

Lecture Notes in Computer Science 7686
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rainer Keller David Kramer
Jan-Philipp Weiss (Eds.)

Facing the
Multicore-Challenge III
Aspects of New Paradigms and Technologies
in Parallel Computing

13

Volume Editors

Rainer Keller
University of Applied Science
Faculty for Surveying, Computer Science and Mathematics
Schellingstraße 24, 70174 Stuttgart, Germany
E-mail: rainer.keller@hft-stuttgart.de

David Kramer
Karlsruhe Institute of Technology (KIT)
Institute of Computer Science and Engineering
Haid-und-Neu-Straße 7, 76131 Karlsruhe, Germany
E-mail: kramer@kit.edu

Jan-Philipp Weiss
Karlsruhe Institute of Technology (KIT)
Institute for Applied and Numerical Mathematics 4
Fritz-Erler-Straße 23, 76133 Karlsruhe, Germany
E-mail: jan-philipp.weiss@kit.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35892-0 e-ISBN 978-3-642-35893-7
DOI 10.1007/978-3-642-35893-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010935359

CR Subject Classification (1998): C.1.4, C.1.3, C.4, D.1.3, D.3.4, I.3.1, B.2.1, B.2.4,
B.3.2, D.4.2, D.4.8, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the third conference “Facing the Multicore-
Challenge,” which was held in Stuttgart, Germany, during September 19–21, 2012.
Recent hardware developments have again presented the Multicore-Challenge to
software developers: this applies to the development of software with regard to
scientific computing, system-level software, as well as compilers. The introduc-
tion of highly parallel architectures based on commodity processors, such as the
Intel Xeon R© Phi

TM
, or the highly threaded Kepler GPGPUs by NVIDIA, requires

programmers even more to identify sections of code amenable to parallelization on
various levels, identify load imbalance, reorder inefficient data structure accesses,
and finally analyze and optimize data transfers.

By “Facing the Multicore-Challenge” we initiated a series of conferences that
allow young scientists to present high-quality, relevant, and up-to-date research
on scalable applications, middleware, and compilers on these architectures. These
proceedings, together with the previous two, attest to the importance of this
series’ approach. The first conference was organized in 2010 at the Heidelberg
Academy of Science, the second conference in the following year was held at
the Karlsruhe Institute of Technology (KIT). This year’s conference was held at
the Hochschule für Technik Stuttgart, University of Applied Science, in the city
center of Stuttgart, Germany.

In all we received 21 full papers out of which ten were selected by the Program
Committee – each paper was reviewed by at least three independent experts with
a short rebuttal period to balance differing opinions. Apart from the full-paper
presentations, the conference featured a poster session with 12 selected contribu-
tions. Another feature of the conference is a set of short talks showing the latest
results that are not yet ready for publication but allow the speakers to present
their first data, to receive feedback, and to discuss novel ideas. In a similar vein,
the conference features invited talks: this year they comprised a keynote on the
technology obstacles to be tackled for the exascale with reality checks, a talk
presenting the status of MPI-3, one presentation on the Extoll network inter-
connect, and last but not least a talk on the exascale preparations at sandia
national labs. To dig into detail to overcome roadblocks to scalability, we hosted
three tutorials: the first was provided by Cray on large-scale computing, another
tutorial from Roguewave focused on single-node performance using Threadspot-
ter, and the last tutorial by Intel introduced the programming for Intel Xeon R©

Phi
TM

.
Thanks to the German Gauß-Allianz for Supercomputing, the conference

was able to offer best paper, best poster, and best presentation awards. The
best paper awards were selected by the Program Committee; the best paper
in the application category was awarded to the group of authors represented
by Christoph Altmann, Institute of Aerodynamics and Gas Dynamics of the

VI Preface

University of Stuttgart, with their paper “An Efficient High-Performance Par-
allelization of a Discontinuous Galerkin Spectral Element Method.” The best
paper with regard to theory was awarded to Marek Pa�lkowski from the West
Pomeranian University of Technology for his paper “Impact of Variable Privati-
zation on Extracting Synchronization-Free Slices.” The best poster and best talk
awards were selected by the 55 participants. Both awards were granted to partic-
ipants from the Technical University of Denmark. The best poster award went
to Peter E. Aackermann, Peter J. Dinesen Pedersen, and co-authors for their
contribution “Development of a GPU-Accelerated MIKE 21 Solver for Water
Wave Dynamics,” while the best presentation was awarded to Allan S. Nielsen
for his presentation “The Parareal Algorithm for Multi-layered Parallelism.”

The conference organizers and editors would like to thank the paper and
poster authors for submitting their novel material, making this event an in-
teresting conference. We would especially like to thank all the members of the
Program Committee for their experience, guidance, and great effort in the review
process, not only for selecting the material, but also for providing authors with
valuable feedback on improvements and comments for future work. In the name
of all participants and invited speakers, we would especially like to thank the
Gauß-Allianz for Supercomputing in Germany for sponsorship, which allowed
the conference to provide awards and travel grants.

September 2012 Rainer Keller
David Kramer

Jan-Philipp Weiss

Organization

General Chair

Rainer Keller University of Applied Sciences Stuttgart,
Germany

David Kramer Karlsruhe Institute of Technology, Germany
Jan-Philipp Weiss Karlsruhe Institute of Technology, Germany

Program Committee

Michael Bader University of Stuttgart, Germany
Richard Barrett Oak Ridge National Labs, Oak Ridge, USA
Carlo Bertolli Imperial College London, UK
Christian Bischof RWTH Aachen, Germany
Arndt Bode TU Munich, Germany
George Bosilca University of Tennessee Knoxville, USA
Rainer Buchty TU Braunschweig, Germany
Mark Bull EPCC, Edinburgh, UK
Hans-Joachim Bungartz TU Munich, Germany
Franck Capello LRI, Université Paris Sud, France
Jack Dongarra University of Tennessee, USA
David Ediger Georgia Tech, USA
Claudia Fohry Kassel University, Germany
Dominik Göddeke TU Dortmund, Germany
Georg Hager University of Erlangen-Nuremberg, Germany
Thomas Herault Université Paris Sud, France
Hans J. Herrmann ETH, Zürich, Switzerland
Peter Heusch HfT Stuttgart, Germany
Vincent Heuveline Karlsruhe Institute of Technology, Germany
Lee Howes AMD, UK
Wolfgang Karl Karlsruhe Institute of Technology, Germany
David Kramer Karlsruhe Institute of Technology, Germany
Rainer Keller HfT Stuttgart, Germany
Michael Klemm Intel, Germany
Hiroaki Kobayashi Tohoku University, Japan
Dimitar Lukarski Uppsala University, Sweden
Norihiro Nakajima JAEA and CCSE, Tokyo, Japan
Dieter an Mey RWTH Aachen, Germany
Claus-Dieter Munz Stuttgart University, Germany
Fabian Oboril Karlsruhe Institute of Technology, Germany
Christian Perez INRIA, France

VIII Organization

Franz-Josef Pfreundt ITWM Kaiserslautern, Germany
Michael Philippsen University of Erlangen-Nuremberg, Germany
Thomas Rauber Bayreuth University, Germany
Rolf Rabenseifner HLRS, Stuttgart, Germany
Gudula Rünger Chemnitz Technical University, Germany
Olaf Schenk Basel University, Switzerland
Martin Schulz Lawrence Livermore National Labs, USA
Christian Simmendinger T-Systems SfR, Germany
Masha Sosonkina Ames Lab, USA
Thomas Steinke ZIB, Berlin, Germany
Mehdi Tahoori Karlsruhe Institute of Technology, Germany
Walter Tichy Karlsruhe Institute of Technology, Germany
Carsten Trinitis TUM, Munich, Germany
Stefan Turek Dortmund University, Germany
Josef Weidendorfer TUM, Munich, Germany
Jan-Philipp Weiss Karlsruhe Institute of Technology, Germany
Felix Wolf FZ Jülich, Germany

Table of Contents

Full Papers

Invasive Computing on High Performance Shared Memory Systems 1
Michael Bader, Hans-Joachim Bungartz, and Martin Schreiber

A Similarity-Based Analysis Tool for Porting OpenMP Applications 13
Wei Ding, Oscar Hernandez, and Barbara Chapman

Array-Based Reduction Operations for a Parallel Adaptive FEM 25
Martina Balg, Jens Lang, Arnd Meyer, and Gudula Rünger

An Efficient High Performance Parallelization of a Discontinuous
Galerkin Spectral Element Method . 37

Christoph Altmann, Andrea D. Beck, Florian Hindenlang,
Marc Staudenmaier, Gregor J. Gassner, and Claus-Dieter Munz

Reducing the Memory Footprint of Parallel Applications with KSM 48
Nathalie Rauschmayr and Achim Streit

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 60
Ákos Dudás, Sándor Juhász, and Sándor Kolumbán

Impact of Variable Privatization on Extracting Synchronization-Free
Slices for Multi-core Computers . 72

Marek Palkowski

Parallel Collision Queries on the GPU: A Comparative Study
of Different CUDA Implementations . 84

Rainer Erbes, Anja Mantel, Elmar Schömer, and Nicola Wolpert

ÆminiumGPU: An Intelligent Framework for GPU Programming 96
Alcides Fonseca and Bruno Cabral

Parallel k-Means Image Segmentation Using Sort, Scan and Connected
Components on a GPU . 108

Michael Backer, Jan Tünnermann, and Bärbel Mertsching

Poster Abstracts

Solving High-Dimensional Problems on Processors with Integrated
GPU . 121

Alexander Heinecke

X Table of Contents

Pulsar Searching with Many-Cores . 123
Alessio Sclocco and Rob V. van Nieuwpoort

Scheduling Overheads for Task-Based Parallel Programming Models 125
Mathias Nachtmann, Jose Gracia, and Colin W. Glass

PINstruct – Efficient Memory Access to Data Structures 127
Rainer Keller and Shiqing Fan

Development of a GPU-Accelerated Mike 21 Solver for Water Wave
Dynamics . 129

Peter Edward Aackermann, Peter Juhler Dinesen Pedersen,
Allan Peter Engsig-Karup, Thomas Clausen, and Jesper Grooss

GPU-Accelerated and CPU SIMD Optimized Monte Carlo Simulation
of φ4 Model . 131

Piotr Bialas, Jakub Kowal, and Adam Strzelecki

Protable Codes on New HPC Architectures . 133
Mhd. Amer Wafai, Colin W. Glass, and Christoph Niethammer

GASPI – A Partitioned Global Address Space Programming
Interface . 135

Thomas Alrutz, Jan Backhaus, Thomas Brandes, Vanessa End,
Thomas Gerhold, Alfred Geiger, Daniel Grünewald,
Vincent Heuveline, Jens Jägersküpper, Andreas Knüpfer,
Olaf Krzikalla, Edmund Kügeler, Carsten Lojewski, Guy Lonsdale,
Ralph Müller-Pfefferkorn, Wolfgang Nagel, Lena Oden,
Franz-Josef Pfreundt, Mirko Rahn, Michael Sattler,
Mareike Schmidtobreick, Annika Schiller, Christian Simmendinger,
Thomas Soddemann, Godehard Sutmann, Henning Weber, and
Jan-Philipp Weiss

Parallel Fully Adaptive Tsunami Simulations . 137
Michael Bader, Alexander Breuer, and Martin Schreiber

Implementation of Stable Skew–Symmetric Matrix Factorization
for Fermi GPUs Using CUDA . 139

Neven Krajina

The IMData Approach to Accelerate Data Intensive Workloads 141
Marcus Völp, Nils Asmussen, and Hermann Härtig

PRAgMaTIc – Parallel Anisotropic Adaptive Mesh Toolkit 143
Georgios Rokos and Gerard Gorman

Author Index . 145

Invasive Computing on High Performance

Shared Memory Systems

Michael Bader, Hans-Joachim Bungartz, and Martin Schreiber

Department of Informatics,
Boltzmannstrasse 3, 85748 Garching, Germany

{bader,bungartz,martin.schreiber}@in.tum.de
http://www5.in.tum.de/

Abstract. In this work, we tackle several important issues to improve
the throughput of runtime-adaptive applications on state-of-the-art HPC
systems. A first issue is the, in general, missing information about the
actual impact of unforeseeable workload by adaptivity and of the un-
known number of time steps or iterations on the runtime of adaptive
applications. Another issue is that resource scheduling on HPC systems
is currently done before an application is started and remains unchanged
afterwards, even in case of varying requirements. Furthermore, an appli-
cation cannot be started after another running application allocated all
resources. We combine addressing these issues with the design of algo-
rithms that adapt their use of resources during runtime, by releasing or
requesting compute cores, for example. If concurrent applications com-
pete for resources, this requires the implementation of an appropriate
resource management.

We show a solution for these issues by using invasive paradigms to
start applications and schedule resources during runtime. The scheduling
of the distribution of cores to the applications is achieved by a global re-
source manager. We introduce scalability graphs to improve load balanc-
ing of multiple applications. For adaptive simulations, several scalability
graphs exist to consider different phases of scalability due to changing
workload.

For a proof-of-concept, we show runtime/throughput results for a fully
adaptive shallow-water simulation.

Keywords: Invasive computing, resource awareness, shared-memory,
runtime adaptive applications, OpenMP, TBB.

1 Introduction

The current trend to many-core systems was forced to still fulfill Moore’s Law
for performance and energy efficiency reasons [1]. The parallel efficiency of ap-
plications on such many-core systems is usually represented by the scalability of
a parallel application [2]. To overcome scalability problems of applications (e. g.
due to a small workload), the execution of multiple programs in parallel is one
of the main approaches in HPC (among others [3,4]). So far, those scheduling

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www5.in.tum.de/

2 M. Bader, H.-J. Bungartz, and M. Schreiber

algorithms in HPC assume knowledge about fixed resources to run computations
and well-known or well-estimated run-time.

1.1 Our Approach for Dynamically Changing Applications

In this work we show a solution for the above mentioned issues, focussing on
shared-memory platforms. We build on the already existing functionality of
OpenMP (driven by the OpenMP Architecture Review Board), where paral-
lelization is obtained via pragma compiler directives, and Intel TBB, which pro-
vides thread-and task-features offered via C++ language features such as class
derivation and is directly developed by Intel [5] with an open-source version.
Related approaches, for example, would be OmpSs, an extension of OpenMP
providing input and output dependencies among tasks [6].

The following issues are so far not considered in the threading libraries men-
tioned above:

– An application should not be started when all resources are used by other
applications. Otherwise the simulation run-time immediately gets worse since
the caches are shared among both running applications [7]. This also plays
a crucial role for urgent computing (see e. g. [8]): starting an application –
probably with a higher priority – while another is already running.

– Highly dynamic algorithms have several phases of scalability which cannot
be considered in a-priori resource allocation. When running multiple ap-
plications in parallel, those phases are also not considered so far. E. g. an
algorithm using parallel adaptive mesh refinements during run-time leads
to a varying workload over simulation time and, thus, to changing scala-
bility behavior. An example for a changing workload for a shallow-water
simulation is given in Figure 3. Also multi-grid algorithms have a strongly
varying difference in workload during run-time. This workload decreases due
to restriction- and increases due to propagation-operations.

– Applications should be able to extend or shrink their currently allocated
cores in a way that the throughput is maximized considering all concur-
rently running applications: this would lead to an improvement of overall
throughput e. g. by giving applications more cores when they have better
scalability. By taking cores away from an application, this allows starting an
application even when all cores are already assigned to other applications.

These problems and the introduced flexibility of applications leads to a dynami-
cally changing efficiency value for the resource-utilization. This requires a global
scheduling which overthrows previous decisions to replace them with improved
ones. In this work we show our approach using invasive paradigms (Sec. 2) to
schedule applications using a resource manager (Sec. 3) with changing number
of resources for applications during run-time and without any estimation of the
overall run-time of the application. Our test applications have to provide scala-
bility graphs which represent a local view of the application only for determining
global optimum throughput (Sec. 3.3). A fully adaptive shallow-water simulation
(Sec. 4) is used to show results (Sec. 5) for applying the invasive paradigms.

Invasive Computing on High Performance Shared Memory Systems 3

2 Invasive Paradigms

Resource-aware programming using invasive paradigm was originally developed
for embedded systems [9] with a distributed memory (DM) architecture using
the following constructs:

– invade(constraints): request resources that satisfy certain constraints (e. g.
min/max number of cores which are requested by the application).

– infect(iLet): execute iLet -code (kernel-code for the invasive commands) on
previously invaded resources.

– retreat(): release reserved resources (allocated by invade).

In this work we use a subset of this paradigm to tackle the previously mentioned
problems on shared-memory settings and extend this paradigm with appropriate
functionality and enhancements for the HPC area. Considering that the iLet -
code is implicitly given by the application code that follows after the invade and
infect API calls, invade() and infect() are represented by an invade(). Changing
the number of used resources is then implicitly done during execution of invade().
However we like to emphasize that the infect() is expected to be necessary for
an extension of this work e. g. to a distributed memory system to start the
execution of a specific piece of code on another node.

In this work we implemented the following extensions for efficiency reasons:

– invade-nonblocking(constraints): non-blocking version of invade to overcome
message latency overhead to/from the resource manager.

– reinvade(): A reinvade executes a retreat and an invade atomically. No con-
straints are used by this invade to avoid packing and forwarding of con-
straints into a message in order to send it to the resource manager. This
is done by assuming that the same constraints are already stored in the
resource manager by a previously executed invade(...).

– reinvade-nonblocking(): Nonblocking version of reinvade() to overcome mes-
sage latency overhead.

– constraints : We distinguish between hard- (e. g. max/min number of cores)
and soft-constraints (e. g. scalability graph provided for each phase of the
application, see Sec. 3.3 for the utilization of this graphs).

3 Implementation of a Resource Manager

Our assumption is that multiple clients (applications) are running on the same
shared memory (SM) architecture leading to two aspects which have to be con-
sidered: (1) Two clients sharing one core typically results into a severe slowdown
due to L1 cache-sharing by context switches; (2) those clients compete for core
resources. Therefore a resource manager (RM) and a collision-free protocol have
to be determined which never allow two non-idling clients to be scheduled by
the OS to run on the same core. Resources are further considered to be cores of
equal computational performance.

4 M. Bader, H.-J. Bungartz, and M. Schreiber

In contrast to resource managers for distributed memory systems (e. g. [10]),
our approach is based on shared-memory systems only. Therefore we can use
IPC System V message queues for the communication of a client with the RM.
This involves a successive message handling in the RM which implicitly avoids
any race-conditions. Due to the non-blocking extensions (see Sec. 2), we distin-
guish between two different kinds of communications: The first communication
mechanism are blocking calls which are waiting for an ACK from the communi-
cation partner. The second is a non-blocking communication without an explicit
wait for an ACK from the RM. Messages from the RM are therefore handled by
testing at specific points in the application whether there is a message available
in the queue or not, including an appropriate handling of the message.

3.1 Data Structures for Managing Clients in the RM

The following data structures are used for each client in the RM: Constraints
(min/max number of cores, scalability graphs) are stored in the RM for each
client to allow determination of a global best-throughput which can be achieved
only with constraint information of all other clients. Therefore storing these
constraints in the RM is a crucial point. A list of reserved cores is also necessary
to improve releasing cores and assigning them to other clients.

The RM utilizes the following data-structures to manage and re-schedule the
available cores: A vectorV (i) stores the number of cores which have to be assigned
to each client i to get the globalmaximum throughput. VectorC(n)with an entry
for the client i associated to the core n is used to search for free cores. Note that
this search operation has linear runtime which can be improved by using a list of
free cores. However, for the number of cores we use in our results, we do not expect
a huge impact on the overall runtime for the search operation.

3.2 Invasive Command Space

The following paragraphs describe the utilized invasive command space and the
implementation in more detail.

Setup (blocking): Client : Each client initially registers itself at the RM to get at
least one core for the serial program execution. Server : If at lease one core is
free, an ACK is send to the client. Otherwise the client is blocked until at least
one core is available. Once a client releases some resources, delayed ACKs are
sent to clients with each client setting an affinity for its process.

Invade (blocking): Client : The client sends an invade message including the con-
straints to the RM to release or invade resources. Server : The RM updates the
client data structures and runs the search for the global maximum throughput
(see Sec. 3.3) which is stored in V . If the client is executing an invade(...) that
has to release some resources, an appropriate number of cores are released from
the list with currently assigned cores by updating the core allocation vector C.
These cores are idling until another client for which the resources were freed
executes an invade or sends an ACK for a non-blocking update message which
releases cores. If the client has to invade some resources, free cores are searched

Invasive Computing on High Performance Shared Memory Systems 5

by iterating over the global core allocation array C and by setting appropriate
reservation information. Finally an ACK message with the new number of cores
and the corresponding affinity settings are sent back to the client.

Reinvade (blocking): Client : A reinvade is similar to the invade(...), but without
sending constraint information to overcome the message-packaging overhead of
the parameters since the constraints are already stored in the RM. A reinvade
as well as an invade can also lead to a loss of cores.

Non-blocking protocol: Using a non-blocking protocol, the RM sends asynchronous
messages to clients in order to update the currently used number of cores and
affinities. An important aspect is a collision-free protocol which is necessary to
avoid resource conflicts. E. g. for cores, this would lead to sharing the L1 cache
and thus a severe slowdown of both applications sharing the same core.

invade nonblocking(...) and reinvade nonblocking() are equal to the blocking
versions except two differences: First, there is no wait for the ACK send from
the RM to the client. Thus the clients can immediately continue their compu-
tations. Second, a non-blocking receive-message call is used which handles the
asynchronously sent messages. In case of a resource update request sent from the
RM, the new number of cores and the new thread affinities are set, and updated
information about the recently assigned cores is sent back to the RM.

The restriction of the RM of sending only one asynchronous message to the
client for the non-blocking communication described above is motivated by the
following example situation of a resource conflict: Assume that the current core
assignment of a client is (2, 3) and the RM sends the following successive mes-
sages to the client: m1 = (2, 3, 4) (add core #4), m2 = (2, 3, 4, 5) (add core #5).
After sending the last message, also core 5 is assigned to the client. Since the
client has to send back its currently reserved cores, the message (2, 3, 4) is send
to the RM which updates the client assigned cores to (2, 3, 4). Right now the
RM is allowed to reschedule core #5 to another client with the message m2 still
not handled and allowing the client to take core #5. This would lead to one core
being assigned to two different applications which leads to a severe slowdown of
the computations due to cache sharing. Results regarding reduced overhead for
this non-blocking protocol are given in Sec. 5.

Setting Client-Side Thread Affinities: Once specific cores were assigned
to a client, the maximum number of utilized cores and their affinities are set
according to the different threading which is used. For OpenMP, the number of
threads has to be set outside a parallel region (see [11]). The thread-affinities
are then set via a parallel-for with static(1) scheduling and the affinities set in
the parallel-for scope. This parallel-for is only executed for setting the thread
affinities, not for the computations itself. Using TBB, the number of threads
is modified by reallocating the task scheduler with the appropriate number of
threads. Then, tasks are executed with appropriate thread-affinities which set
the core-affinities of the thread inside each task. Work-stealing is avoided by
using a semaphore-like mechanism prohibiting task to be finished until all tasks
set the affinities.

6 M. Bader, H.-J. Bungartz, and M. Schreiber

Fig. 1. Graphs representing the scalability behavior of two different applications on a
40-core workstation. The scalability graph for the 2nd application is drawn mirrored
starting from the right side with no core assigned (dashes plot).

3.3 Scheduling to Maximize Global Throughput

By considering only the minimum and maximum number of requested cores, an
a-priori decision which computes the global maximum throughput is not feasible
for adaptive applications. Therefore clients have to promise more information
about their efficiency.

Providing scalability graphs: With clients providing scalability graphs, the main
idea is to give clients more cores when they provide a better scalability. These
graphs also represent the normalized throughput with the global throughput to
be maximized with the side-constraints of several concurrently running clients.
An example of two applications with a scalability graph for each application
is given in Fig. 1. These scalability graphs represent a normalized throughput
value and have to be forwarded to the RM by the applications. Then, the RM
is responsible for scheduling resources in a way to optimize the global overall
throughput. This global overall throughput depends on the core-to-application
assignment with the overall throughput determined by the sum of the samples
of the scalability graphs with the number of cores assigned to an application
representing the sampling point.

Greedy algorithm: In order to optimize the throughput of multiple applications
with respect to their scalability behavior, decisions need to consider more infor-
mation than only the number of running applications. We use a greedy search
algorithm to compute the global optimum for arbitrary number of applications
based on scalability graphs provided by the application as a soft-constraint.

Let N be the number of available cores and A the number of clients run-
ning in parallel. Each client i has to provide a scalability graph fi which is
strictly monotonously increasing (f ′

i(xi) > 0) and strictly concave (f ′′
i (xi) < 0).

Thus no super-linear speedups (see e. g. [12]) are considered, which allows an
efficient search for the maximum overall throughput. The overall throughput
F (x) =

∑
i fi(xi) assigns xi cores to each client. Applications have to provide

Invasive Computing on High Performance Shared Memory Systems 7

Fig. 2. Radial breaking-dam simulation scenario with initial depth of 6 and maximum
refinement depth of 12. Sub-partitions are split when the number of grid-cells exceeds
512. Top images: Fine grid-cells in black and sub-partitions in red.

Fig. 3. Changing workload for the simulation

fixed scalability graphs in case their graph does not fit these requirements. An-
other greedy search algorithm presented in [10] also uses parametrized scalability
graphs which are inherently monotonic.

Searching for the maximum overall throughput Fmax(x) leads to a multivari-
ate concave optimization problem with the side-constraint Fmax(x) =

∑
i xi ≤ N .

Due to the monotonicity, and since there are no local extrema, a steepest descend
method [13] can be used to solve the problem. Our greedy algorithm searches
locally in orthogonal directions (one for each client) for the largest throughput
gain, testing for one step in each client-core-increasing direction. Since one step
in this search space represents adding one core, the number of iterations is lim-
ited to the number of cores with a direction search over all applications, resulting
in a runtime of O(#cores ×#apps) for the greedy algorithm.

4 Application

To use the invasive interface presented in the previous section, the applications
have to provide the necessary information to the RM and have to be able to adapt
their resources. By providing hard and soft constraints, the RM then optimizes
the number of cores assigned to each application successively.

8 M. Bader, H.-J. Bungartz, and M. Schreiber

Fig. 4. Scalability graph for different phases of simulation

To give a proof-of-concept we implemented a fully adaptive simulation [14]
(http://www5.in.tum.de/sierpi/) based on the shallow-water equations. Fig. 2
gives a screenshot of a running adaptive simulation with changing workload.

In this simulation, grid-cells are represented by triangles with the cell-data
being stored on an inherently cache-optimized data-structure (see [15,16]). For
the implementation used in this work, a refinement of triangle cells is done when
the water surface exceeds a specific level; cells are coarsened when the water
height is below a specific limit. Parallelization is achieved by using a massive
splitting approach that creates a large number of clusters (see red triangles in
Fig. 2). Computations on such clusters can then be executed in parallel using
typical task constructs provided by TBB or OpenMP.

During such a fully-adaptive simulation the workload changes substantially
during simulation. The number of triangle cells over the simulation is plotted
in Fig. 3 which directly represents the workload for each time-step. While the
scalability typically approaches asymptotically the linear speedup, we consider
smaller problem sizes to have scalability patterns expected to be closer to appli-
cations executed on larger HPC systems.

Since the workload is changing, also the scalability changes during the simula-
tion, as shown in Fig. 4 for a smaller workload. As a demand on the application
to use the invasive scalability soft-constraint, the application forwards those
new scalability information using invade() or invade-nonblocking() to the RM
once a new ’phase’ in the simulation is reached – e. g. for a sufficient change of
workload. Otherwise a reinvade() is executed to optimize the currently assigned
resources. These commands are executed between each time-step which fulfills
the requirements of being out of a parallel region scope (see Sec. 3.2).

5 Results

Non-blocking Invasions: A two-socket workstation with Intel Xeon CPUs
(X5690, 3.47GHz, 6 cores per socket) was used for this benchmark. To deter-
mine the overhead for using invasive commands, a shallow-water simulation with
a very small problem size was started using different threading libraries. With
the small problem size, only 1814 time-steps were executed for the overall sim-
ulation with invasive calls executed between each time-step. The runtime of the
simulation is given in Fig. 5. Compared to the non-invasive OMP and TBB

http://www5.in.tum.de/sierpi/

Invasive Computing on High Performance Shared Memory Systems 9

Fig. 5. Overhead of blocking and non-blocking invades compared by OpenMP and
TBB implementations without invasive overhead. Results are averaged over 10 simula-
tion runs. The maximum deviation from the mean value is below 0.01 for each single
simulation run.

implementations and running only one application utilizing the RM, communi-
cation time is saved by using non-blocking communication. Many applications
accessing the RM concurrently would automatically lead to some idling of appli-
cations when another message is currently handled by the RM. Also the greedy
search algorithm takes linearly more computation time depending on the number
of applications.

Multiple Simulations in Parallel with Uniform Assignment of Cores
to Applications: Next, we show results for starting multiple identical simula-
tions in parallel without changing any scalability graphs. This benchmark and
the following were executed on a workstation with 4 Intel Xeon CPUs (E7-
4850@2.00GHz, 10 cores per CPU/20 threads per CPUs). Identical scalability
graphs are forwarded to the RM leading to an equal distribution of the cores
among all applications. E. g. executing 5 applications would lead to an assign-
ment of 8 cores per application. The invasive paradigms are used in a blocking
way with a non-changing scalability graph being handed over to the RM in each
simulation time-step. The results are given in Fig. 6 (number of applications
started in parallel vs. triangle-cell throughput of all simulations executed in
parallel). A saturation of the maximum achievable throughput is reached when
executing about 6 applications in parallel.

We like to emphasize, that this uniform benchmark-setting can also be effi-
ciently executed using traditional OMP/TBB mechanism by setting appropriate
affinities: starting the simulations with appropriate affinities and without any in-
vasive paradigms results in a slightly reduced execution time due to the invasive
overhead shown in Sec. 5.

Invasive Allocation of Cores to Applications: The next benchmark con-
sists of four applications with the same scenario-setups and thus equal problem
sizes which are started with a small delay of a few seconds. Fig. 7 shows the cor-
responding core distribution of this setting. Scalability graphs were handed over
to the RM with respect to the different phases of the simulation. The scalability
was limited to the maximum scalability of a core plus some additional overhead
to account for measurement inaccuracy during determination of the scalability

10 M. Bader, H.-J. Bungartz, and M. Schreiber

Fig. 6. The green dashed line shows the overall triangle cell throughput for the shallow-
water simulation depending on the number of applications executed in parallel. The red
line shows the linear speedup which is the extrapolated throughput based on running
one application on only one core.

Fig. 7. Scheduling of 4 applications which are started with a short delay using non-
blocking invasive commands

graphs. During the starting phase of the first application, many cores are idling
since there is no scalability gain by using cores. Thus fewer cores are assigned
to the first application even when no other applications are running. During
execution of the second application, less cores are initially assigned to the 2nd
application compared to the 1st application since the problem size is smaller
compared to the 1st application. Thus also the scalability is worse leading to
an assignment of more cores to the 1st application. During the simulation time,
some cores are idling (see Sec. 3.2). This occurs during the assignment of a core
to another application by the RM or by releasing the core until other application
executes a invade or reinvade.

This solved our two main issues (see Sec. 1): We are now able to start ap-
plications at any time even when all other applications are currently using all
cores. Furthermore, we also avoid considering the overall run-time of applications
by immediately starting an application and distributing the resources using the
scalability graphs.

Invasive Computing on High Performance Shared Memory Systems 11

6 Related Work

A conceptual presentation of invasive paradigms in HPC was presented in [17].
Requesting only a range of number of cores for each application was proposed
to optimize the local applications view. Since a local view is insufficient when
executing several applications in parallel, we introduced the scalability graphs
to run a global optimization. Also scheduling algorithms for applications with
dynamically changing scalability on distributed systems have been considered in
[10]. Compared to these approaches, we are using a centralized resource manager,
non-blocking communication and provide scalability graphs which accounts for
the current simulation phase of a dynamically changing application. Handling
load imbalances and data mis-placement on software distributed shared memory
systems for a single application by loop-repartitioning and page migration is pre-
sented in [18]. Overcoming workload imbalance in an MPI+OpenMP parallelized
program is also presented in [19]. Synchronous communication barriers among
MPI-nodes and scheduling of resources depending on the amount of imbalance
was used to overcome these issue. In our work we focus on several applications
executed in parallel assuming that the application itself is responsible for work-
balancing and maximizing for global throughput among concurrently executed
applications by using dynamically changed scalability graphs.

7 Conclusions, Outlook and Acknowledgement

In this work we demonstrated a proof-of-concept of using invasive paradigms in
HPC. Scalability graphs are used to search for a global optimum of throughput.
The responsibility of applications is to provide a resource awareness by means
of providing scalability graphs and being able to handle the resources which
are allocated for the application. Latency and thus idle time for many cores is
reduced by non-blocking communication. Using invasive paradigms allows us to
efficiently start applications even when other applications have already reserved
all resources. To give an outlook of our ongoing work, invasive computing can
be applied to urgent computing by giving applications with higher priorities
more resources. Another improvement is expected by smoothing the frequently
changing scalability hints. This could lead to a reduction of frequently changing
resource distributions. For larger systems, the greedy algorithm to determine the
global maximum throughput has to be replaced by an improved one – e. g. using
some heuristics to search for the global optimum throughput. Energy efficiency is
expected to be improved by immediately shutting down cores when they are not
used (see Fig. 7). The determination of scalability graphs by using monitoring
data or performance counters during runtime and further soft-constraints using
auto-tuning features is also part of our ongoing research.

This work was supported by the German Research Foundation (DFG) as part
of the Transreg. Collab. Res. Centre ”Invasive Computing” (SFB/TR 89).

12 M. Bader, H.-J. Bungartz, and M. Schreiber

References

1. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54 (2011)
2. Kumar, V., Gupta, A.: Analysis of scalability of parallel algorithms and architec-

tures: a survey. In: Proc. of the 5th Int. Conf. on Supercomp. (1991)
3. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.:

Quincy: fair scheduling for distributed computing clusters. In: Proc. of the ACM
SIGOPS 22nd Symp. on Operating System Principles (2009)

4. Armstrong, T., Zhang, Z., Katz, D., Wilde, M., Foster, I.: Scheduling many-task
workloads on supercomputers: Dealing with trailing tasks. In: 2010 IEEEWorkshop
on Many-Task Computing on Grids and Supercomputers, MTAGS (2010)

5. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Pro-
cessor Parallelism. O’Reilly Media (2007)

6. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
OpenMP Tasking Model to Allow Dependent Tasks. In: Eigenmann, R., de Supin-
ski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008)

7. Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip
multiprocessor architecture. In: Proc. of the 13th Int. Conf. on Par. Arch. and
Compilation Techniques (2004)

8. Beckman, P., Nadella, S., Trebon, N., Beschastnikh, I.: SPRUCE: A System for
Supporting Urgent High-Performance Computing. In: Gaffney, P.W., Pool, J.C.T.
(eds.) Grid-Based Problem Solving Environments. IFIP, vol. 239, pp. 295–311.
Springer, Boston (2007)

9. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schröder-Preikschat,
W., Snelting, G.: Invasive computing: An overview. In: Multiprocessor System-on-
Chip – Hardware Design and Tool Integration. Springer (2011)

10. Kobbe, S., Bauer, L., Lohmann, D., Schröder-Preikschat, W., Henkel, J.: Distrm:
distr. rm for on-chip many-core systems. In: Proc. of the 7th IEEE/ACM/IFIP int.
conf. on Hardware/Software Codesign and Syst. Synth. (2011)

11. OpenMP Arch. Review Board: OpenMP Appl. Progr. Interf. Version 3.0 (2008)
12. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance.

Information Processing Letters 82(1) (2002)
13. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimiza-

tion. The Computer Journal 6(2), 163–168 (1963)
14. Schreiber, M., Bungartz, H.J., Bader, M.: Shared Memory Parallelization of Fully-

Adaptive Simulations Using a Dynamic Tree-Split and -Join Approach. In: 19th
Annual International Conference on High Performance Computing (2012)

15. Bader, M., Schraufstetter, S., Vigh, C., Behrens, J.: Memory Efficient Adaptive
Mesh Generation and Implementation of Multigrid Algorithms Using Sierpinski
Curves. Int. J. of Computat. Science and Engineering 4(1) (2008)

16. Bader, M., Böck, C., Schwaiger, J., Vigh, C.A.: Dynamically Adaptive Simulations
with Minimal Memory Requirement - Solving the Shallow Water Equations Using
Sierpinski Curves. SIAM Journal of Scientific Computing 32(1) (2010)

17. Bader, M., Bungartz, H.J., Gerndt, M., Hollmann, A., Weidendorfer, J.: Invasive
programming as a concept for HPC. In: Proc. of the 10h IASTED Int. Conf. on
Parallel and Distr. Comp. and Netw, PDCN (2011)

18. Sakae, Y., Sato, M., Matsuoka, S., Harada, H.: Preliminary Evaluation of Dynamic
Load Balancing Using Loop Re-partitioning on Omni/SCASH. In: Proc. of the 3rd
Int. Symp. on Cluster Computing and the Grid (2003)

19. Corbaln, J., Duran, A., Labarta, J.: Dynamic Load Balancing of MPI+OpenMP
Applications. In: ICPP (2004)

A Similarity-Based Analysis Tool

for Porting OpenMP Applications�

Wei Ding, Oscar Hernandez, and Barbara Chapman

Dept. of Computer Science, University of Houston
Oak Ridge National Laboratory
{wding3,chapman}@cs.uh.edu,

{oscar}@ornl.gov

Abstract. Exascale computers are expected to exhibit an
unprecedented level of complexity, thereby posing significant challenges
for porting applications to these new systems. One of the ways to sup-
port this transition is to create tools that allow their users to benefit
from prior successful porting experiences. The key to such an approach
is the manner in which we define source code similarity, and whether
similar codes can be ported in the same way to a given system. In this
paper, we propose a novel approach based on the notion of similarity
that uses static and dynamic code features to check if two serial sub-
routines can be ported with the same OpenMP strategy. Our approach
creates an annotated family distance tree based on the syntactic struc-
ture of subroutines, where subroutines that belong to the same syntactic
family and share the similar code features have a greater potential to be
optimized in the same way. We describe the design and implementation
of a tool, based upon a compiler and performance tool, that is used to
gather the data to build this porting planning tree. We then validate our
approach by analyzing the similarity in subroutines of the serial version
of the NAS benchmarks and comparing how they were ported in the
OpenMP version of the suite.

1 Introduction

The High Performance Computing (HPC) community is heading toward the era
of exascale computing. An exascale machine and the programming models de-
ployed on the machine are expected to exhibit a hitherto unprecedented level of
complexity. New tools will be needed to help the application scientist restructure
programs in order to exploit these emerging architectures, improve the quality
of their code and enhance its modularization to facilitate maintenance. As sci-
entists port their application codes to new systems, they must restructure their
applications to exploit the multi-cores available in each node. OpenMP [13], a
de-facto standard for shared memory programming, is widely used due to its

� This work was funded by the ORAU/ORNL HPC grant and NSF grant CCF-
0917285. This research used resources of the Leadership Computing Facility at Oak
Ridge National Laboratory and NICS Nautilus supercomputer for the data analysis.

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 W. Ding, O. Hernandez, and B. Chapman

simplicity, incremental parallelism, and wide availability. However this simplic-
ity comes at a performance cost. For example, programmers need to take care
of false sharing issues and apply aggressive data privatization to achieve good
performance.

During the porting process of parallelizing serial codes with OpenMP, we
observed that, in some applications, many of the porting strategies are highly
repetitive, although not necessarily easily detected. For example, many similar
computational kernels that need to be parallelized with OpenMP may appear
in different parts of the application, where code is slightly modified to meet
specific computational needs. Locating and porting these code regions is a time-
consuming and error prone process that needs to be systematically addressed.

One way to improve the productivity and reduce the potential problems is to
create tools that allow users to benefit from prior successful porting experiences
that can be applied to multiple code regions in an application. In this paper, we
explore different code characteristics similarities and make a lot of improvement
based on a tool called KLONOS [6] that can better assist user to accurately
port their applications by combining the notion of syntactic code similarity. An
adaptation strategy that is successful for one code region could then also be
applied to similar regions. We use this tool to demonstrate how the concept
of similarity can be used to parallelize serial codes with OpenMP more easily
and productively. With this goal in mind, we have developed a tool that is
able to classify subroutines in similar families of codes that may follow the same
optimization strategy. Our tool uses the concept of code syntactic distance and a
k-means clustering approach to classify codes based on their static and dynamic
features (such as parallelization and hardware counters profiling information).
Our hypothesis is that we can classify the subroutines of an application with
a family distance tree, where subroutines that share similar syntactic structure
and program features will have a high likelihood to be ported in the same way.
In this paper we focus specifically on finding similar codes that can be ported
to the shared memory systems using OpenMP with the same strategy.

