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Abstract. The reduced feature size of electronic systems and the
demand for high performance lead to increased power densities and
high chip temperatures, which in turn reduce the system reliability.
Thermal-aware task allocation and scheduling algorithms are promising
approaches to reduce the peak temperature of multi-core systems with
real-time constraints. However, as long as the worst-case chip tempera-
ture is not incorporated into system analysis, no guarantees on the per-
formance can be given. This paper explores thermal-aware task assign-
ment strategies for real-time applications with non-deterministic work-
load that are running on a multi-core system. In particular, tasks are
assigned to the multi-core system so that the worst-case chip tempera-
ture is minimized and all real-time deadlines are met. Each core has its
own clock domain and the static assigned frequency corresponds to the
minimum operation frequency such that no real-time deadline is missed.
Finally, we show that the proposed temperature minimization problem
can efficiently be solved by metaheuristics.

Keywords: Real-Time Systems, Worst-Case Chip Temperature, Task
Assignment, Thermal Analysis, Multi-Core Systems.

1 Introduction

Multi-core systems outperform single-core platforms by offering higher perfor-
mance and better power efficiency. However, the demand for increased perfor-
mance and the reduced feature sizes lead to increasing power densities and high
chip temperatures, which in turn reduce the system reliability. For example, ex-
ceeding the chip’s peak temperature could lead to a reduction of performance or
even damage the physical system. Reactive thermal management mechanisms,
cooling systems, and thermal-aware task allocation and scheduling algorithms
are potential techniques to tackle thermal and reliability issues.

Cooling systems for embedded real-time systems have to be designed for the
worst-case chip temperature, i.e., the maximum chip temperature under all fea-
sible scenarios of task arrivals. As the packaging costs of cooling systems increase
super-linearly in power consumption [1], its design might be very expensive with-
out the use of other thermal management mechanisms. Reactive thermal man-
agement mechanisms such as DVFS [2|[3] are widely used to address thermal
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issues. Despite their thermal effectiveness, these techniques cause a significant
degradation of performance or lead to an expensive run-time overhead, both
unacceptable in today’s embedded real-time systems.

Various thermal-aware task allocation and scheduling algorithms have recently
been studied [4H7]. However, as long as the worst-case chip temperature is not
incorporated into system analysis, no guarantees on performance can be given
and violations of real-time deadlines cannot be ruled out. Consequently, this
paper explores thermal-aware task assignment and frequency selection strate-
gies to reduce the worst-case chip temperature under real-time constraints. In
particular, we consider the following problem:

Given are a set of tasks that are mapped onto a multi-core chip. Then,
the goal is to assign each processing component its optimal frequency and
to select a static assignment of tasks to processing components such that
all real-time deadlines are met and the worst-case chip temperature is
minimized.

To this end, we propose a thermal analysis method to calculate a non-trivial
upper bound on the maximum temperature of an embedded real-time system
with multiple cores and non-deterministic workload that is later incorporated
into the task assignment problem. Arrival curves from real-time calculus [§] are
used to upper bound the task’s workload in any time interval. Each processing
component executes at a static frequency assigned at compile-time. This fre-
quency is selected such that the real-time deadlines of all tasks are met and the
worst-case chip temperature is minimized. The considered thermal model is able
to address various thermal effects like the heat exchange between neighboring
cores and temperature-dependent leakage power. The contributions of this paper
can be summarized as follows:

— A novel method to calculate the worst-case chip temperature of an embed-
ded real-time system with multiple cores and non-deterministic workload is
formally derived.

— The minimization of the worst-case chip temperature with respect to real-
time constraints is formulated as a nonlinear binary integer problem.

— We show the viability of the proposed methods in various case studies on
hardware platforms with up to 16 cores.

The remainder of the paper is organized as follows: First, the considered problem
is motivated by an introductory example in Section . Afterwards, in Section E,
the thermal and computational models considered in this paper are introduced.
In Section @, we discuss a method to calculate the worst-case chip temperature
and show how to select the optimal operation frequency. The optimal task assign-
ment problem is formulated as a nonlinear binary integer problem in Section .
Finally, Section ldl presents case studies to highlight the viability of our methods
and related work is discussed in Section [f.
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2 Motivational Example

System Description. In order to motivate the considered problem, we examine
various task to processing component assignments of a simple system with two
identical tasks v; and vo, and three homogeneous processing components with
a maximum operation frequency of 1.6 GHz. The chip floorplan corresponds to
the one outlined in Fig. . The parameters of the thermal model and the power
dissipation parameters are summarized in Table |lL_aJ| and Table m Both tasks
have an invocation interval of 200 ms, a jitter of 400 ms, and a computational
demand of 5-107 cycles, i.e., 31.25 ms when the processing component is running
at its maximum operation frequency. Furthermore, the real-time deadline of a
task is equal to its period.

