

Communications
in Computer and Information Science 337

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Tai-hoon Kim
Konkuk University, Chung-ju, Chungbuk, Korea

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Xiaokang Yang
Shanghai Jiao Tong University, China

Weixia Xu Liquan Xiao Pingjing Lu
Jinwen Li Chengyi Zhang (Eds.)

Computer Engineering
and Technology

16th National Conference, NCCET 2012
Shanghai, China, August 17-19, 2012
Revised Selected Papers

13

Volume Editors

Weixia Xu
Liquan Xiao
Pingjing Lu
Jinwen Li
Chengyi Zhang

National University of Defense Technology
School of Computer Science
Changsha, Hunan, P.R. China, 410073

weixia_xu@263.net
marshell.xiao@gmail.com
pingjinglu@gmail.com
lijinwen@sina.com
chengyizhang@nudt.edu.cn

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-35897-5 e-ISBN 978-3-642-35898-2
DOI 10.1007/978-3-642-35898-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954675

CR Subject Classification (1998): C.1.2, C.1.4, B.7.1, B.4.3, B.3.2, B.2.4, B.8.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present the proceedings of the 16th Annual Conference on
Computer Engineering and Technology (NCCET 2012). Over its short sixteen-
year history, NCCET has established itself as one of the major national con-
ferences dedicated to the important and emerging challenges in the field of
computer engineering and technology. Following the previous successful events,
NCCET 2012 provided a forum to bring together researchers and practition-
ers from academia and industry to discuss cutting-edge research on computer
engineering and technology.

We are delighted that the conference continues to attract high-quality sub-
missions from a diverse and national group of researchers. This year, we received
108 paper submissions, among which 27 papers were accepted. Each paper re-
ceived three or four peer reviews from our Technical Program Committee (TPC)
comprised of a total of 55 TPC members from academia, government, and in-
dustry.

The pages of this volume represent only the end result of an enormous en-
deavor involving hundreds of people. Almost all this work is voluntary, with some
individuals contributing hundreds of hours of their time to the effort. Together,
the 55 members of the TPC, the 12 members of the External Review Committee
(ERC), and the 10 other individual reviewers consulted for their expertise wrote
nearly 400 reviews.

Every paper received at least three reviews and many had four or more.
With the exception of submissions by the TPC, each paper had at least three
reviews from the TPC and at least one review from an outside expert. For the
second year running most of the outside reviews were done by the ERC, which
was selected in advance, and additional outside reviews beyond the ERC were
requested whenever appropriate or necessary. Reviewing was “first read double-
blind”, meaning that author identities were withheld from reviewers until they
submitted a review. Revealing author names once initial reviews had been writ-
ten, allowed reviewers to find related and previous material by the same authors,
which helped greatly in many cases in understanding the context of the work,
and also ensured that the author feedback and discussions at the PC meet-
ing could be frank and direct. For the first time in many years, we allowed PC
members to submit papers to the conference. Submissions co-authored by a TPC
member were reviewed exclusively by the ERC and other external reviewers, and
these same reviewers decided whether to accept the PC papers; no PC member
reviewed a TPC paper, and no TPC papers were discussed at the TPC meeting.

After the reviewing was complete, the Program Committee met at the Na-
tional University of Defense Technology, Changsha, on June 15th and 18th, to
select the program. Separately, the ERC decided on the PC papers in email and

VI Preface

phone discussions. In the end, 27 of the 108 submissions (25%) were accepted
for the conference.

First of all, we would like to thank all researchers who submitted manuscripts.
Without these submissions, it would be impossible to provide such an interesting
technical program. We thank all PC members for helping to organize the confer-
ence program. We thank all TPC members for their tremendous time and efforts
during the paper review and selection process. The efforts of these individuals
were crucial in constructing our successful technical program. Last but not least,
we would like to thank the organizations and sponsors that supported NCCET
2012. Finally, we thank all the participants of the conference and hope that you
have a truly memorable NCCET 2012 in Shanghai, China.

October 2012 Xu Weixia
Fu Yuzhuo

Zhang Minxuan
Xiao Liquan

Organization

Organizing Committee

General Co-chairs

Xu Weixia National University of Defense Technology,
China

Fu Yuzhuo Shanghai Jiao Tong University, China
Zhang Minxuan National University of Defense Technology,

China

Program Chair

Xiao Liquan National University of Defense Technology,
China

Publicity Co-chairs

Lu Pingjing National University of Defense Technology,
China

Zhang Chengyi National University of Defense Technology,
China

Local Arrangement Co-chairs

Jiang Jiang Shanghai Jiao Tong University, China
Li Jinwen National University of Defense Technology,

China
Huang Yan Shanghai Jiao Tong University, China

Registration and Finance Co-chairs

Yu Meijuan Shanghai Jiao Tong University, China
Zhang Junying National University of Defense Technology,

China

VIII Organization

Program Committee

Han Wei Xi’an Aeronautics Computing Technique
Research Institute, China

Jin Lifeng Jiangnan Institute of Computing Technology,
China

Xiong Tinggang Wuhan Digital Engineering Institute of China
Shipbuilding Industry, China

Zhao Xiaofang Institute of Computing Technology Chinese
Academy of Sciences, China

Yang Yintang Xi Dian University, China
Li Jinwen National University of Defense Technology,

China
Jiang Jiang Shanghai Jiao Tong University, China

Technical Program Committee

Chen Shuming National University of Defense Technology,
China

Chen Yueyue, Hunan Changsha DIGIT Company, China
Chen Zheng Xi’an Aeronautics Computing Technique

Research Institute, China
Du Huimin Xi’an University of Posts and

Telecommunications, China
Fan Dongrui Institute of Computing Technology Chinese

Academy of Sciences, China
Fan Xiaoya Northwestern Polytechnical University, China
Fang Xing Jiangnan Institute of Computing Technology,

China
Gu Tianlong Guilin University of Electronic Technology,

China
Guo Donghui Xiamen University, China
Hou Jianru Institute of Computing Technology Chinese

Academy of Sciences, China
Huang Jin Xi Dian University, China
Ji Liqiang Cesller Company, China
Jin Jie Hunan Changsha Fusion Company, China
Li Ping University of Electronic Science and

Technology of China, China
Li Qiong Inspur Information Technology Co. Ltd., China
Li Yuanshan Inspur Information Technology Co. Ltd., China
Li Yun Yangzhou University, China
Lin Kaizhi Inspur Information Technology Co. Ltd., China
Lin Zhenghao Tongji University, China
Lv Chunyang, Jiangnan Institute of Computing Technology,

China

Organization IX

Sun Haibo Inspur Information Technology Co. Ltd., China
Sun Yongjie Hunan Changsha DIGIT Company, China
Wang Dong National University of Defense Technology,

China
Wang Yaonan Hunan University, China
Wang Yiwen, University of Electronic Science and

Technology of China, China
Xing Zuocheng Hunan Changsha DIGIT Company, China
Xue Chengqi Southeast University, China
Yang Peihe Jiangnan Institute of Computing Technology,

China
Yang Xiaojun Institute of Computing Technology Chinese

Academy of Sciences, China
Yin Luosheng Synopsys Company, China
Yu Mingyan Harbin Institute of Technology, China
Yu Zongguang China Electronics Technology Group

Corporation NO.58 Research Institute,
China

Zeng Tian Wuhan Digital Engineering Institute of China
Shipbuilding Industry, China

Zeng Xifang Hunan Great Wall Information Technology
Co. Ltd., China

Zeng Yu Sugon Company, China
Zeng Yun Hunan University, China
Zhang Jianyun Hefei Electronic Engineering Institute, China
Zhang Shengbing Northwestern Polytechnical University, China
Zhang Shujie Huawei Company, China
Zhang Xu Jiangnan Institute of Computing Technology,

China
Zhang Yiwei Wuhan Digital Engineering Institute of China

Shipbuilding Industry, China
Zhao Yuelong South China University of Technology, China
Zhou Ya Guilin University of Electronic Technology,

China

Table of Contents

Session 1: Microprocessor and Implementation

A Method of Balancing the Global Multi-mode Clock Network in
Ultra-large Scale CPU . 1

Zhuo Ma, Zhenyu Zhao, Yang Guo, Lunguo Xie, and Jinshan Yu

Hardware Architecture for the Parallel Generation of Long-Period
Random Numbers Using MT Method . 8

Shengfei Wu, Jiang Jiang, and Yuzhuo Fu

MGTE: A Multi-level Hybrid Verification Platform for a 16-Core
Processor . 16

Xiaobo Yan, Rangyu Deng, Caixia Sun, and Qiang Dou

An Efficient Parallel SURF Algorithm for Multi-core Processor 27
Zhong Liu, Binchao Xing, and Yueyue Chen

A Study of Cache Design in Stream Processor . 38
Chiyuan Ma and Zhenyu Zhao

Design and Implementation of Dynamically Reconfigurable Token
Coherence Protocol for Many-Core Processor . 49

Chuan Zhou, Yuzhuo Fu, Jiang Jiang, Xing Han, and Kaikai Yang

Dynamic and Online Task Scheduling Algorithm Based on Virtual
Compute Group in Many-Core Architecture . 57

Ziyang Liu, Yuzhuo Fu, Jiang Jiang, and Xing Han

ADL and High Performance Processor Design . 67
Liu Yang, Xiaoqiang Ni, Yusong Tan, and Hengzhu Liu

Session 2: Design of Integration Circuit

The Design of the ROHC Header Compression Accelerator 75
Mengmeng Yan and Shengbing Zhang

A Hardware Implementation of Nussinov RNA Folding Algorithm 84
Qilong Su, Jiang Jiang, and Yuzhuo Fu

A Configurable Architecture for 1-D Discrete Wavelet Transform 92
Qing Sun, Jiang Jiang, and Yuzhuo Fu

A Comparison of Folded Architectures for the Discrete Wavelet
Transform . 102

Jia Zhou and Jiang Jiang

XII Table of Contents

A High Performance DSP System with Fault Tolerant for Space
Missions . 111

Kang Xia, Ao Shen, Yuzhuo Fu, Ting Liu, and Jiang Jiang

The Design and Realization of Campus Information Release Platform
Based on Android Framework . 121

Jie Wang, Xue Yu, Yu Zeng, and Dongri Yang

A Word-Length Optimized Hardware Gaussian Random Number
Generator Based on the Box-Muller Method . 129

Yuan Li, Jiang Jiang, Minxuan Zhang, and Shaojun Wei

Session 3: I/O Interconnect

DAMQ Sharing Scheme for Two Physical Channels in High Performance
Router . 138

Yongqing Wang and Minxuan Zhang

Design and Implementation of Dynamic Reliable Virtual Channel for
Network-on-Chip . 148

Peng Wu, Yuzhuo Fu, and Jiang Jiang

HCCM: A Hierarchical Cross-Connected Mesh for Network on Chip 155
Liguo Zhang, Huimin Du, and Jianyuan Liu

Efficient Broadcast Scheme Based on Sub-network Partition for
Many-Core CMPs on Gem5 Simulator . 163

Kaikai Yang, Yuzhuo Fu, Xing Han, and Jiang Jiang

A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on
Chip . 173

Zhenlong Song, Yong Dou, Mingling Zheng, and Weixia Xu

Session 4: Measurement, Verification, and Others

A Combined Hardware/Software Measurement for ARM Program
Execution Time . 185

Liangliang Kong and Jianhui Jiang

A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm
and Architecture for MIMO Beamforming Systems 202

Weihua Ding, Jiangpeng Li, Guanghui He, and Jun Ma

A Thermal-Aware Task Mapping Algorithm for Coarse Grain
Reconfigurable Computing System . 211

Shizhuo Tang, Naifeng Jing, Weiguang Sheng, Weifeng He, and
Zhigang Mao

Table of Contents XIII

DC Offset Mismatch Calibration for Time-Interleaved ADCs in
High-Speed OFDM Receivers . 221

Yulong Zheng, Zhiting Yan, Jun Ma, and Guanghui He

A Novel Graph Model for Loop Mapping on Coarse-Grained
Reconfigurable Architectures . 231

Ziyu Yang, Ming Yan, Dawei Wang, and Sikun Li

Memristor Working Condition Analysis Based on SPICE Model 242
Zhuo Bi, Ying Zhang, and Yunchuan Xu

On Stepsize of Fast Subspace Tracking Methods . 253
Zhu Cheng, Zhan Wang, Haitao Liu, and Majid Ahmadi

Author Index . 263

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 1–7, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Method of Balancing the Global Multi-mode Clock
Network in Ultra-large Scale CPU

Zhuo Ma, Zhenyu Zhao, Yang Guo, Lunguo Xie, and Jinshan Yu

School of Computer,
National University of Defense Technology,

Changsha, Hunan,
410073 China

{ouhzam,zhaozhenyu,guoyang,xielunguo,yjs}@nudt.edu.cn

Abstract. It is a long-time discussed problem that the balancing of global multi-
mode clock tree is. And there are many potential problems caused by the unba-
lanced clock tree, such as timing violations, density and power comsuption. In
this article, an innovative balance method is opened by adopting the redundance
clock mux. The basic idea of it is to maximize the reuse of the clock tree for
other modes and keep the sub-clock tree within the sub-blocks unchanged.
A demo chip on 40nm process has this balance skill verified, and makes the
density, leakage and power comsuption deeply decreased.

Keywords: Ultra-large Scale, CPU, clock tree, balancing, multi-mode.

1 Introduction

As the chip size increasing and the function of chips to complicate, the design of
clock network becomes more and more difficult.

For example, for a chip on 40nm process of which the die size is about 10x10mm2,
the latency of global clock tree is more than 3ns. And the point is not only for the
latency, for such a big chip, to build a global balanced clock tree is almost unachieva-
ble in general. Because the maximum skew of the clock could not be well-controlled,
and also this issue may cause a lot of big hold violations[1].

Facing this problem, for most of large scale chips, building a group of local clock
domains is a solution which is frequently used[2]. But the clock skew between two
local clock domains is still big enough, especially in multi-mode designs[3].

The researching in this article fouced on openning a method, with which to build a
global balanced clock network for each mode within a big chip is available. In section
2, the detailed problems now faced are list, and the deep-seated impacts are also pro-
vided. In section 3, the main skills of this paper are opened. In section 4, a detailed
real chip is provided to be the demostrate. And finally, the conclusion is drawn in
section 5.

2 Z. Ma et al.

2 Problem Faced

Chip size increasing is quantitative change to qualitative change. To make it clearly,
Fig.1 shows a typical clock network with multi-mode. There are several blocks
belong to three clock domains, and three clock sources drive these loadings through
three clock mux.

As a routine method, there should be synchronizers between each clock do-
mains[4]. The following lists three cases:

Mode 1: set [ModeSelect0/1/2] to 000. Obviously, the clock latency of BlockA is
4.7ns, while that of BlockB is 4.4ns, so a lot of 0.3ns delays should be inserted after
hold timing fixing. On the other hand, BlockC to other two domains is asynchrounous
and to be false path, so it is no need to fix the timing between them.

Fig. 1. A structure of Mult-mode Clock Network

Mode 2: set [ModeSelect0/1/2] to 111. Under this mode, all the sinks get the clock
from ClockSourceC. This means all the registers on the chip belong to a same clock
domain. It is important that the clock latency to each register need to be well matched.
But with Fig. 1, it could be found that gaps of clock latency between these blocks are
extreamly huge for fixing.

Then, inconvenient things will come if the design is carried on based on this
structure.

First of all, because there are three clusters of registers in the design, of which the
clock latency is 4.8ns, 3.4ns and 6.5ns respectively, the max clock skew for those
registers is about 3.1ns and hard to be fix by ajusting the clock path only. In 40nm
process, the delay of BUF1X is no more than 10ps in fast corner, and the delay of
DELAY500 is no more than 500ps in fast corner, so 6 DELAY500 cells and 7
BUF1X cells are going to be inserted to fix the hold violation caused by that 3.1ns
skew with signal integrity considered. If the number of datapath violations are
massive, the cell count of inserted cells is enormous.

A Method of Balancing the Global Multi-mode Clock Network in Ultra-large Scale CPU 3

On the other hand, a lot of inserted cells make the density increasing fast, also the
leakage power and dynamic power increasing fast. For the demo chip released in this
paper, the increase of density will be 12 percents, which of leakage power will be
11.7 percents, and that of the total power consumption will be almost 20 percents.
Fig. 2 shows the difference of the same area between preFixed stage (partA) and
postFixed stage (partB). Because of the unbalanced clock structure, the density
increased fast obviously.

 <A>

Fig. 2. Density Comparison between preFixed and post-Fixed

To settle the above problems, a better way is to balance all the clock sink in glob-
al[5]. But this seems to be a very difficult mission[6]. A simplified mode of this issue
is shown in Fig. 3. This mode is consist of two registers, two clock muxes and a
couple of clock buffer chains. When ModeSelect is 0, both of these two flip-flop are
driven by ClockSource0, otherwise they are driven by ClockSource1.

Because Reg0 and Reg1 are both the startpoint and endpoint of true pathes, these
two clock sinks should be balanced. So under mode 0 (set ModeSelect to 000), the
delay of two clock pathes should be the same, which is shown in equation (1).

 0 0 2 1preDelay postDelay preDelay postDelayt t t t+ = +
 (1)

According this, the delay chains, including preDelay0, postDelay0, preDelay2 and
postDelay1, are fixed after the clock pathes has been balanced. When the clock mode
switches, another relation needs to be matched, which is shown in equation (2).

 1 0 3 1preDelay postDelay preDelay postDelayt t t t+ = + (2)

4 Z. Ma et al.

Fig. 3. A Simplified Mode of Multi-mode Clock Tree

To balance the clock skew under mode 1 (set ModeSelect to 1), only chains preDe-
lay1 and preDelay3 could be adjust for the reasons list above, while chains preDelay0
and preDelay1 are fixed. For a small scale design, manually adjusting the preDelay*
for each clock muxes is achievable. Once the scale of the design getting larger, it will
be more than the ability designers could handle.

3 Balancing Method

A better way to settle this problem is to build a wide balanced clock tree for multi-
modes, and this structure is called Multi-Mode Balanced Clock Tree (MMBCT). A
simplified structure of MMBCT is shown in Fig. 4.

Fig. 4. The Multi-Mode Balanced Clock Structure

A Method of Balancing the Global Multi-mode Clock Network in Ultra-large Scale CPU 5

To summarize the MMBCT, the key points could be list as following:

• Use hierarchical design flow, and build the local clock tree for one mode;
• Localize all the intrinsic mode-select clock mux at the start point of the clock tree,

and no any clock mux in blocks;
• Add redundance mode-select clock mux, and placed these muxes close to the

block;
• Compensate the gap of the latency between clocks at the I1 pin of the redundance

mux.

There is no difference when implement the block design. All the clock tree within the
blocks will be reused for all the modes.

For details, the structure in Fig. 4 could be an example. Use the same analysis to
the above. when the mode is set to Mode 1 [ModeSelect is set to 000], the clock la-
tencies of BlockA/B/C are 3.6ns/2.5ns/4.7ns respectively, because those three clock
muxes CKMUX are localized. In general, the redundance muxes R-MUX have no
impact on the clock function of this mode.

But the exact scenario is in the other mode, when the mode is set to 0 (set ModeSe-
lect to 111), the clock pathes to all the registers are going to be balanced as well. All
the clock chains from top to the blocks boundary and internal the blocks are fixed.
There is another flexible point at the I1 pin of R-MUX, which is used to compensate
the clock skew under this mode. To modify the latency of DelayA/B/C is easy to bal-
ance all the clock pathes, which is described in equation (3).

 2.2 1.4 1.7 0.8 3.1 1.6DelayA DelayB DelayCns t ns ns t ns ns t ns+ + = + + = + + (3)

In this case, the latencies of DelayA/B/C could be set to 1.1ns/2.2ns/0ns, then the
latency from ClockSourceC to all the sinks are the same.

There are some advantages by adopting such a methodology. First of all, the clock
tree under the other mode are fully reused, there is no need to have the original clock
pathes or devices modified. Then, because almost all the clock sinks are balanced,
there will be little hold violations within inter-blocks. And the third, the increased
power is very small.

4 Demo and Result

A demo chip was build based on the above idea. Fig. 5 shows the snapshot of the
fullchip, and the red line highlights the clock tracks. The logical structure of this
demo chip is very similar to what is shown in Fig. 4. A pll here plays the role of clock
source, and the mode select mux is placed close to it. There are ten R-MUXes which
are placed near the clock port of each blocks and are highlighten in red frame respec-
tively. An important parameter should be empasized that the size of this demo chip is
over 12mmx13mm.

6 Z. Ma et al.

Fig. 5. The Snapshot of the Demo Chip

Table 1. Detailed Clock Information of the Demo Chip

Block
Name

Internal
latency

TOP
lantency

Compensate
Delay

Talk
Relations

Block0 0.8ns 2.3ns 2.2ns Block4
Block1 0.8ns 2.1ns 2.4ns Block4
Block2 0.8ns 2.1ns 2.4ns Block4
Block3 0.8ns 2.3ns 2.2ns Block4
Block4 0.6ns 1.6ns 3.1ns Block1~8
Block5 2.8ns 2.5ns 0ns Block4
Block6 2.8ns 2.5ns 0ns Block4
Block7 2.8ns 2.5ns 0ns Block4
Block8 2.8ns 2.5ns 0ns Block4
Block9 1.1ns 3.7ns 0.5ns Block5/6

Block10 1.1ns 3.7ns 0.5ns Block7/8

In Table. 1, the detailed information of this demo case is list. The “Internal laten-
cy” column shows latencies of the sub-clock tree for each blocks. While the “TOP
latency” column shows the delay from clock source to the clock port of each blocks.
And because there are R-MUXes beside clock ports, to compensate the latency

A Method of Balancing the Global Multi-mode Clock Network in Ultra-large Scale CPU 7

differency is possible, and the compensatd delay values are list in column “Compen-
sate Delay”.

According to Table. 1, the implementated clock structure is the same to the original
mode 0, but all the clock sinks have been balanced under the other mode 1. As a re-
sult, because there is few of hold violations at inter-blocks, the increases of density,
leakage power and total power are 7%, 5.5% and 11%. Compared to the calculated
result which are shown in section 2, the MMBCT method impoves the performance of
ultra-large scale chips rapidly.

5 Conclusion

The balance issue is a traditional problem on multi-mode clock trees. In most of the
cases, it is not easy to satisfy all the requirements for each mode, and this will cause
the problems, such as density, leakage, power. In this article, an innovative method,
MMBCT, was opened to build a balanced clock tree in multi-mode applications. The
basic idea of MMBCT is to maximize the reuse of the clock tree under each mode,
and then the issues of density, leakage and power will be relieved.

Acknowledgements. Financial supports from the Natural Science Foundation of Chi-
na (NSFC) under award 61076036 and 61076025 are greatly acknowledged, also
greatly thankful to the KJ-11-04 project.

References

1. Xiao, L.F., Xiao, Z.G., Qian, Z.C., Jiang, Y., Huang, T., Tian, H.T., et al.: Local clock skew
minimization using blockage-aware mixed tree-mesh clock network. In: 2010 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 458–462 (2010)

2. Fu, Q., Luk, W.S., Zhao, W.Q., Chen, S.J., Zeng, X.: Local refinement method for optimiz-
ing clock tree topology. In: 7th International Conference on ASIC, ASICON 2007, pp.
1110–1113 (2007)

3. Lee, H., Paik, S.W., Shin, Y.S.: Pulse Width Allocation and Clock Skew Scheduling: Opti-
mizing Sequential Circuits Based on Pulsed Latches. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 29(3), 355–366 (2010)

4. Tsai, C.C., Lin, T.H., Tsai, S.H., Chen, H.M.: Clock planning for multi-voltage and multi-
mode designs. In: 2011 12th International Symposium on Quality Electronic Design
(ISQED), pp. 1–5 (2011)

5. Chen, Y.P., Wong, D.F.: An algorithm for zero-skew clock tree routing with buffer inser-
tion. In: Proceedings of the European Design and Test Conference, ED&TC 1996, pp. 230–
236 (1996)

6. Sulaiman, M.S.: A balanced clock network design algorithm for clock delay, skew, and
power optimization with slew rate constraint. In: Proceedings of the IEEE International
Conference on Semiconductor Electronics, ICSE 2002, pp. 62–66 (2002)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 8–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Hardware Architecture for the Parallel Generation
of Long-Period Random Numbers Using MT Method

Shengfei Wu, Jiang Jiang, and Yuzhuo Fu

School of Microelectronics Shanghai Jiao Tong University,
Shanghai, P.R., China

{wushengfei,jiangjiang,fuyuzhuo}@ic.sjtu.edu.cn

Abstract. Random numbers are extremely important to the scientific and com-
putational applications. Mersenne Twist(MT) is one of the most widely used
high-quality pseudo-random number generators(PRNG) based on binary linear
recurrences. In this paper, a hardware architecture for the generation of parallel
long-period random numbers using MT19937 method was proposed. Our de-
sign is implemented on a Xilinx XC6VLX240T FPGA device and is capable of
producing multiple samples each period. This performance let us obtain higher
throughput than the non-parallelization architecture and software. The samples
generated by our design are applied to a Monte Carlo simulation for estimating
the value of π, and we achieve the accuracy of 99.99%.

Keywords: MT 19937 method, Hardware architecture, parallel generation,
FPGA.

1 Introduction

High quality random numbers are epidemical applied in the domains of scientific
applications[9]. One of the extremely important instances is the Monte Carlo method,
such as particle transport in computational physics, quantum thermodynamic calcula-
tions and aerodynamic calculation. However, with the increasing complexity of the
calculation model and calculation accuracy, the amount of Monte Carlo calculation to
be done is growing. As all we known, the quality of random numbers has a significant
impact on the accuracy of the Monte-Carlo simulations results.

Due to the advantages of high performance and reproducibility, pseudo-random
number generators (PRNGs) based on linear recurrences modulo 2 are widely adopted
in such simulations. One prevalent F2-linear PRNG is the Mersenne Twister (MT)
[3], which is highly suited to simulation for its long period, multi-dimensional equidi-
stribution, and high performance.

For large scale computing, one trend is the development of the parallelism of ap-
plications and building structure with the available parallel hardware resources, such
as in FPGAs[10][11]. In modern system, providing fast streams of statistically reliable
random numbers is the key component of many scientific applications, and designing
parallelism PRNGs structure is the critical part.

 Hardware Architecture for the Parallel Generation of Long-Period Random Numbers 9

Most hardware implementations of MT19937 are straightforward non-parallelized
implementations of the original C-code [7], [8]. Shiro[1] proposed a hardware frame-
work implement MT19937 in parallel by using 624 registers, but this is not area-
efficient. Ishaan L.Dalal and Deian Stefan[2] developed a hardware architecture for
generating parallel pseudo-random numbers, this method decrease the cost of hard-
ware but the structural details of the multi-ported RAM and pipeline registers are
not revealed.

In this paper, we develop a parallelized hardware framework for MT19937. More
specifically, we make the following contributions:

1. We design a hardware architecture for parallel generating long-period random
numbers using MT19937.

2. We implemented various degrees of parallelization architecture on a Xilinx Virtex
6 device.

3. We evaluate the proposed architecture using Monte-Carlo simulation for estimat-
ing the value of π.

2 Algorithmic Backgrounds

2.1 Mersenne Twister Method

The Mersenne Twister Method, which is a pseudorandom number algorithm based on
a matrix linear recurrence over F2, is developed by Makoto Matsumoto in 1997[3].
The sample generation process of MT method is illustrated in Fig.1.

Fig. 1. Generation process of MT method

Where Sn represents the current state and Sn+1 is the next state. The state vector
contains N words, each words contains w-bit. Three words in current state go through
the Generator transform to the next state with a series of logic operation XOR and
shift.

We could express the transform process in Fig.1 in the form of Eqn. (1)

 Ax[M])x[1]|(x[0]x[N] rrw ⋅⊗= − (1)

10 S. Wu, J. Jiang, and Y. Fu

In the equation x[0]w-r stands for “the upper w-r bits” of x[0], and x[1]r means “the
lower r bits” of x[1]. So (x[0]w-r|x[1]r) means the new words consisted of the “the
upper w - r bits” of x[0] and “the lower r bits” of x[1] .

The matrix A in the Eqn. (1) is the twist transformation matrix and defined in the
form of Eqn. (2).























=

−− 021

1

1

1

A

aaa ww

 (2)

In order to get the long period and good equidistribution, the Mersenne Twister is
cascaded with a tempering transform to compensate for the reduced dimensionality of
equidistribution, the temper is defined in the case of Mersenne Twister as Eqn. (3)











>>⊕=
<<⊕=
<<⊕=

>>⊕=

l)(yyy

c)&t)((yyy

b)&s)((yyy

u)(xxy

n

nn

 (3)

Where b and c are bitmasks and u, s, t and l are constant integers. Period reaches the
theoretical upper limit 2Nw-r-1.

In this paper, we use MT19937 algorithm and the coefficients for MT19937 are
N=624,w=32,r=31,M=397,the period of MT19937 is 219937-1.Thease characters could
meet the demands for the simulation.

3 Hardware Architecture for MT19937

Fig.2 illustrates the overview of hardware architecture which we propose for
MT19937 algorithm. It is composed of four components, i.e. the Address Unit, the
Transform Unit, the Temper Unit, and the parallelized configuration consisted of
BRAMs and registers.

The Transform Unit and the Temper Unit correspond to the Transform and Temper
processes described in Eqn. (1) and Eqn. (3), respectively. The responsibility of the
Address Unit is producing the appropriate addresses for the BRAMs. The connection
and configuration of BRAMs and registers are the key points of parallelized architec-
ture. They ensure the correctness of the generating results. We introduce the design
details of BRAMs and registers in the next sub-section.

Two advantages of our parallel architecture are shown below:

1. Due to the capability of producing multiple random samples per clock cycle, we
can obtain the high throughput.

2. The whole system can be built inside a single FPGA device so that the external
resources such as off-chip memory are not required.

 Hardware Architecture for the Parallel Generation of Long-Period Random Numbers 11

BRAM0

BRAM1

BRAMk

Register
Set

Transform

Unite

Temper

Unite

Parallelized Configuration

Fig. 2. The hardware architecture for MT19937

3.1 Structural Details for BRAMs and Registers

We use dual-port BRAMs in FPGA for the implementation and 3 degrees paralleliza-
tion will be introduced as an example.

624 seeds are needed at the initial state of MT19937, we use one 206ൈ32-bit, two
207ൈ32-bit dual-port BRAMs and four registers to ensure state consistency for the
given parallelized configuration. The initial vectors are distributed as Fig.3.

Fig. 3. The initial state of BRAMs and registers

It cost 3 read operations and 1 write operation for generating one random number
using MT19937 method. We use two dual-port BRAMs in READ_FIRST mode to
achieve. In READ_FIRST mode, data previously stored at the write address on the
output latches, while the input data is being stored in memory (read before write).

Based on this character, the R/W details during the first 3 clock cycles is illustrated
in Fig.4, vectors in bracket are the output data of the corresponding port. During the
initialization, all I/O port of three BRAMs are in read mode. The numbers of address
in the BRAMs (addr0,addr131,etc.) of Fig.4 correspond to the R/W addresses, which
are controlled by the address unit and mapped to the proper BRAMs .During runtime,
one port of BRAM is in read model and the other one is in write mode. Each of
BRAMs R/W addresses is updated by the different counter synchronously.

12 S. Wu, J. Jiang, and Y. Fu

In a single clock, because the BRAM is in READ_FIRST mode, the output data of
the port in write mode is the previous data which was stored in the current write ad-
dress and will be transformed to the appreciate register. Therefore, no more than 2
accesses will be required for each BRAM in a single clock cycle and we get all the
vectors needed in one generation. Fig.5 depicts the hardware implementation of our
proposed architecture.

Fig. 4. R/W details during first 3 clocks

Fig. 5. Hardware architecture of 3 degree parallelization for MT19937

 Hardware Architecture for the Parallel Generation of Long-Period Random Numbers 13

4 Implementation and Testing

This section presents the implementations and evaluations of the proposed architec-
ture and framework using FPGA technology.

4.1 Implementation of Hardware Architecture

We implemented the architecture described in Section 3 on a Xilinx Virtex-6
XC6VLX240T (hosted on the ML605 evaluation board) FPGA device. The designs
were coded in Verilog HDL and synthesized with Xilinx ISE 12.2. The initial design
is simulated in Modelsim SE 6.5 to ensure functional correctness.

The BRAMs are configured in READ_FIRST mode. The output data of the port in
write mode of BRAM which will be used in next iteration is transformed to the cor-
responded registers, meanwhile the output data of the other port and the old data in
register were bypassed to the generator directly. The whole system is fully pipelined.

We have implemented a non-parallelized and four different (of degrees 2,3,4,6)
long-period RNGs in various parallelization configurations for MT19937 .

Table 1 summarizes the resource usage and maximal performance statistics for
each of these configurations. Hardware implementations have a better performance in
throughput than the software. And as the result shown in Table 1, when we want to
get more than one random number in one cycle, simply duplicating multiple instances
of non-parallelized implementation will consume more resource than the parallelized
architecture.

Table 1. Resource usage for various degrees of parallelism for MT19937

 Software None 2-d 3-d 4-d 6-d
Flip-Flops N/A 94 102 148 194 264
LUTS N/A 152 167 245 323 405
BRAMs N/A 2 2 3 4 6
Freq(MHZ) N/A 312.0 260.3 253.9 238.3 232.2
Thruput(Gbps) 6.03 10.0 16.7 24.4 30.5 44.6

We also plot corresponding throughput vs. area for 2-d, 3-d, 4-d, 6-d as shown in
Fig. 6. We can see that the throughput/area efficiency roughly remains constant as the
degree of parallelism increases.

Fig. 6. Throughput vs Area for various parallel degrees

0

10

20

30

40

50

0 200 400 600 800

Area (Flip-Flops+LUTs+BRAMs)

T
hroughput (G

bps)

14 S. Wu, J. Jiang, and Y. Fu

4.2 Application for Testing

Two standard statistical test suites, Diehard[11] and Crush which is from TestU01[12]
were applied to test the quality of random numbers generated by the framework pre-
sented in Fig.5.

The implementations passed all the Diehard tests. All tests in Crush were passed
except for two linear complexity tests. The reason is that all F2-linear PRNGs produc-
ing bit sequences follow liner recurrences, thus they cannot have the linear complexi-
ty of a truly random sequence [4] and will fail the two tests.

For the purpose of checking the framework further , we apply the architecture to a
practical application that Monte-Carlo simulation to estimate the value of π for fur-
ther test. The basic principle of it is to generate points in the quarter unit square ran-
domly, and then count the number of points falling inside the quarter unit circle. The
value of π can be estimated by the Eqn. (12)

 π ൌ 4 ൈ ୮୭୧୬୲ୱ ୧୬ୱ୧ୢୣ ୲୦ୣ ୡ୧୰ୡ୪ୣ୲୭୲ୟ୪ ୮୭୧୬୲ୱ ୧୬ ୱ୧୫୳୪ୟ୲୧୭୬ (4)

The implementation of this Monte-Carlo application is shown in Fig. 7, and we chose
10000 points generated by the architecture proposed as the test samples. The esti-
mated value of π is 3.141593 and this already achieve the accuracy of 99.99%. We
believe that if we increase the number of sample points, the estimated value will be
more accuracy.

Fig. 7. Framework for estimating the value of ૈ

5 Conclusion

In this paper, we have developed a hardware architecture for generating parallel long-
period pseudo-random numbers using MT19937 method.

We implemented various degrees of parallelization architecture and a non-
parallelization architecture for comparison on a Xilinx XC6VLX240T FPGA device.
Due to the capability of capable of producing multiple samples each period, our archi-
tecture obtain higher throughput than the no parallelization architecture and software.

Finally, we apply the Monte-Carlo simulation for estimating the value of π for
testing our architecture successfully.

 Hardware Architecture for the Parallel Generation of Long-Period Random Numbers 15

Acknowledgment. Our work is supported by the IBM Shared University Research
(SUR), System-level Virtualization Based on Reduced Hyper Multi-core Architec-
ture, SUR201102X.

References

1. Konuma, S., Ichikawa, S.: Design and evaluation of hardware pseudo-random number ge-
nerator MT19937. IEICE Trans. Info. Systems 88(12), 2876–2879 (2005)

2. Dalal, I.L., Stefan, D.: A Hardware Framework for the Fast Generation of Multiple Long-
period Random Number Streams. In: Proc. 16th ACM Int. Symp. FPGAs, pp. 245–254
(February 2008)

3. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Modeling and Computer Simula-
tion 8(1), 3–30 (1998)

4. L’Ecuyer, P., Panneton, F.: Fast random number generators based on linear recurrences
modulo 2: overview and comparison. In: Proc. 37th Conf. Winter Simulation, pp. 110–119
(December 2005)

5. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, 3rd edn.,
vol. 2. Addison Wesley, Reading (1998)

6. Kurokawa, T., Kajisaki, H.: FPGA based implementation of Mersenne Twister. Sci. Eng.
Rep. Nat. Def. Acad (Japan) 40(2), 15–21 (2003)

7. Pasciak, A.S., Ford, J.R.: A new high speed solution for the evaluation of monte carlo rad-
iation transport computations. IEEE Trans. Nuclear Science 53(2), 491–499 (2006)

8. Sriram, V., Kearney, D.: An area time efficient field programmable Mersenne Twister uni-
form random number generator. In: Proc. Int. Conf. Eng. of Reconfigurable Systems &
Algorithms, pp. 244–246 (2006)

9. Yuan, L., et al.: Software/Hardware Framework for Generating Parallel Long-Period Ran-
dom Numbers Using the WELL Method. In: Field Programmable Logic, pp. 110–115
(2011)

10. Wenqi, B., et al.: A reconfigurable macro-pipelined systolic accelerator architecture. In:
2011 International Conference on Field-Programmable Technology (FPT), pp. 1–6 (2011)

11. Jiang, J., Mirian, V.: Matrix Multiplication based on Scalable Macro-Pipelined FPGA Ac-
celerator Architecture. In: International Conference on Reconfigurable Computing and
FPGAs, ReConFig 2009, pp. 48–53 (2009)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 16–26, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MGTE: A Multi-level Hybrid Verification Platform
for a 16-Core Processor*

Xiaobo Yan, Rangyu Deng, Caixia Sun, and Qiang Dou

School of Computer Science,
National University of Defense Technology,

Changsha 410073
{xbyan,rydeng,cxsun,douq}@nudt.edu.cn

Abstract. With the widely application of multi-core multi-thread processor in
various computing fields, simulation and verification of processors become in-
creasingly important. In this paper, a multi-level hybrid verification platform
called MGTE is designed and developed for a 16-core processer PX-16. MGTE
supports software simulating and hardware emulating in module level, sub-
system level or full-chip level, which is capable of verifying the processor dur-
ing all the design periods from details to the whole. Also, MGTE supports the
hybrid verification of behavior models, RTL codes and net lists, which is capa-
ble of improving the simulation performance. It’s proved that MGTE can effec-
tively ease the functional verification and preliminary performance evaluation
of PX-16 processor.

Keywords: Multi-core Multi-thread Processor, Multi-level Hybrid Verification,
Verification platform

1 Introduction

Processor is the core of a modern computer system. With the widely application of
multi-core multi-thread processors in various computing fields, the growing size and
complexity make the verification of the multi-core multi-thread processor more and
more important [1]. Meanwhile, as the cost of processor manufacture keeps rising,
simulation and verification of the processor should preliminarily evaluate the perfor-
mance and power consumption before taping-out the initial assessment.

In this paper, a multi-level hybrid verification platform called MGTE (Making a
Good Testing the Environment) is proposed for a 16-core processor PX-16. MGTE is
based on the existing simulation and emulation tools, and is capable of either verify-
ing the function or evaluating the performance and power of the processor.

* This work is supported by National Natural Science Foundation of China (NSFC) under grant

No.61070036 and No.61103011, and HGJ Project of China under grant No. 2009ZX01043-
003-002.

 MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor 17

PX-16is a 16-core processor, which focuses the design on enhancing the system
throughput. It employ sin-order issue mechanism to reduce the complexity of the
processor core, so that the chip can integrate more processor cores. Fig. 1 shows a
block diagram of the PX-16 processor. 16 general-purpose multi-thread processor
cores (Core) with private L1 and L2 caches share a 4-bank L3 cache. Each bank of L3
cache connects to a directory controller (DCU) and a memory controller (MCU). PX-
16 also integrates an on-chip interconnection network(NOC), a clock and reset control
unit (CRU),a partial mode unit (PMU) and an IO controller (IOU).

Fig. 1. PX-16 Block Diagram

2 Related Work

Verification is an important method for the successful implementation oftoday's
CPUs. According to the objective of verification, it can be divided into functional
verification and timing verification. According to the stage of verification, it can
be divided into pre-silicon verification and post-silicon verification. Moreover,
pre-silicon verification can be subdivided into pre- synthesisverification and post-
synthesis verification.According the verification level,it can be divided into the archi-
tecturelevel verification, behavioral level verification, register transfer level (RTL)
verification, netlist level verification, and prototype-chip level verification.According
to themethodologyof verification, it can be divided into formal verification, simula-
tion verification, FPGA verification, prototype system verification, coveragedriven
verification, assertion verification, pipeline behavior verification, and hardware and
software co-verification. A single verification method is notenough to guarantee the
correctness of the processor design, so a variety of verification methods are requi-
redthrough the processor design [1].

Simulation verification ensures the correctness of processor design by modeling
the design at different abstraction levels and observing the response of the model
under the external test stimulus.

18 X. Yan et al.

Simulation verification tools can model the processor with high-level language
(such as the C language, System-Verilog language, etc.), such asSAM [2] architecture
simulatorfor OpenSPARC T2[3] and SimpleScaler architecture simulator for general-
purpose processor.SAM models not only the processor design but also the disk, off-
chip memory, multi-processor system etc. SimpleScaler [4] is able to simulate
the CPU, cache, memory system, computer architecture etc. It adopts MIPS/DLX-like
instruction set, provides compile tool chain and a number of test programs,
and supports the analysis of the processor and cache system. High-level languagesi-
mulation cannot accuratelyreflect the details of the processor architecture.But it is
usually fast and the simulation speedcan reach MHz or more.Therefore,the simulation
at this level is usually used for software development.

Simulation verification can also model the processor with hardware description
language (i.e. Verilog, VHDL, etc.). For example, Sims [5] is a simulator for OpenS-
PARC T2 including thousands of assembly test programs, which is capable of model-
ing real hardware architecture with the supports of specific EDA tools (i.e. VCS [6]
from Synopsys inc. or IUS [7] from Cadence inc.). Hardware logic-level simulation
serves a relatively low level abstraction, which can accurately reflect the details of the
processor architecture, but the simulation speed is usually slow, which is usually only
a few hundred Hz to several thousand Hz.

Simulation verification can also be done on hardware emulator (i.e. PXP from Ca-
dence inc., EVE from EVE inc., etc.). The processor design can be loaded into the
hardware emulator to run a real operating system and applications.The log and wave-
form records the hardware status and results for further analysis. Compared with the
previous two verification methods, hardware emulation verification can accurately
reflect the detail structure of the processor, but also has a fast simulation speed around
MHz-scale. However, the hardware emulation platform is usually expensive, and
limited by the number of logic gates. Moreover,the debug process is relatively
complex and more time-consuming.

During the whole process of CPU design, these three verification methods will be
collaborative at different stages. MGTE simulation verification platform supports
both logic-level simulation on common computer servers and hardware emulation on
hardware emulators.

3 MGTE Verification Platform

MGTE verification platform is mainly composed of the software environment and the
hardware environment. Thesoftware environment is responsible for configuring the
processor, compiling the test cases and controlling the simulation process.The hard-
ware environment is responsible for the synthesis of the processor design codes, off-
chip DDR memory model, FLASH memory model and the off-chip I/O device model,
as well as loading the PLI libraries, the initialization codes, the hardware moni-
tor/checker and simulating on the hardwareemulator platform.

 MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor 19

Fig. 2. The workflow of MGTE simulation verification platform

3.1 Workflow of MGTE

Fig. 2 shows the workflow of MGTE verification platform.
At first, the software compiler converts the test case and the software function li-

brary into some intermediate files, including binary executable files, the symbol table,
and the disassembled codes with instruction and data addresses. The symbol table
contains the instruction addresseswhere the program exits normally and abnormal-
ly.The disassembled codes are used to debug errors. IO and memory image generator
converts the binary executable files to the machine codes and data and divides them
according to the address space.The codes and data in IO space are stored in two files:
Rom0.image and Rom1.image. The codes and data in memory space are stored in
Mem.image. At the same time, the hardware design codes of the processor, together
with the initialization code, PLI libraries, checkers and monitors,are compiled by the
hardware synthesizerand the hardware intermediate codes are generated.

After compiling, the verification can begin. When the hardware codesstart to work,
the IO and memory image files and the arguments extracted from the symbol table
will be loaded into the simulator or emulator. The hardware status and results will be
printed to the server screen and the log files. Once the real-time errors in hardware
design are detected by the checkers, the simulator will pause and invoke a debug in-
terface to check the errors. After the simulation or emulation is finished, the software
environment will re-analyzethe logs and hardware dump files.If the test case exits
from the bad address or if the hardware status is inconsistent, MGTE platform will
report the sequence of the error instructions from the logs or the address sequence of
the inconsistentdata for troubleshooting.

20 X. Yan et al.

3.2 MGTE Hardware Environment

MGTE hardware environment refers to the PX-16 processor full-chip design codes
and simulation related codes, including the global flow control module, processor
model, memory model, Flash model, the IO reference design model, global initializa-
tion module and global checkers and global monitors, as shown in Fig. 3.

Fig. 3. MGTE the hardware environment structure

The global flow control module is mainly responsible for controlling the work flow
of the processor, loading the test cases, initializing the processor, starting the global
checker and the global monitors.

The processor design codes contain RTL codes and some behavior models.
The RTLcodesare real hardware design, and the behavior models are used for fast
simulation.

The off-chip DDR memory model, abbreviated as the memory model, contains not
only the clock accurate DDR models, but also a fast DDR behavioral model. Its initial
data are loaded from Mem.image.

The flash model is responsible for the simulation of the off-chipflash chips, which
supplytwo extraFlash chips to store the system initialization machinecodes and binary
data. The flash model also contains a real clock accurate model and a fast behavioral
model.Its data areloaded fromRom0.image and Rom1.image.

The IO reference design model is responsible for the simulation ofthe off-chip IO
devices, which can supply two simple IO devices.

The global initialization module is responsible for the fast initialization of the full
system. In a real system, the initialization process is done by hardware instructions,

 MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor 21

which is extremely slow.In order to speedup the initialization process, most units of
the processor can be fast initialized by forcing a set of signals or embedding some
hardware behavioral initial codes. The fast initialization units includes Dl3, MCU,
L2Cache, CRU, PMU and other miscellaneous modules such as the memory model,
the FLASH model and the IO reference design model.

The global checkersare basically responsible for fast error detection and hardware
debug by checking the status and results of the simulation. For examples, Golden
Memory checker (GM) uses a memory reference model to check the correctness of
memory subsystem; Golden Directory checker (GD) usesL1C directory model to
check the protocol correctness of the L1 Cache coherency and consistency; Golden
Packet checker (GP)checks the correctness of the input and output packets through
NOC; Golden Cache Coherencychecker (GCC)usesa hardware modelto check the
protocol correctness of L2Cache coherency and consistency; Golden MCU checker
uses a behavioral DDR model under L3Cache to check the correctness of MCU; Gol-
den DCU checker checks the correctness of the DCU internal protocol; Golden L2C
checker checks the correctness of the L2Cache internal protocol.

The global monitorsare responsible for not only monitoring the processor simula-
tion but also collecting the statistical system performance, including the average on-
chip memory access bandwidth, the average off-chip memory access bandwidth, the
DMA-accessbandwidth and processor computing resource utilization. Based on these
statistics, programmers or hardware designers can analyze the characteristics of the
applications and find out the hardware and software bottlenecks for improvement.

3.3 Advantages of MGTE Platform

MGTE is a multi-level hybrid simulation verification platform that covers from simu-
lation to emulation. It can meet the processor verification requirements at different
design stages,and make a lot of optimizations for simulation performance.

1) Supporting Multi-level Cross-Platform Verification
MGTE platform supports multi-level simulation verification.It supports both full-
system simulation but also sub-system simulation, including the processor core
sub-system simulation, the memory sub-system simulation, and the IO sub-system
simulation.It also supportsmodule-level simulation, including the Core module simu-
lation,the L2Cache module simulation, the NOC module simulation, the L3Cache
module simulation, the MCU modulesimulation and the IOU module simulation. All
the simulation and emulation levels can be selected by a run-time parameter.

MGTE platform also supports cross-platform verification. It not only supports
software simulation on IUS environment or VCS environment, but also supports emu-
lationon the PXP or EVE platform. Through the support of the cross-platform simula-
tion and emulation verification, MGTE platform can process pseudo-assembly-level
test cases on module level and subsystem level software simulation, assembly-level
test caseson full-chip simulation and real applications on full-chip emulation after
loading operating system.

22 X. Yan et al.

Multi-level cross-platform simulation verification method makes the processor ve-
rification unified, structured and parameterized and eases the verification of the PX-
16processor from the details to the whole system.

2) Supporting Hybrid Simulation Verification
MGTE platform uses different configuration files to achieve hybrid simulation of the
behavior models, RTL codes and netlists. The configuration entryfollows the form
"mod_select: <mod_name=mod_type>", wheremod_namecan be the name of the
module with multiple implementations (such as "mcu" for the module MCU),
the name of the subsystem with multiple implementations (such as "mem_subsys"for
the memory subsystem) or the name of the common components with multiple im-
plementations (such as "regfile"for the register files,"ram" for theon-chip rams,
"clockgate" for the clock gating modules, etc.); mod_type is the configuration of the
hardware modules, subsystems or components: "real" means thereal RTL codes
areused, "model"means a null model is used, "sim"means a behavioral model is used,
and "netlist"means the netlist model is used. For example, if MCUis required to be
configured as a behavioral model, the line "mod_select: <mcu=sim>" should be insert
into the configuration file. In addition, the number of processor cores can be confi-
gured too.For example, "mod_num: <corenum=1>" means the processor is configured
to be a single-core processor, and the other 15 coreswill usenull models.

MGTE platform analyzes the hardware configuration file, and dynamically gene-
rates a compile file list, whichis further compiled by the IUS or VCS hardware compi-
ler. The parameter conf is used to select the hardware configuration file, which is
customized according to the simulation requirements. For example, the hardware
configuration file"fastcmp16.conf" is used for the hybrid fast simulation of a 16 core
system by setting the parameter conf as "fastcmp16".

The hybrid simulation of behavioral models, RTL codes and netlists greatly in-
crease the simulation performance.The fast behavioral modelsare used for the mod-
ules whose functional correctness isguaranteed, and the empty models are used for the
unused modules, so that thechip complexity is reduced, and the bugs in the hardware
logic can be exposed rapidly.

In addition to these two important characteristic, the MGTE platform also has the
following advantages:

• Easy to use. MGTE platform provides a few parameters to flexiblyselect a part or
whole test cases for convenient regression testing.In addition, MGTE platform can
simulate multiply tasksparallelly.Most operations of MGTE platform need only
onesingle command, which greatly simplifies the human-computer interaction.

• Convenient to troubleshoot.MGTE platform supports automatic checkpoint,
which automatically saves the state of a long-run test case in a fixed time interval
for re-running and troubleshooting. In addition, MGTE platform supplies a rich
number of online and offline checkers to check the status and results of the simula-
tion. The online checkers includea lot of PSL assertions andhardware checking log-
ic. The offline checkers include the L1/L2 coherency and consistency checking
toolsbased on the dumpedinternal RAM data and the error path analysis tools based
onthe log files.

 MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor 23

4 SimulationExperiments

MGTE platform is designedto guarantee the correctness of PX-16 processor and to
evaluate its performance preliminarily. Three kinds of test cases are used on MGTE
platform: the pseudo-assembly-level test cases,the assembly-level test casesas well as
the application-level test cases.

Pseudo assembly-level test casesare used to observe the system status through forc-
ing the internal interface signals, which are mainly for the subsystem level and mod-
ule level verification, as shown in Table 1.

Table 1. Pseudo assembly-level test cases running on MGTE platform

Name Count Functionality
core_sim 726 test the processor core and core module
mem_sim 253 test on-chip memory subsystem
io_sim 126 test IO subsystem and IO module
l2csim 19 test L2 Cache module
Nocsim 37 test NOC module
l3csim 39 test L3 Cache module
Mcusim 25 test MCU Module

Assembly-level test cases are used mainly in the full-chip software simulation,

which are designed to test the traditional functions, to verify the new features of PX-
16 processor, to evaluate the performance preliminarily of PX-16 processor as well as
to do some random tests.Thesetest cases are shown in Table 2.

Table 2. The assembly-level test cases running on MGTE platform

Type Name Count Functionality
traditional
function

Cmp1 881 Single-core, 8-core and 16-core basic functionality;
core,ISA, virtual memory management, error han-
dling, performance management, exception han-
dling, memory access, and other miscfunctionality.

Cmp8 654
Cmp16 276

directed func-
tion

SIMD 68 SIMD functionality
DMA 36 DMA functionality.
CReg 10 Control registersfunctionality.
Reset 1 Chip reset functionality.
PM 16 Partial mode functionality.
IPI 2 Inter-processorinterruption functionality.
HardAtom 2 Hardware atomic instructions functionality.

Performance
Evaluation

Stream 12 Performance of Stream program.
Ld 1 Memory accesslatency at different levels.
Dd 18 DMA performance under different situations.
Linpack 1 Performance of LINPAC.
Atom 12 Performance of locks and barrier

Random Test MixISA * Random instruction sequence.
MixCC * Random critical region and randomsynchronization.

24 X. Yan et al.

Application level test casesare mainly used on PXP and EVE emulation platform
after loading the operating system.These benchmarks contain SPEC CPU2006, SPEC
OMP2001, NPB, Stream, Matrix multiplication and LINPACK.

4.1 Simulation Interface

The entrance program of MGTE platform ismgte_run.There are two types of parame-
ters for the program: action parameters and options parameters. There are three action
parameters: "run" indicates to run some testcases; "help" indicates to print help infor-
mation; "merg" represents to merge the coverage data; "clr" is used to empty the tem-
porary directory.

Somebasic option parameters are as follows:

sim=*: * indicates the type of simulation, such assim=chip,chip_vcs, pld_chip,
eve_chip, core_sim, mem_sim, io_sim, coresim, l2csim, nocsim, l3csim, mcu-
sim,iosim and so on.

conf=*: * specifies a particular hardware configuration name.The default value is the
norm, meaning to use RTL codesfor the whole system.

T [n]: n is a number or a rangelike"m-n", indicating which test group(s) will be tested.
The bracket is not required when inputting the command line.

test=*: * indicates the names of the test cases, where wildcards can be used.

nproc=*: * indicates the number of processes to run the test task. The default value is 1.

Fig. 4 and 5 give the consoles of the MGTE platform for serial single-task simulation
and parallel multi-tasking simulation.

Fig. 4. The console for single-task test on MGTE

 MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor 25

Fig. 5. The console for parallel multi-task test on MGTE

4.2 Simulation Results

MGTE platform is used through all the stages of PX-16 processor verification, from
module level to full-chip level. With the help of MGTE platform, 16459 bugs are
fixed and the bug distribution is shown in Table 3.

Table 3. The bug distribution found by MGTE platform

Simulation
level

Bug
count

Bug type

Module Level 11895 Syntax, logic design, new function, pipeline, environment,
etc.

Subsystem
Level

4321 Subsystem interface, L2Cache coherency and consistency,
logic design, environment, etc.

Full-Chip Level 243 Full-chip interface, L2/L1 Cache coherency and consistency,
logic design, IO consistency, environment, etc.

MGTE platform greatly increases the simulation speed bymixing the real RTL
codes and behavioral modelsin simulation verification. Table 4 shows the simulation
speed in the hybrid mode compared with the real RTL codes mode. Only the real RTL
codes emulation is performed on PXP and EVE platform. AIntel Xeon server is used
in the software simulation, configured with 4 Xeon E5540 CPUs operating at
2.53GHz and 8MB on-chip Cache within each CPU.

Table 4. Simulation performance atdifferent levels

Simulation
level

Simulation Speed(Hz)*
Test cases

Real Hybrid
Module level ≈200 ≈2000 Pseudo assembly benchmarks
Subsystem
level

≈50 ≈500 Pseudo assembly benchmarks

Full-chip
level (soft)

≈10 ≈100 Assembly benchmarks

Full chip on
PXP

300k~1.5M - OS and applications on full-chip mode

Full chip on
EVE

1M~3M - OS and applications on partial mode

* thespeed is measured as number of cycles per second in processor core clock domain.

26 X. Yan et al.

5 Conclusions

MGTE is a multi-level hybrid verification platform based on hardware design codes,
which supportsboth software simulation and hardware emulationfor the module level,
sub-systemlevel and full-chiplevel.It eases the verification during all the stages of
processor design, from the details to thewhole system. It also supports the hybrid
simulation of behavioral models, RTL codes and netliststo improve the simulation
performance. MGTE effectively supports the functional correctness verification and
preliminary performance evaluation of the PX-16 processor.

References

1. Hu, J., et al.: A Study on CPU Chip-Oriented Verification Technology. Microelectron-
ics 37(1), 16–23 (2007)

2. OpenSPARCTM T2 Core Microarchitecture Specification, Revision A. Sun Microsystems,
Inc. (December 2007)

3. Nussbaum, D., Fedorova, A., Small, C.: An overview of the Sam CMT simulator kit. Sun
Microsystems, Inc., Mountain View (2004)

4. Austin, T.M., Larson, E., Ernst, D.: Simplescalar: An infrastructure for computer system
modeling. IEEE Computer 35(2), 59–67 (2002)

5. OpenSPARCTM T2 Processor Design and Verification User’s Guide, Revision A, Sun Mi-
crosystems, Inc. (2008)

6. Synopsys VCSTM training, Synopsys, Inc. (2008)
7. Verilog Simulation User Guide, Product Version 9.2, Cadence, Inc. (July 2010)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 27–37, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Efficient Parallel SURF Algorithm
for Multi-core Processor

Zhong Liu, Binchao Xing, and Yueyue Chen

Microelectronics and Microprocessor Institute, School of Computer,
National University of Defense Technology,

Changsha, China
{zhongliu,yychen}@nudt.edu.cn,

xbch8511@163.com

Abstract. In this paper, we propose an efficient parallel SURF algorithm for
multi-core processor, which adopts data-level parallel method to implement
parallel keypoints extraction and matching. The computing tasks are assigned to
four DSP cores for parallel processing. The multi-core processor utilizes QLink
and SDP respectively to deal with data communication and synchronization
among DSP cores, which fully develops the multi-level parallelism and the
strong computing power of multi-core processor. The parallel SURF algorithm
is fully tested based on 5 different image samples with scale change, rotation,
change in illumination, addition of noise and affine transformation The
experimental results show that the parallel SURF algorithm has good
adaptability for various distorted images, good image matching ability close to
the sequential algorithm and the average speedup is 3.61.

Keywords: parallel, SURF, image matching, multi-core processor.

1 Introduction

With the rapid development of digital image processing and microelectronics
technology, image matching is used widely in aided navigation of aircraft, face
recognition, image stitching, image retrieval, medical diagnosis, natural resource
analysis, and weather forecasting[1][2]. These applications require highly efficient
and even real-time image matching algorithm. Lowe's SIFT (Scale Invariant Feature
Transform)[3] algorithm is a nice image matching algorithm for scale change,
rotation, illumination, noise and even affine transform images, but the SIFT suffers
from high computation complexity. Herbert Bay presents SURF (Speed Up Robust
Features)[4] algorithm with fast computing speed, robust keypoints and high
parallelism. However, the SURF algorithm on a single chip can not meet the needs of
real-time applications. With the emergence of multi-core processors, it becomes an
effective method to improve performance of algorithms by developing parallel
algorithm based on multi-core processors.

28 Z. Liu, B. Xing, and Y. Chen

2 The Architecture of Multi-core Processor

YHFT-QDSP [5] is a high performance heterogeneous multicore processor, which is
shown in Fig.1. It combines four enhanced YHFT-DSP/700 cores and a RISC
(Reduced Instruction Set Computing) core in one chip. All of the cores can play their
roles quite well with the advantage of high bandwidth and low delay of the multi-core
on-chip structure. The memory space of each core is independent individually. The
RISC core runs embedded operating system and provides a number of external
interfaces for dealing with user interaction, peripheral device management, while the
DSP(Digital signal processing) cores are mainly used to improve data processing.

Fig. 1. Architecture of YHFT-QDSP

A multi-core system that runs parallel applications well needs a highly efficient
communication mechanism. YHFT-QDSP provides two data communication between
DSP cores: (1) A FSDP (fast shared data pool) is proposed for scattered data transfer
between different DSP cores, it is designed for high bandwidth communication with
hardware synchronization and suitable for data flow applications.(2) A link-crossbar
Switch-PCIE named QLink is designed for bulk data transfer among the DSP cores.
The Qlink data path consists of a link port, a crossbar switch and a PCIE. A data path
is established by linking ports from the source to the destination through the crossbar
switch. The applications of loosely coupling computation can benefit from Qlink,
since Qlink does not disturb the CPU during data transmission process.

3 The Serial SURF Algorithm

The basic principle of SURF is similar to that of the SIFT algorithm. But compared to
SIFT algorithm, the computational speed of SURF algorithm is improved greatly,
mainly due to the use of the box filers and haar wavelet based on integral image,
which makes the computation time a constant independent of the changing of filter
size. Integral image further saves a lot of redundant computing.

 An Efficient Parallel SURF Algorithm for Multi-core Processor 29

Fig. 2. The implementation process of SURF algorithm

As shown in figure 2, the implementation process of SURF algorithm includes:
calculating the integral images, establishing scale space, detecting maximum value,
localizing keypoints and filtering, and computing the orientation and descriptor of
keypoints.

3.1 Calculating the Integral Image

Though the integral image theory is proposed by Viola and Jones[6], it is firstly
applied to box filters by Simard [7]. The value of integral image element is the sum of
the rectangle area pixel values between the point and the origin, that is, the sum of
value of all pixels in the upper left. For instance, for an image I and a point P (x, y),
the integral image value of the point P is the sum of pixel values within the
rectangular area in which the origin point and point P are on the diagonal, shown as
formula 1:

),(),(
00

yxIyxI
yj

j

xi

i

≤

=

≤

=
 =

(1)

In an integral image, the sum of all pixels is calculated using four values within the
rectangular area, and the computation complexity is independent of the rectangle size.
For example, to calculate the sum of pixels of the rectangular region whose vertices is
A, B, C, D, the result is shown as formula 2. Regardless of the size of the rectangle,
all four values can be calculated, and the computational time is a constant. That
explains how integral image can greatly improve SURF computing speed, especially
for the large-scale images.

CBDAsum −−+= (2)

3.2 Establishing the Scale Space

Similar to the SIFT, SURF presents image scale space using image pyramid. In a
certain sample step, a series of boxes with different sizes are used to calculate
DoH(Determinant of Hessian) at each sample point, which generates the first octave
of scale space; then the sample step is increased, and a series of boxes with different
size are used to calculate DoH at each sample point, which generates the second
octave of scale space. In a similar way, the third and the fourth octave of scale space

30 Z. Liu, B. Xing, and Y. Chen

are obtained. SIFT algorithm’s new octave is obtained by sampling the middle image
layer of old octave, while SURF generates new octave through increasing the sample
step for the integral image. The size of the box filter is shown in formula 3:

)1)1(*2(*3)1(++= + il o (3)

Where l is the size of the filter, o is the octave order of scale space, i is image layer
order of octave. When the filter box size is 9, corresponding to Gaussian standard
deviation 1.2, if different sizes of box filers have to maintain a certain layout of the
filter, the corresponding standard deviation of the Gaussian can be calculated as shown
in formula 4:

lapprox *
9

2.1=σ

(4)

3.3 Detecting Keypoints

SIFT adopts DoG approximately to present the LoG, while SURF algorithm uses the
box filters to simplify the DoH. DoH is a keypoint detecting operator, which is the
determinant of formula 5.



















∂
∂

∂
∂

∂
∂

∂
∂

=

2

22

2

2

2

)),((

y

f

xy

f
xy

f

x

f

yxfH

(5)

Where f (x, y) is continuous function. The determinant of HESSION is capable of
detecting the minimum and maximum values of function f (x, y). SURF applies it to
detect the extreme of an image: the function f (x, y) is replaced by the image I (x, y),
correspondingly, the second derivative of f (x, y) is replaced by the convolution of the
image and the second derivative of Gaussian kernel, which are shown in formula 6:









=

),,(),,(

),,(),,(
)),,((

σσ
σσ

σ
yxLyxL

yxLyxL
yxIH

yyxy

xyxx

(6)

Where),,(σyxLxy ,),,(σyxLxx and),,(σyxLyy present the image

convolution at point (x, y) with the second derivative of Gaussian kernel. SURF
algorithm uses a box filter with weights to approximate the Laplace operation of
HESSION matrix.

3.4 Keypoints Detecting, Localizing and Filtering

When scale space construction is completed, the local maximum value point can be
detected in each octave. Only if the DoH of a sample point is greater than 8 adjacent
sample points in the same layer image and 9 sample points respectively in the adjacent
scale correspondingly, the sample point is treated as candidate keypoint.

