
A Language-Based Approach

to Autonomic Computing�

Rocco De Nicola1, Gianluigi Ferrari2, Michele Loreti3, and Rosario Pugliese3

1 IMT, Institute for Advanced Studies Lucca, Italy
2 Università degli Studi di Pisa, Italy

3 Università degli Studi di Firenze, Italy

Abstract. SCEL is a new language specifically designed to model au-
tonomic components and their interaction. It brings together various
programming abstractions that permit to directly represent knowledge,
behaviors and aggregations according to specific policies. It also supports
naturally programming self-awareness, context-awareness, and adapta-
tion. In this paper, we first present design principles, syntax and opera-
tional semantics of SCEL. Then, we show how a dialect can be defined
by appropriately instantiating the features of the language we left open
to deal with different application domains and use this dialect to model
a simple, yet illustrative, example application. Finally, we demonstrate
that adaptation can be naturally expressed in SCEL.

1 Introduction

The increasing complexity, heterogeneity and dynamism of current computa-
tional and information infrastructures is calling for new ways of designing and
managing computer systems and applications. Adaptation, namely “the capabil-
ity of a system to change its behavior according to new requirements or environ-
ment conditions” [1], has been largely proposed as a powerful means for taming
the ever-increasing complexity of today’s computer systems and applications.
Besides, a new paradigm, named autonomic computing [2], has been advocated
that aims at making modern distributed IT systems self-manageable, i.e. capable
of continuously self-monitoring and selecting appropriate operations.

More recently, to capture the relevant features and challenges, the ‘Interlink
WG on software intensive systems and new computing paradigms’ [3] has pro-
posed to use the term ensembles to refer to:

The future generation of software-intensive systems dealing with mas-
sive numbers of components, featuring complex interactions among com-
ponents and with humans and other systems, operating in open and
non-deterministic environments, and dynamically adapting to new re-
quirements, technologies and environmental conditions.

� This work has been partially sponsored by the EU project ASCENS (257414).

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 25–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 R. De Nicola et al.

Systems partially satisfying the above definition of ensemble have been already
built, e.g. national infrastructures such as power grids, or large online cloud
systems such as Amazon or Google. But significant human intervention is needed
to dynamically adapt them. Instead, one crucial requirement is to ensure that
an ensemble continues to function reliably in spite of unforeseen changes and
that adaptation does not render systems inoperable, unsafe or insecure.

To move from the engineering of traditional systems to that of ensembles,
an higher level of abstraction is needed. Many research efforts are currently
devoted to the search of methodologies and tools to build ensembles by exploiting
techniques developed in different research areas such as software engineering,
artificial intelligence and formal methods. The aim is the definition of linguistic
primitives and methodologies to program autonomic and adaptive systems while
relying on rigorous foundations that support verification of their properties.

The challenge for language designers is to devise appropriate abstractions
and linguistic primitives to deal with the large dimension of systems, the need
to adapt to evolving requirements and to changes in the working environment,
and the emergent behaviors resulting from complex interactions.

The notions of service components (SCs) and service-component ensembles
(SCEs) have been put forward as a means to structure a system into well-
understood, independent and distributed building blocks that interact in speci-
fied ways. SCs are autonomic entities that can cooperate, with different roles, in
open and non-deterministic environments. SCEs are instead sets of SCs with ded-
icated knowledge units and resources, featuring goal-oriented execution. Most of
the basic properties of SCs and SCEs are already guaranteed by current service-
oriented architectures; the novelty lays in the notions of goal-oriented evolution
and of self-awareness and context-awareness.

A possible way to achieve awareness is to equip SCs and SCEs with infor-
mation about their own state and behavior, to enable them to collect and store
information about their working environment and to use this information for
redirecting and adapting their behavior. A typical SCE is reported in Figure 1,
which evidences that ensembles are structured sets of components, with dedi-
cated knowledge units to represent shared, local and global knowledge, that can
be interconnected via highly dynamic infrastructures.

These notions of SCs and SCEs are the starting point of the EU project AS-
CENS [4,5] that aims at investigating different issues ranging from languages for
modelling and programming SCEs to foundational models for adaptation, dy-
namic self-expression and reconfiguration, from formal methods for the design
and verification of reliable SCEs to software infrastructures supporting deploy-
ment and execution of SCE-based applications. The aim is to develop formal
tools and methodologies supporting the design of self-adaptive systems that can
autonomously adapt to, also unexpected, changes in the operating environment,
while keeping most of their complexity hidden from administrators and users.

In this paper we present some of the work done to develop linguistic supports
for modelling and programming service components and their ensembles. More
specifically, we introduce SCEL (Service Component Ensemble Language), a

A Language-Based Approach to Autonomic Computing 27

Knowledge

Knowledge

K

K

Service Component Ensemble

SCE

Service Component

SC

SC
SC

Fig. 1. A Service Component Ensemble

new language designed for autonomic computing. SCEL brings together dif-
ferent programming abstractions that permit to directly represent knowledge,
behaviors and aggregations according to specific policies. It also supports nat-
urally programming self-awareness, context-awareness and adaptation. SCEL’s
solid semantic grounds lay the basis for developing logics, tools and method-
ologies for formal reasoning about system behavior to establish qualitative and
quantitative properties of both the individual components and the ensembles.

The rest of the paper is organized as follows. We present SCEL’s design
principles, syntax and operational semantics in Sections 2, 3 and 4, resp. . In
Section 5, we show an example of how a dialect of SCEL can be defined by
appropriately instantiating the features of the language we left open to deal with
different application domains and in Section 6 we demonstrate how the proposed
dialect can be used to model a simple yet illustrative example application. In
Section 7 we argue that adaptation can be naturally expressed in SCEL. We
review more strictly related work in Section 8 and conclude in Section 9 with
some final remarks and hints for future work.

2 SCEL: Design Principles

SCEL provides abstractions explicitly supporting autonomic computing systems
in terms of Aggregations, Behaviors andKnowledge according to specific Policies.

Aggregation Abstractions describe how different entities are brought together
to form components and systems and to offer the possibility to construct the
software architecture of autonomic systems. Composition of components and
their interaction is implemented by exploiting the notion of interface that can
be queried to determine the attributes and the functionalities provided and/or
required by components. Ensembles are specific aggregations of components that
represent social or technical networks of autonomic components. The key point is
that the formation rule is endogenous to components: components of an ensemble
are connected by the interdependency relations established in their interfaces.
Therefore, an ensemble is not a rigid fixed network but rather a dynamic graph-
like structure where component linkages are dynamically established.

28 R. De Nicola et al.

Behavioral Abstractions describe how computations progress. These abstrac-
tions are modelled as processes in the style of standard process calculi. Inter-
action comes in when components access data in the knowledge repositories of
other components. Adaptation emerges as the result of knowledge acquisition
and manipulation.

Knowledge Abstractions provide the high level primitives to manage pieces
of relevant information coming from different sources. Knowledge is represented
through items stored in repositories. Knowledge items contain either application
data or awareness data. The former are used for determining the progress of
component computations, while the latter provide information about the envi-
ronment in which the different components are running (e.g. monitored data
from sensors) or about the actual status of an autonomic component (e.g. about
its current position or the remaining battery’s charge level). We assume that each
knowledge repository provides three abstract operations that can be used by au-
tonomic components for adding new knowledge to the repository, for retrieving
knowledge from the repository and for withdrawing knowledge from it.

