
SlopPy: Slope One with Privacy

Sébastien Gambs and Julien Lolive

Université de Rennes 1 - INRIA / IRISA,
Avenue du Général Leclerc

35042 Rennes, France
sgambs@irisa.fr, julien.lolive@inria.fr

Abstract. In order to contribute to solve the personalization/privacy
paradox, we propose a privacy-preserving architecture for one of state-
of-the-art recommendation algorithm, Slope One. More precisely, we de-
scribe SlopPy (for Slope One with Privacy), a privacy-preserving version
of Slope One in which a user never releases directly his personal in-
formation (i.e, his ratings). Rather, each user first perturbs locally his
information by applying a Randomized Response Technique before send-
ing this perturbed data to a semi-trusted entity responsible for storing
it. While there is a trade-off to set between the desired privacy level and
the utility of the resulting recommendation, our preliminary experiments
clearly demonstrate that SlopPy is able to provide a high level of privacy
at the cost of a small decrease of utility.

Keywords: Privacy, Recommender Systems, Collaborative Filtering, Ran-
domized Response Technique.

1 Introduction

The advent of personalization is strongly tied to the development and rapid
growth of Electronic Commerce during the last decade. Indeed, major Internet
companies provide services that are tailored to the interests of their users, which
in turn as lead to the collection of large amount of personal data and the con-
struction of detailed profiles of these users. For instance, Google personalizes the
news pushed towards a specific user according to the topics of the news that he
had consulted in the past [4]. Another approach consists in using a recommender
system that creates a user’s profile and compare it to the profiles of other users
in order to select in accordance with the tastes of similar users, the most relevant
items (e.g., advertisements, movies, . . . ) for this particular user. For example,
Amazon relies on a recommendation engine using an item-based collaborative
filtering to propose suggestions to users about books that they might like [10].

The massive gathering of personal information generated by the development
of personalized services is clearly at odds with the privacy rights of the users of
these systems. More precisely, the two fundamental questions summarizing the
interplay between personalization and privacy are the following [12]:

“. . . (1) to what extent users have to disclose personal information in or-
der to enjoy personalized and context-aware services in a user-controlled,

R. Di Pietro et al. (Eds.): DPM 2012 and SETOP 2012, LNCS 7731, pp. 104–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



SlopPy: Slope One with Privacy 105

privacy-preserving and trusted way, as well as (2) to find a reasonable
balance between user-centric requirements and natural business interests
of service providers and authorities, who offer and regulate such ser-
vices.”

While we recognize that the second issue is also fundamental, in this paper we
focus mainly on addressing the first one. In particular, we believe that in order
to protect the privacy of their users and limit the risks of privacy breaches, the
recommender systems must integrate the privacy issues directly into the con-
ception of their architecture, following the privacy-by-design paradigm. Indeed,
while personalization and privacy may seem to be antagonist at first glance,
privacy-preserving personalized services and architectures have been developed
in the past few years that aim at reconciling these seemingly conflicting goals,
in particular in the context of personalized target advertising systems [17,7].

In this paper, we present our approach towards this direction by proposing
a privacy-preserving architecture for one of state-of-the-art recommendation al-
gorithm, Slope One [9]. More precisely, we describe SlopPy (for Slope One with
Privacy), a privacy-preserving version of Slope One in which a user never re-
leases directly his personal information (i.e, his ratings) to a trusted third party.
Rather, each user first perturbs locally his information by applying a Randomized
Response Technique before sending this perturbed data to a semi-trusted entity
responsible for storing it. Out of the perturbed ratings, the semi-trusted entity
construct two matrices (i.e., the deviation matrix and the cardinality matrix)
following the standard Slope One algorithm. When a user needs a recommenda-
tion on a particular item (i.e., a movie), he fetches particular information from
these matrices through a private information retrieval scheme [13] hiding the
content of his query (i.e., the item he is interested in) to the semi-trusted entity.
By combining the data retrieved with his true ratings (which are only stored
locally on his machine), the user can then locally compute the output of the rec-
ommendation algorithm for this particular item. While there is often a trade-off
to set between the desired privacy level (quantified in terms of the magnitude of
the noise added) and the utility of the resulting recommendation (measured by
the Mean Absolute Error and the Root Mean Squared Error), our experiments
clearly demonstrate that SlopPy is able to provide a high level of privacy at the
cost of a small decrease of utility.