This paper is organized as follows: Section 2 helps further explain the motiva-
tion of our work. Section 3 summarizes the related work on similarity research
and current practice for the software porting. Section 4 describes the function-
ality and design of the tool we build to detect similar fragments of code. The
implementation, including the compiler infrastructure that it is based upon, is
then introduced in section 5. Section 6 describes our evaluation of the KLONOS
tool using the serial and OpenMP version of the NAS benchmarks. Finally, Sec-
tion 7 briefly discusses our conclusions and future work.

2 A Motivating Example

A byproduct of the efforts to enhance and port applications, particularly as a
result of incremental improvements, is an increasing likelihood of code similarity
in an application. Developers may implement similar versions of an algorithm,
redevelop parts of it, copy and paste code multiple times and adapt it for specific

A Similarity-Based Analysis Tool for Porting OpenMP Applications 15

Fig. 1. NAS BT OpenMP benchmark x sove, y sove sequences alignment

Fig. 2. NAS BT benchmark porting planning tree

needs, or use a code transformation tool that creates many instances of similar
code. Therefore, there is a possibility that we may be able to reuse given porting
strategies on similar codes and benefit from prior porting experiences. To illus-
trate our motivation, we use the BT serial NAS benchmark to demonstrate how
our notion of similarity can be used to help the user parallelize this code with
OpenMP. BT belongs to a family of CFD code that uses a multi-partiton scheme
to solve three sets of uncouple systems of equations in a block triagonal of 5x5
blocks. The direction of the solvers are in the x, y and z dimensions over several
disjoint sub-blocks of the grid. The solvers use the same algorithm along the
different directions before the results are exchanged among the different blocks.

16 W. Ding, O. Hernandez, and B. Chapman

Because of this algorithmic property, BT is a good candidate to illustrate how
our notion of similarity can help to analyze and parallelize this code.

One way to quantify the source code similarity is to convert the intermediate
representations of subroutines of a program into sequences of characters that
can be aligned using a global sequence alignment algorithm. The result can then
be used to calculate their pair-wise syntactic distance based on their percent
of identity. Figure 1 shows one portion of the pair-wise sequences alignment of
subroutines x solve and y solve. The length of the alignment is of 3003 characters.
The vertical lines indicate the portions of the sequences that are identical and
the portions of the subroutines that have identical operators.

We can then use the Neighbor-Joining algorithm to create a family distance
tree based on the pair-wise distance of the subroutines. Figure 2 shows the family
distance tree for the BT serial benchmark. Each edge of the tree is annotated with
a distance score, which represents the degree of their syntactic code differences.
The distance between two subroutines can be calculated by adding the distance
value of the edges between them.

By looking at the tree, we find that x solve, y solve and z solve are siblings
in the tree. x solve, y solve are grouped into one subtree, and their parent node
is grouped with z solve into another subtree. By calculating the distance among
these three subroutines, we get x solve ∼ y solve=7.5, x solve ∼ z solve=7.468,
y solve ∼ z solve=7.432. These subroutines have small distances among them
because they have a high degree of similarity in their source code which is con-
sistent with the algorithm of BT. Although the source code of the subroutines:
x solve, y solve and z solver look very similar, their data accesses are different.
The subroutine x solve has contiguous memory accesses but y solve and z solve
have discontinguous memory accesses. This may impact the optimization strat-
egy for these subroutines on a cache based system. For example, the OpenUH [14]
compiler optimizes the serial version of x solve, y solve similarly (when inspect-
ing their intermediate representations after optimizations) but uses a different
strategy for z solve.

Based on this information, if we want to parallelize these subroutines, us-
ing OpenMP, we cannot rely on the syntactic similarity analysis because other
code features need to be taken into consideration (for example, the number of
parallel loops in the subroutine, the values of hardware counters that charac-
terize the data access and the amount of work done for each subroutine). We
can define a set of program features (analyses) that are relevant to OpenMP
optimizations and cluster the them to further classify the subroutines. For the
BT Benchmark, we clustered its subrotuines based on the number of parallel
loops, data cache accesses and misses, total number of cycles, TLB misses and
total number of instructions. The subroutines were classified into seven clusters
(the number of families in level three of the distance tree), using the K near-
est neighbor (K-NN). The k-means method is favored when the number of data
points is small. The result of the cluster is shown in Table 1. The dynamic code
features were calculated by running the BT serial benchmark with class B on a
hex-core Opteron 2435 processor. Each cluster consists of a set of subroutines

A Similarity-Based Analysis Tool for Porting OpenMP Applications 17

Table 1. Subroutine clusters for the serial BT benchmark based on the code features

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

lhsinit initialize matvec sub add adi exact rhs z solve
exact solution matmul sub error norm compute rhs

binvcrhs rhs norm x solve
binvrhs y solve

Table 2. Cluster center point for the serial BT benchmark based on the code features

Attributes Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

DC accesses 0.0004 452.5 0.0007 84.058 0 1747.5666 1629.2438
DC misses 0.0004 25.5 0 10.2338 0.005 420.6692 858.1244

DTLB L1M L2M 0 0.5 0 0.6202 0 4.5561 37.9751
CPU clocks 0.0008 623.5 0.0012 194.0514 0.005 2718.1974 2913.2836
Ret branch 0.0001 113.5 0.0001 9.2769 0 210.1474 139.8806
Ret inst 0.0005 1227 0.0015 125.8657 0 3485.2936 3125.7264

parallel loops 1.5 21 0 3.3333 0 22.5 15

with the closest Euclidean distance among their feature vectors. Table 2 shows
the list of code features of each subroutine that is used for the clustering. It also
shows the average values of the code features per cluster. In our experiment,
we use the Instruction Based Sampling(IBS) events, since those events are the
key factors which can summarize the memory access pattern (or internal appli-
cation behavior) of each subroutine. Besides, those memory events have direct
link with the optimization which contributes to the final performance. For the
AMD Family 10h processors, although IBS is a statistical method, the sam-
pling technique delivers precise event information and eliminates inaccuracies
due to skid [2]. Using the clustering results we can annotate families of codes
that share important code features for OpenMP optimizations. Figure 2 shows
the resulting annotated serial BT benchmark porting planning tree we get based
on the collected static and dynamic information of the syntactic similarity of
the code and its features. The subroutines marked with the same color have a
greater potential to be optimized similarly if they are syntactically close enough
to each other in the same subtree with small syntactic distance. Our sampling
performance tool was not able to collect hardware counter information for the
subroutines MAIN, verify and set constants, because their execution time was
too short. We excluded these subroutines from further similarity analysis.

After collecting this information, the next step is porting planning. We notice
that x solve, y solve, and z solve fall into two different code features clusters
although their syntactic distance is small, with x solve, y solve in the same code
feature cluster. So we can predict that x solve and y solve can be optimized using
the same OpenMP strategy, while z solve might need a different one since it falls
into cluster 6 based on the code feature clustering. This result suggests that the
user should first attempt to parallelize x solve with OpenMP, then based on this
experience develop a porting strategy that can be applied to y solve. For the

18 W. Ding, O. Hernandez, and B. Chapman

!$omp parallel default(shared)
!$omp& private(i,j,k,m,...,u_exact,rms_local)
!$omp& shared(rms)

do m = 1, 5
rms_local(m) = 0.0d0

enddo
!$omp do

do k = 0,grid_points(3)-1
zeta=dble(k)*dnzm1
do j=0,grid_points(2)-1

eta=dble(j)*dnym1
do i=0,grid_points(1)-1

xi=dble(i)*dnxm1
call exact_solution(xi,...u_exact)

do m = 1, 5
add=u(m,i,j,k)-u_exact(m)
rms_local(m)=rms_local(m)+add*add

enddo
enddo

enddo
enddo

!$omp end do nowait
do m = 1, 5

!$omp atomic
rms(m)=rms(m)+rms_local(m)

enddo
!$omp end parallel

(a) error norm

. . .

!$omp parallel default(shared) private(i,...)
!$omp& shared(rms)

do m = 1, 5
rms_local(m) = 0.0d0

enddo
!$omp do

do k=1,grid_points(3)-2
do j=1,grid_points(2)-2
do i=1,grid_points(1)-2

do m=1,5
add=rhs(m,i,j,k)
rms_local(m)=rms_local(m)+add*add

enddo
enddo

enddo
enddo

!$omp end do nowait
do m = 1, 5

!$omp atomic
rms(m)=rms(m)+rms_local(m)

enddo
!$omp end parallel

(b) rhs norm

Fig. 3. subroutine rhs norm and error norm code snippet of the NAS BT benchmark

case of z solve, a different porting strategy is needed. When we inspected the
corresponding OpenMP version of these solvers, we noticed that the user inserted
an OpenMP do directive at the same loop level of the main computation loop.
The user also used the same privatization and data scoping strategy for the data.
The user chose not to optimize the data access of z solve and left this job to
the compiler. This is perfectly captured by the planning scheme supplied by our
tool. The user used the same parallelization strategy applies for the subroutines
error norm and rhs norm that fall under the same syntactic distance family and
the code feature clusters. Our tool predicted that these two subroutines may be
parallelized by using a similar OpenMP strategy. Figure 3 shows a partial code
listing of those two subroutines after being parallelized with OpenMP (from the
OpenMP version of the benchmark). We observed that the programmer used
exactly the same OpenMP strategy as suggested by our similarity tool.

Based on these findings, we believe that the experiences gained when porting
a subroutine using OpenMP can be used for similar subroutines and benefit
from previous optimizations/transformation strategies. This paper includes a
new approach to define the code similarity based on syntactic structure of the
codes and code features that are relevant for the OpenMP parallelization. If two
codes are similar, there is a high probability that these codes can be ported with
the same OpenMP strategy.

A Similarity-Based Analysis Tool for Porting OpenMP Applications 19

3 Related Work

Similarity analysis is one of the techniques that is used to identify the code
regions that are similar in a given program. One early use was to identify stu-
dents who copied code from others in a programming assignment; later some
researchers applied this technique in the software engineering to detect the re-
dundant code for the code maintenance. This technique proved very effective de-
tecting code clones, especially for a large legacy application developed by a team
of people over a long period, which makes the code maintenance very difficulty.
Besides code maintenance, TSF [4] and other work [10] also developed a notion
of similarity in order to detect related code regions for the purpose of applying
transformations. Such analysis typically examined loop nests, their nesting depth
and certain details of the data usage patterns they contained. There is no precise
definition of similarity between programs [19], in part because the appropriate-
ness of any given metric depends on the context in which it is being used [18].
In addition to syntactic approaches based upon the source text, graph-based
approaches that use data flow and control flow information have been employed
to detect sections of code that are similar. Duplix [11] is a tool that identified
“similar” code regions in programs, the idea is based on finding subgraphs that
are similar stemming from duplicated code in fine-grained program dependency
graphs. In this work, identified subgraphs could be directly mapped back onto
the program code and presented to the user. Walenstein et al. [19] considered
representational similarity and behaviorial similarity. Roy et al. [16] proposed
four categories of clones to differentiate the level of code clones. I [9] presented
a scalable clone detection algorithm that helped in reducing a complex graph
similarity problem to a simpler tree similarity problem.

Although some of these prior efforts have focused on helping to restructure
applications by detecting code clones at the syntactic level, few have attempted
to detect similar code regions that can potentially be optimized in the same
way for a given architecture. Given a code portion that has benefited from a
specific optimization strategy, our goal is to determine other parts of the code
that exhibit, not just a certain level of syntactic similarity, but also similarity
with respect to the code optimization characteristics. We ultimately need to
develop effective porting strategies to automate the task of restructuring codes
to exploit the capabilities of emerging architectures. We note that the cost of
adapting these strategies to a new environment strategies should be less than
the cost of re-development. The Milepost/Collective tuning project [8] proposed
56 metrics for each subroutine. It used probabilistic and transductive machine
learning models to search for similar compiling flags from similar subroutines
based on previous experience on which flags yield good performance. Their pro-
posed method is able to predict the performance, and normally the suggested
flags are good for contributing good performance. However, their approach does
not consider syntactic similarity and code features that are relevant for a specific
optimization or porting goal (i.e. OpenMP parallelization, etc.). In their auto-
mated framework, the user has little input on what optimizations, and the exact

20 W. Ding, O. Hernandez, and B. Chapman

code transformations / optimizations that lead to good performance, other than
compiler passes and flags, are not clear.

4 Design of Our System

In order to automate the application porting analysis, we designed a porting
planning system. Figure 4 shows the overall design of “KLONOS”, our system.
We have adapted an existing compiler, OpenUH, to create a tool that is capable
of detecting similar codes based on static and dynamic information. The user
submits a code to the modified compiler for the code pattern extraction, then
KLONOS extracts “sequence patterns” at a very high level just after the internal
WHIRL tree structure has been generated by the compiler. The compiler then
produces an executable which is run, and performance metrics are collected.
The generated sequences are subsequently input to an alignment engine, which
returns the a syntactic similarity score that is used to construct a family dis-
tance. Then the user extracts other code features such as the number of parallel
loops in the subroutines and hardware counter information which is fed into
the “code feature similarity matching engine” to cluster the subroutines based
on these code features. As a last step, the system analyzes and processes the
family distance tree together with the code feature clustering, and outputs an
annotated distance tree that can be used to develop a porting plan to incre-
mentally add OpenMP in an application. In the pattern extraction phase, we
perform this operation by analyzing the code at this first level of representation,
which is closely related to the source program form called the Abstract Syntax
Tree (AST). The AST is then “lowered” into a representation that is language
independent and may be used to optimize codes written in multiple languages.
Once the extraction is completed, our sequence pattern representation is input
to a sequence alignment program called EMBOSS [1] to calculate the similarity
score which is used to evaluate the degree of syntactic similarity.

Fig. 4. The KLONOS Porting Planning System

A Similarity-Based Analysis Tool for Porting OpenMP Applications 21

In the design of our system we leverage the bioinformatic techniques for mul-
tiple sequence alignments. Compared with other approaches that generate pro-
gram graphs for graph comparison, this gives us the freedom to compare large
code without being constrained by graph size and graph complexity.

5 Implementation

Our implementation is based on OpenUH, an open source research compiler suite
for C, C++ and Fortran 95, OpenMP 3.0 and the IA-64 Linux ABI and API
standards. The compiler first translates different languages to a high level inter-
mediate format (IR), called WHIRL [5]. For each subroutine, we summarize the
intermediate representation (IR) into character sequences by traversing the IR
in post-order. The characters in the sequences represent operators and operands
based on a “node-map” described in [7].

Building the Distance Matrix: After extracting the sequences, we perform a
pair-wise global alignment to compare the degree of syntactic similarity between
the subroutines. For this, we used the Needleman-Wunsch algorithm [12] using
the identity substitution matrix. A score is generated for each pair-wise align-
ment using the value for their percent of identity. A percent of identity of 100%
means the sequences are identical. We used the pair-wise comparison similarity
score for each pair of sequences to calculate a distance matrix by substracting
the percent of identity with 1 and then times 100.

Constructing the Family Distance Tree: There are several algorithms
[15,17,20] that can be used to classify sequences into distance trees. In our case,
we used the Neighbor-joining [17] to build our syntactic distance tree for its sim-
plicity and because it is distance matrix based. This algorithm aims to minimize
the sum of all branch lengths. It starts by generating the distance matrix from
the input of multiple sequence. Then, it contiguously selects two nodes which
have the least distance, and replaces them with another new node until all nodes
have been consumed.

Building the Optimization Planning Tree: According to the generated
family distance tree, sequences with less distance have been clustered into groups.
In other words, similar subroutines have been grouped together based on their
syntactic similarity. The generated family distance tree can precisely give us
the overall code structure relationship over the all subroutines. However relying
solely on the syntactic code structure does not enable capture of the similar code
optimization similarity. More metrics are needed to determine if two codes can be
applied for a given optimization strategy (in our case OpenMP parallelization).

Since loop parallelization information and data accesses are important fac-
tors for codes with OpenMP, we extract this information from the compiler and
gather hardware counter data when we execute the serial version of the code on
the processor. As our experiments were conducted in a hex-core Opteron proces-
sor, so we gathered the following hardware counters using AMD CodeAnalyst:
“DC accesses”, “DC misses”, “DTLB L1M L2M”, “CPU clocks”,“Ret branch”

22 W. Ding, O. Hernandez, and B. Chapman

and “Ret inst”. Once we get those metrics, we use Weka [3] to help us cluster the
subroutines based on these code features, using the K-means algorithm based on
the calculation of the Euclidean distance for each pair of subroutine. After that,
we append the Euclidean distance clustering back to the family syntactic dis-
tance tree, which serves as the optimization guidance. KLONOS predicts that if
two subroutines fall in the same subtree which are also in the same performance
cluster, then there is a high probability that those two subroutines should be
optimized the same way.

Verification of Optimization Strategy: In order to further verify this hy-
pothesis, we use a similar concept for extracting the code sequence. To generate
the optimization distance, we first trace the functions in charge of the OpenMP
transformation. We used an unique letter to denote each function called during
the OpenMP translation phase. Those functions are responsible for translating
a given OpenMP construct. So, the optimization process has been converted to
a flattened sequence for a comparison. Similarly, we can derive the optimization
distance from the OpenMP version of NAS based on the optimization similarity
score as the steps described above. The generated optimization distance is then
used to check if two codes were lowered and optimized in the same way.

6 Experiments

NAS Benchmark-3.3 has nine benchmarks. We focused on the BT, CG, FT, MG
and SP, UA because they are written in Fortran. KLONOS is able to support
codes C/C++ and Fortran, but we have only verified it with Fortran at this stage
in our experiment. As described in Section 5, we first extract all the subroutine
sequence patterns and collect the static and dynamic program features which
include hardware counter information. We then use this information to build
the annotated distance tree for optimization planning support.

(a) Syntactic and optimization distance
for a pair of subroutines

(b) Percentage diagram for the syntactic
distance

Fig. 5. NAS Benchmark-3.3 Experimental result

A Similarity-Based Analysis Tool for Porting OpenMP Applications 23

In Section 2, we explained how we used the similarity technique to find the sim-
ilar porting strategy which could can be applied to the similar subroutines inside
the BT benchmark. Due to the space limitations, we are not able to the list all the
family distance trees and code feature clusters for the rest of the five benchmarks.
However, in Figure 5, all the pair-wise subroutines’ comparison from the six bench-
marks including the BT are shown. Each dot inside this diagram refers to a pair of
subroutines with respect to their syntactic and optimization distance. The x axis is
the syntactic distance which shows the syntatic distance between a pair of subrou-
tines, and the y-axis is the optimization distance used to represent the optimization
similarity of the comparison of two subroutines.

According to Figure 5(a), we observe that a syntactic distance of 50 is an
appropriate threshold for the NAS benchmark. For the subroutine pairs with a
syntactic distance less than 50, they are more likely to have an identical OpenMP
optimization strategy. Figure 5(b) shows the percentage of subroutine pair with
their optimization distance equals to zero when their syntactic distance are less
than 50, 60, 70 and 80 respectively. When the subroutine pairs have syntactic
distance less than 50 (or a percent of similarity score is greater than 50), we
found that they all optimized in the same way with OpenMP. However only
90 percent of the subroutine pairs are optimized in the same way when their
syntactic distance is less than 60. The optimization strategy starts to change
when the syntactic distance goes beyond 50. And this trend continues, as the
code structure further diverges, the optimization similarity keeps decreasing.
This is generally true that different subroutines are optimized differently. Back
to the generated family distance tree, we verified that all the subroutine pairs,
which classified into the same syntactic and code feature clusters, used the same
optimization strategy with OpenMP as long as their syntactic distance is less
than 50. We also observe that for some cases they use the same optimization
strategies although they diverges dramatically from each other.

7 Conclusions and Future Work

We have further expanded the notion of code similarity by exploring different
dynamic code metrics for similarity in the context of accurately helping users
port their codes to a multicore system using OpenMP. We use the concept of
syntactic distance to check codes for the degree of similarity in their syntactic
structure. We then extract static and dynamic program features to describe the
parallelism and data accesses of the codes. Finally, we cluster the codes based
on these code features, and annotate the family distance tree, where codes that
belong to the same family and cluster can be ported in the same way with
OpenMP. We validate our results with the NAS parallel benchmarks.

Future work will include exploring whether two similar codes maintain their
syntactic similarity during critical compilation phases inside a compiler. If this
new measure is utilized, we can guarantee that two similar codes can be opti-
mized in the same way by the user or compiler on a target platform. We will
also explore the use of code feature sets that are relevant to a given optimization
goal (i.e. porting by using OpenMP or GPU directives.).

24 W. Ding, O. Hernandez, and B. Chapman

References

1. Emboss: The european molecular biology open software suite (2000)
2. Codeanalyst user’s manual (2010)
3. Machine Learning Group at University of Waikato. Weka 3: Data mining software

in java, http://www.cs.waikato.ac.nz/ml/weka/
4. Bodin, F., Mével, Y., Quiniou, R.: A user level program transformation tool.

In: International Conference on Supercomputing (July 1998)
5. Open64 Compiler. Open64 compileri, whirl intermediate representation,

http://www.mcs.anl.gov/OpenAD/open64A.pdf

6. Ding, W., Hsu, C.-H., Hernandez, O., Chapman, B., Graham, R.: Klonos:
Similarity-based planning tool support for porting scientific applications. Concur-
rency and Computation: Practice and Experience (2012)

7. Ding, W., Hsu, C.-H., Hernandez, O., Graham, R., Chapman, B.M.: Bioinspired
similarity-based planning support for the porting of scientific applications. In: 4th
Workshop on Parallel Architectures and Bioinspired Algorithms, Galveston Island,
Texas, USA (2011)

8. Fursin, G., Temam, O.: Collective optimization: A practical collaborative approach.
ACM Transactions on Architecture and Code Optimization

9. Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: Proceedings
of the 30th International Conference on Software Engineering, pp. 321–330. ACM
(2008)

10. Kessler, C.: Parallelize automatically by pattern matching (2000)
11. Krinke, J.: Identifying similar code with program dependence graphs. In: WCRE,

p. 301. IEEE Computer Society (2001)
12. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

13. OpenMP: Simple, portable, scalable SMP programming (2006),
http://www.openmp.org

14. The OpenUH compiler project (2005), http://www.cs.uh.edu/~openuh
15. Sokal, R., Michener, C.: A statistical method for evaluating systematic relation-

ships. University of Kansas Science Bulletin 38, 1409–1438 (1958)
16. Roy, C.K., Cordy, J.R.: An empirical study of function clones in open source soft-

ware. In: Proceedings of the 2008 15th Working Conference on Reverse Engineering,
Washington, DC, USA, pp. 81–90 (2008)

17. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

18. Smith, R., Horwitz, S.: Detecting and measuring similarity in code clones.
In: International Workshop on Software Clones (March 2009)

19. Walenstein, A., El-Ramly, M., et al.: Similarity in programs. In: Duplication, Re-
dundancy, and Similarity in Software. Dagstuhl Seminar Proceedings (April 2007)

20. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155(3760),
279–284 (1967)

http://www.cs.waikato.ac.nz/ml/weka/
http://www.mcs.anl.gov/OpenAD/open64A.pdf
http://www.openmp.org
http://www.cs.uh.edu/~openuh

Array-Based Reduction Operations

for a Parallel Adaptive FEM

Martina Balg1, Jens Lang2, Arnd Meyer1, and Gudula Rünger1

1 Department of Mathematics, Chemnitz University of Technology, Germany
{martina.balg,arnd.meyer}@mathematik.tu-chemnitz.de

2 Department of Computer Science, Chemnitz University of Technology, Germany
{jens.lang,gudula.ruenger}@cs.tu-chemnitz.de

Abstract. For many applications of scientific computing, reduction op-
erations may cause a performance bottleneck. In this article, the per-
formance of different coarse- and fine-grained methods for implementing
the reduction is investigated. Fine-grained reductions using atomic oper-
ations or fine-grained explicit locks are compared to the coarse-grained
reduction operations supplied by OpenMP and MPI.

The reduction operations investigated are used for an adaptive FEM.
The performance results show that applications can gain a speedup by
using fine-grained reduction since this implementation enables to hide
the reduction between calculation while minimising the time waiting for
synchronisation.

1 Introduction

For applications of parallel scientific computing, reduction operations play an
important role. In many cases, the performance of reduction operations, which
aggregate data located on different processors to a common result datum using a
specified operation, is crucial to the overall performance of the application. One
example is the adaptive Finite Element Method (FEM) [1] applied to deforma-
tion problems (1) which is considered in this article.

div(σ(u)) + ρ f = 0 with appropriate boundary conditions. (1)

In the adaptive FEM, the created mesh is refined stronger around critical points
which allows, compared to total refinement, more exact results within the same
execution time. In order to being able to process large problems, a fast reduction
operation is needed. The basic concept of this FEM is the discretisation of the
domain Ω with hexahedral elements el and the approximation of all functions
as a linear combination of linear or quadratic ansatz functions Ψk:

u(X) ≈ uh(X) =
∑NX

k=1 u
(k)Ψk(X) . (2)

Hence, every element el consists of 6 faces, 12 edges and 8, 20 or 27 element
nodes X(k) and all Ψk(X) are defined by the degrees of freedom of each element,
i.e. by their function value in each element node. Applying this discrete ansatz
to (1) leads to a discrete linear system of equations:

Au = b (3)

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 M. Balg et al.

where the vector u consists of all u(k) and represents the solution u. A denotes
the system matrix, called stiffness matrix, and b the right-hand side, called load
vector. Using the restriction of the ansatz for each element, the given problem
decomposes into a sum of element-wise contributions:

A =
∑

el L
t
elAelLel and b =

∑
el L

t
elbel (4)

with appropriate projections Lel and Lt
el . So, it is convenient to just compute

all Ael and bel instead of assembling the whole stiffness matrix and load vector.
The adaptive FEM investigated executes the following steps consecutively un-

til a given accuracy is reached: (I) adaptive, instead of total, mesh refinement,
(II) assembly of the stiffness matrices, (III) solution of a linear system of equa-
tions with the conjugate gradient method which involves a reduction operation,
and (IV) error estimation for next refinement. Steps (II) and (III) are available
in a parallel implementation. Step (III) is investigated in this article.

The main goal of this article is to optimise the execution time of the FEM. The
contribution of this article is the optimisation in the reduction phase of step (III)
by introducing fine-grained reduction. Several implementations of the reduction
are investigated in isolation, as well as in the context of the adaptive FEM.
Examining the background shall enable to generalise the findings for transfer
to related problems. Section 2 describes the parallel solution of linear systems
of equations. Section 3 proposes variants of the fine-grained reduction. Their
implementations in OpenMP are given in Sect. 4. Section 5 shows experimental
results. Section 6 discusses related work and Sect. 7 concludes the article.

2 Solution of Linear Systems of Equations

Step (III) of the adaptive FEM is performed as follows [1]: The conjugate gradient
method [9] is used for solving the linear system of equations (3). This iterative
method minimises the residuum r[n] := Au[n] − b along a corresponding search
direction in each step starting from an initial solution u[0]. Each iteration produces
a correction term which generates an improved approximated solution u[n].

According to Formula (4), the matrix A is composed of the element stiff-
ness matrices Ael . This leads to a sparse structure that is exploited to compute
products of the type

y[n] = Au[n] . (5)

The projector Lel converts u[n] into a vector uel containing only those entries
that belong to the nodes of el, i.e.:

uel = Lelu
[n] . (6)

Ael is applied to uel in order to create the element solution vector y
el
:

y
el
= Aeluel . (7)

The vector y
el

is then interpolated to the whole length of y by applying the

transposed projector Lt
el and added to the overall solution vector y[n]:

y[n] =
∑

el L
t
elyel . (8)

Array-Based Reduction Operations for a Parallel Adaptive FEM 27

2.1 Data Structures

Each element stiffness matrix Ael is symmetric and is stored column-wise as a
packed upper triangular matrix (BLAS format TP [2]). The values for the nodes
are stored consecutively. Each node needs ndof values if there are ndof degrees of
freedom (dof). When considering three-dimensional deformation problems with
3 degrees of freedom in 27 element nodes, the element stiffness matrix has a size
of 81× 81. Correspondingly, the size of the vectors xel and y

el
is 81. While the

size of the element-related data structures Ael , xel and y
el

is constant over the
whole runtime of the FEM, the size of the overall data structures u, b and y
increases with each refinement step as the number of elements increases. The
size of the overall data structures is proportional to the number of elements and
can be up to some hundreds of thousands.

The element solution vectors y
el

are added to the overall solution vector y

according to Formula (8) where the projector Lt
el defines to which entry of y

an entry of y
el

is added. For memory efficiency, the implementation does not
store the projector as a large matrix but uses a separate array for each element
el for this assignment. In Fig. 1, which illustrates this principle, this array is
represented by the arrows from the source entry in y

el
to the target entry in y.

The figure also illustrates that each node, represented by a square, consists of 3
degrees of freedom. When calculating Formula (8), the corresponding location
in y is looked up in the array for each entry of y

el
. To each entry of y, entries

from two y
el

are added if and only if this node is part of these two elements.

y

y
el1

y
el2 · · ·

Lel

Fig. 1. Summation of element solution vectors y
el
to the overall solution vector y using

the projection of Lel

2.2 Parallelisation

The parallelisation of the FEM method described exploits that the calculations
of Formula (7) are independent of each other. Each element is assigned to one
processor p of the set of processors P which calculates (6) and (7). For the result
summation in (8), a local solution vector y◦, which has the same size as y, is

used on each processor. The part of non-null entries in y◦ is greater than 1
p and

they need much less memory than the element stiffness matrices so that they
can be stored in a dense format. After Formula (8) has been calculated on all
processors p ∈ P , the local solution vectors y◦ are added to the overall solution
vector y, i.e.

y =
∑

p∈P y◦,p , (9)

where y◦,p denotes the local solution vector of processor p in this summation.
Formula (9) is the reduction being optimised in this work.

28 M. Balg et al.

The SPMD-style parallel algorithm calculating Formula (5), i.e. one iteration
of approximating the solution of (3), is shown in Alg. 1. The algorithm receives
the element stiffness matricesAel and the projectors Lel for all elements el as well
as the approximation u for the solution of the linear system of equations (3) as
input and returns the vector y as output. In this algorithm, y is a shared variable;
all other variables are private, i.e. only accessible by the processor owning them.
After setting y to zero (Line 1), the calculation of Formulas (6) to (8) is executed
for each element (Lines 4 to 7) in a parallel section. The reduction operation at
the end of the parallel section (Lines 8 to 10) adds the local solution vectors y◦

to the overall solution vector according to (9). In order to avoid conflicts when
accessing y, this addition is performed within a critical section. The absence of
conflicts could also be ensured by other methods, for example by a global barrier
in Line 8, followed by an arbitrary reduction algorithm. In any case, after the
barrier operation, only reduction, and no computation, is performed.

Input: Ael , Lel for all el , u
Output: y

y := O // shared vector y1

begin parallel2

y◦ := O3

foreach element el do4

xel := Lelu5

y
el
:= Aelxel6

y◦ := y◦ + Lt
elyel

7

begin critical section8

y := y + y◦9

end critical section10

end parallel11

Algorithm 1. Parallel calculation of (5)

Input: Ael , Lel for all el , u
Output: y

y := O // shared vector y1

begin parallel2

foreach element el do3

xel := Lelu4

y
el
:= Aelxel5

y◦ := LT
elyel

6

foreach entry i of y◦ with7

y◦[i] �= 0 do

atomic add(&y[i],8

y◦[i])

end parallel9

Algorithm 2. Parallel calculation of (5)
with atomic addition of y

3 Fine-Grained Reduction

In contrast to the coarse-grained reduction in Alg. 1, which locks the whole vec-
tor y, the reduction can also be implemented in a fine-grained way. Fine-grained
reduction means that each update of a vector entry is synchronised separately.
Thismethod allows to interleave reductionwith computation and enablesmultiple
threads to access y concurrently if they are processing different entries. Blockings
due to concurrent write accesses to an entry of y may only occur for nodes shared
by elements stored on different processors. This is true only for a small part of the
nodes. Furthermore, the implementation does not need to store y◦ explicitly. In
contrast to a sequential implementation, the order of writes to y is not defined.
However, the addition is commutative and y is only read after finishing the reduc-
tion. Hence, the order in which the elements are processed is irrelevant.

Two methods for the fine-grained synchronisation of updates of the overall
solution vector y are investigated: atomic operations and fine-grained locks.

Array-Based Reduction Operations for a Parallel Adaptive FEM 29

3.1 Atomic Operations

Atomic operations, which combine several semantic instructions in one non-
preemptible function, can be implemented in hardware or in software. Hardware-
supported atomic operations are generally more efficient than operations imple-
mented in software as the thread synchronisation of the software implementation
is very complex.

Use of Atomic Operations. Let the function atomic add(double* a, double
b) be a function which adds the value of b to the value which a points to in
a non-preemptible way. Algorithm 2 uses this function for an alternative im-
plementation of Alg. 1: Instead of reducing the local solution vectors y◦ to the
overall solution vector y globally at the end of the parallel execution (Lines 8
to 10 in Alg. 1), each vector entry of y◦ is now added individually to the corres-
ponding entry of y. Each update of an entry is synchronised by using an atomic
addition operation (Line 8 in Alg. 2).

Atomic Operations Using Compare & Swap. For many operations, such
as addition, subtraction or logical operations, there exist atomic hardware in-
structions on most common platforms. If, however, no such atomic hardware
instruction exists for the operation required, it has to be emulated in software.
For this emulation, the atomic compare & swap instruction (CAS), which is avail-
able on most platforms, can be used.

bool CAS(T *location, T oldVal, T1

newVal)
begin2

begin atomic3

if *location == oldVal4

then
*location = newVal;5

return (*location ==6

oldVal);
end atomic7

end8

Algorithm 3. Compare & swap accord-
ing to [6]

void atomic add(double *sum,1

double a)
begin2

repeat3

double oldSum = *sum;4

double newSum = oldSum5

+ a;
until CAS(sum, oldSum,6

newSum) ;
end7

Algorithm 4. Emulation of an atomic
addition using compare & swap

In this article, the compare & swap instruction as defined in Alg. 3 is used:
First, the value of the variable oldVal is compared to the value of *location. If
these values are equal, the value of newVal is written to the memory location
which location points to. The return value of CAS is the result of the comparison.

Algorithm 4 shows how any binary operation can be emulated using the atomic
CAS operation taking the addition as an example [4]: The old value of the result,
*sum, is stored in the variable oldSum. This variable is used to calculate the
new value newSum. If the memory location which sum points to has not been
altered by another processor intermediately, newSum is written to this location.
Otherwise, the operation is repeated with the current value of *sum.

30 M. Balg et al.

int* locks[n locks]; // initialise with 01

void lock(int i)2

begin3

while (true) do4

int lock status = atomic add(5

&locks[i % n locks], 1);6

if (lock status == 0) then7

break;8

unlock(i);9

usleep(1);10

end11

void unlock(int i)12

begin13

atomic add(14

&locks[i % n locks], -1);15

end16

Algorithm 5. Implementation of the functions lock() and unlock()

3.2 Fine-Grained Locks

Optimising the granularity of locks for given conditions has been investigated for
a long time [10]. In this subsection, a fine-grained locking technique is presented
which uses a separate locking variable for a small number of entries of the solution
vector y instead of always locking the whole vector y as in Alg. 1. Before each
access to an entry i of y, the corresponding lock is acquired by calling lock(i);
after the access it is released by calling unlock(i). Line 8 in Alg. 2 is replaced by
the instruction y[i] := y[i]+y◦[i], surrounded by the lock and unlock statements.

The implementation of the functions lock() and unlock() is shown in Alg. 5.
n locks lock variables are stored in the array locks. The parameter of lock()
and unlock() is the index of the data array entry to be accessed. The cur-
rent thread attempts to acquire the lock corresponding to the given index by
incrementing the lock variable. If this is successful, lock status is equal to zero.
Otherwise, the attempt is undone by calling unlock() and another attempt to
acquire the lock is made. The function unlock() releases the lock by atomically
decrementing the value of the lock variable by 1. Section 5.2 investigates which
values should be chosen for n locks. The instruction usleep(1) in Line 9 avoids
livelocks by suspending the current thread for one microsecond if acquiring the
lock fails.

4 Implementation

Solving the linear system of equations (3) is implemented in the function ppcgm
in the FEM investigated. The parallel section of the OpenMP implementation
is shown in Listings 1 and 2. In Listing 1, the reduction of the private array
Y is performed by OpenMP when leaving the parallel section. In contrast, in
Listing 2 each access to the shared array Y is performed in an atomic way so
that the reduction operation at the end of the parallel section can be avoided.

The loop in Line 6 of the source code of the Listings 1 and 2 runs over all ele-
ments which have been assigned to the current processor. The calculation of xel

Array-Based Reduction Operations for a Parallel Adaptive FEM 31

1 real*8 Y(N),U(N),El(N,Nnod*Ndof)
2 real*8 Uel(Nnod*Ndof),Yel(Nnod*Ndof)
3 integer L(N),i,j,k,Kn,N,Ndof ,Nel ,

Nnod
4 Y = 0d0
5 !$omp parallel reduction(+:Y)
6 do k=1,Nel
7 call UtoUel(Ne0,Ndof ,Uel ,U)
8 call DSPMV(’l’,Nnod*Ndof ,1.0d+0,

El(k),Uel ,1,0D+0,Yel ,1)
9 do i=1,Nnod

10 Kn = L(i)*Ndof
11 do j=1,Ndof
12

13 Y(Kn+j) = Y(Kn+j) + Yel(Ndof
*(i-1)+j)

14 end do
15 end do
16 end do
17 !$omp end parallel

Listing 1. Implementation of ppcgm in
OpenMP using coarse-grained reduction

1 real*8 Y(N),U(N),El(N,Nnod*Ndof)
2 real*8 Uel(Nnod*Ndof),Yel(Nnod*Ndof)
3 integer L(N),i,j,k,Kn,N,Ndof ,Nel,

Nnod
4 Y = 0d0
5 !$omp parallel
6 do k=1,Nel
7 call UtoUel(Ne0 ,Ndof ,Uel,U)
8 call DSPMV(’l’,Nnod*Ndof ,1.0d+0,

El(K),Uel ,1,0D+0,Yel ,1)
9 do i=1,Nnod

10 Kn = L(i)*Ndof
11 do j=1,Ndof
12 !$omp atomic
13 Y(Kn+j) = Y(Kn+j) + Yel(Ndof

*(i-1)+j)
14 end do
15 end do
16 end do
17 !$omp end parallel

Listing 2. Implementation of ppcgm
in OpenMP using fine-grained reduction
with atomic addition

(Line 5 in Alg. 1) is shown in Line 7 in the source code. The followingmatrix-vector
multiplication is performed by the BLAS routine DSPMV. The addition of the y

el
to

y◦ (Line 7 in Alg. 1) is performed in lines 9 to 15 of the source code. The variable
Kn (Line 10) contains the index of Y to which the current node of Yel is added.
This assignment, which is defined by Lel in Alg. 1, is stored in the array L in the
source code. The private arrays Y of all threads, that contain the intermediate res-
ults, are added to the shared array by OpenMP at the end of the parallel section
in Line 17. This section corresponds to the lines 8 to 10 in Alg. 1.

In contrast, Y is a shared variable in Listing 2. In Line 13, each thread writes
its results directly to the shared array Y without using an intermediate array. The
write operation is synchronised by the atomic OpenMP statement in Line 12
which corresponds to Line 8 in Alg. 2.

5 Experiments

In synthetic tests, the execution time of the different implementation variants
of the reduction operation have been investigated. Also, the actual implementa-
tion of the FEM was investigated using an example object as input to explore
which speedup can be achieved if the reduction performed by the different im-
plementation variants and in order to find a suitable number of locks for the
implementation variant presented in Sect. 3.2.

For the experiments a 24-core shared-memory Intel machine with 4 × Intel
Xeon X5650 CPUs @ 2.67 GHz and 12 GB of RAM and a 24-core AMD machine
with 4 × AMD Opteron 8425 HE CPUs @ 2.1 GHz and 32 GB of RAM have
been used. For the tests with the actual FEM implementation, the example
object bohrung, which represents a cuboid with a drill hole, has been used, see
Fig. 2. The object initially consist of 8 elements and hence of 32 nodes.

