
Lecture Notes in Computer Science 7542
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Bernhard Beckert Ferruccio Damiani
Frank S. de Boer Marcello M. Bonsangue (Eds.)

Formal Methods
for Components
and Objects

10th International Symposium, FMCO 2011
Turin, Italy, October 3-5, 2011
Revised Selected Papers

13

Volume Editors

Bernhard Beckert
Karlsruhe Institute of Technology (KIT)
Institute for Theoretical Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany
E-mail: beckert@kit.edu

Ferruccio Damiani
University of Turin
Department of Computer Science
Corso Svizzera 185, 10149 Torino, Italy
E-mail: ferruccio.damiani@di.unito.it

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Science Park 123, 1098 XG Amsterdam, The Netherlands
E-mail: f.s.de.boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science (LIACS)
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35886-9 e-ISBN 978-3-642-35887-6
DOI 10.1007/978-3-642-35887-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954549

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in development methodologies has switched in the last two decades from
functional issues to structural issues: both data and functions are encapsulated
into software units which are integrated into large systems by means of various
techniques supporting reusability and modifiability. This encapsulation principle
is essential to both the object-oriented and the more recent component-based
software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to the
development of large systems requires more emphasis on specification, modeling,
and validation techniques supporting the concepts of reusability and modifiability,
and their implementation in new extensions of existing programming languages
like Java.

The 10th Symposium on Formal Methods for Components and Objects
(FMCO 2011) was held at the Natural Science Museum in Turin, Italy, dur-
ing October 3–5, 2011. FMCO 2011 was realized as a concertation meeting of
European projects focussing on formal methods for components and objects.
This volume contains 20 revised papers submitted after the symposium by the
speakers of each of the following European projects involved in the organization
of the program:

– The FP7-IP project ASCENS on autonomic service-component ensembles.
The contact person is Martin Wirsing (LMU München, Germany).

– The FP7-IST coordination action EternalS on trustworthy eternal systems
via evolving software, data and knowledge. The action coordinator is Alessan-
dro Moschitti (University of Trento, Italy). The four FP7 FET projects
participating in the EternalS action are LivingKnowledge, HATS, Connect,
SecureChange.

– The FP7-STREP project ParaPhrase on parallel patterns for adaptive het-
erogeneous multicore systems. The contact person is Kevin Hammond
(University of St. Andrews, UK).

– The FP7-IP project PRO3D on programming for future 3D architectures
with many cores. The contact person is Christian Fabre (CEA, France).

– The ESF Cost Action IC0701, a European scientific cooperation on formal
verification of object-oriented software. The Chair of the action is Bernhard
Beckert (Karlsruhe Institute of Technology, Germany).

– The ESF Cost Action IC0901 “Rich-Model Toolkit”, a European scientific
cooperation on an infrastructure for reliable computer systems. The Chair
of the action is Viktor Kuncak (EPFL, Switzerland).

VI Preface

The proceedings of the previous editions of FMCO have been published as vol-
umes 2852, 3188, 3657, 4111, 4709, 5382, 5751, 6286, and 6957 of Springer’s
Lecture Notes in Computer Science. We believe that these proceedings provide a
unique combination of ideas on software engineering and formal methods which
reflect the expanding body of knowledge on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

July 2012 Bernhard Beckert
Frank de Boer

Marcello Bonsangue
Ferruccio Damiani

Organization

FMCO 2011 was co-located with the Second International Conference on Formal
Verification of Object-Oriented Software and was organized by the University
of Turin, Italy, in collaboration with the Karlsruhe Institute of Technology,
Germany, the Centrum voor Wiskunde en Informatica (CWI), Amsterdam, and
the Leiden Institute of Advanced Computer Science, Leiden University, The
Netherlands.

Program Organizers

Bernhard Beckert Karlsruhe Institute of Technology, Germany
Ferruccio Damiani University of Turin, Italy

Organizing Committee

Bernhard Beckert Karlsruhe Institute of Technology, Germany
Sara Capecchi University of Turin, Italy
Ferruccio Damiani University of Turin, Italy
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Luca Padovani University of Turin, Italy

Sponsoring Institutions

COST Action IC0701
Museo Regionale di Scienze Naturali (MRSN), Turin, Italy
University of Turin

Table of Contents

The ASCENS Project

ASCENS: Engineering Autonomic Service-Component Ensembles 1
Martin Wirsing, Matthias Hölzl, Mirco Tribastone, and
Franco Zambonelli

A Language-Based Approach to Autonomic Computing 25
Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and
Rosario Pugliese

A Survey on Basic Connectors and Buffers . 49
Roberto Bruni, Hernán Melgratti, and Ugo Montanari

The EternalS Coordination Action

Synthesis-Based Variability Control: Correctness by Construction 69
Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and
Bernhard Steffen

Modeling Application-Level Management of Virtualized Resources
in ABS . 89

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa

HATS Abstract Behavioral Specification: The Architectural View 109
Reiner Hähnle, Michiel Helvensteijn, Einar Broch Johnsen,
Michael Lienhardt, Davide Sangiorgi, Ina Schaefer, and
Peter Y.H. Wong

Automatic Service Categorisation through Machine Learning in
Emergent Middleware . 133

Amel Bennaceur, Valérie Issarny, Richard Johansson,
Alessandro Moschitti, Romina Spalazzese, and Daniel Sykes

Towards a Model- and Learning-Based Framework for Security
Anomaly Detection . 150

Matthias Gander, Basel Katt, Michael Felderer, and Ruth Breu

Enhancing Model Driven Security through Pattern Refinement
Techniques . 169

Basel Katt, Matthias Gander, Ruth Breu, and Michael Felderer

Project Zeppelin: A Modern Web Application Development
Framework . 184

Leigh Griffin, Peter Elger, and Eamonn de Leastar

X Table of Contents

The ParaPhrase Project

Managing Adaptivity in Parallel Systems . 199
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick,
Carlo Montangero, and Laura Semini

The ParaPhrase Project: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems . 218

Kevin Hammond, Marco Aldinucci, Christopher Brown,
Francesco Cesarini, Marco Danelutto, Horacio González-Vélez,
Peter Kilpatrick, Rainer Keller, Michael Rossbory, and Gilad Shainer

Paraphrasing: Generating Parallel Programs Using Refactoring 237
Christopher Brown, Kevin Hammond, Marco Danelutto,
Peter Kilpatrick, Holger Schöner, and Tino Breddin

An Abstract Annotation Model for Skeletons . 257
Marco Aldinucci, Sonia Campa, Peter Kilpatrick,
Fabio Tordini, and Massimo Torquati

The PRO3D Project

PRO3D, Programming for Future 3D Manycore Architectures:
Project’s Interim Status . 277

Christian Fabre, Iuliana Bacivarov, Ananda Basu, Martino Ruggiero,
David Atienza, Éric Flamand, Jean-Pierre Krimm, Julien Mottin,
Lars Schor, Pratyush Kumar, Hoeseok Yang, Devesh B. Chokshi,
Lothar Thiele, Saddek Bensalem, Marius Bozga, Luca Benini,
Mohamed M. Sabry, Yusuf Leblebici, Giovanni De Micheli, and
Diego Melpignano

Thermal-Aware Task Assignment for Real-Time Applications
on Multi-Core Systems . 294

Lars Schor, Hoeseok Yang, Iuliana Bacivarov, and Lothar Thiele

Component Assemblies in the Context of Manycore 314
Ananda Basu, Saddek Bensalem, Marius Bozga,
Paraskevas Bourgos, Mayur Maheshwari, and Joseph Sifakis

Low-Cost Dynamic Voltage and Frequency Management Based upon
Robust Control Techniques under Thermal Constraints 334

Sylvain Durand, Suzanne Lesecq, Edith Beigné, Christian Fabre,
Lionel Vincent, and Diego Puschini

Author Index . 355

ASCENS: Engineering Autonomic

Service-Component Ensembles

Martin Wirsing1, Matthias Hölzl1,
Mirco Tribastone1, and Franco Zambonelli2

1 Institut für Informatik
Ludwig-Maximilians-Universität München

{martin.wirsing,matthias.hoelzl,mirco.tribastone}@ifi.lmu.de
2 Department of Science and Engineering Methods

University of Modena and Reggio Emilia
franco.zambonelli@unimore.it

Abstract. Today’s developers often face the demanding task of devel-
oping software for ensembles: systems with massive numbers of nodes,
operating in open and non-deterministic environments with complex in-
teractions, and the need to dynamically adapt to new requirements, tech-
nologies or environmental conditions without redeployment and without
interruption of the system’s functionality. Conventional development ap-
proaches and languages do not provide adequate support for the prob-
lems posed by this challenge. The goal of the ASCENS project is to
develop a coherent, integrated set of methods and tools to build software
for ensembles. To this end we research foundational issues that arise
during the development of these kinds of systems, and we build mathe-
matical models that address them. Based on these theories we design a
family of languages for engineering ensembles, formal methods that can
handle the size, complexity and adaptivity required by ensembles, and
software-development methods that provide guidance for developers. In
this paper we provide an overview of several research areas of ASCENS:
the SOTA approach to ensemble engineering and the underlying for-
mal model called GEM, formal notions of adaptation and awareness, the
SCEL language, quantitative analysis of ensembles, and finally software-
engineering methods for ensembles.

1 Introduction

The increasing miniaturization and decreasing cost of computers and micro-
controllers has led to nearly ubiquitous adoption of software-intensive systems.
Traditional computer systems such as notebooks, workstations and servers are
networked with huge numbers of physical appliances and devices that rely heavily
on software, such as smartphones, industrial controllers, and smart robots. We
want these systems to integrate seamlessly into our lives and environments, and
we want them to responsibly utilize available resources without compromising
our privacy or security.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 1–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Wirsing et al.

1.1 What Are Ensembles?

Numerous reasons why it is not only desirable but necessary to develop these
kinds of systems have been documented [12]. In this context the ICT-FET
project InterLink [14] has coined the term ensemble for a particularly inter-
esting class of systems: Ensembles are software-intensive systems with massive
numbers of nodes or complex interactions between nodes, operating in open
and non-deterministic environments in which they have to interact with humans
or other software-intensive systems in elaborate ways. Ensembles have to dy-
namically adapt to new requirements, technologies or environmental conditions
without redeployment and without interruption of the system’s functionality,
thereby blurring the distinction between design-time and run-time.

National infrastructures such as the power grid, large online businesses such
as Amazon or Google, or the systems used by modern armies, all satisfy the
definition of an ensemble. However, as complicated and difficult to build as these
systems are, they solve relatively well-understood problems and their size is to a
large degree a function of the amount of their scale, as well as the data and the
number of transactions they have to process. These are interesting and complex
problems, but they are far from the largest challenges when building ensembles
as defined in the previous systems: None of these systems can actually adapt
to unforeseen environmental conditions in a meaningful way; and none of these
systems can easily evolve to satisfy new requirements.

1.2 The ASCENS Approach

Instead of static software that operates without knowledge about its environ-
ment and hence relies on manual configuration and optimization we have to
build systems with self-aware, intelligent components that mimic natural fea-
tures like adaptation, self-organization, and autonomous as well as collective be-
havior. However, traditional software engineering, both agile and heavyweight,
relies to a large degree on code inspection and testing, approaches which are not
adequate for reliably developing large concurrent systems, let alone self-aware,
adaptive systems. Formal methods have successfully been employed in an ever
increasing number of projects; however, they generally cannot deal with the
dynamic and open-ended nature of the systems we are interested in, and they
are difficult to scale to the size of industrial-scale projects. Approaches from
autonomic and multi-agent systems address aspects such as self-configuration
and self-optimization, but they often lack necessary guarantees for reliability,
dependability and security and are therefore not easily appropriate for critical
systems without modification.

One of the most important and challenging duties when engineering ensembles
is to ensure that an ensemble can continue to work reliably in spite of unfore-
seen changes in its environment and requirements, and that adaptation does not
lead to the system becoming inoperable, unsafe or insecure. To achieve this goal,
the ASCENS project researches ways of building ensembles that combine the
maturity and wide applicability of traditional software-engineering approaches

ASCENS: Engineering Autonomic Service-Component Ensembles 3

Fig. 1. Ensemble of robots

with the assurance about functional and non-functional properties provided by
formal methods and the flexibility, low management overhead, and optimal uti-
lization of resources promised by autonomic, self-aware systems. At the core of
this research are new concepts for the design and development of autonomous,
self-aware systems with parallel and distributed components. We are developing
sound, formal reasoning and verification techniques to support the specification
and development of these systems as well as their analysis at run-time. The
project goes beyond the current state of the art in solving difficult problems
of self-organization, self-awareness, autonomous and collective behavior, and re-
source optimization in a complex system setting. The relevant disciplines use
different formalisms and techniques that have to be related in a single framework
in order to present ensemble engineers with a unified development approach.

In this paper we present first steps towards the unified approach of ASCENS.
Using a simple swarm robot example (Sect. 2) of autonomous robots we high-
light several phases in the development of ensembles. The State Of The Affairs
(SOTA) method (Sect. 3) is our approach to specifying the overall domain and
the requirements of an ensemble. The denotational General Ensemble Model
(GEM) (Sect. 4) serves as semantic basis of SOTA, refines some of the model as-
sumptions of SOTA and provides the semantic foundations for the formal notions
of black-box adaptation and awareness (Sect. 5). The Service Component En-
semble Language (SCEL, Sect. 6) is developed to provide programming support
and formal reasoning of the behavior of autonomic components. As an example,
we show how to use continuous-time Markov chains and ordinary differential
equations for quantitative reasoning of the robot ensemble (Sect. 7). Finally, we
discuss a pattern-based approach for engineering ensembles (Sect. 8).

2 Example: Garbage-Collecting Robots

As a running example we will use a swarm of robots that collects garbage in
a rectangular exhibition hall (cf. Fig. 1). The robots should move around the
room, pick up the garbage that visitors have dropped and move it to the service

4 M. Wirsing et al.

Fig. 2. The trajectory of an entity in the SOTA space, starting from a goal precondition
and trying to reach the postcondition while moving in the area specified by the maintain
condition

area. For simplicity we assume that the service area is just a rectangular strip
along one side of the hall. Since visitors do not want to be distracted by too
many robots driving around the exhibition area, there should be as few robots
outside the service area as possible while still keeping the hall adequately clean.
Furthermore, for environmental and cost reasons the robots should minimize the
amount of energy that the swarm consumes. Depending on the sensors of the
robots and the type of garbage they are collecting, they may be able to perceive
garbage from some distance away, or they may be perceive garbage only while
they are driving over it.

3 SOTA: Domain and Requirements Modeling

SOTA (State Of The Affairs) [1] is the ASCENS approach to describing the
overall domain and the requirements for a system. In SOTA we identify the
behavior of a system with a single trajectory through a state space. The state
space is the set of all possible states of the system at a single point of time, the
trajectory describes how the state varies over time during an actual execution
of the system.

Each point in the system’s state space corresponds to a state of the affairs.
In SOTA, the state of the affairs thus represents the state of all parameters
that may affect the ensemble’s behavior and that are relevant to its capabilities.
Although it is common practice to distinguish between the ensemble and the
environment (and thus to distinguish between the parameters that describe some
characteristics of the environment and those that are inherent of the system),

ASCENS: Engineering Autonomic Service-Component Ensembles 5

such a distinction can often blur in complex situated ensembles. Accordingly, in
general SOTA does not make such a distinction. In SOTA, we consider the case
in which the state space is a finite product Q = Q1 × · · · ×Qn.

As the system executes, its position in the state space changes either due
to the actions of the ensemble or because of the dynamics of the environment.
Thus, each execution of a system gives rise to a trajectory ξ in its state space
(see Fig. 2).

When modeling requirements we are usually interested in “what the system
should do.” In the SOTA model, this corresponds to achieving or maintaining
certain states of the affairs throughout the systems execution, or more formally
to specifying one or more regions of the system’s set of all possible trajectories
in which the system’s observed trajectory has to remain. It is often convenient
to specify these regions in the form of goals : A goal G in SOTA is a triple of
the form G = 〈Gpre , Gpost , Gmaintain 〉 consisting of a precondition Gpre that
specifies in which states of the affairs G should become active, a postcondition
Gpost that specifies when the goal has been achieved, and a condition Gmaintain

that has to be maintained while the goal is active. The maintain condition is
often called utility in SOTA, but in this paper we reserve the term utility for
the more general definition given in Sect. 4. A trajectory therefore satisfies a
goal G if, whenever the precondition Gpre is satisfied, the trajectory stays in the
region of the state space specified by Gmaintain until the postcondition Gpost is
satisfied. After that, the goal has been reached and is no longer relevant for the
system execution until its precondition becomes activated again. This capability
of pursuing goals during a system execution naturally matches goal-oriented and
intentional entities (e.g., humans, organizations, and multi-agent systems), and
consequently autonomic and self-adaptive systems.

It is possible to model systems at various levels of detail using the SOTA
approach. A very simple model of the robot ensemble that was described in
Sect. 2, under the assumption that we have a fixed number N of robots, might
be defined as follows: The state space consists of the states of the individual
robots, a count g� of the items of garbage currently in the public part of the
exhibition area, and a boolean flag o� that indicates whether the exhibition is
currently open for the public or not. We describe each robot by its position in the
exhibition area, pi, and its state si. The state can either be Resting, Searching,
or Carrying, depending on whether the robot is currently resting, searching for
garbage, or carrying a garbage item back to the service area.

Accordingly, the state of the affairs space of the robot ensemble can be de-
scribed as follows:

pi = 〈xi, yi〉 ∈ R× R Position of robot i
Area ⊆ R× R Exhibition Area
si ∈ {Searching,Resting,Carrying} State of robot i
g� ∈ N Number of garbage items

o� ∈ B Exhibition open for public?
Q = {〈p1, s1, . . . , pN , sN , g�, o�〉 | pi ∈ Area} State space

6 M. Wirsing et al.

One of our goals might be to always have fewer than 300 garbage items in the
exhibition area while the exhibition is open. This could be described by the
following goal G1:

G1
pre ≡ o� = true

G1
maintain ≡ g� < 300

G1
post ≡ o� = false

G1 states that whenever the exhibition opens (i.e., o� becomes true), the number
of garbage items on the floor, g�, is less than 300. Once the exhibition closes,
the postcondition of the goal becomes true and the goal is abandoned until the
exhibition opens again.

4 GEM: The General Ensemble Model

In SOTA we are concerned with the overall domain and the requirements of
the system. For this it is sufficient to deal with the state of the affairs without
regard for details such as the state’s internal structure or the probabilities of the
different trajectories.

For a more detailed investigation of the structure and behavior of ensembles
we need a more expressive model. To this end, in parallel with the definition of
the SOTA model and in concert with it, we have defined the General Ensemble
Model (GEM) [13], to model the behavior of ensembles in the state-of-the-affairs
space. In Sect. 4.1 we introduce the notion of trajectory space on which the
GEM model is based; in Sect. 4.2 we show how goals and utilities are used in
GEM. Finally, we give a brief introduction to a probabilistic extension of GEM
in Sect. 4.3.

4.1 The Trajectory Space

As in SOTA, in GEM it is not necessary to distinguish between ensemble and
environment. However, whenever it is necessary to do that, or when the system
specification enforces such a distinction, a unique state space can always be
obtained by combining ensemble and environment using a so-called combination
operator ; in the following sections we will use the term system to refer to this
combination. Combination operators are also used as the means to hierarchically
build ensembles from simpler components and smaller ensembles; therefore they
serve as a uniform way to model a system’s structure and behavior.

In general, a system can behave in a non-deterministic manner and there-
fore have multiple possible trajectories through the state space. If we know all
possible trajectories of the system we know everything that the state space can
express about the system. In GEM we identify a system S with the set of all its

ASCENS: Engineering Autonomic Service-Component Ensembles 7

possible trajectories in the SOTA space. We call the space of all trajectories the
trajectory space Ξ.1 Then, a system is a subset of the trajectory space, S ⊆ Ξ.

The state of the affairs concept of SOTA can therefore also be expressed in
an enriched way to account for such trajectories: for each trajectory ξ of the
system, and at each point in time t the state of affairs is the value S(ξ, t), which
is a point of the state space Q:

S(ξ, t) = ξ(t) = 〈qi〉i∈I ∈ Q if ξ ∈ S.

In GEM we structure the state space as the result of an interaction between the
ensemble and its environment. We formalize this using the notion of combina-
tion operator: let Ξens and Ξenv be the trajectory spaces of the ensemble and
environment, respectively2, and let ⊗ : Ξens ×Ξenv → Ξ be a partial map that
is a surjection onto S, i.e., there exist Sens ⊆ Ξens and Senv ⊆ Ξenv such that
Sens⊗Senv = S. In this case we obtain a trajectory of the system for compatible
pairs of ensemble and environment trajectories in Sens × Senv . We therefore re-
gard the system as the result of combining ensemble Sens and environment Senv

using the operator ⊗.
For example, in GEM we can structure a model of the garbage-collecting robot

ensemble as follows: we define the state space Qrobot and the trajectory space
Ξrobot as

Qrobot = R
2 × {Searching,Resting,Carrying}

Ξrobot = F [T → Qrobot].

The model of each robot Srobot
i is a subset of the trajectory space consisting of

all possible trajectories that the robot can take through its state space:

Srobot
i ∈ P(Ξrobot).

The ensemble consisting of all N robots has as state space Qens = (Qrobot)N ,
and as trajectory space

Ξens = F [T → Qens],

and the model of the ensemble, Sens , can be obtained from the models of the
individual robots by a combination operator

⊗ : P(Ξrobot)N → P(Ξens)

that combines all trajectories of robots that are physically possible, i.e., ⊗ is
essentially the canonical map between P(Ξrobot)N and P(Ξens), but it removes
those trajectories where robots would overlap in space.

1 For the mathematically inclined reader, we point out that Ξ = F [T → Q], where T
is the time domain and F [T → Q] the set of all functions from T to Q.

2 Formally we have Ξens = F [T → Qens] where Qens =
∏

k∈K Qens
k , and Ξenv =

F [T → Qenv] where Qenv =
∏

l∈L Qenv
l . Note that the sets Qens

k and Qenv
l may be

different from the sets Qi that appear in the system’s state space Q =
∏

i∈I Qi.

8 M. Wirsing et al.

In this example, we define a more detailed state space for the environment than
we did in the previous section. We again include a boolean value o� indicating
whether the exhibition is open for the public, and the number of garbage items
in the area g�. In addition we add a function g : N → R

2 so that g(i) gives
the location of the i-th garbage item for 1 ≤ i ≤ g�, and the coordinates of the
public exhibition area and the service area:

Qenv = B× N×F [N→ R
2]×P(R2)×P(R2).

As usual, the trajectory space of the environment is Ξenv = F [T → Qenv] and
each environment Senv is a member ofP(Ξenv). In this simple example, the state
space Q for the whole ensemble is the product Qens ×Qenv and the ensemble’s
trajectory space is defined as F [T → Q]; the combination operator for ensemble
and environment has then the signature

⊗ : P(Ξens)×P(Ξenv)→ P(Ξ)

and combines again all trajectories of environment and ensemble that are possible
while removing those combined trajectories that cannot happen (e.g., no robot
can be outside the exhibition area, a robot’s state can only change from Searching
to Carrying when it is over a garbage item, and if no robot is in state Searching
during a time interval [t0, t1], then the number of garbage items cannot decrease
between t0 and t1, etc.).

4.2 Goals and Utilities

GEM is intended to serve as a semantic foundation for various kinds of calculi
and formal methods which often have a particular associated logic. We define
the notion of goal satisfaction “System S satisfies goal G,” written S |= G in a
manner that is parametric in the logic and in such a way that different kinds of
logic can be used to describe various properties of a system. See [13] for details.

While goals allow us to express many requirements of systems, many au-
thors have observed that “[g]oals alone are not enough to generate high-quality
behavior in most environments.” [20]. For example, the property “the garbage-
collecting robots should use as little energy as possible” cannot be expressed
as a goal, since there is no hard boundary on energy consumption that tells us
whether the goal was achieved or not. Instead we have to compare the energy
consumption along various trajectories and rate trajectories with lower con-
sumption as better than ones with higher consumption. A trajectory ξ of the
system may therefore be more or less desirable; we assign a measure u(ξ) to
each trajectory so that u(ξi)
 u(ξj) if and only if ξj is at least as desirable as
ξi. The function u is called the utility function, and u(ξ) is called the utility of
trajectory ξ. Often, the definition of utilities is complicated by having not just a
single criterion that we want to optimize, but rather various conflicting criteria
between which we have to achieve a trade-off. In our example, the requirement
to achieve the “best” compromise between the number of robots in the hall and

ASCENS: Engineering Autonomic Service-Component Ensembles 9

the amount of garbage cleaned up is an instance of such a multi-criteria decision
problem [15]. Solutions for these kinds of trade-off can be achieved using the
framework of utilities as well; see Sect. 7.3 for a more detailed discussion.

An optimization goal is then a goal that requires the optimization of a utility.
This may take the form of either optimizing the maximal achieved utility at some
point on a trajectory through the state space, or the goal may be to optimize
an aggregate utility along the trajectory.

Note that utilities are strictly more expressive than goals; in fact it is often
useful to interpret goals as utilities as well: We can transform each goal G into
a utility uG with the value 1 for each trajectory ξ that satisfies the goal and the
value 0 for all other trajectories. Then, optimizing this goal has the same effect
as satisfying the original goal; only trajectories that satisfy the goal are taken
if such trajectories exist. However, utilities are more flexible than goals: If, for
example, G is the goal that no robot should run out of energy, we can define
uG to assign values between 0 and 1 to trajectories that sometimes violate G,
depending on the average number of robots that run out of energy every day.
Then, even if G cannot be permanently satisfied, the ensemble can choose the
trajectory that violates the goal for the least amount of time.

4.3 Probabilistic GEM

The model presented so far is sufficient to deal with deterministic and non-
deterministic systems. However, for many practical purposes, simply knowing
the possible trajectories of a system is not enough; instead, we need to know
the probability for taking particular trajectories to evaluate the quality of the
system. Therefore we need to turn to stochastic models. This would be needed,
for example, to capture the situation where a robot receives sensor input with
measurement errors.

Thus we assume that a probability measure P(X) is given for each set of
trajectories X.3 P(X) describes the probability that a trajectory in X is taken
by the system. If the system is generated from an ensemble Sens and an environ-
ment Senv , then we assume that probability distributions over their respective
trajectory spaces are given, and that the combination operator ⊗ computes the
distribution of S from these.

Given a probability measure P and a utility function u for a system S, we
define the evaluation of a system S as the expected utility, i.e.,

evalu(S) = EP[S, u] =

∫
ξ∈S

p(ξ)u(ξ)dξ.

where p is the probability density of P. The evaluation gives us an easy criterion
to compare different systems: a system S1 has a better utility than a system S2

if its evaluation is higher.

3 More precisely, we assume that a probability space is given, i.e., that we have a σ
algebra Σ over Ξ and a probability measure on Σ. In this overview paper we will
ignore these kinds of technical complications.

10 M. Wirsing et al.

In the next section we will define adaptation and awareness based on the
notions developed in this section.

5 Adaptation and Awareness

Using the GEM model for ensembles presented in the previous section, we can
define mathematical models for the important notions of adaptation (Sect. 5.1
and awareness (Sect. 5.2).

5.1 Adaptation

There are various senses in which the word “adaptation” is used, but an impor-
tant characteristic of adaptation is the ability to react usefully to some kind of
change. We can describe this reaction either by looking “inside” the system in
order to describe the mechanism by which the system implements the changes
it performs, or we can look at the system by evaluating only the quality of the
system’s behavior, without describing the mechanisms by which it is achieved.
We call the first approach white-box or glass-box adaptation; it is further de-
scribed in [3], in the following we focus on the second approach which we call
black-box adaptation.

We call a set of environments Aenv together with a goal G (and possibly a
probability measure) an adaptation domain A. The adaptation domain repre-
sents the situations in which we want the ensemble to work. Furthermore, we
suppose that we can define a combination operator ⊗ that combines any envi-
ronment Senv ∈ Aenv with an ensemble Sens . We then say that Sens can adapt
to A, written Sens � A:

Sens � A ⇐⇒ ∀Senv ∈ Aenv : Sens ⊗ Senv |= G.

In the case of probabilistic systems we replace the goal G with a utility u in
the definition of adaptation domains and lift the evaluation function eval to an
adaptation domain, so that instead of the evaluation of the system, evalu(S),
we obtain the evaluation with respect to an adaptation domain or lifted evalua-
tion eval(Sens ,A). In the simplest case, eval might be the minimal or maximal
evaluation of Sens⊗Senv for all Senv ∈ Aenv . It is often useful to equip the adap-
tation domain with a probability distribution and define the lifted evaluation as
the expected value of the evaluation for all environments in Aenv .

The environment models in the previous section allow us to define a wide
range of adaptation domains. For example, we could have adaptation domains
that vary parameters of the environment, such as the size or topology of the ex-
hibition area, or the distribution of the garbage. We can also define adaptation
domains with different goals, e.g., the maximum number of garbage items that
are allowed. Let Aenv

l be the set of all square arenas with side length l containing
no obstacles and in which garbage items appear according to some distribution.
Let goal G<n be the property that fewer than n garbage items are in the arena
while the exhibition is open (the example in Sect. 3 corresponds to n = 300).

ASCENS: Engineering Autonomic Service-Component Ensembles 11

We can then define adaptation domains A<n
l = 〈Aenv

l , G<n〉. We define the com-
bination operator⊗ such that it causes a robot to pick up a dropped garbage item
whenever the robot passes over the garbage item while being in state Searching.
The relation Sens � A<n

l then holds for each Ensemble Sens if and only if every
trajectory of the ensemble in a square arena with side length l leaves fewer than
n garbage items in the arena while the exhibition is open. A further refinement
would be to consider an adaptation domain that uses a utility function to rank
ensembles according to their energy consumption. For a practical example, see
Sec. 7.3.

Adaptation domains allow us to compare the ability of different ensembles to
adapt to a given range of situations. To simplify this comparison, we consider
sets of adaptation domains which we call adaptation spaces. Given an adapta-
tion space A we can compare the ability of ensembles to adapt by set-theoretic
inclusion:

Sens
2 � Sens

1 ⇐⇒ ∀A ∈ A : Sens
2 � A =⇒ Sens

1 � A

or in the case of utilities

Sens
2 � Sens

1 ⇐⇒ ∀A ∈ A : eval(Sens
2 ,A) < eval(Sens

1 ,A)

In this case, we say that Sens
1 is at least as adaptive as ensemble Sens

2 for A; if
we additionally have Sens

1 �� Sens
2 we say that Sens

1 is more adaptive than Sens
2 .

For example, we can define the adaptation spaces Al = {A<n
l | n ∈ N} which

ranks the adaptivity of ensembles according to their ability to collect garbage
in an arena of side length l, A<n = {A<n

l | l ∈ R} which ranks ensembles by
their ability to achieve a certain level of cleanliness in arenas of varying sizes
and A = {A<n

l | n ∈ N, l ∈ R} which combines these two criteria.
The previous notion of adaptation assumes that the goal that we want the

ensemble to achieve is fixed for all environments. This may lead to very compli-
cated goal specifications if we want to consider, e.g., quality-of-service properties
that depend on the environment. To this end, we extend the notion of adaptation
space and define a generalized adaptation domain as the set consisting of pairs of
environments and goals, A = {〈Senv

i , Gi〉 | i ∈ I}. Adaptation to a generalized
adaptation domain then means

Sens � A ⇐⇒ ∀〈Senv
i , Gi〉 ∈ A : Sens ⊗ Senv

i |= Gi.

The notions of adaptation space and lifted evaluation can be extended to gen-
eralized adaptation spaces in the obvious manner.

5.2 Awareness

One of the most important notions for adaptive systems is “awareness.” Intu-
itively, this term denotes an internal representation that the ensemble has about
some aspect of itself or its environment which is kept up-to-date as the system

12 M. Wirsing et al.

moves through the state space. This does not necessarily imply that the ensem-
ble immediately registers changes in this aspect, it is also sufficient if, e.g., the
system receives periodic updates about changes from sensors or other systems.

In contrast to adaptation, it is our opinion that a definition of awareness
has to refer to the internal representation of the ensemble, and, if possible, it
should also take into account the information about the environment that the
ensemble derives from its internal representation. For example, if a garbage-
collecting robot has an exact internal representation of all the pieces of garbage
in the arena, but no internal interpretation of this representation, it seems to
us that it is not justified to call that robot “aware of the locations of pieces
of garbage.” How to determine whether the robot has an interpreted internal
representation is obviously a difficult problem. In this paper we restrict ourselves
to the simplest (but highly unrealistic) case in which we have a function giving,
for each state of its internal awareness representation, the states of the affairs
that the system considers possible.4 In more realistic scenarios we can sometimes
estimate this set of possible states of the affairs from our knowledge of the
ensemble’s implementation or by observing the ensemble’s behavior.

More formally, let Qens =
∏

k∈K Q
ens
k be the state space of the ensemble,

Ξens = F [T → Qens] its trajectory space, and J ⊆ K such that the Qj , j ∈ J
are the components of Qens relevant for the awareness of the ensemble. We then
call B = F [T →

∏
j∈J Qj] the awareness section of Ξens . We write ξ|B for the

obvious restriction of a trajectory in Ξens to B. As mentioned in the previous
paragraph, we assume that we have a function εS : B×T → P(Ξ), which we call
the awareness function, that gives the trajectories that the ensemble considers
possible for each value of its awareness section at each point in time.

With this definition, we can say what it means for the awareness function to
be correct: let ξens ∈ Ξens , ξenv ∈ Ξenv such that ξ = ξens ⊗ ξenv exists. If for
every time t ∈ T the actual state of the affairs at time t, ξ(t), is in the set of
possible states of the affairs according to the system’s awareness function εS,
i.e., ξ(t) ∈ εS(ξ

ens |B, t) then εS is correct for 〈ξens , ξenv 〉. If the awareness is
correct for all pairs 〈ξens , ξenv 〉 for which ξens ⊗ ξenv is defined, then it is globally
correct.

In the GEM definition of the robot example given in Sect. 4, the awareness
section Brobot for each robot might, e.g., consist of its position and internal state
(Searching, Resting or Carrying) and the number of garbage items in the arena.
If the awareness function εrobot is the function mapping, for each time t, the
trajectory ξ|Brobot

into the set of all trajectories of the ensemble which agree with
the argument on Brobot, then the awareness function of the robot is correct. In
this case the robot is precisely aware of its own state, but not of the state of the
environment, even though the exact number of garbage items is contained in its
awareness section.

4 Giving the set of possible states of the affairs is in practice not particularly useful.
It is much more practical to give a probability distribution over the set of possible
states of the affairs. However, since this change introduces significant mathematical
complexities, we restrict the presentation to the deterministic case in this overview.

ASCENS: Engineering Autonomic Service-Component Ensembles 13

To compare different ensembles operating in the same environment it is also
useful to define some additional notions: Let ξenv ∈ Ξenv and let Sens [ξenv] be
the set of all trajectories ξens ∈ Sens such that ξens ⊗ ξenv exists. If, for all
ξens ∈ Sens [ξenv], the awareness function εS is correct for 〈ξens , ξenv 〉, then we
say that it is correct with respect to environment trajectory ξenv . We define the
environmental awareness function εenvS as

εenvS : ξenv �→
⋃

ξens∈Sens [ξenv]

εS(ξ
ens |B, t)

∣∣
Ξenv .

The environmental awareness function εenvS can be used to compare the awareness
of different ensembles operating in the same environment. The definitions of
correctness transfer mutatis mutandis to environmental awareness; this notion
of correctness only judges whether the ensemble is aware of the environment
and not of its internal state. For two ensembles S1 and S2 and an environment
trajectory ξenv , we say that the awareness of S1 with respect to ξenv is more
precise than that of S2 if εenvS1

(ξenv) is correct and if εenvS1
(ξenv) ⊆ εenvS2

(ξenv). We
say that the environmental awareness of S1 is more precise than that of S2 if it
is more precise with respect to all trajectories in the environment.

It is easy to see that the above notions can be extended to general adap-
tation spaces and general adaptation domains in a straightforward manner. It
is then possible to define a minimal level of awareness that an ensemble Sens

has to possess in order to adapt to a general adaptation domain A based on
the ensemble’s environmental awareness: if there are pairs 〈Senv

1 , G1〉 ∈ A and
〈Senv

2 , G2〉 ∈ A such that G1 and G2 cannot be simultaneously satisfied, then
for all trajectories ξenv in Senv

1 , the environmental awareness of Sens may not
include any trajectory in Senv

2 .
The definition of environmental awareness can be refined in the sense that

(i) not the whole environment has to be taken into account for the comparison
and (ii) parts of the ensemble’s state space may be taken into account for the
purposes of the comparison. This can be used to introduce “levels of awareness”
in various dimensions, so that we can, e.g., have awareness of single components,
of parts of the ensemble, and of the whole ensemble, or as another dimension,
awareness of purely spatial relationship versus awareness of social structure.

6 Solution Models

In Sect. 6.1 we provide a brief introduction to SCEL. It shall be used to give an
operational semantics to our case study, in Sect. 6.2.

6.1 Introduction to SCEL

The Service Component Ensemble Language (SCEL) [5] is developed within AS-
CENS to provide programming support and formal qualitative and quantitative

14 M. Wirsing et al.

reasoning of the behavior of autonomic components. Its kernel is based on
process-algebraic principles, with the usual operators such as action prefix a.P ,
choice P1 + P2, and recursion via constants A � P . (The syntax for behavioral
description is in fact richer, but here we limit ourselves to the fragment which is
necessary for the understanding of the remainder.)

A peculiar feature of SCEL is the modeling of actions, which are interac-
tions between a process and a knowledge repository where items of information
may be accessed. Three types of actions are defined, get(T)@c, qry(T)@c, and
put(t)@c, in order to model removal or peek of a template T , and insertion of
an element t, respectively, into the knowledge repository at the component iden-
tified by c. The syntax for templates and tuples are purposely left unspecified
and are intended to be specialized by specific instantiations of SCEL; for in-
stance, in the following we consider a Klaim-based approach with tuple spaces [4],
although other notions of behavior (e.g., constraint stores) may be similarly
devised.

Components are identified by names through interfaces with attributes, which
have syntax I[K, Π, P]. The attribute I.id gives the name of the component.
This may be used to access its knowledge manager K, which handles the knowl-
edge repository (as such it is also left unspecified in SCEL). Policies, defined
by Π , are the mechanism to govern the interaction between components—for
instance they may be used to regulate access to knowledge repositories (but
they are not used later). It is worth of attention to underline that SCEL does
not provide a linguistic primitive for the specification of an ensemble; instead,
ensembles are inferred from the attributes of the interfaces of components. For
instance, in the specification of a component’s interface, I.ensemble is a pred-
icate on interfaces to determine the elements of the ensemble coordinated by
the component. Similarly, I.membership determines the ensembles which the
component may join. This design choice allows for a more flexible and dynamic
specification than syntactic constructs at the process algebra level.

6.2 SCEL Model of the Case Study

We consider the case study discussed in Section 2 and assume that each garbage-
collecting robot behaves independently from the swarm. It explores the exhi-
bition hall in search for items by proceeding along a random direction at a
constant velocity. Whilst exploring, it may encounter three kinds of obstacles:
another robot or a wall, in which case a collision-avoidance algorithm is invoked
to change its direction of movement; or an item, in which case the robot picks
it up to return to the service area. This is realized by means of a light source
at the service area which is sensed by the robot in order to decide the direction
along which to move. When the robot arrives at the service area, it drops off
the item and subsequently tries to rest to reduce power consumption. In order
to do so, it moves in the service area to find available space, and then goes into
sleep mode for some time. When it resumes, it starts exploring the exhibition
hall again.

ASCENS: Engineering Autonomic Service-Component Ensembles 15

s p p′ c d r′ r

(a) Transition system from the SCEL model (1).

S C R

(b) Reduced model.

Fig. 3. Qualitative discrete-state behavior of a garbage-collecting robot

Qualitatively, the behavior of a single robot could be modeled with the fol-
lowing SCEL fragment.

s � get(collision)@ctl.s+ get(item)@ctl.p

p � get(items , !x)@master .p′

p′ � put(items , x+ 1)@master .c

c � get(collision)@ctl.c+ get(arrived)@ctl.d

d � put(dropped)@master .r′

r′ � get(collision)@ctl.r′ + put(sleep)@timer .r

r � get(elapsed)@timer .s

(1)

The process constants stand for: s = searching for a garbage item; p = picking
up item; c = carrying the item (returning to nest); d = dropping off item; r′

= searching for a rest place; r = resting. Processes s, c, and r′ exhibit similar
behavior in that they may consume a tuple collision which is produced by some
controller ctl . However, this results in a self-loop which does not change the
behavior as the process behaves as before. Notice that the item is removed from
the tuple space, therefore it is responsibility of ctl to produce another tuple,
whenever a collision is detected. The controller may also produce an item , in
which case process s behaves then as p. Here, we assume a central repository
master which keeps track of the total number of items collected during the
evolution of the system. The current value is first retrieved and then put back
into the repository after being incremented. Another noteworthy process is r′,
which puts an item sleep into the tuple space of a timer . It will be able to resume
when the timer puts an elapsed tuple in its tuple space. The labeled transition
system for this process, derived according to the operational semantics of SCEL,
is shown in Fig. 3(a). For reasons of space, the (obvious) transition labels are
not explicitly given.

The names ctl , master , and timer are assumed to be exposed by other compo-
nents, k, m, t, respectively (not shown here for brevity), according to the parallel
composition

(I1[·, Π, s] ‖ I2[·, Π, k] ‖ I3[·, Π, t]) ‖ J [·, Π,m].

16 M. Wirsing et al.

Here, we are assuming that the tuple spaces at each component are initially
empty, and we let Π be the most permissive policy which permits access to
every tuple space. The definitions of the interfaces are such that I1.id = robot ,
I2.id = ctl , I3.id = timer , and J .id = master . The other two attributes of an
interface, i.e. ensemble andmembership, are taken to be such that all components
belong to the same ensemble. This model, which deals with only one robot, can
be extended to an arbitrary number of robots by suitably repeating the term
between parentheses; the component with interface J is unique if one assumes
a single master node.

For the purposes of quantitative evaluation, the behavior may be simplified
by making the following assumptions: (i) The transitions p → p′ and p′ → c
take up a negligible amount of time with respect to the representative time
scales of the system; similarly, (ii) the durations of d → r′ and r′ → r are
assumed to be negligible. In other words, (i) and (ii) imply that the robot goes
to sleep as soon as it enters the service area. The validity of such assumptions
was successfully validated with the simulation experiments which are described
in the remainder. Overall, these simplifications lead to a smaller discrete-state
description as shown in Fig. 3(b). Notice that the three states of this reduced
labelled transition system correspond to the states of the robot described in
SOTA in Sect. 3, and in GEM in Sect. 4.

7 Quantitative Analysis

In this section, we equip the reduced labelled transition system that arises
from the SCEL model with quantitative information, leading to a continuous-
time Markov chain, and a compact approximation thereof based on ordinary
differential equations, as presented in Sect. 7.1. In Sect. 7.2, we successfully
validate the model against simulation. Finally, Section 7.3 uses the model to
perform black-box adaption by means of sensitivity analysis over system
parameters.

7.1 Quantitative Model

The quantitative model is given in terms of a continuous-time Markov chain
(CTMC) that keeps track of the population of robots in each of the states S,
C, R, and of the total amount of garbage items to be collected in the exhibition
hall, denoted by G. Although the model is defined directly in such an aggre-
gated manner, it can be shown to be automatically inferred from the individual
description of a single robot, see Fig. 3(b); this is not discussed here for space
reasons (similar arguments to [11] may be used). Thus, each state of the CTMC
is associated with a vector of nonnegative integers (S,C,R,G). The chain has
the following transitions:

ASCENS: Engineering Autonomic Service-Component Ensembles 17

(S,C,R,G) −→ (S − 1, C + 1, R,G− 1), with rate μS
G

S + C +G
, (2)

(S,C,R,G) −→ (S + 1, C,R− 1, G), with rate βR, (3)

(S,C,R,G) −→ (S,C − 1, R+ 1, G), with rate γC, (4)

(S,C,R,G) −→ (S,C,R,G+ 1), with rate λ. (5)

The first transition describes that an item is found; thus, the number of exploring
robots is reduced by one and, correspondingly, the number of robots returning to
the service area is increased by one; also, the number of items in the exhibition
hall decreases. The rate is defined in terms of μ, which is to be intended as
the encounter rate of each robot, i.e., the opposite of the average time between
collisions between robots or between a robot and an item. The actual value used
in the model is parametrized by simulation runs. The fraction G/(S + C + G)
represents the probability of a successful encounter, which is simply given as the
ratio of items with respect to the total amount of objects a robot may encounter.
The factor S in the rate is the multiplicative factor in order to consider the rate
for the whole population of exploring robots. The robot is assumed to sleep for
an exponentially distributed amount of time with rate β, therefore βR is the
sleep rate of the overall system. Rate γ is the rate to return to the service area,
which is also parametrized with the measurements from simulation. Finally, the
last transition denotes drops of garbage items with exponentially distributed
inter-arrival times, that is, according to a Poisson process with rate λ.

Although this model may readily be used for the analysis, we observe that it
gives rise to an infinite-state Markov chain, even if the total number of robots in
each state is always equal to N (those in the initial state of the system), because
of (5) which may always increase the number of items. Although this problem
can be tackled by numerically truncating the chain, the total number of states
grows quickly with N . Using standard manipulations of Eqs. 2–5, it is possible
to derive the following system of coupled ordinary differential equations (ODEs)
which are interpreted as the first-order approximation of the Markov process.

Ṡ = −μSG(S + C +G)−1 + βR

Ċ = +μSG(S + C +G)−1 − γC
Ṙ = +γC − βR
Ġ = +λ− μSG(S + C +G)−1

(6)

Together S(0) = N , C(0) = R(0) = G(0) = 0, this leads to an initial value prob-
lem which is easily solved using standard numerical integration. In the following,
we consider a scenario with N = 20 garbage-collecting robots.

7.2 Validation

A discrete-event simulation of the system under study was developed with the
ARGoS tool [19]. The source code for a robot controller was instrumented to

18 M. Wirsing et al.

Table 1. Model validation. Steady-state ODE estimates of robot sub-populations
against discrete-event simulation of the system.

S C R

Simulation 15.972 3.778 0.250
Model 16.070 3.730 0.200

Normalized error 0.49% 0.24% 0.25%

record the timestamps of transitions according to the classification of states in
Fig. 3(b). These logs were used to estimate μ and γ in the model. The former was
simply estimated by computing the reciprocal of the average time between two
successive timestamps where an encounter with a garbage item or with another
robot were registered. In the case of an encounter with the robot, this informa-
tion was deduced by observing a change of direction in the robot movement,
which is the result of the collision-avoidance algorithm. The estimation of γ was
performed similarly, by measuring the average time between a robot picking up
a garbage item and dropping it off at the service area. With an arena size of 16
squared meters, these parameters were found to be μ = 0.012 and γ = 0.003.
The simulation also logged the total number of robots in each of the states S, C,
R as a function of time. Across all experiments, we set λ = 0.010 and β = 0.050.
The mean steady-state estimates were calculated by using 150 independent runs
of the simulation, each lasting ten hours of simulated time. They were compared
against the fixed point of the ODE solution. We used the following measure of
accuracy to assess the quality of the results:

Normalized error =
|Simulation estimate−ODE estimate|

N
× 100

This error relates the absolute difference with respect to the total population
of elements considered in the analysis. This is to better capture the fact that a
large absolute difference between two estimates may be practically unimportant
when related to the proportions of robots in a particular state. The results of
the analysis, shown in Table 1, demonstrate a very good accuracy of the model,
with a maximum error less than 0.5% relative to the total population of robots.

7.3 Black-Box Adaptation by Sensitivity Analysis

We now turn to relating this operational interpretation of an ensemble of robots
with the SOTA/GEM description. We observe that the trajectory space of GEM
simply reduces to the solution of the initial value problem (6), which is unique in
this specific model. Furthermore, the general notion of utility has here the inter-
pretation of a real-valued function of the solution, i.e. ϕ(S(t), C(t), R(t), G(t)).
For instance, an interesting utility function is throughput, i.e., the frequency at
which garbage items are returned to the service area. In this case, as C(t) is
the number of returning robots at time t that have picked up a garbage item,
throughput may be expressed as the function γC(t).

ASCENS: Engineering Autonomic Service-Component Ensembles 19

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.008

0.01

0.012

T
hr

ou
gh

pu
t

Rest time 1/
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

2000

4000

X: 1580
Y: 300

G
ar

ba
ge

 it
em

s

Maintain goal

Fig. 4. Sensitivity analysis of throughput of garbage collection (solid line) and dirtiness
of exhibition hall (dash-dotted line) against rest time at the service area. The dotted
line shows the SOTA requirement (maintain goal) that there must not be more than
300 garbage items in the arena.

This dynamic model allows for forms of black-box adaptation as described in
a more general sense in Section 5.1. Here, black-box adaptation may realized by
means, for instance, of sensitivity analysis, intended as the evaluation of different
model instances where some parameters of interest are changed in order to study
their dependence on the overall system’s behavior. For instance, an interesting
application would be to evaluate the impact of the resting time on the throughput
of garbage collection. Intuitively, the smaller the resting time the higher the
throughput, because there will be on average more robots circulating in the
arena, all the other parameters remaining the same. However, too high a rate
may not be convenient because a robot could be keep exploring the arena without
finding garbage items, which are being picked up by all the other robots. This
would lead to wasteful consumption of energy, which can be reasonably modeled
as a cost function which is linear with the amount of time that a robot is moving.

Therefore, a trade-off is sought between maintaining a clean arena and re-
ducing energy consumption by using robots parsimoniously. One could think
of adapting the parameters of the robot to ensure that a certain goal of arena
cleanliness is maintained. For instance, the SOTA requirement in Section 3 of
having less than 300 garbage items in the arena can be translated into a sensi-
tivity analysis which looks at the estimated value of G(t), solution of the system
of ODEs. For example, this can be done by inspecting a curve which plots the

20 M. Wirsing et al.

steady-state throughput against the average rest time 1/β, as shown in Fig. 4.
The throughput curve, in solid line, shows insensitivity for a wide range of rest
times, until about 1500. This is because, in those situations, the arena is kept
relatively clean (with about 2 garbage items, dash-dotted line), therefore many
robots keep exploring but they encounter an item infrequently. As rest times are
further increased, however, the robots cannot keep up with the waste; throughput
decreases because fewer robots are present, and the arena becomes more soiled.
Thus, the maximum allowed rest time predicted by the model, corresponding to
the lowest energy consumption possible whilst achieving the desired maintain
goal, corresponds to 1580, when the garbage-item line and the maintain-goal one
(dotted line) intersect.

8 Engineering Ensembles

The previous sections presented techniques and formal foundations for designing
and analyzing ensembles. To be useful to the developer, they have to be inte-
grated into the development process. To facilitate this, we propose patterns and
best practices for applying our methods in Sect. 8.1, an approach to awareness-
and knowledge-cognizant software engineering in Sect. 8.2, and tool support in
Sect. 8.3.

8.1 Best Practices and Patterns

The design of an ensemble such as the swarm of garbage-collecting robots poses
many difficult trade-offs and design decisions for the developer: What capabilities
should each robot have, and is it better to use many simple, inexpensive robots,
or would it be better to use a small number of larger, more powerful robots?
Should the swarm be homogeneous or should it contain robots with specialized
capabilities? What kind of awareness and knowledge do the robots need? How
much knowledge do robots share, how do they assess the quality of the knowledge
they acquire from sensors and other robots, and how should robots deal with
contradictory information? Should robots have simple, predictable behaviors or
more complex ones that have possibly greater potential for adaptation but also
for unexpected failures? Should formal methods be used in the development
process, and if so, which properties should be validated?

This is just a small selection of the high-level design decisions that have to be
taken; while the system is developed and maintained, countless alternatives and
design choices, at various levels of detail, have to be evaluated. This will always
remain a challenging task that requires experience and domain knowledge on
the part of the designer. But best practices can help designers to ask the right
questions, to consider the problems that might arise in depth, and to evaluate
the various trade-offs involved in different solutions as objectively as possible.

In the development of traditional software, and in particular in the area of
distributed systems, patterns [9,10] have proven to be a valuable contribution. In
general terms, an analysis or design pattern is a reusable solution to a develop-
ment problem that specifies the compromises required by the solution as well as

ASCENS: Engineering Autonomic Service-Component Ensembles 21

its influence on other, related development problems. Pattern libraries provide
a uniform vocabulary that simplifies the discussion of design choices, and they
are repositories of proven solutions to common design problems.

In ASCENS we want to expand the pattern-based approach to include pat-
terns for key features and mechanisms of SCs and SCEs (adaptation, awareness,
knowledge, and emergence) at different levels of abstraction. An example is [24]
which includes patterns that help designers to move from “black-box” descrip-
tions (what adaptation, awareness, knowledge and emergence should achieve)
to “white-box” solutions (how adaptation, awareness, knowledge and emergence
can be realized). In this taxonomy, the robots of our simple case study are
instances of the ”reactive component” pattern and the ensemble follows the ”en-
vironment mediated swarm intelligence” pattern. In the long term our goal is
to provide a semi-formal language for our patterns that allows better integra-
tion of the pattern catalog into the ASCENS software development environment.
A formal representation of patterns might even enable SCEs to reason about,
e.g., structural patterns at run time, and hence use the pattern catalog to au-
tonomously adapt the internal structure of the ensemble.

8.2 Awareness- and Knowledge-Cognizant Software Engineering

The SCEL model of the garbage-collecting robots in Sect. 6.2 is purely reactive,
with little awareness of the environment and simple behaviors of the individual
robots. While an ensemble built from very simple components may be sufficient
in some scenarios, there are many cases where more complex behaviors are re-
quired. If we look at a more realistic version of the garbage-collecting robots,
they will have to navigate in a complex environment, in which they have not only
to avoid collisions with humans, they have to do so in an acceptable manner—
driving at full speed in the direction of a visitor and then turning to avoid a
collision at the last moment is simply not acceptable. Similarly; the robots have
to distinguish garbage from other objects—they should, for example, definitely
not remove the exhibits. To this end they may need the capability to learn, e.g.,
by driving around the exhibition hall before the opening in order to learn which
objects belong to the exhibition. To fulfill these tasks the robots will need much
more awareness, knowledge and reasoning capabilities than the simple system
presented in Sect. 6. In ASCENS we are investigating a development approach
for these kinds of system based on the foundations presented in this paper and
inspired by previous work in the areas of artificial intelligence and multi-agent
systems.

One of the important ingredients of this process will be a set of patterns for
awareness- and knowledge-intensive components and ensembles. These patterns
will specify the consequences and trade-offs for different ways of gathering and
maintaining the data for awareness, and different processes of turning raw data
into knowledge that can be used in the development process or while the sys-
tem is executing. To support the developer beyond the purely conceptual stages
of development, we are designing and implementing the Pseudo-Operational
Ensemble Modeling Language (Poem). Poem is a specification language for

22 M. Wirsing et al.

behavior and goals. It includes support for logical reasoning about fluents and
modeling with relational Markov decision processes; Poem models can contain
SCEL programs to describe executable behaviors.

8.3 Tool Support

Developing ensembles forces designers to deal with a multitude of languages,
platforms, and tools. These concerns are also present in more traditional soft-
ware development, but they are aggravated by the increased focus on awareness,
knowledge and adaptation when developing ensembles.

Therefore we are developing a Software Development Environment (SDE)
that integrates the various tools needed for modeling, validating, deploying and
monitoring ensembles. The SDE has its origin in the SENSORIA project [23,17];
it is based on the Eclipse platform [7] and its underlying OSGi [18] framework.
The core of the SDE allows for a straightforward integration of tools as well as
the creation and use of tool chains built as orchestration of tools. Creating a new
service as an orchestration of existing services is possible using either a textual,
JavaScript-based approach or a graphical workflow approach.

As an example, a tool chain could be defined in the SDE consisting of a
modeling tool for the specification of the swarm of robots described in the in-
troduction, a tool for steady-state ODE simulation, and the ARGoS simulator
for robot swarms. The developer can then define an orchestration of these tools
that, e.g., generates traces from simulation runs and use them to validate the
quantitative ODE models.

9 Concluding Remarks

In this paper we have presented some of the first results of the ASCENS sys-
tematic engineering of autonomic service-component ensembles. We have given
short introductions to the SOTA approach to ensemble engineering and the un-
derlying formal model called GEM, formal notions of adaptation and awareness,
the SCEL language, quantitative analysis of ensembles, and finally envisaged
software-engineering methods for ensembles.

But these results represent only a small part of the ASCENS project. In
addition, the ASCENS project is developing an knowledge representation lan-
guage, called KnowLang [21], for modelling four different types of knowlegde: the
knowledge of the service components, the knowledge of the ensemble, context
knowledge and situational knowledge. Validation and verification techniques in
ASCENS are not restricted to quantitative model analysis; we also investigate
qualitative model analysis (see e.g. [2]), runtime monitoring (see e.g. [8]), predic-
tive analysis, the correspondence between the models and the implementation,
and implementation-specific issues not covered by the models.

Particular emphasis is put on case studies. The one in this paper shows only
a small part of our swarm-robotics approach which aims at ensembles of coop-
erating, self-aware robots. The Science Cloud case study is about making cloud

ASCENS: Engineering Autonomic Service-Component Ensembles 23

computing more dynamic and open while attempting to maintain its proper-
ties of being a reliable and flexible approach for using third-party resources and
services. The e-mobility case study aims at illustrating the theories and method-
ologies developed in ASCENS in the domain of e-mobility planning.

The case studies provide not only continuous feedback to the research per-
formed in ASCENS, they also lead to new scientific results in the case study do-
mains (see e.g. [19,6,1]) and help to achieve the overall aim of ASCENS: a unified
development approach to build self-aware, self-adaptive and self-expressive sys-
tems that can operate in open-ended, non-deterministic environments, perform
in a reliable, predictable manner, adapt to changing environments or require-
ments, and handle failures of individual nodes.

Acknowledgements. This work has been partially sponsored by the FET-IST
project FP7-257414 ASCENS. We thank Annabelle Klarl for reading drafts of
the paper and useful comments.

References

1. Abeywickrama, D.B., Zambonelli, F.: Model checking goal-oriented requirements
for self-adaptive systems. In: Popovic, M., Schätz, B., Voss, S. (eds.) ECBS, pp.
33–42. IEEE (2012)

2. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.H., Peled, D.: Efficient dead-
lock detection for concurrent systems. In: Singh, S., Jobstmann, B., Kishinevsky,
M., Brandt, J. (eds.) MEMOCODE, pp. 119–129. IEEE (2011)

3. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A concep-
tual framework for adaptation. In: de Lara, Zisman (eds.) [16], pp. 240–254

4. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

5. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A Language-Based Approach
to Autonomic Computing. In: Beckert, B., de Boer, F., Bonsangue, M., Damiani,
F. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

6. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, Zisman
(eds.) [16], pp. 78–93

7. Eclipse Foundation: The Eclipse Open Source Community and Java IDE (2011),
http://www.eclipse.org/ (accessed: August 02, 2012)

8. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime Verifica-
tion of Component-Based Systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

9. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Longman,
Amsterdam (1996)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston (1995)

11. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: From indi-
viduals to populations. Comput. J. 55(7), 866–881 (2012)

12. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of Software-Intensive Sys-
tems: State of the Art and Research Challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems. LNCS, vol. 5380,
pp. 1–44. Springer, Heidelberg (2008)

http://www.eclipse.org/

24 M. Wirsing et al.

13. Hölzl, M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

14. InterLink Project: Website, http://interlink.ics.forth.gr/central.aspx (ac-
cessed: August 02, 2012)

15. Keeney, R., Raiffa, H.: Decisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York (1976)

16. de Lara, J., Zisman, A. (eds.): FASE 2012. LNCS, vol. 7212. Springer, Heidelberg
(2012)

17. Mayer, P., Ráth, I.: The Sensoria Development Environment. In: Wirsing, Hölzl
(eds.) [22], pp. 622–639

18. OSGi Alliance: OSGi Specification Release 4 (March 2008),
http://www.osgi.org/Specifications/ (accessed: August 02, 2012)

19. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Stirling, T.S., Gutiérrez,
Á., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In: IROS, pp. 5027–5034. IEEE (2011)

20. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3rd internat.
edn.). Pearson Education (2010)

21. Vassev, E., Hinchey, M., Gaudin, B., Nixon, P.: Requirements and Initial Model
for KnowLang – a Language for Knowledge Representation in Autonomic Service-
Component Ensembles. In: C3S2E 2011: The Fourth International C* Conference
on Computer Science & Software Engineering, pp. 35–42. ACM (2011)

22. Wirsing, M., Hölzl, M. (eds.): Sensoria Project. LNCS, vol. 6582. Springer, Hei-
delberg (2011)

23. Wirsing, M., Hölzl, M.M., Koch, N., Mayer, P.: Sensoria - Software Engineering
for Service-Oriented Overlay Computers. In: Wirsing, Hölzl (eds.) [22], pp. 1–14

24. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On Self-
Adaptation, Self-Expression and Self-Awareness for Autonomic Service Compo-
nent Ensembles. In: Proceedings of the 1st SASO Workshop on Self-Awareness,
Ann Arbor, USA, pp. 108–113. IEEE CS Press (October 2011)

http://interlink.ics.forth.gr/central.aspx
http://www.osgi.org/Specifications/

A Language-Based Approach

to Autonomic Computing�

Rocco De Nicola1, Gianluigi Ferrari2, Michele Loreti3, and Rosario Pugliese3

1 IMT, Institute for Advanced Studies Lucca, Italy
2 Università degli Studi di Pisa, Italy

3 Università degli Studi di Firenze, Italy

Abstract. SCEL is a new language specifically designed to model au-
tonomic components and their interaction. It brings together various
programming abstractions that permit to directly represent knowledge,
behaviors and aggregations according to specific policies. It also supports
naturally programming self-awareness, context-awareness, and adapta-
tion. In this paper, we first present design principles, syntax and opera-
tional semantics of SCEL. Then, we show how a dialect can be defined
by appropriately instantiating the features of the language we left open
to deal with different application domains and use this dialect to model
a simple, yet illustrative, example application. Finally, we demonstrate
that adaptation can be naturally expressed in SCEL.

1 Introduction

The increasing complexity, heterogeneity and dynamism of current computa-
tional and information infrastructures is calling for new ways of designing and
managing computer systems and applications. Adaptation, namely “the capabil-
ity of a system to change its behavior according to new requirements or environ-
ment conditions” [1], has been largely proposed as a powerful means for taming
the ever-increasing complexity of today’s computer systems and applications.
Besides, a new paradigm, named autonomic computing [2], has been advocated
that aims at making modern distributed IT systems self-manageable, i.e. capable
of continuously self-monitoring and selecting appropriate operations.

More recently, to capture the relevant features and challenges, the ‘Interlink
WG on software intensive systems and new computing paradigms’ [3] has pro-
posed to use the term ensembles to refer to:

The future generation of software-intensive systems dealing with mas-
sive numbers of components, featuring complex interactions among com-
ponents and with humans and other systems, operating in open and
non-deterministic environments, and dynamically adapting to new re-
quirements, technologies and environmental conditions.

� This work has been partially sponsored by the EU project ASCENS (257414).

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 25–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 R. De Nicola et al.

Systems partially satisfying the above definition of ensemble have been already
built, e.g. national infrastructures such as power grids, or large online cloud
systems such as Amazon or Google. But significant human intervention is needed
to dynamically adapt them. Instead, one crucial requirement is to ensure that
an ensemble continues to function reliably in spite of unforeseen changes and
that adaptation does not render systems inoperable, unsafe or insecure.

To move from the engineering of traditional systems to that of ensembles,
an higher level of abstraction is needed. Many research efforts are currently
devoted to the search of methodologies and tools to build ensembles by exploiting
techniques developed in different research areas such as software engineering,
artificial intelligence and formal methods. The aim is the definition of linguistic
primitives and methodologies to program autonomic and adaptive systems while
relying on rigorous foundations that support verification of their properties.