Policy Abstractions deal with the way behaviors are regulated. Since few as-
sumptions can be made about the operational environment, that is frequently
open, highly dynamic and possibly hostile, the ability of programming and en-
forcing a finer control on behavior is essential to assure that valuable information
is not lost. Policies are the mean to guarantee such control. Interaction policies
and Service Level Agreement (SLA) policies provide two standard examples of
policy abstractions. Other examples are security properties maintaining the right
linkage between data values and their associated usage policies (data-leakage
policies) or limiting the flow of sensitive information to untrusted sources (ac-
cess control and reputation policies).

The two central ingredients of SCEL are the notions of autonomic component
and of ensemble that we shall additionally consider below.

2.1 Components

An autonomic component I[K, Π, P] consists of:

1. an interface I publishing and making available structural and behavioral
information about the component itself;

2. a knowledge manager K, managing both application data and awareness
data, together with the specific handling mechanism;

3. a set of policies Π regulating the interaction between the different internal
parts of the component and the interaction of the component with the others;

4. a process P together with a set of process definitions that can be dynami-
cally activated. Some of the processes in P perform local computation, while
others may coordinate processes interaction with the knowledge repository
and deal with the issues related to adaptation and reconfiguration.

Component interfaces can be inquired to extract components name, the interde-
pendencies among components, and the services offered by components. Indeed,
the interface of a component provides at least the following attributes:

A Language-Based Approach to Autonomic Computing 29

– id: its name;
– ensemble: a predicate on interfaces used to determine the ensemble the com-

ponent has created and currently coordinates;
– membership: a predicate on the interfaces used to determine the ensembles

which the component is willing to be member of.

Additional attributes might, e.g., indicate the battery’s charge level and the
component’s GPS position.

Notably, the whole information provided by the component interface is stored
in the local knowledge of the component and therefore it can be dynamically
changed by using the appropriate operators for knowledge handling.

2.2 Ensembles

Ensembles are aggregations of components characterized by means of suitable
predicates associated to the attributes ensemble and membership. Surprisingly
(it might be), no specific syntactic category or operator for forming ensembles
is provided by SCEL. Rather, to better capture their dynamicity, ensembles are
‘synthesized’ dynamically by exploiting the values of the components attributes.
This design choice guarantees high dynamicity and flexibility in forming, joining
and leaving ensembles and does avoid resorting to structure ensembles through
rigid syntactic constructs.

For example, the names of the components that can be members of an
ensemble can be fixed via the predicate

P (I) def
= I.id ∈ {n,m, p}

If the attribute ensemble of a component C has assigned P (I), then a component
C′ is part of the ensemble coordinated by C if its name is n, m or p. Of course,
the predicate assigned to ensemble can be changed dynamically, thus permitting
to modify at run-time the members of the ensemble coordinated by C.

As another example, to dynamically characterize the members of an ensemble
that are active and have a battery charge level greater than 30%, the predicate

P (I) def
= I.active = yes ∧ I.battery level > 30%

could be used. Here, we are assuming that the interface of each component willing
to be part of the ensemble contains the attributes active and battery level.

Components, in turn, could be willing to be part of any ensemble. This is
modelled by letting attribute membership be associated to the predicate true.
On the contrary, components may not want to be part of any ensemble, in this
case membership will be set to be false. More generally, components can place
restrictions on the ensembles which they are willing to be member of by appro-
priately setting the attribute membership. For example, using the predicate

P (I) def
= I.trust level > medium

a component can express its willingness to be only part of those ensembles co-
ordinated by components whose (certified) trust level is greater than medium.

30 R. De Nicola et al.

Table 1. SCEL syntax (K, Π , T , and t are parameters)

Systems:

S ::= C
∣
∣ S1 ‖ S2

∣
∣ (νn)S

Components:

C ::= I[K, Π,P]

Processes:

P ::= nil
∣
∣ a.P

∣
∣ P1 + P2

∣
∣ P1[P2]

∣
∣ X

∣
∣ A(p̄) (A(f̄) � P)

Actions:

a ::= get(T)@c
∣
∣ qry(T)@c

∣
∣ put(t)@c

∣
∣ exec(P)

∣
∣ new(I,K, Π,P)

Targets:

c ::= n
∣
∣ x

∣
∣ self

3 SCEL: Syntax

The syntax of SCEL is illustrated in Table 1. There, different syntactic cat-
egories are defined that constitute the main ingredients of our language. The
basic category of the syntax is that relative to processes that are used to build
up components that in turn are used to define systems. processes model
the flow of the actions that can be performed. Each action has among its
parameters a target, that indicates the other component that is involved in
that action, and either an item or a template, that determines the part of
knowledge to be added, retrieved or removed. policies are used to control
and adapt the actions of the different components in order to guarantee the
achievement of specific goals or the satisfaction of specific properties.

It has to be said that our aim is to identify linguistic constructs for uniformly
modeling the control of computation, the interaction among possibly heteroge-
neous components, and the architecture of systems and ensembles. Therefore, we
have left open some syntactic categories, namely Knowledge (ranged over by
K), Policies (Π), Templates (T), and Items (t). These represent additional
language features that need to be introduced, e.g. to represent and store knowl-
edge of different forms (e.g. constraints, clauses, records, tuples) or to express a
variety of policies (e.g. to regulate knowledge handling, resource usage, process
execution, process interaction, actions priority, security, trust, reputation). We
don’t want to take a definite standing about these categories and prefer they be
fixed from time to time according to the specific application domain or to the
taste of the language user. In the rest of this section, we consider one by one the
explicitly defined categories and describe them in detail.

Processes are the SCEL active computational units. Each process is built
up from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), controlled composition (P1[P2]), process variable (X), parameterised
process invocation (A(p̄)), and parameterised process definition (A(f̄) � P). The
construct P1[P2] abstracts the various forms of parallel composition commonly
used in process calculi. Process variables are used to support higher-order com-
munication, namely the capability to exchange (the code of) a process by first
adding an item containing the process to a knowledge repository and then re-
trieving/withdrawing this item while binding the process to a process variable.

A Language-Based Approach to Autonomic Computing 31

Processes can perform five different kinds of actions. Actions get(T)@c,
qry(T)@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory c. These operations exploit templates T as patterns to select knowledge
items t in the repositories. They rely heavily on the used knowledge repos-
itory and are implemented by invoking the handling operations it provides.
Action exec(P) triggers a controlled (parallel) execution of process P . Action
new(I,K, Π, P) creates a new component I[K, Π, P].

Action get is a blocking action, in the sense that the process executing it
has to wait for the wanted element if it is not (yet) available in the knowledge
repository. Action qry, exactly like get, suspends the process executing it if
the knowledge repository does not (yet) contain or cannot ‘produce the wanted
element. The two blocking actions differ also for the fact that get removes the
found item from the knowledge repository while qry leaves the target reposi-
tory unchanged. Actions put, exec and new are instead non-blocking and are
immediately executed.

Component names are denoted by n, n′, . . . , variables for names are denoted
by x, x′, . . . , while c stands for a name or a variable. The distinguished variable
self can be used by processes to refer to the name of their hosting component.

