
R. Di Pietro et al. (Eds.): DPM 2012 and SETOP 2012, LNCS 7731, pp. 201–216, 2013.
© Springer-Verlag Berlin Heidelberg 2013

AS5: A Secure Searchable Secret Sharing Scheme
for Privacy Preserving Database Outsourcing

Mohammad Ali Hadavi1, Ernesto Damiani2, Rasool Jalili1, Stelvio Cimato2,

and Zeinab Ganjei1

1 Data and Network Security Laboratory (DNSL), Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

{mhadavi@ce.,jalili@,zganjei@ce.}sharif.edu
2 SErvice-oriented Software Architecture Research (SESAR) Lab, Dipartimento di Tecnologie

dell’Informazione, Università degli Studi di Milano, Crema, Italy
{ernesto.damiani,stelvio.cimato}@unimi.it

Abstract. Researchers have been studying security challenges of database out-
sourcing for almost a decade. Privacy of outsourced data is one of the main
challenges when the “Database As a Service” model is adopted in the service
oriented trend of the cloud computing paradigm. This is due to the insecurity of
the network environment or even the untrustworthiness of the service providers.
This paper proposes a method to preserve privacy of outsourced data based on
Shamir’s secret sharing scheme. We split attribute values into several parts and
distribute them among untrusted servers. The problem of using secret sharing in
data outsourcing scenario is how to search efficiently within the randomly gen-
erated pool of shares. In this paper, at first, we customize Shamir’s scheme to
have A Searchable Secret Sharing Scheme (AS4) that enables the efficient ex-
ecution of different kinds of queries over distributed shares. Then, we extend
our method for sharing values to A Secure Searchable Secret Sharing Scheme
(AS5) to tolerate statistical attacks based on adversary’s knowledge about out-
sourced data distribution. In AS5 data shares are generated uniformly across a
domain to prevent information leakage about the outsourced data.

Keywords: Secure database outsourcing, data confidentiality, secret sharing,
query processing.

1 Introduction

Nowadays cloud computing environments provide infrastructure as a service, soft-
ware as a service, and even database as a service to reduce information technology
related burden of organizations businesses. Rapid improvements in the area of net-
work and software technology increase the motivation of companies to outsource their
supplementary services, the supporting services of their core business, to third party
service providers. Nevertheless, outsourcing data and its management raises security
challenges regarding confidentiality of outsourced data due to the insecurity of net-
work environment, or even to the untrustworthiness of service providers. Security
challenges of database outsourcing are an obstacle to the success of “Database As a
Service” model in operation compared to infrastructure or software as a service.

202 M.A. Hadavi et al.

A naïve solution for confidentiality of outsourced data is to encrypt data before its
outsourcing [1-5]. In encryption based solutions the service provider does not have
the decryption key. It must be able to execute submitted queries without decryption.
The vast majority of research on secure data outsourcing has focused on query execu-
tion over encrypted outsourced data. Generally, encryption based solutions suffer
from key management overheads and either inefficiency or vulnerability to statistical
inferences over encrypted values [6, 7].

Departing from encryption, fragmentation is another approach for outsourced
data confidentiality. It tries to hide sensitive associations of values defined by a set
of confidentiality constraints over attributes/tuples of a relation. The data owner parti-
tions a relation, vertically [8, 9] or horizontally [10, 11], into several parts and
outsources them to different servers. In this approach, query execution is generally
more efficient compared to encryption based solutions. However, encryption is some-
times unavoidable because fragmentation cannot preserve confidentiality of a single
sensitive attribute [12, 13]. The vulnerability to statistical database attacks in the case
of collusion between servers, in which different partitions are hosted, as well as serv-
ers inferences on data updates are two major disadvantages of fragmentation-based
solutions.

Agrawal et al. [14] use secret sharing to preserve outsourced data confidentiality.
They utilize hash functions to reproduce distribution polynomials and data shares.
While their solution efficiently supports different kinds of queries, it is susceptible to
statistical inferences in the case that the untrusted servers have a priori knowledge of
data distribution or frequency. Hadavi et al. [15, 16] use secret sharing as well to
distribute data among untrusted servers. They use a B+ index tree on order preserving
encrypted values of attributes to be able to search within data shares.

Utilizing the secret sharing concept, in this paper we introduce a solution for confi-
dentiality of outsourced data. We fragment a relation into several parts, neither
vertically nor horizontally, by splitting attribute values into randomized shares, and
distribute each share to a server. Observing data shares, the servers cannot improve
their knowledge about outsourced data, even if they collude. The main problem of
sharing attribute values among servers is how to efficiently search within the pool of
randomly generated shares. Focusing on this problem, we propose A Searchable Se-
cret Sharing Scheme (AS4) for data outsourcing that supports efficient query
processing. Then, we extend it to A Secure Searchable Secret Sharing Scheme (AS5)
to tolerate an intensified threat model in which servers have a priori knowledge about
data distribution.

This paper is organized as follows. Section 2 contains background information on
using secret sharing in data outsourcing scenario, our problem definition, and the
threat model. Section 3 introduces AS4 as our basic scheme for efficient search on
distributed shares. Then, in Section 4 we introduce a security extension to AS4, name-
ly AS5, to make the secret sharing scheme secure under statistical analysis based on
adversary’s prior knowledge about data distribution. Section 5 includes query
processing scenarios in our proposed approach. In Section 6 we discuss some security
issues in AS5. Finally, Section 7 concludes the paper and expresses some directions
of future work.