 An Efficient Parallel SURF Algorithm for Multi-core Processor 31

Localizing and filtering keypoints: in scale space, the Taylor expansion at the
candidate keypoint),,(σyx is shown in formula 7.

x
x

H
xx

x

H
HxH T

T

2

2

2

1
)(

∂
∂+

∂
∂+=

(7)

The derivation of the formula 7 is done and makes it zero, find the extreme position of
the keypoint, as shown in formula 8:

x

H

x

H
x

∂
∂

∂
∂−=

−

2

12
'

(8)

If three directions offset between the extreme point),,(σyx and the candidate
keypoints are all less than 0.5, the interpolation ends; Otherwise, adjusting the position
of the keypoint interpolation continues until the iteration times are greater than the 5 or
three offsets are all less than 0.5. If interpolation is successful, the location of keypoint
is accurate than before in scale space. If the DoH value of a sample point is smaller
than a certain threshold, the keypoint is removed.

3.5 Computing the Orientation

Similar to SIFT algorithm, SURF feature also needs orientation for ensuring rotation
invariance, while computing the orientation of SURF is based on Haar wavelet. Haar
wavelet computes the gradient for image area, which enjoys very good resistance to
noise.

In a circle using keypoint as the center and 6s (s presents the scale of keypoint) as
radius, calculate Haar wavelet with the size of 4s, denoted as haarX, haarY; and
multiply the weight w (as in formula 9) with factor 2s, denoted as WhaarX, WhaarY,
making the sample point’s haar wavelets that close to keypoint have great contribution
to orientation. Similarly, the sample point far from keypoint has little contribution to
orientation. The direction of the keypoint is the arc tangent of WhaarX and WhaarY.

σσ

σσπ
**2

**

***2

1 yyxx

ew
+

−
=

(9)

First, in the above circle that uses keypoint as the center and 6s as radius, the direction

of sample point within
3

~0
π

, Haar wavelet is weighted and summed, donated as

WhaarX , WhaarY . Then, making fan-shaped area rotate 0.15 radians, or,

the direction of sample point being ranged within
3

15.0~15.0
π+ , its weighted

haar wavelets are accumulated. Repeating the above process, when the fan-shaped area
around the keypoint is in one circle, select the largest group accumulated

sum 22)()( + WhaarYWhaarX , and the arc tangent between

WhaarX and WhaarY is the orientation of keypoint.

32 Z. Liu, B. Xing, and Y. Chen

3.6 Computing Keypoints’descriptors

Similar to the calculation of the keypoint, keypoint’s descriptors need to calculate haar
wavelets which use the keypoint as the region center. Compute keypoint’s descriptor as
follows:

First, a 20s×20s region with the keypoint as the center is taken, which is divided
into 16 sub-regions with a size of 5s × 5s, and coordinate axes is rotated
counterclockwise to orientation of keypoint. Then, haar wavelets relative to orientation
are calculated at each sample point in each sub-region, and multiply Gaussian weight
with the factor 2.5s, denoted by dx, dy; the dx, dy are accumulated to four

componentsdx , dy ,  dx ,  dy . When the sampling points of the

entire sub-regions are traversed, four components are multiplied by Gaussian weight
relative to 4 × 4 sub-regions. For the other sub-regions, similar calculation is done;
therefore, each keypoint can form 16*4 = 64 dimensions descriptors. Finally, it was
normalized to remove its sensitivity to light.

After keypoints’ extraction is completed, the traversing method is used to find
matching point, that is, each keypoint of the real-time image finds the keypoints that
minimum Euclidean distance or near minimum Euclidean distance in the reference
image; If the ratio of two distance is less than 0.7, then the keypoint in real-time image
and keypoint in reference image are taken for matching points.

4 Parallel SURF Algorithm

4.1 Parallel Extracting Keypoints

YHFT-QDSP consists of four DSP cores; and each core has independent storage space.
The parallel algorithm based on YHFT-QDSP is mainly divided into two ways: task-
level parallelism and data-level parallelism. According to characteristics of application,
the corresponding parallel way can be adopted. Task-level parallelism is favored if the
process of the algorithm is partitioned according to the consuming time of each sub-
process, so the entire program is implemented in pipeline way. On the other hand,
Data-level parallelism is suitable if the processed data are evenly distributed into four
DSP cores, so data parallel processing is implemented.

It can be seen in section 3 that SURF algorithm has high computational complexity.
Since all sub-processes of the algorithm are closely connected, even splitting the
algorithm is difficult. Meanwhile, for the task-level parallelism of SURF algorithm, the
intermediate result needed to be transferred to other core is large, which will hinder
the speedup improvement. Therefore, we use the method of data-level parallelism to
segment the integral image for parallel extraction of keypoints. Due to the extracted
keypoints of SURF are the local features of image, the method of segmenting the
integral image for extracting keypoints is feasible.

As shown in Figure 3, the basic idea of SURF algorithm for data-level parallelism
is: First, all DSP cores calculate integral image for the loaded image; then, each DSP
calculates DoH only on a quarter of the integral image: establishing scale space,

 An Efficient Parallel SURF Algorithm for Multi-core Processor 33

detecting the maximum value points, generating descriptors. The calculation of
coordinates of keypoints on four DSP cores are handled differently, that is, no special
handling of keypoints on the DSP0 is needed; Keypoints’ abscissa on the DSP1 must
add the width of scale space where keypoint is located; Keypoints’ ordinate on the
DSP2 must add the height of scale space where keypoint is located; Keypoints’
abscissa and ordinate on DSP3 must respectively add the width and height of scale
space where keypoint is located. Therefore, SURF has well parallelism and is suitable
for YHFT-QDSP multi-core architecture.

Fig. 3. Parallel extracting keypoints based on segmenting image

When parallel SURF algorithm is implemented on YHFT-QDSP, two images are
loaded to storage space of each DSP core, which are called reference image and real-
time image respectively. Each DSP core reads the corresponding part of the image
according to its ID (the range is 0, 1, 2, 3), computes the integral image and extracts
keypoints independently. When keypoints are extracted, the four DSP have a set of
keypoint in reference image, denoted by A0, A1, A2 and A3, and a collection of
keypoints in real-time image, denoted by B0, B1, B2 and B3, which are stored in some
designated memory space in DSP core for the subsequent matching.

4.2 Parallel Matching Keypoints

In order to ensure the accuracy of image matching, each keypoint in real-time image
searches its matching point in the whole keypoints set in reference image. Assuming
that the number of real-time image keypoint set B0, B1, B2, B3 is n0, n1, n2, n3,
respectively, and the total number is n; the number of reference image keypoint set A0,
A1, A2, A3 is m0, m1, m2, m3, respectively, the total number is m, the total number of
keypoint matching can be calculated as in formula 10:

)(

)()

()(

3

1

3

1

3

1

2

1

3

1

1

1

3

1

0

1

2

1

3

1

2

1

2

1

2

1

1

1

2

1

0

1

1

1

3

1

1

1

2

1

1

1

1

1

1

1

0

1

0

1

3

1

0

1

2

1

0

1

1

1

0

1

0

1

3

1 1

2

1 1

1

1 1

0

1 11 1









= == == == =

= == == == == == =

= == == == == == =

= == == == == =

++++

++++++

+++++=

+++==

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

n

i

m

j
ji

abababab

abababababab

abababababab

abababababTotal

As can be seen from the above formula, the matching keypoints can be distributed to
four DSP cores for parallel processing. According characteristics of YHFT-QDSP

34 Z. Liu, B. Xing, and Y. Chen

architecture, we designed the parallel keypoint matching based on data-level method,
that is, four DSP cores act as the master node in turn, and each DSP core implements
parallel computing tasks and returns results to the master DSP core, as in Figure 4. It
utilizes QLink and SDP respectively to deal with data communication and
synchronization among DSP cores, where QLink is suitable for bulk data transfer and
SDP is suitable for little fast data transmission and data synchronization. The multi-
level parallelism of YHFT-QDSP is fully developed and hence image matching speed
is improved.

Fig. 4. Parallel keypoints matching based on YHFT-QDSP

The following is the process flow for DSP0 as the master node, which illuminates
details of multi-core parallel keypoints matching:

(1)The descriptors set B0 is sent to DSP1, DSP2, DSP3 by DSP0 through QLink; when
transmission is completed, the number of descriptors B0 is sent to the DSP1, DSP2,
DSP3 by the SDP, meanwhile light signal to the three DSP cores to indicate data
transmission is completed.

(2)The smallest Euclidean distance and the second smallest Euclidean distance of each
keypoint of B0 are found in descriptors set A0, which are stored in C0. When DSP1,
DPS2 and DSP3 detected signals sent by DSP0, read data and close signals; Then,
DSP1, DSP2, DSP3 search the smallest Euclidean distance and the second smallest
Euclidean distance of B0’ keypoint in descriptors set A1, A2, A3, respectively. When
calculation is completed, the results of three DSP cores are sent to DSP0 through the
QLink, which are stored in the C1, C2, C3 in DSP0, respectively, and turn on the
signals for DSP0.

(3)When DSP0 detects signal, read data and close signal; for each keypoint b in
descriptors set B0, it has 8 keypoints’ information that DSP cores have computed (the
coordinates of keypoint and the distance between the keypoint and keypoint b).

 An Efficient Parallel SURF Algorithm for Multi-core Processor 35

Choosing the smallest distance and the second smallest distance, if the ratio less than
0.7, the two points are considered as the matching points; otherwise, they don’t match.
When DSP0 has processed all the keypoints completely, turn on signal to DSP1.

When DSP1, DSP2, DSP3 are acted as the master node, similar steps (1), (2), (3) are
repeated. All the calculations are done; matching points of reference image and real-
time image are obtained. Finally, mismatch points are removed through RANSAC
algorithm.

5 Performance Evaluation and Analysis

The main criteria for evaluating the parallel image matching algorithm are the speedup
and repetition rate. Speedup is the ratio of time consumed when the same task runs in
the single-processor systems and in the multi-processor system, which is used to
evaluate performance of parallel system result of parallel algorithm. In this paper, the
speedup = TDSP / TYHFT-QDSP, where TDSP is the time that SURF serial algorithm
consumed in the single core DSP, TYHFT-QDSP is the time that parallel SURF algorithm
consumed in the multi-core YHFT-QDSP. The repetition rate is the ratio between the
matching points of two images and the average number of keypoints that two images
extracted, which is used to measure the ability of image matching algorithms.
repeatability K = C (I1, I2) / N, where C (I1, I2) presents the number of matching points
of two images, N refers to the average number of keypoints that the two images have
extracted. The repetition rate = KDSP / KYHFT-QDSP, where KDSP is the repetition of the
serial SURF algorithm on single-core DSP, KYHFT-QDSP is the repetition of the parallel
SURF algorithm on YHFT-QDSP. The repetition rate reflects the matching ability of
the parallel algorithm in comparison with the serial algorithm. The closer the repetition
rate is to 1, the closer the image matching ability of parallel algorithms is to sequential
algorithm.

In this section, 5 deformation image samples with scale change, rotation,
illumination changes in light and dark, noise and affine transformation are used to
evaluate and test the designed parallel algorithm. We analyzed and evaluated the
parallel SIFT algorithm according to the repetition rate and speedup. The image sample
size is 360x144 and the format is pgm in the experiment.

Figure 5 (a) and (b) compare the image matching results of the serial and parallel
SURF algorithm for scale change image. Figure 5 (c) and (d) compare the image
matching results of serial and parallel SURF for rotation image. Figure 5 (e) and (f)
compare the image matching results of serial and parallel SURF algorithm for
illumination image. Figure 5 (g) and (h) compare the image matching results of serial
and parallel SURF algorithm for noise image. Figure 5(i) and (j) compare the image
matching results of serial and parallel SURF algorithm for affine transformation
image.

Table 1 summarizes the matching performance results of 5 different deformation
images. As can be seen from Table 1, the average speedup of parallel SURF
algorithm is 3.61, where the noise image gets the maximum speedup, achieving
remarkable acceleration. The average value of the repetition rate is 92%, which

36 Z. Liu, B. Xing, and Y. Chen

indicates that the image matching ability between parallel SURF algorithm and serial
SURF algorithm is close, especially for the affine transform, illumination change and
rotation image. It can be seen from Figure 5 that SURF parallel image matching
algorithm works well in meeting the matching requirements.

Fig. 5. Compare the image matching results of the serial and parallel SURF algorithm

 An Efficient Parallel SURF Algorithm for Multi-core Processor 37

Table 1. Matching performance result of different deformation images

Parameters
\image type

scale
change

rotation illumination
change

noise affine
transformation

average

speedup 3.56 3.65 3.57 3.69 3.57 3.61

repetition rate 87% 88% 97.8% 87.8% 100% 92%

6 Conclusions

This paper presents an efficient parallel SURF algorithm for multi-core processors,
and data-level parallel algorithm for keypoint extracting and keypoint matching are
designed. Based on the characteristics of YHFT-QDSP architecture, various
computing tasks are processed in parallel in multiple DSP core. And Qlink is used in
combination with SDP to deal with data communication among DSP cores, Keypoints
are transferred by QLink when it is suitable for bulk data transmission, and the
number of keypoints and data synchronization signals are transferred by SDP when it
is suitable for light and fast data transmission. The method we have presented can
fully develop multi-level parallelism of YHFT-QDSP architecture, and accelerate the
speed of parallel SURF algorithm. The parallel SURF algorithm is fully tested using 5
different image samples for scale change, rotation, change in illumination, addition of
noise and affine transformation. Experimental results show that the parallel SURF
algorithm has good adaptability for various kinds of deformation images, and the
matching capability of parallel SURF algorithm is close to the serial SURF algorithm
with the average speedup of 3.61.

References

[1] Todorovic, S., Ahuja, N.: Scale-invariant Region-based Hierarchical Image Matching. In:
Proc. 19th International Conference on Pattern Recognition (ICPR), Tampa, FL
(December 2008)

[2] Toews, M., Wells III, W.M., Louis Collins, D., Arbel, T.: Feature-based Morphometry:
Discovering Group-related Anatomical Patterns. NeuroImage 49(3), 2318–2327 (2010)

[3] Lowe, D.G.: Distinctive image features from Scale-Invariant Keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

[4] Bay, H., Tuytelaars, T., van Gool, L.: Speeded-up Robust Features (SURF). Computer
Vision and Image Understanding (2007)

[5] Chen, S.M., Wan, J.H., Lu, J.Z., et al.: YHFT-QDSP: High-performance heterogeneous
multi-core DSP. Journal of Computer Science and Technology 25(2), 214–224 (2010)

[6] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 511–518 (2001)

[7] Simard, P., Bottou, L., Haffner, P.: Boxlets: a fast convolution algorithm for signal
processing and neural networks. In: Advances in Neural Information Processing Systems
(1999)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 38–48, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Study of Cache Design in Stream Processor

Chiyuan Ma and Zhenyu Zhao

School of Computer, National University of Defense Technology,
Changsha, Hunan, 410073, China

{cyma,zyzhao}@nudt.edu.cn

Abstract. Stream architecture is a newly developed high performance processor
architecture oriented to multimedia processing. FT64 is 64-bit programmable
stream processor and it aims at exploiting the parallelism and locality of the ap-
plications. In this paper, first, we inspect the memory access characteristics of
FT64 with cache and without cache. Second, we propose an improved cache
design method. Making use of the feature of stream data type used by FT64, the
improved method avoids loading data from memory when the stream store in-
struction fully modifying cache block misses. The experiments show the per-
formance has been improved by 20.7% and 25.8% when a normal cache and an
improved cache are used respectively. Finally, we study on the performance
influence of cache capacity and associativity. The results show that better
performance can be achieved when we use a small cache and an associativity of
2 or 4.

Keywords: stream processor, FT64, cache, memory access, fully modify.

1 Introduction

At present, stream application is becoming the main workload of processor, whereas
the architecture of general purpose processors cannot satisfy the current demand.
Most of the chip area has been used to conceal memory access latency, which results
in deficiency of computing ability. In recent years, many stream architectures aiming
at stream application have been proposed [1-6], and they have obvious advantages in
domains of signal processing, multimedia and scientific computing. The main idea of
stream processing is organizing the stream to data streams and computation kernels,
utilizing the locality and parallelism of the application to conceal memory access
latency. The key of stream architecture is to provide powerful computing ability and
hide the memory access latency at the same time.

In order to conceal memory access latency, different stream processors use differ-
ent methods. For example, VIRAM[7] puts DRAM into the chip, Imagine[1-2] and
Merrimac[3] adopt multilevel memory structure. We design a 64-bit programmable
stream processor FT64(Fei Teng 64)[8], which aims at exploiting the parallelism and
locality of the applications in domains of signal processing, multimedia and scientific
computing. FT64 inherits some characteristics of other stream processors, such as
stream programming model and multilevel memory structure. FT64 adopts

 A Study of Cache Design in Stream Processor 39

multi-level memory structure including inter-cluster local register file (LRF), four
clusters shared stream register file (SRF), cache and off-chip memory to conceal
memory access latency.

Memory access of typical stream applications has poor temporal locality. The same
set of data is generally loaded from memory only once and sent to the computation
unit for multiple times of process, then the output data are produced and stored in the
memory, the input and output data will generally not be used again. Many papers
have studied the cache behavior when the processor runs the stream application. In
FT64, there are two stream buffers connected with the cache, what we are interested
in is the cache’s behavior under this condition and how to make use of the feature of
stream programming model in the cache design.

To perform our evaluation, we collect results from several programs including two
SPEC CPU2000 benchmarks and six important multimedia and scientific computing
programs. These programs are reprogrammed with stream model to suit for FT64.
The results are collected with a cycle-accurate simulator of FT64.

In the experiment, first, we inspect the characteristic of FT64’s memory access
without cache, the results show that the memory access latency cannot be concealed
totally, and memory access is the bottleneck. Second, we study the performance when
using a normal cache. Because huge speed gap exists between cache and off-chip
memory, and every valid cache block can be hit several times, the advantage of using
cache is apparent. We also notice that most stream store instructions write data to the
continuous addresses. When a stream store instruction misses in the cache, it is mea-
ningless to load the data from memory if the corresponding cache block will be fully
modified by the store instruction, we can make use of the feature that FT64 supports
stream data type, and store the data straight into the cache block when such stream
store instruction appears. This improved cache design can further decrease the memo-
ry access latency. The results show the performance has been improved by 20.7% and
25.8% when a normal cache and an improved cache are used respectively. Finally, we
study on the performance influence of cache capacity and associativity in the im-
proved cache design. The results show that better performance can be achieved when
a small cache is used and the associativity is 2 or 4.

2 Background

Our research is based on a 64-bit programmable stream processor FT64, which we
design for exploiting the parallelism and locality of the applications in domains of
signal processing, multimedia and scientific computing. FT64 supports stream pro-
gramming model. In this model, an application is represented by a set of computation
kernels which consume and produce data streams. Each data stream is a sequence of
data records of the same type. Each kernel is a program which performs the same set
of operations on each input stream element and produces one or more output streams.
Stream applications consist of stream-level programs and kernel-level programs. A
stream-level program specifies the execution order of all kernels and organizes data
into sequential streams passed from one kernel to the next. A kernel-level program is

40 C. Ma and Z. Zhao

generally a loop structure that processes record elements from each input stream and
generates output streams.

FT64 is mainly composed of a stream controller (SC), a stream register file (SRF),
a micro controller (UC), four ALU clusters, a stream cache (SC), a DDR memory
controller (DDRMC), a host interface (HI) and a network interface (NI), as illustrated
in Figure 1.

Fig. 1. Block diagram of FT64

FT64 has multi-level memory: LRF, SRF, cache and off-chip memory. LRF is dis-
tributed in the clusters' FU, and is used to buffer input and intermediate data. LRF of
different ALU clusters can access SRF simultaneously through a crossbar. The total
capacity of LRF is 19KB. SRF is used to buffer data streams and kernel-level pro-
grams. SRF has two ports, and both can access cache through a separate stream buf-
fer. The total capacity of SRF is 256KB. The off-chip memory is controlled by
DDRMC, which is in charge of loading and storing data streams.

3 Our Work

In FT64, the cache is between SRF and memory, it has two pipelines which are con-
nected with the two ports of SRF, and each port has a stream buffer, so the cache can
handle two accesses simultaneously. What we are interested in is the cache behavior.
The experiment shows the performance has been improved by 20.7% when a normal
cache is used.

The cache interfaced with off-chip memory usually adopts write allocate policy.
When cache misses, the data will be loaded from memory to cache before load or
store instruction operates. But for a processor that supports stream data type, if a
stream store instruction writes data to the continuous addresses, and the data size is

 A Study of Cache Design in Stream Processor 41

much larger than the size of cache block, then multiple cache blocks will be fully
modified, it is meaningless to load data from memory to these cache blocks when the
store instruction misses, we only need to load data to partial modified cache block.
Next, we will explain how to realize this idea in FT64.

What is executed in SRF is stream instruction. Stream instruction supports stream
data type which is a sequence of data records of the same type. The format of stream
memory instruction is shown as Table 1.

Table 1. The format of stream memory instruction

valid bit operating mode start address stream length stride

The operating mode indicates what operation, load or store, the stream instruction

will perform. Start address is the beginning address of the stream data. Stream length
is the byte number of the stream data. Stride indicates the organization mode of the
stream data, maybe it is an address continuous stream or an address jumped stream.

A stream instruction must access continuous addresses if its stride value is 1. If it is
a stream store instruction, we can split the instruction into three parts at most: head,
middle and tail. The head only exists when the beginning address of the store instruc-
tion doesn’t align with that of some cache line. The tail only exists when the ending
address of the store instruction doesn’t align with that of some cache line. The middle
handles the entire cache line and it only exists when at least one cache line will be
fully modified by the store instruction. When a store instruction misses in the cache,
we apply normal write allocate policy to head and tail parts, and store the stream data
straight into corresponding cache lines for the middle parts. Certainly, the replaced
cache lines shall be written back in advance if it is dirty. The algorithm is showed in
Fig.2.

Fig. 2. Algorithm of stream store operation

42 C. Ma and Z. Zhao

The improved cache design described above is appropriate only when the stride
value of the stream store instruction is 1, instructions with other stride values must be
handled with normal cache operation. But we find that stride value equaling 1 is
overwhelming for most of the programmers using stream model. This is profitable for
our method to get better results.

The idea of the improved cache design is enlightened by the idea proposed by Shi-
wen Hu [9]. He adds a store fill buffer (SFB) in general purpose processor. If a store
instruction misses, the data are put straight into the SFB. If some cache block is af-
firmed to be fully modified, it will be filled into cache from SFB. Supporting stream
data type makes FT64 more feasible to realize the function than [9]. A stream store
instruction of FT64 includes multiple successive store operations, and then we can
make judgment that which cache line will be fully modified and prepare all necessary
operations in advance. The hardware cost of our method is trivial.

In next section, we will compare the performances of using normal cache design
and improved cache design, and study on the performance influence of cache capacity
and associativity.

4 Performance Evaluations

4.1 Experimental Environment

To perform our evaluation, we collect results from several programs including two
SPEC CPU2000 benchmarks (Swim and Lucas), two NPB benchmarks (EP and MG),
a multimedia program (Mpeg2) and three important scientific application kernels
(FFT, Laplace and NLAG-5). (NLAG-5 is a nonlinear algebra solver of two-
dimensional nonlinear diffusion of hydrodynamics). These programs are repro-
grammed with stream model to suit for FT64. The results are collected with a
cycle-accurate simulator of FT64. The data sizes of some programs are too small, so
we change their data sets and execute the programs several times to get the results.

4.2 Experimental Results

The overlap between computation and memory access is an important factor that im-
pacts on a stream processor's performance. Fig.3 demonstrates the proportions of the
kernel execution time and memory access time to the total execution time when cache
is bypassed. The kernel execution and memory access of FT64 can execute simulta-
neously, but under this condition, memory access is still the bottleneck in most of the
programs. For memory-intensive programs, such as Swim and NLAG-5, computation
can be well hidden by memory access, thus memory access time is approximately the
total execution time. For compute-intensive programs, such as EP, with huge compu-
tations and small memory accesses, memory access can be well hidden by computa-
tion, so kernel execution time is approximately the total execution time. To some
programs with small proportions of memory access and kernel execution, most of the
time is consumed in SRF allocation and memory access preparation.

 A Study of Cache Design in Stream Processor 43

0%

20%

40%

60%

80%

100%

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

Kernel Execution

Memory Access

Fig. 3. Proportions of kernel execution time and memory access time

Fig.4 shows the proportions of access latency of LRF, SRF and memory when
cache is bypassed. In average, the proportion is 23:2.4:1. The programs with large
computations and good data locality can fully make use of LRF and have high propor-
tions, such as MG, the proportion is 60:5:1, and EP, 33:2:1. Some programs, such as
Laplace, NLAG-5 and Lucas, have low proportions of 12:2:1, 11:3:1 and 11:2:1 re-
spectively, because their executions are limited by memory access. The access latency
of LRF is in average 9.4 times that of SRF, and the access latency of SRF is just 2.4
times that of memory in average. The gap between SRF access and DRAM access is
quite narrow, which can’t make the memory access concealed in most of the cases,
and leads the memory to be the bottleneck.

10000

1000000

100000000

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

LRF

SRF

memory

Fig. 4. Proportions of access latency of LRF, SRF and memory

Next, we will study the case in which cache is used. To what degree we can benefit
from the improved method described previously is related to two factors, the propor-
tion of store instructions to total memory instructions and the proportion of fully mod-
ified cache lines to all the cache lines modified by a store instruction. Fig.5 shows the

44 C. Ma and Z. Zhao

distribution of memory access types. The proportion of the store instructions to all
memory instructions is nearly 26% in average, Swim’s is the biggest, 50.3%. Almost
all the store related cache lines can be fully modified.

0%

20%

40%

60%

80%

100%

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

load fully modified blocks partial modified blocks

Fig. 5. Distribution of memory access types

Fig.6 shows the performance improvement by using a normal cache and an im-
proved cache of 16K bytes respectively, in comparison with the performance of not
using cache. (Not using cache doesn’t mean that only one word will be loaded to SRF
once memory is accessed, instead, a 64-byte buffer is used to buffer the loaded data
temporally, this buffer can be thought as a 64 bytes, one set, direct mapped cache.) The
cache’s block size is 64 bytes and cache’s associativity is 4. The performance of each
program is related to its memory access proportion and the distribution of its memory
access types. Among all the programs, Swim has the largest quantity of memory ac-
cesses, and the proportion of store instructions is very high, so it has the biggest per-
formance improvement, up to 44% and 67%. Whereas EP, with small quantity of
memory accesses, its performance improvement is no more than 1% after a cache is
used. In average, the performance improvement is 20.7% and 25.8% respectively.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

normal cache

improved cache

Fig. 6. Performance improvement by using a normal cache and an improved cache of 16K
bytes

 A Study of Cache Design in Stream Processor 45

Now we can see the proportion variation of kernel execution and memory access
after we use a 16K bytes improved cache in Fig.7. Convenient for comparison, the
memory access latency in Fig.7 includes the cache and memory access latency. The
proportion of kernel execution increases a little because of decrease of total execution
time caused by the use of cache. Except Swim, the memory access latency of almost
all the programs can be concealed.

0%

20%

40%

60%

80%

100%

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

Kernel Execution

Memory Access

Fig. 7. Proportion of kernel execution time and memory access time when using an improved
cache

Fig.8 shows the proportions of access latency of LRF, SRF, cache and memory af-
ter a 16K bytes improved cache has been used. In average, this proportion is
105:11.6:2.5:1. Compared with Fig.4, memory access latency has been shortened
greatly. The hit rate of the cache is 89% in average. Since stream programs have poor
data locality during memory access, this hit rate is comparatively low when compared
with that of general purpose processor. The latency of cache hit is only one quarter of
that of memory access, which makes the whole latency shorter.

10000

1000000

100000000

EP
FFT

Lap
lac

e
M

G

NLAG-5
Swim

Luc
as

M
pe

g2

LRF

SRF

cache

memory

Fig. 8. Proportions of access latency of LRF, SRF, cache and memory

46 C. Ma and Z. Zhao

Fig.9 shows the performance influence of cache capacity. (In Fig.9, we suppose
that the execution time of each program is 1 when cache capacity is 2K bytes, then we
can compare the execution time with other capacities). Here, cache associativity is set
to 4. The result shows that a cache of 8K or 16K bytes can attain the best performance
for most of the stream programs. Since the data loaded into cache will seldom be used
after initial continuous accesses, and the data stored to cache will scarcely be loaded
again (data transferred between kernels is handled in SRF), a small cache in FT64 can
achieve required result.

0.8

0.9

1

1.1

2K 4K 8K 16K 32K 64K

EP

FFT

Laplace

MG

NLAG5

Swim

Lucas

Mpeg2

Fig. 9. Performance influence of cache capacity

Fig.10 shows the performance influence of cache associativity used in 16K bytes
improved cache design. (We suppose that the execution time of each program is 1
when cache associativity is 1, then we can compare the execution time with other
associativities). Associativity of 2 or 4 has the best results. It is because the stream
number that most programs load or store simultaneously will not surpass 4, in most
cases it is 1 or 2. The results get worst when cache associativity is increased to 8 or
16, because higher associativity will decrease the set number for a fixed cache capaci-
ty, and enlarge the conflict miss rate.

0.8

0.9

1

1.1

1.2

1 2 4 8 16

EP

FFT

Laplace

MG

NLAG-5

Swim

Lucas

Mpeg2

Fig. 10. Performance influence of cache associativity

 A Study of Cache Design in Stream Processor 47

5 Related Work

Stream models are studied and applied in domains of graphics, multimedia and signal
processing, where many architectures and processors supporting stream models have
emerged, such as AIFSP [4], SAT [6], Imagine[1], RAW [5], VIRAM [7] and TRIPS
[10]. In some researches, stream models have been applied to scientific computing,
such as Merrimac [3]. In addition, Cell [11] also supports stream models and is
claimed to have tremendous computing ability.

Some novel ideas of the stream memory system are proposed during the researches
of stream architectures. The VIRAM[7] architecture uses PIM technology to combine
embedded DRAM with a vector co-processor for exploiting its large bandwidth po-
tential. The Imagine[1-2] architecture provides a stream-aware memory hierarchy to
support the tremendous processing potential of SIMD controlling VLIW clusters.

At the same time, there are many researches on stream applications in general pur-
pose processor. Sermulins proposes a cache aware optimization method of stream
programs [12]. Lee proposes a hardware prefetching technique that is assisted by
static analysis of data access pattern with stream caches for multimedia applica-
tions[13]. Iacobovici analyzes the behavior of cache-missing loads in SPEC CPU2000
and proposes a multi-stride prefetcher that supports streams with up to four distinct
strides[14].

6 Conclusion

In this paper, first, we inspect the memory access characteristics of FT64 with cache
and without cache. Second, we propose an improved cache design method. Making
use of the feature of stream data type used by FT64, the improved method avoids
loading data from memory when the stream store instruction fully modifying cache
block misses. The experiments show the performance has been improved by 20.7%
and 25.8% when a normal cache and an improved cache are used respectively. Final-
ly, we study on the performance influence of cache capacity and associativity. The
results show that better performance can be achieved when we use a small cache and
an associativity of 2 or 4.

In our research, we only focus on decreasing memory access through optimizing
cache design, while other methods can obtain similar results, such as scheduling data
streams during stream programming and stream-level compiling, which can be left for
further researches.

Acknowledgements. Financial supports from the Natural Science Foundation of Chi-
na (No.61076025), Hegaoji project of China (No.2009ZX01028-002-002) and project
of China (KJ-11-04) are greatly acknowledged.

48 C. Ma and Z. Zhao

References

1. Kapasi, U., Dally, W.J., Rixner, S., Owens, J.D., Khailany, B.: The Imagine Stream Pro-
cessor. In: ICCD 2002: Proceedings of 20th IEEE International Conference on Computer
Design, pp. 282–288 (2002)

2. Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P., Owens, J.D.:
Programmable Stream Processors. IEEE Computer 36(8), 54–62 (2003)

3. Dally, W.J., Hanrahan, P., Erez, M., Knight, T.J.: Merrimac: Supercomputing with
Streams. In: SC 2003 (November 2003)

4. Wang, Y., Chen, S., Wan, J., Zhang, K., Chen, S.: AIFSP: An Adaptive Instruction Flow
Stream Processor. IEEE Transactions on VLSI (2011)

5. Taylor, M., Kim, J., Miller, J., Wentzlaff, D., et al.: The RAW Microprocessor: A Compu-
tational Fabric for Software Circuits and General Purpose Programs. IEEE Micro 22(2),
25–35 (2002)

6. Yang, Q., Wu, N., Wen, M., He, Y., Su, H., Zhang, C.: SAT: A Stream Architecture Tem-
plate for Embedded Applications. In: 10th IEEE International Conference on Computer
and Information Technology (2010)

7. Kozyrakis, C.: Scalable Vector Media-processors for Embedded Systems. PhD thesis,
University of California at Berkeley (2002)

8. Yang, X.J., Yan, X.B., Xing, Z.C., et al.: A 64-bit Stream Processor Architecture for
Scientific Applications. In: ISCA 2007 (2007)

9. Hu, S., John, L.: Avoiding Store Misses to Fully Modified Cache Blocks. In: Proceedings
of Performance, Computing, and Communications Conference (2006)

10. Burger, D., Keckler, S.W., McKinley, K.S., Dahlin, M., John, L.K., Lin, C., Moore, C.R.,
Burrill, J., McDonald, R.G., Yoder, W.: Scaling to the End of Silicon with EDGE Archi-
tectures. Computer 37(7), 44–55 (2004)

11. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle, J., Ka-
meyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M.,
Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., Yazawa, K.: The Design
and Implementation of a First-Generation Cell Processor. In: ISSCC 2005, pp. 184–185
(2005)

12. Sermulins, J., Thies, W., Rabbah, R., Amarasinghe, S.: Cache Aware Optimization of
Stream Programs. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, vol. 40, pp. 115–126 (2005)

13. Lee, J., Park, C., Ha, S.: Memory Access Pattern Analysis and Stream Cache Design for
Multimedia Applications. In: Proceedings of the 2003 Conference on Asia South Pacific
Design Automation, pp. 22–27 (2003)

14. Iacobovici, S., Spracklen, L., Kadambi, S., Chou, Y., Abraham, S.G.: Effective Stream-
Based and Execution-Based Data Prefetching. In: Proceedings of the 18th Annual Interna-
tional Conference on Supercomputing, pp. 1–11 (2004)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 49–56, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Design and Implementation of Dynamically
Reconfigurable Token Coherence Protocol

for Many-Core Processor

Chuan Zhou, Yuzhuo Fu, Jiang Jiang, Xing Han, and Kaikai Yang

School of Microelectronics,
Shanghai Jiao Tong University, Shanghai

{zhouchuan,fuyuzhuo,jiangjiang,
hanxing,yangkaikai}@ic.sjtu.edu.cn

Abstract. To efficiently maintain cache coherence in a many-core processor
remains a big challenge today. Traditional protocols either offer low cache miss
latency (like snoopy protocol) or not depending on bus-like interconnects (like
directory protocol). Recently, Token Coherence has been proposed to capture
the main characteristic of traditional protocols. However, since Token Cohe-
rence relies on broadcast-based transient request and inefficient persistent re-
quest, it is only suitable for small system. In order to make Token Coherence be
scalable in many-core architectures, in this paper we introduce a dynamically
reconfigurable mechanism to Token Coherence. Basing on sub-net, this me-
chanism can significantly reduce the average execution time and communica-
tion cost in 16-core processor. Therefore, this dynamically reconfigurable
mechanism makes Token Coherence applicable in many-core architecture.

Keywords: cache coherence, token coherence, dynamically reconfigurable,
sub-netting.

1 Introduction

Today, Chip multiprocessors have become a promising choice for keeping up perfor-
mance with integration density [1, 2, 3]. The number of cores integrated on a chip has
reached a hundred now, and in the near future, there will probably be thousands of
cores. Therefore, the era of many-core processor is in close proximity.

To keep the view of memory coherent across different nodes, a many-core proces-
sor requires a cache coherence protocol which plays an important role on system per-
formance. However, thanks to the large number of cores and the complexity of
on-chip network, to efficiently support cache coherence in a many-core processor
suffers from the problem of “coherency wall” [4]. Considering cache miss latency,
network traffic and area overhead as the key attributes of cache coherence protocol
[5], many-core processors need a protocol which has low cache miss latency and low
network traffic. Traditional protocols either offer low cache miss latency (like snoopy
protocol) or not depending on bus-like interconnects (like directory protocol). Snoopy

50 C. Zhou et al.

protocol offers low cache miss latency due to direct communication between different
cores, but it needs ordered network and the network traffic based on broadcast is
also tremendous; Directory protocol does not rely on an ordered network because of
the indirect node (directory) which otherwise increases the cache miss latency on
average.

In order to gain the main characteristics of traditional protocols, recently, Token
Coherence [6] has been proposed. Compared with snoopy protocol, Token Coherence
does not rely on a totally ordered network which is not possible in many-core archi-
tecture. Meanwhile, Token Coherence avoids the indirect node (directory) in directory
protocol, and therefore gain low cache miss latency. However, Token Coherence has
some defects as well. First, the requests transmitted in the network are usually based
on broadcast; As a result, the network traffic will be unacceptable if we introduce
Token Coherence to many-core processors. Second, the persistent request mechanism
used to resolve protocol races is inefficient and broadcast-based. The broadcast me-
chanism and persistent request make Token Coherence only suitable for small system.
So, for the purpose of adapting Token Coherence to many-core processors, in this
work, we propose a dynamically reconfigurable mechanism based on sub-netting.
This mechanism can reduce the number of cores who will receive a broadcast mes-
sage at one time. Actually, those messages will only reach a subnet which is a region
in the network. In this way, we largely reduce the network traffic and the cost of using
persistent request.

The rest of the paper is organized as follows: In Section 2, we give some back-
ground about Token Coherence. Section 3 presents our dynamically reconfigurable
mechanism for Token Coherence. In Section 4, we describe the simulation environ-
ment and the results are shown in Section 5. Finally, Section 6 concludes the paper.

2 Token Coherence and Related Works

2.1 Token Coherence

Traditional protocols are based on basic coherence state transitions like MOESI,
above which there are specific implementations of the protocol, so the protocol model
includes two layers. Different from that, Token Coherence replaces the former model
with a model which has three layers [6, 7]. Above MOESI, there are correctness sub-
strate and performance policy. The correctness substrate ensures the accuracy of state
transitions and prevents starvation. Since the correctness of protocol has been consi-
dered, the performance policy only aims at improving the efficiency of the protocol.

Token Coherence ensures the accuracy of state transitions through token counting.
This mechanism can be summarized as following rules: At all time, every memory
block in system holds a fixed number of tokens (usually equals to the number of
cores). A core can write a block only if it gets all tokens. A core can read a block only
if it has at least one token of that block.

In Token Coherence, cores request tokens or data by transient requests which are
unordered messages. Since token counting does not ensure the completion of transient

Design and Implementation of Dynamically Reconfigurable Token Coherence Protocol 51

requests, they may cause starvation. Token Coherence uses persistent request to pre-
vent starvation. When the starved node broadcasts a persistent request, the nodes who
receive that message will finally give all the tokens and data of the destination block
to the starver. Then the starved node will eventually get enough tokens and data to
complete the operations.

Different from token counting and persistent request, the performance policy aims
at efficiency no matter whether the protocol plays right. Currently, there are three
kinds of performance policies: TokenB, TokenD and TokenM. In our work, we use
the TokenB performance policy which has not any indirect nodes in system.

2.2 Related Works

Martin [6] proposed a prediction mechanism to convert broadcast messages to multi-
cast messages, and it will obviously improve the scalability of Token Coherence.

Blas Cuesta, Antonio Robles and Jose Duato proposed several improvements to
Token Coherence, including priority request [9] which aims at replacing persistent
request, multicast coherence message [10] which can take advantage of the benefits
offered by priority request, and message packing methods [8] to reduce the harm of
broadcast message.

3 Dynamically Reconfigurable Token Coherence

In this section, we describe the main attributes of our dynamically reconfigurable
mechanism and its implementation in the Gem5 Simulator [13]. First, we explain how
this mechanism reduces the cost of broadcast. Then, we describe the implementations
in Gem5 for the purpose of realizing the mechanism.

3.1 Reducing the Cost of Broadcast

In Token Coherence, when a core wants to store something, it will firstly search the
L1 Cache for the related memory block. If the L1 Cache does not hold enough tokens
and data for that block, then the L1 Cache will broadcast a transient request to all
nodes including L2 Cache and memory (Fig. 1(a)). Those nodes will eventually send
all tokens and data to the requestor. However, Broadcasting transient requests and
persistent requests is obviously a huge cost.

According to the characteristics of parallel applications, we can dynamically recon-
figure the whole network to several regions named subnet, each of which can run an
application independently. Therefore, we can convert the broadcast-based transient
requests and persistent requests to subnet-based broadcast messages. So, if a core in
subnet 1 wants to store something, in the preceding case, the broadcast messages will
be limited in a region (Fig. 1(b)). The NI in Fig. 1is able to filter the destination when
L1 Cache broadcasts messages.

52 C. Zhou et al.

PEPE PE

RR RR

PEPEPEPE PEPE PEPE

RRRRRR RR

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

RR

RR

RR

RR

RR

RR

RR

RR

PEPE PEPE PEPE

PEPEPEPE PEPE

PE PEPE PEPE

PEPE PEPE PEPE

PEPE

PEPE

PEPE

PEPE

RR RR RR

RR

RR

RRRRRR

RR RR

RRRR

RR

RR

RR

RR

PEPE PEPE

RR RR

PEPE PEPE PEPE PEPE

RR RR RR RR

PE

PE

Core

L1

NI

L2 Memory

Broadcast

L/S

TR

PEPE PE

RR RR

PEPEPEPE PEPE PEPE

RRRRRR RR

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

RR

RR

RR

RR

RR

RR

RR

RR

PEPE PEPE PEPE

PEPEPEPE PEPE

PE PEPE PEPE

PEPE PEPE PEPE

PEPE

PEPE

PEPE

PEPE

RR RR RR

RR

RR

RRRRRR

RR RR

RRRR

RR

RR

RR

RR

PEPE PEPE

RR RR

PEPE PEPE PEPE PEPE

RR RR RR RR

PE

PE

Core

L1

NI

L2 Memory

Broadcast

L/S

TR

Subnet 1

Subnet 2

(a) (b)

Fig. 1. Broadcast in Token Coherence, (a) before subnetting, (b) after subnetting,
L/S=Load/Store, TR=Transient Request, NI=Network Interface

3.2 Implementations in Gem5

In order to realize the dynamically reconfigurable mechanism in Gem5, we have
to change several specific components including message definition and coherence
controllers.

Coherence Message
To support the filtering work of NI, we change the structure of coherence messages
(Fig. 2) which are transmitted from one node to another in the network. Therefore, in
the situation described above (Fig. 1(b)), the NI writes the “Subnet ID” when it rece-
ives the transient request from the L1 Cache, moreover, it change the “Destination”
from “All nodes” to “Subnet 1”. As a result, only those nodes in subnet 1 receive
request message from the requestor.

Fig. 2. Structure of transient request message

Design and Implementation of Dynamically Reconfigurable Token Coherence Protocol 53

Directory and L2 Cache
In Gem5, Token coherence is specified by SLICC (Specification Language for Im-
plementing Cache Coherence) which describe the behavior of coherence controllers.
In our work, there is only one L2 Cache Controller and one Directory Controller. So,
as shown in Fig. 3, after subnetting, different subnet will share these resources.

L1$ L1$ L1$ L1$ L1$ L1$

L2$

Mem

Dir

subnet 1 subnet 2

starvation

L2 cache miss

L1$ L1$

Subnet 3

transient request

persistent request

Fig. 3. Different subnets share l2 and directory, L1$=L1 Cache Controller, L2$=L2 Cache
Controller, Dir=Directory Controller

The Directory Controller manages a directory which records the information of
those memory blocks being used. Since it will receive messages from different subnet
now, we should change the structure of directory. In our work, we add a “StateTo-
kenTable” to each item recorded in directory. After the change, when directory rece-
ives a request message, it uses the “addr” and “subnet id” to get token and state
information corresponding to a particular subnet (Fig. 4). In our system, as we assume
that different applications work independently, we do not ensure the coherence among
different subnets. Therefore, different “ID” corresponds to one “Data Block”. We
make a similar change to l2 cache memory managed by the L2 Cache Controller.

Fig. 4. Structure of directory

Data Structure
In coherence controllers, there are some structures such as “TBETable”, “PersistentT-
able” and “TimeTable” which use “address” as key words. Since there are several
subnets in our system now, we should make “subnet id” as key word simultaneously.
As a result, we use two layer hash table to construct these structures instead of the

54 C. Zhou et al.

original one layer hash table. Besides, we should also make all functions in SLICC
adapt to the new data structures.

After the changes mentioned above, all subnets can get maximum resources (to-
kens and data) of a particular block at the same time, comparing to the old system.
The changes do improve the performance of Token Coherence by means of limiting
the destinations of broadcast.

4 Simulation Environment

We evaluate our mechanism by means of the System-Call Emulation (SE) Mode of
GEM5 Simulator which offers a detailed memory system model and a precise net-
work model. In our many-core simulation system, there are 16 cores which corres-
pond to split L1 Caches and unified L2 Caches in the ruby memory system. Table 1
shows the system parameters.

Table 1. System parameters

GEM5 Parameters
Processor frequency
Cache hierarchy
Cache block size
Split L1 I&D Caches
Unified L2 Cache
Directory latency
Memory controller latency

2GHz
Non-inclusive
64 bytes
L1I: 32KB, L1D:32KB, 2-way, 2 cycles
2MB, 8-way, 5 cycles
5 cycles
12 cycles

Taking “load/store ratio” and “local/share ratio” as the decisive input, we generate
thousands of instructions which will be used in our system as the evaluation traces.
Now, we have already found that the “load/store ratio” of SPECint2000 and
SPECfp2000 ranges from 1.5 to 28 [11]. We also find that the “cache miss rate” in
NAS Parallel Benchmark ranges from 5.2% to 16% when there are 16 cores in pro-
cessor and the cache size is 32KB [12]. By approximately using “cache miss rate” to
calculate “local/share ratio”, we choose some numbers which falls in the above range
as the input value. The traces correspond to these inputs will truly imitate the memory
access of actual benchmark. In the next section, we compare the performance of our
proposal with Token Coherence and Directory Coherence under such traces.

5 Evaluation Results

In this section, we compare our proposal with Token Coherence and Directory Cohe-
rence. First, we show our mechanism has great impact on average execution time.
Second, we study the network traffic in each protocol. In the next section, we
summarize these results and draw a conclusion.

Design and Implementation of Dynamically Reconfigurable Token Coherence Protocol 55

5.1 Impact on Execution Time

Fig. 5 shows the average execution time for the traces which correspond to different
inputs mentioned in Section 4. Because of the avoidance of indirection [5], Token
Coherence reduces the average execution time when compared with Directory Cohe-
rence. In most situations discussed in Fig. 5, Token Coherence obtains improvements
of 4% compared to Directory Coherence. On the other hand, since our proposal limits
the broadcast messages to several regions, the persistent requests and transient re-
quests can be completed easier than before. So, the average execution time is reduced
too. In the following figure, we can see our mechanism (Token-DR) gains average
improvements of 10% compared to Token Coherence.

Fig. 5. Average execution time

5.2 Impact on Network Traffic

Under the testing environment mentioned in Section 4, Fig. 6 discusses the network
traffic generated by protocols. We can find that Token Coherence need more network
traffic than Directory Coherence, because it relies on broadcast messages. However,

Fig. 6. Total network traffic

56 C. Zhou et al.

by the using dynamically reconfigurable mechanism, the cost of broadcast is largely
reduced. Therefore, our mechanism shows tremendous improvements compared to
Token Coherence.

6 Conclusions

Many-Core architecture has recently become a probable choice for designing proces-
sors. In this paper, we propose a dynamically reconfigurable mechanism for Token
Coherence. Unlike the original Token Coherence, this mechanism limits the receivers
of each broadcast message. This fact contributes to the reduction in network traffic
and average execution time which compensate for the defects mentioned in Section 1.
Therefore, combing with the dynamically reconfigurable mechanism, the cost of
transplanting Token Coherence to many-core processors can be acceptable. It will
gain main advantages of Token Coherence while avoiding its defects.

Acknowledgements. Our work is supported by the IBM Shared University Research
(SUR201102X).

References

1. Hammond, L., et al.: A single-chip multiprocessor. IEEE Computer 30(9), 79–85 (1997)
2. Olukotun, K., et al.: The case for a single-chip multiprocessor. ASPLOS, 2–11 (1996)
3. Xu, Y., Du, Y., Zhang, Y., Yang, J.: A composite and scalable cache coherence protocol

for large scale CMPs. In: Proceedings of the International Conference on Supercomputing,
pp. 285–294 (2011)

4. Kumar, R., Mattson, T.G., Pokam, G., Wijngaart, R.: The case for Message Passing on
Many-core Chips. University of Illinois Champaign-Urbana Technical Report, UILU-
ENG-10-2203 (2010)

5. Ros, A., et al.: Cache coherence protocols for Many-Core CMPs. In: Parallel and Distri-
buted Computing (2010)

6. Matin, M.: Token Coherence. University of Wisconsin-Madison (2003)
7. Martin, M.M.K., Hill, M.D., Wood, D.A.: Token Coherence: decoupling performance and

correctness. In: 30th Annual International Symposium on Computer Architecture, pp. 182–
193 (2003)

8. Cuesta, B., Robles, A., Duato, J.: Switch-Based Packing Technique for Improving Token
Coherence Scalability. In: Ninth International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 2008), pp. 83–90 (2008)

9. Saez, B.C., Robles, A., Duato, J.: Efficient and Scalable Starvation Prevention Mechanism
for Token Coherence. IEEE Transactions on Parallel and Distributed Systems, 1610–1623
(2011)

10. Cuesta, B., Robles, A., Duato, J.: Improving Token Coherence by Multicast Coherence
Messages. In: 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), pp. 269–273 (2008)

11. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th
edn. Morgan Kaufmann, San Francisco (1996)

12. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H., Wu, D.T., Culler, D.E.: Architectural re-
quirements and scalability of the NAS Parallel Benchmarks. In: Proceedings of Supercom-
puting (1999)

13. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2) (2011)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 57–66, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic and Online Task Scheduling Algorithm Based
on Virtual Compute Group in Many-Core Architecture

Ziyang Liu, Yuzhuo Fu, Jiang Jiang, and Xing Han

School of Micro-electronic, Shanghai Jiao Tong University, Shanghai, China
{liuziyang,Fuyuzhuo,jiangjiang,hanxing}@ic.sjtu.edu.cn

Abstract. Efficient task scheduling for a series of applications on Mesh based
many-core processors is very challenging, especially when resource occupation
and release are required in some running task phases. In this paper, we present a
dynamic and online heuristic mapping for efficient task scheduling based on
Virtual Computing Group (VCG), and an algorithm managing free resources
based on rectangle topology is proposed as well. This method quickly finds
proper rectangle resources for a task, partitions processing elements (PEs) into a
Virtual Computing Group by constructing a subnet, and maps communicating
subtasks on adjacent PEs according to data dependency and communication de-
pendency. Compared with the existing algorithms, our mapping algorithm can
reduce the total execution time and enhance the system throughput by 10% in
simulations.

Keywords: Many-Core architecture, Virtual Computing Group, Dynamic and
online reconfiguration, Task mapping, Resources management.

1 Introduction

Many-core processors have a set of processing elements (PEs), and are capable for
parallel computing in current applications. It’s widely used for multi-threads parallel
computation in large complex applications. However, as PEs in processors increase,
the current core utilization is low and the performance can’t rise significantly [1].

An efficient solution is task scheduling based on reconfigurable system [2][3]. Ac-
cording to different task, task scheduler divides free PEs into domains. To some ex-
tent, this reconfigurable method improves system performance. The decision where a
task is mapped determines the fragmentation of the whole area and it may leads to
resources competition between other tasks in some bad cases. So the efficient task
scheduling algorithm which takes subtasks mapping and free resources management
into account is the key point to reduce total execution time and enhance throughput of
the whole system.

Mapping subtasks onto the many-core processors includes two aspects, (a) initial
mapping: mapping at the time when tasks need to run at the initial time and (b) Phase
Mapping when specific phase reconstruction of tasks happens, which will be
discussed in Section 3.

58 Z. Liu et al.

In this paper, we focus on the phase mapping and the resulting irregular topology
resources management, as there are lots of researches on dynamic initial mapping and
regular resources management. The main contributions of this paper are as follows:

• Introduce a new task model, and the related task phase, data dependency and
communication dependency of subtasks.

• Research on a new online task mapping method based on reconfigurable many-
core architecture.

• Develop free resources management based on rectangles, especially in some irre-
gular topology when online reconfiguration tasks place. This method is based on
the partition way of [4].

Section 2 reviews related work. Section 3 introduces the system architecture and the
task model. Section 4 and 5 discuss free space partition and task mapping, respective-
ly. Section 6 presents simulation results and related analysis. Section 7 concludes the
paper.

2 Related Work

Task mapping techniques in many-core processors are presented in many research
papers. Static mapping in [9] find fixed placement of tasks at design-time with a well
known computation and communication behavior between subtasks. Therefore, these
mapping heuristics are not suitable for dynamic applications of which information is
unknown. Briao et al.[10] present dynamic task allocation strategies based on bin-
packing algorithms for real-time applications in homogeneous Multiprocessor Sys-
tems-on-Chip(MPSoC). While in the MPSoC platforms, Amit Kumar Singh et al. [11]
proposed communication-aware mapping method to deal with the congestion in chan-
nels and workloads for traffic. Carvalho et al.[12] present on the fly mapping heuristic
for dynamic mapping in NoC-based heterogeneous MPSoC. Wei Chen et al. [13]
summarize an algorithm which proposes the systematic way in the area of task de-
composition and partition and reconfiguration in many-core processor. And Cao YJ et
al. [14] present an adaptive scheduling algorithm based on dynamic core resource
partitions for many core processor systems. On the aspect of free resources manage-
ment, the heuristic in [4] proposes a fast template placement for tasks in reconfigura-
ble systems, and provide us an efficient way to manage free rectangle resources.
Herbert Walder et al. [15] investigate task placement and footprint transform ap-
proach in their paper. Li Tao et al. [16] develop the TT_KAMER algorithm for more
efficient placement in FPGA.

3 Architecture and Task Model

3.1 Architecture

The system used in this paper is a 2D mesh based many-core system, which is
illustrated in figure 1(a). The architecture contains a Manager Processor (MP) and a

 Dynamic and Online Task Scheduling Algorithm Based on Virtual Compute Group 59

series of PEs, which communicate with each other via NoC. And each PE is capable
of supporting only one subtask (thread). The subnet reconstruction according to map-
ping is the key to construct a VCG for a task and isolate task crosstalk. The MP,
running operating system, is responsible for task mapping, resources management,
reconfiguration control and so on.

Fig. 1. 6*6 many-core system and task mode

3.2 Task Model

Tasks’ phase property is clearly illustrated in [5][6][7][8]. That is, threads’ behavior,
interacting with each other in tasks or programs, can be divided into two categories,
communication dependency and data dependency [17], explained in figure 1(b).

• Communication Dependency: The relationship between threads which communi-
cate with others by using certain programming model such as MPI and so on.

• Data Dependency: The relationship between threads which may pass parameters
to another when one is finished.

Because of communication and data dependency, all subtasks (threads) can’t run in
parallel at one time. And a set of subtasks which compose a Task Phase can run at the
same time. Because phases have different number of subtasks, the resources may vary
at different phases. Reconfiguration between phases, called phase reconstruction or
phase mapping, can meet the flexible requirement. So it’s necessary to research on
phase reconstruction and the resulting resource management.

4 Free Resource Management Based on Rectangles

Our goal is designing a fast but not necessarily optimization method for management.
Bazargan et al. [4] proposed an efficient Bin-Packing algorithm for placement. Based
on it, we develop a more suitable way for our task model and phase reconstruction.
And it takes O(n) time to research free rectangle resources and O(1) time for inserting
them in the worst case. This method is consisted of two parts: (a) new task mapping

60 Z. Liu et al.

and free rectangle division, (b) phase reconstruction, including releasing some nodes,
adding nodes from task’s free neighbors, and resources reclamation when a task
finishes.

We use data structures of tree and list in this paper, explained in figure 2(b).

Fig. 2. Resources and the corresponding data structure after initial mapping

Only leaf node can be selected for task mapping. Each leaf symbols a free rectan-
gle, and it’s consisted of row and column size, PE ID at the top-left corner of a rec-
tangle. And each node, which points to Class Rectangle, is the same as a node of list.
So if a new task needs to map, MP will search a free rectangle in list with no neces-
sary to search it from tree’s root to suitable leaf. After top-left mapping and adding
corresponding task ID from root to node selected, the selected rectangle resources will
be divided into small rectangles. Then theses rectangles are the leaves of the original
node.

4.1 New Task Mapping

New task mapping, of which details are mentioned in [4], is the top-left mapping
heuristic with First Fit (FF), Best Fit (BF) and Worst Fit (WF) in this paper. And
what‘s different with Bazargan is that irregular topology, such as L shape, illustrated
in figure 3(c), should be taken into account, because of the number of subtasks in
Phase One. As a result, the free rectangle remained should be divided into 3 small
rectangles. And these leaves are inserted to the original node’s sub-tree and free rec-
tangle list after division.

We have tried different heuristics for how to partition the original free resources
into several rectangles. Horizontal division is dividing a rectangle along task’s the
top/bottom edge, while vertical division is dividing rectangles along task’s left/right
edge, L division is dividing rectangles along the inner corner of L. Then the heuristics
can be defined in terms of rectangle size as follows:

• Largest Rectangle (LR): the biggest one in one heuristic is bigger than the ones in
the other two heuristic. Then this heuristic is selected, as the biggest one could
accommodate more tasks than others.

 Dynamic and Online Task Scheduling Algorithm Based on Virtual Compute Group 61

• Square Rectangle (SR): the biggest one in one heuristic is closest to squares than
these in the other two heuristic. The reason favoring SR is it’s more likely to con-
tain tasks with the irregular topology or a high ratio between its row and column.

Fig. 3. Split rules

4.2 Phase Reconstruction

Phase reconstruction includes two aspects: (a) release free PEs, and (b) add some PEs
from its rectangle neighbors, which can be easily found in the task node’s sub-tree.

Release Free Resources/PEs
When the previous phase is completed and a task needs to release nodes, according to
task list, the MP will find the deepest task node in the tree. Only free PEs which is
neighbors of the deepest node’s leaves will be released, and then the adjacent nodes
are merged into a small rectangle. After merging, all rectangles are inserted into the
task node’s sub-tree, and free rectangle list updates. In good cases, the leaf rectangle
may become big one after merging PEs. In bad cases, all scattered neighbor nodes,
which lead to plenty of fragment, are directly inserted into the deepest node’s sub-
tree. The process is explained in figure 4(a).

When all phases are completed, all resources in the task need to be reclaimed.
Based on our data structure, it’s easy to recycle all rectangles used in this task. What
we should do are deleting task ID in the tree, treating child nodes with empty task list
as leaves, and deleting all child nodes below them.

Add Free Resources and Split Rectangle Resources
When a task needs to add some resources/PEs, according to task list, the deepest task
node will be picked. And one of its free rectangle leaves will be selected according to
the rule First Fit (FF)/Best Fit (BF)/ Worst Fit (WF). Assume BF is needed in this
paper. After picking a free rectangle, the neighbor nodes of the task in it are chosen as
the edge of added topology, and the other edge length is computed like this: assume
M is row, and S is the number of subtasks which need new PEs, then the column N
and remainder R are

62 Z. Liu et al.

 ܰ ൌ ቔ S M ቕ (1)

 R=mod(S, M ሻ (2)

If R is 0, the topology is a rectangle, then the column is N. Vice versa, the topology is
L, and its column is N+1.

In bad cases, although the selected rectangle size is enough to accommodate all
subtasks, its column is not bigger than the new topology’s column due to the number
of neighbors, M. Then our rule will change: Let the picked rectangle’s row be the row
of the added topology, and the column and remainder are computed according to the
equation above. And the whole process is illustrated in figure 4(b).After deciding the
new topology, the next step are adding task ID in this selected node, inserting sub-tree
nodes into this node after rectangle division and update free rectangle list, which are
mentioned in the section above.

Fig. 4. Phase reconstruction

5 Mapping Strategies

Input is data/communication dependency graph and PE ID asking for one subtask.
Output is subtask ID list and PE ID list, of which element corresponds to each other
after mapping.

5.1 Initial Mapping

The initial mapping maps the subtasks of Phase 1 onto a block, which is consisted of
free PEs. And the topology of block is decided by MP according to the number of

 Dynamic and Online Task Scheduling Algorithm Based on Virtual Compute Group 63

subtasks. Then a block of PEs is occupied and VCG is formed by constructing a
subnet. The initial mapping detail is as follows. First, map the subtask which has max-
imum communication with others in the center of VCG. Second, map its communica-
tion subtasks, according to amount of communication, from one hop to several hops
around the center until the subtasks are totally mapped in the predetermined area.

5.2 Mapping before Phase Reconstruction

The subtask has characteristic of data dependency and communication dependency as
discussed in Section 3. This feature directly decides the schedule order of subtasks.
Our algorithm is illustrated as follows. When subtasks get scheduled, other subtasks
which communicate with the scheduled ones must raise their communication priority.
On the other side, in subtask pairs with data dependency, one must raise its data prior-
ity when the depended one gets scheduled. As a result, the free PE gets different sub-
task according to different priorities. We can choose one of them:

• Communication priority first: the subtask that has the largest amount of commu-
nication with those which were scheduled in the VCG gets schedule first, until all
of them get scheduled, because one key subtask may lead to congestion and task
pause in some situations.

• Data priority first: the subtask gets scheduled right after the depended one finished.
Because of cache coherency, subtasks get data with no need to access memory off-
chip.

5.3 Phase Mapping

The phase mapping takes place when the subtasks of previous phase are totally fi-
nished. And the MP checks which subtasks can be scheduled next. If the number of
subtasks is smaller than the number of current free PEs in VCG, free PEs in this VCG
will be released and VCG will be reconstruct. Vice versa, MP will decide which free
rectangle is suitable for adding PEs. And the basic rule is the selected rectangle must
be a neighbor of the task, because traffic workload and communication reduction
must be taken into account. There are alternatives as follows, choose the biggest rec-
tangle or the smallest rectangle.

If releasing resources is needed, those which will be released are the neighbors of
free rectangles around the task, given topology must be kept as regular as possible and
fragment should be little. What’s more, the nodes released, along with their rectangle
neighbor, may merge into a bigger rectangle if their size is equal to original neigh-
bor’s row or column. In the bad case, PEs released can merge into a big rectangle
with each other if they are adjacent. Then VCG becomes smaller after reconstruction.

If there’re not enough resources in the original task, MP will find a free rectangle,
assume the smallest one, which has enough resources for phase reconstruction, among
the task’s neighbor. From the neighbor nodes to the other side of the selected one,
subtasks will be mapped according to the initial mapping rules. Then new resources
are added into the task and the former rectangle is divided into smaller one and VCG
changes after mapping.

64 Z. Liu et al.

6 Simulations

Experiments are performed on the GEM5simulation platform. Our simulations are
evaluated on 4*4 and 6*6 many core platforms. The evaluated scenarios are randomly
generated applications using Task Graph For Free [18], and each subtask contains
instruction flow. And computation instructions and load/store instructions compose
the instruction flow.

Figure 5 shows total execution time using different mapping heuristics (A) and di-
vision rules (B). It shows the total time in 6*6 is less than the one in 4*4. In most
cases, the performance using Best Fit (BF) and First Fit (FF) are almost the same, and
they are better than the one using Worst Fit (WF), about 10% gains totally. WF leads
to reduction to PE utilization and the total throughput is lower than the others. Be-
cause of shape requirement, square division leads to lower throughput.

0

100000

200000

300000

400000

500000

600000

700000

4*4 6*6

C
y

cl
es

(A)

best first worst

420000

440000

460000

480000

500000

520000

540000

560000

580000

6*6 4*4

C
y

cl
es

(B)

max_rectangle_division square_division

Fig. 5. Execution time

Because of different task sizes and mapping methods, BF can accommodate more
tasks than WF and more PEs can run at one time. As a result, BF performs sometimes
better than FF, and the difference between them is not significant. On average, BF
improved the PE utilization by only 11.75%, illustrated in figure 6.The reason why

Fig. 6. PE utilization in 4*4 and 6*6 platforms

 Dynamic and Online Task Scheduling Algorithm Based on Virtual Compute Group 65

PE utilization is not very high is that the scatter PEs which are not neighbors of free
rectangles in a task will not released in phase reconstruction, given that fragment
won’t increase dramatically using this heuristic.

Table 1 shows gains improved by many heuristics. And most heuristics mentioned
above bring in system improvement compared to the random mapping algorithm on
many-core systems without VCG and subnet.

Table 1. Improvement using different algorithms

Execution Time Best Fit
with
VCG

Worst
Fit with

VCG

Best Fit
without
VCG

Worst
Fit

without
VCG

Random
mapping
without
VCG

Cycles 91054 97952 101341 102876 111254

Gains(%) compared
to Random mapping
without VCG

18.5 11.6 9.0 7.5 0

Execution Time Best Fit

with
VCG

Worst
Fit with

VCG

Random
mapping
without
VCG

Cycles 91054 97952 111254

Gains(%) compared
to Random mapping
without VCG

18.5 11.6 0

7 Conclusion and Future Work

This paper describes some new mapping strategies and a modified method based on
free resources management based on rectangles for our task model. And we have
evaluated several heuristics which enhance system throughput and PE utilization in
4*4 and 6*6NoC-based platform. We clearly demonstrate that the newly proposed
method can consistently provide notable reduction in total execution time and com-
munication overhead and enhance throughput in many-core processors.

Based on our mapping method, we plan to evaluate real time benchmarks on
GEM5 and devise techniques for online task migration and improve our free
resources management.

Acknowledgements. Our work is supported by the IBM Shared University Research
(SUR),System-level Virtualization Based on Reduced Hyper Multi-core Architecture,
SUR201102X.