Systems aggregate components (see Section 2.1) through the composition
operator ‖ . It is also possible to restrict the scope of a name, say n, by
using the name restriction operator (νn) . Thus, in a system of the form S1 ‖
(νn)S2, the effect of the operator is to make name n invisible from within S1.
Essentially, this operator plays a role similar to that of a begin . . . end block in
sequential programming and limits visibility of specific names. Additionally, it
allows components to communicate restricted names thus enlarging their scope
to encompass also the receiving components (like restriction in π-calculus [6]).

4 SCEL: Operational Semantics

The operational semantics of SCEL is given in the SOS style [7] by relying on

the notion of Labelled Transition System (LTS), which is a triple 〈S,L, � 〉
made of a set of states S, a set of transition labels L, and a labelled transition

relation � ⊆ S × L × S accounting for the actions that can be performed
from each state and the new state reached after each such transition. The se-
mantics is defined in two steps: first, the semantics of processes specifies process
commitments ignoring process allocation, available data, regulating policies, etc.;
then, by taking process commitments and system configuration into account, the
semantics of systems provides a full description of systems behavior.

To define the semantics, we use the sets of bound variables bv(E) and free
variables fv(E), and the sets of names n(E), bound names and free names oc-
curring in a syntactic term E. These sets, as usual, can be defined inductively on
the syntax of actions, processes, components, and systems by taking into account
that the only binding constructs are actions get and qry as concerns variables
and action new and the restriction operator as concerns names. More precisely,

32 R. De Nicola et al.

Table 2. Operational semantics of processes

a.P
a� P (a �= exec(Q)) exec(Q).P

exec(Q)� P [Q] P
◦� P

P
α� P ′

P + Q
α� P ′

Q
α� Q′

P + Q
α� Q′

A(f̄) � P P{p̄/f̄} α� P ′

A(p̄)
α� P ′

P
α� P ′ Q

β� Q′

P [Q]
α[β]� P ′[Q′]

bv(α) ∩ bv(β) = ∅ P =α P ′ P ′ β� P ′′

P
β� P ′′

actions get(T)@c and qry(T)@c bind the variables occurring in the template T ,
while action new(I,K, Π, P) binds the name associated to attribute I.id; the
scope of these binders is the process P1 syntactically following the action in a
prefix form a.P1. The restriction operator (νn) binds n in the scope . A term
without free variables is deemed closed (it may contain free names).

The semantics is only defined for closed systems. Indeed, we consider the bind-
ing of a variable as its declaration (and initialisation), therefore free occurrences
of variables at the outset in a system must be prevented since they are similar
to uses of variables before their declaration in programs (which are considered
as programming errors).

4.1 Operational Semantics of Processes

The semantics of processes specifies process commitments, i.e. the actions that
processes can initially perform. That is, given a process P , its semantics points
out all the actions that P can initially perform and the continuation process P ′

obtained after each such action. To simplify the rules, we do not restrict them
(and the semantics) to the subset of closed processes, although when defining
the semantics of systems we only consider the transitions from closed processes
(see Section 4.2). Moreover, we only consider processes that are such that their
bound names are pairwise distinct and different from their free names.

The LTS defining the semantics of processes is given as follows:

– the set of states coincides with the set of processes as defined in Table 1;
– the set of transition labels is generated by the following production rule

α, β ::= a
∣
∣ ◦ ∣

∣ α[β]

meaning that a label is either an action as defined in Table 1, or the symbol
◦, denoting inaction, or the composition α[β] of two labels α and β;

– the labelled transition relation � is the least relation induced by the
inference rules in Table 2. We will use P and Q, possibly indexed, to range

over processes and write P
α� Q instead of 〈P, α,Q〉 ∈ � .

The rules defining the labelled transition relation are straightforward. In partic-
ular, exec spawns a new concurrent process whose execution can be controlled

A Language-Based Approach to Autonomic Computing 33

by the continuation of the process performing the action. The rule defining the
semantics of P [Q] states that a transition labeled α[β] is performed when Q
makes the action β while P makes the action α. However, P and Q are not
forced to synchronise. Indeed, thanks to the third rule, that allows any process
to perform a ◦-labelled transition, α and/or β may always be ◦. The semantics
of P [Q] at the level of processes is indeed absolutely permissive and generates
all possible compositions of the commitments of P and Q. This semantics is then
specialized at the level of systems by means of interaction predicates for taking
policies into account. Condition bv(α) ∩ bv (β) = ∅ means that the variables
freed by the action α[β] in the two processes P and Q must be different: this
because they correspond to bound variables that were intended to be different
(although they might have had the same identity) and, once they get free, could
be subject to possibly different substitutions (substitutions are generated and
applied by rule (pr-sys) in Table 3). Notably, also this condition is not strict: it
can be always made true by application of the last rule stating that α-equivalent
processes, i.e. processes only differing in the identity of bound variables (this
equivalence relation is denoted by =α), perform the same transitions.

4.2 Operational Semantics of Systems

The operational semantics of systems is defined in two steps. First, we define an
LTS to derive the transitions enabled from systems without occurrences of the
name restriction operator.Then, by exploiting this LTS, we provide the semantics
of generic systems by means of a (unlabelled) transition system (TS), that is a
pair 〈S,�−→〉 made of a set of states S and a (unlabelled) transition relation
�−→⊆ S × S accounting for the computation steps that can be performed from
each state and the new state reached after each such transition. This approach
allows us to avoid the intricacies, also from a notational point of view, arising
when dealing with name mobility in computations (e.g. when opening and closing
the scopes of name restrictions).

To simplify notation, we will use I and J to range over interfaces. Notation
I |= J .ensemble indicates that a component with interface J is willing to
accept a component with interface I in the ensemble it coordinates. Similarly,
J |= I.membership indicates that I is willing to be one of the components
of the ensemble coordinated by J . We assume that it always implicitly holds
that I |= I.ensemble ∧ I |= I.membership, i.e. that a component is always
part of the ensemble it coordinates. Moreover, we assume that the names of the
attributes of a component are just pointers to the actual values contained in the
knowledge repository associated to the component. This amounts to saying that
in terms of the form I[K, Π, P], I only includes the names of the attributes, as
their corresponding values can be easily retrieved from K. However, when I is
used in isolation, it also includes the attributes’ values.

The LTS defining the semantics of systems without restricted names is

〈S,L, � 〉 where

34 R. De Nicola et al.

– the set of states S includes all the systems defined in Table 1;
– L is the set of transition labels generated by the following production rule

λ ::= τ
∣
∣ I : new(J ,K, Π, P)

∣
∣ I J ∣

∣ I : t 	 c
∣
∣ I : t � c

∣
∣ I : t
 c

∣
∣ I : t 	̄J ∣

∣ I : t �̄J ∣
∣ I : t
̄J

where τ denotes an internal computation step, I : new(J ,K, Π, P) denotes
the willingness of component I to create the new component J [K, Π, P],
I J denotes the willingness of two components with interfaces I and J
to interact, I : t 	 c (I : t � c) denotes the intention of component I to
withdraw (retrieve) item t from the repository at c, I : t
 c denotes the
intention of component I to add item t to the repository at c, I : t 	̄J
(I : t �̄J) denotes that component I is allowed to withdraw (retrieve) item
t from the repository of component J , I : t
̄J denotes that component I
is allowed to add item t to the repository of component J ;

– � is the labelled transition relation induced by the inference rules in

Table 3. We will write S
λ� S′ instead of 〈S, λ, S′〉 ∈ � .