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 203

2 Secret Sharing in Outsourcing Scenario

A Secret sharing scheme is a method of sharing a secret s among a set of participants
U = {u1, u2, …, un} such that only authorized subsets of U, called access structure, can
reconstruct s. We use threshold (k, n) secret sharing scheme, proposed by Shamir
[17], where the access structure is a subset A of 2U such that B A, |B| ≥ k. That is,
every k or more participants can reconstruct s while less than k participants cannot.

We follow a database outsourcing model in which an owner outsources his confi-
dential data to honest but curious servers. Then, the owner and authorized us-
ers/clients, given required credentials, submit their queries to the servers.

Using threshold (k, n) secret sharing in data outsourcing scenario, the data owner
becomes the distributor of shares among n servers, S1, S2,…, Sn, that are the partici-
pants. Each attribute value v is a secret that is split into n shares, sharei(v) (1 ≤ i ≤ n).
To compute the share values of attribute value v, the data owner produces a poly-
nomial of order k-1, p(x) = ak-1x

k-1 + ak-2x
k-2 +…+ a1x + a0, where a0 = v and other

coefficients are chosen randomly from GF(P). Having a secret vector X (x1, x2, …, xn),
xi corresponds to Si, the owner computes sharei(v)= p(xi) and stores it on Si (1 ≤ i ≤ n).
In fact, for each attribute value, there are n points (xi , p(xi)) through which the poly-
nomial p(x) passes. k distinct points are enough to uniquely reconstruct a polynomial
of order k – 1. Therefore, when a trusted party, who knows the distribution vector X,
receives at least k shares of the secret v, the secret can be reconstructed. On the other
hand, the servers infer nothing about v even if they collude and pool their shares be-
cause they do not have the distribution vector X.

Let us model a database table with m rows and l columns as a matrix Mmxl. Fig. 1
shows outsourcing a relation, as an mxl matrix M to n servers, each of them is given
an mxl matrix Sharei(M), where vxy as a cell of M, is mapped onto sharei(vxy) of matrix
Sharei(M) (1 ≤ i ≤ n).

2.1 Problem Definition

The theoretic security of Shamir’s scheme guarantees outsourced data confidentiality,
keeping in mind that the distribution vector X is hidden from the untrusted servers.
This solution provides the highest level of data confidentiality because the data shares
are produced using random coefficients and do not leak any information about the
distribution or the frequency of original values. This is caused by generating random
shares for values which results in different polynomials and consequently different
shares for two equal values.

In outsourcing scenario, authorized users are supposed to query outsourced
data and request the servers for retrieving the appropriate shares. While the owner or
authorized users do not store the random coefficients, data retrieval becomes a prob-
lem. Obviously it is not efficient to send back all shares in response to a query, and
execute the query over the reconstructed values at client side. For this purpose, a me-
thod is required to identify the shares, stored on the servers, that satisfy the query
condition.

204 M.A. Hadavi et al.

Fig. 1. Sharing a database relation, as a matrix, among n servers

To solve the above problem we propose a solution in which searching a subset of
shares is possible, while the confidentiality of outsourced data is preserved. At first,
we redefine Shamir’s secret sharing scheme to preserve the order of values in their
corresponding shares and at the same time to perturbate the distribution of values in
their shares. The obtained scheme, AS4, is still vulnerable to statistical analysis since
the order of attribute values is preserved in their shares. We extend AS4 in terms of
security to AS5, a solution that tolerates statistical analysis on data shares based on
adversary’s prior knowledge about outsourced data. We also examine query
processing support for different kinds of queries in our approach and discuss about
security achievement considering possible attack scenarios on data confidentiality.

2.2 Threat Model

We have the following assumptions for our threat model:

• Service providers are honest but curious. They execute submitted queries honestly
on outsourced data and send complete and authenticated results. They are curious
and try to increase their knowledge about confidential data by observing data
shares and submitted queries

• Service providers have a priori knowledge about outsourced data. For example,
they might know the domain of values, the minimum or maximum values, or some
information about the frequency of values.

• The servers can communicate and collude with each other to extract knowledge
about outsourced data.

• An adversary who has compromised the servers can observe data shares and sub-
mitted queries as well as the service providers.

Also we assume that clients, as users’ machines that mediate user requests to service
providers, are trusted. Moreover, users are given appropriate authorities and creden-
tials to submit a query through a client and see the result.