32 M. Balg et al.

Fig. 2. Example object bohrung in initial state and after 3 refinement steps

5.1 Synthetic Tests

A first test investigated how many CPU clock cycles the AMD machine needs
for performing an integer addition a := a+ b in the following scenarios: (i) a is
a private variable for each thread, (ii) a is a shared variable updated without
synchronisation, possibly leading to a wrong result, (iii) a is a shared variable
with updates synchronised by (iii-a) an atomic hardware operation, (iii-b) an
atomic operation emulated using compare & swap, or (iii-c) explicit locks. A
loop performing 100 000 additions was used for the measurement. This loop
was executed once by a single thread and once by 24 threads in parallel. The
execution time of the loop was measured using hardware performance counters
accessed via the PAPI library [3].

The results of this test are shown in Fig. 3a. The value for using a single
thread shows how many clock cycles are needed in any case for performing the
addition and, if applicable, the synchronisation operation. The value for using
24 threads shows the behaviour of the execution time when there are concurring
accesses. If private memory is used, the execution time decreases to 1

24 of the
original value as the addition can be performed in parallel without any conflicts.
If shared memory is used without synchronisation, the execution time increases
as the updated value of the variable has to be propagated to the caches of
all processors, i.e. they have to be kept coherent. If the atomic add hardware
instruction is used, the execution time increases as all writes to the result have
to be serialised. The increase of the execution time for the emulated atomic
instruction using the compare & swap operation is even larger as in the case
of conflicts, one thread has to wait using busy waiting for the other threads to
finish their write operations. If explicit locks are used, only short waiting times
occur, resulting in an execution time decrease to approximately 1

15 .
In a second test on the same AMD machine, a certain amount of computation

was performed between two addition operations. The duration of this additional
computation was varied. The results for the scenarios (i)–(iii-c) as defined above
are shown in Fig. 3b. The curves show the execution time needed by 24 threads
for 15 million addition operations on one variable including the time for the
additional computation. The time for the additional computations is shown in

Array-Based Reduction Operations for a Parallel Adaptive FEM 33

0

20

40

60

80

100

120

(i)

(ii)

(iii-a)
(iii-b)
(iii-c)

ex
ec
u
ti
o
n
ti
m
e
p
er

d
a
tu
m

[c
y
cl
es
]

1 thread

24 threads

(a) Number of clock cycles needed
by the addition for different imple-
mentation variants

0

1

2

3

4

5

6

7

0 200 400 600 800 1000
ex

ec
u
ti
o
n
ti
m
e
[s
ec
o
n
d
s]

clock cycles of additional calculation

(i)

(ii)

(iii-a)

(iii-b)

(iii-c)

(b) Execution time for addition operations
with additional computation between two
operations

Fig. 3. Execution times for addition operations on a single memory location: (i) using
private memory, (ii) with unsynchronised access, (iii) with synchronised access using
(iii-a) an atomic add machine instruction, (iii-b) compare & swap, (iii-c) locks

the abscissa. The use of private memory, i.e. without synchronisation, results
in a straight line. Compared to that, the synchronised or unsynchronised access
to a shared variable causes extra costs. The results indicate that no substantial
extra costs are introduced if the atomic hardware operation is used with an
additional computation of at least 300 clock cycles or, if the atomic operation
using compare & swap is used, with an additional computation of at least 700
clock cycles between two operations. In contrast, the execution time increases
rapidly when using the explicit lock.

5.2 Fine-Grained Explicit Locks

The method of using fine-grained explicit locks presented in Sect. 3.2 has been
investigated concerning the execution time of the function ppcgm when vary-
ing the number of lock variables with the example object bohrung. Figure 4
shows the execution times for three refinement levels of the FEM consisting
of 28 152, 58 736 and 84 720 nodes with data array sizes of 84 456, 176 208 and
254160, respectively: For all array sizes, the execution time decreases rapidly
with an increasing number of lock variables until a value of approximately 240
is reached, whereas it remains nearly constant afterwards. In order to minimise
memory consumption, it seems reasonable not to provide more than 240 lock
variables.

34 M. Balg et al.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

ex
ec
u
ti
o
n
ti
m
e
[s
ec
o
n
d
s]

number of locks

28152 nodes
58736 nodes
84720 nodes

Fig. 4. Execution time of the function ppcgm depending on the number of lock variables
used for different array sizes

5.3 Reduction Operations in the FEM Implementation

The reduction operation for solving the linear system of equations (3) has been
implemented in the function ppcgm FEM investigated in the following variants:

(a) coarse-grained reduction according to Alg. 1
– using a distributed memory model in MPI (MVAPICH2 1.5.1),
– using a shared memory model in OpenMP (GNU Fortran 4.4.7),

(b) fine-grained reduction
– with atomic addition operation using compare & swap according to Alg. 2,
– with explicit locks,
– without synchronisation (potentially producing wrong results).

As there is no hardware instruction for adding double precision floating point
numbers atomically on the available hardware, that variant could not be used.
The results obtained with the example object bohrung for the Intel and the AMD
machines are shown in Fig. 5. The execution times of the OpenMP variant
obtained with GNU Fortran did not differ significantly from results obtained
using the commercial Intel Fortran compiler.

For the parallel implementation of the function ppcgm, which does contain
both, sequential and parallel parts, a speedup between 4 and 6 is achieved for the
variants with coarse-grained reduction, independent of the memory model used.
For the variants with the fine-grained implementation of the reduction using
compare & swap or explicit locks, a speedup of approximately 8 is achieved. This
speedup is equal to the speedup of the variant with an unsynchronised addition
of the results. The results for the variants with fine-grained reduction show that
no additional execution time is required for avoiding memory access conflicts.
As it appears, the time intervals between two write accesses to an element are
large enough to hide the reduction operation between calculations as shown in
Sect. 5.1. The waiting time which occurs when using the coarse-grained reduction
can be eliminated nearly completely by using fine-grained reduction operations.

Array-Based Reduction Operations for a Parallel Adaptive FEM 35

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

sp
ee
d
u
p
(2
4
co
re
s)

refinement step

OpenMP

MPI

compare & swap

locks

unsynchronised

(a) AMD machine

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14
sp

ee
d
u
p
(2
4
co
re
s)

refinement step

OpenMP

MPI

compare & swap

locks

unsynchronised

(b) Intel machine

Fig. 5. Speedup of the function ppcgm when using the different implementation
variants of the reduction operation

6 Related Work

Recent works which deal with reductions investigate the reduction of scalars in
most cases. They often achieve a runtime benefit by combining operations for
implementing the barrier needed by the reduction with the calculation of the
reduction result [11, 12]. [12] performs a tree-like reduction which synchronises
sibling nodes in the tree using busy waiting. Yet, it does not need atomic read-
modify-write or compare & swap instructions. [11] introduces a novel concept of
phaser accumulators which achieves a runtime benefit by separating phases of the
reduction in order to enable overlap between communication and computation.

A molecular dynamics particle simulation, which calculates forces between a
number of atoms, is investigated in [8]. The forces are stored in an array and
each processor calculates a part of each force acting on a particle. The partial
forces are added to the total force acting on the respective particle using a
reduction. Among the investigated implementation variants, the variant utilising
the OpenMP statement atomic performs worst. The variant using the OpenMP
statement reduction performs better, but still worse than two other variants, one
using a private array and one using the BLAS routine DGEMV. The results of [8]
are contrary to the results of this article, where the application benefits from
atomic add instructions to shared arrays. One can assume that this is due to
the memory access pattern of the particle simulation which has more frequent
write operations to the same memory location than the reduction in the FEM.
Similar results where array privatisation yields a performance benefit are, e.g.,
presented in [5] and [7].

36 M. Balg et al.

7 Conclusion

This article investigated several implementation variants of a reduction of arrays
on shared-memory machines. A fine-grained reduction has been compared to
existing implementations of coarse-grained reductions in OpenMP and MPI.

A result of this work is that the operations needed for synchronising write
accesses to a shared vector can be hidden between computations if there is
enough time between the write accesses. In the parallel routine investigated in
detail, the vector being reduced has non-null values for each entry only on a
small number of processors and the write operations to the result vector can be
interleaved with computations. Thus, the condition mentioned above is fulfilled,
and using fine-grained reduction improves the runtime of the adaptive FEM.
The results of Sect. 5.3 show that, in contrast to other works which commonly
suggest array privatisation, also writing directly to shared arrays can be efficient
if fine-grained reduction operations are used.

Acknowledgement. This work is supported by the cluster of excellence Energy-
Efficient Product and Process Innovation in Production Engineering (eniPROD)
funded by the European Union (European Regional Development Fund) and the
Free State of Saxony. This work is also part of a project cooperation granted by
the German Research Foundation DFG-PAK 97 (ME1224/6-2 and RU591/10-2).

References

1. Beuchler, S., Meyer, A., Pester, M.: SPC-Pm3AdH v1.0 Programmers manual.
Preprint SFB393 01-08, TU Chemnitz (2001) (revised 2003)

2. Basic linear algebra subprograms technical (BLAST) forum standard (2001)
3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming

interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

4. Case, R., Padegs, A.: Architecture of the IBM System/370. Commun. ACM 21(1),
73–96 (1987)

5. Gao, D., Schwartzentruber, T.: Optimizations and OpenMP implementation for
the direct simulation monte carlo method. Comput. Fluids 42(1), 73–81 (2011)

6. Greenwald, M.: Non-blocking synchronization and system design. Ph.D. thesis,
Stanford University, Stanford, CA, USA (1999)

7. Liu, Z., Chapman, B.M., Wen, Y., Huang, L., Hernandez, O.: Analyses for the
Translation of OpenMP Codes into SPMD Style with Array Privatization. In:
Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 26–41. Springer, Heidel-
berg (2003)

8. Meloni, S., Federico, A., Rosati, M.: Reduction on arrays: comparison of perform-
ances between different algorithms. In: Proc. EWOMP 2003 (2003)

9. Meyer, A.: A parallel preconditioned conjugate gradient method using domain
decomposition and inexact solvers on each subdomain. Comput. 45, 217–234 (1990)

10. Ries, D., Stonebraker, M.: Effects of locking granularity in a database management
system. ACM Trans. Database Syst. 2(3), 233–246 (1977)

11. Shirako, J., Peixotto, D., Sarkar, V., Scherer, W.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: Proc. IPDPS (2009)

12. Speziale, E., di Biagio, A., Agosta, G.: An optimized reduction design to minimize
atomic operations in shared memory multiprocessors. In: Proc. IPDPS, Workshops
and PhD Forum (2011)

An Efficient High Performance Parallelization

of a Discontinuous Galerkin Spectral Element
Method

Christoph Altmann, Andrea D. Beck, Florian Hindenlang, Marc Staudenmaier,
Gregor J. Gassner, and Claus-Dieter Munz

Institute of Aerodynamics and Gas Dynamics
Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany

{christoph.altmann,andrea.beck,florian.hindenlang,marc.staudenmaier,
gregor.gassner,claus-dieter.munz}@iag.uni-stuttgart.de

http://www.iag.uni-stuttgart.de/nrg

Abstract. We describe an efficient parallelization strategy for the dis-
continuous Galerkin spectral element method, illustrated by a structured
grid framework. Target applications are large scale DNS and LES cal-
culations on massively parallel systems. Due to the simple and efficient
formulation of the method, a parallelization aiming at one-element-per-
processor calculations is feasible; a highly desired feature for emerging
multi- and many-core architectures. We show scale-up tests on up to
131,000 processors.

Keywords: Discontinuous Galerkin, Spectral Element, MPI, Parallel,
HPC.

1 Introduction

For nowadays modern computations, the trend goes towards large scale compu-
tations of turbulent phenomena. When trying to perform large eddy simulations
(LES) or even direct numerical simulations (DNS), efficient numerical codes are
the key requirement. Since todays processor hardware already makes a transition
from multi- to many-core CPUs, efficient parallelization for very large numbers
of processor cores is necessary. Still, schemes that can take on this challenge are
rare. A potentially promising candidate is the explicit discontinuous Galerkin
spectral element method (DGSEM). DGSEM schemes are used in a wide range
of applications such as compressible flows [2], electromagnetics and optics [8],
aeroacoustics [11], meteorology [12], and geophysics [4]. Very easy to code, its
accuracy is very high, especially when being compared to the computational
costs. In general, the locality of a DG scheme makes it an ideal candidate for
parallelization, since only direct von Neumann communication has to be estab-
lished, in other words, the scheme relies only on communication of face neighbors.
The simple step-by-step design of the DGSEM method allows for an highly ef-
ficient latency hiding by overlapping communication and computation. This is

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 37–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.iag.uni-stuttgart.de/nrg

38 C. Altmann et al.

the main ingredient for a successful and competitive scheme. In the following,
we will describe the parallelization of the DGSEM method.

2 Description of the Method

In this section, we briefly describe the discontinuous Galerkin spectral element
method (DGSEM). The key features of the method are:

– Computational domain consists of hexahedral elements
– Equations are mapped to reference element space
– Each element is mapped onto the reference cube element E = [−1, 1]3

– Solution and fluxes are approximated by a tensor-product basis of 1D La-
grange interpolating polynomials

– Volume and surface integrals are replaced by Gauss-Legendre or Gauss-
Legendre-Lobatto quadrature

– Collocation of integration and interpolation points

Consider a system of nonlinear PDEs of the form

Ut +∇ · F (U) = 0, (1)

where U denotes the vector of conservative variables and F (U) the advection flux
matrix. We now define a transformation X(ξ) of Equation (1) into a reference

space ξ = (ξ1, ξ2, ξ3)
T . Equation (1) in reference space reads

J(ξ)Ut(ξ) + ∇̃ · F̃ (U (ξ)) = 0, (2)

where J(ξ) is the Jacobian of the transformation and F̃ being the fluxes, trans-
formed into reference space.We now start our usual DG formulation by multiply-
ing Equation (2) with a test function Φ = Φ(ξ) and integrating over a reference
element E ∫

E

JUtΦdξ +

∫
E

∇̃ · F̃ (U)Φdξ = 0. (3)

To obtain the weak formulation, we integrate by parts the second term as usual

∂

∂t

∫
E

JUΦdξ +

∫
∂E

G̃Φds−
∫
E

F̃ (U) · ∇̃Φdξ = 0, (4)

where G̃ represents a Riemann solution of F̃ ·n at the reference element boundary
since we have two values here, due to our discontinuous ansatz. The solution in
our cells is now approximated as a DG polynomial in tensor-product form as

U (xi) =

N∑
i,j,k=0

Ûi,j,kΨi,j,k (xi) , with Ψi,j,k (xi) = li(ξ1)lj(ξ2)lk(ξ3), (5)

Efficient HPC DGSEM Parallelization 39

with lx(ξy) being one-dimensional Lagrange interpolating polynomials, defined

by a nodal set {ξi}Ni=0. For these nodal points, either Gauss or Gauss-Lobatto
nodes can be chosen. We refer the reader to [5] for more information on which
points to choose. The transformed fluxes F̃ are approximated by an interpola-
tion onto the same nodal points that are used for integration. This interpolation
can be seen as a discrete projection and is exact up to the polynomial degree
of the integration. Because we have nonlinear fluxes and probably a nonlinear
transformation, we will introduce errors, known as aliasing [3]. For more infor-
mation on the DGSEM scheme, the interested reader is referred to [10,9]. Since
the scheme is of tensor product nature, the calculation of the integrals in (5) can
be simplified. This becomes significant in the implementation, overall operation
count as well as in the parallelization capabilities, especially when it comes to
latency hiding.

In two dimensions, Figure 1 shows the location of Gauss points for the ap-
proximation of the numerical flux f∗ for a single element in reference space
ξ = (ξ1, ξ2)T . Once can clearly see the tensor product behavior of the operation.

1

2

f 1, 2

f 1 ,1

U ij

Fig. 1. Location of Gauss points � and boundary fluxes � in 2D

For a detailed specification of the operations count as well as the a memory
footprint estimation of the DGSEM scheme, the reader is referred to [7].

Using the DGSEM method described above, we solve the compressible Navier-
Stokes equations on a structured curvilinear hexahedral mesh and use a standard

40 C. Altmann et al.

explicit low-storage Runge-Kutta time integration. Choosing a structured mesh
simplifies greatly the analysis, parallelization and data structure. However, ge-
ometric flexibility is limited and we are currently developing the data structure
and parallelization to apply DGSEM on unstructured hexahedral meshes, in
combination with a time-accurate local time stepping as e.g. described in [6].

3 Parallelization Concept

Since the focus is on one-element-per-processor calculations, a very efficient way
for parallelization has to be found. We do not want to spend more time on
communication than really necessary. The computational load should also be
minimized when continuing processing the transferred data. We therefore im-
plemented a ping-pong strategy, that minimizes necessary computations as well
as communication. To be able to overlap computation and communication, non-
blocking send and receive operations are used. The described tensor-product
nature of the DGSEM method will hereby help us to do this efficiently, since its
operations can be split dim-by-dim in a very fine-grained manner. This way, we
can use all parts of the DG operator as buffer elements to hide communication
latency.

The communication pattern for a discontinuous Galerkin scheme are limited
to direct-neighbor communication of boundary values for the calculation of the
numerical flux. For the Navier-Stokes equations, the Riemann solvers at the cell
boundaries need left and right values of the state U as well as its gradient ∇U .
Once the neighbor’s values of U and ∇U are obtained, the numerical flux can
be calculated. This part can of course be split into an advective operation (only
requiring U) and an diffusive operation (additionally requiring ∇U). One can
describe this as ping-pong style communication pattern. That pattern minimizes
the operations on each MPI side which is an important aspect in one-element-
per-processor calculations. Since we are having a structured hexahedral grid, we
can use the following communication strategy: Each cell communicates U and
∇U to its right neighbor dim-by-dim in positive spatial direction. This neighbor
then calculates the flux, once the necessary data was received and immediately
starts sending the data back to the left neighbor. This strategy, shown in Figure 2
for a pure advection flux, is then repeated for the other dimensions.

Non-blocking send and receives are used to provide an overlap of communica-
tion and computation. This will only have an effect if the send-receive operations
are buffered by computations in between. We therefor split all operator-parts
dim-by-dim into fine-grained packages to provide a well-matching buffer. For
the first communication direction, we need to use buffer-routines that do not
depend on any of the data that has to be transferred. The other dimensions can
then utilize routines depending on previous completed send-receive operations
as buffers.

Efficient HPC DGSEM Parallelization 41

Fig. 2. Buffered ping-pong communication strategy for the calculation of the advection
flux

4 DGSEM Parallelization in Detail

We will now provide a detailed look into the DGSEM parallelization. To keep
things as simple as possible, all diagrams are being cut after having processed the
first (ξ) direction, since the other directions aremore or less straight forward.To be
able to perform a time update within the DGSEMmethod, we need to go through
two blocks in sequence. We first have to build the gradients of our solution via lift-
ing, using a standard BR1 scheme as shown in [1]. After this block is completed,
we move on with the DG time update by evaluating volume and surface integrals.
For the lifting part, we only need to communicate the state at the domain bound-
aries to be able to calculate the necessary inter-processor flux. For the DG time
update, also the gradients of the state have to be communicated, since we need
them for the viscous flux of the Navier-Stokes equations. In the following, we will
present the calculation-communication pattern of the lifting operator. Figure 3
shows the detailed communication pattern for the BR1 lifting operator.

With the additional send-receive of the gradients, the DG operator is shown
in Figure 4. Since more communication is involved, we use a finer-grained send-
receive buffering as for the BR1 lifting operator. We are not longer separating
buffering dim-by-dim but are instead interweaving the DGSEM operations. For
example, gradients in η-direction are already sent while the numerical flux in
ξ-direction is yet to be calculated. This is important since all send-receive oper-
ations have to be buffered.

42 C. Altmann et al.

Fig. 3. Buffered ping-pong communication strategy for the calculation of BR1 lifting
in ξ-direction

Efficient HPC DGSEM Parallelization 43

Fig. 4. Buffered ping-pong communication strategy for the calculation of the DG
operator

44 C. Altmann et al.

5 Scale-Up Efficiency

Besides the promising fundamental efficiency of the DGSEMmethod, its main ad-
vantages are based on its “high performance computing” capability. The DG al-
gorithm is inherently parallel, since all elements do communicate only with their
direct neighbors via solution and flux exchange. Independent of the local polyno-
mial degree, only exchange of surface data between direct von Neumann neigh-
bors is necessary. Note that the DG operator can be split into the two building
blocks, namely the volume integral – solely depending on element local DOF –
and the surface integral, where neighbor information is needed. This fact helps to
hide communication latency by exploiting local element operations and further re-
duces the negative influence of data transfer on efficiency, as shown in Chapter 3.

Table 3 shows the parallel efficiency for strong scaling tests, where the total
problem size is kept constant, obtained by calculations on the IBM Blue Gene/P
Cluster “JUGENE” at the Jülich Supercomputing Centre (JSC). The specialty
here is the fact that 4096 elements were used in total and the calculation was
distributed up to its maximum onto 4096 processors (reaching one element per
processor!). We reach almost 70% for a polynomial degree of 5. By increasing
the polynomial degree to N = 7, an even better efficiency of 88% was achieved.

Table 1. Strong scaling efficiency [%] of the DGSEM code on JUGENE (IBM Blue
Gene/P), 4096 elements

Nb. of processors 1 8 64 512 2048 4096

N=5, 0.9 mio. DOF - 100.0 96.5 89.1 80.3 73.9
N=7, 2.1 mio. DOF - 100.0 98.3 94.8 88.9 88.2

number of processors

sp
ee

du
p

1000 2000 3000 4000

500

1000

1500

2000

2500

3000

3500

4000

optimal
N=4
N=5
N=6
N=7

Fig. 5. DGSEM strong scaling, polynomial degrees 4 to 7

Efficient HPC DGSEM Parallelization 45

Table 2. Weak scaling of the DGSEM code on JUGENE (IBM Blue Gene/P) N=8,
91, 125 DOF per processor

Nb. of processors 1 8 64 512 2048 4096

Efficiency [%] - 100.0 99.8 99.3 99.2 99.2

number of processors

sp
ee

d
u

p

2768 7768 12768 17768 22768 27768 32768

2768

7768

12768

17768

22768

27768

32768

optimal
periodic
exact

Fig. 6. DGSEM strong scaling using periodic and exact boundary conditions

Figure 5 shows the speedup plot of strong scaling for polynomial degrees from
4 to 7. As expected, the scaling efficiency increases with increasing polynomial
degree, since the workload per DG element rises. In that case, computation takes
more time and thus communication is hidden more efficiently.

Next, Table 2 lists weak scaling results, also obtained on “JUGENE”. Here,
the load per processor is kept constant. As expected, the scaling of such problem
is almost perfect.

To determine the code’s ability for real-life extreme scale computations, addi-
tional studies were made. Especially the influence of boundary conditions had to
be investigated, since the examples above were all set up using periodic bound-
aries, which clearly is no real-life setting. If boundaries are not periodic, no MPI
communication takes place here, so this boundary is cheaper in terms of CPU
time. We were therefore using exact boundaries in the following computations
and compared the outcome with a pure periodic run. This time, we were using
up to 32, 786 processors on “JUGENE”. Because of the limited memory of the
system, a single core run was not feasible any more. We thus started with an
8 core computation. Again, we are finally reaching a one-element-per-processor
calculation. Figure 6 shows the results for this N = 7, 323 elements run.

46 C. Altmann et al.

Table 3. Strong scaling efficiency [%] of the DGSEM code on JUGENE (IBM Blue
Gene/P), 1503 elements, exact boundaries

Nb. of processors 864 2048 6912 16,348 55,296 131,072

N=7, 1.728 billion DOF - 100.1 97.3 96.7 92.8 87.3

We are reaching 89,8% scaling efficiency for the one-element-per-processor
case with periodic boundaries and still 78.6% with exact boundaries. When
looking at the calculation with 4096 DOF per processor, the differences between
these boundary types almost vanish: We then discover 96.9% for the periodic
and 95.1% for the exact case.

To target extreme scale computations, a large strong scaling test up to 131, 072
processors with exact boundaries was set up. The final configuration had 13, 824
DOF per processor, which is a desirable value for real-life computations with the
DGSEM code on JUGENE.

We reach a very good 87.3% strong scaling efficiency for the 131, 072 processor
run and consider the code ready to tackle very large real-life problems.

6 Conclusions and Outlook

We have shown an efficient parallelization of a DGSEM scheme that utilizes the
tensor-product structure of the method to overlap computation and communica-
tion and therefore provides a latency-hiding mechanism. Since we can evaluate
the DG operator dimension by dimension, we can split it into several small parts
that can be evaluated during a pending non-blocking send-receive operation.
With the good parallel results shown in this paper, the DGSEM code is ready to
tackle large scale turbulent problems. To exploit the full potential of the code,
we will focus on LES+acoustics for turbulent jets. Since structured grids imply
limited geometric flexibility, necessary modifications to the parallelization strat-
egy for large scale DGSEM computations on unstructured hexahedral meshes
are currently being developed.

The research presented in this paper was supported by the Deutsche
Forschungsgemeinschaft (DFG), amongst others within the Schwerpunktpro-
gramm 1276: MetStroem and the cluster of excellence Simulation Technology
(SimTech), Universität Stuttgart.

References

1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations. J. Comput.
Phys. 131, 267–279 (1997)

2. Black, K.: A conservative spectral element method for the approximation of com-
pressible fluid flow. Kybernetika 35(1), 133–146 (1999)

3. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamen-
tals in Single Domains. Springer (2006)

Efficient HPC DGSEM Parallelization 47

4. Fagherazzi, S., Furbish, D., Rasetarinera, P., Hussaini, M.Y.: Application of the
discontinuous spectral Galerkin method to groundwater flow. Advances in Water
Resourses 27, 129–140 (2004)

5. Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of
gauss and gauss lobatto discontinuous galerkin spectral element methods. SIAM
Journal on Scientific Computing 33(5), 2560–2579 (2011)

6. Gassner, G.J., Hindenlang, F., Munz, C.-D.: A Runge-Kutta based Discontinu-
ous Galerkin Method with Time Accurate Local Time Stepping. In: Advances in
Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific (2011)

7. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz,
C.D.: Explicit discontinuous galerkin methods for unsteady problems. Computers
& Fluids 61, 86–93 (2012)

8. Kopriva, D., Woodruff, S., Hussaini, M.: Computation of electromagnetic scatter-
ing with a non-conforming discontinuous spectral element method. International
Journal for Numerical Methods in Engineering 53 (2002)

9. Kopriva, D.: Metric identities and the discontinuous spectral element method
on curvilinear meshes. Journal of Scientific Computing 26(3), 301–327 (2006),
http://dx.doi.org/10.1007/s10915-005-9070-8

10. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations.
Springer (2009), http://dx.doi.org/10.1007/978-90-481-2261-5_8

11. Rasetarinera, P., Kopriva, D., Hussaini, M.: Discontinuous spectral element so-
lution of acoustic radiation from thin airfoils. AIAA Journal 39(11), 2070–2075
(2001)

12. Restelli, M., Giraldo, F.: A conservative discontinuous Galerkin semi-implicit for-
mulation for the navier-stokes equations in nonhydrostatic mesoscale modeling.
SIAM J. Sci. Comp. 31(3), 2231–2257 (2009)

http://dx.doi.org/10.1007/s10915-005-9070-8
http://dx.doi.org/10.1007/978-90-481-2261-5_8

Reducing the Memory Footprint

of Parallel Applications with KSM

Nathalie Rauschmayr1 and Achim Streit2

1 CERN - European Organization for Nuclear Research, Switzerland
2 Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

nathalie.rauschmayr@cern.ch

Abstract. In the era of multicore and manycore programming, mem-
ory represents a restrictive resource and it is therefore necessary to share
as much as possible between processes. But in many cases, in which a
parallel execution of an application has never been foreseen, it is diffi-
cult to apply a shared memory model afterwards. The KSM-tool (Kernel
Same Page Merging) provides an easy ad-hoc-solution to reduce the over-
all memory footprint. This paper shows that in the applications of the
LHCb experiment at CERN between 8% and 48 % of memory can be
gained. In addition it will be discussed how to adjust KSM in order to
balance the gain in memory and the additional CPU consumption.

1 Introduction

LHCb is one of the LHC experiments at CERN [14]. The data produced by
the detector is approximately 1.5 PB per year, which has to be processed using
the LHCb applications. According to the size of data this cannot be performed
by using one computing center. Consequently the Computing Grid, provided
by WLCG [2], is used as a platform for data processing, which provides 11
Tier-1 sites, about 150 Tier-2 sites and many Tier-3 sites. Each of those layers
provides a certain set of services, as an example the Tier-1 sites provide not only
computing power but also storage facilities. LHCb runs its applications on 6
Tier-1 sites and about 75 Tier-2 sites. These applications are based on a complex
software framework and the memory consumption plays an important role as it
is very often the reason why grid jobs fail. Worse, it appears that especially
the memory bounded applications of LHCb cannot run efficiently on today’s
hardware of the WLCG, which typically provides 2 GB per core. Consequently
only a subset can be used instead of running on all cores. In order to get a better
efficiency, it would be necessary to share most of the common datasets between
the processes in order to keep the overall memory consumption low. In fact the
software of the LHCb experiment could save a lot of memory, because most of
the preallocated datasets are used in read only mode after initialization and
can be potentially shared between several processes. However the experiment
applications are integrated in a complex software framework, as described in
[11]. It is not trivial to apply a shared memory model without major changes to

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 48–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reducing the Memory Footprint of Parallel Applications with KSM 49

the framework. Here we evaluate the Kernel Same Page Merging (KSM) as an
automatic tool for memory deduplication [4].

The paper is structured as follows. Section 2 gives an overview about KSM.
Section 3 describes how KSM is used and adapted to the test cases. Section 4
introduces the test applications and shows the results. An evaluation of those
is given in section 5, followed by a discussion of possible problems in section
6. Section 7 gives an overview about related work and section 8 concludes the
paper.

2 Overview about KSM

KSM is a Linux kernel module that has been developed for the KVM hypervisor
in order to share system libraries between virtual machines, which are running
similar distributions, as described in [4]. KSM is based on the Linux Copy-On-
Write principle, which means that datasets remain in shared memory as long as
no process writes to them and it works with standard sized 4 kB pages. All pages
are regularly scanned, if the content is equal only one copy is kept in memory.
The scanning can be computing intensive and it is important to tune KSM
to the current workload, which can be done via 2 parameters. The parameters
pages to scan and sleep millisecs define how many pages must be scanned after
a certain period of time and they represent in fact the maximum merging rate.
The standard values are 100 pages and 20 ms which is equal to a maximum
merging rate of (100 · 4

1024 MB · 1
0.02 s) = 19.5 MB/s.

2.1 Basic Principle

In a first step allocated memory must be registered for being potentially shared
by KSM. Afterwards KSM builds two internal data structures, the stable and
unstable tree [4]. Those are implemented as a red-black tree, which is a binary
search tree and allows modifications with a complexity O(log2n), where n is
the cardinality of the dataset [5]. The stable tree contains all pages, that are
shared by KSM and thus they are write protected. The unstable tree contains
pages whose contents did not change for a certain period and which are therefore
registered as potential candidates for sharing. When a new page is scanned, a
checksum is calculated in order to estimate in the next scan whether a page
was modified. If not, the content will be bytewise compared with pages from the
stable and unstable tree.

2.2 Monitoring KSM

Since Linux kernel version 2.6.32 KSM is based on the madvise kernel interface
[12], a tool for memory handling. A new parameter was introduced, that indicates
whether a page is mergeable and must be scanned by KSM. The page can then
be registered as:

– pages sharing: amount of memory saving
– pages unshared: content is not equal to any of the already registered pages

50 N. Rauschmayr and A. Streit

– pages shared: already shared
– pages volatile: content changes too often

A quick example shall illustrate how the pages are handled. Assuming that 2
processes allocate two separate arrays with a size of 107 zeros, then KSM will

scan about (107 · sizeof (int)
1024 kB) · 1

4 = 19531 pages. As all have the same
content, only one of them is kept and the rest is removed. pages sharing shows
a value of 19530 pages and pages shared a value of 1, because only one page
is kept in shared memory. Consequently a high ratio between pages sharing to
pages shared indicates a good efficiency of KSM.

3 Setting Up KSM

In order to use KSM from inside an application, the kernel functionmadvise must
be called, which can be either done in the software itself for certain objects or as
a malloc-hook. The disadvantage of the latter approach is that KSM has to scan
every page, which has been allocated by the application. Therefore the merging
rate has been adapted to the worst case scenario. The LHCb applications consist
of three software packages which have different system requirements. Analysis
jobs are usually heavily memory bounded. Their processes usually reach 1.7 GB
during the initialization and increase during the processing loop. Therefore the
worst case scenario on an 8-core machine is caused by a parallel analysis job
running with 8 worker processes and allocating memory with a rate of 40 MB/s
per process. This concludes that a merging rate of 8 · 40MB/s = 320MB/s
must be already sufficient. For the tests the value has been set a bit higher to
20 ms and 3000 pages which is equal to a merging rate of 585 MB/s. In order
to compare the results a second scenario has been used in which the values have
been set to 20 ms and 106 pages which presents a rate of 190 GB/s. All 4 different
types of pages, as listed in section 2.2, have been monitored during the execution
of the tests.

4 Execution of Test Applications

The LHCb experiment uses different kinds of data intensive processing applica-
tions, which are described in [11]. The following three ones have been used for
testing KSM:

– Gauss: It represents the simulation software of the LHCb experiment. In
a first step random seeds and numbers are generated which are used for
producing randomized particles. After that the response of the detector is
simulated. This software is normally CPU bounded; the physical memory
consumption is only 1.1 GB and does not increase during event processing
[6].

– Brunel: The application reconstructs particles and calculates their decays
via pattern recognition and clustering algorithms. The physical memory

Reducing the Memory Footprint of Parallel Applications with KSM 51

consumption starts with 1.2 GB and usually increases depending on the
processed datasets. Histograms and counters for each type of particle are
calculated and written out.

– DaVinci: This application provides analysis tools which are used for descrip-
tive statistics on the physics data, which are then written into file buffers.
As that software has to handle several input and output buffers, it is mem-
ory bounded and those kind of jobs run very often out of memory. Without
writing output files the physical memory consumption starts at about 1.7
GB and increases during event processing.

The test environment consist of two nodes, where each node is an Intel Xeon
processor (L5520) with 2.26 GHz. Thus the system provides 16 logical and 8
physical cores in total. As hyperthreading is switched off the maximum number
of processes for the tests has been limited to 8. Furthermore the system provides
24 GB RAM, two 32 kB L1 caches per core, one 256 kB L2 cache per core and
one 8192 kB L3 cache per node. The machine has been running the current
CERN Scientific Linux 6 [1]. Furthermore the parallel prototype of the LHCb
framework has been used with different number of worker processes, namely 2,
4 and 8. In the beginning of this section results reached within the simulation
application are shown, after that the results of parallel analysis job and in the end
different merging rates are compared. And as KSM does not only reduce memory
of parallel processes but also inside a single instance, the applications have also
been executed in serial mode. KSM influences in fact the Proportional Set Size
(PSS) of processes. This value indicates the real physical memory consumption
as it accounts the memory in such a way that shared pages are only accounted
partly. It means when a 4 kB page is shared by 4 processes then the PSS value
would be 1 kB and the Resident Set Size (RSS) would be 4 kB for each process.

Figure 1 shows the monitoring results of KSM for a parallel execution of a
Gauss job with 2 worker processes. It is obvious that after the phase of initial-
ization, a stable value of pages sharing is reached. That concludes that most of
the allocated memory is not modified during the main loop of the application.
Indeed for simulating collisions most of the datasets are read only, such as the
magnetic field map and the geometric description of the detector. These datasets
are usually big and can be shared between parallel processes. Furthermore it ap-
pears that the accounting of pages volatile and pages unshared influences each
other, as a positive peak on the one side causes a negative peak on the other
side. These fluctuations are seen in the memory regions to which the processes
write quite often and which cannot be merged, because the content changes too
often. It is likely that a single peak represents a preallocated file buffer, which is
listed as pages volatile as soon as a process writes to it and it is then registered
as pages unshared after that. Neither pages volatile nor pages unshared reduce
the memory footprint, so these fluctuations do not influence the overall memory
gain caused by KSM. Using 8 worker processes, KSM needs more time to reach
the stable value for pages sharing, as shown in figure 2. In contrast to the 2
worker case, it is now reached after 200 seconds. Furthermore it is obvious that
pages volatile increases quite a lot during the phase of initialization and a peak

52 N. Rauschmayr and A. Streit

0 50 100 150 200 250 300 350 400
0

1

2

·105

Time in [s]

N
u
m
b
er

o
f
P
a
g
es

shared sharing unshared volatile

Fig. 1. KSM monitoring results within 2 worker processes (Gauss application)

occurs in the beginning which is slightly decreasing afterwards as then the pages
are accounted as unshared. It appears that KSM has a problem to register and
scan all the pages in the beginning, as there are many processes allocating a lot
of memory at the same time. It might be a reason why KSM needs nearly 100
seconds more for reaching a stable value. Increasing the merging rate does not
improve the situation, which will be shown at the end of this section. That the
problem is directly connected to the data rate at which memory is allocated is
likely due to the fact that this problem gets even worse in the memory bounded
applications of LHCb. Figure 3 shows an analysis job and it appears that the
problem is even worse. A significant peak occurs for pages volatile when 8 mem-
ory bounded worker processes are executed. Its maximum is even higher than
the stable value reached by pages sharing after 450 seconds. It appears again
that the more processes are running the later the stable value is reached. In
serial mode this happens after 80 seconds, with 4 worker processes after 200 and
with 8 after 450 seconds. As explained in the previous section it is important to
tune the maximum merging rate in order to keep the CPU consumption low. In
figure 4 the results reached by KSM have been compared with different merging
rates. A very high merging rate with 190 GB/s has been compared to 585 MB/s.
It appears that the maximum value of pages sharing do not differ much. On the
other side, the peak of pages volatile cannot be removed and even the stable
value cannot be reached earlier with a higher rate. This suggests that setting
the KSM parameter to a higher value than the rate at with which memory is al-
located by the processes, is not reasonable as no additional gain can be achieved
by that. Regarding the CPU consumption it appears that the KSM-thread con-
sumes only 20-30 % in parallel simulation jobs and 30-50% in parallel analysis
jobs compared to full CPU consumption with a rate of 190 GB/s.

Reducing the Memory Footprint of Parallel Applications with KSM 53

0 50 100 150 200 250 300 350 400
0

2

4

6

8
·105

Time in [s]

N
u
m
b
er

o
f
P
a
g
es

shared sharing unshared volatile

Fig. 2. KSM-monitoring results within 8 worker processes (Gauss application)

0 200 400 600 800 1,000
0

1

2

3

·105 1 Worker

0 500 1,000
0

2

4

·105 2 Workers

0 500 1,000
0

0.5

1

1.5

·106 8 Workers

0 200 400 600 800 1,000
0

2

4

6

8
·105 4 Workers

shared sharing unshared volatile

Fig. 3. Monitoring KSM-parameters within an analysis job (y-axis: number of pages -
x-axis: time in [s])

54 N. Rauschmayr and A. Streit

0 50 100 150 200 250 300 350
0

2

4

6

8
·105

Time in [s]

N
u
m
b
er

o
f
P
a
g
es

shared sharing unshared volatile

Fig. 4. Comparison of the different merging rates 585 MB/s (continous line) and 190
GB/s (dotted line)

Table 1 presents the overall gain in memory reached with KSM in the differ-
ent applications. For the evaluation, the test cases have been executed with and
without KSM and their memory consumption has been monitored. Initialisation
and finalisation of the test cases have been neglected and the average difference
has been calculated during the period KSM had a stable value. The first value
in table 1 indicates the absolute difference and the second value shows the corre-
sponding percentage. About 183 MB can already be merged in a single instance
which is possibly due to file buffers, which usually contain a huge amount of
zeros. This value can then be reached in every single instance which means that
it is accounted n times for n processes.

Table 1. Memory reduction reached with KSM in the different applications

serial mode 2 workers 4 workers 8 workers

Gauss 183 MB (22 %) 623 MB (33 %) 1275 MB (42 %) 2659 MB (48 %)

Brunel 100 MB (8 %) 448 MB (21%) 990 MB (27 %) 2297 MB (33 %)

DaVinci 165 MB (13 %) 890 MB (26 %) 1841 MB (29 %) 3864 MB (32 %)

5 Evaluation of Results

The results are evaluated with respect to two main considerations. First it is
investigated what the gain in memory is compared to the additional CPU-
consumption and furthermore a theoretical value for memory sharing must be
calculated. For the theoretical model the heap of the applications was profiled in

Reducing the Memory Footprint of Parallel Applications with KSM 55

order to see the memory consumption per object and to evaluate which of them
are not modified during event processing.