The outline of the paper is the following. First, in Section 2, we give an
overview of the background on the Slope One recommendation algorithm as well
as local perturbation approaches such as Randomized Response Techniques. then
in Section 3, we briefly review privacy-preserving versions of Slope One that have
been developed in recent years. Afterwards, in Section 4, we describe SlopPy,
which is both a privacy-preserving version of Slope One and a recommendation
architecture built around this algorithm. Finally, in Section 5, we report on ex-
perimentations performed with SlopPy on the classical Movielens dataset before
concluding with a discussion and some future work in Section 6.



106 S. Gambs and J. Lolive

2 Background

Slope One recommendation algorithm. While several approaches exist to rec-
ommendation such as collaborative filtering, item-based recommendation and
content-based recommendation, thereafter we focus on Slope One [9], which is a
collaborative filtering algorithm (i.e., the recommendation is based on the tastes
of similar users) designed by Lemire and Maclachlan.

Let us first fix the notation. For the rest of this paper, let the variable u refers
to a specific user while i and j will be used as the indexes of particular items
(such as movies). Let also r denotes a true rating that a user has really given to
an item (e.g., a movie he has seen), while r̂ denotes a predicted rating, which
is the effective prediction made by the recommendation algorithm (in our case
Slope One or SlopPy) on an item that a user has never rated. For instance, ru,i
corresponds to the rating given by user u on the item i while r̂u,j is the prediction
of the rating that user u will give to item j according to the recommendation
algorithm. In general, the rating given to an item will be either an integer or a
real value drawn from a finite range. For example, in the case of the Movielens
dataset, the interval considered is [1, 5] in which a rating of 5 is an excellent
rating while a value of 1 corresponds to the worst possible one. Finally, the
variable n denotes the total number of items in the domain considered (e.g., the
number of possible movies).

To predict the rating of a particular item i for a specific user u, the Slope
One algorithm combines the information about all the items that u has rated
with the information about the ratings of all users that have also rated i. First,
Slope One constructs a cardinality matrix of size n by n containing the value
of φi,j , which corresponds to the number of users that have rated both items
i and j. This can be done easily in a non-private version of the algorithm by
having all users sending all their ratings to a central entity. Afterwards, Slope one
computes a deviation matrix out of the ratings provided by users. More precisely,
the (standard) deviation matrix of size n by n is constructed by computing the
standard deviation δi,j between each pair of items i and j by considering the
subset of users that have rated both items i and j:

δi,j =

∑
u(ru,i − ru,j)

φi,j
(1)

in which ru,i and ru,j are respectively the ratings of user u for the item i and j,
while φi,j is the number of users that have rated both items i and j. Note that
the construction of the cardinality and deviation matrices can be done in a time
directly proportional to their sizes, which is O(n2) for n the number of items in
the domain.

The standard (unweighted) version of Slope One relies only on the deviation
matrix to perform a recommendation. More precisely, the following equation
summarizes the formula used by unweighted Slope One to predict the rating
(the sum is performed over the subset of items that have been rated by user u):

UnweightedSlopeOne(u, j) =

∑
i|i�=j(δi,j + ru,i)

nu
(2)



SlopPy: Slope One with Privacy 107

in which j is the item on which the rating will be predicted for the user u, δi,j
is the standard deviation between the pair of items i and j, ru,i is the rating
given by user u to item i and nu is the number of items that have been rated by
user u. The Weighted Slope One is another variant of the Slope One algorithm
also due to Lemire and Maclachlan [9]. In a nutshell, compare to the standard
(i.e., unweighted) version, the main difference is that the weighted version of
Slope One considers that the pairs of items that are the most relevant for the
prediction are the ones that have been rated by a large number of users. This is
reflected by the following formula for the prediction:

WeightedSlopeOne(u, j) =

∑
i|i�=j(δi,j + ru,i)φi,j

∑
i|i�=j φi,j

(3)

in which j is the item on which the rating will be predicted for the user u, φi,j

corresponds to the number of users that have rated both items i and j, δi,j is
the standard deviation between the pair of items i and j and ru,i is the rating
given by user u to item i. Standard metrics for measuring the accuracy of a
recommendation algorithm are the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE), which basically are two different ways to quantify
the difference between the true rating r and the prediction one r̂. Both prediction
methods (i.e., the weighted and the unweighted ones) have a computational cost
of O(n), for n the number of possible items of the domain as they basically
require to use all the n entries of a row of the deviation matrix (and possibly
also the cardinality matrix in case of Weighted Slope One).

