

From the analysis of the ADL advantages and disadvantages, ADL can accelerate 
processor design, coding, verification and the applications. It can also avoid design 
defects and the lack of verification induced by human factors. 

In conclusion, designing of new high performance processors with ADL has been a 
feasible way. Describing the design of existing processors with ADL can also help 
decide the parameters for performance and generate test-bench automatically. It can 
improve the test coverage and provide more complicated compiling system earlier. 
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5 Conclusion 

This paper firstly introduces ADL usages in processor design and chooses three typi-
cal ADLs to describe in detail. We compare LISA, ArchC and MAML in description 
abilities and toolsets functions. We summarize the advantages of current ADL in pro-
cessor design and analyze the lack of ADL in modern high performance processor 
design. Using ADL can benefit various phases in the process of design of high per-
formance processors and can simplify the human work greatly. According to the anal-
ysis above, we conclude the critical problems in the research of ADL and give some 
suggestions to the development and evolution of ADLs.  
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Abstract. ROHC (Robust Header Compression) packet header com-
pression protocol could reduce the extra overhead, which introduced by
the packetizing of the Internet transport protocol, and utilize the wire-
less bandwidth more effectively, so it is widely used. Previous studies
are mainly focused on the software implementation and optimization of
key parameters. This paper introduces the ROHC header compression
scheme applied in the wireless environment, and designs the framework
of ROHC header compression scheme in U-mode. The header compres-
sor of IPv4/UDP/RTP header has also been realized according to the
principle of ROHC under U-mode. The modules and the implementa-
tion of the compressor are described in this paper. The performances
of ROHC header compression system is analyzed through experiments.
The result shows that the hardware accelerator achieves the function of
ROHC packet header compression protocol correctly, and significantly
reduces the overhead of packet headers to effectively improve the link
utilization; at the same time has good usability and flexibility.

Keywords: ROHC, hardware accelerator, compressor.

1 Introduction

TCP/IP framework is packetized based on every layer of the protocol stack, so a
considerable part of the wireless bandwidth is used to transmit control informa-
tion (i.e. packet header). These control information, which are useless to the end
user, result in a low utilization of wireless channel bandwidth. Packet header will
introduce redundancy, which is even more than half of the whole data packet [1].
The redundancy leads to the waste of wireless bandwidth and increases the prob-
ability of the packet to be discarded because of error. It’s necessary to compress
the packet header in order to improve the utilization of wireless bandwidth.
The Compression of packet header also solves the problems of service quality
and packets’ overhead, which introduced by the real-time transmission on the
wireless link.
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ROHC (Robust Header Compression) protocol for packet header compression
aims at the wireless link environment to achieve a stable and efficient packet
header compression. The studies of ROHC header compression protocol in do-
mestic and international are as follows:

Li X.W., He X.S., and Wu X.S., etc used the ROHC in third generation mo-
bile communication (3G) systems, such as Packet Data Convergence Protocol
(PDCP) sub layer [2], mobile ad hoc network system [3] or Mobile IPv6 [4] net-
works, to improve the reliability of data transmission; Fracchia R. and Kim J.
provided some new mechanisms to cope with ROHC to improve the ROHC per-
formance [5], or for the dynamic adjustment of an optimistic parameter[6]; and
Weng W. used hardware to implement the CRC calculation of ROHC protocol,
which helps to solve the ROHC protocol hardware solutions [7]. However, as far
as we know, there is no hardware accelerator that uses ROHC scheme.

The compressor in the ROHC packet header compression scheme, whose
frame-work under the U mode is introduced in this paper. ROHC packet header
compression protocol is applied to IPv4/UDP/RTP packet header in this frame-
work. The compressor’s function is implemented by Verilog HDL. The function
of compressor is verified through simulations, and the compression efficiency is
analyzed through experiments.

This paper is organized as follows. Section 2 introduces the ROHC compres-
sion protocol. Section 3 describes the structure of the compressor, including the
structure of modules and the inter-module data flow diagram. The implementa-
tion of the compression module is described in Section 4. Section 5 presents the
simulation results and the performance analysis. Finally, Section 6 presents our
conclusion and future work.

2 ROHC Compression Protocol

When a new packet flow arrives, firstly, the compressor goes into the Initialization
and Refresh (IR) state. The compressor stores the packet headers of this new
stream in a new context, then divides every header into different regions (a packet
header is divided into three groups: the Static Region, the Dynamic Region, and
the Inferred Region). Secondly, the compressor sends the whole context of the
stream to the de-compressor for several times. When the compressor is fairly
confident the decompressor has received the correct context, it transits to the
higher compression state and begins the sending of compressed packets. The
compressor must update the content of the context, which belongs to the packet
stream, after every sending, to ensure the content of the context is belonging
to the latest packet header. Then the compressor determines the need for state
transition according to current state. The correlation and the prediction between
packets are used by the decompressor to rebuild the original packets.

2.1 Compressor States and State Transition Logic

In order to improve compression efficiency, RFC3095 defines three compressor
states: initial state IR (Initialization and Refresh), the FO (First Order) state,
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and the SO (Second Order) state [8]. The compressor of the hardware accelerator
has these three compression states too. The compressor always begins at the
lowest state, and then transmits to the higher states gradually. The compressor
transits to a lower state from a higher state occasionally. Fig. 1 is the state
machine for the compressor in Unidirectional mode (U mode) [8]. Details of the
transitions between states and compression logic are given subsequent to the
figure.

Fig. 1. Compressor transition logic

IR state: The compressor initializes and recovers the static part in the context
from error in this state. In the IR state, the compressor sends an IR packet, and
it will not transit to the higher compression state until it is fairly confident the
decompressor has received the correct static information. An IR packet contains
the complete original packet and the information of the created context, so it is
longer than the original packet.

FO state: In this state, the compressor sends the irregular part of the packet
flow. Compressor could transit to FO state from the IR state, or from the SO
state when current packet format does not match the previous one.

SO state: This is the best compression state. The compressor just sends some
additional information, such as the partially compressed Sequence Number (SN)
and Context Identifier (CID), etc. If the current packet header is no longer in line
with the previous format, and the context cannot be compressed independently
from the previous format, the compressor transits to the FO state from the SO
state.

2.2 The Packets Used by the Hardware Accelerator

IR packet: the compressor sends only IR packets when it is in the IR state. The
IR packet is mainly used to inform the decompressor to initialize the context.
The com-pressor creates a new context when it identifies a new packet flow,
then it sends an IR packet to the decompressor. The compressor informs the de-
compressor to create a corresponding decompression context for this new packet
stream by this way.



78 M. Yan and S. Zhang

IR-DYN packet: When the compressor is in the FO state, the compressor up-
dates its compression context firstly when a changing is detected in the dynamic
part of the context. Then the changed dynamic information, which organized in
an IR-DYN packet, will be sent to the decompressor.

UO-0 packet: The compressor sends packets of this type when it is in the best
compression state (SO).This packet type has the shortest length and is used to
trans-mit the value of the encoded SN field.

UO-1 packet: The compressor sends packets of this type in the SO state to
inform the decompressor when the increment of ID or TS changed.

UO-2 packet: This packet type adopts a stricter CRC check than the UO-1
packet. It transmits more dynamic information of the context to the decompres-
sor. The com-pressor sends UO-2 packets to decompressor in the FO state.

3 The Structure of the Compressor

Firstly, the compressor of the hardware accelerator initializes all the registers,
counters, and flags, etc. After the initialization, the compressor transits to IR
state to wait for the data packets sent by the upper layer. The compressor stores
the data packet sent by the upper layer, then divides every original header into
several different regions, and saves them to the corresponding position in a tem-
porary context. Then the compressor compares the quintuple (in ROHC, a con-
text determined by the following five values: source IP address, destination IP
address, source port, destination port and SSRC, packets have the same context
belong to the same packet flow) of temporary context with all the existing con-
texts. The compressor determines whether the context of the current packet flow
has been established or not. If an established context has the same quintuple
with the current one, the compressor compresses the header sent to the decom-
pressor according to the state of this context. If the current quintuple does not
match any context that has been established, the compressor will creates a new
context for the packet flow. After these done, the compressor determines whether
to do a state transition. The compressor transits to a suitable compression state
according to current condition.

3.1 The Structure of Modules

This design consists of four modules: the top module, the packet input module,
the compression module and the packet output module. Here the role of each
module is described.

Reading data packets, compressing packet header and outputting packets are
implemented in the top module, so the packet input module, the compression
module and the packet input module are instantiated in the top module. In
order to make the packet input module, the compression module and the packet
output module work in parallel, three FIFO queues: the Packet Payload (PP),
the Uncompressed Packet Header (UPH), and the Compressed Packet Header
(CPH), are designed in the top module. Three modules get their data from their
corresponding FIFO for the purpose of parallel.



The Design of the ROHC Header Compression Accelerator 79

Packet Input Module. The function of the packet input module is transfer-
ring packets from upper layer to the corresponding FIFO queues. This module
continuously receives data sent from the upper layer and does the following
steps: divides the whole packet into two parts: one part is the header needs
compression, and the other is the payload that doesn’t need compression. And
the compressor stores the data needn’t to be compressed in the PP FIFO queue
while stores the data need to be compressed in the UPH FIFO queue. As long as
there is a packet need to be sent, the packet input module continues to receive
data from upper layer.

Compression Module. After the packet header has been stored in the FIFO
queues, the top module sends a signal to the compression module to inform
it to compress the header of this packet. The compression module stores the
compressed header into the CPH FIFO queue if it completes the compression.

Packet Output Module. The packet output module’s function is organiz-
ing the compressed headers and their corresponding payloads together to form
a compressed packet. This module constantly sends compressed packet to the
decompressor at a rate of 2 Byte/cycle.

3.2 Inter-module Data Flow Diagram

The data flow between modules is shown in Fig. 2

Fig. 2. Compressor transition logic

The packet input module transfers the data to the FIFO queues in the top
module at a rate of 2 Byte/cycle, and it distinguishes the type of the data before
storing them: stores the data in the PP FIFO queue if they are payload type; if
the data are packet header type, stores them in the UPH FIFO queue.

If the compression module is idle, at the mean while the UPH FIFO queue
has headers, the compression module reads a header from the UPH FIFO queue
and compresses it, then stores the compressed header in the CPH FIFO after



80 M. Yan and S. Zhang

the compression, Then the compression module informs the top module it is idle
again.

The packet output module determines which FIFO queue is selected to provide
the data according to the current need of data. If the packet payload is needed,
then the module gets data from the PP FIFO queue; if the compressed header
is needed, then the module gets data from the CPH FIFO queue. This module
will not be idle until there has no data to be sent to the decompressor.

4 Implementation of the Compression Module

The function of the compression module is compressing the packet header. The
state machine of the compression module is shown in Fig. 3.

Fig. 3. Compressor transition logic

The states of the compression module are described as follows:
SC0: In this state the compressor initializes all of the registers, counters, state

flags, etc.
SC1: In this state the compressor determines whether the context of current

data packet has been established. If it has been established, the compressor will
transmit to SC2, otherwise to SC4.

SC2: In this state the compressor compares the current context with all ex-
isting contexts, and sets the corresponding flags according to the comparison
result, and then transmits to SC3.

SC3: In this state the compressor updates the context using the information
of cur-rent packet, then transmits to SC6.

SC4: In this state the compressor assigns a usable CID to the current packet
flow, and then transmits to SC5.
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SC5: In this state the compressor establishes a new context for current packet,
saves the various regions of this packet header to the corresponding position of
the context, sets the corresponding flags, and then transmits to SC6.

SC6: In this state the compressor judges its current compression state, does
the next steps according to the result: if current state is IR, the compressor
transmits to SC7; if current state is FO, the compressor transmits to SC8; if
current state is SO, the compressor transmits to SC9.

SC7/SC8/SC9: In these states the compressor determines the packet type to
be sent in the IR, FO and SO state respectively then generates the corresponding
compressed packet header.

SC10: In this state the compressor determines whether to do a state transition
and saves the compressed packet header into the corresponding FIFO queue, then
trans-mits to SC1 to wait for compressing the new packet header, which sent
from the up-per layer.

5 Simulation and Performance Analysis

The header compression function is verified through simulation, and the analysis
of the compression sufficiency is taken through experiments. The compression
program runs on the compressor and the decompression program runs on the
decompressor. The compressor compresses the packets immediately when it re-
ceives them, then the compressed packets sent to the decompressor to rebuild
the original packets.

Fig. 4. Compressor transition logic

Fig. 4 shows the structure used in the experiments. In this structure, the
packet generation component generates packets continuously, and sends the
packets to the compressor of the accelerator and the counting component. After
compressing the packets, the compressor sends the compressed packets to the
decompressor and the counting component. The function of the counting com-
ponent is counting the number of the general packets (NGP) received by the
compressor, the length of the general headers (LGH), the length of the general
packets (LGP), the length of the packet (LCP) in each compression type, and



82 M. Yan and S. Zhang

Table 1. The compression efficiency under U mode

Packet Type NGP LGH LGP LCH LCP

IR 4 160 790 164 794
IR-DYN 0 0 0 0 0
UO-0 100 4000 20000 200 16200
UO-1 0 0 0 0 0
UO-2 24 960 4800 96 3936
Sum 128 5120 25590 460 20930

the length of the header (LCH) in each compression type. The result shown in
Table 1 is provided by the counting component.

The compressor of hardware accelerator compresses the original IPv4/UDP/
RTP packet header effectively, with the analysis of Table 1.

In the experiment, the length of original headers is 40 bytes, and the size of
the packet is 200 bytes. The compressor could compress the header into 3.6 bytes
on average. The Brand Gain is defined by (1)

Brand Gain =
H − h

H + S
. (1)

In (1) S is the size of the packet, H is the size of the original header, and
h is the size of compressed header. Therefore, the Brand Gain is 0.182. The
Header Gain of each packet is calculated by (2):

Header Gain = 1− Payload

Header + Payload
=

Header

Header + Payload
. (2)

In the experiments, the Header Gain is up to 0.91 when the bit error ratio of
the wireless link is low. The compressor greatly reduces the header length of the
packet, and saves a great many of wireless bandwidth resources. For instance,
the length of IPv4/UDP/RTP packet that used in the voice communication is
40B, the length of payload is 33B. The Brand Gain is up to 0.507 when these
packets compressed by ROHC accelerator. It is obvious that compressed packets
only use half of the original bandwidth. In our experiment, when the compressor
and the decompressor run stably, the compressor could compress a 200-byte
packet into only 163.5 bytes to transmit.

6 Conclusion

The ROHC header compression scheme is introduced in this paper, and the
frame-work of ROHC header compression scheme in U-mode is designed, under
which the compressor of the hardware accelerator has also been realized accord-
ing to the principle of ROHC. A method has been programmed by Verilog HDL
to compress IPv4/UDP/RTP packet headers. The analysis of the performances
of ROHC header compression system is described in this paper. The result shows
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that ROHC header compression scheme reduces the overhead of packet header
significantly (a 40-byte header could be compressed into 2 byte in the best com-
pression state, i.e., header of the UO-0 packet), at the same time provides more
effective link utilization. The accelerator works correctly and stably.

This accelerator will be developed to support more profiles, and the O-mode
and R-mode of ROHC are going to be implemented in the recent future. In this
frame, the accelerator can accommodates up to 16 contexts. However, the context
space is not big enough to support more than 16 packet flows concurrently. So
the replacement algorithm has to be accomplished to improve the performance
of the accelerator.
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this manuscript.
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Abstract. The RNA secondary structure prediction, or RNA folding, is a com-
pute-intensive task that is used in many bioinformatics applications. Developing 
the parallelism of this kind of algorithms is one of the most relevant areas in 
computational biology. In this paper, we propose a parallel way to implement 
the Nussinov algorithm on hardware. We implement our work on Xilinx FPGA, 
the total clock cycles to accomplish the algorithm is about half of using soft-
ware in serial way, and we also partly resolve the limitation of fixed length re-
quirement of existing hardware implementation with an efficient resource 
usage. 

Keywords: Nussinov algorithm, vector operand, hardware implementation. 

1 Introduction 

Ribonucleic acid (RNA) molecule is one of the most important molecules in the bio-
logical systems. They can carry out diverse functions in living beings, plants and mi-
croorganisms. Though RNA is a single chain structure, the base will bond as pairs 
with another in the same chain. Under normal conditions, the RNA chain will twist, 
and the molecule then forms a coiled structure, this is called the secondary structure 
of the chain and the sequence of the bases is called the primary structure. The func-
tion of a RNA molecule is actually determined mainly by the folded shape of the sec-
ondary structure. Thus, determining the secondary structure is the key to analyze and 
to assign functions to RNAs. 

At present, most important way to predict the secondary structure is the minimum 
free energy (MFE) method, and the most classical algorithm using the MFE method is 
the Nussinov algorithm, which was developed by Nussinov on 1978. The Nussinov 
algorithm uses the number of base pairs in the structure as a proxy to determine the 
minimum energy of the sequence. If one structure contains the maximum base pairs, it 
should be the one with the minimum free energy. More recent folding methods have 
used empirically learned models, in particular stochastic context free grammars 
(SCFGs) [5] , which directly assign probabilities to potential RNA structures. All 
these methods, however, use the dynamic programming recurrences of the same basic 
shape as Nussinov’s algorithm [1]. 
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Performing calculations of a RNA folding problem using present algorithms usual-
ly needs at least ܱሺ݊ଷሻ complexity in time by software, which is really a time-
consuming task for long RNA sequence folding or applications which will frequently 
launch this job. So use hardware approach to develop the parallelism in this algorithm 
is a very attractive idea. Many prior researchers [1] [2] have tried to solve this prob-
lem in an efficient form. In [1], authors have implemented Nussinov algorithm on 
FPGA, they built both GKT array and GJQ array which can operate with sequence of 
length 34 and 62 respectively. Document [2] presents an accelerating circuit on FPGA 
based on the Sankoff and Kruskal algorithm [9], which is very similar with the Nussi-
nov algorithm. These two works both get a nice clock cycles performance on FPGA, 
but there circuit both requires fixed length of RNA sequence, and their modification 
for fitting to other lengths will be a huge work. This limits usage of their architecture 
in practical application. 

In this paper, we propose an approach to develop the parallelism in the Nussinov 
algorithm by using a vector operand and present a sample implementation on Xilinx 
Virtex-6 FPGA. The result accords with theoretically expect and gives about half 
decrease of total cycles needed to accomplish the algorithm. Besides that, since we 
use block-rams instead registers to store temp data in the computing, our work partly 
resolves the needed of fixed length by previous hardware implementations, and that 
with a good hardware resource costs.   

The rest of this paper is organized as follows. Section 2 shows the Nussinov algo-
rithm and the vector operand version for hardware implementation. Section 3 presents 
the details of our sample implementation on FPGA. In section 4 we give the results of 
simulations and the resource usage, and the performance data. At last, in Section 5, 
we conclude from the results as the summarization, and propose the future work to 
adapt arbitrary length sequence and develop more parallelism. 

2 Nussinov Algorithm 

For the RNA sequence s of length N, the Nussinov algorithm finds a folding with the 
maximum pairs with a complexity of  ܱሺ݊ଷሻ in serial time. The algorithm is formal-
ly written as: 

 ܵሺ݅, ݆ሻ ൌ ݔܽ݉ ۔ە
,௜ழ௞ழ௝ሾܵሺ݅ݔܽ݉ۓ ݇ሻ ൅ ܵሺ݇ ൅ 1, ݆ሻሿܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻܵሺ݅ ൅ 1, ݆ሻܵሺ݅, ݆ െ 1ሻ   (1) 

Function eሺi, jሻ represents the matching condition for the pairሺi, jሻ.  The value of eሺi, jሻ is: 

 ݁ሺ݅, ݆ሻ ൌ ൜  1,            ݂݅ ሺ݅, ݆ሻ ൌ ሺܣ, ܷሻݎ݋ ሺܩ, ݆ ሻܽ݊݀ܥ െ  ݅ ൒  (2)   ݁ݏ݈݁                                                                              ,40

Usually for implementation considerations, another simpler version of this formula 
which is widely used is as follows: 
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 ܵሺ݅, ݆ሻ ൌ ݔܽ݉ ൜݉ܽݔ௜ஸ௞ழ௝ሾܵሺ݅, ݇ሻ ൅ ܵሺ݇ ൅ 1, ݆ሻሿܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻ  (3) 

According to the formula above, the Nussinov algorithm fills an n ൈ n upper triangle 
matrix S with non-negative integers. After the matrix S is filled, Sሺi, jሻ is the maxi-
mum number of pairs in subsequence r୧r୧ାଵ … r୨  and in particular, Sሺ1, nሻ  is the 
maximum pair number of the whole RNA sequence. The triangle matrix is shown in 
Fig.1. 

 

Fig. 1. Nussinov Algorithm Upper Triangular Matrix 

The Nussinov algorithm based on software implementation in serial way can be 
described with the following pseudo-code as shown in Fig. 2. 

 

Fig. 2. Nussinov algorithm based on software 

According to the pseudo-code shown above, we can compute out the loop times of 

the algorithm is  ଵ଺ nሺn ൅ 1ሻሺn ൅ 2ሻ, where n is the length of the RNA sequence, and 

each loop performs 1 addition and 1 comparison. On hardware platform, we have 
adequate computing resource to perform no dependent operations at a time. So we can 
use a vector operand instead of the scalar operand on hardware platform to develop 
the parallelism within the algorithm. Based on this idea, we can describe the Nussinov 
algorithm based on vector operand with the pseudo-code shown in Fig. 3. 

for(j=0; j<N; j++) // Diagonal Number
for(i=0; j<N-j; i++) // Row of Matrix S
for(k=i; k<j; k++) // Compute each grid

Temp = B[i][k] + B[k+1][j];
B[i][j] = max{Temp, B[i][k]}
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Fig. 3. Nussinov algorithm based on vector operator 

Here we use a vector operand of size 2 for simplicity but without loss of generality. 
By this way, the inner 2 recurrences reduce about half loop cycles each, so the total 
loop cycles should be around a half of the original scalar way. The more accurate 

result of this is 
ଵଵଶ ݊ሺ݊ ൅ 1ሻሺ݊ ൅ 10ሻ  for average, which validates our approach  

theoretically. 

3 Hardware Implementation 

3.1 Overview 

The key point to implement the Nussinov algorithm based on vector operand is the 
use of vector PE shown in Fig. 4(B). To achieve the maximum usage of vector PE, the 
data supplier must supplies 2n+1 operands each cycle to perform computing, where n 
is the size of the vector. In our implementation, we use vector size of 2 for simplicity.  
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Fig. 4. (A) System structure. (B) Vector operator based PE 

3.2 Data Path 

Though the computing form applies to each grid of the matrix, the operands for each 
computation do not follow a uniformed data path. The implementation shown in doc-
ument [2] proposes an approach use a register to store the value of each grid and a PE 

for(i=N-1; i>=0; i--)   // Rows of Matrix S
for(j=i; j<=N; j+=2) // Colomns of Matrix S
for(k=j+2; k<N; k++) // Compute each grid

Temp1 = B[i][j] + B[j+1][k];

B[i][k] = max{Temp1, Temp2, B[i][k]}
Temp2 = B[i][j+1] + B[j+2][k];
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to compute each grid. The data path from grid register to PE is a static connection that 
can hardly be changed thus can only fit for a fixed length, which results not very good 
usability. In our work, we use a block-ram (MEM) used for operator supplier for PE, 
and also used to store the computed result for next usage. The process element (PE) 
gets operands from MEM, and performs appropriate operation according to the cur-
rent working status. In most time, the PE need 5 operands input and compute 1 result 
out. To reduce the bandwidth pressure for MEM and avoid R/W conflict, we use 
another smaller block-ram to swap (SWAP) data. The control unit (CU) controls the 
stage transfer of the system, and generates appropriate address for MEM and SWAP, 
and controls the PE to perform right operation. 

In our design, we use a dual-port block-ram resource on Xilinx Virtex-6 FPGA as 
MEM. Since we need perform 2 additions each cycle, the dual-port block ram could 
supply 2 operands at a time that meets our requirement. Review the algorithm shown 
in Fig. 3. B[j+1][k] and B[j+2][k] is supplied by MEM. Notice that B[i][j] and 
B[i][j+1] do not change along in the inner loop, so we can use 2 temp registers, REG0 
and REG1, to hold these two operands within one loop. B[i][k] is stored in SWAP, 
each cycle SWAP read B[i][k] out for PE to perform computation, and writes the 
result back to SWAP. When the 2 inner loops are finished, a swap operation is per-
formed to transfer result in SWAP to MEM, also next initial value from MEM to 
SWAP. The system structure and data path are shown in Fig. 4(A). 

 

Fig. 5. Working stage transfer graph 

3.3 Control Flow 

The system working stage graph is shown in Fig. 5. After reset, stage is set to Reset, 
and then change to working stages. After the algorithm is accomplished, the stage 
changes to Stop. All the working stages are described as follows: 
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• Prefetch:  In this stage, the swap between SWAP and MEM is performed. ݁ሺ݅, ݆ሻ is read from MEM and ܵሺ݅ ൅ 1, ݆ െ 1ሻ is read from SWAP, PE performs ܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻ  as the current result of ܵሺ݅, ݆ሻ . The result of ܵሺ݅, ݆ሻ  is 
written into SWAP and ܵሺ݅ ൅ 1, ݆ െ 1ሻ is written into MEM. 

• Store: After the Prefetch stage is finished, there’s still one result left in the SWAP. 
This stage use one cycle to transfer this result into MEM. 

• Load0: Simply read current ܵሺ݅, ݆ሻfrom SWAP and load it into REG0 as A0 
• Load1: Read current ܵሺ݅, ݆ሻ from SWAP, and PE compare larger of ܵሺ݅, ݆ሻand A0 

as current ܵሺ݅, ݆ሻ result. Load this result into REG1 as A1and also write it back to 
SWAP. 

• Normal: Performs normal computation. PE read B0 and B1 from MEM, and per-
forms addition with A0 and A1 from REG0 and REG1 respectively. Current ܵሺ݅, ݆ሻis read from SWAP, and PE compares the largest of ܵሺ݅, ݆ሻ together with 2 
addition results as current ܵሺ݅, ݆ሻ, and writes it back to SWAP. 

4 Results 

We have implemented our design in Verilog HDL, verified them in simulation with 
ModelSim 10.1, and synthesized it on a Xilinx Virtex-6 XC6VLX240T FPGA (hosted 
on the ML605 evaluation board) with Xilinx ISE 12.2. We generate 4 RNA sequences 
randomly with length of 10, 20, 30 and 50 respectively to test the performance of our 
implementation. The comparison results with software approach are shown in Table 1 
and 2. In Table 1, the total clock cycles needed by our implementation and by soft-
ware. Cycles needed by software are calculated according to the formulation we used 
in Section 2. We can see the results accord with our theoretically expect in a rough 
analogy. The deviation lies in that Normal stage is not the only stage in the system. 
But we can see the trend is that, as with the length increases, the effect of this factor 
decreases. 

Table 1. Clock cycles on Hardware/Software 

Sequence  length 10 20 30 50 
Our work(cycles) 140 955 2950 12450 
Software (cycles) 220 1540 4960 22100 

Speedup Ratio (%) 63 62 59 56 
 

In Table 2 we compared the execution time of above 4 test cases, both for our 
hardware implementation and a C based software implementation. Even software 
implementation can be improved; we can see the difference in time of our hardware 
implementation is remarkable, since the CPU’s frequency is much faster than our 
implementation. Besides that, compared with other implementations on hardware, our 
work is more flexible and could handle sequences with different length up to 200. We 
have shown the comparison result in Table 3. We can see that compared the imple-
mentation in Reference [2] , our design could have efficient usage of logic resources 
but covers a large range of lengths. This partly resolves the problem for different 
length needed in practical application. 
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Table 2. Time elapsed on Hardware/Software 

Sequence length 10 20 30 50 
Our work on Virtex 6 

at 180Mhz (ns) 
770 5,252 16,225 68,475 

Intel Core 2 Duo 
2.93GHz CPU (ns) 

2,793 13,130 37,434 147,784 

Speedup Ratio 3.63 2.5 2.3 2.16 

Table 3. Logic resource usage comparison with Reference [2] 

 Reference[2] Our work 
Sequence length 10 20 30 From 10 to 200 

Slices 367 5365 23252 492 
Flip-Flops 159 1398 5427 188 

Inputs/outputs 18 20 20 10 
Frequency (MHz) 63.39 38.69 87.75 180.94 

5 Conclusions and Future Works 

In this work we have proposed a parallel approach to compute the Nussinov algorithm 
by using vector operands, and presented a sample implementation on Xilinx Virtex-6 
FPGA. The result accords with theoretically expect and gives about half decrease of 
total cycles needed to accomplish the algorithm. Besides that, since we use block-
rams instead registers to store temp data in the computing, our work partly resolve the 
needed of fixed length by previous hardware implementations, as well as with a good 
resource usage. Next stage in the future, we will focus on 2 points for further re-
searching. One is that though we decrease a half cycles from the original, still it is a 
large time cost when the length grow larger. So much more parallelism should be 
developed to accelerate the computing. Besides that, we will further works on reduce 
the memory usage for the system while handling sequences with arbitrary length. 

Acknowledgements. Our work is supported by the IBM Shared University Research 
(SUR)，System-level Virtualization Based on Reduced Hyper Multi-core Architec-
ture, SUR201102X. 
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Abstract. This work presents a novel configurable architecture for  
1-dimensional discrete wavelet transform (DWT) which can be configured into 
different types of filters with different lengths. The architecture adopts poly-
phase filter structure and MAC loop based filter (MLBF) to achieve high  
computing performance and strong generality of the system. Loop unrolling ap-
proach is used to eliminate the data hazards caused by pipelining. The hardware 
usage of the configurable architecture is fixed for any kind of wavelet functions. 
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1 Introduction 

In the last few years, discrete wavelet transform (DWT) has been used for a wide 
range of applications including signal analysis, image coding and compression, pat-
tern recognition, and computer vision. The multiresolution feature and improved 
compression compared to existing methods such as the discrete cosine transform 
(DCT)-based compression schemes adopted in the old JPEG standard makes DWT a 
leading role in today’s signal processing area. 

Most major VLSI architectures to implement the DWT (both 1-D and 2-D) can be 
categorized into filter bank approach and lifting approach[1]. The filter bank approach 
(or the convolution approach) is an intuitive implementation of Mallat’s multiresolu-
tion theory on digital circuit[2]. It has advantages of regular structure and good scala-
bility, and is easy to be pipelined. The lifting approach[3] , on the other hand, uses 
Euclidean algorithm to decrease the computation complexity of DWT and its maxi-
mum speedup compared to the filter bank approach is 100%. 

The filter bank approach had been deeply researched and widely used before the 
appearance of the lifting algorithm. Efforts had been made to fully exploit the paral-
lelism of this structure, such as the recursive pyramid algorithm[4] , and the poly-
phase structure. The lifting structure is a polyphase structure in itself, and is much 
more hardware saving compared to the filter bank approach, which makes it very 
attractive to the users and designers. Drawbacks of the lifting structure are the relative 
long critical path and irregular structure. Although the critical path problem has been 
overcome by the Flipping method[5], poor scalability and irregular circuit structure 
remain to be obstacles for the researchers to exploit the generality of this structure. 
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Despite the fact that lots of researches has been done to optimize the VLSI archi-
tecture for specific kinds of wavelets, the generality of the circuit were rarely men-
tioned. In this paper, a configurable architecture for DWT with strong generality is 
introduced, this architecture can deal with 1-D DWT with any kind of wavelet func-
tions. In other words, the architecture can be configured into filter banks of different 
lengths using fixed hardware. This configurable architecture is mainly based on the 
filter bank approach, because in order to adapt the architecture to every kind of wave-
let, the circuit structure should be as regular as possible. Polyphase method is em-
ployed in our design to optimize the throughput, and MAC loop based filter (MLBF)s 
were used as the basic processing units to imitate the computing process of filters 
with different lengths. To optimize the critical paths and static timing performance, 
the architecture is pipelined and the loop unrolling method is used to solve the data 
hazard problems 

This paper is organized as follows. In Section 2, concepts of filter bank approach 
and polyphase structure are introduced. Section 3 describes the structure of MLBF. 
The architecture of the configurable circuit is illustrated in Section 4, while Section 5 
gives performance analysis and comparisons. Section 6 describes the FPGA imple-
mentation of the system and the experimental results. Section 7 concludes the paper. 

2 Filter Bank Design for 1-D DWT 

2.1 Filter Bank For 1-D DWT 

The arithmetic computation of 1-D DWT can be expressed as filter convolutions and 
downsamplings as follows: 
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Where h can be considered as a lowpass filter and g as a highpass filter. Therefore, 
DWT can be viewed as the multiresolution decomposition of a sequence[6].  

2.2 Polyphase Structure 

Since half of the results of the filters would be sub-sampled, this part of “ineffective” 
computations should be replaced with some “effective” computations from the subse-
quent levels, and this is the basic idea of the recursive pyramid structure (or the folded 
structure)[4]. Another way to exploit that “ineffective” half of the computation is to 
replace the normal filters with polyphase filters, which is illustrated in Fig.1. The 
original non-polyphase filter is divided into an odd filter and an even filter, and the 
results of the polyphase filters are exactly the same as the results of the non-polyphase 
filters. 
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Fig. 1. Polyphase filter structure 

By eliminating the “ineffective” computations, the throughput of the filter is 
doubled without any additional hardware. 

3 MAC Loop Based Filter 

3.1 Structure of MAC Loop Based Filter 

The most common filter structure is shown in Fig.2. 

 

Fig. 2. Traditional convolution based filter 

 

Fig. 3. Structure of a loop based MAC pair 

The main drawback of the traditional convolution based filter is that the length of 
the filter depends on the number of the MACs. To overcome this problem, a MAC 
loop based filter(MLBF) is proposed to imitate the computation of an N-tap filter, 
where N can be any positive integer. 
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As it shows in Fig.3, the MLBF is composed of two MACs which are connected in 
a loop style. Here, we use the word “loop” to represent the physical MAC loop and 
the word “round” to represents the following operations: 

• The multiplier in MAC0 multiplies an input data with a filter coefficient and get 
the result M0 

• The adder in MAC0 adds M0 to the result from the previous round (if it is not the 
first round) or zero (if it is the first round), and gets A0. 

• The multiplier in MAC1 multiplies an input data with a filter coefficient and gets 
the result M1. 

• The adder in MAC1adds M1 to A0, and gets the result A1. A1 will be used as a 
input data for the next round (if it is not the last round), or be outputted as the re-
sult of the filter. 

The MLBF can imitate any kind of filter just by controlling the number of rounds. For 
instance, to emulate the operation of a 6-tap filter, the input sequence should be mul-
tiplied and accumulated in the loop for 3 rounds. 

3.2 Data Hazards in Pipelined MLBF 

In order to minimize the critical path of the MLBF, the multipliers and the adders are 
pipelined. However, when applying the pipeline structure to the adders, some data 
hazards happen because the latency of the loop is linearly related to the number of 
stages in the pipeline structure. An example is given to illustrate the data hazard. To 
simplify the analysis, the pipeline stages of the adders are assumed to be one, which 
means the adders are pipelined by adding an output register as shown in Fig.3. 

Table 1. Schedule for pipelined MLBF 

T M0 M1 A0 A1 
1 x(k-5)h(5)    
2 x(k-3)h(3) x(k-4)h(4) 0+x(k-5)h(5)  
3 x(k-1)h(1) x(k-2)h(2) Data hazard R0+x(k-4)h(4) 

Table 1 shows the schedule of the computations of every adder and multiplier in 
the loop. M0 stands for the multiplier in MAC0 and A0 stands for the adder in 
MAC0. R0 is the result of A0 which was ready in previous cycle. 

The data hazard happens in the third cycle, because when the result of M0, which 
is x(k-3)h(3), is ready, it’s expected to be added to x(k-5)h(5)+x(k-4)h(4). However, 
at the exactly same cycle, x(k-5)h(5)+x(k-4)h(4) is being computed by A1 and won’t 
be ready until the next cycle. Such read-after-write data hazard can be overcome by 
loop unrolling approach. 

Table 2 presents the new schedule for the pipelined MLBF after adopting the loop 
unrolling approach. The result of the nth point and n+1th point will be ready in cycle 
7 and cycle 8. 
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Although the example above only discussed the situation of one-stage pipeline, the 
idea to solve the data hazard problems for any n-stage pipeline is quite same. The 
only change is to put more subsequent computations forward. 

Table 2. Schedule for pipelined MLBF after adopting loop unrolling 

T M0 M1 A0 A1 
1 x(n-5)h(5)    
2 x(n-4)h(5) x(n-4)h(4) 0+x(n-5)h(5)  
3 x(n-3)h(3) x(n-3)h(4) 0+x(n-4)h(5) R0+x(n-4)h(4) 
4 x(n-2)h(3) x(n-2)h(2) R1+x(n-3)h(3) R0+x(n-3)h(4) 
5 x(n-1)h(1) x(n-1)h(2) R1+x(n-2)h(3) R0+x(n-2)h(2) 
6 x(n)h(1) x(n)h(0) R1+x(n-1)h(1) R0+x(n-1)h(2) 
7  x(n+1)h(0) R1+x(n)h(1) R0+x(n)h(0) 
8    R0+x(n+1)h(0) 

4 Configurable Architecture for 1-D DWT Based on MLBF 

Combining pipelined MLBF with polyphase approach, a novel configurable architec-
ture for 1-D DWT is proposed. Fig.4 is a diagram of the overall architecture. CC 
stands for a single configurable circuit. Four pipelined MLBFs work as the filters in 
the filter bank. Since the MLBF can be expanded to filters of different lengths, the 
generality of the architecture is well guaranteed. 

As described in Fig.4, the even-(odd-) filters, which are MLBF0 (MLBF1) and 
MLBF2 (MLBF3), share the same local memory, because the data feed for the two 
even-(odd-) filters are exactly the same. Therefore, the memory size requirement is 
same in the polyphase structure as in the non-polyphase structure. The local memories  
 

 

Fig. 4. Overall architecture for configurable 1-D DWT circuit 
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are implemented using dual-port RAMs to satisfy the bandwidth requirement. To 
avoid write-after-read hazards, the local memories are double buffered.  