The labelled transition relation relies on the following two predicates:

– the interaction predicate, Π, I : α � λ, σ, means that under policy Π and
interface I, process label α yields system label λ and substitution σ;

– the authorization predicate, Π, I � λ, means that under policy Π and inter-
face I, system label λ is allowed.

The interaction predicate establishes a relation between process labels and sys-
tem labels and thus determines the system label λ to exhibit and the substi-
tution σ to apply when a process performs a transition labeled α. It is called
interaction predicate because its main role is determining the effect of the con-
current execution of different actions by different processes that, e.g., exhibit
labels of the form α1[α2]. Many different interaction predicates can thus be de-
fined to capture well-known process computation and interaction patterns such
as interleaving, asynchronous communication, synchronous communication, full
synchrony, broadcasting, etc. Despite the several interaction predicates that can
be defined, we expect anyway that a well-defined interaction predicate satisfies
some obvious criteria. For example, a process label of the form get(T)@c should
be related to system labels of the form I : t 	 c, where t is any item ‘matching’
the template T , while a process label of the form put(t)@c should be related
to system labels of the form I : t′
 c, where t′ is any item resulting from the
evaluation of t. We refer the reader to [8] for some notable examples.

The authorization predicate is used to determine the actions that can be
performed according to specific policies. Likewise the interaction predicate, many
different reasonable authorization predicates can be defined depending on Π .

The labeled transition relation also relies on the following three operations
that each knowledge repository’s handling mechanism must provide:

A Language-Based Approach to Autonomic Computing 35

Table 3. Semantics of systems: labelled transition relation (symmetric of rules
(syncget), (syncqry), (syncput), (enscomm) and (async) omitted)

P
α� P ′ Π, I : α � λ, σ

I[K, Π, P]
λ� I[K, Π,P ′{σ}]

(pr-sys)

I[K, Π,P]
I:new(J ,K′,Π′,P ′)� C n = J .id n �∈ n(I[K, Π,nil])

I[K, Π,P]
τ� (νn)(C ‖ J [K′,Π ′, P ′])

(newc)

K� t = K′ Π,I 	 I : t �̄ I n = I.id I[K, Π,P]
I:t�n� I[K, Π,P ′]

I[K, Π,P]
τ� I[K′,Π, P ′]

(lget)

K� t = K′ Π,J 	 I : t �̄J
J [K, Π,P]

I:t �̄J� J [K′,Π,P]
(accget)

S1
I:t�n� S′

1 S2
I:t �̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ,λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncget)

K 	 t Π,I 	 I : t �̄ I n = I.id I[K, Π,P]
I:t�n� I[K, Π,P ′]

I[K, Π, P]
τ� I[K, Π,P ′]

(lqry)

K 	 t Π,J 	 I : t �̄J
J [K, Π, P]

I:t �̄J� J [K, Π,P]
(accqry)

S1
I:t�n� S′

1 S2
I:t �̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ, λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncqry)

K⊕ t = K′ Π,I 	 I : t
̄ I n = I.id I[K, Π,P]
I:t	n� I[K, Π,P ′]

I[K, Π,P]
τ� I[K′, Π,P ′]

(lput)

K ⊕ t = K′ Π,J 	 I : t
̄J
J [K, Π,P]

I:t 	̄J� J [K′,Π,P]
(accput)

S1
I:t	n� S′

1 S2
I:t 	̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ,λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncput)

S
I�J� S′ I ∈ I′ ∧ J ∈ I′ Π,I′ 	 I � J

I′[K, Π,P] ‖ S
τ� I′[K, Π,P] ‖ S′

(enscomm)

S1
λ� S′

1

S1 ‖ S2
λ� S′

1 ‖ S2

(async)

36 R. De Nicola et al.

– K � t = K′: the withdrawal of item t from the repository K returns K′;
– K � t: the retrieval of item t from the repository K is possible;
– K ⊕ t = K′: the addition of item t to the repository K returns K′.

Rule (pr-sys) transforms process labels into system labels by exploiting the inter-
action predicate Π, I : α � λ, σ. In particular, it generates the following system
labels: τ , I : new(J ,K, Π, P), I : t 	 c, I : t � c and I : t
 c. As a consequence
of this transformation, a substitution σ (i.e. a function from variables to values)
is generated and applied to the continuation of the process that has exhibited
label α. This is necessary when α contains a get or a qry, because, due to the
way the semantics of processes is defined, the continuation P ′ may contain free
variables even if P is closed. It is worth noting that the domain of σ is the set
of variables that are bound in α, thus, since fv(P ′) ⊆ bv(α), the process P ′{σ}
is closed. The application of the rule also replaces self with the corresponding
name.

No specific system label is used for indicating execution of action exec. Indeed,
this action is always local to the component executing it, and no other component
is involved in that action. Hence, when applying rule (pr-sys), all the information
(i.e. Π) needed to decide if the action can be allowed or not is present. When
exec is allowed, the interaction predicate in the premise of the rule is of the
form Π, I : exec(Q) � τ, [], where [] denotes the empty substitution, and the
transition corresponds to an internal computation step.

Like the exec, action new is decided by using the information within a single
component. However, since it affects the whole system as it creates a new com-
ponent, its execution is indicated by a specific system label I : new(J ,K, Π, P)
(generated by rule (pr-sys)) carrying enough information for the creation of the
new component to take place. When the new component is actually created
(newc), it is checked that its name n is not already used in the creating com-
ponent possibly except for the process part (this condition can be always made
true by exploiting α-equivalence among processes) and, if so, a restriction is put
in the system obtained after the computation step to delimit the scope of n.

The successful execution of the remaining three actions requires, at system
level, appropriate synchronizations. For this reason, for each action we have a
pair of complementary labels. Action get withdraws an item either from the local
repository, rule (lget), or from a specific repository, rule (syncget). In both cases,
this transition corresponds to an internal computation step. However, in case of
remote withdrawal, it is also needed to make sure that the interacting compo-
nents belong to the same ensemble. We have two cases to consider, depending on
predicate ens(I,J) defined as (I |= J .ensemble ∧ J |= I.membership)∨(J |=
I.ensemble ∧ I |= J .membership):

– Predicate ens(I,J) holds true, i.e. the component with interface I is part of
the ensemble defined by the component with interface J , or viceversa. Then,
the (conditional) premise ens(I,J) ⇒ λ = τ, λ = I J of rule (syncget) sets
λ to τ and the inference of the computation step terminates.

– Predicate ens(I,J) holds false and the two components with interface I
and J are both part of the ensemble coordinated by another component,

A Language-Based Approach to Autonomic Computing 37

say I ′[K, Π, P]. Indeed, we write I ∈ I ′ ∧ J ∈ I ′ as a shorthand for condi-
tion (I |= I ′.ensemble ∧ I ′ |= I.membership)∧ (J |= I ′.ensemble ∧ I ′ |=
J .membership). We now take advantage of the ‘else’ case of the premise
ens(I,J) ⇒ λ = τ, λ = I J of rule (syncget) that sets λ to I J . Con-
sequently, rule (enscomm) exploits the authorization predicate Π, I ′ � I J
to check whether the policy Π in force at I ′ authorizes interaction between
I and J and, if so, infers the computation step.

