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Abstract. The reduced feature size of electronic systems and the
demand for high performance lead to increased power densities and
high chip temperatures, which in turn reduce the system reliability.
Thermal-aware task allocation and scheduling algorithms are promising
approaches to reduce the peak temperature of multi-core systems with
real-time constraints. However, as long as the worst-case chip tempera-
ture is not incorporated into system analysis, no guarantees on the per-
formance can be given. This paper explores thermal-aware task assign-
ment strategies for real-time applications with non-deterministic work-
load that are running on a multi-core system. In particular, tasks are
assigned to the multi-core system so that the worst-case chip tempera-
ture is minimized and all real-time deadlines are met. Each core has its
own clock domain and the static assigned frequency corresponds to the
minimum operation frequency such that no real-time deadline is missed.
Finally, we show that the proposed temperature minimization problem
can efficiently be solved by metaheuristics.

Keywords: Real-Time Systems, Worst-Case Chip Temperature, Task
Assignment, Thermal Analysis, Multi-Core Systems.

1 Introduction

Multi-core systems outperform single-core platforms by offering higher perfor-
mance and better power efficiency. However, the demand for increased perfor-
mance and the reduced feature sizes lead to increasing power densities and high
chip temperatures, which in turn reduce the system reliability. For example, ex-
ceeding the chip’s peak temperature could lead to a reduction of performance or
even damage the physical system. Reactive thermal management mechanisms,
cooling systems, and thermal-aware task allocation and scheduling algorithms
are potential techniques to tackle thermal and reliability issues.

Cooling systems for embedded real-time systems have to be designed for the
worst-case chip temperature, i.e., the maximum chip temperature under all fea-
sible scenarios of task arrivals. As the packaging costs of cooling systems increase
super-linearly in power consumption [1], its design might be very expensive with-
out the use of other thermal management mechanisms. Reactive thermal man-
agement mechanisms such as DVFS [2, 3] are widely used to address thermal
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issues. Despite their thermal effectiveness, these techniques cause a significant
degradation of performance or lead to an expensive run-time overhead, both
unacceptable in today’s embedded real-time systems.

Various thermal-aware task allocation and scheduling algorithms have recently
been studied [4–7]. However, as long as the worst-case chip temperature is not
incorporated into system analysis, no guarantees on performance can be given
and violations of real-time deadlines cannot be ruled out. Consequently, this
paper explores thermal-aware task assignment and frequency selection strate-
gies to reduce the worst-case chip temperature under real-time constraints. In
particular, we consider the following problem:

Given are a set of tasks that are mapped onto a multi-core chip. Then,
the goal is to assign each processing component its optimal frequency and
to select a static assignment of tasks to processing components such that
all real-time deadlines are met and the worst-case chip temperature is
minimized.

To this end, we propose a thermal analysis method to calculate a non-trivial
upper bound on the maximum temperature of an embedded real-time system
with multiple cores and non-deterministic workload that is later incorporated
into the task assignment problem. Arrival curves from real-time calculus [8] are
used to upper bound the task’s workload in any time interval. Each processing
component executes at a static frequency assigned at compile-time. This fre-
quency is selected such that the real-time deadlines of all tasks are met and the
worst-case chip temperature is minimized. The considered thermal model is able
to address various thermal effects like the heat exchange between neighboring
cores and temperature-dependent leakage power. The contributions of this paper
can be summarized as follows:

– A novel method to calculate the worst-case chip temperature of an embed-
ded real-time system with multiple cores and non-deterministic workload is
formally derived.

– The minimization of the worst-case chip temperature with respect to real-
time constraints is formulated as a nonlinear binary integer problem.

– We show the viability of the proposed methods in various case studies on
hardware platforms with up to 16 cores.

The remainder of the paper is organized as follows: First, the considered problem
is motivated by an introductory example in Section 2. Afterwards, in Section 3,
the thermal and computational models considered in this paper are introduced.
In Section 4, we discuss a method to calculate the worst-case chip temperature
and show how to select the optimal operation frequency. The optimal task assign-
ment problem is formulated as a nonlinear binary integer problem in Section 5.
Finally, Section 6 presents case studies to highlight the viability of our methods
and related work is discussed in Section 7.
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2 Motivational Example

System Description. In order to motivate the considered problem, we examine
various task to processing component assignments of a simple system with two
identical tasks ν1 and ν2, and three homogeneous processing components with
a maximum operation frequency of 1.6GHz. The chip floorplan corresponds to
the one outlined in Fig. 2. The parameters of the thermal model and the power
dissipation parameters are summarized in Table 1(a) and Table 1(b). Both tasks
have an invocation interval of 200ms, a jitter of 400ms, and a computational
demand of 5 ·107 cycles, i.e., 31.25ms when the processing component is running
at its maximum operation frequency. Furthermore, the real-time deadline of a
task is equal to its period.

Maximum Operation Frequency. First, we suppose that each processing compo-
nent can only process at its maximum operation frequency, i.e., 1.6GHz. Then,
we calculate the worst-case chip temperature, i.e., the maximum chip temper-
ature under all feasible scenarios of task arrivals for different mappings by the
method proposed in Section 4.1. Mapping both tasks ν1 and ν2 to the same
processing component results in a worst-case chip temperature of 339.22K while
mapping both tasks to different adjoined and non-adjoined processing compo-
nents leads to a worst-case chip temperature of 343.61K and 340.47K, respec-
tively. Note that the worst-case chip temperature is higher when both tasks are
assigned to different processing components as both processing components are
concurrently processing in the thermal critical scenario.