The challenge for language designers is to devise appropriate abstractions
and linguistic primitives to deal with the large dimension of systems, the need
to adapt to evolving requirements and to changes in the working environment,
and the emergent behaviors resulting from complex interactions.

The notions of service components (SCs) and service-component ensembles
(SCEs) have been put forward as a means to structure a system into well-
understood, independent and distributed building blocks that interact in speci-
fied ways. SCs are autonomic entities that can cooperate, with different roles, in
open and non-deterministic environments. SCEs are instead sets of SCs with ded-
icated knowledge units and resources, featuring goal-oriented execution. Most of
the basic properties of SCs and SCEs are already guaranteed by current service-
oriented architectures; the novelty lays in the notions of goal-oriented evolution
and of self-awareness and context-awareness.

A possible way to achieve awareness is to equip SCs and SCEs with infor-
mation about their own state and behavior, to enable them to collect and store
information about their working environment and to use this information for
redirecting and adapting their behavior. A typical SCE is reported in Figure 1,
which evidences that ensembles are structured sets of components, with dedi-
cated knowledge units to represent shared, local and global knowledge, that can
be interconnected via highly dynamic infrastructures.

These notions of SCs and SCEs are the starting point of the EU project AS-
CENS [4,5] that aims at investigating different issues ranging from languages for
modelling and programming SCEs to foundational models for adaptation, dy-
namic self-expression and reconfiguration, from formal methods for the design
and verification of reliable SCEs to software infrastructures supporting deploy-
ment and execution of SCE-based applications. The aim is to develop formal
tools and methodologies supporting the design of self-adaptive systems that can
autonomously adapt to, also unexpected, changes in the operating environment,
while keeping most of their complexity hidden from administrators and users.

In this paper we present some of the work done to develop linguistic supports
for modelling and programming service components and their ensembles. More
specifically, we introduce SCEL (Service Component Ensemble Language), a

A Language-Based Approach to Autonomic Computing 27

Knowledge

Knowledge

K

K

Service Component Ensemble

SCE

Service Component

SC

SC
SC

Fig. 1. A Service Component Ensemble

new language designed for autonomic computing. SCEL brings together dif-
ferent programming abstractions that permit to directly represent knowledge,
behaviors and aggregations according to specific policies. It also supports nat-
urally programming self-awareness, context-awareness and adaptation. SCEL’s
solid semantic grounds lay the basis for developing logics, tools and method-
ologies for formal reasoning about system behavior to establish qualitative and
quantitative properties of both the individual components and the ensembles.

The rest of the paper is organized as follows. We present SCEL’s design
principles, syntax and operational semantics in Sections 2, 3 and 4, resp. . In
Section 5, we show an example of how a dialect of SCEL can be defined by
appropriately instantiating the features of the language we left open to deal with
different application domains and in Section 6 we demonstrate how the proposed
dialect can be used to model a simple yet illustrative example application. In
Section 7 we argue that adaptation can be naturally expressed in SCEL. We
review more strictly related work in Section 8 and conclude in Section 9 with
some final remarks and hints for future work.

2 SCEL: Design Principles

SCEL provides abstractions explicitly supporting autonomic computing systems
in terms of Aggregations, Behaviors andKnowledge according to specific Policies.

Aggregation Abstractions describe how different entities are brought together
to form components and systems and to offer the possibility to construct the
software architecture of autonomic systems. Composition of components and
their interaction is implemented by exploiting the notion of interface that can
be queried to determine the attributes and the functionalities provided and/or
required by components. Ensembles are specific aggregations of components that
represent social or technical networks of autonomic components. The key point is
that the formation rule is endogenous to components: components of an ensemble
are connected by the interdependency relations established in their interfaces.
Therefore, an ensemble is not a rigid fixed network but rather a dynamic graph-
like structure where component linkages are dynamically established.

28 R. De Nicola et al.

Behavioral Abstractions describe how computations progress. These abstrac-
tions are modelled as processes in the style of standard process calculi. Inter-
action comes in when components access data in the knowledge repositories of
other components. Adaptation emerges as the result of knowledge acquisition
and manipulation.

Knowledge Abstractions provide the high level primitives to manage pieces
of relevant information coming from different sources. Knowledge is represented
through items stored in repositories. Knowledge items contain either application
data or awareness data. The former are used for determining the progress of
component computations, while the latter provide information about the envi-
ronment in which the different components are running (e.g. monitored data
from sensors) or about the actual status of an autonomic component (e.g. about
its current position or the remaining battery’s charge level). We assume that each
knowledge repository provides three abstract operations that can be used by au-
tonomic components for adding new knowledge to the repository, for retrieving
knowledge from the repository and for withdrawing knowledge from it.

Policy Abstractions deal with the way behaviors are regulated. Since few as-
sumptions can be made about the operational environment, that is frequently
open, highly dynamic and possibly hostile, the ability of programming and en-
forcing a finer control on behavior is essential to assure that valuable information
is not lost. Policies are the mean to guarantee such control. Interaction policies
and Service Level Agreement (SLA) policies provide two standard examples of
policy abstractions. Other examples are security properties maintaining the right
linkage between data values and their associated usage policies (data-leakage
policies) or limiting the flow of sensitive information to untrusted sources (ac-
cess control and reputation policies).

The two central ingredients of SCEL are the notions of autonomic component
and of ensemble that we shall additionally consider below.

2.1 Components

An autonomic component I[K, Π, P] consists of:

1. an interface I publishing and making available structural and behavioral
information about the component itself;

2. a knowledge manager K, managing both application data and awareness
data, together with the specific handling mechanism;

3. a set of policies Π regulating the interaction between the different internal
parts of the component and the interaction of the component with the others;

4. a process P together with a set of process definitions that can be dynami-
cally activated. Some of the processes in P perform local computation, while
others may coordinate processes interaction with the knowledge repository
and deal with the issues related to adaptation and reconfiguration.

Component interfaces can be inquired to extract components name, the interde-
pendencies among components, and the services offered by components. Indeed,
the interface of a component provides at least the following attributes:

A Language-Based Approach to Autonomic Computing 29

– id: its name;
– ensemble: a predicate on interfaces used to determine the ensemble the com-

ponent has created and currently coordinates;
– membership: a predicate on the interfaces used to determine the ensembles

which the component is willing to be member of.

Additional attributes might, e.g., indicate the battery’s charge level and the
component’s GPS position.

Notably, the whole information provided by the component interface is stored
in the local knowledge of the component and therefore it can be dynamically
changed by using the appropriate operators for knowledge handling.

2.2 Ensembles

Ensembles are aggregations of components characterized by means of suitable
predicates associated to the attributes ensemble and membership. Surprisingly
(it might be), no specific syntactic category or operator for forming ensembles
is provided by SCEL. Rather, to better capture their dynamicity, ensembles are
‘synthesized’ dynamically by exploiting the values of the components attributes.
This design choice guarantees high dynamicity and flexibility in forming, joining
and leaving ensembles and does avoid resorting to structure ensembles through
rigid syntactic constructs.

For example, the names of the components that can be members of an
ensemble can be fixed via the predicate

P (I) def
= I.id ∈ {n,m, p}

If the attribute ensemble of a component C has assigned P (I), then a component
C′ is part of the ensemble coordinated by C if its name is n, m or p. Of course,
the predicate assigned to ensemble can be changed dynamically, thus permitting
to modify at run-time the members of the ensemble coordinated by C.

As another example, to dynamically characterize the members of an ensemble
that are active and have a battery charge level greater than 30%, the predicate

P (I) def
= I.active = yes ∧ I.battery level > 30%

could be used. Here, we are assuming that the interface of each component willing
to be part of the ensemble contains the attributes active and battery level.

Components, in turn, could be willing to be part of any ensemble. This is
modelled by letting attribute membership be associated to the predicate true.
On the contrary, components may not want to be part of any ensemble, in this
case membership will be set to be false. More generally, components can place
restrictions on the ensembles which they are willing to be member of by appro-
priately setting the attribute membership. For example, using the predicate

P (I) def
= I.trust level > medium

a component can express its willingness to be only part of those ensembles co-
ordinated by components whose (certified) trust level is greater than medium.

30 R. De Nicola et al.

Table 1. SCEL syntax (K, Π , T , and t are parameters)

Systems:

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S
Components:

C ::= I[K, Π,P]

Processes:

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄) (A(f̄) � P)

Actions:

a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ exec(P)

∣∣ new(I,K, Π,P)

Targets:

c ::= n
∣∣ x

∣∣ self

3 SCEL: Syntax

The syntax of SCEL is illustrated in Table 1. There, different syntactic cat-
egories are defined that constitute the main ingredients of our language. The
basic category of the syntax is that relative to processes that are used to build
up components that in turn are used to define systems. processes model
the flow of the actions that can be performed. Each action has among its
parameters a target, that indicates the other component that is involved in
that action, and either an item or a template, that determines the part of
knowledge to be added, retrieved or removed. policies are used to control
and adapt the actions of the different components in order to guarantee the
achievement of specific goals or the satisfaction of specific properties.

It has to be said that our aim is to identify linguistic constructs for uniformly
modeling the control of computation, the interaction among possibly heteroge-
neous components, and the architecture of systems and ensembles. Therefore, we
have left open some syntactic categories, namely Knowledge (ranged over by
K), Policies (Π), Templates (T), and Items (t). These represent additional
language features that need to be introduced, e.g. to represent and store knowl-
edge of different forms (e.g. constraints, clauses, records, tuples) or to express a
variety of policies (e.g. to regulate knowledge handling, resource usage, process
execution, process interaction, actions priority, security, trust, reputation). We
don’t want to take a definite standing about these categories and prefer they be
fixed from time to time according to the specific application domain or to the
taste of the language user. In the rest of this section, we consider one by one the
explicitly defined categories and describe them in detail.

Processes are the SCEL active computational units. Each process is built
up from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), controlled composition (P1[P2]), process variable (X), parameterised
process invocation (A(p̄)), and parameterised process definition (A(f̄) � P). The
construct P1[P2] abstracts the various forms of parallel composition commonly
used in process calculi. Process variables are used to support higher-order com-
munication, namely the capability to exchange (the code of) a process by first
adding an item containing the process to a knowledge repository and then re-
trieving/withdrawing this item while binding the process to a process variable.

A Language-Based Approach to Autonomic Computing 31

Processes can perform five different kinds of actions. Actions get(T)@c,
qry(T)@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory c. These operations exploit templates T as patterns to select knowledge
items t in the repositories. They rely heavily on the used knowledge repos-
itory and are implemented by invoking the handling operations it provides.
Action exec(P) triggers a controlled (parallel) execution of process P . Action
new(I,K, Π, P) creates a new component I[K, Π, P].

Action get is a blocking action, in the sense that the process executing it
has to wait for the wanted element if it is not (yet) available in the knowledge
repository. Action qry, exactly like get, suspends the process executing it if
the knowledge repository does not (yet) contain or cannot ‘produce the wanted
element. The two blocking actions differ also for the fact that get removes the
found item from the knowledge repository while qry leaves the target reposi-
tory unchanged. Actions put, exec and new are instead non-blocking and are
immediately executed.

Component names are denoted by n, n′, . . . , variables for names are denoted
by x, x′, . . . , while c stands for a name or a variable. The distinguished variable
self can be used by processes to refer to the name of their hosting component.

Systems aggregate components (see Section 2.1) through the composition
operator ‖ . It is also possible to restrict the scope of a name, say n, by
using the name restriction operator (νn) . Thus, in a system of the form S1 ‖
(νn)S2, the effect of the operator is to make name n invisible from within S1.
Essentially, this operator plays a role similar to that of a begin . . . end block in
sequential programming and limits visibility of specific names. Additionally, it
allows components to communicate restricted names thus enlarging their scope
to encompass also the receiving components (like restriction in π-calculus [6]).

4 SCEL: Operational Semantics

The operational semantics of SCEL is given in the SOS style [7] by relying on

the notion of Labelled Transition System (LTS), which is a triple 〈S,L, � 〉
made of a set of states S, a set of transition labels L, and a labelled transition

relation � ⊆ S × L × S accounting for the actions that can be performed
from each state and the new state reached after each such transition. The se-
mantics is defined in two steps: first, the semantics of processes specifies process
commitments ignoring process allocation, available data, regulating policies, etc.;
then, by taking process commitments and system configuration into account, the
semantics of systems provides a full description of systems behavior.

To define the semantics, we use the sets of bound variables bv(E) and free
variables fv(E), and the sets of names n(E), bound names and free names oc-
curring in a syntactic term E. These sets, as usual, can be defined inductively on
the syntax of actions, processes, components, and systems by taking into account
that the only binding constructs are actions get and qry as concerns variables
and action new and the restriction operator as concerns names. More precisely,

32 R. De Nicola et al.

Table 2. Operational semantics of processes

a.P
a� P (a �= exec(Q)) exec(Q).P

exec(Q)� P [Q] P
◦� P

P
α� P ′

P + Q
α� P ′

Q
α� Q′

P + Q
α� Q′

A(f̄) � P P{p̄/f̄} α� P ′

A(p̄)
α� P ′

P
α� P ′ Q

β� Q′

P [Q]
α[β]� P ′[Q′]

bv(α) ∩ bv(β) = ∅ P =α P ′ P ′ β� P ′′

P
β� P ′′

actions get(T)@c and qry(T)@c bind the variables occurring in the template T ,
while action new(I,K, Π, P) binds the name associated to attribute I.id; the
scope of these binders is the process P1 syntactically following the action in a
prefix form a.P1. The restriction operator (νn) binds n in the scope . A term
without free variables is deemed closed (it may contain free names).

The semantics is only defined for closed systems. Indeed, we consider the bind-
ing of a variable as its declaration (and initialisation), therefore free occurrences
of variables at the outset in a system must be prevented since they are similar
to uses of variables before their declaration in programs (which are considered
as programming errors).

4.1 Operational Semantics of Processes

The semantics of processes specifies process commitments, i.e. the actions that
processes can initially perform. That is, given a process P , its semantics points
out all the actions that P can initially perform and the continuation process P ′

obtained after each such action. To simplify the rules, we do not restrict them
(and the semantics) to the subset of closed processes, although when defining
the semantics of systems we only consider the transitions from closed processes
(see Section 4.2). Moreover, we only consider processes that are such that their
bound names are pairwise distinct and different from their free names.

The LTS defining the semantics of processes is given as follows:

– the set of states coincides with the set of processes as defined in Table 1;
– the set of transition labels is generated by the following production rule

α, β ::= a
∣∣ ◦ ∣∣ α[β]

meaning that a label is either an action as defined in Table 1, or the symbol
◦, denoting inaction, or the composition α[β] of two labels α and β;

– the labelled transition relation � is the least relation induced by the
inference rules in Table 2. We will use P and Q, possibly indexed, to range

over processes and write P
α� Q instead of 〈P, α,Q〉 ∈ � .

The rules defining the labelled transition relation are straightforward. In partic-
ular, exec spawns a new concurrent process whose execution can be controlled

A Language-Based Approach to Autonomic Computing 33

by the continuation of the process performing the action. The rule defining the
semantics of P [Q] states that a transition labeled α[β] is performed when Q
makes the action β while P makes the action α. However, P and Q are not
forced to synchronise. Indeed, thanks to the third rule, that allows any process
to perform a ◦-labelled transition, α and/or β may always be ◦. The semantics
of P [Q] at the level of processes is indeed absolutely permissive and generates
all possible compositions of the commitments of P and Q. This semantics is then
specialized at the level of systems by means of interaction predicates for taking
policies into account. Condition bv(α) ∩ bv (β) = ∅ means that the variables
freed by the action α[β] in the two processes P and Q must be different: this
because they correspond to bound variables that were intended to be different
(although they might have had the same identity) and, once they get free, could
be subject to possibly different substitutions (substitutions are generated and
applied by rule (pr-sys) in Table 3). Notably, also this condition is not strict: it
can be always made true by application of the last rule stating that α-equivalent
processes, i.e. processes only differing in the identity of bound variables (this
equivalence relation is denoted by =α), perform the same transitions.

4.2 Operational Semantics of Systems

The operational semantics of systems is defined in two steps. First, we define an
LTS to derive the transitions enabled from systems without occurrences of the
name restriction operator.Then, by exploiting this LTS, we provide the semantics
of generic systems by means of a (unlabelled) transition system (TS), that is a
pair 〈S,�−→〉 made of a set of states S and a (unlabelled) transition relation
�−→⊆ S × S accounting for the computation steps that can be performed from
each state and the new state reached after each such transition. This approach
allows us to avoid the intricacies, also from a notational point of view, arising
when dealing with name mobility in computations (e.g. when opening and closing
the scopes of name restrictions).

To simplify notation, we will use I and J to range over interfaces. Notation
I |= J .ensemble indicates that a component with interface J is willing to
accept a component with interface I in the ensemble it coordinates. Similarly,
J |= I.membership indicates that I is willing to be one of the components
of the ensemble coordinated by J . We assume that it always implicitly holds
that I |= I.ensemble ∧ I |= I.membership, i.e. that a component is always
part of the ensemble it coordinates. Moreover, we assume that the names of the
attributes of a component are just pointers to the actual values contained in the
knowledge repository associated to the component. This amounts to saying that
in terms of the form I[K, Π, P], I only includes the names of the attributes, as
their corresponding values can be easily retrieved from K. However, when I is
used in isolation, it also includes the attributes’ values.

The LTS defining the semantics of systems without restricted names is

〈S,L, � 〉 where

34 R. De Nicola et al.

– the set of states S includes all the systems defined in Table 1;
– L is the set of transition labels generated by the following production rule

λ ::= τ
∣∣ I : new(J ,K, Π, P)

∣∣ I � J ∣∣ I : t � c
∣∣ I : t � c

∣∣ I : t � c∣∣ I : t �̄J
∣∣ I : t �̄J

∣∣ I : t �̄J

where τ denotes an internal computation step, I : new(J ,K, Π, P) denotes
the willingness of component I to create the new component J [K, Π, P],
I � J denotes the willingness of two components with interfaces I and J
to interact, I : t � c (I : t � c) denotes the intention of component I to
withdraw (retrieve) item t from the repository at c, I : t � c denotes the
intention of component I to add item t to the repository at c, I : t �̄J
(I : t �̄J) denotes that component I is allowed to withdraw (retrieve) item
t from the repository of component J , I : t �̄J denotes that component I
is allowed to add item t to the repository of component J ;

– � is the labelled transition relation induced by the inference rules in

Table 3. We will write S
λ� S′ instead of 〈S, λ, S′〉 ∈ � .

The labelled transition relation relies on the following two predicates:

– the interaction predicate, Π, I : α � λ, σ, means that under policy Π and
interface I, process label α yields system label λ and substitution σ;

– the authorization predicate, Π, I � λ, means that under policy Π and inter-
face I, system label λ is allowed.

The interaction predicate establishes a relation between process labels and sys-
tem labels and thus determines the system label λ to exhibit and the substi-
tution σ to apply when a process performs a transition labeled α. It is called
interaction predicate because its main role is determining the effect of the con-
current execution of different actions by different processes that, e.g., exhibit
labels of the form α1[α2]. Many different interaction predicates can thus be de-
fined to capture well-known process computation and interaction patterns such
as interleaving, asynchronous communication, synchronous communication, full
synchrony, broadcasting, etc. Despite the several interaction predicates that can
be defined, we expect anyway that a well-defined interaction predicate satisfies
some obvious criteria. For example, a process label of the form get(T)@c should
be related to system labels of the form I : t � c, where t is any item ‘matching’
the template T , while a process label of the form put(t)@c should be related
to system labels of the form I : t′ � c, where t′ is any item resulting from the
evaluation of t. We refer the reader to [8] for some notable examples.

The authorization predicate is used to determine the actions that can be
performed according to specific policies. Likewise the interaction predicate, many
different reasonable authorization predicates can be defined depending on Π .

The labeled transition relation also relies on the following three operations
that each knowledge repository’s handling mechanism must provide:

A Language-Based Approach to Autonomic Computing 35

Table 3. Semantics of systems: labelled transition relation (symmetric of rules
(syncget), (syncqry), (syncput), (enscomm) and (async) omitted)

P
α� P ′ Π, I : α � λ, σ

I[K, Π, P]
λ� I[K, Π,P ′{σ}]

(pr-sys)

I[K, Π,P]
I:new(J ,K′,Π′,P ′)� C n = J .id n �∈ n(I[K, Π,nil])

I[K, Π,P]
τ� (νn)(C ‖ J [K′,Π ′, P ′])

(newc)

K	 t = K′ Π,I
 I : t
̄ I n = I.id I[K, Π,P]
I:t�n� I[K, Π,P ′]

I[K, Π,P]
τ� I[K′,Π, P ′]

(lget)

K	 t = K′ Π,J
 I : t
̄J
J [K, Π,P]

I:t �̄J� J [K′,Π,P]
(accget)

S1
I:t�n� S′

1 S2
I:t �̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ,λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncget)

K
 t Π,I
 I : t �̄ I n = I.id I[K, Π,P]
I:t�n� I[K, Π,P ′]

I[K, Π, P]
τ� I[K, Π,P ′]

(lqry)

K
 t Π,J
 I : t �̄J
J [K, Π, P]

I:t �̄J� J [K, Π,P]
(accqry)

S1
I:t�n� S′

1 S2
I:t �̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ, λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncqry)

K⊕ t = K′ Π,I
 I : t �̄ I n = I.id I[K, Π,P]
I:t	n� I[K, Π,P ′]

I[K, Π,P]
τ� I[K′, Π,P ′]

(lput)

K ⊕ t = K′ Π,J
 I : t �̄J
J [K, Π,P]

I:t 	̄J� J [K′,Π,P]
(accput)

S1
I:t	n� S′

1 S2
I:t 	̄J� S′

2 J .id=n ens(I,J) ⇒ λ=τ,λ=I � J
S1 ‖ S2

λ� S′
1 ‖ S′

2

(syncput)

S
I�J� S′ I ∈ I′ ∧ J ∈ I′ Π,I′
 I � J

I′[K, Π,P] ‖ S
τ� I′[K, Π,P] ‖ S′

(enscomm)

S1
λ� S′

1

S1 ‖ S2
λ� S′

1 ‖ S2

(async)

36 R. De Nicola et al.

– K � t = K′: the withdrawal of item t from the repository K returns K′;
– K � t: the retrieval of item t from the repository K is possible;
– K ⊕ t = K′: the addition of item t to the repository K returns K′.

Rule (pr-sys) transforms process labels into system labels by exploiting the inter-
action predicate Π, I : α � λ, σ. In particular, it generates the following system
labels: τ , I : new(J ,K, Π, P), I : t � c, I : t � c and I : t � c. As a consequence
of this transformation, a substitution σ (i.e. a function from variables to values)
is generated and applied to the continuation of the process that has exhibited
label α. This is necessary when α contains a get or a qry, because, due to the
way the semantics of processes is defined, the continuation P ′ may contain free
variables even if P is closed. It is worth noting that the domain of σ is the set
of variables that are bound in α, thus, since fv(P ′) ⊆ bv(α), the process P ′{σ}
is closed. The application of the rule also replaces self with the corresponding
name.

No specific system label is used for indicating execution of action exec. Indeed,
this action is always local to the component executing it, and no other component
is involved in that action. Hence, when applying rule (pr-sys), all the information
(i.e. Π) needed to decide if the action can be allowed or not is present. When
exec is allowed, the interaction predicate in the premise of the rule is of the
form Π, I : exec(Q) � τ, [], where [] denotes the empty substitution, and the
transition corresponds to an internal computation step.

Like the exec, action new is decided by using the information within a single
component. However, since it affects the whole system as it creates a new com-
ponent, its execution is indicated by a specific system label I : new(J ,K, Π, P)
(generated by rule (pr-sys)) carrying enough information for the creation of the
new component to take place. When the new component is actually created
(newc), it is checked that its name n is not already used in the creating com-
ponent possibly except for the process part (this condition can be always made
true by exploiting α-equivalence among processes) and, if so, a restriction is put
in the system obtained after the computation step to delimit the scope of n.

The successful execution of the remaining three actions requires, at system
level, appropriate synchronizations. For this reason, for each action we have a
pair of complementary labels. Action get withdraws an item either from the local
repository, rule (lget), or from a specific repository, rule (syncget). In both cases,
this transition corresponds to an internal computation step. However, in case of
remote withdrawal, it is also needed to make sure that the interacting compo-
nents belong to the same ensemble. We have two cases to consider, depending on
predicate ens(I,J) defined as (I |= J .ensemble ∧ J |= I.membership)∨(J |=
I.ensemble ∧ I |= J .membership):
– Predicate ens(I,J) holds true, i.e. the component with interface I is part of

the ensemble defined by the component with interface J , or viceversa. Then,
the (conditional) premise ens(I,J)⇒ λ = τ, λ = I �J of rule (syncget) sets
λ to τ and the inference of the computation step terminates.

– Predicate ens(I,J) holds false and the two components with interface I
and J are both part of the ensemble coordinated by another component,

A Language-Based Approach to Autonomic Computing 37

say I ′[K, Π, P]. Indeed, we write I ∈ I ′ ∧ J ∈ I ′ as a shorthand for condi-
tion (I |= I ′.ensemble ∧ I ′ |= I.membership)∧ (J |= I ′.ensemble ∧ I ′ |=
J .membership). We now take advantage of the ‘else’ case of the premise
ens(I,J) ⇒ λ = τ, λ = I � J of rule (syncget) that sets λ to I � J . Con-
sequently, rule (enscomm) exploits the authorization predicate Π, I ′ � I � J
to check whether the policy Π in force at I ′ authorizes interaction between
I and J and, if so, infers the computation step.

The label I : t �̄J , generated by rule (accget), denotes the willingness of a com-
ponent J to provide t to a component I. When J .id = n, its complementary
label is I : t � n generated by rule (pr-sys) when a component I wants to with-
draw t from the repository at n. When the target of the action denotes a remote
repository, rule (syncget), the action is only allowed if J .id = n, namely if n is
the name of the component with interface J . The semantics of action qry is
modelled by rules (lqry), (accqry) and (syncqry). This action behaves similarly to
get, the only difference being that it invokes the retrieval operation of the repos-
itory’s handling mechanism, rather than the withdrawal operation. Thus, if the
action succeeds, the repository after the computation step remains unchanged.
Action put adds item t to a repository. Its behavior is modelled by rules (namely
(lput), (accput) and (syncput)) similar to those of actions get and qry, the major
difference being now that the addition operation of the repository’s handling
mechanism is invoked. In any case, for remote synchronisation to take place, it
could require authorisation through the application of rule (enscomm).

Finally, rule (async) allows a whole system to asynchronously evolve when
only some of its components evolve.

It is worth noticing that, although the inference rules in Table 3 are defined
on top of all the systems produced by the syntax in Table 1, no transition can
be derived from a system containing name restrictions. That is, in a transition

S
λ� S′, S may not contain name restrictions (instead, because of rule (newc),

S′ may do). This account for our statement at the beginning of this section,
i.e. that we first define an LTS to derive the transitions enabled from systems
without occurrences of name restrictions.

Now, the TS defining the semantics of generic systems is defined as

– the set of states S includes all the systems defined in Table 1;
– the transition relation �−→ is the least relation induced by the inference

rules in Table 4. As a matter of notation, we will write S �−→ S′ instead
of 〈S, S′〉 ∈�−→. Moreover, n̄ denotes a (possibly empty) sequence of names
and n̄, n′ is the sequence obtained by composing n̄ and n′. (νn̄)S abbrevi-
ates (νn1)((νn2)(· · · (νnm)S · · ·)), if n̄ = n1, n2, · · · , nm, and S, otherwise.
S{n′/n} denotes the system obtained by replacing any free occurrence in S
of n with n′. When considering a system S, a name is deemed fresh if it is
different from any name occurring in S.

The rules defining the transition relation are straightforward. The first rule ac-
counts for the computation steps of a system where all (possible) name restric-
tions are at top level, while the last two rules permit to manipulate the syntax of

38 R. De Nicola et al.

Table 4. Semantics of systems: transition relation

S
τ� S′

(νn̄)S �−→ (νn̄)S′ (res-tau)

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh

(νn̄)(S1 ‖ (νn′)S2) �−→ S′ (res-top-r)

(νn̄, n′′)(S1{n′′/n′} ‖ S2) �−→ S′ n′′ fresh

(νn̄)((νn′)S1 ‖ S2) �−→ S′ (res-top-l)

Table 5. Semantics of systems: inter-ensemble communication

S1
λ1� S′

1 S2
λ2� S′

2

S1 ‖ S2
λ1�λ2� S′

1 ‖ S′
2

(ens1)

S
λ′
� S′ Π,I
 λ′ � λ

I[K, Π, P] ‖ S
λ� I[K, Π,P] ‖ S′

(ens2)

I[K, Π,P]
λ1� C S

λ2� S′ Π,I
 λ1 � λ2 � λ

I[K, Π,P] ‖ S
λ� C ‖ S′

(ens3)

a system, by moving all name restrictions at top level, thus putting it into a form
to which the first rule can be possibly applied. This manipulation may require
the renaming of a restricted name with a freshly chosen one, thus ensuring that
the name moved at top level is different both from the restricted names already
moved at top level (to avoid name clashes) and from the names occurring free
in the other (sub-)systems in parallel (to avoid improper name captures).

On inter-ensemble communication. According to the semantics, two components
can interact only if they are part of the same ensemble. Here, we tune the
semantics for permitting more complex interaction patterns among two or more
components, possibly belonging to different ensembles, by exploiting interaction
predicates to regulate them. Therefore, first we extend system labels as follows

λ ::= . . .
∣∣ λ1 � λ2

where label λ1 � λ2 denotes the concurrent execution of those transitions corre-
sponding to labels λ1 and λ2. Then, we add the rules in Table 5 to the operational
rules for systems in Table 3.

Basically, the idea is to generalize the mechanism already present in the oper-
ational semantics of systems (see e.g. rule (enscomm) regulating intra-ensemble
communications), by replacing the authorization predicate Π, I � λ with pred-
icate Π, I � λ′ � λ. The latter, while checking whether a transition can be
allowed according to the policy Π in force at I, also translates label λ′ into λ.

On ensemble-wide broadcast communication. In [8], we also present an exten-
sion of SCEL enabling a sort of multicast communication where the potential

A Language-Based Approach to Autonomic Computing 39

recipients are all the members of the ensembles of which the sender is part of.
Communication is anonymous and takes place through the coordinators of these
ensembles. Due to lack of space, we refer the reader to [8] for a complete account.

5 How to ‘Cook’ Your Own SCEL Dialect

In this section, we show how dialects of SCEL can be easily defined by appro-
priately specifying the parameters of the language. As a concrete example, we
demonstrate how Klaim [9] can be obtained.

In order to define a dialect with specific features, one has to fix the parameters
SCEL depends on, that is

1. the language for expressing policies, together with an interaction predicate
and an authorisation predicate;

2. the languages for representing knowledge items and the templates to be used
to retrieve these items from the repositories;

3. the language for representing knowledge repositories, together with the three
operations, i.e. withdrawal, retrieval and addition, that we assume provided
by each knowledge repository’s handling mechanism.

Now, to get Klaim as a dialect of SCEL, we can make the following choices.
Policies must express Klaim allocation environments. These are functions

associating logical names to physical names (i.e. addresses) of the different com-
ponents, thus regulating components visibility and establishing systems archi-
tecture. Therefore, policies are rendered as functions from variables to names. As
interaction predicate, we take the interleaving one (see [8] for details), which is
obtained by interpreting controlled composition as the interleaved parallel com-
position of the two involved processes, while, as authorisation predicate, we take
a predicate that does not block any action.

Knowledge items are sequences of values, i.e. tuples, while templates are se-
quences of values and variables. More generally, a value can result from the
evaluation of some given expression e belonging to an appropriate language of
expressions. Klaim in turn is parametric with respect to the language of ex-
pressions (we assume that it contains strings and integers).

Knowledge repositories are multisets of tuples, i.e. tuple spaces, providing the
three operations of withdrawal, retrieval and addition. The first two use pattern-
matching wrt a given template to pick a tuple from a tuple space: a tuple matches
a template if they have the same number of elements and corresponding elements
have matching values or variables; variables match any value of the same type,
and two values match only if they are identical. In case more tuples match a
given template, one of them is arbitrarily chosen.

In practice, we can complete the syntax of knowledge, items and tem-

plates as shown in Table 6, where e denotes an expression producing values.
If we were interested in capturing alternative versions of Klaim that, e.g., use

types to enforce access control (see, e.g. [10]), we can simply add these types,
i.e. functions from names to sets of capabilities, to the language of policies.

40 R. De Nicola et al.

Table 6. Tuple-based SCEL (e is an expression)

Knowledge: Items:

K ::= 〈t〉 ∣∣ K1 ‖ K2 t ::= e
∣∣ c

∣∣ P
∣∣ t1, t2

Templates:

T ::= e
∣∣ c

∣∣ P
∣∣ ! x

∣∣ !X
∣∣ T1, T2

As for component interfaces, the only meaningful attribute is id which is
set to the name of the component, while attributes ensemble and membership
are set to true and no other attribute is used. At this point, get/qry/put/new
correspond toKlaim’s in/read/out/newloc, while Klaim’s eval, that permits
to spawn a new process for execution possibly on a remote component, can be
rendered in SCEL by means of an appropriate protocol relying on higher-order
communication and on action exec (see, e.g. [11]).

6 SCEL at Work

In this section we show how the SCEL dialect defined in Section 5 can be used
to model a simple yet illustrative example. In particular, we will mainly focus
on the goal-oriented interaction among SCs and SCEs that are the novelty of
our proposal.

In our application scenario, we consider a collection of service components,
all offering the same services. Each component manages and elaborates service
requests with different policies, roughly summarized by the following three qual-
ity levels: gold, silver and base. These policies are defined via a combination of
predicates on the hardware configuration and the runtime state. For example,
the runtime state can give a measure of the number of service requests cur-
rently handled locally. The parameters of the different policies are identified by
suitable attributes of the component interfaces. In particular, we assume that
the tuples 〈“attr”, “hw”, i〉 and 〈“attr”, “load”, p〉 are stored in the local tu-
ple space of each component. For example, value i (an integer in [0, 10]) in the
tuple 〈“attr”, “hw”, i〉 gives an indication of the capacity of the hardware con-
figuration of the component; while value p (an integer in [0, 100]) in the tuple
〈“attr”, “load”, p〉 estimates the actual computational load of the component.
Notice that the hardware measure is static while the load estimate is updated
whenever a component receives or completes a service request.

Each service component also publishes in its interface the signature of the
available services through suitable attributes. Here we assume that aService is
the name of the available service and requires a string as input parameter and
yields a string value as a result. Furthermore, additional information about the
client and the session has to be provided when the service is invoked.

Service components constitute three ensembles depending on the quality of
service they can provide. In particular, we consider three components, named
cg, cs and cb, each of which coordinates the service components operating at gold,
silver and base level, respectively. Each of these components acts as a proxy for

A Language-Based Approach to Autonomic Computing 41

the replicated services. The ensemble coordinator accepts client invocations and
allows service components to retrieve them. Then, the invoked service component
sends the obtained results back to the client component.

Since ensemble aggregation is goal-oriented, the following predicates

– Sg(I) = I.hw ≥ 7
– Ss(I) = (I.hw ≥ 4) ∧ (Sg(I)→ I.load < 40)
– Sb(I) = (Ss(I)→ I.load < 40) ∧ (Sg(I)→ I.load < 20).

are assigned to attribute ensemble of the three coordinating components cg, cs
and cb, respectively. Thus, the gold ensemble identifies a gold component by
the high measure of its hardware configuration (value greater or equal to 7).
The silver ensemble is less demanding: a component has to provide an hardware
configuration with a level that is at least 4 and, whenever a component provides
a hardware configuration that is valued more than 7, the computational load
must be less than 40% (→ stands for logical implication). This last condition
guarantees that gold components can handle requests at silver level only when
their computational load is under 40%. The same schema is used to define the
base ensemble. Of course, all the components, independently of their hardware
level, can be part of this ensemble. However, gold and silver components are
involved only when their computational load is under 20% and 40% respectively.

Notice that components dynamically and transparently leave or enter an en-
semble when their computational load changes. For instance, a gold component
(i.e. a component with attribute hd that is greater or equal to 7) leaves a silver
ensemble whenever its computational load becomes higher than 40%.

The process running at the client component taking care of the interaction
with the service, let us call it c, performs the following code fragment:

put(“invoke”, “aService”, v, c, s)@u.get(“result”, “aService”, !x, c, s)@self.P

The client posts the invocation in the tuple space of the coordinator of the
ensemble (u is a variable assuming value among cb, cs or cg). Value v is the
required input string, while the pair c, s provides the bookkeeping information:
c is the client name and s is a value representing the working session. After
issuing the invocation, the client waits for the result (recall that action get is
blocking). Whenever the result of the service invocation is made available, the
client can withdraw it from the local tuple space and continue as process P .

Processes running at service components execute the following code fragment:

get(“invoke”, “aService”, !Param, !Client, !Session)@u.
get(“attr”, “load”, !x)@self.
put(“attr”, “load”, (x+ 5))@self.
exec(Q)

The process is triggered by a client request retrieved from the coordinator’s
repository. Whenever this happens, the computational load is updated1 and the

1 Here we assume each service instance uses 5% of the component computational
resources.

42 R. De Nicola et al.

process Q, which actually computes the result of the invoked service “aService”,
is executed. We assume that, before its termination, process Q updates the value
of attribute load and puts the result of the computation into the tuple space of
the requesting client.

The application scenario discussed above exploits different forms of communi-
cation. First, the invoking client uses inter-ensemble communication for putting
its request in the coordinator’s repository. Then, the service component uses
standard (intra-ensemble) communication to retrieve the request from the coor-
dinator’s repository. The processing of the request increases the computational
load of the component, which may cause the service component to leave the
ensemble where the service request has been retrieved. Therefore, when the ser-
vice completes, the result is sent back to the client’s repository by using inter-
ensemble communication. Afterwards, the result can be retrieved by the client
through local communication.

7 Adaptation in SCEL

In this section we argue that adaptation can be naturally expressed in SCEL. As
we have seen in Section 3, the knowledge repository of components can contain
both application data and awareness data. At this level of abstraction, we are
not concerned with the way data are actually represented, we only assume that
they can be appropriately tagged to distinguish awareness data from application
data. This distinction is indeed crucial, as it is at the basis of a tangible notion
of adaptation [12], which is defined as the run-time modification of awareness
data. A component is then deemed adaptive if it has a precisely identified col-
lection of awareness data that are modified at run-time, at least in some of its
computations. Besides, it is self-adaptive if it is able to modify its own awareness
data at run-time.

In general, a component in SCEL is adaptive (and, hence, autonomic) be-
cause its awareness data can be dynamically modified by means of the actions
put/get/qry. Moreover, a component is self-adaptive as the hosted process
can trigger modifications of its awareness data by interacting with the local
knowledge handler. So-called feedback-loops, that adapt behavior of autonomic
components to changing contexts, can thus be easily implemented.

The one outlined above is perhaps the simplest form of adaptation, but we
can envisage more sophisticated forms by taking the nature of the awareness
data into account. Suppose, for example, that the process part of a component
is split into an autonomic manager controlling execution of a managed element.
The autonomic manager monitors the state of the component, as well as the ex-
ecution context, and identifies relevant changes that may affect the achievement
of its goals or the fulfillment of its requirements. It also plans adaptations in or-
der to meet the new functional or non-functional requirements, executes them,
and monitors that its goals are achieved, possibly without any interruption2.

2 The whole body of activities mentioned above has been named MAPE-K loop (Mon-
itoring, Analyzing, Planning, and Executing, through the use of Knowledge) [2].

A Language-Based Approach to Autonomic Computing 43

In practice, the autonomic manager implements the rules for adaptation. Now,
by exploiting SCEL higher-order features, namely the capability to store/re-
trieve (the code of) processes in/from the knowledge repositories and to dynam-
ically trigger execution of new processes (by means of action exec), it is e.g.
possible to dynamically replace (part of) the managed element process or even
the autonomic manager process. In this case, we are also changing the rules, i.e.
processes, with which the awareness data are manipulated, since these rules are
represented as awareness data themselves.

A managed element can be seen as an empty “executor” which retrieves from
the knowledge repository the process implementing a required functionality id
and bounds it to a variable X , sends the retrieved process for execution and
waits until it terminates (this coordination can be worked out by exchanging
appropriate synchronisation items). Also actual parameters for the process to
be executed can be stored as knowledge items and retrieved by the executor (or
by the process itself) when needed, as shown by the code fragment below.

ME � qry(“required functionality id”, !X)@self.
get(“required functionality id args”, !y, !z)@self.
exec(X(y, z)).
get(“wait termination id′′)@self.ME

Items containing processes or parameters can be thought of as awareness data.
Autonomic managers can add/remove/replace these data from the knowledge
repositories thus implementing the adaptation logic and therefore changing the
managed element behavior. For example, different versions of the process pro-
viding a requested service may exist. While managed elements could only read
these data, the autonomic manager could dynamically change the association
between the service request and the service process by simply performing:

get(“required functionality id”, !X)@self.
put(“required functionality id”, Q)@self.

which has the effect of replacing the ‘old’ service implementing the functionality
id with a possibly new one Q.

The autonomic manager can also add a new service or even remove an existing
one. Besides, it is a process just like the managed element, thus it is very well
suited to be itself subject to adaptation. In this way we can build up hierarchical
adaptations and cover a wide range of adaptation mechanisms.

One issue with SCEL is that it does not have any specific mechanism for
stopping or killing processes. However, exploiting knowledge and higher-order
features, the application designer can specify when to terminate processes by
following suitable patterns. For example, in the code fragment below, the man-
aged element can ask the autonomic manager for the authorization to proceed
as process P and, in the negative case, signal its termination.

qry(pid, “ko”)@self.put(pid, “dead”)@self.nil
+ qry(pid, “ok”)@self.P

44 R. De Nicola et al.

This would allow an autonomic manager to send a termination request to the
process with identifier pid and wait for its termination, assuming that both items
(pid, “ok”) and (pid, “ko”) are used for coordination purposes.

get(pid, “ok”)@self.get(pid, “dead”)@self

As we have seen, it is the autonomic manager to choose which adaptation to use.
The decision about when to perform adaptation is jointly taken by the autonomic
manager and the application designer. This is reminiscent of another approach,
named context-oriented programming (COP) [13]. COP is a novel programming
paradigm introduced to manage and control adaptivity of programs. It allows
developers to define behavioral variations, chunks of code that can be activated
depending on the current working environment (the context), to dynamically
modify program execution and thus adapt to its environment. In this approach,
the application designer has to insert adaptation hooks in the application code
and is thus able to control when adaptation can take place. Leaving the designer
to specify where and when to adapt has its advantages, because adaptations
would be explicit in the code and thus more visible, and the application designer
could better plan some adaptations. However, not being transparent to the appli-
cation designer has significant disadvantages, because only adaptations planned
at design phase could be exploited. When the autonomic computing approach is
used, the autonomic manager, which continuously monitors awareness data or
event occurrences, reacts to changes of contexts or of goals.

Other than language-level adaptation, as e.g. used in COP, another approach
to adaptation focuses on the architectural-level. It consists in dynamically re-
shaping the structure of the system, e.g. by exchanging a specific component with
one that provides similar functionalities, but behaves better in a new context.
SCEL supports also this coarse-grained approach since component’s member-
ship to ensembles is dynamic. Indeed, the membership attribute of a compo-
nent’s interface can be parametric w.r.t. to some information controlled by an
autonomic manager.

Finally, in case of distributed applications one can plan to have (i) awareness
data residing at autonomic elements and the autonomic managers performing
the adaptation for all controlled elements, or (ii) all autonomic elements reading
from a single knowledge repository that contains both awareness data and global
autonomic processes. The distributed approach may cause consistency problems
between autonomic elements during the adaptation procedure, because the auto-
nomic managers of different elements may not be synchronized. The centralized
approach may lead to efficiency loss and relies too much on the communication
between autonomic elements, that can have considerable latencies or be unreli-
able. However, both approaches may be useful. For example, at ensemble level,
adaptation can be partly centralized, controlled by an autonomic manager, and
partly distributed in each component. At system level, the distributed approach
better supports the dynamic structures and loosely-coupled components.

A Language-Based Approach to Autonomic Computing 45

8 Related Work

The term “ensemble” has been recently introduced in the literature (see,
e.g., [3,1,14]) to denote a category of systems characterized by heterogeneous
collections of computing resources, huge number of potential interactions,
context-awareness, dynamically changing network topologies, and unreliable com-
munications. A mathematical model of ensembles and their composition has been
introduced in [15]. Ensembles and their constituent parts are abstractly described
as relations on sets of inputs and outputs. The “black-box” view of adaptivity
is then formally defined. This leads to a preorder relation on ensembles which
captures the the ability of ensembles to satisfy goals or maximize a performance
measure in different environments. Differently from this denotational model, we
introduce an operational model of ensembles and a formal language that allows
the description of ensembles in a compact and formal way. A language for pro-
gramming ensembles, named Meld, has been proposed in [16,17]. Meld is a declar-
ative language originally designed for programming overlay networks. It allows
ensembles to be programmed as a unified whole from a global perspective and
then compiled automatically into fully distributed local behaviors. This approach
is somehow reminiscent of Declarative Networking [18], a programming method-
ology that supports the high level specification of network protocols and services,
that are then compiled into a dataflow framework and executed. SCEL, instead,
is a formal language that could be used as the core of a programming language for
ensembles.

The way in which ensembles are characterized in SCEL resembles the
way software elements are dynamically grouped into homogenous clusters in
[19], where an architecture for the design of component-based distributed self-
adaptive systems is outlined. Indeed, both approaches adopt application-specific
metrics. Each cluster is headed by a distinguished component, in charge of su-
pervising it and of gathering information from the rest of the system. The su-
pervision mechanism also identifies situations that trigger adaptations.

Context-Oriented Programming (COP) [13] can also be used to write en-
semble applications [20]. It exploits ad hoc explicit language-level abstractions
to express context-dependent behavioral variations and, notably, their run-time
activation. So far, most of the efforts in the field of COP have been directed
towards the design and implementation of concrete languages. Only a few pa-
pers in the literature provide a foundational account of programming languages
extended with COP facilities, as e.g. the object-oriented ones of [21,22,23] and
the functional one of [24]. All these approaches are however quite different from
ours, that instead focusses on distribution and goal-oriented aggregations and
supports a highly dynamic notion of adaptation.

Several works have been proposed that use formal techniques to model auto-
nomic computing systems. For example, [25] presents an approach to develop an
autonomic service-oriented architecture. This and other examples (e.g., [26,27]),
however, focus on the use of formal techniques for specific target applications.

46 R. De Nicola et al.

Our work, instead, aims at introducing general techniques to achieve autonomic-
ity rather than at modeling specific autonomic systems. SCEL formal semantics
permits to better understand how autonomicity is obtained.

Core languages designed in the area of concurrency theory are natural candi-
dates for the specification of autonomic systems. Many such formalisms aim at
modelling dynamically changing network topologies, a feature common to many
types of distributed systems and to ensembles. For example, CWS [28] deals
with communication aspects that are specific of wireless communications, while
the ω-calculus [29] addresses the modeling problems of mobile ad-hoc networks.
We want also to mention [30], that uses the Gamma formalism, a computing
model inspired by the chemical reaction metaphor, to develop a higher-order
language for specifying autonomic systems, and [31], that presents a biochem-
ical calculus expressive enough to represent adaptive systems, together with a
formal framework for property checking.

9 Concluding Remarks and Future Directions

We have introduced SCEL, a new language that brings together various pro-
gramming abstractions that permit directly representing knowledge, behaviors
and aggregations according to specific policies, and naturally programming in-
teraction, adaptation and self- and context-awareness. Our language-based ap-
proach enables us to govern the complexity of the issues under consideration by
imposing a structure over the variety of computational entities involved. A fur-
ther advantage is that all programming abstractions are based on solid semantic
grounds. This lays the basis for developing logics, tools and methodologies for
formal reasoning about system behavior in order to establish qualitative and
quantitative properties of both the individual components and the ensembles.

We are currently assessing to which extent SCEL achieves its goals, i.e. mod-
eling the behavior of service components and their ensembles, their interactions,
their sensitivity and adaptivity to the environment. As testbeds we will use
three case studies from three different application domains: Robotics (collective
transport), Cloud-computing (transiently available computers), and e-Mobility
(cooperative e-vehicles). This process might require tuning the language features.
After this, we plan to implement SCEL, possibly by exploiting the distributed
software framework IMC [32].

We also want to develop a methodology that enables components to take
decisions about possible alternative behaviors by choosing among the best pos-
sibilities while being aware of the consequences. By relying on an abstract de-
scription of the evolving environment, each component will be able to verify
locally the possibility (or the probability) of guaranteeing the wanted properties
or of achieving the wanted goals by analyzing the possible outcome of its interac-
tions with the abstract model. This kind of information will then be used to take
decisions about the choices that a component has to face. This abstract descrip-
tion is not fixed but may change according to the interactions of the component
with the rest of the system or as a consequence of the changes in the, possibly
imprecise, contextual information in which the entity is currently running.

A Language-Based Approach to Autonomic Computing 47

Our proposal combines notions from different research fields. This will permit
the cross fertilization of concepts and techniques. For instance, in the long run,
we expect that analytical methods typical of the so called big data science can
be fruitfully adopted to discover aggregation patterns and, consequently, predict
behavior of highly complex SCEs. Understanding how aggregations of SCs may
evolve is a key issue for developing optimization techniques.

References

1. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software Engineering for Ensembles. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive
Systems. LNCS, vol. 5380, pp. 45–63. Springer, Heidelberg (2008)

2. IBM: An architectural blueprint for autonomic computing. Technical report, 3rd
edn. (June 2005)

3. Project InterLink (2007), http://interlink.ics.forth.gr/central.aspx

4. Project ASCENS (2010), http://www.ascens-ist.eu/

5. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., de Boer, F., Bonsangue,
M., Damiani, F. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidel-
berg (2012)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I & II. Inf.
Comput. 100(1), 1–77 (1992)

7. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

8. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: Languages primitives for co-
ordination, resource negotiation, and task description. ASCENS Deliverable D1.1
(September 2011), http://rap.dsi.unifi.it/scel/

9. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

10. Gorla, D., Pugliese, R.: Dynamic management of capabilities in a network aware
coordination language. J. Log. Algebr. Program. 78(8), 665–689 (2009)

11. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of klaim-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

12. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Con-
ceptual Framework for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

13. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3), 125–151 (2008)

14. Want, R., Schooler, E., Jelinek, L., Jung, J., Dahle, D., Sengupta, U.: Ensemble
computing: Opportunities and challenges. Intel Technology Journal 14(1), 118–141
(2010)

15. Hölzl, M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

16. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A
declarative approach to programming ensembles. In: IROS, pp. 2794–2800. IEEE
(2007)

http://interlink.ics.forth.gr/central.aspx
http://www.ascens-ist.eu/
http://rap.dsi.unifi.it/scel/

48 R. De Nicola et al.

17. Ashley-Rollman, M.P., Lee, P., Goldstein, S.C., Pillai, P., Campbell, J.D.: A Lan-
guage for Large Ensembles of Independently Executing Nodes. In: Hill, P.M., War-
ren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 265–280. Springer, Heidelberg
(2009)

18. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun.
ACM 52(11), 87–95 (2009)

19. Baresi, L., Guinea, S., Tamburrelli, G.: Towards decentralized self-adaptive
component-based systems. In: Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2008,
pp. 57–64. ACM, New York (2008)

20. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems. CoRR abs/1105.0069 (2011)

21. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

22. Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextFJ: a minimal core calculus for
context-oriented programming. In: Proceedings of the 10th International Workshop
on Foundations of Aspect-Oriented Languages, FOAL 2011, pp. 19–23. ACM, New
York (2011)

23. Clarke, D., Costanza, P., Tanter, E.: How should context-escaping closures proceed?
In: Proc. of COP 2009, pp. 1:1–1:6. ACM, New York (2009)

24. Degano, P., Ferrari, G.-L., Galletta, L., Mezzetti, G.: Types for Coordinating Se-
cure Behavioural Variations. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS,
vol. 7274, pp. 261–276. Springer, Heidelberg (2012)

25. Bhakti, M.A.C., Azween, A.: Formal modeling of an autonomic service oriented
architecture. In: CSIT, vol. 5, pp. 23–29. IACSIT Press (2011)

26. Li, Z., Parashar, M.: Rudder: An agent-based infrastructure for autonomic com-
position of grid applications. Multiagent and Grid Systems 1(3), 183–195 (2005)

27. Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S., Rao, S.: Autono-
mia: an autonomic computing environment. In: IPCCC, pp. 61–68. IEEE (2003)

28. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

29. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

30. Banâtre, J.P., Radenac, Y., Fradet, P.: Chemical Specification of Autonomic Sys-
tems. In: IASSE, pp. 72–79. ISCA (2004)

31. Andrei, O., Kirchner, H.: A Higher-Order Graph Calculus for Autonomic Com-
puting. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory,
Computational Intelligence and Thought. LNCS, vol. 5420, pp. 15–26. Springer,
Heidelberg (2009)

32. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A Flexible and
Modular Framework for Implementing Infrastructures for Global Computing. In:
Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 181–193.
Springer, Heidelberg (2005)

A Survey on Basic Connectors and Buffers�

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Departamento de Computación, Universidad de Buenos Aires - Conicet, Argentina

Abstract. Recent years have witnessed an increasing interest about a
rigorous modelling of (different classes of) connectors. Here, the term
connector is used to name entities that can regulate the interaction of
possibly heterogeneous components. Thus, connectors must take care of
exogenous coordination, handling all those aspects that lie outside the
scopes of individual components. This has led to the development of
different frameworks that are used to specify, design, analyse, compare,
prototype and implement connector-based middleware and a rigorous
mathematical foundation of connectors is crucial for the analysis of ex-
ogenously coordinated systems. In this survey, we overview the main
features of some notable theories of connectors, namely the algebra of
stateless connectors, the tile model, Reo, BIP, nets with boundaries and
the wire calculus. We discuss similarities, differences, mutual embedding
and possible enhancements.

1 Introduction

The inherent complexity of modern distributed systems can only be tackled by
modular engineering practices and methodologies that enhance the structural
and logical blueprint of such systems. This way, it is possible to prove proper-
ties of the system either by construction, assembling well-behaving subsystems
according to sound patterns, or by decomposition, dividing the systems and
the property to be proved in smaller parts that can be analysed separately.
Component-based design relies on the separation of concerns between coordi-
nation and computation. Component-based systems are built from sequential
computational entities, the components, that should be loosely coupled w.r.t.
the concurrent execution environments where they will be deployed. The com-
ponent interfaces comprise the number, kind and peculiarities of communication
ports. The communication media that make possible to interact are called con-
nectors. Intuitively, they can be understood as (suitably decorated) channels or
links among the ports of the components. Graphically, ports are represented as
nodes and connectors as hyperarcs whose tentacles are attached to the ports
they control. Several connectors can also be combined together by merging some
of the ports their tentacles are attached to. Semantically, each connector imposes

� Research supported by the EU Integrated Project 257414 ASCENS, the Italian
MIUR Project IPODS (PRIN 2008), ANPCyT Project BID-PICT-2008-00319, and
UBACyT 20020090300122.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 49–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 R. Bruni, H. Melgratti, and U. Montanari

suitable constraints on the allowed communications among the components it
links together. For example, a connector may impose handshaking between a
sender component and a receiver component (Milner’s CCS-like synchroniza-
tion), or it may require an agreement on the action to be performed next by
all components that it connects (Hoare’s CSP-like synchronization). A differ-
ent kind of connector may trigger the broadcasting of a message sent from one
component to all the other linked components. The evolution of a network of
components and connectors (just network for brevity) can be seen as if played in
rounds: At each round, the components try to interact through their ports and
the connectors allow/disallow some of the interactions selectively. A connector
is called stateless when the interaction constraints that it imposes over its ports
stay the same at each round; it is called stateful otherwise. To address composi-
tion and modularity of a system, networks are often decorated with (input and
output) interfaces: in the simplest case, they consist of ports through which a
network can interact. For example, two networks can be composed by merging
the ports (i.e. nodes) they have in common. Ports that are not in the interface
are typically private to the network and cannot be used to attach additional
connectors. The distinction between input and output ports indicates in which
direction the data should flow, but feedback is also possible through short-circuit
connectors, which redirects some of the emitted output of a network to (some
of) its input.

In this paper we survey some formal approaches to the modelling, composition
and analysis of connectors, namely Reo [1], BIP [6], nets with boundaries [25], the
algebra of stateless connectors [10], the tile model [17], and the wire calculus [24].
Although the approaches we shall consider are quite different in spirit, we will ar-
gue that they are different ways to look at the same entity. We briefly illustrate
below the analysed frameworks by following the chronological order in which
they were proposed. To expose the analogies and differences of the approaches,
we shall use as a running example the modelling of compensation-based work-
flows typical of the area of business process modelling (see Section 2). We present
the essential technical machinery underlying the considered theories in dedicated
sections (the presentation order has been guided by practical dependencies aris-
ing in the descriptions of the different models). Some final considerations are
reported in Section 8.

The Algebra of Stateless Connectors and the Tile Model: An algebra
consisting of five kinds of basic stateless connectors (plus their duals) has
been presented in [10]. The connectors can be composed in series or in paral-
lel. The operational, observational and denotational semantics of connectors
are first formalised separately and then shown to coincide. Moreover, a com-
plete normal-form axiomatisation is available for them.

The Tile Model [17,9] offers a flexible and adequate semantic setting for
concurrent systems [22,15,13] and also for defining the operational and ab-
stract semantics of suitable classes of connectors, of which the algebra of
stateless connectors is a particular instance. Tiles express the reactive be-
haviour of connectors in terms of 〈trigger, effect〉 pairs of labels. In this

A Survey on Basic Connectors and Buffers 51

context, the usual notion of equivalence is called tile bisimilarity. Tile bisim-
ilarity is a congruence when a simple tile format is met by basic tiles [17].

The Reo Coordination Model: Reo [1] is an exogenous coordination model
based on channel-like connectors that mediate the flow of data among com-
ponents. Notably, a small set of point-to-point primitive connectors is suffi-
cient to express a large variety of interesting constraints over the behaviour
of connected components, including various forms of mutual exclusion, syn-
chronization, alternation, and context-dependency. Components and primi-
tive connectors can be composed into larger Reo circuits by disjoint union
up-to the merging of shared Reo nodes. The semantics of Reo has been
formalized in several ways, see [19] for a recent survey.

The BIP Component Framework: BIP [6] is a component framework for
constructing systems by superposing three layers of modelling, called Be-
haviour, Interaction, and Priority. At the global level, the behaviour of a
BIP system can be faithfully represented by a safe Petri net with priori-
ties, whose single transitions are obtained by fusion of component transi-
tions according to the permitted interactions, and priorities are assigned
accordingly. An algebraic presentation of BIP connectors with vacuous pri-
orities is given in [7]. One key feature of BIP is the so-called correctness by
construction, which allows the specification of architecture transformations
preserving certain properties of the underlying behaviour. For instance it is
possible to provide (sufficient) conditions for compositionality and compos-
ability which guarantee deadlock-freedom. The BIP component framework
has been implemented in a language and a tool-set. A compositional version
of BIP systems is presented in [11].

Nets with Boundaries and the Wire Calculus: Nets with boundaries takes
inspiration from the open nets of [5]. The main idea is that nets are extended
with input/output interfaces that can be used by transitions to synchro-
nise their firings with the environment. C/E nets with boundaries can be
composed in series and in parallel and come equipped with a labelled tran-
sition system that fixes their operational and bisimilarity semantics. The
wire calculus [24] is a process algebra whose action prefixes come with an
input/output arity typing. In [25,12] a dialect of the wire calculus has been
used to give an exact characterisation of a special class of (stateful) connec-
tors that can be alternatively expressed in terms of nets with boundaries.

2 Running Example

We will illustrate the different approaches surveyed in this paper by modelling
the basic operator used for defining Long Running Transactions (LRT), i.e.,
transactions that may require long periods of time to complete. The implemen-
tation of LRT does not use locking (as usual for database transactions), but
it relies instead on a weaker notion of atomicity based on compensations [18].
Compensations are activities programmed ad hoc to recover partial executions
of transactional processes. Then, a LRT is a group of activities that must be all

52 R. Bruni, H. Melgratti, and U. Montanari

�� ��A1

B1

� � � � � � � � � � � ��
�
�
�

�
�
�
�

� � � � � � � � � � � �

��A2

B2

��A3

B3

Fig. 1. A sequential saga

�������	 ��
in

�������	

out

(a) Sync
�������	 ������
in

�������	

out

(b) LossySync
�������	 � �
in1

�������	

in2

(c) SyncDrain
�������	 ��
in

�������	

out

(d) FIFO

Fig. 2. Graphical representation of Reo basic connectors

either successfully executed or compensated otherwise. Consider the LRT pre-
sented in Fig. 1, where the transaction consists in the sequential execution of
the activities A1, A2 and A3, that can be compensated respectively by B1, B2 and
B3. Suppose now that the activity A1 completes successfully while the activity A2
fails. In this case, the failure of A2 activates the execution of the compensation
B1 to undo as much as possible the effects of A1, because the transaction failed as
a whole. Note that B2 is not executed, because A2 has not completed. Differently,
if both A1 and A2 succeed while A3 fails, then the compensations will be executed
in the reverse order, i.e., first B2 and then B1.

Recent years have seen an increasing interest in compensation-based languages
for LRT, especially in the area of business process modelling [26], mostly exploit-
ing standard form of composition (sequential, branching, parallel). The compen-
sation pair A%B is one key operation common to most of them, whose modelling
as connector middleware shall be our running example.

3 The Reo Coordination Model

Reo [1] is a connector-based exogenous coordination model. Connectors are es-
sentially graphs where the edges are user-defined communication channels and
the nodes implement a fixed routing policy. Reo channels are entities that have
exactly two ends, also referred to as ports, which can be either source or sink
ends: Source ends accept data into, and sink ends dispense data out of their chan-
nels. Typical primitive connectors are: (i) the Sync channel, which allows a data
item to flow from its source end to its sink end when the latter is able to accept
it; (ii) the LossySync channel, similarly to the Sync channel but the data item
is lost when the sink end is not ready to accept it; (iii) the SyncDrain channel,
which is a channel with two source ends that accept data simultaneously and
dispense them subsequently; (iv) the FIFO channel, which is an asynchronous
channel with a buffer of capacity one. The set of primitive channels is completed
with AsyncDrain, Filter, Transformer, Timer (their definition can be found at [1]).
The graphical representation of basic channels is shown in Fig. 2.

A Survey on Basic Connectors and Buffers 53

�������	 ��

��

�������	 out1

�������	 ��in �������	 � �

���
�

�
�

���
�

�
� �������	

�������	 ��

��

�������	 out2
(a) White-box

�������	 out1

�������	 ��in �������	⊗

���������

���
���

���

�������	 out2
(b) Black-box

Fig. 3. Reo exclusive router connector

Components and primitive connectors can be composed into larger Reo cir-
cuits by disjoint union, up-to the merging of shared Reo nodes with the same
name (this operation is called join). Note that a joint node behaves asymmet-
rically: in input, the node takes non-deterministically a message from one of its
incoming channels (the other channels must remain idle); in output, the selected
data is written simultaneously to all outgoing channels (that must be able to
accept the message). Nodes of a connector can be hidden before composition
in order to avoid further joins over those particular nodes. In graphical rep-
resentation we will leave all hidden nodes unnamed. Figure 3(a) illustrates a
well-known composite Reo connector, called exclusive router. It joins five Sync,
two LossySync and one SyncDrain. The connector provides three visible nodes in,
out1 and out2. Any data item read on the input port in is written in only one
of its output ports out1 or out2, depending on which one is ready to consume
it. When both out1 and out2 are ready to read, then the connector chooses non
deterministically one of them. We remark that an input data is never replicated
to more than one of its output ports. As a shorthand, we will represent the
exclusive router connector as shown in Fig. 3(b).