Mazimum Operation Frequency. First, we suppose that each processing compo-
nent can only process at its maximum operation frequency, i.e., 1.6 GHz. Then,
we calculate the worst-case chip temperature, i.e., the maximum chip temper-
ature under all feasible scenarios of task arrivals for different mappings by the
method proposed in Section 4.1, Mapping both tasks v; and v, to the same
processing component results in a worst-case chip temperature of 339.22 K while
mapping both tasks to different adjoined and non-adjoined processing compo-
nents leads to a worst-case chip temperature of 343.61 K and 340.47 K, respec-
tively. Note that the worst-case chip temperature is higher when both tasks are
assigned to different processing components as both processing components are
concurrently processing in the thermal critical scenario.

Optimal Operation Frequency. Next, the operation frequency of every processing
component is the minimum frequency such that all deadlines are just met, calcu-
lated by m When both tasks are mapped onto the same processing component,
the frequency can be reduced to 1.49 GHz and the maximum temperature of the
system is 335.69 K. Assigning both tasks to different adjoined and non-adjoined
processing components results in a worst-case chip temperature of 322.21 K and
321.73 K, respectively. As the operation frequency can be reduced to 0.74 GHz
when both tasks are mapped onto different processing components, we observe
the lowest worst-case chip temperature when both tasks are mapped onto non-
adjoined processing components. In particular, the worst-case chip temperature
was reduced by almost 22 K by selecting an adequate task to processing compo-
nent assignment and optimal operation frequencies.

3 System Model and Problem Definition

In this section, the task, power, and temperature models are described.

Notation: Bold characters will be used for vectors and matrices, and non-bold
characters will be used for scalars. For example, H denotes a matrix whose
(k, £)-th element is denoted as Hy, and T denotes a vector whose k-th element
is denoted as T}.
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3.1 Task Model

The task model considered in this paper is based on real-time calculus [8]. Let
v be the set of tasks that are executed. We suppose that task v; is a stream of
events and has a total workload of R, (s,t) cycles in time interval [s, ). Each
event has to complete its execution within D, time units after its arrival. The
arrival curve «,,; upper bounds all possible cumulative workloads:

R, (s,t) <oy, (t—s5) VO<s<t (1)

with a,,;(A) = 0 for all A < 0. In other words, R,,(0,t) is the cumulative
number of computing cycles of all events arrived in [0,t). Arrival curves are a
generalization of various well-know event arrival models as, for example, periodic
event arrivals with jitter [9].

We use the concept of a demand bound function [10] to model the maximum
resource demand of a task, and later to check the schedulability. In particular,
the demand bound function dbf, (A) of task v; is:

dbf,, (A) = a,,(A—D,,) YA>0 . (2)

In other words, the maximum accumulated computational demand of all events

that arrive and have deadline in any interval of length A does not exceed
dbf,, (A).

3.2 Processor Model

We consider a homogeneous multi-core system with a set of processing compo-
nents . The total accumulated workload of @, at time ¢ is denoted as Ry (0, t)
and is, in any time interval of length A < ¢, upper bounded by the arrival curve
ay [8]:
lv|
Ry(t — A,t) < ap(4) =Y T(v,00) - au,; (4) (3)

Jj=1

with the assignment function:

1 if v; executes on processing component 6,

(4)

(s, 00) = {O otherwise.
Likewise, the demand bound function dbf,(A) of a processing component Oy
can be calculated. For example, suppose that an earliest-deadline-first (EDF)
scheduler runs on each processing component to arbitrate between events of
different tasks assigned to the same processing component. Then, the demand
bound function dbf,(A) is [10]:

L4

dbfy(A) = " I'(v;,0) - dbf,, (A) . (5)

j=1
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Fig. 1. Typical arrival curve ay(A) with Fig. 2. RC circuit of the silicon layer for
its corresponding upper bound on the ac- a chip with three processing components
cumulated computing time ~,(A)

Each processing component executes at a static frequency f, with 0 < f, <
fr®*. Therefore, the cumulated number of available computing cycles in time
interval [s,t) is Wy(s,t) = f¢ - (t — s). If there are no waiting or arriving tasks
n [s,t), the available resources Wy(s,t) are wasted. Otherwise, they are used to
process incoming and waiting events.

The accumulated computing time Q¢(0, t) describes the amount of cycles that
processing component Oy is spending to process an incoming workload of Ry(0, t)
time units. Using arrival curve ay(A), the accumulated computing time Qg(t —
A, t) can be upper bounded by 7,(A) for all intervals of length A < ¢ [I1]:

t— A1) <y (A) = inf A)+We(0,A—- N} . 6
Qelt = A1) < 3(4) = inf {ae() + Wil )} (6)
From the properties of the arrival curve, it follows that ,(A) is monotonically
increasing. The operation mode of a component can be expressed by the mode
function Sy (t), which is Se(t) = 1 if the component is in ‘active’ processing mode
at time ¢ and S¢(t) = 0 if the component is in ‘idle’ processing mode at time ¢:

_dQe(0,1) 1
oAt f

Se(t) (7)

1 Oy is processing some events at time ¢
0 Oy is ‘idle’ at time t¢.

A typical arrival curve and its corresponding upper bound on the accumulated

computing time are outlined in Fig. [1l.