Optimal Operation Frequency. Next, the operation frequency of every processing
component is the minimum frequency such that all deadlines are just met, calcu-
lated by (21). When both tasks are mapped onto the same processing component,
the frequency can be reduced to 1.49GHz and the maximum temperature of the
system is 335.69K. Assigning both tasks to different adjoined and non-adjoined
processing components results in a worst-case chip temperature of 322.21K and
321.73K, respectively. As the operation frequency can be reduced to 0.74GHz
when both tasks are mapped onto different processing components, we observe
the lowest worst-case chip temperature when both tasks are mapped onto non-
adjoined processing components. In particular, the worst-case chip temperature
was reduced by almost 22K by selecting an adequate task to processing compo-
nent assignment and optimal operation frequencies.

3 System Model and Problem Definition

In this section, the task, power, and temperature models are described.

Notation: Bold characters will be used for vectors and matrices, and non-bold
characters will be used for scalars. For example, H denotes a matrix whose
(k, �)-th element is denoted as Hk� and T denotes a vector whose k-th element
is denoted as Tk.
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3.1 Task Model

The task model considered in this paper is based on real-time calculus [8]. Let
ν be the set of tasks that are executed. We suppose that task νj is a stream of
events and has a total workload of Rνj (s, t) cycles in time interval [s, t). Each
event has to complete its execution within Dνj time units after its arrival. The
arrival curve ανj upper bounds all possible cumulative workloads:

Rνj (s, t) ≤ ανj (t− s) ∀0 ≤ s < t (1)

with ανj (Δ) = 0 for all Δ ≤ 0. In other words, Rνj (0, t) is the cumulative
number of computing cycles of all events arrived in [0, t). Arrival curves are a
generalization of various well-know event arrival models as, for example, periodic
event arrivals with jitter [9].

We use the concept of a demand bound function [10] to model the maximum
resource demand of a task, and later to check the schedulability. In particular,
the demand bound function dbfνj (Δ) of task νj is:

dbfνj (Δ) = ανj (Δ−Dνj ) ∀Δ ≥ 0 . (2)

In other words, the maximum accumulated computational demand of all events
that arrive and have deadline in any interval of length Δ does not exceed
dbfνj (Δ).

3.2 Processor Model

We consider a homogeneous multi-core system with a set of processing compo-
nents Θ. The total accumulated workload of Θ� at time t is denoted as R�(0, t)
and is, in any time interval of length Δ ≤ t, upper bounded by the arrival curve
α� [8]:

R�(t−Δ, t) ≤ α�(Δ) =

|ν|∑

j=1

Γ (νj , Θ�) · ανj (Δ) (3)

with the assignment function:

Γ (νj, Θ�) =

{
1 if νj executes on processing component Θ�

0 otherwise.
(4)

Likewise, the demand bound function dbf�(Δ) of a processing component Θ�

can be calculated. For example, suppose that an earliest-deadline-first (EDF)
scheduler runs on each processing component to arbitrate between events of
different tasks assigned to the same processing component. Then, the demand
bound function dbf�(Δ) is [10]:

dbf�(Δ) =

|ν|∑

j=1

Γ (νj , Θ�) · dbfνj (Δ) . (5)
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Fig. 1. Typical arrival curve α�(Δ) with
its corresponding upper bound on the ac-
cumulated computing time γ�(Δ)
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Fig. 2. RC circuit of the silicon layer for
a chip with three processing components

Each processing component executes at a static frequency f� with 0 < f� ≤
fmax
� . Therefore, the cumulated number of available computing cycles in time
interval [s, t) is W�(s, t) = f� · (t − s). If there are no waiting or arriving tasks
in [s, t), the available resources W�(s, t) are wasted. Otherwise, they are used to
process incoming and waiting events.

The accumulated computing time Q�(0, t) describes the amount of cycles that
processing component Θ� is spending to process an incoming workload of R�(0, t)
time units. Using arrival curve α�(Δ), the accumulated computing time Q�(t−
Δ, t) can be upper bounded by γ�(Δ) for all intervals of length Δ ≤ t [11]:

Q�(t−Δ, t) ≤ γ�(Δ) = inf
0≤λ≤Δ

{α�(λ) +W�(0, Δ− λ)} . (6)

From the properties of the arrival curve, it follows that γ�(Δ) is monotonically
increasing. The operation mode of a component can be expressed by the mode
function S�(t), which is S�(t) = 1 if the component is in ‘active’ processing mode
at time t and S�(t) = 0 if the component is in ‘idle’ processing mode at time t:

S�(t) =
dQ�(0, t)

dt
· 1

f�
=

{
1 Θ� is processing some events at time t

0 Θ� is ‘idle’ at time t.
(7)

A typical arrival curve and its corresponding upper bound on the accumulated
computing time are outlined in Fig. 1.

The results of the paper also hold for heterogeneous platforms, but the task
model becomes more complex. The workload Rνj (s, t) would just specify the
number of events in time interval [s, t). To calculate the accumulated computing
time Q�(s, t), the workload of task νj is multiplied by the computation-time in
cycles of an event of task νj when νj is assigned to processing component Θ�.