If the length of the original non-polyphase filter is odd, the length of the two deriv-
ative polyphase filters won’t meet. In such circumstance, the length of the filters 
should be increased to an even-number by adding a 0 as the new coefficient of the 
filter. The drawback of the expansion of filter length is that it will cause some useless 
operations due to the multiplications of the inputs with 0. Configuration registers store 
the configuration parameters set by the users. 

5 Performance Analysis And Comparison 

Assuming the input size is N, the number of the levels of the DWT is J, and length of 

the filter bank is L. Theoretically,
12k
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DWT. Recall that the length of the original non-polyphase filter should be expanded 
when it’s an odd number, therefore the actual length of the filter bank is N+1when N 
is odd. Since data hazards are totally avoided in the proposed architecture by employ-
ing loop unrolling and double buffering, the cycles needed for the DWT is approx-
imately equal to 

 theoretical number of multiplications
cycles to fullfil pipeline

number of multiplications per cycle
+  (2) 

In our design, the number of pipeline stages is 1 for the adders inside the MLBF, 2 for 
the multipliers inside the MLBF and 1 for the adder outside the MLBF), and the num-
ber of the multipliers is 8. Therefore, the overall number of cycles needed for the 
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To fairly evaluate the performance of the MLBF based configurable architecture, 
we compare our design with some other related works. Since the proposed architec-
ture utilizes fixed hardware regardless of the length of the filter bank, it’s unfair to 
compare its throughput or number of cycles with other circuits, of which the hardware 
consumption is positively related to L. Therefore, instead of throughput, efficiency is 
a much more appropriate figure of merit here. Since the multipliers are much more 
area hungry than the adders, we will only analyze the efficiency of the multipliers. 

The efficiency of the multipliers is evaluated by the work load of every single mul-
tiplier, which is defined as follow: 

 
mulE number of multipliers number of cycles= ×  (3) 
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Since the theoretical number of multiplications is fixed for a given DWT, which is
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× , the difference between the actual work load and the theoretical number is 

the number of redundant computations.  

Table 3. Comparison with related works 

Architecture NMUL NCLK EMUL 
Parallel[7] 2L N+JL 2LN+2JL2 
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Table 3 gives the comparisons between the proposed architecture and the architec-
tures introduced in other papers. When L is even, the efficiency of the multipliers of 
the proposed architecture is better than that of the other 5 architectures in most cases. 
When L is odd, the efficiency of our architecture deteriorates because of the redun-
dant computations brought by the expanding of the filter bank. However, these redun-
dancies are well paid off by the generality and configurability of the architecture. 
Fig.5 plots the work load of the multipliers in every structure as functions of L and N 
when J is 4. To ensure the clearance of the figure, only the lines of the Systolic and 
Pipeline will be plotted along with the proposed architecture. 

 
                              (a)                                (b) 

Fig. 5. (a) E versus N (L=8) (b) E versus L (N=128) 
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6 FPGA Implementation and Experimental Results 

6.1 FPGA Implementation 

To verify the functionality of our design, we implemented a configurable 1-D DWT 
circuit on ML605 development board. The Virtex-6 ML605 evaluation board contains 
a Virtex-6 LX240T FPGA device. Ethernet interface and DDR3 SDRAM are also 
available on the board. The bit-widths of the circuit is 16 bits and the depth of the 
coefficient registers in the configuration registers is 32, which means the upper limit 
of the filter bank that the circuit can be configured into is 32.  

Fig.6 give the overview of the test system implemented on FPGA 
 

 

Fig. 6. Test system implemented on FPGA 

Host and Interface. The host is implemented with C code on a PC to provide test 
data to and receive test result from the FPGA board. Communication between host PC 
and FPGA board is through 1 Gigabit Ethernet. The Ethernet interface is implemented 
by utilizing the on-chip embedded tri-mode Ethernet MAC (EMAC). A DDR3 inter-
face was generated by Core Generator tool in the Xilinx ISE tool chain. The 16-bit 
200MHz DDR3 on the development board is used as the external memory of the sys-
tem to buffer the data fed by the host PC. The bandwidth of 16-bit 200MHz DDR3 is 
up to 6.4GB/s. 

Control Unit. The control unit was built to control the data flow among host, DDR3 
RAM and CCs. At the beginning of the experiment, the control unit reads the source 
data from the FIFO inside the EMAC and stores it in the DDR3 RAM. Then, the con-
trol unit works as a bridge between the DDR3 RAM and the local memories inside the 
CCs.  

Table 4. Resource usage of XC6VLX240T FPGA for a single CC(configurable circuit) 

Resource Number used Total number  
available 

Percentage 
used 

Slice Registers 273 301440 0% 
Slice LUTs 344 150720 0% 
Block RAM./FIFO 2 416 0% 
DSP48Es 18 768 2% 
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CC. The fixed point multipliers and the adders inside the configurable circuits are 
constructed by using the XtremeDSP slices, and the local memories are implemented 
based on the Block RAM primitives. 16 CCs are included in the system. 

6.2 Experimental Results 

To evaluate the performace of the system, input sequences range from 212 points to 
217 points are generated by the host. Table 5 lists the respective number of cycles 
needed by 16 CCs to finish a 3-level DWT. The length of the filter is 8. 

Table 5. Execution timefor 1-D DWT 

Size(points) 212 213 214 215 216 217 
Time(cycles) 518 1030 2052 3844 7428 14596 

Fig.7 indicates that the execution time increase linearly with input size. The slight 
difference between the execution time and the theoretical time which discussed in 
section 5 is the time used to preload the data into the ping-pong buffers in every CU. 
 

 

Fig. 7. Execution time in logarithmic scale 

7 Conclusion 

This paper proposed a novel configurable arichitecture for 1-D DWT which has the 
following features: 

• By using the polyphase structure, the throughput of the circuit is doubled without 
additional hardware consumption 

• The computational units of the circuit are the proposed pipelined MLBFs, which 
imitate the computation process of any type of filter bank with fixed hardware 
resource and thus give the circuit good generality and configurability 

• Compared with other designs, our architecture is not only more general, but also 
multiplier-efficient, because data hazards are eliminated by loop unrolling and 
double buffering. 
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Abstract. The multi-level discrete wavelet transform (DWT) for multiresolu-
tion decomposition of a signal through the cascading of filter banks, employs a 
folded architecture to enhance hardware utilization. This work compares folded 
architectures for DWT based on three filter structures, the direct form filter, the 
linear systolic array, and the lifting structure. We generalize the design of these 
architectures in terms of DWT levels, filter taps and pipeline insertion in critical 
path. A figure of merit for assessing all the three architectures under different 
specifications is proposed. A detailed quantitative comparison among the archi-
tectures is presented with different combinations of specification. The result 
shows that variations in DWT levels, filter taps and pipeline insertions have dif-
ferent impacts on the three architectures. Overall, the folded architecture based 
on lifting structure gives the most desirable figure of merit and the one based on 
linear systolic array demonstrates the best scalability.  

Keywords: VLSI, Discrete Wavelet Transform, Multiresolution Decomposition. 

1 Introduction and Background 

The multiresolution decomposition performed by wavelet transform offers a signifi-
cant scalability in the scope of signal analysis, where either local transitions or long-
term behaviors can be identified at the corresponding decomposition levels(Mallat 
1989; Herley September. 1992). This approach, as depicted in Fig.1, is done by itera-
tively decomposing a signal at an approximation level into the orthogonal sum of a 
signal at a coarser approximation level and a detail signal through a pair of quadrature 
mirror filters, each having constant relative bandwidth, which means that the signal is 
break up into different octave bands. The application of this transform ranges from 
image compression in JPEG2000 to geophysical signal processing(Christopoulos et 
al. 2000; Goupillaud et al. 1984; Meyer 1992), and its implementation is made 
through either convolution by filter banks or through lifting structure.  

As Fig.1 illustrates, due to decimation, the utilization of filters in each level of 
DWT keeps degrading as the level increases. The first level thus has an efficiency of 
fifty percent; the second has a quarter and etc.   
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Fig. 1. A multiresolution decomposition by an N-level DWT 

In an N-level wavelet, during the same time period the hardware utilization sum-up 
of the same G and H quadrature mirror filter pair is 

 Hardware Utilization ൌ ଵଶ ൅ ଵସ ൅ ڮ ൅ ଵଶN ൌ 1 െ ଵଶN (1) 

It is upper-bounded by one. This implies that the maximum number of quadrature 
mirror pairs needed in a one-dimensional wavelet of arbitrary levels is one as long as 
the computations of different levels are carefully arranged, known as the Recursive 
Pyramid Algorithm that schedules a computation as soon as possible(Vishwanath 
1994). The process of executing all operations in one processing unit is referred to as 
folding (Parhi 1992; Parhi and Nishitani 1993). Two folded architectures for multi-
level DWT based on convolution have been proposed in (Parhi and Nishitani 1993) 
and (Vishwanath et al. 1995), which incorporates direct form filter and linear systolic 
array for a three-level DWT, respectively. 

Routing 
Network

G

H
 

Fig. 2. Folded architectures for multi-level DWT 

In this paper, we design and evaluate fixed-point implementations of multi-level 
DWT based on the direct form filter, the linear systolic array and the lifting structure 
proposed in (Sweldens 1996). For all designs, pipeline stages for critical path, filter 
taps and DWT levels are generally assumed and a figure of merit for assessment is 
proposed for all architectures to reveal the corresponding impact of different specifi-
cations on the performance of the three architectures. The structures of each filter are 
depicted in Fig. 3.  
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(a) Modified direct form filter 

 

(b) Linear systolic array 
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(c) Lifting structure 

Fig. 3. The structures of the filter utilized in multi-level DWT 

2 Generalized Folded Architectures and the Evaluation Method 

2.1 Figure of Merit 

The comprehensive evaluation of architectures for DWT mentioned above is often 
troubled with difficulties in quantitative analysis because of the preferences in design 
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concerns and objective applications. Thus the evaluation usually involves too many 
qualitative terms that can’t provide accurate design insights for scalability in system 
specifications, which reasonably include hardware parameters like DWT levels, filter 
taps, pipeline stages, or implementation cost like area and power. 

We propose a figure of merit that defines the desirability of generalized architec-
tures for multi-level DWT under different combinations of system specifications for 
three architectures, three folded architectures based on the modified direct form filter, 
the linear systolic array, and the lifting structure. 

For an architecture that computes up to Nth octave of an sequence of 2N discrete 
values, we define the figure of merit (FOM), as 

 FOM ൌ N୳୫ୠୣ୰ ୭୤ ୫୳୪୲୧୮୪୧ୣ୰ୱ ൈLୟ୲ୣ୬ୡ୷ ୤୭୰ f୧୬୧ୱ୦୧୬୥ ୟ୪୪ ୡ୭୫୮୳୲ୟ୲୧୭୬ୱ N୳୫ୠୣ୰ ୭୤ ୮୧୮ୣ୪୧୬ୣ ୱ୲ୟ୥ୣୱ ୭୤ ୲୦ୣ ୫୳୪୲୧୮୪୧ୣ୰ൈଶN  (2) 

The evaluation principle is that smaller value of FOM is more desirable. 
In this equation, the first multiplier appearing at the numerator is the number of 

multipliers, which represents the resource of computation processors and the cost of 
area and power since multipliers are much more area hungry than any other compo-
nents in all architectures, and therefore they will consume most of the power.  

The second term in the numerator, the latency for finishing all computations is an 
indicator for processing capability of completing the 2ே-point calculation. A smaller 
latency means that the computation capability of the architecture is better. The trade-
off between latency and number of multipliers is conspicuous, as more multipliers 
will roughly bring shorter processing latency. The latency is strongly affected by the 
stages, or levels of discrete wavelet transform, and thus it should be normalized 
by 2ே, which is the period of optimal latency for the whole computation. 

The final term appearing as the denominator, number of pipeline stages of the mul-
tiplier, is a representation of critical path and potential throughput of the architecture. 
Since the critical path consists mainly of a multiplier’s processing time, and as a result 
the pipelined multiplier will enhance the throughput of the system by a factor of num-
ber of pipelines. The trade-off between pipelined multipliers and latency lies in the 
fact that the pipeline of multiplier will lead to more cycles of latency, and due to the 
data-correlation and causality between the input sequences of a discrete wavelet trans-
form, the pipeline might be forced to stall or filled with bubbles in order to wait for 
the proper input data. 

In a word, a smaller figure of merit means 1) smaller area and power cost under the 
roughly equivalent processing capability, or 2) higher computation capability with 
close cost of area and power, including either fewer cycles for finishing processing 
and higher throughput situations. 

2.2 The Folded Architecture Based on the Modified Direct Form Filter 

The design of this architecture consists of two parts as depicted in Fig. 2, the routing 
network and the modified direct form filter as illustrated in Fig. 4. The filter is initial-
ly pipelined after the cut set of all multipliers, and thus the critical path is apparently 
the delay of a multiplier. The pipeline stages inserted in the multipliers other than the 
initial design, is denoted as M as introduced above.  The filter tap parameter K di-
rectly decides the number of multipliers. Whereas, the DWT level N is introduced and 



106 J. Zhou and J. Jiang 

expressed in the schedule of filter computation, where 2ே-point computation should 
be arranged for properly to maximize pipeline utilization. As an example in Table 1, it 
is apparent that the computations of different levels, i.e. ݔଵሺ݊ሻ, ݔଶሺ݊ሻ, ݔଷሺ݊ሻ, are 
interleaved, and the pipeline is nearly full. For a detailed design procedure for this 
example, the reader are referred to (Parhi and Nishitani 1993). The total time required 
to finish the computation is 11, denoted as latency.  

We then generalize the design. Assume an N-level folded architecture based on the 
modified direct form filter with K taps. The architecture has 2ܭ multipliers with M 
pipeline stages for the multiplier, and the level of the discrete wavelet transform isܰ. 
Therefore the latency for computing all the output variables is  

 M ൅ 2N ൅ M ൅ 1  (3) 

This latency is obtained by the facts that the amount of computation, 2ேpoints, is 
fixed, and the pipeline of the filter is mostly occupied despite few blanks at the start-
ing period, denoted as M, and the time to compute the last point, denoted as the  
pipeline length, M+1.   

 

Fig. 4. A pipelined design of a four-tap modified direct form filter 

Table 1. Computation schedule for a three-level DWT with a four-tap filter and one multiplier 
pipeline stage ( N=3, K=4, M=1) 

Cycle  Filter Schedule Filter Output 

0 xଵሺ0ሻ  

1 -  

2 xଵሺ2ሻ xଵሺ0ሻ 

3 xଶሺ0ሻ - 

4 xଵሺ4ሻ xଵሺ2ሻ 

5 xଷሺ0ሻ xଶሺ0ሻ 

6 xଵሺ6ሻ xଵሺ4ሻ 

7 xଶሺ4ሻ xଷሺ0ሻ 

8  xଵሺ6ሻ 

9  xଶሺ4ሻ 
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Then the generalized form of figure of merit for the folded architecture based on 
poly-phase filter is 

 FOM ൌ ଶKൈሾMାଶNାMାଵሿMൈଶN   (4) 

2.3 The Folded Architecture Based on the Linear Systolic Array 

The design of this architecture also consists of two parts as depicted in Fig. 2, the 
routing network and the linear systolic array as illustrated in Fig. 3. The filter is in-
itially pipelined by processing element, i.e. the multiply-accumulate element, and thus 
the critical path is mostly the delay of a multiplier. The pipeline stages inserted in the 
multipliers other than the initial design, is denoted as M as introduced above.  The 
filter tap parameter K decides the number of multipliers. For an N-level DWT, the 
computation is strictly scheduled according to the Recursive Pyramid Algorithm, and 
an example of filter utilization is offered in Table 2. It is obvious that the computa-
tions of different levels, i.e. xଵሺnሻ, xଶሺnሻ, xଷሺnሻ, are separated in difference cells, 
and the pipeline is nearly full. For a detailed design procedure for this example, the 
readers are referred to (Vishwanath et al. 1995). The total time required to finish the 
computation is 8, denoted as latency.  

Table 2. Snapshot of H filter in one period( K=4, M=1, N=3) 

Cycle Stage 1 - hଷ Stage 2 - hଶ 
Stage 3 - hଵ Stage 4 - h଴ 

Output 
variable 

0 x଴ሺ1ሻ xଶሺെ8ሻ x଴ሺ1ሻ xଵሺ0ሻ xଵሺ0ሻ 

1 xଵሺെ2ሻ x଴ሺ2ሻ xଶሺെ4ሻ x଴ሺ2ሻ xଶሺ0ሻ 

2 x଴ሺ3ሻ xଵሺ0ሻ x଴ሺ3ሻ xଶሺ0ሻ xଵሺ2ሻ 

3 - x଴ሺ4ሻ xଵሺ2ሻ x଴ሺ4ሻ xଷሺ0ሻ 

4 x଴ሺ5ሻ - x଴ሺ5ሻ xଵሺ4ሻ xଵሺ4ሻ 

5 xଵሺ2ሻ x଴ሺ6ሻ - x଴ሺ6ሻ xଶሺ4ሻ 

6 x଴ሺ7ሻ xଵሺ4ሻ x଴ሺ7ሻ - xଵሺ6ሻ 

7 xଶሺെ4ሻ x଴ሺ8ሻ xଵሺ6ሻ x଴ሺ8ሻ - 

 
Then we can generalize the design. For an ܰ-level folded architecture for DWT 

based on the linear systolic array with K cells, it has 2K multipliers with a number of 
pipe line stages of multiplierM. Therefore the latency for computing all the output 
variables is 
 

 M ൈ 2N  (5) 
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The equation means that the output variable is computed one after another with the 
interval of 2ெିଵ cycles. Therefore the generalized form of figure of merit for the 
folded architecture based on the linear systolic array is given by 

 FOM ൌ ଶKൈMൈଶNMൈଶN ൌ 2K  (6) 

2.4 The Folded Architecture Based on the Lifting Structure 

Though its folded structures have been proposed in (Chung-Jr et al. 2001),  the aim 
of it is at the scalability for most of the bi-orthogonal wavelets configuration rather 
than at multi-level folding. The design of the folded architecture based on lifting 
structure consists of two parts as depicted in Fig. 2, the routing network and the lifting 
structure as illustrated in Fig. 3. The filter is initially pipelined by lifting stage, and 
thus the critical path is mostly the delay of a multiplier. The pipeline stages inserted in 
the multipliers other than the initial design, is denoted as M as introduced above.  
The filter tap parameter K decides the number of multipliers. For an N-level DWT, 
the computation is scheduled according to Pyramid Algorithm without interleaving 
different levels of DWT. 

In general, an N-level folded architecture based on lifting structure has ܭ lifting 
stages with identical number of multipliers that is M pipelined. The latency of cycles 
for computing all the output variables is  

 2N െ 1 ൅ ሺM ൅ 1ሻ ൈ K  (7) 

The generalized expression of FOM for this architecture is  

 FOM ൌ KሺଶNିଵାሺMାଵሻൈKሻMൈଶN   (8) 

3 Results and Analysis 

We provide a table of comparison of figure of merit of the three architectures under 
different combinations of (K, M, N), which covers the common situations and reveals 
the impacts of variations of specifications on the efficiency of the architectures. 

3.1 Impact of Variations on Filter Taps or Lifting Stages 

From the last three rows of data comparison, it can be conclude that all the three ar-
chitectures will be increasing in sizes if the taps of filters or lifting stages go up. The 
folded architectures based on poly phase and the linear systolic array increase linearly 
with K; however, the one based on lifting structure goes up in quadratic style,  
and therefore its application with larger K is not as desirable as the other two  
architectures.  
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Table 3. FOM of three architectures of different specificatioons 

(K, M, N) FOM of Folded archi-
tecture based on poly-

phase filter  

FOM of Folded archi-
tecture based on linear 

systolic array 

FOM of Folded archi-
tecture based on lift-

ing structure 

(4, 1, 3) 11 8 7.5 

(4, 2, 3) 6.5 8 5.25 

(4, 3, 3) 5 8 3.83 

(4, 1, 2) 14 8 11 

(4, 1, 4) 9.5 8 5.75 

(5, 1, 3) 13.75 10 10.625 

(6, 1, 3) 16.5 12 14.25 

(7, 1, 3) 19.25 14 18.375 

3.2 Impact of Inserting Pipeline Stages in Critical Path 

From the data of the first three rows of Table 3, we can conclude that the folded archi-
tectures based on linear systolic array is not affected by the variations in pipeline 
insertion in critical path, while the one based on direct form will gain the most signif-
icant benefits from this approach. 

The reasonable explanation for this phenomenon is that in the architecture based on 
linear systolic array, the data path though pipelined, is subjected to the correlation 
between neighboring stages, but the direct form filter and lifting structure will not 
suffer due to their parallelism in input scheme.  

3.3 Impact of Variations on DWT Levels 

Data from Table 3 indicate that the variation in DWT levels will not affect the archi-
tecture based on linear systolic array, unlike the other two. More levels will bring the 
other two architectures benefits of smaller figure of merit due to the availability of 
interleaving computations of different DWT levels. 

4 Conclusion 

The generalized design of three folded architectures based on the direct form filter, 
the linear systolic array and the lifting structure is compared through a proposed fig-
ure of merit. For the different sets of DWT levels, filter taps and pipeline insertions, 
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the three architectures behave at different sensitivities: the architecture based on direct 
form filter is favorable for pipeline insertion; the architectures based on linear systolic 
array is not affected by the levels of DWT and pipeline insertion; the filter taps will 
directly affect the sizes of all architectures, and mostly the one based on lifting struc-
ture. The architecture based on linear systolic array demonstrates the best scalability 
as parameters shift, which is most desirable for design concerns. The architecture 
based on lifting structure gives the best figure of merit. 
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Abstract. Space missions are very demanding on system reliability. As the de-
velopment of space-based remote sensor technologies, space missions are in-
creasingly high required on system performance. Conventional techniques 
mainly focus on the system reliability, at the expense of system performance. 

In this paper, a flexible, DPS-based, high-performance system is presented. 
The system could dynamically adapt the system’s level of redundancy accord-
ing to varying radiation levels. A compare-point and fast recovery mechanism 
is proposed to improve system performance. Besides, some design ideas and 
implementation methods also be mentioned. In this paper, the system perfor-
mances are evaluated and analyzed. With running of the correlation function 
benchmark in this system, it is shown that the system provides high perfor-
mances under the premise of certified reliability. 

Keywords: compare-point, fast recovery, high-performance, space missions, 
fault tolerance. 

1 Introduction 

In recent years, large-scale space technology research projects have been conducted 
and commercially adopted by quantities of countries. With the increasing require-
ments of space technologies, the reliability and processing capacity of on-board 
processing systems become more and more critical. 

Previously, most of the data collected by satellites and spacecrafts could be trans-
mitted to ground stations without delay. However, owing to the development of 
space-based remote sensor technologies, more data will be collected [1].The space-
crafts will lose the ability of transmitting the data in due time. Thus, the processing 
capability of on-board computer must be enhanced in order to meet live transmission 
constraints. Additionally, as the radiation hazards in outer space are always changing 
during the mission, the traditional on-board systems, which are fixed and designed  
for the worst case, are unnecessary and they will definitely influence the system  
performance. 

In order to solve the problems mentioned above, a High Performance Fault  
Tolerant System (HPFTS), which will significantly improve the system performance, 
is implemented and discussed in detail in this paper. The basic hardware elements of 
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this system are one control unit and three processing units. According to the environ-
ment information, system status and application requirements, system can perform 
dynamic switch between redundancy mode and parallel mode. The compare-point and 
fast recovery mechanism will also be described in this paper. Finally, the reliability 
and performance of the system will be evaluated and analyzed. 

2 Background and Related Works 

Single Event Effects (SEEs) caused by space radiation will generate deviations in the 
expected functionality and performance of the on-board systems [2]. Traditional fault 
tolerant techniques include devices radiation-hardened technology, self-test technolo-
gy, redundant technology, etc. Generally speaking, the structure of conventional  
redundant systems is fixed. But as the requirements for on-board systems become 
higher, it is urgent to enlarge the operating capability of on-board systems. Fortunate-
ly, this subject has attracted a lot of attention in large numbers of institutions, and it 
has already been scheduled as extensive research. 

The Dependable Multiprocessor project conducted by NASA NMP ST8 is about an 
environmentally adaptive fault tolerant system, which ensures that the processors and 
the improvement in system processing capability can be effectively used and reflected 
[3][4]. Generally, this system implements three operation modes, and the selection of 
the operation mode is determined by environment, system level requirements and 
system health status. However, as the use of PowerPC in this system, the overall per-
formance has become less satisfied with signal processing. 

J. Yang et al. have proposed a Reconfiguration Space Information Processing Plat-
form, the key technology of which is the system reconfiguration [5]. In order to im-
prove the performance of computing, this information processing platform has em-
ployed high performance DSP and SRAM-based FPGAs for data processing. Its high 
reliability unit can dynamically reconfigure the system in a SEE event and also can 
reconfigure the system function by applying the signals that delivered by the ground 
stations.Although dynamic partial reconfiguration can improve performance of sys-
tem, it is not so flexibility as dynamic switching, the performance and algorithm are 
closely related. 

3 System Overview 

The Environmentally Adaptive High-performance Fault-tolerant System (HPFTS) is 
an application and environment oriented on-board computer system that consists of a 
high reliability FPGA connected to a number of high performance COTS DSPs. The 
excellent application and environment oriented architectural characteristics can pro-
vide an extensible system to meet variable space requirements. In this section, a brief 
overview of the HPFTS will be provided. 
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3.1 System Units 

The HPFTS involves the control unit and the processing unit, as shown in Fig. 1. The 
former is environment sensitive and the latter is application sensitive. 

Control Unit. The high reliability FPGA plays the role of the system controller that 
will configure the system operation mode according to time, position, sensor signals 
and external commands. In case of Signal Event Effect, the control unit will detect the 
error, decrease the system redundant level and reset the faulty DSP at the same time. 
In case of operation mode conversion, the control unit will reconfigure the data pass 
and order the DSP to change the processing mode. 

Processing Unit. The processing unit consists of high performance COTS DSPs and 
an independent memory. The DSP has the characteristics of high performance, low 
cost, market availability and radiation sensitivity. Via special fault tolerant measures, 
the DSPs can focus on large amounts of on-board signal processing. The DSPs are 
independently programed and can be custom assigned in redundant and parallel op-
eration modes. 

 

Fig. 1. The HPFTS Architecture 

3.2 FPGA Logic Components 

In order to accomplish the whole system redundant and parallel processing control, 
FPGA needs to get the processors and environment status, give accurate configure 
commands and control the data flow. Therefore, the relevant state, command and data 
logic components for FPGA have been designed. 

The environment signals, including time, spacecraft position and a variety of sen-
sors signals, determine the on-board computer system’s application requirement and 
operating mode. Healthy monitor will get DSPs healthy state via DSP’s heartbeat 
detection and give critical recommendation to the redundancy level. 

FPGA will gather the states with external commands together and make judgments 
to deliver different configuration commands to DSPs. The configuration information 
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contains master or slave role, application number, redundancy level, parallel level and 
parallel processing part. 

The data processing paths of redundant mode and parallel mode are different. The 
redundant mode mainly focuses on DSPs data comparison, which is supported by 
Data Register for each DSP, Data Comparator and Data Distributor components. For 
the failure DSP’s fast recovery, the processing progress will be stored in Recovery 
Module Component. The parallel mode mainly focuses on different DSPs data  
sharing and transmission, which is supported by the data FIFOs between DSPs and 
Parallel Processing Controller components. 

4 System Implementation 

The HPFTS implementation should meet the requirements of space applications that 
demand high reliability and high performance. So the system operation status and key 
mechanisms will both consider the reliability and performance. 

4.1 System Operation States 

In the system, the high reliability FPGA checks the environment signal and external 
command real-time to switch system state between standby and operation states, as 
shown in Fig. 2. In consideration of radiation total dose effect and low power, DSPs 
will be powered off in standby state. In operation state, the system will process  
applications and tolerate faults. 

 

Fig. 2. System Operation States 

All applications are programmed in DSPs memories. The FPGA configures appli-
cations redundancy level by activating the numbers of DSPs and telling them the 
same application number and the same parallel part. The FPGA configures parallel 
level by informing DSPs of different parallel parts for a same application. 

In execution state, DSPs become the protagonist for the large amounts of data 
processing. The high performance feature of this system is shown in this state. Vari-
ous digital signals processing algorithm for the space application can be realized in 
the DSPs and even in parallel processing mode. 
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For critical data that contains key intermediate results or system output signals, the 
system must make sure its correctness. Simultaneously, considering the high perfor-
mance demand of the whole system, we design a faster hardware Compare-point me-
chanism in DSPs corresponding to the system’s compare state. In compare-point, each 
DSP sends the data to FPGA and waits for result. FPGA uses the TMR voting me-
chanism to select the right data. 

When a DSP’s data have error, the system will decrease the redundant level. For 
high reliability requirement, the fault DSP needs to recover and catch up with the 
system progress as soon as possible. In order to fulfill this function, the Fast Recovery 
mechanism has been designed. In recovery state, the fault DSP needs to store its last 
right stage progress in FPGA and reboots itself to the initial state and load it. 

4.2 Compare-Point Mechanism Design 

Compare-point mechanism is the basis of fault tolerance mechanism in HPFTS. By 
using compare-point mechanism, the faults can be tolerated efficiently. Actually, it is 
not necessary to compare all the data produced in DSP because not all the data are 
critical and satellites are not always work in the harshest environment [6]. When 
processing, the HPFTS only compare the critical data which determine the applica-
tions functions and output information. Thus, it is important to ensure high reliability 
of these data. 

 

Fig. 3. Compare-point States 

According to the application demands, programmers can decide what data need to 
be compared and how many compare-points need to be settled in program flexibility. 
Thus, the reliability of the system can be guaranteed and the waste of comparing time 
can be reduced effectively. 

When a DSP runs to a compare-point, it will call the response function to convert 
comparing data into 32-bit and send it to FPGA, then it will wait for the feedback. 
After all the running DSPs’ data have been received, FPGA will compare the data and 
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send the results back to DSPs. When the system’s redundancy level is 3, and the three 
comparing data are same, all the DSPs will be set to continue to process. If there is 
one data different with the other two, which means the corresponding DSP is error, 
this DSP will be set into recovery state by FPGA. If all the data are different, FPGA 
will reboot the whole system, as shown in Fig. 3. 

When a DSP has been detected failure and is recovering now, FPGA will not com-
pare its’ data and only compare the data of the two remaining DSPs. If the data of the 
two remaining DSPs are consistent, these two DPSs will continue to run. Otherwise, 
the system will wait for the recovering DSP’s data. Also, before catching up with the 
schedule of the other two DSPs, the recovering DSP is running in the fast recovery 
mechanism that will be mentioned in the next section. 

Performance is another important consideration of the compare-point mechanism. 
The data’s comparison will improve the reliability but decrease the performance of 
the system. So we need to reduce the compare-point’s cycle cost as much as possible. 
The DSP-to-FPGA’s data writing will stay several cycles. Different data writing inter-
face configuration will affect the performance significantly, which will be shown in 
the results and analysis section. What’s more, the FPGA should receive the compared 
data before the end of DSP write timing and return the results back immediately as 
long as the data are valid, which could definitely shorten the DSPs waiting time and 
improve the system performance efficiency. 

4.3 Fast Recovery Mechanism Design 

Based on the compare-point mechanism, the system will reduce the redundancy level 
and then reboot the error DSP when failure occurs. It is expected that the error DSP 
could recover and catch up the system as fast as possible. To improve the recovery 
speed, it is required to design a fast recovery mechanism to help the error DSP travel 
back to the track at the nearest station and pursue with the processing system. These 
are so-called progress store/load mechanism and station report mechanism. 

Considering the save/load cycles cost and the hidden errors in registers and memo-
ries, we will save the basic configuration information and the processing progresses 
that have been finished in our system. For example, in the situation of video 
processing, we will save the number of frames that have been processed. Basically, 
the progress is only recorded by the DSP after every frame processing finishing. Only 
if the DSP has been detected faulty will the last correct record data be stored in the 
FPGA, which can reduce time consumption and decrease the interaction between 
DSPs and the FPGA. 

When the DSP reboots after failure, the starting point of its application is decided 
by the loaded processing information instead of the original point. It can be the recent 
accomplished station in the system to pursue the progress or even the next station to 
wait for the progress arriving. Taking the video processing again as an example,  
when the system is processing at the N frame in the video, the recovered DSP can 
start at the N frame to catch up the system or start at N+1 frame to wait for the system 
arriving. 
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In rebooting process, in order to catch up with the system processing, the DSP 
must run faster than the system. Thus, the DSP needs to cut off the data comparing 
procedure and only change one output port signal at the compare-point to inform the 
FPGA that it has passed this point. When catching up with the system processing, the 
FPGA will tell the DSP to output the compared data again. 

5 Results and Analysis 

In this section, we describe the experimental results that present the performance and 
reliability of the HPFTS by the mechanisms of compare-point and fast recovery. The 
system will run a typical application for image/video processing with SEE soft errors. 

We verified the functionality of the HPFTS on a fundamental experiment environ-
ment. The DSP is TI TMS320DM642 with 600MHz CPU clock. The FPGA is Altera 
Cyclone EP1C6Q240C6 with 20MHz clock. The connections between the FPGA and 
DSPs are I/O ports and EMIFA interfaces. The debug environment is CCS v5.0.3 and 
emulator is SEED XDS560PLUS. The benchmark is TI TMS320C64x IMGLIB’s 
IMG_corr_gen function in C code [7]. 

5.1 Performance of Compare-Point 

More compare-points mean higher reliability and longer processing time. Program-
mers should know the relationship between compare-points and DSP cycles to insert 
proper compare-points in critical applications parts. 

We use the IMG_corr_gen benchmark. Calling the correlation function to process 
an image will produce 719 data. We call it for 10 times and compare the results after 
every calling. The every time comparing percent of 719 results is changing to draw 
the relationship of compare-points and DSP cycles. 

 

Fig. 4. Performance of Compare-points 

We configure the DSPs asynchronous EMIFA in default mode and faster mode and 
then get the two lines in Fig. 4. The faster’s EMIFA write timing is shorter by reduc-
ing the setup time, gating time and hold time to meet the frequency of the FPGA. We 
can see that 10 times correlation function without comparison costs about 2821320 
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cycles of DSP. And as comparison numbers increasing, the DSP cycles increase li-
nearly. So each data’s comparison costs 978 DSP cycles in default mode and 392 DSP 
cycles in faster mode. 

This result indicates that the compare-point’s transmission speed is the bottleneck 
of the system’s performance. When the faster EMIFA write timing decreases 85.7% 
(from 168 to 24 EMIF clock) from the default mode, each compare-point cost cycles 
decrease 60.0%. However, the synchronous EMIF is much faster than the 
asynchronous EMIF, which is planned as future work. 

 

Fig. 5. Performance of different Transmission Speed and FPGA Frequency 

Another bottleneck of the performance is FPGA’s frequency. The current FPGA’s 
20MHz frequency is much slower than the DSP’s. The 392 DSP cycles for each 
data’s comparison contain 144 cycles of EMIF transmission, 120 cycles of FPGA 
comparison and feedback and 128 cycles of DSP pipeline lossless in waiting 
comparison results. A faster FPGA can need less EMIF write time and cost less time 
in comparison and feedback. With the using of 150MHz FPGA, the EMIF 
transmission can be decreased to 72 (from 24 to 6 EMIF clock) DSP cycles and the 
comparison and feedback can be decreased to 16 (120 cycles * 20MHz / 150MHz) 
DSP cycles. So we can calculate that one data’s comparison costs 216 (72 + 16 + 128) 
DSP cycles by using 150MHz FPGA, as shown in Fig. 5. 

By using hardware TMR architecture, the system’s performance will be better than 
the software TMR. Running the IMG_corr_gen benchmark again, we assume that the 
71900 result data are all critical data and need to be correct. In the HPFTS, the 71900 
data will be transmitted from 3 DSPs to FPGA for comparing. In software TMR sys-
tem, the correlations for 10 images will run 3 times and the results will be compared 
in DSP [8]. The performance result is shown in Fig. 6. 

 

Fig. 6. Performance of different Redundancy Mechanisms 
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By inserting the compare-points manually, the data’s comparison amount is small-
er than the hard comparison system. So the system’s performance will also be im-
proved. Using the IMG_corr_gen benchmark again, there are 9 intermediate results 
for a signal final result. So in hard comparison system [9], there will be 71900*9 data 
to be compared, which are much larger than the compare-point mechanism system, as 
shown in Fig. 6. 

5.2 Reliability of the System and Performance of Fast Recovery 

For SEE in single DSP, the HPFTS can easily tolerate the fault because of the 3-DSPs 
redundancy architecture. By ejecting the errors in one DSP’s registers and memories 
and even by cutting off one DSP’s power, the system will execute with no pause and 
error. 

Rarely, the system will meet the situation that two DSPs continuously have error. 
To verify the HPFTS’s reliability, we inject 2 errors in ten pictures correlation 
processing. One error is in DSP_A’s 10th picture and another’s location changes from 
the DSP_B’s first to the last picture. And the DSP_C is correct. So when the system 
runs IMG_corr_gen benchmark, DSP_B will be checked fault first and recover. Then 
DSP_A and DSP_C’s comparing data will be different in the 10th picture. At that 
compare-point, they will pause and wait the recovery DSP_B to catch up and give the 
correct comparison data to judge which DSP is faulty. 

 

Fig. 7. System Performance for Errors in different Images 

The system’s pause because of two DSPs’ errors will affect the performance. Our 
system’s fast recovery mechanism will be helpful for it. For 10 images correlation, 
when a DSP is checked fault, it will save its processing states to the FPGA and recov-
ery in the nearest image of the system’s progress. 

From the result, we can see that one fault in the system will not affect’s system’s 
normal execution. Continued two faults will make the system pause and the pause 
time is determined by the DSP’s initial program. When the system restarts from the 
application’s beginning, the pause time will increase by the error’s location, as shown 
in Fig. 7. For the HPFTS, the DSP’s fast recovery takes about 1.37M DSP cycles. 
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6 Conclusion 

The system consists of three high performance COTS DSPs and a high reliability 
FPGA. The experimental results show HPFTS could efficiently tolerate single DSP’s 
SEE errors with no system pause and bear continuously two DSPs’ failures with a 
short pause. Therefore, reliability of HPFTS is trustworthy. 

Moreover, many methods have been adopted to improve system performance. 
Compare-point mechanism not only reduces comparing amount but also shortens 
comparing time. Fast recovery mechanism will speed up the failure DSP’s recovery 
and improve the overall efficiency of the system. 