The results of the paper also hold for heterogeneous platforms, but the task
model becomes more complex. The workload R,,(s,t) would just specify the
number of events in time interval [s, ). To calculate the accumulated computing
time Q¢ (s,t), the workload of task v; is multiplied by the computation-time in
cycles of an event of task v; when v; is assigned to processing component ;.

3.3 Power Model

The power consumption of a processing component is the sum of the dynamic
and leakage power consumption [4,[12]. Whenever a component is processing
some events, the component is in ‘active’ mode, and consumes both dynamic and
leakage power. Otherwise, it is in ‘idle’ mode, and consumes only leakage power.
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Each processing component @, has its own clock domain and we suppose that
the dynamic power consumption P 4yn of component @, growths quadratically
with its supply voltage vy and linearly with its operation frequency f, [13]:

Prayn(t) o< vp - fo- Se(t) (8)

where the mode function S(t) implies that Py dyn(t) = 0 if the component is
in ‘idle’ processing mode. Note that the results of the paper also hold for other
relations between supply voltage and frequency as long as they are monotone.

The leakage power consumption Py jeax of component Oy is super linearly
dependent on the temperature that can approximately be modeled by a linear
function of the temperature [6}14]:

Ppicax(t) = ¢oe - To(t) + e 9)

with Ty the temperature of processing component ¢, and the constants ¢y and
1. We assume that the square of the supply voltage scales linearly with the
operation frequency [5] and therefore, the total power consumption is:

P(t) = Payn(t) + Preax(t) = ¢ - T(t) + p - diag(f)* - S(¢) + (10)

with the diagonal matrix diag(f) of vector f and a constant diagonal matrix p.

3.4 Temperature Model

We model the temperature evolution of a multi-core system by an equivalent
RC circuit [4)I5HIT]. The vertical layout of the chip is modeled by four layers,
namely the heat sink, heat spreader, thermal interface, and silicon die. Each
layer is divided into a set of blocks according to architecture-level units, i.e.,
processing components, see Fig. [2 for the RC circuit of the silicon layer for
a chip with three processing components. Every block is then mapped onto a
node of the thermal circuit. The number of nodes and therefore, the order of
the thermal model is n = 4 - |©|. In particular, the n-dimensional temperature
vector T(t) at time ¢ is described by a set of first-order differential equations:

C- dgt) = (P@t)+K- -T") — (G+K) T(t) (11)
with the n x n thermal capacitance matrix C, the n x n thermal conductance
matrix G, the n x n thermal ground conductance matrix K, the n-dimensional
power dissipation vector P, and the ambient temperature vector T?mP = T2mb .
[1,...,1]). The initial temperature vector is denoted as T and the system is
assumed to start at time t° = 0.

Rewriting m with |_(_1_Q)| leads to the state-space representation of the thermal
model:
dT(¢)

3 = A-T(t)+B-ut) (12)
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Fig. 3. Impulse responses

with input vector u(t) = p - diag(f)® - S(t) + ¥ + K- TaP A = —C~!.
(G + K — ¢), and B = C~1. As the thermal system is linear and time-invariant,
the temperature of node k is:

Ti(t) = T (6) + ) Tee(t) (13)
(=1

with Tt (#) = eAt. TO. T}, 4(¢) is the convolution of input u, and Hyy, i.e., the
impulse response between nodes ¢ and k:

t
Tualt) = [ Hial€) - uelt ~ €)d¢ (14)
0
with
Ug(t) = pee - fg . Sz(t) + e + Ky - Tamb — pee - fg . S@(t) + uigdle . (15)

Nodes that do not correspond to a processing component have input uy = uizdle =
Yo+ Kyo- TP, Similar to [I7], we assume that Hy(t) is a non-negative unimodal

function that has its maximum at time tZx¢  see Fig. [ for an illustration.

4 System Analysis

In this section, we propose a novel method to calculate the worst-case chip
temperature of a multi-core system with non-deterministic workload and show
how to select the operation frequencies in an optimal manner.

4.1 Peak Temperature Analysis

Suppose that the thermal RC' network of a multi-core system is composed of n
nodes. Then, the worst-case chip temperature T§ of a multi-core system is the
maximum temperature of all individual nodes:

T% = max (T},...,T7) (16)

where T} is the worst-case peak temperature of node k. The following theorem
follows from the results of [17] and states that the worst-case peak temperature
is composed of n + 1 summands, that can be calculated individually.
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Fig.4. Example of a typical impulse response Hy(t) and its non-increasing left-
continuous sorting equivalent Hp,(t)

Theorem 1. Suppose that Ty ,(7) = maxy,ev, (Tke(T)) with Up the set of all
possible inputs wg, Ty, ¢(t) defined as in , and a certain time instance 7. Then,
an upper bound on the mazimum temperature of node k at time T is:

n
Ti(r) < T+ ) T3 (1) (17)
l=1

where n is equal the number of nodes of the thermal RC' circuit.