A key observation to make is that the prediction of weighted Slope One is
based on both local information (i.e., ru,i) that the user can store on his com-
puter and global information that is retrieved out of the deviation and cardinal-
ity matrices (i.e., δi,j and φi,j). Out of the different recommendation algorithms
available, we have chosen to focus on the development of the privacy-preserving
variant of Slope One, both because it has an accuracy that is closed to state-of-
the-art algorithms (as measured by the MAE and the RMSE), and also because
its structure, which decouples the local and global information needed for the
recommendation, makes it natural to introduce privacy in its framework.

Local computation and Randomized Response Technique. Local computation con-
sists in keeping the profile of a user under his control on his own machine and to
perform all the computations (or at least the sensitive ones) needed for the per-
sonalization on the clients’ side. With respect to privacy, the main advantage of
this technique is that the information of the user never leaves his computer, thus
limiting the risks of privacy leaks. For instance, in the case of a recommender
system, the local computation can be done in a transparent manner to the user
by a module directly integrated within his browser. Several systems based on
this approach have been proposed in the recent years, in particular in the con-
text of privacy-preserving targeted advertisement systems, such as Privad [7],
Adnostic [17] and RePriv [6].

Randomized Response Technique (RRT) can be seen as a specific form of local
perturbation method in which the user perturbs himself his data before releasing



108 S. Gambs and J. Lolive

it. Originally, this technique was invented by Warner [18] in the 1960’s as a
survey tool enabling individuals to randomize their answer on questions that are
deemed sensitive while still preserving global statistical properties of the sample.
In privacy, RRT is a general term referring to any local perturbation technique
in which the user locally perturbs his data independently of the data of other
users (in contrast to other methods such as k-anonymity sanitizing the data in
a global manner).

3 Related Work

RRT methods for recommendation algorithm. Within the context of recommen-
dation systems, Polat and Du [16] have developed a multi-group scheme to ran-
domize the items of a profile. Using this technique, each user partitions the items
of his profile into groups of same size and then each group is perturbed indepen-
dently with some predefined probability p. One of the limits of this approach is
that if the adversary has some knowledge about a particular group then this may
help him to de-randomize this part of the profile. For instance, if the adversary
knows that the first item of the group should be 1, then depending on the value
observed on the released data, it can detect whether this group was perturbed
or not and then potentially retrieve the original data for this group (at least
provided that each item is binary).

In general, one of the main difficulty for assessing the privacy offered by a
perturbation method (such as a RRT) is to have a meaningful measure of the
risk that the adversary is likely to de-randomize this method. More precisely,
to reason about the privacy guarantees provided by such method requires to
understand how the adversary might infer the true ratings out of the perturbed
ones. For instance, a recent study of Pashalidis and Preneel [15] has evaluated the
privacy/utility trade-off provided by different classes of obfuscation strategies in
the context of personalized services.

Privacy-preserving variants of Slope One. Basu, Vaidya and Kikuchi have pro-
posed in the recent years three variants of Slope One integrating privacy into the
design of the recommendation algorithm [1,2,3]. These three privacy-preserving
variants of Slope One rely on very different approaches. For instance, one of the
approach achieves privacy through the arbitrary partition of matrices [2] while
the second is based on the use of cryptographic techniques [3]. More precisely,
the main objective of the protocols proposed in [3] is to compute in a secure and
distributed manner the output of the Slope One algorithm (namely the deviation
and cardinality matrices) from rating data that is split among several sites.