The label I : t 	̄J , generated by rule (accget), denotes the willingness of a com-
ponent J to provide t to a component I. When J .id = n, its complementary
label is I : t 	 n generated by rule (pr-sys) when a component I wants to with-
draw t from the repository at n. When the target of the action denotes a remote
repository, rule (syncget), the action is only allowed if J .id = n, namely if n is
the name of the component with interface J . The semantics of action qry is
modelled by rules (lqry), (accqry) and (syncqry). This action behaves similarly to
get, the only difference being that it invokes the retrieval operation of the repos-
itory’s handling mechanism, rather than the withdrawal operation. Thus, if the
action succeeds, the repository after the computation step remains unchanged.
Action put adds item t to a repository. Its behavior is modelled by rules (namely
(lput), (accput) and (syncput)) similar to those of actions get and qry, the major
difference being now that the addition operation of the repository’s handling
mechanism is invoked. In any case, for remote synchronisation to take place, it
could require authorisation through the application of rule (enscomm).

Finally, rule (async) allows a whole system to asynchronously evolve when
only some of its components evolve.

It is worth noticing that, although the inference rules in Table 3 are defined
on top of all the systems produced by the syntax in Table 1, no transition can
be derived from a system containing name restrictions. That is, in a transition

S
λ� S′, S may not contain name restrictions (instead, because of rule (newc),

S′ may do). This account for our statement at the beginning of this section,
i.e. that we first define an LTS to derive the transitions enabled from systems
without occurrences of name restrictions.

Now, the TS defining the semantics of generic systems is defined as

– the set of states S includes all the systems defined in Table 1;
– the transition relation �−→ is the least relation induced by the inference

rules in Table 4. As a matter of notation, we will write S �−→ S′ instead
of 〈S, S′〉 ∈�−→. Moreover, n̄ denotes a (possibly empty) sequence of names
and n̄, n′ is the sequence obtained by composing n̄ and n′. (νn̄)S abbrevi-
ates (νn1)((νn2)(· · · (νnm)S · · ·)), if n̄ = n1, n2, · · · , nm, and S, otherwise.
S{n′/n} denotes the system obtained by replacing any free occurrence in S
of n with n′. When considering a system S, a name is deemed fresh if it is
different from any name occurring in S.

The rules defining the transition relation are straightforward. The first rule ac-
counts for the computation steps of a system where all (possible) name restric-
tions are at top level, while the last two rules permit to manipulate the syntax of

38 R. De Nicola et al.

Table 4. Semantics of systems: transition relation

S
τ� S′

(νn̄)S �−→ (νn̄)S′ (res-tau)

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh

(νn̄)(S1 ‖ (νn′)S2) �−→ S′ (res-top-r)

(νn̄, n′′)(S1{n′′/n′} ‖ S2) �−→ S′ n′′ fresh

(νn̄)((νn′)S1 ‖ S2) �−→ S′ (res-top-l)

Table 5. Semantics of systems: inter-ensemble communication

S1
λ1� S′

1 S2
λ2� S′

2

S1 ‖ S2
λ1�λ2� S′

1 ‖ S′
2

(ens1)

S
λ′
� S′ Π,I 	 λ′ � λ

I[K, Π, P] ‖ S
λ� I[K, Π,P] ‖ S′

(ens2)

I[K, Π,P]
λ1� C S

λ2� S′ Π,I 	 λ1 � λ2 � λ

I[K, Π,P] ‖ S
λ� C ‖ S′

(ens3)

a system, by moving all name restrictions at top level, thus putting it into a form
to which the first rule can be possibly applied. This manipulation may require
the renaming of a restricted name with a freshly chosen one, thus ensuring that
the name moved at top level is different both from the restricted names already
moved at top level (to avoid name clashes) and from the names occurring free
in the other (sub-)systems in parallel (to avoid improper name captures).

On inter-ensemble communication. According to the semantics, two components
can interact only if they are part of the same ensemble. Here, we tune the
semantics for permitting more complex interaction patterns among two or more
components, possibly belonging to different ensembles, by exploiting interaction
predicates to regulate them. Therefore, first we extend system labels as follows

λ ::= . . .
∣
∣ λ1 λ2

where label λ1 λ2 denotes the concurrent execution of those transitions corre-
sponding to labels λ1 and λ2. Then, we add the rules in Table 5 to the operational
rules for systems in Table 3.

Basically, the idea is to generalize the mechanism already present in the oper-
ational semantics of systems (see e.g. rule (enscomm) regulating intra-ensemble
communications), by replacing the authorization predicate Π, I � λ with pred-
icate Π, I � λ′ � λ. The latter, while checking whether a transition can be
allowed according to the policy Π in force at I, also translates label λ′ into λ.

On ensemble-wide broadcast communication. In [8], we also present an exten-
sion of SCEL enabling a sort of multicast communication where the potential

A Language-Based Approach to Autonomic Computing 39

recipients are all the members of the ensembles of which the sender is part of.
Communication is anonymous and takes place through the coordinators of these
ensembles. Due to lack of space, we refer the reader to [8] for a complete account.

5 How to ‘Cook’ Your Own SCEL Dialect

In this section, we show how dialects of SCEL can be easily defined by appro-
priately specifying the parameters of the language. As a concrete example, we
demonstrate how Klaim [9] can be obtained.

In order to define a dialect with specific features, one has to fix the parameters
SCEL depends on, that is

1. the language for expressing policies, together with an interaction predicate
and an authorisation predicate;

2. the languages for representing knowledge items and the templates to be used
to retrieve these items from the repositories;

3. the language for representing knowledge repositories, together with the three
operations, i.e. withdrawal, retrieval and addition, that we assume provided
by each knowledge repository’s handling mechanism.

Now, to get Klaim as a dialect of SCEL, we can make the following choices.
Policies must express Klaim allocation environments. These are functions

associating logical names to physical names (i.e. addresses) of the different com-
ponents, thus regulating components visibility and establishing systems archi-
tecture. Therefore, policies are rendered as functions from variables to names. As
interaction predicate, we take the interleaving one (see [8] for details), which is
obtained by interpreting controlled composition as the interleaved parallel com-
position of the two involved processes, while, as authorisation predicate, we take
a predicate that does not block any action.

Knowledge items are sequences of values, i.e. tuples, while templates are se-
quences of values and variables. More generally, a value can result from the
evaluation of some given expression e belonging to an appropriate language of
expressions. Klaim in turn is parametric with respect to the language of ex-
pressions (we assume that it contains strings and integers).

Knowledge repositories are multisets of tuples, i.e. tuple spaces, providing the
three operations of withdrawal, retrieval and addition. The first two use pattern-
matching wrt a given template to pick a tuple from a tuple space: a tuple matches
a template if they have the same number of elements and corresponding elements
have matching values or variables; variables match any value of the same type,
and two values match only if they are identical. In case more tuples match a
given template, one of them is arbitrarily chosen.

In practice, we can complete the syntax of knowledge, items and tem-

plates as shown in Table 6, where e denotes an expression producing values.
If we were interested in capturing alternative versions of Klaim that, e.g., use

types to enforce access control (see, e.g. [10]), we can simply add these types,
i.e. functions from names to sets of capabilities, to the language of policies.