Proof. Rewriting @ with T} (1) = maxy,ev, (Th,e(7)) leads to:

T; (1) = max (T (7)) = max (T};ﬁt +)° Tk,f(7)>

ueU ueU —
n o (18)
S TP 437 max (Tie(r) = T + 3 T(r). O
=1

As Ty , only depends on the workload of O, we can individually maximize T} ¢(7)
at time instance 7 for each processing component ©,. The remaining question
is how to calculate an upper bound T} ,(7) on Tk ¢(7) for a given time instance
7 and all possible input sequences uy. To this end, we first introduce the non-
increasing left-continuous sorting Hy (t) of Hy(t) [I8]. Roughly speaking, Hye(t)
is Hye(t) sorted in non-increasing order, see Fig. 4 for an example of a typical
impulse response Hy,(t) and its sorted equivalent ﬁf}ce(t). For illustration, we
suppose discrete time, i.e., Hye(t) may change values only at multiples of § and
is constant for ¢ € [r-6, (r+1)-8) for all r > 0. Then, Hyy[r] has the same elements
as Hy[r], however, they are ordered non-increasingly, i.e., Hy[r] > Hye[r + 1]
for all » > 0.

The next theorem shows that T} ,(7) is obtained by first calculating the sorted

equivalent Hy(t) of Hy(t), and then by convoluting Hye(t) with S (). Si(t) is

the mode function defined as in m resulting from the accumulated computing
time Q7 (0,t) = ve(7) — ve(r —t) for all 0 < ¢ < 7. Q}(0,1) is called the thermal
critical accumulated computing time. In particular, Q7 (0, t) shifts the computing
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as in Fig. [, dbf,(A) the demand bound
function, and Wz(t — A,t) = fo- A the
resulting available computing resources.

time as late as possible to observation time 7. The steps required to calculate
Q7(0,t) are detailed in Section [ and summarized in Fig.

Theorem 2. Suppose that ﬁf}ce(t) is the non-increasing left-continuous sorting

ofHkg?t 18], Q;(0,t) = ve (1) —~e(T—1t) for all0 <t < 7, and Ty, ¢(t) is defined

as in . Then, for any given time instance T, TZ’K(T) defined as:

T7 o (r) = uid® / Hyo(t — €)d€ + pue - [ - / SH€) - Hulr—€)de  (19)

with S;(t) = dQ%(tO’t) is an upper bound on Ty ¢(7), i.e., Ty ,(7) > T o(7).

Proof. The proof of this theorem is in the Appendix. O

So far, we have shown how to calculate an upper bound on the maximum tem-
perature T;(7) of processing component k at time 7. However, we did not dwell
on the amount of the observation time 7. The following theorem states that
increasing the observation time 7 will not decrease the worst-case peak temper-
ature if TO < (T*°)", where (T°)" is the steady-state temperature vector if all
components are in ‘idle’ processing mode.

Theorem 3. Suppose that T} (T) defined as in @ is an upper bound on the
mazimum temperature of processing component k at time . Then, T (1) > Tj(t)
for all 0 <t < 7 and for any set of feasible workload traces with the same initial
temperature vector T < (T°)".

Proof. With Ty ,(7) defined as in m, the proof is equivalent to the proof of
Lemma 6 in [17]. O

In summary, Theorems [ to B form together a method to calculate a non-trivial
upper bound on the maximum temperature of a multi-core chip. First, we
individually calculate T} ,(7) for all k,¢ by @ Then, in a second step, the
maximum temperature T} (7) of each node k is calculated by @ Finally, the
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worst-case chip temperature 7¢ follows from I@ The proposed method pro-
vides a safe bound on the maximum temperature, i.e., the method guarantees
that the actual chip temperature will never exceed the temperature 7.

4.2 Optimal Frequency Assignment

As a frequency reduction always leads to an accumulated computing time that
is in all time intervals A > 0 smaller or equal the original accumulated comput-
ing time, a frequency reduction results in a lower worst-case chip temperature.
Therefore, the optimal frequency of every processing component @, is the mini-
mum operation frequency such that no real-time deadline is missed. In particular,
Oy is schedulable, i.e., the real-time deadlines of all events are met, if the cu-
mulated number of available computing resources Wy is in no time interval A
smaller than the maximum resources demand dbf; defined as in @ [10]:

dbfe(A) < Wit — At) = fo- A YA>0 . (20)

Therefore, the minimum operation frequency f; of processing component Oy,
such that all real-time deadlines are met, is:

fe=sup {dbf@(A)} : (21)

A>0 A

In other words, the frequency is selected such that the computing resource curve
Wi(t — A,t) = fo- A upper bounds the maximum resources demand dbf,(A)
in every time interval A > 0. From a geometric point of view, the problem is
equivalent to determine a tangent to the curve dbfy(A) that crosses the origin.
Practically, the optimal frequency can be calculated by the RTC toolbox [19].
Figure | illustrates this calculation with the help of an example.