Future work includes implementation of parallel mode, error self-detection and 
comparing speed improvement. We also plan to improve the system devices and  
mechanisms to pursue a higher performance of the system. 
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Abstract. With the popularity of the mobile terminal, there appears a
new trend to release all kinds of campus information by intelligent mo-
bile terminals. The efficient, intelligent and popular features of Android
smart phone platform will be combined with the campus information
system to achieve the synchronization and convenience of all types of
campus information release and to strengthen the communication be-
tween the various campuses of the same university. In this paper, we de-
sign and realize a campus information release platform based on Android
framework. This campus information release platform can effectively re-
duce the complexity of the information release system and strengthen
the real-time performance of information, which thereby promote the
information construction of the campus.

Keywords: Android framework, Campus information release, Mobile
information system.

1 Introduction

In the information society, universities have entered the era of digital information
campus. , and campus information release system has become a necessary prod-
uct. Android platform is an open-ended system to support a variety of scalable
user experiences, with a very rich graphics system, multimedia support and pow-
erful browser[1]. If we combine these advantages and the portability of phone,
then apply them to the campus information release platform, we can not only
solve the jumbled and cumbersome problem of information release platform, but
also can integrate the various characteristics of universities to develop the cam-
pus information system with its own characteristics and promote the innovative
construction of the campus information technology innovation[2].

Android refers to the original meaning of ”robot”, the name of the open source
mobile operating system Google announced on November 5, 2007. Android’s
biggest feature is that it is an open-ended system, with a very good development
and debugging environment and it supports a variety of scalable user experiences,
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and it has a very rich graphics system, multimedia support features and a very
powerful browser [3]. Android is a Linux-based open source operating system,
mainly used in portable devices. In the first quarter of 2011, Android caught up
with symbian system and ranked first in the global market share for the first in
the world. In February 2012, Android occupies 52.5% of the global smart phone
operating system market share, and the Chinese market share is 68.4% .

In this paper, we firstly do an overall analysis of campus information release
platform, and then design and realize a real campus information release platform
from System functional module, system architecture and technology road map
aspects. Furthermore, we also give the initial interface of our realization. This
campus information release plat-form can effectively reduce the complexity of
the information release system and strengthen the real-time performance of in-
formation, which thereby promote the information construction of the campus.
Our research is a useful attempt and this will also be a big breakthrough in the
construction of university digital information.

2 Overall Analysis of Campus Information Release
Platform

In this part, we do an overall analysis of campus information release platform,
which is based on the status of the our own universities: the university adminis-
trators releasing the information, teachers and students using the Android smart
phone client, by mobile or other telecommunications signals to access the campus
information server.

For this platform to fit the needs of students, we design a questionnaire survey-
ing college students across the country, and the findings are more representative.
According to the statistics, the proportion pie chart of the information which
the students are most interested in is in figure 1-3:

For the respect of the life, the statistics result is shown in figure 1:

Fig. 1. The proportion pie chart of the life information

The respect of the study and work are shown in figure 2 and figure 3
respectively:
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Fig. 2. The proportion pie chart of the study information

Fig. 3. The proportion pie chart of the work information

According to the statistics, about 60% of the students get access to the school
information by monitor, but only 30% of them catch the school information
through the campus network. More than half of the students said that they
communicate little with the teachers and their seniors, and they hope to com-
municate more with them. In terms of idle goods, 50 percent of the students
tend to put them aside. More than half of the students hope to be able to set
up trading in second module in this information release platform. Most of the
students said they support this platform.

In the end of the questionnaire, many students give us a lot of good sugges-
tions on the module. According to the statistics result, the modules they are
most interested are AC modules, message modules, enterprises recruitment in
campus, students questions, current events, part-time information, second-hand
goods transactions, campus affairs, notifications and so on. The requirements of
interface are mostly clear and concise.

3 The Design and Realization of Campus Information
Release Platform Based on Android Framework

3.1 System Functional Module Design

According to the statistical results in the need analysis,we design the overall
system functional module and it is shown in figure 4:
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Fig. 4. The System Function Module

As shown in figure 4, the information release platform includes campus in-
formation module, students information module, teachers and students world
module, social links module, life planning module and message board module.

The following describes each function module of the system in detail:

1. Campus Information module includes: Campus News—campus affairs, event
information and interesting news; Students Union—students unions recruit-
ment and activities information; Societies—the Introduction of the various
communi-ties, the information of recruitment and the activities; Campus
Notice— all kinds of notification information, such as holiday, course selection
notification, research and reporting and so on.

2. Students Information module includes: Score Query—for students to log and
query all subjects; Examination Management—for students to query recent
infor-mation about the examinations and related examination registration and
test center notice; Course Management—for students to log on to choose and
withdraw the courses and query curriculum; Resume—to query the award,
sanctions and other information obtained during the campus.

3. Teachers and Students World module includes: Teachers—teachers biograph-
ical and research information; Students— students’ style, including the selec-
tion of out-standing students and the Scholarships; Q&A—it is in the form
of the Forum, where teachers and students can ask questions and give an-
swers, to enhance the communication between teachers and students at all lev-
els; Drift Bottles—anonymous users can send information to unknown users,
the users who receive the information bottles can accept or refuse; Exchange
Experience—for teachers and students to show experience and to provide a
reference for others, and users can also ask for help.

4. Social Links module includes: Current Events— to update community news
for the students to browse; Campus Recruitment—the information of
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campus recruitment , the time, the place and some tips; Part-time—part-time
information; Entertainment—to update the audio and video entertainment in-
formation; Second-hand goods market—for teachers and students to publish
trading information to buy or to sell; Holiday Travel Attractions—holiday
travel routes, attractions and other characteristic information; Campus
Surroundings—supermarkets, shopping malls, cafes and other information
around the campus; Competitions—the information of the competitions for
college students.

5. Life Planning module includes: Postgraduate Entrance Exams—the registra-
tion, time, counseling agencies and the various college entrance information
of the Post-graduate Entrance Exams; Career Information—the information
of various occupational profiles, income ranking, proportion of graduate re-
cruitment and so on; CET 4&6—the information of registration, counseling
agencies of the CET 4&6; Driving Schools—driving campus quote and enroll-
ment information; Lectures—campus lecture information; Study Abroad—for
exchange students to apply for foreign graduate students and other related
information.

6. Message Board module is for the users to give comments and suggestions to
the publishing platform and campus. Users can leave messages freely in this
module.

The logistical departments, administrative and student groups can be arra-
gend to manage these modules reasonably.

3.2 System Architecture Design

As is shown in figure 5, the Android client establishes a connection with the
server through the GSM (Global System for Mobile Communications) base sta-
tion. The switchboard is used to connect the server and database and to establish
the electrical signal path. The Physical Isolation Network Gateway is used to
ensure the safe and moderate data exchange in the network [4].

Fig. 5. The System Architecture
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3.3 Technology Road Map Design

As like the realization in paper[5], we use the C / S mode, which is helpful
to reduce the servers running load, to optimize the data storage management
functions, and reduce the complexity of the client runs. This mode is also helpful
to reduce the occupancy of mobile resources,client traffic, and it may be useful
to lower problems of mobile phones [6].

As the Android client, we use Java language to develop and use the HTTP
network protocol for Network communication. Data is encapsulated in XML for-
mat in the transfer process, so as to reduce the data flow and speed up response.
At the same time, we use the Struts2 framework which is safer and easier to use
[7].The Spring Framework is respond for the requests of customer for the Web
server. Spring uses the low-intrusive design, and the code contamination is very
low. It is independent from the various application servers, and can reduce the
complexity of the business object to replace [8].The Hibernate framework is used
to access the database, which can be more convenient for the programmer to op-
erate the database [9].The Web Logic Server is used for the Web server, which
has the leading standard, the higher scalability and the more flexible deployment
[10].

We use the Oracle database to store data, which is efficient for big data and
is easy to deal with data recovery problems [11].

4 User Interface Design

According to our need analysis and survey, interface design should be clear and
concise. The initial interface of the client is shown in figure 6.

Fig. 6. The initial interface of the system
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The above six buttons in the user interface correspond to the link to the six
modules, and you can click on the link to enter the lower branches of modules
and perform operations in accordance with the system functional design. There
are two buttons under the six buttons in the initial interface ”login” and ”exit”.
They correspond to the link to the log-in screen and exit of the program. For
example, click on ”Campus Information System”, there will be four branches in
four button links in the middle of the interface shown in figure 7, the interface
is the module, and then you can click a button which is linked to information
browsing, voice mail and other operations. The ”Back” button in the bottom
right corner corresponds to the link to return to the layer interface.

Fig. 7. The interface after entering the module of Campus Information System

5 Conclusion

In today’s information society, the campus information system has become the
main way for universities to publish information. Its contact with Android and
the mobile terminals—smart phone, and the development of a more conve-
nient real-time information dissemination platform will undoubtedly have great
prospects.

In this paper, we firstly do an overall analysis of campus information release
platform, and then design and realize a real campus information release platform
from system functional module, system architecture and technology road map
aspects. We also show the initial client interface of our realization. Our research
is a useful attempt and this will also be a big breakthrough in the construction
of university digital information.
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Abstract. In this paper, we proposed a hardware Gaussian random number ge-
nerator based on the Box-Muller method. To reduce the resource complexity, an 
efficient word-length optimization model is proposed to find out the optimal 
word-lengths for signals. Experimental results show that our word-length opti-
mized Fixed-Point generator runs as fast as 403.7 MHz on a Xilinx Virtex-6 
FPGA device and is capable of generating 2 samples every clock cycle, which 
is 12.6 times faster compared to its corresponding dedicated software version. It 
uses up 442 Slices, 1517 FFs and 1517 LUTs, which is only about 1% of the 
device and saves almost 85% and 71% of area in comparison to the correspond-
ing IEEE double & single Floating-Point generators, respectively. The statistic-
al quality of the Gaussian samples produced by our design is verified by the 
common empirical test: the chi-square (X2) test. 

Keywords: Box-Muller Method; Hardware Gaussian Random Number Genera-
tor; FPGA; Word-Length Optimization. 

1 Introduction  

High quality Gaussian random numbers is essential in a large number of computa-
tionally intensive modeling and simulation applications, especially Monte-Carlo  
simulations. It is well known that in Monte-Carlo simulations the quality of the under-
lying random numbers plays a key role for the accuracy of the final computation re-
sults. Currently, due to recent advances in reconfigurable hardware in the form of 
Field-Programmable Gate Arrays (FPGAs), hardware-based simulations are getting 
increasing attention because of their huge performance advantages over traditional 
software-based methods [1]. Being the critical component of many scientific applica-
tions, designing a hardware Gaussian Random Number Generator (GRNG) that is 
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capable of providing high quality Gaussian distribution sequence to fully utilize the 
parallel nature of hardware is also becoming more and more important in modern 
systems. 

Despite the importance, most of the research that has been done on the Gaussian 
generation method concentrates on algorithms and relevant software implementations 
[2] [3] [5] [6]. Hardware implementations are usually not sufficient in the literature. 
Lee et al. [1] proposed a hardware GRNG based on the Box-Muller method. The 
word-length of signals in this generator is determined using mathematical analysis 
method. Zhang et al. [7] presented a ziggurat-based hardware structure for generating 
Gaussian samples. It used the Combined Tausworthe method [4] as the fundamental 
Uniform Random Number Generator (URNG) and evaluated the speed and size ad-
vantages on a Xilinx Virtex-2 FPGA device. 

In this paper, we propose a hardware GRNG for efficient implementation of Box-
Muller method. The WELL19937 algorithm [10] is adopted as the basic URNG and a 
simulation-based method is used for the word-length optimization. More specially, we 
make the following contributions.  

• We design a hardware architecture for the Box-Muller method that can achieve a 
throughput of 2 sample per clock cycle, with modest resource overhead. 

• We develop a simulation-based model to determine the optimal word-length of 
signals, which maximize the performance/cost efficiency of the GRNG system. 

• We adopt the WELL19937 algorithm as the basic URNG in our design, which is 
proven to be capable of generating uniform distribution samples with high quality. 
Thus guaranteeing the Gaussian distribution property of the variables generated by 
the Gaussian system. 

• We evaluate the proposed architectures using the standard test suite, the chi-square 
(X2) test, and implement it on a Xilinx Virtex-6 FPGA device.  

The rest of the paper is organized as follows. Section 2 gives a brief introduction of 
the algorithmic background of the Box-Muller method. Section 3 presents our Box-
Muller-based hardware architecture, and Section 4 presents technique-specific im-
plementations, discusses evaluations and results. Finally, we conclude this paper in 
Section 5. 

2 The Box-Muller Method 

The Box-Muller method [3] is one of the most widely used Gaussian sample genera-
tion method. It is an exact transformation method and is capable of producing a pair 
of Gaussian sample from a pair of Uniform random numbers via a series of transfor-
mation. The pseudo-code for implementing this method is described in Fig. 1. Where 
U1, U2 are the pair of basic uniform random samples and g1, g2 are the two generated 
Gaussian random samples. One can see that the transformation involves four elemen-
tary functions, i.e., the logarithmic, the square root, the sine and the cosine functions, 
and in each iteration when it is executed, two independent Gaussian samples can be 
generated. 
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3 Hardware Architecture for the Box-Muller Method 

Fig. 2 illustrates our hardware structure for Box-Muller method. It consists of two 
main parts: the Uniform Random Number Generators (URNGs) and the elementary 
function approximation units. 

The URNGs: One prevalent URNG is the Mersenne Twister [9], which is widely 
used for its high quality, long-period and high performance. However, this generator 
is proven to have some serious weaknesses [10]. The Well Equidistributed Long-
period Linear (WELL) method [10] overcomes these drawbacks while retaining an 
equal period length and achieving better quality. So it is preferable for applications  

 
Algorithm 1. The Box-Muller Method 
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Fig. 1. The pseudo-code for implementing the Box-Muller method 
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Fig. 2. The overview of our proposed Box-Muller architecture 

 
 



132 Y. Li et al. 

such as ours which require samples with extremely stringent randomness. For this 
reason, we choose WELL as the basic URNGs in our design and adopt the WELL-
based structure we proposed in [11], which is area-efficient and capable of generating 
one sample every clock cycle. 

The Elementary Function Approximation Units: The accurate and efficient estima-
tion of elementary functions (i.e., the logarithmic, sin/cos and square root functions) 
are necessary for efficient implementation of the Box-Muller generator. Consider an 
elementary function f(x), where x is in the range [a, b]. The evaluation f(x) typically 
consists of three steps [1] [12]: 1) range reduction: reducing x over the interval [a, b] 
to a more convenient y over a smaller interval [a’, b’]; 2) function approximation on 
the reduced interval, and 3) range reconstruction: expansion of the result back to the 
original result range. 

We adopt the methods presented in [1] to estimate the elementary functions in our 
design (i.e., the logarithmic, the sin/cos and the square root functions). Detailed struc-
tures for these approximation units are illustrated in Fig. 3, Fig. 4 and Fig. 5, respec-
tively. For the logarithmic function and the square root functions, a Leading Zero 
Detector (LZD) and some combinatorial logics such as shifter and multiplexer are 
used to perform the Range Reduction based on the equivalent transformations in the 
form of (1) and (2), respectively. Where y is the reduced argument and k is the output 
of the LZD unit. For the sin/cos functions, because of their periodicity, we only needs 
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We use the table-with-polynomial method [1] [12] to approximate the functions over 
the reduced range. The reduced intervals [0.5,1] and [0.25, 0.5] of the logarithmic and 
the square root functions are further split into 32 equally sized segments, and 5 bits in 
proper positions of the argument y are served as the indexes into the tables. The re-

duced range [0, 
2

π
] of the sin/cos functions are split into 101 segments and the 7 most 

significant bits are served as the index. The tables contain all the coefficients for each 
interval, which are obtained via a minimax approximation that minimizes the maxi-
mum absolute error using MAPLE [1] [12]. We found that for each interval, a poly-
nomial with a degree-1 is enough to meet the precision requirement for our system. 

Word-Length Optimization Model: One critical point in designing a hardware 
GRNG is the transformation from Floating-Point to Fixed-Point, or word-length  
optimization for signals in other words. This process is performed to reduce the  
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implementation complexity of the system. There are typically two categories of  
approaches for word-length optimization: the analytical method [13] [14] and the 
simulation-based method [15] [16]. Which adopt numerical analysis and program 
simulation to determine the word-length of signals, respectively. Compared to the 
analytical method, the simulation-based method is capable of obtaining better solu-
tions and can be applied to more complicated system including loops. So we choose 
this method to perform the word-length optimization in our system.  

The algorithm of the word-length optimization for our design is described in Fig. 6. 
A software simulator is developed, this simulator is programmed to be bit-accurate to 
the actual hardware realization and the word-length of signals can be flexibly confi-
gured. The starting point for the search is determined using the base point method 
proposed in [16] and the Sequence Search [16] is used as the search engine. In each 
iteration, 109 samples are produced for the X2 testing [17]. The search process  
finished when the sequence passes the X2 testing. 

 

Fig. 3. Hardware structure for the approximation of the square root function 
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Fig. 4. Hardware structure for the approximation of the logarithmic function 
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Fig. 5. Hardware structure for the approximation of the sin/cos functions 
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Algorithm 2. Word-length optimization process for Box-Muller 

1. Develop a software simulator for Box-Muller in which the word-length of 

signals can be configured.  

2. Determine the starting point. 

3. Find the next word-length vector Wk using the Sequence Search [16]. 

4. Update the software simulator using Wk, run and produce 109 samples 

5. if the sample sequence pass the X2 testing then  

6.   output Wk as the optimized word-length vector, the search is finished.  

7. else 

8.   goto step 3. 

Fig. 6. Algorithm of word-length optimization for Box-Muller 

4 Implementation and Evaluation 

We implement the architecture described in Section 3 on a Xilinx Virtex-6 
XC6VLX240T FPGA device (hosted on the ML605 evaluation board). The design is 
described in Verilog HDL and synthesized & implemented using Xilinx ISE 12.1. 
The initial design is simulated in Modelsim SE 6.5 and the software simulator is used 
to ensure the functional correctness. Optimization techniques, such as register-
retiming, are adopted to improve the clock speed of the system. 

For comparison, three reference designs are implemented: one software generator 
and two hardware generators of Box-Muller based on the IEEE double & single Float-
ing-Point models, respectively. All hardware designs are built on exactly the same 
device with the same configurations and the software design runs on a 2.67-GHz Intel 
Core i5 processor with 6GB DDR3 SDRAM.  

The comparisons between different implementations are summarized in Table 1. 
One can see that our proposed generator achieved a 12.6-fold speed up compared to  
 

Table 1. Comparison of resource usage and performance for different implemenations 

Type                           Fixed-Point         Floating-Point        Floating-Point      Software Version 
                                    (proposed)              (Single)                     (Double) 
Platform                          HW                       HW                             HW                        SW 
Slices                                442                       1544                           2956                         - 
Flip-Flops                       1517                      4958                           11048                       - 
LUTs                               1517                      5014                           9595                         - 
BRAMs                             9                             9                                14                           - 
DSPs                                 31                          35                               96                            - 
Freq.(MHz)                   403.7                      386.7                          335.0                        - 
Thouput(M/sec)            807.4                      773.4                          670.0                      64.0 
Speedup                         12.6                        12.1                           10.5                         1.0 
X2 test of g1                    pass                        pass                            pass                        pass 
X2 test of g2                    pass                        pass                            pass                        pass  
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its optimized software version. Moreover, our word-length optimized Fixed-Point 
generator achieves a great reduction in area usage versus the corresponding Floating-
Point designs while retaining the highest performance. 

5 Conclusion 

We present a hardware Box-Muller GRNG which achieves high performance, high 
quality output while incurring low resource complexity. As for the performance, it is 
capable of producing 807.4 Million samples every clock cycle, which is 12.6 times 
faster than its dedicated software version. Moreover, by applying the word-length 
optimization model to minimize the word-length for signals, the resource cost is really 
low. It uses up 442 Slices, 1517 FFs and 1517 LUTs, which is only 1% of the device 
and saves about 85% and 71% area compared to the corresponding IEEE double & 
single based generators, respectively. The Gaussian samples generated by our design 
successfully pass the standard statistical test suite of the X2 test, proving the correct-
ness of our design. We expect our Gaussian structure apply to various hardware-based 
simulation systems. 
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Abstract. Communication in large scale interconnection networks can
be made more efficient by designing faster routers, using larger buffers,
larger number of ports and channels, but all of which incur significant
overheads in hardware costs. In this paper we present a dual-port shared
buffer scheme for router. The proposed scheme is based on a dynam-
ically allocated multi queue and four-port Register File. Two physical
channels share the same input buffer space. This can provide a larger
available buffer space per channel when load is unbalanced among phys-
ical channels and virtual channels. We give the detailed organization of
shared buffer and management of idle buffer. Result of simulation shows
that the proposed method has similar performance using only 75% of the
buffer size in traditional implementation and outperforms by 5% to 10%
in throughput with the same size.

Keywords: interconnection network, DAMQ, virtual channel, input
buffer.

1 Introduction

Interconnection networks are widely used for inter-processor communication in
both multiprocessors and supercomputers with multi-stage networks. Virtual
channel (VC) [1][2] technology is extensively used to boost performance and
avoid deadlock. Each VC is realized with a pair of buffers located on adjacent
communicating nodes. When the flit-consumption rate of an input buffer is lower
than the flit-arrival rate, the buffer congestion occurs.

Buffer congestion can also propagate throughout the network. When the ar-
riving flits cannot be received by a downstream router due to the lack of buffer
space, the flits must continue to be buffered at the upstream router. It di-
rectly reduces the transmission speed of flits among routers. Thus, the maximum
throughput of a router depends directly on how efficient the router is at storing
the flits that cannot be transmitted immediately and forwarding them when the
appropriate output channel is no longer busy or congested.

The easiest solution for enhancing performance such as a higher throughput is
to increase the buffer size, thereby reducing the severity of congestions. However,
the buffer space cannot be effectively increased if a system is constrained by an
upper limit on hardware resources.

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 138–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Thus, the architecture and implementation of routers for these networks,
particularly their internal buffers, are critical for achieving, at low cost, the
performance goals of high throughput and low-latency communication. In a
wormhole-switching [3] network with several virtual channels multiplexing a
physical channel, routing algorithms tend to choose one set of virtual channels
over others; thus the traffic load is not evenly distributed in the entire buffer
space for a physical channel. A more efficient approach to use the available
buffer space is to let the virtual channels belonging to a physical channel share
buffer with virtual channels of another physical channel.

2 Related Works

Tamir and Frazier [4] classified the buffered switch architectures into four major
types, FIFO, SAFC, SAMQ and DAMQ. This classification is based on how the
input queues are manipulated and how data is stored.

Dynamically Allocated Multi-Queue (DAMQ) buffer [4] was proposed as a
unified and dynamically allocated buffer structure. More precisely, within each
buffer there are separate FIFO queues of packets destined for each output chan-
nel. Every read and write operation needs three cycles to complete, which might
be excessive for high speed router. To enable intra-channel buffer sharing, DAMQ
with self-compacting buffer was introduced [5] [6].A disadvantage of their ap-
proach is specific buffer customization.

A dynamic VC architecture was proposed by Lai et al. [2] to solve the head
of line problem. However, their proposed architecture could not effectively use
all the unused buffers of other input channels.

A Reliability Aware Virtual channel (RAVC) NoC router micro-architecture
[7] was proposed. In particular, in the case of failure in routers, the virtual
channels of routers surrounding the faulty routers can be totally recaptured and
reassigned to other input ports.

The DAMQ-SHARED buffer that combined the buffer for virtual channels
from two different physical channels was proposed by Liu [8]. It is also based on
with self-compacting buffer. Though the DAMQ-SHARED buffer design can be
used to enhance the utilization of inter-channel buffers, the design complexity is
also increased due to the complex control logic of the DAMQ buffer.

Our new DAMQ-DP buffer combines the buffer for virtual channels from two
different physical channels without shortcomings above.

3 DAMQ-DP (DAMQ for Dual Port) Scheme

In this paper, we assume the use of wormhole-switching and fixed length flow
control unit (flit). And for simplicity, only two virtual channels exist in one
physical channel.

For two physical channels can access the shared buffer simultaneously, we
choose four-port RF (2R2W Register File) for the data memory. Four-port RF
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Fig. 1. DAMQ-DP structure

has separate address, data, and control inputs for each of the ports. Each phys-
ical channel uses one pair of these read/write ports to access the RF. All vir-
tual channels belonging to one physical channel access memory with the same
read/write port. To differentiate the router port and RF port, sometimes we
name the router port as CP (channel port), and RF port as MP (memory port).

Fig. 1 presents the DAMQ-DP structure with 2 virtual channels in one CP.
The main modules comprise: 1) shared buffer for data and pointer; 2) pre-
fetching buffer for each VC to pre-fetch data from shared buffer as well as bypass
function writing data from input channel into pre-fetching buffer directly; 3) head
and tail pointer management for each VC; 4) idle list manager in charge of idle
flit buffer; 5) multiplexer for multiple VCs access to the same read/write port of
shared buffer in one CP (not show in this figure)

3.1 Shared Buffer with Pre-fetching and Bypass

Flits in one VC are organized with linked list and each slot in shared buffer is
used to store a flit and a pointer to the next flit of the same VC.

Shared buffer is implemented with four-port RF, known as 2R2W Register
File. It has two read ports and two write ports. Each CP uses one pair of
read/write ports, usually with the same clock. The port, either read port or
write port, often has similar signals, such as clock, enable, address bus and data
bus. Read operation in this kind of buffer is different from the usual ways of
accessing register, and is more like SRAM. Reading from port of the RF is syn-
chronized by the read clock. At the next rising edge of clock, the data in the
memory location indexed by address will appear at the output bus. That is,
there is one-clock latency between issuing address and data availability. For the
next read pointer is also included in the data, such characteristic will degrade
performance greatly. The only way to pipeline the read access in the same VC
is to get the data immediately when issuing read address.
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To accelerate the read access of shared buffer, each VC is equipped with a
private pre-fetching buffer with the depth set to three. Just as what the buffer
name means, its function is to store data pre-fetched from shared buffer tem-
porarily. It consists of three registers. The read request from crossbar arbiter
is always directed to the pre-fetching buffer, so the corresponding data and the
next address will be valid at the same rising edge of clock, and at the same time,
we get the next flit address to read from. This avoids the three clock defect in
original DAMQ.

The arriving flits from input channel can be written into shared buffer, or into
private buffer by bypass. The choice depends on the states of both pre-fetching
buffer and shared buffer. The rule is, if the destined VC has no data in shared
buffer and pre-fetching buffer is not full, the arriving data should go into private
buffer directly, else the data should be written into shared buffer.

If private buffer is not full and there are data in shared buffer, data read
should be launched from shared buffer into private pre-fetching buffer. For there
are more than one VC in a physical channel, and all of them access the shared
buffer with the same read port. Some of them may want to fetch data from shared
buffer simultaneously, thus there should be an arbiter to resolve the competition
and multiplex the common port. Every time more than one VC needs to fetch
data, only one of them can be admitted. Arbiter can use some kind of scheduling
scheme such as round-robin to fulfill this task, choosing only one VC each time.

3.2 VC Head and Tail Pointers

Each VC has a head pointer (HP) and a tail pointer (TP) to organize the data in
shared buffer into FIFO structure. HP points to the address of shared buffer the
next read accesses, and TP points to the address the next write happens. When
a flit arrives at input buffer, CP applies for a free slot from idle list manager.
The applied address will be the TP value in next clock cycle. The data and
the applied address are written into the shared buffer with the write address
corresponding to current TP. When data are needed from shared buffer, the
flit can be accessed from current HP pointing to, and at the same time HP is
updated with the pointer contained in data. Finally the address of current HP
is sent to idle list manager for reclaim. As we can see, HP and TP always point
to the next operations happen, and flit can be read or written without incurring
further latency. At the time the system is initialized, HP and TP of the same
VC have the identical value, but they are different from other VC’s.

3.3 FIFO Structure of Idle List Manager (ILM)

ILM organizes all free slot addresses for shared buffer into a FIFO, and puts
them in SRAM, instead of linked list as others. Fig. 2 presents the structure of
ILM. To hide the access latency of SRAM, it also has the similar bypass and pre-
fetching circuits as shared buffer. An alternative choice is to use 1R1W Register
File or Register Array, which can give data out immediately without waiting for
one more clock period.
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If there are no data in SRAM and the pre-fetching buffer is not full, the
reclaimed address can be written into pre-fetching buffer directly, otherwise it
should be written into SRAM. If pre-fetching buffer is not full and there is data
in SRAM, data will be read out from SRAM and written into pre-fetching buffer.
The depth of pre-fetching buffer is set to three too. According to the mechanism
above, if data number is no more three, all data will exist in pre-fetching buffer.
If data number is above three, the top three exist in pre-fetching buffer, and the
remaining are in SRAM. This kind of internal FIFO structure is transparent to
the outside of FIFO. The read access to FIFO involves no latency and can get
the needed data immediately. The data must be gotten from pre-fetching buffer,
and not from SRAM.

ILM needs initialization after system reset. Except for those addresses allo-
cated to HP and TP of each VC, all other slot addresses are marked as idle and
need to be included in SRAM. When a flit arrives, CP requests an empty slot
from ILM for the flit; when a flit leaves, the corresponding slot is reclaimed to
ILM. With the help of pre-fetching buffer, an idle slot can be gotten at the same
time when needed, which promises zero latency and pipelining operation.

Allocation of Idle Slots. Each unit in idle list FIFO is a pair of shared buffer
slot addresses, slot 0 address and slot 1 address. In addition to the FIFO, there
are also two registers, F GET and F PUT, each of which can store a single slot
address. And also, two tags, TAG0 and TAG1, mark the responding register’s
state. If a valid address is in F GET, TAG0 is set true. If a valid address is in
F PUT, TAG1 is set true.

For two CPs share the same buffer space, at most two flits can arrive and
apply for spare slots. If there is only one request, the first to do is to check if
TAG0 is valid. If TAG0 is valid, the address in F GET is sent to the correspond-
ing CP, and TAG0 is set invalid. If TAG0 is invalid, the slot 0 in head position
is sent to CP and address in slot 1 is sent to F GET. And then, FIFO read ad-
dress increases. If both CPs request for slots, slot 0 in head position is assigned to
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CP0, and slot 1 to CP1. And then, FIFO read address increases. Following gives
the description of allocation algorithm.

if(CP0_REQUEST && CP1_REQUEST)

begin

CP0_REPLY = FIFO_HEAD[SLOT_0];

CP1_REPLY = FIFO_HEAD[SLOT_1];

READ_ADDR = READ_ADDR+1;

end

else if(CP0_REQUEST)

begin

if(TAG0)

begin

CP0_REPLY=F_GET;

TAG0 =FALSE;

end

else

begin

CP0_REPLY = FIFO_HEAD[SLOT_0];

F_GET = FIFO_HEAD[SLOT_1];

TAG0 = TRUE;

READ_ADDR = READ_ADDR+1;

end

end

else if(CP1_REQUEST)

begin

if(TAG0)

begin

CP1_REPLY=F_GET;

TAG0 =FALSE;

end

else

begin

CP1_REPLY = FIFO_HEAD[SLOT_0];

F_GET = FIFO_HEAD[SLOT_1];

TAG0 = TRUE;

READ_ADDR = READ_ADDR+1;

end

end

Reclaim of Idle Slot. Just as allocation of idle slot, the reclaim of idle slot
has two possibilities, the number of released slots may be one or two. If one slot
is released at a time, the first thing to do is to check if TAG1 is valid. If TAG1 is
invalid, the slot address is written into F PUT, and TAG1 is set valid. If TAG1
is valid, both addresses of released slot and the one in F PUT are written into
FIFO, and then, FIFO write address increases. If both CPs released their slots
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at the same time, both addresses of released slots are written into FIFO, and
then, FIFO write address increases. Following gives the description of reclaim
algorithm.

if(CP0_REQUEST && CP1_REQUEST)

begin

FIFO_TAIL[SLOT_0] = CP0_ADDR;

FIFO_TAIL[SLOT_1] = CP1_ADDR;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

else if(CP0_REQUEST)

begin

if(!TAG1)

begin

F_PUT = CP0_ADDR;

TAG1 = TRUE;

end

else

begin

FIFO_TAIL[SLOT_0] = CP0_ADDR;

FIFO_TAIL[SLOT_1] = F_PUT;

TAG1 = FALSE;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

end

else if(CP1_REQUEST)

begin

if(!TAG1)

begin

F_PUT = CP1_ADDR;

TAG1 = TRUE;

end

else

begin

FIFO_TAIL[SLOT_0] = CP1_ADDR;

FIFO_TAIL[SLOT_1] = F_PUT;

TAG1 = FALSE;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

end
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4 Experimental Results

The proposed scheme is simulated at the cycle-accurate level. The architecture
we simulate is an 4-ary 2-cube message exchanging system without wrapped
around channels. Each router is attached to one local end-node for injecting and
sinking. Some of simulation configuration parameters are as follows:

1)Packets size is set to 8 flits
2)Switching technique used is wormhole
3)VC number in one physical channel is 4
4)Injection process is Bernoulli
5)Routing protocols are dimension-order(DOR) and Valiant [9]
6)Traffic patterns are uniform and transpose

The most basic performance measures of any interconnection network are its
latency and throughput versus offered load. We set the total buffer size for each
physical channel to 32 flits when SAMQ and normal DAMQ are used. In order to
examine the performance of DAMQ-DP with regard to the relationship between
buffer size and network performance, we use three different sizes, 24, 26 and 32
flits buffer respectively. By varying the injection rate, we study their impact on
throughput and message latency of the network.

The simulation results of network throughput and message latency under
uniform traffic with DOR routing is shown in Fig. 3.

There is hardly any difference for various buffer schemes while the network
traffic is low. As to latency, there comes the forking point when the applied
traffic load is increased to 0.5. As far as throughput is concerned, the forking
point is at 0.3. Along with the network saturation process, DAMQ-DP has higher
throughput and lower latency than both DAMQ and SAMQ when they all use
same size 32-flits buffer. Comparing DAMQ-DP32 with SAMQ32 we can find
the throughput is improved about 10% when load is a light higher. DAMQ-DP
with 24-flit buffer achieves approximately the same latency and throughput as
SAMQ32, but the buffer in former is only 75% of the latter.

While under transpose traffic pattern, Fig. 4 and Fig. 5 the divarication comes
out early when considering latency. There is no significant difference for different
buffer schemes below load 0.3. After this point, the difference becomes very clear.
Regarding the message latency and throughput, DAMQ24 managed to hold a
similar performance as SAMQ32. With the same traffic load and buffer size,
DAMQ-DP32 can provide a higher throughput about 5% than SAMQ32.

We also change the routing strategy to Valiant. Under uniform traffic pattern,
we can find the similar conclusions as DOR except that throughput for different
schemes discriminates earlier.

From the figures above we can find out that DAMQ-DP tends to provide
a more efficient method for flits to share buffer space than DAMQ which has
already shown advantages over traditional SAMQ scheme. DAMQ-DP achieves
the best performance among the three buffer schemes we tested. It can utilize
less buffer space without sacrificing the network performance.
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Fig. 4. Transpose traffic pattern, DOR
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5 Conclusion

To enhance the performance of router with fewer buffers for higher throughput
and lower communication latency, we propose a buffer sharing scheme that can
share the common buffer space between ports, present the buffer structure and
idle flit manager. The experiments show that the scheme supersedes SAMQ and
DAMQ in terms of both throughput and latency. The scheme has the follow-
ing features: 1)Less buffer space at similar performance. Under uniform traffic,
DAMQ-DP gets the similar performance with 75% buffer. 2)Higher throughput.
It outperforms SAMQ with 5% to 10% higher in uniform traffic simulations
when same size buffer is used. Above all, DAMQ-DP is an excellent scheme to
optimize buffer management providing a good throughput when the network has
a larger load.
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under contract 2012AA01A301.
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Abstract. Reliability issue such as soft error due to scaling IC technology, low 
voltage supply and heavy thermal effects, has caused fault tolerant design be a 
challenge for NoC(Network-on-Chip). The router is a core element of the NoC, 
and the virtual channel based on flip-flop which occupies most of the area is the 
most sensitive element to soft error of the router. Focus on this problem, a dy-
namic reliable virtual channel architecture is proposed in this paper. It can 
detect the utilization of the virtual channel to adjust physical configuration to 
support for no-protection, dual redundancy and TMR (triple modular redundan-
cy) requirements in flexibility. Compared with typical TMR virtual channel  
design, the synthesis results show that our method can achieve several fault to-
lerant structures switch with near 3 times resource utilization in ideal case and 
only 13.8% extra area cost. 

Keywords: NoC, reliable, virtual channel, dynamic structure. 

1 Introduction 

With the rapid development of IC technology, more and more IP cores will be inte-
grated on one chip. But the traditional bus based SoC design will meet many prob-
lems, such as the integration and reusability of IP cores. An efficient solution to these 
problems is NoC, which has regular structure and much higher bandwidth due to mul-
tiple concurrent connections. But the shrinking feature size makes more transient 
faults, including crosstalk, charge sharing and SEU (Single Event Upset) [1], which 
will degrade the NoC performance even result in system crash. So reliability research 
has become a hot spot of NoC design.  

The router is one of the core elements of NoC, because the packet transmits in NoC 
through the router. Virtual channel, which is the main buffer of the router, is the most 
sensitive element of the router. We find that reliable virtual channel has become a 
challenge for NoC design since that virtual channel consumes about 46% of power [2] 
and 75% of area of the router [3]. At the same time, different applications or even the 
same application such as H.264 may have different reliability requirements. So it is 
important to design a reliable virtual channel which can support different reliability 
requirements.     

In this paper, we propose a reliable virtual channel design, which can detect the uti-
lization of the virtual channel to adjust the redundancy structure to support for  
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no-protection, dual redundancy and TMR requirements. Major benefit of the proposed 
design over its counterparts is: it can exploit the inherent redundancy to meet different 
fault tolerant requirement. 

The rest of this paper is organized as follows. Related work will be described in 
Section 2. Basic background and router structure will be described in Section 3. The 
proposed reliable virtual channel design will be described in Section 4. The results 
and comparison is presented in Section 5. Conclusion is drawn in Section 6. 