66 Z. Liu et al.

References

1. Bhattacharjee, A., Contreras, G., Martonosi, M.: Parallelization libraries: Characterizing
and reducing overheads. ACM Trans. on Architecture and Code Optimization 8(1), 5–29
(2011)

2. Maher, B.A.: Atomic block formation for explicit data graph execution architectures, PhD
thesis, Department of Computer Sciences, The University of Texas at Austin (August
2010)

3. Govindan, S.M., Robatmili, Esmaeilzadeh, H., et al.: Scaling power and performance via
processor composability, Technical report, 2010. UT Austin, Department of Computer
Sciences TR-10-14 (2010)

4. Bazargan, K., et al.: Fast Template Placement for Reconfigurable Computing Systems.
IEEE Design and Test of Computers 17, 68–83 (2000)

5. Purtilo, J.M., Hofmeister, C.R.: Dynamic Reconfiguration of Distributed Programs. Distri-
buted Computing Systems, 560–571 (1991)

6. Adamo, J.-M., Bonello, C., Trejo, L.: Programming Environment for Phase-
Reconfigurable Parallel Programming on SuperNode. In: Parallel and Distributed
Processing (1992)

7. Sherwood, T., Perelman, E., Hamerly, G., Sai, S., Calder, B.: Discovering and Exploiting
Program phases. IEEE Micro, 84–93 (2003)

8. Hauck, S.: Reconfigurable Computing: the Theory and Practice of FPGA-Based Compu-
ting, Section 9.2.2, p. 210. Elsevier Inc. (2008) ISBN 978-0-12-370522-8

9. Murali, S., et al.: A methodology for mapping multiple use-cases onto networks on chips.
Proceedings of DATE, 118–123 (2006)

10. Briao, E.W., et al.: Dynamic task allocation strategies in mpsoc for soft real-time applica-
tions. Proceedings of DATE, 1386–1389 (2008)

11. Singh, A.K., Srikanthan, T., Kumar, A., Jigang, W.: Communication-aware heuristics for
online task mapping on NoC-based MPSoC platforms. Journal of Systems Architecture:
the EUROMICRO Journal Archive 56(4) (July 2010)

12. Carvalho, E., Moraes, F.: Congestion-aware task mapping in heterogeneous mpsocs. In:
International Symposium on SoC, pp. 1–4 (November 2008)

13. Chen, W.: Task Partitioning and Mapping Algorithms for Multi-core Packet Processing
Systems, p. 255, Masters Theses (2009)

14. Cao, Y.J., Qian, D.-P., Wu, W.-G., Dong, X.-S.: Adaptive Scheduling Algorithm Based on
Dynamic Core-Resource Partitions for Many-Core Processor Systems. Journal of Soft-
ware 23(2), 240–252 (2012)

15. Walder, H., et al.: Non-preemptive Multitasking on FPGAs: Task Placement and Footprint
Transform

16. Li, T., Yang, Y.: Algorithm of Reconfigurable Resource Management and Hardware Task
Placement. Journal of Computer Research and Development, 375–382 (2008)

17. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

18. Dick, R.P., et al.: Tgff: task graphs for free. In: Proceedings of Workshop on Hard-
ware/Software Co-Design, pp. 97–101 (1998)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 67–74, 2013.
© Springer-Verlag Berlin Heidelberg 2013

ADL and High Performance Processor Design

Liu Yang, Xiaoqiang Ni, Yusong Tan, and Hengzhu Liu

School of Computer Science
National University of Defense Technology

ChangSha, China
yangliujoy@gmail.com

Abstract. Architecture Description Language (ADL) can model many comput-
er related problems and is widely used in software and hardware design. When
used in processor design, lots of institutes and companies use ADL as processor
quick prototype design language and use it to generate processor simulator, test-
benches and compiler utilities. This paper analyzes and compares three proces-
sor description languages. We also give the disadvantages of modern ADL
when used in high performance processor design and give some suggestions for
further ADL development.

Keywords: ADL, High-Performance Processor Design, PML.

1 Introduction

Recently, the design of high performance processor becomes more and more compli-
cate. The processor design techniques developed from scalar, single-core to super-
scalar, multi-cores, multi-threads. The complexity of processor design increases.
More and more I/O controllers are integrated into high performance processor and
also bring forward higher challenge to design. Some other factors such as testability
design, silicon area and power consumption also increase the complexity of the de-
sign. In summary, the design complexity of high performance processor becomes
higher and higher than ASIP (Application Specific Integrated Processor) or SoC (Sys-
tem on Chip) processors.

The process of high performance processor design is: scheme design, logic design,
logic verification, physical design and physical verification. Such process has some
problems, such as: consideration of processor silicon area is not comprehensive, the
set of performance parameters is not reasonable, logic design is complex, logic verifi-
cation and physical verification are not comprehensive. There may be more chal-
lenges in designing multi-core, multi-threads processors, such as: memory protocol
defects, verification of memory coherence, design and verification of NOC (Network
on Chip). These problems cannot be solved completely by existing design methods or
the cost of solving such problems is too high. So we need to change the methodology
in high performance processor design. We need to consider various problems of
design, verification and application of processors at the beginning of the processor
design.

68 L. Yang et al.

PML (Processor Modeling Language) is a kind of ADL. The concept of ADL was
put forward in 1960s and it was used to implement software automation or software
test. With the development of ADL and the increase of complexity of processor de-
sign, PML began to be used in processor design [1], from then on, the categories and
application scope is developed vigorously [2]. In this paper, we use ADL to represent
PML as a more general terminology.

Fig. 1. ADL and its Usage in Processor Design

According to styles of description, ADL can be classified as structural description,
hybrid description and behavioral description. According to the usage, ADL can be
classified as synthesis oriented description languages, verification oriented description
languages, compiling tools oriented description languages and simulation oriented
description languages [3]. This paper will introduce and compare the ADLs used in
high performance processor design.

In high performance processor design, ADL can be used in model simulation, au-
tomatic test and automatic generation of software tools and so on. With ADL, we can
simulate the architecture and instruction set of processor at the beginning of processor
design and explore the design space of processor. Using ADL, we can implement the
automatic generation of test programs and test code; we can improve the test of pro-
cessor and detect the bugs in processor design. In addition, current ADL can support

 ADL and High Performance Processor Design 69

the generation of tool chain and can automatically generate compiler, assembler, and
linker. Developing processors with ADL can decrease the human cost in processor
design and accelerate the time for coding, verification, taped out and the development
of applications.

Currently, there are various ADLs to support processor design, such as
MIMOLA[4], nML[5], LISA[6], BlueSpec[7], EXPRESSION[8], ASIP Meister[9],
TIE (Tensilica)[10], MADL[11], ADL++[12], ArchC[13], MAML[14], GNR[15],
RADL[16] and so on. These description languages can be used in modeling, automat-
ic generation of compiling environment, test-bench and RTL (Register Transfer Lan-
guage) code. The support is different for various languages. This paper focuses on
three popular description languages and compares these three ADLs in description
abilities and toolset functions.

Firstly, this paper introduces the application of ADL in high performance processor
design. Section 2 introduces three popular ADLs. Section 3 compares these languag-
es. Section 4 describes the lack of these languages in current high performance
processor design. The last section is the conclusion of this paper.

2 Introduction of Three ADLs

2.1 LISA

LISA is a processor description language designed by CoWare and is used in the
products named CoSy compiler design environment. LISA is an instructions driving
language. It can describe general processors, RISC processors, DSP, ASIPs (Applica-
tion Specific Instruction-Set Processors) and so on. LISA can describe cycle-accurate
and non-clock-accurate processor models. It can also generate a set of software devel-
opment environment, includes assembler, linker, compiler, simulator and debugger. It
can generate RTL code. It can make the development, test and verification of proces-
sors more convenient. The original intention of LISA is to construct optimized compi-
ler, so it provides good support to the description of instruction set and the definition
of the function of instructions. The constructing tool of compiler can generate opti-
mized compiler according to the function of instructions and the characteristics of
processor pipelines. CoSy has various compiler optimizing modules. It can support
the construction of compilers for CISC、RISC、VLIW and SIMD instruction sys-
tem. Today, more than 100 companies’ products use CoSy to construct compiling
system, include the scope from 8bit single-chip to 256bit VLIW DSP. The CoSy ex-
press is integrated into PD (Processor Designer) of Synopsys. PD can be used to im-
plement design and verification of processors, the construction of development
environment and so on. On one hand we can use it to explore the design area of pro-
cessors; on the other hand we can use it to implement iterative design, as shown in
Fig.2.

Besides supporting description of instruction set, LISA supports various peripher-
als and interfaces. It also supports the timing model of underlying hardware.

70 L. Yang et al.

Fig. 2. Using LISA in Processor Design

2.2 ArchC

ArchC is an open source ADL designed by LSC (Computer System Laboratory) of
Campinas. ArchC uses SystemC as the construct tool of simulator. ArchC uses GNU
GCC and Binary Utilities to implement the mapping of ArchC description to compi-
ler, assembler, linker and debugger. The design process is shown in Fig.3. ArchC is
departed into two parts: AC_ISA and AC_ARCH. AC_ISA describes instruction set,
instruction function, instruction pipeline and AC_ARCH describes the resources of

ArchC Model

Generation
Tools

Assembler

Linker

Disassembler

Debuger

Test Genrator

Simulator
Model Verification

Assembler
Source Code

Test
Program

Executable
File

Fig. 3. Usage of ArchC in Processor Design

 ADL and High Performance Processor Design 71

architecture. ArchC provides “acstone” to support the automatic generation of test-
bench. Although the current version is not perfect, using of automatically testing tools
can improve the coverage of test and decrease design risk that may occur.

Currently, ArchC implement the description of MIPS-R3000、PowerPC、LEON
、 SPARC-V8、 Intel8051 and PIC. With TLM extension, ArchC can describe
multi-cores processors.

2.3 MAML

MAML（Machine Markup Language）is used in BUILDABONG system of Pader-
born and it is a kind of ADL based on XML. It can be used to model, simulate and
construct compiling environment for processors of special applications. The characte-
ristics of MAML include the support to the description of multi processors
architecture and the support to complete design exploration and optimization semi-
automatically. In BUILDABONG system, lots of tools can be put together to
complete the design of software and hardware.

MAML can be used to describe multi-processors model. Interconnection methods
and communication models are also defined in MAML. It supports BUS, MESH,
Cross-Switch, Fat-Tree and other network topology.

3 Comparing of Three ADLs

The comparing of the three kinds of ADL introduced in previous section is shown in
Table 1. The comparing focuses on the abilities of description and the toolsets
functions using these ADLs.

Table 1. Comparing of Three ADLs

 LISA ArchC MAML

Description Abilities

Instruction Function Yes Yes Yes

Pipeline description Yes Yes Yes

Memory Hierarchy Yes Yes No

System and IO Yes Yes Yes

Multi-Cores Yes Through TLM Yes

Multi-Threads No Through TLM No

NoC N/A Through TLM Yes

Toolsets Functions

Instruction Set Simulator Yes SystemC Yes

Cycle-Accurate Simulator Yes SystemC Yes

Test bench Generation Yes Yes N/A

Compiler Environment Private GCC LCC

Debugger Private1 GDB N/A

Synthesizable RTL Code Verilog/VHDL N/A Verilog/VHDL

Optimize for Area and Power Yes No No

1 Support generation of JTAG in hardware and software debugger.

72 L. Yang et al.

We can conclude from Table 1 that the commercial ADL can all support automatic
generation, but ArchC is not good at it. According to the abilities of description, the
three kinds of ADL cannot provide full description for current multi-cores, multi-
threads processors and the complex interconnection structure. With TLM, ArchC
needs to program specific source code for different behaviors. Although it can com-
pensate the lack of the description abilities, it violates the original intention of ADL.

4 Advantage and Disadvantage of ADL

Through the introduction of the challenge of high performance processor design and
the comparing of various ADLs, we can see current ADL technology can support fast
modeling, simulation, verification and construction of compiling environment and so
on. It can describe instruction set, pipeline, peripheral and so on. But ADL has some
disadvantages as follows:

1. The description abilities for multi-cores and multi-threads processors are not
enough.
Current ADLs cannot model multi-threads processors and cannot include threads
execution model or virtual core/processor for virtualization. Although most modern
processors provide virtualization support, the ADL cannot model the Hypervisor,
Supervisor and User mode execution model.

2. The support to evaluate typical silicon process is limited.
The silicon foundry provides Nano-meter techniques and supports more and more
transistors in one chip. The Nano-effect affects the yield of single wafer and makes
technologies faults more obvious, so the ADL should better provide the abilities to
model Nano-meter silicon process for the silicon evaluation.

3. Cannot evaluate and optimize the power consumption for the lack of power model.
More complicated processors consume more power and emit more heat; these af-
fect the design of the package and the system. It also goes against the Green Com-
puting. The ADLs can use foundry standard cell library and IP library to evaluate
the power consumption before the implementation of the processor.

4. The auto design space exploration is not enough.
Only LISA can evaluate multi design corner automatically for applications, the
other ADLs need manual intervention. This function can greatly reduce the time of
architecture design. The toolsets better support specific applications such as H.264
encode/decode and Soft-defined Radio to evaluate the ASIP and give the design
parameters like cache size, buffer size, register size and computing resources etc.

From the analysis of the ADL advantages and disadvantages, ADL can accelerate
processor design, coding, verification and the applications. It can also avoid design
defects and the lack of verification induced by human factors.

In conclusion, designing of new high performance processors with ADL has been a
feasible way. Describing the design of existing processors with ADL can also help
decide the parameters for performance and generate test-bench automatically. It can
improve the test coverage and provide more complicated compiling system earlier.

 ADL and High Performance Processor Design 73

5 Conclusion

This paper firstly introduces ADL usages in processor design and chooses three typi-
cal ADLs to describe in detail. We compare LISA, ArchC and MAML in description
abilities and toolsets functions. We summarize the advantages of current ADL in pro-
cessor design and analyze the lack of ADL in modern high performance processor
design. Using ADL can benefit various phases in the process of design of high per-
formance processors and can simplify the human work greatly. According to the anal-
ysis above, we conclude the critical problems in the research of ADL and give some
suggestions to the development and evolution of ADLs.

Acknowledgements. The research is supported by National Natural Science
Foundation of China with Grant No.60970037, and by Doctor Program Foundation of
Education Ministry of China with Grant No.20114307130003.

References

1. Barbacci, M.R.: Instruction set processor specifications (isps): The notation and its appli-
cations. IEEE Trans. Comput. 30(1), 24–40 (1981)

2. Abrar, S.S.: Advances in SoC and Processor Modeling Methodologies,
http://www.design-reuse.com/articles/20577/
soc-processor-modeling-methodologies.html

3. Mishra, P., Dutt, N.: Processor Description Languages-Applications and Methodologies.
Morgan Kaufmann Publisher (2008) ISBN 978-0-12-374287-2

4. Marwedel, P.: The mimola design system: Tools for the design of digital processors. In:
Proceedings of the 21st Design Automation Conference, DAC 1984, pp. 587–593. IEEE
(1984)

5. Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using nML.
In: Proceeding of European Design and Test Conference, ED&TC 1995, pp. 503–507
(1995)

6. Zivojnovic, V., Pees, S., Meyr, H.: LISA-machine description language and generic ma-
chine model for HW/SW co-design. In: Proceeding of VLSI Signal Processing, IX, pp.
127–136 (1996)

7. http://www.bluespec.com/hardwaremodels/hardwaremodels.html
8. Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRESSION: a

language for architecture exploration through compiler/simulator retargetability. In: Pro-
ceedings of the Conference on Design, Automation and Test in Europe, DATE 1999.
ACM, New York (1999)

9. Itoh, M., Higaki, S., Sato, J., Shiomi, A., Takeuchi, Y., Kitajima, A., Imai, M.: PEAS-III:
An ASIP design environment. In: Proc. IEEE International Conference on Computer De-
sign, VLSI in Computers & Processors (ICCD 2000), pp. 430–436 (September 2000)

10. TIE - The Fast Path to High Performance Embedded SOC Processing,
http://www.tensilica.com/products/literature-docs/
white-papers/tie-the-fast-path.html

74 L. Yang et al.

11. Smeda, A., Oussalah, M., Khammaci, T.: MADL: Meta Architecture Description Lan-
guage. In: Proceedings of the Third ACIS Int’l Conference on Software Engineering Re-
search, Management and Applications (SERA 2005). IEEE Computer Society, Washing-
ton, DC (2005)

12. Pastel, R.: Describing vliw architectures using a domain specific language. Master’s thesis,
Michigan Technological University (2001)

13. ArchC - The Architecture Description Language,
http://archc.sourceforge.net/

14. Fischer, D., Teich, J., Weper, R., Kastens, U., Thies, M.: Design space characterization for
architecture/compiler co-exploration. In: Proceedings of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2001), pp.
108–115. ACM, New York (2001)

15. Gorjiara, B., Reshadi, M., Chandraiah, P., Gajski, D.: Generic netlist representation for
system and PE level design exploration. In: Proceedings of the 4th International Confe-
rence on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2006), pp.
282–287. ACM, New York (2006)

16. Siska, C.: A processor description language supporting retargetable multi-pipeline dsp
program development tools. In: Proc. ISSS (December 1998)

The Design of the ROHC Header Compression

Accelerator

Mengmeng Yan� and Shengbing Zhang

Dept. of Computer Science and Technology,
Northwestern Polytechnical University

Xi’an, P.R. China
yanmeng meng@163.com

Abstract. ROHC (Robust Header Compression) packet header com-
pression protocol could reduce the extra overhead, which introduced by
the packetizing of the Internet transport protocol, and utilize the wire-
less bandwidth more effectively, so it is widely used. Previous studies
are mainly focused on the software implementation and optimization of
key parameters. This paper introduces the ROHC header compression
scheme applied in the wireless environment, and designs the framework
of ROHC header compression scheme in U-mode. The header compres-
sor of IPv4/UDP/RTP header has also been realized according to the
principle of ROHC under U-mode. The modules and the implementa-
tion of the compressor are described in this paper. The performances
of ROHC header compression system is analyzed through experiments.
The result shows that the hardware accelerator achieves the function of
ROHC packet header compression protocol correctly, and significantly
reduces the overhead of packet headers to effectively improve the link
utilization; at the same time has good usability and flexibility.

Keywords: ROHC, hardware accelerator, compressor.

1 Introduction

TCP/IP framework is packetized based on every layer of the protocol stack, so a
considerable part of the wireless bandwidth is used to transmit control informa-
tion (i.e. packet header). These control information, which are useless to the end
user, result in a low utilization of wireless channel bandwidth. Packet header will
introduce redundancy, which is even more than half of the whole data packet [1].
The redundancy leads to the waste of wireless bandwidth and increases the prob-
ability of the packet to be discarded because of error. It’s necessary to compress
the packet header in order to improve the utilization of wireless bandwidth.
The Compression of packet header also solves the problems of service quality
and packets’ overhead, which introduced by the real-time transmission on the
wireless link.

� Corresponding author.

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 75–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 M. Yan and S. Zhang

ROHC (Robust Header Compression) protocol for packet header compression
aims at the wireless link environment to achieve a stable and efficient packet
header compression. The studies of ROHC header compression protocol in do-
mestic and international are as follows:

Li X.W., He X.S., and Wu X.S., etc used the ROHC in third generation mo-
bile communication (3G) systems, such as Packet Data Convergence Protocol
(PDCP) sub layer [2], mobile ad hoc network system [3] or Mobile IPv6 [4] net-
works, to improve the reliability of data transmission; Fracchia R. and Kim J.
provided some new mechanisms to cope with ROHC to improve the ROHC per-
formance [5], or for the dynamic adjustment of an optimistic parameter[6]; and
Weng W. used hardware to implement the CRC calculation of ROHC protocol,
which helps to solve the ROHC protocol hardware solutions [7]. However, as far
as we know, there is no hardware accelerator that uses ROHC scheme.

The compressor in the ROHC packet header compression scheme, whose
frame-work under the U mode is introduced in this paper. ROHC packet header
compression protocol is applied to IPv4/UDP/RTP packet header in this frame-
work. The compressor’s function is implemented by Verilog HDL. The function
of compressor is verified through simulations, and the compression efficiency is
analyzed through experiments.

This paper is organized as follows. Section 2 introduces the ROHC compres-
sion protocol. Section 3 describes the structure of the compressor, including the
structure of modules and the inter-module data flow diagram. The implementa-
tion of the compression module is described in Section 4. Section 5 presents the
simulation results and the performance analysis. Finally, Section 6 presents our
conclusion and future work.

2 ROHC Compression Protocol

When a new packet flow arrives, firstly, the compressor goes into the Initialization
and Refresh (IR) state. The compressor stores the packet headers of this new
stream in a new context, then divides every header into different regions (a packet
header is divided into three groups: the Static Region, the Dynamic Region, and
the Inferred Region). Secondly, the compressor sends the whole context of the
stream to the de-compressor for several times. When the compressor is fairly
confident the decompressor has received the correct context, it transits to the
higher compression state and begins the sending of compressed packets. The
compressor must update the content of the context, which belongs to the packet
stream, after every sending, to ensure the content of the context is belonging
to the latest packet header. Then the compressor determines the need for state
transition according to current state. The correlation and the prediction between
packets are used by the decompressor to rebuild the original packets.

2.1 Compressor States and State Transition Logic

In order to improve compression efficiency, RFC3095 defines three compressor
states: initial state IR (Initialization and Refresh), the FO (First Order) state,

The Design of the ROHC Header Compression Accelerator 77

and the SO (Second Order) state [8]. The compressor of the hardware accelerator
has these three compression states too. The compressor always begins at the
lowest state, and then transmits to the higher states gradually. The compressor
transits to a lower state from a higher state occasionally. Fig. 1 is the state
machine for the compressor in Unidirectional mode (U mode) [8]. Details of the
transitions between states and compression logic are given subsequent to the
figure.

Fig. 1. Compressor transition logic

IR state: The compressor initializes and recovers the static part in the context
from error in this state. In the IR state, the compressor sends an IR packet, and
it will not transit to the higher compression state until it is fairly confident the
decompressor has received the correct static information. An IR packet contains
the complete original packet and the information of the created context, so it is
longer than the original packet.

FO state: In this state, the compressor sends the irregular part of the packet
flow. Compressor could transit to FO state from the IR state, or from the SO
state when current packet format does not match the previous one.

SO state: This is the best compression state. The compressor just sends some
additional information, such as the partially compressed Sequence Number (SN)
and Context Identifier (CID), etc. If the current packet header is no longer in line
with the previous format, and the context cannot be compressed independently
from the previous format, the compressor transits to the FO state from the SO
state.

2.2 The Packets Used by the Hardware Accelerator

IR packet: the compressor sends only IR packets when it is in the IR state. The
IR packet is mainly used to inform the decompressor to initialize the context.
The com-pressor creates a new context when it identifies a new packet flow,
then it sends an IR packet to the decompressor. The compressor informs the de-
compressor to create a corresponding decompression context for this new packet
stream by this way.

78 M. Yan and S. Zhang

IR-DYN packet: When the compressor is in the FO state, the compressor up-
dates its compression context firstly when a changing is detected in the dynamic
part of the context. Then the changed dynamic information, which organized in
an IR-DYN packet, will be sent to the decompressor.

UO-0 packet: The compressor sends packets of this type when it is in the best
compression state (SO).This packet type has the shortest length and is used to
trans-mit the value of the encoded SN field.

UO-1 packet: The compressor sends packets of this type in the SO state to
inform the decompressor when the increment of ID or TS changed.

UO-2 packet: This packet type adopts a stricter CRC check than the UO-1
packet. It transmits more dynamic information of the context to the decompres-
sor. The com-pressor sends UO-2 packets to decompressor in the FO state.

3 The Structure of the Compressor

Firstly, the compressor of the hardware accelerator initializes all the registers,
counters, and flags, etc. After the initialization, the compressor transits to IR
state to wait for the data packets sent by the upper layer. The compressor stores
the data packet sent by the upper layer, then divides every original header into
several different regions, and saves them to the corresponding position in a tem-
porary context. Then the compressor compares the quintuple (in ROHC, a con-
text determined by the following five values: source IP address, destination IP
address, source port, destination port and SSRC, packets have the same context
belong to the same packet flow) of temporary context with all the existing con-
texts. The compressor determines whether the context of the current packet flow
has been established or not. If an established context has the same quintuple
with the current one, the compressor compresses the header sent to the decom-
pressor according to the state of this context. If the current quintuple does not
match any context that has been established, the compressor will creates a new
context for the packet flow. After these done, the compressor determines whether
to do a state transition. The compressor transits to a suitable compression state
according to current condition.

3.1 The Structure of Modules

This design consists of four modules: the top module, the packet input module,
the compression module and the packet output module. Here the role of each
module is described.

Reading data packets, compressing packet header and outputting packets are
implemented in the top module, so the packet input module, the compression
module and the packet input module are instantiated in the top module. In
order to make the packet input module, the compression module and the packet
output module work in parallel, three FIFO queues: the Packet Payload (PP),
the Uncompressed Packet Header (UPH), and the Compressed Packet Header
(CPH), are designed in the top module. Three modules get their data from their
corresponding FIFO for the purpose of parallel.

The Design of the ROHC Header Compression Accelerator 79

Packet Input Module. The function of the packet input module is transfer-
ring packets from upper layer to the corresponding FIFO queues. This module
continuously receives data sent from the upper layer and does the following
steps: divides the whole packet into two parts: one part is the header needs
compression, and the other is the payload that doesn’t need compression. And
the compressor stores the data needn’t to be compressed in the PP FIFO queue
while stores the data need to be compressed in the UPH FIFO queue. As long as
there is a packet need to be sent, the packet input module continues to receive
data from upper layer.

Compression Module. After the packet header has been stored in the FIFO
queues, the top module sends a signal to the compression module to inform
it to compress the header of this packet. The compression module stores the
compressed header into the CPH FIFO queue if it completes the compression.

Packet Output Module. The packet output module’s function is organiz-
ing the compressed headers and their corresponding payloads together to form
a compressed packet. This module constantly sends compressed packet to the
decompressor at a rate of 2 Byte/cycle.

3.2 Inter-module Data Flow Diagram

The data flow between modules is shown in Fig. 2

Fig. 2. Compressor transition logic

The packet input module transfers the data to the FIFO queues in the top
module at a rate of 2 Byte/cycle, and it distinguishes the type of the data before
storing them: stores the data in the PP FIFO queue if they are payload type; if
the data are packet header type, stores them in the UPH FIFO queue.

If the compression module is idle, at the mean while the UPH FIFO queue
has headers, the compression module reads a header from the UPH FIFO queue
and compresses it, then stores the compressed header in the CPH FIFO after

80 M. Yan and S. Zhang

the compression, Then the compression module informs the top module it is idle
again.

The packet output module determines which FIFO queue is selected to provide
the data according to the current need of data. If the packet payload is needed,
then the module gets data from the PP FIFO queue; if the compressed header
is needed, then the module gets data from the CPH FIFO queue. This module
will not be idle until there has no data to be sent to the decompressor.

4 Implementation of the Compression Module

The function of the compression module is compressing the packet header. The
state machine of the compression module is shown in Fig. 3.

Fig. 3. Compressor transition logic

The states of the compression module are described as follows:
SC0: In this state the compressor initializes all of the registers, counters, state

flags, etc.
SC1: In this state the compressor determines whether the context of current

data packet has been established. If it has been established, the compressor will
transmit to SC2, otherwise to SC4.

SC2: In this state the compressor compares the current context with all ex-
isting contexts, and sets the corresponding flags according to the comparison
result, and then transmits to SC3.

SC3: In this state the compressor updates the context using the information
of cur-rent packet, then transmits to SC6.

SC4: In this state the compressor assigns a usable CID to the current packet
flow, and then transmits to SC5.

The Design of the ROHC Header Compression Accelerator 81

SC5: In this state the compressor establishes a new context for current packet,
saves the various regions of this packet header to the corresponding position of
the context, sets the corresponding flags, and then transmits to SC6.

SC6: In this state the compressor judges its current compression state, does
the next steps according to the result: if current state is IR, the compressor
transmits to SC7; if current state is FO, the compressor transmits to SC8; if
current state is SO, the compressor transmits to SC9.

SC7/SC8/SC9: In these states the compressor determines the packet type to
be sent in the IR, FO and SO state respectively then generates the corresponding
compressed packet header.

SC10: In this state the compressor determines whether to do a state transition
and saves the compressed packet header into the corresponding FIFO queue, then
trans-mits to SC1 to wait for compressing the new packet header, which sent
from the up-per layer.

5 Simulation and Performance Analysis

The header compression function is verified through simulation, and the analysis
of the compression sufficiency is taken through experiments. The compression
program runs on the compressor and the decompression program runs on the
decompressor. The compressor compresses the packets immediately when it re-
ceives them, then the compressed packets sent to the decompressor to rebuild
the original packets.

Fig. 4. Compressor transition logic

Fig. 4 shows the structure used in the experiments. In this structure, the
packet generation component generates packets continuously, and sends the
packets to the compressor of the accelerator and the counting component. After
compressing the packets, the compressor sends the compressed packets to the
decompressor and the counting component. The function of the counting com-
ponent is counting the number of the general packets (NGP) received by the
compressor, the length of the general headers (LGH), the length of the general
packets (LGP), the length of the packet (LCP) in each compression type, and

82 M. Yan and S. Zhang

Table 1. The compression efficiency under U mode

Packet Type NGP LGH LGP LCH LCP

IR 4 160 790 164 794
IR-DYN 0 0 0 0 0
UO-0 100 4000 20000 200 16200
UO-1 0 0 0 0 0
UO-2 24 960 4800 96 3936
Sum 128 5120 25590 460 20930

the length of the header (LCH) in each compression type. The result shown in
Table 1 is provided by the counting component.

The compressor of hardware accelerator compresses the original IPv4/UDP/
RTP packet header effectively, with the analysis of Table 1.

In the experiment, the length of original headers is 40 bytes, and the size of
the packet is 200 bytes. The compressor could compress the header into 3.6 bytes
on average. The Brand Gain is defined by (1)

Brand Gain =
H − h

H + S
. (1)

In (1) S is the size of the packet, H is the size of the original header, and
h is the size of compressed header. Therefore, the Brand Gain is 0.182. The
Header Gain of each packet is calculated by (2):

Header Gain = 1− Payload

Header + Payload
=

Header

Header + Payload
. (2)

In the experiments, the Header Gain is up to 0.91 when the bit error ratio of
the wireless link is low. The compressor greatly reduces the header length of the
packet, and saves a great many of wireless bandwidth resources. For instance,
the length of IPv4/UDP/RTP packet that used in the voice communication is
40B, the length of payload is 33B. The Brand Gain is up to 0.507 when these
packets compressed by ROHC accelerator. It is obvious that compressed packets
only use half of the original bandwidth. In our experiment, when the compressor
and the decompressor run stably, the compressor could compress a 200-byte
packet into only 163.5 bytes to transmit.

6 Conclusion

The ROHC header compression scheme is introduced in this paper, and the
frame-work of ROHC header compression scheme in U-mode is designed, under
which the compressor of the hardware accelerator has also been realized accord-
ing to the principle of ROHC. A method has been programmed by Verilog HDL
to compress IPv4/UDP/RTP packet headers. The analysis of the performances
of ROHC header compression system is described in this paper. The result shows

The Design of the ROHC Header Compression Accelerator 83

that ROHC header compression scheme reduces the overhead of packet header
significantly (a 40-byte header could be compressed into 2 byte in the best com-
pression state, i.e., header of the UO-0 packet), at the same time provides more
effective link utilization. The accelerator works correctly and stably.

This accelerator will be developed to support more profiles, and the O-mode
and R-mode of ROHC are going to be implemented in the recent future. In this
frame, the accelerator can accommodates up to 16 contexts. However, the context
space is not big enough to support more than 16 packet flows concurrently. So
the replacement algorithm has to be accomplished to improve the performance
of the accelerator.

Acknowledgments. We sincerely thank Lin Fu, Bo Liu, Yuhao Sun, and some
other reviewers for their useful feedback and suggestions on earlier versions of
this manuscript.

References

1. Mani, D., Gaubler, M., Frehner, C.: ROHC Implementation. University of Applied
Sciences Rapperswil, USA (2005)

2. Li, X.W., Hu, X.L.: Research and realization of ROHC in PDCP sublayer in 3G
system. Journal of Chongqing University of Posts and Telecommunications (Natural
Secience Edition) 22, 174–178 (2010) (in Chinese)

3. He, X.S., Hu, H.Y.: Mechanism of Header Compression over AODV-based MANET.
Communications Technology 41, 138–139 (2008) (in Chinese)

4. Wu, T.Y., Chao, H.C., Lo, C.H.: Mechanism of Header Compression over AODV-
based MANET. Communications Technology 5, 138–139 (2008) (in Chinese)

5. Fracchia, R., Gomez, C., Tripodi, A.: R-ROHC: A Single Adaptive Solution for
Header Compression. In: Proc. IEEE Symp. Vehicular Technology Conference (VTC
Spring), pp. 1–5. IEEE Press, Budapest (2011)

6. Kim, J., Woo, H., Lee, H.: Dynamic Adjustment of Optimistic Parameter of ROHC
for Performance Improvement. In: Proc. IEEE Symp. International Conference on
Information Networking (ICOIN 2009), pp. 1–3. IEEE Press, Chiang Mai (2009)

7. Weng, W., Liu, S.P.: Hardware Implementation of the CRC Calculation in ROHC
Protocol. Electronic Technology 6, 19–20 (2011) (in Chinese)

8. Bormann, C., Burmeister, C., Degermark, M.: Robust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP and Uncompressed. Stan-
dards Track (2001)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 84–91, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Hardware Implementation
of Nussinov RNA Folding Algorithm

Qilong Su, Jiang Jiang, and Yuzhuo Fu

School of Microelectronics
Shanghai Jiao Tong University, Shanghai, 200240, China

{suqilong,jiangjiang,fuyuzhuo}@ic.sjtu.edu.cn

Abstract. The RNA secondary structure prediction, or RNA folding, is a com-
pute-intensive task that is used in many bioinformatics applications. Developing
the parallelism of this kind of algorithms is one of the most relevant areas in
computational biology. In this paper, we propose a parallel way to implement
the Nussinov algorithm on hardware. We implement our work on Xilinx FPGA,
the total clock cycles to accomplish the algorithm is about half of using soft-
ware in serial way, and we also partly resolve the limitation of fixed length re-
quirement of existing hardware implementation with an efficient resource
usage.

Keywords: Nussinov algorithm, vector operand, hardware implementation.

1 Introduction

Ribonucleic acid (RNA) molecule is one of the most important molecules in the bio-
logical systems. They can carry out diverse functions in living beings, plants and mi-
croorganisms. Though RNA is a single chain structure, the base will bond as pairs
with another in the same chain. Under normal conditions, the RNA chain will twist,
and the molecule then forms a coiled structure, this is called the secondary structure
of the chain and the sequence of the bases is called the primary structure. The func-
tion of a RNA molecule is actually determined mainly by the folded shape of the sec-
ondary structure. Thus, determining the secondary structure is the key to analyze and
to assign functions to RNAs.

At present, most important way to predict the secondary structure is the minimum
free energy (MFE) method, and the most classical algorithm using the MFE method is
the Nussinov algorithm, which was developed by Nussinov on 1978. The Nussinov
algorithm uses the number of base pairs in the structure as a proxy to determine the
minimum energy of the sequence. If one structure contains the maximum base pairs, it
should be the one with the minimum free energy. More recent folding methods have
used empirically learned models, in particular stochastic context free grammars
(SCFGs) [5] , which directly assign probabilities to potential RNA structures. All
these methods, however, use the dynamic programming recurrences of the same basic
shape as Nussinov’s algorithm [1].

 A Hardware Implementation of Nussinov RNA Folding Algorithm 85

Performing calculations of a RNA folding problem using present algorithms usual-
ly needs at least ܱሺ݊ଷሻ complexity in time by software, which is really a time-
consuming task for long RNA sequence folding or applications which will frequently
launch this job. So use hardware approach to develop the parallelism in this algorithm
is a very attractive idea. Many prior researchers [1] [2] have tried to solve this prob-
lem in an efficient form. In [1], authors have implemented Nussinov algorithm on
FPGA, they built both GKT array and GJQ array which can operate with sequence of
length 34 and 62 respectively. Document [2] presents an accelerating circuit on FPGA
based on the Sankoff and Kruskal algorithm [9], which is very similar with the Nussi-
nov algorithm. These two works both get a nice clock cycles performance on FPGA,
but there circuit both requires fixed length of RNA sequence, and their modification
for fitting to other lengths will be a huge work. This limits usage of their architecture
in practical application.

In this paper, we propose an approach to develop the parallelism in the Nussinov
algorithm by using a vector operand and present a sample implementation on Xilinx
Virtex-6 FPGA. The result accords with theoretically expect and gives about half
decrease of total cycles needed to accomplish the algorithm. Besides that, since we
use block-rams instead registers to store temp data in the computing, our work partly
resolves the needed of fixed length by previous hardware implementations, and that
with a good hardware resource costs.

The rest of this paper is organized as follows. Section 2 shows the Nussinov algo-
rithm and the vector operand version for hardware implementation. Section 3 presents
the details of our sample implementation on FPGA. In section 4 we give the results of
simulations and the resource usage, and the performance data. At last, in Section 5,
we conclude from the results as the summarization, and propose the future work to
adapt arbitrary length sequence and develop more parallelism.

2 Nussinov Algorithm

For the RNA sequence s of length N, the Nussinov algorithm finds a folding with the
maximum pairs with a complexity of ܱሺ݊ଷሻ in serial time. The algorithm is formal-
ly written as:

 ܵሺ݅, ݆ሻ ൌ ݔܽ݉ ۔ە
,௜ழ௞ழ௝ሾܵሺ݅ݔܽ݉ۓ ݇ሻ ൅ ܵሺ݇ ൅ 1, ݆ሻሿܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻܵሺ݅ ൅ 1, ݆ሻܵሺ݅, ݆ െ 1ሻ (1)

Function eሺi, jሻ represents the matching condition for the pairሺi, jሻ. The value of eሺi, jሻ is:

 ݁ሺ݅, ݆ሻ ൌ ൜ 1, ݂݅ ሺ݅, ݆ሻ ൌ ሺܣ, ܷሻݎ݋ ሺܩ, ݆ ሻܽ݊݀ܥ െ ݅ ൒ (2) ݁ݏ݈݁ ,40

Usually for implementation considerations, another simpler version of this formula
which is widely used is as follows:

86 Q. Su, J. Jiang, and Y. Fu

 ܵሺ݅, ݆ሻ ൌ ݔܽ݉ ൜݉ܽݔ௜ஸ௞ழ௝ሾܵሺ݅, ݇ሻ ൅ ܵሺ݇ ൅ 1, ݆ሻሿܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻ (3)

According to the formula above, the Nussinov algorithm fills an n ൈ n upper triangle
matrix S with non-negative integers. After the matrix S is filled, Sሺi, jሻ is the maxi-
mum number of pairs in subsequence r୧r୧ାଵ … r୨ and in particular, Sሺ1, nሻ is the
maximum pair number of the whole RNA sequence. The triangle matrix is shown in
Fig.1.

Fig. 1. Nussinov Algorithm Upper Triangular Matrix

The Nussinov algorithm based on software implementation in serial way can be
described with the following pseudo-code as shown in Fig. 2.

Fig. 2. Nussinov algorithm based on software

According to the pseudo-code shown above, we can compute out the loop times of

the algorithm is ଵ଺ nሺn ൅ 1ሻሺn ൅ 2ሻ, where n is the length of the RNA sequence, and

each loop performs 1 addition and 1 comparison. On hardware platform, we have
adequate computing resource to perform no dependent operations at a time. So we can
use a vector operand instead of the scalar operand on hardware platform to develop
the parallelism within the algorithm. Based on this idea, we can describe the Nussinov
algorithm based on vector operand with the pseudo-code shown in Fig. 3.

for(j=0; j<N; j++) // Diagonal Number
for(i=0; j<N-j; i++) // Row of Matrix S
for(k=i; k<j; k++) // Compute each grid

Temp = B[i][k] + B[k+1][j];
B[i][j] = max{Temp, B[i][k]}

 A Hardware Implementation of Nussinov RNA Folding Algorithm 87

Fig. 3. Nussinov algorithm based on vector operator

Here we use a vector operand of size 2 for simplicity but without loss of generality.
By this way, the inner 2 recurrences reduce about half loop cycles each, so the total
loop cycles should be around a half of the original scalar way. The more accurate

result of this is
ଵଵଶ ݊ሺ݊ ൅ 1ሻሺ݊ ൅ 10ሻ for average, which validates our approach

theoretically.

3 Hardware Implementation

3.1 Overview

The key point to implement the Nussinov algorithm based on vector operand is the
use of vector PE shown in Fig. 4(B). To achieve the maximum usage of vector PE, the
data supplier must supplies 2n+1 operands each cycle to perform computing, where n
is the size of the vector. In our implementation, we use vector size of 2 for simplicity.

PE CorePEops

A0

B0

A1

B1

R_out

R
_
c
m
p

Control

Unit

M E M

B0_in

B1_in

S W A P

SWAP_out/B1_in

R/W ctrl

H
o
l
d

R_out/A1_in

PEops

S
W
A
P
_
o
u
t

Hold

>

>

>

>

A0

B0

A1

B1

An-1

Bn-1

An

Bn

CMP

Result

PE

Fig. 4. (A) System structure. (B) Vector operator based PE

3.2 Data Path

Though the computing form applies to each grid of the matrix, the operands for each
computation do not follow a uniformed data path. The implementation shown in doc-
ument [2] proposes an approach use a register to store the value of each grid and a PE

for(i=N-1; i>=0; i--) // Rows of Matrix S
for(j=i; j<=N; j+=2) // Colomns of Matrix S
for(k=j+2; k<N; k++) // Compute each grid

Temp1 = B[i][j] + B[j+1][k];

B[i][k] = max{Temp1, Temp2, B[i][k]}
Temp2 = B[i][j+1] + B[j+2][k];

88 Q. Su, J. Jiang, and Y. Fu

to compute each grid. The data path from grid register to PE is a static connection that
can hardly be changed thus can only fit for a fixed length, which results not very good
usability. In our work, we use a block-ram (MEM) used for operator supplier for PE,
and also used to store the computed result for next usage. The process element (PE)
gets operands from MEM, and performs appropriate operation according to the cur-
rent working status. In most time, the PE need 5 operands input and compute 1 result
out. To reduce the bandwidth pressure for MEM and avoid R/W conflict, we use
another smaller block-ram to swap (SWAP) data. The control unit (CU) controls the
stage transfer of the system, and generates appropriate address for MEM and SWAP,
and controls the PE to perform right operation.

In our design, we use a dual-port block-ram resource on Xilinx Virtex-6 FPGA as
MEM. Since we need perform 2 additions each cycle, the dual-port block ram could
supply 2 operands at a time that meets our requirement. Review the algorithm shown
in Fig. 3. B[j+1][k] and B[j+2][k] is supplied by MEM. Notice that B[i][j] and
B[i][j+1] do not change along in the inner loop, so we can use 2 temp registers, REG0
and REG1, to hold these two operands within one loop. B[i][k] is stored in SWAP,
each cycle SWAP read B[i][k] out for PE to perform computation, and writes the
result back to SWAP. When the 2 inner loops are finished, a swap operation is per-
formed to transfer result in SWAP to MEM, also next initial value from MEM to
SWAP. The system structure and data path are shown in Fig. 4(A).

Fig. 5. Working stage transfer graph

3.3 Control Flow

The system working stage graph is shown in Fig. 5. After reset, stage is set to Reset,
and then change to working stages. After the algorithm is accomplished, the stage
changes to Stop. All the working stages are described as follows:

 A Hardware Implementation of Nussinov RNA Folding Algorithm 89

• Prefetch: In this stage, the swap between SWAP and MEM is performed. ݁ሺ݅, ݆ሻ is read from MEM and ܵሺ݅ ൅ 1, ݆ െ 1ሻ is read from SWAP, PE performs ܵሺ݅ ൅ 1, ݆ െ 1ሻ ൅ ݁ሺ݅, ݆ሻ as the current result of ܵሺ݅, ݆ሻ . The result of ܵሺ݅, ݆ሻ is
written into SWAP and ܵሺ݅ ൅ 1, ݆ െ 1ሻ is written into MEM.

• Store: After the Prefetch stage is finished, there’s still one result left in the SWAP.
This stage use one cycle to transfer this result into MEM.

• Load0: Simply read current ܵሺ݅, ݆ሻfrom SWAP and load it into REG0 as A0
• Load1: Read current ܵሺ݅, ݆ሻ from SWAP, and PE compare larger of ܵሺ݅, ݆ሻand A0

as current ܵሺ݅, ݆ሻ result. Load this result into REG1 as A1and also write it back to
SWAP.

• Normal: Performs normal computation. PE read B0 and B1 from MEM, and per-
forms addition with A0 and A1 from REG0 and REG1 respectively. Current ܵሺ݅, ݆ሻis read from SWAP, and PE compares the largest of ܵሺ݅, ݆ሻ together with 2
addition results as current ܵሺ݅, ݆ሻ, and writes it back to SWAP.

4 Results

We have implemented our design in Verilog HDL, verified them in simulation with
ModelSim 10.1, and synthesized it on a Xilinx Virtex-6 XC6VLX240T FPGA (hosted
on the ML605 evaluation board) with Xilinx ISE 12.2. We generate 4 RNA sequences
randomly with length of 10, 20, 30 and 50 respectively to test the performance of our
implementation. The comparison results with software approach are shown in Table 1
and 2. In Table 1, the total clock cycles needed by our implementation and by soft-
ware. Cycles needed by software are calculated according to the formulation we used
in Section 2. We can see the results accord with our theoretically expect in a rough
analogy. The deviation lies in that Normal stage is not the only stage in the system.
But we can see the trend is that, as with the length increases, the effect of this factor
decreases.

Table 1. Clock cycles on Hardware/Software

Sequence length 10 20 30 50
Our work(cycles) 140 955 2950 12450
Software (cycles) 220 1540 4960 22100

Speedup Ratio (%) 63 62 59 56

In Table 2 we compared the execution time of above 4 test cases, both for our
hardware implementation and a C based software implementation. Even software
implementation can be improved; we can see the difference in time of our hardware
implementation is remarkable, since the CPU’s frequency is much faster than our
implementation. Besides that, compared with other implementations on hardware, our
work is more flexible and could handle sequences with different length up to 200. We
have shown the comparison result in Table 3. We can see that compared the imple-
mentation in Reference [2] , our design could have efficient usage of logic resources
but covers a large range of lengths. This partly resolves the problem for different
length needed in practical application.

90 Q. Su, J. Jiang, and Y. Fu

Table 2. Time elapsed on Hardware/Software

Sequence length 10 20 30 50
Our work on Virtex 6

at 180Mhz (ns)
770 5,252 16,225 68,475

Intel Core 2 Duo
2.93GHz CPU (ns)

2,793 13,130 37,434 147,784

Speedup Ratio 3.63 2.5 2.3 2.16

Table 3. Logic resource usage comparison with Reference [2]

 Reference[2] Our work
Sequence length 10 20 30 From 10 to 200

Slices 367 5365 23252 492
Flip-Flops 159 1398 5427 188

Inputs/outputs 18 20 20 10
Frequency (MHz) 63.39 38.69 87.75 180.94

5 Conclusions and Future Works

In this work we have proposed a parallel approach to compute the Nussinov algorithm
by using vector operands, and presented a sample implementation on Xilinx Virtex-6
FPGA. The result accords with theoretically expect and gives about half decrease of
total cycles needed to accomplish the algorithm. Besides that, since we use block-
rams instead registers to store temp data in the computing, our work partly resolve the
needed of fixed length by previous hardware implementations, as well as with a good
resource usage. Next stage in the future, we will focus on 2 points for further re-
searching. One is that though we decrease a half cycles from the original, still it is a
large time cost when the length grow larger. So much more parallelism should be
developed to accelerate the computing. Besides that, we will further works on reduce
the memory usage for the system while handling sequences with arbitrary length.

Acknowledgements. Our work is supported by the IBM Shared University Research
(SUR)，System-level Virtualization Based on Reduced Hyper Multi-core Architec-
ture, SUR201102X.

References

1. Jacob, A., Buhler, J., Chamberlain, R.D.: Accelerating Nussinov RNA secondary structure
prediction with systolic arrays on FPGAs. In: Proceedings of 19th IEEE International Con-
ference on Applications-Specific Systems, Architectures and Processors, Leuven, Belgium
(2008)

2. Diaz-Perez, A., Garcia-Martinez, M.A.: FPGA Accelerator for RNA Secondary Structure
Prediction. In: Proceedings of 12th Euromicro Conference on Digital System De-
sign/Architectures, Methods and Tools (2009)

 A Hardware Implementation of Nussinov RNA Folding Algorithm 91

3. Nussniov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings.
SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

4. Zuker, M., Stiegler, P.: Optimal Computer Folding of Large RNA Sequences Using Ther-
modynamics and Auxiliary Information. Nucl. Acids Res., 133–148 (September 1981)

5. Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C.,
Haussler, D.: Stochastic context free grammars for tRNA modeling. Nucleic Acids Re-
search 22, 5112–5120 (1994)

6. Chang, D.J., Kimmer, C., Ming, O.Y.: Accelerating the Nussinov RNA Folding Algorithm
with CUDA/GPU. In: Signal Processing and Information Technology (2010)

7. Vidal, M.T.: Estrategias de particionamiento paralelo para el problema de RNA. Master’s
thesis, CINVESTAV-IPN, Mexico, D.F. (2002)

8. Cruz, G.J.: Particionamiento paralelo eficiente del algoritmo con complejidad O(n4) para el
problema de RNA. Master’s thesis. CINVERSTAV-IPN, Mexico, D.F. (2005)

9. Sankoff, D., Kruskal, J.: Time warps, string edits, and macromolecules: The theory and
practice of sequence comparison. Addison-Wesley, Reading (1983)

10. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cambridge
University Press (1998)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 92–101, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Configurable Architecture
for 1-D Discrete Wavelet Transform

Qing Sun, Jiang Jiang, and Yuzhuo Fu

School of Microelectronics, SJTU, Shanghai, P.R. China
{sunqing,jiangjiang,fuyuzhuo}@ic.sjtu.edu.cn

Abstract. This work presents a novel configurable architecture for
1-dimensional discrete wavelet transform (DWT) which can be configured into
different types of filters with different lengths. The architecture adopts poly-
phase filter structure and MAC loop based filter (MLBF) to achieve high
computing performance and strong generality of the system. Loop unrolling ap-
proach is used to eliminate the data hazards caused by pipelining. The hardware
usage of the configurable architecture is fixed for any kind of wavelet functions.

Keywords: 1-D DWT, Configurable circuit, VLSI, FPGA.

1 Introduction

In the last few years, discrete wavelet transform (DWT) has been used for a wide
range of applications including signal analysis, image coding and compression, pat-
tern recognition, and computer vision. The multiresolution feature and improved
compression compared to existing methods such as the discrete cosine transform
(DCT)-based compression schemes adopted in the old JPEG standard makes DWT a
leading role in today’s signal processing area.

Most major VLSI architectures to implement the DWT (both 1-D and 2-D) can be
categorized into filter bank approach and lifting approach[1]. The filter bank approach
(or the convolution approach) is an intuitive implementation of Mallat’s multiresolu-
tion theory on digital circuit[2]. It has advantages of regular structure and good scala-
bility, and is easy to be pipelined. The lifting approach[3] , on the other hand, uses
Euclidean algorithm to decrease the computation complexity of DWT and its maxi-
mum speedup compared to the filter bank approach is 100%.

The filter bank approach had been deeply researched and widely used before the
appearance of the lifting algorithm. Efforts had been made to fully exploit the paral-
lelism of this structure, such as the recursive pyramid algorithm[4] , and the poly-
phase structure. The lifting structure is a polyphase structure in itself, and is much
more hardware saving compared to the filter bank approach, which makes it very
attractive to the users and designers. Drawbacks of the lifting structure are the relative
long critical path and irregular structure. Although the critical path problem has been
overcome by the Flipping method[5], poor scalability and irregular circuit structure
remain to be obstacles for the researchers to exploit the generality of this structure.

 A Configurable Architecture for 1-D Discrete Wavelet Transform 93

Despite the fact that lots of researches has been done to optimize the VLSI archi-
tecture for specific kinds of wavelets, the generality of the circuit were rarely men-
tioned. In this paper, a configurable architecture for DWT with strong generality is
introduced, this architecture can deal with 1-D DWT with any kind of wavelet func-
tions. In other words, the architecture can be configured into filter banks of different
lengths using fixed hardware. This configurable architecture is mainly based on the
filter bank approach, because in order to adapt the architecture to every kind of wave-
let, the circuit structure should be as regular as possible. Polyphase method is em-
ployed in our design to optimize the throughput, and MAC loop based filter (MLBF)s
were used as the basic processing units to imitate the computing process of filters
with different lengths. To optimize the critical paths and static timing performance,
the architecture is pipelined and the loop unrolling method is used to solve the data
hazard problems

This paper is organized as follows. In Section 2, concepts of filter bank approach
and polyphase structure are introduced. Section 3 describes the structure of MLBF.
The architecture of the configurable circuit is illustrated in Section 4, while Section 5
gives performance analysis and comparisons. Section 6 describes the FPGA imple-
mentation of the system and the experimental results. Section 7 concludes the paper.

2 Filter Bank Design for 1-D DWT

2.1 Filter Bank For 1-D DWT

The arithmetic computation of 1-D DWT can be expressed as filter convolutions and
downsamplings as follows:

 
−

=

−×=
1

0

)2()()(
P

i
L inxihnx

1

0

() () (2)
P

H
i

x n g i x n i
−

=

= × −

(1)

Where h can be considered as a lowpass filter and g as a highpass filter. Therefore,
DWT can be viewed as the multiresolution decomposition of a sequence[6].

2.2 Polyphase Structure

Since half of the results of the filters would be sub-sampled, this part of “ineffective”
computations should be replaced with some “effective” computations from the subse-
quent levels, and this is the basic idea of the recursive pyramid structure (or the folded
structure)[4]. Another way to exploit that “ineffective” half of the computation is to
replace the normal filters with polyphase filters, which is illustrated in Fig.1. The
original non-polyphase filter is divided into an odd filter and an even filter, and the
results of the polyphase filters are exactly the same as the results of the non-polyphase
filters.

94 Q. Sun, J. Jiang, and Y. Fu

Fig. 1. Polyphase filter structure

By eliminating the “ineffective” computations, the throughput of the filter is
doubled without any additional hardware.

3 MAC Loop Based Filter

3.1 Structure of MAC Loop Based Filter

The most common filter structure is shown in Fig.2.

Fig. 2. Traditional convolution based filter

Fig. 3. Structure of a loop based MAC pair

The main drawback of the traditional convolution based filter is that the length of
the filter depends on the number of the MACs. To overcome this problem, a MAC
loop based filter(MLBF) is proposed to imitate the computation of an N-tap filter,
where N can be any positive integer.

 A Configurable Architecture for 1-D Discrete Wavelet Transform 95

As it shows in Fig.3, the MLBF is composed of two MACs which are connected in
a loop style. Here, we use the word “loop” to represent the physical MAC loop and
the word “round” to represents the following operations:

• The multiplier in MAC0 multiplies an input data with a filter coefficient and get
the result M0

• The adder in MAC0 adds M0 to the result from the previous round (if it is not the
first round) or zero (if it is the first round), and gets A0.

• The multiplier in MAC1 multiplies an input data with a filter coefficient and gets
the result M1.

• The adder in MAC1adds M1 to A0, and gets the result A1. A1 will be used as a
input data for the next round (if it is not the last round), or be outputted as the re-
sult of the filter.

The MLBF can imitate any kind of filter just by controlling the number of rounds. For
instance, to emulate the operation of a 6-tap filter, the input sequence should be mul-
tiplied and accumulated in the loop for 3 rounds.

3.2 Data Hazards in Pipelined MLBF

In order to minimize the critical path of the MLBF, the multipliers and the adders are
pipelined. However, when applying the pipeline structure to the adders, some data
hazards happen because the latency of the loop is linearly related to the number of
stages in the pipeline structure. An example is given to illustrate the data hazard. To
simplify the analysis, the pipeline stages of the adders are assumed to be one, which
means the adders are pipelined by adding an output register as shown in Fig.3.

Table 1. Schedule for pipelined MLBF

T M0 M1 A0 A1
1 x(k-5)h(5)
2 x(k-3)h(3) x(k-4)h(4) 0+x(k-5)h(5)
3 x(k-1)h(1) x(k-2)h(2) Data hazard R0+x(k-4)h(4)

Table 1 shows the schedule of the computations of every adder and multiplier in
the loop. M0 stands for the multiplier in MAC0 and A0 stands for the adder in
MAC0. R0 is the result of A0 which was ready in previous cycle.

The data hazard happens in the third cycle, because when the result of M0, which
is x(k-3)h(3), is ready, it’s expected to be added to x(k-5)h(5)+x(k-4)h(4). However,
at the exactly same cycle, x(k-5)h(5)+x(k-4)h(4) is being computed by A1 and won’t
be ready until the next cycle. Such read-after-write data hazard can be overcome by
loop unrolling approach.

Table 2 presents the new schedule for the pipelined MLBF after adopting the loop
unrolling approach. The result of the nth point and n+1th point will be ready in cycle
7 and cycle 8.

96 Q. Sun, J. Jiang, and Y. Fu

Although the example above only discussed the situation of one-stage pipeline, the
idea to solve the data hazard problems for any n-stage pipeline is quite same. The
only change is to put more subsequent computations forward.

Table 2. Schedule for pipelined MLBF after adopting loop unrolling

T M0 M1 A0 A1
1 x(n-5)h(5)
2 x(n-4)h(5) x(n-4)h(4) 0+x(n-5)h(5)
3 x(n-3)h(3) x(n-3)h(4) 0+x(n-4)h(5) R0+x(n-4)h(4)
4 x(n-2)h(3) x(n-2)h(2) R1+x(n-3)h(3) R0+x(n-3)h(4)
5 x(n-1)h(1) x(n-1)h(2) R1+x(n-2)h(3) R0+x(n-2)h(2)
6 x(n)h(1) x(n)h(0) R1+x(n-1)h(1) R0+x(n-1)h(2)
7 x(n+1)h(0) R1+x(n)h(1) R0+x(n)h(0)
8 R0+x(n+1)h(0)

4 Configurable Architecture for 1-D DWT Based on MLBF

Combining pipelined MLBF with polyphase approach, a novel configurable architec-
ture for 1-D DWT is proposed. Fig.4 is a diagram of the overall architecture. CC
stands for a single configurable circuit. Four pipelined MLBFs work as the filters in
the filter bank. Since the MLBF can be expanded to filters of different lengths, the
generality of the architecture is well guaranteed.

As described in Fig.4, the even-(odd-) filters, which are MLBF0 (MLBF1) and
MLBF2 (MLBF3), share the same local memory, because the data feed for the two
even-(odd-) filters are exactly the same. Therefore, the memory size requirement is
same in the polyphase structure as in the non-polyphase structure. The local memories

Fig. 4. Overall architecture for configurable 1-D DWT circuit

 A Configurable Architecture for 1-D Discrete Wavelet Transform 97

are implemented using dual-port RAMs to satisfy the bandwidth requirement. To
avoid write-after-read hazards, the local memories are double buffered.

If the length of the original non-polyphase filter is odd, the length of the two deriv-
ative polyphase filters won’t meet. In such circumstance, the length of the filters
should be increased to an even-number by adding a 0 as the new coefficient of the
filter. The drawback of the expansion of filter length is that it will cause some useless
operations due to the multiplications of the inputs with 0. Configuration registers store
the configuration parameters set by the users.

5 Performance Analysis And Comparison

Assuming the input size is N, the number of the levels of the DWT is J, and length of

the filter bank is L. Theoretically,
12k

N L
−

×
multiplications and

1

(1)

2k

N L
−

× −
accumula-

tions should be done to accomplish the kth level DWT decomposition, therefore

1
1 2

J

k
k

N L
−

=

× multiplications and
1

1

(1)

2

J

k
k

N L
−

=

× − accumulations are needed in a J-level

DWT. Recall that the length of the original non-polyphase filter should be expanded
when it’s an odd number, therefore the actual length of the filter bank is N+1when N
is odd. Since data hazards are totally avoided in the proposed architecture by employ-
ing loop unrolling and double buffering, the cycles needed for the DWT is approx-
imately equal to

 theoretical number of multiplications
cycles to fullfil pipeline

number of multiplications per cycle
+ (2)

In our design, the number of pipeline stages is 1 for the adders inside the MLBF, 2 for
the multipliers inside the MLBF and 1 for the adder outside the MLBF), and the num-
ber of the multipliers is 8. Therefore, the overall number of cycles needed for the

proposed architecture to finish a J-level DWT decomposition is
2

1

4
2

J

k
k

N L
+

=

× + , when

L is even, and
2

1

(1)
4

2

J

k
k

N L
+

=

× + + , when L is odd.

To fairly evaluate the performance of the MLBF based configurable architecture,
we compare our design with some other related works. Since the proposed architec-
ture utilizes fixed hardware regardless of the length of the filter bank, it’s unfair to
compare its throughput or number of cycles with other circuits, of which the hardware
consumption is positively related to L. Therefore, instead of throughput, efficiency is
a much more appropriate figure of merit here. Since the multipliers are much more
area hungry than the adders, we will only analyze the efficiency of the multipliers.

The efficiency of the multipliers is evaluated by the work load of every single mul-
tiplier, which is defined as follow:

mulE number of multipliers number of cycles= × (3)

98 Q. Sun, J. Jiang, and Y. Fu

Since the theoretical number of multiplications is fixed for a given DWT, which is

1
1 2

J

k
k

N L
−

=

× , the difference between the actual work load and the theoretical number is

the number of redundant computations.

Table 3. Comparison with related works

Architecture NMUL NCLK EMUL
Parallel[7] 2L N+JL 2LN+2JL2
Systolic[8] L 2N+2JL 2LN+2JL2

Pipelined[9]
2

1

4
2

J

k
k

L
L−

=

< N/2+JL/2 2
2

1
1

2()
2

J

k
k

LN JL
LN JL−

=

+ < +
DRU[10]

1
1

2
2

J

k
k

L
L−

=

<
N+2J

1
1

2
2 4

2

J

k
k

LN JL
LN JL−

=

+ < +

 [11] 2L N+J 2LN+2LJ
Proposed
(L is odd)

8
2

1

(1)
4

2

J

k
k

N L
+

=

× + +
1

1

(1)
32 2(1) 32

2

J

k
k

N L
L N−

=

× + + < + +

Proposed
(L is even)

8
2

1

4
2

J

k
k

N L
+

=

× + 1
1

32 2 32
2

J

k
k

N L
LN−

=

× + < +

Table 3 gives the comparisons between the proposed architecture and the architec-
tures introduced in other papers. When L is even, the efficiency of the multipliers of
the proposed architecture is better than that of the other 5 architectures in most cases.
When L is odd, the efficiency of our architecture deteriorates because of the redun-
dant computations brought by the expanding of the filter bank. However, these redun-
dancies are well paid off by the generality and configurability of the architecture.
Fig.5 plots the work load of the multipliers in every structure as functions of L and N
when J is 4. To ensure the clearance of the figure, only the lines of the Systolic and
Pipeline will be plotted along with the proposed architecture.

 (a) (b)

Fig. 5. (a) E versus N (L=8) (b) E versus L (N=128)

 A Configurable Architecture for 1-D Discrete Wavelet Transform 99

6 FPGA Implementation and Experimental Results

6.1 FPGA Implementation

To verify the functionality of our design, we implemented a configurable 1-D DWT
circuit on ML605 development board. The Virtex-6 ML605 evaluation board contains
a Virtex-6 LX240T FPGA device. Ethernet interface and DDR3 SDRAM are also
available on the board. The bit-widths of the circuit is 16 bits and the depth of the
coefficient registers in the configuration registers is 32, which means the upper limit
of the filter bank that the circuit can be configured into is 32.

Fig.6 give the overview of the test system implemented on FPGA

Fig. 6. Test system implemented on FPGA

Host and Interface. The host is implemented with C code on a PC to provide test
data to and receive test result from the FPGA board. Communication between host PC
and FPGA board is through 1 Gigabit Ethernet. The Ethernet interface is implemented
by utilizing the on-chip embedded tri-mode Ethernet MAC (EMAC). A DDR3 inter-
face was generated by Core Generator tool in the Xilinx ISE tool chain. The 16-bit
200MHz DDR3 on the development board is used as the external memory of the sys-
tem to buffer the data fed by the host PC. The bandwidth of 16-bit 200MHz DDR3 is
up to 6.4GB/s.

Control Unit. The control unit was built to control the data flow among host, DDR3
RAM and CCs. At the beginning of the experiment, the control unit reads the source
data from the FIFO inside the EMAC and stores it in the DDR3 RAM. Then, the con-
trol unit works as a bridge between the DDR3 RAM and the local memories inside the
CCs.

Table 4. Resource usage of XC6VLX240T FPGA for a single CC(configurable circuit)

Resource Number used Total number
available

Percentage
used

Slice Registers 273 301440 0%
Slice LUTs 344 150720 0%
Block RAM./FIFO 2 416 0%
DSP48Es 18 768 2%

100 Q. Sun, J. Jiang, and Y. Fu

CC. The fixed point multipliers and the adders inside the configurable circuits are
constructed by using the XtremeDSP slices, and the local memories are implemented
based on the Block RAM primitives. 16 CCs are included in the system.

6.2 Experimental Results

To evaluate the performace of the system, input sequences range from 212 points to
217 points are generated by the host. Table 5 lists the respective number of cycles
needed by 16 CCs to finish a 3-level DWT. The length of the filter is 8.