5 Optimal Task Assignment

In this section, the optimal task assignment formulation is stated that solves the
problem defined in Section [1.

5.1 Temperature Minimization Problem

In the last section, we proposed a method to calculate the optimal operation
frequency of each processing component. Now, we apply these results to calcu-
late an optimal task assignment that minimizes the worst-case chip temperature
and guarantees that all real-time deadlines are met. If the worst-case chip tem-
perature is smaller than the critical chip temperature, the system can safely
execute the assignment without involving other (dynamic) thermal management
strategies, that may lead to unpredictable behavior.

The objective of the temperature minimization problem (TMP) is to reduce
the worst-case chip temperature:

minimize 7¢ = max (17, ...,T,) (22)
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Fig. 7. Overview of the flow to analyze a single task assignment for schedulability and
worst-case chip temperature

where T} > T (t) for all ¢ > 0 is the worst-case peak temperature of node k and
n the number of nodes of the thermal RC circuit of the chip.

Furthermore, the operation frequency f; of processing component @, has to
fulfill the following constraints following from , @ and :

{Zjuzll F(Vj’ef)'an(AD”j)} < fpex

fe=sup (23)

A>0

A

This constraint is also used to guarantee the schedulability. Whenever the opera-
tion frequency f; is smaller or equal to the maximum frequency f;"*** of process-
ing component £, the considered task assignment is schedulable, and otherwise,
the task assignment is infeasible.

Finally, we have to guarantee that all tasks are assigned to exactly one pro-

cessing component:
o]

> I'(v;,0) =1 Wev. (24)
(=1

5.2 Evaluating a Task Assignment

So far, we formulated the TMP as a nonlinear binary optimization problem.
Next, we will describe how to apply the methods presented in Section l to verify
the schedulability and, if the task assignment is feasible, to calculate an upper
bound on the maximum chip temperature of a task assignment.

The proposed method is summarized in Fig. il First, the demand bound
function related to every processing component is individually computed by @
Then, the minimum operation frequency fy is calculated for all processing com-
ponents @, by m and the schedulability is tested. In particular, the system
is only schedulable if all frequencies f; are smaller or equal their maximum fre-
quency f;***. Once we know that the system is schedulable with a particular set
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of operation frequencies, we calculate the worst-case chip temperature. To this
end, the critical mode function S} is calculated for all processing components
O, by the approach shown in Fig. H. Finally, the worst-case chip temperature
T¢ follows by .

5.3 Efficient Temperature Reevaluation

Calculating the optimal task assignment might be expensive when all steps de-
scribed in Section [5.9 are repeated for every possible assignment. Next, we show
how to efficiently calculate the worst-case chip temperature of multiple related
task assignments as it is the case in many metaheuristics. In a first step, we
rewrite the formula to calculate an upper bound on the maximum temperature
of a node k as two terms, thereof one is assignment-independent, i.e., reusable,
and one is assignment-dependent. Rewritingh with @ leads to:

i) < TP Y (uzf“e [ e -6 ds)
=1 0

n r ||
+> (pee - f7 / Sp(&) - Hye(T — ) df) = T+ > My (S7)
=1 0 =1
with the number of nodes n of the thermal RC circuit, Tgo™® = T»t +

>y (Wi fo Hielt — €) d€) and My (S7) = pee - f7 - [y SE(€) - Hye(T — €) dE.
In the last step, we used the fact, that My o is all zero if node ¢ does not cor-
respond to a processing component, to change the bound of summation. T
is independent of the assignment, thus it is calculated once for all possible task
assignments. Suppose that the worst-case chip temperature is calculated for two
task assignments that only differ in the assignment of task v,. In particular, the
first assignment maps task v, to component ¢ and the second assignment maps
task v, to component j. After calculating the worst-case chip temperature for
the first assignment, the only elements that have to be recalculated for the sec-
ond task assignment are all M, ; and M, ;. In particular, the number of elements

to be recalculated is reduced by a factor of ‘Ql(‘;lQ.

6 Case Studies

In order to study the viability of the proposed approaches, we solved TMP
with four different solvers for different task sets and floorplans. To this end, the
discussed methods are implemented in the real-time calculus toolbox [19].