3.3 Power Model

The power consumption of a processing component is the sum of the dynamic
and leakage power consumption [4, 12]. Whenever a component is processing
some events, the component is in ‘active’ mode, and consumes both dynamic and
leakage power. Otherwise, it is in ‘idle’ mode, and consumes only leakage power.
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Each processing component Θ� has its own clock domain and we suppose that
the dynamic power consumption P�,dyn of component Θ� growths quadratically
with its supply voltage v� and linearly with its operation frequency f� [13]:

P�,dyn(t) ∝ v2� · f� · S�(t) (8)

where the mode function S�(t) implies that P�,dyn(t) = 0 if the component is
in ‘idle’ processing mode. Note that the results of the paper also hold for other
relations between supply voltage and frequency as long as they are monotone.

The leakage power consumption P�,leak of component Θ� is super linearly
dependent on the temperature that can approximately be modeled by a linear
function of the temperature [6, 14]:

P�,leak(t) = φ�� · T�(t) + ψ� (9)

with T� the temperature of processing component �, and the constants φ�� and
ψ�. We assume that the square of the supply voltage scales linearly with the
operation frequency [5] and therefore, the total power consumption is:

P(t) = Pdyn(t) +Pleak(t) = φ ·T(t) + ρ · diag(f)3 · S(t) +ψ (10)

with the diagonal matrix diag(f) of vector f and a constant diagonal matrix ρ.

3.4 Temperature Model

We model the temperature evolution of a multi-core system by an equivalent
RC circuit [4, 15–17]. The vertical layout of the chip is modeled by four layers,
namely the heat sink, heat spreader, thermal interface, and silicon die. Each
layer is divided into a set of blocks according to architecture-level units, i.e.,
processing components, see Fig. 2 for the RC circuit of the silicon layer for
a chip with three processing components. Every block is then mapped onto a
node of the thermal circuit. The number of nodes and therefore, the order of
the thermal model is n = 4 · |Θ|. In particular, the n-dimensional temperature
vector T(t) at time t is described by a set of first-order differential equations:

C · dT(t)

dt
=
(
P(t) +K ·Tamb

)
− (G+K) ·T(t) (11)

with the n × n thermal capacitance matrix C, the n × n thermal conductance
matrix G, the n× n thermal ground conductance matrix K, the n-dimensional
power dissipation vector P, and the ambient temperature vector Tamb = T amb ·
[1, . . . , 1]′. The initial temperature vector is denoted as T0 and the system is
assumed to start at time t0 = 0.

Rewriting (11) with (10) leads to the state-space representation of the thermal
model:

dT(t)

dt
= A ·T(t) +B · u(t) (12)
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Fig. 3. Impulse responses

with input vector u(t) = ρ · diag(f)3 · S(t) + ψ + K · Tamb, A = −C−1 ·
(G+K− φ), and B = C−1. As the thermal system is linear and time-invariant,
the temperature of node k is:

Tk(t) = T init
k (t) +

n∑

�=1

Tk,�(t) (13)

with Tinit(t) = eA·t ·T0. Tk,�(t) is the convolution of input u� and Hk�, i.e., the
impulse response between nodes � and k:

Tk,�(t) =

∫ t

0

Hk�(ξ) · u�(t− ξ) dξ (14)

with

u�(t) = ρ�� · f3
� · S�(t) + ψ� +K�� · T amb = ρ�� · f3

� · S�(t) + uidle� . (15)

Nodes that do not correspond to a processing component have input u� = uidle� =
ψ�+K�� ·T amb. Similar to [17], we assume that Hk�(t) is a non-negative unimodal
function that has its maximum at time tHk�

max, see Fig. 3 for an illustration.

4 System Analysis

In this section, we propose a novel method to calculate the worst-case chip
temperature of a multi-core system with non-deterministic workload and show
how to select the operation frequencies in an optimal manner.

4.1 Peak Temperature Analysis

Suppose that the thermal RC network of a multi-core system is composed of n
nodes. Then, the worst-case chip temperature T ∗

S of a multi-core system is the
maximum temperature of all individual nodes:

T ∗
S = max (T ∗

1 , . . . , T
∗
n) (16)

where T ∗
k is the worst-case peak temperature of node k. The following theorem

follows from the results of [17] and states that the worst-case peak temperature
is composed of n+ 1 summands, that can be calculated individually.
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continuous sorting equivalent ˜Hk�(t)

Theorem 1. Suppose that T ∗
k,�(τ) = maxu�∈U�

(Tk,�(τ)) with U� the set of all
possible inputs u�, Tk,�(t) defined as in (14), and a certain time instance τ . Then,
an upper bound on the maximum temperature of node k at time τ is:

T ∗
k (τ) ≤ T init

k +

n∑

�=1

T ∗
k,�(τ) (17)

where n is equal the number of nodes of the thermal RC circuit.