Table 5. Execution timefor 1-D DWT

Size(points) 212 213 214 215 216 217
Time(cycles) 518 1030 2052 3844 7428 14596

Fig.7 indicates that the execution time increase linearly with input size. The slight
difference between the execution time and the theoretical time which discussed in
section 5 is the time used to preload the data into the ping-pong buffers in every CU.

Fig. 7. Execution time in logarithmic scale

7 Conclusion

This paper proposed a novel configurable arichitecture for 1-D DWT which has the
following features:

• By using the polyphase structure, the throughput of the circuit is doubled without
additional hardware consumption

• The computational units of the circuit are the proposed pipelined MLBFs, which
imitate the computation process of any type of filter bank with fixed hardware
resource and thus give the circuit good generality and configurability

• Compared with other designs, our architecture is not only more general, but also
multiplier-efficient, because data hazards are eliminated by loop unrolling and
double buffering.

 A Configurable Architecture for 1-D Discrete Wavelet Transform 101

Acknowledgement. Our work is supported by the IBM Shared University Research
(SUR).

References

1. Kotteri, K.A., et al.: A comparison of hardware implementations of the biorthogonal 9/7
DWT: convolution versus lifting. IEEE Circuits and Systems II: Express Briefs

2. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

3. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Journal of
Fourier Analysis and Applications 4, 247–269 (1998)

4. Vishwanath, M.: The recursive pyramid algorithm for the discrete wavelet transform. IEEE
Transactions on Signal Processing 42, 673–676 (1994)

5. Chao-Tsung, H., et al.: Flipping structure: an efficient VLSI architecture for lifting-based
discrete wavelet transform. IEEE Transactions on Signal Processing 52, 1080–1089 (2004)

6. Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models.
IEEE Transactions on Acoustics, Speech and Signal Processing 37, 2091–2110 (1989)

7. Chakrabarti, C., Vishwanath, M.: Efficient realizations of the discrete and continuous
wavelet transforms: from single chip implementations to mapping on SIMD array comput-
ers. IEEE Trans. Signal Process. 43(3), 759–771 (1995)

8. Grzesczak, A., Mandal, M.K., Panchanathan, S.: VLSI implementation of discrete wavelet
transform. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 4(4), 421–433 (1996)

9. Marino, F., Guevorkian, D., Astola, J.: Highly efficient high-speed/low-power architec-
tures for 1-D discrete wavelet transform. IEEE Trans. Circuits Syst. II, Exp. Briefs 47(12),
1492–1502 (2000)

10. Park, T.: Efficient VLSI architecture for one-dimensional discrete wavelet transform using
a scalable data recorder unit. In: Proc. ITC-CSCC, Phuket, Thailand, pp. 353–356 (July
2002)

11. Chengjun, Z., et al.: A Pipeline VLSI Architecture for High-Speed Computation of the 1-D
Discrete Wavelet Transform. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers 57, 2729–2740 (2010)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 102–110, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Comparison of Folded Architectures
for the Discrete Wavelet Transform

Jia Zhou and Jiang Jiang

School of Microelectronics,
Shanghai Jiao Tong University

clanga@ucla.edu,
jiangjiang@ic.sjtu.edu.cn

Abstract. The multi-level discrete wavelet transform (DWT) for multiresolu-
tion decomposition of a signal through the cascading of filter banks, employs a
folded architecture to enhance hardware utilization. This work compares folded
architectures for DWT based on three filter structures, the direct form filter, the
linear systolic array, and the lifting structure. We generalize the design of these
architectures in terms of DWT levels, filter taps and pipeline insertion in critical
path. A figure of merit for assessing all the three architectures under different
specifications is proposed. A detailed quantitative comparison among the archi-
tectures is presented with different combinations of specification. The result
shows that variations in DWT levels, filter taps and pipeline insertions have dif-
ferent impacts on the three architectures. Overall, the folded architecture based
on lifting structure gives the most desirable figure of merit and the one based on
linear systolic array demonstrates the best scalability.

Keywords: VLSI, Discrete Wavelet Transform, Multiresolution Decomposition.

1 Introduction and Background

The multiresolution decomposition performed by wavelet transform offers a signifi-
cant scalability in the scope of signal analysis, where either local transitions or long-
term behaviors can be identified at the corresponding decomposition levels(Mallat
1989; Herley September. 1992). This approach, as depicted in Fig.1, is done by itera-
tively decomposing a signal at an approximation level into the orthogonal sum of a
signal at a coarser approximation level and a detail signal through a pair of quadrature
mirror filters, each having constant relative bandwidth, which means that the signal is
break up into different octave bands. The application of this transform ranges from
image compression in JPEG2000 to geophysical signal processing(Christopoulos et
al. 2000; Goupillaud et al. 1984; Meyer 1992), and its implementation is made
through either convolution by filter banks or through lifting structure.

As Fig.1 illustrates, due to decimation, the utilization of filters in each level of
DWT keeps degrading as the level increases. The first level thus has an efficiency of
fifty percent; the second has a quarter and etc.

 A Comparison of Folded Architectures for the Discrete Wavelet Transform 103

Fig. 1. A multiresolution decomposition by an N-level DWT

In an N-level wavelet, during the same time period the hardware utilization sum-up
of the same G and H quadrature mirror filter pair is

 Hardware Utilization ൌ ଵଶ ൅ ଵସ ൅ ڮ ൅ ଵଶN ൌ 1 െ ଵଶN (1)

It is upper-bounded by one. This implies that the maximum number of quadrature
mirror pairs needed in a one-dimensional wavelet of arbitrary levels is one as long as
the computations of different levels are carefully arranged, known as the Recursive
Pyramid Algorithm that schedules a computation as soon as possible(Vishwanath
1994). The process of executing all operations in one processing unit is referred to as
folding (Parhi 1992; Parhi and Nishitani 1993). Two folded architectures for multi-
level DWT based on convolution have been proposed in (Parhi and Nishitani 1993)
and (Vishwanath et al. 1995), which incorporates direct form filter and linear systolic
array for a three-level DWT, respectively.

Routing
Network

G

H

Fig. 2. Folded architectures for multi-level DWT

In this paper, we design and evaluate fixed-point implementations of multi-level
DWT based on the direct form filter, the linear systolic array and the lifting structure
proposed in (Sweldens 1996). For all designs, pipeline stages for critical path, filter
taps and DWT levels are generally assumed and a figure of merit for assessment is
proposed for all architectures to reveal the corresponding impact of different specifi-
cations on the performance of the three architectures. The structures of each filter are
depicted in Fig. 3.

104 J. Zhou and J. Jiang

(a) Modified direct form filter

(b) Linear systolic array

P0(z)

+

U0(z)

+

Pk-1(z)

+

Uk-1(z)

+x[2n]

x[2n+1]

s[n]

d[n]

(c) Lifting structure

Fig. 3. The structures of the filter utilized in multi-level DWT

2 Generalized Folded Architectures and the Evaluation Method

2.1 Figure of Merit

The comprehensive evaluation of architectures for DWT mentioned above is often
troubled with difficulties in quantitative analysis because of the preferences in design

 A Comparison of Folded Architectures for the Discrete Wavelet Transform 105

concerns and objective applications. Thus the evaluation usually involves too many
qualitative terms that can’t provide accurate design insights for scalability in system
specifications, which reasonably include hardware parameters like DWT levels, filter
taps, pipeline stages, or implementation cost like area and power.

We propose a figure of merit that defines the desirability of generalized architec-
tures for multi-level DWT under different combinations of system specifications for
three architectures, three folded architectures based on the modified direct form filter,
the linear systolic array, and the lifting structure.

For an architecture that computes up to Nth octave of an sequence of 2N discrete
values, we define the figure of merit (FOM), as

 FOM ൌ N୳୫ୠୣ୰ ୭୤ ୫୳୪୲୧୮୪୧ୣ୰ୱ ൈLୟ୲ୣ୬ୡ୷ ୤୭୰ f୧୬୧ୱ୦୧୬୥ ୟ୪୪ ୡ୭୫୮୳୲ୟ୲୧୭୬ୱ N୳୫ୠୣ୰ ୭୤ ୮୧୮ୣ୪୧୬ୣ ୱ୲ୟ୥ୣୱ ୭୤ ୲୦ୣ ୫୳୪୲୧୮୪୧ୣ୰ൈଶN (2)

The evaluation principle is that smaller value of FOM is more desirable.
In this equation, the first multiplier appearing at the numerator is the number of

multipliers, which represents the resource of computation processors and the cost of
area and power since multipliers are much more area hungry than any other compo-
nents in all architectures, and therefore they will consume most of the power.

The second term in the numerator, the latency for finishing all computations is an
indicator for processing capability of completing the 2ே-point calculation. A smaller
latency means that the computation capability of the architecture is better. The trade-
off between latency and number of multipliers is conspicuous, as more multipliers
will roughly bring shorter processing latency. The latency is strongly affected by the
stages, or levels of discrete wavelet transform, and thus it should be normalized
by 2ே, which is the period of optimal latency for the whole computation.

The final term appearing as the denominator, number of pipeline stages of the mul-
tiplier, is a representation of critical path and potential throughput of the architecture.
Since the critical path consists mainly of a multiplier’s processing time, and as a result
the pipelined multiplier will enhance the throughput of the system by a factor of num-
ber of pipelines. The trade-off between pipelined multipliers and latency lies in the
fact that the pipeline of multiplier will lead to more cycles of latency, and due to the
data-correlation and causality between the input sequences of a discrete wavelet trans-
form, the pipeline might be forced to stall or filled with bubbles in order to wait for
the proper input data.

In a word, a smaller figure of merit means 1) smaller area and power cost under the
roughly equivalent processing capability, or 2) higher computation capability with
close cost of area and power, including either fewer cycles for finishing processing
and higher throughput situations.

2.2 The Folded Architecture Based on the Modified Direct Form Filter

The design of this architecture consists of two parts as depicted in Fig. 2, the routing
network and the modified direct form filter as illustrated in Fig. 4. The filter is initial-
ly pipelined after the cut set of all multipliers, and thus the critical path is apparently
the delay of a multiplier. The pipeline stages inserted in the multipliers other than the
initial design, is denoted as M as introduced above. The filter tap parameter K di-
rectly decides the number of multipliers. Whereas, the DWT level N is introduced and

106 J. Zhou and J. Jiang

expressed in the schedule of filter computation, where 2ே-point computation should
be arranged for properly to maximize pipeline utilization. As an example in Table 1, it
is apparent that the computations of different levels, i.e. ݔଵሺ݊ሻ, ݔଶሺ݊ሻ, ݔଷሺ݊ሻ, are
interleaved, and the pipeline is nearly full. For a detailed design procedure for this
example, the reader are referred to (Parhi and Nishitani 1993). The total time required
to finish the computation is 11, denoted as latency.

We then generalize the design. Assume an N-level folded architecture based on the
modified direct form filter with K taps. The architecture has 2ܭ multipliers with M
pipeline stages for the multiplier, and the level of the discrete wavelet transform isܰ.
Therefore the latency for computing all the output variables is

 M ൅ 2N ൅ M ൅ 1 (3)

This latency is obtained by the facts that the amount of computation, 2ேpoints, is
fixed, and the pipeline of the filter is mostly occupied despite few blanks at the start-
ing period, denoted as M, and the time to compute the last point, denoted as the
pipeline length, M+1.

Fig. 4. A pipelined design of a four-tap modified direct form filter

Table 1. Computation schedule for a three-level DWT with a four-tap filter and one multiplier
pipeline stage (N=3, K=4, M=1)

Cycle Filter Schedule Filter Output

0 xଵሺ0ሻ

1 -

2 xଵሺ2ሻ xଵሺ0ሻ

3 xଶሺ0ሻ -

4 xଵሺ4ሻ xଵሺ2ሻ

5 xଷሺ0ሻ xଶሺ0ሻ

6 xଵሺ6ሻ xଵሺ4ሻ

7 xଶሺ4ሻ xଷሺ0ሻ

8 xଵሺ6ሻ

9 xଶሺ4ሻ

 A Comparison of Folded Architectures for the Discrete Wavelet Transform 107

Then the generalized form of figure of merit for the folded architecture based on
poly-phase filter is

 FOM ൌ ଶKൈሾMାଶNାMାଵሿMൈଶN (4)

2.3 The Folded Architecture Based on the Linear Systolic Array

The design of this architecture also consists of two parts as depicted in Fig. 2, the
routing network and the linear systolic array as illustrated in Fig. 3. The filter is in-
itially pipelined by processing element, i.e. the multiply-accumulate element, and thus
the critical path is mostly the delay of a multiplier. The pipeline stages inserted in the
multipliers other than the initial design, is denoted as M as introduced above. The
filter tap parameter K decides the number of multipliers. For an N-level DWT, the
computation is strictly scheduled according to the Recursive Pyramid Algorithm, and
an example of filter utilization is offered in Table 2. It is obvious that the computa-
tions of different levels, i.e. xଵሺnሻ, xଶሺnሻ, xଷሺnሻ, are separated in difference cells,
and the pipeline is nearly full. For a detailed design procedure for this example, the
readers are referred to (Vishwanath et al. 1995). The total time required to finish the
computation is 8, denoted as latency.

Table 2. Snapshot of H filter in one period(K=4, M=1, N=3)

Cycle Stage 1 - hଷ Stage 2 - hଶ
Stage 3 - hଵ Stage 4 - h଴

Output
variable

0 x଴ሺ1ሻ xଶሺെ8ሻ x଴ሺ1ሻ xଵሺ0ሻ xଵሺ0ሻ

1 xଵሺെ2ሻ x଴ሺ2ሻ xଶሺെ4ሻ x଴ሺ2ሻ xଶሺ0ሻ

2 x଴ሺ3ሻ xଵሺ0ሻ x଴ሺ3ሻ xଶሺ0ሻ xଵሺ2ሻ

3 - x଴ሺ4ሻ xଵሺ2ሻ x଴ሺ4ሻ xଷሺ0ሻ

4 x଴ሺ5ሻ - x଴ሺ5ሻ xଵሺ4ሻ xଵሺ4ሻ

5 xଵሺ2ሻ x଴ሺ6ሻ - x଴ሺ6ሻ xଶሺ4ሻ

6 x଴ሺ7ሻ xଵሺ4ሻ x଴ሺ7ሻ - xଵሺ6ሻ

7 xଶሺെ4ሻ x଴ሺ8ሻ xଵሺ6ሻ x଴ሺ8ሻ -

Then we can generalize the design. For an ܰ-level folded architecture for DWT

based on the linear systolic array with K cells, it has 2K multipliers with a number of
pipe line stages of multiplierM. Therefore the latency for computing all the output
variables is

 M ൈ 2N (5)

108 J. Zhou and J. Jiang

The equation means that the output variable is computed one after another with the
interval of 2ெିଵ cycles. Therefore the generalized form of figure of merit for the
folded architecture based on the linear systolic array is given by

 FOM ൌ ଶKൈMൈଶNMൈଶN ൌ 2K (6)

2.4 The Folded Architecture Based on the Lifting Structure

Though its folded structures have been proposed in (Chung-Jr et al. 2001), the aim
of it is at the scalability for most of the bi-orthogonal wavelets configuration rather
than at multi-level folding. The design of the folded architecture based on lifting
structure consists of two parts as depicted in Fig. 2, the routing network and the lifting
structure as illustrated in Fig. 3. The filter is initially pipelined by lifting stage, and
thus the critical path is mostly the delay of a multiplier. The pipeline stages inserted in
the multipliers other than the initial design, is denoted as M as introduced above.
The filter tap parameter K decides the number of multipliers. For an N-level DWT,
the computation is scheduled according to Pyramid Algorithm without interleaving
different levels of DWT.

In general, an N-level folded architecture based on lifting structure has ܭ lifting
stages with identical number of multipliers that is M pipelined. The latency of cycles
for computing all the output variables is

 2N െ 1 ൅ ሺM ൅ 1ሻ ൈ K (7)

The generalized expression of FOM for this architecture is

 FOM ൌ KሺଶNିଵାሺMାଵሻൈKሻMൈଶN (8)

3 Results and Analysis

We provide a table of comparison of figure of merit of the three architectures under
different combinations of (K, M, N), which covers the common situations and reveals
the impacts of variations of specifications on the efficiency of the architectures.

3.1 Impact of Variations on Filter Taps or Lifting Stages

From the last three rows of data comparison, it can be conclude that all the three ar-
chitectures will be increasing in sizes if the taps of filters or lifting stages go up. The
folded architectures based on poly phase and the linear systolic array increase linearly
with K; however, the one based on lifting structure goes up in quadratic style,
and therefore its application with larger K is not as desirable as the other two
architectures.

 A Comparison of Folded Architectures for the Discrete Wavelet Transform 109

Table 3. FOM of three architectures of different specificatioons

(K, M, N) FOM of Folded archi-
tecture based on poly-

phase filter

FOM of Folded archi-
tecture based on linear

systolic array

FOM of Folded archi-
tecture based on lift-

ing structure

(4, 1, 3) 11 8 7.5

(4, 2, 3) 6.5 8 5.25

(4, 3, 3) 5 8 3.83

(4, 1, 2) 14 8 11

(4, 1, 4) 9.5 8 5.75

(5, 1, 3) 13.75 10 10.625

(6, 1, 3) 16.5 12 14.25

(7, 1, 3) 19.25 14 18.375

3.2 Impact of Inserting Pipeline Stages in Critical Path

From the data of the first three rows of Table 3, we can conclude that the folded archi-
tectures based on linear systolic array is not affected by the variations in pipeline
insertion in critical path, while the one based on direct form will gain the most signif-
icant benefits from this approach.

The reasonable explanation for this phenomenon is that in the architecture based on
linear systolic array, the data path though pipelined, is subjected to the correlation
between neighboring stages, but the direct form filter and lifting structure will not
suffer due to their parallelism in input scheme.

3.3 Impact of Variations on DWT Levels

Data from Table 3 indicate that the variation in DWT levels will not affect the archi-
tecture based on linear systolic array, unlike the other two. More levels will bring the
other two architectures benefits of smaller figure of merit due to the availability of
interleaving computations of different DWT levels.

4 Conclusion

The generalized design of three folded architectures based on the direct form filter,
the linear systolic array and the lifting structure is compared through a proposed fig-
ure of merit. For the different sets of DWT levels, filter taps and pipeline insertions,

110 J. Zhou and J. Jiang

the three architectures behave at different sensitivities: the architecture based on direct
form filter is favorable for pipeline insertion; the architectures based on linear systolic
array is not affected by the levels of DWT and pipeline insertion; the filter taps will
directly affect the sizes of all architectures, and mostly the one based on lifting struc-
ture. The architecture based on linear systolic array demonstrates the best scalability
as parameters shift, which is most desirable for design concerns. The architecture
based on lifting structure gives the best figure of merit.

References

1. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an
overview. IEEE Transactions on Consumer Electronics 46(4), 1103–1127 (2000),
doi:10.1109/30.920468

2. Chung-Jr, L., Kuan-Fu, C., Hong-Hui, C., Liang-Gee, C.: Lifting based discrete wavelet
transform architecture for JPEG2000. In: The 2001 IEEE International Symposium on Cir-
cuits and Systems, ISCAS 2001, May 6-9, vol. 442, pp. 445–448 (2001),
doi:10.1109/iscas.2001.921103

3. Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic
signal analysis. Geoexploration 23(1), 85–102 (1984), doi:10.1016/0016-7142(84)90025-5

4. Vetterli, M., Herley, C.: Wavelets and Filter Banks: Theory and Design. IEEE Trans., Sig-
nal Processing 40(9), 2207–2232 (1992)

5. Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models.
IEEE Transactions on Acoustics, Speech and Signal Processing 37(12), 2091–2110 (1989),
doi:10.1109/29.45554

6. Meyer, Y.: Wavelets and Applications: Proceedings of the International Conference, Mar-
seille, France, Masson. Recherches en mathématiques appliquées = Research notes in ap-
plied mathematics, vol. 20. Springer, Paris (1989)

7. Parhi, K.K.: Systematic synthesis of DSP data format converters using life-time analysis
and forward-backward register allocation. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing 39(7), 423–440 (1992), doi:10.1109/82.160168

8. Parhi, K.K., Nishitani, T.: VLSI architectures for discrete wavelet transforms. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 1(2), 191–202 (1993),
doi:10.1109/92.238416

9. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets.
Appl. Comput. Harmon. Anal. 3(2), 14 (1996)

10. Vishwanath, M.: The recursive pyramid algorithm for the discrete wavelet transform. IEEE
Transactions on Signal Processing 42(3), 673–676 (1994), doi:10.1109/78.277863

11. Vishwanath, M., Owens, R.M., Irwin, M.J.: VLSI architectures for the discrete wavelet
transform. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 42(5), 305–316 (1995), doi:10.1109/82.386170

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 111–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A High Performance DSP System
with Fault Tolerant for Space Missions

Kang Xia, Ao Shen, Yuzhuo Fu, Ting Liu, and Jiang Jiang

The School of Micro Electronics, Shanghai Jiao Tong University
Shanghai, 200240, China

{xiakang,shenao,fuyuzhuo,liuting,jiangjiang}@ic.sjtu.edu.cn

Abstract. Space missions are very demanding on system reliability. As the de-
velopment of space-based remote sensor technologies, space missions are in-
creasingly high required on system performance. Conventional techniques
mainly focus on the system reliability, at the expense of system performance.

In this paper, a flexible, DPS-based, high-performance system is presented.
The system could dynamically adapt the system’s level of redundancy accord-
ing to varying radiation levels. A compare-point and fast recovery mechanism
is proposed to improve system performance. Besides, some design ideas and
implementation methods also be mentioned. In this paper, the system perfor-
mances are evaluated and analyzed. With running of the correlation function
benchmark in this system, it is shown that the system provides high perfor-
mances under the premise of certified reliability.

Keywords: compare-point, fast recovery, high-performance, space missions,
fault tolerance.

1 Introduction

In recent years, large-scale space technology research projects have been conducted
and commercially adopted by quantities of countries. With the increasing require-
ments of space technologies, the reliability and processing capacity of on-board
processing systems become more and more critical.

Previously, most of the data collected by satellites and spacecrafts could be trans-
mitted to ground stations without delay. However, owing to the development of
space-based remote sensor technologies, more data will be collected [1].The space-
crafts will lose the ability of transmitting the data in due time. Thus, the processing
capability of on-board computer must be enhanced in order to meet live transmission
constraints. Additionally, as the radiation hazards in outer space are always changing
during the mission, the traditional on-board systems, which are fixed and designed
for the worst case, are unnecessary and they will definitely influence the system
performance.

In order to solve the problems mentioned above, a High Performance Fault
Tolerant System (HPFTS), which will significantly improve the system performance,
is implemented and discussed in detail in this paper. The basic hardware elements of

112 K. Xia et al.

this system are one control unit and three processing units. According to the environ-
ment information, system status and application requirements, system can perform
dynamic switch between redundancy mode and parallel mode. The compare-point and
fast recovery mechanism will also be described in this paper. Finally, the reliability
and performance of the system will be evaluated and analyzed.

2 Background and Related Works

Single Event Effects (SEEs) caused by space radiation will generate deviations in the
expected functionality and performance of the on-board systems [2]. Traditional fault
tolerant techniques include devices radiation-hardened technology, self-test technolo-
gy, redundant technology, etc. Generally speaking, the structure of conventional
redundant systems is fixed. But as the requirements for on-board systems become
higher, it is urgent to enlarge the operating capability of on-board systems. Fortunate-
ly, this subject has attracted a lot of attention in large numbers of institutions, and it
has already been scheduled as extensive research.

The Dependable Multiprocessor project conducted by NASA NMP ST8 is about an
environmentally adaptive fault tolerant system, which ensures that the processors and
the improvement in system processing capability can be effectively used and reflected
[3][4]. Generally, this system implements three operation modes, and the selection of
the operation mode is determined by environment, system level requirements and
system health status. However, as the use of PowerPC in this system, the overall per-
formance has become less satisfied with signal processing.

J. Yang et al. have proposed a Reconfiguration Space Information Processing Plat-
form, the key technology of which is the system reconfiguration [5]. In order to im-
prove the performance of computing, this information processing platform has em-
ployed high performance DSP and SRAM-based FPGAs for data processing. Its high
reliability unit can dynamically reconfigure the system in a SEE event and also can
reconfigure the system function by applying the signals that delivered by the ground
stations.Although dynamic partial reconfiguration can improve performance of sys-
tem, it is not so flexibility as dynamic switching, the performance and algorithm are
closely related.

3 System Overview

The Environmentally Adaptive High-performance Fault-tolerant System (HPFTS) is
an application and environment oriented on-board computer system that consists of a
high reliability FPGA connected to a number of high performance COTS DSPs. The
excellent application and environment oriented architectural characteristics can pro-
vide an extensible system to meet variable space requirements. In this section, a brief
overview of the HPFTS will be provided.

 A High Performance DSP System with Fault Tolerant for Space Missions 113

3.1 System Units

The HPFTS involves the control unit and the processing unit, as shown in Fig. 1. The
former is environment sensitive and the latter is application sensitive.

Control Unit. The high reliability FPGA plays the role of the system controller that
will configure the system operation mode according to time, position, sensor signals
and external commands. In case of Signal Event Effect, the control unit will detect the
error, decrease the system redundant level and reset the faulty DSP at the same time.
In case of operation mode conversion, the control unit will reconfigure the data pass
and order the DSP to change the processing mode.

Processing Unit. The processing unit consists of high performance COTS DSPs and
an independent memory. The DSP has the characteristics of high performance, low
cost, market availability and radiation sensitivity. Via special fault tolerant measures,
the DSPs can focus on large amounts of on-board signal processing. The DSPs are
independently programed and can be custom assigned in redundant and parallel op-
eration modes.

Fig. 1. The HPFTS Architecture

3.2 FPGA Logic Components

In order to accomplish the whole system redundant and parallel processing control,
FPGA needs to get the processors and environment status, give accurate configure
commands and control the data flow. Therefore, the relevant state, command and data
logic components for FPGA have been designed.

The environment signals, including time, spacecraft position and a variety of sen-
sors signals, determine the on-board computer system’s application requirement and
operating mode. Healthy monitor will get DSPs healthy state via DSP’s heartbeat
detection and give critical recommendation to the redundancy level.

FPGA will gather the states with external commands together and make judgments
to deliver different configuration commands to DSPs. The configuration information

114 K. Xia et al.

contains master or slave role, application number, redundancy level, parallel level and
parallel processing part.

The data processing paths of redundant mode and parallel mode are different. The
redundant mode mainly focuses on DSPs data comparison, which is supported by
Data Register for each DSP, Data Comparator and Data Distributor components. For
the failure DSP’s fast recovery, the processing progress will be stored in Recovery
Module Component. The parallel mode mainly focuses on different DSPs data
sharing and transmission, which is supported by the data FIFOs between DSPs and
Parallel Processing Controller components.

4 System Implementation

The HPFTS implementation should meet the requirements of space applications that
demand high reliability and high performance. So the system operation status and key
mechanisms will both consider the reliability and performance.

4.1 System Operation States

In the system, the high reliability FPGA checks the environment signal and external
command real-time to switch system state between standby and operation states, as
shown in Fig. 2. In consideration of radiation total dose effect and low power, DSPs
will be powered off in standby state. In operation state, the system will process
applications and tolerate faults.

Fig. 2. System Operation States

All applications are programmed in DSPs memories. The FPGA configures appli-
cations redundancy level by activating the numbers of DSPs and telling them the
same application number and the same parallel part. The FPGA configures parallel
level by informing DSPs of different parallel parts for a same application.

In execution state, DSPs become the protagonist for the large amounts of data
processing. The high performance feature of this system is shown in this state. Vari-
ous digital signals processing algorithm for the space application can be realized in
the DSPs and even in parallel processing mode.

 A High Performance DSP System with Fault Tolerant for Space Missions 115

For critical data that contains key intermediate results or system output signals, the
system must make sure its correctness. Simultaneously, considering the high perfor-
mance demand of the whole system, we design a faster hardware Compare-point me-
chanism in DSPs corresponding to the system’s compare state. In compare-point, each
DSP sends the data to FPGA and waits for result. FPGA uses the TMR voting me-
chanism to select the right data.

When a DSP’s data have error, the system will decrease the redundant level. For
high reliability requirement, the fault DSP needs to recover and catch up with the
system progress as soon as possible. In order to fulfill this function, the Fast Recovery
mechanism has been designed. In recovery state, the fault DSP needs to store its last
right stage progress in FPGA and reboots itself to the initial state and load it.

4.2 Compare-Point Mechanism Design

Compare-point mechanism is the basis of fault tolerance mechanism in HPFTS. By
using compare-point mechanism, the faults can be tolerated efficiently. Actually, it is
not necessary to compare all the data produced in DSP because not all the data are
critical and satellites are not always work in the harshest environment [6]. When
processing, the HPFTS only compare the critical data which determine the applica-
tions functions and output information. Thus, it is important to ensure high reliability
of these data.

Fig. 3. Compare-point States

According to the application demands, programmers can decide what data need to
be compared and how many compare-points need to be settled in program flexibility.
Thus, the reliability of the system can be guaranteed and the waste of comparing time
can be reduced effectively.

When a DSP runs to a compare-point, it will call the response function to convert
comparing data into 32-bit and send it to FPGA, then it will wait for the feedback.
After all the running DSPs’ data have been received, FPGA will compare the data and

116 K. Xia et al.

send the results back to DSPs. When the system’s redundancy level is 3, and the three
comparing data are same, all the DSPs will be set to continue to process. If there is
one data different with the other two, which means the corresponding DSP is error,
this DSP will be set into recovery state by FPGA. If all the data are different, FPGA
will reboot the whole system, as shown in Fig. 3.

When a DSP has been detected failure and is recovering now, FPGA will not com-
pare its’ data and only compare the data of the two remaining DSPs. If the data of the
two remaining DSPs are consistent, these two DPSs will continue to run. Otherwise,
the system will wait for the recovering DSP’s data. Also, before catching up with the
schedule of the other two DSPs, the recovering DSP is running in the fast recovery
mechanism that will be mentioned in the next section.

Performance is another important consideration of the compare-point mechanism.
The data’s comparison will improve the reliability but decrease the performance of
the system. So we need to reduce the compare-point’s cycle cost as much as possible.
The DSP-to-FPGA’s data writing will stay several cycles. Different data writing inter-
face configuration will affect the performance significantly, which will be shown in
the results and analysis section. What’s more, the FPGA should receive the compared
data before the end of DSP write timing and return the results back immediately as
long as the data are valid, which could definitely shorten the DSPs waiting time and
improve the system performance efficiency.

4.3 Fast Recovery Mechanism Design

Based on the compare-point mechanism, the system will reduce the redundancy level
and then reboot the error DSP when failure occurs. It is expected that the error DSP
could recover and catch up the system as fast as possible. To improve the recovery
speed, it is required to design a fast recovery mechanism to help the error DSP travel
back to the track at the nearest station and pursue with the processing system. These
are so-called progress store/load mechanism and station report mechanism.

Considering the save/load cycles cost and the hidden errors in registers and memo-
ries, we will save the basic configuration information and the processing progresses
that have been finished in our system. For example, in the situation of video
processing, we will save the number of frames that have been processed. Basically,
the progress is only recorded by the DSP after every frame processing finishing. Only
if the DSP has been detected faulty will the last correct record data be stored in the
FPGA, which can reduce time consumption and decrease the interaction between
DSPs and the FPGA.

When the DSP reboots after failure, the starting point of its application is decided
by the loaded processing information instead of the original point. It can be the recent
accomplished station in the system to pursue the progress or even the next station to
wait for the progress arriving. Taking the video processing again as an example,
when the system is processing at the N frame in the video, the recovered DSP can
start at the N frame to catch up the system or start at N+1 frame to wait for the system
arriving.

 A High Performance DSP System with Fault Tolerant for Space Missions 117

In rebooting process, in order to catch up with the system processing, the DSP
must run faster than the system. Thus, the DSP needs to cut off the data comparing
procedure and only change one output port signal at the compare-point to inform the
FPGA that it has passed this point. When catching up with the system processing, the
FPGA will tell the DSP to output the compared data again.

5 Results and Analysis

In this section, we describe the experimental results that present the performance and
reliability of the HPFTS by the mechanisms of compare-point and fast recovery. The
system will run a typical application for image/video processing with SEE soft errors.

We verified the functionality of the HPFTS on a fundamental experiment environ-
ment. The DSP is TI TMS320DM642 with 600MHz CPU clock. The FPGA is Altera
Cyclone EP1C6Q240C6 with 20MHz clock. The connections between the FPGA and
DSPs are I/O ports and EMIFA interfaces. The debug environment is CCS v5.0.3 and
emulator is SEED XDS560PLUS. The benchmark is TI TMS320C64x IMGLIB’s
IMG_corr_gen function in C code [7].

5.1 Performance of Compare-Point

More compare-points mean higher reliability and longer processing time. Program-
mers should know the relationship between compare-points and DSP cycles to insert
proper compare-points in critical applications parts.

We use the IMG_corr_gen benchmark. Calling the correlation function to process
an image will produce 719 data. We call it for 10 times and compare the results after
every calling. The every time comparing percent of 719 results is changing to draw
the relationship of compare-points and DSP cycles.

Fig. 4. Performance of Compare-points

We configure the DSPs asynchronous EMIFA in default mode and faster mode and
then get the two lines in Fig. 4. The faster’s EMIFA write timing is shorter by reduc-
ing the setup time, gating time and hold time to meet the frequency of the FPGA. We
can see that 10 times correlation function without comparison costs about 2821320

118 K. Xia et al.

cycles of DSP. And as comparison numbers increasing, the DSP cycles increase li-
nearly. So each data’s comparison costs 978 DSP cycles in default mode and 392 DSP
cycles in faster mode.

This result indicates that the compare-point’s transmission speed is the bottleneck
of the system’s performance. When the faster EMIFA write timing decreases 85.7%
(from 168 to 24 EMIF clock) from the default mode, each compare-point cost cycles
decrease 60.0%. However, the synchronous EMIF is much faster than the
asynchronous EMIF, which is planned as future work.

Fig. 5. Performance of different Transmission Speed and FPGA Frequency

Another bottleneck of the performance is FPGA’s frequency. The current FPGA’s
20MHz frequency is much slower than the DSP’s. The 392 DSP cycles for each
data’s comparison contain 144 cycles of EMIF transmission, 120 cycles of FPGA
comparison and feedback and 128 cycles of DSP pipeline lossless in waiting
comparison results. A faster FPGA can need less EMIF write time and cost less time
in comparison and feedback. With the using of 150MHz FPGA, the EMIF
transmission can be decreased to 72 (from 24 to 6 EMIF clock) DSP cycles and the
comparison and feedback can be decreased to 16 (120 cycles * 20MHz / 150MHz)
DSP cycles. So we can calculate that one data’s comparison costs 216 (72 + 16 + 128)
DSP cycles by using 150MHz FPGA, as shown in Fig. 5.

By using hardware TMR architecture, the system’s performance will be better than
the software TMR. Running the IMG_corr_gen benchmark again, we assume that the
71900 result data are all critical data and need to be correct. In the HPFTS, the 71900
data will be transmitted from 3 DSPs to FPGA for comparing. In software TMR sys-
tem, the correlations for 10 images will run 3 times and the results will be compared
in DSP [8]. The performance result is shown in Fig. 6.

Fig. 6. Performance of different Redundancy Mechanisms

 A High Performance DSP System with Fault Tolerant for Space Missions 119

By inserting the compare-points manually, the data’s comparison amount is small-
er than the hard comparison system. So the system’s performance will also be im-
proved. Using the IMG_corr_gen benchmark again, there are 9 intermediate results
for a signal final result. So in hard comparison system [9], there will be 71900*9 data
to be compared, which are much larger than the compare-point mechanism system, as
shown in Fig. 6.

5.2 Reliability of the System and Performance of Fast Recovery

For SEE in single DSP, the HPFTS can easily tolerate the fault because of the 3-DSPs
redundancy architecture. By ejecting the errors in one DSP’s registers and memories
and even by cutting off one DSP’s power, the system will execute with no pause and
error.

Rarely, the system will meet the situation that two DSPs continuously have error.
To verify the HPFTS’s reliability, we inject 2 errors in ten pictures correlation
processing. One error is in DSP_A’s 10th picture and another’s location changes from
the DSP_B’s first to the last picture. And the DSP_C is correct. So when the system
runs IMG_corr_gen benchmark, DSP_B will be checked fault first and recover. Then
DSP_A and DSP_C’s comparing data will be different in the 10th picture. At that
compare-point, they will pause and wait the recovery DSP_B to catch up and give the
correct comparison data to judge which DSP is faulty.

Fig. 7. System Performance for Errors in different Images

The system’s pause because of two DSPs’ errors will affect the performance. Our
system’s fast recovery mechanism will be helpful for it. For 10 images correlation,
when a DSP is checked fault, it will save its processing states to the FPGA and recov-
ery in the nearest image of the system’s progress.

From the result, we can see that one fault in the system will not affect’s system’s
normal execution. Continued two faults will make the system pause and the pause
time is determined by the DSP’s initial program. When the system restarts from the
application’s beginning, the pause time will increase by the error’s location, as shown
in Fig. 7. For the HPFTS, the DSP’s fast recovery takes about 1.37M DSP cycles.

120 K. Xia et al.

6 Conclusion

The system consists of three high performance COTS DSPs and a high reliability
FPGA. The experimental results show HPFTS could efficiently tolerate single DSP’s
SEE errors with no system pause and bear continuously two DSPs’ failures with a
short pause. Therefore, reliability of HPFTS is trustworthy.

Moreover, many methods have been adopted to improve system performance.
Compare-point mechanism not only reduces comparing amount but also shortens
comparing time. Fast recovery mechanism will speed up the failure DSP’s recovery
and improve the overall efficiency of the system.

Future work includes implementation of parallel mode, error self-detection and
comparing speed improvement. We also plan to improve the system devices and
mechanisms to pursue a higher performance of the system.

Acknowledgements. Our work is supported by the Cisco Research Center Requests
for Proposals (RFPs), Virtualization for NoC fault tolerance, 2011-90403 (3696).

References

1. Jacobs, A., George, A.D., Cieslewski, G.: Reconfigurable fault tolerance: A framework for
environmentally adaptive fault mitigation in space. In: Field Programmable Logic and Ap-
plications (FPL), pp. 199–204 (August 2009)

2. Yousuf, S., Jacobs, A., Gordon-Ross, A.: Partially reconfigurable system-on-chips for adap-
tive fault tolerance. In: Field-Programmable Technology (FPT), pp. 1–8 (December 2011)

3. Ramos, J., Brenner, D.W., Galica, G.E., Walter, C.J.: Environmentally Adaptive Fault Tole-
rant Computing (EAFTC). In: Aerospace Conference, pp. 1–10 (March 2005)

4. Samson, J., John, R., Ramos, J., George, A.D., Patel, M., Some, R.: Technology Validation:
NMP ST8 Dependable Multiprocessor Project II. In: Aerospace Conference, pp. 1–18
(March 2007)

5. Yang, J., Xing, K.F., Zhang, C.S.: Design of Reconfigurable Space Information Processing
Platform. In: 7th National Information Gathering and Processing Meeting, pp. 723–726
(June 2009)

6. Abate, F., Sterpone, L., Lisboa, C.A., Carro, L., Violante, M.: New Techniques for Improv-
ing the Performance of the Lockstep Architecture for SEEs Mitigation in FPGA Embedded
Processors. In: Nuclear Science, pp. 1992–2000 (August 2009)

7. Texas Instruments: TMS320C64x Image/Video Processing Library Programmer’s Refer-
ence. SPRUEB9 (March 2006)

8. Yang, X.J., Gao, L.: Software Implemented Fault Tolerance Based on COTS for Space Ex-
plorations. Computer Engineering & Science 29(8), 82–87 (2007)

9. Matthew, J.W.: Using Commercial Off the Shelf (COTS) Digital Signal Processors (DSP)
for Reliable Space Based Digital Signal Processing. Naval Postgraduate School (2001)

The Design and Realization of Campus

Information Release Platform
Based on Android Framework

Jie Wang1, Xue Yu1, Yu Zeng2, and Dongri Yang3

1 School of Management, Capital Normal University,Beijing 100089, China
wangjie@cnu.edu.cn

2 Beijing Computing Center, Beijing 100094, China
3 College of Computing & Communication Engineering,

Graduate University of the Chinese Academy of Sciences,Beijing 100049, China

Abstract. With the popularity of the mobile terminal, there appears a
new trend to release all kinds of campus information by intelligent mo-
bile terminals. The efficient, intelligent and popular features of Android
smart phone platform will be combined with the campus information
system to achieve the synchronization and convenience of all types of
campus information release and to strengthen the communication be-
tween the various campuses of the same university. In this paper, we de-
sign and realize a campus information release platform based on Android
framework. This campus information release platform can effectively re-
duce the complexity of the information release system and strengthen
the real-time performance of information, which thereby promote the
information construction of the campus.

Keywords: Android framework, Campus information release, Mobile
information system.

1 Introduction

In the information society, universities have entered the era of digital information
campus. , and campus information release system has become a necessary prod-
uct. Android platform is an open-ended system to support a variety of scalable
user experiences, with a very rich graphics system, multimedia support and pow-
erful browser[1]. If we combine these advantages and the portability of phone,
then apply them to the campus information release platform, we can not only
solve the jumbled and cumbersome problem of information release platform, but
also can integrate the various characteristics of universities to develop the cam-
pus information system with its own characteristics and promote the innovative
construction of the campus information technology innovation[2].

Android refers to the original meaning of ”robot”, the name of the open source
mobile operating system Google announced on November 5, 2007. Android’s
biggest feature is that it is an open-ended system, with a very good development
and debugging environment and it supports a variety of scalable user experiences,

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 121–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 J. Wang et al.

and it has a very rich graphics system, multimedia support features and a very
powerful browser [3]. Android is a Linux-based open source operating system,
mainly used in portable devices. In the first quarter of 2011, Android caught up
with symbian system and ranked first in the global market share for the first in
the world. In February 2012, Android occupies 52.5% of the global smart phone
operating system market share, and the Chinese market share is 68.4% .

In this paper, we firstly do an overall analysis of campus information release
platform, and then design and realize a real campus information release platform
from System functional module, system architecture and technology road map
aspects. Furthermore, we also give the initial interface of our realization. This
campus information release plat-form can effectively reduce the complexity of
the information release system and strengthen the real-time performance of in-
formation, which thereby promote the information construction of the campus.
Our research is a useful attempt and this will also be a big breakthrough in the
construction of university digital information.

2 Overall Analysis of Campus Information Release
Platform

In this part, we do an overall analysis of campus information release platform,
which is based on the status of the our own universities: the university adminis-
trators releasing the information, teachers and students using the Android smart
phone client, by mobile or other telecommunications signals to access the campus
information server.

For this platform to fit the needs of students, we design a questionnaire survey-
ing college students across the country, and the findings are more representative.
According to the statistics, the proportion pie chart of the information which
the students are most interested in is in figure 1-3:

For the respect of the life, the statistics result is shown in figure 1:

Fig. 1. The proportion pie chart of the life information

The respect of the study and work are shown in figure 2 and figure 3
respectively:

The Design and Realization of Campus Information Release Platform 123

Fig. 2. The proportion pie chart of the study information

Fig. 3. The proportion pie chart of the work information

According to the statistics, about 60% of the students get access to the school
information by monitor, but only 30% of them catch the school information
through the campus network. More than half of the students said that they
communicate little with the teachers and their seniors, and they hope to com-
municate more with them. In terms of idle goods, 50 percent of the students
tend to put them aside. More than half of the students hope to be able to set
up trading in second module in this information release platform. Most of the
students said they support this platform.

In the end of the questionnaire, many students give us a lot of good sugges-
tions on the module. According to the statistics result, the modules they are
most interested are AC modules, message modules, enterprises recruitment in
campus, students questions, current events, part-time information, second-hand
goods transactions, campus affairs, notifications and so on. The requirements of
interface are mostly clear and concise.

3 The Design and Realization of Campus Information
Release Platform Based on Android Framework

3.1 System Functional Module Design

According to the statistical results in the need analysis,we design the overall
system functional module and it is shown in figure 4:

124 J. Wang et al.

Fig. 4. The System Function Module

As shown in figure 4, the information release platform includes campus in-
formation module, students information module, teachers and students world
module, social links module, life planning module and message board module.

The following describes each function module of the system in detail:

1. Campus Information module includes: Campus News—campus affairs, event
information and interesting news; Students Union—students unions recruit-
ment and activities information; Societies—the Introduction of the various
communi-ties, the information of recruitment and the activities; Campus
Notice— all kinds of notification information, such as holiday, course selection
notification, research and reporting and so on.

2. Students Information module includes: Score Query—for students to log and
query all subjects; Examination Management—for students to query recent
infor-mation about the examinations and related examination registration and
test center notice; Course Management—for students to log on to choose and
withdraw the courses and query curriculum; Resume—to query the award,
sanctions and other information obtained during the campus.

3. Teachers and Students World module includes: Teachers—teachers biograph-
ical and research information; Students— students’ style, including the selec-
tion of out-standing students and the Scholarships; Q&A—it is in the form
of the Forum, where teachers and students can ask questions and give an-
swers, to enhance the communication between teachers and students at all lev-
els; Drift Bottles—anonymous users can send information to unknown users,
the users who receive the information bottles can accept or refuse; Exchange
Experience—for teachers and students to show experience and to provide a
reference for others, and users can also ask for help.

4. Social Links module includes: Current Events— to update community news
for the students to browse; Campus Recruitment—the information of

The Design and Realization of Campus Information Release Platform 125

campus recruitment , the time, the place and some tips; Part-time—part-time
information; Entertainment—to update the audio and video entertainment in-
formation; Second-hand goods market—for teachers and students to publish
trading information to buy or to sell; Holiday Travel Attractions—holiday
travel routes, attractions and other characteristic information; Campus
Surroundings—supermarkets, shopping malls, cafes and other information
around the campus; Competitions—the information of the competitions for
college students.

5. Life Planning module includes: Postgraduate Entrance Exams—the registra-
tion, time, counseling agencies and the various college entrance information
of the Post-graduate Entrance Exams; Career Information—the information
of various occupational profiles, income ranking, proportion of graduate re-
cruitment and so on; CET 4&6—the information of registration, counseling
agencies of the CET 4&6; Driving Schools—driving campus quote and enroll-
ment information; Lectures—campus lecture information; Study Abroad—for
exchange students to apply for foreign graduate students and other related
information.

6. Message Board module is for the users to give comments and suggestions to
the publishing platform and campus. Users can leave messages freely in this
module.

The logistical departments, administrative and student groups can be arra-
gend to manage these modules reasonably.

3.2 System Architecture Design

As is shown in figure 5, the Android client establishes a connection with the
server through the GSM (Global System for Mobile Communications) base sta-
tion. The switchboard is used to connect the server and database and to establish
the electrical signal path. The Physical Isolation Network Gateway is used to
ensure the safe and moderate data exchange in the network [4].

Fig. 5. The System Architecture

126 J. Wang et al.

3.3 Technology Road Map Design

As like the realization in paper[5], we use the C / S mode, which is helpful
to reduce the servers running load, to optimize the data storage management
functions, and reduce the complexity of the client runs. This mode is also helpful
to reduce the occupancy of mobile resources,client traffic, and it may be useful
to lower problems of mobile phones [6].

As the Android client, we use Java language to develop and use the HTTP
network protocol for Network communication. Data is encapsulated in XML for-
mat in the transfer process, so as to reduce the data flow and speed up response.
At the same time, we use the Struts2 framework which is safer and easier to use
[7].The Spring Framework is respond for the requests of customer for the Web
server. Spring uses the low-intrusive design, and the code contamination is very
low. It is independent from the various application servers, and can reduce the
complexity of the business object to replace [8].The Hibernate framework is used
to access the database, which can be more convenient for the programmer to op-
erate the database [9].The Web Logic Server is used for the Web server, which
has the leading standard, the higher scalability and the more flexible deployment
[10].

We use the Oracle database to store data, which is efficient for big data and
is easy to deal with data recovery problems [11].

4 User Interface Design

According to our need analysis and survey, interface design should be clear and
concise. The initial interface of the client is shown in figure 6.

Fig. 6. The initial interface of the system

The Design and Realization of Campus Information Release Platform 127

The above six buttons in the user interface correspond to the link to the six
modules, and you can click on the link to enter the lower branches of modules
and perform operations in accordance with the system functional design. There
are two buttons under the six buttons in the initial interface ”login” and ”exit”.
They correspond to the link to the log-in screen and exit of the program. For
example, click on ”Campus Information System”, there will be four branches in
four button links in the middle of the interface shown in figure 7, the interface
is the module, and then you can click a button which is linked to information
browsing, voice mail and other operations. The ”Back” button in the bottom
right corner corresponds to the link to return to the layer interface.

Fig. 7. The interface after entering the module of Campus Information System

5 Conclusion

In today’s information society, the campus information system has become the
main way for universities to publish information. Its contact with Android and
the mobile terminals—smart phone, and the development of a more conve-
nient real-time information dissemination platform will undoubtedly have great
prospects.

In this paper, we firstly do an overall analysis of campus information release
platform, and then design and realize a real campus information release platform
from system functional module, system architecture and technology road map
aspects. We also show the initial client interface of our realization. Our research
is a useful attempt and this will also be a big breakthrough in the construction
of university digital information.

References

1. Wang, S., Suo, G.: Google Android Development Guide, 2nd edn. Posts & Telecom
Press (2009) (in Chinese)

2. Li, X.: Design and Implementation of the student housing system based on the
Android platform. Wireless Internet Technology 1, 33–34 (2011) (in Chinese)

128 J. Wang et al.

3. Information on Android website, http://www.android.com/
4. Information on Baike of Baidu, http://baike.baidu.com/view/1241829.html
5. Wang, C.: Campus information release system based on the Android platform.

Digital Technology and Application 8, 123–124 (2010) (in Chinese)
6. Information on Baike of Baidu, http://baike.baidu.com/view/45170.html
7. Husted, T., Dumoulin, C., Franciscus, G., Winterfeldt, D.: Struts in Action. Man-

ning Publications Corp. (2003)
8. Johnson, R., Holler, J., Arendsen, A.: Professional Java Development with the

Spring Framework. Wiley Publishing (2005)
9. Gao, A., Wei, W.-X.: Application of Java data persistence with Hibernate and

Struts framework. Computer Applications 12 (2005)
10. Alapati, S.: Oracle WebLogic Server 11g Administration Handbook 1st. McGraw-

Hill Osborne Media (2011)
11. Oracle Database, http://www.oracle.com

http://www.android.com/
http://baike.baidu.com/view/1241829.html
http://baike.baidu.com/view/45170.html
http://www.oracle.com

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 129–137, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Word-Length Optimized Hardware Gaussian Random
Number Generator Based on the Box-Muller Method

Yuan Li1, Jiang Jiang2, Minxuan Zhang1, and Shaojun Wei3

1 School of Computer
National University of Defense Technology

Changsha, Hunan, P.R. China, 410073
2 Institute of Microelectronics
Shanghai Jiao Tong University

Shanghai, P.R. China
3 Institute of Microelectronics

Tsinghua University
Beijing, P.R. China, 100084

csliyuan@hotmail.com, jiangjiang@ic.sjtu.edu.cn,
mxzhang@nudt.edu.cn, wsj@tsinghua.edu.cn

Abstract. In this paper, we proposed a hardware Gaussian random number ge-
nerator based on the Box-Muller method. To reduce the resource complexity, an
efficient word-length optimization model is proposed to find out the optimal
word-lengths for signals. Experimental results show that our word-length opti-
mized Fixed-Point generator runs as fast as 403.7 MHz on a Xilinx Virtex-6
FPGA device and is capable of generating 2 samples every clock cycle, which
is 12.6 times faster compared to its corresponding dedicated software version. It
uses up 442 Slices, 1517 FFs and 1517 LUTs, which is only about 1% of the
device and saves almost 85% and 71% of area in comparison to the correspond-
ing IEEE double & single Floating-Point generators, respectively. The statistic-
al quality of the Gaussian samples produced by our design is verified by the
common empirical test: the chi-square (X2) test.

Keywords: Box-Muller Method; Hardware Gaussian Random Number Genera-
tor; FPGA; Word-Length Optimization.

1 Introduction

High quality Gaussian random numbers is essential in a large number of computa-
tionally intensive modeling and simulation applications, especially Monte-Carlo
simulations. It is well known that in Monte-Carlo simulations the quality of the under-
lying random numbers plays a key role for the accuracy of the final computation re-
sults. Currently, due to recent advances in reconfigurable hardware in the form of
Field-Programmable Gate Arrays (FPGAs), hardware-based simulations are getting
increasing attention because of their huge performance advantages over traditional
software-based methods [1]. Being the critical component of many scientific applica-
tions, designing a hardware Gaussian Random Number Generator (GRNG) that is

130 Y. Li et al.

capable of providing high quality Gaussian distribution sequence to fully utilize the
parallel nature of hardware is also becoming more and more important in modern
systems.

Despite the importance, most of the research that has been done on the Gaussian
generation method concentrates on algorithms and relevant software implementations
[2] [3] [5] [6]. Hardware implementations are usually not sufficient in the literature.
Lee et al. [1] proposed a hardware GRNG based on the Box-Muller method. The
word-length of signals in this generator is determined using mathematical analysis
method. Zhang et al. [7] presented a ziggurat-based hardware structure for generating
Gaussian samples. It used the Combined Tausworthe method [4] as the fundamental
Uniform Random Number Generator (URNG) and evaluated the speed and size ad-
vantages on a Xilinx Virtex-2 FPGA device.

In this paper, we propose a hardware GRNG for efficient implementation of Box-
Muller method. The WELL19937 algorithm [10] is adopted as the basic URNG and a
simulation-based method is used for the word-length optimization. More specially, we
make the following contributions.

• We design a hardware architecture for the Box-Muller method that can achieve a
throughput of 2 sample per clock cycle, with modest resource overhead.

• We develop a simulation-based model to determine the optimal word-length of
signals, which maximize the performance/cost efficiency of the GRNG system.

• We adopt the WELL19937 algorithm as the basic URNG in our design, which is
proven to be capable of generating uniform distribution samples with high quality.
Thus guaranteeing the Gaussian distribution property of the variables generated by
the Gaussian system.

• We evaluate the proposed architectures using the standard test suite, the chi-square
(X2) test, and implement it on a Xilinx Virtex-6 FPGA device.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of
the algorithmic background of the Box-Muller method. Section 3 presents our Box-
Muller-based hardware architecture, and Section 4 presents technique-specific im-
plementations, discusses evaluations and results. Finally, we conclude this paper in
Section 5.

2 The Box-Muller Method

The Box-Muller method [3] is one of the most widely used Gaussian sample genera-
tion method. It is an exact transformation method and is capable of producing a pair
of Gaussian sample from a pair of Uniform random numbers via a series of transfor-
mation. The pseudo-code for implementing this method is described in Fig. 1. Where
U1, U2 are the pair of basic uniform random samples and g1, g2 are the two generated
Gaussian random samples. One can see that the transformation involves four elemen-
tary functions, i.e., the logarithmic, the square root, the sine and the cosine functions,
and in each iteration when it is executed, two independent Gaussian samples can be
generated.

 A Word-Length Optimized Hardware Gaussian Random Number Generator 131

3 Hardware Architecture for the Box-Muller Method

Fig. 2 illustrates our hardware structure for Box-Muller method. It consists of two
main parts: the Uniform Random Number Generators (URNGs) and the elementary
function approximation units.

The URNGs: One prevalent URNG is the Mersenne Twister [9], which is widely
used for its high quality, long-period and high performance. However, this generator
is proven to have some serious weaknesses [10]. The Well Equidistributed Long-
period Linear (WELL) method [10] overcomes these drawbacks while retaining an
equal period length and achieving better quality. So it is preferable for applications

Algorithm 1. The Box-Muller Method

1. 21 U2b ,ln2 π←−← Ua

2.

babareturn cosg ,sing 21 ←←

Fig. 1. The pseudo-code for implementing the Box-Muller method

π2

Fig. 2. The overview of our proposed Box-Muller architecture

132 Y. Li et al.

such as ours which require samples with extremely stringent randomness. For this
reason, we choose WELL as the basic URNGs in our design and adopt the WELL-
based structure we proposed in [11], which is area-efficient and capable of generating
one sample every clock cycle.

The Elementary Function Approximation Units: The accurate and efficient estima-
tion of elementary functions (i.e., the logarithmic, sin/cos and square root functions)
are necessary for efficient implementation of the Box-Muller generator. Consider an
elementary function f(x), where x is in the range [a, b]. The evaluation f(x) typically
consists of three steps [1] [12]: 1) range reduction: reducing x over the interval [a, b]
to a more convenient y over a smaller interval [a’, b’]; 2) function approximation on
the reduced interval, and 3) range reconstruction: expansion of the result back to the
original result range.

We adopt the methods presented in [1] to estimate the elementary functions in our
design (i.e., the logarithmic, the sin/cos and the square root functions). Detailed struc-
tures for these approximation units are illustrated in Fig. 3, Fig. 4 and Fig. 5, respec-
tively. For the logarithmic function and the square root functions, a Leading Zero
Detector (LZD) and some combinatorial logics such as shifter and multiplexer are
used to perform the Range Reduction based on the equivalent transformations in the
form of (1) and (2), respectively. Where y is the reduced argument and k is the output
of the LZD unit. For the sin/cos functions, because of their periodicity, we only needs

to reduce the range into [0,
2
π

].

[0.5,1]y)2log()log()log(∈⋅+= kyx (1)

[0.25,0.5)y Z},n|1-2nk|{k 2

[0.5,1)y Z},n|2nk|{k 2

2

1

2









∈∈=⋅

∈∈=⋅
=

−k

k

y

y
x

(2)

We use the table-with-polynomial method [1] [12] to approximate the functions over
the reduced range. The reduced intervals [0.5,1] and [0.25, 0.5] of the logarithmic and
the square root functions are further split into 32 equally sized segments, and 5 bits in
proper positions of the argument y are served as the indexes into the tables. The re-

duced range [0,
2

π
] of the sin/cos functions are split into 101 segments and the 7 most

significant bits are served as the index. The tables contain all the coefficients for each
interval, which are obtained via a minimax approximation that minimizes the maxi-
mum absolute error using MAPLE [1] [12]. We found that for each interval, a poly-
nomial with a degree-1 is enough to meet the precision requirement for our system.

Word-Length Optimization Model: One critical point in designing a hardware
GRNG is the transformation from Floating-Point to Fixed-Point, or word-length
optimization for signals in other words. This process is performed to reduce the

 A Word-Length Optimized Hardware Gaussian Random Number Generator 133

implementation complexity of the system. There are typically two categories of
approaches for word-length optimization: the analytical method [13] [14] and the
simulation-based method [15] [16]. Which adopt numerical analysis and program
simulation to determine the word-length of signals, respectively. Compared to the
analytical method, the simulation-based method is capable of obtaining better solu-
tions and can be applied to more complicated system including loops. So we choose
this method to perform the word-length optimization in our system.

The algorithm of the word-length optimization for our design is described in Fig. 6.
A software simulator is developed, this simulator is programmed to be bit-accurate to
the actual hardware realization and the word-length of signals can be flexibly confi-
gured. The starting point for the search is determined using the base point method
proposed in [16] and the Sequence Search [16] is used as the search engine. In each
iteration, 109 samples are produced for the X2 testing [17]. The search process
finished when the sequence passes the X2 testing.

Fig. 3. Hardware structure for the approximation of the square root function

134 Y. Li et al.

Fig. 4. Hardware structure for the approximation of the logarithmic function

π

π

π

π

Fig. 5. Hardware structure for the approximation of the sin/cos functions

 A Word-Length Optimized Hardware Gaussian Random Number Generator 135

Algorithm 2. Word-length optimization process for Box-Muller

1. Develop a software simulator for Box-Muller in which the word-length of

signals can be configured.

2. Determine the starting point.

3. Find the next word-length vector Wk using the Sequence Search [16].

4. Update the software simulator using Wk, run and produce 109 samples

5. if the sample sequence pass the X2 testing then

6. output Wk as the optimized word-length vector, the search is finished.

7. else

8. goto step 3.

Fig. 6. Algorithm of word-length optimization for Box-Muller

4 Implementation and Evaluation

We implement the architecture described in Section 3 on a Xilinx Virtex-6
XC6VLX240T FPGA device (hosted on the ML605 evaluation board). The design is
described in Verilog HDL and synthesized & implemented using Xilinx ISE 12.1.
The initial design is simulated in Modelsim SE 6.5 and the software simulator is used
to ensure the functional correctness. Optimization techniques, such as register-
retiming, are adopted to improve the clock speed of the system.

For comparison, three reference designs are implemented: one software generator
and two hardware generators of Box-Muller based on the IEEE double & single Float-
ing-Point models, respectively. All hardware designs are built on exactly the same
device with the same configurations and the software design runs on a 2.67-GHz Intel
Core i5 processor with 6GB DDR3 SDRAM.

The comparisons between different implementations are summarized in Table 1.
One can see that our proposed generator achieved a 12.6-fold speed up compared to

Table 1. Comparison of resource usage and performance for different implemenations

Type Fixed-Point Floating-Point Floating-Point Software Version
 (proposed) (Single) (Double)
Platform HW HW HW SW
Slices 442 1544 2956 -
Flip-Flops 1517 4958 11048 -
LUTs 1517 5014 9595 -
BRAMs 9 9 14 -
DSPs 31 35 96 -
Freq.(MHz) 403.7 386.7 335.0 -
Thouput(M/sec) 807.4 773.4 670.0 64.0
Speedup 12.6 12.1 10.5 1.0
X2 test of g1 pass pass pass pass
X2 test of g2 pass pass pass pass

136 Y. Li et al.

its optimized software version. Moreover, our word-length optimized Fixed-Point
generator achieves a great reduction in area usage versus the corresponding Floating-
Point designs while retaining the highest performance.

5 Conclusion

We present a hardware Box-Muller GRNG which achieves high performance, high
quality output while incurring low resource complexity. As for the performance, it is
capable of producing 807.4 Million samples every clock cycle, which is 12.6 times
faster than its dedicated software version. Moreover, by applying the word-length
optimization model to minimize the word-length for signals, the resource cost is really
low. It uses up 442 Slices, 1517 FFs and 1517 LUTs, which is only 1% of the device
and saves about 85% and 71% area compared to the corresponding IEEE double &
single based generators, respectively. The Gaussian samples generated by our design
successfully pass the standard statistical test suite of the X2 test, proving the correct-
ness of our design. We expect our Gaussian structure apply to various hardware-based
simulation systems.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China Grant No. 60970036, No. 61103011 and No. 61076025. The National
Core-High-Base Major Project of China under Grant No. 2009ZX01028-002-002.

References

[1] Lee, D., Villasenor, J.D., Luk, W., Leong, P.H.W.: A Hardware Gaussian Noise Genera-
tor Using the Box-Muller Method and Its Error Analysis. IEEE Transaction on Comput-
ers 55(6), 659–671 (2006)

[2] Bell, J.R.: Algorithm 334: Normal random deviates. Comm. ACM 11(7), 498 (1968)
[3] Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Annals

Math. Stat. 29, 610–611 (1958)
[4] Tezuka, S., L’Ecuyer, P.: Efficient and portable combined Tausworthe random number

generators. ACM Transactions on Modeling and Computer Simulation 1(2), 99–112
(1991)

[5] Brent, R.P.: Algorithm 488: A Gaussian pseudo-random number generator. Comm.
ACM 17(12), 704–706 (1974)

[6] Gebhardt, F.: Generating normally distributed random numbers by inverting the normal
distribution function. Math. Computation 18(86), 302–306 (1964)

[7] Zhang, G., Leong, P., Lee, D., Villasenor, J., Luk, W.: Ziggurat-Based Hardware Gaus-
sian Random Number Generator. In: Proc. 16th IEEE Int. Conf. Field-Programmable
Logic and its Applications, pp. 275–280 (2006)

[8] Lee, D., Luk, W., Villasenor, J.D., Zhang, G., Leong, P.H.W.: A hardware Gaussian
noise generator using the Wallace method. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 53(12), 911–920 (2007)

[9] Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Modeling and Computer Simu-
lation 8(1), 3–30 (1998)

 A Word-Length Optimized Hardware Gaussian Random Number Generator 137

[10] Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on
linear recurrences modulo 2. ACM Trans. Mathematical Software 32(1), 1–16 (2006)

[11] Li, Y., Jiang, J., Chow, P., Zhang, M.: Software/Hardware Framework for Generating Pa-
rallel Long-Period Random Numbers Using the WELL Method. In: Proc. 21st Int. Conf.
Field Programmable Logic and Applications, pp. 110–115 (2011)

[12] Muller, J.: Elementary Functions: Algorithms and Implementation, 2nd edn. Birkhauser,
Boston (2006)

[13] de Figueiredo, L., Stolfi, J.: Self-validated numerical methods and applications. In: Bra-
zilian Mathematics Colloquium Monograph. IMPA, Brazil (1997)

[14] Lee, D., Gaffar, A.A., Mencer, O., Luk, W.: MiniBit: Bit-Width Optimization via Affine
Arithmetic. In: Proc. ACM/IEEE Design Automation Conf., pp. 837–840 (2005)

[15] Sung, W., Kurn, K.: Simulation-based word-length optimization method for fixed-point
digital signal processing systems. IEEE Trans. on Signal Processing 43(12), 3087–3090
(1995)

[16] Han, K., Eo, I., Kim, K., Cho, H.: Numerical word-length optimization for CDMA demo-
dulator. In: IEEE Int. Symposium on Circuits and Systems, vol. 4, pp. 290–293 (2001)

[17] Snedecor, G.W., Cochran, W.G.: Statistical Methods. Iowa State University Press (1989)

DAMQ Sharing Scheme for Two Physical

Channels in High Performance Router

Yongqing Wang and Minxuan Zhang

School of Computer Science, National University of Defense Technology,
410073 Changsha, China
yqwang@nudt.edu.cn

Abstract. Communication in large scale interconnection networks can
be made more efficient by designing faster routers, using larger buffers,
larger number of ports and channels, but all of which incur significant
overheads in hardware costs. In this paper we present a dual-port shared
buffer scheme for router. The proposed scheme is based on a dynam-
ically allocated multi queue and four-port Register File. Two physical
channels share the same input buffer space. This can provide a larger
available buffer space per channel when load is unbalanced among phys-
ical channels and virtual channels. We give the detailed organization of
shared buffer and management of idle buffer. Result of simulation shows
that the proposed method has similar performance using only 75% of the
buffer size in traditional implementation and outperforms by 5% to 10%
in throughput with the same size.