40 R. De Nicola et al.

Table 6. Tuple-based SCEL (e is an expression)

Knowledge: Items:

K ::= 〈t〉 ∣
∣ K1 ‖ K2 t ::= e

∣
∣ c

∣
∣ P

∣
∣ t1, t2

Templates:

T ::= e
∣
∣ c

∣
∣ P

∣
∣ ! x

∣
∣ !X

∣
∣ T1, T2

As for component interfaces, the only meaningful attribute is id which is
set to the name of the component, while attributes ensemble and membership
are set to true and no other attribute is used. At this point, get/qry/put/new
correspond toKlaim’s in/read/out/newloc, while Klaim’s eval, that permits
to spawn a new process for execution possibly on a remote component, can be
rendered in SCEL by means of an appropriate protocol relying on higher-order
communication and on action exec (see, e.g. [11]).

6 SCEL at Work

In this section we show how the SCEL dialect defined in Section 5 can be used
to model a simple yet illustrative example. In particular, we will mainly focus
on the goal-oriented interaction among SCs and SCEs that are the novelty of
our proposal.

In our application scenario, we consider a collection of service components,
all offering the same services. Each component manages and elaborates service
requests with different policies, roughly summarized by the following three qual-
ity levels: gold, silver and base. These policies are defined via a combination of
predicates on the hardware configuration and the runtime state. For example,
the runtime state can give a measure of the number of service requests cur-
rently handled locally. The parameters of the different policies are identified by
suitable attributes of the component interfaces. In particular, we assume that
the tuples 〈“attr”, “hw”, i〉 and 〈“attr”, “load”, p〉 are stored in the local tu-
ple space of each component. For example, value i (an integer in [0, 10]) in the
tuple 〈“attr”, “hw”, i〉 gives an indication of the capacity of the hardware con-
figuration of the component; while value p (an integer in [0, 100]) in the tuple
〈“attr”, “load”, p〉 estimates the actual computational load of the component.
Notice that the hardware measure is static while the load estimate is updated
whenever a component receives or completes a service request.

Each service component also publishes in its interface the signature of the
available services through suitable attributes. Here we assume that aService is
the name of the available service and requires a string as input parameter and
yields a string value as a result. Furthermore, additional information about the
client and the session has to be provided when the service is invoked.

Service components constitute three ensembles depending on the quality of
service they can provide. In particular, we consider three components, named
cg, cs and cb, each of which coordinates the service components operating at gold,
silver and base level, respectively. Each of these components acts as a proxy for

A Language-Based Approach to Autonomic Computing 41

the replicated services. The ensemble coordinator accepts client invocations and
allows service components to retrieve them. Then, the invoked service component
sends the obtained results back to the client component.

Since ensemble aggregation is goal-oriented, the following predicates

– Sg(I) = I.hw ≥ 7
– Ss(I) = (I.hw ≥ 4) ∧ (Sg(I) → I.load < 40)
– Sb(I) = (Ss(I) → I.load < 40) ∧ (Sg(I) → I.load < 20).

are assigned to attribute ensemble of the three coordinating components cg, cs
and cb, respectively. Thus, the gold ensemble identifies a gold component by
the high measure of its hardware configuration (value greater or equal to 7).
The silver ensemble is less demanding: a component has to provide an hardware
configuration with a level that is at least 4 and, whenever a component provides
a hardware configuration that is valued more than 7, the computational load
must be less than 40% (→ stands for logical implication). This last condition
guarantees that gold components can handle requests at silver level only when
their computational load is under 40%. The same schema is used to define the
base ensemble. Of course, all the components, independently of their hardware
level, can be part of this ensemble. However, gold and silver components are
involved only when their computational load is under 20% and 40% respectively.

Notice that components dynamically and transparently leave or enter an en-
semble when their computational load changes. For instance, a gold component
(i.e. a component with attribute hd that is greater or equal to 7) leaves a silver
ensemble whenever its computational load becomes higher than 40%.

The process running at the client component taking care of the interaction
with the service, let us call it c, performs the following code fragment:

put(“invoke”, “aService”, v, c, s)@u.get(“result”, “aService”, !x, c, s)@self.P

The client posts the invocation in the tuple space of the coordinator of the
ensemble (u is a variable assuming value among cb, cs or cg). Value v is the
required input string, while the pair c, s provides the bookkeeping information:
c is the client name and s is a value representing the working session. After
issuing the invocation, the client waits for the result (recall that action get is
blocking). Whenever the result of the service invocation is made available, the
client can withdraw it from the local tuple space and continue as process P .

Processes running at service components execute the following code fragment:

get(“invoke”, “aService”, !Param, !Client, !Session)@u.
get(“attr”, “load”, !x)@self.
put(“attr”, “load”, (x+ 5))@self.
exec(Q)

The process is triggered by a client request retrieved from the coordinator’s
repository. Whenever this happens, the computational load is updated1 and the

1 Here we assume each service instance uses 5% of the component computational
resources.

42 R. De Nicola et al.

process Q, which actually computes the result of the invoked service “aService”,
is executed. We assume that, before its termination, process Q updates the value
of attribute load and puts the result of the computation into the tuple space of
the requesting client.

The application scenario discussed above exploits different forms of communi-
cation. First, the invoking client uses inter-ensemble communication for putting
its request in the coordinator’s repository. Then, the service component uses
standard (intra-ensemble) communication to retrieve the request from the coor-
dinator’s repository. The processing of the request increases the computational
load of the component, which may cause the service component to leave the
ensemble where the service request has been retrieved. Therefore, when the ser-
vice completes, the result is sent back to the client’s repository by using inter-
ensemble communication. Afterwards, the result can be retrieved by the client
through local communication.

7 Adaptation in SCEL

In this section we argue that adaptation can be naturally expressed in SCEL. As
we have seen in Section 3, the knowledge repository of components can contain
both application data and awareness data. At this level of abstraction, we are
not concerned with the way data are actually represented, we only assume that
they can be appropriately tagged to distinguish awareness data from application
data. This distinction is indeed crucial, as it is at the basis of a tangible notion
of adaptation [12], which is defined as the run-time modification of awareness
data. A component is then deemed adaptive if it has a precisely identified col-
lection of awareness data that are modified at run-time, at least in some of its
computations. Besides, it is self-adaptive if it is able to modify its own awareness
data at run-time.

In general, a component in SCEL is adaptive (and, hence, autonomic) be-
cause its awareness data can be dynamically modified by means of the actions
put/get/qry. Moreover, a component is self-adaptive as the hosted process
can trigger modifications of its awareness data by interacting with the local
knowledge handler. So-called feedback-loops, that adapt behavior of autonomic
components to changing contexts, can thus be easily implemented.

The one outlined above is perhaps the simplest form of adaptation, but we
can envisage more sophisticated forms by taking the nature of the awareness
data into account. Suppose, for example, that the process part of a component
is split into an autonomic manager controlling execution of a managed element.
The autonomic manager monitors the state of the component, as well as the ex-
ecution context, and identifies relevant changes that may affect the achievement
of its goals or the fulfillment of its requirements. It also plans adaptations in or-
der to meet the new functional or non-functional requirements, executes them,
and monitors that its goals are achieved, possibly without any interruption2.

2 The whole body of activities mentioned above has been named MAPE-K loop (Mon-
itoring, Analyzing, Planning, and Executing, through the use of Knowledge) [2].