Proof. Rewriting (13) with T ∗
k,�(τ) = maxu�∈U�

(Tk,�(τ)) leads to:

T ∗
k (τ) = max

u∈U
(Tk(τ)) = max

u∈U

(
T init
k +

n∑

�=1

Tk,�(τ)

)

≤ T init
k +

n∑

�=1

max
u�∈U�

(Tk,�(τ)) = T init
k +

n∑

�=1

T ∗
k,�(τ). ��

(18)

As T ∗
k,� only depends on the workload ofΘ�, we can individually maximize Tk,�(τ)

at time instance τ for each processing component Θ�. The remaining question
is how to calculate an upper bound T ∗

k,�(τ) on Tk,�(τ) for a given time instance
τ and all possible input sequences u�. To this end, we first introduce the non-
increasing left-continuous sorting H̃k�(t) ofHk�(t) [18]. Roughly speaking, H̃k�(t)
is Hk�(t) sorted in non-increasing order, see Fig. 4 for an example of a typical

impulse response Hk�(t) and its sorted equivalent H̃k�(t). For illustration, we
suppose discrete time, i.e., Hk�(t) may change values only at multiples of δ and

is constant for t ∈ [r·δ, (r+1)·δ) for all r ≥ 0. Then, H̃k�[r] has the same elements

as Hk�[r], however, they are ordered non-increasingly, i.e., H̃k�[r] ≥ H̃k�[r + 1]
for all r ≥ 0.

The next theorem shows that T ∗
k,�(τ) is obtained by first calculating the sorted

equivalent H̃k�(t) of Hk�(t), and then by convoluting H̃k�(t) with S
∗
� (t). S

∗
� (t) is

the mode function defined as in (7) resulting from the accumulated computing
time Q∗

�(0, t) = γ�(τ)− γ�(τ − t) for all 0 ≤ t ≤ τ . Q∗
� (0, t) is called the thermal

critical accumulated computing time. In particular, Q∗
�(0, t) shifts the computing
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time as late as possible to observation time τ . The steps required to calculate
Q∗

� (0, t) are detailed in Section 3 and summarized in Fig. 5.

Theorem 2. Suppose that H̃k�(t) is the non-increasing left-continuous sorting
of Hk�(t) [18], Q

∗
� (0, t) = γ�(τ)−γ�(τ−t) for all 0 ≤ t ≤ τ , and Tk,�(t) is defined

as in (14). Then, for any given time instance τ , T ∗
k,�(τ) defined as:

T ∗
k,�(τ) = uidle� ·

∫ τ

0

Hk�(t− ξ) dξ + ρ�� · f3
� ·
∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ (19)

with S∗
� (t) =

dQ∗
� (0,t)
dt is an upper bound on Tk,�(τ), i.e., T

∗
k,�(τ) ≥ Tk,�(τ).

Proof. The proof of this theorem is in the Appendix. ��

So far, we have shown how to calculate an upper bound on the maximum tem-
perature T ∗

k (τ) of processing component k at time τ . However, we did not dwell
on the amount of the observation time τ . The following theorem states that
increasing the observation time τ will not decrease the worst-case peak temper-
ature if T0 ≤ (T∞)

i
, where (T∞)

i
is the steady-state temperature vector if all

components are in ‘idle’ processing mode.

Theorem 3. Suppose that T ∗
k (τ) defined as in (17) is an upper bound on the

maximum temperature of processing component k at time τ . Then, T ∗
k (τ) ≥ Tk(t)

for all 0 ≤ t ≤ τ and for any set of feasible workload traces with the same initial
temperature vector T0 ≤ (T∞)i.

Proof. With T ∗
k,�(τ) defined as in (19), the proof is equivalent to the proof of

Lemma 6 in [17]. ��

In summary, Theorems 1 to 3 form together a method to calculate a non-trivial
upper bound on the maximum temperature of a multi-core chip. First, we
individually calculate T ∗

k,�(τ) for all k, � by (19). Then, in a second step, the
maximum temperature T ∗

k (τ) of each node k is calculated by (17). Finally, the
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worst-case chip temperature T ∗
S follows from (16). The proposed method pro-

vides a safe bound on the maximum temperature, i.e., the method guarantees
that the actual chip temperature will never exceed the temperature T ∗

S .

4.2 Optimal Frequency Assignment

As a frequency reduction always leads to an accumulated computing time that
is in all time intervals Δ ≥ 0 smaller or equal the original accumulated comput-
ing time, a frequency reduction results in a lower worst-case chip temperature.
Therefore, the optimal frequency of every processing component Θ� is the mini-
mum operation frequency such that no real-time deadline is missed. In particular,
Θ� is schedulable, i.e., the real-time deadlines of all events are met, if the cu-
mulated number of available computing resources W� is in no time interval Δ
smaller than the maximum resources demand dbf� defined as in (5) [10]:

dbf�(Δ) ≤W�(t−Δ, t) = f� ·Δ ∀Δ ≥ 0 . (20)

Therefore, the minimum operation frequency f� of processing component Θ�,
such that all real-time deadlines are met, is:

f� = sup
Δ≥0

{
dbf�(Δ)

Δ

}
. (21)

In other words, the frequency is selected such that the computing resource curve
W�(t − Δ, t) = f� · Δ upper bounds the maximum resources demand dbf�(Δ)
in every time interval Δ ≥ 0. From a geometric point of view, the problem is
equivalent to determine a tangent to the curve dbf�(Δ) that crosses the origin.
Practically, the optimal frequency can be calculated by the RTC toolbox [19].
Figure 6 illustrates this calculation with the help of an example.