The semantics of Reo has been formalized in several ways, exploiting, e.g., co-
algebraic techniques [3], constraint-automata [4], colouring tables [14], and the
tile model [2]. We illustrate here the denotational approach called the two-colour
semantics. The two-colour semantics relies on two colours to denote the presence
and absence of a message on a port (1 and 0 respectively). The semantics of a
connector is defined in terms of the valid assignments of colours to its ports.
The tables in Fig. 4 show the valid assignments for some basic connectors. The
definition is straightforward for stateless connectors such as Sync, LossySync
and SyncDrain. For stateful connectors, constraints have to be provided for any
possible state of the connector. Note that the semantics of the FIFO connector is
given in terms of two different states, i.e., empty and full. Moreover, the semantic
tables define also the state transitions of the connector. Finally, the semantics of a
complex Reo circuit corresponds to the set of all possible colour assignments that
are consistent with the colouring tables of the involved connectors and reflect
the behaviour of joint nodes (i.e., at most one incoming arc has colour 1 and all
ongoing arcs have the same colour: 0 when no incoming arc is coloured with 1
and 1 otherwise). In this way, we derive the semantics of complex connectors. For
example, valid assignments for (in, out1, out2) in the exclusive router are (0, 0, 0),
(1, 0, 1) and (1, 1, 0).

54 R. Bruni, H. Melgratti, and U. Montanari

Sync LossySync SyncDrain FIFO
empty full

in out
0 0
1 1

in out
0 0
1 0
1 1

in out
0 0
1 1

in out state in out state
0 0 empty 0 0 full
1 0 full 0 1 empty

Fig. 4. Two-colour semantics of Reo basic connectors

�������	

�
�

�������			 in1

�������	 ��on �������	 ���������	⊗
�
�

�������	 �������			 in2
(a) White-box

�������	

��
��
��

in1

�������	 ��on ���
			

�������	

��������
in2

(b) Black-box

Fig. 5. The stateful selector

3.1 Compensation Pair in Reo

We report here the definition of a compensation pair in Reo as proposed in [21].
We start by presenting an auxiliary connector, named stateful selector, which will
be used for encoding a compensation pair into a Reo circuit. The stateful selector,
depicted in Fig. 5(a), behaves as follows: At the initial state this connector can
only accept a message over port on because a synchronization over in1 and in2
would require a message in the FIFO channel. A synchronization over on puts a
message in the FIFO channel that next enables the synchronization over just one
of the ports in1 and in2. Note that in1 and in2 are in mutual exclusion due to the
connector ⊗, and hence, the connector can accept just one message on either in1
or in2. The connector returns to its initial state after this synchronization. As a
shorthand we will depict the stateful selector as shown in Fig. 5(b).

The Reo circuit modelling the compensation pair A%B is shown in Fig. 6. The
execution flow starts when a message is written in channel Start, which activates
the execution of the activity A. After completion, A will write a message on its
output port, which will set the stateful selector and write a message on port
Performed for signalling that the activity has been successfully executed (this
could serve for instance to activate the next activity in the flow). Eventually,
the performed task will be cancelled or committed, after which the effects of
a committed task cannot be undone or cancelled anymore. If a Cancel message
arrives, the compensation activity B is executed and the task A is considered
to be cancelled (this is signalled by sending a message in port Cancelled). If a
Commit message arrives, the port Committed emits also a message. The messages
to commit or cancel the task are generated from the controller of the transaction.
(For simplicity, we omit details here and refer interested readers to [21]).

A Survey on Basic Connectors and Buffers 55

�������	 ��Start
�� � ��� ���
� ��A�������	 �������	 ���������	 ��

��
�������	

Performed

�������	Cancelled
�� � ��� ���
� ��B�������			 �������	 ���������	 ��

��
�

�������	 ��		 �������	

Committed

�������	

��

Cancel

�������	

��

Commit

Fig. 6. Reo circuit for the compensation pair A%B

4 The BIP Component Framework, and BI(P)

BIP [6] is a component framework that exploits a three-layered architecture: 1)
the lower level is called Behaviour and it fixes the activities of individual atomic
components; 2) the middle layer is called Interaction and it defines the hand-
shaking mechanisms between components; and 3) the top level is called Priority
and it assigns a partial order of preferences to the admissible interactions. This
section recalls the formal definition of BIP using the notation from [8]. Here
we disregard priorities for simplicity, and thus we name BI(P) the presented
framework.

The lower layer consists of a set of atomic components with ports. The sets
of ports of components are pairwise disjoint, i.e., each port is uniquely assigned
to a component. Components are modelled as automata whose transitions are
labelled by sets of ports.

Definition 1 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states, P is a set of ports, and →⊆ Q × 2P × Q is the
set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We say that a

is enabled in q, denoted q
a−→, iff there exists q′ s.t. q

a−→ q′. We assume that for

all q, q′ it holds q
∅−→ q′ iff q = q′.

The second layer consists of connectors that specify the allowed interactions
between components.

Definition 2 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi for the projection
of a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩ Pi.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of transitions systems Bi = (Qi, Pi,→i)
such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i �= j,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of B, written ι(B).

56 R. Bruni, H. Melgratti, and U. Montanari

cl(γ)

������

startA

��

•startA •endA

������

endA

������

startB

��

•startB •endB

������

endB

•
on

•
in1•

in2

������
on ��
������

in1

��

in2

��

� � � � � � � � � � ��
�
�
�
�

�
�
�
�
�� � � � � � � � � � �

•start •
performed

•cancel •
cancelled

•committed •
commit

A B Selector Env

Fig. 7. A simple BIP for compensation pair A%B

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition system
(Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q× 2P ×Q is the least set

of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q

′
n)

Note that the interactions in γ are pairwise mutually exclusive, e.g., if a, b ∈ γ,
then it is not necessarily the case that ab ∈ γ. We find it convenient to introduce
the shorthand cl(γ) as the closure of γ w.r.t. set union, i.e., cl(γ) is the least set
such that γ ∈ cl(γ) and ∀a, a′ ∈ cl(γ). aa′ ∈ cl(γ).

4.1 Compensation Pair in BI(P)

A BI(P) system modelling the behaviour of a compensation pair A%B is shown
in Fig. 7, where

γ = { {start, startA}, {performed, endA, on}, {cancel, in1, startB},
{endB, cancelled}, {commit, in2, committed} }.

As in previous cases, we assume basic activities A and B to be defined as com-
ponents with two ports: one for activating its execution (named, startA and
startB, respectively) and other for signalling the completion of the activity
(named, endA and endB, respectively). Moreover, we assume that any initiated
execution is completed before starting another execution. Hence, basic activities
are modelled as automata with just two states (see Fig. 7). We also rely on a
component Selector, which behaves analogously to the stateful selector defined in
Reo. In addition, we consider a fourth component Env representing the environ-
ment in which the compensation pair will execute. This component acts as the
transaction manager that coordinates the execution of the whole transaction.
As such, it is in charge of starting the execution of the compensation pair at
the proper moment (action start) and then it decides whether to commit or to

A Survey on Basic Connectors and Buffers 57

������

a2=endA,

on,performed
��
������

a3

�����
���

���
���

�
a4=cancel,

in1,startB

��

a1 ��
������

a3

��

a4

��

������

a5		

a3

��

������

a1=start,

startA

��

������

a5=endB,

cancelled

		
a1

��
������

a2

��

a5

��

������

a1

��

a3=commit,in2 ,committed

��

a5

��

Fig. 8. Synthesized behaviour of the BI(P) system for A%B

cancel the already executed activity. The synchronization set cl(γ) in Fig. 7 de-
fines all the allowed movements of the system. For instance, γ contains just one
synchronization for the action start, which requires the simultaneous execution
of startA, i.e., the environment may perform start only when the component
A is able to perform startA. Similarly, synchronization {endA, on, performed}
implies that the termination of A enables the component Selector and makes the
environment to move with action performed. Assuming the more liberal defini-
tion of Env (that does not introduce deadlocks), the behaviour of the system can
be summarized with the LTS in Fig. 8. Note that, if Env guarantees that multi-
ple instances of the compensation pair are serialized, then only the four leftmost
states are meaningful. Otherwise, it is possible to handle simultaneously up to
three instances of the pair: executing one instance of A (third serve), one of B
(first serve) with selector on (second serve). We remark that the same behaviour
arises in the Reo circuit for the compensation pair when we replace A and B by
FIFO connectors.

5 Nets with Boundaries

This section summarizes the basic of C/E nets with boundaries introduced
in [25]. C/E nets with boundaries are a compositional version of C/E nets that
come equipped with a notion of sequential and parallel composition. Contrary to
previous proposals in the literature for composing Petri nets, the ports in their
boundaries are neither places nor transitions, but rather handshaking points.

We start by describing ordinary Petri nets and then we introduce nets with
boundaries. Petri nets [23] consist of places, which are repositories of tokens, and
transitions that remove and produce tokens.

Definition 4 (Net). A net N is a 4-tuple N = (SN , TN ,
◦−N ,−◦

N) where SN
is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions, t, t′, . . .
(with SN ∩ TN = ∅), and the functions ◦−N ,−◦

N : TN → 2SN assign finite sets
of places, called respectively source and target, to each transition.

Transitions t, u are independent when ◦t ∩ ◦u = t◦ ∩ u◦ = ∅. This notion of
independence allows so-called contact situations. Moreover, it also allows con-
sume/produce loops, i.e., a place p can be both in ◦t and t◦. A set U of transitions

58 R. Bruni, H. Melgratti, and U. Montanari

• ��α1 ��

��

•
��������• ��α2 ��•

(a) P .

• �� β ��•

(b) I .

• ��

��

γ ��•

• �� δ ��•
(c) R.

Fig. 9. Three nets with boundaries

is mutually independent when, for all t, u ∈ U , if t �= u then t and u are inde-
pendent. Given a set of transitions U let ◦U = ∪u∈U

◦u and U◦ = ∪u∈Uu
◦.

Definition 5 (Semantics). Let N = (P, T, ◦−,−◦) be a net, X,Y ⊆ P and
t ∈ T . Write:

(N,X)→{t} (N, Y)
def
= ◦t ⊆ X ∧ t◦ ⊆ Y ∧X\◦t = Y \t◦

For U ⊆ T a set of mutually independent transitions, write:

(N,X)→U (N, Y)
def
= ◦U ⊆ X ∧ U◦ ⊆ Y ∧X\◦U = Y \U◦

Note that, for any X ⊆ P , (N,X) →∅ (N,X). States of this transition system
will be referred to as markings of N .

For the definition of nets with boundaries we let k, l, m, n range over finite

ordinals: n
def
= {0, 1, . . . , n− 1}.

Definition 6 (Nets with boundaries). Let m,n ∈ N. A net with boundaries
N : m → n is a tuple N = (S, T, ◦−,−◦, •−,−•) where (S, T, ◦−,−◦) is a net
and functions •− : T → 2m and −• : T → 2n assign transitions to the left and
right boundaries of N , respectively.

The representation of the left and right boundaries as ordinals is just a notational
convenience. In particular, we remark that the left and the right boundaries of
a net are always disjoint.

The notion of independence of transitions extends to nets with boundaries in
the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅ ∧ t◦ ∩ u◦ = ∅ ∧ •t ∩ •u = ∅ ∧ t• ∩ u• = ∅

Example 1. Figure 9 shows three different nets with boundaries. Places are cir-
cles and a marking is represented by the presence or absence of tokens; rectangles
are transitions and arcs stand for pre and postset relations. The left interface
(right interface) is depicted by points situated on the left (respectively, on the
right). Figure 9(a) shows the net P : 1 → 2 containing one place, two transi-
tions and one token. Nets I : 1 → 1 and R : 2 → 2 have no places: the former,
called identity, forwards tokens received on its input port to the output port; the
latter has two competing transitions γ and δ for the tokens arriving on the top-
positioned input port, and δ requires also a token from the bottom-positioned
input port.

A Survey on Basic Connectors and Buffers 59

Nets with boundaries can be composed in parallel and in series. GivenN : m→ n
and M : k → l, their tensor product is the net N ⊗M : m + k → n + l whose
sets of places and transitions are the disjoint union of the corresponding sets in
N and M , whose maps ◦−,−◦, •−,−• are defined according to the maps in N
andM and whose initial marking is m0N ⊕m0M . Intuitively, the tensor product
corresponds to draw the nets N and M one above the other.

The sequential composition N ;M : m → k of N : m → n and M : n → k is
slightly more involved and relies on the following notion of synchronization: a
pair (U, V) with U ⊆ TN and V ⊆ TM mutually independent sets of transitions
such that: (1) U ∪ V �= ∅ and (2) U• = •V .

The set of synchronisations inherits an ordering from the subset relation, i.e.
(U, V) ⊆ (U ′, V ′) when U ⊆ U ′ and V ⊆ V ′. A synchronisation is said to be
minimal when it is minimal with respect to this order. Let

TN ;M
def
= {(U, V)|U ⊆ TN , V ⊆ TM , (U, V) a minimal synchronisation}

Notice that any transition t in N (respectively t′ in M) not connected to
the shared boundary n defines a minimal synchronisation ({t},∅) (respectively
(∅, {t′})) in the above sense. The sequential composition of N and M is written
N ;M : m → k and defined as (SN SM , TN ;M ,

◦−N ;M ,−◦
N ;M ,

•−N ;M ,−•
N ;M),

where pre- and post-sets of synchronizations are defined as

– ◦(U, V)N ;M = ◦(U)N ◦(V)M and (U, V)◦N ;M = (U)◦N (V)◦M
– •(U, V)N ;M = •(U)N and (U, V)•N ;M = (V)•M .

Intuitively, transitions attached to the left or right boundaries can be seen as
transition fragments, that can be completed by attaching other complementary
fragments to that boundary. When two transition fragments in N share a bound-
ary node, then they are two mutually exclusive options for completing a fragment
ofM attached to the same boundary node. Thus, the idea is to combine the tran-
sitions of N with that of M when they share a common boundary, as if their
firings were synchronized. As in general several combinations are possible, only
minimal synchronizations are selected.

Example 2. Let P , I and R be the nets in Fig. 9. Then, the net (P ⊗ I); (I ⊗R)
obtained as the composition of P , R and two copies of I is shown in Fig. 10.

Sometimes we find convenient to writeN = (S, T, ◦−,−◦, •−,−•, X) withX ⊆ S
for the net (S, T, ◦−,−◦, •−,−•) with initial marking X and extend the sequen-
tial and parallel composition to nets with initial marking by taking the union of
the initial markings.

For any k ∈ N, there is a bijection � � : 2k → {0, 1}k with

�U�i def
=
{
1 if i ∈ U
0 otherwise

Definition 7 (Semantics). Let N : n→ n be a net and X,Y ⊆ PN . Write:

(N,X)
α−→
β

(N, Y)
def
= ∃ mutually independent U ⊆ TN s.t

(N,X)→U (N, Y), α = �•U�, and β = �U•�

60 R. Bruni, H. Melgratti, and U. Montanari

• ��α1 ��

��

•
��������• ��α2 ��•

• �� β ��•
(a) (P ⊗ I).

• ��β′ ��•

• ��

��

γ ��•

• �� δ ��•
(b) (I ⊗R).

• �� α1β
′ ��

��

•

��������•
��

�� α2γ ��•

• �� βα2δ ��•
(c) (P ⊗ I); (I ⊗R).

Fig. 10. Composition of nets with boundaries

• ��
enable

α

��
��•

enabled

��������

��

��
• ��
in1

β ��•
out1

• ��
in2

γ ��•
out2

(a) Δoff .

• ��
enable

α

��
��•

enabled

��������•
��

��
• ��
in1

β ��•
out1

• ��
in2

γ ��•
out2

(b) Δon.

Fig. 11. Net with boundaries for the stateful selector

5.1 Compensation Pair as a Net with Boundaries

We start by introducing an auxiliary net that will be used for encoding a com-
pensation pair into a net with boundaries. Figure 11 depicts a net modelling
a stateful selector, analogous to the Reo circuit introduced in Section 3.1. The
main difference with the Reo circuit is that we distinguish here between input
and output ports (note that nodes in Reo allow both input and output actions).
Consequently, we use three input ports enable, in1 and in2, which correspond to
to the input behaviour of the homonymous nodes in Fig. 5(a). Similarly, the out-
put ports enabled, out1 and out2 are considered. Figure 11(a) depicts the initial
state of the connector, abbreviated as Δoff , in which selection is not enabled,
while Fig. 11(b) shows the state Δon in which selection is enabled. The allowed
movements of the connector are:

1. Δoff
000−−→
000

Δoff , i.e., the connector is idle;

2. Δoff
100−−→
100

Δon, i.e., selection has been enabled.

3. Δon
000−−→
000

Δon, i.e., the connector remains idle;

4. Δon
010−−→
010

Δoff , i.e., input in1 is chosen;

5. Δon
001−−→
001

Δoff , i.e., input in2 is chosen.

We remark that Δon returns to the initial state Δoff after a selection takes place.
We assume any activity A to be modelled as a net with boundaries [[A]] with

just one input and one output port, i.e., [[A]] : 1 → 1. In addition, we assume

A Survey on Basic Connectors and Buffers 61

•
�� � ��
�

�
��

� ��
[[A]]start • ��

��
��• ��• performed

��������

��

��
• ��cancel • �� ��•

�� � ��
�

�
��

� ��
[[B]] • cancelled

• ��commit • �� ��• ��• committed

Fig. 12. Net with boundaries for [[A%B]]

that [[A]] is well-defined, and that every started execution ends by signalling
the completion of the task with a signal over the output port. We will also use
the identity net introduced in Fig. 9(b). Finally, the net corresponding to the
compensation pair A%B is the net [[A%B]] : 3→ 3 defined as follows

[[A%B]] = ([[A]]⊗ I ⊗ I);Δoff ; (I ⊗ [[B]]⊗ I)

A graphical representation of [[A%B]] is in Fig. 12. Initially, the only allowed
movement of the net is the one that initiates the execution of [[A]] (i.e., a message
received on port start). Subsequently, the completion of [[A]] will be signalled on
the output port of the net representing the task. This will fire the top leftmost
transition of the net, and consequently a token will be produce in the unique
place of the net and a signal will be emitted on port performed. Afterwards, the
net will be able to accept one signal on either cancel or commit port. A signal
on port cancel will activate the execution of the compensation [[B]], which will
eventually complete and a signal on port cancelled will be produced.

6 Tiles, Wires and the Petri Calculus

The Petri calculus [25] is an algebra of stateful connectors, which basically ex-
tends the algebra of stateless connectors from [10] with one-place buffers. It can
also be seen as an instance of the tile model or of the wire calculus.

The algebra of stateless connectors [10] consists of five kinds of basic connectors
(plus their duals), namely symmetry, synchronization, mutual exclusion, hid-
ing and inaction. The connectors can be composed in series or in parallel. The
operational, observational and denotational semantics of connectors are first for-
malised separately and then shown to coincide. Moreover, a complete normal-
form axiomatisation is available for them. These networks are quite expressive:
for instance it is shown [10] that they can model all the (stateless) connectors of
the architectural design language CommUnity [16]. This result is of particular
interest, because it reconciles the algebraic and categorical approaches to sys-
tem modelling, of which the algebra of stateless connectors and CommUnity are
suitable representatives. The algebraic approach models systems as terms in a
suitable algebra. Operational and abstract semantics are then usually based on

62 R. Bruni, H. Melgratti, and U. Montanari

(i)

◦ s ��
a �� α

◦
b��◦

t
�� ◦

(ii)

◦ ��

�� α

◦ ��

�� β

◦
��◦ �� ◦ �� ◦

(iii)

◦ ��

�� α

◦
��◦ ��

�� β

◦
��◦ �� ◦

(iv)

◦ ��

��
◦
��◦ ��

��
◦
��

β

◦ �� ◦
◦ ��α ◦

Fig. 13. Examples of tiles and their composition

inductively defined labelled transition systems. The categorical approach mod-
els systems as objects in a category, with morphisms defining relations such as
subsystem or refinement. Complex software architectures can be modelled as
diagrams in the category, with universal constructions, such as colimit, build-
ing an object in the same category that behaves as the whole system and that
is uniquely determined up to isomorphisms. While in the algebraic approach
equivalence classes are usually abstract entities, having a normal form gives a
concrete representation that matches a nice feature of the categorical approach,
namely that the colimit of a diagram is its best concrete representative.

The tile model [17,9] offers a convenient framework for defining the operational
and abstract semantics of connectors. For example, the operational semantics of
the algebra of stateless connectors is given in terms of the tile model, which has
later been extended to deal with one place buffers in [2]. Also the operational
semantics of the Petri calculus, originally defined as a dialect the wire calcu-
lus [24], can be straightforwardly represented in the tile model. Tile bisimilarity
provided a standard observational congruence in all the above cases.

The name ‘tile’ is due to the graphical representation of such rules (see

Fig. 13). A tile α : s
a−→
b
t is a rewrite rule stating that the initial configura-

tion s can evolve to the final configuration t via α, producing the effect b; but
the step is allowed only if the ‘arguments’ of s can contribute by producing a,
which acts as the trigger of α (see Fig. 13(i)). Triggers and effects are called
observations and tile vertices are called interfaces.

Roughly, the semantics of component-based systems can be expressed via tiles
when: i) components and connectors are equipped with sequential composition
s; t (defined when the output interface of s matches the input interface of t), with
identities for each interface and with a monoidal tensor product s⊗t (associative,
with unit and distributing over sequential composition); ii) observations have
analogous structure a; b and a ⊗ b. Technically, we rely on configurations and
observations that are taken in two monoidal categories that are freely generated
from suitable signatures of constructors (i.e. the basic elements of which systems
are composed of) and have the same underlying set of objects.

Tiles can be composed horizontally, in parallel, or vertically to generate larger
rules. Horizontal composition α;β coordinates the evolution of the initial con-
figuration of α with that of β, yielding the ‘synchronization’ of the two rewrites
(see Fig. 13(ii)). Vertical composition is just the sequential composition of

A Survey on Basic Connectors and Buffers 63

© : 1 → 1 ◦ ������ ! ◦ ©· : 1 → 1 ◦ ������ !• ◦ X : 2 → 2
◦

���
���

� ◦

◦
							 ◦

∇ : 1 → 2

◦
◦

����

���

◦

∇

: 2 → 1

◦
����

���

◦
◦

⊥ : 1 → 0 ◦ �

∧ : 1 → 2

◦
◦

����

���+

◦
∨ : 2 → 1

◦
����

���

◦+

◦

� : 0 → 1
� ◦

↓ : 1 → 0 ◦ ◦ ↑ : 0 → 1 ◦ ◦ I : 1 → 1 ◦ ◦

Fig. 14. Graphical representation of Petri calculus constants

computations (see Fig. 13(iii)). The parallel composition builds concurrent steps
(see Fig. 13(iv)).

Tiles express the reactive behaviour of connectors in terms of 〈trigger, effect〉
pairs of labels. In this context, the usual notion of bisimilarity over the derived
Labelled Transition System is called tile bisimilarity. Tile bisimilarity is a con-
gruence (w.r.t. composition in series and parallel) when a simple tile format is
met by basic tiles [17].

The wire calculus [24] builds on ideas from [20] to propose a process algebra
whose distinctive features are: actions and processes come with an input/output
arity typing (that depends on the ports they are using); independent concurrent
systems are assembled together using a tensor product (· ⊗ ·); ports are used
instead of channels and communication is possible when ports are linked together
by sequential composition (·; ·).

Roughly, we write � P : (n,m) for P with n input ports and m output ports
and the usual action prefixes a.P of process algebras are extended in the wire
calculus by the simultaneous input of a trigger a and output of an effect b,
written a

b .P , where a (resp. b) is a string of actions, one for each input port
(resp. output port) of the process.

6.1 The Petri Calculus

Terms of the Petri Calculus are defined by the grammar in Fig. 15. It consists
of the following constants plus parallel and sequential composition: the empty
place©, the full place©· , the identity wire I, the twist (also swap, or symmetry)
X, the duplicator (also sync) ∇ and its dual

∇

, the mutex (also choice) ∧ and
its dual ∨, the hiding (also bang) ⊥ and its dual %, the inaction ↓ and its dual
↑. The graphical representation of Petri calculus constants is in Fig. 14.

Any term has a unique associated sort (also called type) (k, l) with k, l ∈ N,
that fixes the size k of the left (input) interface and the size l of the right (output)
interface of P . The type of constants are as follows:©,©· , and I have type (1, 1),
X : (2, 2), ∇ and ∧ have type (1, 2) and their duals

∇

and ∨ have type (2, 1),

64 R. Bruni, H. Melgratti, and U. Montanari

R ::= © | ©· | I | X | ∇ | ∇| ⊥ | � | ∧ | ∨ | ↓ | ↑ | R ⊗R | R;R

Fig. 15. Petri calculus grammar

R : (k, l) R′ : (m,n)

R⊗R′ : (k +m, l + n)

R : (k, n) R′ : (n, l)

R;R′ : (k, l)

Fig. 16. Sort inference rules

© 1−→
0

©· ©· 0−→
1

© ©· 1−→
1

©· I
1−→
1

I ∇ 1−→
11

∇ ∇11−→
1

∇ ⊥ 1−→ ⊥ � −→
1

�

X
xy−→
yx

X ∧ 1−→
xx

∧ ∨ xx−→
1

∨

R1
α−→
σ

R2 R′
1

σ−→
β

R′
2

R1;R
′
1

α−→
β

R2;R
′
2

R1
α−→
β

R2 R′
1

ρ−→
σ

R′
2

R1 ⊗R′
1

ασ−−→
βρ

R2 ⊗R′
2

R : (m,n)

R
0m−−→
0n

R

Fig. 17. Operational semantics for the Petri Calculus

⊥ and ↓ have type (1, 0) and their duals % and ↑ have type (0, 1). The sort
inference rules for composed processes are in Fig. 16.

The operational semantics is defined by the tiles in Fig. 17, where x, y ∈ {0, 1}
and we let x = 1 − x. The labels α, β, ρ, σ of transitions are binary strings, all
transitions are sort-preserving, and if R

α−→
β
R′ with R,R′ : (n,m), then |α| = n

and |β| = m. Notably, bisimilarity induced by such a transition system is a
congruence.

Example 3. For example, let P
def
= ∇; (I⊗©·) and Q def

= ∇; (I⊗©). It is immediate
to check that P and Q have both sort (1, 2), in fact we have: ∇ : (1, 2), I⊗©· :

(2, 2) and I⊗© : (2, 2). The only moves for P are P
0−→
00
P , P

0−→
01
Q and P

1−→
11
P ,

while the only moves for Q are Q
0−→
00

Q and Q
1−→
10
P . It is immediate to note

that P is a term analogous to the net in Fig. 9(a).

A close correspondence between nets with boundaries and Petri calculus terms
is established in [25], by providing mutual encodings with tight semantics cor-
respondence. First, it is shown that any net N : m → n with initial marking
X can be associated with a term TN,X : (m,n) that preserves and reflects the
semantics of N . Conversely, for any term T : (m,n) of the Petri calculus there
exists a bisimilar net NT : m→ n. Due to space limitation we omit details here
and refer the interested reader to [25].

A Survey on Basic Connectors and Buffers 65

◦ ◦ ◦ ◦ ◦
◦

��
��� ◦ ◦ ���
◦
������ ◦

���
���+ ◦
◦ �� ◦

���

◦ ◦ ◦ ◦
�� ◦ ��

◦
◦ ◦ ◦ ◦ ◦

��

(a) ΔOff

◦ ◦ ◦ ◦ ◦
◦

��
��� ◦ ◦ ���
◦
������• ◦

���
���+ ◦
◦ �� ◦

���

◦ ◦ ◦ ◦
�� ◦ ��

◦
◦ ◦ ◦ ◦ ◦

��

(b) ΔOn

Fig. 18. Petri calculus term for the stateful selector

6.2 Compensation Pair in the Petri Calculus

We start by presenting the Petri calculus term equivalent to the stateful selector,
which can be defined as follows:

Δoff = (∇⊕ I⊕ I); (I⊕©⊕ I⊕ I); (I⊕ ∧⊕ I⊕ I); (I⊕ I⊕ X⊕ I) : (I⊕ ∇⊕ ∇

)

Its graphical representation is in Fig. 18(a). It can be shown that the reduc-
tions of the connector coincide with the movements of the net with boundaries
presented in Fig. 11. Moreover, Fig. 18(b) corresponds to the enabled state of
the selector. We remark that the Petri calculus term equivalent to the net with
boundaries for the stateful selector can be directly obtained by using the encod-
ing defined in [25]. To handle all possible cases, the encoding uses a canonical
representation of nets and, as a consequence, obtained terms can become more
complex than necessary. For the sake of the simplicity, we prefer to present here
a simpler term that is bisimilar to the one produced by the encoding.

Finally, the term representing the compensation pair A%B can be defined
analogously to the case of net with boundaries, i.e.,

[[A%B]] = ([[A]]⊗ I⊗ I);Δoff ; (I⊗ [[B]]⊗ I)

where [[A]] and [[B]] are Petri calculus terms with sort (1, 1) describing the be-
haviour of components A and B, respectively.

7 Comparison

BIP and Reo are two prominent approaches for coordination that rely on (ap-
parently) quite unrelated semantic models. In this section we link both models
by taking advantage of several results appeared in the literature that formally
state correspondences among the approaches presented in the previous sections.

BI(P) and Nets with boundaries. The formal relation between BI(P) and nets
with boundaries has been studied in [11]. Firstly, it is shown that any BI(P)
system can be mapped into a 1-safe Petri net that preserves computations. In-
tuitively, the places of the net are in one-to-one correspondence with the states

66 R. Bruni, H. Melgratti, and U. Montanari

of the components, while the transitions of the net represent the synchronized
execution of the transitions of the components. In addition, [11] introduces a
composition operation for BI(P) systems that enables the hierarchical definition
of systems in which any BI(P) system can taken as a component of a more com-
plex system. Then, this compositional version of BI(P) systems is used to define
a compositional mapping of BI(P) systems into bisimilar nets with boundaries.
Finally, it is shown that any net with boundaries without left interface can be
encoded as a BI(P) system consisting on just one component. It is in this sense
that BI(P) systems and nets with boundaries are retained equivalent.

Nets with boundaries and the Petri Calculus. The technical contribution in [25]
enlightens a tight semantics correspondence between these two approaches: it is
shown that a Petri calculus process can be defined for each net such that the
translation preserves and reflects operational semantics (and thus also bisimilar-
ity). The second result provides the converse translation, from Petri calculus to
nets, which requires some technical ingenuity.

Petri Calculus, Wires and Tiles. The wire calculus [24] shares strong similarities
with the tile model, in the sense that it has sequential and parallel compositions
and exploits trigger-effect pairs labels as observations. However it is presented
as a process algebra instead of via monoidal categories and it exploits a different
kind of vertical composition. The usual action prefixes a.P of process algebras
are extended in the wire calculus by the simultaneous input of a trigger a and
output of an effect b, written a

b .P , where a (resp. b) is a string of actions, one for
each input port (resp. output port) of the process. The Petri calculus is a suitable
instance of the wire calculus that roughly models circuit diagrams with one-place
buffers and interfaces. An alternative characterization of the Petri calculus as
tiles has been given in [12]

Algebra of stateless connectors, Tiles and Wires. The algebra of stateless con-
nectors in [10] can be regarded as a peculiar kind of tile model where all basic

tiles have identical initial and final connectors, i.e. they are of the form s
a−→
b
s.

In terms of the wire calculus, this means that only recursive processes of the
form recX.ab .X are considered for composing larger networks of connectors.

Tiles and Reo. Differently from the stateless connectors of [10], Reo connectors
are stateful (in particular due to the asynchronous one-place buffer connector).
Nevertheless, it has been shown in [2] that the two-colour semantics of Reo con-
nectors can be recovered into the setting of the basic algebra of connectors and
in the tile approach by adding a connector and a tile for the one-state buffer.
It is worth mentioning that, in addition, the tile semantics of Reo connectors
provides a description for full computations instead of just single steps (as con-
sidered in the original two-colour semantics) and makes evident the evolution of
the connector state (particularly, whether buffers get full or become empty).

The main results stating the correspondence among considered approaches
are summarized in Fig. 19.

A Survey on Basic Connectors and Buffers 67

BI(P)
[11]

Nets with
boundaries [25]

Petri
Calculus [11]

Tile
[10,12]

Reo

Fig. 19. Relation among the different models of connectors& buffers

8 Conclusion and Future Work

One of the main limitations of the state-of-the-art theories of connectors is
the lack of a reference paradigm for describing and analysing the information
flow to be imposed over components for proper coordination. Such a paradigm
would allow designers, analysts and programmers to rely on well-founded and
standard concepts instead of using all kinds of heterogeneous mechanisms, like
semaphores, monitors, message passing primitives, event notification, remote
call, etc. Moreover, a reference paradigm would facilitate the comparison and
evaluation of otherwise unrelated architectural approaches as well as the devel-
opment of code libraries for distributed connectors.

Still, some kind of models can be more convenient than others for particular
purposes, e.g., if modularity and mantainance is a key issue rather than efficient
analysis or automatic synthesis out of requirements. So, we think that having
links to move from one model to the other can be as important as having a
referential model and, to some extent, it may be more practical.

Some interesting research avenues for future work are (i) the study of suit-
able extensions of BIP interaction model accounting for dynamically changing
topologies of interactions; and (ii) the representation of priorities in approaches
such as the algebra of connectors and the tile model. In the former direction, we
are studying the possibility to define BIP components whose interfaces can be
changed at run time and whose evolution can spawn new component instances
and new interaction constraints. This would increase the expressive power of
BIP. In the latter direction, we are studying the condition under which global
priorities can be safely distributed among connectors. This would allow a mod-
ular, inconsistency-free assignment of priorities.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

3. Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors.
In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

68 R. Bruni, H. Melgratti, and U. Montanari

5. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1), 1–35 (2005)

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods, SEFM 2006, pp. 3–12. IEEE Computer Society (2006)

7. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

8. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

9. Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD
thesis, Computer Science Department, University of Pisa (1999)

10. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

11. Bruni, R., Melgratti, H., Montanari, U.: Connector Algebras, Petri Nets, and BIP.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp.
19–38. Springer, Heidelberg (2012)

12. Bruni, R., Melgratti, H.C., Montanari, U.: A Connector Algebra for P/T Nets
Interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 312–326. Springer, Heidelberg (2011)

13. Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput.
Sci. 281(1-2), 131–176 (2002)

14. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

15. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf.
Comput. 156(1-2), 173–235 (2000)

16. Fiadeiro, J.L., Maibaum, T.S.E.: Categorical semantics of parallel program design.
Sci. Comput. Program. 28(2-3), 111–138 (1997)

17. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction,
pp. 133–166. The MIT Press (2000)

18. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the ACM Special Interest
Group on Management of Data Annual Conference, pp. 249–259 (1987)

19. Jongmans, S.-S.T., Arbab, F.: Overview of thirty semantic formalisms for Reo.
Scientific Annals of Computer Science 22(1), 201–251 (2012)

20. Katis, P., Sabadini, N., Walters, R.F.C.: Representing Place/Transition Nets in
Span(Graph). In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 322–336.
Springer, Heidelberg (1997)

21. Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running busi-
ness transactions. In: SAC, pp. 1381–1382 (2009)

22. Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordi-
nating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)

23. Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle
Mathematik, Bonn (1962)

24. Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation.
In: ICE. EPTCS, vol. 12, pp. 87–98 (2009)

25. Sobociński, P.: Representations of Petri Net Interactions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer,
Heidelberg (2010)

26. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y.,
Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp.
200–215. Springer, Heidelberg (2003)

Synthesis-Based Variability Control:

Correctness by Construction

Anna-Lena Lamprecht1, Tiziana Margaria1,
Ina Schaefer2, and Bernhard Steffen3

1 Chair for Service and Software Engineering
University of Potsdam, Germany

{lamprecht,margaria}@cs.uni-potsdam.de
2 Institut für Softwaretechnik und Fahrzeuginformatik

Technische Universität Braunschweig, Germany
i.schaefer@tu-bs.de

3 Chair for Programming Systems
Technical University Dortmund, Germany
bernhard.steffen@cs.tu-dortmund.de

Abstract. In this paper, we show the power of combining modern
synthesis technology with a constraint-oriented approach to variability
modeling. This combination guarantees the validity of all the required
properties simply by construction: including a new property simply re-
quires adding a corresponding constraint. The synthesis procedure will
then automatically take care that all generated variants are property-
conform. This fully declarative approach leads to a very agile variability
modeling framework, where new product lines guaranteeing new prop-
erties can be defined ad hoc and are, due to our synthesis technology,
immediately operational. As the underlying constraint language allows
fully describing the intended solution space without imposing any over-
specification, neither on the structure, nor on the artifacts, our approach
may in particular be regarded as a step from the today typical settings
with closed-world assumption to one with an open-world assumption.
Impact and ease of this method are illustrated along a small case study
running on our prototypical framework implementation.

1 Introduction

Modern software systems exist in many different variants in order to adapt to
different customer requirements and application contexts. Software product line
engineering [1] aims at developing this family of product variants by managed
reuse in order to improve system quality and to decrease time to market. In
particular, variability modeling [2–4] is a way of keeping track of the currently
supported and used software variants at a high level of abstraction.

Analysis approaches for product lines can be classified in three main directions
according to the representation of the analyzed product variants [5]:

1. Product-based approaches analyze each product variant in isolation. There-
fore, each product variant is generated from the product line representation

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 69–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 A.-L. Lamprecht et al.

and checked using an existing technique for the considered product vari-
ant properties. The advantage of product-based analyses is that the analysis
technique does not have to be adapted for product line analysis. The dis-
advantage, however, is that naive product-based analyses are in general not
feasible. The number of possible product variants is exponential in the num-
ber of product features, thus, the product-based approach has exponential
complexity in the worst case.

A solution to the exponential growth of product variants are subset se-
lection heuristics as applied in product line testing [6]. Here, a subset of the
set of possible product variants is determined that provides the covering of
the desired feature combinations with the smallest possible set of products.
Then, the subset of the products instead of all possible products is tested.

For deductive verification, an incremental product-based analysis ap-
proach is suggested in [7]. The incremental verification approach first fully
verifies a selected core product of the product line. By analyzing the differ-
ences w.r.t. another product variant, it is analyzed which proof obligations
are still valid and do not have to be re-established and which proof obliga-
tions are affected by the changes and need to re-considered.

2. Family-based analyses consider one representation of the complete product
line and analyze it in a single pass. Then, it is guaranteed that all products
that can ever be generated from the product line have the desired properties.
This approach is very popular if the product line is modeled by an annotative
approach, since the there the complete product family is already aggregated
in one comprehensive structure, the so-called 150%-model (cf. [8]). For in-
stance, the product line model checking approaches by Classen et al. [9] and
Asirelli et al. [10] are based on an annotative product line representation and
provide model checking algorithms to efficiently check the family of products
in a single model checking run. Also for type systems family-based analyses
have been applied, e.g., in FFJPL [11] and CFJ [12]. The advantage of family-
based approaches is that the products do not have to be analyzed in isola-
tion. The disadvantages are, however, that family-based analysis approaches
rely on a closed-world assumption where all possible products have to be
known beforehand. If new product variants arise, the complete family anal-
ysis has to be re-run. Moreover, the family-based representation easily gets
very complex and is hardly scalable for large product lines. In many cases,
the family-based representation is also of exponential size in the number of
product features, hence no analysis complexity is saved. To overcome these
scalability issues, first approaches have been proposed that handle analysis
and verification at a more abstract level, for instance by simulation-based
model checking [13].

3. Feature-based analyses aim at analyzing the reusable building blocks of the
product variants in isolation in order to infer the properties of the prod-
uct variants. Hence, feature-based approaches require a compositional or
transformational modeling approach where the reusable product artifacts
are modularized. For instance, in [14], a compositional deductive verification
technique for delta-oriented software product lines is proposed. It allows

Synthesis-Based Variability Control: Correctness by Construction 71

verifying each delta in isolation in order to guarantee that all possible prod-
uct variants also satisfy their specifications. However, this approach requires
a variant of the Liskov principle [15] for the deltas such that their expressive-
ness is severely restricted. This is in general the case that for feature-based
analysis approaches the expressiveness and usage of the product line build-
ing blocks has to be restricted in order to achieve a compositional reasoning
principle.

Often, combinations of feature-based and product-based or family-based analyses
are used in order to avoid the restricted usage of the product line artifacts in
solely feature-based analysis. The type system for feature-oriented product lines
programmed in LFJ [16] first infers a set of constraints for the feature modules
using a feature-based analysis and then generates a large constraint for the
complete product line and applies a family-based analysis. The type system for
delta-oriented programming [17] takes a similar approach by first applying a
feature-based constraint generation phase, but then applying a product-based
constraint checking phase.

In any case, combining product line analysis with verification is difficult, since
the approaches suffer from tradeoff drawbacks: the richer the family of products,
the longer it takes to carry out the analyses and the more restrictive are the
requirements to make the approaches work. The most restrictive element seems
here to be the model structure.

In this paper, we focus on product line analysis in the context of constraint-
based variability modeling [18]. There, the admissible products are described in
terms of behavioral (temporal-logic) constraints that ideally exactly capture the
necessary frame conditions without imposing any additional design decisions.
That is, the variability of the software product line is in fact modeled completely
implicitly, and no concrete (150%) model structures, which have the tendency to
overspecify, are necessary. In particular, this realizes an open-world assumption,
where new artifacts are seamlessly integrated as soon as they are available. Of
course, their proper treatment requires that they are properly integrated into
the domain model.

Synthesis techniques are then applied to generate concrete products from
these high-level specifications automatically. Hence, analysis and verification of
the products become obsolete and are avoided, because the generated products
conform to the constraints by design and are thus correct by construction. In
essence, our approach to correctness by design can be regarded as step from
‘construct and verify’ to ‘constrain and synthesize’.

In fact, this approach comprises the approach to model checking of software
product lines of [9, 19]. However, rather than verifying the variabilitymodel against
some property, we proceed in the following way: In order to verify if a property (or
a combination of properties)X is fulfilled by the products that are defined by the
variabilitymodel, we simply demand for the generation of a product that conforms
toX +M (whereM are the properties defined by the variability model). If a cor-
responding product can be generated, X holds. If no product can be generated,
X contradicts the variability model. This approach has the benefit that it:

72 A.-L. Lamprecht et al.

– allows one to avoid overspecification, which easily arises when one is forced
to provide concrete (150%) model structures, and

– automatically exploits new artifacts of the domain, as soon as they have
been integrated. This is particularly important in domains as agile as the
bio-domain discussed in this paper, as there, new artifact arise all the time,
and it is impossible for the user (workflow designer) to keep track of all
changes of the artifact library. Our synthesis-based approach confronts him
gradually with this new functionality, which he can then further constrain
to precisely fit his purpose.

The synthesis method underlying our approach (and which has been proposed al-
ready almost two decades ago [20–22]) has been successfully applied to a variety
of different application scenarios [23–26]. The most comprehensive applications
have been developed for the management of variant-rich bioinformatics analysis
processes [27–29] based on its recent implementation in the scope of the loose
programming paradigm [30] and the PROPHETS framework [31]. They showed
that the constraint-driven design and synthesis of variant-rich workflows has the
power to enable users to effectively create and manage software processes in their
specific domain language. The correctness-by-construction paradigm gradually
evolved also from the experiences with student projects as well as from cooper-
ations with academic partners (such as [32] and [33, Chapter 6]) in this domain.
It frees non-IT users from dealing with the technicalities of the individual ser-
vices and their composition, which is the intended goal of our work (see, e.g.,
[34–37, 27]).

The remainder of this paper is structured as follows. Section 2 introduces
our constraint-based variability modeling framework, before Section 3 details
on the constraint-driven synthesis of property-conform products based on the
variability model. Then, Section 4, illustrates our approach by means of a small
case study running on our prototypical framework implementation. Section 5
concludes the paper with a summary, discussion and directives for future work.

2 Constraint-Based Variability Modeling

Constraint-based variability modeling [18, 38] is a liberal variability modeling
approach that has a semantic and decision-management touch that is in good
alignment with the eXtreme Model Driven Development (XMDD) paradigm
of [37, 39]. Instead of defining the set of possible system variants in a bottom-up
fashion like most variability modeling approaches, constraint-based variability
modeling takes a top-down approach. Based on the set of available reusable
components, behavioral constraints define how the components may be combined
to form valid system variants. Furthermore, all system variants satisfying the
constraints can then be automatically assembled from the components using an
automated synthesis algorithm.

Conceptually, constraint-based variability modeling builds on the following
philosophy: start with the set of all possible artifact combinations that are com-
patible with respect to implicit syntactic constraints, and successively restrict

Synthesis-Based Variability Control: Correctness by Construction 73

the set of valid artifact combinations by adding behavioral constraints until the
desired variability space is reached. This works quite effectively even in the con-
text of quite heterogenous specifications [40–42]. Indeed, the list of constraints is
easily extensible: including a new constraint in the verification only requires to
write a modal or temporal formula expressing the property to be enforced [43].
Thus, it is possible to describe the intended range of products in a very flexible
fashion.

Our prototypical framework implementation builds upon the jABC [44] frame-
work for service-oriented modeling, design, and development of systems. In par-
ticular, it makes use of the PROPHETS plugin [31]1, which supports working
with processes and workflows by combining semantic annotations, model check-
ing, and automatic synthesis of workflows according to the loose programming
paradigm [30]. As such, the jABC supports constraint-based variability modeling
for families of workflows built as a composition of different artifacts. And what is
more, not only a variability model for a software product line can be set up, but,
as detailed in Section 3, it is furthermore possible to derive the corresponding
products automatically from the specifications.

The following describes the three major ingredients of a PROPHETS-based
variability model, namely the domain vocabulary, artifacts characterizations and
domain-specific constraints, in greater detail.

2.1 Domain Vocabulary

In constraint-based variability modeling, the properties and characteristics of
the available artifacts are described in terms of some suitable domain vocabu-
lary. Within the PROPHETS framework, taxonomies are used to define semantic
classifications of types and artifacts that allow for the hierarchical structuring of
the domain model. Taxonomies are simple ontologies that relate entities in terms
of is-a relations. The originally defined artifacts and their input/output types
are named concrete, whereas their semantic classifications are named abstract.
This is analogue to the distinction between T-box (abstract concepts) and A-box
(concrete, grounded concepts) found in Description Logic [45]. Technically, the
artifact and type taxonomies are stored in OWL format [46], and PROPHETS
makes use of the OntED plugin [47] to enable their intuitive graphical modeling
directly within the jABC framework. In OWL, the concept Thing denotes the
most general type or artifact and the OWL classes represent abstract classifica-
tions. The concrete types and artifacts of the domain are then represented as
individuals that are related to one or more of those classifications by instance-of
relations. Examples of taxonomies are shown in Figures 1 and 2.

2.2 Artifact Characterizations

Constraint-based variability modeling relies on behavioral artifact interface de-
scriptions, whereby artifacts are regarded as transformations that perform par-
ticular actions on the available data. Technically speaking, the set of types that

1 Project homepage: http://ls5-www.cs.tu-dortmund.de/projects/prophets/

http://ls5-www.cs.tu-dortmund.de/projects/prophets/

74 A.-L. Lamprecht et al.

is available in the domain forms the static aspects (i.e., the type constraints
that are used as atomic propositions by the underlying logic), while the set of
artifacts represents the dynamic aspects of the domain (which can be used as ac-
tions within the specification formulae). In order to enable thorough abstraction
from the concrete artifact implementations, artifacts and types are represented
by symbolic names throughout the framework.

Each artifact interface is characterized by means of different subsets of the
set of all symbolic type names expressed as the USE, GEN, and KILL sets2:

USE are the types that must be available before execution of the artifact (i.e.
the input types of the artifact), analogously to the requires in service-oriented
terminology,

GEN is the set of types that are created by the execution of the artifact (i.e. the
output types of the artifact), analogously to the provides in service-oriented
terminology,

KILL defines those types that are destroyed and therefore removed from the
set of types that were available prior to execution of the artifact. This has
no correspondent in the service-oriented terminology, and it is one of the
reasons why we prefer the chosen terminology.

Technically, this artifact meta-information is stored in the form of a simply
structured XML file, and is thus clearly decoupled from the concrete artifact
implementations. Thus, there is no restriction to the artifacts of a particular
platform, and any kind of available artifact can be used in the framework.

2.3 Domain Constraints

The domain-specific constraints must be formalized appropriately, that is, ex-
pressed in the Semantic Linear Time Logic, SLTL [20], which is the temporal
logic underlying PROPHETS’ synthesis method. SLTL is a semantically enriched
version of the commonly known propositional linear-time logic (PLTL) that is
focused on finite paths consisting of states (here representing system states that
are defined by the set of available data types) and transitions (here: artifacts).
The syntax of SLTL is defined by the following BNF:

φ ::= true | tc | ¬φ | φ ∧ φ | 〈sc〉φ | Gφ | φUφ
where tc and sc express type and artifact constraints.

Thus, SLTL combines static, dynamic, and temporal constraints. The static
constraints are the taxonomic expressions (boolean connectives) over the in-
stances or classes of the type taxonomy. Analogously, the dynamic constraints
are the taxonomic expressions over the instances or classes of the artifact taxon-
omy. The temporal constraints are covered by the modal structure of the logic,
suitable to express ordering constraints:

2 This terminology stems from the standard terminology of data-flow analysis, which is
used to analyze which variable values or expression results are available, produced, or
invalidated (by rendering them obsolete) at program points of a control flow graph.

Synthesis-Based Variability Control: Correctness by Construction 75

– 〈sc〉φ states that φ must hold in the successor state and that it must be
reachable with artifact constraint sc.

– G expresses that φ must hold generally.
– U specifies that φ1 has to be valid until φ2 finally holds.

In addition to the operators defined above, it is convenient to derive further ones
from these basic constructs, such as the common boolean operators (disjunction,
implication, etc.), the eventually operator Fφ =def true U φ, or the weak until
operator φ WU ψ =def (φ U ψ) ∨ G(φ). Furthermore, the next operator X φ
is often used as an abbreviation of 〈true〉φ. A complete formal definition of the
semantics of SLTL can be found, for instance, in [22, 30].

Constraints expressed in SLTL comprise two dimensions:

– The horizontal dimension, in terms of modalities that describe aspects of
relative time, addresses the workflowmodel and deals with the actual artifact
sequences. Horizontal constraints typically constrain the temporal and causal
relationship between components and variation points and are given in terms
of the temporal logics portion of SLTL.

– Orthogonally, the vertical dimension evaluates taxonomies over types and
artifacts, allowing for the usage of abstract type and artifact descriptions
within the specifications. Vertical constraints specify which components can
be instantiated at a certain variation point, making use of the semantics-
awareness of SLTL.

Combining the two dimensions allows one to express complex specifications and
enables a very flexible fine-tuning of valid variations. In particular, the intent
of a workflow can be comfortably specified in terms of temporal logic formulae
without unnecessarily constraining the concrete realization. As understanding
and writing SLTL constraints can be extremely difficult for users without back-
ground in formal methods and inconvenient also for those who are familiar with
temporal logics, PROPHETS supports constraint formulation by means natural-
language templates (cf., e.g., [31] for details).

3 Constraint-Driven Synthesis

For the automatic generation of products conforming to the variability model, we
apply the synthesis algorithm [20] that is included in PROPHETS. It takes two
aspects into account: On the one hand, the product must be a valid execution
regarding type consistency; on the other hand, the specified constraints must
be met. Basically, the algorithm works on a synthesis universe and an SLTL
formula.

The synthesis universe constitutes the search space in which the synthesis
algorithm looks for solutions to the synthesis problem. It combines the artifact
descriptions from the domain model into an abstract representation of all possi-
ble solutions, and thus contains all artifact sequences that are valid executions,
without taking into account any problem-specific information. The synthesis uni-
verse is in essence an automaton that connects states with edges according to

76 A.-L. Lamprecht et al.

available artifacts. While each state represents a subset of all types (abstract and
concrete), the connecting edges perform the transition on those types, according
to input and output specifications of artifacts, as defined in the domain model.
Every path in this automaton, starting from a state that represents the initially
available data, constitutes an executable artifact sequence.

The synthesis algorithm interprets the (conjunction of a set of) SLTL for-
mula(e) that express the synthesis problem over paths of the synthesis universe,
that is, it searches the synthesis universe for paths that satisfy the given for-
mula(e). The algorithm is based on a parallel evaluation of the synthesis universe
and the formula(e). It automatically generates all artifact compositions that sat-
isfy the given specification (i.e., universe and formula(e)), thereby taking the
horizontal and vertical dimensions of the constraints into account. Finally, the
result of the synthesis algorithm is the set of all specified, executable products
variants.

4 Running Example

To illustrate our approach, we present a realization of the frequently applied
coffee machine example (cf., e.g., [48, 49]) with the constraint-based framework
described in the previous sections. Therefore, Section 4.1 describes the example,
before Sections 4.2 and 4.3 show how we realize the constraint-based modeling
and constraint-driven synthesis in our framework by presenting the constraint-
based variability model and demonstrating the automatic synthesis of constraint-
conform coffee machines, respectively. Finally, Section 4.4 compares our method
with other approaches that have been applied for realizing this example.

4.1 The Coffee Machine Example

The coffee machine example is woven around a small family of beverage vending
machines, which comprises two distinct families of products. The characteristics
of this coffee machine product line are described by the following static and
temporal ordering constraints (cf., e.g., [48, 49]):

C1. European products exclusively accept one euro coins, while Canadian prod-
ucts exclusively accept one dollar coins.

C2. A customer has to insert a coin first, then choose whether he wants sugar
or not, and then select a beverage.

C3. All coffee machines offer coffee, some also tea. Only European products
offer cappuccino.

C4. A tone may be rung after delivering the beverage. A ring tone must be rung
for cappuccino.

C5. After the cup has been taken by the customer, the machine returns to idle
state.

Synthesis-Based Variability Control: Correctness by Construction 77

Fig. 1. Artifact taxonomy for the coffee machine product family

Fig. 2. Type taxonomy for the coffee machine product family

4.2 Constraint-Based Modeling of the Coffee Machine Family

As described in Section 2, a constraint-based variability model consists of a
domain-specific vocabulary in terms of artifact and type taxonomies, artifact
interface descriptions in terms of the vocabulary, and temporal-logic constraints
that specify additional properties of the intended products.

Figures 1 and 2 show the artifact and type taxonomies, respectively, that
have been defined for the coffee machine domain model. The artifact taxonomy
groups the artifacts of the coffee machine product family (which correspond to
the individual actions that can be performed) according to abstract, semantic
categories. For instance, the artifacts InsertOneEuro and InsertOneDollar are
both classified as InsertCoin artifacts, whereas RingATone is not put into a
particular category. The abstract class ChooseSomething is divided further into
ChooseSweet and ChooseBeverage, into which the corresponding artifacts for
opting for sugar/no sugar and for choosing tea/coffee/cappuccino are sorted,
respectively. Similarly, the type taxonomy defines a hierarchical ordering for
all involved types, which are in this case payments (like euro and dollar), a
number of different requests (for sugar, beverages or ringtones), and the actually
delivered sugar and beverages themselves.

The terminology defined by the type taxonomy is then used to describe the
interfaces of the artifacts in terms of their individual behavioral constraints.

78 A.-L. Lamprecht et al.

Table 1. Artifacts in the coffee machine domain model

Artifact Use Gen Kill

InsertOneEuro euro

InsertOneDollar dollar

ChooseSugar payment sugarrequest

ChooseNoSugar payment

ChooseCoffee payment coffeerequest payment

ChooseTea payment tearequest payment

ChooseCappuccino euro coffeerequest, payment
milkrequest,
ringtonerequest

PourSugar sugarrequest sugar sugarrequest

PourMilk milkrequest milk milkrequest

PourCoffee coffeerequest coffee coffeerequest

PourTea tearequest tea tearequest

RingtATone beverage ringtonerequest

TakeCup beverage beverage

Table 1 lists the artifacts of the coffee machine example along with their interface
descriptions in terms of their Use, Gen and Kill sets (cf. Section 2).

The InsertCoin artifacts define no input constraints and simply generate the
respective payment. The different ChooseSomething artifacts require a payment
to be available, which they however kill, and generate the corresponding requests.
Addressing the requirements implied by characterizations C3 (only European
products offer cappuccino) and C4 (a ringtone must be rung for cappuccino),
the ChooseCappucino artifact requires a euro to be available and generates an
additional request for a ringtone. The PourSomething artifacts work off the re-
spective requests and deliver (generate) the requested beverage or sugar. The
RingATone artifact can only be applied when a beverage has been delivered
(C4). It can also be applied without an explicit ringtonerequest from the
ChooseCappuccino artifact (C4), but it will kill such a request if it is avail-
able. The TakeCup artifact can be used when a beverage is available, which will
naturally be not be available any more (killed) when the cup has been taken.

In order to cover those of the characteristics C1–C5 that are not yet covered
by the individual artifact descriptions, we have defined the following domain
constraints for the coffee machine product line:

– Using the coffee machine begins with inserting a coin, then opting for sugar
or not, and then selecting a beverage (C2):

〈InsertCoin〉〈ChooseSweet〉〈ChooseBeverage〉true

– The last step (before the machine returns to idle) is to take the cup (C5):

(F 〈TakeCup〉true&G(〈TakeCup〉true⇒ ¬XXtrue))

Synthesis-Based Variability Control: Correctness by Construction 79

– A tone may be rung when beverage delivery has finished (part of C4):

G(〈RingATone〉true⇒ XG(¬〈PourSomething〉true)∧¬〈RingATone〉true)

Furthermore, we added the following domain constraints to express some addi-
tional essential properties:

– Payments must not be allowed more than once (per iteration):

G(〈InsertCoin〉true ⇒ XG¬〈InsertCoin〉true)

– All requests must be served appropriately:

G(sugarrequest⇒ F (〈PourSugar〉true))

G(tearequest⇒ F (〈PourTea〉true))
G(coffeerequest⇒ F (〈PourCoffee〉true))
G(milkrequest⇒ F (〈PourMilk〉true))

G(ringtonerequest⇒ F (〈RingATone〉true))

The requirements implied by the characteristics C1 and C3 are product-specific
constraint, that is, constraints that describe properties of particular products
of the coffee machine family. We do not include this kind of constraints in the
general variability model, because they do not belong to the description of the
potential, but rather to the selection of specific subsets that constitute a product.
Correspondingly, we use them for synthesizing the corresponding products, as
detailed in the next section.

4.3 Synthesis of Constraint-Conform Coffee Machines

When we apply the synthesis algorithm to the variability model described in the
previous section without any further constraints, the generated solutions consti-
tute a 150% model of the coffee machine product family. Typically, our synthesis
framework identifies all linear workflows that are admissible given a particular
variability model, from which the user then selects one solution. Figure 3 shows
the list of all sequences of action that are possible for the 150% coffee machine
model. The framework is, however, also able to combine all linear solutions into
an automaton representation, which then corresponds to the actually intended
coffee machine models.

Note that the variability model does not constrain the order in which the sugar
and the different liquids are to be delivered. Thus, as also visible from Figure
3, some coffee machine traces are simply permutations of others. Conveniently,
the PROPHETS synthesis plugin can be configured to automatically remove
semantically equivalent permutations from the solutions, so that less results
remain to visualize and the corresponding automata become smaller and easier
to inspect. For better readability, only accordingly filtered results are shown in

80 A.-L. Lamprecht et al.

Fig. 3. Coffee machine traces

the following. Figure 4 shows the automaton corresponding to the 150% coffee
machine model as described above, but freed from permutations.

As defined by characteristics C1 and C4, the difference between European and
Canadian coffee machines is on the one hand that the former accepts only Euros
and the latter only Dollars, and on the other hand that only the European
machine offers cappuccino. Since the ChooseCappuccino artifact has already
been specified as only admissible when a Euro has been paid, and as one of the
domain constraints expresses that only one coin can be inserted in one iteration,
it is sufficient to enforce the use of either InsertOneDollar or InsertOneEuro
in order to obtain the Canadian/European version:

F (〈InsertOneDollar〉true)

F (〈InsertOneEuro〉true)

According to characteristic C3, tea does not have to be offered by the coffee
machines. To create a coffee machine that does not offer tea, we can simply add
an additional constraint that excludes the ChooseTea artifact from the solution:

G(¬〈ChooseT ea〉true)

Figures 5 and 6 show the results obtained for these constraint combinations.
Exactly as defined by the constraints, the Canadian machines shown in Figure 5

Synthesis-Based Variability Control: Correctness by Construction 81

1 8

1 7

5

Inser tOneEuro

1 3

InsertOneDollar

0

1 9

ChooseTea

7

ChooseCoffee

1 0

PourTeaPourCoffee

1

4

ChooseCappuccino

3

ChooseCoffee

2

ChooseTea

1 5

PourCoffee

1 6

PourCoffee PourTea

TakeCup

1 1

RingATone1 4

PourMilk

ChooseNoSugar6

ChooseSugar

ChooseTeaChooseCoffee

1 2

ChooseCappuccino

8

PourCoffee

PourSugarPourSugar

9

ChooseCoffee ChooseTea

TakeCup

ChooseSugar

ChooseNoSugar

RingATone

Fig. 4. Synthesized 150% model of the coffee machine

accept exclusively one dollar coins and do not not offer cappuccino. The left
variant also offers tea, whereas ChooseTea has been excluded from the right
one. Analogously, the European coffee machines depicted in Figure 6 accept
exclusively one euro coins and offer cappuccino. Furthermore, a tone is definitely
rung whenever cappuccino is delivered, whereas the delivery of other beverages
may be accompanied by a ringtone or not.

If problem-specific constraints are specified that contradict the variability
model, the synthesis problem becomes over-constrained and the algorithm sim-
ply returns no solutions. This happens, for instance, when trying to enforce a
coffee machine that accepts dollars and offers cappuccino, or a machine that
accepts both dollars and euros.

4.4 Comparison with Other Approaches

The coffee machine example has already been used for illustrating and comparing
two other, related approaches to software product line engineering [49]:

82 A.-L. Lamprecht et al.

4

7

6

InsertOneDollar

0

1 0

PourCoffee

TakeCup 1

RingATone

TakeCup

2

9

PourCoffee

PourSugar

3

ChooseCoffee

5

ChooseTea

PourTea

ChooseNoSugar 8

ChooseSugar

ChooseCoffee

1 1

ChooseTea

PourSugar

3

8

7

InsertOneDollar

0

TakeCup 2

RingATone

TakeCup

1

PourCoffee

4

ChooseCoffee 5

PourSugar

6

ChooseCoffee

ChooseNoSugar ChooseSugar

Fig. 5. Synthesized Canadian coffee machines (offering and not offering tea)

1. The framework of Classen et al. is based on a combination of Featured Tran-
sition Systems (FTS, [9]) and linear-time temporal logic (LTL, [50]). An FTS
is a Labeled Transition System (LTS) that is associated with a feature di-
agram [51] and where individual transitions are “colored” according to the
features to which they correspond. Products are obtained by pruning those
transitions that are not involved according to the feature diagram. Their
correctness is verified by applying model checking techniques to (sets of)
products of the SPL. Therefore, the constraints to be checked have to be
defined separately in the sense that they are not contained in the actual
variability model.

2. The framework of Asirelli et al. combines Modal Transition Systems (MTS)
[52] with a branching-time temporal logic (MHML [48]). An MTS is an LTS
which distinguishes may and must transitions, which in the context of SPLs
are used to model optional and mandatory software features. MHML is an
extension of the classical Hennessy-Milner logic (HML, [53]) that achieves
awareness of the different types of transitions in an MTS, and adds path
quantifiers as known from other branching-time logics. As such, MHML com-
plements the behavioral descriptions of MTS, as it allows to formulate static
constraints that can not be expressed by an MTS.

Synthesis-Based Variability Control: Correctness by Construction 83

1 4

1 2

0

Inser tOneEuro

6

ChooseNoSugar1 0

ChooseSugar

8

ChooseCoffee

5

ChooseCappuccino

9

ChooseTea

1

ChooseCoffee

3

ChooseCappuccino

1 3

ChooseTea

PourSugar

1 5

PourCoffee

2

TakeCup

7

PourMilk

1 1

PourSugar

4

RingATone

PourMilk

PourCoffee

PourTea

TakeCup

RingATone

PourSugar

9

1 3

3

Inser tOneEuro

0

1 2

PourMilk

1

PourCoffee

7

RingATone

TakeCup

2

ChooseCappuccino

1 1

ChooseCoffee

8

PourCoffee

ChooseNoSugar 4

ChooseSugar

6

ChooseCappuccino

5

ChooseCoffee

1 0

PourMilk PourSugar

PourSugar

TakeCup

RingATone

Fig. 6. Synthesized European coffee machines (offering and not offering tea)

To derive products, the framework basically follows a PoE (property-
oriented expansion [54]) approach, pruning or enforcing may transitions in
the MTS in a counter-example-guided way based on model checking of the
MHML formulae of the variability model [48]. Correctness of this heuris-
tics is enforced by continuous control of the refinement steps successively
applied to the variability model via model checking. Completeness, on the
other hand, is not guaranteed.