5.1 Simulation - Gauss

Analysing the heap profile of the simulation test case, a theoretical value of about
230 MB could be evaluated, which corresponds to the sum of all non modified
objects during the event processing. Typically objects like database contents
can be shared, as these are normally used in read only mode. Furthermore a
simulation uses event tables for generating random numbers which can be also
used by all processes. Overall it means that (n − 1) · 230 MB must be shared
as minimum within n worker processes. Comparing with table 1 it appears that
KSM can even reach a higher value than calculated, since it can gain for example
623 MB within 2 worker processes. As KSM can also reduce the memory in single
processes, that value is accounted n times for n processes. Thus it is likely that
in 2 worker processes 2 · 183 MB are accounted for the memory reduction per
process and 623MB− (2 · 183MB) = 257 MB for the sharing of objects between
the processes.

5.2 Reconstruction - Brunel

The objects that can be potentially shared in the reconstruction application are
nearly the same as in the simulation test case. Those are the database contents
and represent in fact the description of the detector and all its conditions and
parameter settings. The heap profiling accounts about 210 MB as a sum of these
objects. KSM can also reach a better value in that example as shown in table 1.
Extrapolating that for 8 worker processes means that 7 ·210 MB must be shared
as minimum, which is also reached by KSM.

5.3 Analysis - DaVinci

Between analysis processes the same objects can be shared as explained in the
last paragraph. Those datasets are also accounted with about 210 MB, which is
obviously reached again by KSM in all test cases with several number of worker
processes.

5.4 Additional CPU-Consumption and Cost Evaluation

An evaluation of the additional CPU-consumption has been done in order to
quantify the impact of memory reduction with respect to CPU-resources re-
garding the given test cases. In order to do so, the average processing cost for
a test case running with and without KSM has been calculated. Assuming a
reconstruction job with 8 worker processes and 8000 events in total, an average
processing time of 1450s for the first case and 1393s for the latter case has been
determined. That is an additional CPU-consumption of 4.09%. Given a lifetime
of 4 years on average for a worker node, a cost of 16 Euros per HEP-SPEC061

1 HEP-wide benchmark for measuring CPU performance.

56 N. Rauschmayr and A. Streit

can be assumed including usage and maintenance of 4 years. Since a single AMD
job slot can provide a performance of 7.5 HEP-SPEC06, according to [3], it re-
sults in a total cost of 120 Euros. As the performance of Intel cores are better
due to hyperthreading and as that function was switched off on the Intel Xeon
test machine, an AMD job slot with 7.5 HEP-SPEC06 was assumed. The price
for memory does not usually scale linearly, however for reasons of simplification
a price of 10 Euros for each additional GB including usage and maintenance of 4
years has been assumed. In the test case with 8 worker processes about 2 GB can
be saved with KSM, which concludes to a reduction of 20 Euros. In a first step
the processing costs x an y are determined for both cases, where x represents the
processing costs per second for one core and y represents the processing costs
per second for one core with 2 GB extension2. Since eight job slots are used the
total costs are in the first case 8 · x · 1450s and in the second one, due to the
additional 2 GB of memory, (7 ·x+y) ·1393s. A difference of 1.96% of costs have
been evaluated, which leads to the fact that KSM increases processing time and
costs. It must be respected in that conclusion that a test case was used, which
runs under normal conditions without reaching the memory limit of the system.
If jobs run out of memory and fail or start paging, then even higher cost will be
caused. This will be illustrated by the following example.

For testing purposes a modified testcase of the parallel analysis job has been
used, which reaches nearly 3 GB as maximum. However, it represents the stan-
dard analysis case used by LHCb for the year 2012. Assuming a test environment
with 2 GB per core which represents the average memory per core provided by
WLCG, the testcase will run out of memory. An analysis job with 8 workers,
processing 10000 events, takes about 898.7 seconds in average as long as no
memory limit is set. If it is set to 2 GB per core the jobs have taken 1327.24
seconds in average due to paging. Using KSM instead can reduce the amount of
memory which has to be swapped out or can even avoid paging. A time of 944.08
seconds could be evaluated in that test case, which is 5.05 % slower than the case
without memory limit and 28.87 % faster than the case in which paging occured.
Assuming paging is not supported will conclude that the given test case can only
run with 5 processes in parallel instead of 8. That increases the CPU-time, but
also the costs as 3 cores remain idle due to the fact that the memory limit of
the system is reached.

It must be respected that those values are very specific and will differ on
other systems and in other software, of course. But as generalization it can be
concluded that KSM will decrease costs as soon as an aplication reaches the
memory limit of the system.

6 Caveats

Recent Linux kernels provide a lot of functionalities for a better handling of mem-
ory, which has to be considered in the context of KSM. It appears that some

2 x = 120Euros
4years

= 9.51 · 10−7 Euro
s

and y = 140Euros
4years

= 1.11 · 10−6 Euro
s

.

Reducing the Memory Footprint of Parallel Applications with KSM 57

of them can be problematic for sharing memory between processes. As KSM
can only work on 4 kB pages, hugepages [10] are problematic, which are used by
several distributions like Red Hat 6.2. However in Red Hat 6.2 KSM already reg-
ister the pages before they are considered to be merged in a hugepage. But there
might be cases in which hugepages can cause a problem. Another problem can
occur with Address Space Layout Randomization (ASLR), which is a security
mechansim that scrambles the memory content of pages, as explained detailed
in [13]. It influences the page alignment and decreases the probability of having
pages with the same content. In order to gain the best value for memory shar-
ing this functionality must be deactivated. This is of course a trade off between
better resource utilization and higher security. Switching off the functionality
of ASLR gives an attacker the chance to identify pages more easily. In [15] it
is furthermore shown, that it is possible to identify, whether a page was copied
from shared memory and though which page was shared with other processes.
Therefore the time, which was needed to write to a page, was simply measured.
This presents a problem of security especially in the context of cloud computing,
as presented in [13] and [15].

7 Related Work

Memory deduplication plays an important role in cloud computing. An auto-
matic way via Content-Based Page Sharing and Transparent Page Sharing, as
described in [8] and [17], seems to be the most promising solution. Detailed stud-
ies and evaluations on Content-Based Page Sharing via KSM can be found in
[9]. Those concepts can be also applied inside one single instance of an operating
system as described and evaluated in [16]. The possibility of mergeable cache in
the context of multi core programming is investigated in [7] and results of mem-
ory deduplication within several benchmarks from domains like visualization and
machine learning are presented. The idea of using automatic tools came also up
in other CERN experiments several years ago, as it is mentioned in [4], but the
results for memory deduplication of these tests have not been evaluated to the
cost of additional CPU-consumption and such tests have never been evaluated
for different applications of the LHCb framework.

8 Conclusion

KSM is an easy ad-hoc solution to share memory in an automatic way. However
the efficiency of KSM cannot be predicted very easily as that depends on the
data layout with which memory is allcoated and modified by a software. General
conditions in that context which might influence the efficiency of KSM are for
example, parallel processes using similar datasets and accessing them in read-
only mode. Those conditions are fullfilled indeed by the parallel prototype of the
LHCb framework. Furthermore, most datasets are allocated during initialization
and are not modified during the main loop of the application, which allows KSM
to reach a stable value. It can be critical as soon as processes also write to

58 N. Rauschmayr and A. Streit

pages or delete them, as KSM has to rebuild the stable and unstable tree then.
Another critical parameter is the memory alignment, which is influenced by
security tools but also by the way how parallel processes have been created. The
worker processes in the parallel prototype of the LHCb framework are running
the same process chain and are loading, in prinicple, the same datasets, which
concludes that the probability of equal aligned pages is high.

Furthermore it is typically the case that adding a shared memory model on
the software framework level afterwards is difficult. Implementing a shared mem-
ory model in the software of the LHCb experiment faces several problems if it
is done via forking of processes during the main loop of the application. For
example, the handling of counters and histograms might be problematic, as they
are already set up during initialization and must be reset after the fork. Further-
more all open files must be handled, because all processes using the same file
descriptor will cause problems as soon as they write or read to it. Using shared
memory regions in the software will be also very difficult as the read- and write-
access to shared areas has to be coordinated in order to guarantee thread safety.
Furthermore the framework of the LHCb experiment is constructed in such a
way, that all configurations must be provided by the user, which concludes that
those ones are individual and even own services and algorithms can be applied
via the configuration. That results in a high diversity, how the application can
be executed, and it causes also the problem that users might do things which
are not allowed by the framework. Those problems can be handled as long as
the applications run sequentially but as soon as parallel processes are forked
during the event loop, many classes must be protected and certain actions must
be prevented, which can be possibly done by the user. All in all a lot of test cases
will occur which must be validated in parallel execution as long as sharing is not
handled by automatic tools like KSM. Nevertheless applying a shared memory
model in the framework has the advantage that it does not consume additional
CPU resources in contrast to KSM. In order to keep CPU-consumption low, a
new service was introduced in the Linux kernel which adapts automatically the
merging rate of KSM. The results which have been shown in this paper, were
produced by a fixed merging rate. But since the CPU-consumption could be
reduced to a value of 20% - 50% the influence on computing time was small.

As a conclusion, KSM is an easy solution to reduce memory consumption as
long as the memory presents the restrictive resource and the CPU-consumption
is not too high. With respect to tradeoff of security and CPU-resources, a shared
memory model on software framework level might be a better solution.

References

1. Linux @ cern (2012), http://linux.web.cern.ch/linux/scientific6/

2. Wlcg worldwide lhc computing grid (2012), http://wlcg.web.cern.ch/

3. Alef, M.: Cpu benchmarking at gridka (2012),
http://indico.cern.ch/getFile.py/access?contribId=40&sessionId=2

&resId=0&materialId=slides&confId=160737

http://linux.web.cern.ch/linux/scientific6/
http://wlcg.web.cern.ch/
http://indico.cern.ch/getFile.py/access?contribId=40&sessionId=2&resId=0&materialId=slides&confId=160737
http://indico.cern.ch/getFile.py/access?contribId=40&sessionId=2&resId=0&materialId=slides&confId=160737

Reducing the Memory Footprint of Parallel Applications with KSM 59

4. Arcangeli, A., Eidus, I., Wright, C.: Increasing memory density by using KSM. In:
OLS 2009: Proceedings of the Linux Symposium, pp. 19–28 (July 2009)

5. Bayer, R.: Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Informatica 1, 290–306 (1972), 10.1007/BF00289509

6. Belyaev, I., Charpentier, P., Easo, S., Mato, P., Palacios, J., Pokorski, W., Ranjard,
F., Van Tilburg, J.: Simulation application for the lhcb experiment. Technical
Report physics/0306035, CERN, Geneva (June 2003)

7. Biswas, S., Franklin, D., Savage, A., Dixon, R., Sherwood, T., Chong, F.T.: Multi-
execution: multicore caching for data-similar executions. SIGARCH Comput. Ar-
chit. News 37(3), 164–173 (2009)

8. Bugnion, E., Devine, S., Govil, K., Rosenblum, M.: Disco: running commodity
operating systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15(4),
412–447 (1997)

9. Chang, C.-R., Wu, J.-J., Liu, P.: An empirical study on memory sharing of virtual
machines for server consolidation. In: 2011 IEEE 9th International Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 244–249 (May
2011)

10. Corbet, J.: Transparent hugepages (2009), https://lwn.net/Articles/359158/
11. Corti, G., Cattaneo, M., Charpentier, P., Frank, M., Koppenburg, P., Mato, P.,

Ranjard, F., Roiser, S., Belyaev, I., Barrand, G.: Software for the lhcb experiment.
IEEE Transactions on Nuclear Science 53(3), 1323–1328 (2006)

12. Kerrisk, M.: Linux programmer’s manual (2012),
http://man7.org/linux/man-pages/man2/madvise.2.html

13. Yagi, T., Artho, C., Suzaki, K., Iijima, K.: Effects of memory randomization, san-
itization and page cache on memory deduplication. In: European Workshop on
System Security, EuroSec 2012 (2012)

14. Schneider, O.: Overview of the lhcb experiment. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 446(1-2), 213–221 (2000)

15. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to the
guest os. In: Proceedings of the Fourth European Workshop on System Security,
EUROSEC 2011, pp. 1:1–1:6. ACM, New York (2011)

16. Suzaki, K., Yagi, T., Iijima, K., Quynh, N.A., Artho, C., Watanebe, Y.: Moving
from logical sharing of guest os to physical sharing of deduplication on virtual
machine. In: Proceedings of the 5th USENIX Conference on Hot Topics in Security,
HotSec 2010, pp. 1–7. USENIX Association, Berkeley (2010)

17. Waldspurger, C.A.: Memory resource management in vmware esx server. SIGOPS
Oper. Syst. Rev. 36(SI), 181–194 (2002)

https://lwn.net/Articles/359158/
http://man7.org/linux/man-pages/man2/madvise.2.html

Recalibrating Fine-Grained Locking

in Parallel Bucket Hash Tables

Ákos Dudás, Sándor Juhász, and Sándor Kolumbán

Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

1117 Budapest, Magyar Tudósok krt. 2 QB207
{akos.dudas,juhasz.sandor,kolumban.sandor}@aut.bme.hu

Abstract. Mutual exclusion protects data structures in parallel envi-
ronments in order to preserve data integrity. A lock being held effectively
blocks the execution of all other threads wanting to access the same
shared resource until the lock is released. This blocking behavior reduces
the level of parallelism causing performance loss. Fine grained locking
reduces the contention for the locks resulting in better throughput, how-
ever, the granularity, i.e. how many locks to use, is not straightforward.
In large bucket hash tables, the best approach is to divide the table into
blocks, each containing one or more buckets, and locking these blocks in-
dependently. The size of the block, for optimal performance, depends on
the time spent within the critical sections, which depends on the table’s
internal properties, and the arrival intensity of the queries. A queuing
model is presented capturing this behavior, and an adaptive algorithm is
presented fine-tuning the granularity of locking (the block size) to adapt
to the execution environment.

1 Introduction

In parallel environments, shared resources, such as data structures, must be
protected from concurrent accesses [20]. Blocking synchronization mechanisms
are the de-facto solution for avoiding race conditions and guaranteeing thread-
safety. Critical sections protect parts of the data structure assuring that at all
times at most one thread is allowed to access and modify critical parts of the
internal structure.

Critical sections are most often realized by placing locks within the data
structure itself. These locks are basic building blocks of parallel algorithms.
They are supported by most operating systems, runtime environments, and for
performance reasons, also by modern hardware. Mutual exclusion can be realized
using software only, but hardware support, such as the compare-and-exchange
and test-and-set instructions, make them cheaper.

Locks are often criticized in the literature for their disadvantageous properties.
Main concerns include that threads using mutual exclusion affect each others
performance by limiting the level of parallelism, while deadlock situations and
erroneous thread behavior (not releasing locks) can cause program errors. Still,

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 60–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 61

locks are favored by programmers for they are easy to use, and more importantly,
they are expressed by the programming language or environment in a fashion
which is familiar to the programmer.

As for performance, the most important question is the placement of the
locks. A single lock, protecting the entire data structure, can limit the attainable
performance as it basically serializes all access to the data structure and it makes
little use of the multithreading capabilities of modern hardware. The solution
to this problem is to use not a single lock but to partition the data structure
into disjoint blocks and protect different blocks with different locks. The only
requirement is that any operation may only access data within the block or
blocks it has acquired the dedicated locks for. This partitioning allows threads
to act in parallel as long as they access different blocks of the data structure.

A bucket hash table stores items arranged according to an identifying element,
the key. Each item is unambiguously mapped to a virtual “bucket”, and any
operation (insert, find, delete) needs to access this single bucket. This allows a
trivial partitioning of the data set for fine grained locking: each bucket can be a
separate block protected by a dedicated lock. While this delivers best theoretical
performance it is undesirable for it may require too much memory. In case of
large hash tables with millions of buckets it is not practical to have millions of
locks. A simple queue-type lock [15] requires two integer values per lock; millions
of these would require megabytes of valuable memory in the CPU caches.

To overcome this difficulty, but at the same time provide good throughput,
the table should be partitioned into disjoint blocks where a block contains mul-
tiple buckets. The exact number of the blocks should be chosen to assure good
performance, but at the same time, the number of locks should be minimal.
The number of blocks is determined by multiple factors, most of them can also
change during the lifetime of the hash table. These factors include the amount of
time spent within the critical sections, the frequency of the hash table accesses,
and the number of concurrent threads.

In this paper, we show that the performance of a hash table is in fact largely
affected by the granularity of locking. There is a threshold in the number of locks
above which increasing the granularity of locking has little effect on the perfor-
mance. We show that the parallel bucket hash table can be best described by
a queuing network, which helps modeling its behavior. We propose an adaptive
algorithm which allows the reconfiguration of the table in runtime changing the
granularity of locking based on external and internal circumstances. We show
that this algorithm can determine an estimated number of locks the table should
use based on solely internal properties it measures during operation.

The rest of the paper is organized as follows. Section 2 cites the related liter-
ature of hash tables and their parallel implementations. The concurrent bucket
hash table is modeled by a queuing network presented in Section 3, which al-
lows further analysis and derivation of an adaptive locking strategy detailed
in Section 4. The adaptive algorithm is evaluated in Section 5 followed by the
conclusions in Section 6.

62 Á. Dudás, S. Juhász, and S. Kolumbán

2 Related Work

Hash tables [10] store and retrieve items identified by a unique key. A hash
table is basically a fixed-size reference table, where the position of an item is
determined by a hash function. Each position in this table is a virtual “bucket”,
a collection of items, most often realized by a linked list or an array. Each
item mapped to this location is placed in the array/list in no particular order.
Inserting an item or finding one by its key requires mapping the key to a bucket
and searching through the entire bucket.

Large hash tables are often used in applications and algorithms in various
fields, such as model checking [1, 11], web servers [14, 21] and even in genome
research [17].

There is an extensive body of research connected to parallel hash tables and
data structures. The main areas are blocking and non-blocking solutions. Non-
blocking methods [3, 16, 18], instead of mutual exclusion, use atomic CPU op-
erations to maintain data integrity. While these solutions are just as good as
locking methods, in this paper we focus solely on mutual exclusion.

Larson et al. in [12] used two lock levels: a global table lock and a separate
lightweight lock (a flag) for each bucket. The global table lock is held just as
long as the appropriate bucket’s lock is acquired. They describe that for fast
access spinlocks are used instead of Windows critical sections. It was shown by
Michael [16] that in case of non-extensible hash tables simple reader-writer locks
can provide a good performance in shared memory multiprocessor systems.

More efficient implementation like [13] use a more sophisticated locking scheme
with a smaller number of higher level locks (allocated for hash table blocks in-
cluding multiple buckets) allowing concurrent searching and resizing of the table.
More complicated locking scenarios are also available, such as a hierarchical lock
system with dynamic lock granularity escalation, as presented by Klots and
Bamford [9].

Hopscotch hashing [6] is an open-address hashing scheme, which provides good
cache locality, supporting parallel access. The drawback of open-address hashing
is the need for resizing the table.

A commercially available library by Intel, the Thread Building Blocks has
a parallel hash container called concurrent hash map. This implementation is
a bucket hash table. It uses locks on various levels, including the items them-
selves [8].

Our bucket hash table [7] is a closed-address hashing scheme, which com-
bines the best property of open-address hashing, namely good cache locality [6]
without the need to resize the table.

The main contributions of this work are the following. First we show that the
performance of bucket hash tables increases with the number of locks, but only
up to a point. To find this optimal number, a queuing model is presented, which
is used to show an adaptive algorithm recalibrating the hash table in runtime.
We know of no such re-calibrating parallel hash table in the literature.

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 63

3 Modeling the Parallel Hash Table

This section presents empirical measurements capturing the effect of the granu-
larity of locking in a bucket hash table. In large hash tables, the number of locks
the hash table should use is significantly less than the number of buckets within
the table. To find a good estimate for this number, a parallel bucket hash table
is modeled with a queuing network allowing further analysis.

3.1 Scalability with Increasing Granularity

By implementing a highly optimized custom bucket hash table in C++ the
physical performance of the hash table is evaluated by executing insert and find
operations. The mutual exclusion was realized using the so called ticket lock
by Mellor-Crummey and Scott [15]. Figure 1 plots the scalability of the hash
table with an increasing number of locks used internally by the table. Both the
complete execution time and the number of clashes (i.e. the number of lock
acquisitions that resulted in waiting due to a busy lock) was measured.

Fig. 1. The execution time and the number of clashed during lock acquisitions of 8
million inserts and 8 million find operations in a bucket hash table having 12 million
buckets with an increasing number of locks used by the table internally

Using a single lock in the table is indeed a bottleneck. Increasing the number
of locks up to the range of 10-100 an over 3.5 speedup is observed. Further
increasing the number of locks, there is a minor increase (up to 10%), but this is
insignificant compared to the performance gain with only a few dozen locks. The
number of times the threads had to wait due to a lock being busy also plummets
to near zero at this threshold. Above a certain limit, at approximately 50000
locks, the performance even starts to decrease due to the overhead of the locks
themselves. The granularity of locking is a major factor in the throughput of
a parallel hash table, but there is no point in increasing it over all limits. Our
goal is finding a range in which the performance is near its peak with the lowest
number of locks required.

64 Á. Dudás, S. Juhász, and S. Kolumbán

3.2 The Queuing Model

In order to characterize the behavior of the locks, more precisely the length of
blocking a thread, the system is modeled with a queuing network (see Fig. 2),
similar to the one presented by Gilbert [4]. In our model there is not a fixed
number of threads, but rather an infinite number of threads. This models a
system in which the hash table is part of a service (i.e. a webserver) and re-
quests come from an outside source, that is, the number of threads changes.
This is not a limitation, rather a generalization of the model, with the following
assumptions.

1. There are L locks in the system with infinite buffers. Selection of a lock
is uniform meaning that every lock is selected independently from every
other random phenomena in the system with probability 1/L. This can be
guaranteed by a good hash function that maps a particular request to a lock,
supposing that items are chosen from the universe uniformly.

2. The time spent within the critical section is exponentially distributed with
parameter μ. The expected timespan a thread spends in a critical section is
1/μ. This is common for all threads and all queries.

3. The time between two queries to the hash table is also exponentially dis-
tributed with parameter γ.

Fig. 2. The queuing network modeling the parallel bucket hash table partitioned into
L blocks

When a thread is trying to acquire a lock, which is already held by another
thread, “spinning” is performed. This means that the execution of the thread is
not suspended; the thread remains active and constantly polls the lock. Spinning
is advantageous for short critical sections [2,4]. The queue-lock allow entry into
the critical section in the same order the threads have first requested it, therefore
the serving discipline is first-come-first-served (FCFS) - which also guarantees
starvation freedom.

This system can be simplified further as L parallel queuing networks. Ev-
ery lock is (in Kendall’s notation) an M/M/1/∞/∞/FCFS queue with arrival
intensity λ = γ

L , service intensity μ (see Fig. 3).

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 65

Fig. 3. The queuing network modeling a single lock in the parallel bucket hash table

4 Recalibrating Locking

The throughput of the system depends on factors, which are out of the control
of the hash table, such as the arrival intensity (i.e. how often requests arrive).
During the lifetime of the hash table, other circumstances may change as well,
such as the required time to serve a request (service rate) can increase as the hash
table is saturated. Therefore we propose an adaptive, recalibrating algorithm
which periodically revises the locking strategy.

4.1 Estimating the Parameters of the System

To determine a good locking strategy, the time threads have to wait before they
are allowed to enter a lock has to be minimized. To do this, the waiting time
needs to be characterized, which requires the parameters of the queuing network.
These parameters are listed in Table 1.

Table 1. Parameters of the queuing network

L number of locks
1/μ average time of hashing
γ global arrival intensity

1− ρ parameter of the geometric distribution of the queue lengths

An insert or find operation in a well designed hash table is an O(1) operation
which executes very few instructions and has only a few memory references. If
parameters μ and γ are to be measured, all queries to the hash table should
be timed, which is an expensive operation. It is not only the costly to query
high resolution timers, but also recording the values (in a thread safe manner) is
unreasonably costly. Initial measurements showed that a naive implementation
can even double the execution time of any query.

Using a queue-type lock, every thread is able to calculate the length of the
queue it joins when the lock is busy. Calculating this value is much cheaper
than measuring the elapsed time within the hash table. The ticket lock by
Mellor-Crummey and Scott [15] keeps two integer values for every lock: the
currently served ticket’s number and the next available ticket. Every threads
takes a unique number by (atomically) increasing the next available counter.
Comparing this number to the currently served number every thread gets how
many other threads are in front of it in the queue. After calculating this value, it

66 Á. Dudás, S. Juhász, and S. Kolumbán

is recorded by the hash table. Not only is this relatively cheap, but at the same
time, is is also performed only when the lock is seen in a busy state, hence the
thread joining the queue would not perform any valuable work for some time
anyway. To calculate and record the length of the queue only when the lock is
seen busy does not reduce the throughput of the hash table. This is the only
parameter recorded during normal operation.

When the hash table should revise the lock strategy being used (see Sec-
tion 4.3), the process re-evaluates the number of locks used by the table by
estimating the parameters of the system and finding a new optimal lock num-
ber. The update consist of the following steps.

1. Estimate parameter 1− ρ using the recorded queue lengths.

2. Measure average time spent within the hash table to calculate parameter μ.

3. Calculate arrival intensity λ.

The length of the queue the waiting processes join is geometrically distributed
with parameter 1−ρ. From the measured queue lengths the average is calculated,
which equals the expected value x = ρ

1−ρ , from which (and knowing ρ = λ
μ)

λ = x∗μ
1+x .

μ is the parameter of the exponential distribution of the time spent within
the critical section (the hash table). By executing 1000 find operations in the
hash table the average of the times is approximated giving us 1

μ .
From the calculations above, all parameters of the system are estimated solely

by measuring the length of the queue waiting threads join. This is a cheap
operation during runtime without significant overhead. It is interesting to note
that parameter λ depends only on the context the hash table is used in, yet from
the internal behavior of the table it can be approximated.

Having the parameters of the system the next section describes how they are
used to find a new estimate for L for which the hash table has good throughput.

4.2 Estimating the Number of Locks

When two threads are racing for the same shared resource the second thread
attributes to better performance as long as there is some action it can perform
while the first one is in the critical section protecting the shared resource. If the
time, the second thread needs to wait for the lock, is comparable to the time
the two threads act in parallel, there is no overall performance enhancement (see
Fig. 4). Whenever a new thread is added to the system, it generates performance
increase if the waiting time w for a lock is less then the useful time of a single
thread: w < 1

μ .
From the utilization of the lock, ρ, the probability that the length of the

queue (the number of threads waiting for service at the specific lock) is k is
(1 − ρ)ρk [5]. We call this state, when a specific lock has a non-empty queue, a
busy lock. Clashing occurs if a thread is trying to acquire a lock which is being
used, meaning that its queue is not empty. This is calculated as follows

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 67

Fig. 4. Two threads acting in parallel: characterizing waiting time

P(clash) =

L∑
k=0

P(busy lock is chosen|k locks are busy)P(k locks are busy)

=

L∑
k=0

k

L

(
L

k

)
ρk (1− ρ)

L−k

The first part P(busy lock is chosen|k locks are busy) is k
L as any of the chosen

k locks are busy. The second part, P(k locks are busy) is calculated by choosing
exactly k locks out of L (which is

(
L
k

)
) and multiplying with the probability that

these k locks are busy (ρk) and the other L − k are not ((1 − ρ)L−k). Further
simplifying the equation we get

P(clash) =

L∑
k=0

k

L

(
L

k

)
ρk (1− ρ)

L−k
=

1

L

L∑
k=0

k

(
L

k

)
ρk(1− ρ)L−k

where the last sum is the expectation of a binomial distribution with parameters
L and ρ, hence the final form is simply

P(clash) =
1

L
Lρ = ρ (1)

We calculate the following probability for describing that a thread will have to
wait less than the specified threshold t

P(w < t) = P(w = 0) + P(w < t)P(w > 0)

= (1− P(clash)) + P(clash)P(w < t) (2)

For an M/M/1 queue it is known that the distribution of the waiting time in the
queue is 1−e−(μ−λ)t [19]. Using this, knowing that λ = γ

L , and from Equations 1
and 2 we finally get

P(w <
1

μ
) = (1− ρ) + ρ(1− e−(μ− γ

L) 1
μ) (3)

The number of locks the system should use is then the smallest L that the
probability in Eq. 3 is significant (more than 0.95).

68 Á. Dudás, S. Juhász, and S. Kolumbán

4.3 Periodic Recalibration

The last question to answer is when to recalibrate the locks. Our approach
is a periodic recalibration. If the performance was monitored constantly, the
recalibration could be performed when the performance decreases; this, however,
due to the expensive nature of constant performance monitoring (as described in
Section 4.1), is out of the question. Instead, a periodic update policy is applied.

A dedicated thread is dispatched by the hash table, which, from time to time,
checks the state of the hash table. When the periodic recalibration starts, first,
the hash table is “freezed.” This is performed by “hijacking” the locks. The ticket
lock used in this setup has a currently served counter to indicate which thread
is next. This counter is changed to a large number effectively not allowing any
new threads to acquire the locks. After waiting for the current threads to exit
the critical sections (by monitoring the currently served number, which threads
increase upon exit), a bool flag is raised indicating a resize in progress halting
all other operations. After the recalibration has determined the new number of
locks, the new locks are initialized, and the resize in progress flag is set to false
allowing requests to proceed. The calibrator thread then goes to sleep.

The resize, apart from blocking all threads for a while, is a cheap operation.
Changing the number of locks is effectively reserving a new array of integers for
the locks.

The calibrator thread, of course, requires resources, and takes the CPU peri-
odically. Not to mention that the recalibration blocks all accesses to the table for
a short time. These could be though as wasteful, however, this approach turned
out to be satisfying in performance.

5 Evaluating the Algorithm

This section evaluates the proposed method for recalibrating the number of locks
in a parallel bucket hash table. The adaptive locking strategy is initialized with
two locks, and then it is left up to the recalibration process to find an optimal
number. The performance of the custom implementation is compared to the
performance of the parallel hash table in Intel’s Thread Building Blocks library.

The number of buckets the hash table uses is also an important parameter.
The hash table (filled with 8 million items) uses 2, 4, 6 and 12 million buckets in
the test cases. The number of buckets does not affect the locking granularity, but
it changes the probe length within the hash table and its internal performance.

The experiments were executed on an Intel Core i7-2600K CPU at 3.4 GHz
with 4 physical cores and HyperThreading capabilities running Windows 7. The
data inserted into the hash table and searched consequently comes from a real-
life dataset. Both the distribution of the items among the buckets (and therefore
among the locks) and the access pattern of the items is determined by this
real-life use-case.

The physical performance of the custom hash table is shown on Fig. 5. The
results below are an average of 5 executions. Both hash tables were filled with 8
million items and another 8 million find queries were executed.

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 69

Fig. 5. The performance of the custom adaptive hash table with the estimated optimal
number of locks compared to the performance of concurrent hash map of Intel’s TBB
for 8 million insert and 8 million lookup operations with 8 concurrent threads

The performance of the custom hash table is in almost all cases better than
that of TBB. The difference is between 20 and 30%, and a slight decrease of 3%
with the lowest number of buckets. The final estimated number of locks of 31
given by the algorithm is a good estimate, given that the initial tests shown in
Section 3.1 indicated this order of magnitude of locks too.

Another question is if the recalibration algorithm does indeed adopts to the
external circumstances. With various numbers of concurrent threads the per-
formance of both hash tables were measured, and the final number of locks is
reported on Fig. 6.

Our hash table constantly outperforms TBB by 15-40%. It is also noteworthy
that our hash table has best performance at 8 threads, which means that the
periodic recalibrator thread does not present itself as an overhead (8 is the
number of virtual cores of the CPU). The recalibration works, as it delivers
good performance, and it does indeed change the number of locks based on the

Fig. 6. The performance of the custom adaptive hash table with the estimated optimal
number of locks compared to the performance of concurrent hash map of Intel’s TBB
with various number of concurrent threads accessing the hash tables

70 Á. Dudás, S. Juhász, and S. Kolumbán

circumstances. The higher the number of concurrent threads is, the higher the
number of locks inside the hash table get, resulting in better throughput.

6 Conclusions

In this paper, we analyzed the behavior of multithread-capable bucket hash
tables. Our goal was to determine the appropriate number of locks to be used
by the hash table internally. Using a global table-level lock has unfavorable
consequences while using bucket level locks is undesired due to vast amount of
locks that would be required, and their overhead.

Partitioning the buckets of the table into disjoint blocks and using a lock for
each of these blocks is a good compromise, but leaves the question of choosing
the block size open. We presented a queuing model that describes the behavior
of the locks and the threads in the parallel hash table.

We proposed a heuristic argument, which describes when is fine grained lock-
ing beneficial for a data structure with respect to the bottleneck that comes with
mutual exclusion. This argument and the queuing model was used to estimate
the order of magnitude of locks that provides reasonable performance at the
lowest cost.

By implementing the bucket hash table and examining its performance un-
der real-life circumstances we verified that the estimate given by the proposed
algorithm is in the same order of magnitude that our initial exhaustive search
predicted.

With the adaptive technique presented in this paper the performance of the
hash table finds an optimal number of locking granularity. With this locking
scheme the performance of the hash table is about 25% better than the perfor-
mance of a commercially available parallel hash table.

References

1. Barnat, J., Ročkai, P.: Shared Hash Tables in Parallel Model Checking. Electronic
Notes in Theoretical Computer Science 198(1), 79–91 (2008)

2. Brandenburg, B., Calandrino, J.M., Block, A., Leontyev, H., Anderson, J.H.: Real-
Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend
or Spin? In: 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342–353. IEEE Computer Society Press, St. Louis (2008)

3. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open
addressing. Distributed Computing 18(1), 21–42 (2005)

4. Gilbert, D.C.: Modeling spin locks with queuing networks. ACM SIGOPS Operat-
ing Systems Review 12(1), 29–42 (1978)

5. Harrison, P., Patel, N.M.: Performance Modelling of Communication Networks and
Computer Architectures. Addison-Wesley (1992)

6. Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch Hashing. In: Taubenfeld, G. (ed.)
DISC 2008. LNCS, vol. 5218, pp. 350–364. Springer, Heidelberg (2008)

Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables 71

7. Juhász, S., Dudás, A.: Adapting hash table design to real-life datasets. In: Proc.
of the IADIS European Conference on Informatics 2009, Part of the IADIS Multi-
conference of Computer Science and Information Systems 2009, Algarve, Portugal,
pp. 3–10 (June 2009)

8. Kim, W., Voss, M.: Multicore Desktop Programming with Intel Threading Building
Blocks. IEEE Software 28(1), 23–31 (2011)

9. Klots, B., Bamford, R.J.: Method and apparatus for dynamic lock granularity
escalation and de-escalation in a computer system (1998)

10. Knuth, D.E.: The art of computer programming, vol 3. Addison-Wesley (November
1973)

11. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Per-
formance with Shared Hash Tables. In: 10th International Conference on Formal
Methods in Computer-Aided Design (April 2010)

12. Larson, P.A., Krishnan, M.R., Reilly, G.V.: Scaleable hash table for shared-memory
multiprocessor system (April 2003)

13. Lea, D.: Hash table util.concurrent.ConcurrentHashMap, revision 1.3, in JSR-166,
the proposed Java Concurrency Package (2003)

14. Li, Q., Moon, B.: Distributed cooperative Apache web server. In: Proceedings of the
Tenth International Conference on World Wide Web, WWW 2001, pp. 555–564.
ACM Press, New York (2001)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems 9(1),
21–65 (1991)

16. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: ACM Symposium on Parallel Algorithms and Architectures, pp. 73–82 (2002)

17. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: a fast search method for large DNA
databases. Genome Research 11(10), 1725–1729 (2001)

18. Purcell, C., Harris, T.: Non-blocking Hashtables with Open Addressing. In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 108–121. Springer, Heidelberg
(2005)

19. Stewart, W.J.: Probability, Markov chains, queues, and simulation: the mathemat-
ical basis of performance modeling. Princeton University Press (2009)

20. Treiber, R.K.: Systems Programming: Coping with Parallelism (Research Report
RJ 5118). Tech. rep., IBM Almaden Research Center (1986)

21. Veal, B., Foong, A.: Performance scalability of a multi-core web server. In: Pro-
ceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and
Communications Systems, ANCS 2007, p. 57. ACM Press, New York (2007)

Impact of Variable Privatization

on Extracting Synchronization-Free Slices
for Multi-core Computers

Marek Palkowski

Faculty of Computer Science, West Pomeranian University of Technology,
70210, Zolnierska 49, Szczecin, Poland

mpalkowski@wi.zut.edu.pl

http://kio.wi.zut.edu.pl/

Abstract. Variable Privatization is an important technique that has
been used by compilers to parallelize loops by eliminating storage-related
dependences. In this paper, we present an approach that combines ex-
tracting synchronization-free slices available in program loops with vari-
able privatization. This permits us to reduce the number of dependence
relations and as a consequence to reduce the time complexity of algo-
rithms aimed at extracting synchronization-free slices. This leads to en-
larging the scope of the applicability of those algorithms and reducing
the time required to parallelize loops. The scope of the applicability of
the approach is illustrated by means of the NAS Parallel Benchmark
suite. Results of a performance analysis for parallelized loops executed
on a multi-core computer are presented. Received results are compared
with those obtained by other loop parallelization techniques. The future
work is outlined.

Keywords: iteration space slicing, scalar and array variable privatiza-
tion, automatic loop parallelizer, NAS Parallel Benchmark.

1 Introduction

The lack of automated tools permitting for exposing parallelism decreases the
productivity of programmers and increases the time and cost of producing par-
allel programs. Because for many applications most computations are contained
in program loops, automatic extraction of parallelism available in loops is ex-
tremely important for multi-core systems, allowing us to produce parallel code
from existing sequential applications and to create multiple threads that can be
easily scheduled to achieve high program performance.

One of effective techniques aimed at exposing parallelism available in program
loops is the Iteration Space Slicing (ISS) framework [1]. ISS was introduced by
Pugh and Rosser in the paper [2] as an extension of program slicing proposed by
Weiser [3]. It takes loop dependence information as input to find all statement
instances that must be executed to produce the correct values for the specified ar-
ray elements. Coarse-grained code is represented with synchronization-free slices
or with slices requiring occasional synchronization.

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 72–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://kio.wi.zut.edu.pl/

Impact of Variable Privatization on Extracting Synchronization-Free Slices 73

An (iteration-space) slice is defined as follows: given a dependence graph de-
fined by a set of dependence relations, a slice S is a weakly connected component
of this graph, i.e., a maximal subgraph such that for each pair of vertices in the
subgraph there exists a directed or undirected path.

Iteration Space Slicing requires an exact representation of loop-carried depen-
dences and consequently an exact dependence analysis which detects a depen-
dence if and only if it actually exists. For our work, the dependence analysis
proposed by Pugh and Wonnacott [8], where dependences are represented by
dependence relations in the Presburger arithmetic, was chosen.

Presburger arithmetic PA is the first-order theory of the integers in the lan-
guage L having 0, 1 as constants, +,- as binary operations, and equality =, order
< and congruences≡n modulo all integers n≥1 as binary relations. The language
of PA is rich enough to express many important application problems, such as
solvability of (parametric) systems of linear Diophantine equations, integer fea-
sibility of systems of (parametric) linear constraints, integer programming, and
certain problems in program description and verification.

ISS to extract synchronization-free slices relies on the transitive closure of
an affine dependence relation describing all dependences in a loop. Algorithms
aimed at calculating transitive closure are presented in [10,11,12]. Their time and
memory complexities depend on the number of dependence relations represent-
ing all dependences in the loop. For different NAS benchmarks [7], the number
of dependence relations returned by the Omega dependence analyser (Petit) [15]
varies from several relations to several thousands ones. In many cases when the
number of dependence relations is more than several hundreds, known imple-
mentations [10,11,12] fails to produce transitive closure due to limited resources
of computers or because the time required for calculating transitive closure is
not acceptable in practice (from several hours to several days). That is why re-
ducing the number of dependence relations is very important prior to calculate
transitive closure.

In this paper, we present a technique that automatically defines loop variables
that can be safely privatizated, then techniques extracting synchronization-free
slices are applied to parallelize the program loop.