The third approach is the closest to our work as it also corresponds to a
perturbation technique combined with the use of homomorphic encryption [1].
This method adds noise to the deviation matrix during the training phase (i.e.,
the time at which the matrices are computed) and to the ratings themselves
at prediction time. In a nutshell, the prediction query of the user representing
the item in which he is interested is protected through the use of homomorphic



SlopPy: Slope One with Privacy 109

encryption scheme, such as the Paillier’s cryptosystem [14], that has been set up
by the user and which allows to perform arithmetic operations (such as addition
and/or multiplication) on encrypted values. More precisely, the true ratings of
the user are encrypted homomorphically and then send to the server storing
the deviation and cardinality matrices. The server then perform the necessary
computations in order to generate an encrypted version of the prediction before
sending back the result to the user. Finally, the user can decrypt the result in
order to fetch the corresponding prediction. The privacy of this scheme is ensured
through the use of the homomorphic encryption for which the user is the only
one to know the secret key. The experiments conducted on the Movielens dataset
shows that proposed method is still accurate compared to the standard version
of the algorithm (as measured in terms of MAE).

4 SlopPy

In this section, we describe SlopPy (for Slope One with Privacy), a privacy-
preserving version of Slope One in which a user never releases directly his per-
sonal information (i.e, his ratings). In the rest of this section, we give an overview
of the general architecture of the system in Section 4.1 (due to space limitations
we leave the details of the architecture to the full version of this paper) before
describing the SlopPy recommendation algorithm in Section 4.2.

4.1 Overview of the SlopPy Architecture

SlopPy architecture. Figure 1 illustrates the architecture of the SlopPy recom-
mender system. More precisely in SlopPy, each user first perturbs locally his data
(Step 1) by applying a Randomized Response Technique (RRT) before sending
this information to the entity responsible for storing this information through
an anonymous communication channel (Step 2). This entity is assumed to be
semi-trusted, also sometimes called honest-but-curious in the sense that it is
assumed to follow the directives of the protocol (i.e., it will not for instance
corrupt the perturbed ratings send by a user or try to influence the output of
the recommendation algorithm) but nonetheless tries to extract as much infor-
mation as it can from the data it receives. Out of the perturbed ratings, the
semi-trusted entity constructs two matrices (i.e., the deviation matrix and the
cardinality matrix) following the Weighted Slope One algorithm (Step 3). When
a user needs a recommendation on a particular movie, he queries these matrices
through a variant of a private information retrieval scheme [13] (Step 4) hiding
the content of his query (i.e., the item he is interested in) to the semi-trusted
entity. By combining the data retrieved (Step 5) with his true ratings (which
once again are only stored on his machine), the user can then locally compute
the output of the recommendation algorithm for this particular item (Step 6).

Philosophy behind SlopPy. Overall, the philosophy of SlopPy is that users con-
tribute to the common good (i.e., the construction of the deviation and cardinal-
ity matrices that are needed to perform the recommendation) but still protect



110 S. Gambs and J. Lolive

Fig. 1. Overview of the architecture of SlopPy

their privacy by not sending directly their true ratings but rather a perturbed
version of it. The semi-trusted entity is responsible for administrating the com-
mon good in the sense of computing and storing the deviation and cardinality
matrices, which are considered to be public data that any user should have the
right to access1. On the other hand, the true ratings of a particular user are
considered to be private information and are only stored locally on his machine.
The computation of the prediction for a particular recommendation is done by
the user querying the matrices through a private information retrieval scheme.
In a nutshell, this technique allows a user to learn the content of a particular
row of the matrix without the semi-trusted entity learning his query. One of the
advantage of the centralized aspect of our system is that as the semi-trusted
entity has access to all the perturbed ratings of the users, and therefore it can
easily maintain and update the deviation and cardinality matrices.

Protection of privacy in SlopPy. In a recommender system, we believe that
ensuring privacy amounts to design a system that can hide at least the three
following information :

1. The true ratings of the user.
2. The identity of the user behind an action (e.g., an action could be the sub-

mission of ratings during the training phase or a prediction request).
3. The content of the query itself (i.e., the item the user is interested in).