The whole MTS-based approach to derive products can be regarded as
a special case of our synthesis-based approach to loose programming, as
MTSs can directly be considered as specific loose programs. Another possible
approach to achieve a complete and correct algorithm for the MTS setting
is to apply synthesis algorithms for branching-time logics [10], as MTSs can
be fully characterized along the lines of [55, 56] simply by omitting the exist
clause for may transitions.

Figure 7 shows that these two approaches are based on the idea to flexibilize
transition systems for the representation of variants. Still, these structures often
require to overspecify the envisioned solution space, as, for example, even the
flexibilized versions do not fully support disjunction, the perhaps most natural
operator to express variability. Rather, they provide restricted means of choice,
such as using the flexibility of may transitions, or explicit means of varying

84 A.-L. Lamprecht et al.

Fig. 7. Comparison of the three approaches

instantiations. This typically constrains the solution space more than necessary,
while it, at the same time, does not allow to, for instance, model dependencies
between instantiations. Thus, these variability models are often at the same
time too restrictive and to lax. The latter problem is therefore addressed by
subsequent model checking, validating the instantiation process, and the former
problem by manual remodeling in response to the counterexamples provided by
the model checker in case of failure.

Our constraint-based correctness-by-construction process avoids these prob-
lems, as its underlying constraint language allows one to fully describe the in-
tended solution space without imposing any overspecification. The concretization
to explicit products is then done via synthesis as has been extensively illustrated
for the the coffee machine product family in the previous section. This change
may in particular be regarded as a step from a setting with closed-world assump-
tion to one with an open-world assumption.

5 Conclusion

With this paper, we demonstrated the power of combining modern process syn-
thesis technology with a constraint-oriented approach to variability modeling.
The point of this combination is that it guarantees the validity of all the re-
quired properties simply by construction: guaranteeing a new property simply
requires adding a corresponding constraint. The synthesis procedure then au-
tomatically takes care that all generated variants are property-conform. This
fully declarative approach leads to a very agile variability framework, where new
product lines guaranteeing new properties can be defined ad hoc and are, due
to our synthesis technology, immediately operational. The impact and ease of
handling of our method has been illustrated along the coffee machine case study

Synthesis-Based Variability Control: Correctness by Construction 85

of [48, 49], which has already been used by different groups to illustrate their
approaches.

Some of the future work listed in [48] is readily covered by our approach:

– ”how to identify classes of properties that, once proved over family descrip-
tions, are preserved by all products of the family”: preservation of properties
is automatically guaranteed in our framework,

– ”how to hide the complexity of the proposed modeling and verification frame-
work from end users”, along with future work listed in [49]: ”ideally, engi-
neers should be able to use high-level languages hiding all semantic details”:
PROPHETS, our implementation of the synthesis approach, makes use of
intuitive graphical formalisms and provides template formulae to ease the
constraint-based specification. Based on this, it directly produces product
variants as a means for further selection by the user.

The success of our approach depends on the quality of the by no means trivial do-
main modeling, which comprises the definition of the domain-specific vocabulary
in terms of artifact and type taxonomies, artifact interface descriptions in terms
of the vocabulary, and temporal-logic constraints for expressing both domain-
wide rules for the adequate combination of artifacts, as well as intent, that is,
the goal one wants to achieve with the product (lines). Whereas taxonomies and
interface descriptions are commonly part of architectural descriptions in software
engineering, temporal constraints are typical for approaches to behavior-oriented
(variability) modeling. Our constraint-based variability modeling approach al-
lows one to combine and exploit these architectural and behavioral descriptions
without imposing any overspecification. This does not only concern the struc-
ture, but also the underlying artifact libraries, and therefore has the flavor of an
open-world assumption.

The main bottleneck of our approach is scalability, both computationally, as
the synthesis process is extremely costly, and concerning the solution space, as
the number of proposed solutions may be gigantic. We are currently investigating
numerous ways to overcome these problems. For instance, in [29] we illustrated
how playing with constraints helps mastering the size of the solution space, and
in [30] we investigated the impact of imposing structure in terms of loose pro-
grams in order to localize/decompose the synthesis process. The latter approach
may be considered a hybrid, where ideas of [9] and [48] are integrated in a fashion
already foreseen in [25].

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer (2005)

2. Sinnema, M., Deelstra, S.: Classifying variability modeling techniques. Information
and Software Technology 49(7), 717–739 (2006)

3. Czarnecki, K.: Variability Modeling: State of the Art and Future Directions. In:
VaMoS, ICB-Research Report No. 37, University of Duisburg Essen, p. 11 (2010)

86 A.-L. Lamprecht et al.

4. Chen, L., Babar, M.A.: A systematic review of evaluation of variability manage-
ment approaches in software product lines. Information and Software Technol-
ogy 53(4), 344–362 (2011)

5. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S.: Proof composition for deductive
verification of software product lines. In: Proc. Int’l Workshop Variability-intensive
Systems Testing, Validation and Verification (VAST), pp. 270–277. IEEE Com-
puter Society (2011)

6. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based Pairwise Testing for Fea-
ture Interaction Coverage in Software Product Line Engineering. Software Quality
Journal, 1–38 (2011)

7. Bruns, D., Klebanov, V., Schaefer, I.: Verification of Software Product Lines with
Delta-Oriented Slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

8. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujilol, S., Villela, K.: Software Diversity – State of the Art and
Perspectives. STTT (2012)

9. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering (ICSE 2010), vol. 1, pp. 335–344. ACM, New York (2010)

10. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Deontic logics for modeling
behavioural variability. In: VaMoS, Essen, Germany, pp. 71–76 (January 2009)

11. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-
oriented product lines. Automated Software Engineering 17(3), 251–300 (2010)

12. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Transactions on Software Engineering and Methodology (TOSEM)
(to appear, 2012)

13. Cordy, M., Classen, A., Perrouin, G., Heymans, P., Schobbens, P.Y., Legay, A.:
Simulation Relation for Software Product Lines: Foundations for Scalable Model
Checking. In: Proceedings of 34th International Conference on Software Engineer-
ing (ICSE 2012). IEEE (to appear, 2012)

14. Hähnle, R., Schaefer, I.: A Liskov Principle for Delta-Oriented Programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012)

15. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16(6), 1811–1841 (1994)

16. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Compo-
sition. In: 8th Workshop on Foundations of Aspect-Oriented Languages (FOAL
2009), pp. 31–35. ACM (2009)

17. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-
oriented programming. In: 10th International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2011), pp. 43–56. ACM (2011)

18. Schaefer, I., Lamprecht, A.L., Margaria, T.: Constraint-oriented Variability Mod-
eling. In: Rash, J., Rouff, C. (eds.) 34th Annual IEEE Software Engineering Work-
shop (SEW-34), pp. 77–83. IEEE CS Press (June 2011)

19. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: Proceedings of the 33rd International Conference on
Software Engineering (ICSE 2011), pp. 321–330. ACM, New York (2011)

20. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Technical report, Fakultät für Mathematik und Informatik, Univer-
sität Passau (1993)

Synthesis-Based Variability Control: Correctness by Construction 87

21. Freitag, B., Steffen, B., Margaria, T., Zukowski, U.: An Approach to Intelligent
Software Library Management. In: Proceedings of the 4th International Conference
on Database Systems for Advanced Applications (DASFAA), pp. 71–78. World
Scientific Press (1995)

22. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform: con-
cepts and design. International Journal on Software Tools for Technology Transfer
(STTT) 1(1-2), 9–30 (1997)

23. Steffen, B., Margaria, T., von der Beeck, M.: Automatic synthesis of linear process
models from temporal constraints: An incremental approach. In: ACM/SIGPLAN
Int. Workshop on Automated Analysis of Software (AAS 1997) (1997)

24. Steffen, B., Margaria, T., Claßen, A., Braun, V., Reitenspieß, M.: An Environment
for the Creation of Intelligent Network Services. In: Intelligent Networks: IN/AIN
Technologies, Operations, Services and Applications - A Comprehensive Report,
IEC: International Engineering Consortium, pp. 287–300 (1996)

25. Steffen, B.: Method for incremental synthesis of a discrete technical system (1998)
26. Naujokat, S., Lamprecht, A.L., Steffen, B.: Tailoring Process Synthesis to Domain

Characteristics. In: Proceedings of the 16th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS) (2011)

27. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

28. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5
(2011)

29. Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Burger, A., Marshall, M.S.,
Romano, P., Paschke, A., Splendiani, A. (eds.) Proceedings of the 3rd Workshop on
Semantic Web Applications and Tools for Life Sciences (SWAT4LS 2010). CEUR
Workshop Proceedings, vol. 698 (December 2010)

30. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology (QUATIC) (September 2010)

31. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

32. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioin-
formatics 9(suppl. 4), S13 (2008)

33. Ebert, B.E.: A systems approach to understand and engineer whole-cell redox
biocatalysts. Dissertation, Fakultät Bio- und Chemieingenieurwesen, Technische
Universität Dortmund (2011)

34. Steffen, B., Margaria, T., Claßen, A., Braun, V., Nisius, R., Reitenspieß, M.: A
Constraint-Oriented Service Creation Environment. In: Margaria, T., Steffen, B.
(eds.) TACAS 1996. LNCS, vol. 1055, pp. 418–421. Springer, Heidelberg (1996)

35. Steffen, B., Margaria, T.: MetaFrame in Practice: Design of Intelligent Network
Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 390–415. Springer, Heidelberg (1999)

36. Margaria, T., Steffen, B.: Aggressive Model-Driven Development: Synthesizing Sys-
tems from Models viewed as Constraints. In: MBEES, pp. 51–62 (2005)

37. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2009)

88 A.-L. Lamprecht et al.

38. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A Constraint-
based Variability Modeling Framework. International Journal on Software Tools
for Technology Transfer (STTT) (to appear, 2012)

39. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

40. Steffen, B.: Unifying Models. In: Reischuk, R., Morvan, M. (eds.) STACS 1997.
LNCS, vol. 1200, pp. 1–20. Springer, Heidelberg (1997)

41. Steffen, B., Rüthing, O.: Quality Engineering: Leveraging Heterogeneous Informa-
tion (Invited Talk). In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 23–37. Springer, Heidelberg (2011)

42. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012)

43. Steffen, B., Margaria, T., Claßen, A., Braun, V.: Incremental Formalization: A Key
to Industrial Success. Software - Concepts and Tools 17(2), 78–95 (1996)

44. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

45. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York (2003)

46. Schreiber, G., Dean, M.: OWL Web Ontology Language Reference. W3C Recom-
mendation (2004), http://www.w3.org/TR/owl-ref/ (last accessed June 25, 2012)

47. May, C.: Entwicklung einer Bibliothek zur service-orientierten Modellierung von
Ontologien. Diploma thesis, TU Dortmund (2009)

48. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Logical Framework to Deal
with Variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010)

49. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal Description of Variabil-
ity in Product Families. In: 15th International Software Product Line Conference,
SPLC 2011, pp. 130–139 (2011)

50. Clarke, E.M., Grumberg, O., Peled, D.A.: Temporal Logics. In: Model Checking,
pp. 27–32. The MIT Press (1999)

51. Apel, S., Kästner, C.: An Overview of Feature-Oriented Software Development.
Journal of Object Technology 8(5), 49–84 (2009)

52. Larsen, K., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science, LICS 1988, pp. 203–210 (July
1988)

53. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137–161 (1985)

54. Steffen, B.: Property-Oriented Expansion. In: Cousot, R., Schmidt, D.A. (eds.)
SAS 1996. LNCS, vol. 1145, pp. 22–41. Springer, Heidelberg (1996)

55. Steffen, B.: Characteristic Formulae. In: Ronchi Della Rocca, S., Ausiello, G.,
Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 723–732. Springer,
Heidelberg (1989)

56. Steffen, B., Ingólfsdóttir, A.: Characteristic Formulae for Processes with Diver-
gence. Information and Computation 110(1), 149–163 (1994)

http://www.w3.org/TR/owl-ref/

Modeling Application-Level Management
of Virtualized Resources in ABS�

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. Virtualization motivates lifting aspects of low-level resource
management to the abstraction level of modeling languages, in order to
model and analyze virtualized resource usage for application-level ser-
vices and its relationship to service-level QoS. In this paper we illustrate
how the modeling language ABS may be used for this purpose by mod-
eling a service deployed on the cloud. Virtual machines are provided
on demand to the service, which distributes service requests between
its available machines depending on its application-level load balancing
scheme. The resulting ABS models are used to relate the accumulated
usage cost for the virtual machines to the obtained QoS for the service.

ABS is an abstract behavioral specification language for designing
executable models of distributed object-oriented systems. The language
combines advanced concurrency and synchronization mechanisms based
on concurrent object groups with a functional language for modeling
data. ABS supports deployment variability by dynamically created de-
ployment components which act as resource-restricted execution contexts
for ABS objects, for example with respect to CPU resources. The use of
these artefacts is demonstrated in this paper through an example of
service-level management of virtualized resources on the cloud.

1 Introduction

The abstract behavioral specification language ABS is a formal modeling lan-
guage which aims at describing systems on a level that abstracts from im-
plementation details but captures essential behavioral aspects of the targeted
systems [21]. ABS targets the engineering of concurrent, component-based sys-
tems by means of executable object-oriented models which are easy to undertand
for the software developer and allow rapid prototyping and analysis. The func-
tional correctness of a targeted system largely depends on its high-level behav-
ioral specification, independent of the platform on which the resulting code will
be deployed. However, different deployment architectures may be envisaged for
such a system, and the choice of deployment architecture may hugely influence
the system’s quality of service (QoS). For example, limitations in the process-
ing capacity of the CPU of a cell phone may restrict the applications that can
� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Models (http://www.hats-project.eu)

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 89–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.hats-project.eu

90 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

be supported on the cell phone, and the capacity of a server may influence the
response time for a service for peaks in the user traffic.

Recently, ABS has been extended with the concept of deployment components
to capture the deployment architecture of target systems [24]. Whereas software
components reflect the logical architecture of systems, deployment components
reflect their deployment architecture. A deployment component is a resource-
restricted execution context for a set of concurrent object groups, which controls
how much computation can occur in this set between observable points in time.
Deployment components may be dynamically created and they are parametric
in the amount of resources they provide to their set of objects. This explicit
representation of deployment architecture allows application-level response time
and load balancing to be expressed in the system models in a very natural and
flexible way, relative to the resources allocated to an application. This basic
model of deployment architecture may be further extended by adding support
for resource reallocation [23] or object mobility [25], allowing resources or objects
to be moved from one deployment component to another.

The objective of this paper is to introduce and motivate the basic concepts
developed to model deployment architecture in ABS in an informal way, rather
than as a formal system. The formal syntax and semantics of ABS is discussed
in [21] and the formalization of the integration of deployment components with
ABS in [23–25]. In this paper we show how deployment components in ABS
may be used to model virtualized systems, by developing an example inspired
by cloud computing [8]. In this example, an abstract cloud provider offers virtual
machines with given CPU capacities to client services, and bills the services based
on an accounting scheme for their resource usage. The purpose of the model is
not to make optimal use of hardware resources to provide these virtual machines
(which would be the interest of the cloud provider) but rather to show how the
developer may, at an early stage in the design of a service, gain insights into the
resource needs of the service, and the trade-off between the cost of virtualized
resources and the provided QoS for given customer scenarios.

The paper is structured as follows. Section 2 introduces timed ABS and shows
how to model, e.g., response time in ABS models. Section 3 introduces the mod-
eling concepts needed to capture deployment architecture and QoS in ABS.
Section 4 introduces the case study developed in the paper and shows how the
simulation tool for ABS can be used for rapid prototyping and analysis. Section 5
discusses related work and Section 6 concludes the paper.

2 Modeling Timed Behavior in ABS

ABS [21] is an executable object-oriented modeling language which targets dis-
tributed systems. The language is based on concurrent object groups, akin to
concurrent objects (e.g., [9,12,22]), Actors (e.g., [1,19]), and Erlang processes [5].
A characteristic feature of concurrent object groups in ABS is that they inter-
nally support interleaved concurrency based on guarded commands. This makes
it very easy to combine active and reactive behavior in the concurrent object

Modeling Application-Level Management of Virtualized Resources in ABS 91

groups, based on cooperative scheduling of processes. A concurrent object group
has at most one active process at any time and a queue of suspended processes
waiting to execute on an object in the group. The processes stem from method
activations. Objects in ABS are dynamically created from classes but typed by
interface; i.e., there is no explicit notion of hiding as the object state is always
encapsulated behind interfaces which offer methods to the environment. For
simplicity in this paper, we do not use other code structuring mechanisms. This
section informally reviews the core ABS language and its timed extension (for
further details, see [7, 21]).

2.1 Core ABS

ABS is a modeling language which combines functional and imperative program-
ming styles to develop high-level executable models. Concurrent object groups
execute in parallel and communicate through asynchronous method calls. To
intuitively capture internal computation inside a method, we use a simple func-
tional language based on user-defined algebraic data types and functions. Thus,
the modeler may abstract from the details of low-level imperative implemen-
tations of data structures, and still maintain an overall object-oriented design
which is close to the target system. At a high level of abstraction, concurrent
object groups typically consist of a single concurrent object; other objects may
be introduced into a group as required to give some of the algebraic data struc-
tures an explicit imperative representation in the model. In this paper, we aim
at high-level models and the groups will consist of single concurrent objects.

The functional sublanguage of ABS consists of a library of algebraic data types
such as the empty type Unit, booleans Bool, integers Int, parametric data
types such as sets Set<A> and maps Map<A> (given a value for the type variable
A), and (parametric) functions over values of these data types. For example,
we can define polymorphic sets using a type variable A and two constructors
EmptySet and Insert, and a function contains which checks whether an
element el is in a set ss recursively by pattern matching over ss:

data Set<A> = EmptySet | Insert(A, Set<A>);

def Bool contains<A>(Set<A> ss, A el) =
case ss {
EmptySet => False ;
Insert(el, _) => True;
Insert(_, xs) => contains(xs, el);

};

Here, the cases p => exp are evaluated in the listed order, underscore works as
a wild card in the pattern p, and variables in p are bound in the expression exp.

The imperative sublanguage of ABS addresses concurrency, communication,
and synchronization at the concurrent object level in the system design, and
defines interfaces and methods with a Java-like syntax. ABS objects are active;
i.e., their run method, if defined, gets called upon creation. Statements are stan-
dard for sequential composition s1; s2, assignments x = rhs, and for the skip,
if, while, and return constructs. The statement suspend unconditionally

92 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

suspends the execution of the active process of an object by adding this process
to the queue, from which an enabled process is then selected for execution. In
await g, the guard g controls the suspension of the active process and consists
of Boolean conditions b and return tests x? (see below). Just like functional
expressions e, guards g are side-effect free. If g evaluates to false, the active
process is suspended, i.e., added to the queue, and some other process from
the queue may execute. Expressions rhs include the creation of an object group
new cog C(e), object creation in the group of the creator new C(e), method
calls o!m(e) and o.m(e), future dereferencing x.get, and pure expressions e
apply functions from the functional sublanguage to state variables.

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments f=o!m(e) to
future variables f. Here, o is an object expression and e are (data value or object)
expressions providing actual parameter values for the method invocation. (Local
calls are written this!m(e).) After calling f=o!m(e), the future variable f
refers to the return value of the call and the caller may proceed with its execu-
tion without blocking on the method reply. There are two operations on future
variables, which control synchronization in ABS. First, the guard await f? sus-
pends the active process unless a return to the call associated with f has arrived,
allowing other processes in the object group to execute. Second, the return value
is retrieved by the expression f.get, which blocks all execution in the object un-
til the return value is available. The statement sequence x=o!m(e);v=x.get
encodes commonly used blocking calls, abbreviated v=o.m(e) (often referred to
as synchronous calls). If the return value of a call is without interest, the call
may occur directly as a statement o!m(e) with no associated future variable.
This corresponds to message passing in the sense that there is no synchronization
associated with the call.

2.2 Real-Time ABS

Real-Time ABS [7] is an extension of ABS which captures the timed behavior of
ABS models. An ABS model is a model in Real-Time ABS in which execution
takes zero time; thus, standard statements in ABS are assumed to execute in
zero time. Timing aspects may be added incrementally to an untimed behavioral
model. Our approach extends the distributed concurrent object groups in ABS
with an integration of both explicit and implicit time.

Deadlines. The object-oriented perspective on timed behavior is captured by
deadlines to method calls. Every method activation in Real-Time ABS has an as-
sociated deadline, which decrements with the passage of time. This deadline can
be accessed inside the method body with the expression deadline(). Dead-
lines are soft ; i.e., deadline() may become negative but this does not in itself
block the execution of the method. By default the deadline associated with a
method activation is infinite, so in an untimed model deadlines will never be
missed. Other deadlines may be introduced by means of call-site annotations.

Real-Time ABS introduces two new data types into the functional sublan-
guage of ABS: Time, which has the constructor Time(r), and Duration,

Modeling Application-Level Management of Virtualized Resources in ABS 93

which has the constructors InfDuration and Duration(r), where r is a
value of the type Rat of rational numbers. The accessor functions timeVal
and durationValue returns r for time and duration values Time(r) and
Duration(r), respectively. Let o be an object which implements a method
m. Below, we define a method n which calls m on o and specifies a deadline for
this call, given as an annotation and expressed in terms of its own deadline. Re-
mark that if its own deadline is InfDuration, then the deadline to m will also
be unlimited. The function scale(d,r) multiplies a duration d by a rational
number r (the definition of scale is straightforward).

Int n (T x){ [Deadline: scale(deadline(),0.9)] return o.m(x); }

Explicit Time. In the explicit time model of Real-Time ABS [14], the execution
time of computations is modeled using duration statements duration(e1,e2)
with best- and worst-case execution times e1 and e2. This is the standard ap-
proach to modeling timed behavior, known from, e.g., timed automata in UP-
PAAL [27]. These statements are inserted into the model, and capture execution
time which does not depend on the system’s deployment architecture. Let f be
a function defined in the functional sublanguage of ABS, which recurses through
some data structure x of type T, and let size(x) be a measure of the size of
this data structure x. Consider a method m which takes as input such a value x
and returns the result of applying f to x. Let us assume that the time needed
for this computation depends on the size of x; e.g., the computation time is
between a duration 0.5*size(x) and a duration 4*size(x). An interface I
which provides the method m and a class C which implements I, including the
execution time for m using the explicit time model, are specified as follows:

interface I { Int m(T x) }
class C implements I {

Int m (T x){ duration(0.5*size(x), 4*size(x)); return f(x);
}

}

Implicit Time. In the implicit time model of Real-Time ABS, the execution
time is not specified explicitly in terms of durations, but rather observed on
the executing model. This is done by comparing clock values from a global
clock, which can be read by an expression now() of type Time. We specify
an interface J with a method p which, given a value of type T, returns a value
of type Duration, and implement p in a class D such that p measures the time
needed to call the method m above, as follows:

interface J { Duration p (T x) }
class D implements J (I o) {

Duration p (T x){ Time start; Int y;
start = now(); y=o.m(x); return timeDifference(now(),start);

}
}

Observe that by using the implicit time model, no assumptions about execution
times are specified in the model above. The execution time depends on how
quickly the method call is effectuated by the called object. The execution time
is simply measured during execution by comparing the time before and after

94 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

making the call. As a consequence, the time needed to execute a statement
with the implicit time model depends on the capacity of the chosen deployment
architecture and on synchronization with (slower) objects.

3 Modeling Deployment Architectures in ABS

3.1 Deployment Components

A deployment component in Real-Time ABS captures the execution capacity
associated with a number of concurrent object groups. Deployment components
are first-class citizens in Real-Time ABS, and provide a given amount of re-
sources which are shared by their allocated objects. Deployment components
may be dynamically created depending on the control flow of the ABS model or
statically created in the main block of the model. We assume a deployment com-
ponent environment with unlimited resources, to which the root object of a
model is allocated. When objects are created, they are by default allocated to the
same deployment component as their creator, but they may also be allocated to
a different component. Thus, a model without explicit deployment components
runs in environment, which does not impose any restrictions on the execu-
tion capacity of the model. A model may be extended with other deployment
components with different processing capacities.

Given the interfaces I and J and classes C and D defined in Section 2.2, we
can for example specify a deployment architecture in which two C objects are
deployed on different deployment components server1 and server2, and in-
teract with the D objects deployed on a deployment component clientServer.
Deployment components in Real-Time ABS have the type DC and are instances
of the class DeploymentComponent. This class takes as parameters a name,
given as a string, and a set of restrictions on resources. The name is mainly used
for monitoring purposes. Here we focus on resources reflecting the components’
processing capacity, which are specified by the constructor CPUCapacity(r),
where r represents the amount of abstract processing resources available be-
tween observable points in time. Below, we create three deployment components
Server1, Server2, and ClientServer, with the processing capacities 6,
3, and unlimited (i.e., ClientServer has no resource restrictions). The local
variables server1, server2, and clientServer refer to these three deploy-
ment components, respectively. Objects are explicitly allocated to the servers by
annotations; below, object1 is allocated to Server1, etc.

{ // This main block initializes a static deployment architecture:
DC server1 = new DeploymentComponent("Server1",set[CPUCapacity(6)]);
DC server2 = new DeploymentComponent("Server2",set[CPUCapacity(3)]);
DC clientServer = new DeploymentComponent("ClientServer", EmptySet);
[DC: server1] I object1 = new cog C;
[DC: server2] I object2 = new cog C;
[DC: clientServer] J client1monitor = new cog D(object1);
[DC: clientServer] J client2monitor = new cog D(object2);

}

Modeling Application-Level Management of Virtualized Resources in ABS 95

clientServer

server2

server1
...

client1
monitor

client2
monitor

object2

object1

Fig. 1. A deployment architecture in Real-Time ABS, with three deployment com-
ponents server1, server2, and clientServer (see Section 3.1). In each de-
ployment component, we see its allocated objects and the “battery” of allocated and
available processing resources (top right of each deployment component).

Figure 1 depicts this deployment architecture and the artefacts introduced into
the modeling language. Since all objects are allocated to a deployment compo-
nent (which is environment unless overridden by an annotation), we let the
expression thisDC() evaluate to the deployment component of an object. For
convenience, a call to the method total("CPU") of a deployment component
returns its total amount of allocated CPU resources.

3.2 Resource Costs

The available resource capacity of a deployment component determines how
much computation may occur in the objects allocated to that component. Ob-
jects allocated to the component compete for the shared resources in order to
execute, and they may execute until the component runs out of resources or
they are otherwise blocked. For the case of CPU resources, the resources of the
component define its processing capacity between observable (discrete) points in
time, after which the resources are renewed.

Cost Models. The cost of executing statements in the ABS model is determined
by a default value which is set as a compiler option (e.g., defaultcost=10).
However, the default cost does not discriminate between statements and we may
want to introduce a more refined cost model. For example, if e is a complex
expression, then the statement x=e should have a significantly higher cost than
skip in a realistic model. For this reason, more fine-grained costs can be inserted
into Real-Time ABS models by means of annotations. For example, let us assume
that the cost of computing the function f(x) defined in Section 2.2 may be given
as a function g which depends on the size of the input value x. In the context
of deployment components, we may redefine the implementation of interface I
above to be resource-sensitive instead of having a predefined duration as in the
explicit time model. The resulting class C2 can be defined as follows:

96 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

class C2 implements I {
Int m (T x){ [Cost: g(size(x))] return f(x);
}

}

It is the responsibility of the modeler to specify an appropriate cost model. A
behavioral model with default costs may be gradually refined to provide more
realistic resource-sensitive behavior. For the computation of the cost functions
such as g in our example above, the modeler may be assisted by the COSTABS
tool [2], which computes a worst-case approximation of the cost for f in terms
of the input value x based on static analysis techniques, when given the ABS
definition of the expression f. However, the modeler may also want to capture
resource consumption at a more abstract level during the early stages of sys-
tem design, for example to make resource limitations explicit before a further
refinement of a behavioral model. Therefore, cost annotations may be used by
the modeler to abstractly represent the cost of some computation which remains
to be fully specified. For example, the class C3 below represents a draft version
of our method m in which the worst-case cost of the computation is specified
although the function f has yet to be introduced:

class C3 implements I {
Int m (T x){ [Cost: size(x)*size(x)] return 0;
}

}

4 Case Study: Application-Level Management of
Virtualized Resources

A common strategy for web applications these days, especially in early devel-
opment and deployment, is to acquire the needed resources (server, storage,
bandwidth) from a cloud infrastructure provider such as Amazon instead of pur-
chasing server hardware and data center space. In that way, initial costs can be
kept low while still keeping the flexibility to react quickly to demand growth [8].
In this case study, we develop a model of a web application which distributes
user requests to a number of servers deployed on the cloud. To clarify terminol-
ogy, we shall refer to the clients of the web service as users, and the clients of
the cloud provider (such as the web service) as clients.

A cloud infrastructure provider leases virtual servers to its clients by the CPU
hour. Typically, the client application can select different configurations with re-
spect to virtualized resources such as processing capacity, memory size, etc. The
cost of leasing a virtual server depends on the configuration of these virtual re-
sources, and in particular on the processing capacity of the virtual server. To keep
costs down, it is in the interest of the client application that virtual servers are
kept running only when they are busy processing requests from users, and that
they are stopped and returned to the cloud provider otherwise. Consequently,
a cloud-enabled application will typically have a component which handles the
management of virtualized resources at the application level. This component
monitors the user demand, provisions servers as needed, and distributes user

Modeling Application-Level Management of Virtualized Resources in ABS 97

USER CLIENT CLOUD

DC4
DC3

serverDC2

server

DC1

server

user balancer

cloud
Provider

req
ue
st(
co
st)

process(cost)

cr
ea
te
M
ac
hin
e(
ca
pa
cit
y)

releaseMachine(DC1)

acquireMachine(DC1)

Fig. 2. An on-demand deployment architecture for the client application in Real-Time
ABS. Neither user nor cloud provider contribute to the cost of running the system, and
we assume the request processing costs dwarf the resources needed to run the balancer.
Hence, only the servers are running in dedicated deployment components.

requests between the active servers in order to meet the deadlines of the user
requests while keeping the costs of leasing virtual servers down.

In this section, we develop a Real-Time ABS model of a client application
which interacts with a cloud provider and with a user. The model is depicted
in Figure 2. This client application consists of a (dynamic) number of servers
and one balancer which is the main focus of our case study. The balancer is in
charge of the management of the virtualized resources acquired by the client
application. The user sends processing requests to the balancer, which sends
them to an active server. To keep the focus on the balancer, we do not model
the details of these requests; instead, they carry a deadline and a processing cost
that represent an abstraction of QoS and computing requirements. For the same
reason, we do not provide the details of the cloud provider model in this paper.

It is the responsibility of the balancer to implement a resource management
strategy which both minimizes the cost of running the client application on
the cloud and maximizes the application’s QoS (i.e., minimizes the number of
deadline misses for user requests). Note that this model does not aim for precise
measurements, but rather for a rough understanding of the system behavior.
Hence, no precise costs of running the system are obtained via simulations (which
would depend on the varying price of CPU hours). Rather, different balancing
strategies can be compared by evaluation against different usage scenarios, for

98 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

}

interface Balancer {
Bool request (Int cost); // called from User

}

interface Server {
Unit process(Int cost); // called from Balancer
DC getDC();

}

Fig. 3. Interfaces of the case study

example a user with a steady request rate or with an unexpected five-fold load
spike.

Figure 3 shows the interfaces of the entities of the case study (the user needs
no interface since it is not referenced by any object). Each Server has a method
process, which incurs run-time costs on the server’s deployment component,
which can be found via the getDC method. The Balancer’s request method
is called from the User. The balancer is responsible for creating Server objects
on deployment components acquired from the CloudProvider via the method
createMachine. Two methods acquireMachine and releaseMachine
start and stop virtual machines (modeled by deployment components) so that
the Server objects can process requests.

4.1 The Server and the Cloud Provider

The server and the cloud provider are implemented by two classes Server and
CloudProvider, which do not change as we vary strategies and user behavior.
The class Server, shown in Figure 4, implements the Server interface and
is quite straightforward. The method process consumes resources according
to its cost argument, and the method getDC simply returns the deployment
component on which the server object is deployed.

The class CloudProvider implements the CloudProvider interface with
methods for creating, acquiring and releasing virtual machines. This is done
by creating deployment components on which the client application can de-
ploy objects. In addition, the cloud provider keeps track of the accumulated
costs incurred by the client application. The cost is calculated in terms of the
sum of the processing capacities of the active virtual machines; i.e., a call to
acquireMachine(dc) starts accounting for the virtual machine dc and a
call to releaseMachine(dc) stops the accounting again for dc. The method
getAccumulatedCost returns the accumulated cost of the client application.
Inside the cloud provider, an active run method does the accounting for every
time interval. Since our focus is the application-level management of virtualized

Modeling Application-Level Management of Virtualized Resources in ABS 99

class Server implements Server {
Unit process (Int cost) {

while (cost > 0) { [Cost: 1] skip; cost = cost - 1; }
}

DC getDC() { return thisDC(); }
}

Fig. 4. Implementation of the Server class

resources, as implemented by the balancer, and not on specific strategies for
cloud provisioning, we do not detail the cloud provider further in this paper.

4.2 The User Scenarios

We consider two user scenarios: steady load and load spike. The two scenarios are
modeled by the corresponding classes SteadyLoadUser and LoadSpikeUser,
given in Figure 5. The two classes have fields numRequests and numFailures,
which are used for counting the number of sent requests and the number of
missed deadlines for these requests, respectively. Both classes implement the
method sendRequest which calls request with a given deadline on the bal-
ancer, suspends execution while waiting for the reply to the call, and does
the bookkeeping after the reply has been received by incrementing the fields
numRequests and numFailures as appropriate. The frequency of these re-
quests is controlled by the active run method which differs between the two
classes. In the SteadyLoadUser class, the run method asynchronously calls
sendRequest and then suspends for a fixed duration. In contrast the run
method of LoadSpikeUser has the same steady load behavior except for a
window of time (between time 60 and 80 according to the clock), during which
there is a load spike in which asynchronous calls to sendRequest are sent with
much shorter intervals.

4.3 Balancing Strategies

In this case study, we model three different balancers for the application-level
management of the virtualized resources. The balancers provide the front end
to our web application, which receives user requests, and uses backend servers,
deployed on the cloud, for processing these user requests. The different balancers
reflect different strategies for interacting with the cloud provider to achieve the
resource management, and may be described as follows:

– the constant balancer simply allocates one server sufficient for the ex-
pected load and keeps it running;

– the as-needed balancer calculates the server size needed to fulfill a specific
request within the deadline, and allocates the needed resources disregarding
the cost; and

100 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

class SteadyLoadUser(Balancer b) {
Int numRequests = 0;
Int numFailures = 0;
Unit run() {
while (True) {

this!sendRequest();
await duration(5, 5);

}
}
Unit sendRequest() {
[Deadline: Duration(2)] Fut<Bool> s = b!request(3);
await s?; Bool success = s.get;
numRequests = numRequests + 1;
if (~success) numFailures = numFailures + 1;

}
}
class LoadSpikeUser(Balancer b) {

Int numRequests = 0;
Int numFailures = 0;
Unit run() {

while (True) {
if (timeVal(now()) > 60 && timeVal(now()) < 80) {
this!sendRequest();
await duration(1, 1);

} else {
this!sendRequest();
await duration(5, 5);

}
}

}
Unit sendRequest() {
[Deadline: Duration(2)] Fut<Bool> s = b!request(3);
await s?; Bool success = s.get;
numRequests = numRequests + 1;
if (~success) numFailures = numFailures + 1;

}
}

Fig. 5. Different user behavior modeled by the two classes SteadyLoadUser and
LoadSpikeUser

– the budget-aware balancer operates with a given budget of CPU resources
per time unit. Unused resources can be “saved for later” to cope with unex-
pected load spikes, but the cost of running the system is still bounded.

The Constant Balancer captures over-provisioning by processing all requests
on a single server which should have sufficient capacity, and is modeled by the
class ConstantBalancer in Figure 6. It initializes the web application by
requesting a single machine from the cloud provider, on which it deploys a con-
current object group consisting of a Server object. After initialization, the
constant balancer uses this server to process all user requests, and returns suc-
cess to a user request if it was processed within the deadline.

Modeling Application-Level Management of Virtualized Resources in ABS 101

class ConstantBalancer(CloudProvider provider, Int serverSize)
implements Balancer {

Server server;
DC dc;
Bool initialized = False;
Unit run() {
Fut<DC> f = provider!createMachine(serverSize);
await f?; dc = f.get;
[DC: dc]server = new cog Server();
initialized = True;

}

Bool request (Int cost) {
await initialized;
Fut<Unit> r = server!process(cost);
await r?; return (durationValue(deadline()) > 0);

}
}

Fig. 6. The Real-Time ABS model of the constant balancer

The As-Needed Balancer is modeled by the class DynamicBalancer in
Figure 7. This class maintains a data structure sleepingMachines which
sorts available machines (with deployed servers) by CPU processing capacity.
We omit the (straightforward) definitions of the following auxiliary functions on
this data structure: hasMachine(s,i) checks if a machine of capacity i is
available in the structure s; addMachine(s,i,m) adds a machine m to the set
associated with capacity i in s; and removeMachine(s,i,m) removes the
machine m from the set associated with i in s.

When the DynamicBalancer receives a request, it calculates the machine
capacity resources needed to fulfill the request, and requests a server deployed
on a machine of appropriate size by calling this.getMachine(resources).
When it gets the server, it asynchronously calls process on this server and
suspends. Once the reply is available, it calls this.dropMachine(server)
and returns success to the user if the processing happened within the deadline.

The method getMachine first checks in sleepingMachines if there are
available servers deployed on machines of appropriate size, in which case such a
server is returned. (The auxiliary function take(s) selects an element of the set
s.) Otherwise, the balancer requests a new machine from the cloud provider by
calling createMachine and deploys a server on the new machine. The method
dropMachine asks the cloud provider to stop running the machine on which
the server is deployed and returns the server to the sleepingMachines set of
appropriate capacity. The field costPerTimeUnit keeps track of the amount
of resources currently leased from the cloud provider, and is updated by both
methods getMachine and releaseMachine. This is the amount of resources
for which the application is currently charged.

102 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

class DynamicBalancer(CloudProvider provider) implements Balancer {
Map<Int, Set<Server>> sleepingMachines = EmptyMap;
Int costPerTimeUnit = 0; Int machineStartTime = 0;

Server getMachine(Int size) {
Server server = null; Time t = now();
costPerTimeUnit = costPerTimeUnit + size;
if (hasMachine(sleepingMachines, size)) {

server = take(lookup(sleepingMachines, size));
sleepingMachines= removeMachine(sleepingMachines,size,server);
Fut<DC> fdc = server!getDC(); await fdc?; DC dc = fdc.get;
Fut<Unit> fa = provider!acquireMachine(dc); await fa?;

} else {
Fut<DC> fdc = provider!createMachine(size);
await fdc?; DC dc = fdc.get;
[DC: dc] server = new cog Server();

}
machineStartTime = timeDifference(t, now()); return server;

}

Unit dropMachine(Server server) {
Fut<DC> fdc = server!getDC(); await fdc?; DC dc = fdc.get;
Fut<Unit> fr = provider!releaseMachine(dc); await fr?;
Fut<Int> fs = dc!total("CPU"); await fs?; Int size = fs.get;
costPerTimeUnit = costPerTimeUnit - size;
sleepingMachines = addMachine(sleepingMachines, size, server);

}

Bool request (Int cost) {
Int resources = (cost / durationValue(deadline())) + 1

+ machineStartTime;
Server server = this.getMachine(resources);
Fut<Unit> r = server!process(cost); await r?;
this.dropMachine(server); return durationValue(deadline()) > 0;

}
}

Fig. 7. The Real-Time ABS model of the as-needed balancer

The Budget-Aware Balancer is a resource management strategy in which
the balancer has a certain budget per time interval, and may save resources
for later. This balancer is modeled by the class BudgetBalancer in Fig-
ure 8, with a class parameter budgetPerTimeUnit which determines this
budget, and a field availableBudget which keeps track of the accumulated
(saved) resources. The fields sleepingMachines, costPerTimeUnit, and
machineStartTime and the methods getMachine and dropMachine are
as in the DynamicBalancer class. When the budget-aware balancer gets a
request, it calculates the resources needed to fulfill the request in the vari-
able wantedResources and the resources it has available on the budget in
maxResources. If there are resources available on the budget, the budget-
aware balancer calls getMachine to get the best server the request according
to the budget. The budget-aware balancer has an active run method which mon-
itors the resource usage and updates the available budget for every time interval.
It also maintains a log budgetHistory of the available resources over time.

Modeling Application-Level Management of Virtualized Resources in ABS 103

class BudgetBalancer(CloudProvider provider,Int budgetPerTimeUnit)
implements Balancer {
Map<Int, Set<Server>> sleepingMachines = EmptyMap;
Int costPerTimeUnit = 0; Int machineStartTime = 0;

Int availableBudget = 1;
List<Int> budgetHistory = Nil;

Unit run() {
while (True) {

availableBudget = availableBudget + budgetPerTimeUnit
- costPerTimeUnit;

budgetHistory = Cons(availableBudget, budgetHistory);
await duration(1, 1);
}

}

Bool request(Int cost) {
Bool result = False;
Int wantedResources = (cost / durationValue(deadline())) + 1

+ machineStartTime;
Int maxResources = (budgetPerTimeUnit - costPerTimeUnit)

+ (max(availableBudget, 0) / durationValue(deadline()));
if (maxResources > 0) {
Server server= this.getMachine(min(wantedResources,maxResources));
Fut<Unit> r = server!process(cost);
await r?;
this.dropMachine(server);
result = (durationValue(deadline()) > 0);
}

return result;
}

Server getMachine(Int size) { ... } // as in the DynamicBalancer
Unit dropMachine(Server server) { ... }// as in the DynamicBalancer

}

Fig. 8. The Real-Time ABS model of the budget-aware balancer

4.4 Comparing Balancing Strategies

Real-Time Maude has a formally defined semantics [7] which is used to imple-
ment a model simulator in the Maude system [11]. In order to compare the three
balancing strategies of our case study, we simulate their behavior for the two
user scenarios described in Section 4.2, in each case with a single “user” object
generating requests. For simplicity, we here set the budget of the budget-aware
balancer to 1. All simulations were run for 100 units of simulated time. The
following measurements were extracted from the simulation traces:

– quality of service measured as the number of successful requests (i.e., requests
completed within the deadline) divided by the total number of requests; and

– accumulated cost of running the machines, measured as the total sum of
CPU resources made available by the cloud provider.

Table 1 summarizes the results. Not surprisingly, the as-needed balancer exhibits
the best QoS numbers, but at potentially unbounded runtime cost. The constant

104 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

Table 1. Simulation results

User scenario
Steady load Load spike

Strategy QoS Cost QoS Cost
Constant balancer 100% 200 53% 200
As-needed balancer 100% 80 100% 128
Budget-aware balancer 100% 80 68% 97

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90

Re
so

ur
ce

s

Time

Cumulative Budget Cumulative Usage

Fig. 9. Budget use over time for the budget-aware balancer. The load spike between
time 60 and 80 quickly consumes the saved-up funds.

balancer with a single running server exhibited both the highest runtime cost
and the worst QoS under unexpected load with the chosen scenarios.

The budget-aware strategy exhibits only slightly better QoS characteristics
under load than the constant balancer approach, which reflects how the budget
was chosen. Figure 9 shows the available and used budget over time. It can be
seen that the available budget is mostly used during normal load, so there are
not many saved resources which can be used to deal with the load spike between
time 60 and 80. A more realistic system would have a monitoring component to
alert an operator, who would be able to manually add budget or switch to other
balancing strategies, but this functionality was not considered in our case study.

5 Related Work

The concurrency model of ABS is akin to concurrent objects and Actor-based
computation, in which software units with encapsulated processors communicate
asynchronously [5, 19, 22, 30]. Their inherent compositionality allows concurrent
objects to be naturally distributed on different locations, because only the lo-
cal state of a concurrent object is needed to execute its methods. In previous

Modeling Application-Level Management of Virtualized Resources in ABS 105

work [4, 23, 24], the authors have introduced deployment components as a mod-
eling concept for deployment architectures, which captures restricted resources
shared between a group of concurrent objects, and shown how components with
parametric resources may be used to capture a model’s behavior for different
assumptions about the available resources. The formal details of this approach
are given in [24]. In previous work, the cost of execution was fixed in the lan-
guage semantics. In this paper, we generalize that approach by proposing the
specification of resource costs as part of the software development process. This
is supported by letting default costs be overridden by annotations with user-
defined cost expressed in terms of the local state and the input parameters to
methods. This way, the cost of execution in the model may be adapted by the
modeler to a specific cost scenario. This allows us to abstractly model the effect of
deploying concurrent objects on deployment components with different amounts
of allocated resources at an early stage in the software development process,
before modeling the detailed control flow of the targeted system. In two larger
case studies addressing resource management in the cloud [13,26], the presented
approach is compared to specialized simulation tools and to measurements on
deployed code.

Complementing the balancing strategies considered in this paper, the authors
have studied extensions to the deployment component framework which support
more advanced (or fine-grained) load-balancing. We have considered two such
extensions, based on adding an expression load(n) which returns the average
load of the current deployment component over the last n time intervals. First, by
including resources as first-class citizens of ABS and allowing (virtual) resources
to be reallocated between deployment components [23]. Second, by allowing ob-
jects to be marshaled and reallocated between deployment components [25].

Techniques for prediction or analysis of non-functional properties are based
on either measurement or modeling. Measurement-based approaches apply to
existing implementations, using dedicated profiling or tracing tools like JMeter
or LoadRunner. Model-based approaches allow abstraction from specific system
intricacies, but depend on parameters provided by domain experts [16]. A survey
of model-based performance analysis techniques is given in [6]. Formal systems
using process algebra, Petri Nets, game theory, and timed automata have been
used in the embedded software domain (e.g., [10,17]), but also to the schedulabil-
ity of processes in concurrent objects [20]. The latter work complements ours as
it does not consider restrictions on shared deployment resources, but associates
deadlines with method calls with abstract duration statements.

Work on modeling object-oriented systems with resource constraints is more
scarce. Eckhardt et al. [15] use statistical modeling of meta-objects and virtual
server replication to maintain service availability under denial of service attacks.
Using the UML SPT profile for schedulability, performance, and time, Petriu and
Woodside [28] informally define the Core Scenario Model (CSM) to solve ques-
tions that arise in performance model building. CSM has a notion of resource con-
text, which reflects an operation’s set of resources. CSM aims to bridge the gap
between UML and techniques to generate performance models [6]. Closer to our

106 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

work is M. Verhoef’s extension of VDM++ for embedded real-time systems [29], in
which static architectures are explicitly modeled using CPUs and buses. The ap-
proach uses fixed resources targeting the embedded domain, namely processor cy-
cles bound to the CPUs, while we consider more general resources for
arbitrary software. Verhoef’s approach is also based on abstract executable model-
ing, but the underlying object models and operational semantics differ. VDM++
has multi-thread concurrency, preemptive scheduling, and a strict separation of
synchronous method calls and asynchronous signals, in contrast to our work with
concurrent objects, cooperative scheduling, and caller-decided synchronization.

Others interesting lines of research are static cost analysis (e.g., [3, 18]) and
symbolic execution for object-oriented programs. Most tools for cost analysis
only consider sequential programs, and assume that the program is fully de-
veloped before cost analysis can be applied. COSTABS [2] is a cost analysis
tool for ABS which supports concurrent object-oriented programs. Our ap-
proach, in which the modeler specifies cost in annotations, could be supported
by COSTABS to automatically derive cost annotations for the parts of a model
that are fully implemented. In collaboration with Albert et al., we have applied
this approach to memory analysis for ABS models [4]. However, the general-
ization of that work for general, user-defined cost models and its integration
into the software development process remains future work. A future extension
of our approach with symbolic execution would allow us to calculate best- and
worst-case response time for the different balancing strategies depending on the
available resources and the user load.

6 Conclusion

This paper gives an overview of how deployment architectures can be modeled
by means of deployment components in Real-Time ABS. We show how this ap-
proach may be used to model virtualized systems by developing a case study
of application-level management of virtualized resources in a cloud computing
context. In our case study, an abstract cloud provider leases virtual machines
with given amounts of CPU processing capacities to client services. The case
study takes the client perspective on virtualized resource management, and mod-
els a client application for which three different proposals for a balancer class
are compared in order to gain insights into their resource needs. The resulting
models in Real-Time ABS are simulated for different user scenarios. In these
scenarios, the cost of leasing resources from the cloud provider with the different
resource management strategies are compared with respect to the QoS of the
service for user requests. We are not aware of similar work addressing the for-
mal modeling of application-level management of virtualized resources for cloud
computing. However, we believe this problem is of increasing importance in a
world of cloud-enabled applications.

Modeling Application-Level Management of Virtualized Resources in ABS 107

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a
cost and termination analyzer for ABS. In: Proc. Workshop on Partial Evaluation
and Program Manipulation (PEPM 2012), pp. 151–154. ACM (2012)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer,
Heidelberg (2011)

5. Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)
6. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance

prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (2004)

7. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. To Appear in Innovations in
Systems and Software Engineering (2012)

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

9. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer (2005)
10. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.

In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

12. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

13. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal Mod-
eling of Resource Management for Cloud Architectures: An Industrial Case Study.
In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 91–106. Springer, Heidelberg (2012)

14. de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating Concurrent Objects: Real-
Time Modeling and Schedulability Analysis. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)

15. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable Avail-
ability under Denial of Service Attacks through Formal Patterns. In: de Lara, J.,
Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg
(2012)

16. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: Proc. ICSE, pp. 111–121. IEEE (2009)

17. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

108 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

18. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Es-
timation of Program Computational Complexity. In: POPL, pp. 127–139. ACM
(2009)

19. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

20. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. Journal of Logic and Algebraic Program-
ming 78(5), 402–416 (2009)

21. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

22. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

23. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Real-
location between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

24. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models
of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

25. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A Formal Model of Object Mobility
in Resource-Restricted Deployment Scenarios. In: Arbab, F., Ölveczky, P. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 187–204. Springer, Heidelberg (2012)

26. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtual-
ized Applications for the Cloud in Real-Time ABS. In: Aoki, T., Tagushi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012)

27. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

28. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

29. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Em-
bedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

30. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA,
pp. 439–453. ACM Press (2005)

HATS Abstract Behavioral Specification:
The Architectural View�

Reiner Hähnle1, Michiel Helvensteijn2, Einar Broch Johnsen3,
Michael Lienhardt4, Davide Sangiorgi4, Ina Schaefer5, and Peter Y.H. Wong6

1 Dept. of Computer Science, TU Darmstadt
haehnle@cs.tu-darmstadt.de

2 CWI Amsterdam
Michiel.Helvensteijn@cwi.nl

3 Dept. of Informatics, Univ. of Oslo
einarj@ifi.uio.no

4 Dept. of Computer Science, Univ. of Bologna
{Davide.Sangiorgi,lienhard}@cs.unibo.it

5 Dept. of Computer Science, TU Braunschweig
i.schaefer@tu-braunschweig.de
6 Fredhopper B.V, Amsterdam

peter.wong@fredhopper.com

Abstract. The Abstract Behavioral Specification (ABS) language is a
formal, executable, object-oriented, concurrent modeling language in-
tended for behavioral modeling of complex software systems that exhibit
a high degree of variation, such as software product lines. We give an
overview of the architectural aspects of ABS: a feature-driven develop-
ment workflow, a formal notion of deployment components for specify-
ing environmental constraints, and a dynamic component model that
is integrated into the language. We employ an industrial case study to
demonstrate how the various aspects work together in practice.

1 Introduction

This is the third in a series of reports which together give a comprehensive
overview of the possibilities and use cases of the Abstract Behavioral Specifica-
tion (ABS) language developed within the FP7 EU project HATS (for “Highly
Adaptable and Trustworthy Software using Formal Models”). Paper [18] de-
scribes the core part of ABS and its formal semantics while the tutorial [7]
is about the modeling of variability in ABS using features and deltas. Delta-
oriented programming [32] is a feature-oriented code reuse concept that is em-
ployed in HATS ABS as an alternative to traditional inheritance-based reuse.

The current paper is focussed on architectural aspects of modeling with ABS.
A very brief summary of the main ideas of ABS is contained in Sect. 2 below.
� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Models (http://www.hats-project.eu)

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 109–132, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.hats-project.eu

110 R. Hähnle et al.

In Sect. 3 we give a step-by-step guide on how to create a software product
line in ABS from scratch using delta modeling. We make use of abstract delta
modeling [8], dealing with conflicts explicitly. In Sect. 4 we turn to the question
of how the deployment architecture of a system can be represented in a suitably
platform-independent manner at the level of abstract models [19]. Sect. 5 reports
on the component model used in HATS which makes it possible to align ABS
models with architectural languages and opens the possibility of dynamic recon-
figuration [28]. Finally, in Sect. 6 we tell—in the context of an industrial case
study [35]—how the concepts discussed in this paper were shaped by application
concerns and what the industrial prospects of HATS ABS are. This includes an
account on how to unit test ABS models using the ABSUnit framework [14].

2 Abstract Behavioral Specification

Delta Modeling
Languages:
μTVL, DML, CL, PSL

Component Model

Deployment Components: Real-Time ABS

Local Contracts, Assertions

Syntactic Modules

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Fig. 1. Layered Architecture of ABS

The ABS language is de-
signed for formal modeling
and specification of concur-
rent, component-based sys-
tems at a level that
abstracts away from imple-
mentation details, but retains
essential behavioral and even
deployment aspects. ABS fol-
lows a layered approach (see
Fig. 1): at the base are func-
tional abstractions around a
standard notion of parametric
algebraic data types. Next we
have a OO-imperative layer
similar to (but much simpler
than) Java. The concurrency
model of ABS is two-tiered:
at the lower level, so called
COGs (Concurrent Object Groups) encapsulate synchronous, multi-threaded,
shared state computation on a single processor with cooperative scheduling. On
top of this is an actor based model with asynchronous calls, message passing,
active waiting, and future types. A syntactic module concept and assertions (in-
cluding pluggable type systems) completes what we call core ABS. This language
is described in detail in [18].

ABS classes do not support code inheritance and don’t define types. Manage-
ment of code reuse is, instead, realized by code deltas, described in [7]. These
are named entities that describe the code changes associated to realization of
new features. The result is a separation of concerns between architecural/de-
sign issues and algorithmic/data type aspects. It helps early prototyping and
avoids a disconnect between a system’s architecture and its implementation.

HATS Abstract Behavioral Specification: The Architectural View 111

In Sect. 3 we present the delta modeling workflow and demonstrate how it is
used to implement software with a high degree of variability such as product
lines.

Model-based approaches such as HATS face the challenge that, to be realistic,
software models must address deployment issues, such as real-time requirements,
capacity restrictions, latency, etc. Real-time ABS, introduced in Sect. 4, uses an
additional language layer called deployment component to achieve this.

To achieve flexible dynamic behavior, but also to structure and encapsulate
the dependencies in a software system, a formal notion of logical component is
essential. To this end, ABS features a component model, which is orthogonal to
delta modeling and presented in Sect. 5. Whereas deployment components are
used to identify the deployment structure of the modeled system in terms of
locations, logical components are used to identify the logical structure of the
system in terms of units of behavior. In particular, a logical component may be
distributed over several deployment components and several logical components
may be (partly) located in the same deployment component.

We stress that all ABS language constructs have a formal semantics, details of
which can be found in the technical deliverables of the HATS project [11–13]. In
addition, ABS has been designed with an eye on analysability. A wide variety of
tools for simulation, testing, resource estimation, safety analysis, and verification
of ABS models are available.

3 The Delta Modeling Workflow

Variability at the level of abstract behavioral specifications (or source code) is
represented in the ABS using the concept of delta modeling. Delta modeling
was introduced by Schaefer et al. [31,32] as a novel modeling and programming
language approach for software-based product lines. It can be seen as an alterna-
tive to feature-oriented programming [3]. Both approaches aim at automatically
generating software products for a given valid collection of features, providing
flexible and modular techniques to build different products that share functional-
ity or code. In this section, we describe briefly how delta modeling is instantiated
in ABS to represent software product lines. A more detailed account is [7]. We
also introduce the delta modeling workflow for ABS, a step-by-step guide to
building a product line, which leverages the flexibility of delta modeling.

3.1 Delta Modeling in ABS

Variability of software product lines at the requirements level is predominantly
represented in terms of product features, where a feature is a user-visible product
characteristic or an increment to functionality. A feature model [22] provides
the set of possible product variants by associating them with the set of realized
features. Features at this modeling level are merely names.

Delta modeling is a flexible, yet modular approach to implement different
product variants by reusable artifacts. In delta modeling, the realization of a

112 R. Hähnle et al.

software product line is divided into a core module and a set of delta modules.
The core module implements the functionality common to all products of the
software product line. Delta modules encapsulate modifications to the core prod-
uct in order to realize other products. The modifications can include additions
and removals of product entities and modifications of entities that are hierar-
chically composed. A particular product variant can be automatically derived
by applying the modifications of a selected subset of the given delta modules to
the core product. Which delta modules have to be applied for a specific product
variant is based on the selection of desired features for this product variant. In
order to automate this selection, each delta is associated with an application
condition that is a Boolean constraint over the features in the feature module.
If the constraint is satisfied for a specific feature selection, the respective delta
has to be applied to generate the associated product variant. To avoid or resolve
conflicts when two delta modules modify the same product entity in an incom-
patible manner, delta module application can be partially ordered. This also
ensures that for any feature selection a uniquely defined product is generated.

The ABS incarnation of delta modeling is based on four languages (μTVL,
DML, CL, PSL) which are defined on top of core ABS (see Fig. 1). The feature
description language μTVL is used to describe the variability of a product line in
terms of features and their attributes. At this level of abstraction, a feature is a
name representing user-visible system functionality. Attributes represent micro-
variability within features. μTVL is a textual description language for feature
models and intended as a basis for other, e.g., graphical modeling formalisms.

The delta modeling language DML is used to specify delta modules containing
modifications of a core ABS model. A delta module in ABS can add and remove
classes and add as well as remove interfaces that are implemented by a class. Ad-
ditionally, a delta module can modify the internal structure of classes by adding
and removing fields and methods. Methods can also be modified by overriding
the method body or by wrapping the previous implementation of the method
using the original() call. Deltas can also be parameterized by specific values.
Parameters are instantiated with concrete values during product generation, e.g.,
with the value that is set for a feature attribute.

The configuration language CL links μTVL feature models with the DML
delta modules that implement the corresponding behavioral modifications. A CL
specification provides application conditions for delta modules. They determine
to which feature configurations modules are applied to in a when clause and
provide an order to resolve conflicts between deltas modifying the same model
entities The application ordering is given in after clauses attached to deltas
stating that the delta must be applied after the given deltas if these are also
applied during product generation.

The product selection language PSL is used to define the actual product of an
ABS product line. A PSL script corresponds to a particular product variant and
consists of two parts, namely, a specification of the features and their attributes
selected for a product and an initialization block, which is often merely a call
to an appropriate main method, even though it may contain configuration code.

HATS Abstract Behavioral Specification: The Architectural View 113

To generate the product specified by the PSL script, all deltas with a valid
application condition for the given feature selection are applied to the core ABS
model in some order compliant with the order specified in the CL script. Finally,
the initialization block is added to the core program.

3.2 Delta Modeling Workflow in ABS

Abstract Delta Modeling [8, 9] lends itself particularly well to a systematic de-
velopment workflow for software product lines. One such workflow, dubbed delta
modeling workflow [16, 17], was adapted to ABS. In the following we describe
the workflow specifically with ABS in mind, which has not been done before. It
is also used in the case study in Sect. 6.

The workflow gives step-by-step instructions for development of a software
product line from scratch, directing developers to satisfy local constraints (more
formally given in [16]) to guarantee desirable properties for the whole product
line. These properties are described in Sect. 3.3.

feature
left to

implement?

�

implement
feature with

new delta

interaction
to imple-

ment?

implement
interaction
with new

delta

conflict to
resolve?

resolve
conflict with

new delta

no

yes no

no

yes yes

Fig. 2. Overview of the development workflow

A product line should be developed based on a product line specification,
consisting of a feature model (which should include at least a subfeature hierar-
chy), and either formal or informal descriptions of each feature. When we start
following the workflow, we assume that such a specification exists.

Briefly, features are implemented as a linear extension of the subfeature hier-
archy. Base features are implemented first, subfeatures later, with one delta for
each feature. Then, for every set of implemented features that should interact,
but do not, we implement that interaction with a delta. Next, for every two
deltas whose implementations are in conflict, a conflict resolving delta is written
to resolve that issue. Fig. 2 shows a flow-chart that summarizes this process.

It is often suitable to put code common to all products into the core product.
In the case of ABS, this means at least the following:

114 R. Hähnle et al.

class Main { Unit run() {} }

{ new Main(); }

We start with a Main class with an empty run method. The second line creates a
new Main instance, implicitly calling the run method, which will later be modified
by deltas. It is possible to put mandatory features into the core product, but it
is recommended that all features are implemented by deltas, as this makes the
product line more robust to evolution [33], and promotes separation of concerns.

Also, we begin with a minimal ABS product line configuration: the list of
features and the list of desired products, which can be empty.

productline name {

features d1, d2, . . . , dn; }

In the following workflow description, we will use a subset of the Editor product
line example, a complete version of which may be found in [9]. It describes a set
of code editor widgets, as may be found in integrated development environments.
The feature model of the Editor product line is shown in Fig. 3. Now we walk
through the Delta Modeling Workflow depicted in Fig. 2.

Printing Syntax
Highlighting

Error
Checking

Editor

Fig. 3. Feature model of the Editor product line

Feature Left to Implement? In this stage of the workflow, we choose the
next feature to implement. Essentially we walk through the subfeature hierarchy
of the feature model in a topological order, i.e., base features first, subfeatures
later. If all features have been implemented, we are finished.

For the example, we would have to start with the Editor feature. Any of the
three features on the second level may be chosen next.

Implement Feature with New Delta. Having chosen a feature f , we now
write a “feature delta” df to implement it:

delta df { ... }

The delta may add, remove or modify any classes and methods necessary to real-
ize the functionality of f , while preserving the functionality of all superfeatures.

HATS Abstract Behavioral Specification: The Architectural View 115

The developer only has to consider the feature-local code: the core product and
the deltas implementing superfeatures of f . We now show the four feature deltas
of the Editor product line (we leave out some details for the sake of brevity):

delta D_Editor {

adds class Model { ... }

adds class Font {

Unit setColor(Color c) { ... }

Color getColor() { ... }

Unit setUnderlined(bool u) { ... }

bool getUnderlined() { ... }

}

adds class Editor { Model model;

{ model = new Model(); ... }

Model getChar(int c) {

return model.getChar(c);

}

Font getFont(int c) {

return new Font();

} }

modifies class Main {

modifies Unit run() {

new Editor();

} } }

delta D_Printing {

modifies class Editor {

adds Unit print() {

// print the plain text
} } }

delta D_SyntaxHighlighting {

adds class Highlighter(Model m) {

Model model;

{ model = m; }

Color getColor(int c) { ... }

}

modifies class Editor {

modifies getFont(int c) {

Font f = D_Editor.original(c);
Highlighter h =

new Highlighter(getModel());

f.setColor(h.getColor(c));

return f;

}

}

}

delta D_ErrorChecking {

modifies class Editor {

modifies Font getFont(int c) {

Font f = D_Editor.original(c);
f.setUnderlined(

getModel().isError(c));

return f;

} }

}

Finally, we add the following line to the ABS product line configuration:

delta df when f after ds;

where ds is the delta implementing the superfeature of f . If f has no superfeature,
the after clause may be omitted. Our example requires the following product
line configuration:

productline Editor {

features Editor, Printing, SyntaxHighlighting, ErrorChecking;

delta D_Editor when Editor;

delta D_Printing when Printing after D_Editor;

delta D_SyntaxHighlighting when SyntaxHighlighting after D_Editor;

delta D_ErrorChecking when ErrorChecking after D_Editor; }

Interaction to Implement. At the feature modeling and specification level,
two features f and g may be independently realizable, but require extra

116 R. Hähnle et al.

functionality when both are selected. This behavior is not implemented by the
feature deltas, so a new delta needs to be created. In our example, this is the
case for the features Printing and Syntax Highlighting. When printing, we would
like the syntax highlighting colors to be used.