6.1 System Description

We are targeting a reconfigurable homogeneous multi-core ARM platform with
a variable number of processing components. The maximum frequency of all
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Table 1. Thermal configuration of HotSpot and the power dissipation parameters of
the power model defined as in

(a) Thermal configuration of HotSpot. (b) Power configuration.
Parameter Symbol Value Parameter Value
Silicon thermal cond. [W/(m - K)]  kcnip 150 de [W/K] 0.0228
Silicon specific heat [J/(m?* - K)) Penip 175 - 10° pee [W/GHZ?] 3.936
Thickness of the chip [mm)] tehip 3.5 e [W] —2.756
Convection resistance [K/W] Teonvec 2
Heatsink thickness [mm] tsink 0.01

Heatsink thermal cond. [W/(m - K)] ksnk 400
Heatsink specific heat [J/(m® - K)]  psinx  3.55 - 10°
Ambient temperature [K] Tomb 300

cores is 1.6 GHz and an EDF scheduler is running on each core to arbitrate
between events of different tasks assigned to the same core. HotSpot [16] is
used to calculate the thermal parameters of the platform, i.e., C, G, and K
matrices, see Table m for the detailed thermal configuration. The temperature-
dependency of leakage power is addressed by linearizing the model described
in [15] and the parameters of the power model for the platform with a 3 x 1 core
layout are summarized in Table . As we consider a homogeneous platform,
every component has the same power values. In all experiments, the traces start
from the steady-state temperature in ‘idle’ mode, i.e., T® = (T>)".

6.2 Performance of Four Different TMP Solvers

The optimal solution of the TMP can exhaustively be calculated for small task
sets and platforms with a low number of processing components. We assess the
performance of metaheurstics compared to exhaustive search for three different
platforms and six different sets of tasks. The considered hardware platforms have
a3 x1,2x2, and 3 x 2 layout with three, four, and six cores, respectively. The
event model of task v; is described using a set of two parameters, namely the
period p,, and jitter j,, [9]. In particular, the period p,, is uniformly chosen
from [1,400|ms, its jitter j,, is uniformly chosen from [1ms,2 - p,,], and the
computational demand is uniformly chosen from [1,pyj : fmax/5] cycles with
[ = 1.6 GHz. The real-time deadline of a task is equal to its period. Finally,
the number of tasks in one set is randomly chosen between four and six tasks.
In total, we evaluate the performance of four different solvers for TMP. The first
one exhaustively tests all possible assignments to compute the optimal solution
from the TMP formulation. The optimal solution is compared, on the one hand,
to the solution of simulated annealing [20] and, on the other hand, to the solution of
a local search algorithm, and the average peak temperature of 20 feasible random
assignments. The local search algorithm fully exploits the characteristics of the
considered peak temperature computation algorithm as described in Section
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Fig. 8. Performance of four different TMP solvers. The hardware platforms have a
3 x 1,2 x2,and 3 x 2 layout, respectively.

by testing the peak temperature of all neighbor assignments, and then, selecting
the assignment that minimizes the peak temperature the most.

Fig. é compares the performance of the four different solvers. The peak tem-
perature of the optimal task assignment is on average 2.27 K lower than the
peak temperature of the random assignments. Simulated annealing found in all
considered benchmarks an assignment that has a peak temperature that is no
more than 0.11 K higher than the optimal assignment. This shows that proba-
bilistic metaheuristics are well suited to solve TMP. The local search algorithm
calculates an assignment that is no more than 0.4 K higher than the peak tem-
perature of the optimal assignment. In particular, one can see that there are
a few task sets where the local search algorithm proposes a task assignment
that is significantly worse than the optimal solution. This could be prevented
by extending the local search algorithm such that it does not only consider the
direct neighborhood of the current assignment, but all assignments up to its k-th
neighborhood. The difference in terms of peak temperature between the solvers
becomes even larger if the number of tasks per task set is increased as more local
optima emerge. As frequency reduction damps the effect of burst on the peak
temperature, most solvers are able to find an acceptable solution. However, once
the damping is removed, the peak temperature might drastically increase, which
in turn results in higher peak temperature differences between the solvers.

On a 2.55 GHz Intel Core i5-24008S processor, calculating the optimal solution
for the hardware platform with 6 cores took on average 1.52h. Simulated an-
nealing and the local search algorithm finished on average in 22.6s and 0.77s,
respectively. Finally, calculating the peak temperature of 20 random assignments
took on average 3.1s.

6.3 Performance for Different Utilizations and Floorplans

In the second case study, we evaluate the worst-case chip temperature for differ-
ent floorplans and utilizations. The layout of the considered platforms is 3 x 1,
3 x 2, and 4 x 4 with 3, 6, and 16 cores, respectively. In all benchmarks, the
TMP is solved by simulated annealing. The task sets are iteratively generated,
starting with an initial size of |@| randomly generated tasks. Then, as long as the
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Fig. 9. Worst-case chip temperature for three hardware platforms. To calculate the
worst-case peak temperature, TMP is once solved under the assumption that all pro-
cessing components are running at maximum frequency, and once under the assumption
that the components are running at optimal frequency.

system is schedulable, we add a new randomly generated task to the collection.
In total, we generate 50 different task sets for each hardware platform.