Keywords: interconnection network, DAMQ, virtual channel, input
buffer.

1 Introduction

Interconnection networks are widely used for inter-processor communication in
both multiprocessors and supercomputers with multi-stage networks. Virtual
channel (VC) [1][2] technology is extensively used to boost performance and
avoid deadlock. Each VC is realized with a pair of buffers located on adjacent
communicating nodes. When the flit-consumption rate of an input buffer is lower
than the flit-arrival rate, the buffer congestion occurs.

Buffer congestion can also propagate throughout the network. When the ar-
riving flits cannot be received by a downstream router due to the lack of buffer
space, the flits must continue to be buffered at the upstream router. It di-
rectly reduces the transmission speed of flits among routers. Thus, the maximum
throughput of a router depends directly on how efficient the router is at storing
the flits that cannot be transmitted immediately and forwarding them when the
appropriate output channel is no longer busy or congested.

The easiest solution for enhancing performance such as a higher throughput is
to increase the buffer size, thereby reducing the severity of congestions. However,
the buffer space cannot be effectively increased if a system is constrained by an
upper limit on hardware resources.

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 138–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

DAMQ Sharing Scheme for Two Physical Channels 139

Thus, the architecture and implementation of routers for these networks,
particularly their internal buffers, are critical for achieving, at low cost, the
performance goals of high throughput and low-latency communication. In a
wormhole-switching [3] network with several virtual channels multiplexing a
physical channel, routing algorithms tend to choose one set of virtual channels
over others; thus the traffic load is not evenly distributed in the entire buffer
space for a physical channel. A more efficient approach to use the available
buffer space is to let the virtual channels belonging to a physical channel share
buffer with virtual channels of another physical channel.

2 Related Works

Tamir and Frazier [4] classified the buffered switch architectures into four major
types, FIFO, SAFC, SAMQ and DAMQ. This classification is based on how the
input queues are manipulated and how data is stored.

Dynamically Allocated Multi-Queue (DAMQ) buffer [4] was proposed as a
unified and dynamically allocated buffer structure. More precisely, within each
buffer there are separate FIFO queues of packets destined for each output chan-
nel. Every read and write operation needs three cycles to complete, which might
be excessive for high speed router. To enable intra-channel buffer sharing, DAMQ
with self-compacting buffer was introduced [5] [6].A disadvantage of their ap-
proach is specific buffer customization.

A dynamic VC architecture was proposed by Lai et al. [2] to solve the head
of line problem. However, their proposed architecture could not effectively use
all the unused buffers of other input channels.

A Reliability Aware Virtual channel (RAVC) NoC router micro-architecture
[7] was proposed. In particular, in the case of failure in routers, the virtual
channels of routers surrounding the faulty routers can be totally recaptured and
reassigned to other input ports.

The DAMQ-SHARED buffer that combined the buffer for virtual channels
from two different physical channels was proposed by Liu [8]. It is also based on
with self-compacting buffer. Though the DAMQ-SHARED buffer design can be
used to enhance the utilization of inter-channel buffers, the design complexity is
also increased due to the complex control logic of the DAMQ buffer.

Our new DAMQ-DP buffer combines the buffer for virtual channels from two
different physical channels without shortcomings above.

3 DAMQ-DP (DAMQ for Dual Port) Scheme

In this paper, we assume the use of wormhole-switching and fixed length flow
control unit (flit). And for simplicity, only two virtual channels exist in one
physical channel.

For two physical channels can access the shared buffer simultaneously, we
choose four-port RF (2R2W Register File) for the data memory. Four-port RF

140 Y. Wang and M. Zhang

Shared buffer

Write data
from CP0 VC0 head and tail

management

VC1 head and tail
management

CP0 manager

CP0 VC

CP0
write
addr

Read request
from arbiter

CP0
read
addr

Read data from CP0
Next read addr

Next write addr

Idle list
manager

Addr
reclaim

Addr
allocate

VC0 head and tail
management

VC1 head and tail
management

CP1 manager
Addr

allocate

Addr
reclaim

Read data from CP1
Next read addr

Read request
from arbiter

CP1
read
addr

CP1
write
addr

Write data
from CP1

CP1 VC

Next write addr

CP0
prefetch

CP1
prefetch

bypass

bypass

Fig. 1. DAMQ-DP structure

has separate address, data, and control inputs for each of the ports. Each phys-
ical channel uses one pair of these read/write ports to access the RF. All vir-
tual channels belonging to one physical channel access memory with the same
read/write port. To differentiate the router port and RF port, sometimes we
name the router port as CP (channel port), and RF port as MP (memory port).

Fig. 1 presents the DAMQ-DP structure with 2 virtual channels in one CP.
The main modules comprise: 1) shared buffer for data and pointer; 2) pre-
fetching buffer for each VC to pre-fetch data from shared buffer as well as bypass
function writing data from input channel into pre-fetching buffer directly; 3) head
and tail pointer management for each VC; 4) idle list manager in charge of idle
flit buffer; 5) multiplexer for multiple VCs access to the same read/write port of
shared buffer in one CP (not show in this figure)

3.1 Shared Buffer with Pre-fetching and Bypass

Flits in one VC are organized with linked list and each slot in shared buffer is
used to store a flit and a pointer to the next flit of the same VC.

Shared buffer is implemented with four-port RF, known as 2R2W Register
File. It has two read ports and two write ports. Each CP uses one pair of
read/write ports, usually with the same clock. The port, either read port or
write port, often has similar signals, such as clock, enable, address bus and data
bus. Read operation in this kind of buffer is different from the usual ways of
accessing register, and is more like SRAM. Reading from port of the RF is syn-
chronized by the read clock. At the next rising edge of clock, the data in the
memory location indexed by address will appear at the output bus. That is,
there is one-clock latency between issuing address and data availability. For the
next read pointer is also included in the data, such characteristic will degrade
performance greatly. The only way to pipeline the read access in the same VC
is to get the data immediately when issuing read address.

DAMQ Sharing Scheme for Two Physical Channels 141

To accelerate the read access of shared buffer, each VC is equipped with a
private pre-fetching buffer with the depth set to three. Just as what the buffer
name means, its function is to store data pre-fetched from shared buffer tem-
porarily. It consists of three registers. The read request from crossbar arbiter
is always directed to the pre-fetching buffer, so the corresponding data and the
next address will be valid at the same rising edge of clock, and at the same time,
we get the next flit address to read from. This avoids the three clock defect in
original DAMQ.

The arriving flits from input channel can be written into shared buffer, or into
private buffer by bypass. The choice depends on the states of both pre-fetching
buffer and shared buffer. The rule is, if the destined VC has no data in shared
buffer and pre-fetching buffer is not full, the arriving data should go into private
buffer directly, else the data should be written into shared buffer.

If private buffer is not full and there are data in shared buffer, data read
should be launched from shared buffer into private pre-fetching buffer. For there
are more than one VC in a physical channel, and all of them access the shared
buffer with the same read port. Some of them may want to fetch data from shared
buffer simultaneously, thus there should be an arbiter to resolve the competition
and multiplex the common port. Every time more than one VC needs to fetch
data, only one of them can be admitted. Arbiter can use some kind of scheduling
scheme such as round-robin to fulfill this task, choosing only one VC each time.

3.2 VC Head and Tail Pointers

Each VC has a head pointer (HP) and a tail pointer (TP) to organize the data in
shared buffer into FIFO structure. HP points to the address of shared buffer the
next read accesses, and TP points to the address the next write happens. When
a flit arrives at input buffer, CP applies for a free slot from idle list manager.
The applied address will be the TP value in next clock cycle. The data and
the applied address are written into the shared buffer with the write address
corresponding to current TP. When data are needed from shared buffer, the
flit can be accessed from current HP pointing to, and at the same time HP is
updated with the pointer contained in data. Finally the address of current HP
is sent to idle list manager for reclaim. As we can see, HP and TP always point
to the next operations happen, and flit can be read or written without incurring
further latency. At the time the system is initialized, HP and TP of the same
VC have the identical value, but they are different from other VC’s.

3.3 FIFO Structure of Idle List Manager (ILM)

ILM organizes all free slot addresses for shared buffer into a FIFO, and puts
them in SRAM, instead of linked list as others. Fig. 2 presents the structure of
ILM. To hide the access latency of SRAM, it also has the similar bypass and pre-
fetching circuits as shared buffer. An alternative choice is to use 1R1W Register
File or Register Array, which can give data out immediately without waiting for
one more clock period.

142 Y. Wang and M. Zhang

Idle list
Bypass write

Idle list pre-fetching buffer

Write to idle list
Read from idle list

Slot 1 Slot 0

F_GET TAG0F_PUT TAG1

FIFO

Tail Head

Fig. 2. Idle list manager

If there are no data in SRAM and the pre-fetching buffer is not full, the
reclaimed address can be written into pre-fetching buffer directly, otherwise it
should be written into SRAM. If pre-fetching buffer is not full and there is data
in SRAM, data will be read out from SRAM and written into pre-fetching buffer.
The depth of pre-fetching buffer is set to three too. According to the mechanism
above, if data number is no more three, all data will exist in pre-fetching buffer.
If data number is above three, the top three exist in pre-fetching buffer, and the
remaining are in SRAM. This kind of internal FIFO structure is transparent to
the outside of FIFO. The read access to FIFO involves no latency and can get
the needed data immediately. The data must be gotten from pre-fetching buffer,
and not from SRAM.

ILM needs initialization after system reset. Except for those addresses allo-
cated to HP and TP of each VC, all other slot addresses are marked as idle and
need to be included in SRAM. When a flit arrives, CP requests an empty slot
from ILM for the flit; when a flit leaves, the corresponding slot is reclaimed to
ILM. With the help of pre-fetching buffer, an idle slot can be gotten at the same
time when needed, which promises zero latency and pipelining operation.

Allocation of Idle Slots. Each unit in idle list FIFO is a pair of shared buffer
slot addresses, slot 0 address and slot 1 address. In addition to the FIFO, there
are also two registers, F GET and F PUT, each of which can store a single slot
address. And also, two tags, TAG0 and TAG1, mark the responding register’s
state. If a valid address is in F GET, TAG0 is set true. If a valid address is in
F PUT, TAG1 is set true.

For two CPs share the same buffer space, at most two flits can arrive and
apply for spare slots. If there is only one request, the first to do is to check if
TAG0 is valid. If TAG0 is valid, the address in F GET is sent to the correspond-
ing CP, and TAG0 is set invalid. If TAG0 is invalid, the slot 0 in head position
is sent to CP and address in slot 1 is sent to F GET. And then, FIFO read ad-
dress increases. If both CPs request for slots, slot 0 in head position is assigned to

DAMQ Sharing Scheme for Two Physical Channels 143

CP0, and slot 1 to CP1. And then, FIFO read address increases. Following gives
the description of allocation algorithm.

if(CP0_REQUEST && CP1_REQUEST)

begin

CP0_REPLY = FIFO_HEAD[SLOT_0];

CP1_REPLY = FIFO_HEAD[SLOT_1];

READ_ADDR = READ_ADDR+1;

end

else if(CP0_REQUEST)

begin

if(TAG0)

begin

CP0_REPLY=F_GET;

TAG0 =FALSE;

end

else

begin

CP0_REPLY = FIFO_HEAD[SLOT_0];

F_GET = FIFO_HEAD[SLOT_1];

TAG0 = TRUE;

READ_ADDR = READ_ADDR+1;

end

end

else if(CP1_REQUEST)

begin

if(TAG0)

begin

CP1_REPLY=F_GET;

TAG0 =FALSE;

end

else

begin

CP1_REPLY = FIFO_HEAD[SLOT_0];

F_GET = FIFO_HEAD[SLOT_1];

TAG0 = TRUE;

READ_ADDR = READ_ADDR+1;

end

end

Reclaim of Idle Slot. Just as allocation of idle slot, the reclaim of idle slot
has two possibilities, the number of released slots may be one or two. If one slot
is released at a time, the first thing to do is to check if TAG1 is valid. If TAG1 is
invalid, the slot address is written into F PUT, and TAG1 is set valid. If TAG1
is valid, both addresses of released slot and the one in F PUT are written into
FIFO, and then, FIFO write address increases. If both CPs released their slots

144 Y. Wang and M. Zhang

at the same time, both addresses of released slots are written into FIFO, and
then, FIFO write address increases. Following gives the description of reclaim
algorithm.

if(CP0_REQUEST && CP1_REQUEST)

begin

FIFO_TAIL[SLOT_0] = CP0_ADDR;

FIFO_TAIL[SLOT_1] = CP1_ADDR;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

else if(CP0_REQUEST)

begin

if(!TAG1)

begin

F_PUT = CP0_ADDR;

TAG1 = TRUE;

end

else

begin

FIFO_TAIL[SLOT_0] = CP0_ADDR;

FIFO_TAIL[SLOT_1] = F_PUT;

TAG1 = FALSE;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

end

else if(CP1_REQUEST)

begin

if(!TAG1)

begin

F_PUT = CP1_ADDR;

TAG1 = TRUE;

end

else

begin

FIFO_TAIL[SLOT_0] = CP1_ADDR;

FIFO_TAIL[SLOT_1] = F_PUT;

TAG1 = FALSE;

WRITE_ENABLE;

WRITE_ADDR = WRITE_ADDR+1;

end

end

DAMQ Sharing Scheme for Two Physical Channels 145

4 Experimental Results

The proposed scheme is simulated at the cycle-accurate level. The architecture
we simulate is an 4-ary 2-cube message exchanging system without wrapped
around channels. Each router is attached to one local end-node for injecting and
sinking. Some of simulation configuration parameters are as follows:

1)Packets size is set to 8 flits
2)Switching technique used is wormhole
3)VC number in one physical channel is 4
4)Injection process is Bernoulli
5)Routing protocols are dimension-order(DOR) and Valiant [9]
6)Traffic patterns are uniform and transpose

The most basic performance measures of any interconnection network are its
latency and throughput versus offered load. We set the total buffer size for each
physical channel to 32 flits when SAMQ and normal DAMQ are used. In order to
examine the performance of DAMQ-DP with regard to the relationship between
buffer size and network performance, we use three different sizes, 24, 26 and 32
flits buffer respectively. By varying the injection rate, we study their impact on
throughput and message latency of the network.

The simulation results of network throughput and message latency under
uniform traffic with DOR routing is shown in Fig. 3.

There is hardly any difference for various buffer schemes while the network
traffic is low. As to latency, there comes the forking point when the applied
traffic load is increased to 0.5. As far as throughput is concerned, the forking
point is at 0.3. Along with the network saturation process, DAMQ-DP has higher
throughput and lower latency than both DAMQ and SAMQ when they all use
same size 32-flits buffer. Comparing DAMQ-DP32 with SAMQ32 we can find
the throughput is improved about 10% when load is a light higher. DAMQ-DP
with 24-flit buffer achieves approximately the same latency and throughput as
SAMQ32, but the buffer in former is only 75% of the latter.

While under transpose traffic pattern, Fig. 4 and Fig. 5 the divarication comes
out early when considering latency. There is no significant difference for different
buffer schemes below load 0.3. After this point, the difference becomes very clear.
Regarding the message latency and throughput, DAMQ24 managed to hold a
similar performance as SAMQ32. With the same traffic load and buffer size,
DAMQ-DP32 can provide a higher throughput about 5% than SAMQ32.

We also change the routing strategy to Valiant. Under uniform traffic pattern,
we can find the similar conclusions as DOR except that throughput for different
schemes discriminates earlier.

From the figures above we can find out that DAMQ-DP tends to provide
a more efficient method for flits to share buffer space than DAMQ which has
already shown advantages over traditional SAMQ scheme. DAMQ-DP achieves
the best performance among the three buffer schemes we tested. It can utilize
less buffer space without sacrificing the network performance.

146 Y. Wang and M. Zhang

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

de
la
y(
cy
cl
es
)

injection rate(flits/cycle/node)

SAMQ32
DAMQ DP24
DAMQ DP26
DAMQ32
DAMQ DP32

(a) Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

th
ro
ug
hp

ut
(fl
its
/c
yc
le
/n
od

e)

injection rate(flits/cycle/node)

SAMQ32

DAMQ DP24

DAMQ DP26

DAMQ32

DAMQ DP32

(b) Throughput

Fig. 3. Uniform traffic pattern, DOR

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

de
la
y(
cy
cl
es
)

injection rate(flits/cycle/node)

SAMQ32
DAMQ DP24
DAMQ DP26
DAMQ32
DAMQ DP32

(a) Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5

th
ro
ug
hp

ut
(fl
its
/c
yc
le
/n
od

e)

injection rate(flits/cycle/node)

SAMQ32
DAMQ DP24
DAMQ DP26
DAMQ32
DAMQ DP32

(b) Throughput

Fig. 4. Transpose traffic pattern, DOR

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5

de
la
y(
cy
cl
es
)

injection rate(flits/cycle/node)

SAMQ32
DAMQ DP24
DAMQ DP26
DAMQ32
DAMQ DP32

(a) Delay

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5

th
ro
ug
hp

ut
(fl
its
/c
yc
le
/n
od

e)

injection rate(flits/cycle/node)

SAMQ32

DAMQ DP24

DAMQ DP26

DAMQ32

DAMQ DP32

(b) Throughput

Fig. 5. Uniform traffic pattern, Valiant

DAMQ Sharing Scheme for Two Physical Channels 147

5 Conclusion

To enhance the performance of router with fewer buffers for higher throughput
and lower communication latency, we propose a buffer sharing scheme that can
share the common buffer space between ports, present the buffer structure and
idle flit manager. The experiments show that the scheme supersedes SAMQ and
DAMQ in terms of both throughput and latency. The scheme has the follow-
ing features: 1)Less buffer space at similar performance. Under uniform traffic,
DAMQ-DP gets the similar performance with 75% buffer. 2)Higher throughput.
It outperforms SAMQ with 5% to 10% higher in uniform traffic simulations
when same size buffer is used. Above all, DAMQ-DP is an excellent scheme to
optimize buffer management providing a good throughput when the network has
a larger load.

Acknowledgment. This work is partly supported by the 863 Project of China
under contract 2012AA01A301.

References

1. Peh, L.-S., Dally, W.J.: A delay model and speculative architecture for pipelined
routers. In: International Symposium on High-Performance Computer Architecture,
pp. 0255–0266 (2001)

2. Lai, M., Wang, Z., Gao, L., Lu, H., Dai, K.: A dynamically-allocated virtual channel
architecture with congestion awareness for on-chip routers. In: Proceedings of the
45th Annual Design Automation Conference, DAC 2008, pp. 630–633. ACM, New
York (2008)

3. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct net-
works. Computer 26(2), 62–76 (1993)

4. Tamir, Y., Frazier, G.L.: Dynamically-allocated multi-queue buffers for vlsi commu-
nication switches. IEEE Trans. Comput. 41(6), 725–737 (1992)

5. Liu, J., Delgado-Frias, J.G.: A shared self-compacting buffer for network-on-chip
systems. In: Proceedings of the 49th IEEE International Midwest Symposium on
Circuits and Systems, vol. 2, pp. 26–30. IEEE Press, Piscataway (2006)

6. Delgado-Frias, J.G., Diaz, R.: A vlsi self-compacting buffer for damq communication
switches. In: Proceedings of the Great Lakes Symposium on VLSI 1998, GLS 1998,
pp. 128–133. IEEE Computer Society, Washington, DC (1998)

7. Neishaburi, M.H., Zilic, Z.: Reliability aware noc router architecture using input
channel buffer sharing. In: Proceedings of the 19th ACM Great Lakes symposium
on VLSI. GLSVLSI 2009, pp. 511–516. ACM, New York (2009)

8. Liu, J., Delgado-Frias, J.G.: A damq shared buffer scheme for network-on-chip. In:
Proceedings of the Fifth IASTED International Conference on Circuits, Signals and
Systems, CSS 2007, pp. 53–58. ACTA Press, Anaheim (2007)

9. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco (2003)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 148–154, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Design and Implementation of Dynamic Reliable Virtual
Channel for Network-on-Chip

Peng Wu, Yuzhuo Fu, and Jiang Jiang

The School of Micro Electronics, Shanghai Jiao Tong University
Shanghai, 200240, China

{wupeng,fuyuzhuo,jiangjiang}@ic.sjtu.edu.cn

Abstract. Reliability issue such as soft error due to scaling IC technology, low
voltage supply and heavy thermal effects, has caused fault tolerant design be a
challenge for NoC(Network-on-Chip). The router is a core element of the NoC,
and the virtual channel based on flip-flop which occupies most of the area is the
most sensitive element to soft error of the router. Focus on this problem, a dy-
namic reliable virtual channel architecture is proposed in this paper. It can
detect the utilization of the virtual channel to adjust physical configuration to
support for no-protection, dual redundancy and TMR (triple modular redundan-
cy) requirements in flexibility. Compared with typical TMR virtual channel
design, the synthesis results show that our method can achieve several fault to-
lerant structures switch with near 3 times resource utilization in ideal case and
only 13.8% extra area cost.

Keywords: NoC, reliable, virtual channel, dynamic structure.

1 Introduction

With the rapid development of IC technology, more and more IP cores will be inte-
grated on one chip. But the traditional bus based SoC design will meet many prob-
lems, such as the integration and reusability of IP cores. An efficient solution to these
problems is NoC, which has regular structure and much higher bandwidth due to mul-
tiple concurrent connections. But the shrinking feature size makes more transient
faults, including crosstalk, charge sharing and SEU (Single Event Upset) [1], which
will degrade the NoC performance even result in system crash. So reliability research
has become a hot spot of NoC design.

The router is one of the core elements of NoC, because the packet transmits in NoC
through the router. Virtual channel, which is the main buffer of the router, is the most
sensitive element of the router. We find that reliable virtual channel has become a
challenge for NoC design since that virtual channel consumes about 46% of power [2]
and 75% of area of the router [3]. At the same time, different applications or even the
same application such as H.264 may have different reliability requirements. So it is
important to design a reliable virtual channel which can support different reliability
requirements.

In this paper, we propose a reliable virtual channel design, which can detect the uti-
lization of the virtual channel to adjust the redundancy structure to support for

Design and Implementation of Dynamic Reliable Virtual Channel for Network-on-Chip 149

no-protection, dual redundancy and TMR requirements. Major benefit of the proposed
design over its counterparts is: it can exploit the inherent redundancy to meet different
fault tolerant requirement.

The rest of this paper is organized as follows. Related work will be described in
Section 2. Basic background and router structure will be described in Section 3. The
proposed reliable virtual channel design will be described in Section 4. The results
and comparison is presented in Section 5. Conclusion is drawn in Section 6.

2 Related Work

Reliability research of NoC has become a hot spot from different aspects, including
retransmission mixed with error detection, spare link or router, triple modular voting
structure and fault tolerant routing algorithm. Murali etc [4] proposed an error detec-
tion and recovery scheme for NoC design based on area, power and performance
constraints. Yung-Chang Chang etc [5] proposed a fault tolerant NoC architecture
using spare routers. Fault tolerant routing algorithms, including stochastic and
adaptive, have been suggested in many papers [6-7].

The research and design above are mostly based on system level, and analyzed by
the simulator. There are also some researches aiming at implementation of the ele-
ment of NoC. Shih-Hsun Hsu etc implemented a router for ANoC [8]. M. H Neisha-
buri etc [9] proposed an enhanced reliability aware NoC router for permanent error.

In this paper, different from previous works, we design and implement a virtual
channel support for different reliability requirements by the Verilog HDL and com-
pare the area cost with the traditional designs.

3 Basic Router Architecture

In order to introduce proposed virtual channel design, we give the basic router micro-
architecture as Fig 1 shows. In most of wormhole flow control mechanism based

Fig. 1. Basic router microarchitecture

150 P. Wu, Y. Fu, and J. Jiang

design, virtual channel is allocated in input channel. And it is the main buffer in the
router. There are also some combinational logic part, such as routing computer part
(RC), virtual channel allocator (VCA) and crossbar. The data packet will be divided
into many flits to transmit in NoC, and one head flit will be added to control the data
flow. The head flit will work in RC and VCA to decide which port and which virtual
channel to flow. But the data flit, which carries the data payload, will stay in virtual
channel for several cycles. So the virtual channel needs to be protected.

4 Proposed Reliable Virtual Channel Design

Our virtual channel design includes three aspects: 1) Flit format needs to be modified,
which demands 3 extra bits. Two of them denote RR (Redundancy-Requirement), 00
means that the flit has no reliability requirement, 10 means the flit is dual redundancy
data, 11 means the flit has TMR requirement. The other bit is parity check bit, which
is support for dual redundancy data. And the new flit format also needs extended link,
crossbar and FIFO bandwidth support. 2) The virtual channel needs to be re-designed,
which is shown in Fig 2, including extra status registers (VC-Org and Friend-VC) to
generate the redundancy structure signals and two auxiliary pointers to maintain two
or three copies read and written in one cycle. 3) The router pipeline needs to be
changed, which requires two stages, VC-in-configure and VC-out-configure to control
the write and read of the virtual channel.

Fig. 2. Proposed Virtual Channel Architecture

Design and Implementation of Dynamic Reliable Virtual Channel for Network-on-Chip 151

VC-in-Configure: The function of this stage is to determine the redundancy structure
of the virtual channel when the flit writes. The flowchart of the stage is shown in Fig
3. When a head flit will be written into the virtual channel, RR will be decoded at
first.

• If RR is 00, which is region 1 in Fig 3. It means the packet (all flits after the head
flit and before another head flit) has no reliability requirement. The flit will be
stored in the virtual channel lane which is be allocated in the VCA, and the status
registers of the lane will be the initial value.

• If RR is 10, which is region 2 in Fig 3. It means the packet has dual redundancy
requirement (with parity check). Then we will check if there are two empty lanes
in the virtual channel, just because only the empty lane is available in the worm-
hole flow control mechanism. If there are two empty lanes in the virtual channel,
the flit will be stored in the two lanes. And each lane has a status register called
Friend-VC as shown in Fig 2, which record the lane that stores the same flit with
this lane. It achieves the transverse redundancy structure. If there is only one empty
lane in the virtual channel, the flit will be stored in this lane twice with the help of
the two auxiliary pointers of the FIFO as shown in Fig 2. It means the continuous
two flits save the same data and it achieves the longitudinal redundancy structure,
which is recorded in VC-Org.

• If RR is 10, which is region 3 in Fig 3. It means the packet has TMR requirement.
Similar to dual redundancy, if there are three empty lanes in the virtual channel, the
flit will be stored in the three lanes, otherwise the flit will be stored in the lane for
three times. At the same time, Friend-VC and VC-Org will be update to record the
redundancy structure of the virtual channel.

VC-Out-Configure: The function of this stage is to export the protected data when
there is a read request of the virtual channel, as shows in Fig 4. When there is a read
request of a lane, we will check its VC-Org at first.

• If VC-Org is 00, which is region 1 in Fig 4. It means it is single mode state. Then
we will check the RR, if it is 00, it means the data has no reliability requirement,
and export the data of lane directly. If RR is 10, it means the data is dual redundan-
cy data, but the lane is single mode, so its redundancy data is in another lane. We
will check the Friend-VC to take the redundancy data and use a dual mode voter
and the parity check bit to get the protected data. If RR is 11, it means it is TMR
data. We will check the Friend-VC to get other two redundancy data and use a
triple mode voter to get the protected data.

• If VC-Org is 10, which is region 2 in Fig 4. It means the lane is dual mode state.
We will use one auxiliary pointer to get two data in one cycle. Then we will use a
dual mode voter and the parity check bit to check and export the protected data.

• If VC-Org is 11, which is region 3 in Fig 4. It means the lane is triple mode state.
We will use the two auxiliary pointers to get three data in one cycle. Then we will
use a triple mode voter to arbiter and export the protected data.

152 P. Wu, Y. Fu, and J. Jiang

Fig. 3. VC-in-configure flowchart

Read request

VC-Org

VC is single mode
state

11

00

10

00

VC is dual mode state

Take two data and use
dual mode voter to

output

2

VC is triple mode state

Take three data and
use triple mode voter

to output

3
RR

No-protection dataDual redundancy data TMR data

Output the data

Check Friend-VC to
take the redundancy

data and use dual
mode voter to output

Check Friend-VC to
take the redundancy
data and use triple

mode voter to output

10 11

1

Fig. 4. VC-out-configure flowchart

Design and Implementation of Dynamic Reliable Virtual Channel for Network-on-Chip 153

5 Experimental Result

5.1 Efficiency Analysis

We have implemented three kinds of virtual channel by Verilog HDL, the basic de-
sign which has no protection [8], the typical TMR virtual channel and the proposed
design. The typical TMR virtual channel uses three lanes to support TMR require-
ment. In our all designs, there are 4 lanes in one input port, and each size is 6 flits.

To evaluate reliability of the proposed design, we use the single error model, which
means there is only one error at the same time. But the error can be one bit or several
bits. Simulated by ModelSim, we find dual redundancy requirement can protect the
data from the one bit error, and TMR requirement can protect the data from the multi-
bit error in one flit. It confirms that proposed design has the expected goal.

At the same time, the proposed design can use transverse structure when the load
of NoC is low to improve the throughput, and when the load is high it can be switched
to vertical structure to reduce the congestion. For example, in ideal case, if the load is
low enough, the typical TMR design based vertical structure need two more flits in
the virtual channel to store the redundancy data, but at the same time the proposed
design can be switched to transverse structure to get better performance. We extended
cycle accurate simulator Nirgam [10] to support the proposed design. We select
4x4Mesh with typical XY routing. The packet accruing strategy is CBR (Constant Bit
Rate). And each port includes 4 VCs and the buffer size per VC is 6. At the low load,
the typical TMR design is like each VC size is 2 and the proposed design will be still
6. The simulation result shows that at low load the throughput of the proposed design
is about 2.66 times of the typical TMR design and the average flit latency of the pro-
posed design is about 41.1% of the typical TMR design. It means the resource utiliza-
tion of our design may be near 3 times of the typical TMR design in ideal case.

5.2 Cost Evaluation

After verifying the fault tolerant performance of the proposed design, we synthesize
the three Verilog RTL model based on TSMC 130nm cell library by Synopsys Design
Compile. In the corner of typical operation, we have set up the constraint, with rise
time, fall time and skew value of the clock of 0.1 ns, and input delay and output delay
of 0.2ns, also we set the set_max_area of 0 to get the least area of the frequency, and
compared with the traditional router design, we set the frequency as 200MHz and the
buffer size is 6 flits. The parameters are shown in Table 1. We can find that the typi-
cal TMR virtual channel needs about 11.1% extra area cost to support the reliability
requirement. And the proposed design achieves the dynamic structure to get better
performance with about 13.9% area cost compared with the typical design.

Table 1. Synthesize parameter results

 Frequency Buffer size Area
Basic VC design 200MHz 6 flits 89428.625݉ߤଶ
Typical TMR VC 200MHz 6 flits 99376.414݉ߤଶ
Proposed design 200MHz 6 flits 113127.18݉ߤଶ

154 P. Wu, Y. Fu, and J. Jiang

6 Conclusion

In this paper, we design and implement a new virtual channel of NoC which can
achieve different reliability requirements with dynamic redundancy structure. The
main contribution of the proposed design is it can detect the utilization of the NoC to
adjust the redundancy structure to get better performance.

Acknowledgements. Our work is supported by the Cisco Research Center Requests
for Proposals (RFPs), Virtualization for NoC fault tolerance, 2011-90403 (3696).

References

1. Kim, J., Park, D., et al.: Design and analysis of an NoC architecture from performance, re-
liability and energy perspective. In: Proceedings of the 2005 ACM Symposium on Archi-
tecture for Networking and Communications Systems, pp. 173–182 (2005)

2. Owens, J.D., et al.: Research challenges for on-chip interconnection networks. IEEE Mi-
cro 27(5), 96–108 (2007)

3. Gratz, P., et al.: Implementation and evaluation of on-chip network architectures. In: Com-
puter Design, ICCD 2006, pp. 477–484 (2006)

4. Murali, S., et al.: Analysis of error recovery schemes for network on chips. Design & Test
of Computers 22(5), 434–442 (2005)

5. Chang, Y.-C., et al.: On the design and analysis of fault tolerant NoC architecture using
spare routers. In: Asia and South Pacific Design Automation Conference, pp. 431–436
(2011)

6. Hu, J., Marculescu, R.: Dyad: Smart routing for network-on-chip. In: Proceedings of De-
sign Automation Conference (DAC), pp. 260–263 (2004)

7. Pirretti, M., et al.: Fault tolerant algorithms for network-on-chip interconnect. In: Proc. Int.
Symposium Very Large Scale Integrate (ISVLSI), pp. 46–51 (2004)

8. SHHSU: Design and Implementation of a router for network-on-chip. Department of Elec-
trical Engineering National Cheng Kung University Thesis for Master of Science (2005)

9. Neishaburi, M.H., et al.: ERAVC: Enhanced reliability aware NoC router. In: Quality
Electronic Design (ISQED), pp. 1–6 (2011)

10. Nirgam: http://nirgam.ecs.soton.ac.uk/

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 155–162, 2013.
© Springer-Verlag Berlin Heidelberg 2013

HCCM: A Hierarchical Cross-Connected Mesh
for Network on Chip

Liguo Zhang1,2, Huimin Du2, and Jianyuan Liu2

1 School of Microelectronics, Xi Dian University, Xi’an, China
2 School of Electronic Engineering,

Xi’an University of Posts & Telecommunications, China
{zhanglg,fv,liujianyuan}@xupt.edu.cn

Abstract. As the continuous development of semiconductor technology, more
and more IP cores can be contained on the single chip. At this time the inter-
connected structure plays a decisive role on the area and performance of system
on chip, and has a profound influence on the transmission capability of system.
Based on the distributed routing lookup, we proposed a new kind of inerratic
interconnection network is named HCCM (Hierarchical Cross-Connected
Mesh), which is consisted of a N N× Mesh interconnection of 2N subnets,
every subnet comprised of 2 2× interconnection by full connection. Meanwhile,
this paper comes up with a new hierarchical routing algorithm——HXY (Hie-
rarchical XY), the simulation results demonstrate the HCCM topology is supe-
rior to the Mesh and the Xmesh topology on the performance of system average
communication delay and normalized throughput.

Keywords: Network on Chip (NoC), Distributed Routing Lookup, Routing
Algorithm, OPNET Modeler.

1 Introduction

The current decades have witness the rapid development of semiconductor technology,
the significant increase of chip integration and the continuous development of the
multi-core technology and parallel computing, The interconnection technology of
Network-on-chip[2] are widely applied because of the excellent scalability, which the
system can contain multiple processors、memory. However, the network-on-chip has
profound influence on the performance and scalability of the multi-processor. Taking
into account the difficulty and cost of physical implementation, most of the existing
single multi-processor using the classical topology, just as Mesh[3]、Torus[4] etc.

The literature[5] analyzed seven different types interconnect features of different
applications, including data-intensive matrix and vector computing, sparse matrix and
vector operations、 transformation between the time domain and frequency domain
etc, from which we can find: in some applications, which each node may have large
volume of business with two or three adjacent nodes, under other situations, each node
may communicate with more than four adjacent nodes, Based on the latter application,
each node in Mesh network is just directly connected with four adjacent nodes, this

156 L. Zhang, H. Du, and J. Liu

characteristics of Mesh network can not satisfy the application. Therefore, a new kind
scalable network on chip based on short-term interconnection, which is named HCCM
(Hierarchical cross-connected Mesh) is proposed. HCCM network is consisted of
several subnets, every subnet is seems as a single node, which is composed of four
nodes by full connection, all the subnets is connected in Mesh structure. Through slight
increasing in the cost of hardware, HCCM network adds the connectivity of each node,
thereby increasing the effective interconnect bandwidth of each node.

The Xmesh network proposed by literature[1] is also based on Mesh structure by
adding the straight path through main diagonals, what can decrease the network di-
ameter and increases the average bandwidth, at the same time, which is likely to result
in main diagonals block, which would significant affect the performance of network.
Under the situation of main diagonal block, the performance of Xmesh network is close
to Mesh network.

This paper presents the HCCM network. Compared with Mesh and Xmesh network,
HCCM network has short network diameter and well localized, which the average
delay is less than Xmesh and Mesh, is better than Xmesh and close to Mesh network on
the load distribution. In the pattern of hot spot load, HCCM is better than both the
Xmesh and Mesh on the normalized throughput.

The HCCM network is especially suitable for the high-performance router struc-
ture[6], which can blend the switching and forwarding organically: every subnet dis-
tributed store a complete routing table, four nodes in a subnet complete the lookup of
routing table entry simultaneously[7-9]. According to the result of lookup, the ex-
change of packages will be completed in the global network. Due to the better
performance of HCCM than Xmesh and Mesh which has been used in multi-core
interconnection for NOC, therefore, we believe that the HCCM network can be used for
the multi-core interconnection.

2 HCCM Networks

HCCM network is regular and symmetric which can be defined as two layers. The first
is the subnet which is connected by full connection; the second is the mesh network,
which every subnet can be seemed as a single node.

2.1 Subnet of HCCM Network

As shown in Fig.1, every subnet is consisted of four nodes by full connection, which

can be represented as
iN (0 ≤ i ≤ 3). Each node can reach to others only by one hop. (x,

y, z) is used to located every node, in which x and y are located every subnet in the
whole HCCM network, z represents different nodes inside the subnet which including
four nodes (In simulation model, the coordinate includes two parts, which the fist part
can be turned into x and y, the second part is the same as z). The packets are sent to take
two diagonals as much as possible during transmission, which result in one hop shorter
than mesh network. That is one of the reasons why HCCM is more efficient than Mesh
network.

 HCCM: A Hierarchical Cross-Connected Mesh for Network on Chip 157

2.2 Global Network of HCCM

In Fig.2, The global network of HCCM is connected by N subnets in Mesh
connection.

Based on the application of distributed routing lookup, the routing table can be di-
vided into four parts, which of them are stored respectively in the four nodes of the
subnet in HCCM network. From the view of the global network, every subnet has a
complete routing table, each node can receives the IP packet. Once the packages arrive
in any nodes, the node will begin to look up the table entry which have been stored in it,
where the require table entry are stored in, where the package will be send to, then,
completing the lookup and forwarding. There would be large amount in local traffic
relatively, however, the interconnection of full connection can make that every package
can reach to another one just in one hop inside the subnet. This approach can significant
improve the efficiency of local forwarding. Since each node only stores a quarter of the
entire routing table, the time for routing lookup will be drastically reduced. All these
can dramatically promote the efficiency of route table lookup, at the same time, it
would reduce the requirement space to store the route table in every node.

 Fig. 1. The structure of subnet Fig. 2. The structure of global network

2.3 Topological Properties

In Table 1, the topological properties comparison for different network is illustrated,
which of these are used to evaluated the complexity, communication efficiency and
cost of one network, is the important criteria to decide which kind of network can be
applied in the design. All nodes in the three kinds network have the different node
degree. The diameter of a network[10] is the maximum distance between two nodes in
a network. If there were N nodes in a HCCM network, then there were 4N subnets

in every horizon or vertical line. The maximum distance in HCCM network is from the
node (0,0) to (4N -1,2), There would be 2(4 1)N − hops between these two nodes in

the Mesh network with N nodes, 4N hops will be shorter in the HCCM network

158 L. Zhang, H. Du, and J. Liu

because of the diagonals. As a result the diameter of HCCM network is

()2 4 1 4 3 2 2N N N− − = − . A mesh with N nodes network have ()2 N N− links,

Two diagonals are added in every subnet, which cause that there will be 2N links

more than the number of links in Mesh network, so,

()2 2 5 2 2N N N N N− + = × − links exists in HCCM network , which have N nodes.

Under the same scale, the number of links of Xmesh network is 2N .

Table 1. Topological properties comparison

Topo Diameter Degree Numbers of links

Mesh 2(1)N − 4 2()N N−

Xmesh 1N − 6 2N

HCCM 3 / 2 2N − 5 5 / 2 2N N−

What Table.1 mirrored is that HCCM network has demand on the parity of the
number of nodes because of there are four nodes in every subnets. Xmesh is the
minimum in diameter, Mesh is the minimum and HCCM is the maximum in the
number of links.

By adding some diagonal edges on the Mesh topology, the average distance of the
Xmesh network is reduced sharply, which is the reason that Xmesh has the minimum
diameter. Xmesh has a good network performance under small scale interconnection
and light load. A simulation analysis based on OPNET simulator shows that heavy load
will result in packets jams on the diagonal edges, which will seriously affect the per-
formance of Xmesh network, especially the load distribution.

2.4 Ideal Throughput

Ideal throughput is the maximum throughput under the perfect flow control and route
strategy. The literature[11] gives a formula for calculating the ideal throughput:

2 CTH b B N≤ × , CB represents the bisection channels when the whole network was

divided into two identical parts. b is the data width of each channel, N represents the
total number of nodes.

N=64, CB =16 when the Mesh network under the scale of 8 × 8(There would be eight

channels must be cut off when the network was divided into two parts). At the same
scale, the TH value of HCCM, Xmesh and Mesh just as following:

2
bTHMesh ≤ 2

bTHHCCM ≤ 3
4

bTHXMesh ≤

The HCCM and Mesh have the same ideal throughput, Xmesh has the maximum ideal
throughput.

 HCCM: A Hierarchical Cross-Connected Mesh for Network on Chip 159

2.5 HXY Routing Algorithm

HXY routing algorithm is base on the offset between the source and destination ad-
dress. Firstly, the relative position of destination node away from the source node will
be figure out based on the offset, Secondly, Choosing the shortest path inside the
subnet.

The following definitions have to be made before describing the algorithm:
Definition 3: The source node and destination node are presented by C(_ Cid region , Cid),

D（ _ Did region ， Did ）. The _ Cid region and _ Did region must be translated into

coordinate:
x1=(int) _ Cid region / 1

2 N ; y1=(int) _ Cid region % 1
2 N ;

x2=(int) _ Did region / 1
2 N ; y2=(int) _ Did region % 1

2 N ;

Cid and Did are used to identify four nodes in a subnet, which the value of them are

0, 1, 2, 3.

Definition 4: Routing regions: According to the relative position of destination node
away from the source node, the destination node will falls in one of the six sections
,which just as Fig.3.

Definition 5: The send port: Every node has four ports to send the packages, from 0 to
4. The local port is defined as 5. As Fig.4.

Algorithm describing:

Xoffset=x2-x1, Yoffset=y2-y1 represent the offset on the X and Y axis. Every subnet is
treated as a node, As Definition1 x1, y1, x2, y2 are used to locate the position of source
and destination subnet in the whole network. Figuring out the send_port_x and
send_port_y by XY algorithm and YX algorithm respectively, the routing region can be
calculated by both of them. According to the routing region and the value of Cid and

Did , we can figure out the next hop based on the shortest path principle.

Fig. 3. Routing algorithm Fig. 4. Direction of send port Fig. 5. One of the longest path

This algorithm applies the XY or YX algorithm flexibly. Take the diagonals port as
much as possible. Just as Fig.5 the red path from node (1,1) to (4,3) is one of the longest
path in the scale of 4×4 HCCM network, which is two hops shorter than the Mesh
network under the same scale.

160 L. Zhang, H. Du, and J. Liu

3 Simulations and Evaluations

An OPNET-based NoC (Network-on-Chip) simulation environment, is adopted to
evaluated the performance of the HCCM network and HXY algorithm, including the
package loss rate, average end to end latency, port load distribution and normalized
throughput. The uniform traffic patterns are used, in which each node sends packages
to other nodes by a uniform of the destination node address.

The average end to end latency (ETE latency) is used to evaluate the latency per-
formance of the proposed routing algorithm. The ETE latency is usually defined as the
time elapsed from when the message header is injected into the network at the source
node to when the last unit of information is received at the destination node. The
package loss rate is used to evaluate the throughput when the network has been satu-
rated. The normalized throughput is used to evaluate the network throughput of the
proposed routing algorithm. The normalized throughput refers to the ratio of the
number of packets successfully transferred by the network to that of the packets
injected into the network.

Mesh, Xmesh, HCCM network with the same scale of 8×8, are used as comparison
to evaluate these three kinds topological. Every package’s length is 48 bits. The speed
that the packages injected into network can be set up through the time interval to send
packages.

 Fig. 6. The load variance of different send port Fig. 7. The package loss rate

Under the traffic of balance load, the destinations of all nodes are random distributed
in the entire network. The normalized throughput, the package loss rate, the port load
distribution and the ETE delay are applied.

We collected different load of different ports from three kinds network in different
traffic pattern, calculating the variance of the load of every network, which used to
evaluated the load balance, the greater the standard deviation is, the more uneven the
network load would be, what the Fig 6 mirrored just as following:

(1) The five direction load distribution of HCCM network is between Xmesh and Mesh
network, it would be close to Mesh network in lighter load, there would be worse than
Mesh in heavy load.

 HCCM: A Hierarchical Cross-Connected Mesh for Network on Chip 161

(2) The Mesh network has the most evenly load distribution in four directions.
(3) The Xmesh network owns the most uneven distribution in five directions.

In Xmesh network, the traffic in Northwest is maximum, which is just one of the di-
agonals, at the same time, north has the minimum load. Because that HCCM network
takes the shortest route internal the subnet, there will be heavy load on the two di-
agonals inside a subnet, on the global network, HCCM is the same as Mesh network,
and as a result, The HCCM network is more unevenly than Mesh network on average.

The same method is applied as Fig 7. What we can get from Fig 7 is that HCCM
network is the minimum on the package loss rate, Mesh network is the maximum.

 Fig. 8. The normalized throughput Fig. 9. The ETE delay of different network

As shown in Fig 8, there is not a very larger gap among three kinds networks.
HCCM owns the largest normalized throughput, Mesh is the minimum one, Xmesh is
just between these two networks.

On the ETE delay, the following conclusions can be draw.

(1) HCCM is slightly smaller than Mesh network in lighter load, which is between the
Mesh and Xmesh network in heavy load.
(2) Mesh is the maximum network on the ETE delay no matter what kind traffic pattern.

Comparing all the statistics above, through analyzing the network diameter of three
kinds networks, which the Mesh has the longest network diameter, Xmesh has the
shortest one. Considering the normalized throughput, the load distribution, the package
loss rate and the ETE delay of different networks, we can come up with these following
conclusions:

(1) Due to the unevenly load distribution, the higher package loss rate and the traffic
congestion on the diagonals of Xmesh, the normalized throughput of HCCM is higher
than Xmesh in the simulation. The Mesh network owns the minimum normalized
throughput because of the longest network diameter.
(2) Due to the high package loss rate and longest network diameter, Mesh network has
the maximum ETE delay. In the heavy load, HCCM is smaller than Xmesh network on
the ETE delay. In the lighter load, the ETE delay of HCCM is equal to Xmesh.

162 L. Zhang, H. Du, and J. Liu

4 Conclusions

The characteristic of HCCM network is well localized, easy for expansion, is better
than Mesh and Xmesh network on the aspect of throughput and load distribution. At
present, we have implemented the HCCM network of four nodes by the distributed
routing lookup in the Xilinx NetFPGA, and completed the test on the network consisted
by NetFPGA[13]. In the next step, we will enable to complete the blending of switching
and forwarding in multi-subnets of large network. When the network is large-scale, the
HCCM network is superior to both Mesh and Xmesh in many aspects, so, we believe
that HCCM network can be applied in multi-core interconnection.

Acknowledgement. This project is supported by the National Science Foundation of
China (61136002, 60976020), The Ministry of Education Scientific Research Key
Project (211180) and Science Research Program of Education Department of Shaanxi
Province Government (11JK1063, 2010JK833, 2010JK826,) and Shaanxi Province
Industry Tackles Key Problem Plan (2011K06-47) and The Natural Science Founda-
tion of Shaanxi Province(2010JQ8014).

References

1. Zhu, X.J., Hu, W.W., Ma, K., Zhang, L.B.: Xmesh: A mesh-like topology for network on
chip. Journal of Software 18(9), 2194–2204 (2007)

2. Zhang, X.P., Liu, Z.-H., Zhao, Y.-J., Guan, H.-T.: Scalable Route- Journal of Software, 7
(July 2008)

3. Duato, J., Yalamanchili, S., Ni, L.M.: Interconnection networks: An engineering approach.
Morgan Kaufmann (2003)

4. Asanovic, K.: The Landscape of Parallel Computing Research: A View from Berkeley,
Electrical Engineering and Computer Sciences University of California at Berkeley, p. 10
(2006)

5. Dong, Z.P.: High-performance router. Posts & Telecom Press-Computer Science (2005)
6. Chang, Y.K., Liu, Y.C., Kuo, F.C.: A Pipelined IP Forwarding Engine With Fast Update,

Bradford, United Kingdom, pp. 263–269 (2009)
7. Jiang, W., Prasanna, V.K.: Parallel IP lookup using multiple SRAM-based pipelined, pp.

14–18 (2008)
8. Sun, Z.G., Dai, Y., Gong, Z.H.: MPFS: A truly scalable router architecture for next gener-

ation Internet. Science in China Series F: Information Science 51, 1761–1771 (2008)
9. Shen, Z.: Average diameter of network structures and its estimation. In: Proc. of the 1998

ACM Symp. on Applied Computing, pp. 593–597 (1998)
10. Dally, J., Towles, B.: Principles and Practices of Interconnection Network. Morgan Kauf-

man Publisher (2003)
11. Li, X., Ye, M.: Network Modeling and Simulation with OPNET Modeler. Xidian Univer-

sity, Xian (2006)
12. Wang, M., Du, H., Wang, Y.: An IPv4 Router based on Distributed Forwarding. In: The 3rd

International Conference on Computer and Network Technology (ICCNT 2011), TaiYuan,
pp. 10–15 (2011)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 163–172, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Efficient Broadcast Scheme Based on Sub-network
Partition for Many-Core CMPs on Gem5 Simulator

Kaikai Yang, Yuzhuo Fu, Xing Han, and Jiang Jiang

School of Microelectronics,
ShangHai Jiao Tong University,

P.R. China
yangkaikai@ic.sjtu.edu.cn

Abstract. Networks-on-chip (Noc) is proposed to achieve extensible and higher
bandwidth communication in many-core CMPs. To make full use of the IC re-
source efficiently, sub-network partitioning oriented to Noc is proposed, which
divides the whole Noc into regions to achieve the traffic isolation demand that
acquired by Cache coherence protocol. We take the region segmentation for
mesh-based Noc, the task mapped PEs (processing elements) aggregate into the
Logic sub-network, and routing between these PEs is implemented in the ac-
cording Physical sub-network, in which an efficient tree-based broadcast
scheme based on multicast XY routing algorithm is carried out. The Gem5 Si-
mulator is used to promote the research, experimental results shows our ap-
proach have a quite less average packet latency compared with multiple unicast.

Keywords: Many-Core, Networks-on-chip (Noc), Broadcast, XY Routing,
Sub-network.

1 Introduction

In the recent decades, owing to the improvement of integrated circuit (IC) manufac-
ture technology and development of the microprocessor architecture, the performance
of microprocessor was advanced by 60 percentages per year. The progress of IC man-
ufacture provides massive resources for individual chip, how to make use of the IC
resource efficiently to improve the properties and throughput of the microprocessor
has become an important issue.

On-chip communication turns into a performance bottleneck of the many-core sys-
tem. The reason is with the chip integrity improving constantly, the traditional bus or
crossbar switch-based interconnect bring a poor communication ability and yield high
power consumption, which is a serious constraint to the many-core architecture de-
velopment. However, Noc interconnects plenty of cores merged in the many-core
system, which provide scalable, high throughput communication architecture for SoC
(System on Chip) design.

In additional, as mentioned above, how to make full use of the existing computa-
tion resource in the many-core system to attain the maximum extent parallelism
in computation and processing become a key problem. Mapping to Noc level,

164 K. Yang et al.

sub-network partition method is proposed. The whole network will be divided into a
few of different size region, and the communication between each node will be li-
mited to the sub-network only, it indicates that traffic isolation among every two re-
gions exits. Meanwhile, in the Cache coherence with sharing memory system, there is
a certain amount of one-to-all communication demanded by Cache coherence proto-
col. A PE launch a broadcast action in the whole network bring high network latency
and power consumption, however, a reasonable sub-network partitioning method will
reduce much more latency and power but also attain the requirement asked for by the
Cache coherence protocol.

An effective broadcast mechanism is also demanded to cut down the cost of the
broadcast action. Basically, the routing manner plays the most important role in sup-
porting the broadcast action. There are two routing methods can be achieved in the
worm-hole mesh-based Noc, which called source routing and distributed routing. In
source routing, packet header flit carry the pre-computed routing path message of
each destination router node and start routing followed by other data flits, this manner
brings large traffic to occupy extra network bandwidth. Otherwise, in distributed
routing, packet header flit only storages the location information of each destination
node, and the intermediate router node will automotive compute the output network
link according to the information.

This paper organized as follows. Section 2 describes earlier work on multicast or
broadcast mechanism in Noc. In Section 3, we make several definitions and assump-
tions related. In section 4，an effective broadcast scheme with sub-network partition
method is adopted. Section 5 introduces the simulation environment. Section 6 reports
the performance evaluation of our mechanism. Section 7 conclusion.

2 Related Work

In order to provide one-to-all broadcast communication hardware support, and sustain
the Cache coherence protocol which carried out in the many-core system strongly,
considering an effective broadcast scheme comes to be our research objective. As
broadcast is a special case of the multicast, we review the former research about mul-
ticast approaches below, and only for wormhole mesh-based Noc.

Generally, multicast scheme could be implemented as three ways, unicast-based,
path-based and tree-based. In the unicast-based way, source router break the multicast
packet into several unicast packets and send them one by one, just in the unicast
mode. This way could have a simple realization but bring more risk to produce net-
work block, and exist a high network latency and power consumption. In the Path-
based way, source node arrange all destination nodes in a path of a certain order, then
send the multicast packet along this path, It is easy relatively to implement in hard-
ware, but with the increasing of the number of router nodes, the path size will increase
and bring high network latency accordingly. In the tree-based way, the source router
constructs a spanning tree based on itself. This mode replicates the packet at the

 Efficient Broadcast Scheme Based on Sub-network Partition for Many-Core CMPs 165

necessary time and form a branch of the tree. In comparison to the above two modes,
tree-based mechanism has a much lower network latency and power consumption.

The virtual circuit tree-based multicast (VCTM)[1] algorithm implemented by
building a virtual circuit tree in advance, and have a time-division multiplexing on the
physical link in support of several numbers of trees. The region partition multicast
(RPM)[2] algorithm make an improvement to the VCTM. On reaching an interme-
diary router, each multicast packet recursively divided into multiple regions based on
the current node which looked as a starting node, and continue to routing in the desti-
nation region. Multicast Rotary Router (MRR) [3] adds a congestion detection me-
chanism based on the RPM, which weigh the depth and breadth of the multicast tree
dynamically to reducing unnecessary packet replication operation, but the hardware
implementation of this mechanism is more complex.

However, above multicast schemes cannot provide irregular mesh topology sup-
port. Broadcast Logic-Based Distributed Routing (bLBDR)[4][5] proposes a minimize
path tree-based broadcast approach in the region, which ensure that each node will
only receive a broadcast packet, meanwhile, a broadcast bit is added to distinguish
between broadcast packet and unicast packet. Alternative Recursive Partition Multi-
casting(AL+RPM)[6] is proposed based on the RPM, adding a connectivity bit to
indicate the connection situation of current node with other neighbor nodes, then
judge the output direction according to the present circumstance. Although the afore-
mentioned two approaches can applied in irregular sub-network, the shape is near
convex only, which limits the scalable of the sub-network partition.

In this paper, we divide the whole network into any random shape topology, then
carry out an effective broadcast scheme in each sub-network.

3 Preliminaries

Before putting forward our approach, some definitions and assumptions are made
throughout the paper.

Definition 1. Oriented to the many-core processor, one PE is specified as the schedul-
ing PE (SPE), which is responsible for real-time collection of the busy status informa-
tion for all other PEs, then schedule the resource dynamically according to the phased
resource requirements of the task.

Definition 2. Each task maps onto a Virtual Computing Group (VCG), which is com-
posed of several PEs and the according Noc resources, and monopolize the VCG on
the running phase of the task. Once individual PE carries out one thread of the task,
all PEs in the VCG support Cache coherence protocol.

Definition 3. PEs in the VCG belong to a Logic sub-network, and in the physical
implementation phase, the communication among all PEs may need to be routed
through the regular sub-network, thus a Physical sub-network is formed.

166 K. Yang et al.

Fig. 1. The definition of Logic sub-network, Physical sub-network, SPE and VCG

Assumption 1. In each packet, destinations are encoded in bit string, as shown in
Table 1, the bit which set 1 means according node is one of the destinations belongs
to the Logical sub-network. At the beginning time of the routing, each router node
initializes an routing table, which is used to be queried to find out a output port based
on the destination list of the current packet.

Table 1. Destination list

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

bit 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 …

Assumption 2. The target Noc router architecture is a 5-stage classic Virtual Channel
router, which includes Buffer Write (BW)/Route Compute (RC), VC Allocation
(VA), Switch Allocation (SA), Switch Traversal (ST) and Link Traversal (LT), and
wormhole switching is used here. The replication unit is integrated into the basic rou-
ter, which have the replication action to the coming flits of a multicast packet.

4 Deadlock-Free Broadcast XY Routing

Based on the Mesh topology, shortest path traversals are used to populate routing
table at each router node. A deadlock-free broadcast wormhole method based on XY
routing algorithm is proposed years before[7], which the target network is partitioned
into four sub-networks, NାX,ାY , NିX,ାY, NିX,ିY and NାX,ିY . Sub-network NାX,ାY
include the [(i, j), (i+1, j)] and [(i, j), (i, j+1)], and the other sub-networks are just
similarly to the NାX,ାY condition, which show as below (assumption the coordinate
of source node is (x୭, y୭)), DାX,ାY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൒ x୭, y ൒ y୭ሽ DିX,ାY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൑ x୭, y ൐ y୭ሽ DିX,ିY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൐ x୭, y ൐ y୭ሽ DାX,ିY ൌ ሼሺx, yሻ|ሺx, yሻ ∈ D, x ൐ x୭, y ൑ y୭ሽ

An example illustrated in Fig.2 to show the operation of the algorithm. We set Node
21 as the source node, the other nodes which belong to the whole network are setting
as the destination nodes.

 Efficient Broadcast Scheme Based on Sub-network Partition for Many-Core CMPs 167

Fig. 2. Basic deadlock-free broadcast XY routing

Combining with the Logical and Physical sub-network we mentioned above, the
broadcast XY routing algorithm has become more versatile. Before the final algo-
rithm is proposed in detail, an example is given to explain the broadcast in a sub-
network of any topology shape. As shown in Fig.3, Node 21 is still setting as the
source node, the others as the destination nodes. The Logical sub-network is confi-
gured at the initial stage of the many-core processor system startup. According to the
broadcast XY routing algorithm, the whole Logic sub-network is partitioned into four
parts: Dሼnode |node ∈ DାX,ାYሽ ൌ ሼሺ3,4,9,10,15,16,17,21,22,23ሻሽ Dሼnode |node ∈ DିX,ାYሽ ൌ ሼሺ1,2,6,7,8,12,13,14,18,19,20ሻሽ Dሼnode |node ∈ DିX,ିYሽ ൌ ሼሺ25,26,27,33ሻሽ Dሼnode |node ∈ DାX,ିYሽ ൌ ሼሺ28,29,34,35ሻሽ

Notice that Node 12 and Node 13, which was not included in the Logic sub-network,
still be intermediary nodes in the routing path, this is because the minimal path is
chosen at each skipping according to the XY algorithm. That is to say, the mechanism
achieved logical isolation of communication and broadcasting, but cannot attain
physical isolation.

Fig. 3. Broadcast XY routing in sub-network

168 K. Yang et al.

The whole broadcast process can be divided into three phases:

First, each routing table belong to the whole network is updated according to the
configuration message, in particular, the nodes which are part of certain sub-network
storage the information that which nodes are belong to the same Logical sub-network.

Second, according to the Logical sub-network information, up to four copies of the
broadcast packet are generated at the source router node which each carries a destina-
tion list to show which nodes to be sent to.

Third, in each routing region, the broadcast XY routing algorithm is carried out as
shown in Fig.4.

As in broadcast XY routing algorithm, replication is made as late as possible to
reduce the number of replicated packets. It can be proved, this algorithm is deadlock-
free, as a result virtual channels resource are saved which other related routing
algorithm used more than one virtual networks to avoid deadlock for mesh-based
networks.

Fig. 4. Pseudo code of broadcast XY routing algorithm

5 Simulation Environment

To evaluate the performance of our broadcast XY routing mechanism, the Gem5
Simulator System [8] is used, which is a modular platform for computer system

//pseudo code for broadcast XY routing algorithm

//example for packets into the ାܰ௑,ା௒ region

Construct D = { (ݔ௜ , ݕ௜) ∈ ܦା௑,ା௒ }

Construct Dy = { (ݔ௜ , ݕ௜) ∈ ݕ) |ܦ௜ ൌ { (௖௨௥௥௘௡௧ݕ

Construct Dx = { (ݔ௜ , ݕ௜) ∈ ݕ) |ܦ௜ ് { (௖௨௥௥௘௡௧ݕ

If(D.sizeof() > 1)

//replicate to current node
If((Dy ് 0)&& (ݔ௜ ൌ ,௖௨௥௥௘௡௧ݔ))

new_flit_cur = constructNewFlit(s_flit, cur_DestID);

outport _cur = routeCompute(new_flit_cur);

//replicate to y direction

If((Dy – (ݔ௖௨௥௥௘௡௧ , (௖௨௥௥௘௡௧)) ് 0ݕ

new_flit_y = constructNewFlit(s_flit, y_DestID);

outport _y = routeCompute(new_flit_y);

//replicate to x direction

if(Dx ് 0)

new_flit_x = constructNewFlit(s_flit, x_DestID);

outport_x = routeCompute(new_flit_x);

 Efficient Broadcast Scheme Based on Sub-network Partition for Many-Core CMPs 169

architecture research, encompassing system-level architecture as well as processor
micro-architecture. Gem5 integrates the cycle-accurate Garnet interconnection net-
work model, which models a classic five-stage pipelined router with virtual channel
(VC) flow control. The fixed-pipeline mode, which belongs to Garnet network [9], is
intended for low-level interconnection network evaluations and models the detailed
micro-architectural features of a 5-stage Virtual Channel router with credit-based
flow-control, which is chosen as the research platform to continue our work.

In Fig.5, we describe the detail communication process between Network Interface
(NI) and classic Garnet Router in fixed-pipelined model, and the communication pat-
terns between routers are just similar as this condition. As we can find, the current
network model does not have hardware multicast support within the network, so a
heavy work was done for adding the broadcast scheme into the Garnet network.

Fig. 5. Basic architecture of fixed-pipeline mode in Garnet

Besides, each module in the router launches a waking up action via creating a Ru-
by-Event in advance, thus a Ruby-Event-Queue which integrated into the fixed-
pipeline mode need to be maintained. To add hardware multicast support in the router,
we add several Ruby-Events artificially to let the modules wake themselves up.

6 Performance Evaluation

The Gem5 Simulator provides a framework for simulating the interconnection net-
work with controlled inputs (Ruby Network Tester), which is especially useful for
Garnet network testing/debugging. We set the multiple broadcast unicast as the com-
parison object with broadcast XY mechanism, building a 4×4 mesh-based Noc test
environment, traffic ratio of broadcasting(B-ratio) to the whole Noc communication is
ranging in {0.05:1, 0,1:1, 0.15:1, 0.2:1}, and focusing the average network latency as

170 K. Yang et al.

main contrasting parameter. As shown in Fig.6, when injection rate is low, the both
broadcasting manners do not show much difference with the variation of B-ratio in
the average packet latency. When the B-ratio increases, the broadcast XY increase
much slower than that of multiple unicast, this is because less packets are replicated
using the broadcast XY mechanism, thus less network congestion occurring.

0
10
20
30
40
50
60
70
80
90

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.2 0.25A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
(c

yc
le

s)

injection rate(flit/core/cycle)

B-ratio= 0.1:1
broadcast
unicast

broadcast XY

0
10
20
30
40
50
60
70
80
90

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.2 0.25A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
(c

yc
le

s)

injection rate(flit/core/cycle)

B-ratio= 0.15:1
broadcast
unicast

broadcast XY

0
10
20
30
40
50
60
70
80
90

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.2 0.25A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
(c

yc
le

s)

injection rate(flit/core/cycle)

B-ratio= 0.2:1
broadcast
unicast

broadcast XY

0
10
20
30
40
50
60
70
80
90

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.2 0.25A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
(c

yc
le

s)

injection rate(flit/core/cycle)

B-ratio= 0.05:1
broadcast
unicast

broadcast XY

Fig. 6. Latency result with B-ratio set to (a) 0.05:1, (b) 0.1:1, (c) 0.15:1, (d) 0.2:1

(a)

9 10

1413 16

1211

15

1 2

65 8

43

7

(b)

9 10

1413 16

1211

15

1 2

65 8

43

7

9 10

1413 16

1211

15

1 2

65 8

43

7

(c)

9 10

1413 16

1211

15

1 2

65 8

43

7

(d)

Fig. 7. Broadcast XY in sub-network (B-ratio = 0.1:1, injection rate = 0.05)

0

20

40

a b c d

average
packet
latency
(cycles)

 Efficient Broadcast Scheme Based on Sub-network Partition for Many-Core CMPs 171

We observe the advantage which the sub-network partitioning method introduces
into the Noc. Using the broadcast XY mechanism to the one-to-all communication,
and for the network test mode, the B-ratio is setting to 0.1:1, injection rate is 0.05. For
the below four sub-network approaches in Fig.7, the average packet latency shows a
decreasing trend. As can be expected, with the increasing of the Noc scale, the effect
will be more obvious.