Implement Interaction. The new delta df,g must implement the required in-
teraction without breaking the features f and g or their superfeatures. It may
change anything introduced by feature deltas df and dg. When overwriting meth-
ods, it may also access the original methods using the syntax df.original() and
dg.original(). In our example:
delta D_Printing_SyntaxHighlighting {

modifies class Editor {

modifies Unit print() {

// print as before, but use colors of D_SyntaxHighlighting.font(c)
} } }

Then we add the following to the ABS product line specification:
delta df,g when f && g after df, dg;

In our example:
delta D_Printing_SyntaxHighlighting when Printing && SyntaxHighlighting

after D_Printing, D_SyntaxHighlighting;

This may be generalized to interaction between more than two features.

Conflict to Resolve? By adding delta df , deltas df,g (for different g) and
conflict resolving deltas introduced earlier in the current iteration, we may have
introduced an implementation conflict: two deltas d1, d2 that are independent,
but modify the same method in a different way. In our example, this is the case
for D_SyntaxHighlighting and D_ErrorChecking, as they both modify the font

method in a different way, and are not ordered in the product line configuration.
For each such conflict, we write a delta to resolve it.

Resolve Conflict. The resolving delta d1,2 must overwrite the methods causing
the conflict, while not breaking the features implemented by d1, d2, or their su-
perfeatures. Typically, d1,2 invokes d1.original() and d2.original() to combine
the functionality of the conflicting deltas. In our example:
delta D_SyntaxHighlighting_ErrorChecking {

modifies class Editor {

modifies Font getFont(int c) {

Font result = D_Editor.original(c);
result.setColor(D_SyntaxHighlighting.original(c).getColor());
result.setUnderlined(D_ErrorChecking.original(c).getUnderlined());
return result;

} } }

HATS Abstract Behavioral Specification: The Architectural View 117

We add the following to the ABS product line specification:

delta d1,2 when (λ(d1)) && (λ(d2)) after d1, d2;

where λ(d) is the when clause of delta d. In our example:

delta D_SyntaxHighlighting_ErrorChecking when (SyntaxHighlighting) &&

(ErrorChecking) after D_SyntaxHighlighting, D_ErrorChecking;

3.3 Discussion

The workflow has some useful properties, which we briefly explain. Any feature,
as well as any conflict resolution and feature interaction, can be developed inde-
pendently of others that are conceptually unrelated to it. For example, all feature
deltas in our example could be developed at the same time and in isolation. As
could the interaction implementing delta and the conflict resolving delta.

Then there are various properties that are guaranteed in the product lines
resulting from this workflow. There is a minimum of code duplication. Every
delta implements some specific functionality and every product that needs that
functionality employs the same delta to use it. And when two features are con-
ceptually unrelated, two unordered deltas are developed for them. This means
that two unrelated features cannot unintentionally and silently overwrite each
others’ code. In other words, there is no overspecification.

Furthermore, product lines will be globally unambiguous, meaning that for
every valid feature configuration, there is a uniquely generated product. Lastly,
if local constraints are met, it is guaranteed that at the end of the workflow,
all necessary features and feature combinations have in fact been implemented
(this is because deltas in ABS satisfy the non-interference property [16]). The
product line implementation is complete.

4 Deployment Modeling

The functional correctness of a product largely depends on its high-level behav-
ioral specification, independent of the platform on which the resulting code will
be deployed. However, different deployment platforms may be envisaged for dif-
ferent products in a software product line, and the choice of deployment platform
for a specific product may hugely influence its quality of service. For example,
limitations in the processing capacity of the CPU of a cell phone may restrict
the features that can be selected, and the capacity of a server may influence the
response time for a service for peaks in the client traffic. In this section, we give
an overview of how deployment concerns are captured in ABS models.

Modeling Timed Behavior in ABS. Real-Time ABS [4] is an extension of
ABS in which the timed behavior of ABS models may be captured. An untimed
ABS model is a model in Real-Time ABS in which execution takes zero time;

118 R. Hähnle et al.

thus, standard statements in ABS are assumed to execute in zero time. Timing
aspects may be added incrementally to an untimed behavioral model. Our ap-
proach extends ABS with a combination of explicit and implicit time models.
In the explicit approach, the modeler specifies the passage of time in terms of
duration statements with best and worst-case time. These statements are in-
serted into the model, and capture the duration of computations which do not
depend on the deployment architecture. This is the standard approach to mod-
eling timed behavior, known from, e.g., timed automata in UPPAAL [23]. In the
implicit approach, the actual passage of time is measured during execution and
may depend on the capacity and load of the server where a computation occurs.

Real-Time ABS introduces two new data types into the functional sublan-
guage of ABS: Time, which has the constructor Time(r), and Duration which has
the constructors InfDuration and Duration(r), where r is a value of the type Rat
of rational numbers. Let f be a function defined in the functional sublanguage
of ABS, which recurses through some data structure x of type T, and let size
be a measure of the size of this data structure. Consider a method m which
takes as input such a value x and returns the result of applying f to x. Let us
assume that the time needed for this computation depends on the size of x; e.g.,
the time needed for the computation will be between a duration 0.5*size(x) and
a duration 4*size(x). We can specify an interface I which provides the method
m and a class C which implements this method, including the duration of its
computation using the explicit time model, as follows:

interface I { Int m(T x) }

class C implements I {

Int m (T x){ duration(0.5*size(x), 4*size(x)); return f(x);

} }

The object-oriented perspective on timed behavior is captured in terms of dead-
lines to method calls. Every method activation in Real-Time ABS has an asso-
ciated deadline, which decrements with the passage of time. This deadline can
be accessed inside the method body using the expression deadline(). Deadlines
are soft; i.e., deadline() may become negative but this does not in itself stop
the execution of the method. By default the deadline associated with a method
activation is infinite, so in an untimed model deadlines will never be missed.
Other deadlines may be introduced by means of call-site annotations.

Let o be an object of a class implementing method m. We consider a method
n which invokes m on o, and let scale(d,r) be a scaling function which multiplies
a duration d by a rational number r. The method n specifies a deadline for this
call, given as an annotation and expressed in terms of its own deadline (if its own
deadline is InfDuration, then the deadline to m will also be unlimited). Method
n may be defined as follows:

Int n (T x){ [Deadline: scale(deadline(),0.9)] return o.m(x); }

HATS Abstract Behavioral Specification: The Architectural View 119

In the implicit approach to modeling time in ABS, time is not specified directly in
terms of durations, but rather observed on the model. This is done by comparing
clock values from a global clock, which can be read by an expression now() of
type Time. We specify an interface J with a method timer(x) which, given a value
of type T, returns a value of type Duration, and implement timer(x) in a class D
such that it measures the time it takes to call the method m above:

interface J { Duration timer (T x) }

class D implements J (I o) {

Duration timer (T x){ Time start; Int y;

start = now(); y=o.m(x); return timeDifference(now(),start);

} }

With the implicit time model, no assumptions about specific durations are in-
volved. The duration depends on how quickly the method call is effectuated by
the object o. The duration is observed by comparing the time before and after
making the call. As a consequence, the duration needed to execute a statement
with the implicit time model depends on the capacity of the specific deployment
model and on synchronization with (slower) objects.

Deployment Components. A deployment component in Real-Time ABS cap-
tures the execution capacity associated with a number of COGs. Deployment
components are first-class citizens in Real-Time ABS, and specify an amount of
resources shared by their allocated objects. Deployment components may be dy-
namically created depending on the control flow of the ABS model or statically
created in the main block of the model. We assume a deployment component
environment with unlimited resources, to which the root object of a model is
allocated. When COGs are created, they are by default allocated to the same
deployment component as their creator, but they may also be allocated to a
different deployment component. Thus, a model without explicit deployment
components runs in environment, which places no restrictions on the execution
capacity of the model. A model may be extended with other deployment com-
ponents with different processing capacities.

Given interfaces I, J and classes C, D as defined above, we can specify a
deployment architecture, where two C objects are put on different deployment
components Server1 and Server2, and interact with the D objects on the same de-
ployment component Client. Deployment components have the type DC and are
instances of the class DeploymentComponent, taking as parameters a name, given
as a string, and a set of restrictions on resources. Here we focus on processing ca-
pacity, which is specified by the constructor CPUCapacity(r), where r represents
the amount of available abstract processing resources between observable points
in time. Below, we create three deployment components Server1, Server2, and
Server3, with processing capacities 50, 100, and unlimited (i.e., Server3 has no re-
source restrictions). The local variables mainserver, backupserver, and clientserver
refer to these deployment components. Objects are explicitly allocated to servers
via annotations. The keyword cog indicates the creation of a new COG.

120 R. Hähnle et al.

{ // The main block initializes a static deployment architecture:
DC mainserver = new DeploymentComponent("Server1", set[CPUCapacity(50)]);

DC backupserver = new DeploymentComponent("Server2", set[CPUCapacity(100)]);

DC clientserver = new DeploymentComponent("Server3", EmptySet);

[DC: mainserver] I object1 = new cog C;

[DC: backupserver] I object2 = new cog C;

[DC: clientserver] J client1 = new cog D(object1);

[DC: clientserver] J client2 = new cog D(object2);

}

Resource Costs. The resource capacity of a deployment component determines
how much computation may occur in the objects allocated to that deployment
component. Objects allocated to the deployment component compete for the
shared resources to execute, and they may execute until the deployment compo-
nent runs out of resources or they are otherwise blocked. For the case of CPU
resources, the resources of the deployment component define its capacity between
observable (discrete) points in time, after which the resources are renewed.

The cost of executing a statement in the ABS model is determined by a default
value which can be set as a compiler option (e.g., defaultcost=10). However, the
default cost does not discriminate between the statements. If e is a complex
expression, then the statement x=e should have a significantly higher cost than
skip. For this reason, more fine-grained costs can be inserted into the model
via annotations. For example, the exact cost of computing function f defined
on p. 118 may be given as a function g depending on the size of the input
x. Consequently, in the context of deployment components, we can specify a
resource-sensitive re-implementation of interface I without predefined duration
in class C2 as follows:

class C2 implements I {

Int m (T x){ [Cost: g(size(x))] return f(x);

} }

It is the responsibility of the modeler to specify the execution costs in the model.
A behavioral model with default costs may be gradually refined to provide more
realistic resource-sensitive behavior. For the computation of the cost function g
in our example above, the modeler may be assisted by the COSTABS tool [1],
which computes a worst-case approximation of the cost function for f in terms of
the input value x based on static analysis techniques, given the ABS definition
of the expression f. However, the modeler may also want to capture resource
consumption at a more abstract level during the early stages of the system design,
for example to make resource limitations explicit before a further refinement of
a model. Therefore, cost annotations may be used by the modeler to abstractly
represent some computation which remains to be fully specified. For example, the
class C3 below may represent a draft version of our method m which specifies the
worst-case cost of the computation even before the function f has been defined:

HATS Abstract Behavioral Specification: The Architectural View 121

class C3 implements I {

Int m (T x){ [Cost: size(x)*size(x)] return 0;

} }

Costs need not depend merely on data values, but may also reflect overhead
in general, as captured by expressions in ABS; e.g., a cost expression can be a
constant value or depend on the current load of the deployment component on
which the computation occurs.

Dynamic Deployment Architectures. The example presented in this sec-
tion concentrates on giving simple intuitions for the modeling of deployment
architectures in ABS in terms of a static deployment scenario. A full presenta-
tion of this work, including the syntax and formal semantics of such deployment
architectures, is given in [13, 20]. Obviously, the approach may be extended to
support the modeling of load-balancing strategies. We have considered two such
extensions, based on adding an expression load(n) which returns the average load
of the current deployment component over the last n time intervals. First, by in-
cluding resources as first-class citizens of ABS and allowing (virtual) resources to
be reallocated between deployment components [19]. Second, by allowing objects
to be marshaled and reallocated between deployment components [21]. Further-
more, we have studied the application of the deployment component framework
to memory resources and its integration with COSTABS in [2].

5 The ABS Component Model

Components are an intuitive tool to achieve unplanned dynamic reconfiguration.
In a component system, an application is structured into several distinct pieces
called component. Each of these components has dependencies towards func-
tionalities located in other components; such dependencies are collected into the
output ports. The component itself, however, offers functionalities to the other
components, and these are collected into the input ports. Communication from
an output port to an input port is possible when a binding between the two ports
exists. Dynamic reconfiguration in such a system is then achieved by adding and
removing components and by re-binding. Hence, updates and modifications act-
ing on applications are possible without stopping them.

5.1 Related Work

While the idea of component is simple, bringing it into a concrete programming
language is not easy. The informal description of components talks about the
structure of a system, and how this structure can change at runtime, but does
not mention program execution. As a matter of fact, many implementations of
components do not merge into one coherent model (i) the execution of the pro-
gram, generally implemented using a classic object-oriented language like Java

122 R. Hähnle et al.

or C++, and (ii) the component structure, generally described in an annex Ar-
chitecture Description Language (ADL). This approach makes it simple to add
components to an existing language, however, unplanned dynamic reconfigura-
tion becomes hard, as it is difficult to express modifications of the component
structure using objects (as these are just supposed to describe the execution of
the programs). For instance, models like Click [29] do not allow runtime mod-
ifications while OSGi [30] only allows the addition of new classes and objects:
component deletion or binding modification are not supported. In this respect,
a more flexible model is Fractal [5], which reifies components and ports into ob-
jects. Using an API, in Fractal it is possible to modify bindings at runtime and
to add new components; still, it is difficult for the programmer to ensure that
reconfiguration will not cause state inconsistencies.

Formal approaches to component models have been studied e.g., [6,25–28,34].
These models have the advantage of having a precise semantics, which clearly
defines what is a component, a port and a binding (when such a construct is
included). This helps to understand how dynamic reconfiguration can be im-
plemented and how it interacts with the normal execution of a program. In
particular, Oz/K [27] and COMP [26] propose a way to integrate in a unified
model both components and objects. Oz/K, however, has a complex commu-
nication pattern and deals with adaptation via the use of passivation, which
is a tricky operator [24] and in the current state of the art breaks most tech-
niques for behavioral analysis. In contrast, COMP offers support for dynamic
reconfiguration, but its integration into the semantics of ABS appears complex.

5.2 Our Approach

Most component models have a notion of component that is distinct from the
objects used to represent the data and the execution of programs. Such languages
are structured in two layers, one using objects for the main execution of the
program, one using components for dynamic reconfiguration. Even though such a
separation seems natural, it makes the integration of requests for reconfiguration
into the program’s workflow difficult. In contrast, in our approach we went for
a uniform description of objects and components; i.e., we enhance objects and
COGs—the core ingredients of ABS—with the core elements of components
(ports, bindings, consistency, and hierarchy) to enable dynamic reconfiguration.

We achieved this by exploiting the similarities between objects (and object
groups) and components. Most importantly, the methods of an object closely re-
semble the input ports of a component. In contrast, objects do not have explicit
output ports, but the dependencies of an object can be stored in internal fields.
Thus, rebinding an output port corresponds to the assignment of a new value
to the field. Standard objects, however, cannot ensure consistency of the rebind-
ing. Indeed, suppose we wished to treat certain object fields as output ports: we
could add methods to the object for their rebinding; but it would be difficult,
in presence of concurrency, to ensure that a call to one of these methods does
not harm ongoing computations. For instance, if we need to update a field (like
the driver of a printer), then we would first want to wait for the termination

HATS Abstract Behavioral Specification: The Architectural View 123

of all current executions referring to that field (e.g., printing jobs). COGs (ob-
ject groups) in ABS offer a mechanism to avoid race conditions at the level of
methods, by ensuring that there is at most one task running in a COG. But this
mechanism is not sufficient to deal with rebinding where we may need to wait
for several methods to finish before performing it. Another difference between
object and component models is that the latter talk about locations. Locations
structure a system, possibly hierarchically, and can be used to express dynamic
addition or removal of code, as well as distributed computation.

To ensure the consistent modifications of bindings and the possibility to ship
new pieces of code at runtime, we add four elements to the ABS core language:

1. A notion of output port distinct from an object’s fields. The former (iden-
tified with the keyword port) represent the object’s dependencies and can
be modified only when the object is in a safe state; the latter constitute the
inner state of an object and can be modified with ordinary assignments.

2. The possibility to annotate methods with the keyword critical: this specifies
that the object, while this method is executing, is not in a safe state.

3. A new primitive to wait for an object to be in a safe state. Thus, it be-
comes possible to wait for all executions using a given port to finish, before
rebinding the port to a new object.

4. We add locations. Our semantics structures an ABS model into a tree of
locations that can contain object groups, and that can move within the
hierarchy. Using locations, it is possible to model the addition of new pieces
of code to a program at runtime. Moreover, it is also possible to model
distribution (each top-level location being a different computer) and code
mobility (by moving a sub-location from a computer to another one).

The resulting component language remains close to the underlying ABS language
and, in fact, is a conservative extension of ABS (i.e., a core ABS model is valid in
our language and its semantics is unchanged). As shown in the following example,
introducing the new primitives into a given ABS model is simple. In contrast to
previous component models, our language does not strongly separate objects and
components. Three major features of the informal notion of component—ports,
consistency, and location—are represented in the language as follows: (i) output
ports are taken care of at the level of our enhanced objects; (ii) consistency is
taken care of at the level of COGs; (iii) information about locations is added
explicitly.

5.3 Example

We illustrate our approach with an example inspired from the Virtual Office
case study of the HATS project [10]. This case study supposes an open envi-
ronment with resources like computers, projectors or printers that are used to
build different workflows. Assume we want to define a workflow that takes a
document (a resource modeled with the class Document), modifies it using an-
other resource (modeled with the class Operator) and then sends it to a printer

124 R. Hähnle et al.

(modeled with the class Printer). We suppose that the protocol used by Opera-
tors is complicated, so we isolate it into a dedicated class. Finally, we want to be
able to change protocol at runtime, without disrupting the execution of previous
instances of the workflow. Such a workflow can be defined as follows:

class OperatorFrontEnd(Operator op) {

port Operator _op;

critical Document modify(Document doc) { ... }

{ rebind _op = op; }

}

class WFController(Document doc, Operator op, Printer p) {

port Document _doc;

port Printer _p;

OperatorFrontEnd _opfe;

critical void newInstanceWF() { ... }

void changeOperator(Operator op) {

await(‖this,_opfe‖);
rebind _opfe._op = op;

}

{

rebind _doc = doc;

rebind _p = p;
_opfe = new OperatorFrontEnd(op);

} }

We have two classes: the class OperatorFrontEnd implements the protocol in the
method modify(doc); the class WFController encodes the workflow. The elements
_op, _doc and _p are ports (annotated as port) and represent dependencies to
external resources. It is only possible to modify their value using the construct
rebind, which checks whether the object is in a safe state (no critical method
in execution) before modifying the port. Moreover, methods modify(doc) and
newInstanceWF() make use of these ports in their code, and are thus annotated
as critical as it would be dangerous to rebind ports during their execution.

The key operations of our component model are shown in the two lines of
code in the body of the method changeOperator(op). First is the await statement,
which waits for objects this and _opfe to be in a safe state. By construction, these
objects are in a safe state when there are no running instances of the workflow: it
is then safe to modify the ports. Second is the rebind statement: it will succeed,
because the concurrency model of COGs ensures that no workflow instance can
be spawned between the end of the await and the end of the method. Moreover,
the second line shows that it is possible to rebind a port of another object,
provided that this object is in the same COG as the one doing the rebinding.

HATS Abstract Behavioral Specification: The Architectural View 125

ClientNr

Replication
System

Replication
Item

Dir Journal File

Job
Processing

Concur Seq

Schedule

Search DataBusiness
Int d in [1..60]
Int l in [1..60]

d <= l

Int d in [1..60]
Int l in [1..60]

d <= l

<<require>>

<<require>>

Site Cloud

<<require>>

Resources Installation

Server Client
Int c in [1..30]
Site -> c <= 10

Int c in [1..30]
Site -> c <= 10

Update
Int u in [1..20]
Site -> u >= 10

Int d in [1..60]
Int l in [1..60]

d <= l
<<require>>

Int c in [1..20]
Int j in [1..20]
Site -> c < 10

Fig. 4. Feature diagram of the replication system

6 An Industrial Case Study

The Fredhopper Access Server (FAS) is a distributed, concurrent OO system that
provides search and merchandising services to e-Commerce companies. Briefly,
FAS provides to its clients structured search capabilities within the client’s data.
FAS consists of a set of live and staging environments. A live environment pro-
cesses queries from client web applications via web services. FAS aims at pro-
viding a constant query capacity to client-side web applications. A staging envi-
ronment is responsible for receiving data updates in XML format, indexing the
XML, and distributing the resulting indices across all live environments accord-
ing to the replication protocol. The replication protocol is implemented by the
Replication System. The replication system consists of a SyncServer at the stag-
ing environment and one SyncClient for each live environment. The SyncServer
determines the schedule of replication, as well as their contents, while SyncClient
receives data and configuration updates.

Modeling Variability. There are several variants of the Replication System
and we express them as features. Fig. 4 shows the feature diagram of the replica-
tion system. For brevity, we consider only features ReplicationSystem, ClientNr,
Schedule, Search, and Business. These are shaded in the feature diagram; full
treatment of the complete feature diagram can be found in the HATS project
report [15]. We list the μTVL model that describes these features.

root ReplicationSystem { group allof {

opt ClientNr { Int c in [1 .. 20]; Int j in [1 .. 20]; },

Schedule { group allof {

opt Search { Int d in [1 .. 60]; Int l in [1 .. 60]; d <= l; },

opt Business { Int d in [1 .. 60]; Int l in [1 .. 60]; d <= l; }

} } } }

The replication system has the optional feature ClientNr for specifying the num-
ber of SyncClients participating in the replication protocol. It has the mandatory
feature Schedule for specifying replication schedules. Replication schedules dic-
tate when and where the replication system should monitor for changes in the
staging environment to be replicated to the live environments. A replication sys-
tem may offer one or both of Search and Business features. The feature Search

126 R. Hähnle et al.

specifies the interval in which the replication system replicates the changes from
the search index. The search index is the underlying data structure for provid-
ing search capability on customers’ product items. The feature Business specifies
the intervals for replicating business configuration. The business configuration
defines the presentation of search results, such as sorting and promotions.

We employ the delta modeling workflow (Sect. 3) to construct an ABS model
of the replication system. We start with an empty product line and define the
core product as class Main {} { new Main(); }. Following the delta modeling
workflow, we begin with the base feature ReplicationSystem. We model this
feature by the delta SystemDelta:

delta SystemDelta {

modifies class Main {

adds Unit run() {

List<Schedule> ss = this.getSchedules();
Set<ClientId> cs = this.getCids();
Int maxJobs = this.getMaxJobs();
Int updates = this.getUpdateInterval();
new ReplicationSystem(updates, ss, maxJobs, cs);

} } }

The run() method creates a ReplicationSystem according to default setup. In
addition, SystemDelta adds the necessary type definitions, such as data types,
type synonyms, and core ABS classes and interfaces that model the underlying
file system, the SyncClient and the SyncServer. Next to consider is the optional
feature ClientNr, implemented by ClientNrDelta:

delta ClientNrDelta(Int c, Int j) {

modifies class Main {

modifies Set<ClientId> getCids() {

Int s = c; Set<Int> cs = EmptySet;

while (s > 0) { cs = Insert(s,cs); s = s-1; } return cs; }

modifies Int getMaxJobs() { return j; }

} }

The delta modifies getCids() and getMaxJobs() of class Main such that the repli-
cation system has synchronisation clients and a maximum number of replication
jobs per client. Now we consider the mandatory feature Schedule, implemented
by ScheduleDelta:

delta ScheduleDelta {

modifies class Main {

adds List<Pair<String,List<Item>>> searchItems = ... ;

adds List<Pair<String,List<Item>>> businessItems = ... ;

adds List<Schedule> getSchedules() {

Map<String,Pair<Int,Deadline>> m = this.getScheduleMap();
return itemMapToSchedule(Nil, m, concatenates(list[searchItems])); }

} }

HATS Abstract Behavioral Specification: The Architectural View 127

This delta adds methods and fields to Main to model various schedule informa-
tion such as the types of schedules and their possible file locations from which
changes are replicated. The next feature we consider is the optional feature
Search, implemented by SearchDelta:

delta SearchDelta(Int d, Int l) {

modifies class Main {

modifies Map<String,Pair<Int,Deadline>> getScheduleMap() {

return put(ScheduleDelta.original(), "Search", Pair(d, Duration(l))); }

} }

This modifies method getScheduleMap() to set the interval between replicating
the search index directory and the deadline for each such replication job as
specified by feature Search. Since replicating the search index directory is the
default schedule as defined by feature Schedule, this delta only modifies the
specification of the schedule. Finally, we consider feature Business, implemented
by BusinessDelta:

delta BusinessDelta(Int d, Int f) {

modifies class Main {

modifies Map<String,Pair<Int,Deadline>> getScheduleMap() {

return put(ScheduleDelta.original(), "Business rules", Pair(d, Duration(l)));

}

modifies List<Schedule> getSchedules() { ... }

} }

Similar to SearchDelta, this delta modifies method getScheduleMap() to set the
interval between replicating a set of file locations and the deadline for each such
replication job. In addition, it modifies getSchedules() to add schedules for
business configuration to the replication system, the details of which we omit.
We notice that BusinessDelta causes a conflict with SearchDelta. We resolve
this conflict by providing the resolving delta SBDelta:

delta SBDelta {

modifies class Main {

modifies List<Schedule> getSchedules() {

return appendRight(SearchDelta.original(), BusinessDelta.original()); }

} }

SBDelta resolves the conflict between BusinessDelta and SearchDelta by insisting
that the returned list of schedules contains the list of search index directory
replication schedules followed by the list of business configuration replication
schedules. Note that while both deltas modify getScheduleMap(), the order in
which the modifications are applied needs not be specified, therefore, SBDelta
does not provide a conflict resolver for those modifications. With no further
feature interaction or conflict resolution to implement in this iteration, and no
further features to implement, we obtain the complete product line.

128 R. Hähnle et al.

Fig. 5. Average execution time of client jobs

Resource Simulation. Using Real-Time ABS and deployment components
(Sect. 4), we augment the replication system model with resource information
such as processing power. We simulate the effects of processing power during
execution of the replication system with the Maude backend of the ABS compiler.
The following shows partial definitions of classes ConnectionThread, ClientJob.

class ConnectionThread {

Unit run() {

[Cost:size(sch)] this.start(sch); ... [Cost:length(fs)] this.register(fs); ...

[Cost:length(fs)] this.transfer(fs); ... [Cost:size(sch)] this.finish(sch); }}

class ClientJob(Client client, ...) {

Int total = 0;

Unit run() { Time bt = now(); ... total = timeDifference(bt,now()); }}

Each ConnectionThread object, created by SyncServer, provides a run() method
for interacting with a ClientJob object to fulfill the staging environment side
of the replication protocol, while each ClientJob object, created by SyncClient,
provides a run() method to fulfill the live environment side of the replication
protocol. We provide cost annotations for specific method invocations of the
run() method of ConnectionThread to describe the amount of CPU resources.1
We inject time stamps at the beginning and the end of the run() method of
ClientJob to calculate the execution time of a client job. Fig. 5 shows a graph of
the average execution time (in simulated time units) of client jobs depending on
the number of SyncClients and compares one vs. two CPUs. The graph shows
that with a single CPU, the client job execution time increases linearly with the
number of SyncClients, while with two CPUs this is no longer the case.

Unit Testing. During development of the replication system unit tests were
written to validate the class methods and to detect regressions. We created
the ABSUnit testing framework, based on the xUnit architecture, for writing
unit tests for ABS [14]. We illustrate ABSUnit with method processFile(id) of
1 Cost expressions are abstractions from concrete values obtained using the combina-

tion of real-time simulation and static cost analysis [1].

HATS Abstract Behavioral Specification: The Architectural View 129

ClientJob. This method checks whether a file named id exists in the underlying
database and returns its size. We define an interface ClientJobTest as the type
of the test suite. It defines a test method test() and data points getData():

type Data = Map<Fn,Maybe<Size>>;

[Suite] interface ClientJobTest {

[Test] Unit test(Data ds);

[DataPoint] Set<Data> getData(); }

The return value of data points serves as input to the test method. The following
listing shows a part of the class TestImpl that implements the methods test()

and getData() from the interface ClientJobTest.

interface Job { Maybe<Size> processFile(Fn id); Unit setDB(DataBase db); }

[SuiteImpl] class TestImpl implements ClientJobTest {

Set<Data> testData = ...; ABSAssert aut = ...

Set<Data> getData() { return testData }

Job getCJ(DataBase db) { return null; }

Unit test(Data ds) {

DataBase db = new cog TestDataBase(ds); Job job = this.getCJ(db);
Set<Fn> ids = keys(ds);

while (hasNext(ids)) {

Pair<Set<Fn>,Fn> nt = next(ids); Fn i = snd(nt); ids = fst(nt);

Maybe<Size> s = job.processFile(i);

Comparator cmp = new MComp(lookup(ds,i),s);

aut.assertEquals(cmp); }}}

Method test() defines a test case on processFile(id). Class MComp provides a
comparator between two Maybe<Size> values. To ensure the client job object
under test is prepared for unit testing, we define a delta to remove the run()

method, add a setter, add a mock implementation of the database for testing,
and assign type Job to ClientJob, so we can add a mock database to the object
under test. This is a major advantage of delta modeling: code needed only for
testing is encapsulated in test deltas and does not clutter up productive code.

delta JobTestDelta {

modifies class ClientJob implements Job {

removes Unit run(); adds Unit setDB(DataBase db) { this.db = db; }}

modifies class TestImpl {

modifies Job getCJ(DataBase db) {

Job cj = new ClientJob(null); cj.setDB(db); return cj; }}}

The ABSUnit framework comes with a test runner generator that is built into
to the ABS frontend. The test runner generator takes .abs files of the system
under test and returns an .abs file defining a main block that executes the test
cases concurrently. Here is the test runner for test interface ClientJobTest:

130 R. Hähnle et al.

{ Set<Fut<Unit>> fs = EmptySet; Fut<Unit> f;

ClientJobTest gd = new TestImpl(); Set<Data> ds = gd.getData();

while (hasNext(ds)) {

Pair<Set<Data>,Data> nt = next(ds); Data d = snd(nt); ds = fst(nt);

ClientJobTest gd = new cog TestImpl(); f = gd!test(d); fs = Insert(f,fs); }

Pair<Set<Fut<Unit>>,Fut<Unit>> n = Pair(EmptySet,f);

while (hasNext(fs)) { n = next(fs); f = snd(n); fs = fst(n); f.get; }}

7 Conclusion

We gave an overview over the solutions to architectural issues provided by the
ABS language developed in the EU FP7 project HATS. In contrast to many other
behavioral modeling formalisms, ABS provides first-class support for feature
models and connects them to implementations by a variant of feature-oriented
programming called delta modeling. This allows to formally define a systematic
delta modeling workflow for a feature-driven modeling process, which integrates
very well with standard quality assurance techniques such as unit testing where
it achieves a separation of concerns. As all software is deployed inside a wider
system architecture, it is crucial to model and analyze constraints coming from
deployment, which in ABS is done by deployment components. To structure and
dynamically reconfigure a system one needs a suitable notion of components.
ABS components are a conservative extension of ABS with a formal semantics.
A case study, which is briefly reported in Sect. 6, demonstrates that the ABS
approach scales to industrial applications. In a future paper we will concentrate
on the tool chain shipped with the ABS environment, which contains a wide
range of analysis and code generation tools.

References
1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:

a cost and termination analyzer for ABS. In: Kiselyov, O., Thompson, S. (eds.)
Proc. Workshop on Partial Evaluation and Program Manipulation (PEPM 2012),
pp. 151–154. ACM (2012)

2. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer,
Heidelberg (2011)

3. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6) (2004)

4. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering (to appear, 2012),
http://dx.doi.org/10.1007/s11334-012-0184-5

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Fractal
Component Model and its Support in Java. Software - Practice and Experience
36(11-12) (2006)

http://dx.doi.org/10.1007/s11334-012-0184-5

HATS Abstract Behavioral Specification: The Architectural View 131

6. Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. Inf. Comput. 201(1)
(2005)

7. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the HATS Ab-
stract Behavioral Modeling Language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

8. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract Delta Modeling. In: Proceedings
of the Ninth International Conference on Generative Programming and Component
Engineering, GPCE 2010, pp. 13–22. ACM, New York (2010)

9. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. Accepted to
Special Issue of MSCS (to appear)

10. Evaluation of Core Framework. Deliverable 5.2 of project FP7-231620 (HATS)
(August 2010), http://www.hats-project.eu

11. Report on the Core ABS Language and Methodology: Part A. Part of Deliverable
1.1 of project FP7-231620 (HATS) (March 2010), http://www.hats-project.eu

12. Full ABS Modeling Framework. Deliverable 1.2 of project FP7-231620 (HATS)
(March 2011), http://www.hats-project.eu

13. A configurable deployment architecture. Deliverable 2.1 of project FP7-231620
(HATS) (February 2012), http://www.hats-project.eu

14. Debugging, visualization, and test generation. Deliverable 2.3 of project FP7-
231620 (HATS) (March 2012), http://www.hats-project.eu

15. Evaluation of Modeling. Deliverable 5.3 of project FP7-231620 (HATS) (March
2012), http://www.hats-project.eu

16. Helvensteijn, M.: Delta Modeling Workflow. In: Proceedings of the 6th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems, Leipzig,
Germany, January 25-27. ACM International Conference Proceedings Series. ACM
(2012)

17. Helvensteijn, M., Muschevici, R., Wong, P.: Delta Modeling in Practice, a Fredhop-
per Case Study. In: Proceedings of the 6th International Workshop on Variability
Modelling of Software-intensive Systems, Leipzig, Germany, January 25-27. ACM
International Conference Proceedings Series. ACM (2012)

18. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

19. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Real-
location between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

20. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models
of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

21. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A Formal Model of Object Mobility
in Resource-Restricted Deployment Scenarios. In: Arbab, F., Ölveczky, P. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 187–204. Springer, Heidelberg (2012)

22. Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Project Line Engineering. IEEE
Software 19(4) (2002)

23. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

24. Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passivation.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 448–
462. Springer, Heidelberg (2009)

http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu

132 R. Hähnle et al.

25. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM. Trans. Prog. Languages and
Systems 25(1) (2003)

26. Lienhardt, M., Lanese, I., Bravetti, M., Sangiorgi, D., Zavattaro, G., Welsch, Y.,
Schäfer, J., Poetzsch-Heffter, A.: A Component Model for the ABS Language.
In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 165–183. Springer, Heidelberg (2011)

27. Lienhardt, M., Schmitt, A., Stefani, J.-B.: Oz/k: A kernel language for component-
based open programming. In: GPCE 2007: Proceedings of the 6th International
Conference on Generative Programming and Component Engineering, pp. 43–52.
ACM, New York (2007)

28. Montesi, F., Sangiorgi, D.: A Model of Evolvable Components. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 153–171.
Springer, Heidelberg (2010)

29. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The Click Modular Router.
In: ACM Symposium on Operating Systems Principles (1999)

30. OSGi Alliance. Osgi Service Platform, Release 3 (2003)
31. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Prod-

uct Lines. In: Proc. of 4th Intl. Workshop on Variability Modelling of Software-
intensive Systems (VaMoS 2010) (2010)

32. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

33. Schaefer, I., Damiani, F.: Pure Delta-oriented Programming. In: Apel, S., Batory,
D., Czarnecki, K., Heidenreich, F., Kästner, C., Nierstrasz, O. (eds.) Proc. 2nd
International Workshop on Feature-Oriented Software Development (FOSD 2010),
Eindhoven, The Netherlands, pp. 49–56. ACM Press (2010)

34. Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order Dis-
tributed Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS,
vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

35. Wong, P.Y.H., Diakov, N., Schaefer, I.: Modelling Adaptable Distributed Object
Oriented Systems Using the HATS Approach: A Fredhopper Case Study. In: Beck-
ert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 49–66.
Springer, Heidelberg (2012)

Automatic Service Categorisation through

Machine Learning in Emergent Middleware

Amel Bennaceur1, Valérie Issarny1, Richard Johansson4,
Alessandro Moschitti3, Romina Spalazzese2, and Daniel Sykes1

1 INRIA, Paris-Rocquencourt, France
first.last@inria.fr

2 University of L’Aquila, Italy
romina.spalazzese@di.univaq.it

3 University of Trento, Italy
moschitti@disi.unitn.it

4 University of Gothenburg, Sweden
richard.johansson@svenska.gu.se

Abstract. The modern environment of mobile, pervasive, evolving ser-
vices presents a great challenge to traditional solutions for enabling in-
teroperability. Automated solutions appear to be the only way to achieve
interoperability with the needed level of flexibility and scalability. While
necessary, the techniques used to determine compatibility, as a precursor
to interaction, come at a substantial computational cost, especially when
checks are performed between systems in unrelated domains. To over-
come this, we apply machine learning to extract high-level functionality
information through text categorisation of a system’s interface descrip-
tion. This categorisation allows us to restrict the scope of compatibility
checks, giving an overall performance gain when conducting matchmak-
ing between systems. We have evaluated our approach on a corpus of web
service descriptions, where even with moderate categorisation accuracy,
a substantial performance benefit can be found. This in turn improves
the applicability of our overall approach for achieving interoperability in
the Connect project.

1 Introduction

The modern environment of mobile, pervasive, evolving services presents a great
challenge to traditional solutions for enabling interoperability. The scale of com-
plexity and heterogeneity of such devices and services, which adhere to many
different standards and platforms, greatly increases the cost and difficulty of
applying manual approaches. When mobility, dynamic availability, and the po-
tential for evolution are additionally considered, the problem becomes insur-
mountable. Automatic approaches, termed emergent middleware, can overcome
interoperability issues, provided that they are furnished with sufficient and rel-
evant information, in a precise form, about the systems that should interact.
This presents two sub-problems: how best to use the given information, and

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 133–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 A. Bennaceur et al.

how to specify, extract, or discover such information. This paper addresses one
case of the latter, namely, how to extract the high-level, abstract functionality
information of a system, given only its detailed syntactic interface.

This high-level functionality, which we call an affordance, is expressed as a
semantic concept from a domain ontology. Given such information we can effi-
ciently check whether it is reasonable to attempt to make two systems interact.
For example, there is little to be gained from attempting to overcome the differ-
ences between a system whose functionality is described as “Stock” and another
whose functionality is described as “Weather”. On the other hand there is no
guarantee that two systems with the same affordance will be able to interact. To
make a final assessment of compatibility, more in-depth analyses considering the
interface and conversational protocol of the two systems are necessary. Avoiding
such deep, time-consuming analyses motivates our use of affordances. When the
affordances do not match, the detailed analyses can be omitted, providing an
overall performance benefit for solving interoperability issues at runtime.

However, the requirement for affordance information places a burden on the
system designer, and it is likely that legacy systems do not provide such detail.
In this paper we describe an approach based on text categorisation, a machine
learning technique that is able to categorise systems that have interface descrip-
tions into affordances, based on the terms used in the interfaces. For example, an
interface including many instances of the term “ticker” is likely to have the func-
tionality corresponding to the “Stock” affordance. The assignment of affordances
is thus completely automated and the full performance benefit of affordances can
be reaped.

In Sections 2 and 3 we introduce the Connect project in which our work
takes place, and outline the approach taken therein for discovering matching
pairs of networked systems and synthesising mediators that enable the systems
to communicate. In Section 4 we describe how text categorisation is applied to
find each system’s high-level functionality, and in Section 5 we show how this
benefits the Discovery and Synthesis Enablers. Section 7 concludes.

2 Background

Our work takes place within the context of the Connect project1. The aim of
the project is to overcome interoperability issues between protocols due to their
heterogeneity at various levels by using an approach that dynamically generates
the necessary interoperability solution that allows the systems to interact seam-
lessly. Connect hence promotes as a solution the dynamic synthesis of emergent
Connectors via which systems communicate. The emergent Connectors are
concrete system entities synthesised according to the behavioural semantics of
protocols executed by the interacting parties at application and middleware lay-
ers. The synthesis process is based on a formal foundation for Connectors,
which allows learning, reasoning about and adapting the interaction behaviour
of networked systems at runtime.

1 http://connect-forever.eu/

http://connect-forever.eu/

Automatic Service Categorisation through Machine Learning 135

Fig. 1. Connect architecture

To reach these objectives the project undertakes interdisciplinary research,
investigating the following issues and related challenges: (i) modelling and rea-
soning about peer system functionality; (ii) modelling and reasoning about con-
nector behaviour; (iii) runtime synthesis of Connectors; (iv) learning peer be-
haviour; (v) dependability assurance; and (vi) system architecture. The archi-
tecture to realise these objectives is illustrated in Figure 1.

We call the entities that implement the mechanisms which enable the required
connections enablers. In summary, the enablers being developed as part of the
architecture are:

– Discovery Enabler: it discovers the networked systems (our generic term for
services and other systems) in the environment and collects their informa-
tion, including interface description and ontological description. Ontological
information, in particular, is used to perform a more efficient compatibility
check with other systems, i.e., to identify whether, despite possible hetero-
geneity, one system provides the functionality that another requires.

– Learning Enabler: it infers models of the systems’ interaction behaviour, i.e.,
models expressing how system services can be properly invoked. This enabler
leverages active automata learning algorithms.

– Synthesis Enabler: it performs a compatibility check on the system models
and, if compatible, automatically synthesises a Connector that allows them
to interact properly.

– Deployment Enabler: it deploys and manages the synthesised Connectors;
– Monitoring Enabler: it collects information from the Connectors, filters it,

and passes it on to other requesting enablers;

136 A. Bennaceur et al.

– Dependability & Performance Enabler: it assesses dependability and perfor-
mance properties at pre-deployment time and at runtime.

– Security and Trust Enabler: it collaborates with the Synthesis Enabler and
with the Monitoring Enabler to check that possible security and trust re-
quirements are met at runtime.

Within the described architecture, this paper focuses on the Discovery and Syn-
thesis Enablers that benefit from the inference of high-level functionality through
text categorisation.

3 Synthesising Emergent Middleware

Figure 2 outlines our overall approach to supporting emergent middleware by
synthesising mediators dynamically. The key philosophy of this approach is to (i)
discover available networked systems, (ii) complete the descriptions of networked
systems, (iii) find matching pairs among them by analysing the descriptions of
the networked systems, and (iv) synthesise mediators that allow them to interact
by overcoming their incompatibilities.

NS1
NS3

NS2
NS4

Description
Completion

MatchingSynthesis
NS1 NS3

NS2 NS4

NS1 NS3

NS2 NS4

M1

M2

Discovery
NS2

NS1 NS3

NS4

Fig. 2. Steps of creating emergent middleware

Networked systems (NSs) are discovered by the Discovery Enabler. Their de-
scriptions may be incomplete, leading the Discovery Enabler to invoke mecha-
nisms that can infer the missing information. To infer the interaction behaviour,
the Learning Enabler is invoked, while in this paper we introduce an additional
affordance classifier that is able to infer the system’s high-level functionality.

Given two complete networked system descriptions, the next step consists of
checking their functional compatibility, i.e., whether at high level of abstrac-
tion, the functionality required by one system can be provided by the other (see
Figure 3-❶). Functional matching is performed by checking the semantic com-
patibility of the networked systems’ affordances using ontology reasoning. When
a pair of NSs have compatible functionality, we verify that they can be made

Automatic Service Categorisation through Machine Learning 137

interoperable so as to achieve this functionality through behavioural matching
(see Figure 3-❷), which is performed by analysing the behaviour of both sys-
tems. Subsequently, we synthesise the appropriate mediator which allows the
two systems to communicate (see Figure 3-❸).

Ontologies play a crucial role in supporting automatic service composition
[1]. They formalise the domain-specific knowledge by describing the concepts of
this domain, the functions, and relations between them [2]. Ontology reasoning
is particularly important for inferring the relations between concepts in open
environments [1], i.e., environments that consist of many interacting systems
that are developed by different vendors and are either absolutely unaware of or
have only partial knowledge about the global system.

In the remainder of this section, we describe the model of networked systems
that allows us to reason about their ability to interoperate. Then we describe
the different steps of the matching and synthesis process.

Behavioural
Matching

δ λ ρ

α β

Thing

Nothing

Mediator Synthesis

Abstract Mediator
Model

α

δ λ

β

ρ

Functional
Matching

Ontology

Yes

Yes

1

2

3

Affordance

Behaviour

NS2 Model

<Prov, B, IB,OB>

δ

δ
λ

ρ
ρ

δ = <d, id, od>
λ = <l, il, ol>
ρ = <r, ir, or>

Interface

Affordance

Behaviour

Model

<Req, A, IA,OA>

Interface

NS1

α β

α

α = <a, ia, oa>
β = <b, ib, ob>

Referece

Reasoning

Binary check

Process

Model

Fig. 3. Matching and synthesis

Networked System Model

A networked system requires or provides an affordance to which it gives access
via an explicit interface, and which it realises using a specific behaviour.

The affordance specifies the high-level functionality of a system and is defined
as a tuple: F=<t, c, i, o> where (i) t stands for provided (denoted prov) if the
system is offering this functionality or required (denoted req) if it is consuming

138 A. Bennaceur et al.

it; (ii) c gives the semantics of the functionality in terms of an ontology con-
cept; (iii) i (resp. o) specifies the set of the high-level inputs (resp. outputs) of
the functionality, which are defined as ontology concepts. All concepts belong
to the same domain ontology O specifying the application-specific concepts and
relations, i.e., c, i, o ∈ O. Note that a req functionality produces the inputs I
and consumes the corresponding outputs O. In a dual manner, a prov func-
tionality consumes the inputs I and produces the corresponding outputs O. In
the following we focus on the functionality concept c without considering data,
overloading the term affordance where there is no ambiguity.

The interface defines the set of observable actions that the system requires
from or provides to its execution environment, typically provided in the form of
a WSDL2 description. An input action α =<op, i, o> (op, i, o ∈ O) requires an
operation op for which it produces some input data i and consumes the output
data o. Its dual output action3 β =<op, i, o> uses the inputs and produces
the corresponding outputs. An interface I is then defined as: I ={<opα, iα,
oα>}∪{<opβ, iβ , oβ>}.

The system behaviour describes its interaction with its environment and de-
fines how the actions of its interface are co-ordinated to implement a specific
affordance. We build upon state-of-the-art approaches to formalise system inter-
action using labelled transition systems (LTS) [3].

Ontology-Based Functional Matching

Functional matching assesses whether the networked systems are functionally
compatible using the following definition. A system requiring the functionality
FR=<req,cR, iR, oR> and a system providing the functionality FP=<prov, cP ,
iP , oP>, are functionally compatible, written FP ↪→ FR, iff in the associated
ontology:

– cP is a subtype of cR,
– iP is a supertype of iR (contravariant), and
– oP is a subtype of oR (covariant).

following the Liskov substitution principle [4]. Intuitively, the FP should provide
at least the functionality required by FR and may provide more.

Ontology-Based Behavioural Matching

Behavioural matching assesses whether the networked systems are behaviourally
compatible, i.e., whether there exists an intermediary system (a mediator)
through which they can safely interact. Towards this end, we first infer the
correspondence between the actions of the systems’ interfaces so as to gener-
ate the mappings that perform the necessary translations between semantically-
compatible actions. Various mappings relations may be defined, which primarily

2 http://www.w3.org/TR/wsdl
3 Note the use of an overline to denote output actions.

http://www.w3.org/TR/wsdl

Automatic Service Categorisation through Machine Learning 139

differ according to their complexity and inversely proportional flexibility. These
mappings are generated according to the mediator capabilities, which includes
receiving and sending messages, delaying the delivery of messages, and reasoning
about the semantics of actions in order to generate actions by transforming and
composing the original ones. We use an ontology-based model checking tech-
nique to explore the various possible mappings in order to produce a correct-
by-construction mediator that guarantees that the two systems can successfully
interact. Model checking is used to assess system correctness and automatically
verify concurrent systems by exhaustively exploring the state space, which may
be very large due to state space explosion. Although many solutions have been
proposed to alleviate this issue at runtime [5], behavioural matching remains
substantially more costly than functional matching.

Ontology-Based Mediator Synthesis

The mediator enforces interoperation between functionally and behaviourally
compatible systems despite their disparities. Mediator synthesis relies on the
mappings computed during behavioural matching and refines them according to
the characteristics of each networked systems and to the environment.

The specification of system functionality plays a valuable role in generating
emergent middleware. It has also been acknowledged as crucial in open environ-
ments [6]. However, most legacy systems only exhibit their interface description.
Hence, only partial knowledge about the system can be discovered. Given the
central role of the functional matching of affordances in reducing the overall
computation by acting as a filter for the subsequent behavioural matching, it is
important to infer additional knowledge about the functional semantics of each
networked system. Toward this goal, we use machine learning to extract the
affordance of networked systems.

4 Affordance Learning and Categorisation

The problem consists in learning a classifier that is able to assign an affordance
(specifically the functionality concept c) to a networked system automatically.
The networked system has not been seen before, and its description includes
an interface expressed in WSDL, but no affordance information. Note that it
is not always necessary to have an absolutely correct affordance since falsely-
identified matches may be caught in the subsequent detailed checks. Indeed, the
pathological case with many false positives and no false negatives is equivalent
to performing no affordance matching.

Since the interface is described by textual documentation, we can capitalise
on the long tradition of research in text categorisation (TC). This studies ap-
proaches for automatically enriching text documents with semantic information
(metadata). The latter is typically expressed by topic categories: thus TC pro-
poses methods to assign documents to one or more categories. In our case, the
documents to categorise are interface descriptions, and the categories correspond

140 A. Bennaceur et al.

to affordances. The size of the taxonomy may be small in some cases, such as a
binary set, e.g., {Positive, Negative} when classifying a customer review as
positive or negative [7], and larger in other cases, such as the various structured
classification systems used in library science. The main tool for implementing
modern systems for automatic document classification is machine learning ap-
plied to documents represented with vector space models.

In order to be able to apply standard machine learning methods for building
categorisers, we need to represent the objects we want to classify by extracting
informative features. Such features are used as indications that an object belongs
to a certain category. For categorisation of documents, the standard representa-
tion of features maps every document into a vector space using the bag-of-words
approach [8]. In this method, every word in the vocabulary is associated with
a dimension of the vector space, allowing the document to be mapped into the
vector space simply by computing the occurrence frequencies of each word. For
example, a document consisting of the string “get Weather, get Station” could
be represented as the vector (.., 2, .., 1, .., 1, ..) where, e.g., 2 is the frequency
of the “get” token. The bag-of-words representation is considered the standard
representation underlying most document classification approaches. In contrast,
attempts to incorporate more complex structural information have mostly been
unsuccessful for the task of categorisation of single documents [9] although they
have been successful for complex relational classification tasks [10].

However, the task of classifying interface descriptions is different from classify-
ing raw textual documents. Indeed, the interface descriptions are semi-structured
rather than unstructured, and the representation method clearly needs to take
this fact into account, for instance, by separating the vector space representation
into regions for the respective parts of the interface description. In addition to
the text, various semi-structured identifiers should be included in the feature
representation, e.g., the names of the method and input parameters defined by
the interface. The inclusion of identifiers is important since: (i) the textual con-
tent of the identifiers is often highly informative of the functionality provided by
the respective methods; and (ii) the free text documentation is not mandatory
and may not always be present. In a WSDL interface, we may have tags and
structures as illustrated by the text fragment in Figure 4.

It is clear that splitting the CamelCase identifier WeatherForecastSoap into
the tokens soap, weather, and forecast would provide more meaningful and
generalised concepts, which the learning algorithm can use as features. Indeed,
to extract useful word tokens from the identifiers, we split them into pieces based
on the presence of underscores or CamelCase; all tokens are then normalised to
lowercase.

Once the feature representation is available, we use it to learn several classi-
fiers, each of them specialised to recognise if the WSDL expresses some target se-
mantic properties. The latter can also be concepts of an ontology. Consequently,
our algorithm may be used to learn classifiers that automatically assign ontol-
ogy concepts to actions defined in NS interfaces. Of course, the additional use of
domain (but at the same time general) ontologies facilitates the learning process

Automatic Service Categorisation through Machine Learning 141

<wsdl:portType name="WeatherForecastSoap">

<wsdl:operation name="GetWeatherByZipCode">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a valid Zip Code (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByZipCodeSoapIn" />

<wsdl:output message="tns:GetWeatherByZipCodeSoapOut" />

</wsdl:operation>

<wsdl:operation name="GetWeatherByPlaceName">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a place name (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByPlaceNameSoapIn" />

<wsdl:output message="tns:GetWeatherByPlaceNameSoapOut" />

</wsdl:operation>

</wsdl:portType>

<wsdl:portType name="WeatherForecastHttpGet">

<wsdl:operation name="GetWeatherByZipCode">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a valid Zip Code (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByZipCodeHttpGetIn" />

<wsdl:output message="tns:GetWeatherByZipCodeHttpGetOut" />

</wsdl:operation>

<wsdl:operation name="GetWeatherByPlaceName">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a place name (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByPlaceNameHttpGetIn" />

<wsdl:output message="tns:GetWeatherByPlaceNameHttpGetOut" />

</wsdl:operation>

</wsdl:portType>

<wsdl:portType name="WeatherForecastHttpPost">

<wsdl:operation name="GetWeatherByZipCode">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a valid Zip Code (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByZipCodeHttpPostIn" />

<wsdl:output message="tns:GetWeatherByZipCodeHttpPostOut" />

</wsdl:operation>

<wsdl:operation name="GetWeatherByPlaceName">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Get one week weather forecast for a place name (USA)

</wsdl:documentation>

<wsdl:input message="tns:GetWeatherByPlaceNameHttpPostIn" />

<wsdl:output message="tns:GetWeatherByPlaceNameHttpPostOut" />

</wsdl:operation>

</wsdl:portType>

Fig. 4. WSDL fragment for a weather service. Our approach treats such documents as
unstructured text.

142 A. Bennaceur et al.

Table 1. Most highly weighted features in the two-category experiment

Category Features

Stock stock, list, symbol
Weather weather, zip, forecast, code

by providing effective features for the interface representation. In other words,
WSDL, domain ontologies and any other information contribute to defining the
vector representation used for training the concept classifiers.

To demonstrate the validity of the approach empirically, we experimented with
automatic classification of service topics. These can be used to characterise the
affordance associated with an interface (i.e., using such concepts), from which it
can be inferred if two NSs are implementing compatible affordances or not.

For this purpose, we collected a set of 14 WSDL descriptions to which we
manually assigned two affordance labels (i.e., categories): 8 descriptions were
classified as “Stock” category of Web services, i.e., dealing with stock-markets,
and 6 descriptions in the “Weather” category, i.e., weather-related services. It is
clear that knowing if the offered services belong to the categories above would
help to determine the affordance.

The critical aspect is to find out if such categorisation can be automatically
carried out by our machine learning approach. Thus we applied rigorous statisti-
cal methods for assessing its performance. In particular, we carried out a 3-fold
cross-validation over the above-mentioned dataset. To train the models, we used
linear support vector machines from LibLinear software [11]. In all three ex-
periments (three folds), the achieved precision was 100%, i.e., the classifier was
always able to choose the right category for the unknown interface.

Additionally, we analysed which were the most important features of the
adopted interface representation. For this purpose, we recall that the support
vector learning procedure results in a weight vector where each dimension cor-
responds to the dimensions used in the feature vectors. The magnitude of these
weights can be interpreted as a measure of the importance of the respective fea-
tures. Table 1 shows the most highly weighted features for the two categories. As
we can see, the most prominent are perfect representatives of the classes: for the
“Stock” category, the algorithms has decided that stock is the most important
feature, and similarly for the “Weather” category.

However, testing on only two categories may not provide realistic findings
as many more concepts are typically involved in NS interfaces. Therefore, to
evaluate our approach in a more concrete application scenario, we used a collec-
tion of WSDL documents available on the Web4. Note that these introduce two
sources of complexities: (i) a larger number of concepts and (ii) the WSDL files
do not contain natural language descriptions, which clearly facilitate semantic
extraction, i.e., semantic categorisation.

We selected the 10 most frequent categories for a total of 402 documents,
and we trained and evaluated the classifiers using 8-fold cross-validation. In this

4 http://www.andreas-hess.info/projects/annotator/ws2003.html

Automatic Service Categorisation through Machine Learning 143

Table 2. Performance by category

Category P R F n

Mathematics 0.29 0.20 0.24 23
Business 0.17 0.08 0.11 46
Communication 0.71 0.80 0.75 49
Converter 0.57 0.63 0.61 65
CountryInfo 0.64 0.83 0.72 38
Developers 0.18 0.11 0.14 46
Finder 0.55 0.59 0.57 10
Money 0.72 0.72 0.72 56
News 0.70 0.63 0.67 30
Web 0.47 0.46 0.47 39

Table 3. Most highly weighted features in the ten-category experiment

Category Features

Mathematics calculator, previous, at, value
Business description, chart, parent, n
Communication send, message, email, subject
Converter to, translate, unit, my
CountryInfo country, state, zip, postal
Developers reverse, text, case, generate
Finder whois, who, iwhois, results
Money stock, amount, card, currency
News news, quote, day, daily
Web key, name, valid, d

experiment, the accuracy was 58%. Table 2 shows a detailed breakdown of the
result. P indicates the precision, which is the number of documents correctly
assigned to a category compared to the number that are correctly or incorrectly
assigned to that category (a precision of 1 means there are no false positives).
R indicates the recall, which is the number of documents correctly assigned to a
category compared to the number that should be assigned to that category (a
recall of 1 means there are no false negatives). For example, the “CountryInfo”
category has a recall of 0.83, meaning that few documents of that category
were falsely assigned to another. n indicates the number of documents manually
assigned to each category while F = 2PR

P+R , i.e., the F-measure (harmonic means
between P and R).

Again, we present the most highly weighted features for each category in
Table 3. As we can see, these features are highly representative of the respective
categories.

In summary, in the realistic scenarios our approach decreases its effectiveness,
although preserving its applicability in tasks such as automatic affordance de-
tection. The results are promising as we achieved good accuracy using basic TC

144 A. Bennaceur et al.

Fig. 5. Performance of matching with 0, 2, and 4 affordances

techniques to train our classifiers, although we did not use structural information
and background knowledge. Also the statistical learning theory suggests greater
accuracy could be achieved by increasing the size of the training data. Finally,
the meaningfulness of the features selected by the classifier demonstrate that it
can easily derive the best properties, alleviating the designer from the burden of
manual selection.

5 Evaluation

Having shown that automatic service categorisation on the basis of interface
descriptions is indeed feasible, we must now show that the affordances provided
by the categorisation result in the expected benefit to discovery. The purpose of
introducing affordances is to filter the number of service pairs for behavioural
matching with a relatively efficient semantic check, and hence to reduce the
overall time taken to conduct matchmaking when services are discovered.

After performing training offline, we integrated the trained classifier into the
Discovery Enabler, which is responsible for matching pairs of networked systems.
The Discovery Enabler invokes the classifier when it discovers a networked sys-
tem that does not have an affordance. We then measured the time taken by the
Discovery Enabler to perform matchmaking with and without the classifier.

Figure 5 shows the time taken to perform matchmaking after the sequential
discovery of the given number of networked systems (up to 10). The results are
averaged over ten runs. The line with the steepest average gradient shows the
time taken when no affordances are used, and so no categorisation takes place.
Matchmaking in this case involves performing behavioural matching for every
possible pair, i.e. n2 checks for n NSs. The other lines show the time taken
when the services are automatically categorised into two and four affordances
respectively. Having just two affordances reduces the number of behavioural

Automatic Service Categorisation through Machine Learning 145

Fig. 6. Performance of matching after discovering 10 networked systems

checks to n2

2 and adds n2 semantic checks. In the results, we find two affordances
gives a 32% reduction in the matching time, and four affordances gives a further
37% reduction.

When two or three systems have been discovered, in the case with four affor-
dances, we do not yet expect any matches. In fact the results show an almost
constant time, around 2 seconds, for matching when no matches are found. This
delay represents the overhead inherent in our prototype implementation of dis-
covery resulting from parsing WSDL and BPEL and other steps internal to
discovery.

Figure 6 shows the reduction in matching time as the number of affordances
increases towards the number of systems. It can be observed that the worst case
time involves one affordance or none, and the best case involves as many affor-
dances as there are networked systems (no semantic matches will be found and
so no behavioural checks will be required). This suggests that the domain on-
tology (taxonomy) in which the affordances are defined should be as detailed as
possible. Note however that increasing the number of affordances can decrease
the accuracy of categorisation as features (tokens in interface descriptions) be-
come increasingly ambiguous. This effect can be seen to an extent in the second
categorisation experiment with 10 categories compared to 2 categories in the
first experiment.

6 Related Work

Interoperability is a well known problem and its investigation has been done in
many research contexts. For instance, in the form of supervisory control syn-
thesis [16], discrete controller synthesis [17], component adaptors [18], protocol
conversion [19,20,21], converter synthesis [22] to mention some. A work related
to our mediator synthesis approach is the seminal paper by Yellin and Strom on

146 A. Bennaceur et al.

protocol adaptor synthesis [23] that proposes an adaptor theory to characterise
and solve the interoperability problem of augmented interfaces of applications.

In more recent years increasing attention has been paid in the Web Service
area to business process integration and automatic mediation, e.g., [24,25,26,27],
which are related to our synthesis of mediators in some aspects. Among them, it
is worth mentioning the paper [28] on behavioural adaptation because it proposes
a matching approach based on heuristic algorithms to match services for the
adapter generation taking into account both the interfaces and the behavioural
descriptions. Moreover, the Web services community has been also investigat-
ing how to support service substitution to enable interoperability with different
implementations of a service (e.g., due to evolution or provision by different ven-
dors). While early work has focused on semi-automated, design-time approaches
[26,29], latest work concentrates on automated, run-time solutions [30,31]. This
latter relates to our work because of the exploitation of ontologies to reason about
interface mapping and the synthesis of mediators according to such mapping.

Despite the wide range of discovery protocols that heavily rely on semantic an-
notations to perform service matchmaking [12,13] there are few implementations
that do not assume that these services advertise their semantically-annotated de-
scriptions. The METEOR-S Framework [14] is able to assign semantic concepts
to web services by considering their WSDL descriptions but without taking into
account the unstructured data potentially available within the documentation
tag that can give more information about the category the web service belongs
to. Instead of attaching a category concept to a web service, SAWSDL-MX2 [15]
evaluates the similarity between a pair of web services based on both struc-
tured and unstructured information included in their interfaces using support
vector machines. This approach is the closest to ours but is clearly not scalable
especially when considering environments where services may continuously be
discovered.

Moreover, these approaches only consider the functionalities of the systems
to perform discovery, which may result in a false positive matching either due to
the imprecision of the learning process or because the behaviour has not been
considered. In our approach, the affordance matching is complemented with
behavioural matching so as to match pairs of systems more accurately. Indeed,
when two systems match we are able to synthesise a mediator that ensures their
interoperation.

7 Conclusions

The work we have described here aims to overcome a limitation of legacy dis-
covery mechanisms, namely that they do not provide a high-level semantic de-
scription of a system’s functionality (that we call an affordance). Through the
application of support vector machines for text categorisation, we have shown
that the burden of categorising systems, that is, determining their high-level
functional semantics, can be lifted from the engineer and performed automati-
cally with reasonable accuracy. The cases of inaccuracy can be divided into false

Automatic Service Categorisation through Machine Learning 147

positives, where two NSs have been assigned the same affordance when in fact
they do not match, and false negatives, where two matching NSs are assigned
different affordances and hence no attempt to connect them will be made. Min-
imising the number of false negatives (i.e. maximising recall) is hence critical for
Connect. Greater accuracy may be achieved by finding more nuanced features,
such as the structure of the document or token proximity, on which to base the
categorisation.