For each benchmark, we resolve the TMP once under the assumption that
all processing components are running at maximum frequency, i.e., 1.6 GHz, and
once under the assumption that the components are running at their optimal fre-
quency such that each benchmark is characterized by a triple (T Foer L ;‘kopu util).
T}‘max is the peak temperature when the components are running at maximum
frequency, T}Zpt is the peak temperature when the components are running at
optimal frequency and wutil is the average utilization of all cores when the com-
ponents are running at their optimal frequency and the jitter is ignored. Even
thought the components are running at their optimal frequency, the utilization
is not 100 % as the jitter has a high impact on the selection of the frequencies.

Finally, in Fig. 4, we plot T} —and T} —as a function of wutil for three
hardware platforms. It shows that ‘the chlp temperature can drastically be re-
duced when the processing components are running at their optimal frequency.
In particular, the peak temperature can be reduced on average by 23.6 K for the
3 x 1 layout, by 17.0K for the 3 x 2 layout, and by 12.1 K for the 4 x 4 lay-
out. Furthermore, Fig. [d shows that the worst-case chip temperature does not
necessarily increase with the utilization as different amounts of non-determinism
might cause higher chip temperatures for lower utilizations.

7 Related Work

Xie and Hung [2I] were the first to identify the topic of thermal-aware task
allocation and scheduling. Later, a convex optimization technique for
temperature-aware frequency assignment is proposed to maximize the per-
formance under temperature constraints [5] and the task scheduling problem is
statically solved using integer linear programming for minimizing energy, and
reducing hot spots [7].
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The minimization of the peak temperature in the presence of real-time dead-
lines is formulated as a nonlinear programming problem in [22]. A mixed-integer
linear programming formulation for assigning and scheduling tasks with hard
real-time constraints to reduce the peak temperature is proposed in [4]. Fi-
nally, Fisher et al. [6] proposed a global scheduling algorithm such that all
cores are running at their ideally preferred speed, and the peak temperature
is minimized. However, as the peak temperature is calculated in these works
by either steady-state temperature analysis or transient temperature evolution,
the proposed methods cannot be used to optimize the task to processing compo-
nent assignment of a system with non-deterministic workload and hard real-time
guarantees. As high chip temperatures can significantly reduce the system’s per-
formance, real-time constraints can only be guaranteed if the worst-case chip
temperature is incorporated in real-time analysis, at design-time.

HotSpot [16] is the most popular simulator for thermal analysis. However, as
thermal simulation methods only cover a fraction of all possible system behav-
iors, they are not able to capture the maximum temperature of an application
with non-deterministic workload. Tackling this challenge, a method to calculate
the worst-case chip temperature of a multi-core system with non-deterministic
workload has been proposed in [I7]. In comparison with the method proposed
in this paper, the authors of [I7] use periodic event streams with burst [9] for
the event model of every processing component.

8 Conclusion

In this paper, we formulated the thermal-aware task assignment and frequency
selection problem to optimize the worst-case chip temperature under real-time
constraints as a nonlinear binary integer problem. In order to solve the proposed
problem, we described a novel analytical method to calculate an upper bound on
the maximum chip temperature under all feasible scenarios of task arrivals. Each
core has its own clock domain and the static assigned frequencies correspond to
the minimum operation frequencies such that no real-time deadline is missed.
The considered thermal model is able to address various thermal effects like
heat exchange between neighboring cores and temperature-dependent leakage
power. Arrival curves from real-time calculus are used to upper bound the task’s
workload in any time interval. Case studies have shown that the worst-case chip
temperature of an embedded multi-core system can be reduced by more than
20 K by assigning each processing component its ideally preferred frequency and
selecting the optimal task to processing component assignment.
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Appendix: Proof of Theorem

In the following, we will show that T} ,(1) > T}, ¢(7) for any valid Tk ¢(7). Rewrit-

ing@ with m leads to Ty ¢(t) = uiedle . fOtHkg(t —&)dE + pee - ff’ . fgSz(f) .
Hio(t — €) d¢. Then we have:

Ty o(7) — Too(r) = poc - 2 ( / "S2(6) - Bro(r — €) de — / "Su(€) - Hialr — €) d&)

with pge- f7 > 0. In other words, we have to show that fOTSI}“(f) -ﬁkg(r—f) d¢ >
Jo Se(€) - Hye(r =€) dé.