Sharing and
Distributing

Data Client(s)

Translated
Query

Result
Shares

Authorized
Users

Q
uery

R
econstructed

 R
esult V

alues

Service Provider(s)

Owner’s

Data

Sn

S1

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 205

3 A Searchable Secret Sharing Scheme (AS4)

To have a searchable secret sharing scheme with threshold (k, n) we define a scheme,
called AS4, in which the order of attribute values is preserved in their corresponding
shares but not the frequency of values. This scheme is required to satisfy two follow-
ing properties:

1. Order preserving: Let V be the domain of attribute values. The order of values
must be preserved in their corresponding shares. That is:
 v, v’ V : if v < v’ sharei (v) < sharei(v’) (1≤ i ≤ n)

2. Distribution perturbation: The original data distribution must be perturbated by
changing the frequency of attribute values in their corresponding shares. That is,
two equal values have different shares with a high probability:

 v, v’ V (v and v’ are attribute values in different database tuples):
 if v = v’ Pr[sharei (v) = sharei(v’)] < ε (1 ≤ i ≤ n)

The first property is aimed at making query execution efficient. The second property
indicates that the sharing is not deterministic. It is aimed at concealing the frequency
of original values. This property improves the robustness against statistical analysis.
In the above formula, ε is a small value, dependent on the domain size of shares.

Redefining the Shamir’s threshold scheme, now we introduce AS4 as “a searchable
secret sharing scheme” whose shares, while preserving the ordering of original values,
substantially change the original data distribution.

Choosing values of k and n for a threshold secret sharing (k, n) has some influences
on the availability and fault tolerance aspects of the system that are not the focus of
this work. In our system, choosing large k increases the communication cost while it
does not offer more security in terms of confidentiality. Therefore, in the remaining
parts of this paper we assume a threshold (2, 3) secret sharing scheme with the poly-
nomial of the general form p(x) = ax + v where “a” is a random coefficient of a spe-
cified domain. The domain of a searchable attribute in a relation is a set of values V =
{v1, v2, …, vt} where v1 < v2 < … < vt.

To obtain AS4 we follow two steps: first, we partition the coefficient domain, and
second, we assign each attribute value to a partition from which the coefficient a is
randomly chosen. Let us have a detailed view for these two steps.

1. Partitioning the domain of the coefficient: The first step is to partition the
coefficient’s domain D (of real numbers) considering the following definition
for partitioning.

Definition- Partitioning a domain D of values is defined as dividing D into t
parts di (1 ≤ i ≤ t) where

1. di D (1 ≤ i ≤ t) is a range of values in D
2. = D
3. di , dj D (i ≠ j) : di j = .

A possible way of partitioning a domain D is to divide it into a sequence of an
arbitrary number of equal partitions. With D as values in the range [ds .. de] being

206 M.A. Hadavi et al.

the coefficient’s domain, we divide it into t = |V| equal consecutive partitions in-

cluding [ds .. ds+
| |

), [ds+
| |

 .. ds+2
| |

), [ds+2
| |

 .. ds+3
| |

), …, and [ds +(t-

1)
| |

 .. de].

2. Value-Partition Assignment. The next step is to define a function to map a val-
ue v onto a partition d D.

Definition- Mapping function F is a function that maps a value v onto a par-
tition d D where
 v, v’ V, F(v) = d , F(v’) = d’ (d , d’ D) : v ≠ v’ ’ =

For AS4, we define F as a total order function such that maps v onto

d = [ds+(v-v1)
| |

 .. ds+(v-v1+1) | |
. For sharing attribute value v among three

servers, the owner choose a randomly from the above range and construct the
polynomial p(xi) = axi + v to compute the data share of Si (1 ≤ i ≤ 3).

Fig. 2 exemplifies sharing Age values (integer values of the range [1..100]) of Em-
ployee relation (Table 1) among three servers with a sample distribution vector
X = {x1=9, x2=14, x3=2} and integer random coefficients of the range [1..1000]. For
simplicity, in this example we only show sharing Age values. All searchable attributes
should be distributed in an order preserving manner to be efficiently searchable in the
future.

For query processing, when a user submits her query via a client, the client trans-
lates the query into a query over data shares and sends it to the servers. In our exam-
ple of Employee relation (Table 1) and sharing Age values (Fig. 2), the query
“SELECT Salary FROM Employee WHERE Age = 45” is translated into “SELECT
Share1(Salary) FROM Employee WHERE (9*441 + 45) ≤ Share1(Age) ≤
(9*450 + 45)” and sent to S1. The client does similar translations for S2 and S3 with
respect to the distribution vector X and the mapping function F. It is worth mentioning
that if the mapping function F is defined in such a way, the owner or users/clients do
not need to store F to find the association of values to partitions for query translation.
In Section 5 we elaborate more on the query processing scenario for different kinds of
queries.

Now we verify the satisfaction of our two desired properties, i.e., order preserving
and distribution perturbation, in two following lemmas.

Table 1. The Employee relation

ID Age Salary
1 45 100
2 84 200
3 78 150
4 46 350
5 45 200
6 80 210
7 45 175
8 57 200

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 207

Share3(Age) Share2(Age) Share1(Age)