The impact of variable privatization on reducing the number of dependence
relations and loop parallelization is demonstrated by means of NAS benchmarks
[7].

2 Background

In this paper, we deal with affine loop nests where, for given loop indices, lower
and upper bounds as well as array subscripts and conditionals are affine functions
of surrounding loop indices and possibly of structure parameters, and the loop
steps are known constants.

A dependence analysis is required for correct loop parallelization. Two state-
ment instances I and J are dependent if both access the same memory location
and if at least one access is a write. I and J are called the source and destination

74 M. Palkowski

of a dependence, respectively, provided that I is lexicographically smaller than
J (I ≺ J, i.e., I is executed before J).

There are three types of data dependence: flow dependence - data dependence
from an assignment to a use of a variable; anti dependence - data dependence
from use of a variable to a later reassignment of that variable; output dependence
- data dependence from an assignment of a variable to a later reassignment of
that variable [5,6].

Let us remind basics of the ISS framework [1]. A dependence relation is a
tuple relation of the form [input list]→[output list]: formula, where input list and
output list are the lists of variables and/or expressions used to describe input
and output tuples and formula describes the constraints imposed upon input list
and output list and it is a Presburger formula built of constraints represented
with algebraic expressions and using logical and existential operators.

We use standard operations on relations and sets, such as intersection (∩),
union (∪), difference (-), domain (dom R), range (ran R), relation application
(S�= R(S): e�∈S�iff exists e s.t. e→e�∈R,e∈S), positive transitive closure of
relation R, R+ = {[e]→[e�] : e→e�∈ R ∨ ∃ e ��, e→e��∈ R ∧ e��→e�∈ R+},
transitive closure R* = R+ ∪ I�, where I�is an identity relation. In detail, the
description of these operations is presented in [8,9].

Definition 1. An ultimate dependence source is a source that is not the des-
tination of another dependence. Ultimate dependence sources and destinations
represented by relation R can be found by means of the following calculations:
domain(R) - range(R).

Definition 2. The set of ultimate dependence sources of a slice forms the set of
its sources.

Definition 3. The representative source of a slice is its lexicographically minimal
source.

Extracting synchronization-free slices consists of two steps. First, represen-
tatives of slices are found in such a manner that each slice is represented with
its lexicographically minimal statement instance. Next, slices are reconstructed
from their representatives and code scanning these slices is generated.

Given a dependence relation R describing all dependences in a loop, we can
find a set of statement instances, SUDS , describing all ultimate dependence
sources of slices as SUDS=domain(R)-range(R). In order to find elements of
SUDS that are representatives of slices, we build a relation, RUSC , that describes
all pairs of the ultimate dependence sources that are transitively connected in a
slice, as follows: RUSC = {[e]→[e�] : e, e�∈ SUDS , e ≺ e�, (R*(e) ∩ R*(e�))�=∅}.

The condition (e ≺ e�) in the constraints of relation RUSC means that e is
lexicographically smaller than e�. Such a condition guarantees that the lexico-
graphically smallest source of a slice will always appear in the input tuple, i.e.,
the lexicographically smallest source of a slice (its representative source) can
never appear in the output tuple. The intersection (R*(e)∩R*(e�))�= ∅ in the
constraints of RUSC guarantees that elements e and e�are transitively connected,
i.e., they are the sources of the same slice.

Impact of Variable Privatization on Extracting Synchronization-Free Slices 75

Set S repr containing representatives of each slice is found as S repr= SUDS-
range(RUSC). Each element e of set S repr is the lexicographically minimal state-
ment instance of a synchronization-free slice. If e is the representative of a slice
with multiple sources, then the remaining sources of this slice can be found ap-
plying relation (RUSC)

∗ to e, i.e., (RUSC)
∗(e). If a slice has only the one source,

then (RUSC)
∗(e)=e. The elements of a slice represented with e can be found

applying relation R∗ to the set of sources of this slice: Sslice= R∗((RUSC)
∗(e))

[1].
Variable privatization consists in discovering variables whose values are local

to a particular scope, usually a loop iteration. This technique allows each con-
current thread to allocate a variable in its private storage such that each thread
accesses a distinct instance of a variable.

Definition 4. A scalar variable x defined within a loop is said to be privatizable
with respect to that loop if and only if every path from the beginning of the loop
body to a use of x within that body must pass through a definition of x before
reaching that use [4,5].

Let us consider the following example.

for(i=1; i<=N; i++)

{

s1: t = A[i];

s2: A[i] = B[i];

s3: B[i] = t;

}

Classes of dependences and statements being involved in dependences are as
follows.

flow s1: t --> s3: t

output s1: t --> s1: t

anti s3: t --> s1: t

Because of loop-carried dependences, the loop above is not parallelizable. For-
tunately, all of the carried dependences are due to assignments and uses of the
scalar variable t. All of them go away if each thread has its own copy of the
variable t.

3 Applying Privatization to Extract Slices

The idea of the algorithm presented in this section is the following. Privatization
can be applied to scalars or arrays. The first step of the algorithm is to search
for scalar or array variables for privatization taking into account the following
condition. Variable X can be privatized if the lexicographically first statement
in the loop body referring X does not read a value of X, this guarantees that
the same thread produces and consumes values of X [5]. Otherwise dependences
involving X cannot be eliminated because a thread can read a value of X that
is produced by some other thread.

76 M. Palkowski

Next, we split dependence relations, describing all the dependences in the
loop, into two sets such that the first one comprises those relations that de-
scribe dependences where variables defined to be parallelized are involved, the
second one consists of the remaining relations. If the second set is empty, this
means that the privatization of variables contained in the first set eliminates
all the dependences in the loop, thus its parallelization is trivial. Otherwise,
for each variable X contained in the first set, we privatize X and identify in-
ner loop nests such that they comprise all statements referring to X. Then we
modify correspondent dependence relations to eliminate those dependences in-
volving X that are carried by these inner nests. This is correct because after
variable privatization, parallel threads will have the own copy of variable X and
dependences among the statements involving X are eliminated. Using a set of
modified dependence relations describing only those dependences that cannot
be eliminated by privatization, we can apply any technique presented in [1] to
extract synchronization-free slices. Reducing the number of dependences reduces
the time complexity of algorithms presented in [1]. If applying a parallelization
technique results in a single slice, we try to apply this technique to inner loop
nests making the outermost nest to be serial.

Below, we present the algorithm that implements the idea above in a formal
way.

Algorithm 1. Extracting synchronization-free-slices applying variable
privatization

Input : Set of relations S={Ri}, 1≤i≤n, describing all dependences in a loop

Output : Code representing synchronization-free slices with privatization of
variables

1 Put each scalar/array variable X, originating dependences, into set Priv-
Cand if the lexicographically first statement, referring to X, does not read
a value of X.

2 Put each relation Ri describing dependences involving variable X, X ∈
PrivCand, into set PC.

3 Put each relation Ri describing dependences involving variable Y, Y /∈
PrivCand, into set Sslice

4 If Sslice = ∅, then privatize all variables in set PrivCand and make the
outermost loop to be parallel. Exit.

5 For each variable X in set PrivCand do

5.1 z = the minimal number of those inner loops that include all state-
ments with X

5.2 SET X = ∅.
5.3 For each relation Rq, 1≤q≤m, m≤n, from set PC do

Form new relation Pq in the following way:

Pq={[e1, e2, ..., ek] → [e′1, e
′
2, ..., e

′
k] : constraints(Rq)

z∧
j=1

(ej = e′j)}

Impact of Variable Privatization on Extracting Synchronization-Free Slices 77

where e1, e2, ..., ek and e′1, e
′
2, ..., e

′
k are the variables of the input and

output tuples of Rq respectively; k is the number of loop indices;
constraints(Rq) are the constraints of relation Rq.

// the constraint

z∧
j=1

(ej = e′j) means that relation Pq does not describe

// dependences carried by z inner loop nests.
SET X = SET X ∪ Pq

5.4 Sslice = Sslice ∪ SET X ;

6 Apply any technique presented in [1] to set Sslice to extract synchronization-
free slices. If this results in a single slice, then make the outermost loop
to be serial and repeat the presented algorithm to the rest of loop nests
of the input loop.

Let us illustrate the presented algorithm by means of the following loop:
Example:

1: for(i=1; i<=n; i++){

2: c = 0;

3: for(j=1; j<=n; j++){

4: a[i][j] = a[i][j-1] + c;

5: }

6: }

The set of dependence relations for this loop includes the following relations.
R1 = {[i,-1,2] → [i,j’,4] : 1 ≤ i ≤ n && 1 ≤ j’ ≤ n}
R2 = {[i,-1,2] → [i’,j’,4] : 1 ≤ i < i’ ≤ n && 1 ≤ j’ ≤ n}
R3 = {[i,-1,2] → [i’,-1,2] : 1 ≤ i < i’ ≤ n}
R4 = {[i,j,4] → [i’,-1,2] : 1 ≤ i < i’ ≤ n && 1 ≤ j ≤ n}
R5 = {[i,j,4] → [i,j+1,4] : 1 ≤ i ≤ n && 1 ≤ j <n}

where relations R1, R2, R3, R4 describe dependences involving variable c, rela-
tion R5 involves variable a. Applying the algorithm, we get.

1 PrivCand = {c}.
2 PC = {R1, R2, R3, R4}. PC = PC{c}.
3 Sslice = {R5}.
4 Sslice �= ∅

5 For variable c do
5.1 z = 1
5.2 SET X = ∅;
5.3 PC{c} = {R1, R2, R3, R4}.

P1 = R1; P2=P3=P4=∅;
SET X = {P1};

5.4 Sslice = {R1, R5}. R = R1 ∪ R5.
end for

78 M. Palkowski

6 Srepr(R)= {[i,-1,13]: 1 ≤ i ≤ n && 2 ≤ n};
Applying algorithm Gen affine presented in [1] we get n synchronization-
free slices represented with the following code :

if (n >= 2) {

par for(t1 = 1; t1 <= n; t1++) private(c)

{

c = 0; // s1(t1,-1,2);

if (n >= t1 && t1 >= 1) {

for(t2 = 1; t2 <= n; t2++) {

a[t1][t2] = a[t1][t2-1] + c; // s1(t1,t2,4);

}}}}

4 Experiment Results

The presented algorithm was implemented by us in a tool by means of the Omega
library. It generates C-like pseudo-code scanning synchronization-free slices with
defining variables to be privatized. The implementation of the algorithm is avail-
able at the website http://sourceforge.net/projects/issf/. Using this tool,
we have experimented with loops of the NAS 3.2 benchmark suite [7].

NAS Parallel Benchmarks (NPB) have been developed at the NASA Ames
Research Centre to study performance of parallel supercomputers. The bench-
marks, which are derived from computational fluid dynamics (CFD) applica-
tions, consist of five kernels and three pseudo-applications [7].

From 431 loops of the NAS benchmark suite, Petit is able to analyse 257 loops,
and dependences were found in 134 loops (the rest 123 loops do not expose any
dependence). For these loops, the presented approach is able to extract paral-
lel threads for 116 (86,5%) loops. Table 1 presents the transformations used.
40 loops were parallelized by algorithms of extracting slices [1]. For 39 loops,
variable privatization eliminates all dependences, hence loop parallelization is
trivial. 15 loops were transformed to parallel code representing slices with vari-
able privatization. For 22 loops, parallelism was found only in inner nests (the
outermost loop is serial). The presented approach allows us to parallelize addi-
tionally 76 loops in comparison with those extracted by algorithms presented in
paper [1]. The last column of the table presents steps of the algorithm producing
parallel code.

To study the impact of variable privatization on reducing dependences and
the time of extracting slices, the following criteria were taken into account for
choosing NAS loops: (i) a loop must be computatively heavy (there are many
NAS benchmarks with constant upper bounds of loop indices, hence their paral-
lelization is not justified), (ii) code produced by the algorithm must be parallel
(there are NAS loops that cannot be parallelized), (iii) structures of chosen loops
must be different (there are many NAS loops of a similar structure). Applying
these criteria, the following five NAS loops: BT error 5, BT rhs 1, LU erhs 3,
SP rhs 4 and UA transfer 11 have been selected. Results of experiments are
presented in Table 2, where N1, N2, N3 represent loop index upper bounds.

http://sourceforge.net/projects/issf/

Impact of Variable Privatization on Extracting Synchronization-Free Slices 79

Table 1. Loop parallelization

Technique Number of loops Step of the algorithm

Slicing only (S) 40 Step 6, PrivCand = ∅

Privatization only (P) 39 Step 4, Sslice = ∅

Slicing with privatization (P+S) 15 Step 6, PrivCand �= ∅,
Sslice �= ∅

Only privatization of inner loop (P
inner)

22 Step 6, card(Srepr) = 1; Step 4
for an inner loop

All techniques 116

From Table 2, we can see that variable privatization reduces considerably the
numbers of dependence relations (see columns 4 and 5). It also reduces the time
of transitive closure calculation. Without variable privatization, the calculation
of transitive closure can take several hours, while the presented algorithm allows
us to compute it in a fraction of a second. The parallelization of the two loops,
LU erhs 3 and SP rhs 4, does not require transitive closure calculation because
variable privatization eliminates all dependences in these loops.

Table 2. Impact of variable privatization on slices extracting

Loop No. of
state-
ments

Technique
of algo-
rithm

No. of depen-
dences

Time of R*
calculation
[sec]

No. of slices Time
of
algo-
rithm

without
priv.

with
priv.

without
priv.

with
priv.

execu-
tion
[sec]

BT error 5 2 P+S 32 4 > 60 0.34 5 2.853

BT rhs 1 7 P+S 46 6 > 60 0.21 N1*N2*N3 1.722

LU erhs 3 30 P 640 0 > 60 0.00 N4*(N3-N2)
*(N1-1)

0.640

SP rhs 4 16 P inner 507 0 > 60 0.00 N3+5*(N4+
N5+N8+
N9+(N6-
3)*N7)

0.265

UA transfer 11 3 P+S 10 4 0.25 0.06 N1*N2 0.589

To check the performance of parallel code, speed-up and efficiency were stud-
ied for the five loops above. Speed-up is a ratio of sequential time and parallel
time, S=T (1)/T (P), where P is the number of processors. Efficiency, E=S/P,
tells us about usage of available processors while parallel code is executed. Table
3 shows time (in seconds), speed-up, and efficiency for 2, 4, and 8 processors.

80 M. Palkowski

The experiments were carried on a workstation Intel Xeon Quad Core, 1.6 Ghz,
8 CPU (2 quad core CPU with cache 4 MB), 2 GB RAM, Fedora Linux. Parallel
programs were written in the OpenMP standard [16]. Analysing data in Table
3, we may conclude that for all parallel loops, positive speed-up is achieved.
Efficiency depends on the problem size defined by index loop upper bounds
and the number of CPUs used for parallel program execution. For most cases,
efficiency increases with increasing the problem size. Figure 1 illustrates the
positive speed-up presented in Table 3 in a graphical way.

Fig. 1. Speed-up of the loops using 2, 4, and 8 CPU cores

5 Related Work

Iteration Space Slicing (ISS) was introduced by Pugh and Rosser in paper
[2]. However, they did not propose how to find synchronization-free slices.
They did not consider also the impact of variable privatization on extracting
synchronization-free slices.

The affine transformation framework (ATF), considered in papers [13,14] uni-
fies a large number of previously proposed loop transformations. The compar-
ison of ATF and ISS was introduced in the paper [1]. ATF is implemented in
the project Pluto [17,18]. It is an automatic parallelization tool based on the
polyhedral model. The core transformation framework [13,14], mainly works to
find affine transformations for efficient tiling and fusion, but not limited to those.
Unfortunately, Pluto does not offer any mechanism of automatic variable priva-
tization. This limitation did not allow us to study fully the impact of variable
privatization on extracting threads by means of the Pluto tool. From 134 NAS
benchmarks qualified for our experiments, Pluto is able to parallelize 46 loops
only, while the presented approach parallelizes 116 ones.

Impact of Variable Privatization on Extracting Synchronization-Free Slices 81

T
a
b
le

3
.
T
im

e,
sp

ee
d
-u
p
,
a
n
d
effi

ci
en

cy

L
o
o
p

P
a
ra
m
et
er
s

1
C
P
U

2
C
P
U
s

4
C
P
U
s

8
C
P
U
s

ti
m
e

ti
m
e

S
E

ti
m
e

S
E

ti
m
e

S
E

B
T

er
ro
r.
f2
p
5

N
1
=
N
2
=
N
3
=
1
0
0

0
.4
0
9

0
.2
3
2

1
.7
6
3
0
.8
8
1

0
.1
8
2

1
.2
7
5
0
.3
1
9

0
.1
6
6

1
.3
9
8
0
.1
7
5

N
1
=
N
2
=
N
3
=
1
5
0

1
.5
0
8

1
.0
2
1

1
.4
7
7
0
.7
3
8

0
.9
0
8

1
.6
6
1
0
.4
1
5

0
.8
2
2

1
.8
3
5
0
.2
2
9

N
1
=
N
2
=
N
3
=
2
0
0

3
.5
2
8

2
.1
0
8

1
.6
7
4
0
.8
3
7

1
.7
5
3

2
.0
1
3
0
.5
0
3

1
.2
3
6

2
.8
5
4
0
.3
5
7

B
T

rh
s.
f2
p
1

N
1
=
N
2
=
N
3
=
1
0
0

0
.6
8
2

0
.4
2
5

1
.6
0
5
0
.8
0
2

0
.2
1
4

3
.1
8
7
0
.7
9
7

0
.1
4
9

4
.5
7
7
0
.5
7
2

N
1
=
N
2
=
N
3
=
2
0
0

5
.5
9
6

3
.4
7
5

1
.6
1
0
0
.8
0
5

1
.8
9
5

2
.9
5
3
0
.7
3
8

1
.1
1
1

5
.0
3
7
0
.6
3
0

N
1
=
N
2
=
N
3
=
3
0
0

1
7
.8
7
0

1
1
.0
2
5
1
.6
2
1
0
.8
1
0

6
.0
6
2

2
.9
4
8
0
.7
3
7

4
.4
0
1

4
.0
6
0
0
.5
0
8

L
U

er
h
s.
f2
p
3

N
1
,N

3
=
3
2
;

N
4
,N

6
,N

8
,N

1
0
,N

1
1
=
1
0
0
0
;

N
2
,N

5
,N

7
,N

9
=
1

2
.2
3
1

1
.3
3
3

1
.6
7
4
0
.8
3
7

0
.9
8
7

2
.2
6
0
0
.5
6
5

0
.9
3
6

2
.3
8
4
0
.2
9
8

N
1
,N

3
=
4
8
;

N
4
,N

6
,N

8
,N

1
0
,N

1
1
=
2
0
0
0
;

N
2
,N

5
,N

7
,N

9
=
1

1
5
.0
5
3

7
.7
2
2

1
.9
4
9
0
.9
7
5

4
.2
0
4

3
.5
8
1
0
.8
9
5

3
.6
2
1

4
.1
5
7
0
.5
2
0

N
1
,N

3
=
6
4
;

N
4
,N

6
,N

8
,N

1
0
,N

1
1
=
3
0
0
0
;

N
2
,N

5
,N

7
,N

9
=
1

7
9
.1
1
4

4
2
.0
0
2
1
.8
8
4
0
.9
4
2
2
9
.0
0
9
2
.7
2
7
0
.6
8
2
1
8
.4
1
0
4
.2
9
7
0
.5
3
7

S
P

rh
s.
f2
p
4

N
1
,N

2
,N

3
,N

4
,N

5
,

N
6
,N

7
,N

8
,N

9
=
7
5

1
.6
4
8

0
.8
3
3

1
.9
7
8
0
.9
8
9

0
.4
7
8

3
.4
4
8
0
.8
6
2

0
.3
3
0

4
.9
9
4
0
.6
2
4

N
1
,N

2
,N

3
,N

4
,N

5
,

N
6
,N

7
,N

8
,N

9
=
1
0
0

3
.4
1
7

1
.7
8
8

1
.9
1
1
0
.9
5
6

0
.8
6
0

3
.9
7
3
0
.9
9
3

0
.4
8
6

7
.0
3
1
0
.8
7
9

N
1
,N

2
,N

3
,N

4
,N

5
,

N
6
,N

7
,N

8
,N

9
=
1
2
5

7
.7
9
0

3
.9
0
1

1
.9
9
7
0
.9
9
8

2
.2
1
6

3
.5
1
5
0
.8
7
9

1
.1
8
6

6
.5
6
8
0
.8
2
1

U
A

tr
a
n
sf
er
.f
2
p
1
1
N
1
=
N
2
=
N
3
=
1
0
0

0
.0
1
8

0
.0
1
2

1
.5
2
9
0
.7
6
5

0
.0
0
9

2
.0
4
4
0
.5
1
1

0
.0
9

1
.9
7
6
0
.2
4
7

N
1
=
N
2
=
N
3
=
2
0
0

0
.6
1
0

0
.3
7
8

1
.6
1
4
0
.8
0
7

0
.1
9
4

3
.1
4
4
0
.7
8
6

0
.1
7
8

3
.4
2
7
0
.4
2
8

N
1
=
N
2
=
N
3
=
3
0
0

2
.3
4
7

1
.2
3
1

1
.9
0
7
0
.9
5
3

0
.7
7
2

3
.0
4
0
0
.7
6
0

0
.6
0
3

3
.8
9
2
0
.4
8
7

82 M. Palkowski

The variable privatization is available by means of other loop parallelizers:
PIPS [21,22] and Cetus [23]. PIPS provides different privatization functions [21].
The quick privatization is restricted to loop indices and is included in the de-
pendence graph computation. The array privatization is much more expensive
and is still mainly experimental [21].

Cetus is a source-to-source compiler and the successor to Polaris at Purdue
University [23]. The tool privatizes variables and traverses a loop nest from the
innermost to the outermost loop. At each level, it first collects definitions (write
references) and uses (read references) in the loop body. Cetus aggregates all
these array sections over the loop iteration space. This technique is a slightly
simpler version of the one used in the Polaris parallelizing compiler for Fortran77
programs [23]. However, the both parallelizers Cetus and PIPS do not implement
Iteration Space Slicing.

6 Conclusion

The proposed approach extends the spectrum of loops which can be parallelized
by the Iteration Space Slicing framework [1]. The algorithm reduces the number
of loop dependences and as a consequence the time of transitive closure calcu-
lation for dependence relations. The time of loop parallelization is also reduced.
The technique is able to transform loops with a large number of statements and
dependence relations in short time.

The paper presents the approach for privatizing scalar and array variables
[19] in the context of ISS framework. In the future work, we intend to consider a
combination of ISS with more advanced techniques, such as presented in [20], to
find better tradeoffs between parallelism, locality, communication and memory
usage. We are going also to analyse other techniques eliminating loop depen-
dences and define most effective ones to be integrated with the ISS framework
to reduce its time complexity and enlarge its scope of applicability.

References

1. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-grained
loop parallelization: Iteration space slicing vs affine transformations. Parallel Com-
puting 37, 479–497 (2011)

2. Pugh, W., Rosser, E.: Iteration space slicing and its application to communication
optimization. In: International Conference on Supercomputing, pp. 221–228 (1997)

3. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering, 352–357
(1984)

4. Gupta, M.: On Privatization of Variables for Data-Parallel Execution. In: Proceed-
ings of the 11th International Parallel Processing Symposium, pp. 533–541 (1997)

5. Allen, R., Kennedy, K.: Optimizing compilers for modern architectures: A Depen-
dence based Approach. Morgan Kaufmann Publish., Inc. (2001)

6. Moldovan, D.: Parallel Processing: From Applications to Systems. Morgan
Kaufmann Publishers, Inc. (1993)

7. The NAS benchmark suite, http://www.nas.nasa.gov

http://www.nas.nasa.gov

Impact of Variable Privatization on Extracting Synchronization-Free Slices 83

8. Pugh, W., Wonnacott, D.: An Exact Method for Analysis of Value-Based Array
Data Dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.)
LCPC 1993. LNCS, vol. 768, pp. 546–566. Springer, Heidelberg (1994)

9. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
omega library interface guide. Technical report, College Park, MD, USA (1994)

10. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive clousure of infinite
graphs and its applications. In: Languages and Compilers for Parallel Computing
(1995)

11. Verdoolaege, S.: Integer Set Library - Manual (2011),
http://www.kotnet.org/~skimo//isl/manual.pdf

12. Wlodzimierz, B., Tomasz, K., Marek, P., Beletska, A.: An Iterative Algorithm of
Computing the Transitive Closure of a Union of Parameterized Affine Integer Tuple
Relations. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508,
pp. 104–113. Springer, Heidelberg (2010)

13. Lim, A., Lam, M., Cheong, G.: An affine partitioning algorithm to maximize paral-
lelism and minimize communication. In: ICS 1999, pp. 228–237. ACM Press (1999)

14. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part I and II,
one and multidimensional time. International Journal of Parallel Programming 21,
313–348, 389–420 (1992)

15. Kelly, W., Pugh, W., Rosser, E., Maslov, V., Shpeisman, T., Wonnacott, D.: New
User Interface for Petit and Other Extensions. User Guide (1996)

16. OpenMP API, http://www.openmp.org
17. PLUTO - An automatic parallelizer and locality optimizer for multicores (2012),

http://pluto-compiler.sourceforge.net

18. Bondhugula, U., Hartono, A., Ramanujan, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: ACM SIGPLAN Program-
ming Languages Design and Implementation (PLDI 2008), pp. 101–1123 (2008)

19. Marek, P.: Automatic Privatization for Parallel Execution of Loops. In:
Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zu-
rada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 395–403. Springer,
Heidelberg (2012)

20. Vasilache, N., et al.: Trading Off Memory For Parallelism Quality. In: Pro-
ceedings of IMPACT 2012 (2012), http://impact.gforge.inria.fr/impact2012/
workshop IMPACT/vasilache memopt.pdf

21. Amini, M., Ancourt, C., et al.: PIPS Documentation (2012),
http://pips4u.org/doc

22. Amini, M., et al.: PIPS Is not (just) Polyhedral Software. In: First International
Workshop on Polyhedral Compilation Techniques (IMPACT 2011), Chamonix,
France (April 2011)

23. Chirag, D., et al.: Cetus: A Source-to-Source Compiler Infrastructure for Multi-
cores. IEEE Computer, 36–42 (2009)

http://www.kotnet.org/~skimo//isl/manual.pdf
http://www.openmp.org
http://pluto-compiler.sourceforge.net
http://impact.gforge.inria.fr/impact2012/workshop_IMPACT/vasilache_memopt.pdf
http://impact.gforge.inria.fr/impact2012/workshop_IMPACT/vasilache_memopt.pdf
http://pips4u.org/doc

Parallel Collision Queries on the GPU

A Comparative Study of Different CUDA Implementations

Rainer Erbes1, Anja Mantel1, Elmar Schömer2, and Nicola Wolpert1

1 Hochschule für Technik Stuttgart
{rainer.erbes,anja.mantel,nicola.wolpert}@hft-stuttgart.de

2 Johannes Gutenberg-Universität Mainz
schoemer@uni-mainz.de

Abstract. We present parallel algorithms to accelerate collision tests
of rigid body objects for a high number of independent transformations
as they occur in sampling-based motion planning and path validation
problems. We compare various GPU approaches with a different level of
parallelism against each other and against a parallel CPU implementa-
tion. Our algorithms require no sophisticated load balancing schemes.
They make no assumption on the distribution of the input transfor-
mations and require no pre-processing. Yet, we can perform up to 1
million collision tests per second with our best GPU implementation in
our benchmarks. This is about 2.5X faster than our reference multi-core
CPU implementation and more than 18X faster than current single-core
implementations.

1 Introduction

Bounding volume hierarchies (BVHs) are widely used to accelerate proximity
tests between two objects that can be given as triangle soups. Other applications
include ray tracing, visibility culling and nearest neighbor queries.

The leaf nodes of a BVH contain the triangles of the objects and inner nodes
of the hierarchy are bounding volumes such as spheres, axis-aligned bounding
boxes (AABBs), oriented bounding boxes (OBBs), etc. BVHs aim at culling
distant portions of the triangle sets to accelerate the collision queries. They help
to give a hierarchical approximation of the objects and to localize of the near
portions to perform intersection tests of the corresponding triangles [22].

For queries between rigid bodies, the hierarchies can be precomputed once
and traversed at runtime. For example, this is the case when performing colli-
sion queries in the fields of motion planning and path validation in CAD. These
problems can be generalized as having two geometric objects, given as triangle
sets, and a number of rigid body transformations that describe the relative po-
sition of the objects. We then want to detect the collision status of the objects
for every relative placement.

We want to investigate how a high number of BVH-based collision tests can
be efficiently performed in parallel on the GPU. Our goal is to improve the
performance of high level algorithms for sampling-based motion planning and

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 84–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel Collision Queries on the GPU 85

path validation, where collision testing consumes a significant amount of the
overall running time. We have used CUDA to implement and compare several
different alternatives to distribute the work to the parallel GPU threads. As a
reference, we have used OpenMP to parallelize the collision queries on the CPU.

2 Related Work

Bounding volume hierarchies are widely used to accelerate proximity queries.
Most prominent bounding volume types include spheres, AABBs, OBBs, RSS
and k-DOPs [18,5,11,9]. Some recent work aimed to improve the performance
of proximity queries by the use of more sophisticated culling techniques and
traversal schemes [2,20] or hierarchy memory layout [23].

There has also been substantial work on how to exploit the parallel compute
capabilities of the GPU to improve collision tests and other proximity queries.
Historically, many GPU-based collision checkers use the rasterization capabilities
of the graphics device and perform image space tests based on depth buffer or
stencil buffer tests and distance field computation [15,1,10,7,6,19,14].

More recent work has focused on parallel BVH construction [12] and traversal
[3,16,13] on the GPU and multi-core CPUs [8,21]. Lauterbach et al. [13] describe
a proximity query framework that is applicable to (continuous) collision detec-
tion, distance computation and self intersection. They treat a bounding volume
intersection test a basic task and describe a load balancing scheme to distribute
these tasks evenly amongst all GPU cores. The authors in [17] aim at performing
a high number of collision tests in parallel in the field of sampling-based motion
planning. They intent to cluster similar transformations of the queried objects
(that lead to similar BVH traversal) to achieve a performance gain.

Compared to previous work, our goal is to execute a high number of indepen-
dent collision tests in parallel. Instead of using a sophisticated load balancing
scheme or pre-processing of the input transformations, we rely on the high num-
ber of tests to evenly utilize the GPU cores while keeping the implementation
complexity at a minimum. We attempt to parallelize the problem at different
granularities and analyze how the achieved collision test throughput varies with
the total number of tests per parallel collision query.

3 Problem Formulation

Let A,B ⊂ R
3 be two objects given as triangle sets and BvhA and BvhB two

bounding volume hierarchies that are constructed on these triangle sets. We are
going to use OBB bounding volumes for our benchmarks, as they have shown to
work well in the context of collision testing [5], but any other type of bounding
volume could be used instead. Individual bounding volumes are being denoted
as A ∈ BvhA and B ∈ BvhB, respectively.

We assume that B is static whereas we want to apply an arbitrary rigid
body transformation q ∈ R

3 × SO(3) to A and obtain a transformed set of tri-
angles A(q). In the following section, we use the term parallel collision query

86 R. Erbes et al.

for a single call to our parallel algorithms that perform a high number of indi-
vidual collision tests. Every collision test applies a different transformation to
A and executes numerous intersection tests of bounding volume pairs or tri-
angle pairs. Thus, the algorithm operates on a vector of different transforma-
tions Q = (q0, q1, . . . , qn), with qi ∈ R

3 × SO(3) and delivers a result vector
R = (r0, r1, . . . , rn), with ri ∈ {0, 1} . We want to interpret the result such that
ri = 1 :⇔ A(qi) ∩B �= ∅.

4 A Basic BVH Collision Test

A basic bounding volume hierarchy collision test traverses both BVHs in tandem.
It manages a traversal stack S of bounding volume pairs (A,B). All pairs on the
stack remain to be tested for intersection. At every iteration, the algorithm pops
a pair (A,B) of bounding volumes from the stack and performs an intersection
test. If A(q) and B do not intersect, it can proceed with the next iteration. If they
do intersect, the algorithm determines the child volumes of A and B from the
hierarchies and pushes all pairs of child volumes to the stack. In the case of two
intersecting leaf nodes, we can perform exact collision tests with the triangles
that are bounded by the nodes. If we detect one colliding triangle pair, we report
that A and B collide and abort further BVH traversal.

Parallelization: Given a single-core implementation for BVH traversal, we can
easily obtain a parallel version by using OpenMP to parallelize the main loop
that iterates over the individual transformations of the collision query. We are
going to use a quad-core CPU with hyper-threading so we split the total number
of collision tests into 8 evenly sized pieces and assign every piece to an individual
CPU thread. We want to use this CPU version as a reference for our CUDA
implementations.

5 Parallel Collision Queries on the GPU

When implementing a bounding volume hierarchy traversal with CUDA, there
are three major problems to be addressed:

Memory Access. There are two problems with memory access as far as BVH
traversal is concerned. First, memory transactions between the GPU and video
memory can only happen in chunks of 128 or 32 bytes. And second, it can be
problematic to use cached memory accesses together with a random memory
access pattern. Modern Nvidia GPUs use a two level caching mechanism. If we
represent a bounding volume hierarchy as an array of bounding volume nodes,
it is not possible to determine the order in which these volumes will be accessed.
Even if we try to fit multiple bounding volumes into one cache line (e.g. we
could attempt to store child nodes near its parents) it is likely that the cache
line has already been evicted when we need the children, because L1 cache is
a scarce GPU resource. We therefore want to access main memory through L2
only and disable L1 caching. This leads to a load granularity of only 32 byte

Parallel Collision Queries on the GPU 87

memory segments. OBBs are an ideal candidate bounding volume to fit into 32
byte memory chunks. We took special care to represent an OBB with 15 float
values. With one extra value for padding, this is exactly 64 bytes.

Code divergence. Every 32 threads of one warp always share the same instruction.
However, it is possible that different threads take different execution paths at
conditional instructions when the condition depends on the thread id. Whenever
this happens, execution has to be serialized and the whole warp takes both
execution paths, having part of the threads masked idle. It is therefore strongly
recommended to avoid divergent branching as much as possible.

Workload balance. A topic that is closely related to code divergence is workload
balance. In the parallelization process, we have to break down the problem into
small parallel sub-problems. In our case, we solve separate collision tests for
a high number of different transformations and use one thread to execute one
test. It is possible that different sub-problems take a different amount of time
causing the threads of one warp to run for a different amount of time. But the
warp cannot stop its execution until all threads are ready. This can cause a
large number of threads to stall. By trying to balance the workload amongst all
threads of a common warp, this effect can be minimized.

6 Implementation Details

We have implemented different BVH traversal schemes. The schemes differ mostly
in the way the work is divided into parallel sub-tasks and how these tasks are
mapped to the GPU threads. To mask out the effect that the triangle tests have
and to isolate the BVH traversal scheme, we first want to discuss a simplified
collision test that does not perform intersection tests for the triangles contained
in the leaf nodes. In this context, we classify the proximity status of two objects
solely based on bounding volume tests.

6.1 One Thread Performs One Test

In our first implementation, we want one thread to perform one collision test.
The kernel gets two bounding volume hierarchies, BvhA and BvhB and an array
of transformations Q (cf. Alg. 1). Every thread manages its own traversal stack
in a dedicated piece of a large global memory array. In an initialization phase, it
uses its thread-id to identify the right transformation and an offset to its private
region of stack memory. The main loop is very CPU-like: In every iteration,
we pop a stack entry before we load, transform and intersect the corresponding
bounding volumes. All pairs of child volumes are pushed to the stack until we
find a pair of intersecting leaf-nodes or the stack runs empty. Eventually, the
thread reports its result to a dedicated place in a result array.

6.2 One Thread Performs Some Tests

Algorithm A has no concept for workload balancing. The GPU schedules and
executes groups of 32 threads (warps) in a SIMD fashion. This means that if

88 R. Erbes et al.

Algorithm 1

#define INITIALIZE
q = Q[qIdx];
S = { (0,0) };
col = false;

#endif

void kernelA(Configs Q, Bvh bvhA , Bvh bvhB) {

qIdx = blockDim × blockIdx + threadIdx;
S.start = globalStackArray + qIdx × STACK_SIZE ;

INITIALIZE ;
while(!S.empty() && !col) {

(A,B) = S.pop ();

if(intersect (A(q),B)) {
if(A.isLeaf() && B.isLeaf())

col = true;
else

S.push(children(A,B));
}

}
result[qIdx] = col;

}

Algorithm 2

void kernelB(Configs Q, Bvh bvhA , Bvh bvhB) {

qIdx = blockDim × blockIdx + threadIdx ;
nuOfThreads = blockDim × gridDim;
S.start = globalStackArray + qIdx × STACK_SIZE ;

INITIALIZE ;
while(true) {

if(S.empty() || col) {
result[qIdx] = col;

qIdx += nuOfThreads ;

if(qIdx ≥ Q.size()) return;

INITIALIZE ;
}

(A, B) = S.pop ();

if(intersect(A(q), B)) {
if(A.isLeaf() && B.isLeaf())

col = true;
else

S.push(children(A,B));
}

} // end of while
}

the first 31 threads of a warp exit the main loop right away because their root
bounding volumes have shown to be disjoint, they would still have to wait for
the last thread to finish the main loop before they could write their result. Until
this happens they become idle and waste GPU resources.

This effect is softened if all threads of the same warp consume approximately
the same computation time. To achieve this, our basic idea is to let every thread
perform more than just one collision test and to read transformations and write
results from inside the main loop (cf. Alg. 2). This has the advantage that if one
thread has finished a collision test, it does not have to wait for the other threads
in the same warp but it can launch the next test. We use a static mapping of the
collision tests to the threads where every thread performs the same number of
collision tests. The drawback of this method is that we need more collision tests
than in case of kernel A to have the GPU fully utilized. So is not promising to
let one thread perform a too high number of tests either (cf. Sec. 7).

6.3 Some Threads Perform One Test

In our third implementation, we want a group of threads to work on the same
collision test. Letting one thread perform one collision test performs poorly when
the traversal stack runs almost empty. So we want to use a group of threads to
perform a single BV intersection test. A natural group size for current Nvidia
GPUs would be a multiple of one warp (i.e. 32 threads). In the context of collision
tests, this is already a quite large group size.

We use OBB hierarchies and we use a separating axis test like in [5] to decide
if two oriented bounding boxes are disjoint. The separating axis test is an ideal
candidate for parallelization, as we can independently test all 15 candidate axes.

These considerations led to the following choices in our implementation (cf.
Alg 3): We use groups that are composed of a fixed number of 16 threads. There
is a dedicated master thread, that manages the traversal stack and pops a new

Parallel Collision Queries on the GPU 89

stack entry at every iteration of the main loop. As we represent an OBB with
15 floating point values, we use the first 15 threads of the group to load the two
corresponding bounding volumes A and B from memory with coalesced reads of
15 floats. The master thread transforms A according to the transformation that
belongs to the collision test. After that, the first 15 threads perform a projection
of A and B on one of the 15 different separating axes. The threads share the
result of the OBB intersection test through a shared memory variable.

The reader may have noticed that we only use the first 15 threads of every
group. The 16th thread is always idle! This means that we waste 1/16th or about
6% of our computational resources in the first place. However, if we mask out
this one thread per group, we can achieve that the threads of every two groups
sum up nicely to one warp. If we decided to enforce a group size of 15 instead,
we would introduce a stride of 2 which results in a sub-optimal alignment of
our logical units (groups) to the physical unit of one warp. In practice, we have
observed that it is beneficial to sacrifice the 16th thread.

6.4 Some Threads Perform Some Tests

In our implementation of pattern D, we use a group of 32 threads to perform 8
collision tests. To compensate for the low thread utilization ratio in the beginning
of the traversal, all threads in one group share the same traversal stack. This
requires to store not only the indices of the pending bounding volume pairs on
the stack but also record an index for the corresponding transformation. The
pseudocode for this scheme is given in Alg. 4. First, we initialize the global stack
and load eight transformations to a shared memory location In the main loop,
we utilize as many threads as we have stack entries left (at most 32 threads).
Every thread loads and transforms a bounding volume pair and performs an
intersection test. Dependent on the result of this intersection test, some but not
necessarily all threads need to write new pairs of child volumes on the stack.
To improve the access pattern of the global memory writes, we first write all
produced stack entries densely to a shared memory array and then copy the
whole array to the global memory stack.