2 Related Work   

Reliability research of NoC has become a hot spot from different aspects, including 
retransmission mixed with error detection, spare link or router, triple modular voting 
structure and fault tolerant routing algorithm. Murali etc [4] proposed an error detec-
tion and recovery scheme for NoC design based on area, power and performance 
constraints. Yung-Chang Chang etc [5] proposed a fault tolerant NoC architecture 
using spare routers. Fault tolerant routing algorithms, including stochastic and  
adaptive, have been suggested in many papers [6-7]. 

The research and design above are mostly based on system level, and analyzed by 
the simulator. There are also some researches aiming at implementation of the ele-
ment of NoC. Shih-Hsun Hsu etc implemented a router for ANoC [8]. M. H Neisha-
buri etc [9] proposed an enhanced reliability aware NoC router for permanent error. 

In this paper, different from previous works, we design and implement a virtual 
channel support for different reliability requirements by the Verilog HDL and com-
pare the area cost with the traditional designs. 

3 Basic Router Architecture 

In order to introduce proposed virtual channel design, we give the basic router micro-
architecture as Fig 1 shows. In most of wormhole flow control mechanism based  
 

 

Fig. 1. Basic router microarchitecture 
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design, virtual channel is allocated in input channel. And it is the main buffer in the 
router. There are also some combinational logic part, such as routing computer part 
(RC), virtual channel allocator (VCA) and crossbar. The data packet will be divided 
into many flits to transmit in NoC, and one head flit will be added to control the data 
flow. The head flit will work in RC and VCA to decide which port and which virtual 
channel to flow. But the data flit, which carries the data payload, will stay in virtual 
channel for several cycles. So the virtual channel needs to be protected.    

4 Proposed Reliable Virtual Channel Design 

Our virtual channel design includes three aspects: 1) Flit format needs to be modified, 
which demands 3 extra bits. Two of them denote RR (Redundancy-Requirement), 00 
means that the flit has no reliability requirement, 10 means the flit is dual redundancy 
data, 11 means the flit has TMR requirement. The other bit is parity check bit, which 
is support for dual redundancy data. And the new flit format also needs extended link, 
crossbar and FIFO bandwidth support. 2) The virtual channel needs to be re-designed, 
which is shown in Fig 2, including extra status registers (VC-Org and Friend-VC) to 
generate the redundancy structure signals and two auxiliary pointers to maintain two 
or three copies read and written in one cycle. 3) The router pipeline needs to be 
changed, which requires two stages, VC-in-configure and VC-out-configure to control 
the write and read of the virtual channel.    

 

Fig. 2. Proposed Virtual Channel Architecture 
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VC-in-Configure: The function of this stage is to determine the redundancy structure 
of the virtual channel when the flit writes. The flowchart of the stage is shown in Fig 
3. When a head flit will be written into the virtual channel, RR will be decoded at 
first. 

• If RR is 00, which is region 1 in Fig 3. It means the packet (all flits after the head 
flit and before another head flit) has no reliability requirement. The flit will be 
stored in the virtual channel lane which is be allocated in the VCA, and the status 
registers of the lane will be the initial value. 

• If RR is 10, which is region 2 in Fig 3. It means the packet has dual redundancy 
requirement (with parity check). Then we will check if there are two empty lanes 
in the virtual channel, just because only the empty lane is available in the worm-
hole flow control mechanism. If there are two empty lanes in the virtual channel, 
the flit will be stored in the two lanes. And each lane has a status register called 
Friend-VC as shown in Fig 2, which record the lane that stores the same flit with 
this lane. It achieves the transverse redundancy structure. If there is only one empty 
lane in the virtual channel, the flit will be stored in this lane twice with the help of 
the two auxiliary pointers of the FIFO as shown in Fig 2. It means the continuous 
two flits save the same data and it achieves the longitudinal redundancy structure, 
which is recorded in VC-Org.  

• If RR is 10, which is region 3 in Fig 3. It means the packet has TMR requirement. 
Similar to dual redundancy, if there are three empty lanes in the virtual channel, the 
flit will be stored in the three lanes, otherwise the flit will be stored in the lane for 
three times. At the same time, Friend-VC and VC-Org will be update to record the 
redundancy structure of the virtual channel. 

VC-Out-Configure: The function of this stage is to export the protected data when 
there is a read request of the virtual channel, as shows in Fig 4. When there is a read 
request of a lane, we will check its VC-Org at first. 

• If VC-Org is 00, which is region 1 in Fig 4. It means it is single mode state. Then 
we will check the RR, if it is 00, it means the data has no reliability requirement, 
and export the data of lane directly. If RR is 10, it means the data is dual redundan-
cy data, but the lane is single mode, so its redundancy data is in another lane. We 
will check the Friend-VC to take the redundancy data and use a dual mode voter 
and the parity check bit to get the protected data. If RR is 11, it means it is TMR 
data. We will check the Friend-VC to get other two redundancy data and use a 
triple mode voter to get the protected data. 

• If VC-Org is 10, which is region 2 in Fig 4. It means the lane is dual mode state. 
We will use one auxiliary pointer to get two data in one cycle. Then we will use a 
dual mode voter and the parity check bit to check and export the protected data. 

• If VC-Org is 11, which is region 3 in Fig 4. It means the lane is triple mode state. 
We will use the two auxiliary pointers to get three data in one cycle. Then we will 
use a triple mode voter to arbiter and export the protected data. 
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Fig. 3. VC-in-configure flowchart 

Read request

VC-Org

VC is single mode 
state

11

00

10

00

VC is dual mode state

Take two data and use 
dual mode voter to 

output

2

VC is triple mode state

Take three data and 
use triple mode voter 

to output

3
RR

No-protection dataDual redundancy data TMR data

Output the data

Check Friend-VC to 
take the redundancy 

data and use dual 
mode voter to output

Check Friend-VC to 
take the redundancy 
data and use triple 

mode voter to output

10 11

1
 

Fig. 4. VC-out-configure flowchart 



Design and Implementation of Dynamic Reliable Virtual Channel for Network-on-Chip 153 

5 Experimental Result 

5.1 Efficiency Analysis 

We have implemented three kinds of virtual channel by Verilog HDL, the basic de-
sign which has no protection [8], the typical TMR virtual channel and the proposed 
design. The typical TMR virtual channel uses three lanes to support TMR require-
ment.  In our all designs, there are 4 lanes in one input port, and each size is 6 flits.    

To evaluate reliability of the proposed design, we use the single error model, which 
means there is only one error at the same time. But the error can be one bit or several 
bits. Simulated by ModelSim, we find dual redundancy requirement can protect the 
data from the one bit error, and TMR requirement can protect the data from the multi-
bit error in one flit. It confirms that proposed design has the expected goal.  

At the same time, the proposed design can use transverse structure when the load 
of NoC is low to improve the throughput, and when the load is high it can be switched 
to vertical structure to reduce the congestion. For example, in ideal case, if the load is 
low enough, the typical TMR design based vertical structure need two more flits in 
the virtual channel to store the redundancy data, but at the same time the proposed 
design can be switched to transverse structure to get better performance. We extended 
cycle accurate simulator Nirgam [10] to support the proposed design. We select 
4x4Mesh with typical XY routing. The packet accruing strategy is CBR (Constant Bit 
Rate). And each port includes 4 VCs and the buffer size per VC is 6. At the low load, 
the typical TMR design is like each VC size is 2 and the proposed design will be still 
6. The simulation result shows that at low load the throughput of the proposed design 
is about 2.66 times of the typical TMR design and the average flit latency of the pro-
posed design is about 41.1% of the typical TMR design. It means the resource utiliza-
tion of our design may be near 3 times of the typical TMR design in ideal case.  

5.2 Cost Evaluation 

After verifying the fault tolerant performance of the proposed design, we synthesize 
the three Verilog RTL model based on TSMC 130nm cell library by Synopsys Design 
Compile. In the corner of typical operation, we have set up the constraint, with rise 
time, fall time and skew value of the clock of 0.1 ns, and input delay and output delay 
of 0.2ns, also we set the set_max_area of 0 to get the least area of the frequency, and 
compared with the traditional router design, we set the frequency as 200MHz and the 
buffer size is 6 flits. The parameters are shown in Table 1. We can find that the typi-
cal TMR virtual channel needs about 11.1% extra area cost to support the reliability 
requirement. And the proposed design achieves the dynamic structure to get better 
performance with about 13.9% area cost compared with the typical design.  

Table 1. Synthesize parameter results 

 Frequency Buffer size Area 
Basic VC design  200MHz 6 flits 89428.625݉ߤଶ 
Typical TMR VC  200MHz 6 flits 99376.414݉ߤଶ 
Proposed design 200MHz 6 flits 113127.18݉ߤଶ 
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6 Conclusion 

In this paper, we design and implement a new virtual channel of NoC which can 
achieve different reliability requirements with dynamic redundancy structure. The 
main contribution of the proposed design is it can detect the utilization of the NoC to 
adjust the redundancy structure to get better performance.   

Acknowledgements. Our work is supported by the Cisco Research Center Requests 
for Proposals (RFPs), Virtualization for NoC fault tolerance, 2011-90403 (3696).  
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Abstract. As the continuous development of semiconductor technology, more 
and more IP cores can be contained on the single chip. At this time the inter-
connected structure plays a decisive role on the area and performance of system 
on chip, and has a profound influence on the transmission capability of system. 
Based on the distributed routing lookup, we proposed a new kind of inerratic 
interconnection network is named HCCM (Hierarchical Cross-Connected 
Mesh), which is consisted of a N N×  Mesh interconnection of 2N  subnets, 
every subnet comprised of 2 2× interconnection by full connection. Meanwhile, 
this paper comes up with a new hierarchical routing algorithm——HXY (Hie-
rarchical XY), the simulation results demonstrate the HCCM topology is supe-
rior to the Mesh and the Xmesh topology on the performance of system average 
communication delay and normalized throughput. 

Keywords: Network on Chip (NoC), Distributed Routing Lookup, Routing 
Algorithm, OPNET Modeler. 

1 Introduction 

The current decades have witness the rapid development of semiconductor technology, 
the significant increase of chip integration and the continuous development of the 
multi-core technology and parallel computing, The interconnection technology of 
Network-on-chip[2] are widely applied because of the excellent scalability, which the 
system can contain multiple processors、memory. However, the network-on-chip has 
profound influence on the performance and scalability of the multi-processor. Taking 
into account the difficulty and cost of physical implementation, most of the existing 
single multi-processor using the classical topology, just as Mesh[3]、Torus[4] etc. 

The literature[5] analyzed seven different types interconnect features of different 
applications, including data-intensive matrix and vector computing, sparse matrix and 
vector operations、 transformation between the time domain and frequency domain 
etc, from which we can find: in some applications, which each node may have large 
volume of business with two or three adjacent nodes, under other situations, each node 
may communicate with more than four adjacent nodes, Based on the latter application, 
each node in Mesh network is just directly connected with four adjacent nodes, this 



156 L. Zhang, H. Du, and J. Liu 

characteristics of Mesh network can not satisfy the application. Therefore, a new kind 
scalable network on chip based on short-term interconnection, which is named HCCM 
(Hierarchical cross-connected Mesh) is proposed. HCCM network is consisted of 
several subnets, every subnet is seems as a single node, which is composed of four 
nodes by full connection, all the subnets is connected in Mesh structure. Through slight 
increasing in the cost of hardware, HCCM network adds the connectivity of each node, 
thereby increasing the effective interconnect bandwidth of each node. 

The Xmesh network proposed by literature[1] is also based on Mesh structure by 
adding the straight path through main diagonals, what can decrease the network di-
ameter and increases the average bandwidth, at the same time, which is likely to result 
in main diagonals block, which would significant affect the performance of network. 
Under the situation of main diagonal block, the performance of Xmesh network is close 
to Mesh network.  

This paper presents the HCCM network. Compared with Mesh and Xmesh network, 
HCCM network has short network diameter and well localized, which the average 
delay is less than Xmesh and Mesh, is better than Xmesh and close to Mesh network on 
the load distribution. In the pattern of hot spot load, HCCM is better than both the 
Xmesh and Mesh on the normalized throughput. 

The HCCM network is especially suitable for the high-performance router struc-
ture[6], which can blend the switching and forwarding organically: every subnet dis-
tributed store a complete routing table, four nodes in a subnet complete the lookup of 
routing table entry simultaneously[7-9]. According to the result of lookup, the ex-
change of packages will be completed in the global network. Due to the better  
performance of HCCM than Xmesh and Mesh which has been used in multi-core 
interconnection for NOC, therefore, we believe that the HCCM network can be used for 
the multi-core interconnection. 

2 HCCM Networks 

HCCM network is regular and symmetric which can be defined as two layers. The first 
is the subnet which is connected by full connection; the second is the mesh network, 
which every subnet can be seemed as a single node. 

2.1 Subnet of HCCM Network 

As shown in Fig.1, every subnet is consisted of four nodes by full connection, which 

can be represented as 
iN (0 ≤ i ≤ 3). Each node can reach to others only by one hop. (x, 

y, z) is used to located every node, in which x and y are located every subnet in the 
whole HCCM network, z represents different nodes inside the subnet which including 
four nodes (In simulation model, the coordinate includes two parts, which the fist part 
can be turned into x and y, the second part is the same as z). The packets are sent to take 
two diagonals as much as possible during transmission, which result in one hop shorter 
than mesh network. That is one of the reasons why HCCM is more efficient than Mesh 
network. 
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2.2 Global Network of HCCM 

In Fig.2, The global network of HCCM is connected by N  subnets in Mesh  
connection. 

Based on the application of distributed routing lookup, the routing table can be di-
vided into four parts, which of them are stored respectively in the four nodes of the 
subnet in HCCM network. From the view of the global network, every subnet has a 
complete routing table, each node can receives the IP packet. Once the packages arrive 
in any nodes, the node will begin to look up the table entry which have been stored in it, 
where the require table entry are stored in, where the package will be send to, then, 
completing the lookup and forwarding. There would be large amount in local traffic 
relatively, however, the interconnection of full connection can make that every package 
can reach to another one just in one hop inside the subnet. This approach can significant 
improve the efficiency of local forwarding. Since each node only stores a quarter of the 
entire routing table, the time for routing lookup will be drastically reduced. All these 
can dramatically promote the efficiency of route table lookup, at the same time, it 
would reduce the requirement space to store the route table in every node. 

 

         

      Fig. 1. The structure of subnet           Fig. 2. The structure of global network 

2.3 Topological Properties 

In Table 1, the topological properties comparison for different network is illustrated, 
which of these are used to evaluated the complexity, communication efficiency and 
cost of one network, is the important criteria to decide which kind of network can be 
applied in the design. All nodes in the three kinds network have the different node 
degree. The diameter of a network[10] is the maximum distance between two nodes in 
a network. If there were N nodes in a HCCM network, then there were 4N   subnets 

in every horizon or vertical line. The maximum distance in HCCM network is from the 
node (0,0) to ( 4N -1,2), There would be 2( 4 1)N −  hops between these two nodes in 

the Mesh network with N nodes, 4N hops will be shorter in the HCCM network  
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because of the diagonals. As a result the diameter of HCCM network is 

( )2 4 1 4 3 2 2N N N− − = − . A mesh with N nodes network have ( )2 N N−  links, 

Two diagonals are added in every subnet, which cause that there will be 2N   links 

more than the number of links in Mesh network, so, 

( )2 2 5 2 2N N N N N− + = × − links exists in HCCM network , which have N nodes. 

Under the same scale, the number of links of Xmesh network is 2N . 

Table 1. Topological properties comparison 

Topo    Diameter Degree  Numbers of links

Mesh 2( 1)N −  4 2( )N N−  

Xmesh 1N −  6 2N  

HCCM 3 / 2 2N −  5 5 / 2 2N N−  

What Table.1 mirrored is that HCCM network has demand on the parity of the 
number of nodes because of there are four nodes in every subnets. Xmesh is the 
minimum in diameter, Mesh is the minimum and HCCM is the maximum in the 
number of links. 

By adding some diagonal edges on the Mesh topology, the average distance of the 
Xmesh network is reduced sharply, which is the reason that Xmesh has the minimum 
diameter. Xmesh has a good network performance under small scale interconnection 
and light load. A simulation analysis based on OPNET simulator shows that heavy load 
will result in packets jams on the diagonal edges, which will seriously affect the per-
formance of Xmesh network, especially the load distribution.  

2.4 Ideal Throughput 

Ideal throughput is the maximum throughput under the perfect flow control and route 
strategy. The literature[11] gives a formula for calculating the ideal throughput: 

2 CTH b B N≤ × , CB represents the bisection channels when the whole network was 

divided into two identical parts. b is the data width of each channel, N represents the 
total number of nodes. 

N=64, CB =16 when the Mesh network under the scale of 8 × 8(There would be eight 

channels must be cut off when the network was divided into two parts). At the same 
scale, the TH  value of HCCM, Xmesh and Mesh just as following:  

2
bTHMesh ≤   2

bTHHCCM ≤   3
4

bTHXMesh ≤  

The HCCM and Mesh have the same ideal throughput, Xmesh has the maximum ideal 
throughput. 
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2.5 HXY Routing Algorithm 

HXY routing algorithm is base on the offset between the source and destination ad-
dress. Firstly, the relative position of destination node away from the source node will 
be figure out based on the offset, Secondly, Choosing the shortest path inside the 
subnet.  

The following definitions have to be made before describing the algorithm: 
Definition 3: The source node and destination node are presented by C( _ Cid region , Cid ), 

D（ _ Did region ， Did ）. The _ Cid region  and _ Did region  must be translated into  

coordinate: 
x1=(int) _ Cid region / 1

2 N ; y1=(int) _ Cid region % 1
2 N ; 

x2=(int) _ Did region / 1
2 N ; y2=(int) _ Did region % 1

2 N ; 

Cid and Did are used to identify four nodes in a subnet, which the value of them are 

0, 1, 2, 3. 

Definition 4: Routing regions: According to the relative position of destination node 
away from the source node, the destination node will falls in one of the six sections 
,which just as Fig.3.  

Definition 5: The send port: Every node has four ports to send the packages, from 0 to 
4. The local port is defined as 5. As Fig.4. 

Algorithm describing: 

Xoffset=x2-x1, Yoffset=y2-y1 represent the offset on the X and Y axis. Every subnet is 
treated as a node, As Definition1 x1, y1, x2, y2 are used to locate the position of source 
and destination subnet in the whole network. Figuring out the send_port_x and 
send_port_y by XY algorithm and YX algorithm respectively, the routing region can be 
calculated by both of them. According to the routing region and the value of Cid and 

Did , we can figure out the next hop based on the shortest path principle. 

    

Fig. 3. Routing algorithm  Fig. 4. Direction of send port  Fig. 5. One of the longest path 

This algorithm applies the XY or YX algorithm flexibly. Take the diagonals port as 
much as possible. Just as Fig.5 the red path from node (1,1) to (4,3) is one of the longest 
path in the scale of 4×4 HCCM network, which is two hops shorter than the Mesh 
network under the same scale. 
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3 Simulations and Evaluations 

An OPNET-based NoC (Network-on-Chip) simulation environment, is adopted to 
evaluated the performance of the HCCM network and HXY algorithm, including the 
package loss rate, average end to end latency, port load distribution and normalized 
throughput. The uniform traffic patterns are used, in which each node sends packages 
to other nodes by a uniform of the destination node address.  

The average end to end latency (ETE latency) is used to evaluate the latency per-
formance of the proposed routing algorithm. The ETE latency is usually defined as the 
time elapsed from when the message header is injected into the network at the source 
node to when the last unit of information is received at the destination node. The 
package loss rate is used to evaluate the throughput when the network has been satu-
rated. The normalized throughput is used to evaluate the network throughput of the 
proposed routing algorithm. The normalized throughput refers to the ratio of the 
number of packets successfully transferred by the network to that of the packets  
injected into the network. 

Mesh, Xmesh, HCCM network with the same scale of 8×8, are used as comparison 
to evaluate these three kinds topological. Every package’s length is 48 bits. The speed 
that the packages injected into network can be set up through the time interval to send 
packages. 

              

    Fig. 6. The load variance of different send port         Fig. 7. The package loss rate 

Under the traffic of balance load, the destinations of all nodes are random distributed 
in the entire network. The normalized throughput, the package loss rate, the port load 
distribution and the ETE delay are applied. 

We collected different load of different ports from three kinds network in different 
traffic pattern, calculating the variance of the load of every network, which used to 
evaluated the load balance, the greater the standard deviation is, the more uneven the 
network load would be, what the Fig 6 mirrored just as following: 

(1) The five direction load distribution of HCCM network is between Xmesh and Mesh 
network, it would be close to Mesh network in lighter load, there would be worse than 
Mesh in heavy load. 
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(2) The Mesh network has the most evenly load distribution in four directions. 
(3) The Xmesh network owns the most uneven distribution in five directions. 

In Xmesh network, the traffic in Northwest is maximum, which is just one of the di-
agonals, at the same time, north has the minimum load. Because that HCCM network 
takes the shortest route internal the subnet, there will be heavy load on the two di-
agonals inside a subnet, on the global network, HCCM is the same as Mesh network, 
and as a result, The HCCM network is more unevenly than Mesh network on average. 

The same method is applied as Fig 7. What we can get from Fig 7 is that HCCM 
network is the minimum on the package loss rate, Mesh network is the maximum. 

         

      Fig. 8. The normalized throughput         Fig. 9. The ETE delay of different network 

As shown in Fig 8, there is not a very larger gap among three kinds networks. 
HCCM owns the largest normalized throughput, Mesh is the minimum one, Xmesh is 
just between these two networks. 

On the ETE delay, the following conclusions can be draw. 

(1) HCCM is slightly smaller than Mesh network in lighter load, which is between the 
Mesh and Xmesh network in heavy load. 
(2) Mesh is the maximum network on the ETE delay no matter what kind traffic pattern. 

Comparing all the statistics above, through analyzing the network diameter of three 
kinds networks, which the Mesh has the longest network diameter, Xmesh has the 
shortest one. Considering the normalized throughput, the load distribution, the package 
loss rate and the ETE delay of different networks, we can come up with these following 
conclusions: 

(1) Due to the unevenly load distribution, the higher package loss rate and the traffic 
congestion on the diagonals of Xmesh, the normalized throughput of HCCM is higher 
than Xmesh in the simulation. The Mesh network owns the minimum normalized 
throughput because of the longest network diameter. 
(2) Due to the high package loss rate and longest network diameter, Mesh network has 
the maximum ETE delay. In the heavy load, HCCM is smaller than Xmesh network on 
the ETE delay. In the lighter load, the ETE delay of HCCM is equal to Xmesh. 
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4 Conclusions 

The characteristic of HCCM network is well localized, easy for expansion, is better 
than Mesh and Xmesh network on the aspect of throughput and load distribution. At 
present, we have implemented the HCCM network of four nodes by the distributed 
routing lookup in the Xilinx NetFPGA, and completed the test on the network consisted 
by NetFPGA[13]. In the next step, we will enable to complete the blending of switching 
and forwarding in multi-subnets of large network. When the network is large-scale, the 
HCCM network is superior to both Mesh and Xmesh in many aspects, so, we believe 
that HCCM network can be applied in multi-core interconnection. 
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Abstract. Networks-on-chip (Noc) is proposed to achieve extensible and higher 
bandwidth communication in many-core CMPs. To make full use of the IC re-
source efficiently, sub-network partitioning oriented to Noc is proposed, which 
divides the whole Noc into regions to achieve the traffic isolation demand that 
acquired by Cache coherence protocol. We take the region segmentation for 
mesh-based Noc, the task mapped PEs (processing elements) aggregate into the 
Logic sub-network, and routing between these PEs is implemented in the ac-
cording Physical sub-network, in which an efficient tree-based broadcast 
scheme based on multicast XY routing algorithm is carried out. The Gem5 Si-
mulator is used to promote the research, experimental results shows our ap-
proach have a quite less average packet latency compared with multiple unicast. 

Keywords: Many-Core, Networks-on-chip (Noc), Broadcast, XY Routing, 
Sub-network. 

1 Introduction 

In the recent decades, owing to the improvement of integrated circuit (IC) manufac-
ture technology and development of the microprocessor architecture, the performance 
of microprocessor was advanced by 60 percentages per year. The progress of IC man-
ufacture provides massive resources for individual chip, how to make use of the IC 
resource efficiently to improve the properties and throughput of the microprocessor 
has become an important issue.  

On-chip communication turns into a performance bottleneck of the many-core sys-
tem. The reason is with the chip integrity improving constantly, the traditional bus or 
crossbar switch-based interconnect bring a poor communication ability and yield high 
power consumption, which is a serious constraint to the many-core architecture de-
velopment. However, Noc interconnects plenty of cores merged in the many-core 
system, which provide scalable, high throughput communication architecture for SoC 
(System on Chip) design.  

In additional, as mentioned above, how to make full use of the existing computa-
tion resource in the many-core system to attain the maximum extent parallelism  
in computation and processing become a key problem. Mapping to Noc level,  
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sub-network partition method is proposed. The whole network will be divided into a 
few of different size region, and the communication between each node will be li-
mited to the sub-network only, it indicates that traffic isolation among every two re-
gions exits. Meanwhile, in the Cache coherence with sharing memory system, there is 
a certain amount of one-to-all communication demanded by Cache coherence proto-
col. A PE launch a broadcast action in the whole network bring high network latency 
and power consumption, however, a reasonable sub-network partitioning method will 
reduce much more latency and power but also attain the requirement asked for by the 
Cache coherence protocol. 

An effective broadcast mechanism is also demanded to cut down the cost of the 
broadcast action. Basically, the routing manner plays the most important role in sup-
porting the broadcast action. There are two routing methods can be achieved in the 
worm-hole mesh-based Noc, which called source routing and distributed routing. In 
source routing, packet header flit carry the pre-computed routing path message of 
each destination router node and start routing followed by other data flits, this manner 
brings large traffic to occupy extra network bandwidth. Otherwise, in distributed 
routing, packet header flit only storages the location information of each destination 
node, and the intermediate router node will automotive compute the output network 
link according to the information. 

This paper organized as follows. Section 2 describes earlier work on multicast or 
broadcast mechanism in Noc. In Section 3, we make several definitions and assump-
tions related. In section 4，an effective broadcast scheme with sub-network partition 
method is adopted. Section 5 introduces the simulation environment. Section 6 reports 
the performance evaluation of our mechanism. Section 7 conclusion.  

2 Related Work 

In order to provide one-to-all broadcast communication hardware support, and sustain 
the Cache coherence protocol which carried out in the many-core system strongly, 
considering an effective broadcast scheme comes to be our research objective. As 
broadcast is a special case of the multicast, we review the former research about mul-
ticast approaches below, and only for wormhole mesh-based Noc. 

Generally, multicast scheme could be implemented as three ways, unicast-based, 
path-based and tree-based. In the unicast-based way, source router break the multicast 
packet into several unicast packets and send them one by one, just in the unicast 
mode. This way could have a simple realization but bring more risk to produce net-
work block, and exist a high network latency and power consumption. In the Path-
based way, source node arrange all destination nodes in a path of a certain order, then 
send the multicast packet along this path, It is easy relatively to implement in hard-
ware, but with the increasing of the number of router nodes, the path size will increase 
and bring high network latency accordingly. In the tree-based way, the source router 
constructs a spanning tree based on itself. This mode replicates the packet at the  
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necessary time and form a branch of the tree. In comparison to the above two modes, 
tree-based mechanism has a much lower network latency and power consumption. 

The virtual circuit tree-based multicast (VCTM)[1] algorithm implemented by 
building a virtual circuit tree in advance, and have a time-division multiplexing on the 
physical link in support of several numbers of trees. The region partition multicast 
(RPM)[2] algorithm make an improvement to the VCTM. On reaching an interme-
diary router, each multicast packet recursively divided into multiple regions based on 
the current node which looked as a starting node, and continue to routing in the desti-
nation region. Multicast Rotary Router (MRR) [3] adds a congestion detection me-
chanism based on the RPM, which weigh the depth and breadth of the multicast tree 
dynamically to reducing unnecessary packet replication operation, but the hardware 
implementation of this mechanism is more complex.  

However, above multicast schemes cannot provide irregular mesh topology sup-
port. Broadcast Logic-Based Distributed Routing (bLBDR)[4][5] proposes a minimize 
path tree-based broadcast approach in the region, which ensure that each node will 
only receive a broadcast packet, meanwhile, a broadcast bit is added to distinguish 
between broadcast packet and unicast packet. Alternative Recursive Partition Multi-
casting(AL+RPM)[6] is proposed based on the RPM, adding a connectivity bit to 
indicate the connection situation of current node with other neighbor nodes, then 
judge the output direction according to the present circumstance. Although the afore-
mentioned two approaches can applied in irregular sub-network, the shape is near 
convex only, which limits the scalable of the sub-network partition.   

In this paper, we divide the whole network into any random shape topology, then 
carry out an effective broadcast scheme in each sub-network.  

3 Preliminaries  

Before putting forward our approach, some definitions and assumptions are made 
throughout the paper.  

Definition 1. Oriented to the many-core processor, one PE is specified as the schedul-
ing PE (SPE), which is responsible for real-time collection of the busy status informa-
tion for all other PEs, then schedule the resource dynamically according to the phased 
resource requirements of the task.  

Definition 2. Each task maps onto a Virtual Computing Group (VCG), which is com-
posed of several PEs and the according Noc resources, and monopolize the VCG on 
the running phase of the task. Once individual PE carries out one thread of the task, 
all PEs in the VCG support Cache coherence protocol.  

Definition 3. PEs in the VCG belong to a Logic sub-network, and in the physical 
implementation phase, the communication among all PEs may need to be routed 
through the regular sub-network, thus a Physical sub-network is formed. 
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Fig. 1. The definition of Logic sub-network, Physical sub-network, SPE and VCG 

Assumption 1. In each packet, destinations are encoded in bit string, as shown in 
Table 1, the bit which set 1 means according node is one of the destinations belongs 
to the Logical sub-network. At the beginning time of the routing, each router node 
initializes an routing table, which is used to be queried to find out a output port based 
on the destination list of the current packet. 

Table 1. Destination list  

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

bit 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 … 

 
Assumption 2. The target Noc router architecture is a 5-stage classic Virtual Channel 
router, which includes Buffer Write (BW)/Route Compute (RC), VC Allocation 
(VA), Switch Allocation (SA), Switch Traversal (ST) and Link Traversal (LT), and 
wormhole switching is used here. The replication unit is integrated into the basic rou-
ter, which have the replication action to the coming flits of a multicast packet. 

4 Deadlock-Free Broadcast XY Routing 

Based on the Mesh topology, shortest path traversals are used to populate routing 
table at each router node. A deadlock-free broadcast wormhole method based on XY 
routing algorithm is proposed years before[7], which the target network is partitioned 
into four sub-networks, NାX,ାY ,  NିX,ାY, NିX,ିY and NାX,ିY . Sub-network NାX,ାY 
include the [(i, j), (i+1, j)] and [(i, j), (i, j+1)], and the other sub-networks are just 
similarly to the NାX,ାY condition, which show as below (assumption the coordinate 
of source node is (x୭, y୭)), DାX,ାY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൒ x୭, y ൒ y୭ሽ DିX,ାY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൑ x୭, y ൐ y୭ሽ DିX,ିY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൐ x୭, y ൐ y୭ሽ  DାX,ିY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൐ x୭, y ൑ y୭ሽ 

An example illustrated in Fig.2 to show the operation of the algorithm. We set Node 
21 as the source node, the other nodes which belong to the whole network are setting 
as the destination nodes.   
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Fig. 2. Basic deadlock-free broadcast XY routing 

Combining with the Logical and Physical sub-network we mentioned above, the 
broadcast XY routing algorithm has become more versatile. Before the final algo-
rithm is proposed in detail, an example is given to explain the broadcast in a sub-
network of any topology shape. As shown in Fig.3, Node 21 is still setting as the 
source node, the others as the destination nodes. The Logical sub-network is confi-
gured at the initial stage of the many-core processor system startup. According to the 
broadcast XY routing algorithm, the whole Logic sub-network is partitioned into four 
parts: Dሼnode |node ∈  DାX,ାYሽ ൌ  ሼሺ3,4,9,10,15,16,17,21,22,23ሻሽ Dሼnode |node ∈  DିX,ାYሽ ൌ  ሼሺ1,2,6,7,8,12,13,14,18,19,20ሻሽ Dሼnode |node ∈  DିX,ିYሽ ൌ  ሼሺ25,26,27,33ሻሽ Dሼnode |node ∈  DାX,ିYሽ ൌ  ሼሺ28,29,34,35ሻሽ 

Notice that Node 12 and Node 13, which was not included in the Logic sub-network, 
still be intermediary nodes in the routing path, this is because the minimal path is 
chosen at each skipping according to the XY algorithm. That is to say, the mechanism 
achieved logical isolation of communication and broadcasting, but cannot attain  
physical isolation.  

 

Fig. 3. Broadcast XY routing in sub-network 
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The whole broadcast process can be divided into three phases: 

First, each routing table belong to the whole network is updated according to the 
configuration message, in particular, the nodes which are part of certain sub-network 
storage the information that which nodes are belong to the same Logical sub-network.  

Second, according to the Logical sub-network information, up to four copies of the 
broadcast packet are generated at the source router node which each carries a destina-
tion list to show which nodes to be sent to. 

Third, in each routing region, the broadcast XY routing algorithm is carried out as 
shown in Fig.4. 

As in broadcast XY routing algorithm, replication is made as late as possible to  
reduce the number of replicated packets. It can be proved, this algorithm is deadlock-
free, as a result virtual channels resource are saved which other related routing  
algorithm used more than one virtual networks to avoid deadlock for mesh-based 
networks. 

 

 

Fig. 4. Pseudo code of broadcast XY routing algorithm 

5 Simulation Environment  

To evaluate the performance of our broadcast XY routing mechanism, the Gem5  
Simulator System [8] is used, which is a modular platform for computer system  

//pseudo code for broadcast XY routing algorithm  

//example for packets into the ାܰ௑,ା௒ region 

Construct D = { (ݔ௜ , ݕ௜) ∈ ܦା௑,ା௒ } 

Construct Dy = { (ݔ௜ , ݕ௜) ∈ ݕ) |ܦ௜ ൌ  { (௖௨௥௥௘௡௧ݕ

Construct Dx = { (ݔ௜ , ݕ௜) ∈ ݕ) |ܦ௜ ്  { (௖௨௥௥௘௡௧ݕ

If(D.sizeof() > 1) 

 

//replicate to current node 
If( (Dy ് 0)&& (ݔ௜ ൌ ,௖௨௥௥௘௡௧ݔ ) )   

new_flit_cur = constructNewFlit(s_flit, cur_DestID); 

outport _cur = routeCompute(new_flit_cur); 

 

//replicate to y direction 

If( (Dy – (ݔ௖௨௥௥௘௡௧ ,   ( ௖௨௥௥௘௡௧) ) ് 0ݕ

new_flit_y = constructNewFlit(s_flit, y_DestID); 

outport _y = routeCompute(new_flit_y); 

 

//replicate to x direction 

if(Dx ് 0)      

new_flit_x = constructNewFlit(s_flit, x_DestID); 

outport_x = routeCompute(new_flit_x); 
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architecture research, encompassing system-level architecture as well as processor 
micro-architecture. Gem5 integrates the cycle-accurate Garnet interconnection net-
work model, which models a classic five-stage pipelined router with virtual channel 
(VC) flow control.  The fixed-pipeline mode, which belongs to Garnet network [9], is 
intended for low-level interconnection network evaluations and models the detailed 
micro-architectural features of a 5-stage Virtual Channel router with credit-based 
flow-control, which is chosen as the research platform to continue our work. 

In Fig.5, we describe the detail communication process between Network Interface 
(NI) and classic Garnet Router in fixed-pipelined model, and the communication pat-
terns between routers are just similar as this condition. As we can find, the current 
network model does not have hardware multicast support within the network, so a 
heavy work was done for adding the broadcast scheme into the Garnet network. 

 

Fig. 5. Basic architecture of fixed-pipeline mode in Garnet  

Besides, each module in the router launches a waking up action via creating a Ru-
by-Event in advance, thus a Ruby-Event-Queue which integrated into the fixed-
pipeline mode need to be maintained. To add hardware multicast support in the router, 
we add several Ruby-Events artificially to let the modules wake themselves up. 

6 Performance Evaluation 

The Gem5 Simulator provides a framework for simulating the interconnection net-
work with controlled inputs (Ruby Network Tester), which is especially useful for 
Garnet network testing/debugging. We set the multiple broadcast unicast as the com-
parison object with broadcast XY mechanism, building a 4×4 mesh-based Noc test 
environment, traffic ratio of broadcasting(B-ratio) to the whole Noc communication is 
ranging in {0.05:1, 0,1:1, 0.15:1, 0.2:1}, and focusing the average network latency as 
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main contrasting parameter. As shown in Fig.6, when injection rate is low, the both 
broadcasting manners do not show much difference with the variation of B-ratio in 
the average packet latency. When the B-ratio increases, the broadcast XY increase 
much slower than that of multiple unicast, this is because less packets are replicated 
using the broadcast XY mechanism, thus less network congestion occurring. 
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Fig. 6. Latency result with B-ratio set to (a) 0.05:1, (b) 0.1:1, (c) 0.15:1, (d) 0.2:1 
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Fig. 7. Broadcast XY in sub-network (B-ratio = 0.1:1, injection rate = 0.05)   
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We observe the advantage which the sub-network partitioning method introduces 
into the Noc. Using the broadcast XY mechanism to the one-to-all communication, 
and for the network test mode, the B-ratio is setting to 0.1:1, injection rate is 0.05. For 
the below four sub-network approaches in Fig.7, the average packet latency shows a 
decreasing trend. As can be expected, with the increasing of the Noc scale, the effect 
will be more obvious. 