5 Optimal Task Assignment

In this section, the optimal task assignment formulation is stated that solves the
problem defined in Section 1.

5.1 Temperature Minimization Problem

In the last section, we proposed a method to calculate the optimal operation
frequency of each processing component. Now, we apply these results to calcu-
late an optimal task assignment that minimizes the worst-case chip temperature
and guarantees that all real-time deadlines are met. If the worst-case chip tem-
perature is smaller than the critical chip temperature, the system can safely
execute the assignment without involving other (dynamic) thermal management
strategies, that may lead to unpredictable behavior.

The objective of the temperature minimization problem (TMP) is to reduce
the worst-case chip temperature:

minimize T ∗
S = max (T ∗

1 , . . . , T
∗
n) (22)
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where T ∗
k ≥ Tk(t) for all t ≥ 0 is the worst-case peak temperature of node k and

n the number of nodes of the thermal RC circuit of the chip.
Furthermore, the operation frequency f� of processing component Θ� has to

fulfill the following constraints following from (2) , (5) and (21):

f� = sup
Δ≥0

{∑|ν|
j=1 Γ (νj , Θ�) · ανj (Δ−Dνj )

Δ

}
≤ fmax

� . (23)

This constraint is also used to guarantee the schedulability. Whenever the opera-
tion frequency f� is smaller or equal to the maximum frequency fmax

� of process-
ing component �, the considered task assignment is schedulable, and otherwise,
the task assignment is infeasible.

Finally, we have to guarantee that all tasks are assigned to exactly one pro-
cessing component:

|Θ|∑

�=1

Γ (νj, Θ�) = 1 ∀νj ∈ ν . (24)

5.2 Evaluating a Task Assignment

So far, we formulated the TMP as a nonlinear binary optimization problem.
Next, we will describe how to apply the methods presented in Section 4 to verify
the schedulability and, if the task assignment is feasible, to calculate an upper
bound on the maximum chip temperature of a task assignment.

The proposed method is summarized in Fig. 7. First, the demand bound
function related to every processing component is individually computed by (5).
Then, the minimum operation frequency f� is calculated for all processing com-
ponents Θ� by (21) and the schedulability is tested. In particular, the system
is only schedulable if all frequencies f� are smaller or equal their maximum fre-
quency fmax

� . Once we know that the system is schedulable with a particular set
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of operation frequencies, we calculate the worst-case chip temperature. To this
end, the critical mode function S∗

� is calculated for all processing components
Θ� by the approach shown in Fig. 5. Finally, the worst-case chip temperature
T ∗
S follows by (16).

5.3 Efficient Temperature Reevaluation

Calculating the optimal task assignment might be expensive when all steps de-
scribed in Section 5.2 are repeated for every possible assignment. Next, we show
how to efficiently calculate the worst-case chip temperature of multiple related
task assignments as it is the case in many metaheuristics. In a first step, we
rewrite the formula to calculate an upper bound on the maximum temperature
of a node k as two terms, thereof one is assignment-independent, i.e., reusable,
and one is assignment-dependent. Rewriting (17) with (19) leads to:

T ∗
k (τ) ≤ T init

k +
n∑

�=1

(
uidle� ·

∫ τ

0

Hk�(t− ξ) dξ

)

+
n∑

�=1

(
ρ�� · f3

� ·
∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ

)
= T const

k +

|Θ|∑

�=1

Mk,� (S
∗
� )

with the number of nodes n of the thermal RC circuit, T const
k = T init

k +∑n
�=1

(
uidle� ·

∫ τ

0
Hk�(t− ξ) dξ

)
and Mk,� (S

∗
� ) = ρ�� · f3

� ·
∫ τ

0
S∗
� (ξ) · H̃k�(τ − ξ) dξ.

In the last step, we used the fact, that Mk,� is all zero if node � does not cor-
respond to a processing component, to change the bound of summation. T const

k

is independent of the assignment, thus it is calculated once for all possible task
assignments. Suppose that the worst-case chip temperature is calculated for two
task assignments that only differ in the assignment of task νy. In particular, the
first assignment maps task νy to component i and the second assignment maps
task νy to component j. After calculating the worst-case chip temperature for
the first assignment, the only elements that have to be recalculated for the sec-
ond task assignment are allM∗,i andM∗,j. In particular, the number of elements

to be recalculated is reduced by a factor of |Θ|−2
|Θ| .

6 Case Studies

In order to study the viability of the proposed approaches, we solved TMP
with four different solvers for different task sets and floorplans. To this end, the
discussed methods are implemented in the real-time calculus toolbox [19].

6.1 System Description

We are targeting a reconfigurable homogeneous multi-core ARM platform with
a variable number of processing components. The maximum frequency of all
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Table 1. Thermal configuration of HotSpot and the power dissipation parameters of
the power model defined as in (10)

(a) Thermal configuration of HotSpot.

Parameter Symbol Value

Silicon thermal cond. [W/(m ·K)] kchip 150
Silicon specific heat [J/(m3 ·K)] pchip 1.75 · 106
Thickness of the chip [mm] tchip 3.5
Convection resistance [K/W] rconvec 2
Heatsink thickness [mm] tsink 0.01
Heatsink thermal cond. [W/(m ·K)] ksink 400
Heatsink specific heat [J/(m3 ·K)] psink 3.55 · 106
Ambient temperature [K] Tamb 300

(b) Power configuration.