In SlopPy, the ratings of the user are protected by randomizing them through
the application of a RRT before they are released (see Section 4.2 for more de-
tails). In order to hide the identity of the user behind the submission of the
ratings, the architecture of SlopPy relies on the use of an anonymous communi-
cation channel. This anonymous channel could be either implemented through
the use of a proxy that is assumed to be independent of the semi-trusted entity

1 We acknowledge that this assumption is not necessary compatible with a business
model in which the knowledge of such matrices is considered as a business secret by
the semi-trusted entity. In such situation, additional mechanisms should be used in
order to limit the number of queries that a particular user can perform, for instance
by relying on techniques such as oblivious transfer and anonymous e-cash.



SlopPy: Slope One with Privacy 111

(i.e., not colluding with him) or through an anonymous communication network
such as TOR (The Onion Routing) [5]. The advantage of the latter solution is
that preservation of the identity of the user does not only rest on the shoulders
of the single entity but rather the trust is spread among several nodes of the
anonymous communication network. If the user needs to update his profile on
a regular basis, it is possible to envision that the user can choose a long-term
pseudonym. This pseudonym could be for instance the public verification key
of a digital signature scheme that has been set up by the user. When the user
needs to update his profile, he simply sends the ratings of new items that he
has not rated previously through an anonymous communication channel along
with a proof of his identity in the form of a signature on his updated profile. In
particular, the user should not send another fresh randomized version of items
that he has rated in the past. Otherwise, by observing several randomizations
of the same rating, it may become possible for the server to de-randomize the
ratings of a particular user by doing a simple average. Finally, the protection
of the content of a query is ensured through a variant of a private information
retrieval scheme based on homomorphic encryption scheme. This protocol allows
to learn the content of a particular row of one of the matrices for an optimal
communication cost of Θ(n), for n the number of items in the domain consid-
ered. We defer the details of this protocol as well as the detailed analysis of the
architecture for the full version of the paper but overall the asymptotic com-
plexity of SlopPy is the same as the Slope One algorithm. However, in practice
the use of an anonymous channel as well as the use of homomorphic encryption
induce an overhead that is likely to impact the performance in a non-negligible
manner.

4.2 SlopPy Recommendation Algorithm

Randomization operator. The core of the SlopPy architecture is a recommen-
dation algorithm, which is effectively a privacy-preserving variant of Weighted
Slope One. The main modification of the algorithm consists in the participants
sending a perturbed version of their ratings rather than their true ratings. More
precisely, each participant applies a RRT on his profile in order to obtain the
perturbed version. Only the perturbed version is released publicly to the semi-
trusted third party responsible for constructing the deviation and the cardinality
matrices while the true ratings are stored locally on the user’s machine. We have
constructed four different randomization operators for the RRT that we describe
thereafter.

1. Independent randomization. With the method IndRand, each item in the pro-
file is randomized in an independent manner with a probability p, which is
an input parameter of the RRT method, and left untouched with the com-
plementary probability 1−p. More precisely, if p = 0 then no randomization
occurs (i.e., the true ratings are unmodified) while a value of p = 1 means
that each item of the profile is randomized. When a rating is randomized



112 S. Gambs and J. Lolive

then the perturbed rating is drawn uniformly at random among all the values
except the original one. (Another possibility would have been to randomize
over all possible values.)

2. Deviation. With the method Deviation, each rating is perturbed such that
its value is likely to be slightly increased or decreased compared to the orig-
inal value. This randomization operator is implemented by first drawing a
random number a predefined interval chosen according to the rating scale
and then generating a perturbed rate that corresponds to the addition of
this random number to the original rating. If the generated rating is above
or below the maximal (or minimal) possible rating then to ensure that this
value remains within the set of possible rates by rounding it to the nearest
integer within this set. For instance, in the Movielens dataset, the set of
possible rates is S = {1, 2, 3, 4, 5} and we choose to draw the random num-
ber in the interval [−2, 2]. In this setting, if the true rate had originally a
value of 5 and the randomization should result in the rate being modified to
6 due to the rounding, instead the rating of 5 is chosen in order to remain
within the set of possible values. We acknowledge that this method is not
perfect in the sense that it makes some ratings more probable than others,
which could be an issue with respect to privacy. In the future, we plan to
investigate the potential risks for privacy induced by this method in order
to better understand its limits.