7 Conclusion 

The broadcast XY mechanism bases on multicast XY routing algorithm, which region 
segmentation is proceeding at the beginning of routing phase according to the current 
source node. Additionally, we introduce the concept of Logical sub-network and 
Physical sub-network, which the first one indicates the PEs which belong to the VCG 
and communication sets up among all of them,  and the second one limits routing 
region for any message comes out from the PEs. For any irregular topology Logical 
sub-network, there always be a corresponding Physical sub-network wrapping it. As 
mentioned above, traffic isolation between nodes in and out of Logical sub-networks 
is not really achieved, at the routing stage, intermediary nodes in the routing path are 
only responsible for transferring the packets, which will not get one copy of the pack-
et to PE. Our future research will focus on minimizing the impact of communication 
and broadcasting inside VCG to other PEs outside the VCG, thus a minimal Physical 
sub-network will be demanded.  
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Abstract. With the development of NoC, it becomes an urgent task to efficient-
ly map a complex application onto a specified NoC platform. In the paper, an 
approach which is called constraint-cluster based simulated annealing (CCSA) 
is proposed to tackle the mapping problem in 2D-mesh NoC in order to optim-
ize communication energy and execution time. Different from other methods, 
the relationship among cores that are patitioned into several clusters is consi-
dered in our method and according to the relationship constraints are set. Expe-
rimental results show that the proposed approach gets shorter execution time 
with lower energy consumption compared with others algorithms. In VOPD ap-
plication (4x4), the reduction of execution time is about 75.64% combing the 
normal simulated annealing. In greater application (8x8 vodx4) the CCSA can 
save 68.89% . The energy consumption is the lowest among all the compared 
algorithms. 

Keywords: network on a chip (NoC) Application mapping Simulated  
Annealing. 

1 Introduction 

With the advance of Semiconductor, the number of transistors available will be more 
than 4 billion at more than 10Ghzspeed[1].This allows that more than dozens of IP-
blocks can be integrated in a single chip. Different from dedicated wires and shared-
medium busses, the network on a chip (NoC) provides a high performance chip-level 
communication with regularity and modularity. 

In literature[2] formulated the 32bit’s ALU power consumption is about 0.3 
pj,while translate 32 bits over 10mm need 17pj,the consumption of translation is more 
the 50 times than Alu. So how to decrease the energy consumption of a single chip is 
a challenging job in NoC platform. In the design flow for NoC architecture , the step 
of Mapping which determines which nodes host which cores is very important These 
choices have significant impacts on energy, area and performance metrics of the  
system[3],[4]. 

                                                           
* This work was supported by the National High Technology Research and Development  
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The core-to-node mapping problem is a NP-Hard optimization problem [3].For the 
node number of N, the result of mapping will be N! . The computation and search 
space are very huge. For example, mapping 16 cores onto 16 nodes has a search space 
of 16! ,that is about 2.1x1013.The count of computation of each map is about 435 
Flop . Thus the computation is about 1016. Suppose the computer is Intel 3.0GHZ 
four cores, it will cost about 120 hours to fulfill the searching .So some efficient ana-
lytical model which can be used to find nearly optimal solutions in reasonable time 
must be presented. 

In this paper, we present a  rapid algorithm named Constraint-cluster based Simu-
lated Annealing Approach (CCSA) to minimize the power consumed and overall run-
time. The node can be partitioned into some cluster by calculating the communication 
difference between nodes , and according to the partition some searching restriction 
can be set . A cluster partition can make the problem more easy. Just as what has dis-
cussed aboved, for 16 cores/nodes, if they can be portioned into some clusters, the 16! 

problem would be a  !...!!! 21 NCCCN ××××  problem,which is smaller than 16! to 

search. In the course of searching,the searching space is limited by the cluster restric-
tion, By the partition and constraint the algorithm can resolve the mapping quickly 
without reducing the quality of solution. This paper chooses a two dimensional mesh 
interconnection which is very simple from a layout perspective and the local inter-
connections between resources and switches are independent of the size of the net-
work. Moreover, routing in a two dimensional mesh is very easy resulting in poten-
tially small switches, high bandwidth, short clock cycle, and overall scalability. 

The rest of the paper is organized as follows, We define the mapping problem and 
give an overview of our Constraint-cluster based Simulated Annealing Ap-
proach(CCSA).Then the CCSA in details is described . The experimental results are 
reported in the last. 

2 Realted Works  

Now NoC mapping problem has become a broad topic of research and development. 
In [3], Hu and Marculescu presented a static mapping a branch-and-bound algorithm. 
The main goal of the approach is to reduce the overall power consumption by de-
creasing the consumed energy on communication. Literature [5] presents a two-step 
genetic algorithm to map an application, described on a mesh-based NoC architecture 
with the objective of minimal execution time. Zhou et al. apply a queue model to 
calculate the latency of net. In paper [7] a communication model is accept to calculate 
the latency of communication. In [6] another communication model is proposed to 
calculate the latency. In [12] PMAP, a two-phase mapping algorithm for placing the 
clusters onto processors is presented. The results of PMAP algorithm are shown to 
have low communication costs. In [11] Murali and De Micheli proposed a rapid algo-
rithm NMAP that maps the cores onto mesh NoC architecture under bandwidth con-
straints. In general those algorithm dose not consider the characteristics of nodes in 
the no-heuristic search, so the search methods must balance the run time and the qual-
ity of result (such as branch-and-bound or back-tracking). A heuristic method may 
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consider the character of node to search near-optimal solutions, which is different 
from the model to the NoC. Recently some paper want to accelerate the approach by 
using partition .In the paper [8], Lu presents a cluster-based Simulated Annealing 
according to the node “distance”. By clustering, the method can make the search more 
efficiently. In paper [9],Lin presents an approach named HMMap that maps large 
numbers of ip cores onto 2d-Mesh. It bases hierarchical mapping method to speed up 
the approach .It also partitions the nodes into some clusters in order to minimize the 
run-time.In [18], propose a clustering based relaxation for integer Linear Program-
ming determining the optimum mapping. 

3 Approach Overview 

The design flow of CCSA includes two parts: (1) getting the initial mapping and cores 
restrictions; (2) getting the solution by using the annealing step and the restrictions. 
The aim of our approach is to minimize the cost of communication and run time. An 
overview of the CCSA is shown in Figure 1. 
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Set  const r ai nt  condi t i on

I ni t i al  mappi ng

Get  t emper at ur e

Exchange cor es under  
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St op ?

Start

end

No
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Fig. 1. The Constraint-cluster based Simulated Annealing (CCSA) Flow 
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The first part includes three steps .First we partition the core graph according to the 
communication volume between cores that is defined as the sum of the volume in an 
out. In the past they assumed that cores of large communication volume with each 
other should be placed on the neighboring tiles to optimize the communication energy 
and latency[17][13] .In this paper we say no. For example ,accroding to a 2*2 map-
ping ,assumed that  V(AB) is the largest volume ,which core should be more closed 
to node A in Figure 2, B or D? (V(AB) is the sum of volume form A to B and from B 
to A). 

A

C D

B A

C B

D

OR

Map 1 Map 2

A

B B

D

 

Fig. 2. The clustering example 

The difference of communication cost between Map 1 and Map 2 is that: 

 Cost(map1)-Cost(map2)= (V(AD)-V(DC) )-(V(AB)-V(BC)) (1) 

If (1) >0 ,That means the cost of map 2 is smaller than map1. even the volume of 
V(AB) is the biggest .The node D should be more close to node A than node B. so we 
assume that core l is more close to core k than core j if that : 
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According to the partition , some restrictions can be set . The detail description of this 
step is presented in the following Section. The last step is to get an initial mapping. 

The Second part performs the annealing mapping to get optimal solutions .This an-
nealing strategy cuts down the search space for the restrictions. That will be explained 
in the following section. 

3.1 Problem Formulation 

The core-to-node mapping problem is a specific graph embedding problem .To for-
mulate our problem ,We assume that[8]: 

─ The network topology is 2D mesh. The mesh has bidirectional links with property 
of bandwidth between nodes. 

─ The number of cores is not greater than the number of nodes and one core is 
mapped to exactly one node. 

Definition 1. A core application graph (CAG) which captures the communication 
between IP cores of the application is a directed graph,CAG( C ,A) , in which each 
vertex ci ∈ C represents an IP core and the directed arc a(i--j)∈A represents a direct 
communication from ci to cj . Each a(i--j)∈A is associated with a bandwith requirement 
cb(i,j) as its weight and has the following property : V (i,j) =V(j,i ) is the sum of arc vo-
lume from vertex ci to cj and from cj to ci,which represents the communication volume 
between ci and cj. 

Definition 2. An architecture node graph (ANG) which reflects the architecture and 
connectivity of NoC is a directed graph ANG ( T , R) , in which each vertex ti 

represents one tile in the NoC architecture, and each directed arc r(i--j),represents a 
minimal path from tile ti to tile tj . Each r(i--j) has the following properties: 

─ BW(i,j) is the available bandwidth of link r(i--j). 
─ e(r(i--j)) stands for the energy consumption of sending one bit from ti to tj.denoted as 

ei,j. 
─ d(r(i→j)) represents the communication latency of one bit from ti to tj . 
─ hi,j denotes the distance from tile ti to tj. 

Using these definitions, the mapping of the core application graph CA( C , A) onto 
the architecture node graph  AG( T , R) is to find a mapping function[14]: map 
C→T. The routing algorithm ensures minimal path and deadlock free. The objective 
function minimizes overall communication volume and run-time. 

 map C → T , s.t. map(ci)=tj   (ci∈C,  tj∈T) 

 aim min {Esystme ,Truntime} 

Where Esystem represents the total system communication energy and Truntime is the 
approach running time. 
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3.2 Energy Model 

The system communication energy is defined by the following equation: 

2veE
NMj,NMi

0j,0i
j,ij,isystem  ×=

×=×=

==
                           (4) 

j,iLj,iSj,i hE)1h(Ee
bitbit

×++×=                      (5) 

where ESbit, ELbit represent the energy consumed by sending one bit of data through 
the switch and on the links between tiles , respectively. Commonly the ELbit of a noc 
can be considered as a constant. The ESbit  include two parts, One is the energy con-
sumption of cross-bar, and another is energy consumption of the fifo for the date read-
ing,writing and storing. If there is no any network contention the time of store can be 
considered a constant. So the energy consumption also can be considered as a con-
stant. Thus the ei,j   can be described as follows. 

βα +×= j,ij,i he                                 (6) 

From the equation (4) and (6),we can draw the conclusion of power consumption : 
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3.3 Constraint-Cluster Based Simulated Annealing 

A Initial Mapping 
As depicted in Figure 1,the initial mapping includes three steps, core clustering, clus-
tering constraint condition and initial mapping. 

The first step is to cluster communication cores by the communication volume of 
cores. According to inequation (3) , the core can be partitioned, but the computational 
complexity is high. In our partition we use the difference between the maximal  
volume and the second maximum volume to partition the communication cores.  
So every cluster has two parameters, the closest cluster and the communication  
difference: 
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The C(A) implies the core a would like to close with the communication cluster C(A), 
the  Diff  implies the possibility that the a will be partitioned to C(A). According to 
the core cluster some constraint conditions can be set for each core. 

 Con(a)=(C(A),Dis) (10) 
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The C(A) implies the cores that core a would like to close with. Dis implies the max 
distance of core a and the cores belonging to C(A). 

For example,as shown in Fig 3:  
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Fig. 3. The Video Object Plane decoder with bandwidth demand in MB/s 

According to (8), we can get: 

C(0)=(C(1),70), C(1)=(C(2),292), C(2)=(C(1),0)…C(8)=(C(10),187),C(10)=(C(8), 
93)…so the first cluster that would be C(1,2).C(8,10) C(12,13) and some constraint 
can be set,just as: 

Con(1)=(C(2),1) Con(8)=(C(10),1),C(12)=(C(13),1),C(13)=(C(12),1).Next the 
C(1,2) can be considered as one node, and C(0)=(C(1,2),70),C(1,2)=(C(3),292), 
C3=(C(1,2),0)… in this way the node can be partitioned and the constraint can be set 
again. Until there is no more than four clusters or there will be only on cluster  in the 
next step. 

According to core clusters and constraint conditions, an initial mapping can be  
obtained. 

Annealing 
Besides the initial mapping, the annealing will also be affected by the constraint con-
ditions. We first describe the general annealing process and then the constraint-cluster 
based annealing. 

To find the optimum solution of searching, the annealing technique is a cooling 
process[10]. Based on the initial map, the exchange of positions between two cores 
reflects the temperature, as described in the following equation: 

 ΔE=cont(Mapi)-cost(map(i+1)) (11) 

If  ΔE is greater than zero, it is a lower temperature move and the result will be ac-
cepted. If  ΔE is less than zero, it is a high temperature move and the result will be 
randomly accepted. For the problem of mapping cores onto 2D meshes, the number of 
annealing stages corresponds to the cores number. For a MxN  mesh network ,the 
number of stages is equal to MxN.  
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Constraint-cluster based Annealing follows the annealing procedure described 
above .However in each stage. annealing must determine whether the cluster moves 
are allowed. For example core l core m is Con(l)=(C(m),3), that implies the constraint 
condition is that the distance of l and m is less than 3, the core l only can be  
exchanged with the cores, that the distance between those and m less than 3. This 
implies that in each stage, the number of exchange is reduced and the near-optimal 
solutions can be got in a shorter time than annealing. 

4 Experiments 

To validate the advantages of our approach in runtime and quality of solution,in this 
section, we present the result of the execution of CCSA on benchmark applica-
tion,Video Object Plane Decoder (VOPD[11]) with 16 IP cores shown in Fig.3.We 
also compare these results with those of previous mapping algorithms such as 
CGMAP[15] ,CSA[8] ,NMAP[11] ,PMAP[12],BMAP[16] ,PBB[3] C-ILP[18] .et.al 
using the same routing and scheduling characteristics, which also use VOPD as the 
benchmark application. In order to validate the advantages in runtime we have also 
implemented the simulated annealing without clustering and constraint condition. All 
these experiments are executed on a server with a Intel(R) Xeon(R) X5355 @ 
2.66GHz processor and 6GB memory. 

 

Fig. 4. CCSA RCCSA and SA mapping results 

In this section we first compare the results of our approach mapping the VOPD ap-
plication onto a 4x4 mesh. Three methods are implemented, including CCSA, 
RCCSA and SA. CCSA uses an initial mapping with the CCSA. RCCSA uses a ran-
dom mapping with CCSA. SA uses the same random mapping with SA. In Fig.4, the  
 



 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 181 

X axis represents the number of annealing stages, and the Y axis shows the average 
cost of accepted solutions. From the curve, we can see that the CCSA ,RCCSA  and 
SA converge to the equilibrium state .The RCCSA and CCSA achieves the lower cost 
(4103) than the SA (4200) in the last annealing stage. 

As shown in Fig 5, we compare our results with other eight mapping algorithm 
such as NMAP,CSA,CGMAP,PBB .et.al .Obviously our proposed algorithm performs 
better than the other nine mapping algorithms in VOPD ,considering the communica-
tion costs.  

The CCSA takes 19 ms to finish .The RCCSA takes 28ms while the SA takes 
78ms. Except [8][18], there is no running time reported. In [8] that CSA approach 
takes 387 seconds and SA takes 497 seconds. In [18], about 114.6 second was used to 
find the answer. For the different of computer we can not compare the running time 
directly. In our experiment a reduction of run time is about 75.64%..The main reason 
is that ,firstly the partition make the problem more easy to resolved,secondly the con-
straint conditions forbid a lot of switching and computing ,so the result can find so 
quickly. 
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Fig. 5. Comparison between the communication costs of mapping algorithms 

Except [8], the studied problem sizes are no more than 16 cores. To show the per-
formance of constraint-cluster based approach to a bigger network size, we conduct 
experiments on an 8x8 mesh. We create an application by quadrupling the VOPD. 
The results are shown in Fig. 6.The CCSA takes 0.913 seconds to get the lowest cost 
16498 while SA takes 2.935 seconds to get the cost 16514. The reduction of  
running rime is 68.89%. Paper [8] uses clusters and annealing too ,the reduction is 
only 22%. 
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Fig. 6. CCSA and SA mapping results on 8x8 mesh 

As the result shown , The result of 8x8 is not so efficient as 4x4 map, Include two 
aspect ,one is that the reduction of running time is lower than 4x4 mapping ,annother 
is that cost is higher than four VOPD mapping . The main reason is that the space of 
constraint conditions is large, and more time is spend on searching constraint. So 
some efficient method must be adopted to manage the constraint conditions. 
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5 Conclusion and Future Work 

In the paper, we introduce the idea of combining the communication clustering tech-
nique with the simulated annealing to further leverage the performance of SA. The 
proposed algorithm CCSA appears to work quite better than other efficient mapping 
algorithms introduced in the previous work. However,with the increase of ip number 
the the constraint condition is becoming more and more difficult to set , In our future 
work we will do more works on how to set and manage the constraint conditions. So 
there is a rather huge design space to explore. 

References 

1. International Technology Roadmap for Semiconductors (ITRS) (2007),  
http://www.itrs.net/ 

2. Dally, W.J.: Computer Architecture is all about interconnect (it is now and will be more so 
in 2010), HPCA Panel (February 4, 2002) 

3. Hu, J., Marculescu, R.: Energy aware communication and task scheduling for network on 
chip architectures under real time constraints. In: Proc. DATE 2004, pp. 234–239. IEEE, 
Paris (2004) 

4. Nickray, M., Dehyadgari, M., Kusha, A.: Power and delay optimization for network on 
chip. In: ECCTD 2005, pp. 273–276. IEEE, Cork (2005) 

5. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network on 
chip architecture. In: DSD 2003, pp. 180–187. IEEE, Antalya (2003) 

6. Zhou, W.B., Zhang, Y., Mao, Z.G.: An application specific NoC mapping for optimized 
delay. In: DTIS 2006, pp. 184–188. IEEE, Gammarth (2006) 

7. Kiasari, A.E., Hessabi, S., Sarbazi-Azad, H.: PERMAP: A Performance-Aware Mapping 
for Application-Specific SoCs. In: International Conference on Application-Specific Sys-
tem Architectures and Processors, ASAP 2008, pp. 73–78 (2008) 

8. Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip. 
In: 2008 11th IEEE Workshop Design on Design and Diagnostic of Electronic Circuits and 
Systems, pp. 1–6 (2008) 

9. Lin, H., Zhang, L., Tong, D., Li, X., Cheng, X.: A Fast Hierarchical Multi Objective Map-
ping Approach for Mesh Based Networks on Chip. Acta Scientiarum Naturalium Universi-
tatis Pekinensis 44(5) (September 2008) 

10. Catoni, O.: Metropolis, simulated annealing, and iterated energy transformation algo-
rithms: Theory and experiments. Journal of Complexity 12(4), 595–623 (1996) 

11. Murali, S., Micheli, G.D.: Bandwidth-constrained mapping of cores onto NoC architec-
tures. In: Proceedinlg of Design Automnation, and Test in Europe Conference, pp. 896–
901 (2004) 

12. Koziris, N., Romesis, M., Tsanakas, P., Papakonstantinou, G.: An Efficient Algorithm for 
the Physical Mapping of Clustered Task Graphs onto Multiprocessor Architectures. In: 
Proceedings of the 8th International Conference EuroPDP, Rhodos, Greece, pp. 406–413 
(January 2000) 

13. Marcon, C., Borin, A., Susin, A., et al.: Time and energy efficient mapping of embedded 
applications onto NoCs. In: Proceedings of Asia and South Pacific Design Automation 
Conference, Shanghai, pp. 33–38 (2005) 



184 Z. Song et al. 

14. Hemani, A., Jantsch, A., Kumar, S., et al.: Network on a chip: An architecture for billion 
transistor era. In: Proceedings of the IEEE NorChip Conference, Turku, pp. 166–173 
(2000) 

15. Moein-darbari, F., et al.: Evaluating the Performance of a chaos genetic algorithm for solv-
ing the Network on Chip Mapping Problem. In: 2009 International Conference on Compu-
tational Science and Engineering, pp. 366–373 (2009) 

16. Shen, W.T., Chao, C.H., KLien, Y., Wu, A.Y.: A New Binomial Mapping and Optimiza-
tion Algorithm forReduced-Complexity Mesh-Based On-Chip Network. In: Proceeding of 
the 1st IEEE International Symposium on Networks-on-Chip (NOCS 2007), Princeton, 
New Jersey, pp. 317–322 (May 2007) 

17. Rhee, C.E., Jeong, H.Y., Ha, S.: Many-to-Many Core-Switch Mapping in 2-D Mesh NoC 
Architectures. In: Proceedings of IEEE International Conference on Computer Design, San 
Jose, CA, USA, pp. 438–443 (October 2004) 

18. Tosun, S.: Cluster-based application mapping method for Network-on-Chip. In: Advances 
in Engineering Software, vol. 42, pp. 868–874 (2011) 

 



W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 185–201, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Combined Hardware/Software Measurement  
for ARM Program Execution Time* 

Liangliang Kong1 and Jianhui Jiang2 

1 Department of Computer Science and Technology,  
Tongji University, Shanghai 201804, China 
liangliang_kong@yahoo.com.cn 

2 School of Software Engineering, Tongji University, Shanghai 201804, China 
jhjiang@tongji.edu.cn 

Abstract. In present there is no accurate end-to-end dynamic measurements for 
ARM program execution time, because the measurement results given by hard-
ware counters in ARM microprocessors are not precise enough and the timing 
cost of instrument methods is difficult to be calculated. Therefore, this paper 
proposes a combined hardware/software measurement for ARM program ex-
ecution time. It sets the precision of measurement in the system boot loader 
code, encapsulates the access to timers in the kernel of Linux, and then meas-
ures the execution time of the program by the timer and its corresponding inter-
rupt during the execution of the program. Experimental results have shown that 
comparing with instrument methods and hardware counters, our method is an 
efficient way to obtain accurate and precise execution time measurements for 
ARM programs. Additional experiments performed by the combination of 
curve fitting techniques and our method have shown the method can be used to 
predict the execution time of program under different input data. 

Keywords: execution time measurement, performance evaluation, real-time 
system, PWM timer, ARM microprocessor. 

1 Introduction 

Most embedded systems are real-time systems, so real-time is a very important per-
formance metric for embedded systems. Real-time systems, as well as their deadlines, 
are classified by the consequence of missing a deadline. The goal of a hard real-time 
system is to ensure that all deadlines are met, but for soft real-time systems the goal 
becomes meeting a certain subset of deadlines. In the process of embedded system 
development, once the processor architecture is determined, accurate execution time 
estimation of programs is important for scheduling analysis and hardware/software 
partition [1-2].  
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The dynamic measurement is an important kind of techniques of execution time es-
timation. In end-to-end dynamic measurements, accessing to hardware counters like 
the time stamp counter (TSC) in X86 is a convenient and efficient way to obtain ex-
ecution cycles of programs. However, there is no appropriate hardware counters like 
TSC to offer execution cycles for ARM programs. ARM only provides a real-time 
clock (RTC) to offer the system time, which works with the frequency of 32.768 
KHz. So the precision of timing measurement RTC could give is only 10-4s [3]. For 
measurements with higher precision or programs whose execution time is less than 
10-4s, the RTC can not meet the requirement of execution time measurement. The 
instrument method is another type of end-to-end measurement. It reads the system 
time by invoking system calls from the kernel space and calculates the execution time 
estimate in the user space. The precision of timing measurement the instrument me-
thod could give is 10-6s. Though the instrument method could obtain more precise 
timing measurement than the RTC, the timing measurement is not accurate because of 
timing cost consumed by it. Therefore, in this paper we propose a combined hard-
ware/software measurement for ARM program execution time. It sets the precision of 
measurement by configuring frequencies of hardware related to the pulse width mod-
ulation (PWM) timer in the system boot loader code, accesses the PWM timer in the 
kernel by transforming physical addresses of the timer into virtual ones, and measures 
the execution time of program by the PWM timer and its corresponding interrupt. 
Experiments have shown it is an efficient way to obtain accurate timing measurement 
with high precision for ARM programs. 

2 Related Work  

The study of the execution time estimation of programs began in 1980s. A lot of work 
has been done and they can be classified into three categories: static analysis, dynam-
ic measurement and simulation [1-2]. The static analysis derives the execution time of 
program by analysis of target processor architecture features and the CFG of program. 
It is often used to estimate the worst-case execution time of program. It considers the 
optimization of compiler and features of the target architecture, so the execution time 
of program it estimates is accurate. But it depends on rich architecture experience of 
estimators [4-7]. The dynamic measurement executes the program under estimation 
on the given hardware for some set of input data or all input data and obtains timing 
measurements or their distribution [1]. Though in most cases it is impossible to per-
form exhaustive measurements to obtain the worst-case execution time or the  
best-case one, the dynamic measurement is also popular to be used for estimating 
execution time for soft real-time systems [8-9]. The simulation method generates a 
detailed model of the target processor architecture or the target system by tools to 
estimate the execution time of program. Though its estimation of execution time is 
accurate, it is resource and time costly [10-13]. 

According to the granularities of the objects to be measured, the dynamic mea-
surement can be classifies into two categories: the end-to-end measurement and the 
measurement based on CFG partition.  
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In the measurement based on CFG partition, firstly, the CFG of program is parti-
tioned into sub-paths which correspond to program segments. Secondly, generate 
input data for each sub-path to drive its execution and measure its execution time. 
Finally, according to the topological order of sub-paths in the CFG, calculate the ex-
ecution time of program [14-17]. The algorithms of automatic input data generation 
include heuristics, model checking and so on [18-20]. Since the measurement based 
on CFG partition focuses on the execution time of sub-path, the dependent and mu-
tually exclusive relationships between sub-paths have been ignored or may not be 
considered seriously in calculation. Thus, the execution time it estimates is often 
overestimated comparing with the observed timing measurement [18].  

However, since the end-to-end measurement focuses on the execution time of a 
whole program and gives the coverage in terms of all relationships between sub-paths 
in CFG, the timing measurement it generates is more accurate. There are two types of 
end-to-end measurement, i.e. hardware counters and instrument methods. As de-
scribed in Section 1, ARM provides RTC instead of TSC in X86 to offer the system 
time. Since the precision of timing measurement RTC could give is only 10-4s, it can 
neither meet the measurement requirements of high precision nor measure the pro-
gram whose execution time is less than 10-4s. The instrument method reads the system 
time by invoking system calls from kernel space and calculates the execution time 
estimate in user space.  In most cases of instrument, the system call is invoked by 
application program interface (API) in the C library or the library of the instrumenta-
tion tool. For example, the API gettimeofday in the C library invokes the system call 
sys_gettimeofday, which reads the system wall-clock time maintained by jiffies with 
the precision of 10-6s in kernel mode and copies the result to the user space. Then the 
user process could read the system time in user mode. During the process, once the 
system call sys_gettimeofday is invoked, it will request a software interrupt that trans-
fers control to the kernel code. After switch to kernel mode, the processor must save 
all its registers, copy the parameters of the user process in the user space to the kernel 
space, dispatch execution to the proper kernel function, read current system time, and 
copy the result to the user space. These operations take at lest 1×10-6s. During the 
process of the software interrupt handle routine, if another interrupt request with 
higher priority occurs, the processor will halt current interrupt handle routine and 
transfer control to another interrupt handle routine. The execution of the halted rou-
tine will not be resumed until the routine of the interrupt request with higher priority 
is completed. In this case, it is often called the nested interrupts. The execution time 
of the software interrupt handle routine, the possible delay of time incurred by nested 
interrupts, and the execution time of the instrument instructions constitutes the timing 
cost of the instrument method [21]. The timing measurement of the instrument me-
thod is not accurate because of the timing cost. Since the instrumentation tools like 
PIN encapsulate the system calls in their APIs in the same way of the C library, the 
timing measurement they observed is not accurate as well. 

Since the timing cost of the instrument method is hard to be calculated and derived 
from the measurement result and the precision of measurement provided by RTC is 
not high enough, we proposes a combined hardware/software measurement method 
for accurate execution time estimation of ARM programs. Its measurement precision 
can be set as 10-7s. 



188 L. Kong and J. Jiang 

3 Set Measurement Precision in Boot Loader 

When a computer is first powered on, it usually does not have an operating system in 
ROM or RAM. The computer must execute a relatively small program stored in 
ROM, along with the bare minimum of data needed to access the non-volatile devices 
from which the operating system and data may be loaded into RAM. The small pro-
gram that starts this sequence is known as a boot loader (i.e. Bootloader). This small 
program's only job is to locate and initialize hardware, and then find, load and start an 
operating system. The measurement method proposed in this paper is implemented by 
the PWM timer which is called timer for short, so the precision of measurement is 
determined by the frequency of the timer (i.e. TCLK). Since the timer is driven by 
advanced peripheral bus (APB), we set the precision of measurement by configuring 
frequencies of hardware related to the timer such as APB and CPU in the assembly 
code of hardware initialization in Bootloader. For the target microprocessor 
S3C2440A, to configure the timer frequency TCLK, several steps have to be  
followed: 

Step 1. CPU bus mode configuration 

In order to configure the frequency of APB, the CPU bus mode has to be changed 
from the fast bus mode to the asynchronous bus mode using following instructions: 

mrc p15,0,r0,c1,c0,0 
orr r0,r0,#0xc0000000     ; R1_nF:OR:R1_iA 
mcr p15,0,r0,c1,c0,0 

In the asynchronous bus mode, FCLK of CPU frequency, HCLK of advanced high 
performance bus (AHB) frequency and PCLK of APB frequency are allowed to be 
configured respectively. 

Step 2. CPU frequency FCLK configuration 

There are two clock generator phase-locked-loop (PLL) s in S3C2440A as follows: 
MPLL that is fed to FCLK, HCLK and PCLK, and UPLL that is fed to USB. Accord-
ing to the equation MPLL= ((M_MDIV<<12) + (M_PDIV<<4) +M_SDIV), write valid set-
tings to the PLL control register MPLLCON as follows: 

ldr r0,=MPLLCON  
ldr r1,=0x0005c011    ; Fin=12MHz, Fout=400MHz 
str r1,[r0] 

FCLK can be configured as PLL output (i.e. MPLL) of 400MHz immediately after 
lock time. 

Step 3. APB frequency PCLK configuration 

S3C2440A supports selection of dividing ratio between FCLK, HLCK and PCLK. 
This ratio is determined by HDIVN and PDIVN of CLKDIVN control register. Chang 
the value of CLKDIVN register from default (1:1:1) to the divide ratio (1:4:8) as  
follows: 
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ldr r0,=CLKDIVN 
ldr r1,=0x5       ; 0x5 = 1:4:8 
str r1,[r0] 

After lock time, the value setting for CLKDIVN is valid and the dividing ratio be-
tween FCLK, HLCK and PCLK is 1:4:8, so the value of PCLK is 50MHz. 

Step 4. PWM timer frequency TCLK configuration 

Because the timer is driven by APB, divide the APB frequency PCLK to obtain the 
timer frequency TCLK according to the following equation: 

TCLK=PCLK/ {prescaler value +1}/ {divider value}              (1) 

where {prescaler value +1}=0~255, {divider value}= 2,4,8,16. TCLK can be confi-
gured by setting the parameter of prescaler in timer configuration register0 (TCFG0) 
and the parameter of divider in timer configuration register1 (TCFG1). By writing 
valid settings to the TCFG0 and TCFG1 as follows: TCFG0 &= 0xffffff00 and 
TCFG1&= 0xff0fff0f, the prescaler is set as 0 and the divider is set as 2. Since PCLK 
has been configured as 50MHz, according to equation (1) TCLK is 25MHz. Then the 
precision of measurement of our method is 10-7s. 

4 Access PWM Timer in Kernel 

We can not access to a timer by invoking a system call, because invoking the system 
call will request a software interrupt that transfers control to the kernel code and its 
interrupt handle routine may be interrupted by another interrupt request with higher 
priority. This process will take at lest 1×10-6s. To avoid the timing cost taken by in-
voking a system call, we access to a timer by its virtual address which is encapsulated 
in macros. And we define the macros in the initialization code of the kernel. Then, 
when the kernel starts up, we can access to the timer. In S3C2440A, a timer is con-
sisted of a sequence of registers. In this section, first we transform physical addresses 
of timer registers into virtual addresses. Then we encapsulate their virtual addresses in 
the macros to conveniently access to the timer in the kernel. 

4.1 Address Transformation of PWM Timer Registers 

For our target microprocessor S3C2440A, based on the analysis of mapping between 
physical addresses of I/O ports and their virtual addresses, the physical address do-
main 0x48000000 ~ 0x5efffffff occupied by I/O ports is mapped onto the virtual ad-
dress domain 0xe8000000 ~ 0xfefffffff [22-23]. And the trade-off between a physical 
address and its corresponding virtual address is always 0xa0000000. In S3C2440A, 
there are five PWM timers, i.e. Timern (n=0,1,2,3,4). By the technical reference ma-
nual[3], we check the physical address of the first timer register begins at 
0x51000000, and the address trade-off between same function registers which belong 
to neighbored timers (e.g. TCNTB1 and TCNTB2) is always 0xc.  
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According to these principles, if the address trade-off between a register of Timern 

and its corresponding count buffer register (i.e. TCNTBn) is △x, its physical address 
can be expressed as 0x51000000＋(n＋1)×0xc＋△x, and its corresponding virtual 
address as (0x51000000＋(n＋1)×0xc＋△x) | 0xa0000000. 

4.2 Encapsulating Address Transformation in Macros 

In order to conveniently access timer registers, according to the address transforma-
tion described in Section 4.1, we encapsulate the address transformation in macros 
which are defined in the initialization code of the kernel. All operations of access to 
timer registers in this paper will be performed by calling macros in kernel mode. Tak-
ing access to the register TCNTO1 as an example, the macro REG_TCNTO1 has en-
capsulated the address transformation between the physical address of TCNTO1 (i.e. 
0x51000000 +2×0x0c + 0x8) and its virtual address (i.e. (0x51000000＋2×0xc＋0x8) | 
0xa0000000). 

The macros we defined have made the access to timer registers convenient and 
transparent to programmers and the address transformation readable and portable 
between different architectures. However, when accessing to registers by calling ma-
cros in kernel mode, actually, the operating system needs to transform virtual ad-
dresses defined in macros into physical ones according to their mapping relationships 
to access hardware. 

5 Program Execution Cycle Measurement  

In S3C2440A, there are five PWM timers. Since Timer0 and Timer2~4 have been oc-
cupied when the kernel initializes, we adopt Timer1 and its corresponding interrupt 
INT_TIMER1 to measure execution cycles of program, as illustrated in Fig. 1. 

We use the instrument method described in Section 2 to measure the program 
many times, and obtain a range of measured execution time of the program, i.e. 
Tmin≤T≤Tmax where T represents the timing measurement, Tmin represents the shortest 
timing measurement and Tmax represents the longest one. According to the range of 
measured execution time, we set the initial value of Timer1 (i.e. the value of the count 
buffer register TCNTB1) in two cases, as described in Section 5.1. Once start Timer1 
and the execution of the program, the down counter TCNTO1 will count down from 
the initial value of Timer1 by the step of one after every latency time within the timer 
frequency TCLK of 25MHz. If the initial value of Timer1 is set according to Case One 
in Section 5.1, read TCNTO1 when the execution of the program ends, and calculate 
the execution cycles according to equation (2); else the initial value of Timer1 must be 
set according to Case Two. In Case Two, as illustrated by dash lines in Fig.1, when 
TCNTO1 reaches zero, an interrupt request of INT_TIMER1 will be generated and the 
value of TCNTB1 will be automatically loaded into TCNTO1 to continue the next 
operation. The interrupt handling routine will record the iteration count of Timer1. 
This process will repeat until the execution of the program ends. Then read the value 
of TCNTO1 and the iteration count of Timer1 to calculate the execution cycles of the 
program according to equation (3) in Section 5.4. 
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Fig. 1. Principle of measurement for execution cycles of program using Timer1 and its interrupt 
INT_TIMER1 

5.1 Initial Value Setting For the Timer 

As shown in Section 2, the instrument method implemented by the API gettimeofday 
can not obtain accurate timing measurements for programs due to the timing cost of at 
lest 1×10-6s. However, the measured execution time by the instrument method will be 
considered in our method when setting the initial value of Timer1. Since the clock 
frequency TCLK of Timer1 has been configured as 25MHz in Section 3 and the max-
imum value of the 16-bit count buffer register TCNTB1 is 65535, the maximum value 
of the timer cycle Ttimer1

1is 2621.4us according to Ttimer1 = TCNTB1/TCLK. Assuming 
the program has been measured by the API gettimeofday many times and we obtain 
the measured execution time T∈[Tmin, Tmax], classify two cases in our method to set 
the initial value of Timer1: 
 

                                                           
1 The timer cycle Ttimer1 represents the latency time during which the down counter TCNTO1 

counts down from the value of TCNTB1 to zero. 
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Case One. If there is a set of values which could satisfy the condition as follows 
when assigned to the variable Ttimer1 in the condition: 

max min timer1

max min max min min timer1 timer1

max min max timer1 timer1

T -T   T    2621.4us                                               

(T -T ) / 2  (T +T ) / 2 - Int(T  / T ) T

(T -T ) / 2 (Int(T  / T )+1) T  -  (T

. .st

≤ ≤

≤ ×

≤ × max min+T ) / 2 







 

Considering the effect of start and restart delay of the timer on timing measurements, 
pick out the maximum one from the set to be assigned to Ttimer1, and then set the value 
of TCNTB1 as Int(Ttimer1× TCLK); 

Case Two. Else there is no Ttimer1 which could satisfy the condition of Case One, 
considering the effect of start and restart delay of the timer on timing measurements, 
set the value of TCNTB1 as 65535. 

In Case One, the condition which Ttimer1 must satisfy has guaranteed the execution of 
the program ends in the same iteration of Timer1 in any case, as shown in Fig.2. 

max min min timer1 timer1 (T +T ) / 2 - Int(T  / T ) T×

max timer1 timer1 max min(Int(T /T )+1) T - (T +T )/2×max min(T -T ) / 2
 

Fig. 2. Setting of Ttimer1 in Case One guarantees both Tmin and Tmax occur in the last iteration of 
Timer1 

The correlation of Tmin, Tmax and Ttimer1 shown in Fig.2 has been transformed into 
the condition in Case One. If only there is a value of the variable Ttimer1 which could 
satisfy the condition of Case One, the execution of the program will end in the same 
iteration (i.e. the last iteration) in any case. So there is no need to use the interrupt 
handling routine to record the iteration count of Timer1 in Case One. The iteration 
count can be directly given by Int(Tmax /Ttimer1) or Int(Tmin /Ttimer1), both of them are 
equal. If we assume the delay of the execution of the instruction which reads the 
down counter TCNTO1 is represented by Tdelay, the execution cycles of the program 
can be calculated as follows: 

 ET_TCLK = Int(Tmax /Ttimer1) ×TCNTB1+(TCNTB1-TCNTO1) - Tdelay (2) 

where ET_TCLK represents the execution cycles of the program with the unit of 
clock cycle, the expression of (TCNTB1-TCNTO1) represents the remainder when the 
execution cycles is divided by the value of TCNTB1. 