2a45 + 45
 441 ≤ a45 ≤ 450

14a45 + 45
 441 ≤ a45 ≤ 450

9a45 + 45
 441 ≤ a45 ≤ 450

2a84 + 84
831 ≤ a84 ≤ 840

14a84 + 84
831 ≤ a84 ≤ 840

9a84 + 84
831 ≤ a84 ≤ 840

2a78 + 78
771 ≤ a78 ≤ 780

14a78 + 78
771 ≤ a78 ≤ 780

9a78 + 78
771 ≤ a78 ≤ 780

2a46 + 46
451 ≤ a46 ≤ 460

14a46 + 46
451 ≤ a46 ≤ 460

9a46 + 46
451 ≤ a46 ≤ 460

2a45 + 45
441 ≤ a45 ≤ 450

14a45 + 45
441 ≤ a45 ≤ 450

9a45 + 45
441 ≤ a45 ≤ 450

2a80 + 80
791 ≤ a80 ≤ 800

14a80 + 80
791 ≤ a80 ≤ 800

9a80 + 80
791 ≤ a80 ≤ 800

2a45 + 45
441 ≤ a45 ≤ 450

14a45 + 45
441 ≤ a45 ≤ 450

9a45 + 45
441 ≤ a45 ≤ 450

2a57 + 57
561 ≤ a57 ≤ 570

14a57 + 57
561 ≤ a57 ≤ 570

9a57 + 57
561 ≤ a57 ≤ 570

S3 S2 S1

Fig. 2. Sharing Age values of Employee relation (Table 1) among three servers

Lemma 1- AS4 preserves the order of attribute values in their corresponding shares.

Proof: v, v’ V: v < v’

av [ds+(v-v1)
| |

 .. ds+(v-v1+1) | |
 < av’ [ds+(v’-v1)

| |
 .. ds+(v’-v1+1) | | avxi + v < av’xi + v’ sharei(v) < sharei(v’) (1≤ i ≤ 3) □

Lemma 2– AS4 perturbates the distribution of attribute values in their corresponding
shares.

Proof: v, v’ V , v = v’ and v , v’ are in different database tuples:
Pr[sharei (v) = sharei(v’)] = Pr[avxi + v = av’xi + v’] (1≤ i ≤ 3)

Pr[sharei (v) = sharei(v’)] = Pr[av = av’]

Considering that av and av’ are random numbers, independently chosen from the
corresponding partition of v (or v’), Pr[av = av’] < ε where ε < 1 and its value is af-

fected by the size of the partition. □

In the next Section, we extend our scheme in terms of security so that data shares
reveal neither the order nor the frequency of outsourced data.

4 A Secure Searchable Secret Sharing Scheme (AS5)

Statistical inferences in our basic scheme (AS4) are possible since the order of
attribute values is preserved in their shares. That is, observing data shares, the un-
trusted servers may statistically deduce some information about original values. Con-
sider an outsourced relation of employees of an organization and assume that the ad-
versary knows that the minimum and maximum ages of employment are 25 and 75,
respectively. So, the maximum share value of Age for each server may correspond to
the maximum possible Age value, which is 75 in our example. These kinds of infor-

208 M.A. Hadavi et al.

mation help the adversary to make inferences about original values that may result in
revealing the mapping function or even the secret distribution vector X. Such infe-
rences are originated by the two following characteristics in AS4:

1. having equal-length partitions of the coefficient’s domain and
2. the definition of mapping function F in a way that preserves the order of val-

ues in their corresponding shares.

A generic countermeasure solution is to introduce a weighted partitioning as well as
an order-obfuscated mapping function to break the two above characteristics of AS4.
Therefore, the first line of AS4 extension focuses on the partitioning method of the
coefficient domain. It is intuitively acceptable that when data shares are uniformly
distributed across their domain they reveal as least information as possible for an
adversary aimed at making inferences on outsourced data. So, the first goal in AS5 is
to generate data shares, which have been distributed uniformly across their domain,
while query processing is still efficient.

The second line of AS4 extension is related to the mapping function F (by which
attribute values are mapped onto partitions) and tries to hide the ordering relation of
values in their corresponding shares. Therefore, the goal is to define a mapping func-
tion so that the ordering relation between values is obfuscated in their corresponding
shares.

Given an original data distribution for a searchable attribute, the owner follows
four following steps to generate uniformly distributed - order obfuscated data shares:

1. partitioning the domain of shares
2. obfuscating the ordering relation between values and their corresponding

shares
3. partitioning the domain of random coefficient in the distribution polynomial
4. sharing attribute values

Let us have a more detailed view to these steps.
1. Partitioning the domain of shares: The owner calculates the length of each parti-

tion based on the given data distribution. Let us model the data distribution (for a
searchable attribute value) by pairs (vi, fi) where vi V is an attribute value and fi

is vi’s frequency in the relation. It is clear that |V| is the required number of parti-
tions and Ntuple ∑| | is the number of database tuples. Each v V is asso-
ciated with d D where the length of d, denoted by |d|, is calculated by |d| = | |

 . We have a weighted partitioning based on the values’ frequencies in the

relation.
2. Defining an order-obfuscated mapping function: the owner defines the map-

ping function F such that the ordering relation between attribute values is not pre-
served in their corresponding partitions. To this end, a random permutation of dis
(1 ≤ i ≤ |V|), among |V|! possible permutations, is chosen by the owner. Fig. 3 illu-
strates partitioning a domain of shares based on values’ frequencies and an order
preserving (a) and an order-obfuscated (b) mapping function.