3. Deviation and randomization. The method DevAndRand is simply composed
of the application of the Deviation method on all ratings, followed by the
application of the IndRand method on the ratings resulting from the previous
method.

4. Block randomization. The method BlockRand decomposes the profile of the
user into block of ratings of same size and then for each block, all the ratings
of this block are randomized with probability p (as with the IndRand but
with the difference that each rating is not randomized independently) or all
left untouched. For the experiments reported in this paper, we have chosen
to use a block size of 10 items for all users but of course other block sizes
are possible (e.g., block size of 5 or 15 items).

Prediction method. Beside the different randomization operators, we have also
studied two different ways to predict a rating (both are based on Equation 3).
The first method called PerturbedRec performs the recommendation by taking
into account the perturbed version of the ratings while computing Slope One. On
the other hand, the second method called OriginalRec injects the true ratings in
the part of the Slope One algorithm that can be computed locally. This is made
possible by the fact that all the users keep locally a copy of their true ratings.
More precisely, using the method PerturbedRec means that the perturbed ratings
generated during Step 1 will also be considered as the local input of the prediction
during Step 6 while with the method OriginalRec the local inputs to Step 6 are
the original ratings unmodified.



SlopPy: Slope One with Privacy 113

5 Experimental Results

In this section, we briefly report on the preliminary results we have obtained
by testing the SlopPy algorithm. More precisely, we have tested the different
randomization and prediction methods detailed in Section 4.2 on the Movielens
dataset and compared the accuracy obtained for different parameters as well as
against the “non-private” Weighted Slope One algorithm. The Movielens dataset
contains 100 000 ratings provided by 943 users on 1682 different movies (i.e.,
items), with an average number of ratings of 106 ratings per user but a high
variance. Therefore, the number of items n = 1682 and the dataset is sparse in
the sense that an overall of 100 000 ratings out of the 1 586 126 possible ratings
corresponds to a density of 6.3%.

To evaluate the accuracy of the recommendation algorithm of SlopPy, we rely
on two metrics: the standard Mean Absolute Error (MAE) and the Root Mean
Squared Error (RMSE). The MAE measures the average absolute error between
the true rating ru,i provided by user u on item i and the rating r̂u,i predicted by
the recommendation algorithm. More precisely, the MAE is generated by com-
puting the absolute difference | r̂u,i − ru,i | for each user u and item i whose
rating is known and then averaging by dividing by the total number of predic-
tions. The smaller the MAE, the more accurate is the recommendation. Indeed,
a MAE whose value is equal to zero would correspond to a recommendation algo-
rithm making a perfect prediction, which is never observed in practice. Similarly
to the MAE, the RMSE also quantifies the difference between a predicted rating
r̂u,i and a true rating ru,i. More precisely, the RMSE corresponds to the square
root of the sum of the squared difference between (r̂u,i − ru,i)

2 normalized by
the total number of predictions. Like the MAE, a small RMSE is an indication
of a good accuracy for the recommendation.

We compare SlopPy by using the standard Weighted Slope One algorithm as
the baseline. On the Movielens dataset, the baseline displays a MAE of 0.68 and
a RMSE of 0.85. As SlopPy perturbs the inputs provided to the recommendation
algorithm by performing the RRT on the ratings used to build the deviation and
cardinality matrices, we expect intuitively that the accuracy of the recommen-
dation will be degraded as well, thus resulting in a higher MAE and RMSE.
This intuition was confirmed by the results of experiments as demonstrated by
Figures 2 and 3. Furthermore, Figure 3 clearly shows that predicting a rating
while using the original ratings kept locally lead to a high accuracy even if the
ratings transmitted have been perturbed heavily, which is not the case when
the prediction is done by using also the perturbed ratings (cf. Figure 2). In ad-
dition, SlopPy seems to be robust as the MAE and the RMSE smoothly vary
when the number of perturbed ratings increases. With respect to the Deviation
method (which is equivalent to the DevAndRand method with a randomization
probability p = 0), the MAE and the RMSE were respectively around 0.74 and
1.05 when PerturbedRec was used as a prediction method, and 0.70 (MAE) and
0.88 (RMSE) when relying on OriginalRec for the prediction. In terms of com-
putational time, SlopPy (much like Slope One) is very efficient and running it