If Case One could not be satisfied, Case Two must be satisfied. In Case Two, it is 
necessary to use the interrupt handling routine of INT_TIMER1 to record the iteration  
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count of Timer1 as described in Section 5.3. In order to limit the effect of start and 
restart delay of the timer on timing measurements, the value of TCNTB1 should be set 
as 65535, i.e. the maximum value of TCNTB1. 

5.2 Start and Run of the Timer 

The count buffer register TCNTB1 stores the initial value of the down counter 
TCNTO1. And the compare buffer register TCMPB1 stores the initial value of the 
compare register TCMP1, which will be compared with the value of TCNTO1.Start 
the timer, according to several steps as follows: 

Step 1. Set the values of TCNTB1 and TCMPB1. 

Step 2. Set the manual update bit of the control register TCON as 1 to update the 
values of TCNTB1 and TCMPB1.  

Step 3. Set both the start bit and the auto reload bit of TCON as 1 to start the timer 
and clear its manual update bit. 

After starting up Timer1, TCNTO1 starts counting down after every latency time with-
in the timer frequency TCLK. In Case Two in Section 5.1, once TCNTO1 reaches 
zero, the interrupt request of INT_TIMER1 will be generated and the value of 
TCNTB1 will be automatically loaded into TCNTO1 to continue the next iteration of 
down counting. The process will repeat until the auto reload bit of TCON is cleared 
and TCNTO1 reaches zero. Then the timer ends. 

5.3 Interrupt Trigger and Execution Cycle Count 

There are two types of interrupts in S3C2440A: interrupt request (IRQ) and fast inter-
rupt request (FIQ). They are distinguished by the value of a corresponding bit of the 
interrupt mode register INTMOD [24]. Since FIQ has higher priority and there is only 
one interrupt can be set as FIQ simultaneously, in our method, we set INT_TIMER1 
as the only FIQ interrupt by configuring INTMOD. The principle of triggering the 
request of INT_TIMER1 to record the iteration count of Timer1 in the interrupt han-
dling routine is shown in Fig. 3.  

As shown in Fig.3, enable INT_TIMER1 by clearing the F bit in the current pro-
gram status register (CPSR); set the initial value of Timer1 by setting the value of 
TCNTB1; once start Timer1, TCNTO1 starts counting down after every latency time 
within the timer frequency TCLK; when TCNTO1 reaches zero, an timer interrupt 
request of INT_TIMER1 will be generated to inform the CPU to handle the interrupt 
routine; the iteration count of the timer will be recorded by the interrupt handling 
routine and the value of TCNTB1 is automatically loaded into TCNTO1 to continue 
the next iteration. 

Since the performances of INT_TIMER1 and Timer1 are always concurrent in 
S3C2440A, there is no need to consider the interrupt response time and the timing 
cost of the interrupt handling routine when calculating the execution cycles of the 
program. 
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Fig. 3. Counting iterations of Timer1 using the interrupt handling routine 

5.4 Program Execution Cycles Calculation 

As shown in Fig.1, when the execution of the program ends, read the value of 
TCNTO1. The expression of (TCNTB1-TCNTO1) represents the execution cycles with 
the frequency TCLK in the last iteration of Timer1, i.e. the remainder when the execu-
tion cycles of the program is divided by the value of TCNTB1. Assuming Ctimer1 

represents the iteration count of the timer, the delay of the execution of the instruction 
which reads TCNTO1 is represented by Tdelay, the execution cycles of the program can 
be calculated as follows: 

ET_TCLK =TCNTB1 × Ctimer1 + (TCNTB1-TCNTO1) –Tdelay          (3) 

where ET_TCLK represents the execution cycles of the program with the unit of 
clock cycle. 

6 Experiments and Analysis 

The microprocessor of our target architecture ARM920T is S3C2440A. ARM920T 
has a five-stage pipeline, 16KB I-Cache/16KB D-Cache, and memory management 
unit (MMU). The configuration of Caches and MMU and access to them are per-
formed in the coprocessor CP15. Benchmarks of our experiments come from the 
worst-case execution time (WCET) suite published by Mälardalen University. The 
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WCET suite consists of 32 benchmarks, which implement algorithms of signal 
processing, data compression, quick sort, impulse response filter, etc. It is often used 
to evaluate and compare different types of WCET analysis tools and methods in the 
domain of performance evaluation of embedded system. 

6.1 Instrument Method and Timer Initial Value Setting 

As described in Section 5.1, the execution time T∈[Tmin, Tmax] of the benchmark 
measured by the instrument method was used to set the initial value of Timer1 in two 
cases. In detail, the trade-off of the system time read by the API gettimeofday at the 
beginning and end of the execution of the benchmark is its timing measurement by 
the instrument method. We only measured 22 benchmarks of the WCET suite without 
floating point calculations, since ARM9 lacks hardware support for these. By the 
instrument method, each of the 22 benchmarks was measured 20 times. Among all the 
timing measurements of 20 times, we picked out the longest one Tmax, the shortest one 
Tmin and calculated the average one Tave for each benchmark as shown in Fig.4. 

 

Fig. 4. Timing measurements of 22 WCET benchmarks by the instrument method 

As illustrated in Fig.4, Tmin, Tmax and Tave of the benchmark are almost equal to 
each other in most cases of the 22 WCET benchmarks expect for adpcm and nsich-
neu. For each of the two benchmarks, Tmax is much longer than Tmin or Tave. This is 
because after the API gettimeofday invoked the system call sys_gettimeofday to read 
the system time at the beginning or end of the execution of the benchmark, a software 
interrupt request was triggered by sys_gettimeofday in kernel mode and the execution 
of its interrupt handle routine was interrupted by another interrupt request with higher 
priority. The execution of the interrupt handle routine was not resumed until the inter-
rupt with higher priority was handled. In this case, Tmax of each of the two bench-
marks was much longer than Tmin or Tave. For each of 22 benchmarks, since its timing 
measurements of 20 times by the instrument method have meanings of statistics, Tmin 
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and Tmax were used to set the initial value of the timer and Tave was used to compare 
with the timing measurement by our method in Section 6.4. 

Considering the timing measurements of Tmin and Tmax of each benchmark in Fig.4, 
set the initial value of Timer1 in two cases as follows. Since adpcm and nsichneu sa-
tisfied Case Two in Section 5.1, the value of TCNTB1 was set as 65535 when measur-
ing their execution time by our method. For each of other benchmarks, there was  
always a value to be assigned to Ttimer1 which could satisfy the condition of Case One, 
so the value of TCNTB1 was set as Int(Ttimer1×TCLK) according to Case One. 

6.2 Enable Cache and MMU 

In Section 6.1, we measured the execution time of the 22 benchmarks by the instru-
ment method under the condition that Cache and MMU were enabled. In order to 
compare the measurement result of the instrument method with that of our method 
under the same condition, we enabled Cache and MMU before starting the timer. At 
first, to enable I-Cache and D-Cache, we set the Icr and Ccr bits of the control register 
c1 of the coprocessor CP15 as 1. Then we set the M bit of the register c1 as 1 to  
enable MMU. If we need to disable Cache, set the Icr and Ccr bits as 0. 

6.3 PWM Timer Interrupt Setting and Iteration Count 

For benchmarks of adpcm and nsichneu, they satisfied Case Two in Section 5.1, so 
their measurements for execution time were performed by combining Timer1 and its 
interrupt INT_TIMER1 according to Section 5.3.  

Before their measurements, the value of TCNTB1 and the type of INT_ TIMER1 
were set according to Section 5.1 and Section 5.3. After Timer1 started, its down 
counter TCNTO1 started counting down with the frequency TCLK. When the value of 
TCNTO1 reached zero, the timer interrupt request of INT_ TIMER1 was generated 
and the program counter (PC) jumped to the interrupt vector address 0x1c. By execut-
ing the jump instruction stored in 0x1c, the interrupt handling routine was found and 
executed. It maintained a global variable Ctimer1 that recorded the timer iteration count, 
as shown in Fig.3. Part of the interrupt handling routine was shown as follows: 

__asm__ __volatile__(  
" stmfd sp!, {r0-r4, lr}\n " // Save registers 
" add %0,%0,#0x0001\n "      // Increase the timer itera-

tion count by one each time 
" mov r0, #0xffffffff\n " 
" ldr r1, =rSRCPND\n " 
" ldr r2, =rINTPND\n " 
" str r0, [r1] \n "        //Clear register SRCPND 
" str r0, [r2] \n "        //Clear register INTPND 
" ldmfd sp!, {r0-r4, lr}\n " //Restore registers 
" subs pc, lr, #4\n "        //Return 
: "=r"(Ctimer1) 
: "0"(Ctimer1) ); 
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6.4 Execution Time Calculation and Method Effectiveness Analysis 

When the execution of the benchmark ended, read the value of TCNTO1 and the itera-
tion count represented by Ctimer1 to calculate the execution cycles of the benchmark. In 
our experiment, we measured the delay of the execution of the instruction which reads 
TCNTO1 many times and found that it was always equal to 64.5 clock cycles. Ac-
cording to two cases described in Section 5, the execution cycles ET_TCLK can be 
calculated by equation (2) or (3). The execution time of the benchmark with the unit 
of second was calculated by 

ET_s = ET_TCLK / TCLK                           (4) 

The precision of the result is 10-7s, which is much more precise than 10-4s that RTC 
could provide. 

According to equation (4), we got the timing measurements of 22 WCET bench-
marks with the unit of second. In Fig.5, we compared the execution time measured by 
our method with the measurement results by the instrument method obtained in  
Section 6.1. 

 

Fig. 5. Comparison of timing measurements by our method and those by the instrument method 
for 22 WCET benchmarks 

In Fig.5 it is shown that the execution time measured by our method is much shorter 
than the average execution time measured by the instrument method. The timing mea-
surement by our method was only 28.46% of that by the instrument method on average. 
This is because after the API gettimeofday invoked the system call to read the system 
time, the kernel had to spend at least 1×10-6s to handle the software interrupt which was 
triggered by the system call. Besides, the execution of the software interrupt handle 
routine might be interrupted by another interrupt request with higher priority. And the 
execution of the instrument instructions will delay the execution as well. The timing  
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cost of the instrument method is so expensive that its timing measurements were much 
longer than those by our method. The experimental result has shown that our measure-
ment method is an effective way to obtain accurate execution time of program. 

6.5 Program Execution Time Prediction 

In this section, firstly, we used our method to measure the execution time of three 
benchmarks (i.e. fac, fir and insertsort) which were randomly picked out of 22 WCET 
benchmarks. Each of the three benchmarks was measured 20 times under 20 inputs of 
it, and we got 20 pairs of (input data, timing measurement) for each benchmark. Se-
condly, we used curve fitting tool to fit these pairs of data and obtained the distribution 
of timing measurement for each benchmark. Finally, we used the distribution of timing 
measurement to predict the execution time of each benchmark under different input 
data and compare the predicted results with the measurement ones by our method. 
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Fig. 6.  Distribution of timing measurement of the benchmark fac under 20 inputs 
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Taking the benchmark fac as an example, in the case of Cache disabled, we firstly 
used our method to measure the execution time of fac under 20 inputs, and obtained 
20 pairs of data as follows:(0, 5.45), (1, 10.63), (2, 17.94), … , (19, 468.66). Second-
ly, we fitted the 20 pairs of data by the curve fitting tool to get the timing measure-
ment distribution which can be expressed as a function y=a+bx+cx^2+dx^3 where a 
=5.46072, b =4.10911, c =1.06182, d =0.00026 as shown in Fig. 6(a). The standard 
deviation of the fitting is 0.05655426 and the correlation coefficient is 0.99999994. 
Finally, we used the fitted distribution to predict the execution time of fac under its 
different 10 inputs (i.e. 20~29). Comparing the predicted results with the measure-
ment ones by our method in Fig. 7(a), we got an average deviation of 0.04%. 
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(b) Cache enabled 

Fig. 7. Comparison of the predicted execution time and the measured one of fac under 10 inputs 

In the case of Cache enabled, we did the experiment following the same steps. 
Firstly, we measured the execution time of fac under the same 20 inputs and got pairs 
of (input data, timing measurement). Secondly, we fitted these pairs of data to obtain 
the distribution of the timing measurement (i.e. y=a+bx+cx^2+dx^3+ex^4 where a 



200 L. Kong and J. Jiang 

=0.44485, b =0.01870, c =0.07512, d =0.00020, e =0.00005) as shown in Fig. 6(b). 
Finally, we used the distribution to predict the execution time of the benchmark under 
the same different 10 inputs. Comparing the predicted results with the measurement 
ones by our method, we got an average deviation of 4.13%.  

The experiments were also made in the same way for the other randomly picked 
benchmarks of fir and insertsort. In the case of Cache disabled, we got average devia-
tions of 3.69% for fir and 1.77% for insertsort; in the case of Cache enabled, we got 
average deviations of 3.78% for fir and 4.69% for insertsort. The average deviation 
we got under enabled Cache was always larger than the one we got under disabled 
Cache. This is because in the case of Cache enabled, when the execution of the 
benchmark needs to access memory for instructions or data, it will be access I-Cache 
or D-Cache at first in which case either Cache hit or Cache miss occurs, then the tim-
ing cost due to accessing memory is undetermined and thus the execution time of the 
benchmark is not determined as well even under the same input.  

These experiments have shown that our measurement method can be used to pre-
dict the program execution time especially in the case of Cache disabled. It provides a 
convenience way to predict program execution time. 

7 Conclusions 

Since the precision of measurement provided by the hardware counter RTC is not 
high enough and the timing cost of the instrument method is difficult to be calculated, 
we propose a combined hardware/software measurement for ARM program execution 
time, which could give the high measurement precision of 10-7s. It first sets the preci-
sion of measurement by configuring frequencies of relevant hardware in the system 
boot loader code, next, encapsulates the access to the PWM timer in the macros de-
fined in the kernel, and finally uses the PWM timer and its corresponding interrupt to 
measure the execution time of program. Experimental results show that it is accurate 
to measure the execution time of ARM program with high precision, comparing with 
current end-to-end dynamic measurements. Besides, combining with curve fitting 
techniques, the method can be used to predict the execution time of program under 
different input data. The measurement method proposed in this paper provides an 
effective and practical way for the execution time estimation of ARM programs. 
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Abstract. Singular Value Decomposition (SVD) is a very important matrix fac-
torization technique in engineering applications. In multiple-input multiple-
output (MIMO) systems, SVD is applied in transmit beamforming which  
provides high diversity advantages. This paper proposes a low-complexity paral-
lel two-sided Jacobi complex SVD algorithm and architecture which are suitable 
for any  m ( 4 , 4)n m n× ≤ ≤  matrix. It performs two 2 2× complex SVD 

procedures in parallel, and employs master-slave CORDIC (coordinate rotation 
digital computer) to reduce the decomposition time. The proposed parallel algo-
rithm for 4 4×  complex SVD saves 52% decomposition time compared with 
the Golub-Kahan-Reinsch algorithm. Meanwhile, the Bit Error Rate (BER)  
performance of the proposed algorithm is almost the same with the ideal SVD.  

Keywords: MIMO, Beamforming, Two-sided Jacobi, SVD, Master-slave 
CORDIC. 

1 Introduction 

Multiple-input multiple-output (MIMO) communication systems are employed in 
many wireless communication standards (e.g., IEEE 802.11n, IEEE 802.11ac) to 
increase data rates through spatial multiplexing or to improve reliability through di-
versity [1]. Beamforming is a technique that provides high diversity with the help of 
channel state information at the transmitter (CSIT). It corresponds to the transmit 
precoding and receiver shaping based on singular value decomposition (SVD) of the 
channel matrix [1]. To achieve high throughput in MIMO beamforming systems, 
precoding matrix derived from SVD should be sent from the receiver to the transmit-
ter as soon as possible. Therefore, the decomposition time and the accuracy of SVD 
will significantly affect the beamforming performance. 

Many research works have focused on SVD algorithm and architecture for MIMO 
beamforming applications. A time-shared SVD architecture was proposed in [2]  
using Golub-Kahan-Reinsch algorithm, which leads to low hardware cost but long 
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decomposition time. An adaptive algorithm is proposed in [3] while it requires large 
iterations to achieve an acceptable arithmetic precision. Jacobi-like algorithms are 
extremely suitable for parallel SVD to reduce the decomposition time. Two-sided 
Jacobi algorithm was applied in [4] to implement a 2x2 complex SVD with Givens 
rotation. It requires 7 serial pipeline coordinate rotation digital computer (CORDIC)  
stages. In [5], two-sided Jacobi algorithm for complex-valued matrix was imple-
mented on systolic array. But the overall decomposition time is still much longer than 
real SVD array. To improve the decomposition time of SVD, we propose a low-
complexity parallel two-sided Jacobi complex SVD algorithm for any 

( 4 , 4)m n m n× ≤ ≤ matrix. In this algorithm, if either row or column of the matrix is 

less than 4, it firstly expands the matrix to dimension 4 4×  and then decomposes the 
4 4×  matrix by performing two 2 2× complex SVD in parallel. Finally, the derived 
SVD matrices m mU × , m n×Σ and n nV ×  correspond to m rows and n columns of the 

decomposed 4 4×  matrices.  
The rest of this paper is organized as follows. In section 2, the SVD-based beam-

forming system is outlined. The proposed parallel two-sided Jacobi complex SVD 
algorithm is described in section 3. VLSI architecture of this algorithm is introduced 
in section 4. Simulation results and the decomposition time comparison are presented 
in section 5 and 6, respectively. Finally, the conclusion is given in section 7. 

2 SVD-Based Beamforming System 

Consider a MIMO channel with a r tN N×  channel matrix H which is known at both 

the transmitter and the receiver. For any matrix H its SVD can be formulated as 

 HH U V= Σ  (1) 

where the r rN N×  matrix U and the t tN N×  matrix V are unitary matrices and the 

singular matrix Σ  is an r tN N×  diagonal matrix containing singular values { }iσ  

of H. There are HR  nonzero singular values where HR  denotes rank of matrix H.  

SVD-based beamforming is implemented by performing a transformation on the 
channel input x  and output y  via transmit precoding and receiver shaping, which is 

shown in Fig. 1.  

 

Fig. 1. Transmit precoding and receiver shaping 

From the definition of SVD, it can formulate that: 
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As multiplication by a unitary matrix does not affect the distribution of the noise, n  
and n  are identically distributed. SVD-based beamforming strategy separates the 
MIMO channel into HR parallel independent subchannels that do not interfere with 

each other. It significantly improves the diversity gain of MIMO systems [1]. 

3 Proposed Parallel Two-sided Jacobi Algorithm 

In this section, we introduce the proposed low-complexity parallel two-sided Jacobi 
complex SVD algorithm. It is suitable for any ( 4, 4)m n m n× ≤ ≤ matrix. In this 

algorithm, if either row or column of the matrix is less than 4, it expands the original 
matrix to dimension 4 4×  by inserting extra zero rows and zero columns. Then the 
4 4× matrix is decomposed by iteratively performing two 2 2×  complex SVD  
procedures in parallel. Finally, the derived SVD matrices m mU × , m n×Σ and n nV ×  cor-

respond to m rows and n columns of the decomposed 4 4× matrices. Firstly, we in-
troduce the 2 2×  two-sided Jacobi complex SVD algorithm.  

 

Fig. 2. Diagonalization of 2 2× complex-valued matrix 

Consider a 2 2×  complex-valued matrix H, which is shown in Fig. 2. Givens rota-
tions are successively applied to H from the left-hand side (LHS) and from the right 
hand side (RHS), such that H is transformed to singular matrix Σ . Corresponding 
updates are also applied to unitary matrices U and V. The affected entries in each step 
are highlighted.  

In the last step, TPR method [6] is employed to diagonalize the 2 2× real-valued 
matrix. It takes less rotations than two-sided Jacobi rotations.  

Any 2 2×  real-valued matrix can be reformulated as  

 1 1 2 2
1 2

1 1 2 2

p q p q
A A A

q p q p

− −   
= + = +   

   
 (3) 

This leads to the following reformulation of the last diagonalization step in Fig. 2. 
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where 1 1tan( ) q pθΔ = , 2 2tan( ) q pθΣ =  and ( )R θ denotes Givens rotation with 

angle θ . This means two-sided Jacobi rotations can be performed by two plane rota-
tions [6] which only compute 1r  and 2r . 

Then the 2 2×  SVD procedure above is iteratively performed to diagonalize 
4 4× complex-valued matrix. As each Givens rotation affects only two rows and two 
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columns, we may actually perform two 2 2×  two-sided Jacobi procedures in parallel. 
Then the 4 4×  matrix could be divided into four 2 2×  submatrices. As shown in 
Fig. 3, four entries are annihilated in each parallel 2 2× SVD procedures, which is 
called one iteration. Since there are 12 off-diagonal entries in a 4 4×  matrix, 3 itera-
tions are required to update all the off-diagonal entries, which is called one sweep. 
Multiple sweeps repeat for the convergence of all the off-diagonal entries. In Fig. 3, 
entry pairs under the arrows denote entries of the two parallel 2 2× submatrices (hig-
hlighted) in each iteration.  

 

Fig. 3. Sweep process of 4 4×  complex SVD 

The proposed parallel two-sided Jacobi complex SVD algorithm for 
( 4, 4)m n m n× ≤ ≤  matrix is summarized in Table 1 where S denotes the number of 

sweeps, 4 4I ×  denotes 4 4× identity matrix. The algorithm performs two 2 2× SVD 

procedures and the corresponding updates on U and V in parallel. 

Table 1. Proposed parallel two-sided Jacobi complex SVD algorithm 

1. Initialization: ×
×

 
→ 

 
m n

4 4

H 0
H

0 0
, ×

H
4 4U =I , ×4 4V=I  

2. for s=1 to S do 
3.   1i ={1,1,1}, 1j ={2,3,4}; 2i ={3,2,2}, 2j ={4,4,3} 

4.   for k=1 to 3 do 
5.     Divide ×4 4H  into four ×2 2 submatrices: 
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Table 1. (continued) 

7.     Update  and : ,  

8.     Update the corresponding rows of :  

       ,  

9.     Update the corresponding columns of : 

        

        

10.   end iteration 
11. end sweep 
12. Order singular values and singular vectors 
13. Derived SVD matrices: , 

                       ,  

4 Parallel VLSI Architecture 

Fig. 4 provides an overview of the parallel matrix decomposition architecture which 
supports MIMO beamforming systems with all antenna modes ( 4, 4r tN N≤ ≤ ). The 

architecture consists of a matrix memory, two parallel 2 2× SVD cores and a finite 
state machine (FSM) which controls the memory and the SVD cores. 

 

Fig. 4. Overview of the parallel matrix decomposition architecture 

A. Matrix Memory 

The matrix memory consists of one two-port SRAM macro cell that stores U , Σ and 
V . The singular matrix Σ is initialized by the channel matrix H. Both U and V are 
initialized by 4 4× identity matrices. All the decomposition results after each iteration 
are written back to the memory for the next iteration. 

B. Parallel 2 2× SVD cores 

Parallel 2 2× SVD cores perform the algorithm described in Table 1. As the decom-
position mainly consists of two-dimensional Givens rotations, master-slave CORDIC 
[7] is employed in performing the rotations, which reduces decomposition time. 
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Fig. 5. The master-slave CORDIC 

Consider the Givens rotation applied on a 2 2× real-valued matrix in (5).  
As shown in Fig. 5, the master CORDIC operates in vectoring mode to rotate the 1st 
column vector 1 [ , ]Tv x y= . The 2nd column vector 2 [ , ]Tv w z= is fed into slave 

CORDIC which performs the same micro-rotations by the control of rotation direction 
signal.  
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But for normal CORDIC, it first rotate 1v  to derive θ  and then rotate 2v  with the 

derived angle. So the transformation of (5) with master-slave CORDIC requires half 
rotation time than that of normal CORDICs. 

 

Fig. 6. VLSI architecture of 2 2× two-sided Jacobi complex SVD 
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VLSI architecture of 2 2× two-sided Jacobi complex SVD is illustrated in Fig. 6. To 
simultaneously rotate the corresponding entries in U and V, more slave CORDICs are 
specified with one master CORDIC. In the proposed architecture, each master-slave 
CORDIC contains 3 slave CORDICs at most. The serial pipeline CORDIC stages 
correspond to steps shown in Fig. 2. 

5 Simulation Results 

In this section we evaluate the beamforming performance with Bit Error Rate (BER) 
in  a practical MIMO-OFDM system. Unitary matrix V is fed back to the transmitter 
for precoding and unitary matrix U is used for receiver shaping. Configuration of the 
specified MIMO-OFDM system is listed as follows. 

─ Beamforming technique : SVD 
─ Channel type : Ch. E [8], 802.11n, 4 spatial streams, 4 4× channel matrix 
─ Perfect channel state information is assumed 
─ Channel coding : code rate 2/3, convolutional code with constraint length 7, gene-

rator polynomial of [133 171] 
─ Modulation : 64-QAM 
─ MIMO-OFDM system with 256 tones 
─ Linear MMSE detection 

As shown in Fig. 7, the proposed algorithm with 3 sweeps and 8 CORDIC micro-
rotations degrades 1dB performance at 410BER −= than the ideal SVD with Golub-
Kahan-Reinsch algorithm [2]. As number of CORDIC micro-rotations increases, BER 
performance improves. With 3 sweeps and 12 CORIDC micro-rotations, BER per-
formance of the proposed algorithm is almost the same with the ideal SVD.  

 

Fig. 7. BER performance of the proposed algorithm and the ideal SVD 
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6 Decomposition Time Comparison 

The decomposition time is compared between the proposed parallel two-sided Jacobi 
algorithm and the method in [2] and [4]. We compare the decomposition time with the 
required number of clock cycles.  

Firstly, we analyze the decomposition time of 2 2×  complex SVD. To decompose 
a 2 2×  complex-valued matrix, the proposed algorithm requires only one iteration. 
As shown in Fig. 6, it costs 5 serial pipeline CORDIC stages. However, the algorithm 
in [8] costs 7 serial CORDIC pipeline stages, which takes longer decomposition time. 
Assume that it takes 4 clock cycles to compensate the expansion factor K [9] with 
shift-add operations, and takes 5 clock cycles to order the two singular values, the 
proposed algorithm for 2 2×  complex SVD requires 2 2 5 ( 4) 5T n× ≈ × + + cycles to 

complete one decomposition where n denotes number of CORDIC micro-rotations.  
Decomposition time comparison of the 2 2×  complex SVD is presented in Table 

2 with different CORDIC micro-rotations.  

Table 2. Decomposition time comparison of 2 2× complex SVD 

2 2× complex SVD (clock cycles) 
CORDIC 

micro-rotations 
[4] This work Improvement 

16 173 105 39% 
12 138 85 38% 

To compare the decomposition time of 4 4×  complex SVD, assume that it takes 
20 clock cycles to order the four singular values and the corresponding singular vec-
tors, the proposed parallel two-sided Jacobi algorithm for 4 4× complex SVD re-
quires 4 4 3 5 ( 4) 20T S n× = × × × + + cycles to complete one decomposition where S 

denotes the number of sweeps. 
Decomposition time comparison of the 4 4×  complex SVD is presented in Table 

3. The 1539 clock cycles is computed with the maximum SVD time and the corres-
ponding clock frequency in [2]. According to the  simulation results in section 5, the 
number of sweeps is chosen to be 3. Because the BER performance of the proposed 
algorithm with 3 sweeps and 12 CORDIC micro-rotations is almost the same with the 
ideal SVD. As shown in Table 3., the proposed algorithm for 4 4×  complex SVD 
saves 52% decomposition time compared with the Golub-Kahan-Reinsch algorithm 
[2]. 

Table 3. Decomposition time comparison of 4 4× complex SVD 

4 4× complex SVD (clock cycles) 
CORDIC 

micro-rotations 
[2] This work Improvement 

12 1539 740 52% 
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7 Conclusions 

In this paper, a low-complexity parallel two-sided Jacobi complex SVD algorithm and 
the parallel VLSI architecture are proposed for MIMO beamforming systems. The 
algorithm is suitable for any ( 4, 4)m n m n× ≤ ≤ matrix by expanding it to dimension 

4 4× . Then the 4 4×  matrix is decomposed by performing two 2 2× complex SVD 
procedures in parallel. To reduce the decomposition time, master-slave CORDICs are 
employed in the parallel architecture. The proposed algorithm has low computational 
complexity which saves 52% decomposition time compared with the Golub-Kahan-
Reinsch algorithm on 4 4× complex SVD. Furthermore, BER performance of the 
proposed algorithm is almost the same with the ideal SVD.  
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Abstract. Ever growing power density has made thermal effects one of the 
most crucial issues for modern VLSI designs, e.g., reports have shown that 
more than 50% of IC failures are related to thermal issues. However, thermal is-
sues for Coarse Grain Reconfigurable Architectures (CGRA) have been few 
addressed. In this paper, a thermal-aware task mapping algorithm called Max-
Min algorithm is developed for the REmus reconfigurable architecture, which 
uses compact thermal model based on equivalent thermal circuit to iteratively 
optimize the power dissipation on the modern CGRAs. Experiments based on 
Hotspot simulation show that the algorithm can reduce the maximum tempera-
ture by 3~9℃  and narrow the temperature distribution range by 7~15℃ .  
Compared to previous intuitive random algorithm, the Max-Min algorithm can 
significantly reduce the number of optimization iterations while reserving the 
same result. 

Keywords: Reconfigurable computing system, thermal model, thermal  
management, Max-Min algorithm. 

1 Introduction 

Increasing power density has been one of the most urgent obstacles to the continuous-
ly scaling VLSI systems [1]. As power dissipation is spatially non-uniform across the 
entire chip, localized heating occurs much faster than chip-wide heating. The so-
called “hot spot” and spatial gradients can cause timing errors or even physical dam-
age to the chip. In order to avoid the problems caused by excessive heating, it is  
necessary to monitor the temperature and apply thermal management techniques to 
balance the heat across the chip. 

For the thermal issues in modern microprocessor domain, the most common me-
thod is dynamic thermal management (DTM) [2]. It applies different techniques, e.g. 
dynamic voltage and frequency reduction (DVFS) [3] or clock gating to reduce the 
chip’s power consumption with hardware cost and performance loss. To minimize the 
loss, software methods such as Dynamic Repartitioning algorithm, Dynamic Core 
Scaling algorithm [4] and power-aware real-time scheduler [5] are also proposed. 
However, the lack of accurate thermal model limits their practical use. To construct 
an accurate thermal model to tackle the issues, two general methods are widely used. 



212 S. Tang et al. 

One is analytical thermal model, i.e., ATMI [6], which solves the heat equation based 
on physical structure to get the temperature. The other is compact thermal model, e.g. 
Hotspot [7], which uses thermal resistances and capacitances to assemble the model. 
The analytical thermal modeling approach does not take package into consideration 
and is not fast enough to solve heat equations. In contrast, hotspot modeling is able to 
provide detailed static and transient temperature information efficiently across the die 
and the package. 

Recently, reconfigurable devices are becoming more and more popular due to the 
requirements for more flexibility and higher performance. Typically, by customized 
device reconfiguration, the CGRA [8] can reduce the non-recurring engineering cost 
of VLSI chips but still yields higher area efficiency. Though the thermal problem on 
reconfigurable device is not so serious as that in microprocessors, given high clock 
frequencies, and extreme operating environments, reconfigurable device can easily 
run overheated, and cause many issues  on  performance and reliability [9]. Unfortu-
nately, so far there are only a few methods published to mitigate the thermal problems 
in reconfigurable device, i.e., dynamic thermal management for FPGA [10] and ther-
mal-aware task mapping [11] for coarse-grain dynamic reconfigurable processor. 
However, these work aim to monitor the temperature on the targeted device, and so 
far no effective methods are proposed to solve the thermal issues in CGRA.  

To this problem, a thermal aware task mapping algorithm called Max-Min is pro-
posed, which is efficient to reduce the peak temperature and balance the heat distribu-
tion across a coarse-grain reconfigurable platform by taking different mapping effects 
into account. To accurately evaluate the temperature, our evaluation is based on a 
detailed thermal model of the target architecture using Hotspot. Hotspot is capable of 
solving large scale problems due to its simple model structure, and thus is widely used 
for thermal evaluation. The experiment results show that our algorithm is very effec-
tive to reduce the peak temperature and balance the heat distribution across the chip. 
In addition, we provided both optimality and complexity analyses on our proposed 
task mapping algorithm for its practical use, which demonstrate the effectiveness and 
efficiency of our proposed algorithm.  

The rest of this paper is organized as follows: section II provides the dedicated re-
configurable device architecture and constructs the thermal model. Section III propos-
es the thermal optimization algorithm for the task mapping process. Experiments are 
carried out and results are analyzed in section IV. Section V concludes this paper and 
talks about the future work.  

2 Thermal Model of the Target Device 

REmus reconfigurable architecture mainly consists of an ARM processor, SRAM, 
DMA controller, interrupt request controller and a reconfigurable processing unit 
(RPU), as shown in Fig. 1(a). The RPU, designed to speed up the data-intensive mul-
timedia applications, consists of constant memory, load/store FIFO, configuration 
register, controller and an 8×8 array of 64 reconfigurable cells (RC), which is called  
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Fig. 1. Our Reconfigurable Processing Architecture 

reconfigurable array (RCA) as shown in Fig. 1(b). Each RC is composed of comput-
ing unit, multiplexers and data registers, and can conduct different logic operations by 
configuring context words. Each row of RCs can access the results of previous row 
through the router. The router provides data access between any adjacent rows of 
RCs. Furthermore, the last row of RCs can also be accessed by the first row of RCs, 
so that the RCA formed a cyclic data path. Each RC can also read/write directly from 
the load/store FIFO, which is used to buffer the data from SRAM. 

Generally speaking, targeting on a given reconfigurable architecture, the mapping 
problem is to place the logic operations onto RCA, and uses built-in interconnections 
to link the operations for desired functionality. Different mapping solutions will result 
in different performance and power. In this paper, we will focus on the thermal effects 
during mapping to reduce the maximum temperature and balance heat distribution of 
the design.  

To construct the compact thermal model for thermal effect evaluation on RPU, de-
tailed information of RPU is needed, such as the area, thickness and thermal conduc-
tivity of the chip. To make the model easy to construct, we have simplified the hard-
ware architecture and focus on the RCA, because RCA occupied 80% area and power 
consumption of RPU. 

The compact thermal model of RCA is shown in Fig. 2(a), according to the hotspot 
[7] model package, which includes the silicon layer, spreader, interface layer and heat 
sink, we first divide the silicon layer at the architecture-level. Note that RCA is an 
8×8 array of same reconfigurable cells, 64 blocks are divided on silicon level, as 
shown in Fig. 2(b) in blue parts, and each of them is assigned to one node. For other 
layers (such as heat spreader and heat sink), we simply divide them as illustrated in 
Fig. 2(b), as their thermal information is enough. The central part is the area covered 
by another adjacent layer. This central part has the same number of nodes as its 
smaller neighbor layer or can collapse those nodes into fewer nodes, depending on the 
accuracy and computation speed requirements. The remaining peripheral part in Fig. 
2(b) is then divided into four trapezoidal blocks, each assigned to one node. 
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Fig. 2. Compact model of RCA 

The equivalent thermal circuit is structured as follow: every block in each layer has 
one vertical capacitance connected to the ground and several lateral capacitances be-
tween the centers of each shared edge and the ground, as shown in Fig. 2(c). And it 
also has one vertical thermal resistance connected to the next layer and several lateral 
resistances to its neighbors in the same layer, as shown in Fig. 2(d). The thermal ca-
pacitance C, calculated as in (1), is proportional to both thickness t of the material and 
the cross-sectional area A across which the heat is being transferred:  

C ctA=                                        (1) 

where c is the thermal capacitance per unit volume. The thermal resistance R, on the 
other hand, is proportional to the thickness t and inversely proportional to area A: 

t
R

kA
=                                (2) 

where k is the thermal conductivity.  

3 Thermal-Aware Task Mapping 

Generally, the target application can be described by a Data Flow Graph (DFG). Since 
the number of RCs is limited, the task described by DFG has to be partitioned into 
small sub-graphs to meet the capacity of RC array, which is called task compilation in 
this paper. Our thermal aware task mapping is performed during task compilation. To 
monitor the temperature of the RCA when executing the divided sub-graphs, we com-
pute the temperature by the above compact thermal model and the power dissipation 
on each block. Aiming to find an optimized mapping solution in terms of reduced max-
imum temperature and balanced heat distribution of the design, the problem can be 
mathematically formed as follows: 

{max }, nminimize T T T∈  

, { }nGT P P P= ∈                          (3) 
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where T is a vector consists of 64 temperature values of each RC, and P is a vector 
consists of 64 power dissipation when RC is executing operations under different 
configurations and different inputs. {Pn} is the set of all possible power vectors. G is 
the 64×64 matrix of thermal conductivity, which is parameterized and set by the file 
of model parameter, including the physical parameter such as the width, height of RC 
and thermal conductivity.  

As reducing the power dissipation can reduce the temperature of RC, operations 
migration with higher and lower power dissipation operations is an intuitive way to 
balance the temperature. Inspired from this, we swap the operations between "cold" 
and "hot" RCs to reduce the peak temperature, and thus call it as Max-Min algorithm. 
During the swapping, we have to keep the data dependency among different opera-
tions on each RC, which means the critical path of initial sub-graph is not changed. 