7 Conclusion

The broadcast XY mechanism bases on multicast XY routing algorithm, which region
segmentation is proceeding at the beginning of routing phase according to the current
source node. Additionally, we introduce the concept of Logical sub-network and
Physical sub-network, which the first one indicates the PEs which belong to the VCG
and communication sets up among all of them, and the second one limits routing
region for any message comes out from the PEs. For any irregular topology Logical
sub-network, there always be a corresponding Physical sub-network wrapping it. As
mentioned above, traffic isolation between nodes in and out of Logical sub-networks
is not really achieved, at the routing stage, intermediary nodes in the routing path are
only responsible for transferring the packets, which will not get one copy of the pack-
et to PE. Our future research will focus on minimizing the impact of communication
and broadcasting inside VCG to other PEs outside the VCG, thus a minimal Physical
sub-network will be demanded.

Acknowledgements. Our work is supported by the IBM Shared University Research
(SUR)，System-level Virtualization Based on Reduced Hyper Multi-core Architec-
ture, SUR201102X.

References

1. Jerger, N.D.E., Peh, L.-S., Lipasti, M.: Virtual Circuit Tree Multicasting: A Case for On-
Chip Hardware Multicast Support. In: 35th International Symposium on Computer Archi-
tecture, ISCA 2008, pp. 229–240 (2008)

2. Wang, L., Jin, Y., Kim, H., Kim, E.J.: Recursive partitioning multicast: A bandwidth-
efficient routing for Networks-on-Chip. In: 3rd ACM/IEEE International Symposium on
NoCS 2009, pp. 64–73 (2009)

3. Abad, P., Puente, V., Gregorio, J.-A.: MRR: Enabling fully adaptive multicast routing for
CMP interconnection networks. In: IEEE 15th International Symposium on HPCA 2009,
pp. 355–366 (2009)

4. Rodrigo, S., Flich, J., Duato, J., Hummel, M.: Efficient unicast and multicast support for
CMPs. In: 2008 41st IEEE/ACM International Symposium on Microarchitecture, MICRO-
41, pp. 364–375 (2008)

5. Flich, J., Rodrigo, S., Duato, J.: An Efficient Implementation of Distributed Routing Algo-
rithms for NoCs. In: Second ACM/IEEE International Symposium on NoCS 2008, pp. 87–
96 (2008)

172 K. Yang et al.

6. Wang, X., Yang, M., Jiang, Y., Liu, P.: On an efficient NoC multicasting scheme in support
of multiple applications running on irregular sub-networks. Microprocessors and Microsys-
tems 35(2), 119–129 (2011)

7. Lin, X., McKinley, P.K., Ni, L.M.: Deadlock-free multicast wormhole routing in 2-D mesh
multicomputers. IEEE Transactions on Parallel and Distributed Systems, 793–804 (1994)

8. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J.,
Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill,
M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2) (2011)

9. Agarwal, N., Krishna, T., Peh, L.-S., Jha, N.K.: GARNET: A detailed on-chip network
model inside a full-system simulator. In: IEEE International Symposium on ISPASS 2009,
pp. 33–42 (2009)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 173–184, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Quick Method for Mapping Cores Onto 2D-Mesh
Based Networks on Chip*

Zhenlong Song, Yong Dou, Mingling Zheng, and Weixia Xu

School of Computer,
National University of Defense Technology, Changsha China

songzhl@sina.com

Abstract. With the development of NoC, it becomes an urgent task to efficient-
ly map a complex application onto a specified NoC platform. In the paper, an
approach which is called constraint-cluster based simulated annealing (CCSA)
is proposed to tackle the mapping problem in 2D-mesh NoC in order to optim-
ize communication energy and execution time. Different from other methods,
the relationship among cores that are patitioned into several clusters is consi-
dered in our method and according to the relationship constraints are set. Expe-
rimental results show that the proposed approach gets shorter execution time
with lower energy consumption compared with others algorithms. In VOPD ap-
plication (4x4), the reduction of execution time is about 75.64% combing the
normal simulated annealing. In greater application (8x8 vodx4) the CCSA can
save 68.89% . The energy consumption is the lowest among all the compared
algorithms.

Keywords: network on a chip (NoC) Application mapping Simulated
Annealing.

1 Introduction

With the advance of Semiconductor, the number of transistors available will be more
than 4 billion at more than 10Ghzspeed[1].This allows that more than dozens of IP-
blocks can be integrated in a single chip. Different from dedicated wires and shared-
medium busses, the network on a chip (NoC) provides a high performance chip-level
communication with regularity and modularity.

In literature[2] formulated the 32bit’s ALU power consumption is about 0.3
pj,while translate 32 bits over 10mm need 17pj,the consumption of translation is more
the 50 times than Alu. So how to decrease the energy consumption of a single chip is
a challenging job in NoC platform. In the design flow for NoC architecture , the step
of Mapping which determines which nodes host which cores is very important These
choices have significant impacts on energy, area and performance metrics of the
system[3],[4].

* This work was supported by the National High Technology Research and Development

Program of China(No.2012AA01A301).

174 Z. Song et al.

The core-to-node mapping problem is a NP-Hard optimization problem [3].For the
node number of N, the result of mapping will be N! . The computation and search
space are very huge. For example, mapping 16 cores onto 16 nodes has a search space
of 16! ,that is about 2.1x1013.The count of computation of each map is about 435
Flop . Thus the computation is about 1016. Suppose the computer is Intel 3.0GHZ
four cores, it will cost about 120 hours to fulfill the searching .So some efficient ana-
lytical model which can be used to find nearly optimal solutions in reasonable time
must be presented.

In this paper, we present a rapid algorithm named Constraint-cluster based Simu-
lated Annealing Approach (CCSA) to minimize the power consumed and overall run-
time. The node can be partitioned into some cluster by calculating the communication
difference between nodes , and according to the partition some searching restriction
can be set . A cluster partition can make the problem more easy. Just as what has dis-
cussed aboved, for 16 cores/nodes, if they can be portioned into some clusters, the 16!

problem would be a !...!!! 21 NCCCN ×××× problem,which is smaller than 16! to

search. In the course of searching,the searching space is limited by the cluster restric-
tion, By the partition and constraint the algorithm can resolve the mapping quickly
without reducing the quality of solution. This paper chooses a two dimensional mesh
interconnection which is very simple from a layout perspective and the local inter-
connections between resources and switches are independent of the size of the net-
work. Moreover, routing in a two dimensional mesh is very easy resulting in poten-
tially small switches, high bandwidth, short clock cycle, and overall scalability.

The rest of the paper is organized as follows, We define the mapping problem and
give an overview of our Constraint-cluster based Simulated Annealing Ap-
proach(CCSA).Then the CCSA in details is described . The experimental results are
reported in the last.

2 Realted Works

Now NoC mapping problem has become a broad topic of research and development.
In [3], Hu and Marculescu presented a static mapping a branch-and-bound algorithm.
The main goal of the approach is to reduce the overall power consumption by de-
creasing the consumed energy on communication. Literature [5] presents a two-step
genetic algorithm to map an application, described on a mesh-based NoC architecture
with the objective of minimal execution time. Zhou et al. apply a queue model to
calculate the latency of net. In paper [7] a communication model is accept to calculate
the latency of communication. In [6] another communication model is proposed to
calculate the latency. In [12] PMAP, a two-phase mapping algorithm for placing the
clusters onto processors is presented. The results of PMAP algorithm are shown to
have low communication costs. In [11] Murali and De Micheli proposed a rapid algo-
rithm NMAP that maps the cores onto mesh NoC architecture under bandwidth con-
straints. In general those algorithm dose not consider the characteristics of nodes in
the no-heuristic search, so the search methods must balance the run time and the qual-
ity of result (such as branch-and-bound or back-tracking). A heuristic method may

 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 175

consider the character of node to search near-optimal solutions, which is different
from the model to the NoC. Recently some paper want to accelerate the approach by
using partition .In the paper [8], Lu presents a cluster-based Simulated Annealing
according to the node “distance”. By clustering, the method can make the search more
efficiently. In paper [9],Lin presents an approach named HMMap that maps large
numbers of ip cores onto 2d-Mesh. It bases hierarchical mapping method to speed up
the approach .It also partitions the nodes into some clusters in order to minimize the
run-time.In [18], propose a clustering based relaxation for integer Linear Program-
ming determining the optimum mapping.

3 Approach Overview

The design flow of CCSA includes two parts: (1) getting the initial mapping and cores
restrictions; (2) getting the solution by using the annealing step and the restrictions.
The aim of our approach is to minimize the cost of communication and run time. An
overview of the CCSA is shown in Figure 1.

initial

Annealing

Communi cat i on cl ust er i ng

Set const r ai nt condi t i on

I ni t i al mappi ng

Get t emper at ur e

Exchange cor es under
const r ai nt condi t i on

Sel ect r esul t s

St op ?

Start

end

No

Yes

Fig. 1. The Constraint-cluster based Simulated Annealing (CCSA) Flow

176 Z. Song et al.

The first part includes three steps .First we partition the core graph according to the
communication volume between cores that is defined as the sum of the volume in an
out. In the past they assumed that cores of large communication volume with each
other should be placed on the neighboring tiles to optimize the communication energy
and latency[17][13] .In this paper we say no. For example ,accroding to a 2*2 map-
ping ,assumed that V(AB) is the largest volume ,which core should be more closed
to node A in Figure 2, B or D? (V(AB) is the sum of volume form A to B and from B
to A).

A

C D

B A

C B

D

OR

Map 1 Map 2

A

B B

D

Fig. 2. The clustering example

The difference of communication cost between Map 1 and Map 2 is that:

 Cost(map1)-Cost(map2)= (V(AD)-V(DC))-(V(AB)-V(BC)) (1)

If (1) >0 ,That means the cost of map 2 is smaller than map1. even the volume of
V(AB) is the biggest .The node D should be more close to node A than node B. so we
assume that core l is more close to core k than core j if that :

0)L(k)V(ik)(V(jk))L(l)V(il)(V(lk)
kil,in,i

0i

kij,in,i

0i
−−−

≠≠=

=

≠≠=

=
 (2)

According to our assuming, the communication class is that the cores should be
closed to each other. A core l should be partitioned to a communication class
C(a,b,c…)if that :

0))j(L)j(L)ij(V))j(L()jk(V(

))l(L)l(L)il(V))k(L()lk(V(

C

Ci,ni

0i
C

Ck

C

Ci,ni

0i
C

Ck

...)c,b,a(

...)c,b,a(

...)c,b,a(

...)c,b,a(

>−−

−−−

∉=

=∉

∉=

=∉
 (3)

 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 177

According to the partition , some restrictions can be set . The detail description of this
step is presented in the following Section. The last step is to get an initial mapping.

The Second part performs the annealing mapping to get optimal solutions .This an-
nealing strategy cuts down the search space for the restrictions. That will be explained
in the following section.

3.1 Problem Formulation

The core-to-node mapping problem is a specific graph embedding problem .To for-
mulate our problem ,We assume that[8]:

─ The network topology is 2D mesh. The mesh has bidirectional links with property
of bandwidth between nodes.

─ The number of cores is not greater than the number of nodes and one core is
mapped to exactly one node.

Definition 1. A core application graph (CAG) which captures the communication
between IP cores of the application is a directed graph,CAG(C ,A) , in which each
vertex ci ∈ C represents an IP core and the directed arc a(i--j)∈A represents a direct
communication from ci to cj . Each a(i--j)∈A is associated with a bandwith requirement
cb(i,j) as its weight and has the following property : V (i,j) =V(j,i) is the sum of arc vo-
lume from vertex ci to cj and from cj to ci,which represents the communication volume
between ci and cj.

Definition 2. An architecture node graph (ANG) which reflects the architecture and
connectivity of NoC is a directed graph ANG (T , R) , in which each vertex ti

represents one tile in the NoC architecture, and each directed arc r(i--j),represents a
minimal path from tile ti to tile tj . Each r(i--j) has the following properties:

─ BW(i,j) is the available bandwidth of link r(i--j).
─ e(r(i--j)) stands for the energy consumption of sending one bit from ti to tj.denoted as

ei,j.
─ d(r(i→j)) represents the communication latency of one bit from ti to tj .
─ hi,j denotes the distance from tile ti to tj.

Using these definitions, the mapping of the core application graph CA(C , A) onto
the architecture node graph AG(T , R) is to find a mapping function[14]: map
C→T. The routing algorithm ensures minimal path and deadlock free. The objective
function minimizes overall communication volume and run-time.

 map C → T , s.t. map(ci)=tj (ci∈C, tj∈T)

 aim min {Esystme ,Truntime}

Where Esystem represents the total system communication energy and Truntime is the
approach running time.

178 Z. Song et al.

3.2 Energy Model

The system communication energy is defined by the following equation:

2veE
NMj,NMi

0j,0i
j,ij,isystem  ×=

×=×=

==
 (4)

j,iLj,iSj,i hE)1h(Ee
bitbit

×++×= (5)

where ESbit, ELbit represent the energy consumed by sending one bit of data through
the switch and on the links between tiles , respectively. Commonly the ELbit of a noc
can be considered as a constant. The ESbit include two parts, One is the energy con-
sumption of cross-bar, and another is energy consumption of the fifo for the date read-
ing,writing and storing. If there is no any network contention the time of store can be
considered a constant. So the energy consumption also can be considered as a con-
stant. Thus the ei,j can be described as follows.

βα +×= j,ij,i he (6)

From the equation (4) and (6),we can draw the conclusion of power consumption :

 ×∝
×=×=

==

NMj,NMi

0j,0i
j,ij,isystem vhE (7)

3.3 Constraint-Cluster Based Simulated Annealing

A Initial Mapping
As depicted in Figure 1,the initial mapping includes three steps, core clustering, clus-
tering constraint condition and initial mapping.

The first step is to cluster communication cores by the communication volume of
cores. According to inequation (3) , the core can be partitioned, but the computational
complexity is high. In our partition we use the difference between the maximal
volume and the second maximum volume to partition the communication cores.
So every cluster has two parameters, the closest cluster and the communication
difference:

)D),A(C()a(C iff=

(8)

)a(V)ab(VD ondsec

))A(Cb(NMi

0i
iiff

i

−=
∈×=

=
 (9)

The C(A) implies the core a would like to close with the communication cluster C(A),
the Diff implies the possibility that the a will be partitioned to C(A). According to
the core cluster some constraint conditions can be set for each core.

 Con(a)=(C(A),Dis) (10)

 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 179

The C(A) implies the cores that core a would like to close with. Dis implies the max
distance of core a and the cores belonging to C(A).

For example,as shown in Fig 3:

IP0

IP12 IP11

IP 14

IP13

IP15

IP8

IP7

IP 1 IP2 IP 3 IP5 IP6

IP 4

IP9
IP 10

70 362 362 362

35327 49

300

500

313
313

94

157

16

16

16

16

16
16

16

357

Fig. 3. The Video Object Plane decoder with bandwidth demand in MB/s

According to (8), we can get:

C(0)=(C(1),70), C(1)=(C(2),292), C(2)=(C(1),0)…C(8)=(C(10),187),C(10)=(C(8),
93)…so the first cluster that would be C(1,2).C(8,10) C(12,13) and some constraint
can be set,just as:

Con(1)=(C(2),1) Con(8)=(C(10),1),C(12)=(C(13),1),C(13)=(C(12),1).Next the
C(1,2) can be considered as one node, and C(0)=(C(1,2),70),C(1,2)=(C(3),292),
C3=(C(1,2),0)… in this way the node can be partitioned and the constraint can be set
again. Until there is no more than four clusters or there will be only on cluster in the
next step.

According to core clusters and constraint conditions, an initial mapping can be
obtained.

Annealing
Besides the initial mapping, the annealing will also be affected by the constraint con-
ditions. We first describe the general annealing process and then the constraint-cluster
based annealing.

To find the optimum solution of searching, the annealing technique is a cooling
process[10]. Based on the initial map, the exchange of positions between two cores
reflects the temperature, as described in the following equation:

 ΔE=cont(Mapi)-cost(map(i+1)) (11)

If ΔE is greater than zero, it is a lower temperature move and the result will be ac-
cepted. If ΔE is less than zero, it is a high temperature move and the result will be
randomly accepted. For the problem of mapping cores onto 2D meshes, the number of
annealing stages corresponds to the cores number. For a MxN mesh network ,the
number of stages is equal to MxN.

180 Z. Song et al.

Constraint-cluster based Annealing follows the annealing procedure described
above .However in each stage. annealing must determine whether the cluster moves
are allowed. For example core l core m is Con(l)=(C(m),3), that implies the constraint
condition is that the distance of l and m is less than 3, the core l only can be
exchanged with the cores, that the distance between those and m less than 3. This
implies that in each stage, the number of exchange is reduced and the near-optimal
solutions can be got in a shorter time than annealing.

4 Experiments

To validate the advantages of our approach in runtime and quality of solution,in this
section, we present the result of the execution of CCSA on benchmark applica-
tion,Video Object Plane Decoder (VOPD[11]) with 16 IP cores shown in Fig.3.We
also compare these results with those of previous mapping algorithms such as
CGMAP[15] ,CSA[8] ,NMAP[11] ,PMAP[12],BMAP[16] ,PBB[3] C-ILP[18] .et.al
using the same routing and scheduling characteristics, which also use VOPD as the
benchmark application. In order to validate the advantages in runtime we have also
implemented the simulated annealing without clustering and constraint condition. All
these experiments are executed on a server with a Intel(R) Xeon(R) X5355 @
2.66GHz processor and 6GB memory.

Fig. 4. CCSA RCCSA and SA mapping results

In this section we first compare the results of our approach mapping the VOPD ap-
plication onto a 4x4 mesh. Three methods are implemented, including CCSA,
RCCSA and SA. CCSA uses an initial mapping with the CCSA. RCCSA uses a ran-
dom mapping with CCSA. SA uses the same random mapping with SA. In Fig.4, the

 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 181

X axis represents the number of annealing stages, and the Y axis shows the average
cost of accepted solutions. From the curve, we can see that the CCSA ,RCCSA and
SA converge to the equilibrium state .The RCCSA and CCSA achieves the lower cost
(4103) than the SA (4200) in the last annealing stage.

As shown in Fig 5, we compare our results with other eight mapping algorithm
such as NMAP,CSA,CGMAP,PBB .et.al .Obviously our proposed algorithm performs
better than the other nine mapping algorithms in VOPD ,considering the communica-
tion costs.

The CCSA takes 19 ms to finish .The RCCSA takes 28ms while the SA takes
78ms. Except [8][18], there is no running time reported. In [8] that CSA approach
takes 387 seconds and SA takes 497 seconds. In [18], about 114.6 second was used to
find the answer. For the different of computer we can not compare the running time
directly. In our experiment a reduction of run time is about 75.64%..The main reason
is that ,firstly the partition make the problem more easy to resolved,secondly the con-
straint conditions forbid a lot of switching and computing ,so the result can find so
quickly.

4103

4103

4200

4189

4135

4317

4233

4176

5553

7054

4205

4119

RCCS A

CCS A

S A

CS A

CG M AP

P BB

BM AP

NM AP

G M AP

P M AP

C-IL P

IL P

Fig. 5. Comparison between the communication costs of mapping algorithms

Except [8], the studied problem sizes are no more than 16 cores. To show the per-
formance of constraint-cluster based approach to a bigger network size, we conduct
experiments on an 8x8 mesh. We create an application by quadrupling the VOPD.
The results are shown in Fig. 6.The CCSA takes 0.913 seconds to get the lowest cost
16498 while SA takes 2.935 seconds to get the cost 16514. The reduction of
running rime is 68.89%. Paper [8] uses clusters and annealing too ,the reduction is
only 22%.

182 Z. Song et al.

Fig. 6. CCSA and SA mapping results on 8x8 mesh

As the result shown , The result of 8x8 is not so efficient as 4x4 map, Include two
aspect ,one is that the reduction of running time is lower than 4x4 mapping ,annother
is that cost is higher than four VOPD mapping . The main reason is that the space of
constraint conditions is large, and more time is spend on searching constraint. So
some efficient method must be adopted to manage the constraint conditions.

1 33

16

0

2

4

7

8

3

5 6

10

9

11

17

18

19

20

21

12 15

13 14

22

2325

2426

27 31

30 28

29

48 49 50 51

52 53

54 59

55

57 58

56

60

616362

34 35 36

32 38 37 39

40

4241

4346 47

45 44

10

2

4 7 8

3

5 6

10

911

12

15

13

14

a, VOPD mapping result
b, 4XVOPD mapping ressult

Fig. 7. Mapping result

 A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip 183

5 Conclusion and Future Work

In the paper, we introduce the idea of combining the communication clustering tech-
nique with the simulated annealing to further leverage the performance of SA. The
proposed algorithm CCSA appears to work quite better than other efficient mapping
algorithms introduced in the previous work. However,with the increase of ip number
the the constraint condition is becoming more and more difficult to set , In our future
work we will do more works on how to set and manage the constraint conditions. So
there is a rather huge design space to explore.

References

1. International Technology Roadmap for Semiconductors (ITRS) (2007),
http://www.itrs.net/

2. Dally, W.J.: Computer Architecture is all about interconnect (it is now and will be more so
in 2010), HPCA Panel (February 4, 2002)

3. Hu, J., Marculescu, R.: Energy aware communication and task scheduling for network on
chip architectures under real time constraints. In: Proc. DATE 2004, pp. 234–239. IEEE,
Paris (2004)

4. Nickray, M., Dehyadgari, M., Kusha, A.: Power and delay optimization for network on
chip. In: ECCTD 2005, pp. 273–276. IEEE, Cork (2005)

5. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network on
chip architecture. In: DSD 2003, pp. 180–187. IEEE, Antalya (2003)

6. Zhou, W.B., Zhang, Y., Mao, Z.G.: An application specific NoC mapping for optimized
delay. In: DTIS 2006, pp. 184–188. IEEE, Gammarth (2006)

7. Kiasari, A.E., Hessabi, S., Sarbazi-Azad, H.: PERMAP: A Performance-Aware Mapping
for Application-Specific SoCs. In: International Conference on Application-Specific Sys-
tem Architectures and Processors, ASAP 2008, pp. 73–78 (2008)

8. Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip.
In: 2008 11th IEEE Workshop Design on Design and Diagnostic of Electronic Circuits and
Systems, pp. 1–6 (2008)

9. Lin, H., Zhang, L., Tong, D., Li, X., Cheng, X.: A Fast Hierarchical Multi Objective Map-
ping Approach for Mesh Based Networks on Chip. Acta Scientiarum Naturalium Universi-
tatis Pekinensis 44(5) (September 2008)

10. Catoni, O.: Metropolis, simulated annealing, and iterated energy transformation algo-
rithms: Theory and experiments. Journal of Complexity 12(4), 595–623 (1996)

11. Murali, S., Micheli, G.D.: Bandwidth-constrained mapping of cores onto NoC architec-
tures. In: Proceedinlg of Design Automnation, and Test in Europe Conference, pp. 896–
901 (2004)

12. Koziris, N., Romesis, M., Tsanakas, P., Papakonstantinou, G.: An Efficient Algorithm for
the Physical Mapping of Clustered Task Graphs onto Multiprocessor Architectures. In:
Proceedings of the 8th International Conference EuroPDP, Rhodos, Greece, pp. 406–413
(January 2000)

13. Marcon, C., Borin, A., Susin, A., et al.: Time and energy efficient mapping of embedded
applications onto NoCs. In: Proceedings of Asia and South Pacific Design Automation
Conference, Shanghai, pp. 33–38 (2005)

184 Z. Song et al.

14. Hemani, A., Jantsch, A., Kumar, S., et al.: Network on a chip: An architecture for billion
transistor era. In: Proceedings of the IEEE NorChip Conference, Turku, pp. 166–173
(2000)

15. Moein-darbari, F., et al.: Evaluating the Performance of a chaos genetic algorithm for solv-
ing the Network on Chip Mapping Problem. In: 2009 International Conference on Compu-
tational Science and Engineering, pp. 366–373 (2009)

16. Shen, W.T., Chao, C.H., KLien, Y., Wu, A.Y.: A New Binomial Mapping and Optimiza-
tion Algorithm forReduced-Complexity Mesh-Based On-Chip Network. In: Proceeding of
the 1st IEEE International Symposium on Networks-on-Chip (NOCS 2007), Princeton,
New Jersey, pp. 317–322 (May 2007)

17. Rhee, C.E., Jeong, H.Y., Ha, S.: Many-to-Many Core-Switch Mapping in 2-D Mesh NoC
Architectures. In: Proceedings of IEEE International Conference on Computer Design, San
Jose, CA, USA, pp. 438–443 (October 2004)

18. Tosun, S.: Cluster-based application mapping method for Network-on-Chip. In: Advances
in Engineering Software, vol. 42, pp. 868–874 (2011)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 185–201, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Combined Hardware/Software Measurement
for ARM Program Execution Time*

Liangliang Kong1 and Jianhui Jiang2

1 Department of Computer Science and Technology,
Tongji University, Shanghai 201804, China
liangliang_kong@yahoo.com.cn

2 School of Software Engineering, Tongji University, Shanghai 201804, China
jhjiang@tongji.edu.cn

Abstract. In present there is no accurate end-to-end dynamic measurements for
ARM program execution time, because the measurement results given by hard-
ware counters in ARM microprocessors are not precise enough and the timing
cost of instrument methods is difficult to be calculated. Therefore, this paper
proposes a combined hardware/software measurement for ARM program ex-
ecution time. It sets the precision of measurement in the system boot loader
code, encapsulates the access to timers in the kernel of Linux, and then meas-
ures the execution time of the program by the timer and its corresponding inter-
rupt during the execution of the program. Experimental results have shown that
comparing with instrument methods and hardware counters, our method is an
efficient way to obtain accurate and precise execution time measurements for
ARM programs. Additional experiments performed by the combination of
curve fitting techniques and our method have shown the method can be used to
predict the execution time of program under different input data.

Keywords: execution time measurement, performance evaluation, real-time
system, PWM timer, ARM microprocessor.

1 Introduction

Most embedded systems are real-time systems, so real-time is a very important per-
formance metric for embedded systems. Real-time systems, as well as their deadlines,
are classified by the consequence of missing a deadline. The goal of a hard real-time
system is to ensure that all deadlines are met, but for soft real-time systems the goal
becomes meeting a certain subset of deadlines. In the process of embedded system
development, once the processor architecture is determined, accurate execution time
estimation of programs is important for scheduling analysis and hardware/software
partition [1-2].

* This work has been supported by the National High Technology Research and Development

Program of China (Grant No.2009AA011705) and the National Natural Science Foundation
of China (Grant No. 60903033).

186 L. Kong and J. Jiang

The dynamic measurement is an important kind of techniques of execution time es-
timation. In end-to-end dynamic measurements, accessing to hardware counters like
the time stamp counter (TSC) in X86 is a convenient and efficient way to obtain ex-
ecution cycles of programs. However, there is no appropriate hardware counters like
TSC to offer execution cycles for ARM programs. ARM only provides a real-time
clock (RTC) to offer the system time, which works with the frequency of 32.768
KHz. So the precision of timing measurement RTC could give is only 10-4s [3]. For
measurements with higher precision or programs whose execution time is less than
10-4s, the RTC can not meet the requirement of execution time measurement. The
instrument method is another type of end-to-end measurement. It reads the system
time by invoking system calls from the kernel space and calculates the execution time
estimate in the user space. The precision of timing measurement the instrument me-
thod could give is 10-6s. Though the instrument method could obtain more precise
timing measurement than the RTC, the timing measurement is not accurate because of
timing cost consumed by it. Therefore, in this paper we propose a combined hard-
ware/software measurement for ARM program execution time. It sets the precision of
measurement by configuring frequencies of hardware related to the pulse width mod-
ulation (PWM) timer in the system boot loader code, accesses the PWM timer in the
kernel by transforming physical addresses of the timer into virtual ones, and measures
the execution time of program by the PWM timer and its corresponding interrupt.
Experiments have shown it is an efficient way to obtain accurate timing measurement
with high precision for ARM programs.

2 Related Work

The study of the execution time estimation of programs began in 1980s. A lot of work
has been done and they can be classified into three categories: static analysis, dynam-
ic measurement and simulation [1-2]. The static analysis derives the execution time of
program by analysis of target processor architecture features and the CFG of program.
It is often used to estimate the worst-case execution time of program. It considers the
optimization of compiler and features of the target architecture, so the execution time
of program it estimates is accurate. But it depends on rich architecture experience of
estimators [4-7]. The dynamic measurement executes the program under estimation
on the given hardware for some set of input data or all input data and obtains timing
measurements or their distribution [1]. Though in most cases it is impossible to per-
form exhaustive measurements to obtain the worst-case execution time or the
best-case one, the dynamic measurement is also popular to be used for estimating
execution time for soft real-time systems [8-9]. The simulation method generates a
detailed model of the target processor architecture or the target system by tools to
estimate the execution time of program. Though its estimation of execution time is
accurate, it is resource and time costly [10-13].

According to the granularities of the objects to be measured, the dynamic mea-
surement can be classifies into two categories: the end-to-end measurement and the
measurement based on CFG partition.

 A Combined Hardware/Software Measurement for ARM Program Execution Time 187

In the measurement based on CFG partition, firstly, the CFG of program is parti-
tioned into sub-paths which correspond to program segments. Secondly, generate
input data for each sub-path to drive its execution and measure its execution time.
Finally, according to the topological order of sub-paths in the CFG, calculate the ex-
ecution time of program [14-17]. The algorithms of automatic input data generation
include heuristics, model checking and so on [18-20]. Since the measurement based
on CFG partition focuses on the execution time of sub-path, the dependent and mu-
tually exclusive relationships between sub-paths have been ignored or may not be
considered seriously in calculation. Thus, the execution time it estimates is often
overestimated comparing with the observed timing measurement [18].

However, since the end-to-end measurement focuses on the execution time of a
whole program and gives the coverage in terms of all relationships between sub-paths
in CFG, the timing measurement it generates is more accurate. There are two types of
end-to-end measurement, i.e. hardware counters and instrument methods. As de-
scribed in Section 1, ARM provides RTC instead of TSC in X86 to offer the system
time. Since the precision of timing measurement RTC could give is only 10-4s, it can
neither meet the measurement requirements of high precision nor measure the pro-
gram whose execution time is less than 10-4s. The instrument method reads the system
time by invoking system calls from kernel space and calculates the execution time
estimate in user space. In most cases of instrument, the system call is invoked by
application program interface (API) in the C library or the library of the instrumenta-
tion tool. For example, the API gettimeofday in the C library invokes the system call
sys_gettimeofday, which reads the system wall-clock time maintained by jiffies with
the precision of 10-6s in kernel mode and copies the result to the user space. Then the
user process could read the system time in user mode. During the process, once the
system call sys_gettimeofday is invoked, it will request a software interrupt that trans-
fers control to the kernel code. After switch to kernel mode, the processor must save
all its registers, copy the parameters of the user process in the user space to the kernel
space, dispatch execution to the proper kernel function, read current system time, and
copy the result to the user space. These operations take at lest 1×10-6s. During the
process of the software interrupt handle routine, if another interrupt request with
higher priority occurs, the processor will halt current interrupt handle routine and
transfer control to another interrupt handle routine. The execution of the halted rou-
tine will not be resumed until the routine of the interrupt request with higher priority
is completed. In this case, it is often called the nested interrupts. The execution time
of the software interrupt handle routine, the possible delay of time incurred by nested
interrupts, and the execution time of the instrument instructions constitutes the timing
cost of the instrument method [21]. The timing measurement of the instrument me-
thod is not accurate because of the timing cost. Since the instrumentation tools like
PIN encapsulate the system calls in their APIs in the same way of the C library, the
timing measurement they observed is not accurate as well.

Since the timing cost of the instrument method is hard to be calculated and derived
from the measurement result and the precision of measurement provided by RTC is
not high enough, we proposes a combined hardware/software measurement method
for accurate execution time estimation of ARM programs. Its measurement precision
can be set as 10-7s.

188 L. Kong and J. Jiang

3 Set Measurement Precision in Boot Loader

When a computer is first powered on, it usually does not have an operating system in
ROM or RAM. The computer must execute a relatively small program stored in
ROM, along with the bare minimum of data needed to access the non-volatile devices
from which the operating system and data may be loaded into RAM. The small pro-
gram that starts this sequence is known as a boot loader (i.e. Bootloader). This small
program's only job is to locate and initialize hardware, and then find, load and start an
operating system. The measurement method proposed in this paper is implemented by
the PWM timer which is called timer for short, so the precision of measurement is
determined by the frequency of the timer (i.e. TCLK). Since the timer is driven by
advanced peripheral bus (APB), we set the precision of measurement by configuring
frequencies of hardware related to the timer such as APB and CPU in the assembly
code of hardware initialization in Bootloader. For the target microprocessor
S3C2440A, to configure the timer frequency TCLK, several steps have to be
followed:

Step 1. CPU bus mode configuration

In order to configure the frequency of APB, the CPU bus mode has to be changed
from the fast bus mode to the asynchronous bus mode using following instructions:

mrc p15,0,r0,c1,c0,0
orr r0,r0,#0xc0000000 ; R1_nF:OR:R1_iA
mcr p15,0,r0,c1,c0,0

In the asynchronous bus mode, FCLK of CPU frequency, HCLK of advanced high
performance bus (AHB) frequency and PCLK of APB frequency are allowed to be
configured respectively.

Step 2. CPU frequency FCLK configuration

There are two clock generator phase-locked-loop (PLL) s in S3C2440A as follows:
MPLL that is fed to FCLK, HCLK and PCLK, and UPLL that is fed to USB. Accord-
ing to the equation MPLL= ((M_MDIV<<12) + (M_PDIV<<4) +M_SDIV), write valid set-
tings to the PLL control register MPLLCON as follows:

ldr r0,=MPLLCON
ldr r1,=0x0005c011 ; Fin=12MHz, Fout=400MHz
str r1,[r0]

FCLK can be configured as PLL output (i.e. MPLL) of 400MHz immediately after
lock time.

Step 3. APB frequency PCLK configuration

S3C2440A supports selection of dividing ratio between FCLK, HLCK and PCLK.
This ratio is determined by HDIVN and PDIVN of CLKDIVN control register. Chang
the value of CLKDIVN register from default (1:1:1) to the divide ratio (1:4:8) as
follows:

 A Combined Hardware/Software Measurement for ARM Program Execution Time 189

ldr r0,=CLKDIVN
ldr r1,=0x5 ; 0x5 = 1:4:8
str r1,[r0]

After lock time, the value setting for CLKDIVN is valid and the dividing ratio be-
tween FCLK, HLCK and PCLK is 1:4:8, so the value of PCLK is 50MHz.

Step 4. PWM timer frequency TCLK configuration

Because the timer is driven by APB, divide the APB frequency PCLK to obtain the
timer frequency TCLK according to the following equation:

TCLK=PCLK/ {prescaler value +1}/ {divider value} (1)

where {prescaler value +1}=0~255, {divider value}= 2,4,8,16. TCLK can be confi-
gured by setting the parameter of prescaler in timer configuration register0 (TCFG0)
and the parameter of divider in timer configuration register1 (TCFG1). By writing
valid settings to the TCFG0 and TCFG1 as follows: TCFG0 &= 0xffffff00 and
TCFG1&= 0xff0fff0f, the prescaler is set as 0 and the divider is set as 2. Since PCLK
has been configured as 50MHz, according to equation (1) TCLK is 25MHz. Then the
precision of measurement of our method is 10-7s.

4 Access PWM Timer in Kernel

We can not access to a timer by invoking a system call, because invoking the system
call will request a software interrupt that transfers control to the kernel code and its
interrupt handle routine may be interrupted by another interrupt request with higher
priority. This process will take at lest 1×10-6s. To avoid the timing cost taken by in-
voking a system call, we access to a timer by its virtual address which is encapsulated
in macros. And we define the macros in the initialization code of the kernel. Then,
when the kernel starts up, we can access to the timer. In S3C2440A, a timer is con-
sisted of a sequence of registers. In this section, first we transform physical addresses
of timer registers into virtual addresses. Then we encapsulate their virtual addresses in
the macros to conveniently access to the timer in the kernel.

4.1 Address Transformation of PWM Timer Registers

For our target microprocessor S3C2440A, based on the analysis of mapping between
physical addresses of I/O ports and their virtual addresses, the physical address do-
main 0x48000000 ~ 0x5efffffff occupied by I/O ports is mapped onto the virtual ad-
dress domain 0xe8000000 ~ 0xfefffffff [22-23]. And the trade-off between a physical
address and its corresponding virtual address is always 0xa0000000. In S3C2440A,
there are five PWM timers, i.e. Timern (n=0,1,2,3,4). By the technical reference ma-
nual[3], we check the physical address of the first timer register begins at
0x51000000, and the address trade-off between same function registers which belong
to neighbored timers (e.g. TCNTB1 and TCNTB2) is always 0xc.

190 L. Kong and J. Jiang

According to these principles, if the address trade-off between a register of Timern

and its corresponding count buffer register (i.e. TCNTBn) is △x, its physical address
can be expressed as 0x51000000＋(n＋1)×0xc＋△x, and its corresponding virtual
address as (0x51000000＋(n＋1)×0xc＋△x) | 0xa0000000.

4.2 Encapsulating Address Transformation in Macros

In order to conveniently access timer registers, according to the address transforma-
tion described in Section 4.1, we encapsulate the address transformation in macros
which are defined in the initialization code of the kernel. All operations of access to
timer registers in this paper will be performed by calling macros in kernel mode. Tak-
ing access to the register TCNTO1 as an example, the macro REG_TCNTO1 has en-
capsulated the address transformation between the physical address of TCNTO1 (i.e.
0x51000000 +2×0x0c + 0x8) and its virtual address (i.e. (0x51000000＋2×0xc＋0x8) |
0xa0000000).

The macros we defined have made the access to timer registers convenient and
transparent to programmers and the address transformation readable and portable
between different architectures. However, when accessing to registers by calling ma-
cros in kernel mode, actually, the operating system needs to transform virtual ad-
dresses defined in macros into physical ones according to their mapping relationships
to access hardware.

5 Program Execution Cycle Measurement

In S3C2440A, there are five PWM timers. Since Timer0 and Timer2~4 have been oc-
cupied when the kernel initializes, we adopt Timer1 and its corresponding interrupt
INT_TIMER1 to measure execution cycles of program, as illustrated in Fig. 1.

We use the instrument method described in Section 2 to measure the program
many times, and obtain a range of measured execution time of the program, i.e.
Tmin≤T≤Tmax where T represents the timing measurement, Tmin represents the shortest
timing measurement and Tmax represents the longest one. According to the range of
measured execution time, we set the initial value of Timer1 (i.e. the value of the count
buffer register TCNTB1) in two cases, as described in Section 5.1. Once start Timer1
and the execution of the program, the down counter TCNTO1 will count down from
the initial value of Timer1 by the step of one after every latency time within the timer
frequency TCLK of 25MHz. If the initial value of Timer1 is set according to Case One
in Section 5.1, read TCNTO1 when the execution of the program ends, and calculate
the execution cycles according to equation (2); else the initial value of Timer1 must be
set according to Case Two. In Case Two, as illustrated by dash lines in Fig.1, when
TCNTO1 reaches zero, an interrupt request of INT_TIMER1 will be generated and the
value of TCNTB1 will be automatically loaded into TCNTO1 to continue the next
operation. The interrupt handling routine will record the iteration count of Timer1.
This process will repeat until the execution of the program ends. Then read the value
of TCNTO1 and the iteration count of Timer1 to calculate the execution cycles of the
program according to equation (3) in Section 5.4.

 A Combined Hardware/Software Measurement for ARM Program Execution Time 191

Set Initial Value
of Timer1

Start Timer1

Trigger INT_TIMER1

End Program Execution

Timer1 Iteration
Count

Calculate Program
Execution Cycles

Measured Program
Execution Cycles

End Timer1

 Start Program
Execution

Read TCNTO1

Fig. 1. Principle of measurement for execution cycles of program using Timer1 and its interrupt
INT_TIMER1

5.1 Initial Value Setting For the Timer

As shown in Section 2, the instrument method implemented by the API gettimeofday
can not obtain accurate timing measurements for programs due to the timing cost of at
lest 1×10-6s. However, the measured execution time by the instrument method will be
considered in our method when setting the initial value of Timer1. Since the clock
frequency TCLK of Timer1 has been configured as 25MHz in Section 3 and the max-
imum value of the 16-bit count buffer register TCNTB1 is 65535, the maximum value
of the timer cycle Ttimer1

1is 2621.4us according to Ttimer1 = TCNTB1/TCLK. Assuming
the program has been measured by the API gettimeofday many times and we obtain
the measured execution time T∈[Tmin, Tmax], classify two cases in our method to set
the initial value of Timer1:

1 The timer cycle Ttimer1 represents the latency time during which the down counter TCNTO1

counts down from the value of TCNTB1 to zero.

192 L. Kong and J. Jiang

Case One. If there is a set of values which could satisfy the condition as follows
when assigned to the variable Ttimer1 in the condition:

max min timer1

max min max min min timer1 timer1

max min max timer1 timer1

T -T T 2621.4us

(T -T) / 2 (T +T) / 2 - Int(T / T) T

(T -T) / 2 (Int(T / T)+1) T - (T

. .st

≤ ≤

≤ ×

≤ × max min+T) / 2







Considering the effect of start and restart delay of the timer on timing measurements,
pick out the maximum one from the set to be assigned to Ttimer1, and then set the value
of TCNTB1 as Int(Ttimer1× TCLK);

Case Two. Else there is no Ttimer1 which could satisfy the condition of Case One,
considering the effect of start and restart delay of the timer on timing measurements,
set the value of TCNTB1 as 65535.

In Case One, the condition which Ttimer1 must satisfy has guaranteed the execution of
the program ends in the same iteration of Timer1 in any case, as shown in Fig.2.

max min min timer1 timer1 (T +T) / 2 - Int(T / T) T×

max timer1 timer1 max min(Int(T /T)+1) T - (T +T)/2×max min(T -T) / 2

Fig. 2. Setting of Ttimer1 in Case One guarantees both Tmin and Tmax occur in the last iteration of
Timer1

The correlation of Tmin, Tmax and Ttimer1 shown in Fig.2 has been transformed into
the condition in Case One. If only there is a value of the variable Ttimer1 which could
satisfy the condition of Case One, the execution of the program will end in the same
iteration (i.e. the last iteration) in any case. So there is no need to use the interrupt
handling routine to record the iteration count of Timer1 in Case One. The iteration
count can be directly given by Int(Tmax /Ttimer1) or Int(Tmin /Ttimer1), both of them are
equal. If we assume the delay of the execution of the instruction which reads the
down counter TCNTO1 is represented by Tdelay, the execution cycles of the program
can be calculated as follows:

 ET_TCLK = Int(Tmax /Ttimer1) ×TCNTB1+(TCNTB1-TCNTO1) - Tdelay (2)

where ET_TCLK represents the execution cycles of the program with the unit of
clock cycle, the expression of (TCNTB1-TCNTO1) represents the remainder when the
execution cycles is divided by the value of TCNTB1.

If Case One could not be satisfied, Case Two must be satisfied. In Case Two, it is
necessary to use the interrupt handling routine of INT_TIMER1 to record the iteration

 A Combined Hardware/Software Measurement for ARM Program Execution Time 193

count of Timer1 as described in Section 5.3. In order to limit the effect of start and
restart delay of the timer on timing measurements, the value of TCNTB1 should be set
as 65535, i.e. the maximum value of TCNTB1.

5.2 Start and Run of the Timer

The count buffer register TCNTB1 stores the initial value of the down counter
TCNTO1. And the compare buffer register TCMPB1 stores the initial value of the
compare register TCMP1, which will be compared with the value of TCNTO1.Start
the timer, according to several steps as follows:

Step 1. Set the values of TCNTB1 and TCMPB1.

Step 2. Set the manual update bit of the control register TCON as 1 to update the
values of TCNTB1 and TCMPB1.

Step 3. Set both the start bit and the auto reload bit of TCON as 1 to start the timer
and clear its manual update bit.

After starting up Timer1, TCNTO1 starts counting down after every latency time with-
in the timer frequency TCLK. In Case Two in Section 5.1, once TCNTO1 reaches
zero, the interrupt request of INT_TIMER1 will be generated and the value of
TCNTB1 will be automatically loaded into TCNTO1 to continue the next iteration of
down counting. The process will repeat until the auto reload bit of TCON is cleared
and TCNTO1 reaches zero. Then the timer ends.

5.3 Interrupt Trigger and Execution Cycle Count

There are two types of interrupts in S3C2440A: interrupt request (IRQ) and fast inter-
rupt request (FIQ). They are distinguished by the value of a corresponding bit of the
interrupt mode register INTMOD [24]. Since FIQ has higher priority and there is only
one interrupt can be set as FIQ simultaneously, in our method, we set INT_TIMER1
as the only FIQ interrupt by configuring INTMOD. The principle of triggering the
request of INT_TIMER1 to record the iteration count of Timer1 in the interrupt han-
dling routine is shown in Fig. 3.

As shown in Fig.3, enable INT_TIMER1 by clearing the F bit in the current pro-
gram status register (CPSR); set the initial value of Timer1 by setting the value of
TCNTB1; once start Timer1, TCNTO1 starts counting down after every latency time
within the timer frequency TCLK; when TCNTO1 reaches zero, an timer interrupt
request of INT_TIMER1 will be generated to inform the CPU to handle the interrupt
routine; the iteration count of the timer will be recorded by the interrupt handling
routine and the value of TCNTB1 is automatically loaded into TCNTO1 to continue
the next iteration.

Since the performances of INT_TIMER1 and Timer1 are always concurrent in
S3C2440A, there is no need to consider the interrupt response time and the timing
cost of the interrupt handling routine when calculating the execution cycles of the
program.

194 L. Kong and J. Jiang

Fig. 3. Counting iterations of Timer1 using the interrupt handling routine

5.4 Program Execution Cycles Calculation

As shown in Fig.1, when the execution of the program ends, read the value of
TCNTO1. The expression of (TCNTB1-TCNTO1) represents the execution cycles with
the frequency TCLK in the last iteration of Timer1, i.e. the remainder when the execu-
tion cycles of the program is divided by the value of TCNTB1. Assuming Ctimer1

represents the iteration count of the timer, the delay of the execution of the instruction
which reads TCNTO1 is represented by Tdelay, the execution cycles of the program can
be calculated as follows:

ET_TCLK =TCNTB1 × Ctimer1 + (TCNTB1-TCNTO1) –Tdelay (3)

where ET_TCLK represents the execution cycles of the program with the unit of
clock cycle.

6 Experiments and Analysis

The microprocessor of our target architecture ARM920T is S3C2440A. ARM920T
has a five-stage pipeline, 16KB I-Cache/16KB D-Cache, and memory management
unit (MMU). The configuration of Caches and MMU and access to them are per-
formed in the coprocessor CP15. Benchmarks of our experiments come from the
worst-case execution time (WCET) suite published by Mälardalen University. The

 A Combined Hardware/Software Measurement for ARM Program Execution Time 195

WCET suite consists of 32 benchmarks, which implement algorithms of signal
processing, data compression, quick sort, impulse response filter, etc. It is often used
to evaluate and compare different types of WCET analysis tools and methods in the
domain of performance evaluation of embedded system.

6.1 Instrument Method and Timer Initial Value Setting

As described in Section 5.1, the execution time T∈[Tmin, Tmax] of the benchmark
measured by the instrument method was used to set the initial value of Timer1 in two
cases. In detail, the trade-off of the system time read by the API gettimeofday at the
beginning and end of the execution of the benchmark is its timing measurement by
the instrument method. We only measured 22 benchmarks of the WCET suite without
floating point calculations, since ARM9 lacks hardware support for these. By the
instrument method, each of the 22 benchmarks was measured 20 times. Among all the
timing measurements of 20 times, we picked out the longest one Tmax, the shortest one
Tmin and calculated the average one Tave for each benchmark as shown in Fig.4.

Fig. 4. Timing measurements of 22 WCET benchmarks by the instrument method

As illustrated in Fig.4, Tmin, Tmax and Tave of the benchmark are almost equal to
each other in most cases of the 22 WCET benchmarks expect for adpcm and nsich-
neu. For each of the two benchmarks, Tmax is much longer than Tmin or Tave. This is
because after the API gettimeofday invoked the system call sys_gettimeofday to read
the system time at the beginning or end of the execution of the benchmark, a software
interrupt request was triggered by sys_gettimeofday in kernel mode and the execution
of its interrupt handle routine was interrupted by another interrupt request with higher
priority. The execution of the interrupt handle routine was not resumed until the inter-
rupt with higher priority was handled. In this case, Tmax of each of the two bench-
marks was much longer than Tmin or Tave. For each of 22 benchmarks, since its timing
measurements of 20 times by the instrument method have meanings of statistics, Tmin

196 L. Kong and J. Jiang

and Tmax were used to set the initial value of the timer and Tave was used to compare
with the timing measurement by our method in Section 6.4.

Considering the timing measurements of Tmin and Tmax of each benchmark in Fig.4,
set the initial value of Timer1 in two cases as follows. Since adpcm and nsichneu sa-
tisfied Case Two in Section 5.1, the value of TCNTB1 was set as 65535 when measur-
ing their execution time by our method. For each of other benchmarks, there was
always a value to be assigned to Ttimer1 which could satisfy the condition of Case One,
so the value of TCNTB1 was set as Int(Ttimer1×TCLK) according to Case One.

6.2 Enable Cache and MMU

In Section 6.1, we measured the execution time of the 22 benchmarks by the instru-
ment method under the condition that Cache and MMU were enabled. In order to
compare the measurement result of the instrument method with that of our method
under the same condition, we enabled Cache and MMU before starting the timer. At
first, to enable I-Cache and D-Cache, we set the Icr and Ccr bits of the control register
c1 of the coprocessor CP15 as 1. Then we set the M bit of the register c1 as 1 to
enable MMU. If we need to disable Cache, set the Icr and Ccr bits as 0.

6.3 PWM Timer Interrupt Setting and Iteration Count

For benchmarks of adpcm and nsichneu, they satisfied Case Two in Section 5.1, so
their measurements for execution time were performed by combining Timer1 and its
interrupt INT_TIMER1 according to Section 5.3.

Before their measurements, the value of TCNTB1 and the type of INT_ TIMER1
were set according to Section 5.1 and Section 5.3. After Timer1 started, its down
counter TCNTO1 started counting down with the frequency TCLK. When the value of
TCNTO1 reached zero, the timer interrupt request of INT_ TIMER1 was generated
and the program counter (PC) jumped to the interrupt vector address 0x1c. By execut-
ing the jump instruction stored in 0x1c, the interrupt handling routine was found and
executed. It maintained a global variable Ctimer1 that recorded the timer iteration count,
as shown in Fig.3. Part of the interrupt handling routine was shown as follows:

__asm__ __volatile__(
" stmfd sp!, {r0-r4, lr}\n " // Save registers
" add %0,%0,#0x0001\n " // Increase the timer itera-

tion count by one each time
" mov r0, #0xffffffff\n "
" ldr r1, =rSRCPND\n "
" ldr r2, =rINTPND\n "
" str r0, [r1] \n " //Clear register SRCPND
" str r0, [r2] \n " //Clear register INTPND
" ldmfd sp!, {r0-r4, lr}\n " //Restore registers
" subs pc, lr, #4\n " //Return
: "=r"(Ctimer1)
: "0"(Ctimer1));

 A Combined Hardware/Software Measurement for ARM Program Execution Time 197

6.4 Execution Time Calculation and Method Effectiveness Analysis

When the execution of the benchmark ended, read the value of TCNTO1 and the itera-
tion count represented by Ctimer1 to calculate the execution cycles of the benchmark. In
our experiment, we measured the delay of the execution of the instruction which reads
TCNTO1 many times and found that it was always equal to 64.5 clock cycles. Ac-
cording to two cases described in Section 5, the execution cycles ET_TCLK can be
calculated by equation (2) or (3). The execution time of the benchmark with the unit
of second was calculated by

ET_s = ET_TCLK / TCLK (4)

The precision of the result is 10-7s, which is much more precise than 10-4s that RTC
could provide.

According to equation (4), we got the timing measurements of 22 WCET bench-
marks with the unit of second. In Fig.5, we compared the execution time measured by
our method with the measurement results by the instrument method obtained in
Section 6.1.

Fig. 5. Comparison of timing measurements by our method and those by the instrument method
for 22 WCET benchmarks

In Fig.5 it is shown that the execution time measured by our method is much shorter
than the average execution time measured by the instrument method. The timing mea-
surement by our method was only 28.46% of that by the instrument method on average.
This is because after the API gettimeofday invoked the system call to read the system
time, the kernel had to spend at least 1×10-6s to handle the software interrupt which was
triggered by the system call. Besides, the execution of the software interrupt handle
routine might be interrupted by another interrupt request with higher priority. And the
execution of the instrument instructions will delay the execution as well. The timing

198 L. Kong and J. Jiang

cost of the instrument method is so expensive that its timing measurements were much
longer than those by our method. The experimental result has shown that our measure-
ment method is an effective way to obtain accurate execution time of program.

6.5 Program Execution Time Prediction

In this section, firstly, we used our method to measure the execution time of three
benchmarks (i.e. fac, fir and insertsort) which were randomly picked out of 22 WCET
benchmarks. Each of the three benchmarks was measured 20 times under 20 inputs of
it, and we got 20 pairs of (input data, timing measurement) for each benchmark. Se-
condly, we used curve fitting tool to fit these pairs of data and obtained the distribution
of timing measurement for each benchmark. Finally, we used the distribution of timing
measurement to predict the execution time of each benchmark under different input
data and compare the predicted results with the measurement ones by our method.

Without Cache

Input of benchmark fac

E
xe

cu
ti

on
 T

im
e

/u
s

0 5 10 15 20
0.0

85.7

171.5

257.2

343.0

428.7

514.4

(a) Cache disabled

With Cache

Input of benchmark fac

E
xe

cu
ti

on
 T

im
e

/u
s

0 5 10 15 20
0.0

3.8

7.5

11.2

14.9

18.7

22.4

(b) Cache enabled

Fig. 6. Distribution of timing measurement of the benchmark fac under 20 inputs

S = 0.05655426

r = 0.99998433

S = 0.04042360

r = 0.99999994

 A Combined Hardware/Software Measurement for ARM Program Execution Time 199

Taking the benchmark fac as an example, in the case of Cache disabled, we firstly
used our method to measure the execution time of fac under 20 inputs, and obtained
20 pairs of data as follows:(0, 5.45), (1, 10.63), (2, 17.94), … , (19, 468.66). Second-
ly, we fitted the 20 pairs of data by the curve fitting tool to get the timing measure-
ment distribution which can be expressed as a function y=a+bx+cx^2+dx^3 where a
=5.46072, b =4.10911, c =1.06182, d =0.00026 as shown in Fig. 6(a). The standard
deviation of the fitting is 0.05655426 and the correlation coefficient is 0.99999994.
Finally, we used the fitted distribution to predict the execution time of fac under its
different 10 inputs (i.e. 20~29). Comparing the predicted results with the measure-
ment ones by our method in Fig. 7(a), we got an average deviation of 0.04%.

Residuals

Input of benchmark fac

R
es

id
u

al
 o

f
E

xe
cu

ti
on

 T
im

e
/u

s

20 25 30
-1.1

-0.6

0.0

0.6

1.1

(a) Cache disabled

Residuals

Input of benchmark fac

R
es

id
u

al
 o

f
E

xe
cu

ti
on

 T
im

e
/u

s

20 25 30
-5.1

-2.6

0.0

2.6

5.1

(b) Cache enabled

Fig. 7. Comparison of the predicted execution time and the measured one of fac under 10 inputs

In the case of Cache enabled, we did the experiment following the same steps.
Firstly, we measured the execution time of fac under the same 20 inputs and got pairs
of (input data, timing measurement). Secondly, we fitted these pairs of data to obtain
the distribution of the timing measurement (i.e. y=a+bx+cx^2+dx^3+ex^4 where a

200 L. Kong and J. Jiang

=0.44485, b =0.01870, c =0.07512, d =0.00020, e =0.00005) as shown in Fig. 6(b).
Finally, we used the distribution to predict the execution time of the benchmark under
the same different 10 inputs. Comparing the predicted results with the measurement
ones by our method, we got an average deviation of 4.13%.

The experiments were also made in the same way for the other randomly picked
benchmarks of fir and insertsort. In the case of Cache disabled, we got average devia-
tions of 3.69% for fir and 1.77% for insertsort; in the case of Cache enabled, we got
average deviations of 3.78% for fir and 4.69% for insertsort. The average deviation
we got under enabled Cache was always larger than the one we got under disabled
Cache. This is because in the case of Cache enabled, when the execution of the
benchmark needs to access memory for instructions or data, it will be access I-Cache
or D-Cache at first in which case either Cache hit or Cache miss occurs, then the tim-
ing cost due to accessing memory is undetermined and thus the execution time of the
benchmark is not determined as well even under the same input.

These experiments have shown that our measurement method can be used to pre-
dict the program execution time especially in the case of Cache disabled. It provides a
convenience way to predict program execution time.

7 Conclusions

Since the precision of measurement provided by the hardware counter RTC is not
high enough and the timing cost of the instrument method is difficult to be calculated,
we propose a combined hardware/software measurement for ARM program execution
time, which could give the high measurement precision of 10-7s. It first sets the preci-
sion of measurement by configuring frequencies of relevant hardware in the system
boot loader code, next, encapsulates the access to the PWM timer in the macros de-
fined in the kernel, and finally uses the PWM timer and its corresponding interrupt to
measure the execution time of program. Experimental results show that it is accurate
to measure the execution time of ARM program with high precision, comparing with
current end-to-end dynamic measurements. Besides, combining with curve fitting
techniques, the method can be used to predict the execution time of program under
different input data. The measurement method proposed in this paper provides an
effective and practical way for the execution time estimation of ARM programs.

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., et al.: The
Worst-Case Execution-Time Problem-Overview of Methods and Survey of Tools. ACM
Transactions on Embedded Computing Systems 7(3), 1–49 (2008)

2. Puschner, P., Burns, A.: A Review of Worst-Case Execution-Time Analysis. Real-Time
Systems 18(2-3), 115–128 (1999)

3. Samsung Electronics: S3C2440A 32-Bit CMOS Microcontroller User’s Manual, Revision
1. Technical report, Samsung Electronics (2004)

4. Engblom, J., Ermedahl, A., Sjodin, M., Gustafsson, J., et al.: Worst-Case Execution-Time
Analysis for Embedded Real-Time Systems. Software Tools for Technology Transfer 4(4),
437–455 (2003)

 A Combined Hardware/Software Measurement for ARM Program Execution Time 201

5. Ermedahl, A., Stappert, F., Engblom, J.: Clustered Worst-Case Execution-Time Calcula-
tion. IEEE Trans. on Computers 54(9), 1104–1122 (2005)

6. Lim, S.-S., Bae, Y.H., Jang, G.T., et al.: An Accurate Worst Case Timing Analysis Tech-
nique for RISC Processors. IEEE Trans. on Software Engineering 21(7), 593–604 (1995)

7. Malik, S., Martonosi, M., Li, Y.-T.S.: Static Timing Analysis of Embedded Software. In:
34th Annual Conference on Design Automation, pp. 147–152. ACM Press, New York
(1997)

8. Wegener, J., Mueller, F.: A Comparison of Static Analysis and Evolutionary Testing for
the Verification of Timing Constraints. Real-Time Systems 21(3), 241–268 (2001)

9. Petters, S.M., Zadarnowski, P., Heiser, G.: Measurments or Static Analysis or Both? In:
7th International Workshop on Worst-Case Execution Time Analysis (2007)

10. Živojnovic, V.: Compiled Hw/Sw Co-Simulation. In: 33rd Annual Conference on Design
Automation, pp. 690–695. ACM Press, New York (1996)

11. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 4.0. Technical report #1342,
Computer Sciences Department of Wisconsin University (2001)

12. Andrews, J.: Co-Verification of Hardware and Software for ARM SoC Design. Translated
by Zhou L.G., et al. BUAA Press, Beijing (2006) (in Chinese)

13. Lazarescu, M.T., Bammi, J.R., Harcourt, E., et al.: Compilation-Based Software Perfor-
mance Estimation for System Level Design. In: IEEE International Workshop on High-
Level Validation and Test, pp. 167–172. IEEE Press, New York (2000)

14. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-Based Worst-Case Execu-
tion Time Analysis. In: 3rd IEEE Workshop on Software Technologies for Future Embed-
ded and Ubiquitous Systems, pp. 7–10. IEEE Press, New York (2005)

15. Colmenares, J.A., Im, C., Kim, K.H., et al.: Measurement Techniques in a Hybrid Ap-
proach for Deriving Tight Execution-Time Bounds of Program Segments in Fully-
Featured Processors. In: Real-Time and Embedded Technology and Applications Sympo-
sium, pp. 68–79. IEEE Press, New York (2008)

16. Zolda, M., Bunte, S., Kirner, R.: Towards Adaptable Control Flow Segmentation for Mea-
surement-Based Execution Time Analysis. In: 17th International Conference on Real-Time
and Network Systems, pp. 77–85 (2009)

17. Jean-Francois, D., Isabelle, P.: Safe Measuremnt-Based WCET Estimation. In: 5th Interna-
tional Workshop on Worst-Case Execution Time Analysis (2005)

18. Kong, L.L., Jiang, J.H.: A Safe Measurement-Based Worst-Case Execution Time Estima-
tion Using Automatic Test-Data Generation. In: 16th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 245–246. IEEE Press, New York (2010)

19. Kirner, R., Puschner, P., Wenzel, I.: Measurement-Based Worst-Case Execution Time
Analysis Using Automatic Test-Data Generation. In: 3rd IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, pp. 23–26. IEEE Press, New
York (2005)

20. Wenzel, I., Rieder, B., Kirner, R., Puschner, P.: Automatic Timing Model Generation by
CFG Partitioning and Model Checking. In: Conference on Design, Automation and Test in
Europe, pp. 606–611. IEEE Press, New York (2005)

21. Wang, X., Ji, M.L., Wang, J., et al.: Trace Acquirement Technology of Real-Time Systems
Based on WCET Analysis. Journal of Software 17(5), 1232–1240 (2006) (in Chinese)

22. Zhao, J.: Analysis of Linux Kernel, 1st edn. China Machine Press, Beijing (1998)
(in Chinese)

23. Robert, L.: Linux Kernel Development. Translated by Chen, L.J., et al. China Machine
Press, Beijing (2006) (in Chinese)

24. Yin, X.F., Yuan, S.H., Hu, J.B.: Experimental Research on Interrupt Latency Time of
ARM Microprocessor. Computer Engineering 37(4), 252–263 (2011) (in Chinese)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 202–210, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Low-Complexity Parallel Two-Sided Jacobi Complex
SVD Algorithm and Architecture for MIMO

Beamforming Systems*

Weihua Ding, Jiangpeng Li, Guanghui He, and Jun Ma

School of Microelectronics, Shanghai Jiao Tong University, Shanghai, China
{forever_06141,lijiangpeng,guanghui.he,majun}@sjtu.edu.cn

Abstract. Singular Value Decomposition (SVD) is a very important matrix fac-
torization technique in engineering applications. In multiple-input multiple-
output (MIMO) systems, SVD is applied in transmit beamforming which
provides high diversity advantages. This paper proposes a low-complexity paral-
lel two-sided Jacobi complex SVD algorithm and architecture which are suitable
for any m (4 , 4)n m n× ≤ ≤ matrix. It performs two 2 2× complex SVD

procedures in parallel, and employs master-slave CORDIC (coordinate rotation
digital computer) to reduce the decomposition time. The proposed parallel algo-
rithm for 4 4× complex SVD saves 52% decomposition time compared with
the Golub-Kahan-Reinsch algorithm. Meanwhile, the Bit Error Rate (BER)
performance of the proposed algorithm is almost the same with the ideal SVD.

Keywords: MIMO, Beamforming, Two-sided Jacobi, SVD, Master-slave
CORDIC.

1 Introduction

Multiple-input multiple-output (MIMO) communication systems are employed in
many wireless communication standards (e.g., IEEE 802.11n, IEEE 802.11ac) to
increase data rates through spatial multiplexing or to improve reliability through di-
versity [1]. Beamforming is a technique that provides high diversity with the help of
channel state information at the transmitter (CSIT). It corresponds to the transmit
precoding and receiver shaping based on singular value decomposition (SVD) of the
channel matrix [1]. To achieve high throughput in MIMO beamforming systems,
precoding matrix derived from SVD should be sent from the receiver to the transmit-
ter as soon as possible. Therefore, the decomposition time and the accuracy of SVD
will significantly affect the beamforming performance.

Many research works have focused on SVD algorithm and architecture for MIMO
beamforming applications. A time-shared SVD architecture was proposed in [2]
using Golub-Kahan-Reinsch algorithm, which leads to low hardware cost but long

* This work was supported in part by Shanghai Natural Science Foundation under Grant No.

10ZR1416500 and the Research Fund for the Doctoral Program of Higher Education of China
under Grant No. 20110073110055.