114 S. Gambs and J. Lolive

0.0 0.2 0.4 0.6 0.8 1.0

Perturbation

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
A

E

IndRand with PerturbedRec method

DevAndRand with PerturbedRec method

BlockRand with PerturbedRec method

0.0 0.2 0.4 0.6 0.8 1.0

Perturbation

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
M

S
E

IndRand with PerturbedRec method

DevAndRand with PerturbedRec method

BlockRand with PerturbedRec method

Fig. 2. Computation of the MAE and RMSE for the IndRand, DevAndRand and
BlockRand randomization methods for the prediction method PerturbedRec. The x-axis
indicates the perturbation in terms of the probability p. For instance, a perturbation
of 0.9 means that on average 9 ratings out of 10 are randomized (or conversely that 1
rating out of 10 is left untouched).

on the whole Movielens dataset takes approximately two minutes on a MacBook
Pro with a 2.4GHz Intel Core i7 and 4GB of RAM.

6 Discussion and Future Work

In the future, we would like to investigate other randomization operators such
as an erasure/creation operator that will delete some true ratings and on the
contrary also generate a random rating for a particular item when there was
none. In particular, we would like to observe how this type of randomization
affects the utility of the recommendation. We believe that the use of such an
operator (possibly combined with other randomization operators) is one of the
few ways to avoid linking attacks by which the adversary (which could be for
instance the semi-trusted entity) uses some a priori knowledge to de-anonymize



SlopPy: Slope One with Privacy 115

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation

0.6

0.7

0.8

0.9

M
A

E

IndRand with OriginalRec method

DevAndRand with OriginalRec method

BlockRand with OriginalRec method

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation

0.8

0.9

1.0

1.1

R
M

S
E

IndRand with OriginalRec method

DevAndRand with OriginalRec method

BlockRand with OriginalRec method

Fig. 3. Computation of the MAE and RMSE for the IndRand, DevAndRand and
BlockRand randomization methods for the prediction method OriginalRec. The x-axis
indicates the perturbation in terms of the probability p. For instance, a perturbation
of 0.9 means that on average 9 ratings out of 10 are randomized (or conversely that 1
rating out of 10 is left untouched).

a particular dataset. For instance, if the adversary knows that a Alice has seen 3
movies among which two are quite uncommon, the combination of these 3 movies
could act as quasi-identifiers and be potentially used to de-anonymize Alice when
she submit her ratings to SlopPy even if she submit her records anonymously
after having perturbed them. This type of inference attack is similar in spirit
to the de-anonymization attack conducted by Narayanan and Shmatikov on the
Netflix dataset [11].

With respect to the architecture, we would like to design a distributed version
of the semi-trusted entity. Indeed in the current architecture, all the trust rests on
the shoulders of this entity, which is assumed to follow the recipe of the Slope One
algorithm and not to try to influence the outcome of the recommendation. This
security assumption is not necessarily safe to make in some context in which the
semi-trusted entity might be tempted to influence the recommendation in order
for some items to be recommended more often (for instance the semi-trusted



116 S. Gambs and J. Lolive

entity might make more money out of these items). Distributing the semi-trusted
entity, for instance by relying on techniques such as threshold cryptography, is
a possible approach to split the trust on several entities instead of a single one.
Moreover, we are planning to run experimentally a private information retrieval
to evaluate the practical efficiency of such approach and to use TOR as a way
to simulate the anonymous channel by which a user can submit a query to the
private information retrieval scheme.

We also want to study in more details the interplay between privacy and utility
and how users might adjust their privacy level by themselves tailoring the level
of perturbation that they apply to their needs. In SlopPy, this can be done
naturally by allowing users to set up their level of noise for the RRT technique.
For instance, Kobsa [8] differentiates between three types of individuals:

– Extremely concerned. These individuals want to know how their personal
information are used and which data is possibly disclosed to third parties.

– Somewhat concerned. These individuals do care about their privacy but not
at the same level as the extremely concerned.