We have tested two different implementations for the parallel write to the
shared memory array. The first implementation uses a static addressing scheme
to assign the entries of the output array uniquely to a thread of the group. If
not all threads perform a write operation, the resulting array is sparse and has
to be compacted before we copy it to the global memory stack. The second
implementation uses atomic operations to increment a pointer to the shared
array and to perform a dense output in the first place. We found that the second
option was preferable in our test cases.

7 Benchmarks and Results

We have tested our implementations in two different scenarios. Both test cases
correspond to a motion planning problem: to separate the intertwined the nails

90 R. Erbes et al.

Algorithm 3
void kernelC(Configs Q, Bvh bvhA , Bvh bvhB) {

groupSize = 16;
groupsPerBlock = blockDim / groupSize;

tIdx = threadIdx % groupSize ;
gIdx = threadIdx / groupSize;

qIdx = groupsPerBlock × blockIdx + gIdx;
S.start = globalStackArray + qIdx × STACK_SIZE ;

__shared__ volatile int col ;
__shared__ volatile OBB A, B;

INITIALIZE ;
while(true) {

if(tIdx == 0) {
if(S.empty())

col = true;
else

(idxA, idxB) = S.pop ();

}

if(tIdx < 15)

(A,B) = loadVolumes(idxA, idxB);

if(tIdx == 0) A = A(q);

__shared__ cut = 1;
if(tIdx < 15) {

n = getSepAxis (A, B, tIdx);
if(sepAxisProject (A, B, n)) shCut = 0;

}
if(tIdx == 0 && shCut) {

if(A.isLeaf() && B.isLeaf())
col = true;

else
S.push(children(A,B));

}
} // end of while

}

Algorithm 4

void kernelD(Configs Q, Bvh bvhA , textscBvh bvhB } {

groupSize = 32;
groupsPerBlock = blockDim / groupSize ;

tIdx = threadIdx % groupSize;
gIdx = threadIdx / groupSize;

qIdx = groupsPerBlock × blockIdx + gIdx;
S.start = globalStackArray + qIdx × STACK_SIZE ;

if(tIdx < 8)
q[tIdx] = Q[qIdx];

S = { (0,0,0), (1,0,0), ..., (7,0,0) };

while(S �= ∅) {
if(tIdx < S.size()) {

(t, A,B) = S.pop(tIdx);

if(intersect(A(q[t]),B)) {
if(A.isLeaf() && B.isLeaf())

col[t] = true;
else

parallel_write (sharedArray ,
{t} × children(A,B));

}
}

copy(S, sharedArray);
} // end of while

if(tIdx < 8) result[qIdx] = col [tIdx];
}

models and to remove the engine from the engine bay (cf. Fig. 1). We are using
220 input transformations for the moving object as they would be tested by a
sampling-based motion planning algorithm [4]. To run our GPU code, we used a
Nvidia GeForce GTX480 consumer card and an Intel R© Xeon R© E5620 quad-core
CPU at 2.4GHz for our reference CPU code. The complexities of the objects in
terms of triangle counts are given in the following table.

Nails Engine Bay
A 9,282 92,671
B 9,282 126,820

Triangle count of the objects used in our benchmarks

Fig. 1. Objects used for the benchmarks with a number of random transformations

Parallel Collision Queries on the GPU 91

There are different aspects we want to discuss in this section. First of all, we
want to examine how the different kernel versions described in Sec. 6 behave
when performing a number of collision tests. The kernels A and B make no use
of the GPU’s shared memory. We want to investigate how moving the traversal
stack from global to shared memory influences the performance of these algo-
rithms. All these implementations perform no triangle-triangle intersection tests
but operate solely on the bounding volume hierarchies. Thus, we examine the
effect that the triangle tests have on the running time in the following paragraph.
Finally, we want to test how the number of collision tests that are processed in
parallel influence the GPU performance and compare the results to our reference
CPU implementation.

Fig. 2. Performance of different CUDA Kernels (left); performing triangle tests (right)

GPU – Kernel Version. Fig. 2 (left) shows how the different kernel versions
perform in our benchmark scenarios. We can see that the kernel version A and
B clearly outperform the other approaches. We were able to perform more than
one million collision tests per second for the nails benchmark and around 480k
tests per second for the more complex engine bay benchmark. Although version
D is not too bad in the engine bay scenario, this more sophisticated traversal
scheme cannot compensate for the burden of inter thread communication. The
idea to let a group of threads share a common traversal stack cannot compete
with the more naive versions A and B. Furthermore, our results show that it is
not advantageous to use a very fine granular parallelization as was done with
kernel C where we parallelized a single bounding volume test.

GPU – Shared Memory Traversal Stack. The CUDA kernels A and B make
no use of the GPU’s shared memory. We can therefore modify the kernels and
hopefully take advantage of this GPU resource. Our first attempt is to move the
traversal stack of every thread to a shared memory array to save global memory
transactions. Every stack entry is a pair of two integers that identify a pair of
bounding volumes. As we are using a depth first order traversal scheme, this
stack cannot grow very much in size. If we are going to reserve stack space for
64 entries for every thread, we need 16KB of shared memory per warp. Because
every SM only has 48KB of shared memory available, this means that a SM can
only run three warps concurrently.

92 R. Erbes et al.

Fig. 3. Performance of kernels A and B when traversal stack resides in shared memory

The result of our experiment with a fixed stack size of 64 can be found in
Fig. 3 on the left hand side. For both kernel versions, using a shared memory
traversal stack has a negative effect on the performance in our tests. The high
resource consumption restricts the number of threads that can run concurrently
per SM. This negative effect cannot be compensated by a reduced number of
global memory transactions.

One option would be to reduce the stack sizes. For a stack size of 32 entries,
every SM could run up to 6 warps concurrently. However, we found that a stack
size of 32 was not sufficient for all our test queries. A high triangle count causes
deep hierarchies which can result in stack overflow and incorrect results. In Fig.
3, we sum up our results for different stack sizes of 64, 42 and 32 entries. The
plots show how reducing the stack size can dramatically improve the algorithms
performance. However, in the engine bay benchmark, the use of a 32 element
stack caused stack overflow which resulted in a crash of the kernel and produced
incorrect results.

If we compare these results with the diagram in Fig. 3 on the left, we can
see that even the performance of the 32 element stacks is worse than the global-
stack version. Overall, we could not produce any performance gain when using
a shared memory stack compared to the global memory version.

GPU – Performing Triangle Tests. Fig. 2 (right) shows the effect of adding
triangle-triangle intersection tests for the triangles contained in intersecting leaf
nodes of the hierarchies. We show the result for kernels A and B only. Adding
triangle tests causes increased computation time, extra time for loading the
triangles and higher traversal time. It can also result in more divergent code as
not all threads of a warp want to perform triangle tests at the same time. We
found that if we perform triangle tests, the performance of our kernels drops by
30%−35%. This is comparable to what happens when we perform the same test
with the CPU version of our code.

GPU vs CPU – Saturation of the Processing Unit. Modern GPUs are
capable of running hundreds of threads in parallel and even thousands of threads
concurrently. The GPUs thread scheduler actively uses a high number of con-
current threads in order to hide memory latencies. Thus it is necessary to have
a sufficient number of threads running to reach the peak performance of the
device. In our case this means that we have to perform enough collision tests
at a time. As the CPU relies on other strategies for latency hiding, like caching

Parallel Collision Queries on the GPU 93

and branch prediction, it may not need as many jobs to fully utilize the device.
However, we can expect that the CPU can also benefit from performing a se-
quence of tests at once. Fig. 4 shows how the number of tests influences the
throughput of collision tests. We compare our CUDA implementations against
our multi-core CPU approach. For kernel B we show two versions: in the first
version, kernelB(8), every thread performs 8 collision tests and we perform 64
tests per thread in the second version, kernelB(64).

Fig. 4. Device Saturation. Nails benchmark (left) and Engine Bay benchmark (right).

Both, the CPU and the GPU, need a certain number of tests to be fully
occupied. The GPU however is much more sensitive to this effect.

If we have a look at the nails benchmark, we can see that the CPU needs
around 100k collision tests per query to achieve near peak performance. But
we can run at 80% of peak performance already, if we only have 1024 tests per
query. Kernel A needs around 220 tests to fully occupy the GPU. At this point, it
runs at 850k tests per second. The kernel cannot run 221 tests at a time because
this would require too much memory for the traversal stacks of the individual
threads. This problem could be circumvented if we used a dynamic allocation
of stack space. As we have predicted in Sec. 6, kernel B needs more concurrent
tests to fully occupy the device. However, this kernel can achieve a higher peak
performance if we run a sufficiently high number of collision tests in parallel.
The cross over point depends on the number of test that one thread performs
in kernel version B. Obviously, if we let one thread perform 64 tests, we need
more threads to occupy the GPU. We have observed a short performance drop
in kernel B when there are more than 8 active warps per streaming multipro-
cessor. This effect is more striking for kernelB(64) than for kernelB(8). It is
independent of the collision tests being performed and it also happens if we all
threads perform the exact same collision test. We assume that at this point, the
kernel configuration causes a drop of the achieved memory throughput which
propagates to the performance drop.

While the peak performance depends on the complexity of the input meshes,
we can observe that the qualitative behavior of the different implementations is
very similar for both benchmark scenarios.

94 R. Erbes et al.

8 Conclusions and Future Work

We have analyzed how we can take advantage of many-core GPUs and multi-
core CPUs to accelerate the execution of a high number of collision tests. We
have investigated different CUDA implementations that resulted from a different
distribution of the work to the parallel threads and compared their performance
against each other and against a multi-core CPU implementation. For bench-
marking, we used two scenarios with different object complexity.

We could achieve a peak collision test throughput of one million tests per
second for moderately complex objects and 240 thousand tests per second for
highly complex models on a Nvidia GeForce GTX480 consumer card. This is
about 2 − 2.5 times as fast as our reference CPU implementation that runs on
an Intel R© Xeon R© E5620 quad-core CPU at 2.4GHz.

The quad-core CPU implementation is preferable if there are only a few thou-
sand collision tests per query. Furthermore, the CPU implementation is very
straight forward. If a single-core version already exists, the parallelization of the
main loop with OpenMP can be trivially realized. In our benchmarks, we have
observed a speed-up factor of 7.5 of the multi-core version over the single-core
version (the CPU utilizes 4 cores with hyper-threading).

In Sec. 7, we have seen that our kernels could not profit from the use of a
shared memory traversal stack. So our current implementation does not use this
GPU resource at all. In the future, we want to investigate if we could possibly
use the shared memory differently to reorganize the global memory accesses. We
feel that this could be another opportunity to further improve the performance
of our CUDA kernels. We also plan to use our parallel collision query routines
to implement a sampling-based motion planner. As collision checking consumes
most of the time in those family of motion planners, we can expect a high
performance benefit in this application. In this context, we are also planning to
utilize the GPU to asynchronously perform the collision tests while the CPU is
driving the planning process simultaneously.

References

1. Baciu, G., Keung Wong, W.S., Sun, H.: Recode: An image-based collision detection
algorithm. In: Proceedings of Pacific Graphics 1998 (1998)

2. Curtis, S., Tamstorf, R., Manocha, D.: Fast collision detection for deformable mod-
els using representative-triangles. In: Proceedings of the 2008 Symposium on In-
teractive 3D Graphics and Games, I3D 2008, pp. 61–69. ACM, New York (2008)

3. Damkjær, J., Erleben, K.: Gpu accelerated tandem traversal of blocked
bounding volume hierarchy collision detection for multibody dynamics. In:
Prautzsch, H., Schmitt, A.A., Bender, J., Teschner, M. (eds.) VRIPHYS, pp.
115–124. Eurographics Association (2009)

4. Geraerts, R., Overmars, M.H.: A comparative study of probabilistic roadmap plan-
ners. In: Workshop on the Algorithmic Foundations of Robotics, pp. 43–57 (2002)

Parallel Collision Queries on the GPU 95

5. Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: a hierarchical structure for rapid
interference detection. In: Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 171–180. ACM,
New York (1996), http://doi.acm.org/10.1145/237170.237244

6. Govindaraju, N., Redon, S., Lin, M., Manocha, D.: CULLIDE: Interactive colli-
sion detection between complex models in large environments using graphics hard-
ware. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pp. 25–32. Eurographics Association (2003)

7. Heidelberger, B., Teschner, M.: Real-time volumetric intersections of deforming
objects. Proc. of Vision, Modeling (2003)

8. Kim, D., Heo, J.P., Huh, J., Kim, J., Yoon, S.E.: HPCCD: Hybrid parallel contin-
uous collision detection using cpus and gpus. Computer Graphics Forum (Pacific
Graphics) 28(7), 1791–1800 (2009)

9. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient colli-
sion detection using bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics, 21–36 (1998)

10. Knott, D., Dinesh, K.P.: CInDeR Collision and Interference Detection in Real-time
using Graphics Hardware. Computer Graphics Forum (2003)

11. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with
rectangular swept sphere volumes. In: Proc. of IEEE Int. Conference on Robotics
and Automation, pp. 3719–3726 (2000)

12. Lauterbach, C., Garland, M., Sengupta, S., Manocha, D.: Fast BVH construction
on GPUs. Computer Graphics 28(2), 375–384 (2009)

13. Lauterbach, C., Mo, Q.: gProximity: Hierarchical GPU-based Operations for Col-
lision and Distance Queries. Computer Graphics Forum 29(2), 419–428 (2010)

14. Morvan, T., Reimers, M., Samset, E.: High performance GPU-based proximity
queries using distance fields. Computer Graphics Forum 27(8), 2040–2052 (2008)

15. Myszkowski, K., Okunev, O.G., Kunii, T.L.: Fast collision detection between
complex solids using rasterizing graphics hardware. The Visual Computer 11(9),
497–511 (1995)

16. Pabst, S., Koch, A., Straßer, W.: Fast and scalable cpu/gpu collision detection for
rigid and deformable surfaces. Comput. Graph. Forum 29(5), 1605–1612 (2010)

17. Pan, J., Manocha, D.: GPU-based parallel collision detection for fast motion plan-
ning. The International Journal of Robotics (2012)

18. Quinlan, S.: Efficient distance computation between non-convex objects. In: Pro-
ceedings of International Conference on Robotics and Automation, pp. 3324–3329
(1994)

19. Sud, A., Govindaraju, N., Gayle, R., Manocha, D.: Interactive 3d distance field
computation using linear factorization. In: Proc. ACM Symposium on Interactive
3D Graphics and Games, pp. 117–124 (2006)

20. Tang, M., Curtis, S., Yoon, S.E., Manocha, D.: Interactive continuous collision de-
tection between deformable models using connectivity-based culling. In: Proceed-
ings of the 2008 ACM Symposium on Solid and Physical Modeling, SPM 2008, pp.
25–36. ACM (2008)

21. Tang, M., Manocha, D., Tong, R.: MCCD: Multi-core collision detection between
deformable models using front-based decomposition. Graphical Models (2010)

22. Veltkamp, R.: Hierarchical approximation and localization. The Visual Com-
puter 14(10), 471–487 (1998)

23. Yoon, S., Dinesh Manocha, D.: Cache-Efficient Layouts of Bounding Volume
Hierarchies. Computer Graphics Forum 25(3) (2006)

http://doi.acm.org/10.1145/237170.237244

ÆminiumGPU: An Intelligent Framework

for GPU Programming

Alcides Fonseca and Bruno Cabral

University of Coimbra, Portugal
{amaf,bcabral}@dei.uc.pt

Abstract. As a consequence of the immense computational power avail-
able in GPUs, the usage of these platforms for running data-intensive
general purpose programs has been increasing. Since memory and pro-
cessor architectures of CPUs and GPUs are substantially different, pro-
grams designed for each platform are also very different and often resort
to a very distinct set of algorithms and data structures. Selecting be-
tween the CPU or GPU for a given program is not easy as there are
variations in the hardware of the GPU, in the amount of data, and in
several other performance factors.

ÆminiumGPU is a new data-parallel framework for developing and
running parallel programs on CPUs and GPUs. ÆminiumGPU programs
are written in a Java using Map-Reduce primitives and are compiled
into hybrid executables which can run in either platforms. Thus, the
decision of which platform is going to be used for executing a program is
delayed until run-time and automatically performed by the system using
Machine-Learning techniques.

Our tests show that ÆminiumGPU is able to achieve speedups up to
65x and that the average accuracy of the platform selection algorithm,
in choosing the best platform for executing a program, is above 92%.

Keywords: Portability, Parallel, Heterogeneous, GPGPU.

1 Introduction

Since Graphics Processing Units (GPUs) have been user-programmable, scien-
tists and engineers have been exploring new ways of using the processing power
in GPUs to increase the performance of their programs. GPU manufacturers
acknowledged this alternative fashion of using their hardware, and have since
provided special drivers, tools and even models to address this small, but fast-
growing niche.

GPUs are interesting to target because of their massive parallelism, which
provides a higher throughput than what is available on current multi-core pro-
cessors. But, one can argue that the difference in architectures also makes pro-
gramming for the GPU more complex than for the CPU. GPU programming is
not easy. Developers that do not understand the programming model and the
hardware architecture of a GPU will not be able to extract all its processing
power. And, even after a program has been specially designed for the GPU, its

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 96–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

ÆminiumGPU: An Intelligent Framework for GPU Programming 97

performance might still be worse than on the CPU. For instance, the usage of
GPUs incurs on a penalty caused by memory copies between the main memory
and the GPU-specific memory.

In many situations, it may not be feasible to know beforehand if a program
will perform better in a GPU or in a CPU without actually executing it. And,
for programs that are not repeatedly executed or that execute for a very long
time it may not be useful to do so. Moreover, the performance of a program will
commonly be influenced by the size of the input data, the actual GPU hardware
and the structure of the program itself.

Double integral = new Range(RESOLUTION).map(new LambdaMapper<
Integer, Double>() {

public Double map(Integer input) {
double n = RESOLUTION;
double b = Math.pow(Math.E, Math.sin(input / n));
double B = Math.pow(Math.E, Math.sin((input+1) / n));
return ((b+B) / 2) * (1/n);

}
}).reduce(new LambdaReducer<Double>(){
public Double combine(Double input, Double other) {
return input + other;

}
});

Listing 1.1. Example of Map-Reduce to Calculate the Integral of a Function using
the trapezoid method

●
●

● ●●●●●●

●
●

● ●
●●●●●

● ● ● ●●●●●●●
●

● ●●●●●●●
●

● ●●●●●●●
●

●
●●●●●●●

1e+02 1e+04 1e+06

1e
−0

1
1e

+0
1

1e
+0

3

Data Size (bytes)

E
xe

cu
tio

n
T

im
e

(m
s)

● Java (CPU)
AeminiumGPU

integral program − CPU vs GPU on ÆminiumGPU

Fig. 1. Performance of the Integral program on CPU and GPU

Listing 1.1 is an example of programs that can execute on the GPU and cal-
culates the integral of f(x) = esin(x). This is an embarrassingly parallel problem,

98 A. Fonseca and B. Cabral

which is expressed using a data-parallel approach by means of map and reduce
operations. Figure 1 shows the execution time of the program in both CPU and
GPU for different data sizes. The GPU version is faster after a certain data size
and it is able to achieve up to 64 times of speedup. But, note that the threshold
from which the GPU performance starts to gain on the CPU is not always the
same. The actual threshold value depends of the program logic and even with
the hardware being used. Thus the decision whether to run a program on the
GPU or CPU is not an easy one.

The goal of this work is to present a new framework which simplifies the
task of writing data-parallel programs for transparently executing in GPUs,
with improved performance. Our approach drives inspiration from Functional
Programming and puts the power of GPUs in the hands of developers without
forcing them to understand the particularities of GPU programming. While pro-
grams are written in a mainstream programming language using a Map-Reduce
approach for now, specific parts of their code are compiled to OpenCL and exe-
cuted on the GPU. In order to minimize the impact of well known bottlenecks in
GPU programming and maximize the speedup obtained by the usage of GPUs,
the framework performs several optimizations on the generated code. Such op-
timizations include the generation of data on the GPU in opposition to its copy
from main memory, among others. Furthermore, in ÆminiumGPU, programs
are compiled into “hybrid” executables that can run in either GPU and CPU
platforms. Since the final purpose of ÆminiumGPU is to execute programs as
fast as possible, independently of the platform being used, hybrid executables
allow us to delay the decision of which platform is best for executing a specific
program until run-time, when much more information is available to fundament
a choice. ÆminiumGPU, by means of Machine-Learning techniques, is able to
make this decision autonomously with high accuracy.

The contributions of this work are:

– A new and state-of-the-art framework for GPGPU programming, which
hides GPU architectural details and execution model from developers;

– A translation library that is able to automatically generate optimized OpenCL
code from code written in a mainstream general purpose programming lan-
guage;

– A machine-learning solution for predicting the efficiency of programs in both
CPUs and GPUs;

– And, to the best of our knowledge, the first runtime system using machine-
learning techniques for autonomously deciding either to execute programs in
the CPU or GPU.

2 Approach

In this section we will depict the architecture and design of the ÆminiumGPU
framework. We will use the Map-Reduce algorithm as an example in this section
since it is a suitable representative of data-parallel algorithms in general.

ÆminiumGPU: An Intelligent Framework for GPU Programming 99

2.1 Architecture

The ÆminiumGPU framework was designed for supporting Æminium[1] and
Java programming languages. Since Æminium compiles to Java, this paper will
present the architecture from the point of view of Java. The Java language is
not supported by GPUs. Thus it is necessary to translate Java into OpenCL
functions. Translation is performed at compile-time by the ÆminiumGPU Com-
piler. The OpenCL functions are then executed by the ÆminiumGPU Runtime
during execution. The general architecture can be seen in Figure 2.

Fig. 2. Architecture of ÆminiumGPU

ÆminiumGPU Compiler.
The ÆminiumGPU Compiler
is a source-to-source com-
piler from Java-to-Java, in
which the final Java code
has some extra OpenCL code.
The OpenCL code is based
on lambda functions present
in the source code. For each
lambda in the original code,
the compiler creates an OpenCL version. This version is later used to generate
a kernel which will execute on the GPU.

The compiler was implemented using Spoon, a Java-to-Java compiler
framework[2]. Spoon parses and generates the AST and generates the Java code
from the AST. The ÆminiumGPU compiler introduces new phases that produce
the OpenCL version of existent lambdas. The compiler looks for methods with
a special signature, such as map or reduce. The AST of lambdas passed as ar-
guments are then analyzed and a visitor tries to compile Java code to OpenCL
as soon as it descends the AST.

It is important to notice that not all Java code can be translated to OpenCL.
The ÆminiumGPU compiler does not support all method calls, non-local vari-
ables, for-each loops, object instantiation and exceptions. It does support a com-
mon subset between Java and C99 with some extra features like static accesses,
calls to methods and references to fields of the Math object.

ÆminiumGPU Runtime. The ÆminiumGPU Runtime is a Java library re-
sponsible for providing Æminium Programs with parallel-ready lists that imple-
ment the GPU methods, such as map and reduce methods. Each list can be
associated with a GPU, thus supporting several GPUs on the same machine.
Whenever a GPU operation is summoned, the following phases occur: firstly the
compiler-generated OpenCL function is inserted in a predefined template (spe-
cific for each operation, such as reduce) and the resulting kernel is compiled to
the GPU; afterwards, the input data, if required, is copied to the GPU mem-
ory; next the kernel execution is scheduled with a suitable workgroups and
workitems arrangement for the data size and operation in question; finally
the output data is copied back to the host device and every GPU resource is
manually released.

100 A. Fonseca and B. Cabral

The templates used for Map and Reduce, since we are focusing in these op-
erations for this work, are really straightforward. The map kernel only applies a
function to an element of the input array and writes it to the output array. The
reduce kernel is a generic version of NVIDIA’s implementation[3], allowing for
more data-types than the four originally supported.

For these operations in particular, one optimization already implemented is the
fusion of maps with maps, and maps with reduces. This optimization is done by
considering the Map operation a lazy operation that is only actually performed
when the results are needed. This laziness allows for merging together several op-
erations, saving time in unnecessary memory copies and kernel calls. Because of
this optimization, the final kernel is only known and compiled at runtime.

All operations, even the ones that cannot be translated to the GPU, have a
sequential version written in Java. For the original purposes of this framework, it
was not important to parallelize on the CPU, but it will be considered in future
work, and the same technique can be used.

2.2 GPU-CPU Decision

ÆminiumGPU uses Machine Learning techniques to automatically decide if a
given operation should be executed on either the GPU or CPU. The problem can
be described as two-classed because each program execution can be classified as
either Best on GPU or Best on CPU. Supervised learning will be used, since it
is important to associate certain features of programs to the two platforms.

Since decisions are hardware dependent (CPU and GPU combination), we
considered two ways for tackling the problem: training the classifier in each
machine; or considering CPU and GPU specifications as features in a general
classifier. The former was selected for this work, although it can be extended
to the later in the future. Using a large number of features would increase clas-
sification time and it would be a very hard to train a general classifier with a
large set of CPU and GPUs. This means that when installing ÆminiumGPU, it
is necessary to execute a standard benchmark for collecting training data.

The critical aspect for having a good classification is choosing the right fea-
tures to represent programs. For instance, it is not feasible to consider the full
program in ASCII, since the length would be variable and the abstraction level
ill-suited for classification techniques. Table 1 lists all the features used in the
classification process.

a(); // Level 1
for (int i=0; i<10; i++) {

b(); // Level 2
while (j < 20)

c(); // Level 3
}

Listing 1.2. Examples of Level
categorization

Features can be extracted either
during compilation or during runtime.
This means that a given program will
always hold the same values for the
first features, while the last three fea-
tures may be different, depending on
the conditions of execution. Features
marked with a size of 3 have three val-
ues, one for each depth of loop scopes.
Listing 1.2 shows an example in which

ÆminiumGPU: An Intelligent Framework for GPU Programming 101

three functions are considered in 3 different loop levels. This distinction is im-
portant since operations in inner levels are executed more times than ones in the
outer levels.

The choice of some selected features was inspired by other applications of
Machine Learning in this area ([4], [5] and [6]). Memory accesses were considered
a feature as they are one of the main reasons why GPU programs are not as fast
as one would expect. As such, there are features for all three main kinds of
memories in GPUs (global and slow, local and fast, global read-only and fast).
Note that some GPU models may not have one of them, but it is still required
for other models.

Table 1. List of features

Name Size Collected during Description

OuterAccess 3 Compilation Global GPU memory read.

InnerAccess 3 Compilation Local (thread-group) memory read. This area
of the memory is faster than the global one.

ConstantAccess 3 Compilation Constant (read-only) memory read. This
memory is faster on some GPU models.

OuterWrite 3 Compilation Write in global memory.

InnerWrite 3 Compilation Write in local memory, which is also faster
than in global.

BasicOps 3 Compilation Simplest and fastest instructions. Include
arithmetic, logical and binary operators.

TrigFuns 3 Compilation Trigonometric functions, including sin, cos,
tan, asin, acos and atan.

PowFuns 3 Compilation pow, log and sqrt functions

CmpFuns 3 Compilation max and min functions

Branches 3 Compilation Number of possible branching instructions
such as for, if and whiles

DataTo 1 Runtime Size of input data transferred to the GPU in
bytes.

DataFrom 1 Runtime Size of output data transferred from the GPU
in bytes.

ProgType 1 Runtime One of the following values: Map, Reduce,
PartialReduce or MapReduce, which are the
different types of operations supported by
ÆminiumGPU.

In terms of operations, we performed micro-benchmarks to assess their exe-
cution cost. For instance, 4 or 5 plus operator calls execute much faster than
one single sin call. As such, OpenCL functions were grouped according to the
relative cost they have on execution time.

Besides these features, each benchmark also collected the execution time in
both CPU and GPU, and the class to each execution belongs to. This is used
for training and also evaluation.

102 A. Fonseca and B. Cabral

3 Evaluation and Classifier Selection

In this section we will describe the experiments performed for verifying and
validating our approach and to select a classifier to use in the implementation.

3.1 Dataset

Our workload for generating the training and testing dataset is composed by the
following 8 programs:

1. A map operation that adds 1 to each element of the input array;
2. A map operation that applies the sin function to each element of the input

array;
3. A map operation that applies the sin and cosine functions to each element

of the input array and sums the values;
4. A map operation that calculates the factorial for each element of the input

array;
5. A map-reduce operation that calculates the integral from 0 to the size of the

array for f(x) = esin(x);
6. A map-reduce operation that calculates the minimum value from 0 to the

size of the array for f(x) = 10x6 + x5 + 2x4 + 3x3 + 2
5x

2 + πx;
7. A map-reduce operation that calculates the sum of all natural numbers up

to a given value that are divisible by 7;
8. A map-reduce operation that calculates the sum of all elements of the input

array that are divisible by 7.

Each one of these programs was executed several times with varying amounts
of input data. The size of input data varies from 10 to 107 elements, executing
with 10 values for each power of 10, and in each level multiplied by all natural
numbers until 9. Thus, the first sizes would be 10,20,30,40,50,... and the last
sizes would be 506, 606, 706, 806, 906, 107. Overall, the dataset has 440 instances
of different program executions, from 8 individual programs, each executed with
the 55 different data sizes.

3.2 Experimental Setup

These are the specifications of the hardware and software used for the exper-
iments: Intel Core2 Duo E8200 at 2.66GHz; 4GB of RAM memory; NVIDIA
GeForce GTX 285, with 240 CUDA cores and 1GB of memory; OS Ubuntu
Linux 64bits with the NVIDIA CUDA SDK 5.0 preview 2 with OpenCL 1.1 and
OpenJDK 1.7. The results presented here are specific to this particular hardware
and software and can not represent all possible combinations.

3.3 Feature Analysis

To evaluate features we used two feature ranking techniques: Information Gain
and Gain Ratio. Both techniques were applied to the whole dataset. The ranking

ÆminiumGPU: An Intelligent Framework for GPU Programming 103

obtained was different for each method, but both returned 3 groups of features:
A first group of high-ranked features, a group of low-ranked features and a third
group of unused or unrepresentative features. This later group exists because the
dataset programs do not cover all possibilities. But, this does not mean that such
features should be ignored, on the contrary, they should be studied for particular
examples which are out of the scope of this work. Table 2 shows the two other
groups ranked using the Information Gain method.

Table 2. Features rank using Information gain

Rank Feature Rank Feature

0.2606 DataTo 0.172 OutterAccess1

0.2517 DataFrom 0.0637 Branches1

0.1988 BasicOps2 0.0516 InnerAccess1

0.1978 BasicOps1 0.0425 TrigFuns1

0.1978 ProgType 0.0397 InnerWrite2

0.1978 OutterWrite1 0.0397 InnerAccess2

Notice that features related with data sizes are high ranked, which is sup-
ported by the high penalty caused by memory transfers. Basic Operations are
also very representative, since they are very common, specially in loop condi-
tions (BasicOps2). The program type is also important because maps and re-
duces have a different internal structure. Maps happen in parallel, while parallel
reduces are executed with much more synchronization in each reduction level.

Looking at the lower ranked features, it is important to consider that memory
accesses also impact the decision. It is also expected that branching conditions
would have an impact on the performance of programs. Finally, trigonometric
functions do not have such an high impact as basic operations, but they are still
relevant for the decision.

3.4 Classifier Comparison

In order to achieve the best accuracy, it is important to choose an adequate clas-
sifier. For this task, several off-the-shelf classifiers from Weka[7] were evaluated,
and some custom classifiers were also developed. The used classifiers include: a
Random classifier that randomly assigns either class to a particular instance;
AlwaysCPU andAlwaysGPU that classifies all instances as Best on CPU and
Best on GPU ; a NaiveBayes Classifier; a Support Vector Machine (SVM) ob-
tained from a Sequential Minimal Optimization algorithm with c = 1, ε = 10−12

and a Polynomial Kernel; a Multi-Layer Perceptron (MLP); a DecisionTable
classifier; and a Cost-Sensitive version of the DecisionTable(CSDT) that uses
0.4 as the cost for 0.4 for misclassified Best on CPU programs and 0.6 for Best
on GPU programs.

Besides these classifiers, we also experimented with a regression-based ap-
proach using additional metrics such as: CPUTime and GPUTime. The main
idea was to use regression techniques to predict values of CPUTime and

104 A. Fonseca and B. Cabral

GPUTime for each instance and then select the smallest value. However, regres-
sions have shown to have a poor quality with correlation coefficients between 70
and 80%. The final classifier behaved very similarly with the Random classifier.
Thus, we decided to not pursue this line of research further.

Classifiers were evaluated using both 7 and 8 fold cross validation. Data was
not randomized and was ordered by program. Since the number of folds is lower
than or equal to the number of programs, some programs are not present in all
the training sets. This simulates the real-world scenario of classifying programs
that were not previously seen. The results with 7 and 8 folds were very similar,
as well as the results with randomized data. The results presented from here on
are with 7 folds and without randomization.

Figure 3 shows the accuracy distribution of the evaluated classifiers. Al-
waysCPU and AlwaysGPU do not have 0.5 of accuracy because programs that
are faster on the GPU are larger number on the dataset. This was not bal-
anced on purpose, to reflect the actual distribution of CPU and GPU execution
times for the tested programs. The DecisionTable classifier achieved a very high
accuracy, only second to its Cost-Sensitive version which had a slightly higher
accuracy with a more condensed distribution.

In this problem, the distinction between False Positives and Negatives is not
relevant. This may seem to contradict the usage of a Cost-Sensitive Classifier,
but the cost of misclassification does not only depend on the class, but also on
the size of the data in that execution, according to Figure 1. In order to represent
the impact of taking the wrong decision, a measure of cost was introduced to
replace the traditional confusion matrix. The cost of a misclassification is the
absolute difference between the real GPU and GPU execution times previously
measured during the feature extraction.

Figure 4 shows the distribution of the total cost of the classification for each
cross-validation execution with a logarithmic scale on the Cost (yy axis). The
lowest the cost is, the better. A perfect classifier would have a cost of 0. The
random classifier has an average cost of 9.8× 109, which can be considered as a
ceiling for this dataset.

The measure of cost is important because we can see that some classifiers
such as NaiveBayes and SVM have a better accuracy but have an higher penalty
on performance than the classifier that executes everything on the GPU. The
two versions of the DecisionTable classifier were also the ones with the lowest
cost. Another evaluation metric was classification time, since it could not be
representative in execution time. Except for the NaiveBayes classifiers, all others
classified instances in less than 20 microseconds, which is acceptable for this task.
The classifier training time was not considered for this study as it is not relevant
since it is only performed once per machine.

Looking at all the metrics, the Cost Sensitive version of the DecisionTable
classifier was the best, achieving 92% of average accuracy and the lowest mis-
classification cost.

ÆminiumGPU: An Intelligent Framework for GPU Programming 105

●

●

●

Random AlwaysCPU AlwaysGPU NaiveBayes SVM MLP DecisionTable CSDT

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Classifiers

A
cc

ur
ac

y

Fig. 3. Box plot of the distributions of accuracy of several classifiers

●

●

●

●

●

Random AlwaysCPU AlwaysGPU NaiveBayes SVM MLP DecisionTable CSDT

1e
+0

6
1e

+0
7

1e
+0

8
1e

+0
9

1e
+1

0

Classifiers

C
os

t (
ns

)

Fig. 4. Box plot of the distributions of costs of several classifiers

4 Related Work

There have been several works which can be compared with the ÆminiumGPU
framework. There are also approaches that allow to write the kernel code in
higher-level languages such as Aparapi[8] (for Java), Copperhead[9] (for Python)
and ScalaCL[10] (for Scala) and in X10[11]. ÆminiumGPU is different from these

106 A. Fonseca and B. Cabral

approaches since it provides an interface at an even higher level, as it does not
require programmers to write kernels, or know about which code can execute in
the GPU or CPU.

Accelerate[12] has a more similar approach in which it also executes higher-
level functions over arrays on the GPU. The purity of Haskell makes this some-
how easier than in Java. Due to the monadic approach, programmers must type
annotate all the code that can execute on the GPU, making GPU Programming
less transparent than in ÆminiumGPU.

Both the second version of ScalaCL and JikesVM[13] can convert for loops to
OpenCL code and execute it on the GPU. The former uses reflection while the
later uses bytecode instrumentation. ÆminimumGPU uses a different approach,
using a Source-to-Source compiler to generate the OpenCL code.

MARS[14] and MapCG[15] are two map-reduce frameworks for the GPU and,
in the case of the latter, CPU as well with a low-level C API. Both these plat-
forms follow the distributed key-value approach to map-reduce. The overhead of
copying both keys and values is significant on the GPU, where every memory
transfer counts, in cases where the values are not aggregated by key.

Qilin[16] is a C++ framework that has adaptive mapping in which it tries
to record executes of the same program to build a cost model for future execu-
tions of the program with different data sizes. ÆminiumGPU also uses previous
program executions to build information for future decisions, but it does not
require executions of the same program. For programs that only execute a few
times in each machine, the approach used in Qilin is not feasible. There are also
approaches for real-time systems[17]. However this work is limited to operations
inside a ever-running loop, in which each iteration is schedule to the CPU or
GPU according to estimated time, based on previous runs.

5 Conclusions and Future Work

The Æminium framework tries, as much as possible, to optimize the generated
code and to schedule operations to the GPU. In many situations, performance
increases as soon as the size of the input data goes above a certain threshold. But,
since this value is program-dependent, ÆminiumGPU uses a Machine-Learning
approach to decide which platform offers more guarantees of providing the best
performance. Our tests show that ÆminiumGPU is able to achieve a 92% average
accuracy with a low misclassification penalty.

The approach presented is language independent and can be applied to typical
HPC languages like C and Fortran, even without using the Map-Reduce pattern.
The approach can also work with other accelerators like FPGAs, and improved
with specific features for those processors.

Concluding, ÆminiumGPU allows programmers to write data-parallel pro-
grams whose performance can, if possible, be improved automatically by using
the GPU.

Acknowledgments. This work was partially supported by the Portuguese
Research Agency FCT, through CISUC (R&D Unit 326/97) and the
CMU|Portugal program (R&D Project Aeminium CMU-PT/SE/0038/2008).

ÆminiumGPU: An Intelligent Framework for GPU Programming 107

References

1. Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to ex-
press dataflow in stateful programs. In: OOPSLA Companion, pp. 933–940 (2009)

2. Pawlak, R., Noguera, C., Petitprez, N.: Spoon: Program analysis and transforma-
tion in java (2006)

3. Harris, M.: Optimizing parallel reduction in cuda (2010)
4. Russell, T., Malik, A.M., Chase, M., van Beek, P.: Learning basic block scheduling

heuristics from optimal data. In: Proceedings of the 2005 Conference of the Centre
for Advanced Studies on Collaborative Research, CASCON 2005. IBM Press (2005)

5. Cavazos, J., Moss, J.E.B.: Inducing heuristics to decide whether to schedule. SIG-
PLAN Not. 39(6), 183–194 (2004)

6. Wang, Z., O’Boyle, M.F.: Mapping parallelism to multi-cores: a machine learning
based approach. In: Proceedings of the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2009, pp. 75–84. ACM, New
York (2009)

7. Holmes, G., Donkin, A., Witten, I.: Weka: A machine learning workbench. In: Pro-
ceedings of the 1994 Second Australian and New Zealand Conference on Intelligent
Information Systems 1994, pp. 357–361. IEEE (1994)

8. Frost, G.: Aparapi (2011), http://code.google.com/p/aparapi/
9. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: Compiling an embed-

ded data parallel language. In: Principles and Practices of Parallel Programming
(PPoPP), pp. 47–56 (2011)

10. Chafik, O.: Scalacl (2011), http://code.google.com/p/scalacl/
11. Cunningham, D., Bordawekar, R., Saraswat, V.: Gpu programming in a high level

language: compiling x10 to cuda. In: Proceedings of the 2011 ACM SIGPLAN X10
Workshop, X10 2011, pp. 8:1–8:10. ACM, New York (2011)

12. Chakravarty, M., Keller, G., Lee, S., McDonell, T., Grover, V.: Accelerating haskell
array codes with multicore gpus. In: Proceedings of the Sixth Workshop on Declar-
ative Aspects of Multicore Programming, pp. 3–14. ACM (2011)

13. Leung, A., Lhoták, O., Lashari, G.: Automatic parallelization for graphics process-
ing units. In: Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java, pp. 91–100. ACM (2009)

14. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce frame-
work on graphics processors. In: Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, PACT 2008, pp. 260–269.
ACM, New York (2008)

15. Hong, C., Chen, D., Chen, W., Zheng, W., Lin, H.: Mapcg: writing parallel program
portable between cpu and gpu. In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, PACT 2010, pp. 217–226.
ACM, New York (2010)

16. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, vol. 42, pp. 45–55. ACM,
New York (2009)

17. Joselli, M., Zamith, M., Clua, E., Montenegro, A., Conci, A., Leal-Toledo, R.,
Valente, L., Feijó, B., d’Ornellas, M., Pozzer, C.: Automatic dynamic task distri-
bution between cpu and gpu for real-time systems. In: 11th IEEE International
Conference on Computational Science and Engineering, CSE 2008. IEEE (2008)

http://code.google.com/p/aparapi/
http://code.google.com/p/scalacl/

Parallel k-Means Image Segmentation

Using Sort, Scan and Connected Components
on a GPU

Michael Backer, Jan Tünnermann, and Bärbel Mertsching

GET Lab, University of Paderborn, Pohlweg 47-49, 33098 Paderborn, Germany
{backer,tuennermann,mertsching}@get.upb.de

http://getwww.upb.de

Abstract. Image segmentation is required to run fast and without su-
pervision to speed up subsequent processes such as object recognition or
other high level tasks. General purpose computing on the GPU is a pow-
erful tool to perform efficient image processing and has been applied to
the image segmentation problem. However, state-of-the-art approaches
still perform parts of the computations on the CPU requiring costly data
exchange with the main memory. In this paper we suggest a fully un-
supervised color image segmentation that runs completely on the GPU
including the calculation of region features. We compare our results to
a popular CPU-based and a recent GPU-based method and report a
computation time advantage.