The pseudo-code of our Max-Min algorithm implementation is shown below: 

for t = 1:rand_times     
Randomly mapping DFG on RCA 

   //Main procedure  
   for r = 1:row      //Search each row 
       for n = 1:best_beg 
           Do Max-Min operation in Row r 
           Set Row n as the beginning row 
           Solve the thermal equation 
           if Tcur_max < Tmax 
               Tmax = Tcur_max 
           end 
       end 
   end 
   for n = 1:col/2    //Max-Min operation 
       for r = 1:row 
           Set Row r as the beginning row 
           Solve the thermal equation 
       end 
   end 
   //Main procedure ends 
end 

where two nested loops are applied for an optimal solution. The main procedure of 
algorithm in the inner loop is performed as follows. First, starting from a random 
valid DFG mapping, the algorithm searches each row of the RCA in turns and swaps 
the operations with the maximum and minimum temperatures, i.e., Max-Min opera-
tion. Then, making uses of the structure of RCA with circular data path, it selects a 
row as the first row of the sub-graph, and calculates on-chip temperature when the 
position is changed. Next, search each row of RCA and swap the operations with  
the maximum and minimum temperatures on RC after getting a best beginning row. 
Finally, select the best mapping as one optimized solution. 
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Then, we use an outer loop for multiple optimal solutions by repeating the Max-
Min algorithm in the inner loop. Due to the temperature of one RC is not only related 
to the computing power density but also related to the temperature of RC around, an 
initial mapping does not always get an optimal solution. So we repeat the Max-Min 
algorithm by randomly initializing the sub-graph of DFG, for several times and select 
the best mapping among them. Note that the initial random mapping of DFG  
have no correlation among each other, it can be executed in parallel to speed up the 
algorithm. 

4 Experiment Results and Analysis 

The dedicated RCA architecture well suits the multimedia applications by exploiting 
their explicit parallelism. In our experiments, we used several typical algorithms in 
multimedia applications to see the effectiveness of our proposed algorithm, e.g. 2x2 
Matrix multiplication (Mat-2x2), 4x4 Matrix multiplication (Mat-4x4), 8 points Fast 
Fourier Transform (FFT8), 8 points Inverse Discrete Cosine Transform (IDCT8-row, 
IDCT8-col and IDCT8) and 32 points Discrete Cosine Transform (DCT32). We use 
(1) and (2) to get RC that forms G in (3), and use SPICE under different configura-
tions and inputs to get the power dissipation P in (3). Then we can solve (3) by the 
hotspot simulator.  

4.1 Results on Mapping Optimization 

For the thermal evaluation, we perform analysis by executing the same configuration 
repeatedly, so that the temperature of the device can converge to a steady value. As 
shown in Fig. 3, the temperature distribution map of IDCT8_COL before and after 
optimization. Each rectangle in the plane represents a RC element. From the figure we 
can see that the peak temperature is reduced, and the heated area becomes more evenly 
distributed across the chip. For a clearer view of the peak temperature reduction, we 
plot the temperature distribution curve in Fig. 4, where we can see that the maximum 
temperature on RCA is reduced from 59.22℃ to 51.59℃. At the same time, the range  
 

 

Fig. 3. IDCT8_COL temperature distribution map (a) before (b) after optimization 

 (a) (b)
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of concerned kernel is reduced from 20℃ to 10℃. Detailed statistical results are listed 
in Table 1, where the ratio η calculated by (4) shows the ratio of peak temperature 
reduction from the initial state by a typical ambience temperature of 45℃ [7]: 

 100%
T Topt orig

T Torig amb

η
−

= ×
−

 (4) 

where Torig, Topt are the temperatures before and after optimization; Tamb is the typical 
ambience temperature. From the table, we can see that, according to different cases, 
the maximum temperature on the target device can be reduced by 3~9℃ lower after 
optimization. However, if the RCA has less spare computational units after mapping, 
the optimization space of our proposed algorithm is limited, as shown by DCT32. 

Table 1. Maximum temperature of RCA with different algorithm 

 

We also do transient analysis to see the trend and power consumptions of different 
operations. Because the clock frequency of RCA is 200MHZ and the temperatures of 
every cycle are not needed, we sample the RCA temperature every 1000 cycles. And 
the configuration time, which is about ten thousand cycles, has also been considered, 
during which the temperature will be cooling down. 

 

Fig. 4. IDCT8_COL temperature distribution curve 

Algorithm Application Mat 2x2 Mat 4x4 FFT8 IDCT8_ROW IDCT8_COL IDCT8 DCT32
Origin Max Temp ( ) 60.93 69.75 65.08 60.13 59.22 69.38 71.25
Random Max Temp ( ) 56.25 67.01 59.02 51.34 51.83 66.54 71.22
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4.2 Optimality Analysis 

In our experiments, we also studied the optimality of our Max-Min algorithm. Gener-
ally, given a DFG going to be mapped on a RCA with a dimension of m×n, there are 
m×(n!)m different mapping solutions with varied thermal results. For example, for an 
array of 64 RCs, the number of possible mapping may be 5.6e37. Table 2 listed the 
number of mapping in the second row for the 8 applications concerned in this paper.  

To see the optimality of the Max-Min algorithm, we computed the minimum 
bound of the maximum temperature and compared to our result, which are also listed 
in Table 2.  Considering the problem size, we can calculate the optimal solution by 
enumerating the mapping of Mat 2x2 and Mat 4x4. For other applications, we can 
approximate the minimum bound by unifying different operations on the RCs with the 
operation with the lowest power dissipation. By unifying the higher power dissipation 
operations to the lowest power dissipation operation, we can reduce the solution space 
for mapping, and hence we can get the minimum bound by enumerating. According to 
the number of nodes replaced (the more nodes replaced, the higher order approxima-
tion), we compute the one-order approximated solution of FFT8, IDCT8_ROW, 
IDCT8_COL and two-order approximated solution of IDCT8, DCT32. The minimum 
bounds are listed in the Table 2, where we can see that the Max-Min algorithm has 
almost achieved the optimal results, within less than 0.2% for all the cases. 

Table 2. Minimum bound Maximum temperature of RCA 

Application Mat 2x2 Mat 4x4 FFT8 IDCT8_ROW IDCT8_COL IDCT8 DCT32 
Num of Mapping 560 560 1,756,160 235,200 1.2e7 2.2e18 1.2e20 
Bound Temp (℃) 54.52 66.88 59.02 51.26 51.58 64.50 71.01 

Approximation None None One  One  One  Two  Two  
Compared to Max-Min -0% -0% -0% -0.0195% -0.0194% -0.186% -0.127% 

4.3 Complexity Analysis 

Finally, we study our proposed Max-Min algorithm’s complexity. Based on the RCA 
architecture, an accurate number of the swapping operations can be given in (5):  

 

2 1
( ) _

2
Complexity row col row rand times= + × ×

 
(5)

 
where complexity is evaluated by the number of a 64×64 matrix multiplication, row is 
the number of row, col is the number of column, those values are 8, rand_times is the 
number of initial DFG mapping generated randomly. 

Table 3 lists the correlations between computational complexity and optimization 
for these cases. Since initial mapping is generated randomly, the results will be a little 
different each time. When the rand_times is more than 100, the maximum tempera-
ture of each simulation with the same parameter varies less than 0.02℃. Considering 
the complexity and optimization results, we select rand_times = 100, which means the 
complexity is 9,600. While the random algorithm in [11] achieves a similar result 
requires 320,000 matrix multiplication, which is about 30 times larger than Max-Min 
algorithm. 
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Table 3. Max-Min Algorithm Correlations between Complexity and Optimization 

Random Times Complexity 
Maximum Temperature (℃) 

FFT8 IDCT8 DCT32 
1 96 59.28 71,21 67.93 
10 960 59.02 71.15 66.21 
50 4,800 59.02 71.11 65.22 
100 9,600 59.02 71.10 64.62 
200 19,200 59.02 71.12 64.61 
500 48,000 59.02 71.11 64.61 
1,000 96,000 59.02 71.10 64.60 

5 Conclusion and the Further Work 

Targeting on a coarse-grained reconfigurable processor, this paper studies the thermal 
effects of different mapping solutions and proposed a thermal-aware task mapping 
algorithm to reduce the peak temperature while balancing the heat distribution across 
the chip. Starting from an initial random arrangement of the computational work load, 
the algorithm attempts to cool the device by swapping the cool and hot area when 
executing the work load after configuration. By heuristics, Max-Min algorithm can 
quickly converge to a near optimal solution, which is only about 1/30 time comparing 
with a random algorithm [11]. The experimental results show that Max-Min algorithm 
can reduce the average maximum temperature about 3~9℃ and narrow temperature 
distribution range about 7~15℃. According to the results above, Max-Min task map-
ping algorithm is efficient for thermal management in using coarse-grain reconfigura-
ble computing system. 

The current thermal-aware algorithm only focuses on RCA, and we will develop 
more comprehensive thermal mode for other components of the reconfigurable  
processor in the future.  
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Abstract. Zero Intermediate Frequency (zero-IF) receivers with two analog-to-
digital converters (ADCs) in In-Phase and Quadrature (IQ) branches are widely 
used in emerging multi-Gigabit wireless Orthogonal Frequency Division Mul-
tiplexing (OFDM) systems. Because ordinary ADCs could not meet the de-
mands of sampling rate in the system, two time-interleaved analog-to-digital 
converters (TI-ADCs) could be an attractive alternative for sampling speed im-
provement in the receiver. However, the mismatches among the parallel sub-
ADCs can degrade the performance significantly without calibration. Targeting 
the DC offset mismatch of the TI-ADCs, this paper proposes calibration  
algorithm based on decorrelation least-mean-squares (LMS) and recursive-
least-square (RLS) utilizing the comb-type pilots in OFDM frame, which could 
calibrate the two TI-ADCs in (IQ) branches simultaneously. The calibration al-
gorithm has the property of fast convergence. Simulation results show that the 
BER performance is improved by the proposed algorithm. 

Keywords: Multi-Gigabit, time-interleaved ADC, mismatch, calibration,  
parameter estimation, orthogonal frequency division multiplexing (OFDM). 

1 Introduction 

Realizing high-speed ( 1GHz> ), sufficient precision (8-10 bits), and low-power cost 
( 100mW< ) analog-to-digital converters (ADCs) has been a bottleneck [1] in emerg-
ing multi-Gigabit wireless communication system (e.g. UWB, 60GHz wireless) with 
ultra large bandwidth. For instance, IEEE 802.15.3c requires the ADC sampling at 
2.640GHz and 2.538GHz in High-Speed-Interface Orthogonal Frequency Division 
Multiplexing (HSI OFDM) mode and Audio Visual (AV) OFDM mode respectively 
[2]. Existing techniques and devices could not meet such a requirement or would 
work at the expense of unacceptable high costs. Time-interleaved (TI) architecture 
provides a promising approach to solve this problem by interleaving several slower 
sub-ADCs in parallel. As shown in Fig. 1, a time-interleaved analog-to-digital conver-
ter (TI-ADC) linearly increases its sampling rate with the number of interleaved sub-
ADCs, and the resolution of the array is dependent on the resolution of sub-ADCs. 
                                                           
* This work was supported in part by Shanghai Natural Science Foundation under Grant No. 

10ZR1416500 and the Research Fund for the Doctoral Program of Higher Education 
of China under Grant No. 20110073110055. 
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Fig. 1. A TI-ADC block diagram formed by M sub-ADCs 

However, the mismatches among sub-ADCs degrade the performance of the TI-
ADC. Typically, there are three major types of mismatches must be considered: DC 
offset, gain, and timing mismatches [3]. 

DC offset mismatch is one of the major mismatches in a TI-ADC. As a result, the 
mismatch calibration has received significant attention. For example, existing  
calibration methods employ the redundancy such as additional hardware or training 
sequences [5], [6].  

OFDM technique is widely adopted by high-speed wireless communication such as 
MB-UWB, and IEEE 802.15.3c. TI-ADCs used in OFDM system can be calibrated 
by leveraging the training sequences such as preamble or pilot signals. The DC offset 
mismatch calibration in [3] constructs the objective function, use optimization method 
to estimate the parameter and then eliminate its effect. However, the method can only 
apply for one ADC in the receiver and it needs a large number of OFDM frames need 
to be averaged. Thus it will lead to slow convergence. The proposed calibration in 
[10] is based on LMS algorithm using block-pilot signals. However, block-pilot sig-
nals are adopted by few protocols. Targeting calibrating DC offset mismatch of two 
TI-ADCs in In-Phase and Quadrature (IQ) branches and improving the convergence 
speed, we extend the model and method proposed in [3], and then propose the calibra-
tion algorithm using comb-pilot based on decorrelation least-mean-square (LMS) and 
recursive-least-square (RLS) algorithms.  

Section 2 describes the models of TI-ADC and OFDM system. Section 3 presents 
the calibration basis and the proposed algorithm. Simulation results are shown in Sec-
tion 4, and finally, conclusions are drawn in section 5.  

2 System Model 

In this section, we first present the model of TI-ADC with DC offset mismatch. Se-
condly, in order to understand the attributes flow in the communication link, we de-
scribe the OFDM system that utilizes TI-ADCs both in IQ branches in the receiver. 
The RF front-end offers the analog input of the TI-ADC, and the baseband processor 
is fed with the digital output of the TI-ADC. 
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2.1 DC Offset Mismatch Model in TI-ADC 

Taking DC Offset Mismatch into consideration only, we describe the model of a TI-
ADC. Letting sT denotes the nominal sampling period, and 1 / sT is the sampling rate, 

the output of TI-ADC is written as [4]: 

 mod[ ] ( )s m Mv m v mT μ= +  (1) 

Where [ ]v m denotes the thm digital quantized sample, sampled by the 

( mod )thm M  sub-ADC, where mod denotes the modulo operation and M  

denotes the number of sub-ADCs. Sub-ADC with index of modm M  has the DC 

offset modm Mμ .  

As a result of the mismatch parameter drifting over hours, we set the mismatch pa-
rameter to constant values in our work. Since the quantization noise is small enough 
compared with the DC offset mismatch–induced interference and the thermal noise, 
we ignore the former in our analysis [4]. 

2.2 OFDM Model 

Orthogonal frequency-division multiplexing (OFDM) is an advanced physical layer 
multicarrier modulation technique, which is widely used in many wireless standards. 
Fig. 2 illustrates the signal flow of OFDM both in transmitter and receiver. 

 

Fig. 2. OFDM transmitter (DAC = Digital-to-Analog Converter) and receiver 

The basic unit of the data stream is called an OFDM frame, and the size of an 
OFDM frame (denoted by N) is identical to the size of IFFT and FFT in transmitter 
and receiver. A typical frame consists of information bearing subcarriers, pilot subcar-
riers, and virtual subcarriers. The pilot subcarriers are deterministic to make coherent 
detection robust against frequency offsets and phase noise and perform the channel 
estimation [7]. In this paper, we use the pilot signals to do the calibration work. 

For simplicity, the calibration of DC offset mismatch for the TI-ADC in the OFDM 
receiver is implemented in an AWGN channel in the analysis below. 
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3 ADC Calibration Using Pilot Signals 

In this section, we describe how we employ pilot signals to estimate and calibrate the 
DC offset mismatch between sub-channels of TI-ADCs in IQ branches. As the prior 
work [3] is about the case for one ADC, which cannot be directly applied in the direct 
down conversion receiver, we extend its mathematical model. Targeting the disadvan-
tages of the speed of convergence in the algorithms proposed in [3], we propose the 
decorrelation LMS [8] and RLS algorithm [9] to solve the problem. 

3.1 Constrains on Sub-ADC Numbers and FFT Size 

It is proved in [3] that the number of sub-ADCs M must be prime with the FFT size N 
so that the error caused by DC offset mismatch could spread out over the entire sub-
carriers. If N is multiple of M, the error caused by mismatch could only affect the 
subcarriers with the index multiple of /N M , while others is not affected by the 
mismatch. Under such a circumstance, if pilot subcarrier is not with the index mul-
tiple of /N M , the calibration will not work. In our proposed algorithms, we adopt 
the former constrain that M is prime with N.  

Note that, in branch I or Q, the number of sub-ADCs has the same value of M . 
Totally, there are 2M sub-ADCs in a direct down conversion receiver. 

3.2 Relationship between DC Offset Mismatch and Its Effect on Pilot Signals  

In the transmitter, the thl  transmitted OFDM symbol can be expressed as: 

 ( )l lIFFT=x X  (2) 

Where lX denotes the thl  OFDM frame in frequency domain before IFFT operation, 

lx  denotes the thl  OFDM frame in the time domain, ( )IFFT • represents an energy 

preserving IFFT operation. 
After experiencing the additive white Gaussian noise (AWGN) channel, the signal 

in the receiver, which lies before the ADCs, can be written as: 

 l received l= +x x w  (3) 

Where w denotes the AWGN vector with the size of N with 2[ ]HE σ=ww I . 2σ  is 

the variance and N is the FFT size.  
Adding the DC offset mismatch of TI-ADC, and the recovered OFDM frame after 

FFT operation can be expressed as: 

 ˆ ( )l l receivedFFT= +X x μ  (4) 
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Where 0 1 2 mod 1 mod[ ]T
N M N Mμ μ μ μ− −=  μ , iμ  has a complex value, 

the real part is the DC offset of the sub-ADCs with the index of i  in I branch, and 
the imaginary part is the DC offset of the sub-ADCs with the index of i  in Q branch, 

( )FFT • represents an energy preserving FFT operation. 

Combining equation (2), (3) and (4), we can obtain: 

 ˆ ( )l l FFT= + +X X μ W  (5) 

Where W is the FFT of w . While FFT is an energy preserving transform, W and 
w  has the same statistic characteristics. 
Substituting FFT matrix for ( )FFT • , extracting the pilot signals, revising μ  in equa-

tion (5) into 0 1 1
T

Mμ μ μ −= [ ]μ  , and then subtracting the known pilot values, 

the equation (5) can be revised in matrix form as: 

 = +E Fμ W  (6) 

Where in (6), E is the error column vector in pilot subcarriers caused by the offset 
mismatch with the length of L , the length is equal to the number of pilots in an 
OFDM frame, W  is an AWGN noise vector of length of  L , F is a L M× matrix , 
which is could be obtained by the column and row operations of the standard FFT 
matrix. 

Equation (6) is the extended form proposed in [3]. In equation (6), two TI-ADCs 
embedded in IQ branches are taken into consideration.  

 As we shall show, the equation (6) gives the relationship between DC offset mis-
match and its effect on pilot subcarriers. The vector E is the error observation we find 
in received pilot subcarriers, and 0 1 1

T
Mμ μ μ −= [ ]μ   is the offset that is need 

to be estimated in each sub-ADCs in the TI-ADCs in IQ branches. W is the noise 
vector, which could be reduced by averaging as in [3]. Thus, equation (6) is a classic 
linear model that could be solved by different methods [9]. 

3.3 Estimation Algorithm Based on Decorrelation LMS and RLS 

Careful inspection of equation (6) suggests the LS [9] estimation, which is shown as: 

 1ˆ H H−μ = (F F) F E  (7) 

Where ( )H•  and 1( )−• denotes the Hermitian transpose and inverse matrices. In (7), 

the estimation of offset vector μ̂  only under the circumstance of L M≥ , which 

means that the number of the pilot is larger than the offset to be corrected, can be 

written as shown above. At the same time, HF F must be invertible, which means
( )Hrank M=F F . Numerical simulation shows that under most circumstances,  
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( ) 1Hrank M= −F F . In order to meet the condition above, we need to add the error of 

DC subcarrier in the OFDM frame to the error observation vector E , which is a 
( 1)L + vector, and additionally extract the first line of standard FFT matrix to make 

F a ( 1)L M+ ×  matrix. This operation requires that, before ADC, the DC offset of 

the RF front-end must be cleaned and this can be achieved by AC-coupled or com-
pensating in the analog domain in RF front-end.  

Note that after adding the error of the DC tone in vector E , the coordinate descend 
method proposed in [3] is also available without setting the offset of  first unit to 
zero. But it converges too slowly. 

As we can see, directly applying the LS estimation would require a prohibitively 
high cost, because matrix inversion requires a lot of computations. This can be 
avoided by using iterative algorithm like LMS and RLS algorithms. 

A. Decorrelation LMS Algorithm 
In decorrelation LMS algorithm, μ̂vector is computed as Table 1 shows [8]: 

Table 1. Decorrelation LMS algorithm steps 

Initial: 

0ˆ 0=μ ; 

Steps: 
for 1,2,3...l =  
1. 1 ˆ( 1) ( 1,:)l le l l+ = + − +E F μ  

2. 1

( ,:) ( 1,:)

( ,:) ( ,:)

H

l H

l l
a

l l+
+= F F

F F
 

3. 1 1( 1,:) ( ,:)l ll a l+ += + −P F F  

4. 1
1

1( 1,:)
l

l
l

e

l
η +

+
+

=
+F P

 

5. 1 1 1ˆ ˆl l l lη+ + += +μ μ P  

In Table 1, l represents the number of iteration, η is the step size, and the ( ,:)iF

denotes the thi  row of F . While updating the μ̂vector, the decorrelation LMS algo-

rithm uses the correspondent previous and current rows of F  in each iteration. Note 
that the algorithm we adopt is decorrelation LMS algorithm instead of the original 
LMS algorithm. In our application the correlation of the input vectors is relatively 
large, and the decorrelation LMS algorithm can remove the correlation of the input 
vectors to increase the convergence speed.  

B. RLS Algorithm 
In RLS algorithm, μ̂vector is updated as follows in Table 2 [9]: 
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Table 2. RLS algorithm steps 

Initial: 

1ˆ 0=μ  

1
1

1

ϕ
= Iφ

 

 

0 1λ< < , λ  is the forgetting factor 
Steps: 
for 1,2,3...l =  

1. 
1

1 11 ( 1,:) ( 1,:)l H
ll l

λβ
λ

−

+ −=
+ + +F Fφ

 

2. 1 1 ( 1,:)H
l l l lβ+ += +m Fφ  

3. 1 1ˆ ˆ ˆ( 1,:) ( ( 1) ( 1,:) )H
l l l l ll l lβ+ += + + + − +μ μ F E F μφ  

4. 1
1 1 1( )l l l l lλ−

+ + += − m Fφ φ φ  

In Table 2, the parameter is defined the same as in the classical RLS algorithm. 
RLS algorithm uses one row of F  in each iteration. This algorithm provides more 
accurate and faster convergence speed at expense of much more complexity. 

3.4 Calibration Architecture in the Receiver 

The idea of the calibration is to use the algorithms described in section 3.3 to estimate 
the individual offsets in sub-ADCs first, and then eliminate the effects on frequency 
domain. Fig. 3 shows how the background calibration works. The OFDM frames are 
passing in path IQ 1, and are stored in Register 1. Pilot Tone Selection module gets 
the frame and selects the pilot tones. After averaging to reduce the AWGN channel 
noise, the LMS/RLS Estimator performs the decorrelation LMS or RLS algorithm to 
estimate the DC offsets of the TI-ADC in IQ branches. The DC offsets in frequency 
domain are stored in Register 2. The calibrated data is finally obtained by subtracting 
the contents in Register 2. 

 

Fig. 3. Calibration Architecture using the proposed algorithm 
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It is also possible to perform a foreground calibration. The estimated DC offsets 
computed by LMS/RLS Estimator can be directly subtracted in the time domain  
before FFT operation. 

4 Simulation Results 

The calibration algorithms described above are evaluated in simulations developed in 
MATLAB. The OFDM system we use is the MB-UWB OFDM systems in the 
AWGN channel [7]. Two TI-ADCs sampling at 500MS/s are used in IQ branches, 
with 5 sub-ADCs in each one. The system uses QPSK modulation and there are 12 
pilots in one OFDM frame, and the IFFT/FFT size is 128. 

4.1 Offset Estimation and Comparisons 

In section 4.1, we set the mismatch in the level of 10%. By 10% mismatch, we mean 
the values of DC offset mismatch are chosen uniformly in [ /10, /10]A A− , where the 

A is the RMS value of the TI-ADC input signal’s amplitude. The offset values of the 
estimation on the vertical axis are normalized by the RMS value in digital domain. 

For QPSK, the RMS value is equal to 1/ 2 .  
We extend the coordinate descend method which is proposed in [3]. After the nu-

merical simulation, we find that in a noiseless channel the coordinate descend method 
needs about 8000 OFDM frames to achieve the convergence.  

In order to make the calibration faster, we evaluate the decorrelation LMS and RLS 
algorithms. Fig. 4 and Fig. 5 show the process of estimation with LMS and RLS  
algorithm and the MSE comparison respectively: 

 

Fig. 4. Offset estimation using RLS algorithm 
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Fig. 5. MSE comparison between LMS and RLS 

The decorrelation LMS algorithm and RLS algorithm in Fig. 4 and Fig. 5 are eva-
luated with 0/ 10bE N dB= , and the averaging time is 500. The horizon axis 

represent the iteration number, which is not the same operation as in coordinate des-
cend method. 13 iterations are updated in one OFDM frame. The figure shows LMS 
and RLS achieve the convergence after about the 200 and 40 iterations, which equally 
with 15 and 3 OFDM frames. Taking the averaging operation into consideration, 
LMS and RLS algorithm take 7500 OFDM frames and 1500 frames, respectively, to 
converge to acceptable estimated DC offset values. 

Fig. 5 shows the mean square error (MSE) comparison between LMS algorithm 
and RLS algorithm. RLS algorithm takes fewer iteration times and is more accurate 
than LMS algorithm at expense of much more complexity. 

4.2 BER Performance Comparison 

Fig. 6 presents the BER performance among the calibrated, uncalibrated and the ideal 
MB-OFDM BER curve with 0/bE N  from 5dB  to 10dB . The calibrated BER 

curves are nearly the same as the ideal one, which confirms the efficacy of the estima-
tion algorithms proposed above. 

 

Fig. 6. BER performance comparison 
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5 Conclusions 

In this paper, we propose a digital calibration in a high-speed OFDM system using the 
comb-pilot signals based on decorrelation LMS and RLS algorithms. The calibration 
could reduce the effect of the DC offset mismatch of two TI-ADCs in IQ branches 
simultaneously. And the calibration algorithm converges faster than the coordinate 
descend method. Furthermore, BER performance is improved by the proposed cali-
bration. The calibration method may also be applied to 60GHz millimeter communi-
cation, optical communication and other high-speed communication systems. 
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Abstract. Coarse-Grained Reconfigurable Architectures (CGRAs) provide 
more opportunities for accelerating data-intensive applications, such as multi-
media programs. However, the optimization of critical loops is still challenging 
issues, since there is lack of application mapping tool of CGRAs. To address 
this challenge, we first take program feature analysis on the kernel loops of ap-
plications. And then we propose a novel graph model called PIA-CDTG con-
taining these features. We implement an efficient task mapping method with a 
genetic algorithm based on the graph model. Experimental results show that the 
mapping method with PIA-CDTG is more effective than other features-unaware 
methods, and make the execution attains high efficiency and availability. 

Keywords: PIA-CDTG, Program Feature Analysis, Loop Mapping, Coarse-
grained Reconfigurable Architecture 

1 Introduction 

The multi-media applications, which emerged in the last decade, such as image and 
video processing, are date intensive. Coarse-grained reconfigurable architecture 
(CGRA) offers the capability for spatial, parallel, and specially computation through 
hardware customization, that is, hardware that can be reconfigured during runtime to 
substantially accelerate different kind of applications. These advantages in CGRA 
have led to the development of heterogeneous reconfigurable platforms for media 
processing applications, since applications realized in hardware whose execution is 
much faster than those realized in software. CGRA is essentially an array of 
processing elements (PEs), like ALUs and multipliers, interconnected with a mesh-
like network. The complexity of hardware makes programming application is a chal-
lenging task since the compiler has to map the controller tasks of the application onto 
the host processor and map the data-intensive tasks onto the processing elements ar-
ray. After the reconfigware/software partitioning process, the entire reconfigurable 
mapping flow involves several primary techniques such as code transformations, loop 
pipelining, scheduling and the generation of reconfigware configuration. Those  
efforts depend on the granularity of the reconfigurable tasks, which is effected by the 
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computational model of target architecture. Mapping applications (mostly loop tasks) 
automatically and efficiently onto computation and storage resources is now one of 
the hottest topics among researchers [1]. A novel programming model is needed to 
cover the complexity of mapping applications on a CGRA. The representation must 
allow a variety of transformations and optimizations of applications to exploit the 
performance of the target reconfigurable architecture. 

In this paper, we present a novel graph model called PIA-CDTG (Program Infor-
mation Aided Control-Dataflow Task Graph) for efficient application mapping. Based 
with program features, PIA-CDTG aims at providing a new task granularity of the 
application mapping. With the graph model, we then focus on the critical loops map-
ping on CGRA. A genetic algorithm is proposed for mapping PIA-CDTG tasks, and 
experimental results and analysis prove its efficiency.   

2 Related Work 

Several CGRAs have been developed with varying degree of programmability, mem-
ory structure, and communication bandwidth, like Morphosys [2] and LEAP [3], and 
others. However, there is a lack of efficient tools for the full utilization of the perfor-
mance or flexibility offered by these architectures. For instance, the SA-C [4] of Mor-
phosys has been developed, which is a high-level single assignment language, to 
process media applications using data flow graph as its intermediate representation 
(IR). There have been many attempts to take the big challenge of the efficient recon-
figurable mapping, several researches on discovering coarse-grained parallelism were 
proposed, like loop shifting [5], pipeline vectorization [6], and modulo scheduling [7]. 

Table 1. Graph Model Comparsion 

IR Types 
Supported Features 

Control 

Dependency 

Data 

Dependency 
Granularity Concurrency Hierarchy 

CFG inaccurate × BB × √ 

DFG × Def-Use Op. Program × 

PDG accurate Flow-Anti-Out Op. Program √ 

CDFG inaccurate Flow-Anti-Out BB/Op. BB √ 

PIA-CDTG accurate All BB/Loop Program √ 

A variety of graph model have been proposed to make the efficient multiple 
threads of concurrency over distinct data items. The graph should represent all the 
data and control dependencies of programs efficiently and enable the transformations 
of programs to take advantages of the target architecture. The traditional con-
trol/dataflow graph (CDFG) is now widely used. CDFG includes both control and 
data flow information from the input algorithm and embeds operations in its basic-
block nodes. A DFG of each basic block then constructed for mapping on RPU. A 
PDG [8] is a combination of a CDG and a DDG, which usually incorporated with the 
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SSA for synthesis to reconfigurable devices. Both the CDFG and PDG are the under-
lying representation of hardware behavior, providing the hierarchy of loops, branches, 
and function calls. A variety of IRs proposed allow compiler to adjust the granularity 
of its data and computation partition with the target architecture characteristics, as 
shown in Table 1. In Table 1, BB stands for basic block, op. stands for operator. 
However, there is no a widely accepted programming model, high level language, or 
IR will allow automatic mapping on reconfigurable architectures up to date. In this 
paper, the proposed graph model is differ from others, since it focus on the critical 
loops mapping under the CGRA’s resource constraints. With considering of program 
features, the genetic scheduling algorithm based on PIA-CDTG make the load-
balanced execution more adaptive. 

3 PIA-CDTG Mapping Model 

As discussed, the main challenge of accelerating data-intensive applications on 
CGRAs is the mapping of applications with less execution time and power consump-
tion. By analyzing the application’s features, especially the critical loops, one can 
make the CGRA mapping more adaptive. In this section, we discuss the details of 
application features and the generation of PIA-CDTG from these analysis results. 

3.1 Mapping data-intensive application on CGRA 

Data-intensive application execution tends to spend most of the time in frequent 
nested loops. Since CGRA usually used as coprocessor for accelerating these applica-
tion, the key part of parallel processing is mapping critical loops. Given a  
data-intensive application, we define the parallel mapping problem on CGRA as a 
four-stage process.  

(1) Application analysis and profiling. We first transformed the application into 
intermediate code for profiling, and then analyze application features including 
computation/storage distribution, critical loops relevant information, etc. 

(2) Critical loop computation/memory analysis. Get the critical loops based on the 
application analysis, generating the program information aided control-dataflow 
graph (PIA-CDFG) of these loops with information such as the number of com-
putation/storage operation, iteration number, execution time and data depen-
dences, etc. 

(3) Loop tilling for task mapping on CGRA. It is important to minimize the com-
munication cost when loop executed on the PEs array by choosing the optimized 
tile loop size to fit the current memory hierarchy. 

(4) Loop task scheduling on CGRA. After loop tilling, the tiled tasks need to be 
mapped on the CGRA PEs array for execution. Considering the resource con-
straint offered by architecture model, it is important to the decrease memory 
access number to minimize the execution time with higher performance. 
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3.2 Application Features Analysis 

When mapping an application, it is important to get the features of program to adapt 
the constraints of object hardware. However, the structure of data-intensive applica-
tion is too complicated to analysis manually. And we need focus on the critical parts 
of these applications in order to analysis more fast and efficient, which means we take 
the kernel loops as the object of analysis. The overview of application analysis is 
shown in Fig.1. 

 

Fig. 1. Overview of the application analysis 

The kernel loops are the loops which take most part of the execution time in an ap-
plication.  Recent researches show that the optimization of kernel loops takes strong 
influence on performance of application. We first make the simulator to take the pro-
gram hotspot test, and then mark the time-consuming parts in the application. We use 
the  LooPo [9]  to  scan  the annotations  in  the SUIF [10] IR of  application  
and  get  the loop  features,  such  like  1)  Basic  information,  including  type,  
index,  upper-bound, limit,  etc.;2)  Hierarchy  information,  including  nested  
level,  innermost  loop,  etc.; 3) Loop  data  information,  including  arrays,  data  
dependency, operator features,  etc.   If the loop’s execution time is large than a 
threshold, we take it as a kernel loop. 

3.3 Modeling of PIA-CDTG 

Different from the traditional CDFG, the node in PIA-CDTG is no longer the simple 
operator but task. The property of these nodes includes the application features.  
With the description of hierarchy, control/data flow between nodes, PIA-CDTG can 
support the mapping, scheduling of application tasks. 

Definition 1 Given a PIA-CDTG = (N, E, P) consists of node N, edge E, and pro-
gram profiling information P. N is the node set, including the task node set T and the 
storage node set M. E is the edge set with data/control dependences. Info P includes 
dataflow/control flow, computation/storage operations, the dependency and relevant 
of nodes.  



 A Novel Graph Model for Loop Mapping 235 

As shown in Fig. 2(a), the dotted lines indicate the control flow and the solid lines 
indicate the data flow over nodes. PIA-CDFG model defines architecture-independent 
information about field specific application program. The generation of PIA-CDTG 
includes four steps: 

N             C
T1     Processor
T2          PEs
T3          PEs
T4          PEs
T5          PEs
T6     Processor

N         C
m1     LM
m2     LM
m3     LM
m4     MEM  

1. {δ1, δ2}
2. {(T2,T3), (T4,T5)}
3. {(δ1,PEs), (δ2,PEs)}

T1

T3

T6

T2

T5

T4

m1

m2
m4

1

2

Processor

Route Network

PEs

memory LM

m3

(a)

(b)

(c)

(d)  

Fig. 2. PIA-CDTG based mapping on RAG 

1. Take the IR of application as input, which includes the application analysis results, 
perform task partitioning based on the granularity of  program function, and then 
build the original task graph (TG);  

2. Analysis  the  control  dependences  in  TG,  and  generate  the  control-flow  
task graph (CTG);  

3. Analysis the data dependences in TG, put the results into the CTG, and generate 
the control/data flow graph (CDTG);  

4. Based on the CDTG, take the marked kernel loops as kernel task node, analysis 
these nodes’ storage features.  Generate the data dependences inside node; make 
the result as the info P of node.  At last generate the PIA-CDTG. 

The performance of application on CGRA depended on the mapping strategy. A good 
defined architecture model is helpful for the strategy construction. As shown in Fig. 
2(b), an architecture graph describes the computing/communication/storage features 
of mapping object architecture. For CGRA, the architecture model is defined as:  

Definition 2 CRAG = (PR, MEM, PE, LM, RN) represents An N×M PEs array 
CGRA. PR is the main control processor, MEM is external memory, PE is the 
processing elements, LM is the local memory, and RN is the router network.   

PEs of the CGRA are classified by Computing PE (cPE) and Memory PE (mPE). 
The description of PR and PE consist of computing features, when the description of 
MEM and LM consist of storage features of CGRA. 

3.4 Mapping PIA-CDTG on CGRA 

Given an application, mapping it onto a CGRA is kind of looking for bindings of the 
node set N= (T, M) in PIA-CDTG and node set pair {(PR, PE), (MEM, LM)} in 
CRAG. Fig.2 (d) shows the mapping results. As shown in Fig. 2(c) the bindings must 
fit: 1.The application function constrains; 2.data dependences; 3.hardware constraints. 



236 Z. Yang et al. 

Definition 3 Given a node V= (T/M, P) from PIA-CDTG, and the CRAG of CGRA R, 
find a mapping: V-> R, with the object function of minUoR and maxThO, under the 
meeting of resource constraints, such as computation/storage resource.  

If the node is task node T, the mapping called computing mapping, otherwise 
called storage mapping if the node is storage node M. The object function is showed 
in Eq. (1): 

 
min ,    if 1

( )
max ,    if 1

UoR DCP
ObjFunction V

ThO DCP

≥
=  <

 (1) 

Where UoR is the occupation ratio of PEs, ThO is the throughput of loop execution, 
and the DCP is the ratio of storage time TD to computation time TC of execution. 
When DCP≥1, we define the loop is memory-bounded, while the resource is suffi-
cient, we prefer to optimize the objective minUoR. 

In CRAG with n*m PEs and d LMs, if the task V needs i cPEs, j mPEs and s DMs, 
V consist of  NumV computation/storage  operations  and  its  execution  time  is 
TV=TC+TD. The UoR and ThO of V are defined in Eq. (2): 

 
*V

V
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i j s
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T
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
 =
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3.5 Storage Mapping of PIA-CDTG 

The object of storage mapping is the mapping strategy of M node of PIA-CDTG with 
minimum cost onto the CRAG. There are two kinds of storage node in CRAG, MEM 
stands for external memory, and LM stands for the local memory of PEs array. With 
program features analysis, the execution time of each task node is used to decide 
whether the current task is critical task or not. If an M node is connected to a non-
critical task node, it will be marked for MEM node. Those M nodes which marked as 
LM will be gathered as the LM node set for succeeding computing mapping. If a M 
node’s storage request is large than the LM size, which means the task nodes need to 
be tiled into sub-tasks in order to minimum the data communication. 

3.6 Computing Mapping of PIA-CDTG 

As the input, PIA-CDFG provides task nodes for computing mapping. Once these 
critical task nodes selected, we can generate a Dependency-Aided Graph (DAG). The 
nodes in DAG are critical tasks, and the edges denote the data dependences among 
these nodes. Fig. 5 shows a DAG includes 15 nodes. Before the mapping, the task 
nodes have been tiled for parallel execution with least data dependences [11].  
Since the nested loop for accelerating are transformed into many tiled task with  
dependences, the parallel processing is now a scheduling for these tasks. 
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Fig. 3. DAG of LU decomposition and scheduled on a 2*2 cPEs array 

We need to identify six steps as preliminary to the computing scheduling. 