Parameter Value

φ�� [W/K] 0.0228
ρ�� [W/GHz3] 3.936
ψ� [W] −2.756

cores is 1.6GHz and an EDF scheduler is running on each core to arbitrate
between events of different tasks assigned to the same core. HotSpot [16] is
used to calculate the thermal parameters of the platform, i.e., C, G, and K
matrices, see Table 1(a) for the detailed thermal configuration. The temperature-
dependency of leakage power is addressed by linearizing the model described
in [15] and the parameters of the power model for the platform with a 3× 1 core
layout are summarized in Table 1(b). As we consider a homogeneous platform,
every component has the same power values. In all experiments, the traces start
from the steady-state temperature in ‘idle’ mode, i.e., T0 = (T∞)i.

6.2 Performance of Four Different TMP Solvers

The optimal solution of the TMP can exhaustively be calculated for small task
sets and platforms with a low number of processing components. We assess the
performance of metaheurstics compared to exhaustive search for three different
platforms and six different sets of tasks. The considered hardware platforms have
a 3× 1, 2× 2, and 3× 2 layout with three, four, and six cores, respectively. The
event model of task νj is described using a set of two parameters, namely the
period pνj and jitter jνj [9]. In particular, the period pνj is uniformly chosen
from [1, 400 ]ms, its jitter jνj is uniformly chosen from [1ms, 2 · pνj ], and the
computational demand is uniformly chosen from

[
1, pνj · fmax/5

]
cycles with

fmax = 1.6GHz. The real-time deadline of a task is equal to its period. Finally,
the number of tasks in one set is randomly chosen between four and six tasks.

In total, we evaluate the performance of four different solvers for TMP. The first
one exhaustively tests all possible assignments to compute the optimal solution
from the TMP formulation. The optimal solution is compared, on the one hand,
to the solution of simulated annealing [20] and, on the other hand, to the solution of
a local search algorithm, and the average peak temperature of 20 feasible random
assignments. The local search algorithm fully exploits the characteristics of the
considered peak temperature computation algorithm as described in Section 5.3
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Fig. 8. Performance of four different TMP solvers. The hardware platforms have a
3× 1, 2× 2, and 3× 2 layout, respectively.

by testing the peak temperature of all neighbor assignments, and then, selecting
the assignment that minimizes the peak temperature the most.

Fig. 8 compares the performance of the four different solvers. The peak tem-
perature of the optimal task assignment is on average 2.27K lower than the
peak temperature of the random assignments. Simulated annealing found in all
considered benchmarks an assignment that has a peak temperature that is no
more than 0.11K higher than the optimal assignment. This shows that proba-
bilistic metaheuristics are well suited to solve TMP. The local search algorithm
calculates an assignment that is no more than 0.4K higher than the peak tem-
perature of the optimal assignment. In particular, one can see that there are
a few task sets where the local search algorithm proposes a task assignment
that is significantly worse than the optimal solution. This could be prevented
by extending the local search algorithm such that it does not only consider the
direct neighborhood of the current assignment, but all assignments up to its k-th
neighborhood. The difference in terms of peak temperature between the solvers
becomes even larger if the number of tasks per task set is increased as more local
optima emerge. As frequency reduction damps the effect of burst on the peak
temperature, most solvers are able to find an acceptable solution. However, once
the damping is removed, the peak temperature might drastically increase, which
in turn results in higher peak temperature differences between the solvers.

On a 2.55GHz Intel Core i5-2400S processor, calculating the optimal solution
for the hardware platform with 6 cores took on average 1.52 h. Simulated an-
nealing and the local search algorithm finished on average in 22.6 s and 0.77 s,
respectively. Finally, calculating the peak temperature of 20 random assignments
took on average 3.1 s.

6.3 Performance for Different Utilizations and Floorplans

In the second case study, we evaluate the worst-case chip temperature for differ-
ent floorplans and utilizations. The layout of the considered platforms is 3 × 1,
3 × 2, and 4 × 4 with 3, 6, and 16 cores, respectively. In all benchmarks, the
TMP is solved by simulated annealing. The task sets are iteratively generated,
starting with an initial size of |Θ| randomly generated tasks. Then, as long as the
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(b) 3× 2 layout.
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(c) 4× 4 layout.

�� maximum frequency �� optimal frequency

Fig. 9. Worst-case chip temperature for three hardware platforms. To calculate the
worst-case peak temperature, TMP is once solved under the assumption that all pro-
cessing components are running at maximum frequency, and once under the assumption
that the components are running at optimal frequency.

system is schedulable, we add a new randomly generated task to the collection.
In total, we generate 50 different task sets for each hardware platform.

For each benchmark, we resolve the TMP once under the assumption that
all processing components are running at maximum frequency, i.e., 1.6GHz, and
once under the assumption that the components are running at their optimal fre-
quency such that each benchmark is characterized by a triple (T ∗

fmax
, T ∗

fopt
, util).

T ∗
fmax

is the peak temperature when the components are running at maximum
frequency, T ∗

fopt
is the peak temperature when the components are running at

optimal frequency and util is the average utilization of all cores when the com-
ponents are running at their optimal frequency and the jitter is ignored. Even
thought the components are running at their optimal frequency, the utilization
is not 100% as the jitter has a high impact on the selection of the frequencies.