 A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm 203

decomposition time. An adaptive algorithm is proposed in [3] while it requires large
iterations to achieve an acceptable arithmetic precision. Jacobi-like algorithms are
extremely suitable for parallel SVD to reduce the decomposition time. Two-sided
Jacobi algorithm was applied in [4] to implement a 2x2 complex SVD with Givens
rotation. It requires 7 serial pipeline coordinate rotation digital computer (CORDIC)
stages. In [5], two-sided Jacobi algorithm for complex-valued matrix was imple-
mented on systolic array. But the overall decomposition time is still much longer than
real SVD array. To improve the decomposition time of SVD, we propose a low-
complexity parallel two-sided Jacobi complex SVD algorithm for any

(4 , 4)m n m n× ≤ ≤ matrix. In this algorithm, if either row or column of the matrix is

less than 4, it firstly expands the matrix to dimension 4 4× and then decomposes the
4 4× matrix by performing two 2 2× complex SVD in parallel. Finally, the derived
SVD matrices m mU × , m n×Σ and n nV × correspond to m rows and n columns of the

decomposed 4 4× matrices.
The rest of this paper is organized as follows. In section 2, the SVD-based beam-

forming system is outlined. The proposed parallel two-sided Jacobi complex SVD
algorithm is described in section 3. VLSI architecture of this algorithm is introduced
in section 4. Simulation results and the decomposition time comparison are presented
in section 5 and 6, respectively. Finally, the conclusion is given in section 7.

2 SVD-Based Beamforming System

Consider a MIMO channel with a r tN N× channel matrix H which is known at both

the transmitter and the receiver. For any matrix H its SVD can be formulated as

 HH U V= Σ (1)

where the r rN N× matrix U and the t tN N× matrix V are unitary matrices and the

singular matrix Σ is an r tN N× diagonal matrix containing singular values { }iσ

of H. There are HR nonzero singular values where HR denotes rank of matrix H.

SVD-based beamforming is implemented by performing a transformation on the
channel input x and output y via transmit precoding and receiver shaping, which is

shown in Fig. 1.

Fig. 1. Transmit precoding and receiver shaping

From the definition of SVD, it can formulate that:

() ()H H H

H H H

y U H x n U U V V x n

U U V V x U n x n

= + = Σ +

= Σ + = Σ +

 

  
 (2)

x Vx=  y Hx n= + Hy U y=

x x y y

204 W. Ding et al.

As multiplication by a unitary matrix does not affect the distribution of the noise, n
and n are identically distributed. SVD-based beamforming strategy separates the
MIMO channel into HR parallel independent subchannels that do not interfere with

each other. It significantly improves the diversity gain of MIMO systems [1].

3 Proposed Parallel Two-sided Jacobi Algorithm

In this section, we introduce the proposed low-complexity parallel two-sided Jacobi
complex SVD algorithm. It is suitable for any (4, 4)m n m n× ≤ ≤ matrix. In this

algorithm, if either row or column of the matrix is less than 4, it expands the original
matrix to dimension 4 4× by inserting extra zero rows and zero columns. Then the
4 4× matrix is decomposed by iteratively performing two 2 2× complex SVD
procedures in parallel. Finally, the derived SVD matrices m mU × , m n×Σ and n nV × cor-

respond to m rows and n columns of the decomposed 4 4× matrices. Firstly, we in-
troduce the 2 2× two-sided Jacobi complex SVD algorithm.

Fig. 2. Diagonalization of 2 2× complex-valued matrix

Consider a 2 2× complex-valued matrix H, which is shown in Fig. 2. Givens rota-
tions are successively applied to H from the left-hand side (LHS) and from the right
hand side (RHS), such that H is transformed to singular matrix Σ . Corresponding
updates are also applied to unitary matrices U and V. The affected entries in each step
are highlighted.

In the last step, TPR method [6] is employed to diagonalize the 2 2× real-valued
matrix. It takes less rotations than two-sided Jacobi rotations.

Any 2 2× real-valued matrix can be reformulated as

 1 1 2 2
1 2

1 1 2 2

p q p q
A A A

q p q p

− −   
= + = +   

   
 (3)

This leads to the following reformulation of the last diagonalization step in Fig. 2.

1 2

1 2
1 2

1 2

() () () ()

0 0
() ()

0 0

T T
l r r l r l

T

R AR R A R A

r r
R A R A

r r

θ θ θ θ θ θ

θ θΔ Σ

Σ = = − + +
−   

= + = +   
   

 (4)

where 1 1tan() q pθΔ = , 2 2tan() q pθΣ = and ()R θ denotes Givens rotation with

angle θ . This means two-sided Jacobi rotations can be performed by two plane rota-
tions [6] which only compute 1r and 2r .

Then the 2 2× SVD procedure above is iteratively performed to diagonalize
4 4× complex-valued matrix. As each Givens rotation affects only two rows and two

L
H

S

L
H

S

R
Η

S

L
H

S

T
P

R

Σ
é ù é ù é ù é ù é ù é ù
ê ú ê ú ê ú ê ú ê ú ê ú    ê ú ê ú ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û

R R R R 0
H = =

0
C C R C C

0
R R

C C R C C C 0 R 0 R

 A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm 205

columns, we may actually perform two 2 2× two-sided Jacobi procedures in parallel.
Then the 4 4× matrix could be divided into four 2 2× submatrices. As shown in
Fig. 3, four entries are annihilated in each parallel 2 2× SVD procedures, which is
called one iteration. Since there are 12 off-diagonal entries in a 4 4× matrix, 3 itera-
tions are required to update all the off-diagonal entries, which is called one sweep.
Multiple sweeps repeat for the convergence of all the off-diagonal entries. In Fig. 3,
entry pairs under the arrows denote entries of the two parallel 2 2× submatrices (hig-
hlighted) in each iteration.

Fig. 3. Sweep process of 4 4× complex SVD

The proposed parallel two-sided Jacobi complex SVD algorithm for
(4, 4)m n m n× ≤ ≤ matrix is summarized in Table 1 where S denotes the number of

sweeps, 4 4I × denotes 4 4× identity matrix. The algorithm performs two 2 2× SVD

procedures and the corresponding updates on U and V in parallel.

Table 1. Proposed parallel two-sided Jacobi complex SVD algorithm

1. Initialization: ×
×

 
→ 

 
m n

4 4

H 0
H

0 0
, ×

H
4 4U =I , ×4 4V=I

2. for s=1 to S do
3. 1i ={1,1,1}, 1j ={2,3,4}; 2i ={3,2,2}, 2j ={4,4,3}

4. for k=1 to 3 do
5. Divide ×4 4H into four ×2 2 submatrices:

   
   
   

1 1 1 1 1 2 1 2
1 3

1 1 1 1 1 2 1 2

(k) (k) (k) (k) (k) (k) (k) (k)

(k) (k) (k) (k) (k) (k) (k) (k)

H(i ,i) H(i ,j) H(i ,i) H(i ,j)
H = ,H =

H(j ,i) H(j ,j) H(j ,i) H(j ,j)

   
   
   

2 2 2 2 2 1 2 1
2 4

2 2 2 2 2 1 2 1

(k) (k) (k) (k) (k) (k) (k) (k)

(k) (k) (k) (k) (k) (k) (k) (k)

H(i ,i) H(i ,j) H(i ,i) H(i ,j)
H = ,H =

H(j ,i) H(j ,j) H(j ,i) H(j ,j)

C C C C
C C C C
C C
C C

C C
C C

C 0 C C
0 C C C
C C
C C

C 0
0 C

C C 0 C
C C C 0
0 C
C 0

C C
C C

C C C 0
C C 0 C
C 0
0 C

C C
C C

206 W. Ding et al.

Table 1. (continued)

7. Update and : ,

8. Update the corresponding rows of :

 ,

9. Update the corresponding columns of :

10. end iteration
11. end sweep
12. Order singular values and singular vectors
13. Derived SVD matrices: ,

 ,

4 Parallel VLSI Architecture

Fig. 4 provides an overview of the parallel matrix decomposition architecture which
supports MIMO beamforming systems with all antenna modes (4, 4r tN N≤ ≤). The

architecture consists of a matrix memory, two parallel 2 2× SVD cores and a finite
state machine (FSM) which controls the memory and the SVD cores.

Fig. 4. Overview of the parallel matrix decomposition architecture

A. Matrix Memory

The matrix memory consists of one two-port SRAM macro cell that stores U , Σ and
V . The singular matrix Σ is initialized by the channel matrix H. Both U and V are
initialized by 4 4× identity matrices. All the decomposition results after each iteration
are written back to the memory for the next iteration.

B. Parallel 2 2× SVD cores

Parallel 2 2× SVD cores perform the algorithm described in Table 1. As the decom-
position mainly consists of two-dimensional Givens rotations, master-slave CORDIC
[7] is employed in performing the rotations, which reduces decomposition time.

3H 4H →H
1 3 2 3U H V H 2 4 1 4→HU H V H

HU

   
→   

   

H H
H 1 1
1 H H

1 1

(k),: (k),:

(k),: (k),:

U (i) U (i)
U

U (j) U (j)

   
→   

   

H H
H 2 2
2 H H

2 2

(k),: (k),:

(k),: (k),:

U (i) U (i)
U

U (j) U (j)

V

[] []→1 1 1 1 1(k) (k) (k) (k)V(:,i) V(:,j) V V(:,i) V(:,j)

[] []→2 2 2 2 2(k) (k) (k) (k)V(:,i) V(:,j) V V(:,i) V(:,j)

×→ m nΣ(1:m,1:n) Σ
×→ m mU(1:m,1:m) U ×→ n nV(1:n,1:n) V

 A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm 207

Fig. 5. The master-slave CORDIC

Consider the Givens rotation applied on a 2 2× real-valued matrix in (5).
As shown in Fig. 5, the master CORDIC operates in vectoring mode to rotate the 1st
column vector 1 [,]Tv x y= . The 2nd column vector 2 [,]Tv w z= is fed into slave

CORDIC which performs the same micro-rotations by the control of rotation direction
signal.

cos sin

sin cos 0

x w r p

y z q

θ θ
θ θ

     
=     −     

 (5)

But for normal CORDIC, it first rotate 1v to derive θ and then rotate 2v with the

derived angle. So the transformation of (5) with master-slave CORDIC requires half
rotation time than that of normal CORDICs.

Fig. 6. VLSI architecture of 2 2× two-sided Jacobi complex SVD

x y 0

r 0 θ

w z

p q

r12h

i12h

r11u

i11u

r12u

i12u

q11
(1)
r12h

(1)
i12h

(1)
r11u

(1)
i11u

(1)
r12u

(1)
i12u

r21h

i21h

r22h

i22h

r21u

i21u

r22u

i22u

(1)
r21h

q21
(1)
r22h

(1)
i22h

(1)
r21u

(1)
i21u

(1)
r22u

(1)
i22u

(1)
r11h

0

(1)
r12h

(1)
r22h

(1)
r11u

(1)
r21u

(1)
r21h

r11h

i11h

0

(1)
r11h

0

0

0

f12
(2)
r12h

(2)
r22h

(2)
r11u

(2)
r21u

(2)
r11h

0

(1)
r12u

(1)
r22u

(2)
r12u

(2)
r22u

(1)
r11h

0

(1)
i12h

(1)
i22h

(1)
i11u

(1)
i21u

(1)
r21h

(1)
i12u

(1)
i22u

(2)
i12h

(2)
i22h

(2)
i11u

(2)
i21u

(2)
r11h

(2)
i12u

(2)
i22u

q(3)22

0
01q

1p
1r

qD

0
02q

2p
2r

qS

qS
qD

-12

qS
qD

1r

2r
11

S

1r

2r
22

S

ql

qr

-12

(2)
r21u

(2)
i21u

q(3)22-

(2)
r22u

(2)
i22u

(4)
r21u

(4)
i21u

(4)
r22u

(4)
i22u

(2)
r11u

(4)
r21u

(5)
r11u

(5)
r21u

0

(2)
r12u

(4)
r22u

(5)
r12u

(5)
r22u

(2)
i11u

(4)
i21u

(5)
i11u

(5)
i21u

(2)
i12u

(4)
i22u

(5)
i12u

(5)
i22u

(5)
r11v

(5)
r12v

0

(5)
r21v

(5)
r22v

(2)
r12h

(2)
i12h

0

(4)
r12h

0

q(2)12

r12v

i12v

(3)
r12v

(3)
i12v

r22v

i22v

(3)
r22v

(3)
i22v

(2)
r22h

(2)
i22h

0

(4)
r22h

0

q(2)22

-12

-12

1p

2p

(4)
r22h

(2)
r11h

(4)
r22h

(2)
r11h

-12
1q

2q

(4)
r12h

q(2)22

q(2)12

f12

0

r11v

(3)
r12v

ql

r21v

(3)
r22v

i11v

(3)
i12v

i21v

(3)
i22v

(5)
i11v

(5)
i12v

(5)
i21v

(5)
i22v

2́ 2
U = I

2́ 2
V = I

2́ 2H

2́ 2
U

´S2 2

2́ 2Vqr
0

208 W. Ding et al.

VLSI architecture of 2 2× two-sided Jacobi complex SVD is illustrated in Fig. 6. To
simultaneously rotate the corresponding entries in U and V, more slave CORDICs are
specified with one master CORDIC. In the proposed architecture, each master-slave
CORDIC contains 3 slave CORDICs at most. The serial pipeline CORDIC stages
correspond to steps shown in Fig. 2.

5 Simulation Results

In this section we evaluate the beamforming performance with Bit Error Rate (BER)
in a practical MIMO-OFDM system. Unitary matrix V is fed back to the transmitter
for precoding and unitary matrix U is used for receiver shaping. Configuration of the
specified MIMO-OFDM system is listed as follows.

─ Beamforming technique : SVD
─ Channel type : Ch. E [8], 802.11n, 4 spatial streams, 4 4× channel matrix
─ Perfect channel state information is assumed
─ Channel coding : code rate 2/3, convolutional code with constraint length 7, gene-

rator polynomial of [133 171]
─ Modulation : 64-QAM
─ MIMO-OFDM system with 256 tones
─ Linear MMSE detection

As shown in Fig. 7, the proposed algorithm with 3 sweeps and 8 CORDIC micro-
rotations degrades 1dB performance at 410BER −= than the ideal SVD with Golub-
Kahan-Reinsch algorithm [2]. As number of CORDIC micro-rotations increases, BER
performance improves. With 3 sweeps and 12 CORIDC micro-rotations, BER per-
formance of the proposed algorithm is almost the same with the ideal SVD.

Fig. 7. BER performance of the proposed algorithm and the ideal SVD

19 20 21 22 23 24 25 26
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Es/N0

B
E

R

Ideal SVD

Jacobi n=12 Sweep=3

Jacobi n=10 Sweep=3

Jacobi n=8 Sweep=3

25 25.5 26

10
-5

10
-4

 A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm 209

6 Decomposition Time Comparison

The decomposition time is compared between the proposed parallel two-sided Jacobi
algorithm and the method in [2] and [4]. We compare the decomposition time with the
required number of clock cycles.

Firstly, we analyze the decomposition time of 2 2× complex SVD. To decompose
a 2 2× complex-valued matrix, the proposed algorithm requires only one iteration.
As shown in Fig. 6, it costs 5 serial pipeline CORDIC stages. However, the algorithm
in [8] costs 7 serial CORDIC pipeline stages, which takes longer decomposition time.
Assume that it takes 4 clock cycles to compensate the expansion factor K [9] with
shift-add operations, and takes 5 clock cycles to order the two singular values, the
proposed algorithm for 2 2× complex SVD requires 2 2 5 (4) 5T n× ≈ × + + cycles to

complete one decomposition where n denotes number of CORDIC micro-rotations.
Decomposition time comparison of the 2 2× complex SVD is presented in Table

2 with different CORDIC micro-rotations.

Table 2. Decomposition time comparison of 2 2× complex SVD

2 2× complex SVD (clock cycles)
CORDIC

micro-rotations
[4] This work Improvement

16 173 105 39%
12 138 85 38%

To compare the decomposition time of 4 4× complex SVD, assume that it takes
20 clock cycles to order the four singular values and the corresponding singular vec-
tors, the proposed parallel two-sided Jacobi algorithm for 4 4× complex SVD re-
quires 4 4 3 5 (4) 20T S n× = × × × + + cycles to complete one decomposition where S

denotes the number of sweeps.
Decomposition time comparison of the 4 4× complex SVD is presented in Table

3. The 1539 clock cycles is computed with the maximum SVD time and the corres-
ponding clock frequency in [2]. According to the simulation results in section 5, the
number of sweeps is chosen to be 3. Because the BER performance of the proposed
algorithm with 3 sweeps and 12 CORDIC micro-rotations is almost the same with the
ideal SVD. As shown in Table 3., the proposed algorithm for 4 4× complex SVD
saves 52% decomposition time compared with the Golub-Kahan-Reinsch algorithm
[2].

Table 3. Decomposition time comparison of 4 4× complex SVD

4 4× complex SVD (clock cycles)
CORDIC

micro-rotations
[2] This work Improvement

12 1539 740 52%

210 W. Ding et al.

7 Conclusions

In this paper, a low-complexity parallel two-sided Jacobi complex SVD algorithm and
the parallel VLSI architecture are proposed for MIMO beamforming systems. The
algorithm is suitable for any (4, 4)m n m n× ≤ ≤ matrix by expanding it to dimension

4 4× . Then the 4 4× matrix is decomposed by performing two 2 2× complex SVD
procedures in parallel. To reduce the decomposition time, master-slave CORDICs are
employed in the parallel architecture. The proposed algorithm has low computational
complexity which saves 52% decomposition time compared with the Golub-Kahan-
Reinsch algorithm on 4 4× complex SVD. Furthermore, BER performance of the
proposed algorithm is almost the same with the ideal SVD.

References

1. Goldsmith, A.: Wireless Communications, 1st edn. The People’s Posts and Telecommunica-
tions Press, Beijing (2007)

2. Studer, C., Blosch, P., Friedli, P., Burg, A.: Matrix decomposition architecture for MIMO
systems: Design and implementation trade-offs. In: Proceedings of the 41st Asilomar Conf.
on Signals, Systems and Computers, pp. 1986–1990 (2007)

3. Poon, A.S.Y., Tse, D.N.C., Brodersen, R.W.: An adaptive multiantenna transceiver for
slowly flat fading channels. IEEE Trans. Commun. 51, 1820–1827 (2003)

4. Wang, Y., Cunningham, K., Nagvajara, P., Johnson, J.: Singular Value Decomposition
Hardware for MIMO: State of the Art and Custom Design. In: IEEE Conf. on ReConFig,
pp. 400–405 (2010)

5. Hemkumar, N.D., Cavallaro, J.R.: A systolic VLSI architecture for complex SVD. In: Pro-
ceedings of the 1992 IEEE International Symposium on Circuits and Systems, ISCAS 1992,
pp. 1061–1064 (1992)

6. Ahmedsaid, A., Amira, A., Bouridane, A.: Improved SVD systolic array and implementa-
tion on FPGA. In: Proc. IEEE Field-Programmable Technology (FPT), pp. 35–42 (2003)

7. Senning, C., Studer, C., Luethi, P., Fichtner, W.: Hardware-efficient steering matrix compu-
tation architecture for MIMO communication systems. In: Proc. of the IEEE Int. Symp. on
Circuits and Systems, pp. 304–307 (2008)

8. Perahia, E., Stacey, R.: Next Generation Wireless LANs Throughput, Robustness, and Re-
liability in 802.11n. Cambridge University Press, Cambridge (2008)

9. Parhami, B.: Computer Arithmetic Algorithm and Hardware Designs. Oxford University
Press, New York (2000)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 211–220, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Thermal-Aware Task Mapping Algorithm for Coarse
Grain Reconfigurable Computing System

Shizhuo Tang, Naifeng Jing, Weiguang Sheng, Weifeng He, and Zhigang Mao

School of Microelectronics,
Shanghai Jiao Tong University

Shanghai, China

Abstract. Ever growing power density has made thermal effects one of the
most crucial issues for modern VLSI designs, e.g., reports have shown that
more than 50% of IC failures are related to thermal issues. However, thermal is-
sues for Coarse Grain Reconfigurable Architectures (CGRA) have been few
addressed. In this paper, a thermal-aware task mapping algorithm called Max-
Min algorithm is developed for the REmus reconfigurable architecture, which
uses compact thermal model based on equivalent thermal circuit to iteratively
optimize the power dissipation on the modern CGRAs. Experiments based on
Hotspot simulation show that the algorithm can reduce the maximum tempera-
ture by 3~9℃ and narrow the temperature distribution range by 7~15℃ .
Compared to previous intuitive random algorithm, the Max-Min algorithm can
significantly reduce the number of optimization iterations while reserving the
same result.

Keywords: Reconfigurable computing system, thermal model, thermal
management, Max-Min algorithm.

1 Introduction

Increasing power density has been one of the most urgent obstacles to the continuous-
ly scaling VLSI systems [1]. As power dissipation is spatially non-uniform across the
entire chip, localized heating occurs much faster than chip-wide heating. The so-
called “hot spot” and spatial gradients can cause timing errors or even physical dam-
age to the chip. In order to avoid the problems caused by excessive heating, it is
necessary to monitor the temperature and apply thermal management techniques to
balance the heat across the chip.

For the thermal issues in modern microprocessor domain, the most common me-
thod is dynamic thermal management (DTM) [2]. It applies different techniques, e.g.
dynamic voltage and frequency reduction (DVFS) [3] or clock gating to reduce the
chip’s power consumption with hardware cost and performance loss. To minimize the
loss, software methods such as Dynamic Repartitioning algorithm, Dynamic Core
Scaling algorithm [4] and power-aware real-time scheduler [5] are also proposed.
However, the lack of accurate thermal model limits their practical use. To construct
an accurate thermal model to tackle the issues, two general methods are widely used.

212 S. Tang et al.

One is analytical thermal model, i.e., ATMI [6], which solves the heat equation based
on physical structure to get the temperature. The other is compact thermal model, e.g.
Hotspot [7], which uses thermal resistances and capacitances to assemble the model.
The analytical thermal modeling approach does not take package into consideration
and is not fast enough to solve heat equations. In contrast, hotspot modeling is able to
provide detailed static and transient temperature information efficiently across the die
and the package.

Recently, reconfigurable devices are becoming more and more popular due to the
requirements for more flexibility and higher performance. Typically, by customized
device reconfiguration, the CGRA [8] can reduce the non-recurring engineering cost
of VLSI chips but still yields higher area efficiency. Though the thermal problem on
reconfigurable device is not so serious as that in microprocessors, given high clock
frequencies, and extreme operating environments, reconfigurable device can easily
run overheated, and cause many issues on performance and reliability [9]. Unfortu-
nately, so far there are only a few methods published to mitigate the thermal problems
in reconfigurable device, i.e., dynamic thermal management for FPGA [10] and ther-
mal-aware task mapping [11] for coarse-grain dynamic reconfigurable processor.
However, these work aim to monitor the temperature on the targeted device, and so
far no effective methods are proposed to solve the thermal issues in CGRA.

To this problem, a thermal aware task mapping algorithm called Max-Min is pro-
posed, which is efficient to reduce the peak temperature and balance the heat distribu-
tion across a coarse-grain reconfigurable platform by taking different mapping effects
into account. To accurately evaluate the temperature, our evaluation is based on a
detailed thermal model of the target architecture using Hotspot. Hotspot is capable of
solving large scale problems due to its simple model structure, and thus is widely used
for thermal evaluation. The experiment results show that our algorithm is very effec-
tive to reduce the peak temperature and balance the heat distribution across the chip.
In addition, we provided both optimality and complexity analyses on our proposed
task mapping algorithm for its practical use, which demonstrate the effectiveness and
efficiency of our proposed algorithm.

The rest of this paper is organized as follows: section II provides the dedicated re-
configurable device architecture and constructs the thermal model. Section III propos-
es the thermal optimization algorithm for the task mapping process. Experiments are
carried out and results are analyzed in section IV. Section V concludes this paper and
talks about the future work.

2 Thermal Model of the Target Device

REmus reconfigurable architecture mainly consists of an ARM processor, SRAM,
DMA controller, interrupt request controller and a reconfigurable processing unit
(RPU), as shown in Fig. 1(a). The RPU, designed to speed up the data-intensive mul-
timedia applications, consists of constant memory, load/store FIFO, configuration
register, controller and an 8×8 array of 64 reconfigurable cells (RC), which is called

 A Thermal-Aware Task Mapping Algorithm 213

Fig. 1. Our Reconfigurable Processing Architecture

reconfigurable array (RCA) as shown in Fig. 1(b). Each RC is composed of comput-
ing unit, multiplexers and data registers, and can conduct different logic operations by
configuring context words. Each row of RCs can access the results of previous row
through the router. The router provides data access between any adjacent rows of
RCs. Furthermore, the last row of RCs can also be accessed by the first row of RCs,
so that the RCA formed a cyclic data path. Each RC can also read/write directly from
the load/store FIFO, which is used to buffer the data from SRAM.

Generally speaking, targeting on a given reconfigurable architecture, the mapping
problem is to place the logic operations onto RCA, and uses built-in interconnections
to link the operations for desired functionality. Different mapping solutions will result
in different performance and power. In this paper, we will focus on the thermal effects
during mapping to reduce the maximum temperature and balance heat distribution of
the design.

To construct the compact thermal model for thermal effect evaluation on RPU, de-
tailed information of RPU is needed, such as the area, thickness and thermal conduc-
tivity of the chip. To make the model easy to construct, we have simplified the hard-
ware architecture and focus on the RCA, because RCA occupied 80% area and power
consumption of RPU.

The compact thermal model of RCA is shown in Fig. 2(a), according to the hotspot
[7] model package, which includes the silicon layer, spreader, interface layer and heat
sink, we first divide the silicon layer at the architecture-level. Note that RCA is an
8×8 array of same reconfigurable cells, 64 blocks are divided on silicon level, as
shown in Fig. 2(b) in blue parts, and each of them is assigned to one node. For other
layers (such as heat spreader and heat sink), we simply divide them as illustrated in
Fig. 2(b), as their thermal information is enough. The central part is the area covered
by another adjacent layer. This central part has the same number of nodes as its
smaller neighbor layer or can collapse those nodes into fewer nodes, depending on the
accuracy and computation speed requirements. The remaining peripheral part in Fig.
2(b) is then divided into four trapezoidal blocks, each assigned to one node.

Control Signal

Reconfigurable Processing
Unit (RPU)ARM

SRAM

DMAC

IRQC

Configuration

Interface

Context Flow

Controller
Data Flow

Controller

Computing

Controller

E
M

I

Configuration Signal Data Signal

Constant

Memory

Controller

Configuration

Register

Load

FIFO

Store Router

RC RC RC

RC RC RC

RC RC RC

R
C

A

8 columns

Router

(a) (b)

A
H

B

 B
U

S

8
ro

w
s

214 S. Tang et al.

Fig. 2. Compact model of RCA

The equivalent thermal circuit is structured as follow: every block in each layer has
one vertical capacitance connected to the ground and several lateral capacitances be-
tween the centers of each shared edge and the ground, as shown in Fig. 2(c). And it
also has one vertical thermal resistance connected to the next layer and several lateral
resistances to its neighbors in the same layer, as shown in Fig. 2(d). The thermal ca-
pacitance C, calculated as in (1), is proportional to both thickness t of the material and
the cross-sectional area A across which the heat is being transferred:

C ctA= (1)

where c is the thermal capacitance per unit volume. The thermal resistance R, on the
other hand, is proportional to the thickness t and inversely proportional to area A:

t
R

kA
= (2)

where k is the thermal conductivity.

3 Thermal-Aware Task Mapping

Generally, the target application can be described by a Data Flow Graph (DFG). Since
the number of RCs is limited, the task described by DFG has to be partitioned into
small sub-graphs to meet the capacity of RC array, which is called task compilation in
this paper. Our thermal aware task mapping is performed during task compilation. To
monitor the temperature of the RCA when executing the divided sub-graphs, we com-
pute the temperature by the above compact thermal model and the power dissipation
on each block. Aiming to find an optimized mapping solution in terms of reduced max-
imum temperature and balanced heat distribution of the design, the problem can be
mathematically formed as follows:

{max }, nminimize T T T∈

, { }nGT P P P= ∈ (3)

chip
spreader

interface

heat sink

(a) RCA floorplan
(b) Partitioning of large-area layers (top view)

RC

RC

RC RC RC

Rlateral

(c) Detailed silicon

layer (top view)

Clateral Cvertical

Rlateral

Rvertical

(d) Thermal RC pair (side view)

Cvertical

 A Thermal-Aware Task Mapping Algorithm 215

where T is a vector consists of 64 temperature values of each RC, and P is a vector
consists of 64 power dissipation when RC is executing operations under different
configurations and different inputs. {Pn} is the set of all possible power vectors. G is
the 64×64 matrix of thermal conductivity, which is parameterized and set by the file
of model parameter, including the physical parameter such as the width, height of RC
and thermal conductivity.

As reducing the power dissipation can reduce the temperature of RC, operations
migration with higher and lower power dissipation operations is an intuitive way to
balance the temperature. Inspired from this, we swap the operations between "cold"
and "hot" RCs to reduce the peak temperature, and thus call it as Max-Min algorithm.
During the swapping, we have to keep the data dependency among different opera-
tions on each RC, which means the critical path of initial sub-graph is not changed.

The pseudo-code of our Max-Min algorithm implementation is shown below:

for t = 1:rand_times
Randomly mapping DFG on RCA

 //Main procedure
 for r = 1:row //Search each row
 for n = 1:best_beg
 Do Max-Min operation in Row r
 Set Row n as the beginning row
 Solve the thermal equation
 if Tcur_max < Tmax
 Tmax = Tcur_max
 end
 end
 end
 for n = 1:col/2 //Max-Min operation
 for r = 1:row
 Set Row r as the beginning row
 Solve the thermal equation
 end
 end
 //Main procedure ends
end

where two nested loops are applied for an optimal solution. The main procedure of
algorithm in the inner loop is performed as follows. First, starting from a random
valid DFG mapping, the algorithm searches each row of the RCA in turns and swaps
the operations with the maximum and minimum temperatures, i.e., Max-Min opera-
tion. Then, making uses of the structure of RCA with circular data path, it selects a
row as the first row of the sub-graph, and calculates on-chip temperature when the
position is changed. Next, search each row of RCA and swap the operations with
the maximum and minimum temperatures on RC after getting a best beginning row.
Finally, select the best mapping as one optimized solution.

216 S. Tang et al.

Then, we use an outer loop for multiple optimal solutions by repeating the Max-
Min algorithm in the inner loop. Due to the temperature of one RC is not only related
to the computing power density but also related to the temperature of RC around, an
initial mapping does not always get an optimal solution. So we repeat the Max-Min
algorithm by randomly initializing the sub-graph of DFG, for several times and select
the best mapping among them. Note that the initial random mapping of DFG
have no correlation among each other, it can be executed in parallel to speed up the
algorithm.

4 Experiment Results and Analysis

The dedicated RCA architecture well suits the multimedia applications by exploiting
their explicit parallelism. In our experiments, we used several typical algorithms in
multimedia applications to see the effectiveness of our proposed algorithm, e.g. 2x2
Matrix multiplication (Mat-2x2), 4x4 Matrix multiplication (Mat-4x4), 8 points Fast
Fourier Transform (FFT8), 8 points Inverse Discrete Cosine Transform (IDCT8-row,
IDCT8-col and IDCT8) and 32 points Discrete Cosine Transform (DCT32). We use
(1) and (2) to get RC that forms G in (3), and use SPICE under different configura-
tions and inputs to get the power dissipation P in (3). Then we can solve (3) by the
hotspot simulator.

4.1 Results on Mapping Optimization

For the thermal evaluation, we perform analysis by executing the same configuration
repeatedly, so that the temperature of the device can converge to a steady value. As
shown in Fig. 3, the temperature distribution map of IDCT8_COL before and after
optimization. Each rectangle in the plane represents a RC element. From the figure we
can see that the peak temperature is reduced, and the heated area becomes more evenly
distributed across the chip. For a clearer view of the peak temperature reduction, we
plot the temperature distribution curve in Fig. 4, where we can see that the maximum
temperature on RCA is reduced from 59.22℃ to 51.59℃. At the same time, the range

Fig. 3. IDCT8_COL temperature distribution map (a) before (b) after optimization

 (a) (b)

 A Thermal-Aware Task Mapping Algorithm 217

of concerned kernel is reduced from 20℃ to 10℃. Detailed statistical results are listed
in Table 1, where the ratio η calculated by (4) shows the ratio of peak temperature
reduction from the initial state by a typical ambience temperature of 45℃ [7]:

 100%
T Topt orig

T Torig amb

η
−

= ×
−

 (4)

where Torig, Topt are the temperatures before and after optimization; Tamb is the typical
ambience temperature. From the table, we can see that, according to different cases,
the maximum temperature on the target device can be reduced by 3~9℃ lower after
optimization. However, if the RCA has less spare computational units after mapping,
the optimization space of our proposed algorithm is limited, as shown by DCT32.

Table 1. Maximum temperature of RCA with different algorithm

We also do transient analysis to see the trend and power consumptions of different
operations. Because the clock frequency of RCA is 200MHZ and the temperatures of
every cycle are not needed, we sample the RCA temperature every 1000 cycles. And
the configuration time, which is about ten thousand cycles, has also been considered,
during which the temperature will be cooling down.

Fig. 4. IDCT8_COL temperature distribution curve

Algorithm Application Mat 2x2 Mat 4x4 FFT8 IDCT8_ROW IDCT8_COL IDCT8 DCT32
Origin Max Temp () 60.93 69.75 65.08 60.13 59.22 69.38 71.25
Random Max Temp () 56.25 67.01 59.02 51.34 51.83 66.54 71.22

-29.38% -11.07% -30.18% -58.43% -51.97% -11.65% -0.11%
Max-Min Max Temp () 54.52 66.88 59.02 51.27 51.59 64.62 71.10

-40.24% -11.60% -30.18% -58.56% -53.66% -19.52% -0.57%

40 45 50 55 60 65
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

46.9683

 50.5613

Temperature(

D
en

si
ty

Kernel Smoothing Density Estimate

Not Optimized
Optimized

218 S. Tang et al.

4.2 Optimality Analysis

In our experiments, we also studied the optimality of our Max-Min algorithm. Gener-
ally, given a DFG going to be mapped on a RCA with a dimension of m×n, there are
m×(n!)m different mapping solutions with varied thermal results. For example, for an
array of 64 RCs, the number of possible mapping may be 5.6e37. Table 2 listed the
number of mapping in the second row for the 8 applications concerned in this paper.

To see the optimality of the Max-Min algorithm, we computed the minimum
bound of the maximum temperature and compared to our result, which are also listed
in Table 2. Considering the problem size, we can calculate the optimal solution by
enumerating the mapping of Mat 2x2 and Mat 4x4. For other applications, we can
approximate the minimum bound by unifying different operations on the RCs with the
operation with the lowest power dissipation. By unifying the higher power dissipation
operations to the lowest power dissipation operation, we can reduce the solution space
for mapping, and hence we can get the minimum bound by enumerating. According to
the number of nodes replaced (the more nodes replaced, the higher order approxima-
tion), we compute the one-order approximated solution of FFT8, IDCT8_ROW,
IDCT8_COL and two-order approximated solution of IDCT8, DCT32. The minimum
bounds are listed in the Table 2, where we can see that the Max-Min algorithm has
almost achieved the optimal results, within less than 0.2% for all the cases.

Table 2. Minimum bound Maximum temperature of RCA

Application Mat 2x2 Mat 4x4 FFT8 IDCT8_ROW IDCT8_COL IDCT8 DCT32
Num of Mapping 560 560 1,756,160 235,200 1.2e7 2.2e18 1.2e20
Bound Temp (℃) 54.52 66.88 59.02 51.26 51.58 64.50 71.01

Approximation None None One One One Two Two
Compared to Max-Min -0% -0% -0% -0.0195% -0.0194% -0.186% -0.127%

4.3 Complexity Analysis

Finally, we study our proposed Max-Min algorithm’s complexity. Based on the RCA
architecture, an accurate number of the swapping operations can be given in (5):

2 1
() _

2
Complexity row col row rand times= + × ×

(5)

where complexity is evaluated by the number of a 64×64 matrix multiplication, row is
the number of row, col is the number of column, those values are 8, rand_times is the
number of initial DFG mapping generated randomly.

Table 3 lists the correlations between computational complexity and optimization
for these cases. Since initial mapping is generated randomly, the results will be a little
different each time. When the rand_times is more than 100, the maximum tempera-
ture of each simulation with the same parameter varies less than 0.02℃. Considering
the complexity and optimization results, we select rand_times = 100, which means the
complexity is 9,600. While the random algorithm in [11] achieves a similar result
requires 320,000 matrix multiplication, which is about 30 times larger than Max-Min
algorithm.

 A Thermal-Aware Task Mapping Algorithm 219

Table 3. Max-Min Algorithm Correlations between Complexity and Optimization

Random Times Complexity
Maximum Temperature (℃)

FFT8 IDCT8 DCT32
1 96 59.28 71,21 67.93
10 960 59.02 71.15 66.21
50 4,800 59.02 71.11 65.22
100 9,600 59.02 71.10 64.62
200 19,200 59.02 71.12 64.61
500 48,000 59.02 71.11 64.61
1,000 96,000 59.02 71.10 64.60

5 Conclusion and the Further Work

Targeting on a coarse-grained reconfigurable processor, this paper studies the thermal
effects of different mapping solutions and proposed a thermal-aware task mapping
algorithm to reduce the peak temperature while balancing the heat distribution across
the chip. Starting from an initial random arrangement of the computational work load,
the algorithm attempts to cool the device by swapping the cool and hot area when
executing the work load after configuration. By heuristics, Max-Min algorithm can
quickly converge to a near optimal solution, which is only about 1/30 time comparing
with a random algorithm [11]. The experimental results show that Max-Min algorithm
can reduce the average maximum temperature about 3~9℃ and narrow temperature
distribution range about 7~15℃. According to the results above, Max-Min task map-
ping algorithm is efficient for thermal management in using coarse-grain reconfigura-
ble computing system.

The current thermal-aware algorithm only focuses on RCA, and we will develop
more comprehensive thermal mode for other components of the reconfigurable
processor in the future.

Acknowledgement. The authors would like to thank for the support of the Hi-tech
Research and Development Program (863) of China under Grant No. 2009AA011705.

References

1. Wei, H., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.R.: HotS-
pot: a compact thermal modeling methodology for early-stage VLSI design. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 14(5), 501–513 (2006)

2. Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance micro-
processors. In: The Seventh International Symposium on High-Performance Computer Ar-
chitecture, HPCA 2001, pp. 171–182 (2001)

3. Kondo, M., Sasaki, H., Nakamura, H.: Improving fairness, throughput and energy-
efficiency on a chip multiprocessor through DVFS. ACM SIGARCH Computer Architec-
ture News 35(1), 31–38 (2007)

220 S. Tang et al.

4. Seo, E., Jeong, J., Park, S., Lee, J.: Energy Efficient Scheduling of Real-Time Tasks on
Multicore Processors. IEEE Transactions on Parallel and Distributed Systems 19(11),
1540–1552 (2008)

5. Bautista, D., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A simple power-aware sche-
duling for multicore systems when running real-time applications. In: IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2008, April 14-18, pp. 1–7
(2008)

6. Michaud, P., Sazeides, Y.: ATMI: Analytical model of temperature in microprocessors. In:
Proc. MoBS, pp. 1–10 (2007)

7. Stan, M.R., Skadron, K., Barcella, M., Huang, W., Sankaranarayanan, K., Velusamy, S.:
HotSpot: a dynamic compact thermal model at the processor-architecture level. Microelec-
tronics Journal 34(12), 1153–1165 (2003)

8. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Chaves Filho, E.M.: Mor-
phoSys: an integrated reconfigurable system for data-parallel and computation-intensive
applications. IEEE Transactions on Computers 49(5), 465–481 (2000)

9. Jones, P.H., Lockwood, J.W., Cho, Y.H.: A Thermal Management and Profiling Method
for Reconfigurable Hardware Applications. In: International Conference on Field Pro-
grammable Logic and Applications, FPL 2006, pp. 1–7 (August 2006)

10. Velusamy, S., Wei, H., Lach, J., Stan, M., Skadron, K.: Monitoring temperature in FPGA
based SoCs. In: Proceedings of the 2005 IEEE International Conference on Computer De-
sign: VLSI in Computers and Processors, ICCD 2005, October 2-5, pp. 634–637 (2005)

11. Xie, L., He, W., Jing, N., Mao, Z.: A thermal-aware task mapping flow for coarse-grain
dynamic reconfigurable processor. In: 2011 IEEE International Symposium on Circuits
and Systems (ISCAS), May 15-18, pp. 1952–1955 (2011)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 221–230, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DC Offset Mismatch Calibration for Time-Interleaved
ADCs in High-Speed OFDM Receivers*

Yulong Zheng, Zhiting Yan, Jun Ma, and Guanghui He

School of Microelectronics, Shanghai Jiao Tong University, Shanghai, China
{zhengyulong,yanzhiting,majun,heguanghui}@ic.sjtu.edu.cn

Abstract. Zero Intermediate Frequency (zero-IF) receivers with two analog-to-
digital converters (ADCs) in In-Phase and Quadrature (IQ) branches are widely
used in emerging multi-Gigabit wireless Orthogonal Frequency Division Mul-
tiplexing (OFDM) systems. Because ordinary ADCs could not meet the de-
mands of sampling rate in the system, two time-interleaved analog-to-digital
converters (TI-ADCs) could be an attractive alternative for sampling speed im-
provement in the receiver. However, the mismatches among the parallel sub-
ADCs can degrade the performance significantly without calibration. Targeting
the DC offset mismatch of the TI-ADCs, this paper proposes calibration
algorithm based on decorrelation least-mean-squares (LMS) and recursive-
least-square (RLS) utilizing the comb-type pilots in OFDM frame, which could
calibrate the two TI-ADCs in (IQ) branches simultaneously. The calibration al-
gorithm has the property of fast convergence. Simulation results show that the
BER performance is improved by the proposed algorithm.

Keywords: Multi-Gigabit, time-interleaved ADC, mismatch, calibration,
parameter estimation, orthogonal frequency division multiplexing (OFDM).

1 Introduction

Realizing high-speed (1GHz>), sufficient precision (8-10 bits), and low-power cost
(100mW<) analog-to-digital converters (ADCs) has been a bottleneck [1] in emerg-
ing multi-Gigabit wireless communication system (e.g. UWB, 60GHz wireless) with
ultra large bandwidth. For instance, IEEE 802.15.3c requires the ADC sampling at
2.640GHz and 2.538GHz in High-Speed-Interface Orthogonal Frequency Division
Multiplexing (HSI OFDM) mode and Audio Visual (AV) OFDM mode respectively
[2]. Existing techniques and devices could not meet such a requirement or would
work at the expense of unacceptable high costs. Time-interleaved (TI) architecture
provides a promising approach to solve this problem by interleaving several slower
sub-ADCs in parallel. As shown in Fig. 1, a time-interleaved analog-to-digital conver-
ter (TI-ADC) linearly increases its sampling rate with the number of interleaved sub-
ADCs, and the resolution of the array is dependent on the resolution of sub-ADCs.

* This work was supported in part by Shanghai Natural Science Foundation under Grant No.

10ZR1416500 and the Research Fund for the Doctoral Program of Higher Education
of China under Grant No. 20110073110055.

222 Y. Zheng et al.

Fig. 1. A TI-ADC block diagram formed by M sub-ADCs

However, the mismatches among sub-ADCs degrade the performance of the TI-
ADC. Typically, there are three major types of mismatches must be considered: DC
offset, gain, and timing mismatches [3].

DC offset mismatch is one of the major mismatches in a TI-ADC. As a result, the
mismatch calibration has received significant attention. For example, existing
calibration methods employ the redundancy such as additional hardware or training
sequences [5], [6].

OFDM technique is widely adopted by high-speed wireless communication such as
MB-UWB, and IEEE 802.15.3c. TI-ADCs used in OFDM system can be calibrated
by leveraging the training sequences such as preamble or pilot signals. The DC offset
mismatch calibration in [3] constructs the objective function, use optimization method
to estimate the parameter and then eliminate its effect. However, the method can only
apply for one ADC in the receiver and it needs a large number of OFDM frames need
to be averaged. Thus it will lead to slow convergence. The proposed calibration in
[10] is based on LMS algorithm using block-pilot signals. However, block-pilot sig-
nals are adopted by few protocols. Targeting calibrating DC offset mismatch of two
TI-ADCs in In-Phase and Quadrature (IQ) branches and improving the convergence
speed, we extend the model and method proposed in [3], and then propose the calibra-
tion algorithm using comb-pilot based on decorrelation least-mean-square (LMS) and
recursive-least-square (RLS) algorithms.

Section 2 describes the models of TI-ADC and OFDM system. Section 3 presents
the calibration basis and the proposed algorithm. Simulation results are shown in Sec-
tion 4, and finally, conclusions are drawn in section 5.

2 System Model

In this section, we first present the model of TI-ADC with DC offset mismatch. Se-
condly, in order to understand the attributes flow in the communication link, we de-
scribe the OFDM system that utilizes TI-ADCs both in IQ branches in the receiver.
The RF front-end offers the analog input of the TI-ADC, and the baseband processor
is fed with the digital output of the TI-ADC.

 DC Offset Mismatch Calibration for Time-Interleaved ADCs 223

2.1 DC Offset Mismatch Model in TI-ADC

Taking DC Offset Mismatch into consideration only, we describe the model of a TI-
ADC. Letting sT denotes the nominal sampling period, and 1 / sT is the sampling rate,

the output of TI-ADC is written as [4]:

 mod[] ()s m Mv m v mT μ= + (1)

Where []v m denotes the thm digital quantized sample, sampled by the

(mod)thm M sub-ADC, where mod denotes the modulo operation and M

denotes the number of sub-ADCs. Sub-ADC with index of modm M has the DC

offset modm Mμ .

As a result of the mismatch parameter drifting over hours, we set the mismatch pa-
rameter to constant values in our work. Since the quantization noise is small enough
compared with the DC offset mismatch–induced interference and the thermal noise,
we ignore the former in our analysis [4].

2.2 OFDM Model

Orthogonal frequency-division multiplexing (OFDM) is an advanced physical layer
multicarrier modulation technique, which is widely used in many wireless standards.
Fig. 2 illustrates the signal flow of OFDM both in transmitter and receiver.

Fig. 2. OFDM transmitter (DAC = Digital-to-Analog Converter) and receiver

The basic unit of the data stream is called an OFDM frame, and the size of an
OFDM frame (denoted by N) is identical to the size of IFFT and FFT in transmitter
and receiver. A typical frame consists of information bearing subcarriers, pilot subcar-
riers, and virtual subcarriers. The pilot subcarriers are deterministic to make coherent
detection robust against frequency offsets and phase noise and perform the channel
estimation [7]. In this paper, we use the pilot signals to do the calibration work.

For simplicity, the calibration of DC offset mismatch for the TI-ADC in the OFDM
receiver is implemented in an AWGN channel in the analysis below.

224 Y. Zheng et al.

3 ADC Calibration Using Pilot Signals

In this section, we describe how we employ pilot signals to estimate and calibrate the
DC offset mismatch between sub-channels of TI-ADCs in IQ branches. As the prior
work [3] is about the case for one ADC, which cannot be directly applied in the direct
down conversion receiver, we extend its mathematical model. Targeting the disadvan-
tages of the speed of convergence in the algorithms proposed in [3], we propose the
decorrelation LMS [8] and RLS algorithm [9] to solve the problem.

3.1 Constrains on Sub-ADC Numbers and FFT Size

It is proved in [3] that the number of sub-ADCs M must be prime with the FFT size N
so that the error caused by DC offset mismatch could spread out over the entire sub-
carriers. If N is multiple of M, the error caused by mismatch could only affect the
subcarriers with the index multiple of /N M , while others is not affected by the
mismatch. Under such a circumstance, if pilot subcarrier is not with the index mul-
tiple of /N M , the calibration will not work. In our proposed algorithms, we adopt
the former constrain that M is prime with N.

Note that, in branch I or Q, the number of sub-ADCs has the same value of M .
Totally, there are 2M sub-ADCs in a direct down conversion receiver.

3.2 Relationship between DC Offset Mismatch and Its Effect on Pilot Signals

In the transmitter, the thl transmitted OFDM symbol can be expressed as:

 ()l lIFFT=x X (2)

Where lX denotes the thl OFDM frame in frequency domain before IFFT operation,

lx denotes the thl OFDM frame in the time domain, ()IFFT • represents an energy

preserving IFFT operation.
After experiencing the additive white Gaussian noise (AWGN) channel, the signal

in the receiver, which lies before the ADCs, can be written as:

 l received l= +x x w (3)

Where w denotes the AWGN vector with the size of N with 2[]HE σ=ww I . 2σ is

the variance and N is the FFT size.
Adding the DC offset mismatch of TI-ADC, and the recovered OFDM frame after

FFT operation can be expressed as:

 ˆ ()l l receivedFFT= +X x μ (4)

 DC Offset Mismatch Calibration for Time-Interleaved ADCs 225

Where 0 1 2 mod 1 mod[]T
N M N Mμ μ μ μ− −=  μ , iμ has a complex value,

the real part is the DC offset of the sub-ADCs with the index of i in I branch, and
the imaginary part is the DC offset of the sub-ADCs with the index of i in Q branch,

()FFT • represents an energy preserving FFT operation.

Combining equation (2), (3) and (4), we can obtain:

 ˆ ()l l FFT= + +X X μ W (5)

Where W is the FFT of w . While FFT is an energy preserving transform, W and
w has the same statistic characteristics.
Substituting FFT matrix for ()FFT • , extracting the pilot signals, revising μ in equa-

tion (5) into 0 1 1
T

Mμ μ μ −= []μ  , and then subtracting the known pilot values,

the equation (5) can be revised in matrix form as:

 = +E Fμ W (6)

Where in (6), E is the error column vector in pilot subcarriers caused by the offset
mismatch with the length of L , the length is equal to the number of pilots in an
OFDM frame, W is an AWGN noise vector of length of L , F is a L M× matrix ,
which is could be obtained by the column and row operations of the standard FFT
matrix.

Equation (6) is the extended form proposed in [3]. In equation (6), two TI-ADCs
embedded in IQ branches are taken into consideration.

 As we shall show, the equation (6) gives the relationship between DC offset mis-
match and its effect on pilot subcarriers. The vector E is the error observation we find
in received pilot subcarriers, and 0 1 1

T
Mμ μ μ −= []μ  is the offset that is need

to be estimated in each sub-ADCs in the TI-ADCs in IQ branches. W is the noise
vector, which could be reduced by averaging as in [3]. Thus, equation (6) is a classic
linear model that could be solved by different methods [9].

3.3 Estimation Algorithm Based on Decorrelation LMS and RLS

Careful inspection of equation (6) suggests the LS [9] estimation, which is shown as:

 1ˆ H H−μ = (F F) F E (7)

Where ()H• and 1()−• denotes the Hermitian transpose and inverse matrices. In (7),

the estimation of offset vector μ̂ only under the circumstance of L M≥ , which

means that the number of the pilot is larger than the offset to be corrected, can be

written as shown above. At the same time, HF F must be invertible, which means
()Hrank M=F F . Numerical simulation shows that under most circumstances,

226 Y. Zheng et al.

() 1Hrank M= −F F . In order to meet the condition above, we need to add the error of

DC subcarrier in the OFDM frame to the error observation vector E , which is a
(1)L + vector, and additionally extract the first line of standard FFT matrix to make

F a (1)L M+ × matrix. This operation requires that, before ADC, the DC offset of

the RF front-end must be cleaned and this can be achieved by AC-coupled or com-
pensating in the analog domain in RF front-end.

Note that after adding the error of the DC tone in vector E , the coordinate descend
method proposed in [3] is also available without setting the offset of first unit to
zero. But it converges too slowly.

As we can see, directly applying the LS estimation would require a prohibitively
high cost, because matrix inversion requires a lot of computations. This can be
avoided by using iterative algorithm like LMS and RLS algorithms.

A. Decorrelation LMS Algorithm
In decorrelation LMS algorithm, μ̂vector is computed as Table 1 shows [8]:

Table 1. Decorrelation LMS algorithm steps

Initial:

0ˆ 0=μ ;

Steps:
for 1,2,3...l =
1. 1 ˆ(1) (1,:)l le l l+ = + − +E F μ

2. 1

(,:) (1,:)

(,:) (,:)

H

l H

l l
a

l l+
+= F F

F F

3. 1 1(1,:) (,:)l ll a l+ += + −P F F

4. 1
1

1(1,:)
l

l
l

e

l
η +

+
+

=
+F P

5. 1 1 1ˆ ˆl l l lη+ + += +μ μ P

In Table 1, l represents the number of iteration, η is the step size, and the (,:)iF

denotes the thi row of F . While updating the μ̂vector, the decorrelation LMS algo-

rithm uses the correspondent previous and current rows of F in each iteration. Note
that the algorithm we adopt is decorrelation LMS algorithm instead of the original
LMS algorithm. In our application the correlation of the input vectors is relatively
large, and the decorrelation LMS algorithm can remove the correlation of the input
vectors to increase the convergence speed.

B. RLS Algorithm
In RLS algorithm, μ̂vector is updated as follows in Table 2 [9]:

 DC Offset Mismatch Calibration for Time-Interleaved ADCs 227

Table 2. RLS algorithm steps

Initial:

1ˆ 0=μ

1
1

1

ϕ
= Iφ

0 1λ< < , λ is the forgetting factor
Steps:
for 1,2,3...l =

1.
1

1 11 (1,:) (1,:)l H
ll l

λβ
λ

−

+ −=
+ + +F Fφ

2. 1 1 (1,:)H
l l l lβ+ += +m Fφ

3. 1 1ˆ ˆ ˆ(1,:) ((1) (1,:))H
l l l l ll l lβ+ += + + + − +μ μ F E F μφ

4. 1
1 1 1()l l l l lλ−

+ + += − m Fφ φ φ

In Table 2, the parameter is defined the same as in the classical RLS algorithm.
RLS algorithm uses one row of F in each iteration. This algorithm provides more
accurate and faster convergence speed at expense of much more complexity.

3.4 Calibration Architecture in the Receiver

The idea of the calibration is to use the algorithms described in section 3.3 to estimate
the individual offsets in sub-ADCs first, and then eliminate the effects on frequency
domain. Fig. 3 shows how the background calibration works. The OFDM frames are
passing in path IQ 1, and are stored in Register 1. Pilot Tone Selection module gets
the frame and selects the pilot tones. After averaging to reduce the AWGN channel
noise, the LMS/RLS Estimator performs the decorrelation LMS or RLS algorithm to
estimate the DC offsets of the TI-ADC in IQ branches. The DC offsets in frequency
domain are stored in Register 2. The calibrated data is finally obtained by subtracting
the contents in Register 2.

Fig. 3. Calibration Architecture using the proposed algorithm

228 Y. Zheng et al.

It is also possible to perform a foreground calibration. The estimated DC offsets
computed by LMS/RLS Estimator can be directly subtracted in the time domain
before FFT operation.

4 Simulation Results

The calibration algorithms described above are evaluated in simulations developed in
MATLAB. The OFDM system we use is the MB-UWB OFDM systems in the
AWGN channel [7]. Two TI-ADCs sampling at 500MS/s are used in IQ branches,
with 5 sub-ADCs in each one. The system uses QPSK modulation and there are 12
pilots in one OFDM frame, and the IFFT/FFT size is 128.

4.1 Offset Estimation and Comparisons

In section 4.1, we set the mismatch in the level of 10%. By 10% mismatch, we mean
the values of DC offset mismatch are chosen uniformly in [/10, /10]A A− , where the

A is the RMS value of the TI-ADC input signal’s amplitude. The offset values of the
estimation on the vertical axis are normalized by the RMS value in digital domain.

For QPSK, the RMS value is equal to 1/ 2 .
We extend the coordinate descend method which is proposed in [3]. After the nu-

merical simulation, we find that in a noiseless channel the coordinate descend method
needs about 8000 OFDM frames to achieve the convergence.

In order to make the calibration faster, we evaluate the decorrelation LMS and RLS
algorithms. Fig. 4 and Fig. 5 show the process of estimation with LMS and RLS
algorithm and the MSE comparison respectively:

Fig. 4. Offset estimation using RLS algorithm

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1
1.Offset estimations in branch I with LMS algorithm

Iteration #

O
ff

se
t

es
tim

at
io

ns

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1
2.Offset estimations in branch Q with LMS algorithm

Iteration #

O
ff

se
t

es
tim

at
io

ns

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1
3.Offset estimations in branch I with RLS algorithm

Iteration #

O
ff

se
t

es
tim

at
io

ns

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1
4.Offset estimations in branch Q with RLS algorithm

Iteration #

O
ff

se
t

es
tim

at
io

ns

 DC Offset Mismatch Calibration for Time-Interleaved ADCs 229

Fig. 5. MSE comparison between LMS and RLS

The decorrelation LMS algorithm and RLS algorithm in Fig. 4 and Fig. 5 are eva-
luated with 0/ 10bE N dB= , and the averaging time is 500. The horizon axis

represent the iteration number, which is not the same operation as in coordinate des-
cend method. 13 iterations are updated in one OFDM frame. The figure shows LMS
and RLS achieve the convergence after about the 200 and 40 iterations, which equally
with 15 and 3 OFDM frames. Taking the averaging operation into consideration,
LMS and RLS algorithm take 7500 OFDM frames and 1500 frames, respectively, to
converge to acceptable estimated DC offset values.

Fig. 5 shows the mean square error (MSE) comparison between LMS algorithm
and RLS algorithm. RLS algorithm takes fewer iteration times and is more accurate
than LMS algorithm at expense of much more complexity.

4.2 BER Performance Comparison

Fig. 6 presents the BER performance among the calibrated, uncalibrated and the ideal
MB-OFDM BER curve with 0/bE N from 5dB to 10dB . The calibrated BER

curves are nearly the same as the ideal one, which confirms the efficacy of the estima-
tion algorithms proposed above.

Fig. 6. BER performance comparison

0 100 200 300 400 500 600
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Iteration #

M
S

E

MSE of LMS

MSE of RLS

MSE of LMS

MSE of RLS

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10

-6

10
-5

10
-4

10
-3

10
-2

Eb/N0

B
E

R

Without Offset

10% DC Offset
Calibrated by LMS

Calibrated by RLS

230 Y. Zheng et al.

5 Conclusions

In this paper, we propose a digital calibration in a high-speed OFDM system using the
comb-pilot signals based on decorrelation LMS and RLS algorithms. The calibration
could reduce the effect of the DC offset mismatch of two TI-ADCs in IQ branches
simultaneously. And the calibration algorithm converges faster than the coordinate
descend method. Furthermore, BER performance is improved by the proposed cali-
bration. The calibration method may also be applied to 60GHz millimeter communi-
cation, optical communication and other high-speed communication systems.

References

1. Singh, J., Sandeep, P., Madhow, U.: Multi-gigabit communication: the ADC bottleneck.
In: Proc. 2009 IEEE International Conf. Ultra-Wideband, ICUWB (September 2009)

2. IEEE 802.15 WPAN High rate Alternative PHY Task Group 3c,
http://www.ieee802.org/15/pub/TG3c.html

3. Oh, Y., Murmann, B.: System embedded ADC calibration for OFDM receivers. IEEE
Trans. Circuits Syst.-I 53, 1693–1703 (2006)

4. Sandeep, P., Seo, M., Madhow, U., Rodwell, M.: Joint mismatch and channel compensa-
tion for high-speed OFDM receivers with timeinterleaved ADCs. IEEE Trans. Communi-
cations 58, 2391–2401 (2010)

5. Conroy, C.S.G., Cline, D.W., Gray, P.R.: An 8-b 85-MS/s parallel pipeline A/D converter
in 1-μm CMOS. IEEE J. Solid-State Circuits 28(4), 447–454 (1993)

6. Tsai, T.H., Hurst, P.J., Lewis, S.H.: Correction of mismatches in a time-interleaved ana-
log-to-digital converter in an adaptively equalized digital communication receiver. IEEE
Trans. Circuits Syst. I. Regular Papers 56(2), 307–319 (2009)

7. IEEE 802.15 WPAN High rate Alternative PHY Task Group 3a,
http://www.ieee802.org/15/pub/TG3a.html

8. Glentis, G.-O., Berberidis, K., Theodoridis, S.: Efficent least squares adaptive algorithms
for FIR transversal filtering. IEEE Signal Processing Magazine 16, 13–41 (1999)

9. Haykin, S.: Adaptive Fitler Theory, 4th edn. Prentice-Hall (2001)
10. Jin, X., He, G., Ma, J.: Offset Calibration for Time-Interleaved Analog-to-Digital Conver-

ters in OFDM Systems. In: Signal Processing Theory and Application, APSIPA ASC
(2010)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 231–241, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Novel Graph Model for Loop Mapping
on Coarse-Grained Reconfigurable Architectures

Ziyu Yang*, Ming Yan, Dawei Wang, and Sikun Li

School of Computer, National University of Defense Technology, Changsha, China
{zyyang,zhaopeng,dwwang}@nudt.edu.cn,lisikun@263.net.cn

Abstract. Coarse-Grained Reconfigurable Architectures (CGRAs) provide
more opportunities for accelerating data-intensive applications, such as multi-
media programs. However, the optimization of critical loops is still challenging
issues, since there is lack of application mapping tool of CGRAs. To address
this challenge, we first take program feature analysis on the kernel loops of ap-
plications. And then we propose a novel graph model called PIA-CDTG con-
taining these features. We implement an efficient task mapping method with a
genetic algorithm based on the graph model. Experimental results show that the
mapping method with PIA-CDTG is more effective than other features-unaware
methods, and make the execution attains high efficiency and availability.

Keywords: PIA-CDTG, Program Feature Analysis, Loop Mapping, Coarse-
grained Reconfigurable Architecture

1 Introduction

The multi-media applications, which emerged in the last decade, such as image and
video processing, are date intensive. Coarse-grained reconfigurable architecture
(CGRA) offers the capability for spatial, parallel, and specially computation through
hardware customization, that is, hardware that can be reconfigured during runtime to
substantially accelerate different kind of applications. These advantages in CGRA
have led to the development of heterogeneous reconfigurable platforms for media
processing applications, since applications realized in hardware whose execution is
much faster than those realized in software. CGRA is essentially an array of
processing elements (PEs), like ALUs and multipliers, interconnected with a mesh-
like network. The complexity of hardware makes programming application is a chal-
lenging task since the compiler has to map the controller tasks of the application onto
the host processor and map the data-intensive tasks onto the processing elements ar-
ray. After the reconfigware/software partitioning process, the entire reconfigurable
mapping flow involves several primary techniques such as code transformations, loop
pipelining, scheduling and the generation of reconfigware configuration. Those
efforts depend on the granularity of the reconfigurable tasks, which is effected by the

* Corresponding author.

232 Z. Yang et al.

computational model of target architecture. Mapping applications (mostly loop tasks)
automatically and efficiently onto computation and storage resources is now one of
the hottest topics among researchers [1]. A novel programming model is needed to
cover the complexity of mapping applications on a CGRA. The representation must
allow a variety of transformations and optimizations of applications to exploit the
performance of the target reconfigurable architecture.

In this paper, we present a novel graph model called PIA-CDTG (Program Infor-
mation Aided Control-Dataflow Task Graph) for efficient application mapping. Based
with program features, PIA-CDTG aims at providing a new task granularity of the
application mapping. With the graph model, we then focus on the critical loops map-
ping on CGRA. A genetic algorithm is proposed for mapping PIA-CDTG tasks, and
experimental results and analysis prove its efficiency.

2 Related Work

Several CGRAs have been developed with varying degree of programmability, mem-
ory structure, and communication bandwidth, like Morphosys [2] and LEAP [3], and
others. However, there is a lack of efficient tools for the full utilization of the perfor-
mance or flexibility offered by these architectures. For instance, the SA-C [4] of Mor-
phosys has been developed, which is a high-level single assignment language, to
process media applications using data flow graph as its intermediate representation
(IR). There have been many attempts to take the big challenge of the efficient recon-
figurable mapping, several researches on discovering coarse-grained parallelism were
proposed, like loop shifting [5], pipeline vectorization [6], and modulo scheduling [7].

Table 1. Graph Model Comparsion

IR Types
Supported Features

Control

Dependency

Data

Dependency
Granularity Concurrency Hierarchy

CFG inaccurate × BB × √

DFG × Def-Use Op. Program ×

PDG accurate Flow-Anti-Out Op. Program √

CDFG inaccurate Flow-Anti-Out BB/Op. BB √

PIA-CDTG accurate All BB/Loop Program √

A variety of graph model have been proposed to make the efficient multiple
threads of concurrency over distinct data items. The graph should represent all the
data and control dependencies of programs efficiently and enable the transformations
of programs to take advantages of the target architecture. The traditional con-
trol/dataflow graph (CDFG) is now widely used. CDFG includes both control and
data flow information from the input algorithm and embeds operations in its basic-
block nodes. A DFG of each basic block then constructed for mapping on RPU. A
PDG [8] is a combination of a CDG and a DDG, which usually incorporated with the

 A Novel Graph Model for Loop Mapping 233

SSA for synthesis to reconfigurable devices. Both the CDFG and PDG are the under-
lying representation of hardware behavior, providing the hierarchy of loops, branches,
and function calls. A variety of IRs proposed allow compiler to adjust the granularity
of its data and computation partition with the target architecture characteristics, as
shown in Table 1. In Table 1, BB stands for basic block, op. stands for operator.
However, there is no a widely accepted programming model, high level language, or
IR will allow automatic mapping on reconfigurable architectures up to date. In this
paper, the proposed graph model is differ from others, since it focus on the critical
loops mapping under the CGRA’s resource constraints. With considering of program
features, the genetic scheduling algorithm based on PIA-CDTG make the load-
balanced execution more adaptive.