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 209

3. Partitioning the domain of random coefficient: Considering that the owner uses
Sharei(v) = axi+ v to compute Si’s share of v, the next step is to partition the do-
main of coefficient a such that it generates a set of shares which have been distri-
buted uniformly across their domain. It is simply done by putting minimum and

maximum values of Sharei(v) into a = to find the range boundaries of

a partition in the coefficient domain corresponding to v.
4. Sharing attribute values: For the final step, the data owner uses the calculated

ranges of the coefficient domain to compute data shares of each value. He chooses
a randomly from the specified range (previous step) and put it into the equation
Sharei (v) = axi + v. Then, the computed share Sharei (v) is outsourced to Si.

Fig. 3. An order preserving partition assignment (a), and an obfuscated partition assignment (b)
of an attribute with a domain of five values.

Obviously, the mapping function F must be kept hidden from an adversary who
may know some information about original data distribution. The owner informs au-
thorized users/clients about the mapping function F for further use in query translation.

Compared to AS4, the extra imposed cost in AS5 is to store F at owner and client
sides for query translation. To store F, the owner requires the storage cost of the order
O(|V|). This is reasonable for a database size of order O(|N|) where N is the number of
database tuples. For example, for the attribute Age with the domain size |V| = 100 and
4-Byte share values, the owner needs eight bytes to specify a partition. While the size
of a database with one million 64-Byte tuples is almost 64MB, less than 1KB (800
Bytes) is enough to store the mapping function at owner and client sides.

Values and their frequencies: (v1, 4), (v2, 1), (v3, 5), (v4, 8), (v5, 2)

 d1 d2 d3 d4 d5

 d3 d4 d2 d5 d1

Partitioning the domain
of shares based on
values’ frequencies

Values and their frequencies: (v1, 4), (v2, 1), (v3, 5), (v4, 8), (v5, 2)

(a)

(b)

Partitioning the domain
of shares based on
values’ frequencies

210 M.A. Hadavi et al.

5 Query Processing

In this section we examine the query execution scenario of typical equality, range,
projection, join, aggregation, and update queries. The query processing scenarios in
AS4 and AS5 are almost similar considering that in AS5 case, clients have the map-
ping function F to translate submitted queries into server side queries over shares. The
only difference is that the execution of range queries in AS5 is less convenient than in
AS4 because in AS5 the ordering relation is obfuscated in data shares.

Equality Queries. The condition “att = v”, where att is a searchable attribute and v is
a value, is translated by a client into “min(Sharei(v)) ≤ att ≤ max(Sharei(v))” and sent
to Si (1 ≤ i ≤ 3). The minimum and maximum values of the query condition predicate
are obtained by following equations

min(Sharei(v)) = (min(a)).xi + v ,
max(Sharei(v)) = (max(a)).xi + v

where min(a) and max(a) are computed according to the mapping function F, which
is known for authorized users/clients.

Consider a simple equality query “SELECT * FROM Employee WHERE Age =
20”. The client translates the query into a range query of the form “SELECT * FROM
Employee WHERE min(Sharei(20)) ≤ Age ≤ max(Sharei(20))”, and submits
it to Si (1 ≤ i ≤ 3). Receiving shares of satisfying tuples from two servers, the client
interpolate original values.

This method guarantees that all tuples with Age = 20 are returned exclusively as
query results. Let Resi = {Sharei(v) | min(Sharei(v)) ≤ Sharei(v) ≤ max(Sharei(v))} be a
set of satisfying shares in Si (1 ≤ i ≤ 3) based on a query condition. The execution of
equality queries in our scheme generates a sound and complete result set.

Lemma 3- The returned result of an equality query is sound.

Proof: The result set is not sound if there is a sharei(v’) Resi where v’ ≠ v. Accord-
ing to the threat model that assumes honesty of servers, they send back all appropriate
shares based on the selection predicate of a submitted query, whose condition predi-
cate has been translated.

According to the definition of partitioning which states that partitions are disjoint
and with respect to our mapping function in which each value v is mapped to a differ-
ent partition we have:

v, v’ V, v’≠ v :
[min(Sharei(v)) .. max(Sharei(v))] [min(Sharei(v’)) .. max(Sharei(v’))] =

Sharei(v’) [min(Sharei(v)) .. max(Sharei(v))] sharei(v’) Resi (1 ≤ i ≤ 3) □

The Soundness of query result means that there is not any false hit in returned results
of the servers, bringing less client side computation (for result pruning) as well as less
communication cost.

Lemma 4- The returned result of an equality query is complete.

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 211

Proof: The result set is complete if v’ V , v’= v : Sharei(v’) Resi (1 ≤ i ≤ 3).
Suppose that there is a v’ = v for which Sharei(v’) Resi. Then we have:

 v, v’ V, v = v’, Sharei(v) Resi , Sharei(v’) Resi

Sharei(v’) Resi Sharei(v’) [min(Sharei(v)) .. max(Sharei(v))]
Sharei(v’) [min(Sharei(v’)) .. max(Sharei(v’))]

which is a contradiction with respect to our secret sharing scheme. □

Simply it is possible to have conjunctive or disjunctive conditions on searchable
attributes. In such a case, the servers return a set of shares so that the whole condition,
as the composition of conditions, is satisfied.