– Mildly concerned. These individuals are not really concerned about their
privacy in the sense that they do not even wish to know which information
is collected about them and how this information is used.

We propose to adopt this taxonomy in order to model the different types of
users of a recommender system. Depending on the chosen level of privacy for
each group, the randomization applied will be more or less intense. We plan
to investigate how varying the proportion of the different groups of individuals
influence the overall quality of the recommendation. Intuitively, if most of the
population is composed of the extremely concerned then it is to be expected
to the accuracy of the recommendation will be lower than if the three popula-
tions are uniformly present but of course this intuition needs to be verified and
quantified.

Finally, in order to give precise privacy guarantees we want to analyze the pos-
sible risks of de-randomization on the proposed methods by studying the distri-
butions that they induced on the outputs (i.e., ratings). Indeed, if the proposed
randomized operator leads to distributions that are closed to each other what-
ever the original input then this means that the probability of de-randomizing
a particular perturbed rating is small.

Acknowledgments. This research has been funded by the Quaero program and
the Inria large scale project CAPPRIS (Collaborative Action on the Protection
of Privacy Rights).

References

1. Basu, A., Vaidya, J., Kikuchi, H.: Perturbation Based Privacy Preserving Slope
One Predictors for Collaborative Filtering. In: Dimitrakos, T., Moona, R., Patel,
D., McKnight, D.H. (eds.) IFIPTM 2012. IFIP AICT, vol. 374, pp. 17–35. Springer,
Heidelberg (2012)



SlopPy: Slope One with Privacy 117

2. Basu, A., Vaidya, J., Kikuchi, H.: Privacy preserving weighted Slope One predictor
for item-based collaborative filtering. In: Proceedings of the International Work-
shop on Trust and Privacy in Distributed Information Processing (co-organized
with IFIPTM 2011) (2011)

3. Basu, A., Vaidya, J., Kikuchi, H.: Efficient privacy-preserving collaborative filter-
ing based on the weighted Slope One predictor. Journal of Internet Services and
Information Security 1(4) (2011)

4. Das, A., Datar, M., Garg, A.: Google news personalization: Scalable online col-
laborative filtering. In: Proceedings of the 16th International Conference on World
Wide Web (WWW 2007), pp. 271–280 (2007)

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320
(2004)

6. Fredrikson, M., Livshits, B.: RePriv: Re-imagining content personalization and in-
browser privacy. In: Proceedings of the 32nd IEEE Symposium on Security and
Privacy, pp. 131–146 (2011)

7. Guha, S., Cheng, B., Francis, P.: Privad: practical privacy in online advertising.
In: Proceedings of the 8th USENIX Symposium on Networks, System Design and
Implementation (2011)

8. Kobsa, A.: Privacy-enhanced personalization. Communications of the ACM 50(8),
24–33 (2007)

9. Lemire, D., Maclachlan, A.: Slope One predictors for online rating-based collab-
orative filtering. In: Proceedings of the 2005 SIAM International Data Mining
Conference (SDM 2005) (2005)

10. Linden, G., Smith, B., York, J.: Amazon.com recommendations item-to-item col-
laborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

11. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Proceedings of the 29th IEEE Symposium on Security and Privacy, pp. 111–125
(2008)

12. Olesen, H., Noll, J., Hoffmann, M.: User profiles, personalization and privacy (2009)
13. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Informa-

tion Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

15. Pashalidis, A., Preneel, B.: Evaluating tag-based preference obfuscation systems.
IEEE Transactions on Knowledge and Data Engineering 24(9), 1613–1623 (2012)

16. Polat, H., Du, W.: Achieving Private Recommendations Using Randomized Re-
sponse Techniques. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 637–646. Springer, Heidelberg (2006)

17. Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., Barocas, S.: Adnos-
tic: Privacy preserving targeted advertising. In: Proceedings of the Network and
Distributed System Security Symposium, NDSS 2010 (2010)

18. Warner, S.L.: Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association 60, 63–69 (1965)


	SlopPy: Slope One with Privacy
	Introduction
	Background
	Related Work
	SlopPy
	Overview of the SlopPy Architecture
	SlopPy Recommendation Algorithm

	Experimental Results
	Discussion and Future Work
	References