A Language-Based Approach to Autonomic Computing 43

In practice, the autonomic manager implements the rules for adaptation. Now,
by exploiting SCEL higher-order features, namely the capability to store/re-
trieve (the code of) processes in/from the knowledge repositories and to dynam-
ically trigger execution of new processes (by means of action exec), it is e.g.
possible to dynamically replace (part of) the managed element process or even
the autonomic manager process. In this case, we are also changing the rules, i.e.
processes, with which the awareness data are manipulated, since these rules are
represented as awareness data themselves.

A managed element can be seen as an empty “executor” which retrieves from
the knowledge repository the process implementing a required functionality id
and bounds it to a variable X , sends the retrieved process for execution and
waits until it terminates (this coordination can be worked out by exchanging
appropriate synchronisation items). Also actual parameters for the process to
be executed can be stored as knowledge items and retrieved by the executor (or
by the process itself) when needed, as shown by the code fragment below.

ME � qry(“required functionality id”, !X)@self.
get(“required functionality id args”, !y, !z)@self.
exec(X(y, z)).
get(“wait termination id′′)@self.ME

Items containing processes or parameters can be thought of as awareness data.
Autonomic managers can add/remove/replace these data from the knowledge
repositories thus implementing the adaptation logic and therefore changing the
managed element behavior. For example, different versions of the process pro-
viding a requested service may exist. While managed elements could only read
these data, the autonomic manager could dynamically change the association
between the service request and the service process by simply performing:

get(“required functionality id”, !X)@self.
put(“required functionality id”, Q)@self.

which has the effect of replacing the ‘old’ service implementing the functionality
id with a possibly new one Q.

The autonomic manager can also add a new service or even remove an existing
one. Besides, it is a process just like the managed element, thus it is very well
suited to be itself subject to adaptation. In this way we can build up hierarchical
adaptations and cover a wide range of adaptation mechanisms.

One issue with SCEL is that it does not have any specific mechanism for
stopping or killing processes. However, exploiting knowledge and higher-order
features, the application designer can specify when to terminate processes by
following suitable patterns. For example, in the code fragment below, the man-
aged element can ask the autonomic manager for the authorization to proceed
as process P and, in the negative case, signal its termination.

qry(pid, “ko”)@self.put(pid, “dead”)@self.nil
+ qry(pid, “ok”)@self.P

44 R. De Nicola et al.

This would allow an autonomic manager to send a termination request to the
process with identifier pid and wait for its termination, assuming that both items
(pid, “ok”) and (pid, “ko”) are used for coordination purposes.

get(pid, “ok”)@self.get(pid, “dead”)@self

As we have seen, it is the autonomic manager to choose which adaptation to use.
The decision about when to perform adaptation is jointly taken by the autonomic
manager and the application designer. This is reminiscent of another approach,
named context-oriented programming (COP) [13]. COP is a novel programming
paradigm introduced to manage and control adaptivity of programs. It allows
developers to define behavioral variations, chunks of code that can be activated
depending on the current working environment (the context), to dynamically
modify program execution and thus adapt to its environment. In this approach,
the application designer has to insert adaptation hooks in the application code
and is thus able to control when adaptation can take place. Leaving the designer
to specify where and when to adapt has its advantages, because adaptations
would be explicit in the code and thus more visible, and the application designer
could better plan some adaptations. However, not being transparent to the appli-
cation designer has significant disadvantages, because only adaptations planned
at design phase could be exploited. When the autonomic computing approach is
used, the autonomic manager, which continuously monitors awareness data or
event occurrences, reacts to changes of contexts or of goals.

Other than language-level adaptation, as e.g. used in COP, another approach
to adaptation focuses on the architectural-level. It consists in dynamically re-
shaping the structure of the system, e.g. by exchanging a specific component with
one that provides similar functionalities, but behaves better in a new context.
SCEL supports also this coarse-grained approach since component’s member-
ship to ensembles is dynamic. Indeed, the membership attribute of a compo-
nent’s interface can be parametric w.r.t. to some information controlled by an
autonomic manager.

Finally, in case of distributed applications one can plan to have (i) awareness
data residing at autonomic elements and the autonomic managers performing
the adaptation for all controlled elements, or (ii) all autonomic elements reading
from a single knowledge repository that contains both awareness data and global
autonomic processes. The distributed approach may cause consistency problems
between autonomic elements during the adaptation procedure, because the auto-
nomic managers of different elements may not be synchronized. The centralized
approach may lead to efficiency loss and relies too much on the communication
between autonomic elements, that can have considerable latencies or be unreli-
able. However, both approaches may be useful. For example, at ensemble level,
adaptation can be partly centralized, controlled by an autonomic manager, and
partly distributed in each component. At system level, the distributed approach
better supports the dynamic structures and loosely-coupled components.

A Language-Based Approach to Autonomic Computing 45

8 Related Work

The term “ensemble” has been recently introduced in the literature (see,
e.g., [3,1,14]) to denote a category of systems characterized by heterogeneous
collections of computing resources, huge number of potential interactions,
context-awareness, dynamically changing network topologies, and unreliable com-
munications. A mathematical model of ensembles and their composition has been
introduced in [15]. Ensembles and their constituent parts are abstractly described
as relations on sets of inputs and outputs. The “black-box” view of adaptivity
is then formally defined. This leads to a preorder relation on ensembles which
captures the the ability of ensembles to satisfy goals or maximize a performance
measure in different environments. Differently from this denotational model, we
introduce an operational model of ensembles and a formal language that allows
the description of ensembles in a compact and formal way. A language for pro-
gramming ensembles, named Meld, has been proposed in [16,17]. Meld is a declar-
ative language originally designed for programming overlay networks. It allows
ensembles to be programmed as a unified whole from a global perspective and
then compiled automatically into fully distributed local behaviors. This approach
is somehow reminiscent of Declarative Networking [18], a programming method-
ology that supports the high level specification of network protocols and services,
that are then compiled into a dataflow framework and executed. SCEL, instead,
is a formal language that could be used as the core of a programming language for
ensembles.

The way in which ensembles are characterized in SCEL resembles the
way software elements are dynamically grouped into homogenous clusters in
[19], where an architecture for the design of component-based distributed self-
adaptive systems is outlined. Indeed, both approaches adopt application-specific
metrics. Each cluster is headed by a distinguished component, in charge of su-
pervising it and of gathering information from the rest of the system. The su-
pervision mechanism also identifies situations that trigger adaptations.

Context-Oriented Programming (COP) [13] can also be used to write en-
semble applications [20]. It exploits ad hoc explicit language-level abstractions
to express context-dependent behavioral variations and, notably, their run-time
activation. So far, most of the efforts in the field of COP have been directed
towards the design and implementation of concrete languages. Only a few pa-
pers in the literature provide a foundational account of programming languages
extended with COP facilities, as e.g. the object-oriented ones of [21,22,23] and
the functional one of [24]. All these approaches are however quite different from
ours, that instead focusses on distribution and goal-oriented aggregations and
supports a highly dynamic notion of adaptation.

Several works have been proposed that use formal techniques to model auto-
nomic computing systems. For example, [25] presents an approach to develop an
autonomic service-oriented architecture. This and other examples (e.g., [26,27]),
however, focus on the use of formal techniques for specific target applications.