Finally, in Fig. 9, we plot T ∗
fmax

and T ∗
fopt

as a function of util for three
hardware platforms. It shows that the chip temperature can drastically be re-
duced when the processing components are running at their optimal frequency.
In particular, the peak temperature can be reduced on average by 23.6K for the
3 × 1 layout, by 17.0K for the 3 × 2 layout, and by 12.1K for the 4 × 4 lay-
out. Furthermore, Fig. 9 shows that the worst-case chip temperature does not
necessarily increase with the utilization as different amounts of non-determinism
might cause higher chip temperatures for lower utilizations.

7 Related Work

Xie and Hung [21] were the first to identify the topic of thermal-aware task
allocation and scheduling. Later, a convex optimization technique for
temperature-aware frequency assignment is proposed to maximize the per-
formance under temperature constraints [5] and the task scheduling problem is
statically solved using integer linear programming for minimizing energy, and
reducing hot spots [7].
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The minimization of the peak temperature in the presence of real-time dead-
lines is formulated as a nonlinear programming problem in [22]. A mixed-integer
linear programming formulation for assigning and scheduling tasks with hard
real-time constraints to reduce the peak temperature is proposed in [4]. Fi-
nally, Fisher et al. [6] proposed a global scheduling algorithm such that all
cores are running at their ideally preferred speed, and the peak temperature
is minimized. However, as the peak temperature is calculated in these works
by either steady-state temperature analysis or transient temperature evolution,
the proposed methods cannot be used to optimize the task to processing compo-
nent assignment of a system with non-deterministic workload and hard real-time
guarantees. As high chip temperatures can significantly reduce the system’s per-
formance, real-time constraints can only be guaranteed if the worst-case chip
temperature is incorporated in real-time analysis, at design-time.

HotSpot [16] is the most popular simulator for thermal analysis. However, as
thermal simulation methods only cover a fraction of all possible system behav-
iors, they are not able to capture the maximum temperature of an application
with non-deterministic workload. Tackling this challenge, a method to calculate
the worst-case chip temperature of a multi-core system with non-deterministic
workload has been proposed in [17]. In comparison with the method proposed
in this paper, the authors of [17] use periodic event streams with burst [9] for
the event model of every processing component.

8 Conclusion

In this paper, we formulated the thermal-aware task assignment and frequency
selection problem to optimize the worst-case chip temperature under real-time
constraints as a nonlinear binary integer problem. In order to solve the proposed
problem, we described a novel analytical method to calculate an upper bound on
the maximum chip temperature under all feasible scenarios of task arrivals. Each
core has its own clock domain and the static assigned frequencies correspond to
the minimum operation frequencies such that no real-time deadline is missed.
The considered thermal model is able to address various thermal effects like
heat exchange between neighboring cores and temperature-dependent leakage
power. Arrival curves from real-time calculus are used to upper bound the task’s
workload in any time interval. Case studies have shown that the worst-case chip
temperature of an embedded multi-core system can be reduced by more than
20K by assigning each processing component its ideally preferred frequency and
selecting the optimal task to processing component assignment.
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Appendix: Proof of Theorem 2

In the following, we will show that T ∗
k,�(τ) ≥ Tk,�(τ) for any valid Tk,�(τ). Rewrit-

ing (14) with (15) leads to Tk,�(t) = uidle� ·
∫ t

0
Hk�(t − ξ) dξ + ρ�� · f3

� ·
∫ t

0
S�(ξ) ·

Hk�(t− ξ) dξ. Then we have:

T ∗
k,�(τ )− Tk,�(τ ) = ρ�� · f3

� ·
(∫ τ

0

S∗
� (ξ) · ˜Hk�(τ − ξ) dξ −

∫ τ

0

S�(ξ) ·Hk�(τ − ξ) dξ

)

with ρ�� ·f3
� > 0. In other words, we have to show that

∫ τ

0
S∗
� (ξ) ·H̃k�(τ−ξ) dξ ≥∫ τ

0
S�(ξ) ·Hk�(τ − ξ) dξ.

Discretization

In order to simplify the proof technicalities, we suppose discrete time, i.e.,
S�(t), S

∗
� (t), H̃k�(t), and Hk�(t) may change values only at multiples of δ and

are constant for t ∈ [r · δ, (r + 1) · δ) for all r ≥ 0. With rτ = τ · δ, we have:

∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ = δ ·

rτ−1∑

r=0

S∗
� [r] · H̃k� [rτ − 1− r] (25)

and ∫ τ

0

S�(ξ) ·Hk�(τ − ξ) dξ = δ ·
rτ−1∑

r=0

S� [r] ·Hk� [rτ − 1− r] . (26)

Next, we show that
∑rτ−1

r=0 S� [r] ·Hk� [rτ − 1− r] ≤
∑rτ−1

r=0 S
∗
� [r] ·H̃k� [rτ − 1− r]

for all S� that satisfy (6), by induction. To this end, we will prove that:

w+π−1∑

r=w

S� [r] ·Hk� [rτ − 1− r]

︸ ︷︷ ︸
T (π,w,S�)

≤
rτ−1∑

r=rτ−π

S∗
� [r] · H̃k� [rτ − 1− r]

︸ ︷︷ ︸
T ∗(π)

(27)

for any π ∈ [0, rτ ] and any w ∈ [0, rτ − π].

http://www.mpa.ethz.ch/Rtctoolbox
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Base Case

First, we show that the statement is true for π = 1. Rewriting (27) with

π = 1 leads to S� [w] · Hk� [rτ − 1− w] ≤ S∗
� [rτ − 1] · H̃k� [rτ − 1− (rτ − 1)] =

S∗
� [rτ − 1] · H̃k� [0]. As S

∗
� [rτ − 1] = 1 and H̃k� [0] ≥ Hk� [η] for all η ≥ 0, the

statement is true for π = 1.