Given such categorisation, affordance matching allows us to reduce the num-
ber of behavioural checks performed, and thus increase the performance of the
matchmaking process as a whole. Our results show that the gain is relative to the
number of affordances, with just two affordances providing a 32% performance
increase. This performance increase benefits our overall aim in the Connect

project, which is to provide solutions for interoperability at runtime, thus re-
quiring efficient runtime mechanisms to identify compatibility and find solutions
for overcoming incompatibilities.

In future work, we plan to investigate features that improve the accuracy of the
categorisation, and apply categorisation in other specific areas of Connect. For
example, it is desirable for each operation in an interface (as well as the interface
as a whole) to give its semantics through an associated ontology concept. The
approach taken in this paper may prove applicable to this problem.

Acknowledgements. This research has been supported by the EU FP7
projects: Connect – Emergent Connectors for Eternal Software Intensive Net-
working Systems (project number FP7 231167), EternalS – “Trustworthy Eter-
nal Systems via Evolving Software, Data and Knowledge” (project number FP7
247758) and by the EC Project, LivingKnowledge – “Facts, Opinions and Bias”
in Time (project number FP7 231126).

References

1. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The Role of Ontologies in Emergent Middleware: Supporting Inter-
operability in Complex Distributed Systems. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook. Cambridge University Press (2003)

3. Keller, R.M.: Formal verification of parallel programs. Commun. ACM (1976)

4. Liskov, B.: Keynote address - data abstraction and hierarchy. In: Addendum to the
Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions (Addendum), OOPSLA 1987, pp. 17–34. ACM, New York (1987)

5. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011)

6. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. Computer (2006)

148 A. Bennaceur et al.

7. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the 2002 Conference on Empiri-
cal Methods in Natural Language Processing, University of Pennsylvania, United
States, pp. 79–86 (2002)

8. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Technical Report TR74-218, Department of Computer Science, Cornell University,
Ithaca, New York (1974)

9. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification:
A Comprehensive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS,
vol. 2997, pp. 181–196. Springer, Heidelberg (2004)

10. Moschitti, A.: Kernel methods, syntax and semantics for relational text catego-
rization. In: Proceedings of ACM 17th Conference on Information and Knowledge
Management, CIKM, Napa Valley, United States (2008)

11. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. Journal of Machine Learning Research 9, 1871–1874
(2008)

12. Li, H., Du, X., Tian, X.: A WSMO-Based Semantic Web Services Discovery Frame-
work in Heterogeneous Ontologies Environment. In: Zhang, Z., Siekmann, J.H.
(eds.) KSEM 2007. LNCS (LNAI), vol. 4798, pp. 617–622. Springer, Heidelberg
(2007)

13. Pirrò, G., Trunfio, P., Talia, D., Missier, P., Goble, C.A.: Ergot: A semantic-based
system for service discovery in distributed infrastructures. In: CCGRID, pp. 263–
272 (2010)

14. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: METEOR-S Web Service An-
notation Framework with Machine Learning Classification. In: Cardoso, J., Sheth,
A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 137–146. Springer, Heidelberg
(2005)

15. Klusch, M., Kapahnke, P., Zinnikus, I.: Sawsdl-mx2: A machine-learning approach
for integrating semantic web service matchmaking variants. In: ICWS, pp. 335–342
(2009)

16. Brandin, B., Wonham, W.: Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control 39(2) (1994)

17. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control and Optimization 25(1) (1987)

18. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
J. Syst. Softw. 74 (2005)

19. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications 8(1), 127–142 (1990)

20. Lam, S.S.: Correction to ”protocol conversion”. IEEE Trans. Software Eng. 14(9),
1376 (1988)

21. Okumura, K.: A formal protocol conversion method. In: SIGCOMM, pp. 30–37
(1986)

22. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In: Pro-
ceedings of the 2002 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2002, pp. 132–139 (2002)

23. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19 (1997)

24. Cimpian, E., Mocan, A.: WSMX Process Mediation Based on Choreographies. In:
Bussler, C., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,
Heidelberg (2006)

Automatic Service Categorisation through Machine Learning 149

25. Vacuĺın, R., Neruda, R., Sycara, K.: An Agent for Asymmetric Process Mediation
in Open Environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,
Vo, Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 104–117. Springer, Heidelberg
(2008)

26. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW 2007: Proceedings of the
16th International Conference on World Wide Web, pp. 993–1002. ACM, New York
(2007)

27. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol Mediation for Adaptation
in Semantic Web Services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 635–649. Springer, Heidelberg (2006)

28. Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of
web service interfaces for adapter development. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW 2010, pp. 731–740. ACM, New
York (2010)

29. Ponnekanti, S.R., Fox, A.: Interoperability Among Independently Evolving Web
Services. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–
351. Springer, Heidelberg (2004)

30. Denaro, G., Pezzé, M., Tosi, D.: Ensuring interoperable service-oriented systems
through engineered self-healing. In: Proceedings of ESEC/FSE 2009. ACM Press
(2009)

31. Cavallaro, L., Di Nitto, E., Pradella, M.: An Automatic Approach to Enable Re-
placement of Conversational Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.)
ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg
(2009)

32. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

Towards a Model- and Learning-Based

Framework for Security Anomaly Detection�

Matthias Gander, Basel Katt, Michael Felderer, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Austria
{matthias.gander,basel.katt,michael.felderer,ruth.breu}@uibk.ac.at

Abstract. For critical areas, such as the health-care domain, it is com-
mon to formalize workflow, traffic-flow and access control via models.
Typically security monitoring is used to firstly determine if the system
corresponds to the specifications in these models and secondly to deal
with threats, e.g. by detecting intrusions, via monitoring rules. The chal-
lenge of security monitoring stems mainly from two aspects. First, infor-
mation in form of models needs to be integrated in the analysis part, e.g.
rule creation, visualization, such that the plethora of monitored events
are analyzed and represented in a meaningful manner. Second, new in-
trusion types are basically invisible to established monitoring techniques
such as signature-based methods and supervised learning algorithms.

In this paper, we present a pluggable monitoring framework that fo-
cuses on the above two issues by linking event information and modelling
specification to perform compliance detection and anomaly detection. As
input the framework leverages models that define workflows, event infor-
mation, as well as the underlying network infrastructure. Assuming that
new intrusions manifest in anomalous behaviour which cannot be fore-
seen, we make use of a popular unsupervised machine-learning technique
called clustering.

Keywords: Modelling, Profiling, Machine Learning, IT-Security,
Runtime-Monitoring, Anomaly Detection, Clustering.

1 Introduction

Modelling provides a way to specify security requirements and is often employed
in critical areas such as the health-care sector. A standardization committee
in this sector leveraging such modelling techniques, is for instance the inte-
grating the health-care environment (IHE) standards committee.1 IHE gives
requirements on traffic-flow, for instance restricted communication between
specific nodes (e.g. hosts, routers), and access control in form of authentica-
tion/authorization protocols. On top of a system that is supposed to adhere

� This work is supported by QE LaB - Living Models for Open Systems (FFG 822740),
COSEMA - funded by the Tiroler Zukunftsstiftung, and SECTISSIMO (P-20388)
FWF project.

1 http://www.ihe.net/, Accessed: January 5, 2012.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 150–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model- and Learning-Based Framework for Security Anomaly Detection 151

to requirements like availability, confidentiality, and integrity it is necessary to
apply monitoring methods. These methods determine if said requirements are
met, i.e. by preventing or detecting intrusions (IPS/IDS). A very common tech-
nique for this involves signature based methods. Features, extracted from event
data are compared to features in attack signatures that are provided by experts.
Other approaches use machine learning algorithms that train on labeled input
data.

Signature-based methods have an inherent limitation when it comes to de-
tect new attacks. This limitation stems from the need to consult a signa-
ture database, which not always contains the latest attack patterns. In order
to improve on signature-based methods, several anomaly detection approaches
were proposed to detect changes in normal behaviour [1–4]. Basic techniques in
anomaly-detection include statistical-, knowledge- and machine learning-based
approaches. Supervised machine learning comes with two drawbacks, the first
one being the dependency on labelled training instances, which is not always
easy to procure. And the second is that training instances are susceptible to be
trained by an attacker [5]. Leveraging the assumption that most behaviour in
the network is normal (η%) and the abnormal behaviour is just a tiny part of the
overall behaviour (1−η%) [1] it becomes possible to apply unsupervised machine
learning to detect this change in behaviour.

Contribution and Structure

The goal of this paper is to provide a framework to support real-time outlier
detection in security critical networks, e.g. the health-care domain, through event
analysis. This framework leverages the fact that ample information is provided
through modelling information, i.e. the specification of workflows, service call
sequences, and the corresponding infrastructure nodes. We will call this fusion
of modelling information the IT landscape model. Combining the specification
of service events and the infrastructure itself, it is possible to provide stateful
monitoring as well as anomaly detection. Each workflow is characterized as a
finite state machine (FSM) to describe the steps of a concrete workflow. The
transition function itself is dependent on service events, thus relating service
events to workflows. Every service event is mapped to instances of infrastructure
event clusters, which are learned through training. Using state machines we
detect workflow attacks and through clustering of infrastructure events we are
able to create normality profiles, detect outliers and raise alerts accordingly. Our
contribution is the introduction of a monitoring framework that is based on the
following features:

1. A tight coupling between different layers in the software stack through the
use of a UML metamodel [6] as means for specifying, network infrastructure,
service events and workflows.

2. An enhancement of the presentation of non-related information, e.g. an event
view that lists network infrastructure events related to workflows.

152 M. Gander et al.

3. An automatic detection of (a) workflow modifications by analysing the in-
ternal state of a workflow, and (b) anomalous activity that has its source in
the infrastructure by analysing event streams.

In Section 3 the running example, our threat model and basic concepts, i.e.
our layered concept and events, are introduced. This is followed by Section 4
which presents the framework. Section 2 and 5 discuss related and future work
respectively.

2 Related Work

In this section we will discuss related work in the areas of modelling, workflow
compliance and anomaly detection via clustering in intrusion detection.

Modelling. The key concepts for our metamodel, e.g. the three layers, inclusion
of roles, node hierarchies, derives from the work of [7, 8]. Both approaches pro-
vide a model-based approach together with concepts and methods for security
management. The latter work also includes the Living Models [9] approach where
models are subjected to change over time. Other ways to model a service infras-
tructure exist as well, for example the Service Oriented Architecture Modeling
Language (SoaML)[10] and the Service Markup Language SML [11]. SoaML is a
UML profile allowing specific concepts by extending the UML standard. There
are two main reasons why we did not make use of SoaML, the first one being
that SoaML was especially designed for modelling services in the context of SOA.
We are interested in services, yet not all concepts of SOA are of interest, hence,
SoaML provides a too rich vocabulary. The second reason is that by sticking
to a similar approach as [7] and [8] we hope to be able to in the future adhere
to the Living Models concept, to react to changes in the IT landscape. Since
our interest is mainly event oriented, our metamodel is built to reflect this by
leveraging and adapting the idea of event-driven process chains (EPC), deeply
discussed in [12], to our needs.

Compliance Monitoring. Mulo et al. [13] propose monitoring compliance of
business processes in SOA via complex event processing (CEP) means. A service
invocation is regarded as an event and business process activities as event-trails.
These event-trails guide the creation of queries which a CEP engine uses to iden-
tify and monitor business activities. Since the business activities are rendered
identifiable it is possible to monitor the flow of a business process at runtime.
Hence, it is possible to detect anomalous process executions. Baresi et al. [14]
and Erradi et al. [15] focus on monitoring the execution of centrally orchestrated
web services compositions (specified in WS-BPEL) in order to detect, correlate
and react meaningfully to incidents. Baresi et al. [14] extends WS-Policy with a
language for constraints to monitor functional and non-functional requirements
(weaved with the BPEL process at deployment-time). This approach focuses
on monitoring very low-level security requirements such as signature algorithms

Model- and Learning-Based Framework for Security Anomaly Detection 153

used. Erradi et al. [15] present a hybrid approach for functional and QoS mon-
itoring combining synchronous and asynchronous monitoring techniques. The
main difference to our approach is the combination of layers to detect abnormal-
ities in the infrastructure layer. Since our metamodel however also allows the
definition of event-sequences, that can be used as workflow traces, we are also
able to detect deviations of workflows, similar to [13].

Anomaly Detection. Anomaly detection is well-established in the domain of
intrusion detection systems [5]. The decision to choose unsupervised machine
learning is shared among multiple publications [1, 16, 2, 3]. Portnoy et al. [1]
uses cluster analysis successfully to detect attacks in the KDD 1999 data set.2

Gu et al. [3] also leverage clustering techniques (successfully) to detect botnets
using their tool “Botminer”. Clustering as a tool, in the area of Network Intru-
sion Detection Systems (NIDS), is itself also subject of ongoing research. [16]
introduces adaptive clustering to reduce time-based bias in dynamic networks,
i.e. traffic variance over time. [2] improves clustering for NIDS by using a density-
based clustering algorithm and a grid-based memtric. Both Oldmeadow et al. [16]
and Leung et al. [2] evaluate their efforts on the KDD 1999 data set. Their ap-
proaches have the same basic workflow, which is similar to all anomaly-detection
frameworks, feature extraction, training and detection [5]. We also make use of
KDD features and common clustering algorithms (see Section 4.3). The main
differences are, we do not cluster for botnet activity, there is no cross-correlation
among clusters to improve detection rate, and most notably of all we relate
clustering to workflow models.

To the best of our knowledge, there exists no model-driven approach doing
anomaly detection based on landscape models leveraging clustering techniques.
Additionally, in contrast to most existing work, we are able to pinpoint not only
outlier events, but through models also locate suspicious nodes, services and
workflows.

3 Basic Concepts

In this section we discuss our motivating example, present our threat model,
and provide details about concepts, such as the layered approach we use, and
the events we are interested in.

3.1 Motivating Example

Our framework is explained based on a running example taken from a work-
flow in the health-care domain. In this scenario a host (document consumer),
which could be a doctor, wants to retrieve sensitive information (patient medical
record) from a document repository over an XACML infrastructure. Using this

2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
Accessed: January 5, 2012.

154 M. Gander et al.

example we discuss the expected behaviour of a workflow, demonstrate multiple
threats, and finally show how the framework can mitigate these.

The workflow itself consists of a series of steps that involve the participation
of web services. Much of the traffic in the network is SOAP over HTTP but
also other protocols from the ISO/OSI stack occur. Workstations and databases
are grouped into zones called affinity domains and are connected via LAN. For
the description we make use of the standard BPMN and workflow notions, i.e.
actors and tasks [17]. We distinguish among multiple actors in our example: The
Identity Provider, which identifies nodes and users, but also assigns roles. The
Gateways A and B, that relay queries and responses to other affinity domains.
The Document Consumer, which is the source of a patient document query,
or document change request, for instance a host requesting a patient medical
record (PMR). The Document Repository, which is the location of the patient
data. Access control is offered through an XACML architecture.

A document retrieval transaction, which involves polling a patient’s confiden-
tial information basically consists of two major tasks, namely authentication,
and document retrieval. Below we explain the tasks in the sample workflow from
Figure 1:

Fig. 1. Workflow for a Document Retrieval

Model- and Learning-Based Framework for Security Anomaly Detection 155

– Provide Credentials : The document consumer (DC) contacts the identity
provider and forwards his credentials.

– Authentication: The identity provider queries a database interface service to
validate the credentials and assign a role to the user and answers with a
SAML 2.0 assertion containing an authorization statement.

– Retrieve Document Query: After the document consumer receives this ticket,
the actual retrieval can start. The consumer sends a retrieve document query
together with his ticket to the gateway of his affinity domain.

– Forward Query: The gateway forwards the ticket to the corresponding gate-
way of the affinity domain that contains the data.

– Forward Query Document Repository: The receiving gateway forwards the
query to the document repository where an XACML [18] flow starts, consider
Figure 2. The most important assets in the architecture are the following:
1. The policy enforcement point (PEP) attached to the document repository

calls the PIP to deduce attributes for the document that needs to be
retrieved.

2. The policy information point (PIP) returns the appropriate attributes.
3. The PEP forwards the query and resources to the PDP and awaits a

decision.
4. The policy decision point (PDP) acquires policies for the target from the

PAP.
5. The policy assertion point (PAP) returns the appropriate policies and

the PDP, via rule combining algorithms, derives a decision.
6. The PEP receives the decision and either (depending on the ruling of

the PDP) allows or rejects the access.
– Now either the rejection message (Rejection), due to unauthorized access,

or the document itself (Document Retrieval) is transmitted to the document
consumer, concluding the workflow.

During the execution of this workflow many expected events are generated in
the service area, namely SOAP calls. These expected service events are related
to infrastructure events, like, database access and network traffic in form of TCP
and UDP traffic. Unfortunately, also other events occur which are very similar
to infrastructure events related to service events, i.e. TCP/HTTP packets which
arise from normal web-browsing employees (Facebook, News), instant messaging
(Skype, ICQ, . . .), UDP traffic from DNS and LDAP queries. Relating a subset
of all infrastructure events to expected service events is one part of our work.

3.2 Threat Model

If an attacker wished to gain confidential information a common way to do so
would be infiltration, i.e. stealing credentials from a doctor or hacking into a
node in the network. After an attack, it is often prudent to install backdoors,
i.e. by patching or replacing code [19, 20]. But not all attacks to gain information
rely on the same techniques [21, 22]. In our experience attacks manifest either
in workflows, execution tampering, or a layer beneath, in the infrastructure.

156 M. Gander et al.

Fig. 2. A simplified XACML Data Flow model

Workflow Attacks. The attacker chooses to deliberately sabotage the service
invocation sequence. Concerning our example a likely attack destination is the
XACML infrastructure. Assume the PEP does not include the PDP in the ac-
cess control flow, and allows anyone, or selected individuals, to access PMRs.
Another example is the communication between PDP and PIP. The PDP is sup-
posed to retrieve document attributes from the PIP to base its decision making.
What if the PDP does not? Services along the way of document queries are also
susceptible to attacks, for example replay-attacks or fake queries (false tickets).
These attacks manifest in missing events, wrong sequences of events, sometimes
too many (replay attacks), along the execution of the workflow.

Infrastructure Attacks. A multitude of potential attacks are possible in this
perspective, leveraging attack vectors of web services,3 buffer overflows in “low-
level” services like, FTP, and badly configured access control, i.e. allowing SMB
null sessions. Such attacks manifest in odd connection patterns, string patterns,
and access patterns. The whole set of possible attacks is impossible to cover, but
we assume that most attacks manifest in abnormal behaviour.

Example 1. In the following Table 1 we illustrate an anomaly that portraits an
access rights manipulation in the activity Retrieve Document Query. The query
shown in Ev2 (from the document consumer with UIDx and requested resource
object, PMR12), results in an Authorization Denied event emitted from the PDP.
Immediately after the Authorization Denied event, the database is accessed at
the document repository for the same resource and more importantly from the

3 http://www.ws-attacks.org, Accessed: January 5, 2012.

Model- and Learning-Based Framework for Security Anomaly Detection 157

same user, shown in Ev5. Above all, as we will show, the time of the query is
very unusual for the user UIDx.

Example 2. In Table 2, after the Retrieve Document Query from the DC with
UIDx has been sent to the DR, the DC sends TCP packets to two hosts C and
D in the network. C is used for backup services, yet D in this instance represents
a malicious host that collects confidential data.

Table 1. Access Rights Manipulation

E
v
en

t

L
ay

er

S
o
u
rc
e

D
es
t

A
p
p

Id
en

t

O
b
je
ct

T
im

e

T
y
p
e

...
...

...
...

...
...

...
...

...
Ev1 Service DC G – UIDx PMR12 2.00 am Query
Ev2 Service G DR – UIDx PMR12 2.00 am Retrieve
...

...
...

...
...

...
...

...
...

Ev3 Infrastructure PDP – Postgres SQL PDP UIDx 2.01 am Read
Ev4 Service PDP PEP – UIDx PMR12 2.01 am AuthDenied
Ev5 Infrastructure DR – Postgres SQL UIDx PMR12 2.01 am Update
...

...
...

...
...

...
...

...
...

Table 2. Abnormal Communication Pattern

E
v
en

t

L
ay

er

S
o
u
rc
e

D
es
t

A
p
p

Id
en

t

O
b
je
ct

T
im

e

T
y
p
e

...
...

...
...

...
...

...
...

...
Ev1 Service DC DR – UIDx PMR12 7.20 am Query
...

...
...

...
...

...
...

...
...

Ev2 Service DR DC – UIDx PMR12 7.23 am Retrieve
Ev3 Infrastructure DC C – – – 7.23 am TCP
Ev4 Infrastructure DC D – – – 7.23 am TCP
Ev5 Infrastructure DC D – – – 7.23 am TCP
Ev6 Infrastructure DC C – – – 7.23 am TCP
...

...
...

...
...

...
...

...
...

3.3 Layered Concept and Associated Events

Making the monitor aware of the IT landscape provides more means for de-
tection. For instance, by linking service call sequences to workflows to detect a
possible XACML flow anomaly. Splitting an enterprise model, as we do here for
workflow execution, into three layers, has alread been established [7, 8]. The first

158 M. Gander et al.

layer is the workflow layer, it consists of an abstract flow of activities, that de-
termines the sequence of a workflow. Activities do not execute code themselves,
this task is done via services in the network, hence, the second layer is the service
layer. One layer below is the infrastructure layer, in here, nodes host services
and represent the backbone of executing workflows.

Our focus lies on service and infrastructure layer events. Service events are
calls from one service to another that have a type. In this work we cover a set
of standard types, authentication, authorization, query, retrieve, delete, update,
create and forward. Infrastructure events are split into network and database
events. Network events are UDP and TCP packets, with descriptive features
such as, source, destination, ports, time, among others. For database events it
is essential to know all the details of a create, read, update, and delete (CRUD)
operation. This means events need to contain a user id, the object, the time, the
type of CRUD operation and the originating host. We do not explicitly envision
the use of workflow events because it is already possible to derive information
about the workflow layer by just monitoring service events.

4 Approach

In this section we present our anomaly detection framework, which consists of
a modelling component, that enables defining UML models to represent an IT
landscape (see Figure 1), a Finite State Machine (FSM) generator that generates
FSMs for the purpose of compliance detection from workflowmodels, sensors and
an analyzer as event sink to cluster and analyze data. Two steps are necessary for
running the framework: (1) modelling the IT landscape, and (2) configuration,
which involves configuring sensors on services and nodes but also white-listing
of “friendly” traffic.

4.1 IT-Landscape Metamodel

Our metamodel allows a designated expert, or group of experts, to model a
network infrastructure that provides the underpinning to a workflow, as shown
in Figure 3. The model reuses concepts from [7, 8], for example the introduction
of multiple conceptual layers to create a realistic enterprise model. In contrast
to [7, 8] in our modelling approach we follow an event-driven process chain
paradigm [13]. This has the benefit that we do not need to model services and
events, but only model events and see the services (and the application they
represent) implicitly. A workflow activity, therefore, is not modelled via services
and their call-sequence but rather as a series of events.

Our model contains the layers,Workflow, Service and Infrastructure. Starting
from the workflow layer, we distinguish among WF Activity, Role, and Actor.
A workflow consists of two or more workflow activities which are connected via
arcs (Arc) that are of different types AND, OR, XOR, SEQ. The semantics be-
hind SEQ are simple, an arc between two workflow activities A and B denotes
that A is followed by B. AND, OR and XOR make use of multiple events and

Model- and Learning-Based Framework for Security Anomaly Detection 159

Fig. 3. The IT landscape Metamodel

relate them in semantics known from boolean operations (see Figure 4). To each
activity a role is attached. A role is a set of responsibilities and obligations for a
stakeholder. A set of actors is associated to roles which are uniquely identifiable,
via an Identifier. Services are not modelled directly, but rather as ServiceEvent of
various types (EventTypeEnum). Event emitters are services, on top of network
nodes. Hence, among other features provided by the service event, i.e. dynamic
ones like timestamps and session ids (to identify the Actor, we assume a source
and a destination pointing to the nodes that took part in the event. This allows
us to connect the service layer to the infrastructure layer. Nodes can be of vari-
ous type (NodeType), this makes it easier to map events to their corresponding
workflow activity during runtime. Each one of the many association relations de-
notes the element’s use. Identifier defines the set of identifiers, i.e. all elements
are connected to it via identifiedBy, such as nodes, service events, and actors
are identified by it (via UUID and a location). Workflow activities are executed
via services, the execution order is in form of service events. The real elements
doing the execution are nodes from the infrastructure (runsOn).

Example. The workflow activity, Authentication, from our running example
(see Section 3.1) can now be modelled, consider Figure 4. The activity is associ-
ated to five events, Ev1,...,5. The execution takes place on nodes in the infrastruc-
ture. These nodes are split into static ones, Authentication Service, Database,
and a dynamic one, Workstation. The reason for dynamic and static nodes is

160 M. Gander et al.

Fig. 4. Sample model for the authentication activity of our running example

that some information about nodes is dynamic and subject to frequent change
on runtime, for instance nodes with IP addresses over non-static DHCP. Other
information stays static for a longer period, i.e. non-mutable DNS names for
Windows Domain Controllers. As a result, the dynamic classifier can be seen as
wildcard. By permitting dynamic nodes in models it, therefore, becomes possible
to have a dynamic composition of workflows. Within the example any node that
is a Workstation is allowed to participate in the authentication workflow (the
result will still depend on the credentials though). This distinction, thus, renders
the linking of event trails to the correct workflow activity possible.

4.2 Workflow State Machines

During the runtime of the system we collect service calls. Some questions about
these calls are easy to answer. For instance, “Who was involved in it?” or “Which
node emitted it?”. Some other questions are trickier, i.e. mapping a series of
events (event trails [13]) to the correct workflow activities and detect aberrations
in the sequences.

Model- and Learning-Based Framework for Security Anomaly Detection 161

To answer these questions the metamodel is used to create a workflow model
through the specification of the sequence of events that are expected. This fa-
cilitates the instantiation of an FSM that represents an internal representation
of each workflow. FSMs and the workflows defined via the model (see Figure 4)
are very similar, still, an internal representation via FSMs has the benefit of (a)
the formalisms are well-understood and (b) there are libraries that have been
developed to handle large (complex) state machines efficiently.4

Translation. A deterministic finite state machine or acceptor deterministic
finite state machine is a quintuple (σ, S, s0, δ, F), where σ is the input alphabet
(a finite, non-empty set of symbols), S is a finite, non-empty set of states, s0 ∈ S
is an initial state, δ is the state-transition function: δ : S × Σ → S, and F ⊆ S
is the set of final states. During the modelling phase events are created and
associated to workflow activities. The translation from workflow model to a
state machine is straight forward, the events are already modelled as a sequence.
The logical operators, “AND, XOR, OR, SEQ”, are translated to multiple states
that can either be reached with one or the other event but not both (“XOR”).
“AND” denotes that a state transition needs multiple events to reach the follow-
up state, and “OR” translates to a case similar to “XOR”, albeit with weaker
conditions, both events are allowed to happen.

FSM Lifecycle. Each event now serves as a state transition, which makes
it possible to track the behaviour of the workflow at runtime. The lifecycle of
an FSM is as follows: Any transaction (e.g. authentication, document retrieval)
emits events. Such an event includes, e.g. type, source, destination, and a session
id identifying the actor. If an event is encountered which has a new session id,
a new FSM has to be instantiated. To instantiate the appropriate FSM for the
workflow we assume that the combination of the event characteristics, i.e. event
type, source, destination, session id, uniquely identifies the workflow. Applying
this method we can carry out basic workflow compliance detection based on
service events.

Examples. The authentication activity from Figure 4 would lead to a state ma-
chine consisting of 6 states (the naming is arbitrary), S = {Init, 2, 3, 4,Acc, Rej}
where s0 = Init, F = {Acc, Rej} and state transitions, for instance δ :
(Init, Ev1) = 2, for all states S and events, Ev1...5.

5 Ev1 is the event describ-
ing how a client contacts the authentication service, Ev2 is the query from the
authentication service to the database service. The database service answers in
event Ev3 and the authentication service either, grants access Ev4 or denies to
do so Ev5. The state machine above only describes a particular activity. But
by conjoining activities of our example and their FSM representations, a simple
task [23], we are able to create a complete FSM for the whole workflow. To notice

4 http://www.boost.org/doc/libs/1 34 0/libs/statechart/doc/index.html,
Accessed: January 1, 2012.

5 Here we abbreviate the IDs of the events from Figure 4 from “Evx Desc” to “Evx”.

162 M. Gander et al.

misbehaviour in the workflow we first link emitted events from the services of the
authentication process to the corresponding instance of the FSM and then check
if said events correspond to the expected flow. This way we solve replay attacks,
an attacked service invocation sequence, and missing events (see Section 3.2).

4.3 Profiling via Clustering

Creating a model that captures the behaviour of the infrastructure in a very
granular fashion is difficult. This stems from the inherent complexity of packet-
handling, e.g. flags for TCP packets are dependent on the implementation of
the network stack of a system [24] and the amount of packets that are sent are
dependent on the state of the network (e.g. congestion [25]). We use a heuristic
approach to link infrastructure events to service events.

Linking Events to Create Profiles. The idea is a simple two-step procedure.
(i) Relate all network events from a node to the last service call from that same
node and (ii) relate all database CRUD events that involve the same identifier
that was present in the service call to it. The time-window to relate the events
to the service calls has to be set reasonably small otherwise the degree of relat-
edness diminishes. Infrastructure traffic linked in this way allows the creation
of profiles of a service call type, e.g. a network profile and a database profile.
The profiles themselves are obtained via clustering [26], which makes use of the
inherent structure of data samples to group (cluster) common attributes and
hence relate them. The network profile of a service call type, e.g. authentication,
contains for example a clustering instance for each node in the network. A net-
work profile, therefore, through its clustering instances, answers the questions
“Who communicates with whom normally?” and “How does traffic normally look
like?”.

In contrast, the database profile contains clustering instances for each user
instead of nodes and pinpoints rare user behaviour in relation to a service call
type. The profile types we chose reflect the dire need to monitor communication
patterns among hosts (network profile) and CRUD activity (database profile) in
health-care domains. Figure 5 summarizes how the layers are related. Workflow
activities are linked to service call sequences. Then, infrastructure events are
linked to service calls. Said events are then clustered to attain the profiles.

Fixed-Width Clustering. In fixed-width clustering [16], clusters are assigned
a maximal width, ω, and instances lying outside, either create their own cluster
or are assigned to another cluster. The idea is that small clusters reflect the η%
of data instances which are anomalous.

Training and Detection. After an infrastructure event was linked to a service
call, the training stage for clustering looks as follows,

1. We extract features from the infrastructure event, i.e. database and network
features.

Model- and Learning-Based Framework for Security Anomaly Detection 163

Fig. 5. Overview of connecting the layers

2. A feature vector that exceeds the width to any centroid of a cluster, creates
a new cluster. Small clusters represent anomalous events after training.

3. During detection the feature vector of the infrastructure event in question
is bound to the nearest cluster centroid. If such a cluster is anomalous, then
so is the event.

Reduction of False-Positives. Depending on thresholds, and cluster-widths,
false-positives occur. To reduce them, we introduce (a) white lists that allow clus-
ters to be classified not to be harmful, e.g. communication to known non harmful
websites, and (b) a threshold χ% for the number of infrastructure anomalies that
have to be detected in order for an alert to be raised. What can be learned from
anomalies? Anomalies are always connected to hosts in the network. Therefore
we mark a host as outlier if more than ζ% of events linked to it are anomalous.
Taking into account outlier nodes and their relation to services and workflows we
obtain the possibility to trace a chain of implications to signal workflow issues.
For instance, if a workflow relies upon services that in turn rely on nodes that
are marked as outliers, the responsible for said workflow is alerted.

Examples. We explain how we solve the infrastructure attack example from
Section 3.2, where a suspicious database event (Ev5) is captured, via cluster-
ing. The three steps for the creation of a clustering instance for the service call
type Authorization Denied operates as follows. In the first step, database events
are captured that contain features, time, source, user, object, and CRUD type.
Based on the linking heuristic they are associated to the corresponding service

164 M. Gander et al.

call type, here Authorization Denied. Since the database profile consists of a
clustering instance for each user, the user feature determines which clustering
instance is chosen. In the second step, only one cluster was created, since the
events were very similar. All infrastructure events for the service event Autho-
rization Denied that were stored within the database profile (more specifically,
within the clustering instance for UIDx) were read events (cRud) for UIDx with
source PDP at a time from 8 in the morning to 7 in the evening. During detec-
tion (step three), a database event, Ev5, at 2.01 a.m. is noticed. Due to the event
being a database event it is added to the database profile. It is linked to the ser-
vice call type Authorization Denied and due to the extracted user id, UIDx, it is
added to the clustering instance for that user. Ev5, an update PMR event (crUd)
with identifier UIDx and object PMR12 at 2.01 a.m., is not common in the clus-
tering instance. More formally, the features of the event, time, object, cause the
whole data instance to exceed the maximal width of the existing cluster. There-
fore, an alert from the database profile is triggered. The second infrastructure
example from Section 3.2 is solved in a similar fashion, this time, the network
profile is the source of the alert. Since the document consumer never initiated
a communication with node D in the context of a retrieve service call during
training, those events are outside any cluster and trigger an anomaly alert.

4.4 Architecture

In this section we identify the major components of our framework and give
a brief description how the flow from event gathering to report takes place.
As Figure 6 indicates, we distinguish among four component groups, Nodes,
Monitor, Core Components and View.

Fig. 6. Anomaly Detection Framework Architecture

1. The Nodes group represents the devices being monitored. We leverage the
node monitoring capability of Ossec,6 that allows to monitor, amongst other

6 http://www.ossec.net/, Accessed: January 5, 2012.

Model- and Learning-Based Framework for Security Anomaly Detection 165

things, database and network events on hosts through agents (sensors). At
the same time to retrieve network data from routers we leverage the network
information service provided by Netflow exporters.7

2. The Monitor group consists of web services that listen for incoming events.
The Service Monitor receives all service events for which it is configured
to accept. A service being part of a workflow, i.e. an identity provider, is
configured to transmit service-call events (see Section 3) to the service mon-
itor. The service monitor itself is built as a low-footprint web service and
acts as an event sink for multiple sources. Node events, i.e. DB Activity,
and network events, i.e. TCP/UDP, packets are sent to the Infrastructure
Monitor. Network events are recorded as “Netflows” and forwarded to a
Netflow-collector, our Infrastructure Monitor. The Infrastructure Monitor
consists of a Web Service for node events and a Netflow-collector, FLOWD,8

listening for Netflow traffic. The sensor then extracts the elements of the
events we are interested in and relays this normalized data (if needed) to
multiple analyzers. All the data is transmitted in the light-weight format
called JSON,9 to reduce working load for the monitors.

3. The Core components consist of the analyzer to which all normalized events
are forwarded and a database for clusters, white lists, and the IT landscape
model. The IT landscape model contains the information created during the
modelling phase, in the machine-readable way XML Metadata Interchange
(XMI)[27], but also concrete instances of running workflows in form of FSM
instances. White lists are rules for traffic between hosts, which are consid-
ered not to be dangerous, e.g. connections going to and from “google mail”.
The standard white list encompasses the top 100 list of websites due to the
Alexa.com rating site.10 In the implementation the analyzer accesses white
lists using MySQL. After the extraction of the features the Clustering in-
stances are created. We leverage the C++ library CLUTO,11 which provides
a convenient API that allows to specify the desired clustering method and
to additionally configure the selected method. Our first argument for the
library was that it can handle large amounts of data efficiently.

4. The View unit consists of clients that are notified (push message) by the
analyzer if an anomaly occurred. The clients connect to the analyzer over
a web site that makes use of a HTML 5 (Web 2.0) interface allowing push
messages via WebSockets.

5 Conclusion and Future Work

In the previous section we have presented a monitoring framework that incor-
porates modelling information to provide anomaly and compliance detection

7 http://tools.ietf.org/html/rfc3954, Accessed: January 5, 2012.
8 http://www.mindrot.org/projects/flowd/, Accessed: January 5, 2012.
9 http://www.json.org/, Accessed: July 5, 2012.

10 http://www.alexa.com/topsites, Accessed: January 5, 2012.
11 http://glaros.dtc.umn.edu/gkhome/views/cluto, Accessed: January 5, 2012.

166 M. Gander et al.

in complex IT landscapes. In contrast to other monitoring techniques this ap-
proach can dynamically link infrastructure events to various layers of abstrac-
tions, including services, workflow activities and also workflows. This allows a
fine-grained detection of infrastructure event anomalies caused, or manifested,
by service events. In addition, by leveraging workflow models, it is also possible
to conduct compliance detection of technical workflows.

In our future work, we will focus on our implementation and evaluation efforts
to create a fully functional anomaly detection framework that follows the scheme
described in this paper. Therein, it will be essential to choose normalization pa-
rameters accordingly, i.e. for TCP packet sizes, to attain a proper clustering. We
focus on improving on the linking heuristic, and also focus on extracting mes-
sage payload from packets to further reduce false-positives. Another point for
improvement is to improve on scalability, i.e. consider the “C10K” problem.12

This can be achieved by building hierachies of monitors to filter out unneces-
sary events/traffic before it overloads our analysis system. We plan to address
evaluation issues twofold, our clustering approach will be tested on the KDD
benchmark whereas the whole framework will be tested in a real-world setting.

In the more distant future and from a network security point of view fu-
ture work will be to classify outlying events and clusters to provide security
experts with additional knowledge. A way is to detect attacks, e.g. ascertain
that some cluster belongs to a brute-force attack, an XML attack, or similar.
To address this, our anomaly detection framework can be augmented by other
anomaly models, i.e. a payload model that detects string anomalities [28]. Based
on the above research and the assumption that anomalous nodes and misbehav-
ing workflows correlate we plan to incorporate predictive workflow compliance
detection (similar to predictive SLA violations discussed in [29]) via statistical
models (e.g. regression) and complex event processing (CEP) [30]. Its task is to
predict workflow deterioration, e.g. stopped executions. For example, if multiple
vital nodes show attack patterns and the amount of these patterns is rising over
time, a deterioration can be predicted.

References

1. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using
clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to
Security, Philadelphia, PA (2001)

2. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Proceedings of the Twenty-Eighth Australasian Conference
on Computer Science, vol. 38, pp. 333–342. Australian Computer Society, Inc.
(2005)

3. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In: Proceedings of
the 17th Conference on Security Symposium, pp. 139–154. USENIX Association
(2008)

12 http://www.kegel.com/c10k.html, Accessed: January 5, 2012.

Model- and Learning-Based Framework for Security Anomaly Detection 167

4. Wang, W., Battiti, R.: Identifying intrusions in computer networks with princi-
pal component analysis. In: The First International Conference on Availability,
Reliability and Security, ARES 2006, p. 8. IEEE (2006)

5. Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-
based Network Intrusion Detection: Techniques, Systems and Challenges. Comput-
ers & Security 28(1-2), 18–28 (2009)

6. OMG: Omg uml specification, v2.0 (2005)
7. Breu, R., Innerhofer-Oberperfler, F., Yautsiukhin, A.: Quantitative assessment of

enterprise security system. In: The Third International Conference on Availability,
Reliability and Security, pp. 921–928. IEEE (2008)

8. Innerhofer-Oberperfler, F., Breu, R., Hafner, M.: Living security – collaborative
security management in a changing world. In: Parallel and Distributed Computing
and Networks/720: Software Engineering. ACTA Press (2011)

9. Breu, R.: Ten principles for living models-a manifesto of change-driven software en-
gineering. In: 2010 International Conference on Complex, Intelligent and Software
Intensive Systems, pp. 1–8. IEEE (2010)

10. Berre, A.: Service oriented architecture modeling language (soaml)-specification
for the uml profile and metamodel for services (upms) (2008)

11. Popescu, V., Smith, V., Pandit, B.: Service modeling language, version 1.1.
W3C recommendation, W3C (May 2009), http://www.w3.org/TR/2009/REC-
sml-20090512/

12. van der Aalst, W.: Formalization and verification of event-driven process chains.
Information and Software Technology 41(10), 639–650 (1999)

13. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business
compliance. In: 2009 IEEE International Conference on Service-Oriented Comput-
ing and Applications, SOCA, pp. 1–8. IEEE (2009)

14. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Bus-
sler, C.J., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer,
Heidelberg (2006)

15. Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based monitoring of composite
web services (2007)

16. Oldmeadow, J., Ravinutala, S., Leckie, C.: Adaptive Clustering for Network In-
trusion Detection. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS
(LNAI), vol. 3056, pp. 255–259. Springer, Heidelberg (2004)

17. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security (TISSEC) 2(1), 65–104 (1999)

18. Godik, S., Moses, T. (eds.): eXtensible Access Control Markup Language
(XACML) Version 1.0 (February 2003)

19. Walker-Morgan, D.: Vsftpd backdoor discovered in source code. Website (2011),
http://h-online.com/-1272310 (visited: July 4, 2011)

20. Hoglund, G., Butler, J.: Rootkits: subverting the Windows kernel. Addison-Wesley
Professional (2006)

21. Peikari, C., Chuvakin, A.: Security Warrior. O’Reilly (2004)
22. Wells, J.: Computer fraud casebook: the bytes that bite. John Wiley & Sons Inc.

(2008)
23. Kozen, D.: Automata and computability. Springer (1997)
24. McClure, S., Scambray, J., Kurtz, G.: Hacking exposed 6. McGraw-Hill (2009)
25. Allman, M., Paxson, V., Stevens, W.: RFC 2581 (rfc2581) - TCP Congestion Con-

trol. Technical Report 2581 (1999)

168 M. Gander et al.

26. Tan, P., Steinbach, M., Kumar, V.: Cluster Analysis: basic concepts and algo-
rithms. In: Introduction to Data Mining. Addison-Wensley (2006)

27. OMG: Omg xmi specification, v1.2 (2002)
28. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings

of the 10th ACM Conference on Computer and Communications Security, pp.
251–261. ACM (2003)

29. Leitner, P., Wetzstein, B., Karastoyanova, D., Hummer, W., Dustdar, S., Leymann,
F.: Preventing SLA Violations in Service Compositions Using Aspect-Based Frag-
ment Substitution. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 365–380. Springer, Heidelberg (2010)

30. Nicolett, M., Litan, A., Proctor, P.E.: Pattern Discovery With Security Monitoring
and Fraud Detection Techniques (2009)

Enhancing Model Driven Security
through Pattern Refinement Techniques�

Basel Katt, Matthias Gander, Ruth Breu, and Michael Felderer

University of Innsbruck, Austria
{basel.katt,matthias.gander,ruth.breu,

michael.felderer}@uibk.ac.at

Abstract. Security requirements are typically defined at a business abstract level
by non-technical security officers. However, in order to fulfill the security require-
ments, technical security controls or mechanisms have to be considered and de-
ployed on the target system. Based on these security controls security patterns
have to be selected. The MDS (Model Driven Security) approach uses secu-
rity requirement models at a high level of abstraction to automatically gener-
ate security artefacts that configure security services. The main drawback of the
current MDS solutions is that they consider just one security pattern for each se-
curity requirement. Current SOA and cloud services are scattered across multiple
heterogeneous security domains. Partners and clients with different security in-
frastructures are changing continuously, which requires the support of multiple
patterns for the same security service. The challenge is to provide configurable
security services that can support different patterns. In order to overcome this
shortcoming we propose a framework that integrates pattern refinement to the
MDS approach. In this approach a security pattern refinement layer is added to
the traditional MDS layers. The pattern refinement layer supports the configura-
tion of one security service with different patterns, which are stored in a pattern
catalog. For example, our approach enables the generation of security artefacts
that configure a non-repudiation service to support both fair non-repudiation and
naive non-repudiation patterns.

1 Introduction

MDS (Model Driven Security) aims at closing the gaps (i) between abstract business
oriented security requirements and low level security artefacts, and (ii) between func-
tional models and security models. The latter is done by introducing security require-
ments on the functional models. The former can be achieved using transformation
functions that generate security artefacts from abstract security requirements. Another
security engineering technique that is used in solving security problems involves se-
curity patterns. A security pattern is a well-understood solution to a common security
problem or threat. In other words, a security pattern embeds security expertise in the
form of tested and worked solutions.
� This work is supported by QE LaB - Living Models for Open Systems (FFG 822740),

COSEMA - funded by the Tiroler Zukunftsstiftung, SecureChange (ICT-FET-231101) EU
project, and SECTISSIMO (P-20388) FWF project.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 169–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 B. Katt et al.

One of the main goals of the security engineering paradigm is to provide security
solutions that fulfill the needs stated in abstract security requirements. In order to cope
with such security requirements, security controls have to be applied. We define secu-
rity controls as security procedures or mechanisms that are designed to protect against
threats, reduce and limit vulnerabilities, detect malicious incidents, and facilitate recov-
ery. The realization of a security control is done through the development of security
services. Such security services should offer a general purpose security functionality
that needs to be configured based on the platform and domain information and a well-
known security pattern. For example, an authentication requirement can be met using
one of the standard authentication mechanisms, e.g. four-eyes principle, single sign-on,
or brokered-authentication. Furthermore, a specific pattern has to be chosen for the im-
plementation of that control, for example, a direct authentication pattern is suitable for
the case when the authenticated users belong to the same security domain. Finally, the
deployment of security services and mechansims depends on the system architecture,
for which the security solution has been designed.

State of the Art. According to the paradigm of MDS, abstract security policies are
used to extend functional models with security concerns. The abstract models (or arte-
facts) are then transformed into platform-specific artefacts by code-generation methods.
Those artefacts configure the target platform. The approaches presented in [1,7,14,10]
deal with similar processes to realize security modeling concepts. The focus of cur-
rent security modeling approaches is to model abstract security policies and transform
them into executables. In most of the cases, the executables are XML-based security
policies, such as authentication, authorization and non-repudiation policies. For exam-
ple, Basin et. al. [1], have generated authorization policies to configure access control
infrastructures for J2EE applications. Fumiko et. al. [14], have added security annota-
tions in the system models and transformed them into authentication policy assertions
for WS-SecurityPolicy. Hafner et. al. [7], have defined security requirements in busi-
ness process models and generated XACML code from abstract requirements. Ulrich
Lang et. al. [10] have applied model-driven security to CORBA platform, and generated
security policies from models based on a Policy Definition Language (PDL).

Limitations of Current MDS. A common assumption in these approaches is that the
security services, which use the policies generated from models, are already deployed at
the target platform. Those security services realize certain pre-defined security patterns
and mechanisms. For example, an authentication security service implements the Bro-
kered Authentication pattern or an authorization service implements the RBAC (Role-
based Access Control) pattern. As a result, an authentication service, which realizes
the brokered authentication pattern cannot implement a direct authentication or identity
federation pattern. Similarly, an authorization service, which realizes the RBAC pattern,
cannot implement the attribute-based or context-based access control patterns.

The problem is that in real SOA systems, different partners and service providers
from different security domains and heterogeneous security infrastructures commu-
nicate with each other. Changing a partner, launching a business service with a new
partner or acquiring a new costumer, all with different security needs, constitute the

Enhancing Model Driven Security through Pattern Refinement Techniques 171

dynamic nature of a SOA business model. This requires that security services have to
realize various patterns depending on the security domain of requester. For example, a
service provider will implement a direct authentication pattern if a service requester’s
identity is validated from the local identities. The provider will implement a brokered
authentication pattern, if it relies on the authentication decision of an external Identity
Provider. Alternatively, the provider may rely on Identity Federation and Single-Sign-
on patterns, if a service requester’s identity is federated among multiple domains. This
shows that a security service has to be configurable to realize a variety of patterns.
Using model-transformation techniques, the security service configurations can be gen-
erated from the models. However, the current security modeling approaches rely on
fixed/hard-coded security services using pre-defined patterns. As a result, the security
services at the target platform can not be configured to use other patterns. This makes
these approaches difficult to extend.

1.1 Contributions

In this paper we propose to overcome the shortcomings of the current MDS approaches
by integrating a pattern refinement process in an MDS framework. This is done by
introducing a pattern refinement layer that resides between the PIM (Platform Indepen-
dent Model) and PSM (Platform Specific Model) layers. Our framework enables the
semi-automatic generation of security artefacts for different patterns from the same se-
curity requirement. We discussed a general MDS approach without the consideration of
pattern refinement in our previous work [7], however, pattern refinement integration is
innovative in this work.

Applying this approach requires an architectural solution that provides the design
principles of a general purpose and configurable security services. In previous work [8],
we proposed the SeAAS (Security As A Service) architectural solution that aims at
meeting the end point security problems by decoupling security services from the busi-
ness end points. Security services according to the SeAAS methodology are offered
centrally in each security domain and can be configured to support multiple patterns.
The discussion of SeAAS is out of scope of this work. In principle, our new MDS
approach is general and can be applied for different architectural designs, however,
SeAAS is taken as a use case.

2 Case Study

The case study is taken from the SecureChange EU-FP7 project. The use case deals
with a web service for retrieving newsfeeds as introduced in section 7 of Deliverable
2.31. As depicted in Figure 1 the HOMES case study consists of several infrastructural
components, which are deployed in the domains of three actors:

1. The Customer or Service Requester (SR) uses the Home Gateway device to connect
to the internet. He may purchase, install, and use additional services at home.

1 http://securechange.eu/content/deliverables

http://securechange.eu/content/deliverables

172 B. Katt et al.

2. The Network Operator (NO) owns and operates the infrastructure necessary to
provide connectivity for customers. He advertises, installs and manages additional
value-added services. The latter may be provided by Third Party Service Providers.

3. The Home Gateway device (HOMES) is placed at the customer’s home within his
security domain. It is owned by the network operator and usually rented to the
Customer. The HOMES Gateway device is the service platform for the case study.

4. Third Party Service Providers (SPs) offer additional services for customers. They
are independent from the NO and have a commercial agreement with the NO.

Fig. 1. Message flow within the HOLMES case study

In the case study the SR continuously consumes newsfeeds from distinct trusted
third party SPs. This communication is controlled via the HOME Gateway, which then
handles the communication to the Service Provider with respect to the corresponding
security requirements. In more detail, first the customer sends a request to the HOME
Gateway which then contacts the NO in order to retrieve a corresponding policy file that
contains information about the security service and the security policy required. After
performing the security tasks specified in this policy, the HOME Gateway subsequently
requests the feeds from the Service Provider. The response is sent back in the same way.

Besides the message workflow also the security requirements within the process of
requesting newsfeeds are illustrated in Figure 2. The figure indicates that both mes-
sages between the HOME Gateway and the Service Provider cannot be repudiated
(non-repudiation requirement). The business partners (HOME Gateway and the SPs)
are located in different domains. Within each of these domains there is a SeAAS engine
deployed which is responsible to enforce the security requirements. Consider, for in-
stance, the HOME Gateway that communicates with multiple companies from which it
uses services (SP1, . . . ,SPn) (cf. Figure 2). Therefore the HOME Gateway has to fulfill
a multitude of different security requirements which result in different business policies
(at most n). Even if the HOME Gateway has to fulfill the same security requirements

Enhancing Model Driven Security through Pattern Refinement Techniques 173

Fig. 2. Policy dependencies between the actors

for all of the SPs their technical policies or the used security pattern might still be differ-
ent. It can be the case that one SP only supports a naive non-repudiation while another
one requires fair non-repudiation. It can be noticed that the MDS and the architectural
solution should enable the configuration of a security service with different patterns. As
aforementioned, we have proposed an architectural solution (SeAAS) and in this paper
we propose the MDS solution to create the required configurations.

3 Methodology: SECTET Framework

As shown in Figure 3 (left), the traditional MDS approach consists of two design time
layers and one run time layer. In PIM models, security requirements are attached into
the functional models. Those models are abstract and independent from the run time
platform. PSMs, on the other hand, represent the platform specific functional and secu-
rity models. For example, if a platform runs a BPEL engine, the workflow model in this
layer is a BPEL model. Examples of policy models are XACML [11], or PGP2 mod-
els. M2M (Model to Model) transformations are used to generate PSM models out of
the PIM models. Finally, ISM (Implementation Specific Models) represent the run time
system and contain the actual implementation code and configuration files deployed on
the system.

The SECTET framework enhances the traditional MDS approach with a pattern re-
finement process. This is done by filling the gap between the PIM layer and the PSM
layer with a pattern refinement layer and the introduction of a pattern catalog that stores
models about the supported patterns. The result is a three layered framework that con-
tains, besides the PIM and the PSM layers, a new layer called PRM (Pattern Refinement
Model). In this layer different security patterns, which meet the same requirement, can
be chosen from a pattern catalog and refined to generate configurations for security ser-
vices. This requires two security artefacts to be generated. First a security policy and
second a workflow that indicates the behavior of the pattern. we call the policy a pattern
policy and the workflow a pattern flow.

3.1 Platform Independent Models: SECTET PIM Metamodel

At the first PIM layer the SECTET framework defines a metamodel, that enables mod-
eling security enhanced workflow (or business process) models. This language consists

2 http://www.pgpi.org/

http://www.pgpi.org/

174 B. Katt et al.

Fig. 3. SECTET Approach

of the following views (cf. Figure 4). This metamodel is similar to the SECTET DSL
presented in [6].

– Workflow view: Workflows or business processes are the functional models that
are considered in the SECTET framework. The main components of the workflow
view is a process that consists of several activity nodes, object nodes and partners.
Activity nodes represent the operations that each partner offers and object nodes
represent the messages that are exchanged.

– Interface View: The interface model contains information about the services that
are deployed by different partners and the documents that are sent or received.
The services consist of one or more operations. Furthermore, each operation is
associated with a request and a response, both of Message type.

– Requiremement View: The security requirement view consists of both ServiceReq
as well as MessageReq classes. The first indicates the security requirements that
can be attached to a service and the latter indicates the security requirements that
can be attached to a message. For example, Figure 4 indicates that the main security
requirement that can be defined for a service is Authentication, while the security
requirements that can be defined for a message are Monitor, Integrity, Confiden-
tialiy, and Non-Repudiation.

Enhancing Model Driven Security through Pattern Refinement Techniques 175

Fig. 4. SECTET PIM metamodel

3.2 Pattern Refinement Models: Pattern Models

The SECTET framework aims at closing the gap betweent PIMs and PSMs using
pattern refinement techniques. Security patterns solve specific security problems in a
specific context. For example, an authorization pattern ensures that only people with
permissions are allowed to access protected resources. The Authentication pattern, on
the other hand, tackles the problem of identity and message validation. Similar to mod-
els in traditional MDS approaches, patterns can be defined as abstract patterns and con-
crete or technical patterns (cf. Figure 5). The first step in our pattern refinement process
is to map each security requirement to an abstract security pattern. Second, based on
the target architecture of the runtime system an architectural security pattern is selected.
For example, either a direct authentication or a brokered authentication can be selected
from an abstract pattern of authentication. From an abstract non-repudiation pattern a
naive non-repudiation or a fair non-repudiation pattern can be selected. After a specific
architectural pattern is selected two refinements are applied on the selected pattern. The
first refinement aims at generating a workflow that indicates the behavior of the security
service when the selected pattern is applied. The second aims at generating a security
policy associated with this pattern.

Pattern Catalog. Patterns that are used in our pattern refinement process are stored
in a pattern catalog. This enables the reuse of established solutions for well-known
problems. Furthermore, the extension of the system to accomodate new patterns is done
by adding a new pattern to the catalog. For each architectural security pattern, models
that represent the flow of actions, i.e., the protocol of the pattern, as well as the security
policy that is required are stored. When the architectural pattern is chosen, information
related to both pattern flow and pattern policy is provided.

176 B. Katt et al.

Fig. 5. Pattern refinement models

3.3 Platform Specific Models

The third layer is similar to the third layer in the traditional MDS approach, which
contains the platform specific models. Models in this layer describe the system on its
target platform. For example, workflow models in the second layer can be represented
as BPEL4WS3 in case the platform contains a BPEL based workflow engine. It can
be noticed that, in this layer we consider both the security policy and the workflow that
represent the flow of actions executed by each pattern. In this way multiple architectural
patterns can be supported by one security service. To summarize, the service can be
configured with the workflow of the architectural pattern as well as with the security
policy.

3.4 Implementation Specific Models

This layer represents the runtime system and contains the reference architecture that
acts as the runtime environment. All generated security and functional artefacts and
code parts are part of this layer. The transformations that result in artefacts in this layer
are mainly M2C (Model to Code) transformations.

4 Case Study Example

In this section we show how the SECTET’s security engineering framework is used to
solve the problem discussed in the case study in Section 2. Using our framework, it is
possible to generate, for each security requirement, security and functional artefacts for
different security patterns.

3 http://www.ibm.com/developerworks/
library/specification/ws-bpel/

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/

Enhancing Model Driven Security through Pattern Refinement Techniques 177

4.1 Modeling Functional Workflow with Security Requirements

The SECTET approach requires at the first layer to model the functional workflow
that represent the exchange of messages between different partners and the associated
security requiremets. The workflow model is represented as an UML activity diagram
and the services as well as the messages exchanged (forming together the interface
view) are represented as UML interfaces and UML class diagrams, respectively.

Fig. 6. Workflow model enhanced with security requirements

Figure 6 illustrates an activity diagram that considers two partners in the whole work-
flow, namely, the HOME gateway and the service provider. The example illustrates the
task of retrieving feeds. A customer behind a HOME Gateway device wants to retrieve
newsfeeds from the serviced provider. Therefore, the HOME Gateway sends the corre-
sponding request to the service provider. The main service that is shown in this diagram
is getFeeds. Two messages are exchanged, which are getFeedsRequest and getFeedsRe-
sponse. The security requirements are attached with the data object that flows between
the particular activities. The figure also shows that for both requesting message and
responding message non-repudiation is specified as a security requirement.

As discussed in Section 3, the second view of the metamodel in the first PIM layer
is the interface view. The interface view consists of the operations that are provided
as service and the messages that are exchanged. Figure 7 illustrates the operations,
or services that the service provider offers, which is one service called getFeeds. It
can be seen that there is one security requirement attached to this service, namely, au-
thentication. Figure 8, on the other hand, represents the messages that are exchanged.

Fig. 7. Services and their attached security requirements

178 B. Katt et al.

Fig. 8. Messages and their attached security requirements

The security requirements attached to these messages are shown in the workflow model.
To summarize, the PIM models contain information about the workflows, including the
services and the messages exchanged (functional models), and the security require-
ments attached to those models.

4.2 Modeling Pattern Refinement

The second layer in our framework is the pattern refinement layer. Figure 9 shows the
abstract security patterns that are supported by our framework. These patterns corre-
spond to the abstract security requirements that can be defined in the PIM model. The
first step is to map each security requirement to an abstract security pattern. For ex-
ample, the non-repudiation requirement defined for the getFeedsRequest and getFeed-
sResponse messages is mapped to the abstract non-repudiation pattern. The second step
is to select one of the architectural patterns supported for this specific abstract pat-
tern. This decision is made based on the target architecture and the pattern supported
by the security service at the SP site. Figure 10 shows two architectural patterns sup-
ported for the abstract authentication pattern, namely, naive non-repudiation and fair
non-repudiation pattern.

The third and last step is the refinement step, which includes two refinements, the
policy and flow refinement. Figure 11 shows the fair non-repudiation pattern flow that
is defined in the pattern catalog. The flow model indicates how the non-repudiation
service deployed in service requester communicates with the SP and the trusted third

Fig. 9. Abstract security patterns

Fig. 10. Non-repudiation architectural patterns

Enhancing Model Driven Security through Pattern Refinement Techniques 179

Fig. 11. Fair Non-repudiation pattern flow

Fig. 12. Fair Non-repudiation pattern policy metamodel

party in order to ensure fair non-repudiation. This flow is an abstract workflow model
which requires some concrete information based on the use case, which will be provided
when the pattern flow is refined. We assume that the only information that must be
provided in the flow refinement step is the trusted third party. This means that after the
fair non-repudiation pattern is selected, the refinement of its pattern flow requires to
add information about the trusted third party. Similarly, we assume a simple policy for
fair non-repudiation that indicates which elements must be signed and which elements
must be encrypted in the message for the evidence. Figure 12 shows the non-repudiation
policy model which indicates that both the encrypted and the signed elements for the
query model must be specified. The query model represents the query message and
indicates the getFeedsRequest class in our example. The refinement of the pattern policy
adds information about the elements in the request message that must be encrypted and
signed. These elements are selected from startDate, endDate, and maxAmount.

4.3 Platform Specific Model and Generated Artefacts

After performing the second refinement step we get refined models for a fair non-
repudiation policy (These are pattern policy model and pattern flow model for the fair
non-repudiation pattern). The last layer in our design related models is the platform
specific models. Our runtime system is based on the SeAAS architecture (for details we
refer to [8]). The security services in the SeAAS architecture are developed based on a
BPEL engine. Furthermore, WS-* standards are used for encoding security as well as

180 B. Katt et al.

functional policies. Therefore, the platform specific workflow models are BPEL models
and the platform specific fair non-repudiation service is based on a WS-Policy model.
More information about our architectural design based on SeAAS can be found in [8].

5 Prototypical Implementation

We have developed a prototype that realizes the framework components that we dis-
cussed before. In this section we present our prototype and show the steps that are
performed in our framework and give examples of screenshoots for the graphical user
interface. The prototype is implemented as an Eclipse plug-in. The GUI consists of two
main parts. An import interface for importing the UML models and a transformation
interface for performing the transformation and refinement steps.

5.1 UML Models Import

The model import interface is responsible to import different UML models. The main
SECTET (meta-)models for the different layers, i.e. the PIM metamodel shown in Fig-
ure 4, the refinement metamodels and the pattern models stored in the pattern catalog
(e.g., in Figures 9, 10, 11 and 12) are previously stored in our Eclipse plug-in. These
models can be changed or extended, e.g., if a new pattern is plugged into the pattern
catalog or a new requirement is introduced. The case study models can be created by
any UML-model editor and imported to our prototype through the import GUI shown
in Figure 13. These models include the workflow activity diagram (Workflow view) and
class diagrams of the interface view, i.e., models shown in Figures 6, 7 and 8.

(a) Import wizard within Eclipse. (b) Import screen.

Fig. 13. Import interface for importing UML models

Enhancing Model Driven Security through Pattern Refinement Techniques 181

5.2 Selection and Refinement Wizards

The second main interface in our implementation is the selection and refinement wiz-
ards. The selection and refinement wizards are automatically generated from the pattern
models. For example, from the non-repudiation metamodel shown in Figure 9 the se-
lection wizard shown in Figure14(a) is generated, which enables the selection between
the different non-repudiation pattern supported in our pattern catalog. The first and sec-
ond refinement steps are integrated in one wizard shown in Figure 14(b). Based on the
flow and policy patterns of non-repudiation this wizard is automatically generated and
enables entering information required for generating the pattern workflow as well as the
pattern policy of our case study.

(a) Selection wizard for abstract non-
repudiation patterns.

(b) Refinement wizard for fair non-
repudiation pattern.

Fig. 14. Selection and refinement wizards

6 Related Work

Different approaches have been proposed in the literature that deal with modeling of
security requirements using security patterns, protocols and code generation methods.
In [19,18], Wolter et. al. have modeled security goals for cross-organizational business
processes. They have considered SOA-based federated environment, which comprises
multiple independent trust domains. Other work within the Security Engineering com-
munity deals with specification of security requirements in the context of formal meth-
ods. Examples are, the UML extension UMLsec [9] together with the AUTOFOCUS
tool [17] and the PCL approach [2]. Few groups deal with aspects of code generation
in the context of secure solutions. Among these are the groups of Basin et. al. [16,1]
and Ulrich Lang [10]. Both approaches present frameworks for high-level specifica-
tion of access rights including code generation; the former in J2EE and the latter in
CORBA environments. Satoh et.al. [14], have solved authentication scenarios in an en-
vironment using identities, which are federated among multiple domains and generated
WS-SecurityPolicy assertions for IBM-WAS.

182 B. Katt et al.

Security patterns have been extensively used for modeling security requirements
[15,12]. In [3,13] D. G. Rosado et. al. have discussed the high- and mid-level abstrac-
tions of security patterns and architectural security patterns. N. A. Delessy et. al. [4],
in their research have proposed pattern-driven security process for SOA applications.
F. B. Medina et. al. [5] have introduced abstraction of security patterns, based on the
problem space and architecture of patterns.