46 R. De Nicola et al.

Our work, instead, aims at introducing general techniques to achieve autonomic-
ity rather than at modeling specific autonomic systems. SCEL formal semantics
permits to better understand how autonomicity is obtained.

Core languages designed in the area of concurrency theory are natural candi-
dates for the specification of autonomic systems. Many such formalisms aim at
modelling dynamically changing network topologies, a feature common to many
types of distributed systems and to ensembles. For example, CWS [28] deals
with communication aspects that are specific of wireless communications, while
the ω-calculus [29] addresses the modeling problems of mobile ad-hoc networks.
We want also to mention [30], that uses the Gamma formalism, a computing
model inspired by the chemical reaction metaphor, to develop a higher-order
language for specifying autonomic systems, and [31], that presents a biochem-
ical calculus expressive enough to represent adaptive systems, together with a
formal framework for property checking.

9 Concluding Remarks and Future Directions

We have introduced SCEL, a new language that brings together various pro-
gramming abstractions that permit directly representing knowledge, behaviors
and aggregations according to specific policies, and naturally programming in-
teraction, adaptation and self- and context-awareness. Our language-based ap-
proach enables us to govern the complexity of the issues under consideration by
imposing a structure over the variety of computational entities involved. A fur-
ther advantage is that all programming abstractions are based on solid semantic
grounds. This lays the basis for developing logics, tools and methodologies for
formal reasoning about system behavior in order to establish qualitative and
quantitative properties of both the individual components and the ensembles.

We are currently assessing to which extent SCEL achieves its goals, i.e. mod-
eling the behavior of service components and their ensembles, their interactions,
their sensitivity and adaptivity to the environment. As testbeds we will use
three case studies from three different application domains: Robotics (collective
transport), Cloud-computing (transiently available computers), and e-Mobility
(cooperative e-vehicles). This process might require tuning the language features.
After this, we plan to implement SCEL, possibly by exploiting the distributed
software framework IMC [32].

We also want to develop a methodology that enables components to take
decisions about possible alternative behaviors by choosing among the best pos-
sibilities while being aware of the consequences. By relying on an abstract de-
scription of the evolving environment, each component will be able to verify
locally the possibility (or the probability) of guaranteeing the wanted properties
or of achieving the wanted goals by analyzing the possible outcome of its interac-
tions with the abstract model. This kind of information will then be used to take
decisions about the choices that a component has to face. This abstract descrip-
tion is not fixed but may change according to the interactions of the component
with the rest of the system or as a consequence of the changes in the, possibly
imprecise, contextual information in which the entity is currently running.

A Language-Based Approach to Autonomic Computing 47

Our proposal combines notions from different research fields. This will permit
the cross fertilization of concepts and techniques. For instance, in the long run,
we expect that analytical methods typical of the so called big data science can
be fruitfully adopted to discover aggregation patterns and, consequently, predict
behavior of highly complex SCEs. Understanding how aggregations of SCs may
evolve is a key issue for developing optimization techniques.

References

1. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software Engineering for Ensembles. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive
Systems. LNCS, vol. 5380, pp. 45–63. Springer, Heidelberg (2008)

2. IBM: An architectural blueprint for autonomic computing. Technical report, 3rd
edn. (June 2005)

3. Project InterLink (2007), http://interlink.ics.forth.gr/central.aspx

4. Project ASCENS (2010), http://www.ascens-ist.eu/

5. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., de Boer, F., Bonsangue,
M., Damiani, F. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidel-
berg (2012)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I & II. Inf.
Comput. 100(1), 1–77 (1992)

7. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

8. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: Languages primitives for co-
ordination, resource negotiation, and task description. ASCENS Deliverable D1.1
(September 2011), http://rap.dsi.unifi.it/scel/

9. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

10. Gorla, D., Pugliese, R.: Dynamic management of capabilities in a network aware
coordination language. J. Log. Algebr. Program. 78(8), 665–689 (2009)

11. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of klaim-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

12. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Con-
ceptual Framework for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

13. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3), 125–151 (2008)

14. Want, R., Schooler, E., Jelinek, L., Jung, J., Dahle, D., Sengupta, U.: Ensemble
computing: Opportunities and challenges. Intel Technology Journal 14(1), 118–141
(2010)

15. Hölzl, M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

16. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A
declarative approach to programming ensembles. In: IROS, pp. 2794–2800. IEEE
(2007)

http://interlink.ics.forth.gr/central.aspx
http://www.ascens-ist.eu/
http://rap.dsi.unifi.it/scel/

48 R. De Nicola et al.

17. Ashley-Rollman, M.P., Lee, P., Goldstein, S.C., Pillai, P., Campbell, J.D.: A Lan-
guage for Large Ensembles of Independently Executing Nodes. In: Hill, P.M., War-
ren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 265–280. Springer, Heidelberg
(2009)

18. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun.
ACM 52(11), 87–95 (2009)

19. Baresi, L., Guinea, S., Tamburrelli, G.: Towards decentralized self-adaptive
component-based systems. In: Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2008,
pp. 57–64. ACM, New York (2008)

20. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems. CoRR abs/1105.0069 (2011)

21. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

22. Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextFJ: a minimal core calculus for
context-oriented programming. In: Proceedings of the 10th International Workshop
on Foundations of Aspect-Oriented Languages, FOAL 2011, pp. 19–23. ACM, New
York (2011)

23. Clarke, D., Costanza, P., Tanter, E.: How should context-escaping closures proceed?
In: Proc. of COP 2009, pp. 1:1–1:6. ACM, New York (2009)

24. Degano, P., Ferrari, G.-L., Galletta, L., Mezzetti, G.: Types for Coordinating Se-
cure Behavioural Variations. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS,
vol. 7274, pp. 261–276. Springer, Heidelberg (2012)

25. Bhakti, M.A.C., Azween, A.: Formal modeling of an autonomic service oriented
architecture. In: CSIT, vol. 5, pp. 23–29. IACSIT Press (2011)

26. Li, Z., Parashar, M.: Rudder: An agent-based infrastructure for autonomic com-
position of grid applications. Multiagent and Grid Systems 1(3), 183–195 (2005)

27. Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S., Rao, S.: Autono-
mia: an autonomic computing environment. In: IPCCC, pp. 61–68. IEEE (2003)

28. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

29. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

30. Banâtre, J.P., Radenac, Y., Fradet, P.: Chemical Specification of Autonomic Sys-
tems. In: IASSE, pp. 72–79. ISCA (2004)

31. Andrei, O., Kirchner, H.: A Higher-Order Graph Calculus for Autonomic Com-
puting. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory,
Computational Intelligence and Thought. LNCS, vol. 5420, pp. 15–26. Springer,
Heidelberg (2009)

32. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A Flexible and
Modular Framework for Implementing Infrastructures for Global Computing. In:
Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 181–193.
Springer, Heidelberg (2005)

	A Language-Based Approachto Autonomic Computing
	Introduction
	SCEL: Design Principles
	Components
	Ensembles

	SCEL: Syntax
	SCEL: Operational Semantics
	Operational Semantics of Processes
	Operational Semantics of Systems

	How to `Cook' Your Own SCEL Dialect
	SCEL at Work
	Adaptation in SCEL
	Related Work
	Concluding Remarks and Future Directions
	References