Range Queries. In AS4, range queries are processed similar to equality queries ex-
cept the change in the range boundaries. That is, for the lower bound of the range the
minimum possible value and for the upper bound of the range the maximum possible
value are used. Consider a simple range query “SELECT * FROM Employee WHERE
50 ≤ Age ≤ 80”. The submitted query to Si (1 ≤ i ≤ 3) is: “SELECT * FROM Em-
ployee WHERE min(Sharei(50)) ≤ Age ≤ max(Sharei(80))”.

In AS5 the translation of range queries is not as straightforward as in AS4 caused
by the order-obfuscated mapping function in AS5. In AS5, a range of attribute values
is usually mapped onto several ranges of shares. Consider the sample range query
“SELECT Salary FROM Employee WHERE 50 < Age < 55”. The query is trans-
lated into the following query and sent to Si (1 ≤ i ≤ 3):
“SELECT Salary FROM Employee WHERE

min(Sharei(51)) ≤ Age ≤ max(Sharei(51)) OR
min(Sharei(52)) ≤ Age ≤ max(Sharei(52)) OR
min(Sharei(53)) ≤ Age ≤ max(Sharei(53)) OR
min(Sharei(54)) ≤ Age ≤ max(Sharei(54))”

Range queries generate a complete set of results without any false hits as well as
equality queries.

Lemma 5- The returned result of a range query is sound and complete.
Proof: We can consider the result set of a range query as the union of the result sets
of a sequence of equality queries. Each equality query, for which we have a sound
and complete result set, is executed independently over a partition. Consequently, the
result set of a range query is sound and complete regarding that each value is assigned

a distinct partition and partitions are disjoint. □

Projection Queries. Projection is supported in AS5 as well as AS4 without extra
overheads, since the granularity of sharing is attribute value. For a query such as
“SELECT Salary FROM Employee WHERE 20 ≤ Age ≤ 25”, each Si (1 ≤ i ≤ 3)
finds satisfying share values of Age and then, returns the corresponding Salary shares
to the client. The client can interpolate original Salary values after receiving Salary
shares of two servers.

212 M.A. Hadavi et al.

Aggregate Queries. Queries with SUM aggregation function are supported in both
AS4 and AS5 thanks to the additive homomorphism property of the secret sharing
scheme. Consider a query with SUM aggregation function such as “SELECT
SUM(Salary) FROM Employee WHERE 20 ≤ Age ≤ 25”. The client translates it
and sends the query “SELECT Salary FROM Employee WHERE

min(Sharei(20)) ≤ Age ≤ max(Sharei(25))” to Si (1 ≤ i ≤ 3). Then, Si locally
calculates the summation of satisfying Salary values. Thanks to the additive homo-
morphism property of Shamir’s scheme, the client can compute the total summation
value when it receives two values from the servers.

Queries containing CONUT function such as “SELECT COUNT(Salary) FROM
Employee WHERE Age = 20” are executed simply by reforming as “SELECT
COUNT(Salary) FROM Employee WHERE min(Sharei(20))≤ Age ≤
max(Sharei(20))” for Si (1 ≤ i ≤ 3). Since the servers are honest but curious,
COUNT queries of the above form can be sent to only one Si instead of sending to all,
incurring less communication overhead.

Executing MIN/MAX queries in both AS4 and AS5 is not as straightforward as
COUNT and SUM queries and may need several rounds of client mediation to have
the final result. Consider a sample MIN/MAX query such as “SELECT Salary FROM
Employee WHERE Age = MIN(Age)”. This query is translated into “SELECT Sha-
rei(Salary) FROM Employee WHERE min(Sharei(v1)) ≤ Age ≤
max(Sharei(v1))” and sent to Si (1 ≤ i ≤ 3). v1 is the minimum value of the Age
domain. If the query returns no shares, the client continues with the next possible
minimum, e.g. v2, to reach the result finally. In our example, the client continues to
query the servers until it sends “SELECT Sharei(Salary) FROM Employee
WHERE min(Sharei(45))≤ Age ≤ max(Sharei(45))” to Si (1 ≤ i ≤ 3) and rece-
ives the result shares.

Some mechanisms such as client side storage of minimum and maximum values of
a searchable attribute or using an auxiliary table to maintain the ordering of values
[16] can also be used to tackle the problem of MIN/MAX queries in our approach.

For more complex queries with aggregation functions in their selection predicates
such as “SELECT MIN(Salary) FROM Employee where Age = 50” or “SELECT
MAX(Salary) FROM Employee WHERE Age = MIN(Age)” the final result is
computed at client side after receiving the satisfying values from at least two servers.

Join Queries. Join queries are performed on two tables with an attribute in common.
Consider two simple relations T1(ID, Dep, Salary) and T2(ID, Name, Age) and the
sample join query “SELECT Salary FROM T1, T2 WHERE T1.ID = T2.ID”.
This query is rewritten as a parameterized query “SELECT Salary FROM T1, T2
WHERE (min(share(vi)) ≤ T1.ID ≤ max(share(vi))) AND

(min(share(vi)) ≤ T2.ID ≤ max(share(vi)))” for (1 ≤ i ≤ t) where t is the
maximum value of the attribute domain. To have a complete result, the client submits
|V| queries to the servers and performs a union operation on the received results.