Step 1. Each node in DAG=<T, E> is numbered from the top down, and then the set 
of tasks is T= {T0, T1, … TK}, the set of dependency edges is E. Edge e (Tx->Tu) 
denotes the dependence of Tx and Tu. 

Step 2. Get each task Tx in the DAG, with its predecessor set PreTx, and its successor 
set SucTx. 

Step 3. If the PreTx of Tx is NULL, Tx is called input node; if the SucTx of Tx is 
NULL, Tx is output node. The level of each node is the number of nodes in the path 
from itself to the output node. Apparently the level of input node is 1, and there is no 
dependence between the nodes with same level. 

Step 4. The n*m PEs set P={PEij|i∈[0,n-1],j∈[0,m-1] }, the distance between PEij 
and PEst is |i-s|+|j-t|, the communication between PEs in direct proportion to their 
distance.  

Step 5. For a node Tx, the execution time begins at STx, ends at ETx, as shown in Eq. 
(3). Where Tx is mapped to cPEij, and its father node Tp is mapped to cPEst. ω is 
constant, as the maximum of communication cost of two PEs in theory. The execution 
time of Tx is t. 

 PreT
{ (| | | |)}x p

Tp x

x p

ST MAX t ST i s j t
n m

ET t ST

ω
∈

 = + + × − + − +
 = +

 (3) 

Step 6. Each element Q[i, j] in the n*m matrix Q[n,m] contrains a pair of number (x, 
q), which means the node Tx is mapped on the qth placement of cPEij’s FIFO. 

3.7 Task Scheduling 

Task scheduling should consider two objectives: (1) to maximum the parallel level of 
the execution of the tasks; (2) to minimum the inter-task communication cost.  
However, these two objectives are mutually exclusive. In this case, our solution is to 
use inheritance algorithm to achieve a balance between these two objectives. For  
details, we determine the priority sequence of tiles by iterations on the candidate  



238 Z. Yang et al. 

solutions. In each of the iterations, we first search for the entire problem space with a 
generic element, and then evaluate these candidate solutions with an adaptive func-
tion. This solution tries to find a scheduling, which first assigns the k tasks to the n*m 
processors, and then properly schedules the tasks within the queue of each processor 
to achieve the shortest execution time while the dependencies among tasks are fully 
respected. For details, for a assignment and schedule policy S, we aim to find a policy 
s to minimum the ET(s) that ( )

x
x

T T
ET s max ET

∈
= .Fig. 5 shows the dependency DAG 

with task  numbers  and  level  values.  The detailed inheritance algorithm respon-
sible for scheduling tasks is shown in Table 2. 

Table 2. Task Scheduling Algorithm 

Algorithm 1 Task Scheduling Algorithm 

1： Procedure TSA 
2： Input: DAG=<T,E> of tiled loops 
3： Output:  Optimal solution with ( )ObjFunction V  

4： for each node T in DAG, compute T.level 
5：      if Ti.level= Tj.level, then Ti and Tj should assigned to different processors, where 

the tasks are sorted in descending order according to the level value of the task nodes.  
6：      if the requirement of the size of the initial population is satisfied, then break; 
7： end for 
8： Divide the initial population into several sub- population with the same size 

9： for each policy unit, compute the adaptive function ( )
k

x
0

F s ET ET(s)= −  

10： if the iteration count reaches the maximum iteration number or the optimal solu-
tion has not evolved more than 3% in the latest 10 generations, end procedure 

11： end if 
12：    for each sub-population, select individuals with deploy the roulette wheel se-

lection scheme with probability ( )
SN

0

)F i / F(i ,where SN is the size of population 

13：    if Ti.level= Tj.level && Ti and Tj from different processors 
14：    then take the selected individual x, perform uniform crossover on the two 

nodes 
15：   Assign the two nodes to the sub-task queues of two randomly selected x’s pro-

cessors, assuring that the level values of task nodes in each queues are still in ascending 
order;  

16： end if 
17： Compute the level of these node, then move the same level nodes from the longest 

sub-task queue to the shortest sub-task queue;  
18： compute the adaptive function for the individuals in each sub-population, and 

replace the low adaptability individual with high adaptability individual;  
19：   end for 
20： end for 
21： end procedure 
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4 Experiments 

We evaluated three application kernels to do the experiments, including the discrete 
cosine transformation (DCT), matrix LU decomposition (LU), and matrix vector 
transpose (MVT). We did a task scheduling with a genetic algorithm to find the opti-
mized strategy under the object functions. We use a reconfigurable SoC for experi-
mental evaluation, which consists mainly of a 32-bit RISC microprocessor called 
EstarIII [12] and reconfigurable arrays called LEAP. We use EstarIII for common 
computing. It has 8KB instruction cache and 8KB data cache, 266M Hz and 220mW 
of CPU core. Meanwhile, we take LEAP PEs arrays as the accelerating coprocessor, 
whose total LMs size is 16 KB, and each size of LM is 4KB. We analyzed the fea-
tures of loop in the three kernels, as shown in Table 3, in which the storage demand is 
count by the millisecond. 

Table 3. Features of critical loops 

Kernel DCT(M=2000) MVT(N=10000) LU(N=2000) 

Name main.loop1 main.loop2 main.loop1 main.loop2 main.loop1 

Type for for for for for 

Iteration Condition i<M,j<M,k<M i<M,j<M,k<M i<N,j<N i<N,j<N 
i<N-k-1, 

j<N-k-1,k<N 

Nested Level 3 3 2 2 3 

Related Arrays 
temp2d(0.43) 
block(1.02) 
cos1(1.02) 

sum(0.36) 
cos1(0.90) 

temp2d(0.90) 
block(0.36) 

x1(1.0) 
a(0.80) 

y_1(0.80) 

x1(1.0) 
a(0.80) 

y_1(0.80) 
a(1) 

Index Relation 
temp2d:(x,y)=(i,j) 
block:(x,y)=(i,k) 
cos1:(x,y)=(j,k) 

sum:(x,y)=(i,j) 
cos1:(x,y)=(j,k) 

temp2d:(x.y)=(k,j) 
block:(x,y)=(i,j) 

x1:(x)=(i) 
a:(x,y)=(i,j) 
y_1:(x)=(j) 

x2:(x)=(i) 
a:(x,y)=(i,j) 
y_2:(x)=(j) 

a:(x.y)=(k,j) 
a:(x.y)=(k,k) 
a:(x.y)=(i,j) 
a:(x.y)=(i,k) 

Storage Demand 536,328bit 43,852bit 278,938bit 

 
At first we evaluated the three kernels under several different conditions. We test 

four kinds of approaches, 1) paralleling the sequence program without optimization 
(baseline), 2) the PDG approach with sequence scheduling (PT), 3) multi-level DFG 
approach with sequence scheduling (DT), 4) multi-level PIA-CDTG with scheduling 
(PCT). Where the maximum generation of the generic algorithm is 1000, crossover 
is0.5, and mutation is 0.1. For the comparison of speedup with different approaches, 
we defined different tile sizes and different number of PEs. Fig. 4 shows the approach 
execution speedup with different size of PE arrays (from 2*2, 3*3, to 4*4) by chang-
ing the CRAG model configuration. Because of the tile size is 16KB which is just the 
data memory size; the scheduling gained a not very good workload balance among the 
PE arrays. But while the size of PE arrays getting bigger, the speedup ratio of PCT to 
PT are increasing much faster, that means the generic algorithm could find out the 
optimal solutions efficiently. 
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Fig.5 shows the affection taken by the increasing quantity of DCT. We set a 4*4 
PEs arrays, and the loop tile size is 16KB. While the iteration number of these kernels 
increasing (from 2000 to 10000), the performance of the four approaches is getting 
dropping sharply. However, the declines of PCT and DT are much slowly than the PT 
and baseline. Therefore, the data access and communication of application nonlinear 
increase with the size of iteration number is the main bottleneck of parallelization. 
That’s why we focus on the memory hierarchy to make the loop multi-level tiled and 
use the memory-aware object function for the genetic scheduling algorithm. Since the 
scheduling based on static analysis, we should take more dynamic analysis based on 
the architecture performance model as the future work. 

 

Fig. 4. Speedup comparison with different PE arrays 

 

Fig. 5. Throughput comparison with different iteration size (DCT) 

5 Conclusion 

In this paper we proposed a novel graph model called PIA-CDTG for mapping da-ta-
intensive applications on CGRA. With application features analysis, we can get all the 
information needed to generate the PIA-CDTG. By dividing application into task 
nodes and storage nodes, PIA-CDTG makes it an easier way to map. And  then  we 
used  a generic algorithm  with  optimized  object  function  to analyze depen-
dences  be-tween the task nodes. The experimental results shown the approach was 
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efficient for data-intensive application acceleration on CGRA. The next challenges 
include developing a code generator for automatic compilation of loop nests  
and efficient power estimation models for the goal of an architecture/compiler  
co-exploration. 
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Abstract. Memristors are novel devices behaving like nonlinear resistors with 
memory. The concept was first proposed and described by Leon Chua in 1971. In 
2008, HP lab proved its existence by announcing its first physical implementa-
tion as crossbar structures. A memristor has shown many advantages such as 
non-volatility and no leakage current. The logic value can be measured in terms 
of impedance and storing logic values without power consumption, which may 
cause significant effect on digital circuits. A detailed working condition of a 
nonlinear dopant drift model of a memristor is studied and a set of precise 
working condition has been found. The transition time between off and on  
states of a memristor is proposed as a kind of measurement of the switching  
behavior. 

Keywords: memristor, digital circuits, SPICE simulation, working condition 
analysis. 

1 Introduction 

Memristor is considered to be the forth basic component in addition to resistors, ca-
pacitors and inductors. In 1971, Leon Chua [1] noticed the missing link of flux and 
charge (Fig.1) and predicted the existence of the forth device. He derived a set of 
formula describing the element and called it memristor. Instead of characterized by 
voltage and current, the memristor is characterized by the relationship between the 
charge and the flux-linkage [1].The resistance of a memristor is variable, depending 
upon the charge passing through the device. 

In 2008, HP announced the first physical implementation of a working memristor in 
its lab [2]. The HP memristor is a crossbar structure and shown in Fig.2. Since the 
announcement of HP memristor, there is an increasing interest in the device and its 
applications. Already, the HP laboratory has several patents and papers related to 
memristor such as programmable logic design [5], neural networks [12] published, and 
proved the feasibility of the element. Besides, researchers are working on modeling a 
memristor required in circuit design and simulations. Memristor spice models are 
presented in [6], [7], [8] and [9]. 
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A memristor has shown many advantages such as non-volatility and no leakage 
current. The logic values are measured in terms of impedance rather than voltages. And 
the feature that storing logic values without power consumption may cause significant 
effect on digital circuits. 

The hysteretic and switch characteristic of memristor nonlinear dopant drift model is 
studied in this paper with SPICE model proposed in [6].The model is simulated under 
driven voltage source with different frequencies and amplitude. 

The paper is organized as follows: Part I introduces memristor and its development. 
Part II is on the theory of memristor, the physical and electrical model of HP memristor. 
The Spice model adopted in this paper is briefly introduced in Part III and the  
memristor is simulated in Part IV. Finally, the experimental results are summarized in 
Part V. 

 

Fig. 1. The four fundamental circuit elements: resistor, capacitor, inductor and memristor 

 

Fig. 2. HP Memristor Structures as Crossbars [3] 
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2 The Memristor 

2.1 Theory of Memristor 

A memristor is a two terminal passive element, combining the two variables of flux and 
charge. By assuming that flux is the function of charge, the following equation can be 
obtained: ߮ ൌ ݂ሺݍሻ                   (1) 

By differentiating on both sides of the equation with respect to time, and using equa-
tion: ݀ݍ ൌ ߮݀ (2)                       ݐ݀݅ ൌ  (3)                   ݐ݀ݒ

it can be derived that:  ݒ ൌ డ௙డ௤ ൉ ௗ௤ௗ௧ ൌ డ௙డ௤ ൉ ݅ ൌ డఝడ௤ ൉ ݅                              (4) 

If the relationship between flux and charge is non-linear, then ݒ ൌ  ሻ݅                          (5)ݍሺܯ

with ܯሺݍሻ ൌ ப஦ப୯ a memristor.  

Otherwise, a linear resistor is obtained if 
ப஦ப୯ is a constant. 

For （1）and（2）, by integrating over time, the following equation can be derived: ݍሺݐሻ ൌ ׬ ݅ሺ߬ሻ݀ሺ߬ሻ௧ିஶ                              (6) ߮ሺݐሻ ൌ ׬ ሺ߬ሻ݀ሺ߬ሻ௧ିஶݒ                                (7) 

By rewriting (1) with (6) and (7), the following equation can be obtained: ׬ ݅ሺ߬ሻ݀ሺ߬ሻ௧ିஶ ൌ ݂ሺ׬ ሺ߬ሻ݀ሺ߬ሻሻ௧ିஶݒ                           (8) 

which implies that the memristor is such an element whose relationship between the 
integrals of current and that of voltage is nonlinear. 

2.2 HP Memristor 

The HP Memristor is the first known fabrication of the device. It is a two-layer titanium 
dioxide (TiO2) cube of 40-nanometer between two crossed nanowires (Fig.2).This 
switch shown in Fig.3 is a voltage regulated device. 
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The memristance of a memristor can be given by the following equation [2]: ܯሺݍሻ ൌ ܴ௢௡ ௪ሺ௧ሻ஽ ൅ ܴ௢௙௙ ቀ1 െ ௪ሺ௧ሻ஽ ቁ                         (9) 

where D the total thickness of the two TiO2 layers, w(t) the thickness of the doped 
layer, w(t)/D the ratio of doped layers and the total thickness, which determines the 
resistance of a memristor. The resistances Ron and Roff are the limitation of a me-
mristor when w=1 and w=0, respectively. 

The speed of movement of the boundary speed between the two Tio2 layers is first 
given by HP as follows: ௗ௪ሺ௧ሻௗ௧ ൌ ௩ߤ ோ೚೙஽ ݅ሺݐሻ                             (10) 

By applying a voltage pulse to the terminal of the switch, the resistance can be changed. 

 

Fig. 3. The coupled variable- resistor model for a memristor [2] 

2.3 Electrical Model[5] 

A memristor as an ideal switch can be in either one of its two states: high impedance 
(open), or low impedance (closed), as shown in Fig.4.  

 

Fig. 4. Ideal Memristor switch model [5] 
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The element can hold its state unless the voltage drop across it exceeds the operating 
range. In other word, the memrister transitions from the open state to the closed one if 
the voltage drop exceeds Vc, while from the closed state to open if the voltage is less 
than Vo. Besides, an excessive positive voltage drop or negative voltage drop across a 
junction will destroy the device. 

3 Memristor SPICE Model[6] 

We experimented with SPICE model proposed in [6] to study the behavior of a single 
memristor. This model is the nonlinear ions drift model, and assumes a nonlinear 
dependence on voltage in the state variable differential equation. The model is pro-
posed basing on the formula of (9) and (10), and its SPICE structure is shown in Fig.5. 
Window function, equation (11), is adopted hereby to model boundary conditions of a 
memristor. ݂ሺݔሻ ൌ 1 െ ሺ2ݔ െ 1ሻଶ௣                        (11) 

where p is a positive integer. 

 

Fig. 5. Structure of the SPICE model adopted 

4 Memristor Simulation 

Calling the SPICE model as sub-circuit, the simulation can be done in Pspice. The 
simulation results are shown in the following figures. The memristor is driven by a sine 
wave voltage. 

Fig. 6 demonstrates the typical I-V characteristic of a memristor with different Ron 
and Roff state. The simulation shows that memristor with high Roff resistance are with 
stronger hysteretic characteristics, and thus a better switch characteristic. 
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Fig. 6. Typical I-V curves of memristors, driven by sine voltages with frequency of 1Hz and 
amplitudes of 1.2V, 3.2V and 1.4V. The parameters are: a) Ron=100, Roff=16k, Rinit=11k, p=10 
b) Ron=100, Roff=38k, Rinit=28k, p=10 c) Ron=1k, Roff=100k, Rinit=80k, p=1.The horizontal 
axis is the voltage applied and measured in Volts, where the longitudinal axis is current and 
measured by uA. 

Although the memristor shows hysteretic characteristics when voltage is applied, it 
does not show very strong hard switching behavior (Fig.7 a, b). Switching characte-
ristic gradually occurs and gets stronger with the increase of voltages. This could be 
resulted from Fig7 b, c and d. The right boundary deteriorates as voltage goes up. When 
voltage is up to 1.6v, the model is not able to hold switch state at right boundary (Fig.7 
e).  And the range of working voltages is 1.4v-1.5v (Table 1). 

 

Fig. 7. I-V curves of memristor whose parameters are: Ron=1K, Roff=100k Rinit=80k p=1 
f=1Hz.The amplitudes of the driven sine voltages are: a) 1.0v; b) 1.2v; c) 1.4v d) 1.5v e) 1.6v. 
The horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis is 
current and measured by uA.in a), b) and c), by mA in c) and d). 
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Switching characteristic occurs at the voltage of 2.5v with 2Hz of voltage frequency, 
but not strong enough. This voltage is much higher than 1.4v compared with cases in 
Fig.7. The boundary begins to collapse at voltage of 4.5v (Fig.8 f).  
 

 

Fig. 8. IV curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1 
f=2Hz.The amplitudes of the driven sine voltages are: a) 1.4v; b) 2.0v; c) 2.5v d) 2.6v e) 2.8v f) 
3.0v. The horizontal axis is the voltage applied and measured in Volts, where the longitudinal 
axis is current and measured by uA. in a), b) , c) and d) by mA in e) and f). 

 

Fig. 9. I-V curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1 
f=3Hz.The amplitudes of the driven sine voltages are: a) 3v; b) 3.5v; c) 3.8v d) 4.0v e) 4.2v f) 
4.5v The horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis 
is current and measured by uA. in a), b) , c) and by mA in d), e) and f). 
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Fig. 10. I-V curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1 
f=10Hz.The amplitudes of the driven sine voltages are: a) 10v; b) 12v; c) 12.5v d) 13v. The 
horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis is 
current and measured by uA.in a),b),c),and by mA in d). 

Similar results can be deduced from Fig9 and Fig 10. The working voltage range of a 
memristor is summarized in Table 1, from which we can see that the widest working 
voltages occurs at the frequency of 2Hz and 3Hz. 

Comparing Fig. 7, 8, 9 and 10, it can be found that the switch phenomenon occurs 
with higher applied voltages when frequencies are increasing. The can easily be seen 
from switching occurrence voltage summarized in Table 1. Thus, it may be concluded 
that higher voltage sources are required to maintain the switch characteristic of a me-
mristor with the increase of frequency. 

Table 1. Working Voltage at different frequences and switching occurance voltage 

Frequency 
of  sine wave 

f=1Hz f=2Hz f=3Hz f=10Hz 

Working 
voltage 

1.4v-1.5v 2.6v-3.0v 4.0v-4.5v 13v 

Switching 
occurence 
voltage 

1.4v 2.6v 4.0v 13v 

Besides, it hints that the model can only work at extraordinarily low frequencies. 
Although the model still shows the hysteretic nature at frequency goes up to 10Hz, the 
amplitude of the sine wave applied has reached nearly 12V to maintain its switch 
characteristic, which is unsuitable for standard CMOS technology. Fig. 11 demon-
strates the boundary deterioration when f=1, f=2, f=3(Hz).  
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Fig. 11. Boundary deterioration when f=1Hz, f=2Hz, f=3Hz. The amplitude applied are 
1.6v.3.1v.and 4.6v, respectively. The horizontal axis is the voltage applied and measured in 
Volts, where the longitudinal axis is current and measured by mA. 

A memristor as an ideal switch will transform from one state to the other with 
suitable voltage applied. As an ideal switch, transition will be finished without time 
delay. Actually, a certain amount of time is required between the transitions of the 
states. Obviously, a faster switch can be obtained with shorter transition time. Thus, it 
can be said that the transition time between high impedance and low impedance is the 
one of the main measurement of memristor’s switching behavior. By simulation of the 
non-linear drift model, it is possible that the transition time is related to conditions such 
as voltage applied and the frequency of driving source (see Table 2). It can be seen that 
1) shorter transition time requires larger voltage; 2) higher frequency of the driving 
voltage source also shorten the transition time. Fig12 is the three-dimensional histo-
gram of Table 2. 

Table 2. Transition time at different voltages and frequencies 

Frequency 
of 
sine wave 

f=1Hz f=2Hz f=3Hz f=10Hz 

Voltage 
applied and 
state transi-
tion time 

v=1.4v,t=0.425s v=2.6v,t=0.230s v=4.0v,t=0.150s v=13v,t=0.046s 

v=1.5v,t=0.375s v=2.7v,t=0.220s v=4.1v,t=0.145s  

 v=2.8v,t=0.210s v=4.2v,t=0.140s  

 v=2.9v,t=0.200s v=4.3v,t=0.135s  

 v=3.0v,t=0.195s v=4.4v,t=0.132s  

  v=4.5v,t=0.128s  



 Memrist

Fig. 12. Three-dimensional hi
horizontal axis is the voltages 
the applied sine wave; the vert
from low to high is exactly the

Table 3. E

Frequency 
Parameter P 

f=1Hz 

p=1 
v=1.5v,t=0
v=1.6v,t=0

p=2 
v=1.3v,t=0
v=1.4v,t=0

p=3 v=1.3v,t=0

p=4  

p=5  

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

v=
1.

4v
v=

1.
5v

v=
2.

6v

z/s

x/v

f=1Hz f=2
f=3Hz f=1
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istogram of transition time at different frequencies and volta
applied at the memristor; the longitudinal axis is the frequenc
tical is the stage transition time from high to low (transition t

e same because the hysteretic I-V curve is centrally symmetric

Effection of parameter p in window function 

f=2Hz f=3Hz 

0.470s 
0.425s 

v=3.0v,t=0.237s 
v=3.1v,t=0.225s 
v=3.2v,t=0.213s 

v=4.5v,t=0.155s 
v=4.6v,t=0.152s 
v=4.7v,t=0.147s 
v=4.8v,t=0.142s 
v=4.9v,t=0.138s 
v=5.0v,t=0.135s 

0.475s 
0.415s 

v=2.6v,t=0.238s 
v=2.7v,t=0.220s 
v=2.8v,t=0.208s 

v=3.9v,t=0.158s 
v=4.0v,t=0.150s 
v=4.1v,t=0.145s 
v=4.2v,t=0.138s 

0.438s 
v=2.5v, t=0.238s 
v=2.6v, t=0.220s 

v=3.8v,t=0.155s 
v=3.9v,t=0.146s 

v=2.5v, t=0.230s v=3.7v,t=0.158s 

 v=3.7v.t=0.150s 

v=
2.

7v
v=

2.
8v

v=
2.

9v
v=

3.
0v

v=
3.

9v

v=
4.

0v

v=
4.

1v

v=
4.

2v

v=
4.

3v

v=
4.

4v

v=
4.

5v

v=
13

v

y/Hz

2Hz
10Hz
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Table 3 shows the effect of the parameter p in window function. The nonlinear do-
pant drift means that the speed of boundary between the doped and undoped regions 
gradually gets to zero. This is modeled by the window function described by equation 
(5). With the increase of p, equation (5) gradually becomes similar to a rectangular 
window, and thus non-linear characteristic disappeared. The memristor doesn’t work 
with all p values, but just at some point. It also hints that transition time is getting 
shorter with the increase of p, if voltage and its frequency are fixed.   

5 Summary 

A nonlinear ions drift memristor SPICE model is simulated in this paper and a set of 
precise working condition of the device has been found. The switching characteristic of 
a nonlinear drift model is non-robust, and might be easily affected by factors such as 
external voltages and frequencies or internal p parameters. For the non-linear drift 
model, it is clear that higher external voltage is required to maintain the switch behavior 
as frequency goes up. To overcome this non-robustness for further study, one way is to 
renew the models, and another is to find equations better for describing the element. 
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Abstract. Adjusting stepsize between convergence rate and steady state error 
level or stability is a problem in some subspace tracking schemes. Methods in 
DPM or Oja class may sometimes show sparks in their steady state error, even 
with a rather small stepsize. By a study on the schemes’ updating routine, it is 
found that the update does not happen to all of basis vectors  but to a specific 
vector, if a proper basis is chosen to describe the estimated subspace. The vec-
tor moves only in a plane which is defined by the new input and pervious esti-
mation. Through analyzing the vectors relationship in that plane, the movement 
of that vector is constricted to a reasonable range as an amendment on the algo-
rithms to fix the sparks problem. The simulation confirms it eliminates the 
sparks. 

Keywords: Array signal processing, subspace tracking, stepsize, convergence. 

1 Introduction 

Tracking a subspace is Estimating a projection matrix onto a space or a basis for that 
space, from a random vector sequence observed by a sensor array. It is a powerful 
tool in some signal processing fields such as: telecommunication, radar, sonar and 
navigation, serving as a measure of adaptive filter, DOA estimation, or interference 
mitigation. Subspace tracking methodology can be classified into two categories: the 
first is estimating the space where the signal is generated from, the second one is 
seeking the orthogonal complement of that space. The former is known as a principal 
subspace (PS, PSA) tracker or signal subspace tracker, the later is often referred to as 
minor subspace (MS, MSA) tracker or a noise subspace tracker. For earlier works on 
MUSIC, we are used to the term signal or noise subspace track. 

N.L.Owsley developed the first algorithm for subspace tracking in [1]. Assuming 
the dimension of problem is N, the rank of the subspace we are interested in is L. 
Usually L << N. Complex of his solution proportions to N2L, or namely O(N2L). 
Many schemes with less compute complex were developed after then. An excellent 
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survey paper [20] outlined almost all of achievements on this topic before 1990, 
which cost O(N2L) or O(NL2) operations. Algorithms with O(NL) complexity were 
developed after it. The new class of algorithms is called as Fast Subspace Tracking 
method. Surveys on fast subspace schemes are presented in [3pp30–43] or [19pp221-
270]. 

Let ( )x k is an N-dim observer vector from an N-element sensor array, as (1),  

1

( ) ( ) ( )
L

i i
i

x k a s k n k
=

= +                             (1) 

Where ia  is N-dim vector with unit length, independent to each other, representing 

the manifold of one of the arriving signals, and ( )is k is a random variable indepen-

dent to each other, representing the arriving signal from different source, ( )n k  is a 

N-dim i.i.d random vector representing the sensor noises. Assuming 

1 2 3{ , , ..... }LV v v v v=  is an orthonormal basis of span( ia ). The signal subspace 

tracking is seeking a basis 1 2( ) { ( ), ( ),..... ( )}LW k w k w k w k= which spans a sub-

space same as the space spanned by V; the noise subspace tracking is searching a 
( )W k which spans a subspace as orthogonal complement of span(V). From now, we 

may use the name of the basis as the name of the space, such as space W or space 
W(k) to span(W(k)), if there is no confusion. 

One of criterion on subspace problem is the distance between the spaces. Majority 
of solutions[2-11] use the projection error power as criterion, as (2) for signal sub-
space tracking or (3) for noise subspace tracking. 

2

p V W F
e P P= −                                        (2) 

2

p V W F
e P P⊥= −                                      (3) 

Where H
VP VV= , V N VP I P⊥ = − , H

WP WW= ; 

F
• means Frobenius Norm 

NI  means N-dim identity matrix. 

An additional criterion for orthonormality of W(k) as (4): 
2

( ) ( )H
L F

W k W k Iη = − .                               (4) 

DPM[21] class algorithms is started from optimization the coordinate length of input 
vector’s image projected onto the subspace as (5) , while Oja[5] class schemes optim-
ize the length of the projection image as (6). 

2
( ( ) )HE W x k                                          (5) 

               
2

( ( ) ( ) )WE x k P x k−                                    (6)    
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The routines of DPM and OJA type approaches are very similar. A typical DPM 
scheme routine is similar to (7). 

{ }

( ) ( 1) ( )

( ) ( 1) ( )

( ) ( 1) ( ) ( )

( ) orthnorm (

H

H

q k W k x k

y k W k q k

T k W k x k q k

W k T k

= −
= −

= − ±
=

β                           (7) 

orthnorm( )• means orthonormalization operation.  
Plus sign(+) stands for signal subspace tracking,  
Minus sign(-) is for noise subspace tracking. 

The typical routine for an Oja scheme only replaces ( )x k  with 

( ) ( ) ( )p k x k y k= −  in the temporary general basis ( )T k  update in (7) line 3. 

The variety of DPM might include FDPM, FRANS, HFRANS[6], MFPDM[7] and a 
version of SOOJA[8]. The branches of Oja include OOJA[9], OOJAH [9], 
FOOJA[10], original version of SOOJA[11]. The different among schemes in same 
class is orthonormalization method. 

Some unreasonable random sparks were observed when we apply these schemes, 
especially when the noise subspace tracking was realized. It happens to DPM class 
schemes under noise subspace tracking and all variety of Oja methods. 

In this paper, we present the geometric relationship analysis among x(k), y(k), the 
old last estimated space W(k-1) and the next estimated space W(k) by update equa-
tions analysis. An amendment as needed on the schemes is made to fix the sparks 
problem by the applying a limiter on stepsize at every update step. The presented 
simulation confirms the amendment. 

2 Analysis of the Update Equations 

Considering the subspace tracking problem, the new arriving x(k) is projected onto 
the last estimated space W(k-1) to get y(k) in space W(k-1). Vector t(k) is the projec-
tion image of y (k) onto x(k)’s orthogonal complement as (8).  And t x⊥ . 

( ) ( ) ( ) ( ) ( ) / ( ( ) ( ))H Ht k y k x k x k y k x k x k= −              (8) 

The relation among those vectors and the last estimated space W(k-1)  shows in Fig.1 
with an omission of time index k. We omit the time index k in some of following 
equations if there is no confusion.  

Assuming there is a vector set with L elements including y direction served as a or-
thonormal basis set for space W(k-1),  noted as ( / , )y y COM , where COM is an L-

1 dim subspace of space ( 1)W k − , and ( )COM y k⊥ . COM is the intersection of 

span(x,COM) and W(k-1). Both ( / , )y y COM  and W(k-1) are orthonormal base  
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O

 

Fig. 1. Relationship of vector and space under discussion 

sets for a same subspace. Therefore an L-by-L unitary matrix Q exists and meets 
(9,10);  

( / , ) ( 1)W k= −y y COM Q ,                               (9) 

( 1) ( / , ) HW k − = y y COM Q .                           (10) 

By left multiplication ( 1)HW k −  to (9), it is easy to find the first row of Q is 

0 ( 1)H y q q
q W k

y y q
= − = = ， therefore Q might be noted as ( )0, COMq Q , 

with
0 COMq ⊥ Q , and 

COMQ is an L row L-1 columns matrix, or L-1 number of L-dim 

vectors. 

( 1) ( 1)

( 1)( )

H H H H
W k W k

H H
W k

x COM x P COM x P COM

P x COM y COM O

− −

−

= =

= = =
              (11) 

For (11), x is orthogonal to COM, therefore any linear combination of x and y is or-
thogonal to COM too, so is p. 

Before the orthnorm( )• in (7), ( )kT is a general basis of the newly estimated sub-

space. Right multiply the update equation of ( )kT  with ( )0 , COMQ q= Q . ( )QkT  

is another basis of the newly estimated subspace because ( )0 , COMQ q= Q  is a  

unitary matrix. 
For Oja schemes: 

                
( )0(( ) ( 1) ( ) ( )) ,H

COMQk k k q k qβ= − ±T w p Q  

( ) ( )0 0( 1) , ( ) ( ) ,H
COM COMk q k q k qβ= − ±w Q p Q

 

            

( )
( )

0

0

( 1) , ( 1)

( ) ( ) , ( ) ( )

COM

H H
COM

k q k

k q k q k q kβ

= − −

±

w w Q

p p Q
    

       
( ) ( )( )/ , ( ) , , ,..q ky y COM kβ= ± p 0 0 0                  
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( )
( )1

( )

ˆ

/ ( ) ,

,

q ky y k COM

h COM

β=

=

± p                            (12) 

Or for DPM class: 

( ) ( )2/ ( ) ˆ( ) ( ) , ,Q y q kk y x k COM h COMβ= =±T          (13) 

After the multiplication, all newly estimated subspaces in Oja or DPM class schemes 
have a basis expressed in term of COM and a linear combinations of x and y. By 
comparison on newly estimated subspaces basis (12) or (13) with the predefined basis 
( / , )y y COM  for the last estimated subspaces at k-1 time, it can be found that in all 

update routines, COM keeps still while the basis vector updates only in the plane 
span(x,y) to move y to the new basis vector h1 or h2. Fig.2 shows the update happen-
ing in span(x,y) as a cross-section of Fig1. 

From Fig.2, the difference between signal and noise subspace tracking method is 
only the move direction from y to new basis vector h is to or far from x. In signal 
subspace tracking it is to x, in noise subspace tracking it is far from x.  In span(x,y), t 
is furthest vector from x in angle view, and the closest vector to x is itself. Therefore 
it is enough for the new vector h to move only between x and y for signal subspace 
tracking, outside that range cannot provide a better result than inside; for noise sub-
space tracking the boundary is between y and t.  

We would like to control the new basis vector h in that range. The relation between 
h and y or x is controlled by the step size parameter Beta. It is needed to find a boun-
dary for it. 

x

0y
h

t ⊥= x

qβxO

 

x

0y
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qβx
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          (a)                   (b) 
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       (c)                        (d) 

Fig. 2. The relation of new candidate replace vector for y in span(x,y) 

a) DPM signal subspace   b) DPM Noise subspace 
c) OJA signal subspace    d) OJA Noise subspace 
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3 Boundary of Beta  

From Fig.2a, for DPM type algorithm, in signal subspace tracking, any positive value 
of Beta always will keep the new basis vector h between x and y, therefore any posi-
tive Beta value will not cause the problem of stability in this case.  

But for DPM noise subspace tracking or all OJA classes, a fixed Beta value may 
move new basis vector h beyond the predefined boundary x or t at end of section 2, 
when the input is big enough, it might causes deviate or spark. To avoid this situation, 
we try to find a boundary of Beta for them. 

Statement: To avoid sparks, in noise subspace tracking, condition for DPM class algo-

rithm is
2

1/ xβ ≤ , condition for Oja class schemes is
2

1/ pβ ≤ ; in signal  

subspace tracking, condition for OJA class algorithm is 
2

1/ yβ ≤ . Or generally 

2
1 / xβ ≤   is sufficient to avoid sparks under all these situations. 

Proof:  

For DPM type noise subspace algorithm, with (13) and Fig2.b. 

AO is vector /y y , therefore 1AO =  

AB is vector x qβ , so AB x q x yβ β= = . 

If the angle between x and y isθ ,then 

 sinBC x yβ θ= , cosAC x yβ θ= , 

therefore 1 cosOC x yβ θ= − , 

If the angle between y and new vector h isγ , then 

sin
tan

1 cos

x y

x y

β θ
γ

β θ
=

−
. 

For we set new vector not over turn than the vector t in noise subspace track case, and 
the angle between y and t is 090 θ− ,  so 090γ θ≤ − , and all the angles discussing 

here range from 0 to 90deg. 
Therefore: 0tan tan(90 )γ θ≤ − .  

It means tan cos / sinγ θ θ≤ . 

                           
sin cos

1 cos sin

x y

x y

β θ θ
β θ θ

≤
−

. 

Rearrange it we get  

2
cos / ( ) 1/x y xβ θ≤ = .# 
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Therefore for FDPM type noise subspace tracking if
2

1 / xβ ≤ , then no over-

shoot will happen, and the sparks might cease. 
Proof for OJA type scheme is very similar to this. We omit it to save space. 
S.Attallah and his colleagues had found a similar boundary from a different aspect 

to search a more aggressive update stepsize and improve convergent rate [15-18] for 
some of their OJA and FRANS schemes. Unfortunately, there was no stable and fast 
subspace tracking scheme as FDPM or FOOJA for them to be used as a prototype at 
that time. From our view, aggressive stepsize is not the main target, the stability and 
the steady state error level of the scheme is. We are arming an amendment which can 
avoid the over tune phenomenon or eliminate the sparks. 

4 Amendment and Simulation 

From the Statement in section 3, if we set Beta as minima of all possible
2

1/ x , the 

sparks might cease, but the convergence rate will be rather slow. If we apply beta as 
2

1 / x  at any step, it will be too aggressive and make the steady state error rather 

high when the input is small. 
We decide to use a reasonable Beta as the original algorithms, but at any time 

if
2

1 / xβ ≤ , we set 
2

1/ xβ = for that step. 

We present parts of our simulations to verify our amendment. The simulation setup 
is similar to [2,3], but differs in value of parameters. We consider a signal plus noise 
model with N =8, the random signal x(n) lies in an L=4 dimensional linear subspace, 

for convenience, assume manifolds of arriving signals ia  are orthogonal to each 

other to avoid the interaction between the arrival angle and convergence rate, arriving 

signals from different source ( )is k  are random variables independent to each other 

with the powers equal to [10，1，0.1，0.1] . The noise ( )n k is N-dim iid white and 

Gaussian random vector, each element with 10-3 variance. Beta=0.08 for all simula-
tion. Duration of simulation is 6000 steps. For each single run, there is a break of the 
basis vector at 3000 step to introduce more projection error and destroy the orthonor-
mality, by adding of random matrix on them, every element of it is a iid variable with 
0.1 variance, to check the ability of orthonormal and projection error power conver-
gence. Only the results of FOOJA are displayed in Fig.3, and results on FPDM or 
both version of SOOJA are similar to them. The results from all of schemes with 
amendment may follow almost a same track in simulation figures, especially in the 
steady state phase.  

Projection error power (3) or (4) is applied for comparison in Fig.3. The y axis is in 
db scale. From Fig.3, average of projection error power for the original version(blue 
without mark) is higher than the amended one(with+), and maxima projection error 
power out of 100 runs for the original versions(red without mark) is much higher and 
noise than that of the amended ones(black, with o).  
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(a) FOOJA Signal Subspace 
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(b) FOOJA Noise Subspace 

Fig. 3. Compare the Amended FOOJA and original ones 

5 Conclusion 

It is recommended to check relationship between the stepsize Beta and
2

1/ x  each 

iteration step for all mentioned schemes, if 
2

1/ xβ >  then apply 
2

1/ x as a limi-

ter on Beta. 
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