1 Introduction

Computer vision algorithms for autonomous systems are expected to work un-
supervised and image segmentation is often used as an initial step to reduce and
abstract data for the subsequent processes, such as object detection or tracking.
This grouping and filtering of information can be established with a biologically
inspired concept of selective visual attention where relevant image portions are
determined by data-driven conspicuity measures and task relevance [3,23]. In-
dependent of such explicit notion of visual attention, image segmentation as an
initial step must be as efficient as possible.

With the increasing prevalence of GPUs (Graphics Processing Units) in gen-
eral purpose processing, methods of image processing have been adapted to run in
parallel on the GPU. The SIMD (Single InstructionMultiple Data) paradigm [13],
which is present in GPUs and CPU extensions, requires the avoidance of many dif-
ferent conditional branches driven by the input data handled by one SIMD-unit.
Additionally in GPUs, developers have to explicitly take care of exploiting the fast
but limited shared memory of a compute unit to obtain maximum efficiency.

For a review of image segmentation approaches we refer to the survey in [7];
in the following, we focus on approaches that utilize GPUs. Level Set and Active
Contours algorithms have been accelerated utilizing the GPU [6,17]. These al-
gorithms are typically used in medical image processing. Due to their many free

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 108–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://getwww.upb.de

GPU Color Segmentation 109

parameters they require user interaction and are thus not suitable for automated
machine vision. Clustering-based methods have been suggested for unsupervised
segmentation on GPU. In [14] the Quick Shift algorithm [24] was applied to
image segmentation. Abramov et al. [2] implemented a segmentation based on
a clustering model from physics. K-means clustering, which can be applied to
the image segmentation problem, has been accelerated with the GPU. The ap-
proach in [19] made use of the graphic rendering pipeline, but with the intro-
duction of general purpose programming models like CUDA [1] and OpenCL
[21] algorithms can be implemented in a more abstract way, decoupled from
the rendering pipeline. Such approaches have been proposed in [11], [15] and
[25]; however, the updating of the cluster centroids (see section 2.1) is at least
partially done on the CPU, requiring multiple expensive data transfers between
the GPU and main memory. To obtain disjunct spatially coherent regions from
clusters, an additional labeling step has to be performed. This can be done by
interpreting the image as a graph (mesh) and extracting connected components.
In the basic k-means clustering approaches [11,15,25] the labeling step is not
included. Only local connectivity is established in the Quick Shift variant from
[14], resulting in superpixels (over-segmentation). Labeling is done globally in
[2], but the calculation remains on the CPU. From the domain of graph theory,
parallelized algorithms for connected components are available [16,20] but target
general graphs.

Fig. 1. Stages of the proposed method: 0 The bilateral filter smoothens homogeneous
areas (optional). 1 K-means clustering groups image points with similar colors (false
color visualization). 2 Local/global connected components are determined. 3 Region
features – such as average color – are calculated (optional).

In this paper, we suggest a color image segmentation based on a k-means
clustering stage and a subsequent determination of connected components for
meshes; both are performed in a fully parallel fashion (Fig. 1 outlines the se-
quence of stages). No data exchange with the host is required during the
segmentation.

110 M. Backer, J. Tünnermann, and B. Mertsching

The proposed method outranks sequential segmentation on the CPU and
other current GPU approaches on parallel image segmentation. Furthermore, we
outline how these methods can be applied to calculate certain region properties
within this framework on the GPU. We analyze the time complexity of the
algorithms and evaluate the execution time empirically.

2 Algorithms and Data Structures

Before we describe the completely GPU-based image segmentation pipeline out-
lined in Fig 1, we briefly summarize the k-means clustering in section 2.1, as it
is the underlying concept we parallelize and use for grouping color space infor-
mation in Stage 1 (see Fig. 1 1 and section 3.2). Furthermore, in this section
we explain the building blocks that are repeatedly used in the different stages
to implement the procedure on the GPU. The parallel sorting network Bitonic
Sort and the Segmented Scan operation are used in combination whenever cer-
tain occurrences – such as the number of pixels of each color in the k-means
initialization – are needed to be counted, or in the process of updating the clus-
ter centroids by summing the color space position components of the member
pixels. These basic operations are also used in Stage 3 (see Fig. 1 3 and section
3.4) to obtain features of the regions, such as their average color. Bitonic Sort
is described in section 2.2 and Segmended Scan in section 2.3. The Union Find
structure is explained in section 2.4 and is used in Stage 2 (see Fig. 1 2 and
section 3.3) to reorganize the clusters into spatially coherent regions.

2.1 K-Means Clustering

In general, the heuristic k-means algorithm [5] can be used to solve the clustering
problem of data points in Euclidean space. Given a number of clusters k, the
goal is to assign (denoted by ri,c) the n data points xi to clusters c with centroids
μc, so that equation 1 is minimized:

n∑

i=1

k∑

c=1

ri,c ‖xi − μc‖2 where ri,c =

⎧
⎨

⎩
1 : c = argmin

1≤j≤k
‖xi − μj‖2

0 : else
(1)

In the k-means algorithm (Algorithm 1), data points are assigned to the clusters
and then the cluster centroids are updated. Every data point is assigned to the
closest cluster and the new centroid is the (possibly weighted) average of the
member data points. This k-means iteration is repeated until there are no more
changes in the cluster centroid positions, i.e. until convergence occurs.

K-means can be applied to the image segmentation problem [8]. Due to the
fact that the assignments of data points to clusters are independent from one an-
other, it is well suited for parallelization [11,25]. In this paper, we also parallelize
the re-computation of the cluster centroids on the GPU (see section 3.2).

GPU Color Segmentation 111

Algorithm 1. K-means algorithm

// Convergence criterion; μc denoting the current and μ̂c the previous centroid of cluster c
until μc = μ̂c ∀c ∈ {1, ..k} do

μ̂c ← μc ∀c ∈ {1, ..k}
// Phase 1: Assign data points to clusters
for each data point xi do

cluster[xi]← arg min
1≤j≤k

‖xi − μj‖2

// Phase 2: Update cluster centroids
for each cluster centroid μc do

compute 1
|M|

∑

x∈M

x with M = {xi : cluster[xi]=c}

2.2 Bitonic Sort

Bitonic Sort [4] is a sorting method of complexity O(n · log2n) in a sequential
execution which is rather slow compared to other comparison-based algorithms,
such as Merge Sort (O(n · log n)). However, in contrast to these, Bitonic Sort
is well suited for parallel execution on the GPU’s SIMD architecture, as the
algorithm performs comparisons in an order independent from input values. Only
O(log2n) steps are necessary in a parallel execution with n processing units.

2.3 Segmented Scan

The Scan operation can be understood as a generalization of the Prefix
Sum operation performed on an array. The Prefix Sum turns an array A =
[a1, a2, . . . , an] into an array B = [b1, b2, . . . bn] with bi =

∑i
j=0 aj . After this,

the right most element contains the sum of all elements in the initial array. The
Scan operation executes arbitrary binary associative operators

⊕
in this fash-

ion. Segmented Scan performs Scan operations conditionally considering a head
flag that identifies a segment of the data, for example all values that belong to
the same cluster. Segmented Scan is illustrated in Fig. 2. We use a Blockwise
Segmented Scan as suggested in [18], which is tailored for the GPU architecture
and utilizes the fast shared local memory. O(n) sequential steps are required
which can be performed in O(log n) in parallel.

1 1 1 1 2 2 2 5

1 7 8 3 0 2 11 7

1 8 15 11 0 2 13 7

+
+

1 8 16 19 0 2 13 7

segment

value

result

Phase

(1)

(2)

1 8 16 19 0 2 13 7(3)

+

+ + + + +

Fig. 2. Illustration of a Prefix Sum calculated with Segmented Scan

112 M. Backer, J. Tünnermann, and B. Mertsching

2.4 Union Find

The Union Find data structure [9] is used to represent disjunct sets as trees,
organized as an indexed array and every element has a parent associated. Each
set has a root, an element which can be reached tracing the parent relations
from every member of the set. The root is its own parent (see Fig. 3).

Three operations are defined for the Union Find structure. MakeSet(x) pro-
duces a set that only contains a single element x; Union(x,y) merges the set
that contains x with the set that contains y and Find(x) returns the root of the
set containing x. The central Find operation can be calculated more efficiently
when the path to the root is compressed, which leads to an average runtime of
O(log n) for this operation.

These operations can be used to determine the connected components in a
graph representation of an image on the GPU as shown in section 3.3.

0 1 2 3 4 5 6 7 8 9
0 1 5 3 4 1 8 3 8 9

Index
Parent Index

{0}, {1,5,2}, {3,7}, {4}, {8,6}, {9} Corresponding Sets

Fig. 3. Example of the Union Find structure, with the root of each set printed in bold

3 The Proposed Segmentation Algorithm

The proposed method consists of two main stages, clustering and the connecting
(1 and 2 in Fig. 1). A preprocessing (Fig. 1 0) can be added to improve the
results and a stage trailing the main stages can calculate region features in a
parallel fashion (Fig. 1 3). Within each stage the processing is done in parallel
and between the stages no transfer between the GPU program and the host
program on the CPU is required. In this section we describe the stages in the
order the data pass through them.

For each step, we state the time complexity dependent on the parameters
given in Table 1. In Table 2, we summarize the runtimes and include a simplified
overall complexity (O(log2 n)) that only depends on the image size, disregarding
typically small and fixed parameters (see “Common range” in Table 1).

3.1 Stage 0: Preprocessing

We implemented a bilateral filter [22] on the GPU and used it as an initial step
to enhance homogeneity of areas which are only weakly textured (often due to
noise) and keep the contours intact. The CIELAB colorspace1 is advantageous
for the filtering [22] and also for the segmentation as the magnitude of change in

1 CIE: Commission Internationale de l’Eclairageis.

GPU Color Segmentation 113

Table 1. Parameters considered in the formal runtime analysis. In our tests we used
the parametrization given in the row “Common range” for different images sizes.

Parameter Common range

n Image size in pixels -

w Kernel size of the bilateral filter in pixels 4× 4

ipre Number of iterations of the bilateral filter 5

k Number of clusters < 1024

ikM Number of k-means iterations 3

F Number of elements in the (reduced) color space 215

Table 2. Summary of time complexities of the different stages. “Overall (simplified)”
considers the image size only, disregarding typically small and fixed parameters. For
the optimal parallel execution n workers are assumed, while the complexity in practice
is that of the sequential execution divided by the number of workers.

Phase Sequential execution Optimal parallel execution

Preprocessing O(n · w · ipre) O(w · ipre)
k-Means initialization O(n · log2 n) O(log2 n)

k-Means iterations O(ikM · F · (log2 F + k)) O(ikM · log2 F + k)

Connected components O(n · log n) O(log2 n)

Region features O(n · log2 n) O(log2 n)

Overall (simplified) O(n · log2 n) O(log2 n)

any direction has a similar perceptual importance which leads to a visually more
pleasing result. Therefore, we perform a color space conversion to CIELAB, prior
to the filtering on the GPU. The complexity of this stage is O(n · ω · ipre) in
sequential and O(ω · ipre) in maximum parallel execution.

3.2 Stage 1: GPU-Based K-Means Clustering

A k-means clustering as described in section 2.1 is executed in this stage. For
this process, initial cluster centers are required. We determine their number and
color space position based on samples drawn in equal intervals from the image.
When a sample pixel has a similar color (below a certain color space distance) as
an existing candidate, the exiting candidate is replaced by the weighted average
of itself and the new candidate. The positions of the resulting cluster centers are
updated in the k-means procedure.

To initialize the data for a parallel k-means computation we quantize the
color space (this gives an additional speedup and good results with quantization
exponent Q = 5) and compute the weight attribute weight[xi] for every point xi

in this reduced color space. This is done by performing Bitonic Sort with regard

114 M. Backer, J. Tünnermann, and B. Mertsching

to the color, summing the occurrences with Segmented Scan and then in parallel
assigning the results to the weight[xi] (see Algorithm 2). Fig. 4 depicts these
steps. The asymptotic runtime of this initialization depends on the image size n
with O(n · log2n) in the sequential case and O(log2n) when n processing units
work in parallel.

Fig. 4. Illustration of the k-means initialization

Algorithm 2. K-means initialization

// Phase 1: Color quantization with quantization exponent Q
for each pixel p in image I do in parallel

L′[p] ← L[p] · 2−Q

a′[p] ← a[p] · 2−Q

b′[p] ← b[p] · 2−Q

// Phase 2: Compute weights of the color values
// Let SCcolor∗ denote that the sorting criterion (SC) is the reduced color value
BitonicSort(I, SCcolor∗)
SegmentedScan(I, SCcolor∗, O = {weight+})
// Phase 3: Initialize reduced color space
// Let

∑
xi

weight+ denote the resulting weight for the reduced color xi.

for each data point xi do in parallel
weight[xi] ←

∑
xi

weight+

After the initialization, a fixed number of k-means iterations is executed. Fix-
ing the number of iterations in advance avoids costly communication between
the GPU and the host which is otherwise required to check convergence criteria.
The clustering is performed on the reduced color space as listed in Algorithm 3,
so this stage does not depend on the image size. Color space points are assigned
in parallel to the nearest cluster centers. Then Bitonic Sort is performed with
the cluster membership as a sorting criterion followed by Segmented Scans op-
erating on L′, a′, b′ and the weights. The updated cluster centroids are then
calculated as the weighted average of the color points assigned to the cluster
(see Algorithm 3).

The runtime of the k-means stage is given by number of iterations ikM , the
size of the (quantized) color space F and the number of clusters k � F as
O(ikM · (F · k+ F · log2F)) where the F · k is caused by the assignment of data
points to clusters and F · log2F by the recalculation of the cluster centroids. In
maximum parallel execution, the runtime is reduced to O(ikM · (k + log2F)).

After the k-means clustering similarly colored pixels are grouped; however,
they are not necessarily connected in the image.

GPU Color Segmentation 115

Algorithm 3. K-means iterations

until μc = μc′ ∀c ∈ {1, ..k} do //Convergence criterion
μc′ ← μc ∀c ∈ {1, ..k}
// Phase 1: Assign points to clusters. The xi denote the colors in the reduced color space
for each color point xi do in parallel

cluster[xi]← arg min
1≤j≤k

‖xi − μj‖2

// Phase 2: Update centroids. SCcluster indicates cluster assignment as sorting criterion (SC).
BitonicSort(X,SCcluster)
// The array⊕ denote the arrays and operators

SegmentedScan(X, SCcluster, O = {L′
+, a

′
+, b

′
+, weight+})

// Let
∑

c array+ denote the resulting sum for an array for cluster c
for each cluster centroid μc do in parallel

compute μc ←
(∑

c L
′
+,

∑
c a

′
+,

∑
c b

′
+

)T · 1∑
c weight+

3.3 Stage 2: GPU-Based Connected Components

To determine which image points belong to spatially coherent regions, an undi-
rected graph is constructed in which every pixel corresponds to a node with
the cluster membership and the index of its parent associated. The purpose of
Algorithm 4 is to merge adjacent nodes when they belong to same cluster. After
executing the algorithm, all pixels of the same cluster in the spatially coherent
region share the same parent which is also the root node of a Union Find struc-
ture (see section 2.4). Conflicts have to be avoided when the parent index is
updated in parallel. Fig. 5 (a) shows a possible conflicting situation, when nodes
of set A and B are to be merged with set C at the same time. For nodes from
both sets, the parent of C would be set to the root of set A and to the root of
set B concurrently. Our algorithm avoids this by performing the merging row-
and column-wise such that each node is only involved in one column or row at
the same time.

Fig. 5. Possible conflicting situations when merging in parallel

Fig. 6 illustrates the algorithm. Initially, every node is in its own set and the
first column/row is used as a starting point for merging. In the first iteration,
the algorithm tries to merge the nodes of every second column with their eastern
neighbor in parallel. To avoid the conflict shown in Fig. 5 (b), it first tries to
merge from east to west and if that fails the algorithm merges from west to east.
We do not have to consider other conflicts between nodes of different columns
since each node is only involved in the merging of one column and its neighboring
column at the same time. The rows are handled likewise. In the next iteration,
the starting point is set to the first unused column (this is one in the second

116 M. Backer, J. Tünnermann, and B. Mertsching

iteration and three in the third) and then the offset between considered columns
and rows is doubled (every fourth row in the second iteration and every eighth
in the third). The algorithm terminates when all columns and rows have been
considered for merging.

In our implementation, we use one kernel in a local step to process the small
blocks (when i is low) that fit into the fast shared memory of the compute units.
In a subsequent global step, we execute kernels for every j-l pair of the loops
over the remaining rows and columns, respectively.

Non-coalesced memory accesses can happen if the processing elements of a
compute unit try to merge different regions. It is then not possible to take
advantage of the broadcast mechanism that usually combines the read requests
to a single read operation of that memory cell. The number of non-coalesced
memory accesses depends on the actual input image; it is low for images with
large regions and higher for images with many small irregular regions. Moreover,
by the path compression in the Union Find data structure (see section 2.4) and
by doubling the step value i the number of accessed memory cells is kept at a
low logarithmic value with regard to the image size. However, in practice this
stage accounts for only about 10 % of the total run-time of our method.

Fig. 6. Illustration of the connected components algorithm

The algorithm has a runtime of O(n · logn) in the sequential case and O(log2 n)
in the parallel case, since a single Find operation costs O(log n) and we have
O(log n) iterations of the outer loop.

3.4 Stage 3: GPU-Based Region Feature Computation

Different region features can be calculated similar to the initialization phase of
the k-means algorithm (see section 3.2). The generic pattern is to use Bitonic
Sort on the region membership and then perform a Segmented Scan with an
associative binary operator working on the data required for the wanted feature.
To calculate the average region color, for example (as illustrated in Fig. 1 3),
a Segmented Scan that sums the values in each color channel and the number
of pixels in the region would follow the Bitonic Sort. Another example is the
calculation of the region bounding boxes which can be done by executing Seg-
mented Scan with maximum and minimum operators on the pixel coordinates.
In our ongoing work to enhance a region-based attention system by replacing
sequential with parallel segmentation, we also used this pattern for computing
more complex region features such as 2D central moments. With O(n · log2n)

GPU Color Segmentation 117

Algorithm 4. Connected Components for the image graph

first ← 0// starting point
i ← 1// step between columns and rows
while i < max(w, h) do // w and h denote width and height of image I

for j ←first to h by step i do in parallel
for l ← 0 to w do in parallel

// Find root and compress path with Find(I(x,y)). I(x,y) is the pixel/node at position (x, y)
rootCurrent ← Find(I(l,j))
rootNbrEast ← Find(I(l+1,j))
// Union both sets if pixels belong to the same cluster and sets are disjunct
if cluster[rootCurrent]=cluster[rootNbrEast]
and rootCurrent
= rootNbrEast then

parent[rootNbrEast] ← rootCurrent
rootNbrEast ← Find(I(l+1,j))
if rootCurrent
= rootNbrEast then

parent[rootCurrent] ← rootNbrEast
end for

end for
for j ←first to w by step i do in parallel

for l ← 0 to h do in parallel
. . . (analog to above)
end for

end for
i ← i · 2
first ← i − 1

end while

(sequential) and O(log2n) (optimal parallel), the runtime of this stage is the
same as for the k-means initialization.

4 Evaluation

To show the quality and characteristics of the segmentation result, we visualize
it for the images in Fig. 7. A random color visualization that emphasizes the
region boundaries and a visualization with region average colors is shown in
Fig. 8. The results were obtained with our method, a popular graph-based CPU
method [12] (as a reference for segmentation quality) and a GPU-based Quick
Shift [14] (their implementations were available online and we used them for the
empirical comparative runtime analysis described below).

When their original size differed, the images were scaled to 512 × 512 and
we used default parameters of the algorithms’ implementations. All results show
over-segmentation with regard to coherent surfaces or objects, as color is the
only homogeneity measure used. Quick Shift shows over-segmentation in very
homogeneously colored areas. This can be modulated with parameters σ and
ρ (see [14]), but with increasing region sizes heavy under-segmentation occurs.
The graph-based algorithm and the proposed method shows small fragments
in rough or textured areas and over-segmentation where strong gradients are
present and around some object contours. The Quick Shift results could be
cleaned up in a post-processing by connecting similarly colored super-pixels,
whereas for the proposed method small regions can be removed or merged. In
the depicted results, we kept small regions, but they can be easily filtered out
on the GPU by adding a region size threshold.

118 M. Backer, J. Tünnermann, and B. Mertsching

Fig. 7. Input images used for evaluation. Image (a) is taken from [14], (b) to (d) from
the PASCAL-2007 dataset [10].

Fig. 8. Random and average color visualization of segmentation results obtained with
methods from [12], [14] and our method. Input images (a) to (d) are shown in Fig. 7.

In order to evaluate the computational performance of our method, we seg-
mented 100 images of the PASCAL-2007 database [10] at multiple resolutions
with our method and the methods from [12] and [14]. For the experiments we
used a PC with a four-core 2.66 GHz Intel Xeon W3520 CPU with 4GB main
memory and a GeForce GTX 580 (3GB memory). We report the mean runtimes
for the different resolutions in Fig. 9. Only for the lowest resolution (64×64) the
sequential CPU-based method is the fastest (2.68 ms); for all other resolutions
our method is the fastest. These results compare well with other state-of-the-art
approaches. The proposed method appears to be almost twice as fast compared
to results reported for the GPU-based approach in [2] which was tested with

GPU Color Segmentation 119

Fig. 9. Computation times of our method and the methods from [12] and [14] de-
pendent on image size. The table below the chart gives the numerical values and the
standard error of the mean (in brackets), both in milliseconds.

similar resolutions (note that they used an NVIDIA GeForce GTX 295 with an
older and less efficient architecture).

5 Conclusion

We proposed a GPU-based image segmentation based on a parallel k-means clus-
tering and a novel GPU approach to determine connected components in a graph
representing the image. All stages of segmentation utilize the GPU and no data
exchange with the CPU is required. The appearance of the result is similar to the
popular graph-based method from [12]. We analyzed the runtime formally and
performed empirical tests on 100 images showing that our method outperforms
the state-of-the-art GPU Quick Shift variant. Furthermore, our framework is
highly extensible as all kinds of region features can be calculated in parallel as
outlined in section 3.4.

References

1. NVIDIA CUDA (Compute Unified Device Architecture) C - Programming Guide
(2012), http://www.nvidia.com/content/cuda/cuda-documentation.html

2. Abramov, A., Kulvicius, T.: Real-time Image Segmentation on a GPU. In: Facing
the Multicore Challenge, vol. 5, pp. 3–5 (2011)

3. Aziz, M.Z., Mertsching, B.: Fast and Robust Generation of Feature Maps for
Region-based Visual Attention. IEEE Trans. on Image Proc. 17(5), 633–644 (2008)

http://www.nvidia.com/content/cuda/cuda-documentation.html

120 M. Backer, J. Tünnermann, and B. Mertsching

4. Batcher, K.E.: Sorting Networks and Their Applications. In: Spring Joint Com-
puter Conference, AFIPS 1968, New York, USA, pp. 307–314 (1968)

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics), ch. 9, vol. 4, pp. 424–427. Springer (2007)

6. Cates, J.E., Lefohn, A.E., Whitaker, R.T.: GIST: An Interactive, GPU-based Level
Set Segmentation Tool for 3D Medical Images. Medical Image Analysis 8(3), 217–
231 (2004)

7. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color Image Segmentation: Advances
and Prospects. Pattern Recognition 34(12), 2259–2281 (2001)

8. Coleman, G.B., Andrews, H.C.: Image Segmentation by Clustering. IEEE 67, 773–
785 (1979)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn., ch. 21, pp. 498–524. The MIT Press (2001)

10. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2007 (VOC 2007) (2007), Results,
http://www.pascal-network.org/challenges/

VOC/voc2007/workshop/index.html
11. Farivar, R., Rebolledo, D., Chan, E., Campbell, R.: A Parallel Implementation of

K-Means Clustering on GPUs. In: PDPTA, pp. 1–6 (2008)
12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmenta-

tion. International Journal of Computer Vision 59(2), 167–181 (2004)
13. Flynn, M.J.: Some Computer Organizations and Their Effectiveness. IEEE Trans-

actions on Computers C-21(9), 948–960 (1972)
14. Fulkerson, B., Soatto, S.: Really Quick Shift: Image Segmentation on a GPU.

In: ECCV Workshops, vol. i, pp. 8–11 (2010)
15. Hong-tao, B., Li-li, H., Dan-tong, O., Zhan-shan, L., He, L.: K-Means on Com-

modity GPUs with CUDA. CSIE 3, 651–655 (2009)
16. Kalentev, O., Rai, A., Kemnitz, S., Schneider, R.: Connected Component Labeling

on a 2D Grid Using CUDA. Journal of Parallel and Distributed Computing 71,
615–620 (2011)

17. Roberts, M., Packer, M., Sousa, M., Mitchell, J.R.: A Work-Efficient GPU Algo-
rithm for Level Set Segmentation. In: Conference on High Performance Graphics,
HPG 2010, pp. 123–132 (2010)

18. Sengupta, S., Harris, M., Garland, M.: Efficient Parallel Scan Algorithms for GPUs.
NVIDIA Technical Report NVR-2008-003 66(1), 1–17 (2008)

19. Shalom, S.A.A., Dash, M., Tue, M.: Efficient K-Means Clustering Using Acceler-
ated Graphics Processors. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK
2008. LNCS, vol. 5182, pp. 166–175. Springer, Heidelberg (2008)

20. Soman, J., Kishore, K., Narayanan, P.J.: A Fast GPU Algorithm for Graph Con-
nectivity. In: IPDPS Workshops, pp. 1–8 (2010)

21. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. Computing in Science & Engineering 12(3),
66–73 (2010)

22. Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: ICCV,
pp. 839–846 (1998)

23. Tünnermann, J., Mertsching, B.: Continuous Region-based Processing of Spa-
tiotemporal Saliency. In: VISAPP, pp. 230–239 (2012)

24. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305,
pp. 705–718. Springer, Heidelberg (2008)

25. Zechner, M., Granitzer, M.: Accelerating K-Means on the Graphics Processor via
CUDA. In: INTENSIVE, pp. 7–15 (2009)

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

Solving High-Dimensional Problems

on Processors with Integrated GPU

Alexander Heinecke

Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany

1 Motivation

In the last five years GPU-computing has become a powerful means of high per-
formance computing. This development drove instruction set extensions such as
AVX for general purpose CPUs or even created new architectures, e.g. Intel’s
Many Integrated Core Architecture based on regular general purpose compo-
nents stemming from the x86 world. GPUs and accelerators in general can be
regarded as co-processors. If we go back 20 or 25 years we see a similar scenario
with floating point co-processors (e.g. x87 unit). These special function units
eventually merged into the general purpose processors’ architectures. Since the
introduction of Intel’s MMX technology in 1997 we can witness a similar process
for all kinds of media (signal, audio and video) processing. Since 2011 GPUs and
CPUs are merging onto one die.

The goal of this poster is to present the architectures of Intel Ivy Bridge
(Core i7-3770K, quad-core at 3.5 GHz) and AMD Llano (A8-3850, quad-core at
2.9 GHz) and to evaluate their performance in terms of theoretical numbers and
as well for a real-world application stemming from the field of data mining. In
case of this application we are exploiting the entire heterogeneous chip including
the CPU cores using a highly optimized intrinsics implementation on the CPU
cores and OpenCL, which was generated at runtime, on the integrated GPU
(iGPU). The obtained results are compared to the performance achieved on a
recent discrete GPU (NVIDIA GTX680, code-named Kepler) by using different
criteria: absolute performance, platform efficiency and energy efficiency.

2 Application and Results

The targeted data mining application can be considered as a scattered data
approximation problem, starting from m known observations, S = {(xi, yi) ∈
R

d ×R}i=1,...,m , with the aim to learn the functional dependency f(xi) ≈ yi as
accurately as possible. Reconstructing a smooth function f then allows an esti-
mate f(x) for new properties x. We aim at representations f =

∑N
j=1 αjϕj(x)

as a linear combination of N basis functions ϕj(x) with coefficients αj . We rely
on adaptive sparse grids (see [1] for details) to mitigate the curse of dimension-
ality: Regular grid with equidistant meshes and k grid points in each dimension
contain kd grid points in d dimensions. When following derivations discussed
elsewhere ([2]), we end up with a linear system of equations which has to be

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 121–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 A. Heinecke

Mode Energy checkerboard redshift Energy checkerboard redshift
Watts GFLOPS GFLOPS Watts GFLOPS GFLOPS

Intel Core i7-3770K AMD A8-3850

CPU only 77 179 181 100 41 43
iGPU only 62 47 48 100 56 55
Hybrid 77 132 133 100 80 81

GTX680 240 1040 1020 - - -
GTX680+i7 280 1160 1165 - - -

solved:
(

1
mBBT + λI

)
α = By. Since the dataset’s size directly influences the

dimensions of matrices B and BT an efficient implementation of those operators
is mandatory, see [2].

In the following, we use two test scenarios, both with a moderate dimension-
ality of d = 5 and distinct challenges. The first dataset with 218 data points
classifies a regular 3 × · · · × 3 checkerboard pattern. The second one is a real-
world dataset from astrophysics, predicting spectroscopic redshifts of galaxies
based on more than 430,000 photometric measurements.

From the values given in the result table we can derive that Intel’s Ivy Bridge
CPU clearly outperforms AMD’s Llano chip: theoretical peak performances
are as follows (all single precision): Intel CPU: 224 GFLOPS, Intel iGPU 294
GFLOPS, AMD CPU: 92 GFLOPS, AMD iGPU 480 GFLOPS, which ranks
both CPUs at the same theoretical performance level. It is not surprising that
the i7 is faster than the A8 since it features AVX. The results obtained on the
iGPU and through hybrid execution are definitely more interesting: Both deliver
similar performance, however the A8’s peak performance is much higher, which
results in a lower efficiency, most likely caused by the iGPU’s VLIW instruction
set. In case of hybrid execution we can recognize an interesting behavior: On the
A8 we are achieving a remarkable speed up (please note that we cannot just add
CPU and iGPU performance since we have to reserve one CPU core for iGPU
handling) but on the i7 the performance significantly drops. Using Intel’s GPA
tool we were able to measure the energy consumed by CPU cores and iGPU and
we uncovered that we are hitting the TDP limitation of 77W already when using
only the CPU cores or the iGPU. In case of hybrid execution the CPU cores’ and
iGPU’s clock is adjusted so that whole chip stays inside its power budget. When
moving the focus from raw performance numbers to power efficiency numbers it
turns out that Ivy Bridge is as twice as efficient as AMD’s Llano.

References

1. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)
2. Heinecke, A., Pflüger, D.: Emerging architectures enable to boost massively parallel

data mining using adaptive sparse grids. International Journal of Parallel Program-
ming, 1–43 (published online, June 2012)

Pulsar Searching with Many-Cores

Alessio Sclocco1 and Rob V. van Nieuwpoort2

1 Faculty of Sciences
Vrije Universiteit Amsterdam
Amsterdan, The Netherlands

a.sclocco@vu.nl
2 Netherlands eScience Center
Amsterdam, The Netherlands

r.vannieuwpoort@esciencecenter.nl

Abstract. Pulsars are rapidly rotating neutron stars whose signal is
received on Earth periodically. They are relatively newly discovered as-
tronomical objects (the first was discovered only in 1967) and elusive
ones: so far only two thousand of them are know. Their properties, es-
pecially their big mass and precise period, can be used to probe space
and gravitation. This makes them important not only for astronomers,
but for physicists and other scientists as well: the discovery of the first
binary pulsar by Hulse and Taylor in 1973 [1] has been so important
for proving general relativity and other aspects of gravitation that they
won the 1993 Nobel prize for physics. Thus, being able to discover new
pulsars is an important goal of current radio astronomy.

The process of finding a new pulsar is, however, difficult and time
consuming: it involves a brute-force search over hundreds of thousands
of parameter combinations. Moreover, the amount of data that needs
to be searched is huge: the input of a typical observation using a radio
telescope like LOFAR [2] is in the order of hundreds of terabytes. During
the process petabytes of intermediate results are produced and analyzed.
Thus, searching for pulsars clearly is a big data problem.

The challenges are not only limited to the amount of data that needs
to be processed: the signal received from a pulsar is usually quite faint
and can be completely covered by radio frequency interference and, even
when there is no artificial noise, a long integration time may be neces-
sary to properly detect its profile. There is, furthermore, the inter-stellar
medium to take into account: typical effects of the interaction between
the emission and the medium are dispersion, scintillation and scattering.
And this is not the only interaction: if the pulsar is orbiting with a com-
panion of some kind, the interaction between them modifies the signal
and makes it even more difficult to detect from Earth.

We propose to reduce the time necessary to search for new pulsars us-
ing many-core accelerators, e.g. modern GPUs. We design and implement
the whole searching pipeline, using OpenCL to build the three most im-
portant computational kernels of this application: dedispersion, folding
and the signal to noise computation. An overview of our pulsar search-
ing pipeline is presented in Figure 1. Using our prototypical tool we are
able to find pulsars in test data sets generated with Duncan Lorimer’s

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 123–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 A. Sclocco and R.V. van Nieuwpoort

SIGPROC. To overcome one of the main problems of using accelerators,
i.e. the expensive memory transfers between device and host memory,
we keep all the intermediate results in device memory. Moreover we use
auto-tuning, a technique that we know to be effective with many-core
architectures [3], to identify which parameters are the best suited for
each specific device used to run our prototype.

Fig. 1. Representation of the pulsar search pipeline

References

1. Hulse, R.: The discovery of the binary pulsar. Bulletin of the American Astronomical
Society 26, 971–972 (1994)

2. Romein, J., Mol, J., van Nieuwpoort, R., Broekema, P.: Processing LOFAR Tele-
scope Data in Real Time on a Blue Gene/P Supercomputer. In: URSI General
Assembly and Scientific Symposium (URSI GASS 2011), Istanbul, Turkey (August
2011)

3. Sclocco, A., Varbanescu, A.L., Mol, J.D., van Nieuwpoort, R.V.: Radio astronomy
beam forming on many-core architectures. Parallel and Distributed Processing Sym-
posium, International, 1105–1116 (2012)

Scheduling Overheads for Task-Based Parallel

Programming Models

Mathias Nachtmann, Jose Gracia, and Colin W. Glass

High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart, 70550 Stuttgart, Germany

{nachtmann,gracia,glass}@hlrs.de

Modern supercomputer architectures offer ever more power, but rely heavily on a
hierarchical organization of resources. While internode communication can easily
be handled by MPI, efficient usage of multi-core CPUs requires the
programmer to parallelize a given problem using shared-memory programming
models. Hybrid approaches to high scalability become ever more popular and
are frequently very successful. Here, we will look at scheduling overheads of
three different models. Hybrid approaches to high scalability become ever more
popular and are frequently very successful. Here, we will look at scheduling
overheads of three different models: OpenMP, StarSs, and FastFlow. All three
models supports the general concept of task-parallelism, i.e. they allow indepen-
dent units of work, so-called tasks, to be executed concurrently by a collection of
threads. OpenMP is not only a data-parallel model, but also supports the more
general concept of task-parallelism, that means it allows independent units of
work, so-called tasks, to be executed concurrently by a collection of threads.
StarSs allows a more general way of describing dependencies between tasks as
data- dependencies. Based on this information, the runtime will schedule the
tasks dynamically, guaranteeing an efficient exploitation of available compute
cores,possibly at the expense of a larger overhead compared to more simple
models. FastFlow is a newly developed model that allows decomposing an ap-
plication into a collection of interrelated skeletons or pattern, as for instance
pipelines or task farms, thus allowing parallel execution on concurrent data items
and stages. FastFlow specifically aims at the efficient execution of fine-grained
tasks.

To quantify the overheads, we have run two series of benchmarks. In the first
one, the task duration has been varied to sample a wide range of values. In the
second series, the task duration was kept constant, but the number of tasks has
been varied. Benchmark results are shown in figures 1 and 2.

Figure 1: There is a difference between the two OpenMP implementations.
The task-based version has greater overhead than the version with the omp
for pragma(without schedule). All programming models are scaling in the end
the same way, they only differ in their scheduling overhead. Every line, except
omp for has its point from which the task duration carries the weight.

Figure 2: What we can conclude in the end: The scheduling overhead of
OpenMP and StarSs with various numbers of tasks is constant. The OpenMP

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 125–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 M. Nachtmann, J. Gracia, and C.W. Glass

overhead is lower than the overhead in StarSs. FastFlow has its problems in the
region with a little number of tasks but with an increased number of tasks it
scales better than StarSs.

0.10

1.00

10.00

100.00

0.0619 0.1239 0.2478 0.4956 0.9912 1.9823 3.9647 7.9294

D
ur

at
io

n
pe

r
ta

sk
 in

 m
ic

ro
se

co
nd

s

Tasksize in microseconds

Tastsize increase

ff_accelerator
omp_for

ff2_emitter
omp_task

StarSs
single_omp_version

single_calculated

Fig. 1. Tastsize increase

1.00

10.00

100.00

1000.00

10000.00

 10 100 1000 10000 100000

D
ur

at
io

n
pe

r
ta

sk
 in

 m
ic

ro
se

co
nd

s

Number of Tasks

Tastnumber increase

ff_emitter
omp_for

single_omp_version
starSs

Fig. 2. Tastnumber increase

PINstruct – Efficient Memory Access to Data Structures

Rainer Keller1 and Shiqing Fan2

1 HFT Stuttgart, Schellingstrae 24, Stuttgart
rainer.keller@hft-stuttgart.de

2 HLRS, Nobelstrasse 19, Stuttgart, Germany
fan@hlrs.de

Abstract. Modular programming requires structuring a program’s data into
classes, records and arrays. Access to these data structures is highly dependent
on the nature of the algorithm, the programming language, it’s compiler, the Ap-
plication Binary Interface (ABI) defined by the OS and finally the requirements
of the underlying hardware. The programming language however may not allow
the compiler to reorder data structures. This is specially true for libraries, with
MPI being a good example. Since the communication library’s routines are com-
paratively seldom called, the cache may be ”cold”, i. e. the MPI library’s memory
accesses into data structures may be slow, too diverse and pollute the cache. In
this paper we introduce a tool to analyse the memory access pattern of structures
the Open MPI implementation. This tool shows the order in which data structures
such as datatype and communicator information are accessed. It shows that pre-
vious work to re-order data structures for better padding has proven worthwhile,
however further restructuring is necessary.

1 Introduction

The Message Passing Interface (MPI) is the de-facto parallel programming model for
large scale. Parallel programming however adds another level of complexity in every
respect. Application programmers optimizing for performance may see the MPI library
as hindering scalability. Some efforts have been done to measure and compare the over-
head of MPI [1] or to overcome the effects of supposedly wasteful CPU ressources,
i. e. busy-waiting in receive operations. While MPI libraries over the years have con-
tinuously been amended, there still is room for improvement with regard to optimiza-
tion of MPI’s data structures. These cache misses within MPI are of course not visible
with micro-benchmarks such as NetPipe [3] or even small-scale application-type bench-
marks like NPB [4], since the data sizes and memory access patterns of the benchmark
is not large enough to evict MPI’s code and data.

With MemPin [2], based on Intel Pin, a new tool was build. MemPin allows
tracing all memory accesses to registered memory windows. A PMPI-based wrap-
per was implemented to intercept point-to-point communication calls and track the
memory accesses into the data structures of Open MPI’s MPI_Datatype, MPI_
Communicator, MPI_Request and the actual user buffer.