Discretization

In order to simplify the proof technicalities, we suppose discrete time, i.e.,
Se(t), S;(t), Hre(t), and Hpe(t) may change values only at multiples of J and
are constant for ¢ € [r- 4§, (r +1) - 0) for all » > 0. With r, = 7 -, we have:

/075;(5) CHpp(r —€)dE =6 - i Sy lr] - Hye[rr —1—1] (25)

r=0

and -
/0 Se(€) - Ho(r —€)dE =6 Se[r] - Hye[rr —1—1] . (26)

r=0

Next, we show that 3277 0 Sy [r]- Hye [rr — 1 — 1] < Z:;gls;; [r]-Hye [rr — 1 — 7]
for all S, that satisfy [(6), by induction. To this end, we will prove that:

wHm—1 r-—1
> Selr]-Hyelrr—1—=0]< Y S;[r]- Hyelrr —1—7] (27)
\r:w - _ ::'rffﬂ' -— _
T (m,w,S¢) T*(m)

for any 7w € [0,7,] and any w € [0,r, — 7].
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Base Case

First, we show that the statement is true for 7 = 1. Rewriting m with
m =1 leads to Sg[w] - Hye [rr —1 —w] < 5§ [rr =1 Hye[rr —1— (ry —1)] =
Syrr—1]- H [0]. As Sylrr—1] =1 and Hy [0] > Hyy [n] for all n > 0, the
statement is true for 7 = 1.

Induction Hypothesis

Next, we show that the statement is true for 7 if it is true for = — 1. In other
words, we assume as induction hypothesis that:

T — 1w, 8) < T*(n — 1) (28)

holds for all w € [0,r; — 7+ 1].

Induction Step

Let us prove by contradiction that m is true for any w. Therefore, assume for
contradiction that there exists a w such that:

T (m,w,Se) > T*(x) . (29)
Now, we differ between the following cases:

Case 1: Splw+m—1]=0.
The contradiction follows from 7 (w,w,S¢) = T(m — 1,w,Se) +
Selw+m—1] - Hylrr —1—(w+nw—-1)] = T(r — 1,w,S¢) + 0 -
Hylrr —1—(w+7n-1)] < T (7 —1) <T*(m).

Case 2: Selw+m—1]=1, S;[r; — 7| =1.
As T*(n) = T*(x — 1) + Hpe[rr — 1 — (rr — )] and T(m,w,S;) =
T(r — Lw,S)) + Hielrr —1—(w+7—1)], it follows that
Hy [mr — 1] < Hyge [r7 — (w + 7))
First, we show that Hy[r —1] < Hpe[ry — (w+ )] implies that
Hyplrr —w] < PNIM [7 —1]. As Hys is a non-negative unimodal func-
tion, the condition Hyy [r, — w] > PNIM [7r — 1] requires that all 7 + 1

elements Hyy[n] for 1) € [rr — (w+m), rr —w] fulfill Hy[n] > Hyy [x — 1],
see Fig. [1d for an illustration. However as Hyy [ — 1] is the m-th largest
element of Hyy, this is a contradiction, and Hye [r, — w] < Hkg [r—1].

As T(m — 1,w,Sy) < T*(m — 1) for any w, in particular also for w =
w+ 1, we find T(m,w,S¢) < Hpelrr —w] + T(r — L,bw+1,8) <
Hyg [m — 1]+ T*(w — 1) = T*(x), which is a contradiction.

Case 8: Selw+nm—1]=1, S;[r; — 7] =0.
From Se [rr —7] = 0 follows that /7" " 77r+1S£ [r] = v[r = 2] =

Z'r rfﬂ'SK[]: [7’(71}.
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Fig. 10. Sketch of the proof that in Case Fig. 11. Sketch of Case 3(b) that illus-
2, Hye[mr — 1] < Hpelrr — (w+ )] im- trates how the accumulated computing
plies that Hye [m — 1] > Hpye [r+ — w) time is upper bounded

a)

b)

Sg [w] =0.

From Sy [w] = 0 follows that T (m,w,S¢) = T(r — 1,w+1,5¢) <
T*(m —1) = T*(m), which is a contradiction.

Se[w] = 1.

First note that Y7 'S, [r] < ~fm — 1] = ~fr — 2]. As
Se[w] = 1, we know that Z:];Z;fsf [r] < Z:;;TI_WHS; [r] =
~ye[r —2] and as S¢ [w + 7w — 1] = 1, we know that 3“7, [r] <
Z:;;TI_WHSZ [r] = ~ye[m — 2], see also Fig. [,

In case that Hys[rr —1—w] < Hpelrr —1— (w47 —1)], we
know that Hye[n] > Hye [rr — 1 — w] for any n € [r; — (w+m), 7, —
w — 1] (see Fig. [10). Therefore, there exists:

0 r=w
Selrj =<1 r=uw (30)

S¢[r] otherwise

with w < w' < w+ 7 —1 and Sp[w'] = 0. As Hyglr, — 1 —
w'] > Hyerr — 1 —w], we have T (m,w,S¢) < T(m,w,Se). Sim-
ilarly, we can find a S; and w’ for the case Hye[rr —1 —w] >
Hyplrr —1— (w+7m—1)].

Now, applying Case 1 or Case 3.a to S; shows that T (m,w, Sy) <
T*(m), and therefore, T (7, w,S;) < T (m,w,S¢) < T*(m), which is
the contradiction.

As we have shown that m is true for any m, it is particularly true for 7 = r,,
and the theorem follows. O
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