Update Queries. While some existing solutions suffer from frequent updates in dy-
namic environment, our approach supports update queries. The execution of update

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 213

queries including INSERT, DELETE, and UPDATE is straightforward in AS4. A
typical deletion query such as “DELETE FROM Employee WHERE Age = 80” is
translated into “DELETE FROM Employee WHERE min(Sharei(80)) ≤ Age ≤
max(Sharei(80))” and sent to Si (1 ≤ i ≤ 3). Since equality and range queries return
a complete result set without false hits, Si removes exclusively a complete set of satis-
fying tuples from the target relation. To insert a new tuple, shares of attribute values
in the tuple are computed and inserted into Si (1 ≤ i ≤ 3). For an update query, satisfy-
ing tuples based on the condition predicate of the query are selected and sent to the
owner. The owner constructs a new polynomial and computes the values in SET
predicate of the update query to substitute new shares with the old ones.

One can say that database update is a challenge in AS5. Because update queries
change the distribution of a searchable attribute and consequently, the uniform distri-
bution of shares is disorganized. In such a case it is required to repartition, redefine
the mapping function, and redistribute data which is considerably costly for outsourc-
ing scenario. To let AS5 be adopted in dynamic environments, a practical suggestion
is to use standard distributions of attribute values instead of real distributions. Using
such standard distributions, data updates do not deteriorate the distribution of attribute
values when sharing the values of a new tuple. In other words, we will have almost
the same distribution in different snapshots of the system. From a practical point of
view, it may be acceptable to refer to an expected distribution of Age values stored in
an organizational database. We plan to quantify the possible performance degradation
of AS5 due to using standard data distribution instead of real ones.

6 Security Discussion

In this section we discuss about the security of our approach, focusing on AS5 as it
provides more security guarantees. As an obvious assumption, the distribution vector
X must be kept hidden from the untrusted servers. Therefore, even if the servers col-
lude with each other and pool their shares, they cannot reconstruct the original values.
Attribute values can be reconstructed by the trusted parties who know the distribution
vector X. Moreover, the mapping function F in AS5 must be kept secret from the
untrusted parties to prevent them from inferring the ordering relation between values.

Arithmetic calculations for sharing and reconstructing secrets in Shamir’s scheme in
defined over GF(P) where P is a prime number. In AS5, Instead of modular arithmetic
calculations, we uniformly distribute share values across a domain using random coef-
ficients that belong to partitions of a specified domain. Having a uniform distribution
of shares minimizes the information leakage for the adversary who observes the out-
sourced data shares. The imposed overhead is to have the share size bigger than the
secret size. Theoretically, we need the domain D of share values with the size of |D| ≥
Ntuple to uniformly distribute Ntuple distinct shares across D. Ntuple is the maximum num-
ber of tuples in the relation (total frequency of values). In practice, having 4-Byte
shares provides the possibility of more than four billion distinct values for shares
which is enough for many applications. If the server side storage is an important con-
cern, choosing an appropriate domain size for data shares is a trade-off between securi-
ty and storage cost of the scheme. We plan to investigate more on the size of domain to
have a minimum storage cost in addition to achieve desired level of security.

214 M.A. Hadavi et al.

Although the original data distribution is perturbated in AS4, it is vulnerable to sta-
tistical analysis as it preserves the ordering relation of attribute values in their corres-
ponding shares. We proposed AS5 as a security extension to AS4 where we change
any given distribution of original values to a uniform distribution of shares across a
domain. From the information theory viewpoint, uniform distribution has the highest
entropy and reveals at least information as possible for the untrusted servers. Howev-
er, there is an inference possibility in AS5 for the untrusted servers while executing
queries. They are able to make inferences about frequency of attribute values using
the interval width of satisfying shares. In other words, a group of shares for which the
query condition is satisfied, form a partition in the domain of shares that can be
mapped onto an attribute value. The untrusted servers can gradually find out the parti-
tions and use their knowledge about outsourced data to find the hidden mapping func-
tion. To prevent this kind of inference, the client must frequently submit fake queries
without taking care of their results. These queries target invalid intervals of shares
(with respect to the mapping function) to mislead the servers of making valid infe-
rences about associating requested partitions of shares to original values. Submitting
fake queries together with the order obfuscated mapping function is a countermeasure
against share alignment, which is an attack described in [18] as a security limitation of
using secret sharing for outsourcing scenario.

There is another attack scenario considering the knowledge of system’s query
workload. While AS5 defends the confidentiality of outsourced data against adversa-
ries powered by a priori knowledge of data distribution, it is susceptible to statistical
inferences if we assume that adversaries are powered by a priori knowledge of sys-
tem’s query workload. Although the aforementioned fake queries can be considered
as a countermeasure for this attack, it requires more investigation on the way of gene-
rating queries and their submission frequencies. To have a secure solution under the
assumption of adversaries with prior knowledge about submitted queries, we should
extend our approach to a solution with private information retrieval in which access
confidentiality is preserved.

7 Conclusion

In this paper we proposed an approach for outsourcing confidential data to honest but
curious servers. We used the idea of secret sharing to split a database relation into
several parts, in the granularity of attribute values, and outsource each part to an hon-
est but curious server.