Figure 1 shows the results of the run of the unoptimizedompi_communicator_t
data structure within an MPI_Send: apart from the inefficient 4 holes, first c_flags

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 127–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

128 R. Keller and S. Fan

Fig. 1. The Open MPI communicator data structure unoptimized (left) and optimized (right)

in cache-line 1 is accessed, then the second cache-line, then cache-line zero, then cache-
line three, each time incurring a cache-miss. Note, that no other data of the structure is
touched.

Moving the c_name (which is used for debugging purposes) to the end, and reorder-
ing, there is one (likely) cache-miss for cache-line zero – all consecutive accesses are
however in the same cache-line with only two holes of 4 bytes each.

References

1. Buntinas, D., Mercier, G., Gropp, W.: Implementation and evaluation of shared-memory com-
munication and synchronization operations in MPIch2 using the Nemesis communication sub-
system. Parallel Computing 33(9), 634–644 (2007)

2. Fan, S., Keller, R., Resch, M.: Advanced memory checking frameworks for MPI parallel ap-
plications in Open MPI. In: Proc. of the 5th Int. Workshop on Parallel Tools for HPC (2011)
(submitted for publication)

3. Snell, Q.O., Mikler, A.R., Gustafson, J.L.: NetPIPE: A Network Protocol Independent Perfor-
mance Evaluator. In: IASTED Int. Conf. on Intelligent Inf. Management and Systems (1996)

4. Van der Wijngaart, R.F.: The NAS parallel benchmarks version 2.4. Tech. rep., NASA Ad-
vanced Supercomputing (NAS) Division, NAS-02-007 (2002)

Development of a GPU-Accelerated Mike 21

Solver for Water Wave Dynamics

Peter Edward Aackermann1, Peter Juhler Dinesen Pedersen1,
Allan Peter Engsig-Karup1, Thomas Clausen2, and Jesper Grooss2,�

1 Technical University of Denmark (DTU),
Department of Informatics and Mathematical Modelling, 2800 Kgs. Lyngby, Denmark

2 DHI Group, 2970 Hoersholm, Denmark
{s093066,s093053}@student.dtu.dk

Motivation

With encouragement by the company DHI are the aim of this B.Sc. thesis1 to
investigate, whether if it is possible to accelerate the simulation speed of DHIs
commercial product MIKE 21 HD, by formulating a parallel solution scheme
and implementing it to be executed on a CUDA-enabled GPU (massive parallel
hardware).

MIKE 21 HD is a simulation tool, which simulates water wave dynamics in
lakes, bays, coastal areas and seas and it is one of DHIs most applied commercial
products. For this reason a drastic improvement in simulation speed has the
potential to change the type of optimization problems where MIKE 21 HD is
applicable and thereby open new market segments for DHI.

Model Equations and Discretization

MIKE 21 HD simulates water wave dynamics by solving a set of hyperbolic
partial differential equations called shallow water equations which are given as

∂ζ

dt
+

∂p

∂x
+

∂q

∂y
=

∂d

∂t
(1)

∂p

∂t
+

∂

∂x

(pp
h

)
+

∂

∂y

(pq
h

)
+ gh

∂ζ

∂x
+

gp
√
p2 + q2

C2h2
= 0 (2)

∂q

∂t
+

∂

∂y

(
q2

h

)
+

∂

∂x

(pq
h

)
+ gh

∂ζ

∂y
+

gq
√
p2 + q2

C2h2
= 0 (3)

The solution scheme used is the Alternating Direction Implicit (ADI) method,
which results in many tri-diagonal matrix systems, which have to be solved
efficiently for each time step.

� We want to thank Allan Peter Engsig-Karup, Thomas Clausen and Jesper Grooss
for supervision and support throughout the project.

1 B.Sc. thesis: http://www2.imm.dtu.dk/pubdb/views/
publication details.php?id=6367

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 129–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6367
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6367

130 P.E. Aackermann et al.

Solution Approach

Two different parallel solution schemes are implemented. The first (S1) solves
each tri-diagonal system in parallel using a single CUDA thread for each system.
This approach use the same tri-diagonal solution algorithm as MIKE 21 HD, the
Thomas algorithm. The other solution schemes (S2) adds more parallelism into
the system by using several threads to solve each system in parallel. In order to do
this efficient are several parallel solution algorithms investigated. The focus have
been on the Parallel Cyclic Reduction (PCR) algorithm and a hybrid algorithm
of Cyclic Reduction (CR) and PCR.

Results

We discover that S2 are beneficial for small problems, while S1 yields better
results for larger systems. We have obtained 42x and 80x speedup in double-
precision for S1 and S2 respectively, compared to a representative sequential C
implementation of MIKE 21 HD. For comparison can a 3072×3072 system be
solved in double-precision on the GPU twice as fast as a 512×512 system on
the CPU. Furthermore, the impact of switching to perform calculation in single-
precision have been investigated. This resulted in 145x and 203x speedup for
S1 and S2, respectively. We furthermore achieve near linear scaling when using
method S1 compared to a quadratic scaling on the CPU.

Fig. 1. Speedup of optimized S1 and S2 in single- and double-precision against an
implemented CPU version. Result achieved on NVIDIA GeForce GTX 590.

Further Research

An investigating of the precision impact of switching from double- to single-
precision. Especially, using mixed-precision in the core math calculation is an-
ticipated to be beneficial without losing to much precision.

GPU-Accelerated and CPU SIMD Optimized

Monte Carlo Simulation of φ4 Model

Piotr Bialas, Jakub Kowal, and Adam Strzelecki

Faculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University

ul. Reymonta 4, 30-059 Krakow, Poland

This contribution is concerned with an efficient implementation of the Monte-
Carlo simulations of the ϕ4 model[1]. The problem is defined as follows: having
a vector field ϕ defined on a regular rectangular two or three dimensional grid
we want to generate the field configurations with probability proportional to
exp(−H(ϕ)) where H(ϕ) is some function of all the fields ϕi.

The actual generation is done by the mean of the Metropolis algorithm. This
amounts to sequentially updating all the points of the lattice. The crucial feature
of this algorithm is that the update is local i.e. the new value of the field in a
given point depends only on the values of fields in the immediate neighborhood of
the updated point. In our case this neighborhood is extended compared to usual
nearest neighbors (see figure 1 (Right)). The update is random and requires a
good source of pseudo-random numbers. We use the Tausworthe RNG[3].

While model is inherently parallelizable, grid points that lie in the same neigh-
borhood cannot be updated together. Taking into account a larger neighborhood
means that a simple checkerboard decomposition pattern cannot be used and
we have devised a new grid decomposition scheme.

On GPU we adopt the hierarchical scheme from ref. [2] suitably modified to
account for bigger neighborhood. We first divide the whole lattice in blocks of
32×32 points. Then we start a kernel that process every forth block (see figure 1).
Each block is assigned to a block of 128 threads. First we fetch the values of the
fields from global to shared memory (including border points). After that each
thread updates one point from the first partition. Then after synchronization,
next partition is updated and so on. After processing all eight(2D) or 16 (3D)
partitions the kernel writes the shared memory back into global and new kernel
is started processing next batch of blocks. Altogether in this way we managed to
achieve 0.13 nanoseconds for single lattice field update on NVIDIA GTX 470,
reaching around 430 Gflops that is 40% of 1088 Gflops peak performance of this
device.

In order to provide unbiased CPU vs GPU speed up results we provide multi-
threaded vectorized CPU implementation. It uses OpenMP for parallel execution,
SSE/AVX and compiler vector extensions for vectorization. This implementation
does mimic GPU SIMT execution model. The SIMD instructions are used to pro-
cess four (SSE) or eight (AVX) updates in parallel. We use partitions as on GPU
but we use only one level i.e. we do not partition the lattice into blocks. However
not all scalar x86 instructions have vector counterparts. In particular directXMM

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 131–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 P. Bialas, J. Kowal, and A. Strzelecki

111111111111111111 222222222222222222
333333333333333333 444444444444444444
111111111111111111 222222222222222222
333333333333333333 444444444444444444

111111111111111111 222222222222222222
333333333333333333 444444444444444444
111111111111111111 222222222222222222
333333333333333333 444444444444444444

Fig. 1. (Left) The partition of the lattice into blocks. The blocks with same number
are processed in parallel by different thread blocks. (Right) Partitioning of the blocks
into disjoint sublattices. Thick black line denotes the neighborhood used in updating
the center point. Black points are processes in parallel by different threads of the same
thread block.

registers gather and scatter and vectorized integer operations for full length AVX
256-bit registers are missing, which makes impossible to port randomnumber gen-
erator from 128-bit SSE to 256-bitAVX. Initially planned for AVX standard, these
were postponed to AVX2 planned for 2013. As soon AVX2 capable CPU devices
appear on the market we plan to revise our evaluation.

Our CPU OpenMP and SSE/AVX implementation compiled via GCC 4.4 or
higher and running on Intel Core i5 2.5 Ghz quad core CPU presented 15× per-
formance boost comparing to single threaded scalar code and 3.76 nanoseconds
for single lattice field update. Which gives the 15 Gflops that is ∼ 10% of the
160 Gflops peak performance of tested i5 CPU. There is no significant increase
in performance while switching from SSE to AVX instructions.

This gives around 28× advantage to GPU, which is noticeably less than
promised by many publications, however much higher that comes from compari-
son of tested i5 CPU to GTX 470. This can be traced back to 128-bit only Taus-
worthe random number generator implementation and inefficient vector store
and load operations (gather/scatter).

References

1. Parisi, G.: Statistical Field Theory, ch. 5. Perseus Books Publishing (1998)
2. Weigel, M.: J. Comput. Phys. 231, 3064 (2012)
3. Howes, L., Thomas, D.: Efficient random number generation and application using

CUDA. In: Nguyen, H. (ed.) GPU Gems 3, ch. 37. Addison Wesley (August 2007)

Protable Codes on New HPC Architectures�

Mhd. Amer Wafai, Colin W. Glass, and Christoph Niethammer

University of Stuttgart, HLRS,
Nobelstr. 19, 70569 Stuttgart, Germany
{wafai,glass,niethammer}@hlrs.de

1 Introduction

Due to the fast evolution of computer architectures, which tends towards many-
core, software has to be constantly optimized or re-written in order to sustain
performance.

To avoid re-writing and thus saving time and effort, pragma-based parallel
programming models have been introduced. The idea is that developers specify
the intrinsic parallelism once and the corresponding compilers take care of the
underlying architecture, generating suitable binaries.

Computer architectures, nowadays, come with many cores per chip. For ex-
ample, the AMD Interlagos comes with 12 cores per chip and each computing
node can include multiple chips. Intel Sandy Bridge comes with 8 cores per chip.
Moreover recent CPGPU come with thousands of cores, like the NVIDIA GTX
680 which has 1536 computing cores.

In this work the molecular dynamics code CMD is parallelized using different
programming models and the results are compared.

2 Pragma-Based Programming Models

GPUs are an attractive choice for many problems because of their high perfor-
mance and memory bandwidth. To use GPUs, software developers should have
detailed knowledge of the underlying GPU architecture and the correspond-
ing programming environment (CUDA, OpenCL ...) which are considered to be
hardware-related programming languages. For each new GPU generation, codes
need be optimized to achieve good performance. In order to avoid this, pragma-
based programming models have been developed. What OpenMP is for the CPU,
OpenACC (including HMPP and PGI accelerator) wishes to become for GPU.
While pragma-based approaches are simple and powerful, there are limitations
to their applicability. The following checklist is a good basis for evaluating the
compatibility of a code with OpenACC:

– Profile and analyze the code regarding computationally intensive hotspots.
– If present: check if the hotspot meets the following criteria.

� This work has been supported by the German Research Foundation (DFG) funding
the Sonderforschungsbereich 716 (SFB716) project D.2.

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 133–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 M.A. Wafai, C.W. Glass, and C. Niethammer

• Data structure should not contain pointers.
• Data structure should be structures of array rather than array of struc-
tures.

• No function calls within the hotspot.
• No IOs
• No access to global and volatile variables
• The hotspot should have a fixed number of arguments.

If the code passes, chances are very good that it is well suited for porting with
OpenACC.

3 Results

In this work, CMD has been parallelized with OpenMP (CPU) and CUDA, Ope-
nACC, HMPP (GPU). OpenACC and HMPP show poor performance due to
data transfers between device and host memories. The results clearly indicate
that more control of data locality needs to be provided within these approaches.

The CUDA version on GPU is compared to the OpenMP version running
on state-of-the-art CPUs. Figure 1 shows that NVIDIA Fermi C2050 outper-
forms the other hard-ware/parallelization for huge systems (more than 65000
molecules). AMD Interlagos shows a good performance for smaller systems,
with degrading performance at larger system sizes, possibly due to data local-
ity. Whereas Sandy bridge shows stable results and outperforms Interlagos at
300,000 molecules.

Fig. 1. Time comparison of CMD on many platforms using pragma-based programming
models and CUDA

GASPI – A Partitioned Global Address Space

Programming Interface

Thomas Alrutz1, Jan Backhaus2, Thomas Brandes3, Vanessa End1,
Thomas Gerhold4, Alfred Geiger1, Daniel Grünewald5, Vincent Heuveline6,
Jens Jägersküpper4, Andreas Knüpfer7, Olaf Krzikalla7, Edmund Kügeler2,

Carsten Lojewski5, Guy Lonsdale8, Ralph Müller-Pfefferkorn7,
Wolfgang Nagel7, Lena Oden5, Franz-Josef Pfreundt5, Mirko Rahn5,

Michael Sattler1, Mareike Schmidtobreick6, Annika Schiller9,
Christian Simmendinger1, Thomas Soddemann3, Godehard Sutmann9,

Henning Weber10, and Jan-Philipp Weiss2

1 T-Systems SfR, Stuttgart & Göttingen
2 DLR, Institut für Antriebstechnik, Köln

3 Fraunhofer SCAI, Sankt Augustin
4 DLR, Institut für Aerodynamik und Strömungstechnik, Braunschweig & Göttingen

5 Fraunhofer ITWM, Kaiserslautern
6 Engineering Math. and Comp. Lab (EMCL), Karlsruher Institut für Technologie
7 Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), TU Dresden

8 Scapos AG, Sankt Augustin
9 Forschungszentrum Jülich

10 Deutscher Wetterdienst (DWD), Offenbach

At the threshold to exascale computing, limitations of the MPI programming
model become more and more pronounced. HPC programmers have to design
codes that can run and scale on systems with hundreds of thousands of cores.
Setting up accordingly many communication buffers, point-to-point communi-
cation links, and using bulk-synchronous communication phases is contradicting
scalability in these dimensions. Moreover, the reliability of upcoming systems
will worsen.

GASPI, a Global Address Space Programming Interface, provides a parti-
tioned global address space (PGAS) API. It is currently worked out in a German
BMBF-funded project1 with partners at T-Systems SfR, Fraunhofer ITWM,
Fraunhofer SCAI, KIT, TU Dresden, scapos AG, FZ Jülich, DLR and DWD –
see http://www.gaspi.de. The new GASPI specification focuses on three key
objectives: scalability, flexibility and fault tolerance.

GASPI offers a small, yet powerful API based on asynchronous and one-
sided communication routines, synchronisation primitives, and communication
collectives. These routines give fine-grained control over one-sided read and
write communication primitives, global atomics, passive receives, communica-
tion groups and communication queues. All these features allow to break up

1 The GASPI project is funded by the German Federal Minstry for Education and
Research (BMBF) with funding code 01IH11007.

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 135–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 T. Alrutz et al.

bulk-synchronous communication and enable new algorithmic strategies and im-
plementation approaches. By these means, GASPI aims to initiate a paradigm
shift from bulk-synchronous two-sided communication patterns towards an asyn-
chronous communication and execution model. However, this step requires a
sophisticated rearrangement of the communication patterns in most of the algo-
rithms and applications.

GASPI uses one-sided RDMA-driven communication and is implemented on
top of the IB-Verbs layer and the OFED stack. This approach guarantees best
performance and wide-spread portability. While its fault tolerant mechanisms
offer new capabilities to deal with node failures, the concept of memory seg-
ments allows to treat heterogeneous platforms. Fault tolerance is accomplished
by providing a timeout value as an argument to all non-local communication
calls. The health status of each communication partner can be checked at any
time. This model also allows to dynamically resize the number of active nodes.
By its lean and versatile body GASPI aims at scaling towards the exascale age.

The GASPI project promotes the dissemination and visibility of the API by
means of dedicated projects in performance-critical application domains ranging
from basic routines in sparse and dense linear algebra and high level solvers to
computational fluid dynamics, turbo-machinery, weather and climate prediction,
oil and gas applications, and molecular dynamics.

This short talk and poster outlines the basic concepts of GASPI and puts light
on the paradigm shift from bulk-synchronous two-sided communication patterns
towards a scalable and asynchronous communication and execution model.

Parallel Fully Adaptive Tsunami Simulations

Michael Bader, Alexander Breuer, and Martin Schreiber

Department of Informatics,
Boltzmannstrasse 3, 85748 Garching, Germany
{bader,breuera,martin.schreiber}@in.tum.de

http://www5.in.tum.de/

Abstract. We present our framework for parallel simulations of hy-
perbolic partial differential equations on triangular grids. As a proof-
of-concept, we implemented the shallow water equations using a finite
volume method together with the Riemann solvers of LeVeque and George
[1] and multi-resolution geoinformation datasets. The results show a par-
allel fully adaptive simulation applied to the 2011 Tohoku tsunami field-
benchmark.

Efficient adaptivity is realized by grid-traversals which follow the Sier-
piński space filling curve. A stack- and stream-based approach accounts
for locality and cache efficiency by arranging the data exchange among
cells. For tsunamis we used the normalized height mass exchange as
adaptivity criterion in every time step. Therefore, if a certain refinement
threshold is exceeded, the corresponding cells are refined by newest ver-
tex bisection. Values falling below a coarsening threshold result in a
merge of the respective triangles.

Our parallelization approach is designed to tolerate unpredictable
workload per cell, caused, for example, by loading bathymetry data dur-
ing refinement or flux solvers with computations depending on specific
classifications of the Riemann problem. We address load balancing by

Fig. 1. Tsunami simulation state 10000 seconds after the earthquake. Bouy placements
are marked with arrows.

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 137–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www5.in.tum.de/

138 M. Bader, A. Breuer, and M. Schreiber

creating by far more work units than there are cores available on shared
memory systems. This approach is realized by massive tree-splittings of
the mesh along the Sierpiński curve, which gives one work unit per split
sub-tree. As a result the framework is able to execute these work units in
an arbitrary order using OpenMP or TBB tasking constructs (See [2]).

The results show that the fully adaptive simulation provides bench-
mark solutions close to the ones achieved on regular grids with a sub-
stantial gain in terms of performance. An objective and detailed analysis
of the error with field as well as analytical benchmarks is part of our
ongoing research. Since there are many ways to implement the presented
algorithm, a publication of source-code seems to be mandatory. There-
fore we released the source-code at http://www5.in.tum.de/sierpi/.

0 5000 10000 15000 20000 25000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Dart station 21401

time since earthquake (seconds)

he
ig

ht
 r

el
at

iv
e

to
 s

ea
le

ve
l (

m
et

er
s)

Measured data

d=24, a=0, cfl=0.5

d=4, a=20, cfl=0.5

0 5000 10000 15000 20000 25000

−0
.5

0.
0

0.
5

1.
0

Dart station 21413

time since earthquake (seconds)

he
ig

ht
 r

el
at

iv
e

to
 s

ea
le

ve
l (

m
et

er
s)

Measured data

d=24, a=0, cfl=0.5

d=4, a=20, cfl=0.5

0 5000 10000 15000 20000 25000

−1
0

1
2

Dart station 21418

time since earthquake (seconds)

he
ig

ht
 r

el
at

iv
e

to
 s

ea
le

ve
l (

m
et

er
s)

Measured data

d=24, a=0, cfl=0.5

d=4, a=20, cfl=0.5

0 5000 10000 15000 20000 25000

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Dart station 21419

time since earthquake (seconds)

he
ig

ht
 r

el
at

iv
e

to
 s

ea
le

ve
l (

m
et

er
s)

Measured data

d=24, a=0, cfl=0.5

d=4, a=20, cfl=0.5

Fig. 2. Elevation of bouys for simulation on regular grid (red) and adaptive grid (blue)

Acknowledgement. This work was supported by the German Research Foun-
dation (DFG) as part of the Transreg. Collab. Res. Centre ”Invasive Computing”
(SFB/TR 89).

References

1. George, D.L.: Augmented riemann solvers for the shallow water equations over
variable topography with steady states and inundation. J. Comput. Phys. 227(6),
3089–3113 (2008)

2. Schreiber, M., Bungartz, H.J., Bader, M.: Shared memory parallelization of fully-
adaptive simulations using a dynamic tree-split and -join approach. In: Proceedings
of HiPC 2012 (2012)

http://www5.in.tum.de/sierpi/

Implementation of Stable Skew–Symmetric

Matrix Factorization for Fermi GPUs
Using CUDA

Neven Krajina

Department of Mathematics, Faculty of Science, University of Zagreb
neven.krajina@gmail.com

Although not as common as symmetric matrices, skew-symmetric matrices arise
in practice in fields such as physics, biology and economy, as well as a first step in
solving the skew-symmetric eigenvalue problem. It was shown in [1] that every
skew-symmetric matrix A admits a stable factorization of the form PTAP =
GJGT , where P is a permutation matrix, G is a lower-triangular matrix and J
is a block-diagonal matrix with 2 × 2 matrices J2 =

(
0 −1
1 0

)
and zeros on the

diagonal. To obtain this factorization, we proceed as follows; first, to fulfill the
requirements of numerical stability, we need to find the maximal value x of A
located at (r, c), and permute the rows and columns of A so that (PTAP)21 =
arc. If arc = 0, the algorithm runs to completion with trapezoidal G. Otherwise,
we set P = (2r)(1c) if r �= 1 or P = (2c)(1c) if r = 1. If A is partitioned as

A =

(
A11 −AT

21

A21 A22

)
,

where A11 is 2× 2 matrix, it can be factored as

A =

(√
xI 0√

xA21A
−1
11 I

)(
J2 0
0 A22 +A21A

−1
11 A

T
21

)(√
xI −√

xA−1
11 A

T
21

0 I

)
.

It can be easily shown that (A21A
−1
11)

T = −A−1
11 A

T
21 and that A22 +A21A

−1
11 A

T
21,

the so-called Schur complement, is again skew-symmetric matrix. We can thus
proceed with the factorization of Schur’s complement in the same manner. In
the end, we have

A = P1G1 · · ·PkGkJG
T
k P

T
k · · ·GT

1 P
T
1 ,

where Pi is a permutation matrix, and Gi is a lower-triangular,

Gi =

⎛
⎝I2i−2 √

xiI2
Ci In−2i

⎞
⎠ .

If we want to interchange matrices Gi and Pi+1, we have to multiply the Ci

block with the transpose of Pi+1 from the left. Also, multiplying matrices Gi

and Gi+1 results in matrix

GiGi+1 =

⎛
⎜⎜⎝
I2i−2 √

xiI2
C1i

√
xi+1I2

C2i Ci+1 In−2i−2

⎞
⎟⎟⎠ .

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 139–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

140 N. Krajina

The algorithm for factorization of A is as follows.

stride ← 0
while stride ≤ n− 2 do
find the maximum entry x of matrix A
if x = 0 then
break;

end if
permute rows and columns of A so that A21 = x
and permute columns of preceding G factors

calculate the Schur complement
calculate

√
xA21A

−1
11

A ← A3:n,3:n

stride ← stride + 2
end while

All of the steps mentioned can be done in parallel, but have to be done in exactly
the specified order. Finding the value and indices of maximum element can be
done by reduction. To permute rows and columns, we can use a kernel that does
one transposition at a time. Since we only store the lower part of matrix A, we
have to apply both row and column transposition at once (see Fig. 1).

Fig. 1. Transpositions performed on rows and columns at once. Minus below the arrow
indicates that elements need to have their sign changed before swapping.

Since A−1
11 =

(
0 x−1

−x−1 0

)
, A21A

−1
11 sums down to swapping columns of A21

and multiplying the first one with −x−1 and the second with x−1. From the
definition of Schur complement, we can see that we have to calculate Aij =
Aij +(Ai1Aj2 −Aj1Ai2)/x, where 3 ≤ i < j ≤ N , which can highly benefit from
data reuse. At the end, the only bottleneck of this algorithm is checking whether
the maximum is equal to zero, since we have to copy its value to host, but this
is something we cannot avoid.

Reference

1. Bunch, J.R.: A Note on the Stable Decomposition of Skew–Symmetric Matrices.
Math. Comp. 38(158), 475–479 (1982)

The IMData Approach to Accelerate Data

Intensive Workloads

Marcus Völp, Nils Asmussen, and Hermann Härtig

Technische Universität Dresden, Dresden, Germany,
{voelp,nils,haertig}@os.inf.tu-dresden.de

Abstract. Having started operational work in August 2012, the ESF
young researcher group IMData seeks to develop new integrated mecha-
nisms for accelerating data intensive workloads in heterogeneous many-
core systems. This extended abstract and the accompanying poster
summarizes the observations that motivate the project and the approach
we are going to take.

Accelerator architectures such as GPGPUs, IBM Cell, and signal processors
achieve their performance and energy advantages by offering a vast number of
very simple and specialized cores. The tremendous core count of these archi-
tectures stems in part from a sacrifice of even the most fundamental hardware
features that interacting applications and operating system kernels require. How-
ever, for not frequently interacting workloads, this tradeoff pays off in gigantic
speedups.

Comparing different Alpha generations, Kumar et al. [2] already found that
little less than five simple cores occupy the same area as a large out-of-order
core motivating a combination of few big and many little cores in single-ISA
heterogeneous systems. However, the chip area required to support an operating
system suprised us. We configured two Tensilica Xtensa cores [1] for a 400MHz
65nm Low Power Process Technology using the Xtensa Xplorer Tools. One of it
is used in the Tomahawk MPSoC accelerator for Software Defined Radio [3]. The
other has all features enabled that modern general purpose operating systems
require (interrupts, exceptions, MMU, . . .). Adding OS support to a core (notice,
we stick to the same ISA and application-level execution profile) increases the
core’s area by almost 100% from 0.095 mm2 to 0.171 mm2 (excluding caches).
Therefore, just by removing hardware support for the operating system, thread
parallelism could be doubled. Additionally, replacing the 32 KB tightly coupled
SRAM with two 16 KB caches for instructions and data, multiplies chip area by
almost another factor of two (from 0.299 mm2 to 0.516 mm2).

The research direction, which we derive from this obseration is therefore how
to enable complex, interactive and data intensive workloads on accelerator plat-
forms without sacrificing the benefits obtained from hardware specialization. The
immediate questions that arise are: “How can we control applications without
having full hardware support for running an operating system kernel beneath
them?”, “How can applications on different cores interact with each other?”,

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 141–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 M. Völp, N. Asmussen, and H. Härtig

“How can they synchronize on shared data and communicate results?”, “How
can critical parts of applications be isolated?”, and finally, “How can all this
be achieved without reintroducing the area-expensive hardware mechanisms of
general purpose architectures?”.

At the hardware level, the starting point will be the Tomahawk processor built
by TU Dresden’s mobile communications group. On top of it, the L4 microkernels
NOVA and Fiasco.OC from TUD’s operating systems group will provide efficient
and light-weight communication and synchronization mechanisms to the data
intensive applications, which we draw from in-memory databases and from other
research fields of TUD’s database and data analytics group. In addition, our
probablistic model checking group will support us by looking into new techniques
for investigating functional and non-functional properties of our algorithms and
system components.

References

1. Tensilica, Inc., Xtensa customizable processors (2011),
http://www.tensilica.com/products/xtensa-customizable.htm

2. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
Heterogeneous Multi-Core Architectures: The Potential for Processor Power Re-
duction. In: Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, p. 81. IEEE Computer Society, Washington, DC
(2003), http://dl.acm.org/citation.cfm?id=956417.956569

3. Limberg, T., Winter, M., Bimberg, M., Klemm, R., Tavares, M.B., Ahlendorf, H.,
Matus, E., Fettweis, G., Eisenreich, H., Ellguth, G., Schlüssler, J.: A Heterogeneous
MPSoC with Hardware Supported Dynamic Task Scheduling for Software Defined
Radio. In: 46th Design Automation Conference (DAC 2009), San Francisco, USA,
pp. 267–317 (2009)

http://www.tensilica.com/products/xtensa-customizable.htm
http://dl.acm.org/citation.cfm?id=956417.956569

PRAgMaTIc – Parallel Anisotropic Adaptive

Mesh Toolkit

Georgios Rokos1 and Gerard Gorman2

1 Software Performance Optimisation Group, Department of Computing,
Imperial College London, South Kensington Campus, London SW7 2AZ, UK

georgios.rokos09@imperial.ac.uk

http://www.doc.ic.ac.uk/~gr409/
2 Applied Modelling and Computation Group,

Department of Earth Science and Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

g.gorman@imperial.ac.uk

http://www3.imperial.ac.uk/people/g.gorman

Abstract. The numerical methods used to model complex geometries
required by many scientific applications often favour the use of unstruc-
tured meshes and finite element discretisation methods over structured
grid alternatives. This flexibility introduces complications, such as the
management of mesh quality and additional computational overheads
arising from indirect addressing [5]. Using the Finite Element Method
for the numerical solution of PDEs, a posteriori error estimations on the
PDE solution help evaluate a quality functional [4] and determine the
low-quality mesh elements. Mesh adaptivity methods ([3], [1]) provide an
important means to control solution error by focusing mesh resolution
in regions of the computational domain when and where it is required.

Adaptive algorithms are grouped into two main categories,
h-adaptivity and r-adaptivity algorithms. The first category contains
techniques which try to adapt the mesh by changing its topology. This
can be done by removing existing mesh elements, a technique known
as coarsening, increasing local mesh resolution by adding new elements,
a procedure called refinement, or replacing a group of elements with a
different group, which can be achieved through swapping. The second
group of adaptive algorithms encompasses a variety of vertex smoothing
techniques, all of which leave mesh topology intact and only attempt to
improve quality by relocating mesh vertices. Algorithm 1 demonstrates
the general procedure for the solution of a PDE on an adaptive mesh.

A problem is said to be anisotropic if its solution exhibits directional
dependencies. An anisotropic mesh contains elements which have some
suitable orientation. In this case, the error estimation is given in the form
of a metric tensor field M(x), i.e. a tensor which, for each point in the
domain, represents the desired length and orientation of a mesh edge
containing this point. Adapting a mesh so that it distributes the error
uniformly over the whole mesh is equivalent to constructing a uniform
mesh consisting of equilateral triangles with respect to the non-Euclidean
metric M(x).

R. Keller et al. (Eds.): Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 143–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.doc.ic.ac.uk/~gr409/
http://www3.imperial.ac.uk/people/g.gorman

144 G. Rokos and G. Gorman

Algorithm 1. General algorithm for the adaptive solution of PDEs

Mesh M0 ← initial auto-generated mesh
solve PDE on M0

E0 ← a posteriori estimation of solution error
while Ei ≥ predefined tolerance do

compute metric tensor field Ti from Ei

perform initial coarsening on Mi

repeat
perform refinement on Mi

perform coarsening on Mi

perform swapping on Mi

Lmax ← longest mesh edge
until (pre-defined number of iterations is reached) or(Lmax -

√
2.0 < 0.01)

perform smoothing on Mi

solve PDE on Mi

Ei ← a posteriori estimation of solution error

PRAgMaTIc is an open-source mesh adaptivity framework, built with
large-scale multiprocessing in mind. It implements coarsening, refinement
and swapping alongside an optimisation-based vertex smoothing algo-
rithm proposed by Freitag et al. [1]. Parallel execution is based on an
older parallel framework [2], improved through a novel approach which
combines the idea of mesh partitioning with low-level intervention in
mesh data structures in order to achieve good data locality, high per-
formance and thread safety. PRAgMaTIc supports both NUMA (via
OpenMP) and distributed-memory (via MPI) systems. Current
work is on improving performance and scalability of adaptive algorithms.
Support for CUDA/OpenCL is planned for the near future. PRAgMaTIc
can be downloaded from Launchpad under the BSD licence:
https://launchpad.net/pragmatic.

References

1. Freitag, L., Jones, M., Plassmann, P.: An efficient parallel algorithm for mesh
smoothing. In: Proceedings of the 4th International Meshing Roundtable, Sandia
National Laboratories, pp. 47–58. Citeseer (1995)

2. Freitag, L.F., Jones, M.T., Plassmann, P.E.: The Scalability Of Mesh Improvement
Algorithms. In: IMA Volumes in Mathematics and its Applications, pp. 185–212.
Springer (1998)

3. Li, X., Shephard, M., Beall, M.: 3d anisotropic mesh adaptation by mesh mod-
ification. Computer Methods in Applied Mechanics and Engineering 194(48-49),
4915–4950 (2005)

4. Vasilevskii, Y., Lipnikov, K.: An adaptive algorithm for quasioptimal mesh gen-
eration. Computational Mathematics and Mathematical Physics 39(9), 1468–1486
(1999)

5. Piggott, M.D., Farrell, P.E., Wilson, C.R., Gorman, G.J., Pain, C.C.: Anisotropic
mesh adaptivity for multi-scale ocean modelling. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 367(1907), 4591–
4611 (1907)

https://launchpad.net/pragmatic

Author Index

Aackermann, Peter Edward 129
Alrutz, Thomas 135
Altmann, Christoph 37
Asmussen, Nils 141

Backer, Michael 108
Backhaus, Jan 135
Bader, Michael 1, 137
Balg, Martina 25
Beck, Andrea D. 37
Bialas, Piotr 131
Brandes, Thomas 135
Breuer, Alexander 137
Bungartz, Hans-Joachim 1

Cabral, Bruno 96
Chapman, Barbara 13
Clausen, Thomas 129

Ding, Wei 13
Dudás, Ákos 60

End, Vanessa 135
Engsig-Karup, Allan Peter 129
Erbes, Rainer 84

Fan, Shiqing 127
Fonseca, Alcides 96

Gassner, Gregor J. 37
Geiger, Alfred 135
Gerhold, Thomas 135
Glass, Colin W. 125, 133
Gorman, Gerard 143
Gracia, Jose 125
Grooss, Jesper 129
Grünewald, Daniel 135

Härtig, Hermann 141
Heinecke, Alexander 121
Hernandez, Oscar 13
Heuveline, Vincent 135
Hindenlang, Florian 37

Jägersküpper, Jens 135
Juhász, Sándor 60

Keller, Rainer 127
Knüpfer, Andreas 135
Kolumbán, Sándor 60
Kowal, Jakub 131
Krajina, Neven 139
Krzikalla, Olaf 135
Kügeler, Edmund 135

Lang, Jens 25
Lojewski, Carsten 135
Lonsdale, Guy 135

Mantel, Anja 84
Mertsching, Bärbel 108
Meyer, Arnd 25
Müller-Pfefferkorn, Ralph 135
Munz, Claus-Dieter 37

Nachtmann, Mathias 125
Nagel, Wolfgang 135
Niethammer, Christoph 133

Oden, Lena 135

Palkowski, Marek 72
Pedersen, Peter Juhler Dinesen 129
Pfreundt, Franz-Josef 135

Rahn, Mirko 135
Rauschmayr, Nathalie 48
Rokos, Georgios 143
Rünger, Gudula 25

Sattler, Michael 135
Schiller, Annika 135
Schmidtobreick, Mareike 135
Schömer, Elmar 84
Schreiber, Martin 1, 137
Sclocco, Alessio 123
Simmendinger, Christian 135

146 Author Index

Soddemann, Thomas 135
Staudenmaier, Marc 37
Streit, Achim 48
Strzelecki, Adam 131
Sutmann, Godehard 135

Tünnermann, Jan 108

van Nieuwpoort, Rob V. 123
Völp, Marcus 141

Wafai, Mhd. Amer 133
Weber, Henning 135
Weiss, Jan-Philipp 135
Wolpert, Nicola 84

	Title
	Preface
	Organization
	Table of Contents
	Full Papers
	Invasive Computing on High Performance Shared Memory Systems
	Introduction
	Our Approach for Dynamically Changing Applications

	Invasive Paradigms
	Implementation of a Resource Manager
	Data Structures for Managing Clients in the RM
	Invasive Command Space
	Scheduling to Maximize Global Throughput

	Application
	Results
	Related Work
	Conclusions, Outlook and Acknowledgement
	References

	A Similarity-Based Analysis Tool for Porting OpenMP Applications
	Introduction
	A Motivating Example
	Related Work
	Design of Our System
	Implementation
	Experiments
	Conclusions and Future Work
	References

	Array-Based Reduction Operationsfor a Parallel Adaptive FEM
	Introduction
	Solution of Linear Systems of Equations
	Data Structures
	Parallelisation

	Fine-Grained Reduction
	Atomic Operations
	Fine-Grained Locks

	Implementation
	Experiments
	Synthetic Tests
	Fine-Grained Explicit Locks
	Reduction Operations in the FEM Implementation

	Related Work
	Conclusion
	References

	An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method
	Introduction
	Description of the Method
	Parallelization Concept
	DGSEM Parallelization in Detail
	Scale-Up Efficiency
	Conclusions and Outlook
	References

	Reducing the Memory Footprint of Parallel Applications with KSM
	Introduction
	Overview about KSM
	Basic Principle
	Monitoring KSM

	Setting Up KSM
	Execution of Test Applications
	Evaluation of Results
	Simulation - Gauss
	Reconstruction - Brunel
	Analysis - DaVinci
	Additional CPU-Consumption and Cost Evaluation

	Caveats
	Related Work
	Conclusion
	References

	Recalibrating Fine-Grained Locking in Parallel Bucket Hash Tables
	Introduction
	Related Work
	Modeling the Parallel Hash Table
	Scalability with Increasing Granularity
	The Queuing Model

	Recalibrating Locking
	Estimating the Parameters of the System
	Estimating the Number of Locks
	Periodic Recalibration

	Evaluating the Algorithm
	Conclusions
	References

	Impact of Variable Privatization on Extracting Synchronization-Free Slices for Multi-core Computers
	Introduction
	Background
	Applying Privatization to Extract Slices
	Experiment Results
	Related Work
	Conclusion
	References

	Parallel Collision Queries on the GPU
	Introduction
	Related Work
	Problem Formulation
	A Basic BVH Collision Test
	Parallel Collision Queries on the GPU
	Implementation Details
	One Thread Performs One Test
	One Thread Performs Some Tests
	Some Threads Perform One Test
	Some Threads Perform Some Tests

	Benchmarks and Results
	Conclusions and Future Work
	References

	ÆminiumGPU: An Intelligent Framework for GPU Programming
	Introduction
	Approach
	Architecture
	GPU-CPU Decision

	Evaluation and Classifier Selection
	Dataset
	Experimental Setup
	Feature Analysis
	Classifier Comparison

	Related Work
	Conclusions and Future Work
	References

	Parallel k-Means Image Segmentation Using Sort, Scan and Connected Components on a GPU
	Introduction
	Algorithms and Data Structures
	K-Means Clustering
	Bitonic Sort
	Segmented Scan
	Union Find

	The Proposed Segmentation Algorithm
	Stage 0: Preprocessing
	Stage 1: GPU-Based K-Means Clustering
	Stage 2: GPU-Based Connected Components
	Stage 3: GPU-Based Region Feature Computation

	Evaluation
	Conclusion
	References

	Poster Abstracts
	Solving High-Dimensional Problems on Processors with Integrated GPU
	Motivation
	Application and Results
	References

	Pulsar Searching with Many-Cores
	References

	Scheduling Overheads for Task-Based Parallel Programming Models
	PINstruct – Efficient Memory Access to Data Structures
	Introduction
	References

	Development of a GPU-Accelerated Mike 21 Solver for Water Wave Dynamics
	GPU-Accelerated and CPU SIMD Optimized Monte Carlo Simulation of φ4 Model
	References

	Protable Codes on New HPC Architectures
	Introduction
	Pragma-Based Programming Models
	Results

	GASPI – A Partitioned Global Address Space Programming Interface
	Parallel Fully Adaptive Tsunami Simulations
	References

	Implementation of Stable Skew–Symmetric Matrix Factorization for Fermi GPUs Using CUDA
	Reference

	The IMData Approach to Accelerate Data Intensive Workloads
	References

	PRAgMaTIc – Parallel Anisotropic Adaptive Mesh Toolkit
	References

	Author Index