3 PIA-CDTG Mapping Model

As discussed, the main challenge of accelerating data-intensive applications on
CGRAs is the mapping of applications with less execution time and power consump-
tion. By analyzing the application’s features, especially the critical loops, one can
make the CGRA mapping more adaptive. In this section, we discuss the details of
application features and the generation of PIA-CDTG from these analysis results.

3.1 Mapping data-intensive application on CGRA

Data-intensive application execution tends to spend most of the time in frequent
nested loops. Since CGRA usually used as coprocessor for accelerating these applica-
tion, the key part of parallel processing is mapping critical loops. Given a
data-intensive application, we define the parallel mapping problem on CGRA as a
four-stage process.

(1) Application analysis and profiling. We first transformed the application into
intermediate code for profiling, and then analyze application features including
computation/storage distribution, critical loops relevant information, etc.

(2) Critical loop computation/memory analysis. Get the critical loops based on the
application analysis, generating the program information aided control-dataflow
graph (PIA-CDFG) of these loops with information such as the number of com-
putation/storage operation, iteration number, execution time and data depen-
dences, etc.

(3) Loop tilling for task mapping on CGRA. It is important to minimize the com-
munication cost when loop executed on the PEs array by choosing the optimized
tile loop size to fit the current memory hierarchy.

(4) Loop task scheduling on CGRA. After loop tilling, the tiled tasks need to be
mapped on the CGRA PEs array for execution. Considering the resource con-
straint offered by architecture model, it is important to the decrease memory
access number to minimize the execution time with higher performance.

234 Z. Yang et al.

3.2 Application Features Analysis

When mapping an application, it is important to get the features of program to adapt
the constraints of object hardware. However, the structure of data-intensive applica-
tion is too complicated to analysis manually. And we need focus on the critical parts
of these applications in order to analysis more fast and efficient, which means we take
the kernel loops as the object of analysis. The overview of application analysis is
shown in Fig.1.

Fig. 1. Overview of the application analysis

The kernel loops are the loops which take most part of the execution time in an ap-
plication. Recent researches show that the optimization of kernel loops takes strong
influence on performance of application. We first make the simulator to take the pro-
gram hotspot test, and then mark the time-consuming parts in the application. We use
the LooPo [9] to scan the annotations in the SUIF [10] IR of application
and get the loop features, such like 1) Basic information, including type,
index, upper-bound, limit, etc.;2) Hierarchy information, including nested
level, innermost loop, etc.; 3) Loop data information, including arrays, data
dependency, operator features, etc. If the loop’s execution time is large than a
threshold, we take it as a kernel loop.

3.3 Modeling of PIA-CDTG

Different from the traditional CDFG, the node in PIA-CDTG is no longer the simple
operator but task. The property of these nodes includes the application features.
With the description of hierarchy, control/data flow between nodes, PIA-CDTG can
support the mapping, scheduling of application tasks.

Definition 1 Given a PIA-CDTG = (N, E, P) consists of node N, edge E, and pro-
gram profiling information P. N is the node set, including the task node set T and the
storage node set M. E is the edge set with data/control dependences. Info P includes
dataflow/control flow, computation/storage operations, the dependency and relevant
of nodes.

 A Novel Graph Model for Loop Mapping 235

As shown in Fig. 2(a), the dotted lines indicate the control flow and the solid lines
indicate the data flow over nodes. PIA-CDFG model defines architecture-independent
information about field specific application program. The generation of PIA-CDTG
includes four steps:

N C
T1 Processor
T2 PEs
T3 PEs
T4 PEs
T5 PEs
T6 Processor

N C
m1 LM
m2 LM
m3 LM
m4 MEM

1. {δ1, δ2}
2. {(T2,T3), (T4,T5)}
3. {(δ1,PEs), (δ2,PEs)}

T1

T3

T6

T2

T5

T4

m1

m2
m4

1

2

Processor

Route Network

PEs

memory LM

m3

(a)

(b)

(c)

(d)

Fig. 2. PIA-CDTG based mapping on RAG

1. Take the IR of application as input, which includes the application analysis results,
perform task partitioning based on the granularity of program function, and then
build the original task graph (TG);

2. Analysis the control dependences in TG, and generate the control-flow
task graph (CTG);

3. Analysis the data dependences in TG, put the results into the CTG, and generate
the control/data flow graph (CDTG);

4. Based on the CDTG, take the marked kernel loops as kernel task node, analysis
these nodes’ storage features. Generate the data dependences inside node; make
the result as the info P of node. At last generate the PIA-CDTG.

The performance of application on CGRA depended on the mapping strategy. A good
defined architecture model is helpful for the strategy construction. As shown in Fig.
2(b), an architecture graph describes the computing/communication/storage features
of mapping object architecture. For CGRA, the architecture model is defined as:

Definition 2 CRAG = (PR, MEM, PE, LM, RN) represents An N×M PEs array
CGRA. PR is the main control processor, MEM is external memory, PE is the
processing elements, LM is the local memory, and RN is the router network.

PEs of the CGRA are classified by Computing PE (cPE) and Memory PE (mPE).
The description of PR and PE consist of computing features, when the description of
MEM and LM consist of storage features of CGRA.

3.4 Mapping PIA-CDTG on CGRA

Given an application, mapping it onto a CGRA is kind of looking for bindings of the
node set N= (T, M) in PIA-CDTG and node set pair {(PR, PE), (MEM, LM)} in
CRAG. Fig.2 (d) shows the mapping results. As shown in Fig. 2(c) the bindings must
fit: 1.The application function constrains; 2.data dependences; 3.hardware constraints.

236 Z. Yang et al.

Definition 3 Given a node V= (T/M, P) from PIA-CDTG, and the CRAG of CGRA R,
find a mapping: V-> R, with the object function of minUoR and maxThO, under the
meeting of resource constraints, such as computation/storage resource.

If the node is task node T, the mapping called computing mapping, otherwise
called storage mapping if the node is storage node M. The object function is showed
in Eq. (1):

min , if 1

()
max , if 1

UoR DCP
ObjFunction V

ThO DCP

≥
=  <

 (1)

Where UoR is the occupation ratio of PEs, ThO is the throughput of loop execution,
and the DCP is the ratio of storage time TD to computation time TC of execution.
When DCP≥1, we define the loop is memory-bounded, while the resource is suffi-
cient, we prefer to optimize the objective minUoR.

In CRAG with n*m PEs and d LMs, if the task V needs i cPEs, j mPEs and s DMs,
V consist of NumV computation/storage operations and its execution time is
TV=TC+TD. The UoR and ThO of V are defined in Eq. (2):

*V

V
V

V

i j s
UoR

m n dmn
Num

ThO
T

+ + = +

 =


 (2)

3.5 Storage Mapping of PIA-CDTG

The object of storage mapping is the mapping strategy of M node of PIA-CDTG with
minimum cost onto the CRAG. There are two kinds of storage node in CRAG, MEM
stands for external memory, and LM stands for the local memory of PEs array. With
program features analysis, the execution time of each task node is used to decide
whether the current task is critical task or not. If an M node is connected to a non-
critical task node, it will be marked for MEM node. Those M nodes which marked as
LM will be gathered as the LM node set for succeeding computing mapping. If a M
node’s storage request is large than the LM size, which means the task nodes need to
be tiled into sub-tasks in order to minimum the data communication.

3.6 Computing Mapping of PIA-CDTG

As the input, PIA-CDFG provides task nodes for computing mapping. Once these
critical task nodes selected, we can generate a Dependency-Aided Graph (DAG). The
nodes in DAG are critical tasks, and the edges denote the data dependences among
these nodes. Fig. 5 shows a DAG includes 15 nodes. Before the mapping, the task
nodes have been tiled for parallel execution with least data dependences [11].
Since the nested loop for accelerating are transformed into many tiled task with
dependences, the parallel processing is now a scheduling for these tasks.

 A Novel Graph Model for Loop Mapping 237

Fig. 3. DAG of LU decomposition and scheduled on a 2*2 cPEs array

We need to identify six steps as preliminary to the computing scheduling.

Step 1. Each node in DAG=<T, E> is numbered from the top down, and then the set
of tasks is T= {T0, T1, … TK}, the set of dependency edges is E. Edge e (Tx->Tu)
denotes the dependence of Tx and Tu.

Step 2. Get each task Tx in the DAG, with its predecessor set PreTx, and its successor
set SucTx.

Step 3. If the PreTx of Tx is NULL, Tx is called input node; if the SucTx of Tx is
NULL, Tx is output node. The level of each node is the number of nodes in the path
from itself to the output node. Apparently the level of input node is 1, and there is no
dependence between the nodes with same level.

Step 4. The n*m PEs set P={PEij|i∈[0,n-1],j∈[0,m-1] }, the distance between PEij
and PEst is |i-s|+|j-t|, the communication between PEs in direct proportion to their
distance.

Step 5. For a node Tx, the execution time begins at STx, ends at ETx, as shown in Eq.
(3). Where Tx is mapped to cPEij, and its father node Tp is mapped to cPEst. ω is
constant, as the maximum of communication cost of two PEs in theory. The execution
time of Tx is t.

 PreT
{ (| | | |)}x p

Tp x

x p

ST MAX t ST i s j t
n m

ET t ST

ω
∈

 = + + × − + − +
 = +

 (3)

Step 6. Each element Q[i, j] in the n*m matrix Q[n,m] contrains a pair of number (x,
q), which means the node Tx is mapped on the qth placement of cPEij’s FIFO.

3.7 Task Scheduling

Task scheduling should consider two objectives: (1) to maximum the parallel level of
the execution of the tasks; (2) to minimum the inter-task communication cost.
However, these two objectives are mutually exclusive. In this case, our solution is to
use inheritance algorithm to achieve a balance between these two objectives. For
details, we determine the priority sequence of tiles by iterations on the candidate

238 Z. Yang et al.

solutions. In each of the iterations, we first search for the entire problem space with a
generic element, and then evaluate these candidate solutions with an adaptive func-
tion. This solution tries to find a scheduling, which first assigns the k tasks to the n*m
processors, and then properly schedules the tasks within the queue of each processor
to achieve the shortest execution time while the dependencies among tasks are fully
respected. For details, for a assignment and schedule policy S, we aim to find a policy
s to minimum the ET(s) that ()

x
x

T T
ET s max ET

∈
= .Fig. 5 shows the dependency DAG

with task numbers and level values. The detailed inheritance algorithm respon-
sible for scheduling tasks is shown in Table 2.

Table 2. Task Scheduling Algorithm

Algorithm 1 Task Scheduling Algorithm

1： Procedure TSA
2： Input: DAG=<T,E> of tiled loops
3： Output: Optimal solution with ()ObjFunction V

4： for each node T in DAG, compute T.level
5： if Ti.level= Tj.level, then Ti and Tj should assigned to different processors, where

the tasks are sorted in descending order according to the level value of the task nodes.
6： if the requirement of the size of the initial population is satisfied, then break;
7： end for
8： Divide the initial population into several sub- population with the same size

9： for each policy unit, compute the adaptive function ()
k

x
0

F s ET ET(s)= −

10： if the iteration count reaches the maximum iteration number or the optimal solu-
tion has not evolved more than 3% in the latest 10 generations, end procedure

11： end if
12： for each sub-population, select individuals with deploy the roulette wheel se-

lection scheme with probability ()
SN

0

)F i / F(i ,where SN is the size of population

13： if Ti.level= Tj.level && Ti and Tj from different processors
14： then take the selected individual x, perform uniform crossover on the two

nodes
15： Assign the two nodes to the sub-task queues of two randomly selected x’s pro-

cessors, assuring that the level values of task nodes in each queues are still in ascending
order;

16： end if
17： Compute the level of these node, then move the same level nodes from the longest

sub-task queue to the shortest sub-task queue;
18： compute the adaptive function for the individuals in each sub-population, and

replace the low adaptability individual with high adaptability individual;
19： end for
20： end for
21： end procedure

 A Novel Graph Model for Loop Mapping 239

4 Experiments

We evaluated three application kernels to do the experiments, including the discrete
cosine transformation (DCT), matrix LU decomposition (LU), and matrix vector
transpose (MVT). We did a task scheduling with a genetic algorithm to find the opti-
mized strategy under the object functions. We use a reconfigurable SoC for experi-
mental evaluation, which consists mainly of a 32-bit RISC microprocessor called
EstarIII [12] and reconfigurable arrays called LEAP. We use EstarIII for common
computing. It has 8KB instruction cache and 8KB data cache, 266M Hz and 220mW
of CPU core. Meanwhile, we take LEAP PEs arrays as the accelerating coprocessor,
whose total LMs size is 16 KB, and each size of LM is 4KB. We analyzed the fea-
tures of loop in the three kernels, as shown in Table 3, in which the storage demand is
count by the millisecond.

Table 3. Features of critical loops

Kernel DCT(M=2000) MVT(N=10000) LU(N=2000)

Name main.loop1 main.loop2 main.loop1 main.loop2 main.loop1

Type for for for for for

Iteration Condition i<M,j<M,k<M i<M,j<M,k<M i<N,j<N i<N,j<N
i<N-k-1,

j<N-k-1,k<N

Nested Level 3 3 2 2 3

Related Arrays
temp2d(0.43)
block(1.02)
cos1(1.02)

sum(0.36)
cos1(0.90)

temp2d(0.90)
block(0.36)

x1(1.0)
a(0.80)

y_1(0.80)

x1(1.0)
a(0.80)

y_1(0.80)
a(1)

Index Relation
temp2d:(x,y)=(i,j)
block:(x,y)=(i,k)
cos1:(x,y)=(j,k)

sum:(x,y)=(i,j)
cos1:(x,y)=(j,k)

temp2d:(x.y)=(k,j)
block:(x,y)=(i,j)

x1:(x)=(i)
a:(x,y)=(i,j)
y_1:(x)=(j)

x2:(x)=(i)
a:(x,y)=(i,j)
y_2:(x)=(j)

a:(x.y)=(k,j)
a:(x.y)=(k,k)
a:(x.y)=(i,j)
a:(x.y)=(i,k)

Storage Demand 536,328bit 43,852bit 278,938bit

At first we evaluated the three kernels under several different conditions. We test

four kinds of approaches, 1) paralleling the sequence program without optimization
(baseline), 2) the PDG approach with sequence scheduling (PT), 3) multi-level DFG
approach with sequence scheduling (DT), 4) multi-level PIA-CDTG with scheduling
(PCT). Where the maximum generation of the generic algorithm is 1000, crossover
is0.5, and mutation is 0.1. For the comparison of speedup with different approaches,
we defined different tile sizes and different number of PEs. Fig. 4 shows the approach
execution speedup with different size of PE arrays (from 2*2, 3*3, to 4*4) by chang-
ing the CRAG model configuration. Because of the tile size is 16KB which is just the
data memory size; the scheduling gained a not very good workload balance among the
PE arrays. But while the size of PE arrays getting bigger, the speedup ratio of PCT to
PT are increasing much faster, that means the generic algorithm could find out the
optimal solutions efficiently.

240 Z. Yang et al.

Fig.5 shows the affection taken by the increasing quantity of DCT. We set a 4*4
PEs arrays, and the loop tile size is 16KB. While the iteration number of these kernels
increasing (from 2000 to 10000), the performance of the four approaches is getting
dropping sharply. However, the declines of PCT and DT are much slowly than the PT
and baseline. Therefore, the data access and communication of application nonlinear
increase with the size of iteration number is the main bottleneck of parallelization.
That’s why we focus on the memory hierarchy to make the loop multi-level tiled and
use the memory-aware object function for the genetic scheduling algorithm. Since the
scheduling based on static analysis, we should take more dynamic analysis based on
the architecture performance model as the future work.

Fig. 4. Speedup comparison with different PE arrays

Fig. 5. Throughput comparison with different iteration size (DCT)

5 Conclusion

In this paper we proposed a novel graph model called PIA-CDTG for mapping da-ta-
intensive applications on CGRA. With application features analysis, we can get all the
information needed to generate the PIA-CDTG. By dividing application into task
nodes and storage nodes, PIA-CDTG makes it an easier way to map. And then we
used a generic algorithm with optimized object function to analyze depen-
dences be-tween the task nodes. The experimental results shown the approach was

 A Novel Graph Model for Loop Mapping 241

efficient for data-intensive application acceleration on CGRA. The next challenges
include developing a code generator for automatic compilation of loop nests
and efficient power estimation models for the goal of an architecture/compiler
co-exploration.

References

[1] Cardoso, J.M.P., Diniz, P.C., Weinhardt, M.: Compiling for reconfigurable computing: A
Survey. ACM Computing Surveys 42(4), 1–65 (2010)

[2] Najjar, W., Bohm, W., Draper, B., Hammes, J., Rinker, R., Beveridge, J., Chawathe, M.,
Ross, C.: High-level language abstraction for reconfigurable computing. Computer 36(8),
63–69 (2003)

[3] Dou, Y., Wu, G., Xu, J., Zhou, X.: A coarse-grained reconfigurable computing architec-
ture with loop self-pipelining. Science in China 38(4), 579–591 (2008)

[4] Rinker, R., Carter, M., Patel, A., Chawathe, M., Ross, C., Hammes, J., Najjar, W., Bohm,
W.: An automated process for compiling dataflow graphs into reconfigurable hardware.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 130–139
(2001)

[5] Gupta, S., Dutt, N., Gupta, R., Nicolau, A.: Loop shifting and compaction for the high-
level synthesis of designs with complex control flow. In: Proceedings of Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE 2004), vol. 1, pp. 114–119.
IEEE Computer Society (2004)

[6] Weinhardt, M., Luk, W.: Pipeline vectorization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 20(2), 234–248 (2002)

[7] Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo graph embedding: mapping applica-
tions onto coarse-grained reconfigurable architectures. In: Proceedings of the 2006 Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES 2006), pp. 1–11. ACM (2006)

[8] Gong, W.: Synthesizing sequential programs onto reconfigurable computing systems.
PhD Thesis, University of California, Santa Barbara (2007)

[9] LooPo, Loop parallelization in the polytope model,
http://www.fmi.uni-passau.de/

[10] Stanford University Intermediate Format Group. SUIF Compiler System Version 2,
http://suif.stanford.edu

[11] Zhao, P., Yan, M., Li, S.: Performance Optimization of Application Algorithms for Hete-
rogeneous Multi-Processor System-on-Chips. Journal of Software 22(7), 1475–1487
(2011)

[12] Yan, M., Shen, J., Zhao, P., Liu, L., Li, S.: Design and Implementation of an Embedded
Visual Media Process SoC. Journal of Electronics 39(2), 249–254 (2011)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 242–252, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Memristor Working Condition Analysis
Based on SPICE Model

Zhuo Bi1, Ying Zhang1, and Yunchuan Xu2

1 School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China

 {zhuo.bi,yy_zhang}@shu.edu.cn
2 Microelectronics R&D Center, Shanghai University Shanghai, China

xycxyc1989@foxmail.com

Abstract. Memristors are novel devices behaving like nonlinear resistors with
memory. The concept was first proposed and described by Leon Chua in 1971. In
2008, HP lab proved its existence by announcing its first physical implementa-
tion as crossbar structures. A memristor has shown many advantages such as
non-volatility and no leakage current. The logic value can be measured in terms
of impedance and storing logic values without power consumption, which may
cause significant effect on digital circuits. A detailed working condition of a
nonlinear dopant drift model of a memristor is studied and a set of precise
working condition has been found. The transition time between off and on
states of a memristor is proposed as a kind of measurement of the switching
behavior.

Keywords: memristor, digital circuits, SPICE simulation, working condition
analysis.

1 Introduction

Memristor is considered to be the forth basic component in addition to resistors, ca-
pacitors and inductors. In 1971, Leon Chua [1] noticed the missing link of flux and
charge (Fig.1) and predicted the existence of the forth device. He derived a set of
formula describing the element and called it memristor. Instead of characterized by
voltage and current, the memristor is characterized by the relationship between the
charge and the flux-linkage [1].The resistance of a memristor is variable, depending
upon the charge passing through the device.

In 2008, HP announced the first physical implementation of a working memristor in
its lab [2]. The HP memristor is a crossbar structure and shown in Fig.2. Since the
announcement of HP memristor, there is an increasing interest in the device and its
applications. Already, the HP laboratory has several patents and papers related to
memristor such as programmable logic design [5], neural networks [12] published, and
proved the feasibility of the element. Besides, researchers are working on modeling a
memristor required in circuit design and simulations. Memristor spice models are
presented in [6], [7], [8] and [9].

 Memristor Working Condition Analysis Based on SPICE Model 243

A memristor has shown many advantages such as non-volatility and no leakage
current. The logic values are measured in terms of impedance rather than voltages. And
the feature that storing logic values without power consumption may cause significant
effect on digital circuits.

The hysteretic and switch characteristic of memristor nonlinear dopant drift model is
studied in this paper with SPICE model proposed in [6].The model is simulated under
driven voltage source with different frequencies and amplitude.

The paper is organized as follows: Part I introduces memristor and its development.
Part II is on the theory of memristor, the physical and electrical model of HP memristor.
The Spice model adopted in this paper is briefly introduced in Part III and the
memristor is simulated in Part IV. Finally, the experimental results are summarized in
Part V.

Fig. 1. The four fundamental circuit elements: resistor, capacitor, inductor and memristor

Fig. 2. HP Memristor Structures as Crossbars [3]

244 Z. Bi, Y. Zhang, and Y. Xu

2 The Memristor

2.1 Theory of Memristor

A memristor is a two terminal passive element, combining the two variables of flux and
charge. By assuming that flux is the function of charge, the following equation can be
obtained: ߮ ൌ ݂ሺݍሻ (1)

By differentiating on both sides of the equation with respect to time, and using equa-
tion: ݀ݍ ൌ ߮݀ (2) ݐ݀݅ ൌ (3) ݐ݀ݒ

it can be derived that: ݒ ൌ డ௙డ௤ ൉ ௗ௤ௗ௧ ൌ డ௙డ௤ ൉ ݅ ൌ డఝడ௤ ൉ ݅ (4)

If the relationship between flux and charge is non-linear, then ݒ ൌ ሻ݅ (5)ݍሺܯ

with ܯሺݍሻ ൌ ப஦ப୯ a memristor.

Otherwise, a linear resistor is obtained if
ப஦ப୯ is a constant.

For （1）and（2）, by integrating over time, the following equation can be derived: ݍሺݐሻ ൌ ׬ ݅ሺ߬ሻ݀ሺ߬ሻ௧ିஶ (6) ߮ሺݐሻ ൌ ׬ ሺ߬ሻ݀ሺ߬ሻ௧ିஶݒ (7)

By rewriting (1) with (6) and (7), the following equation can be obtained: ׬ ݅ሺ߬ሻ݀ሺ߬ሻ௧ିஶ ൌ ݂ሺ׬ ሺ߬ሻ݀ሺ߬ሻሻ௧ିஶݒ (8)

which implies that the memristor is such an element whose relationship between the
integrals of current and that of voltage is nonlinear.

2.2 HP Memristor

The HP Memristor is the first known fabrication of the device. It is a two-layer titanium
dioxide (TiO2) cube of 40-nanometer between two crossed nanowires (Fig.2).This
switch shown in Fig.3 is a voltage regulated device.

 Memristor Working Condition Analysis Based on SPICE Model 245

The memristance of a memristor can be given by the following equation [2]: ܯሺݍሻ ൌ ܴ௢௡ ௪ሺ௧ሻ஽ ൅ ܴ௢௙௙ ቀ1 െ ௪ሺ௧ሻ஽ ቁ (9)

where D the total thickness of the two TiO2 layers, w(t) the thickness of the doped
layer, w(t)/D the ratio of doped layers and the total thickness, which determines the
resistance of a memristor. The resistances Ron and Roff are the limitation of a me-
mristor when w=1 and w=0, respectively.

The speed of movement of the boundary speed between the two Tio2 layers is first
given by HP as follows: ௗ௪ሺ௧ሻௗ௧ ൌ ௩ߤ ோ೚೙஽ ݅ሺݐሻ (10)

By applying a voltage pulse to the terminal of the switch, the resistance can be changed.

Fig. 3. The coupled variable- resistor model for a memristor [2]

2.3 Electrical Model[5]

A memristor as an ideal switch can be in either one of its two states: high impedance
(open), or low impedance (closed), as shown in Fig.4.

Fig. 4. Ideal Memristor switch model [5]

246 Z. Bi, Y. Zhang, and Y. Xu

The element can hold its state unless the voltage drop across it exceeds the operating
range. In other word, the memrister transitions from the open state to the closed one if
the voltage drop exceeds Vc, while from the closed state to open if the voltage is less
than Vo. Besides, an excessive positive voltage drop or negative voltage drop across a
junction will destroy the device.

3 Memristor SPICE Model[6]

We experimented with SPICE model proposed in [6] to study the behavior of a single
memristor. This model is the nonlinear ions drift model, and assumes a nonlinear
dependence on voltage in the state variable differential equation. The model is pro-
posed basing on the formula of (9) and (10), and its SPICE structure is shown in Fig.5.
Window function, equation (11), is adopted hereby to model boundary conditions of a
memristor. ݂ሺݔሻ ൌ 1 െ ሺ2ݔ െ 1ሻଶ௣ (11)

where p is a positive integer.

Fig. 5. Structure of the SPICE model adopted

4 Memristor Simulation

Calling the SPICE model as sub-circuit, the simulation can be done in Pspice. The
simulation results are shown in the following figures. The memristor is driven by a sine
wave voltage.

Fig. 6 demonstrates the typical I-V characteristic of a memristor with different Ron
and Roff state. The simulation shows that memristor with high Roff resistance are with
stronger hysteretic characteristics, and thus a better switch characteristic.

 Memristor Working Condition Analysis Based on SPICE Model 247

Fig. 6. Typical I-V curves of memristors, driven by sine voltages with frequency of 1Hz and
amplitudes of 1.2V, 3.2V and 1.4V. The parameters are: a) Ron=100, Roff=16k, Rinit=11k, p=10
b) Ron=100, Roff=38k, Rinit=28k, p=10 c) Ron=1k, Roff=100k, Rinit=80k, p=1.The horizontal
axis is the voltage applied and measured in Volts, where the longitudinal axis is current and
measured by uA.

Although the memristor shows hysteretic characteristics when voltage is applied, it
does not show very strong hard switching behavior (Fig.7 a, b). Switching characte-
ristic gradually occurs and gets stronger with the increase of voltages. This could be
resulted from Fig7 b, c and d. The right boundary deteriorates as voltage goes up. When
voltage is up to 1.6v, the model is not able to hold switch state at right boundary (Fig.7
e). And the range of working voltages is 1.4v-1.5v (Table 1).

Fig. 7. I-V curves of memristor whose parameters are: Ron=1K, Roff=100k Rinit=80k p=1
f=1Hz.The amplitudes of the driven sine voltages are: a) 1.0v; b) 1.2v; c) 1.4v d) 1.5v e) 1.6v.
The horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis is
current and measured by uA.in a), b) and c), by mA in c) and d).

248 Z. Bi, Y. Zhang, and Y. Xu

Switching characteristic occurs at the voltage of 2.5v with 2Hz of voltage frequency,
but not strong enough. This voltage is much higher than 1.4v compared with cases in
Fig.7. The boundary begins to collapse at voltage of 4.5v (Fig.8 f).

Fig. 8. IV curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1
f=2Hz.The amplitudes of the driven sine voltages are: a) 1.4v; b) 2.0v; c) 2.5v d) 2.6v e) 2.8v f)
3.0v. The horizontal axis is the voltage applied and measured in Volts, where the longitudinal
axis is current and measured by uA. in a), b) , c) and d) by mA in e) and f).

Fig. 9. I-V curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1
f=3Hz.The amplitudes of the driven sine voltages are: a) 3v; b) 3.5v; c) 3.8v d) 4.0v e) 4.2v f)
4.5v The horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis
is current and measured by uA. in a), b) , c) and by mA in d), e) and f).

 Memristor Working Condition Analysis Based on SPICE Model 249

Fig. 10. I-V curves of memristor whose parameters are: Ron=1K, Roff=100K Rinit=80K p=1
f=10Hz.The amplitudes of the driven sine voltages are: a) 10v; b) 12v; c) 12.5v d) 13v. The
horizontal axis is the voltage applied and measured in Volts, where the longitudinal axis is
current and measured by uA.in a),b),c),and by mA in d).

Similar results can be deduced from Fig9 and Fig 10. The working voltage range of a
memristor is summarized in Table 1, from which we can see that the widest working
voltages occurs at the frequency of 2Hz and 3Hz.

Comparing Fig. 7, 8, 9 and 10, it can be found that the switch phenomenon occurs
with higher applied voltages when frequencies are increasing. The can easily be seen
from switching occurrence voltage summarized in Table 1. Thus, it may be concluded
that higher voltage sources are required to maintain the switch characteristic of a me-
mristor with the increase of frequency.

Table 1. Working Voltage at different frequences and switching occurance voltage

Frequency
of sine wave

f=1Hz f=2Hz f=3Hz f=10Hz

Working
voltage

1.4v-1.5v 2.6v-3.0v 4.0v-4.5v 13v

Switching
occurence
voltage

1.4v 2.6v 4.0v 13v

Besides, it hints that the model can only work at extraordinarily low frequencies.
Although the model still shows the hysteretic nature at frequency goes up to 10Hz, the
amplitude of the sine wave applied has reached nearly 12V to maintain its switch
characteristic, which is unsuitable for standard CMOS technology. Fig. 11 demon-
strates the boundary deterioration when f=1, f=2, f=3(Hz).

250 Z. Bi, Y. Zhang, and Y. Xu

Fig. 11. Boundary deterioration when f=1Hz, f=2Hz, f=3Hz. The amplitude applied are
1.6v.3.1v.and 4.6v, respectively. The horizontal axis is the voltage applied and measured in
Volts, where the longitudinal axis is current and measured by mA.

A memristor as an ideal switch will transform from one state to the other with
suitable voltage applied. As an ideal switch, transition will be finished without time
delay. Actually, a certain amount of time is required between the transitions of the
states. Obviously, a faster switch can be obtained with shorter transition time. Thus, it
can be said that the transition time between high impedance and low impedance is the
one of the main measurement of memristor’s switching behavior. By simulation of the
non-linear drift model, it is possible that the transition time is related to conditions such
as voltage applied and the frequency of driving source (see Table 2). It can be seen that
1) shorter transition time requires larger voltage; 2) higher frequency of the driving
voltage source also shorten the transition time. Fig12 is the three-dimensional histo-
gram of Table 2.

Table 2. Transition time at different voltages and frequencies

Frequency
of
sine wave

f=1Hz f=2Hz f=3Hz f=10Hz

Voltage
applied and
state transi-
tion time

v=1.4v,t=0.425s v=2.6v,t=0.230s v=4.0v,t=0.150s v=13v,t=0.046s

v=1.5v,t=0.375s v=2.7v,t=0.220s v=4.1v,t=0.145s

 v=2.8v,t=0.210s v=4.2v,t=0.140s

 v=2.9v,t=0.200s v=4.3v,t=0.135s

 v=3.0v,t=0.195s v=4.4v,t=0.132s

 v=4.5v,t=0.128s

 Memrist

Fig. 12. Three-dimensional hi
horizontal axis is the voltages
the applied sine wave; the vert
from low to high is exactly the

Table 3. E

Frequency
Parameter P

f=1Hz

p=1
v=1.5v,t=0
v=1.6v,t=0

p=2
v=1.3v,t=0
v=1.4v,t=0

p=3 v=1.3v,t=0

p=4

p=5

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

v=
1.

4v
v=

1.
5v

v=
2.

6v

z/s

x/v

f=1Hz f=2
f=3Hz f=1

tor Working Condition Analysis Based on SPICE Model

istogram of transition time at different frequencies and volta
applied at the memristor; the longitudinal axis is the frequenc
tical is the stage transition time from high to low (transition t

e same because the hysteretic I-V curve is centrally symmetric

Effection of parameter p in window function

f=2Hz f=3Hz

0.470s
0.425s

v=3.0v,t=0.237s
v=3.1v,t=0.225s
v=3.2v,t=0.213s

v=4.5v,t=0.155s
v=4.6v,t=0.152s
v=4.7v,t=0.147s
v=4.8v,t=0.142s
v=4.9v,t=0.138s
v=5.0v,t=0.135s

0.475s
0.415s

v=2.6v,t=0.238s
v=2.7v,t=0.220s
v=2.8v,t=0.208s

v=3.9v,t=0.158s
v=4.0v,t=0.150s
v=4.1v,t=0.145s
v=4.2v,t=0.138s

0.438s
v=2.5v, t=0.238s
v=2.6v, t=0.220s

v=3.8v,t=0.155s
v=3.9v,t=0.146s

v=2.5v, t=0.230s v=3.7v,t=0.158s

 v=3.7v.t=0.150s

v=
2.

7v
v=

2.
8v

v=
2.

9v
v=

3.
0v

v=
3.

9v

v=
4.

0v

v=
4.

1v

v=
4.

2v

v=
4.

3v

v=
4.

4v

v=
4.

5v

v=
13

v

y/Hz

2Hz
10Hz

251

ages:
cy of
time

c).

252 Z. Bi, Y. Zhang, and Y. Xu

Table 3 shows the effect of the parameter p in window function. The nonlinear do-
pant drift means that the speed of boundary between the doped and undoped regions
gradually gets to zero. This is modeled by the window function described by equation
(5). With the increase of p, equation (5) gradually becomes similar to a rectangular
window, and thus non-linear characteristic disappeared. The memristor doesn’t work
with all p values, but just at some point. It also hints that transition time is getting
shorter with the increase of p, if voltage and its frequency are fixed.

5 Summary

A nonlinear ions drift memristor SPICE model is simulated in this paper and a set of
precise working condition of the device has been found. The switching characteristic of
a nonlinear drift model is non-robust, and might be easily affected by factors such as
external voltages and frequencies or internal p parameters. For the non-linear drift
model, it is clear that higher external voltage is required to maintain the switch behavior
as frequency goes up. To overcome this non-robustness for further study, one way is to
renew the models, and another is to find equations better for describing the element.

References

1. Chua, L.O.: Memristor- the missing circuit element. IEEE Transitions on Circuit
Theory CT-18(5), 507–519 (1971)

2. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453,
80–83 (2008)

3. Williams, S.: How we found the missing memristor. IEEE Spectrum 45(12), 28–35 (2008)
4. Snider, G.S., Kuekes, P.J.: Nano State Machines Using Hysteretic Resistors and Diode

Crossbars. IEEE Transactions on Nanotechnology 5(2), 129–137 (2006)
5. Snider, G.S.: Computing with hysteretic resistor crossbars. Applied Physics A 80,

1165–1172 (2005)
6. Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift.

Radioengineering 18(2), 210–214 (2009)
7. Batas, D., Fiedler, H.: A memristor SPICE implementation and a new approach for magnetic

flux-controlled memristor modeling. IEEE Transactions on Nanotechnology 10(2),
250–255 (2011)

8. Rak, A., Cserey, G.: Macromodeling of the Memristor in SPICE. IEEE Transitions on
Computer-aided Design of Intergated Circuits and Systems 29(4), 632–636 (2010)

9. Borghetti, J., Snider, G.S., Kuekes, P.J., et al.: ’Memristive’ switches enable ‘stateful’ logic
operations via material implication. Nature 464, 873–876 (2010)

10. Raja, T., Mourad, S.: Digital logical implementation in memristor-based crossbars a tutorial.
In: 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications,
pp. 303–309 (2010)

11. Snider, G.S.: Molecular-junction-nanowire-crossbar-based neural network. US Patent
No.7359888 B2 (April 15, 2008)

W. Xu et al. (Eds.): NCCET 2012, CCIS 337, pp. 253–261, 2013.
© Springer-Verlag Berlin Heidelberg 2013

On Stepsize of Fast Subspace Tracking Methods

Zhu Cheng1,2, Zhan Wang1, Haitao Liu1, and Majid Ahmadi2

1 School of Electron. Sci. & Eng.,
Nat. Univ. of Defense Technol.,

Changsha, China
Chengzhu88@gmail.com

2 Department of ECE,
University of Windsor, Windsor,

Canada ON
Ahmadi@uwindsor.ca

Abstract. Adjusting stepsize between convergence rate and steady state error
level or stability is a problem in some subspace tracking schemes. Methods in
DPM or Oja class may sometimes show sparks in their steady state error, even
with a rather small stepsize. By a study on the schemes’ updating routine, it is
found that the update does not happen to all of basis vectors but to a specific
vector, if a proper basis is chosen to describe the estimated subspace. The vec-
tor moves only in a plane which is defined by the new input and pervious esti-
mation. Through analyzing the vectors relationship in that plane, the movement
of that vector is constricted to a reasonable range as an amendment on the algo-
rithms to fix the sparks problem. The simulation confirms it eliminates the
sparks.

Keywords: Array signal processing, subspace tracking, stepsize, convergence.

1 Introduction

Tracking a subspace is Estimating a projection matrix onto a space or a basis for that
space, from a random vector sequence observed by a sensor array. It is a powerful
tool in some signal processing fields such as: telecommunication, radar, sonar and
navigation, serving as a measure of adaptive filter, DOA estimation, or interference
mitigation. Subspace tracking methodology can be classified into two categories: the
first is estimating the space where the signal is generated from, the second one is
seeking the orthogonal complement of that space. The former is known as a principal
subspace (PS, PSA) tracker or signal subspace tracker, the later is often referred to as
minor subspace (MS, MSA) tracker or a noise subspace tracker. For earlier works on
MUSIC, we are used to the term signal or noise subspace track.

N.L.Owsley developed the first algorithm for subspace tracking in [1]. Assuming
the dimension of problem is N, the rank of the subspace we are interested in is L.
Usually L << N. Complex of his solution proportions to N2L, or namely O(N2L).
Many schemes with less compute complex were developed after then. An excellent

254 Z. Cheng et al.

survey paper [20] outlined almost all of achievements on this topic before 1990,
which cost O(N2L) or O(NL2) operations. Algorithms with O(NL) complexity were
developed after it. The new class of algorithms is called as Fast Subspace Tracking
method. Surveys on fast subspace schemes are presented in [3pp30–43] or [19pp221-
270].

Let ()x k is an N-dim observer vector from an N-element sensor array, as (1),

1

() () ()
L

i i
i

x k a s k n k
=

= + (1)

Where ia is N-dim vector with unit length, independent to each other, representing

the manifold of one of the arriving signals, and ()is k is a random variable indepen-

dent to each other, representing the arriving signal from different source, ()n k is a

N-dim i.i.d random vector representing the sensor noises. Assuming

1 2 3{ , , }LV v v v v= is an orthonormal basis of span(ia). The signal subspace

tracking is seeking a basis 1 2() { (), (),..... ()}LW k w k w k w k= which spans a sub-

space same as the space spanned by V; the noise subspace tracking is searching a
()W k which spans a subspace as orthogonal complement of span(V). From now, we

may use the name of the basis as the name of the space, such as space W or space
W(k) to span(W(k)), if there is no confusion.

One of criterion on subspace problem is the distance between the spaces. Majority
of solutions[2-11] use the projection error power as criterion, as (2) for signal sub-
space tracking or (3) for noise subspace tracking.

2

p V W F
e P P= − (2)

2

p V W F
e P P⊥= − (3)

Where H
VP VV= , V N VP I P⊥ = − , H

WP WW= ;

F
• means Frobenius Norm

NI means N-dim identity matrix.

An additional criterion for orthonormality of W(k) as (4):
2

() ()H
L F

W k W k Iη = − . (4)

DPM[21] class algorithms is started from optimization the coordinate length of input
vector’s image projected onto the subspace as (5) , while Oja[5] class schemes optim-
ize the length of the projection image as (6).

2
(())HE W x k (5)

2

(() ())WE x k P x k− (6)

 On Stepsize of Fast Subspace Tracking Methods 255

This work was partly supported by National Natural Science Foundation of China
under Grant(11173068))

The routines of DPM and OJA type approaches are very similar. A typical DPM
scheme routine is similar to (7).

{ }

() (1) ()

() (1) ()

() (1) () ()

() orthnorm (

H

H

q k W k x k

y k W k q k

T k W k x k q k

W k T k

= −
= −

= − ±
=

β (7)

orthnorm()• means orthonormalization operation.
Plus sign(+) stands for signal subspace tracking,
Minus sign(-) is for noise subspace tracking.

The typical routine for an Oja scheme only replaces ()x k with

() () ()p k x k y k= − in the temporary general basis ()T k update in (7) line 3.

The variety of DPM might include FDPM, FRANS, HFRANS[6], MFPDM[7] and a
version of SOOJA[8]. The branches of Oja include OOJA[9], OOJAH [9],
FOOJA[10], original version of SOOJA[11]. The different among schemes in same
class is orthonormalization method.

Some unreasonable random sparks were observed when we apply these schemes,
especially when the noise subspace tracking was realized. It happens to DPM class
schemes under noise subspace tracking and all variety of Oja methods.

In this paper, we present the geometric relationship analysis among x(k), y(k), the
old last estimated space W(k-1) and the next estimated space W(k) by update equa-
tions analysis. An amendment as needed on the schemes is made to fix the sparks
problem by the applying a limiter on stepsize at every update step. The presented
simulation confirms the amendment.

2 Analysis of the Update Equations

Considering the subspace tracking problem, the new arriving x(k) is projected onto
the last estimated space W(k-1) to get y(k) in space W(k-1). Vector t(k) is the projec-
tion image of y (k) onto x(k)’s orthogonal complement as (8). And t x⊥ .

() () () () () / (() ())H Ht k y k x k x k y k x k x k= − (8)

The relation among those vectors and the last estimated space W(k-1) shows in Fig.1
with an omission of time index k. We omit the time index k in some of following
equations if there is no confusion.

Assuming there is a vector set with L elements including y direction served as a or-
thonormal basis set for space W(k-1), noted as (/ ,)y y COM , where COM is an L-

1 dim subspace of space (1)W k − , and ()COM y k⊥ . COM is the intersection of

span(x,COM) and W(k-1). Both (/ ,)y y COM and W(k-1) are orthonormal base

256 Z. Cheng et al.

px
t

y
O

Fig. 1. Relationship of vector and space under discussion

sets for a same subspace. Therefore an L-by-L unitary matrix Q exists and meets
(9,10);

(/ ,) (1)W k= −y y COM Q , (9)

(1) (/ ,) HW k − = y y COM Q . (10)

By left multiplication (1)HW k − to (9), it is easy to find the first row of Q is

0 (1)H y q q
q W k

y y q
= − = = ， therefore Q might be noted as ()0, COMq Q ,

with
0 COMq ⊥ Q , and

COMQ is an L row L-1 columns matrix, or L-1 number of L-dim

vectors.

(1) (1)

(1)()

H H H H
W k W k

H H
W k

x COM x P COM x P COM

P x COM y COM O

− −

−

= =

= = =
 (11)

For (11), x is orthogonal to COM, therefore any linear combination of x and y is or-
thogonal to COM too, so is p.

Before the orthnorm()• in (7), ()kT is a general basis of the newly estimated sub-

space. Right multiply the update equation of ()kT with ()0 , COMQ q= Q . ()QkT

is another basis of the newly estimated subspace because ()0 , COMQ q= Q is a

unitary matrix.
For Oja schemes:

()0(() (1) () ()) ,H

COMQk k k q k qβ= − ±T w p Q

() ()0 0(1) , () () ,H
COM COMk q k q k qβ= − ±w Q p Q

()
()

0

0

(1) , (1)

() () , () ()

COM

H H
COM

k q k

k q k q k q kβ

= − −

±

w w Q

p p Q

() ()()/ , () , , ,..q ky y COM kβ= ± p 0 0 0

 On Stepsize of Fast Subspace Tracking Methods 257

()
()1

()

ˆ

/ () ,

,

q ky y k COM

h COM

β=

=

± p (12)

Or for DPM class:

() ()2/ () ˆ() () , ,Q y q kk y x k COM h COMβ= =±T (13)

After the multiplication, all newly estimated subspaces in Oja or DPM class schemes
have a basis expressed in term of COM and a linear combinations of x and y. By
comparison on newly estimated subspaces basis (12) or (13) with the predefined basis
(/ ,)y y COM for the last estimated subspaces at k-1 time, it can be found that in all

update routines, COM keeps still while the basis vector updates only in the plane
span(x,y) to move y to the new basis vector h1 or h2. Fig.2 shows the update happen-
ing in span(x,y) as a cross-section of Fig1.

From Fig.2, the difference between signal and noise subspace tracking method is
only the move direction from y to new basis vector h is to or far from x. In signal
subspace tracking it is to x, in noise subspace tracking it is far from x. In span(x,y), t
is furthest vector from x in angle view, and the closest vector to x is itself. Therefore
it is enough for the new vector h to move only between x and y for signal subspace
tracking, outside that range cannot provide a better result than inside; for noise sub-
space tracking the boundary is between y and t.

We would like to control the new basis vector h in that range. The relation between
h and y or x is controlled by the step size parameter Beta. It is needed to find a boun-
dary for it.

x

0y
h

t ⊥= x

qβxO

x

0y

h

t ⊥= x

qβx

A

B

CO

 (a) (b)

x

0y

h

t ⊥= x

p qβ
O A

B

x

0y

t ⊥= x

h p qβO

 (c) (d)

Fig. 2. The relation of new candidate replace vector for y in span(x,y)

a) DPM signal subspace b) DPM Noise subspace
c) OJA signal subspace d) OJA Noise subspace

258 Z. Cheng et al.

3 Boundary of Beta

From Fig.2a, for DPM type algorithm, in signal subspace tracking, any positive value
of Beta always will keep the new basis vector h between x and y, therefore any posi-
tive Beta value will not cause the problem of stability in this case.

But for DPM noise subspace tracking or all OJA classes, a fixed Beta value may
move new basis vector h beyond the predefined boundary x or t at end of section 2,
when the input is big enough, it might causes deviate or spark. To avoid this situation,
we try to find a boundary of Beta for them.

Statement: To avoid sparks, in noise subspace tracking, condition for DPM class algo-

rithm is
2

1/ xβ ≤ , condition for Oja class schemes is
2

1/ pβ ≤ ; in signal

subspace tracking, condition for OJA class algorithm is
2

1/ yβ ≤ . Or generally

2
1 / xβ ≤ is sufficient to avoid sparks under all these situations.

Proof:

For DPM type noise subspace algorithm, with (13) and Fig2.b.

AO is vector /y y , therefore 1AO =

AB is vector x qβ , so AB x q x yβ β= = .

If the angle between x and y isθ ,then

 sinBC x yβ θ= , cosAC x yβ θ= ,

therefore 1 cosOC x yβ θ= − ,

If the angle between y and new vector h isγ , then

sin
tan

1 cos

x y

x y

β θ
γ

β θ
=

−
.

For we set new vector not over turn than the vector t in noise subspace track case, and
the angle between y and t is 090 θ− , so 090γ θ≤ − , and all the angles discussing

here range from 0 to 90deg.
Therefore: 0tan tan(90)γ θ≤ − .

It means tan cos / sinγ θ θ≤ .

sin cos

1 cos sin

x y

x y

β θ θ
β θ θ

≤
−

.

Rearrange it we get

2
cos / () 1/x y xβ θ≤ = .#

 On Stepsize of Fast Subspace Tracking Methods 259

Therefore for FDPM type noise subspace tracking if
2

1 / xβ ≤ , then no over-

shoot will happen, and the sparks might cease.
Proof for OJA type scheme is very similar to this. We omit it to save space.
S.Attallah and his colleagues had found a similar boundary from a different aspect

to search a more aggressive update stepsize and improve convergent rate [15-18] for
some of their OJA and FRANS schemes. Unfortunately, there was no stable and fast
subspace tracking scheme as FDPM or FOOJA for them to be used as a prototype at
that time. From our view, aggressive stepsize is not the main target, the stability and
the steady state error level of the scheme is. We are arming an amendment which can
avoid the over tune phenomenon or eliminate the sparks.

4 Amendment and Simulation

From the Statement in section 3, if we set Beta as minima of all possible
2

1/ x , the

sparks might cease, but the convergence rate will be rather slow. If we apply beta as
2

1 / x at any step, it will be too aggressive and make the steady state error rather

high when the input is small.
We decide to use a reasonable Beta as the original algorithms, but at any time

if
2

1 / xβ ≤ , we set
2

1/ xβ = for that step.

We present parts of our simulations to verify our amendment. The simulation setup
is similar to [2,3], but differs in value of parameters. We consider a signal plus noise
model with N =8, the random signal x(n) lies in an L=4 dimensional linear subspace,

for convenience, assume manifolds of arriving signals ia are orthogonal to each

other to avoid the interaction between the arrival angle and convergence rate, arriving

signals from different source ()is k are random variables independent to each other

with the powers equal to [10，1，0.1，0.1] . The noise ()n k is N-dim iid white and

Gaussian random vector, each element with 10-3 variance. Beta=0.08 for all simula-
tion. Duration of simulation is 6000 steps. For each single run, there is a break of the
basis vector at 3000 step to introduce more projection error and destroy the orthonor-
mality, by adding of random matrix on them, every element of it is a iid variable with
0.1 variance, to check the ability of orthonormal and projection error power conver-
gence. Only the results of FOOJA are displayed in Fig.3, and results on FPDM or
both version of SOOJA are similar to them. The results from all of schemes with
amendment may follow almost a same track in simulation figures, especially in the
steady state phase.

Projection error power (3) or (4) is applied for comparison in Fig.3. The y axis is in
db scale. From Fig.3, average of projection error power for the original version(blue
without mark) is higher than the amended one(with+), and maxima projection error
power out of 100 runs for the original versions(red without mark) is much higher and
noise than that of the amended ones(black, with o).

260 Z. Cheng et al.

0 1000 2000 3000 4000 5000 6000
-35

-30

-25

-20

-15

-10

-5

0

5
FOOJA-s

Orignal Ave100

Plus Ave100
Orignal Max100

Plus Max100

(a) FOOJA Signal Subspace

0 1000 2000 3000 4000 5000 6000
-35

-30

-25

-20

-15

-10

-5

0

5
FOOJA

Orignal Ave100

Plus Ave100
Orignal Max100

Plus Max100

(b) FOOJA Noise Subspace

Fig. 3. Compare the Amended FOOJA and original ones

5 Conclusion

It is recommended to check relationship between the stepsize Beta and
2

1/ x each

iteration step for all mentioned schemes, if
2

1/ xβ > then apply
2

1/ x as a limi-

ter on Beta.

References

1. Owsley, N.L.: Adaptive Data Orthogonalization. In: ICASSP 1978, pp. 109–112 (1978)
2. Doukopoulos, X.G., Moustakides, G.V.: Fast and Stable Subspace Tracking. IEEE Trans.

on Signal Processing 56(4), 1452 (2008)

 On Stepsize of Fast Subspace Tracking Methods 261

3. Doukopoulos, X.G.: Power techniques for blind channel estimation in wireless communi-
cation systems, Ph.D. dissertation, IRISA-INRIA, Univ. Rennes, Rennes, France (2004)

4. Attallah, S., Abed-Maraim, K.: Low-cost adaptive algorithm for noise subspace estimation.
IEE Electronics Letters 38(12), 609–611 (2002)

5. Oja, E.: Principal components, minor components, and linear neural networks. Neural
Networks 5, 927–935 (1992)

6. Attallah, S.: The generalized Rayleigh’s quotient adaptive noise subspace algorithm: A
Householder transformation-based implementation. IEEE Trans. Circuits Syst. II, Exp.
Briefs 42(9), 3–7 (2006)

7. Linjie, Q., Zhu, C., et al.: Modification Algorithms for a class of subspace tracking me-
thods. Signal Processing 26(5), 741 (2010) (Chinese)

8. Wang, R., et al.: A Novel Orthonormalization Matrix Based Fast and Stable DPM Algo-
rithm for Principal and Minor Subspace Tracking. IEEE Trans. on Signal Processing 60(1),
466 (2012)

9. Abed-Meraim, K., Attallah, S., Chkeif, A., Hua, Y.: Orthogonal oja algorithm. IEEE Sig-
nal Processing Letters, 116–119 (2000)

10. Bartelmaos, S., Abed-Meraim, K.: Principal and minor subspace tracking: Algorithms &
stability analysis. In: Proc. IEEE ICASSP 2006, Toulouse, France, vol. III, pp. 560–563
(May 2006)

11. Wang, R., et al.: Stable and Orthonormal OJA Algorithm With Low Complexity. IEEE
Signal Processing Letters 18(4), 211–214 (2011)

12. Xiangyu, K., Changhua, H., Han, C.: A dual purpose principal and minor subspace gra-
dient flow. IEEE Trans. on Signal Processing 60(1), 197 (2012)

13. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (February 15, 2001)
14. Wang, R., Yao, M., Cheng, Z., Zou, H.: Interference cancellation in GPS receiver using

noise subspace tracking algorithm. Signal Processing 91(2), 338–343 (2011)
15. Manton, J.H., Mareeks, I.Y., Attallah, S.: An analysis of the fast subspace tracking algo-

rithm NOja. In: ICASSP, vol. 2, pp. 1101–1104 (2002)
16. Attallah, S., Abed-Meraim, K.: Fast Algorithms for Subspace Tracking. IEEE Signal

Processing Letters 8(7), 203 (2001)
17. Attallah, S.: Revisiting Adaptive Signal Subspace Estimation Based on Rayleigh’s Quo-

tient. In: ICASSP, vol. 6, pp. 4009–4012 (2001)
18. Attallah, S., Abed-Meraim, K.: Subspace estimation and tracking using enhanced versions

of Oja’s algorithm. In: SPAWC 2001, pp. 218–220 (2001)
19. Delmas, J.P.: Ch.4 Subspace tracking for signal processing. In: Adali, T., Haykin, S. (eds.)

Adaptive Signal Processing: Next Generation Solutions. Wiley Interscience (April 2010)
20. Comon, P., Golub, G.H.: Tracking a few extreme singular values and vectors in signal

processing. Proceedings of the IEEE 78(8), 1327–1343
21. Yang, J.F., Kaveh, M.: Adaptive eigensubspace algorithms for direction or frequency es-

timation and tracking. IEEE Trans. Acoust. Speech Signal Processing 36, 241–251 (1988)

Author Index

Ahmadi, Majid 253

Bi, Zhuo 242

Chen, Yueyue 27
Cheng, Zhu 253

Deng, Rangyu 16
Ding, Weihua 202
Dou, Qiang 16
Dou, Yong 173
Du, Huimin 155

Fu, Yuzhuo 8, 49, 57, 84, 92, 111, 148,
163

Guo, Yang 1

Han, Xing 49, 57, 163
He, Guanghui 202, 221
He, Weifeng 211

Jiang, Jiang 8, 49, 57, 84, 92, 102, 111,
129, 148, 163

Jiang, Jianhui 185
Jing, Naifeng 211

Kong, Liangliang 185

Li, Jiangpeng 202
Li, Sikun 231
Li, Yuan 129
Liu, Haitao 253
Liu, Hengzhu 67
Liu, Jianyuan 155
Liu, Ting 111
Liu, Zhong 27
Liu, Ziyang 57

Ma, Chiyuan 38
Ma, Jun 202, 221
Ma, Zhuo 1
Mao, Zhigang 211

Ni, Xiaoqiang 67

Shen, Ao 111
Sheng, Weiguang 211
Song, Zhenlong 173
Su, Qilong 84
Sun, Caixia 16
Sun, Qing 92

Tan, Yusong 67
Tang, Shizhuo 211

Wang, Dawei 231
Wang, Jie 121
Wang, Yongqing 138
Wang, Zhan 253
Wei, Shaojun 129
Wu, Peng 148
Wu, Shengfei 8

Xia, Kang 111
Xie, Lunguo 1
Xing, Binchao 27
Xu, Weixia 173
Xu, Yunchuan 242

Yan, Mengmeng 75
Yan, Ming 231
Yan, Xiaobo 16
Yan, Zhiting 221
Yang, Dongri 121
Yang, Kaikai 49, 163
Yang, Liu 67
Yang, Ziyu 231
Yu, Jinshan 1
Yu, Xue 121

Zeng, Yu 121
Zhang, Liguo 155
Zhang, Minxuan 129, 138
Zhang, Shengbing 75
Zhang, Ying 242
Zhao, Zhenyu 1, 38
Zheng, Mingling 173
Zheng, Yulong 221
Zhou, Chuan 49
Zhou, Jia 102

	Title

	Preface
	Organization
	Table of Contents
	Session 1: Microprocessor and Implementation
	A Method of Balancing the Global Multi-mode Clock Network in Ultra-large Scale CPU

	Introduction
	Problem Faced
	Balancing Method
	Demo and Result
	Conclusion
	References

	Hardware Architecture for the Parallel Generation of Long-Period Random Numbers Using MT Method

	Introduction
	Algorithmic Backgrounds
	Mersenne Twister Method

	Hardware Architecture for MT19937
	Structural Details for BRAMs and Registers

	Implementation and Testing
	Implementation of Hardware Architecture
	Application for Testing

	Conclusion
	References

	MGTE: A Multi-level Hybrid Verification Platform for a 16-Core Processor

	Introduction
	Related Work
	MGTE Verification Platform
	Workflow of MGTE
	MGTE Hardware Environment
	Advantages of MGTE Platform

	SimulationExperiments
	Simulation Interface
	Simulation Results

	Conclusions
	References

	An Efficient Parallel SURF Algorithm for Multi-core Processor

	Introduction
	The Architecture of Multi-core Processor
	The Serial SURF Algorithm
	Calculating the Integral Image
	Establishing the Scale Space
	Detecting Keypoints
	Keypoints Detecting, Localizing and Filtering
	Computing the Orientation
	Computing Keypoints’descriptors

	Parallel SURF Algorithm
	Parallel Extracting Keypoints
	Parallel Matching Keypoints

	Performance Evaluation and Analysis
	Conclusions
	References

	A Study of Cache Design in Stream Processor

	Introduction
	Background
	Our Work
	Performance Evaluations
	Experimental Environment
	Experimental Results

	Related Work
	Conclusion
	References

	Design and Implementation of Dynamically Reconfigurable Token Coherence Protocol for Many-Core Processor

	Introduction
	Token Coherence and Related Works
	Token Coherence
	Related Works

	Dynamically Reconfigurable Token Coherence
	Reducing the Cost of Broadcast
	Implementations in Gem5

	Simulation Environment
	Evaluation Results
	Impact on Execution Time
	Impact on Network Traffic

	Conclusions
	References

	Dynamic and Online Task Scheduling Algorithm Based on Virtual Compute Group in Many-Core Architecture

	Introduction
	Related Work
	Architecture and Task Model
	Architecture
	Task Model

	Free Resource Management Based on Rectangles
	New Task Mapping
	Phase Reconstruction

	Mapping Strategies
	Initial Mapping
	Mapping before Phase Reconstruction
	Phase Mapping

	Simulations
	Conclusion and Future Work
	References

	ADL and High Performance Processor Design
	Introduction
	Introduction of Three ADLs
	LISA
	ArchC
	MAML

	Comparing of Three ADLs
	Advantage and Disadvantage of ADL
	Conclusion
	References

	Session 2: Design of Integration Circuit
	The Design of the ROHC Header Compression Accelerator

	Introduction
	ROHC Compression Protocol
	Compressor States and State Transition Logic
	The Packets Used by the Hardware Accelerator

	The Structure of the Compressor
	The Structure of Modules
	Inter-module Data Flow Diagram

	Implementation of the Compression Module
	Simulation and Performance Analysis
	Conclusion
	References

	A Hardware Implementation of Nussinov RNA Folding Algorithm

	Introduction
	Nussinov Algorithm
	Hardware Implementation
	Overview
	Data Path
	Control Flow

	Results
	Conclusions and Future Works
	References

	A Configurable Architecture for 1-D Discrete Wavelet Transform

	Introduction
	Filter Bank Design for 1-D DWT
	Filter Bank For 1-D DWT
	Polyphase Structure

	MAC Loop Based Filter
	Structure of MAC Loop Based Filter
	Data Hazards in Pipelined MLBF

	Configurable Architecture for 1-D DWT Based on MLBF
	Performance Analysis And Comparison
	FPGA Implementation and Experimental Results
	FPGA Implementation
	Experimental Results

	Conclusion
	References

	A Comparison of Folded Architectures for the Discrete Wavelet Transform

	Introduction and Background
	Generalized Folded Architectures and the Evaluation Method
	Figure of Merit
	The Folded Architecture Based on the Modified Direct Form Filter
	The Folded Architecture Based on the Linear Systolic Array
	The Folded Architecture Based on the Lifting Structure

	Results and Analysis
	Impact of Variations on Filter Taps or Lifting Stages
	Impact of Inserting Pipeline Stages in Critical Path
	Impact of Variations on DWT Levels

	Conclusion
	References

	A High Performance DSP System with Fault Tolerant for Space Missions

	Introduction
	Background and Related Works
	System Overview
	System Units
	FPGA Logic Components

	System Implementation
	System Operation States
	Compare-Point Mechanism Design
	Fast Recovery Mechanism Design

	Results and Analysis
	Performance of Compare-Point
	Reliability of the System and Performance of Fast Recovery

	Conclusion
	References

	The Design and Realization of Campus Information Release Platform Based on Android Framework

	Introduction
	Overall Analysis of Campus Information Release Platform

	The Design and Realization of Campus Information Release Platform Based on Android Framework

	System Functional Module Design
	System Architecture Design
	Technology Road Map Design

	User Interface Design
	Conclusion
	References

	A Word-Length Optimized Hardware Gaussian Random Number Generator Based on the Box-Muller Method

	Introduction
	The Box-Muller Method
	Hardware Architecture for the Box-Muller Method
	Implementation and Evaluation
	Conclusion
	References

	Session 3: I/O Interconnect
	DAMQ Sharing Scheme for Two Physical Channels in High Performance Router

	Introduction
	Related Works
	DAMQ-DP (DAMQ for Dual Port) Scheme
	Shared Buffer with Pre-fetching and Bypass
	VC Head and Tail Pointers
	FIFO Structure of Idle List Manager (ILM)

	Experimental Results
	Conclusion
	References

	Design and Implementation of Dynamic Reliable Virtual Channel for Network-on-Chip

	Introduction
	Related Work
	Basic Router Architecture
	Proposed Reliable Virtual Channel Design
	Experimental Result
	Efficiency Analysis
	Cost Evaluation

	Conclusion
	References

	HCCM: A Hierarchical Cross-Connected Mesh for Network on Chip

	Introduction
	HCCM Networks
	Subnet of HCCM Network
	Global Network of HCCM
	Topological Properties
	Ideal Throughput
	HXY Routing Algorithm

	Simulations and Evaluations
	Conclusions
	References

	Efficient Broadcast Scheme Based on Sub-network Partition for Many-Core CMPs on Gem5 Simulator

	Introduction
	Related Work
	Preliminaries
	Deadlock-Free Broadcast XY Routing
	Simulation Environment
	Performance Evaluation
	Conclusion
	References

	A Quick Method for Mapping Cores Onto 2D-Mesh Based Networks on Chip

	Introduction
	Realted Works
	Approach Overview
	Problem Formulation
	Energy Model
	Constraint-Cluster Based Simulated Annealing

	Experiments
	Conclusion and Future Work
	References

	Session 4: Measurement, Verification, and Others
	A Combined Hardware/Software Measurement for ARM Program Execution Time

	Introduction
	Related Work
	Set Measurement Precision in Boot Loader
	Access PWM Timer in Kernel
	Address Transformation of PWM Timer Registers
	Encapsulating Address Transformation in Macros

	Program Execution Cycle Measurement
	Initial Value Setting For the Timer
	Start and Run of the Timer
	Interrupt Trigger and Execution Cycle Count
	Program Execution Cycles Calculation

	Experiments and Analysis
	Instrument Method and Timer Initial Value Setting
	Enable Cache and MMU
	PWM Timer Interrupt Setting and Iteration Count
	Execution Time Calculation and Method Effectiveness Analysis
	Program Execution Time Prediction

	Conclusions
	References

	A Low-Complexity Parallel Two-Sided Jacobi Complex SVD Algorithm and Architecture for MIMO Beamforming Systems

	Introduction
	SVD-Based Beamforming System
	Proposed Parallel Two-sided Jacobi Algorithm
	Table 1.

	Parallel VLSI Architecture
	Simulation Results
	Decomposition Time Comparison
	[4] This work
	[2] This work

	Conclusions
	References

	A Thermal-Aware Task Mapping Algorithm for Coarse Grain Reconfigurable Computing System

	Introduction
	Thermal Model of the Target Device
	Thermal-Aware Task Mapping
	Experiment Results and Analysis
	Results on Mapping Optimization
	Optimality Analysis
	Complexity Analysis

	Conclusion and the Further Work
	References

	DC Offset Mismatch Calibration for Time-Interleaved ADCs in High-Speed OFDM Receivers

	Introduction
	System Model
	DC Offset Mismatch Model in TI-ADC
	OFDM Model

	ADC Calibration Using Pilot Signals
	Constrains on Sub-ADC Numbers and FFT Size
	Relationship between DC Offset Mismatch and Its Effect on Pilot Signals

	Simulation Results
	Conclusions
	References

	A Novel Graph Model for Loop Mapping on Coarse-Grained Reconfigurable Architectures

	Introduction
	Related Work
	PIA-CDTG Mapping Model
	Mapping data-intensive application on CGRA
	Application Features Analysis
	Modeling of PIA-CDTG
	Mapping PIA-CDTG on CGRA
	Storage Mapping of PIA-CDTG
	Computing Mapping of PIA-CDTG
	Task Scheduling

	Experiments
	Conclusion
	References

	Memristor Working Condition Analysis Based on SPICE Model

	Introduction
	The Memristor
	Theory of Memristor
	HP Memristor
	Electrical Model[5]

	Memristor SPICE Model[6]
	Memristor Simulation
	Summary
	References

	On Stepsize of Fast Subspace Tracking Methods

	Introduction
	Analysis of the Update Equations
	Boundary of Beta
	Amendment and Simulation
	Conclusion
	References

	Author Index