The main problem of these modeling aproaches is that they assume one security
pattern for the generated security artefacts and fixed and hard-coded security services.
The proposed security modeling framework SECTET is an extension of the original
SECTET framework presented in [6], which makes it possible to support different pat-
terns for the same security requirement based on a pattern catalog that stores pattern
models. Original SECTET have addressed security aspects in inter-organizational work-
flows and transformed security extensions into policies to configure the target architec-
ture. In pattern enhanced SECTET, we introduce a further layer of abstraction between
secure business models and platform-specific artefacts. The security requirements are
mapped to abstract security patterns, which are used to select a suitable architectural
security pattern. Finally, two refinements are executed to generate pattern flow and pat-
tern policy models, which are used to generate configurations for security services of a
SeAAS-based target architecture.

7 Conclusion

In this paper, we have proposed the SECTET framework, for security modeling us-
ing a security pattern refinement process. In pattern enhanced SECTET, we have ex-
tended our previous SECTET framework in particular and current security modeling
approaches in general, by two dimensions. First, we introduced a Pattern Refinement
process between abstract security requirements and code. With this we are able to trans-
form the high level security patterns to concrete security patterns for a target security
architecture using configurations generated from models. Second, our target platform
i.e., SeAAS (Security As A Service) architecture is based on the principles of SOA
applications, which enforces security with decoupled, dedicated and shared security
services in a security domain. We found that the current security modeling approaches
rely on hard-coded security services. With the proposed extension, based on pattern re-
finements, the security services executing at the target platform can be configured to
use a variety of security patterns and mechanisms. We have illustrated our approach for
cross-domain non-repudiation requirement of the HOME case study of SecureChange
EU-FP7 project. We have refined the non-repudiation pattern for SeAAS architecture as
a target platform and generated WS-SecurityPolicy to configure the security services.
In future, we intend to investigate more complex security scenarios and solve them us-
ing our approach. Furthermore, formal methods can investigated for the purpose of the
verification of the soundness of transformation process, as well as the analysis of the
generated run-time security policies.

Enhancing Model Driven Security through Pattern Refinement Techniques 183

References

1. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models to Access
Control Infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91 (2006)

2. Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: A derivation system and compositional logic
for security protocols. J. Comput. Secur. 13(3), 423–482 (2005)

3. David, R., Carlos, G., Fernandez-Medina, E., Piattini, M.: Security patterns and requirements
for internet-based applications. Internet Research 16(5), 519–536 (2006)

4. Delessy, N., Fernandez, E.B.: A Pattern-Driven Security Process for SOA Applications. In:
ARES 2008: Proceedings of the 2008 Third International Conference on Availability, Relia-
bility and Security, pp. 416–421. IEEE Computer Society, Washington, DC (2008)

5. Fernandez, E.B., Washizaki, H., Yoshioka, N.: Abstract Security Patterns. In: SPAQu 2008 -
2nd Int. Workshop on Software Patterns and Quality (2008),
http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/

6. Hafner, M.: SECTET A Domain Architecture for Model Driven Security. PhD Thesis
(November 2006)

7. Hafner, M., Breu, R.: Security Engineering for Service-oriented Architectures. Springer (Oc-
tober 2008)

8. Hafner, M., Memon, M., Breu, R.: SeAAS - A Reference Architecture for Security Services
in SOA. Journal of Universal Computer Science 15(15), 2916–2936 (2009),
http://www.jucs.org/jucs_15_15/seaas_a_reference_architecture

9. Juerjens, J.: Secure Systems Development with UML. Springer (2004)
10. Lang, U., Schreiner, R.: Developing Secure Distributed Systems with CORBA. Artech

House, Inc., Norwood (2002)
11. OASIS. Extensible Access Control Markup Language (XACML) (2006),

http://www.oasis-open.org
12. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: A BPMN Extension for the Modeling

of Security Requirements in Business Processes. IEICE - Transactions on Information and
Systems E90-D(4), 745–752 (2007)

13. Rosado, D.G., Fernandez-Medina, E., Piattini, M.: Comparison of Security Patterns. IJCSNS
-International Journal of Computer Science and Network Security 6(2B), 139–146 (2006)

14. Satoh, F., Nakamura, Y., Ono, K.: Adding Authentication to Model Driven Security. In:
ICWS 2006: Proceedings of the IEEE International Conference on Web Services, pp. 585–
594. IEEE Computer Society, Washington, DC (2006)

15. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models, and New
Applications. Springer-Verlag New York, Inc., Secaucus (2003)

16. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

17. Wimmel, G., Wisspeintner, A.: Extended Description Techniques for Security Engineering.
In: Dupuy, M., Paradinas, P. (eds.) Trusted Information. IFIP, vol. 65, pp. 469–485. Springer,
Boston (2002)

18. Wolter, C., Menzel, M., Christoph, M., et al.: Model-driven business process security re-
quirement specification. J. Syst. Archit. 55(4), 211–223 (2009)

19. Wolter, C., Menzel, M., Meinel, C.: Modelling Security Goals in Business Processes. In:
Modellierung, pp. 197–212 (2008)

http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/
http://www.jucs.org/jucs_15_15/seaas_a_reference_architecture
http://www.oasis-open.org

Project Zeppelin:

A Modern Web Application Development
Framework

Leigh Griffin, Peter Elger, and Eamonn de Leastar

Telecommunications Software and Systems Group,
Waterford Institute of Technology, Waterford, Ireland

{lgriffin,pelger,edeleastar}@tssg.org

Abstract. Application Platforms, by which we mean the programming
languages, libraries, frameworks and associated run time support, are
central to the modern development experience. They are often imbued
with an ethos, value set and engineering approach that carries through
the full lifecycle of the platform itself, steering its development and evo-
lution through the various challenges - both technical and commercial -
it must surmount in order to survive. Anecdotal evidence would suggest
that these platforms have a lifespan of approximately 10 years - after
which they enter a gradual decline. The reasons for this decline vary,
including commercial shifts, new (or rediscovered) thinking and changes
in the underlying technology. The authors believe that two of the ma-
jor platforms in use today - J2EE and .NET - may be about to enter
this declining phase. The major factors contributing to this decline; in-
cluding considerable complexity, significant disjunction in the developer
experience and major challenges in meeting the demands of the modern,
predominantly mobile, social web. A new application platform, dubbed
Zeppelin, architected to programatically meet the challenges of the Fu-
ture Internet is presented.

Keywords: Eternal System, Javascript, Node.js, Web Application.

1 Introduction

New applications and services are increasingly being developed so that they can
be deployed into the cloud, be that Amazon Web Services (AWS), Microsoft
Azure, special purpose clouds such as those emerging for level 3 secure health
care data, home grown clouds or clouds provided by other third-party vendors.
As services are deployed into third-party clouds the cost of operating these ser-
vices change in their profile to become more opex (operational expenditure)
based, as they typically incur monthly, recurring fees based on their usage of
cloud resources. These opex costs drive new requirements for services such as
efficiency and quality, in terms of using cloud resources, as an inefficient service
can generate substantial additional, and unneeded, costs. A poor quality ser-
vice, as determined by resource consumption, may inadvertently spike costs by

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 184–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Project Zeppelin 185

an order of magnitude whilst handling a relatively small number of clients. The
challenge for todays services can be summarised by what has become known
as the C10K problem - how can a service deal with 10,000 concurrent clients
on a single system and how can this scale horizontally to handle 20K or 30K
simultaneous connections? This is the classic traffic spike problem, whereby a
service or website suddenly has to handle 10,000 web browsers, or 10,000 mobile
phones all asking for the same key piece of data. The phenomenal rise of social
networking and the associated applications provisioned across it has made this
usage scenario a daily reality for service management. As a result, performance of
concurrency, or threading, becomes a key issue for modern services in the cloud
and in social networks. Failure to deal with the C10K problem often results in
service failure in production. Related to this are the challenges of scalability and
robustness i.e. how can a cloud service gracefully scale as the service takes off,
without failure as its traffic grows and also how can we ensure that instead of
proportionally increasing opex costs, the service exhibits economies of scale.

These are not trivial challenges and current service stacks such as the LAMP
(Linux, Apache, MySQL, and PHP) stack, service creation frameworks such as
Enterprise Java or Ruby on Rails, and their resultant service management tech-
nologies are destabilizing in the face of these demands [4]. Within this paper
we will explore the challenging world of provisioning services within the cloud,
examine the technological shift away from traditional approaches and outline
an approach for developing a modern web application framework. This paper is
broken down into six sections. This section, the introduction, serves as the first.
The technical context examining the change in the environment is presented in
section two. The third section examines the challenges of concurrency in mod-
ern programming. Section four discusses development frameworks and platforms
to host services and the strategies involved. The fifth section looks at Project
Zeppelin, outlining the design decisions and architecture. The sixth, and final
section, discusses our future work and conclusions.

2 Technical Context

2.1 Web Evolution

The evolution of the Web has been well charted in recent years. With the coin-
ing of the term Web 2.0 (2004) [8] a useful starting point, there is a reasonably
comprehensive understanding of how the web as a platform has progressed since.
This has included the stabilisiation of web services protocols, the rise of User
Generated Content, the proliferation of Mobile web, the advent of the Smart
Phone/Device/Tablet and the App Store Model. However, the underlying tools,
architectures and development practices have also been through an overhaul over
this period and have made this innovation cycle possible. In particular, there has
been a marked shift from the traditional enterprise stack (EJB2, .NET), and
high ceremony development methods (RUP) to a more agile approach (XP),
with a full embrace of more open tools and frameworks. Sometimes termed
lightweight approach, this shift has included rapid evolution in web frameworks

186 L. Griffin, P. Elger, and E. de Leastar

(Spring, OSGi) and the arrival of highly productive variations on these, most
notably Ruby on Rails and its derivatives, usually bound to a relational database
(MySQL). Coupled with this evolving stack, web browser performance, stability
and capability has improved dramatically. The client side web is now clearly
formed by the nexus of HTML, CSS and JavaScript, with the latter in partic-
ular the lynchpin of significant innovation in the usability, power and flexibility
of web applications. A set of JavaScript libraries (jQuery and others) has radi-
cally altered the usage patterns within the browser, unleashing unsuspected fea-
tures in a robust environment. All three are sometimes grouped under the term
HTML5, which in addition includes standardised approached to geo-location, 2D
and 3D graphics, offline services, standard communications channels and more.
Although not quite accurate, the term HTML5 usefully encapsulates the reach
and ambition of the latest wave of browsers, and would seem to have significant
momentum from all major players, hardware and software and infrastructure.

2.2 Revolution

There are signs, however, that this evolutionary approach may have run its
course. The lightweight development stack of Relational Database, Component
Service/Framework + Template Engine, all running on a Linux back end (a vari-
ant of the so called LAMP stack), is encountering a major shift in the underlying
infrastructure - the arrival of the cloud. In particular, cloud based services cou-
pled with advances in virtualization, have altered the principles around which
applications have been architected to date. When this is also combined with
various models for smart phone/tablet development, there is an argument that
we are entering into another inflection point, comparable to the one foreseen in
2004. What this particular movement will lead to is as yet unclear. However,
it seems certain to yield new opportunities in services, mobility, flexibility and
productivity in application development and deployment. In this context, there
are signs of disruption within the current development stack. Although signif-
icant stability has been achieved since 2004, many of its tenets are now being
called into question:

Database. The dominance of the relational database is no longer a given. The
NoSql movement [15] is gathering pace with many open implementations of this
broader, and perhaps more scalable architecture for the data store (MongoDB,
CouchDB). When coupled with Googles Map/Reduce, it may be possible for
more highly capable and intelligent systems to be constructed at a fraction of
the cost of traditional relational systems.

Middleware. Having already preceded though a series of major shifts over the
past decade (rise and fall of Object Request Brokers, rise and fall of EJB, rise
and stabilization of web frameworks), middleware is a useful touchstone when
assessing the state of software and services. Evidence is mounting that the sheer
complexity of current enterprise stack (J2EE, .NET) is causing profound limi-
tations in the scale and reach of applications thus architected. The lightweight

Project Zeppelin 187

stack, evolved in some sense as an alternative to the traditional stack, may have
reached its peak in Heroku, a marriage of cloud based services with a stable web
framework. However, more disruptive technology is already emerging. In partic-
ular, the key to truly scalable services has always been the approach to concur-
rency. A radical alternative to traditional threading model (embodied in Heroku)
is emerging. In particular, successive attempts to solve the concurrency problem
(discussed below) are converging towards a more radical approach; namely the
so-called non-blocking option.

Client. The rise of the app store model is still taking shape. In particular,
the introduction of this model to the general web through the Google Chrome
Web Store and Social Networking Applications, may generate unforeseen con-
sequences and trajectories in services and apps. For instance, the Chrome web
store contains many applications that are indistinguishable from their apple app
store equivalents. However, these applications are full HTML5 (not native), are
by definition more cloud oriented, and are thus liberated from highly restrictive
(and complex) native app development toolkits.

3 Concurrency Challenges

3.1 Threads

Diverse approaches to programmatically coping with concurrency have long been
a source of contention among software developers. The evolution of the various
approaches to concurrency is well illustrated in the C like languages, particu-
larly Java. Although Java was designed with thread based concurrency in mind
(unlike C and C++), its concurrency support has evolved significantly since
its inception, with adjustments made to the core syntax, the libraries and the
recommended approaches. The fundamental mechanism (synchronised keyword
to serialise method access), has been supplemented with concurrent data struc-
tures, more expressive annotations, and an extensive rework of the concurrency
model in Java 5 to incorporate a new executor framework. However, concur-
rent programming in Java is still regarded as complex and error prone, with
non-determinism an ever present worry, even for systems long deployed in the
field.

3.2 Actors

The java concurrency model is founded on the shared state semantics of a single
multi-threaded process, whereby threads can share resources and memory, but
with locks associated with specific data structures. Alternatives to this model
have gained some ground. The actors model rules out any shared data structures
(and their resource hungry locks), with concurrency achieved by message pass-
ing between autonomous threads - each thread (an actor) has exclusive access
to its own data structures. In functional languages derived from Java (Scala,

188 L. Griffin, P. Elger, and E. de Leastar

Clojure), immutability itself is elevated to be the default programming model.
This requires wholesale adoption of functional approaches (or object-functions
hybrids in the case of Scala [1]), with the consequent profound change in pro-
gramming style and heritage. With all of these approaches there is one common
characteristic. Separate threads are created, with their own stacks and program
counters. Although the opportunities for inter-thread synchronization vary, such
synchronization must occur at some stage, with consequent overhead associated
with task switching, memory usage and general processor load.

3.3 Non Blocking IO

There is an alternative, which has its origins in an era that predates the general
acceptance of multi threaded infrastructure. Evolved to meet the requirements
for responsive I/O in single processor systems, it sometimes takes the term Non
Blocking IO, although this term has also been applied to threaded designs. Orig-
inally devised as a set of interrupts and associated daisy chained interrupt han-
dlers, in the modern sense (if we can call it that), non-blocking I/O implies an
extensive use of callbacks in API design and usage. In this context, all opportu-
nities for blocking are replaced by passing a callback parameter, to be invoked
on completion of the deferred task or I/O request. A somewhat counter-intuitive
programming style, it has been criticised for its verbosity and general awkward-
ness. In certain programming languages it is indeed verbose - Java in particular
is encumbered with a high-ceremony anonymous inner class syntax which makes
callbacks quite difficult to orchestrate. Also, in Java and other languages of that
generation, the callbacks are limited in scope and place severe restrictions around
the context they can access. What they lack is a closure capability - essentially a
form of delegate/callback/function handle - which also carries (encloses) a well
defined context that can be safely accessed when it is activated. Closures have
become a hot topic in programming language recently, and Java itself is slated
to this capability in future versions. JVM derived languages such as Scala and
Groovy have this capability, as does Closjure via its Lisp heritage. In fact the
term closure originates from these functional languages.

3.4 C10K Problem

This challenge is made concrete by what is known as the C10K problem, first
posed by Dan Kegel in 2003 [9]. The C10K is this: how can you service 10000
concurrent clients on one machine and other research has investigated the reverse
of this problem [3]. The idea is that you have 10000 web browsers, or 10000
mobile phones all asking the same single machine to provide a bank balance
or process an e-commerce transaction. Thats quite a heavy load. Java solves
this by using threads, which are way to simulate parallel processing on a single
physical machine. Threads have been the workhorse of high capacity web servers
for the last ten years, and a technique known as thread pooling is considered to
be industry best practice. However, threads are not suitable for high capacity
servers. Each thread consumes memory and processing power, and theres only

Project Zeppelin 189

so much of that to go round. Further threads introduce complex programming
issues, including one known as deadlock. Deadlock happens when two threads
wait for each other. They are both jammed and cannot move forward without
the other releasing a hold on a particular resource. When this happens, the
client is caught in the middle and waits, forever. The website, or cloud service,
is effectively down.

Event Based Programming. There is a solution to this problem; event-based
programming. Unlike threads, events are light-weight constructs. Instead of as-
signing resources in advance, the system triggers code to execute only when there
is data available. This is much more efficient. It is a different style of program-
ming, one that has not been quite as fashionable as threads. The event-based
approach is well suited to the cost structure of modern computing, it is resource
efficient, and enables one to build C10K-capable systems on cheap commodity
hardware. Threads also lead to a style of programming that is known as syn-
chronous blocking code. For example, when a thread has to get data from a
database, it hangs around (blocks) waiting for the data to be returned. If mul-
tiple database queries have to run to build a web page (to get the users cart,
and then the product details, and finally the current special offers), then these
have to happen one after another, in other words in a synchronous fashion. You
can see that this leads to a lot of threads alive at the same time in one machine,
which eventually runs out of resources. The event based, non-blocking model is
different. In this case, the code does not wait for the database. Instead it asks
to be notified when the database responds, hence it is known as non-blocking
code. Furthermore, multiple activities do not need to wait on each other, so the
code can be asynchronous, and not one step after another (synchronous). This
leads to highly efficient code that can meet the C10K challenge. JavaScript is
uniquely suited to event-based programming because it was designed to handle
events. Originally these events were mouse clicks, but now they can be database
results. There is no difference at an architectural level inside the event loop,
the place where events are doled out. As a result of its early design choices to
solve a seemingly unrelated problem, JavaScript, as a language, turns out to be
perfectly designed for building efficient services [2].

Node.js. The one missing piece of the JavaScript puzzle is a high performance
implementation. Java overcame its early sloth, and was progressively optimised
by Sun. JavaScript needed a serious corporate sponsor to really get the final raw
performance boost that it needed. Google has stepped forward. Google needed
fast JavaScript so that its services like Gmail and Google Calendar would work
well and be fast for end-users. To do this, Google developed the V8 JavaScript
engine [16], which compiles JavaScript into highly optimised machine code on
the fly. Google open-sourced the V8 engine; and it has been adapted by the
open source community for cloud computing. The cloud computing version of
V8 is known as Node.js, a high performance JavaScript environment for servers
[6] [7]. All the pieces are now in place. The industry momentum from cloud and

190 L. Griffin, P. Elger, and E. de Leastar

mobile computing, the conceptual movement towards event-based systems and
the cultural movement towards accepting JavaScript as a serious language [10].
All these drive towards a tipping point that has begun to accelerate: JavaScript
is the language of the next wave

4 Platforms and Frameworks

4.1 Platforms

Cloud Computing. Cloud computing is one of the key drivers compelling the
current wave of innovation [5]. For the first time, corporations are moving their
sensitive data and operations outside of the building. They are placing mission
critical systems into the cloud. Cloud computing is now an abused term. It means
everything and nothing. But one thing that it does mean is that computing ca-
pacity is now metered by usage. Technology challenges are not solved by sinking
capital into big iron servers. Instead, the operating expense dominates, driving
the need for highly efficient solutions. The momentum for green energy only
exacerbates this trend.

Mobile Computing. Mobile computing represents the other side of the coin.
The increasing capabilities of mobile devices drive a virtuous circle of cloud-
based support services leading to better devices that access more of the cloud,
leading to ever more cloud services. The problem with mobile devices is the severe
fragmentation. Many different platforms, technologies and form factors vie for
dominance, without a clear leader in all categories. The cost of supporting more
than one or two platforms is prohibitive. And yet there is a quick and easy
solution: the new HTML5 standard for web applications. This standard offers
a range of new features such as offline apps and video and audio capabilities
that give mobile web applications almost the same abilities as native device
applications. As HTML5 adoption grows, more and more mobile application will
be developed using HTML5, and of course, made interactive using JavaScript,
the language of the web.

Social Applications. Social applications refers to a class of applications that
integrate with one or more social networks, for example twitter, facebook,
foursquare [21][22][23]. Social Applications are designed to be cross platform, ac-
cessible on mobile devices, potentially provisioned in the cloud or in standalone
hardware and designed to emulate native applications. A social application can
take the following forms:

– Within the context of a social networks primary site - usually within an
iframe tag on the page such as a facebook canvas app [24]

– As a separate web site that integrates with a social network through an API
– As a mobile web app that integrates with a social network through an API
– Data Drivers for database and resource access

Project Zeppelin 191

– As a native smartphone application that integrates with a social network
through an API

Whilst this encompasses a broad range of possible applications, the common
thread is that of socialization. The effect of socialization is that it can cause
some applications to become very popular amongst a user base very quickly.
This is often referred to as viral spread because the application is passed from
one user to others in their social graph and then on to friends of friends. The
imact of this viral spread on an appilcation is to cause sudden spikes in server
load for a web application. Note that this also holds true for native mobile ap-
plications as most native apps require some back end server component. Some of
the most popular social applications have quickly gained user bases in the many
millions. Advertisers and large brands are becoming aware of the possibility of
engaging their customers and potential customers through social networks like
facebook. This can be done through custom social applications that typically
provide some reward to a consumer in exchange for engaging with the applica-
tion. The advertiser in question is looking to take advantage of viral spread in
order to amplify its message across the social network. For a brand this can be
a very cost effective means of advertising when compared to traditional print
and TV advertising. The life cycle of a social application in the field is typically
short lived. and will consist of an initial release and promotion phase to seed the
application with a user base. The app may or may not then spread virally at that
point. Typically the promotion will run for a short period of time - of the order
of a few weeks. It will then come to the end of its life and usage will drop off
as the next promotion is started. A more cost effective way of developing these
types of applications both during development and in operational deployment
was needed.

4.2 Frameworks

It is only a few short years since Ruby on Rails (RoR) was launched. At the time
if its inception, RoR was a highly innovative development framework [13][14].
The key driver for mass adoption of RoR was hugely increased developer pro-
ductivity through ”convention over configuration”, an approach which has now
certainly entered the zeitgeist and which has been adopted by almost all of the
current development stacks: for example Pythons Django or PHPs Cake. The
predominant application deployment model for most organizations during the
rise of RoR was owned server infrastructure: i.e. make some capital investment
in server hardware on which to deploy applications. Under this model operational
expenditure was relatively static and was based on monthly costs for colocation
and bandwidth. Operational efficiency of deployed, in the field, applications was
not so important for anyone but the really large sites, as long as the application
could scale horizontally to some degree, capacity could be added by purchasing
more hardware which was a one off hit if it could be accommodated into exist-
ing cabinets / racks. With the mass adoption of cloud computing, this model is
flipped on its head. Deploying to the cloud requires little or no capital invest-
ment; however, operational expenditure is now directly tied to the efficiency of

192 L. Griffin, P. Elger, and E. de Leastar

deployed applications. There is now a clear economic driver for efficient web ap-
plications and services. Whilst advances have been made by the major languages
and frameworks, fundamentally, they do not make the best use of the available
compute resources and are therefore not best suited to operation in the cloud.
Furthermore experience has shown that these frameworks suffer from a number
of other deficiencies:

SPA Disjunction. RoR type frameworks exhibit a Model View Controller
(MVC) architectural structure. Under this paradigm, an application consists of
a set of MVC triplets that are processed server side to render HTML back to
the client. However, most modern applications no longer fit this model and are
increasingly adopting the Single Page Application (SPA) or Multi-Single Page
Application (MSPA) architectural style. Under this model static html is sent
down to the client and acts as a basic application frame. Client side JavaScript
then makes AJAX requests to hang the front end functional elements onto the
application frame. Consequently much more of the application logic is imple-
mented on the client in JavaScript. Whilst some work has been done in this area,
notably backbone,js and Faux, none of the major MVC frameworks provide any
governance or organizational structure for client side JavaScript. Developers are
left to construct their own ad-hoc client side application architectures over li-
braries such as JQuery. This often means that the client can quickly degenerate
to spaghetti code with little or no unit testing.

Code Duplication. The SPA Disjunction also leads to code duplication. Take
for example the task of verifying and sanitizing user input. To provide a good
user experience and rapid response time, this task is best done on the client.
However for security reasons it must also be checked server side. Therefore this
logic is typically implemented twice, once in javascript on the client and again
on the server in the language appropriate to the framework being used (i.e. Ruby
and Python).

Relational Database Assumption. RoR type frameworks were built around
the assumption that the framework would talk to a single relational database.
Indeed in early versions of rails it was difficult to introduce an additional re-
lational data store into an application. All the current production frameworks
make the unstated assumption that the back end is an SQL compliant database.

Language Proliferation. To work end to end with any current MVC frame-
work one must be proficient in a minimum of five languages - SQL, one of
Ruby/Python/PHP..., JavaScript, HTML5 and CSS. This can have one of two
effects, either individual developers must context switch between the various
languages depending on where they are in the stack at a given point in time, or
a team is broken down into front end and back end specialists, a division which
can cause delay and communication overhead when implementing application
functionality.

Project Zeppelin 193

5 Project Zeppelin

Zeppelin is a lightweight end to end javascript application framework based on
node.js and designed to address some of the short comings outlined in the previ-
ous section. The mental disconnect from a developers point of view is removed
using this approach. With the client authored in Javascript, the server side also
speaking Javascript and the data store operating a noSQL design with Javascript
bindings, the requirements from a developers point of view drops dramatically.
The language proficiency is minimised to a trinity of Javascript, HTML5 and
CSS, thus empowering the developer to manage and maintain all aspects of a
system. A side effect of end to end Javascript is a low friction environment as
technologies are not battling against each other. Zeppelin is designed to run many
applications on the same stack instance. It can be considered a cross between a
framework and an application container / server. The current beta software is
based on the Architecture visible in Figure 1.

Fig. 1. Zeppelin Overview

194 L. Griffin, P. Elger, and E. de Leastar

Zeppelin consists of several core components including:

– Framework Core: A utility for setting up and tearing down applications.
Stack configuration and management is also housed within the core.

– Routing/Dispatching: matches contollers to RISON urls for example this
will match the url http://host/app/(controller.method)/params to a specific
controller and method invocation. There is no routing table, all routing is
handled dynamically

– Middlewares: global stack objects that provide services to applications. For
example, authentication and authorization, logging

– Data Drivers for database and resource access
– Framework based implementations and utility functions for server side con-

trollers and models.
– Component infrastructure: experimental shared components for use across

multiple apps

User View

Controller

ViewModel

Model

Controller

Data
Store

this.render()

User Action

Task [tasks]

Get (JSON)

JSON

Render

Task [tasks]

Data

Client Node.js

Fig. 2. Distributed MVC Architecture

The distributed MVC architecture, as seen in Figure 2 is a change from the
traditional MVC Pattern. It retains the isolation of domain logic from the user
interface but allows the pattern to function in a more scalable manner, with
cloud style applications in mind. A shift in processing means the client device
can take a larger responsibility allowing the server more room for receiving and
processing requests, passively boosting scalability. This style also lends itself to
code reuse and the rapid development and deployment of applications built on
the stack.

Each Zeppelin application implements a distributed Model View Controller
architecture comprising of:

Project Zeppelin 195

– Client views: html fragments + templates
– Client Controllers: javascript objects implementing render() and bind()
– Client Models: Provide interface to server components of local storage
– Server Controllers: Server side entry points
– Server Models: Use data drivers to access file system, databases etc

A sequence diagram, visible in Figure 3, shows the communication flows between
client and server during a typical application setup. Figure 4 shows the same
client server components for a single application.

Fig. 3. Client Server Sequence Diagram

Zeppelin in the Field. Zeppelin has been used to successfully build a number
of Facebook Applications including Ireland Town [18], developed by Betapond
[17]. Ireland Town is a typical Facebook application, showing incredible growth
and usage over a short period of time. Figure 5 shows some usage statistics
for Users and User generated content (sharing on Facebook) over a three week
period. From the statistics gathered, approximately 300,000 shared pieces of
content, typically wall posts, were generated within a 21 day period. To highlight
the potential for a viral application to reach millions of end users, consider this
simple scenario. If each person who shared this content has typically 25 people
in their network, that is 7,500,000 views on the primary message appearing on
news feeds. If 10% of these interact with the message a further 18,750,000 views
are generated. The application had the potential to have 26,250,000 total views
on the message distributed from 300,000 initial interactions.

From a marketing point of view, this opens up a very large demographic
through the sharing mechanism in a relatively short time scale. From an appli-
cations point of view, a fraction of 1% of 26 million people using the application

196 L. Griffin, P. Elger, and E. de Leastar

Fig. 4. Client Server Architecture

Fig. 5. Ireland Town Stats

represents a scalability conundrum that existing technology struggles with and
interactions that the C10K problem did not foresee. The scenario presented is
deliberately under provisioned. The average number of connections a person has
is statistically placed at 120 by Facebook [25]. An application that crosses demo-
graphics and reaches a truly international audience will rapidly reach the usage
of the Ireland Town application within a few hours of launch. The Ireland Town

Project Zeppelin 197

application was thematically based around St. Patricks Day, limiting the global
audience somewhat, but still producing a challenge scalability wise which helped
test and shape the Zeppelin platform. As viral marketing techniques focus in on
heavier application interaction, the potential to cripple an application and po-
tentially halt a marketing campaign is imminent. Such a scenario is driving the
design of Zeppelin and ensuring that applications are engineered to meet the
challenges of cloud computing and social networking.

6 Future Work and Conclusion

The software developed as part of this work is freely available on [27] and is cur-
rently labelled as beta software. The project has another nine months of funded
development with a clear strategy outlined for future work. Unit test and integra-
tion testing support is mandatory in any candidate software release and Zeppelin
has identified a strategy for integrating this element. Expresso [11] will be used
as a server side testing framework. A complimentary application testing suite,
as realised by a Selenium Webrunner [12] for end to end testing of applications
is also proposed for integration. Testing frameworks are constantly evolving and
to that end, extensible bindings are made available, allowing end users of Zep-
pelin to integrate their testing framework of choice into the framework. Security
and Privacy aspects of the framework need further refinement in order to bring
the application in line with industry standards. Currently, standard attack tools
such as Nessus [26] are used to test the framework for exploits allowing a swift
response to vulnerabilities. The EternalS [19] project has a strong emphasis on
long living socio technical systems, particularly focusing on engineering princi-
ples and architectural decisions. Outputs derived from EternalS are helping to
shape the evolution of the Zeppelin Architecture. One such analysis surrounding
Product Line engineering principles within social networks, will allow Zeppelin
rapidly produce and deploy high quality applications. This paper examined the
change in application platforms and put forward a case for a new paradigm shift,
one which is a lightweight evolution of existing principles. The evolution, as we
have described, is driven by changes in the wider web, namely cloud computing,
and by how users interact with services. Predominantly mobile access of ser-
vices provisioned through social network applications brings with it scalability
challenges not previously encountered, or catered for in the design of existing
application frameworks. We have put forward a Javascript based application
framework, dubbed Zeppelin, and shown the environment in which it living.

Acknowledgments. This work has been co-financed by the European Commis-
sion - IST EternalS (FP7-247758) and the Enterprise Ireland Innovation Part-
nership Programme.

References

1. Oliveira, B., Gibbons, J.: Scala for Generic Programmers. In: Proceedings of the
ACM SIGPLAN Workshop on Generic Programming (2008)

198 L. Griffin, P. Elger, and E. de Leastar

2. Griffin, L., Ryan, K., de Leastar, E., Botvich, B.: Scaling Instant Messaging Com-
munication Services: A Comparison of Blocking and Non-Blocking techniques. In:
IEEE International Symposium on Computers and Communications (2011)

3. Liu, D., Deters, R.: The Reverse C10K Problem for Server-Side Mashups. In:
Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 166–177.
Springer, Heidelberg (2009)

4. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

5. Liang, H., Chen, W., Shi, K.: Cloud computing: programming model and informa-
tion exchange mechanism. In: Proceedings of the 2011 International Conference on
Innovative Computing and Cloud Computing, ICCC 2011, pp. 10–12. ACM, New
York (2011)

6. Node.js, http://nodejs.org/
7. Lerner, R.M.: At the forge: Node.JS, Linux J. (2011)
8. O’Reilly, T.: What is Web 2.0,

http://oreilly.com/web2/archive/what-is-web-20.html

9. Kegel, D.: The C10k problem, http://www.kegel.com/c10k.html
10. Tilkov, S., Vinoski, S.: Node.js: Using Javascript to Build High-Performance Net-

work Programs. IEEE Internet Computing (2010)
11. Expresso Test Framework, http://visionmedia.github.com/expresso/
12. Selenium Junit Web Runner,

http://code.google.com/p/selenium-junit-web-runner/

13. Maximilien, E.M.: Web Services on Rails: Using Ruby and Rails for Web Services
Development and Mashups. In: IEEE International Conference on Services Com-
puting (2006)

14. Viswanathan, V.: Rapid Web Application Development: A Ruby on Rails Tutorial.
IEEE Software 25(6), 98–106 (2008)

15. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39, 12–27 (2011)
16. Google V8 Javascript Engine, http://code.google.com/p/v8/
17. Betapond, http://betapond.com/
18. Ireland Town, http://apps.facebook.com/irelandtown/town
19. EternalS, https://www.eternals.eu/
20. Long, B., Long, B.W.: Formal specification of Java concurrency to assist software

verification. In: Parallel and Distributed Processing Symposium (2003)
21. Twitter, http://twitter.com/
22. Facebook, http://facebook.com/
23. FourSquare, http://foursquare.com/
24. Facebook Canvas Specification,

http://developers.facebook.com/docs/guides/canvas/

25. Facebook Statistics, http://www.facebook.com/press/info.php?statistics
26. Nessus, http://www.tenable.com/products/nessus
27. Zeppelin Code, https://github.com/pelger/Zeppelin

http://nodejs.org/
http://oreilly.com/web2/archive/what-is-web-20.html
http://www.kegel.com/c10k.html
http://visionmedia.github.com/expresso/
http://code.google.com/p/selenium-junit-web-runner/
http://code.google.com/p/v8/
http://betapond.com/
http://apps.facebook.com/irelandtown/town
https://www.eternals.eu/
http://twitter.com/
http://facebook.com/
http://foursquare.com/
http://developers.facebook.com/docs/guides/canvas/
http://www.facebook.com/press/info.php?statistics
http://www.tenable.com/products/nessus
https://github.com/pelger/Zeppelin

Managing Adaptivity in Parallel Systems

Marco Aldinucci2,
, Marco Danelutto1, Peter Kilpatrick3,
Carlo Montangero1, and Laura Semini1

1 Dept. of Computer Science, Univ. of Pisa
2 Dept. of Computer Science, Univ. of Torino

3 Dept. of Computer Science, Queen’s Univ. of Belfast
aldinuc@di.unito.it, p.kilpatrick@qub.ac.uk,

{marcod,monta,semini}@di.unipi.it

Abstract. The management of non-functional features (performance,
security, power management, etc.) is traditionally a difficult, error prone
task for programmers of parallel applications. To take care of these non-
functional features, autonomic managers running policies represented
as rules using sensors and actuators to monitor and transform a run-
ning parallel application may be used. We discuss an approach aimed
at providing formal tool support to the integration of independently
developed autonomic managers taking care of different non-functional
concerns within the same parallel application. Our approach builds on
the Behavioural Skeleton experience (autonomic management of non-
functional features in structured parallel applications) and on previous
results on conflict detection and resolution in rule-based systems.

1 Introduction

When designing, implementing and debugging parallel applications a number of
non-functional concerns typically have to be taken into account and properly
managed. A non-functional concern (sometimes referred to as extra functional
concern and more recently referred to as quality attribute) is a feature not directly
affecting what the parallel application computes, that is the parallel application
result. Rather, it is a feature affecting how the parallel application result is
computed. Notable examples of non-functional concerns in parallel applications
are performance, fault tolerance, security, power management, with performance
often being the most important.

Properly managing a non-functional concern usually requires the design, im-
plementation and tuning of code additional to that needed to compute the results
of a parallel application (the so-called business code). The kind of code needed
to manage a non-functional concern poses additional requirements on the appli-
cation programmer, as correct management of non-functional concerns usually
requires a quite deep understanding of the target architecture, which is not usu-
ally required when writing business code (only). As an example, performance

� This work has been partially supported by EU FP7 grant IST-2011-288570 “Para-
Phrase: Parallel Patterns for Adaptive Heterogeneous Multicore Systems”.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 199–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

200 M. Aldinucci et al.

optimization requires a clear vision of target architecture features in order to be
effective. Moreover, the non-functional code is often deeply interwoven with the
business logic code, thus resulting in much more difficult debugging and tuning
of both business logic and non-functional concern management code.

Radically different approaches may be taken to manage non-functional con-
cerns if we recognize that non-functional concern management is a completely
independent activity w.r.t. business logic (functional code) development. In fact,
non-functional concern management can be organized as a policy insurance pro-
cedure piggy backed onto business logic code. The policies used while managing
non-functional concerns are the non-functional programs and the mechanisms
used to implement these programs–typically those mechanisms used to “sense”
the computation status and to “actuate” policy decisions–represent the assem-
bler instructions of non-functional management.

If this perspective is taken, then management of non-functional concerns may
be implemented as an autonomic engine associated to the business logic code.
We can implement MAPE (monitor, analyze, plan, execute) loop based man-
agers where monitoring and execution of actions–those devised by policies in
the analyze phase and planned by other policies in the planning phase–happen
through the sensor and actuator mechanisms provided by the non-functional
concern management assembly instructions. Fig. 1 outlines this general idea.

Fig. 1. MAPE loop in autonomic management: the control flow is represented by solid
arrow lines and the dependencies are represented by dashed lines

Previous work has demonstrated the feasibility of such an approach to non-
functional concern management [2,3,18,1]. These works also pointed out two
interesting and somehow conflicting facts:

– Best management policies may be provided by experts in the specific non-
functional concern, rather than by “general purpose” non-functional concern
experts and/or application programmers.

– Different non-functional concern management policies may lead to conflicts,
that is decisions in relation to management of non-functional concern A may
impair decisions in relation to management of non-functional concern B.

Managing Adaptivity in Parallel Systems 201

Therefore autonomic management of different non-functional concerns poses
an interesting problem: how can we “merge” policies managing different non-
functional concerns without incurring serious penalties due to policy conflicts?

The rest of the paper introduces non-functional concerns and their autonomic
management in more detail (Sec. 2 and Sec. 3). Then conflict detection tech-
niques are introduced (Sec. 4). Sec. 5 discusses formal support for policy merging
and presents experimental results to assess the complete methodology. Finally,
conclusions are drawn in Sec. 6.

2 Non-functional Concern Management in Parallel
Computing

As stated in Sec. 1, a non-functional concern is a feature related to how the
results of an application are computed rather than to what these results actually
are. Typical non-functional concerns in parallel applications include:

Performance. By far, the most significant non-functional concern in parallel
programming. Usually, two distinct kinds of optimization may be required,
either latency or service time optimization, with differing implications for
the pattern used to exploit parallelism.

Security. Security requirements may be related to data processed and/or to the
code used to process input data to get output results. These requirements
may vary depending on the kind of resources used to compute the parallel
application: shared, private, reserved (i.e. not private, but with exclusive
access guaranteed).

Fault Tolerance. Considering the number of resources involved in large-scale
parallel applications, it is quite common to experience hardware faults during
the execution of an application. Thus fault tolerance is particularly critical
to ensure correct completion of applications in the event of failure of (part
of) the resources used, especially in the case of long-running applications.

Power Management. If different resources are available (with differences both
in terms of power consumption and of performance delivered) power saving
becomes a fundamental option in parallel processing, especially at large/
extreme scale.

In most cases, the management of these non-functional concerns requires quite
complex activities, including:

– Adoption of more complex mechanisms and tools with respect to those
needed to support business code only. For example, to ensure security, SSL
connections may be required instead of plain TCP/IP connections.

– Parallelization of sequential code or further parallelization of parallel code.
For example, in a data parallel computation the input data should be parti-
tioned among a larger number of threads to ensure a shortened completion
time of the application. Or the presence of a sequential bottleneck in a par-
allel computation may require parallelization of the bottleneck code.

202 M. Aldinucci et al.

– Complete restructuring of the parallel application, i.e. changing the parallel
design pattern used to exploit parallelism in the application. For example,
having first used a stream parallel pattern, we may realize that the perfor-
mance of our parallel application is not sufficient and may therefore apply
some data parallel pattern also on the different stream parallel pattern com-
ponents.

In general, various policies may be adopted to deal with non-functional con-
cerns, with different applicability pre-conditions and different results. For ex-
ample, when dealing with performance, if an application is not performing as
expected when running on a heterogeneous architecture, we can either try to
move parallel computation components of the application to more powerful ar-
chitecture nodes (processing elements) or we can try to improve the “structure”
of the parallel application (e.g. by changing the parallel pattern used) to give
better performance on the existing and available computing resources.

It is worth pointing out that, in general, it is easier to devise suitable man-
agement policies when the structure of the parallel application is completely
exposed. If the structure is not exposed, it is much more difficult to determine
what exactly is going on and thus to plan corrective action in the event of a
(non-functional) malfunction of the application. Indeed, without a general view
of the application parallel structure, it may even be difficult to realize that there
is a non-functional malfunction.

If the parallel pattern of the application at hand is completely exposed we are
enabled:

1. to verify whether the application is performing as expected, as the (parallel)
design pattern used will come with models that can be verified while the
application is running; and

2. to take the decisions suggested by the design pattern used to correct possible
problems/malfunctions.

Of course, the parallel pattern–or the pattern composition–used within the ap-
plication may be identified in two distinct ways: i) by analyzing the HLL (High
Level Language) code used to program the application (e.g. where we use a pro-
gramming framework based on algorithmic skeletons), or ii) by running some
kind of (data flow) analysis on the application code to determine whether the
underlying parallel activities fit one of the known parallel patterns.

3 Autonomic Management of Non-functional Concerns

Autonomic managers of non-functional concerns may be programmed as outlined
in Sec. 1 using MAPE loops. A MAPE loop is a control loop cycling on four
different phases (see Fig. 1):

M A monitoring phase, where the current status of the running parallel appli-
cation is observed by collecting data on what happens on the actual target
architecture: how many (partial) results have been computed, the time spent

Managing Adaptivity in Parallel Systems 203

Fig. 2. Implementation of ECA rules

in the different running tasks, the amount of resources used (CPU, Memory,
Network), etc.

A An analyze phase, where the current situation is analyzed, the behaviour of
the parallel application is compared to the expected behaviour and, possibly,
a plan to improve application behaviour is selected.

P A plan phase, where the decisions taken in the analyze phase are turned into
a sequence of actions to be run on the current application.

E An execute application, where the plan is actually executed.

The monitoring and plan+execute phases rely on the existence of a set of mech-
anisms with the ability to “sense” application behaviour and to “act upon”
application execution, i.e. to apply the plans devised by the manager policies
in the analyze+plan phases. These mechanisms–sensors and actuators–represent
“passive” code, as they are just called from within the manager. They also repre-
sent de facto the interface of the autonomic manager with the (running) business
code of the application and determine the kind of policies that can be effectively
implemented in the manager.

To clarify the concept, consider an application whose parallel pattern is based
on the master/worker paradigm. The availability of sensors reporting to the
monitoring phase the number of workers executing and the service time delivered
by the master/worker combination determines the capability to react to poorly
performing application states. In the same way, the availability of sensors capable
of reporting whether a parallel application component is running on a private or
on a public resource will enable the manager policies to take correct decisions
to ensure application security. On the other hand, the existence of mechanisms

204 M. Aldinucci et al.

(actuators) capable of stopping and restarting the application, recruiting new
resources and deploying and starting active code on the these newly acquired
nodes is fundamental to implementation of smart management policies, such as
increasing the number of workers in the master/worker pattern or moving an
application component from a public node to a private/reserved node.

As far as the “active” part of the MAPE loop is concerned–the analyze and
plan phases–different choices can be made. Plain code can be used to hard-wire
policies and plans and to call the sensor and actuator mechanisms. However, if
we wish to experiment with different policies, or investigate changing policies
“on-the-fly” depending on the perceived application status, a more dynamic
and declarative solution is necessary. Various systems, including the authors’
Behavioural skeletons [2,3], use ECA (Event Condition Action) rule systems to
implement manager policies.

An ECA rule is applied in a context that consists of the status of the system
at the beginning of the MAPE cycle and the set of events that occurred in
the previous cycle. Events may be external, that is generated in the system
environment, or internal, that is generated as part of the effect of an action
performed in the previous cycle. The application of a rule results in a new state
and possibly in (internal) events, to be considered in the next cycle, when also
the external events received in the current cycle will be considered.

More precisely, an ECA rule is a triple

〈trigger, condition, action〉

Whether a rule is applied in a MAPE cycle depends on its trigger and condition.
The trigger is a pattern describing of the events that may cause the application
of the rule (a.k.a. firing of the rule). At the beginning of the cycle, the trigger
is matched with the events in the current context. In case of success, the rule
becomes ready to fire: it actually fires, that is, its action is executed, only if its
condition holds in the current state. An event that is not matched, or is matched
when the condition does not hold, is lost. A single event can enable two or more
rules if it matches their triggers. In the case two or more rules are enabled in an
evaluation step they are fired concurrently.

The matching process may bind parameters in the trigger to the values carried
by the event: the scope of such binding covers the rule condition and action, thus
enhancing the capability of the notation to express complex policies. For the same
purpose, two triggers may be disjoint, meaning that either is sufficient to apply
a rule, and conditions may be combined with the standard logical operators.

Fig. 2 shows how selectors and actuators can enact ECA rules.
The use of ECA rules allows a better implementation of the manager policies.

In particular, we use the triggering event to start rule evaluation. In previous
work, we used JBoss rule syntax to express management rules. In that case rules
were tested cyclically for fireability. The period of the cycle de facto determined
the MAPE loop efficiency, as “too slow” loops react poorly and “too fast” loops
may lead to overly rapid decisions. In the following sections, we adopt the rule
system of Appel (see Sect. 5.1) to implement our rule-based manager programs.

Managing Adaptivity in Parallel Systems 205

Fig. 3. Behavioural skeletons

Appel chooses rules for firing using a loop such as that mentioned above. How-
ever, the trigger events are gathered continually and an ordered list of events is
exposed to the rule system at each loop iteration.

It’s worth pointing out here that “planning” activities in our MAPE loop
are not actually proper planning activities. Rather, the “plan” step in the loop
consists in applying a plan that has been already coded in the action part of
the ECA rules used as the program of the autonomic manager. These rules may
also include an action part that somehow modifies the rule set. For example,
a rule priority may be lowered or a rule may be substituted by a different one
which more precisely reflects the actions needed in the current situation. This
notwithstanding, the “plan” phase is actually a kind of “actuate one of the
already established plans” phase. At a rather higher level of abstraction, the
process leading to the design of the rules used as the program of the MAPE
loop is a kind of MAPE loop itself. The current situation is monitored and then
it is analyzed. During the analysis phase a policy is eventually identified which
turns into a plan to be actuated/executed by generating suitable loops for our
run time MAPE loop.

206 M. Aldinucci et al.

3.1 Behavioural Skeletons

Building on the concepts detailed in the previous Sections, we proposed some
time ago the concept of Behavioural skeleton, i.e. of a parallel design pattern
coupled with an autonomic manager taking care of a non-functional concern. In
the original behavioural skeleton design, the parallel design patterns considered
were the traditional ones in stream parallel computing models, that is task farm
and pipeline. Task farm (a.k.a. abstraction of the master/worker implementation
pattern) completely captures and models embarrassingly parallel computation
on streams. Pipeline, instead, captures and models computation in stages, with-
out backward communications. Also, the original behavioural skeleton design
considered management of only a single non-functional concern: performance.

The behavioural skeleton approach is outlined in Fig. 3. A behavioural skele-
ton library is made available to the application programmer. The library contains
several composable behavioural skeletons. Each behavioural skeleton consists of
a parallel design pattern and of an autonomic manager running a MAPE loop
and using an ECA rule system to implement policies. Suitable sensors and ac-
tuators are implemented within the parallel design pattern implementation to
support autonomic manager activities.

The application programmer in charge of writing a parallel application chooses
a behavioural skeleton or some composition of behavioural skeletons from the BS
library and provides the behavioural skeleton(s) business logic parameters. For
example, if the pattern used to express parallelism within the application is a
pipeline, the application programmer chooses the pipeline behavioural skeleton
and instantiates it passing as parameters the code (wrappers) implementing
the business logic of the pipeline stages. If one of the stages has to be further
parallelized, the application programmer may pass as pipeline stage an instance
of a task farm whose worker parameter implements the parallel stage business
logic.

Once the application programmer has written his/her application using be-
havioural skeletons, a compiler takes care of producing suitable parallel code for
the target architecture at hand. This code relies on the functions provided by
the behavioural skeleton run time library, of course.

It is worth pointing out several notable features of this approach:

– the system concerns (those requiring specific knowledge concerning the tar-
get architecture/system at hand) and the application concerns (those requir-
ing more domain specific knowledge related to the application field) are kept
completely separate. Separation of concerns clearly enforces productivity and
efficiency in both application and system programmer activities.

– the application time-to-deploy is significantly reduced by reuse of behavioural
skeleton library components.

– performance portability across different architectures is the responsibility of
system programmers (as opposed to application programmers) who provide,
in the behavioural skeleton library, components specific for the different tar-
get architectures.

Managing Adaptivity in Parallel Systems 207

– policy programmability is ensured by the ECA rule system embedded in the
autonomic manager MAPE loop. Programming rules (declarative style) is
much more user friendly and efficient than writing specific code using the
sensors and actuators provided by the associated design pattern.

Leveraging on all these attractive properties, a prototype implementation of be-
havioural skeletons on top of the ProActive/GCM middleware has been demon-
strated to be able to carefully manage performance in stream parallel applica-
tions [3].

4 Conflict Detection and Resolution in Rule-Based
Systems

Policy conflict has been recognized as a problem and there have been some
attempts to address it, mostly in the domain of access or resource control [17].

Kind of Conflicts. ECA rules conflict if (1) they may be triggered at the
same time and (2) their conditions overlap and (3) their actions conflict. While
this definition makes complete sense only in a specific application domain, as
one must be aware of what conflicting actions are, the problem is inherent to
policies. To ensure that policies can be applied it is necessary to remove conflicts.
This process involves two stages: first one needs to identify whether conflicts
can occur, that is to detect conflicts, and then to remove them, that is resolve
conflicts.

The general definition of policy conflict can be extended to accommodate
some special cases.

In [8] the authors discuss what it means for two rules to be triggered at the
same time, providing two different interpretations: their trigger sets overlap (and
the actual triggering event is in the overlap) or the action of one is in the trigger
set of the other. The former case has been called STI (Shared Trigger Interaction)
and the latter SAI (Sequential Action Interaction).

More generally, and this provides interesting future work in our case, the
designer may be interested in specifying conflicts on the basis of traces, i.e.
define as conflicting rules that (1) may be applied within n MAPE loops and (2)
whose actions conflict.

One further aspect to consider, and this is again based on experience in fea-
ture interaction, is the question as to how many policies are required to gener-
ate a conflict. In the community, discussions have taken place around a topic
called “three-way interaction”. In the feature interaction detection contest at
FIW2000[9] this was an issue, and the community decided that there are two
types of three-way interaction: those where there is already an interaction be-
tween one or more pairs of the three features and those where the interaction
only exists if the triple is present. The latter were termed “true” three-way
interactions.

208 M. Aldinucci et al.

Nothing has been written about true three-way interaction, as only one, quite
contrived, example of such an interaction has been found. Hence we consider
realistic to assume that no “true” three-way interaction may occur, and limit
ourselves to pair wise checking.

Conflict Detection Time. We distinguish between design time (static) and
run-time detection. In run-time detection, conflicts, if any, are looked for at each
execution step among the rules that can be applied at the step. When conflict
detection is anticipated at design-time, rules are filtered before being entered in
the policy engine, to detect those that would originate conflicts. In this way we
can provide the user with confidence that the rules are conflict free.

In our former works we addressed design time detection. In [13,14], we take
a logic–based approach to this end: conflicts are detected by deducing specific
formulae in a suitable temporal logic theory. In [6] we exploit the use of model
checking to detect policy conflict. This is the approach employed in this paper.

Layouni et al. in [11] also experimented with the use of the model checker
Alloy [5] to support policy conflict resolution.

Conflict Resolution. Conflict resolution can in general be attempted in a
number of ways, and which is best suited depends on the situation. We can
broadly distinguish between resolution at design–time and resolution at run–
time. The taxonomy of policy conflict in [17] makes explicit that design-time
resolution is always feasible when policies are co-located and owned by the same
user. In this case resolution will be a redesign of the policies. However, when
policies are distributed, this is not always possible and it is preferable to deal
with conflicts at run-time. Resolution in this case may exploit priorities among
policies, activating only policies with greater precedence. Nevertheless, there is a
wide spectrum between the two extremes of co-location and complete distributed
placement, and any conflict that is resolved before run-time is of benefit.

A comprehensive survey on detection and resolution techniques in three well-
known policy management approaches, KAoS, Rei and Ponder, is found in [20].

5 Multiple Non-functional Concern Management: Formal
Tool Support

The ability to develop independent managers and to modify them to accomplish
coordinated management of multiple concerns is attractive for two reasons: it
enforces modular design and reuse; and allows better use of domain specific
knowledge of different non-functional concerns.

However, combining a set of single-concern managers may be difficult to
achieve since it requires expertise in all of the non-functional concerns to be
coordinated, and because the sheer number of evolution paths of the combined
managers may make it extremely difficult for the human to identify the possi-
bility of a conflict arising.

Managing Adaptivity in Parallel Systems 209

Model checking tools may provide fundamental support, however, as proposed
in [6,10]: “conflicts” can be detected by model checking, once the conflicting
atomic actions have been identified. More precisely, the whole design phase in-
cludes the following steps:

– Independent experts design and implement policies relative to distinct non-
functional concerns.

– A set of conflicting actions is defined, such that a pair of actions ai, aj are
in the set iff action ai “undoes” action aj and vice versa.

– A formal model of the rule system is derived, which is fed to a model checker.
– The model checker is used to check formulas stating that conflicting actions

may occur “at the same time”, that is in the same MAPE loop iteration.
– The traces leading to the situation with the conflicting actions obtained from

the model checker are used to change the rules to handle conflicts.1

5.1 An Experiment in Static Conflict Detection for Autonomic
Managers

In the sequel, we first describe our experimental setting, and then discuss our
first results, with respect to the likelihood of applying the technique to real
life examples. The ingredients of the technique are a policy language, a model
checker and a translator able to generate a checkable model from the policies.

Appel. We use Appel [22,21] to write the management rules. Appel is a gen-
eral language for expressing policies in a variety of application domains: it is
conceived with a clear separation between the core language and its special-
ization for concrete domains, a separation which turns out very useful for our
purposes.

InAppel a policy consists of a number of policy rules, grouped using a number
of operators (sequential, parallel, guarded and unguarded choice).

A policy rule has the following syntax:

[when trigger] [if condition] do action

The core language defines the structure but not the details of these parts, which
are specifically defined for each application domain: base triggers and actions
are domain-specific atoms; an atomic condition is either a domain-specific or a
more generic (e.g. time) predicate. This allows the core language to be used for
different purposes. In our case, as mentioned above, the triggers relate to active
sensors, conditions to (passive) sensors, and actions to actuators.

Triggers can be combined with a disjunction, complex conditions can be built
with Boolean operators, and a few operators (and, andthen, or and orelse)
are available to create composite actions.

1 At the moment conflicts are identified by the model checker, but then the actions
needed to resolve the situation (i.e. the modifications to the manager rules) are per-
formed by humans. The asymptote is to have this part also executed automatically.

210 M. Aldinucci et al.

The semantics of Appel [,] which before was only defined informally, as with
most policy languages, has been formally defined by translation into the temporal
logic ΔDSTL(x) [15,16].

Though Appel supports also a notion of priority among the rules, we do not
exploit this currently.

UMC. This is an on-the-fly analysis framework [12,23,19] that allows the user

1. to interactively explore the behaviour of a UML state machine;
2. to visualize abstract slices of its behaviour; and
3. to perform local model checking of UCTL formulae, UCTL being a branching-

time temporal logic [7].

The last feature is the most important for our purposes, but the previous ones
are very useful once a conflict is detected and we need a deep understanding of
what is happening to resolve it.

UCTL allows specification of the properties that a state should satisfy and
combination of these basic predicates with advanced temporal operators dealing
also with the performed actions. Some care must be taken in writing the formulae
that characterize the conflicts to be detected, since they are checked not against
the traces of the UML state machine, but against the traces of an equivalent
standard state machine – generated by UMC – where parallelism is resolved
with interleaving. So to detect two conflicting parallel actions one has to detect
any sequence of the actions in any path in the traces.

Appel2UMC. We have defined a semantics-preserving compositional mapping
from Appel to UML, suitable for model checking with UMC. Since UMC oper-
ates on UML state machines, the target of the mapping happens to be a subset
of UML state machines: policies and policy groups are defined using compos-
ite states, i.e. states with structure reflecting the one imposed by the Appel

operators onto policies and actions.
To derive a UML state machine model of the system to feed the checker, we

follow the approach of [6]: Appel policies are automatically mapped to a UMC
specification, i.e. the description of a UML state machine, in the UMC textual
input format.

The mapping is based on the Appel semantics given in terms of UML state
machines. Actually, the mapping needs not consider the actual semantics of the
actions, but only an abstract one, where an action may result in a success or a
failure. Intuitively, these notions entail that an action may complete normally
(success) or may abort for some reason (failure), and Appel leaves the specifics
of an action success or failure to the domain. However, it defines the success or
failure of a composed action as a composition of the successes and failures of the
actions under composition. Therefore, for the translation, actions can be treated
as propositional atoms.

The prototype translator from Appel to an equivalent UMC specification,
dubbed Appel2UMC, is written in OCaml, and structured in a syntax definition

Managing Adaptivity in Parallel Systems 211

module, a Compiler, and an Unparser. Compiler translates Appel to UMC, at
the abstract syntax level, and Unparser generates the textual version needed
by the model checker. These core modules depend on a further one that defines
the domain dependent features (triggers, conditions and actions), thus ensuring
adaptability of the tool. At the moment, the syntax is about 100 lines, the core
modules are slightly over 500 lines, and the domain dependent part less than 80
lines. Translation times are not an issue.

5.2 Preliminary Results

To evaluate the feasibility of the approach, we ran some experiments using the
model checker UMC [23,19] to verify part of the policies introduced in [4] for
structured parallel computations.

We consider two independently developed managers controlling respectively
performance and power consumption of an application with a farm structure.

Managing Performance. The Appel rules in Table 1 address performance
management: the first two capture a noteworthy change in performance (trigger
NewPerformanceMonitored and the others a noteworthy change in the paral-
lelism degree of the execution. What a noteworthy change is, is defined by the
semantics of the active sensors that generate the events matching these triggers.

These changes may be disregarded if they do not take the system outside of
the “normal” operational range, i.e., when neither LowPerformance nor HighPer-
formance (LowParDegree nor HighParDegree, respectively) holds, that is, when
the values returned by the corresponding sensors do not satisfy the intended
condition.

Let us now consider what happens when PM1 fires, i.e., when performance
drops below the threshold. The goal obviously being to reestablish an accept-
able level, a new worker is introduced, in two macro steps, each sequencing two
basic actions on the current state of the application. In the best of worlds, an
available processor is allocated to the farm (GetResource), the appropriate run-
time-support is deployed (DeployRts)and started (StartRts), and finally the new
worker is linked (LinkRts)and therefore made available to the farm.

What if something goes wrong in the execute phase, e.g. no more processors
are available? PM1 is written (like all the other rules in this simplistic scenario,
by the way) using the composition operator andthen in such a way that the
failure of any basic action entails the failure of the rule as a whole, and therefore
the rule fires but has no effect whatsoever.2

The other rules were designed similarly, and use a few more basic actions,
whose meaning should be immediate. Only GetWorker may need a comment:
it selects one of the active workers in the farm, likely so that the manager can
consequently free the resources it is using.

2 Actually, care must be taken that the controlled application is rolled-back to its
initial state. Also, in a realistic scenario, some alarm should be sent to the adminis-
trator, when appropriate.

212 M. Aldinucci et al.

Table 1. The Performance Manager Rules

PM1: when NewPerformanceMonitored
if LowPerformance
do (GetResource andthen DeployRts) andthen

(StartRts andthen LinkWorker)
PM2: when NewPerformanceMonitored

if HighPerformance
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)
PM3: when NewParMonitored

if LowParDegree
do (GetResource andthen DeployRts) andthen

(StartRts andthen LinkWorker)
PM4: when NewParMonitored

if HighParDegree
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)

Managing Power Consumption. The Appel rules in Table 2 address this
concern. They should be easily understandable, at this point, since they use
many of the actions already used for performance management, but react to
different events and are subject to new appropriate conditions.

The two rules deal only, in different ways, with the need to decrease power
consumption. PCM1 takes a drastic approach, and kills one of the workers, to
get the result. PCM2 attempts to save something, trading away one of the more
power consuming workers for a less consuming one.

Conflict Definition. As we have seen, both managers operate on the appli-
cation graph by executing actions like LinkWorker and UnlinkWorker, which
include or remove a node in/from the current computation, respectively.

These actions are marked as an “atomic conflict”, as they nullify each other,
if performed in the same control cycle.

Putting UMC to Work. To illustrate how conflict detection is supported by
UMC, we consider as simple a situation as possible, with only two rules, one from
each manager, namely PM1 and PCM1. Given the parallel composition of these
two rules, Appel2UMC generates the textual representation of the corresponding
UMC model, dubbed System by default.

Loading System into the framework, an equivalent graphical representation
(Fig. 4) is generated by the framework: it is a translation of the input System
model into a standard automaton, resolving parallelism with interleaving: in this
representation, “parallel” actions in the rules appear in sequence, in all possible
different orders, along several traces. It is precisely the space of traces of this
automaton that is searched by the UMC model checker.

Managing Adaptivity in Parallel Systems 213

Table 2. The Power Consumption Manager Rules

PCM1: when NewPowerConsumptionMonitored
if PowerContractLow
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)
PCM2: when NewPowerConsumptionMonitored

if PowerContractLow
do [(GetPowerWorker andthen GetCheaperWorker) andthen

(UnlinkWorker andthen StopRts)]
andthen
[(UndeployRts andthen DeployRts) andthen
(StartRts andthen LinkWorker)]

In this simple example it is clear, by inspection of the automaton, that the
conflict will arise. However, as the number of rules in parallel increases, the size of
the space of the traces of the corresponding automaton increases exponentially,
and human inspection becomes quickly infeasible.

To use model checking instead, we need first to formalize the relevant ques-
tion may a conflict occur in one MAPE cycle? in UCTL, in terms of traces: is
there no trace among those generated by the automaton, which includes both
LinkWorker and UnlinkWorker? Formally, the question is expressed by requir-
ing that it should never be the case that there is a path were a LinkWorker
(UnlinkWorker) state has a path to a subsequent UnlinkWorker (LinkWorker),
that is:

(not EF EX{LinkWorker} EF{UnlinkWorker} true)

& (1)

(not EF EX{UnlinkWorker} EF{LinkWorker} true)

Our aim is to specify that there is no single MAPE cycle where both actions
LinkWorker and UnlinkWorker are executed. The question has to be formulated
in this way, since UMC translates the input model into a standard finite state
machine, resolving parallelism with interleaving: “parallel” actions appear in
sequence, in different orders, in several traces.

Running the model checker, it gives “false” as answer, and the explanation of
this result gives the traces leading to the situation where the formula is demon-
strated false.

To conclude we remark that the logical formulae associated with conflicts can
be systematically written by the designer following the pattern of formula (1).