Induction Hypothesis

Next, we show that the statement is true for π if it is true for π − 1. In other
words, we assume as induction hypothesis that:

T (π − 1, w, S�) ≤ T ∗(π − 1) (28)

holds for all w ∈ [0, rτ − π + 1].

Induction Step

Let us prove by contradiction that (27) is true for any π. Therefore, assume for
contradiction that there exists a w such that:

T (π,w, S�) > T ∗(π) . (29)

Now, we differ between the following cases:

Case 1: S� [w + π − 1] = 0.
The contradiction follows from T (π,w, S�) = T (π − 1, w, S�) +
S� [w + π − 1] · Hk� [rτ − 1− (w + π − 1)] = T (π − 1, w, S�) + 0 ·
Hk� [rτ − 1− (w + π − 1)] ≤ T ∗(π − 1) ≤ T ∗(π).

Case 2: S� [w + π − 1] = 1, S∗
� [rτ − π] = 1.

As T ∗(π) = T ∗(π − 1) + H̃k� [rτ − 1− (rτ − π)] and T (π,w, S�) =
T (π − 1, w, S�) + Hk� [rτ − 1− (w + π − 1)], it follows that

H̃k� [π − 1] < Hk� [rτ − (w + π)].

First, we show that H̃k� [π − 1] < Hk� [rτ − (w + π)] implies that

Hk� [rτ − w] ≤ H̃k� [π − 1]. As Hk� is a non-negative unimodal func-

tion, the condition Hk� [rτ − w] > H̃k� [π − 1] requires that all π + 1

elements Hk�[η] for η ∈ [rτ−(w+π), rτ−w] fulfill Hk�[η] > H̃k� [π − 1],

see Fig. 10 for an illustration. However, as H̃k� [π − 1] is the π-th largest

element of Hk�, this is a contradiction, and Hk� [rτ − w] ≤ H̃k� [π − 1].
As T (π − 1, w, S�) ≤ T ∗(π − 1) for any w, in particular also for w =
w + 1, we find T (π,w, S�) ≤ Hk� [rτ − w] + T (π − 1, w + 1, S�) ≤
H̃k� [π − 1] + T ∗(π − 1) = T ∗(π), which is a contradiction.

Case 3: S� [w + π − 1] = 1, S∗
� [rτ − π] = 0.

From S∗
� [rτ − π] = 0 follows that

∑rτ−1
r=rτ−π+1S

∗
� [r] = γ[π − 2] =∑rτ−1

r=rτ−πS
∗
� [r] = γ[π − 1].
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Fig. 10. Sketch of the proof that in Case
2, ˜Hk� [π − 1] < Hk� [rτ − (w + π)] im-
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Fig. 11. Sketch of Case 3(b) that illus-
trates how the accumulated computing
time is upper bounded

a) S� [w] = 0.
From S� [w] = 0 follows that T (π,w, S�) = T (π − 1, w + 1, S�) ≤
T ∗(π − 1) = T ∗(π), which is a contradiction.

b) S� [w] = 1.

First note that
∑w+π−1

r=w S� [r] ≤ γ�[π − 1] = γ�[π − 2]. As

S� [w] = 1, we know that
∑w+π−1

r=w+1S� [r] <
∑rτ−1

r=rτ−π+1S
∗
� [r] =

γ�[π− 2] and as S� [w + π − 1] = 1, we know that
∑w+π−2

r=w S� [r] <∑rτ−1
r=rτ−π+1S

∗
� [r] = γ�[π − 2], see also Fig. 11.

In case that Hk� [rτ − 1− w] < Hk� [rτ − 1− (w + π − 1)], we
know that Hk�[η] ≥ Hk� [rτ − 1− w] for any η ∈ [rτ − (w+π), rτ −
w − 1] (see Fig. 10). Therefore, there exists:

S� [r] =

⎧
⎪⎨

⎪⎩

0 r = w

1 r = w′

S� [r] otherwise

(30)

with w < w′ < w + π − 1 and S� [w
′] = 0. As Hk�[rτ − 1 −

w′] ≥ Hk� [rτ − 1− w], we have T (π,w, S�) ≤ T (π,w, S�). Sim-
ilarly, we can find a S� and w′ for the case Hk� [rτ − 1− w] ≥
Hk� [rτ − 1− (w + π − 1)].
Now, applying Case 1 or Case 3.a to S� shows that T (π,w, S�) ≤
T ∗(π), and therefore, T (π,w, S�) ≤ T (π,w, S�) ≤ T ∗(π), which is
the contradiction.

As we have shown that (27) is true for any π, it is particularly true for π = rτ ,
and the theorem follows. ��
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