We proposed a searchable secret sharing scheme in which the ordering relation be-
tween values is preserved in their corresponding shares, while the distribution of
shares is different from the original data distribution. However, the order preserving
property makes the scheme vulnerable to statistical analysis. We extended our search-
able secret sharing scheme to be secure against adversaries powered by a priori
knowledge of outsourced data to tolerate statistical analysis on data shares.

Our approach is promising in terms of provided security, as it uses secret sharing
with strong theoretic background, and supporting different kinds of queries. Less

 A Secret Sharing Scheme for Privacy Preserving Database Outsourcing 215

computation time of secret sharing and reconstruction compared to encryption and
decryption operations in encryption-based approaches, the additive homomorphism
property of Shamir secret sharing scheme, and not to having false hits in returned
results of the servers are of the main reasons for its efficient query processing support.
Nevertheless, we should extend our solution to support character data considering
pattern matching queries over string attributes.

While our approach targets data confidentiality with honest but curious servers,
dealing with the correctness of query results is another issue for active adversaries
who can manipulate outsourced data shares. We plan to investigate on share integrity
and query result correctness using redundant shares in our threshold scheme for data
outsourcing scenario.

References

[1] Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data in the
Database-Service-Provider Model. In: ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2002, New York, USA, pp. 216–227 (2002)

[2] Agrawal, R., Kiernan, G.G.: System and method for fast querying of encrypted databases.
US Patent 7,395,437: Google Patents (2008)

[3] Canim, M., Kantarcioglu, M.: Design and analysis of querying encrypted data in relation-
al databases. In: The 21st Annual IFIP WG 11.3 working Conference on Data and Appli-
cations Security, pp. 177–194 (2007)

[4] Zhang, Y., Li, W.-X., Niu, X.-M.: Secure cipher index over encrypted character data in
database. In: 2008 International Conference on Machine Learning and Cybernetics, pp.
1111–1116 (2008)

[5] Zhu, H., Cheng, J., Jin, R., Lu, K.: Executing Query over Encrypted Character Strings in
Databases. In: 2007 Japan-China Joint Workshop on Frontier of Computer Science and
Technology (FCST 2007), pp. 90–97 (2007)

[6] Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing Con-
fidentiality and Efficiency in Untrusted Relational DBMSs. In: Proceedings of the 10th
ACM Conference on Computer and Communication Security, CCS 2003, New York,
USA, pp. 93–102 (2003)

[7] Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting range queries on
encrypted databases. In: 19th Annual IFIP WG 11.3 Working Conference on Database
and Applications Security, pp. 69–83 (2005)

[8] Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R.,
Srivastava, U., Thomas, D., Xu, Y.: Two Can Keep a Secret: A Distributed Architecture
for Secure Database Services. In: 2nd Biennial Conference on Innovative Data Systems
Research (2005)

[9] Samarati, P., Ciriani, V., Foresti, S.: Keep a Few: Outsourcing Data While Maintaining
Confidentiality. In: 14th European Conference on Research in Computer Security, pp.
440–455 (2009)

[10] Wiese, L.: Horizontal Fragmentation for Data Outsourcing with Formula-Based Confi-
dentiality Constraints. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 101–116. Springer, Heidelberg (2010)

216 M.A. Hadavi et al.

[11] Soodejani, A.T., Hadavi, M.A., Jalili, R.: k-Anonymity-Based Horizontal Fragmentation
to Preserve Privacy in Data Outsourcing. In: Cuppens-Boulahia, N., Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 263–273. Springer,
Heidelberg (2012)

[12] Ciriani, V., Vimercati, S.D., Foresti, S., Jajodia, S.: Combining Fragmentation and En-
cryption to Protect Privacy in Data Storage. ACM Transactions on Information and
System Security (TISSEC) 13, 1094–9224 (2010)

[13] Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Fragmentation and Encryption to Enforce Privacy in Data Storage. In: 12th European
Symposium on Research in Computer Security, pp. 171–186 (2007)

[14] Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Database Management as a Ser-
vice: Challenges and Opportunities. In: 2009 IEEE 25th International Conference on Data
Engineering, pp. 1709–1716 (2009)

[15] Hadavi, M.A., Jalili, R.: Secure Data Outsourcing Based on Threshold Secret Sharing:
Towards a More Practical Solution. In: VLDB 2010 PhD Workshop, Singapore, pp.
54–59 (2010)

[16] Hadavi, M.A., Noferesti, M., Jalili, R., Damiani, E.: Database as a Service: Towards a
Unified Solution for Security Requirements. In: 36th International Conference on Com-
puter Software and Applications, The 4th IEEE International Workshop on Security
Aspects in Processes and Services Engineering, Izmir, Turkey, pp. 415–420 (2012)

[17] Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)
[18] Dautrich, J.L., Ravishankar, C.V.: Security Limitations of Using Secret Sharing for Data

Outsourcing. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 145–160. Springer, Heidelberg (2012)

	AS5: A Secure Searchable Secret Sharing Scheme for Privacy Preserving Database Outsourcing
	Introduction
	Secret Sharing in Outsourcing Scenario
	Problem Definition
	Threat Model

	A Searchable Secret Sharing Scheme (AS4)
	A Secure Searchable Secret Sharing Scheme (AS5)
	Query Processing
	Security Discussion
	Conclusion
	References