Resolving the Conflict. According to the method outlined in Sec. 5.1 we
should be able to collect all the knowledge necessary to produce a modified

214 M. Aldinucci et al.

{NewParMonitored,
NewPerfMonitored}

{NewPerfMonitored,
NewParMonitored}

{GetWorker}

{SUCC}

{UnlinkWorker}

{FAIL}

{GetResource}

{LinkWorker}

{SUCC}

{FAIL}

{FAIL}

{SUCC}

{GetResource}

{SUCC}

{LinkWorker}

{FAIL} {SUCC}

{GetWorker}

{SUCC}

{UnlinkWorker}

{FAIL}

{FAIL}

{SUCC}{FAIL}

Fig. 4. Representation of System as an automaton

Managing Adaptivity in Parallel Systems 215

set of rules properly handling the conflict from the answer given by the model
checker to explain why the model falsify formula (1):

– the situation leading to the conflict is determined by the contemporary fir-
ing of the power manager rule PCM1 to “reduce power usage”, and of the
performance manager rule PM1 to “increase parallelism degree”.

– there is at least one path leading to the conflict, which includes the actions
in PM1 and PCM1.

Based on this knowledge, we can conclude that handling of the detected conflict
may be achieved by a high priority rule (or a set of rules):

– whose (new) trigger logically corresponds to the conjunction of the two trig-
gers as Appel, and most ECA based notation, does not support the con-
junction of triggers but only trigger disjunction, and

– whose action part consists in a plan whose effect is an increase of the paral-
lelism degree with reduced power consumption.

Alternatively, we may solve the conflict by assigning a priority to one of the
conflicting rules, in such a way that only the highest priority rule is executed.

Feasibility. We discussed a very simple example: two rules giving rise to a very
compact model and useful “explanations” in terms of traces. The number of
states generated in the UMC model is below one hundred and the response time
of the model checker is of the order of a fraction of a second.

We made a few slightly more realistic experiments using up to all the rules
given above. The times needed to execute the model checker with different rules
sets and queries are in the tens of milliseconds range: when 2, 4 or 6 rule systems
are used, the time to model check the “conflict exists” formula are 30, 50 and
60 msecs, respectively (the model checker was running on a quad core Core Duo
Intel Xeon workstation). When the AG(true) is model checked–this query gives
the upper bound in execution times, as it requires the model checker to visit all
possible paths in the model–the time spent in the model checker is 20, 120 and
250 milliseconds, respectively. These results seem to confirm that the approach
is feasible in more realistic situations. We cannot show the involved automata,
as the graphs are significantly larger and do not fit easily on a page.

6 Conclusions

We discussed formal tool support for the integration of independently developed
autonomic managers, each taking care of a different non-functional concern.
The formal tool support provides suitable hints to the programmer integrating
these independently developed managers into a single parallel applications. As
the manager programs are suitable sets of ECA rules, the formal tool support
provides evidence of the conflicting rules in different managers as well as of the

216 M. Aldinucci et al.

initial situations (states) that eventually lead to the conflicting actions generated
by the ECA rules. The preliminary results demonstrate the feasibility of the
approach and the relatively modest computational cost of the model checker
activities involved.

Paraphrase Perspective
The research results discussed in this paper will be exploited within the Para-
Phrase project in various ways.

First, although not discussed here for the sake of simplicity, the ECA rule
sets we are considering in our non-functional concern managers include rules that
change the structure of the parallel computation. For example, a manager taking
care of performance in a program whose parallel structure may be represented as
a pipeline(seq(f), seq(g), seq(h)) may discover that the second stage takes much
longer to execute than the first and the third. Therefore he may execute an action
aimed at transforming the program into a pipeline(seq(f), farm(seq(g)), seq(h)).
As the main focus of ParaPhrase is on parallel program refactoring, these rules
transforming parallel pattern compositions to better performing parallel pattern
compositions represent natural candidates for use in the refactoring process.

Second, we foresee the possibility to implement some kind of dynamic manage-
ment of the re-factoring to suit the varying conditions on the target architectures
within ParaPhrase. The techniques discussed here will naturally suit the need to
verify that no conflicts are generated while dynamically re-factoring our parallel
applications.

References

1. Aldinucci, M., André, F., Buisson, J., Campa, S., Coppola, M., Danelutto, M.,
Zoccolo, C.: Parallel program/component adaptivity management. In: Gorlatch,
S., Danelutto, M. (eds.) Proc. of the Integrated Research in Grid Computing
Workshop, Pisa, Italy, TR-05-22, pp. 95–104. Università di Pisa, Dipartimento
di Informatica (2005)

2. Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza,
D., Tonellotto, N.: Behavioural skeletons for component autonomic management
on grids. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, Heraklion, Crete,
Greece (June 2007)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In: Proc.
of Intl. Parallel & Distributed Processing Symposium, IPDPS, Rome, Italy, pp.
1–12. IEEE (May 2009)

4. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic managenemt of multi-
ple non-functional concerns in behavioural skeletons. In: Proc. of the CoreGRID
Symposium 2009, CoreGRID, Delft, The Netherlands. Springer (August 2009)

5. Alloy Community, http://alloy.mit.edu/community/
6. ter Beek, M., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts by

model checking UML state machines. In: Reiff-Marganiec, S., Nakamura, M. (eds.)
Feature Interactions in Software and Communication System X, pp. 59–74. IOS
Press (2009)

http://alloy.mit.edu/community/

Managing Adaptivity in Parallel Systems 217

7. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An Action/State-Based
Model-Checking Approach for the Analysis of Communication Protocols for
Service-Oriented Applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 133–148. Springer, Heidelberg (2008)

8. Calder, M., Kolberg, M., Magill, E.H., Marples, D., Reiff-Marganiec, S.: Hybrid
solutions to the feature interaction problem. In: Amyot, D., Logrippo, L. (eds.)
FIW, pp. 295–312. IOS Press (2003)

9. Calder, M., Magill, E.H.: Feature Interactions in Telecommunications and Software
Systems VI, Glasgow, Scotland, UK, May 17-19. IOS Press (2000)

10. Danelutto, M., Kilpatrick, P., Montangero, C., Semini, L.: Model Checking Sup-
port for Conflict Resolution in Multiple Non-functional Concern Management. In:
Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto,
M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L.,
Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011 Workshops, Part I.
LNCS, vol. 7155, pp. 128–138. Springer, Heidelberg (2012)

11. Layouni, A.F., Logrippo, L., Turner, K.J.: Conflict detection in call control using
first-order logic model checking. In: du Bousquet, L., Richier, J.-L. (eds.) Proc.
9th Int. Conf. on Feature Interactions in Software and Communications Systems,
France, pp. 77–92. IMAG Laboratory, University of Grenoble (2007)

12. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2006)

13. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic–Based Detection of Con-
flicts in Appel Policies. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS,
vol. 4767, pp. 257–271. Springer, Heidelberg (2007)

14. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based conflict detection for
distributed policies. Fundamenta Informaticae 89(4), 511–538 (2008)

15. Montangero, C., Semini, L.: Distributed states logic. In: 9th International Sympo-
sium on Temporal Representation and Reasoning, TIME 2002, Manchester, UK.
IEEE CS Press (July 2002)

16. Montangero, C., Semini, L., Semprini, S.: Logic Based Coordination for Event–
Driven Self–Healing Distributed Systems. In: De Nicola, R., Ferrari, G.-L., Mered-
ith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 248–262. Springer,
Heidelberg (2004)

17. Reiff-Marganiec, S., Turner, K.J.: Feature interaction in policies. Comput. Net-
works 45(5), 569–584 (2004)

18. Ruz, C.: Autonomic Monitoring and Management of Component-Based Services,
PhD Thesis. Univ. de Nice - Sophia Antipolis (2011)

19. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

20. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

21. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland, J.:
Policy support for call control. Computer Standards and Interfaces 28(6), 635–649
(2006)

22. Turner, K.J., Reiff-Marganiec, S., Blair, L., Cambpell, G.A., Wang, F.: Appel: An
adaptable and programmable policy environment and language. Technical Report
TR-161, University of Stirling (December 2009)

23. UMC v3.5, http://fmt.isti.cnr.it/umc

http://fmt.isti.cnr.it/umc

The ParaPhrase Project:

Parallel Patterns for Adaptive Heterogeneous
Multicore Systems

Kevin Hammond1, Marco Aldinucci2, Christopher Brown1,
Francesco Cesarini3, Marco Danelutto4, Horacio González-Vélez5,

Peter Kilpatrick6, Rainer Keller7, Michael Rossbory8, and Gilad Shainer9

1 School of Computer Science, University of St Andrews, Scotland, UK
2 Computer Science Dept., University of Torino, Torino, Italy

3 Erlang Solutions Ltd., London, UK
4 Dept. Computer Science, Universitá di Pisa, Pisa, Italy
5 School of Computing, Robert Gordon University, UK

6 School of Electronics, Electrical Eng. and Comp. Sci., Queen’s Univ. Belfast, UK
7 High Performance Computing Centre, Stuttgart (HLRS), Germany

8 Software Competence Centre Hagenberg, Austria
9 Senior Director of HPC and Technical Computing, Mellanox Technologies, Israel

{kh,chrisb}@cs.st-andrews.ac.uk, aldinuc@di.unito.it,
francesco@erlang-solutions.com, marcod@di.unipi.it,

h.gonzalez-velez@rgu.ac.uk, p.kilpatrick@qub.ac.uk, keller@hlrs.de,
michael.rossbory@scch.at, Shainer@Mellanox.com

Abstract. This paper describes the ParaPhrase project, a new 3-year
targeted research project funded under EU Framework 7 Objective
3.4 (Computer Systems), starting in October 2011. ParaPhrase aims
to follow a new approach to introducing parallelism using advanced refac-
toring techniques coupled with high-level parallel design patterns. The
refactoring approach will use these design patterns to restructure pro-
grams defined as networks of software components into other forms that
are more suited to parallel execution. The programmer will be aided
by high-level cost information that will be integrated into the refactor-
ing tools. The implementation of these patterns will then use a well-
understood algorithmic skeleton approach to achieve good parallelism.

AkeyParaPhrasedesign goal is that parallel components are intended
tomatch heterogeneous architectures, defined in terms of CPU/GPU com-
binations, for example. In order to achieve this, theParaPhrase approach
will map components at link time to the available hardware, and will then
re-map them during program execution, taking account of multiple ap-
plications, changes in hardware resource availability, the desire to reduce
communication costs etc. In this way, we aim to develop a new approach
to programming that will be able to produce software that can adapt to
dynamic changes in the system environment. Moreover, by using a strong
component basis for parallelism,we can achieve potentially significant gains
in terms of reducing sharing at a high level of abstraction, and so in reduc-
ing or even eliminating the costs that are usually associated with cache
management, locking, and synchronisation.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 218–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The ParaPhrase Project 219

1 Introduction

From the 1960s until very recently, hardware designers were able to exploit the
effects of Moore’s law to create processors with ever-increasing clock frequencies.
Software benefited from each new processor generation more or less automati-
cally. At the same time, software engineers remained essentially wedded to the in-
herently sequential von Neumann programming model that has been in use ever
since the early days of computing. Most of the major advances in programming
language technology and software engineering that have taken place (e.g. struc-
tured programming, object-orientation, or abstract modelling) were therefore
solely motivated mainly by the need to keep ever-larger software systems man-
ageable, rather than to make effective use of the available hardware capabilities.
This situation is currently changing, however, and changing extremely rapidly.
Future multicore/manycore hardware will not be slightly parallel, like today’s
dual-core and quad-core processor architectures, but will be massively parallel.
Concurrently with this trend towards increasing numbers of cores, there is also
a strong trend towards heterogeneous architectures, with chips containing not
only conventional processor cores, but also various specialist processing units
such as graphics-processing units (GPUs), physics engines, digital signal pro-
cessors (DSPs), etc. Properly exploiting heterogeneous multicore technology is
essential for today’s users of high-performance computers: provided they can be
properly harnessed, hybrid multicore/manycore systems offer the potential for
cheap, scalable and energy-efficient high-performance computing. Unfortunately,
while GPU computing [52] compares very favourably with multicore CPUs in
terms of performance, it has even worse programmability. It is therefore becom-
ing increasingly obvious that the traditional sequential programming model has
reached its limits. This problem of programmability for future parallel computers
motivates the ParaPhrase project.

The Challenge. It is clear that effectively exploiting heterogeneous multi-
core/manycore processor technology will be an essential requirement for future
software developers. The main challenge they face is finding a programming
model that provides a suitable level of abstraction, while still allowing good use
of the available hardware resources. It is already very difficult for classically-
trained applications programmers to benefit from the performance offered by
today’s multicore systems, and only highly-skilled programmers or those seeking
the highest levels of performance are presently exposed to parallel programming
techniques [1]. Without a fundamental shift in the programming model, pro-
grammers will find it essentially impossible to exploit the mid-term/long-term
developments that major hardware companies such as Intel and NVidia promise
to deliver. The dilemma is that a large percentage of mission-critical enterprise
applications will not “automagically” run faster on multicore servers. In fact,
many will actually run slower [43]. It is therefore essential that we make it as
easy as possible for applications programmers to exploit the latest developments
in heterogeneous multicore/manycore architectures, while still making it easy to
target future (and perhaps unanticipated) hardware developments.

220 K. Hammond et al.

Application
Design

Pattern-based

Development/

Refactoring

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

Parallelised
Application

Parallelised
Application

Parallelised
Application

Dynamic Mapping

Heterogeneous Hardware Pool

Fig. 1. The ParaPhrase Vision

2 Related Work

Pattern-Based Parallel Programming Models. The recent advent of multi-
core processors, GPUs, chip multiprocessors, and multinode clusters and constel-
lations has dramatically increased the number of concurrent processors that are
available within a single system configuration. Architectures involving dozens of
heterogeneous core in an integrated processing node are becoming commonplace
in high-performance computing environments, and, as a result, state-of-the-art
supercomputing facilities must efficiently administrate thousands of processing
units. JUGENE (the Blue Gene/P PRACE platform at Julich) features 294,912
“traditional” multicore processing elements and the Tianhe-1 comprises 186,368
CPU/GPUs, according to the November 2010 Top500 list [60]. However, software
development techniques have not evolved at the same pace and the software it-
self has typically outlived architectural generations. Linpack, the canonical HPC
benchmark, was initially released in 1979 and still constitutes the basis for the
Top500 list. While the linguae franca for large parallel computers have histor-
ically been Fortran and C coupled with coordination libraries such as MPI,
OpenMP, or PVM, there is no clear trend on how to efficiently engineer the
required parallel programs for mainstream parallel computers. Research effort
needs to be devoted to design efficient parallel programs that not only exploit
the architectural characteristics of parallel architectures, but also preserve the

The ParaPhrase Project 221

investment in programming over time in a number of platforms. The challenge is
therefore to holistically develop high-quality parallel software, which is not only
efficient and scalable, but which is also well-programmed and generic.

While they were originally defined as abstractions of common themes in
object-oriented programming [25,26], design patterns have subsequently been
incorporated into parallel programming methodologies [50]. Pattern-based par-
allel programming allows an application programmer the freedom to generate
new parallel programs by parameterising parallel abstractions. This approach is
very similar to that taken by algorithmic skeletons, described below. The main
differences lie in their respective visions [18]: in the design pattern approach the
(software engineering driven) vision proposes patterns as models to be instan-
tiated, implemented and used by the programmer; in the algorithmic skeleton
approach the (language-driven) vision uses skeletons as predefined language con-
structs or library entries that can be seamlessly used by the programmer in the
same way as other non-parallel language constructs and/or library entries.

The parallel programming pattern concept has been extended into a design
method under the umbrella of parallel pattern languages. Unlike other parallel
programming languages, parallel pattern languages present rules for designing
parallel programs based on problem-class abstractions which describe parallel
structure, dataflow, and communication; critical region locks, such as test-and-
set and queued for simple mutual exclusion, or reader/writer for concurrent
execution; or socket-based operators for web applications.

In their frequently-cited report, Asanovic et al. have emphatically suggested
the deployment of parallel design patterns to successfully produce effective par-
allel programs for multi and manycore architectures [7]. However, the generic
implementation of these parallel design patterns in multi and manycore archi-
tectures requires the use of refined techniques which can provide a clear-cut
separation of software and hardware. This has long been considered critical to
the success of any parallel programming endeavour since it is essential if we
are to foster the reuse of algorithms and software. Moreover, we consider that
the division of the structure from the application itself is crucial to the goal of
delivering adaptability.

Algorithmic Skeletons. Algorithmic skeletons abstract commonly-used pat-
terns of parallel computation, communication, and interaction into a set of
language constructs [17,32]. Skeletons present a top-down structured approach
where parallel programs are formed from the parametrisation of skeleton nest,
also known as structured parallelism. Structured parallelism deployed through
skeleton frameworks provides a clear and consistent structure across platforms
by distinctly decoupling the application from the structure in a parallel pro-
gram. It does not rely on any specific hardware and it benefits entirely from
any performance improvements in the system infrastructure. Algorithmic skele-
ton frameworks (provided either as new languages or as libraries) have been
implemented using a variety of techniques including macro data flow, templates,
aspect-oriented programming, and rewriting techniques to target distributed

222 K. Hammond et al.

architectures (such as COW/NOWs and grids) and, more recently, homoge-
neous multicore architectures. Recently, implementation techniques supporting
expandable algorithmic skeleton sets have been demonstrated [3]. It is arguable
that the different techniques used to implement algorithmic skeleton frameworks
are suitable to support implementations targeting heterogeneous multicore ar-
chitectures. While algorithmic skeletons (and indeed parallel patterns in general)
cannot be used to produce all parallel and distributed programs, there is a grow-
ing number of important applications [19,55]. A number of recent and highly
successful “programming models” such as the well-known Google MapReduce
also derive and inherit from algorithmic skeletons [13]. Furthermore, skeletal
methodologies inherently possess a predictable communication and computa-
tion structure, since they directly capture the structure of the program. They
therefore provide, by construction, a foundation for performance modelling and
estimation of parallel applications.

Refactoring Technology for Parallel Programming. Refactoring [51]
changes a program’s structure, but keeps its behaviour the same. Software refac-
toring involves using tool support to adapt or change existing software accord-
ing to well-defined patterns. It is primarily used to produce code that is either
more efficient, that uses specific library/language capabilities, or that is bet-
ter structured to meet some software engineering goals. The primary challenges
lie in: i) identifying the refactorings that are available to the programmer; ii)
guiding the programmer in determining which of those refactorings are most
sensible/beneficial; and iii) correctly applying the refactoring so that the re-
sulting code has the required behaviour without introducing unwanted changes
in functionality. Refactoring tools such as Eclipse [24] now offer an extensive
range of refactorings also including inlining, extract constant, introduce param-
eter and encapsulate a field. Many refactoring tools are fully-fledged commercial
or open-source products.

Refactoring Parallel Programs. Despite the obvious advantages, there has so far
been little work in the field of applying software refactoring technology to assist
parallel programming. The earliest work on interactive tools for parallelisation
stemmed from the Fortran community, targeting loop parallelisation [40]. These
interactive tools were early transformation engines allowing users to manipulate
loops in their Fortran programs by specifying what loops to interchange, align,
replicate or expand. The interactive tools typically reported to the program-
mer various information such as dependance graphs, and was mainly applied
to the field of numerical computation. Recent work in the field includes Reen-
trancer [62]: a refactoring tool developed by IBM for making code reentrant.
Reentrancer targets global data by making them thread-safe. Further recent
work includes a refactoring approach to parallelism by Dig [20], targeted at in-
troducing concurrency in Java programs by aiming to make them more thread
safe, increasing throughput and scalability. Hitherto, Dig’s refactoring tool con-
tains a minor selection of transformations including make class immutable, par-
allelise loop and convert HashMap to ConcurrentHashMap. Software refactoring

The ParaPhrase Project 223

techniques have therefore only previously been applied in a very limited paral-
lel setting: by applying simple transformations to introduce parallel loops and
thread safety in object-oriented (OO) programs. Currently, these approaches do
not take any extra function properties into account, such as hardware character-
istics, costing and profiling, for aiding the refactoring process. Furthermore, the
techniques are rather limited to homogeneous architectures and OO languages,
rather than applying general patterns to heterogeneous architectures, as needed
in the ParaPhrase project.

Automatic Parallelisation. (Semi-)Automatic parallelisation poses two main
challenges: i) how to identify those parts of the program that could be executed
concurrently; and ii) how to map these parts onto a given set of computing re-
sources. Failing in either challenge immediately limits any potential performance
gains. Both of these challenges are clearly addressed within the ParaPhrase

project. Most research on automatic parallelisation has focused on how to iden-
tify concurrency. Many sophisticated optimisation techniques based on depen-
dence analyses have been developed [8,63,6]. They form the basis for the polytope
model [42,23,9], which facilitates compiler-directed transformations to increase
loop-level concurrency. Such approaches are fundamentally limited, however, to
specific programming patterns, and tend to favour fine-grained parallelism. In
the ParaPhrase project, we take a higher-level approach to identifying paral-
lelism, recognising that programmer assistance and insight may be valuable at
this stage. This has three main advantages: firstly, the pattern-based approach
allows us to easily decompose the application into suitably concurrent tasks,
breaking accidental dependencies that will limit the polytope approach; secondly,
we can use performance information not only to drive the choice of parallel imple-
mentation, as commonly happens, but also to guide programmer-directed refac-
toring to identify the most profitable parallel structure; and thirdly, by using a
component structure with a strong explicit resource interface that automatically
exposes necessary inter-task dependencies, and avoids accidental dependencies
that restrict the opportunities for concurrency. Having identified good paral-
lelism, it is necessary to focus on the issues involved in the second challenge,
i.e. effectively mapping concurrency onto the available computing resources so
as to maximise performance. This mapping requires decisions to be made such
as: Which concurrently executable parts should actually be done in parallel?
How and when should synchronisation happen? Where should data be placed?
What layout in memory should be used for the data to enable non-conflicting
(and cache-friendly) concurrent access? etc.

A large body of work addresses these issues in the context of nested loops. Be-
sides scheduling-driven [22,38] and partitioning-driven [44,45] approaches, more
recent tiling-based [12] and streamisation-based [53] approaches have shown
promising results for shared-memory architectures. Any compiler-driven deci-
sion mechanism for these aspects relies on the availability of as precise as pos-
sible knowledge of application properties such as typical data sizes, function
application frequencies, typical parameter ranges etc. Over recent years we have

224 K. Hammond et al.

developed several analysis and program transformation techniques that aim at
identifying these properties. Amongst these are partial evaluation techniques
such as those described in [36,59,10,39], as well as code restructuring tech-
niques [56,34,37], and multi-threaded code generation techniques [33,35]. How-
ever, the interplay of such optimisations combined with the complexity and
variety of target platforms often renders static mapping approaches far less ef-
fective than the mappings that can easily be achieved manually. Even in the
single-processor setting it has been shown that semi-static approaches such as
iterative optimisations [47,54] can improve the effectiveness of the optimisation
process. The ParaPhrase approach avoids these problems by exploiting a more
dynamic approach that can adapt to changing system conditions, given a good
initial placement as its starting point.

Hardware/Software Virtualisation. In the context of ParaPhrase, the
purpose of the hardware/software virtualisation layers is: i) to abstract over the
available heterogeneous multicore hardware in order to support the automated
mapping of an application onto diverse targets; ii) to support dynamic remapping
and adaptivity; and iii) to support the seamless mapping of multiple simulta-
neous parallel applications to the available hardware resources. This represents
a significant challenge. The virtualisation must allow the decomposition of the
parallel software into units that can easily be mapped/re-mapped to alternative
hardware realisations; it must support cost information that allows rapid deci-
sions to made on dynamic re-mapping; it must be sufficiently flexible that it can
support all the required parallel patterns; and it must be sufficiently lightweight
that it does not impose excessive overhead that may restrict the flexibility of
dynamic re-mapping.

The state-of-the-art in dynamic targeting is epitomised by the Java Virtual
Machine (JVM) [46], where compiled code, represented as an abstract instruction
set (Java byte-code), is either interpreted by the JVM or is compiled on execution
into the instruction set of that processor. Virtualisation can also be used to
translate between instruction sets. For example, the full virtualisation of a target
is possible where a virtual machine environment is able to execute all software
that is capable of executing on that target. A good example is the Transmeta
Crusoe architecture [27], which provides a full virtualisation of the x86 platform
onto a much more energy-efficient VLIW processor. The techniques exploited
here use a mixture of binary translation from native x86 binaries to the Crusoe’s
VLIW instruction set together with a mechanism for caching recently translated
code blocks. These techniques, namely interpretation, binary translation and
just-in-time compilation may be augmented with the use of fat binaries, where
the choice of target or target parameterisation is reasonably bounded. All of
these techniques could be exploited by ParaPhrase. However, the main issue
for ParaPhrase is the efficient execution of generic parallel code on an arbitrary
heterogeneous target. Although the Java execution model supports concurrency,
this model was originally designed to support threaded programs on a single
processor rather than supporting distributed parallel programming. Moreover,

The ParaPhrase Project 225

the model is not constrained, which means that the programmer must ensure
both that threads do not interfere with each other and that resources are properly
synchronised. It therefore does not meet the objectives posed by ParaPhrase.
It follows that a more general model of concurrency is required, one that ideally
is safely composable without inducing deadlock or compromising efficiency. By
using a new virtualisation model based around costable software components
coupled with a simple hardware virtualisation, we anticipate that we will be
able to meet the stringent requirements of the ParaPhrase project.

Autonomic and Dynamic Placement. Placement of concurrent components
derived from the compilation of high level parallel patterns on multicore, het-
erogenous architectures poses different problems related to efficiency and per-
formance. Vadhiyar and Dongarra [61] suggest that a “self-adaptive software
system examines the characteristics of the computing environments and chooses
the software parameters needed to achieve high efficiency on that environment”.
Thus, we consider that the key challenges in adaptively improving the perfor-
mance of parallel programs in a heterogeneous system are therefore:

1. the correct selection of resources (processors, links) from those available;
2. the correct adjustment of algorithmic parameters (for example, blocking of

communications, granularity); and, most importantly,
3. the ability to adjust all of these factors dynamically in the light of evolving

external pressure on the chosen resources.

Although different parallel solutions for heterogeneous distributed systems have
traditionally exhibited parallel patterns, their associated optimisations have not
necessarily exploited the application structure. They have either modified the
scheduler [14] or kept the actual application interlaced [57], without decoupling
the structure from the behaviour. Such challenges are aligned with the tradi-
tional view on intra-application scheduling, which proposes five actions: i) se-
lect resources to schedule the tasks; ii) map tasks to processors; iii) distribute
data; iv) order tasks on compute resources; and, v) order communication tasks.
However, traditional strategies for placement or scheduling in distributed sys-
tems [11,15,21,41,49] rely on system simulators, dedicated configurations, and/or
performance estimators to model the general system, particularly to characterise
the background load in terms of its job arrival rate. While much can be said
about the reproducibility of their results, one may argue that they artificially
create tractable evaluation scenarios for their scheduling policies. It follows that
he ParaPhrase methodology cannot be simplistically compared to any task
scheduling policy in terms of algorithmic optimality and complexity, but ought
to be evaluated in terms of the makespan for a certain workload.

In addition to the preliminary, possibly static, optimisations performed when
deploying the program components onto the target architecture, based on the
expected performance models of the parallel patterns used, complementary ap-
proaches will be considered:

226 K. Hammond et al.

Control Loops. This approach extends the experience of the Universities of
Pisa and Torino in Behavioural Skeletons [5,2,4].

Divisible Workloads. This approach builds on previous work from several
partners including that of Robert Gordon University on statistical scheduling
of divisible workloads [30] and the systematic introduction of adaptivity into
parallel patterns and skeletons [29,31,4].

Each of the components derived from the compilation of the high-level pat-
terns will be equipped with a couple of additional interfaces: a sensor inter-
face and an actuator interface. The former will provide methods suitable to
gather actual measures related to the current status of the computation (e.g.
throughput, service time, latency). The latter will provide methods to modify
the implementation of the high level pattern (e.g. change its parallelism de-
gree by adding/removing components, migrating the component from CPUs to
GPUs (or vice-versa). An additional autonomic performance manager compo-
nent will be added to the implementation of each high level parallel pattern.
The manager will implement a control loop. Performance of the parallel pattern
implementation will be monitored through the sensor interface and possibly ac-
tions performed by invoking the actuator methods to improve overall pattern
performance. The autonomic manager may be implemented on top of a busi-
ness rule engine in such a way the rules executed at each control loop iteration
may embody all techniques to dynamically optimise the performance of the high
level patterns as well as any new and/or experimental techniques. In particu-
lar, techniques based on learning from previous experience may be implemented,
provided a data base of past computation management is maintained.

In summary, the ParaPhrase approach can be categorised as a autonomic
and dynamic placement methodology for parallel programs executing in hetero-
geneous distributed systems, which is:

dynamic since the correct selection of resources and the adjustment of algo-
rithmic parameters are performed at execution time;

autonomic due to the provision of intrinsic mechanisms to dynamically adjust
to variations in system performance;

application-level because all decisions are based on the specific requirements
of the application at hand; and,

heuristic because it comprises a set of rules intended to increase the probability
of enhancing the overall parallel program performance.

3 The ParaPhrase Project

The challenges identified in Section 1 require a new and radical approach that
tackles parallel programming in a coherent and holistic way. The ParaPhrase

project aims to produce a new structured design and implementation process for
heterogeneous parallel architectures, where developers exploit a variety of paral-
lel patterns to develop component-based applications that can be mapped to the
available hardware resources, and which may then be dynamically re-mapped to

The ParaPhrase Project 227

meet application needs and hardware availability (Figure 1). We will exploit
new developments in the implementation of parallel patterns that will allow us
to express a variety of parallel algorithms as compositions of lightweight software
components forming a collection of virtual parallel tasks. Components from mul-
tiple applications will be instantiated and dynamically allocated to the available
hardware resources through a simple and efficient software virtualisation layer.
In this way, we will promote adaptivity, not only at an application level, but
also at a system level. Finally, virtualisation abstractions will be provided across
the hardware boundaries, allowing components to be dynamically re-mapped to
either CPU or GPU resources on the basis of suitability and availability.

3.1 Achieving the ParaPhrase Project Vision

In order to achieve the vision described above so that we can make effective use
of recent and future advances in heterogeneous multicore/manycore computing,
a number of key technical problems must be addressed.

We Must Develop New Parallel Programming Models. The parallel pro-
gramming models in widespread use today require the programmer to manage
many low-level organisational details, including communication, placement and
synchronisation. This low-level coding style makes programming parallel sys-
tems notoriously difficult, since a whole new class of programming errors severely
impacts programming productivity as mismatched communications, deadlocks,
race conditions, which often exhibit non-deterministic behaviour

We Must Develop New Means of Identifying Parallelism. Low-level
parallelism libraries, such as OpenMP, MPI or Pthreads are widely used in non-
numerical applications. However, such approaches are highly inflexible, making
it hard: to dynamically adapt to the execution environment; to introduce the
high-level changes to program structure that may be necessary to support new
multicore computer architectures; or to refactor existing program code to sup-
port a new parallel application. What is needed is a simpler way of identifying
parallelism that can both support adaptation to conform to dynamic changes in
hardware availability and that can support long-term software evolution to meet
new application or hardware needs.

We Must Develop New Ways of Abstracting across the Capabilities of
Different Architectures/Devices. Code written for a general-purpose GPU
(GPGPU) cannot easily be executed on a general-purpose CPU core, or vice-
versa. This limits the ability to reconfigure software to exploit the available
hardware resources, effectively restricting software to a static placement.

The ParaPhrase project focuses on issues of programmability for parallel sys-
tems. It will develop a new approach based on patterns of parallelism that struc-
ture independent parallel components. Each independent component will have a
well-defined interface identifying memory dependencies and key extra-functional
properties, such as performance information, degree of parallelism and commu-
nication access patterns. The patterns and components will be identified using

228 K. Hammond et al.

a high-level and novel refactoring approach that will guide the programmer to-
wards optimal design decisions targeting a range of different implementations.
Having chosen a pattern, the pattern must be mapped to the available hardware
targets using a behavioural skeleton approach. Finally, since it is well known
that even an optimal initial placement is unlikely to achieve maximum perfor-
mance under real-world operating conditions, components from multiple applica-
tions will be re-mapped during execution in order to maximise performance. The
project thus combines automatic approaches to task placement and re-mapping
with an assisted approach to the initial identification of the parallel program
structure. The use of a component-based approach, with strong behavioural in-
terfaces forming a virtual parallel task structure, is fundamental in allowing the
ParaPhrase project to achieve its goals.

3.2 Key Technologies

The key technologies used in and deployed by the ParaPhrase project are:

Refactoring: the process of changing the structure of a program without
changing its behaviour. Refactoring has been practised implicitly for as long
as programs have been written, as programmers actively re-structure their
code as they typically build software. Refactoring tools, such as the Para-
phrase Refactoring Tool, will provide a set of well-defined semi-automatic
refactorings aimed at parallelisation that will allow the programmer to sim-
ply select which parallel pattern (or skeleton) to apply. The refactoring tool
then checks any conditions and applies the transformations automatically.

Virtualisation: the ParaPhrase project deploys two levels of virtualisation.
Component Virtualisation abstracts over different software implementations
of the same parallel program, allowing parallel programs to be composed
from several software components. Hardware Virtualisation abstracts over
the heterogeneous hardware resources that are available, allowing software
components to be mapped/re-mapped to alternative physical hardware.

Parallel Patterns: high-level expressions of generalised parallel algorithms
that typify classes of parallel problems. Typical parallel patterns include task
farms, work pools, pipelines, parallel maps and parallel reduce operations.

Skeletons: “implementations” of design patterns. A skeleton provides a para-
metric implementation of a specific parallel design pattern targeting a given
class of architecture.

FastFlow: a skeleton-based programming framework, developed at the Uni-
versities of Pisa and Torino, that efficiently targets cache-coherent multicore
architectures.

Erlang: a strict functional language with dynamic types and support for built-
in concurrency. Erlang is executed on the Erlang Virtual Machine layer,
which provides implicit mechanisms for managing fault tolerance and for
deploying data serialisation in message passing.

The ParaPhrase Project 229

WP2:
Parallel Patterns

WP3:
Component Interfaces

for Adaptivity

WP4:
Refactoring Tools

WP5:
Compilation and

Platform-Specific Deployment

WP6:
Use Cases, Requirements

and Evaluation

WP7:
Community Building

Fig. 2. The ParaPhrase Workpackages and their Dependencies

3.3 ParaPhrase Structure and Workplan

An outline structure of the ParaPhrase project into its component technical
workpackages (WP2–WP7; WP1 is Management) is shown in Figure 2. WP2
covers high-level parallel patterns and their implementation as skeletons. WP3
defines the software virtualisation framework. WP4 develops new refactoring
tools and techniques. WP5 considers adaptive mapping technology. WP6 vali-
dates the work done in the project against some real applications. Finally, WP7
aims to develop a user community for the ParaPhrase technologies.

High-Level Parallel Patterns (WP2). The use of a pattern-based approach
allows parallelism to be expressed at a very high level of abstraction, so achieving
the overall aim of simplifying the programming of multicore systems. At the
same time, by exposing parallelism in terms of specific parallel patterns, parallel
programs can be easily refactored into alternative forms with different parallel
behaviours, as indicated in Figure 3. For example, a parallel map operation,
where a single operation is applied in parallel to every element of a collection
of data may be either refactored into a parallel task farm, with a fixed mapping
of tasks to processing elements; or may alternatively be refactored to a parallel
workpool, where the tasks are mapped dynamically to processing elements as

230 K. Hammond et al.

Parallel
Pattern

Parallel
Pattern

Refactor

Implementation Implementation

Mapping Mapping

Implementation in
Software Virtualisation
Layer

Implementation
on Heterogeneous
Platform

Design

Dynamic Re-Mapping Dynamic Re-Mapping

Implementation
on Heterogeneous
Platform

Dynamic Re-Mapping
instance

ynamic Re-Mapp Dynamic Re-Mapping
instance

Dynamic Re-Mapping
instance

Fig. 3. The ParaPhrase Approach: Refactoring and Implementing Parallel Patterns

they become available. Depending on the structure of the parallel application,
one or other of these patterns may be preferable: for example, a task farm is
more suitable for more regular task sizes; where a workpool is more suitable for
irregular task sizes. Achieving this objective will therefore allow us to improve
programmability of multicore systems.

Heterogeneous Pattern Implementations (WP2). Heterogeneity and
parallelism are critical to future high-performance computers: future computer
architectures are likely to be built around collections of large numbers of par-
allel processing elements, comprising both general-purpose units (CPUs), but
also higher-performance but more specialised units (e.g. GPUs, DSPs, Physics

The ParaPhrase Project 231

Engines, FPGAs, ASICs etc). These units may have overlapping, but not in-
terchangeable capabilities. These units may be grouped into different configu-
rations, comprising different ratios of general-purpose to special-purpose units,
different clock speeds etc. In order to make effective use of the available pro-
cessing elements in such an architecture, it is therefore essential to consider
heterogeneity. Achieving this objective will thus allow us to demonstrate the
benefits of using high-level patterns for heterogeneous multicore systems in fu-
ture high-performance computing applications.

Software Virtualisation Framework (WP3). Once a parallel program has
been refactored into the required parallel pattern, it can then be decomposed into
a set of cooperating parallel components, with well-defined communication inter-
faces, and interconnections using an algorithmic skeleton approach (Section 2).
This componentisation and encapsulation is important, since by providing al-
ternative implementations of a component, that component can be mapped to
different kinds of hardware processing elements, for example to either a CPU or a
GPU. Since the use of high-level patterns will allow programs to be decomposed
into potentially large numbers of parallel components, and we will be able to use
the same hardware to execute components from multiple parallel applications,
we will have a great deal of flexibility both when initially mapping components to
CPU/GPU elements, and in subsequently re-mapping components to CPU/GPU
cores as a result of dynamic changes in the execution environment.

Refactoring Tools for Parallel Patterns (WP4). Refactoring tools sup-
port programmer-directed transformation of the source code in order to improve
behavioural or other properties of program code. In the ParaPhrase project,
we are interested in supporting the programmer by allowing them to choose be-
tween alternative parallel patterns, using high-level information about their run-
time behaviours. While it would be, in principle, possible to automatically map
high-level programming patterns directly to implementations, as has previously
been done for some algorithmic skeletons, such an approach requires excellent
cost modelling, and usually restricts the choice of implementation. By using a
refactoring approach, much of this machinery and the associated complexity can
be avoided in favour of a programmer-directed system. The refactoring technol-
ogy will also allow us to automatically insert appropriate component interfaces,
including extra-functional (behavioural) information. In this way, we will help
to achieve our overall aim of reducing the complexity of identifying parallelism
for heterogeneous multicore systems.

Adaptive Mapping Technology (WP5). We need to develop methods to
map software components onto the resources of a heterogeneous multicore plat-
form, matching them against the available hardware characterisation that is ex-
posed through the hardware/software virtualisation layers. This mapping needs
to take into account both computations, which will mapped to the available

232 K. Hammond et al.

hardware resources, and any communication that is induced by this mapping.
In this way, we will achieve our aim of developing new dynamic mechanisms to
support adaptivity and heterogeneity.

Application-Based Validation (WP6). We have already identified a number
of target high-performance applications from the data analysis, machine learn-
ing and weather prediction domains. These applications must demonstrate good
multicore performance and expose opportunities for heterogeneity. They will be
used to study the effectiveness of the various stages of our approach, includ-
ing that the mapping and placement technology improves performance both in
an initial placement onto a heterogeneous multicore application, and through
system reconfiguration during execution.

User Community Building (WP7). ParaPhrase aims to create a user
community to ensure longer-term uptake of the technologies developed in the
project. Driven by the consortium industrial partners, this community will en-
compass a multiplicity of stakeholders exploiting close connections with the
HPC Advisory Council (http://www.hpcadvisorycouncil.com/, “a computing
ecosystem that includes best-in-class original equipment manufacturers (OEMs),
strategic technology suppliers, independent software vendors (ISVs) and selected
end-users across the entire range of HPC market segments.”

3.4 ParaPhrase Use-Cases

The practical utilizability of the ParaPhrase approach especially concerning
simplification of parallel development and performance gain will be demon-
strated using real applications from industrial, scientific and video streaming
domains. The focus on industrial applications for example is highly relevant in
practice due to the trend to automation of manufacturing processes and machine
control. Collected process data has the potential for optimizing those processes
if analyzed in a proper way. But the complex relations, the huge amount of
data and the often missing expertise make such optimizations hard to accom-
plish. Therefore sophisticated methods from the domain of machine learning
(ML) and data mining (DM) are often required to identify the relations within
the collected data. Furthermore high performance computational hardware is
needed to perform these computations in a reasonable amount of time. As most
ML algorithms currently only exist in a sequential version, easy transformation
into parallel implementations is important as well. Solutions therefore require
experts in machine learning for algorithm design and experts in parallelization
for implementation on different hardware platforms. Different solutions to deal
with the challenge of parallelization of ML algorithms on a higher level of ab-
straction have been proposed to cope with this problem. One approach is the
adaption of the map-reduce (MR) paradigm to execute the algorithms on clus-
ters or multicore machines [28] [58]. But this solution restricts the number of
usable ML methods to those that fit the MR paradigm [16]. Other frameworks

http://www.hpcadvisorycouncil.com/

The ParaPhrase Project 233

like [48] have been published to overcome this restriction, but they do not exploit
the potential of heterogeneous shared memory machines. With our use cases we
want to demonstrate how the ParaPhrase approach can be used to overcome
those shortcomings.

4 Conclusions

This paper has described the newly-started ParaPhrase project. It has intro-
duced key technologies, described the structure of the project, the key related
work in the area, and the advances that we anticipate making in the course
of the project. ParaPhrase aims to mark a step change in programmability
of heterogeneous parallel systems by synthesizing work from several indepen-
dent areas and by developing new tools and techniques that will allow parallel
programmers to develop programs using a tool-supported refactoring approach
based on well-understood parallel design patterns coupled with good skeleton
implementations. Each of the key technologies that will help achieve this goal
is described in depth in a companion paper that has been submitted to this
proceedings. Danelutto et al. describe a methodology suitable to implement au-
tonomic management of multiple non functional concerns with the patterns and
skeletons that we will use in the project; Brown et al. describe the refactoring
tools and techniques; Gonzalez-Velez et al. describe the software virtualisations
that we require; and, finally, Aldinucci et al. describe the hardware virtualisa-
tion layer that underpins the project. Achieving the overall goals of the project
represents an exciting technical challenge that will require progress to be made
in all these underlying technologies.

Acknowledgements. This work has been supported by the European Union
Framework 7 grant IST-2011-288570 “ParaPhrase: Parallel Patterns for Adap-
tive Heterogeneous Multicore Systems”, http://www.paraphrase-ict.eu.

References

1. Adve, S., Adve, V., Agha, G., Frank, M., et al.: Parallel@Illinois: Parallel Com-
puting Research at Illinois — The UPCRC Agenda (November 2008),
http://www.upcrc.illinois.edu/documents/UPCRC_Whitepaper.pdf

2. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Dazzi, P., Laforenza, D.,
Tonellotto, N., Kilpatrick, P.: Behavioural skeletons in GCM: autonomic manage-
ment of grid components. In: Euromicro PDP 2008, Toulouse, pp. 54–63. IEEE
(February 2008)

3. Aldinucci, M., Danelutto, M., Dazzi, P.: MUSKEL: an expandable skeleton envi-
ronment. Scalable Computing: Practice and Experience 8(4), 325–341 (2007)

4. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In: IPDPS
2009, Rome, pp. 1–12. IEEE (May 2009)

http://www.paraphrase-ict.eu
http://www.upcrc.illinois.edu/documents/UPCRC_Whitepaper.pdf

234 K. Hammond et al.

5. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of multiple
non-functional concerns in behavioural skeletons. In: Desprez, F., Getov, V., Priol,
T., Yahyapour, R. (eds.) Grids, P2P and Services Computing, pp. 89–103. Springer
(2010)

6. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers (2001) ISBN 1-55860-286-0

7. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Communications of the ACM 52(10), 56–67
(2009)

8. Bacon, D., Graham, S., Sharp, O.: Compiler Transformations for High-Performance
Computing. ACM Computing Surveys 26(4), 345–420 (1994)

9. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, Juan-les-Pins, France, pp. 7–16 (September 2004)

10. Bernecky, R., Herhut, S., Scholz, S.-B., Trojahner, K., Grelck, C., Shafarenko, A.:
Index Vector Elimination – Making Index Vectors Affordable. In: Horváth, Z.,
Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 19–36. Springer,
Heidelberg (2007)

11. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads
in Parallel and Distributed Systems. IEEE, Los Alamitos (1996)

12. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI 2008: Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 101–113. ACM, New York (2008)

13. Buono, D., Danelutto, M., Lametti, S.: Map, reduce and mapreduce, the skeleton
way. Procedia CS 1(1), 2095–2103 (2010)

14. Casanova, H., Kim, M.-H., Plank, J.S., Dongarra, J.: Adaptive scheduling for task
farming with grid middleware. Int. J. High Perform. Comput. Appl. 13(3), 231–240
(1999)

15. Casavant, T., Kuhl, J.: A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. Softw. Eng. 14(2), 141–154 (1988)

16. Chu, C.-T., Kim, S.K., Lin, Y.-A., Ng, A.Y.: Map-reduce for machine learning on
multicore. Architecture 19(23), 281 (2007)

17. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
Research Monographs in Parallel and Distributed Computing. Pitman/MIT Press,
London (1989)

18. Danelutto, M.: On Skeletons and Design Patterns. In: Joubert, G.H., Murli, A., Pe-
ters, F.J., Vanneschi, M. (eds.) PARALLEL COMPUTING Advances and Current
Issues Proceedings of the International Conference ParCo 2001. Imperial College
Press (2002) ISBN: 1860943152

19. Danelutto, M.: HPC the easy way: new technologies for high performance appli-
cation development and deployment. Journal of Systems Architecture 49(10-11),
399–419 (2003)

20. Dig, D.: A refactoring approach to parallelism. IEEE Softw. 28, 17–22 (2011)
21. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task Scheduling in Parallel and Distributed

Systems. Innovative Technology Series. Prentice Hall, New Jersey (1994)
22. Feautrier, P.: Some efficient solutions to the affine scheduling problem: I. one-

dimensional time. Int. J. Parallel Program. 21(5), 313–348 (1992)
23. Feautrier, P.: Automatic Parallelization in the Polytope Model. In: Perrin, G.-R.,

Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996)

The ParaPhrase Project 235

24. Eclipse Foundation: Eclipse - an Open Development Platform (2009),
http://www.eclipse.org

25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and
Reuse of Object-Oriented Design. In: Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

26. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Upper Saddle River (1995)

27. Geppert, L., Perry, T.S.: Transmeta’s magic show (microprocessor chips). IEEE
Spectrum (2000)

28. Gillick, D., Faria, A., DeNero, J.: Mapreduce: Distributed computing for machine
learning, Berkley (December 18, 2006)

29. González-Vélez, H., Cole, M.: An adaptive parallel pipeline pattern for grids. In:
IPDPS 2008, Miami, USA, pp. 1–11. IEEE (April 2008)

30. González-Vélez, H., Cole, M.: Adaptive statistical scheduling of divisible workloads
in heterogeneous systems. Journal of Scheduling 13(4), 427–441 (2010)

31. González-Vélez, H., Cole, M.: Adaptive structured parallelism for distributed het-
erogeneous architectures: A methodological approach with pipelines and farms.
Concurrency and Computation–Practice & Experience 22(15), 2073–2094 (2010)

32. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks:
High-level structured parallel programming enablers. Software–Practice & Experi-
ence 40(12), 1135–1160 (2010)

33. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming 15(3), 353–401 (2005)

34. Grelck, C., Hinckfuß, K., Scholz, S.-B.: With-Loop Fusion for Data Locality and
Parallelism. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS,
vol. 4015, pp. 178–195. Springer, Heidelberg (2006)

35. Grelck, C., Kuthe, S., Scholz, S.-B.: A Hybrid Shared Memory Execution Model
for a Data Parallel Language with I/O. Parallel Processing Letters 18(1), 23–37
(2008)

36. Grelck, C., Scholz, S.-B., Shafarenko, A.: A Binding Scope Analysis for Generic
Programs on Arrays. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005.
LNCS, vol. 4015, pp. 212–230. Springer, Heidelberg (2006)

37. Grelck, C., Scholz, S.-B., Trojahner, K.: With-Loop Scalarization – Merging Nested
Array Operations. In: Trinder, P., Michaelson, G., Peña, R. (eds.) IFL 2003. LNCS,
vol. 3145, pp. 118–134. Springer, Heidelberg (2004)

38. Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory
Architectures. University of Passau (2004) (Habilitation thesis)

39. Herhut, S., Scholz, S.-B., Bernecky, R., Grelck, C., Trojahner, K.: From Contracts
Towards Dependent Types: Proofs by Partial Evaluation. In: Chitil, O., Horváth,
Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 254–273. Springer, Heidelberg
(2008)

40. Kennedy, K., McKinley, K.S., Tseng, C.W.: Interactive parallel programming using
the parascope editor. IEEE Trans. Parallel Distrib. Syst. 2, 329–341 (1991)

41. Kruskal, C., Weiss, A.: Allocating independent subtasks on parallel processors.
IEEE Transactions on Software Engineering SE-11(10), 1001–1016 (1985)

42. Lengauer, C.: Loop Parallelization in the Polytope Model. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 398–416. Springer, Heidelberg (1993)

43. Leonard, P.: The Multi-Core Dilemma, Intel Software Blog (March 2007),
http://software.intel.com/en-us/blogs/2007/03/14/

the-multi-core-dilemma-by-patrick-leonard/

http://www.eclipse.org
http://software.intel.com/en-us/blogs/2007/03/14/the-multi-core-dilemma-by-patrick-leonard/
http://software.intel.com/en-us/blogs/2007/03/14/the-multi-core-dilemma-by-patrick-leonard/

236 K. Hammond et al.

44. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine transforms - extended journal version parallel computing. Parallel Com-
puting (1998)

45. Lim, A.W., Liao, S.-W., Lam, M.S.: Blocking and array contraction across ar-
bitrarily nested loops using affine partitioning. In: PPoPP 2001: Proceedings of
the Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, pp. 103–112. ACM, New York (2001)

46. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Prentice Hall
(1999)

47. Long, S., O’Boyle, M.: Adaptive java optimisation using instance-based learning.
In: ICS 2004: Proceedings of the 18th Annual International Conference on Super-
computing, pp. 237–246. ACM, New York (2004)

48. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: A new framework for parallel machine learning. CoRR, abs/1006.4990
(2010)

49. Majumdar, S., Eager, D.L., Bunt, R.B.: Scheduling in multiprogrammed parallel
systems. SIGMETRICS Perform. Eval. Rev. 16(1), 104–113 (1988)

50. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming.
Software Patterns Series. Addison-Wesley, Boston (2004)

51. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis, UIUC, Cham-
paign, IL, USA (1992)

52. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU com-
puting. Proceedings of the IEEE 96(5), 879–899 (2008)

53. Pop, A., Pop, S., Sjödin, J.: Automatic streamization in GCC. In: Proc. of the
2009 GCC Developers Summit, Montréal, Canada (June 2009)

54. Pouchet, L.-N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the
polyhedral model: part ii, multidimensional time. In: PLDI 2008: Proceedings of
the 2008 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pp. 90–100. ACM, New York (2008)

55. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, London (2003)

56. Scholz, S.-B.: With-Loop-Folding in Sac - Condensing Consecutive Array Oper-
ations. In: Clack, C., Hammond, K., Davie, T. (eds.) IFL 1997. LNCS, vol. 1467,
pp. 72–91. Springer, Heidelberg (1998)

57. Shao, G., Berman, F., Wolski, R.: Master/slave computing on the grid. In: HCW
2000, Cancun, pp. 3–16. IEEE (May 2000)

58. Tamano, H., Nakadai, S., Araki, T.: Optimizing multiple machine learning jobs on
mapreduce. In: 2011 IEEE Third International Conference on Cloud Computing
Technology and Science, CloudCom, November 29-December 1, pp. 59–66 (2011)

59. Trojahner, K., Grelck, C., Scholz, S.-B.: On Optimising Shape-Generic Array Pro-
grams Using Symbolic Structural Information. In: Horváth, Z., Zsók, V., Butter-
field, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 1–18. Springer, Heidelberg (2007)

60. University of Mannheim, University of Tennessee and NERSC. TOP500 supercom-
puter sites (November 2010), http://www.top500.org/ (last accessed: December
1, 2010)

61. Vadhiyar, S.S., Dongarra, J.: Self adaptivity in grid computing. Concurr. Comput.-
Pract. Exp. 17(2-4), 235–257 (2005)

62. Wloka, J., Sridharan, M., Tip, F.: Refactoring for reentrancy. In: ESEC/FSE 2009,
pp. 173–182. ACM, Amsterdam (2009)

63. Wolfe, M.: High-Performance Compilers for Parallel Computing. Addison-Wesley
(1995) ISBN 0-8053-2730-4

http://www.top500.org/

Paraphrasing:
Generating Parallel Programs Using Refactoring

Christopher Brown1, Kevin Hammond1, Marco Danelutto2,
Peter Kilpatrick3, Holger Schöner4, and Tino Breddin5

1 School of Computer Science, University of St. Andrews, Scotland KY16 9SX, UK
2 Dept. Computer Science, Univ. Pisa, Largo Pontecorvo 3, 56127 PISA, Italy

3 Sch. Electronics, Electrical Eng. and Comp. Sci., Queen’s University Belfast, UK
4 Software Competence Centre Hagenberg GmbH, Austria

5 Erlang Solutions, London. UK
{chrisb,kh}@cs.st-andrews.ac.uk, marcod@di.unipi.it,

p.kilpatrick@qub.ac.uk, Holger.Schoener@scch.at

Abstract. Refactoring is the process of changing the structure of a
program without changing its behaviour. Refactoring has so far only
really been deployed effectively for sequential programs. However, with
the increased availability of multicore (and, soon, manycore) systems,
refactoring can play an important role in helping both expert and non-
expert parallel programmers structure and implement their parallel pro-
grams. This paper describes the design of a new refactoring tool that
is aimed at increasing the programmability of parallel systems. To mo-
tivate our design, we refactor a number of examples in C, C++ and
Erlang into good parallel implementations, using a set of formal pattern
rewrite rules.

1 Introduction

Despite Moore’s “law” [22], uniprocessor clock speeds have now stalled. Rather
than using single processors running at ever-higher clock speeds, and drawing
ever-increasing amounts of power, even consumer laptops, tablets and desktops
now have dual-, quad- or hexa-core processors. Haswell, Intel’s next multicore
architecture, will have eight cores by default. Future hardware is likely to have
even more cores, with manycore and perhaps even megacore systems becoming
mainstream. This means that programmers need to start thinking parallel, mov-
ing away from traditional programming models where parallelism is a bolted-on
afterthought towards new models where parallelism is an intrinsic part of the
software development process. One means of developing parallel programs that
is attracting increasing interest is to employ parallel patterns, that is, sets of ba-
sic, predefined building blocks that each model and embed a frequently recurring
pattern of parallel computation. An application is then a composition of these
basic building blocks, that may be specialized by providing (suitably wrapped)
sequential portions of code implementing the business logic of the application.
Examples of such patterns include farms, pipelines, map-reduces, etc. By taking
a pattern-based approach the application programmer can focus on providing

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 237–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

238 C. Brown et al.

the business code and, having identified a parallel pattern (composition) that is
suitable for his/her application from a set of available patterns, can then get “for
free” the necessary behind-the-scenes code, such as that for implementing syn-
chronization and communication among the parallel activities. We thus envisage
that an application programmer will begin with a sequential version of his/her
business code and proceed to introduce parallelism by selecting parallel patterns
that are suitable for the application at hand and for the target architecture.
This, of course, requires expertise in pattern usage. It also requires suitable soft-
ware support to facilitate introduction of patterns into the existing (sequential)
code. This paper addresses this latter issue by exploring the use of refactoring
as a means of bringing parallelism to business code via patterns.

1.1 Using Refactoring for Parallelism

Refactoring is the process of changing the internal structure of a program, while
preserving its behaviour. The term refactoring was first introduced by Opdyke
in 1992 [24], but the concept goes back to the fold/unfold system proposed by
Darlington and Burstall in 1977 [10]. In contrast to general program transfor-
mations, such as generic programming, the key defining aspect of refactoring is
its focus on purely structural changes rather than on changes in program func-
tionality. Some advantages of refactoring are as follows:

– Refactoring aims to improve software design. Without refactoring, a program
design will naturally decay: as code is changed, it progressively loses its struc-
ture, especially when this is done without fully understanding the original
design. Regular refactoring helps tidy the code and retain its structure.

– Refactoring makes software easier to understand. Refactoring helps improve
readability, and so makes code easier to change. A small amount of time
spent refactoring means that the program better communicates its
purpose.

– Refactoring helps the programmer to program more rapidly. Refactoring en-
courages good program design, which allows a development team to better
understand their code. A good design is essential to maintaining rapid, but
correct, software development.

Our refactoring tool will be developed as part of the ParaPhrase project, a
new 3 year EU Framework-7 research project. ParaPhrase will use refactoring
together with high-level design patterns1 to introduce parallelism into sequential
programs. In this paper we outline the design for the ParaPhrase refactoring
tool that will refactor sequential programs written in C/C++ and Erlang to
introduce parallelism, and will also refactor parallel programs in C/C++ and
Erlang into more efficient implementations. By targeting C/C++ and Erlang
we can demonstrate the effectiveness of our approach and its applicability to
different paradigms.

1 A parallel (design) pattern is a natural language description of a problem and of
the associated solution techniques that the parallel programmer may use to solve
that problem; an algorithmic skeleton is a programming entity used to implement a
parallel design pattern. Here, for simplicity, we use the terms interchangeably.

ParaPhrasing: Refactoring for Parallelism 239

a* b*

a* a* a*

b*

b*

b*

Fig. 1. A Typical Task Farm Showing a Master Distribute Function and the Workers

Listing 1. Sequential C Program Showing a Set of Tasks and a Worker Function
Before the Refactoring Process

1 int main(int argc, char ∗argv[]) {
2 compute();
3 }
4 void compute() {
5 int i , task[MAX TASKS];
6 for (i =0; i<MAX TASKS; i++) {
7 task[i] = ... ;

8 payload(task[i]); // set up some ”tasks”

9 }
10 }

The specific technical contributions of this paper are:

1. we show how structured transformation techniques can enhance the pro-
grammability of parallel systems through refactoring;

2. we present a novel design for a new, generic, refactoring system that aims
to transform programs into efficient parallel implementations, exploiting
pattern-based rewrite rules that operate on systems of well-structured soft-
ware components; and,

3. we present a number of new examples showing how refactoring can be used
to aid a programmer in implementing parallelism.

240 C. Brown et al.

Listing 2. Parallel C Program Showing an MPI Farm After the Refactoring
Process

1 #include <mpi.h>
2 int main(int argc, char ∗argv[]) {
3 int np, rank;
4 MPI Init(&argc, &argv);
5 MPI Comm rank(MPI COMM WORLD,&rank);
6 MPI Comm size(MPI COMM WORLD,&np);
7 if (rank == 0) {
8 compute(np−1);
9 } else {

10 worker component();
11 }
12 MPI Finalize();
13 }
14 void compute(int workers) {
15 int i , task[MAX TASKS];
16 for (i=0; i<MAX TASKS; i++) {
17 task[i] = ... ;
18 }
19 for (i=0; i<workers; i++) {
20 MPI Send(&task[i], 1, MPI INT, i+1, i, MPI COMM WORLD);
21 }
22 while (i<MAX TASKS) {
23 MPI Recv(&temp, 1, MPI INT, MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &status);
24 who = status.MPI SOURCE;
25 tag = status.MPI TAG;
26 result [tag] = temp;
27 MPI Send(&task[i], 1, MPI INT, who, i, MPI COMM WORLD);
28 i++;
29 }
30 for (i=0; i<workers; i++) {
31 MPI Recv(&temp,1,MPI INT,MPI ANY SOURCE,MPI ANY TAG,MPI COMM WORLD,&status);
32 who = status.MPI SOURCE;
33 tag = status.MPI TAG;
34 result [tag] = temp;
35 MPI Send(&task[i], 1, MPI INT, who, NO MORE TASKS, MPI COMM WORLD);
36 }
37 }
38 int computation(int x) {
39 return (payload(x));
40 }
41 void worker component(){
42 int result , task;
43 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD, &status);
44 tag = status.MPI TAG;
45 while (tag != NO MORE TASKS) {
46 result = computation(task);
47 MPI Send(&result, 1, MPI INT, 0, tag, MPI COMM WORLD);
48 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD,&status);
49 tag = status.MPI TAG;
50 }
51 }

ParaPhrasing: Refactoring for Parallelism 241

2 Motivation

To motivate our refactoring design, we explore a simple refactoring example2

that introduces a task farm [15] skeleton in C. A task farm is implemented as a
series of Worker functions which are mapped to processor nodes. Each worker
takes a set of tasks from a master and runs some computation that produces
a result for each task. All results are fed back to the master. This is shown in
Figure 1, where Distribute is the master, the sequence of inputs is shown as a*
and the sequence of results (which may be a different type to the tasks) is shown
as b*. The Merge function merges the results as they are delivered.

The sequential program before the refactoring process is shown in Listing 1.
The program itself is relatively simple: it simply creates some tasks and then
performs a computation for each task. The computation itself is not important
here, so we simply use the dummy function payload. In a real application, this
function would be replaced by some meaningful computation for each task. The
highlighted pieces of code are the parts that are needed as inputs to the refactor-
ing tool. In the listing, the user has highlighted compute to act as the Distribute
function; task[i] to represent the list of Tasks and payload(task[i]); to represent
the Worker function. The refactorer will generate a Merge function, based on
knowledge about C array processing. The user simply has to select these portions
of code in a refactoring editor, and choose the Introduce Task Farm refactoring
from the ParaPhrase refactorer. Preconditions, such as checking for non side-
effecting code in the highlighted components would be done automatically, and
the refactoring would fail if these conditions are not met. The refactored code
is shown in Listing 2, which reveals the significant amount of boilerplate code
that needs to be introduced to set up a task farm, including various low-level
calls to MPI [27]. Most of the new code deals with accumulating the results and
terminating the program. Once a worker processes a task, the result is returned
to the master, and a new task is sent to the worker. When there are no more
tasks, a termination message is sent to the worker. The important thing to note
is that a refactoring tool will automate all of these steps for the programmer. The
programmer can start with their sequential program, choose a task farm refac-
toring and have the refactoring tool produce the parallel version, complete with
all the necessary MPI calls etc. For a complex program, this can be an enormous
saving in effort. Even for a simple program, there is a significant saving in not
needing to understand the detail of the MPI implementation.

In the remainder of this section, we demonstrate the manual steps that are
needed to perform this refactoring by hand. We start with the simple C program
shown in Listing 1. The first step in this refactoring process is to identify the
computation component for the workers. In our example we identify the call to
payload as the computation component and isolate this as a component:

1 int main(...) {
2 ...
3 }
4

2 We use C and a task farm here for their familiarity and relative simplicity.

242 C. Brown et al.

5 void compute() {
6 ...
7 for (i =0; i<MAX TASKS; i++) { // set up some tasks
8 task[i] = ...
9 (void) computation(task[i]);

10 }
11 }
12

13 int computation(int x) {
14 return (payload(x));
15 }
The next stage is to identify the component that will represent the workers of the
task farm. A refactoring tool will introduce this worker component automatically,
by also introducing the MPI calls that send tasks to the workers.

1 int computation(int x);
2

3 int main(int argc, char ∗argv[]) {
4 int np, rank;
5 MPI Status status;
6 MPI Init(&argc, &argv);
7 MPI Comm rank(MPI COMM WORLD, &rank);
8 MPI Comm size(MPI COMM WORLD, &np);
9

10 if (rank == 0)
11 compute(np−1);
12 else
13 worker component();
14

15 MPI Finalize();
16 }
17

18 void compute(int workers) {
19 int i , task[MAX TASKS];
20 MPI Status status;
21 for (i =0; i<MAX TASKS; i++) { // set up some tasks
22 task[i] = ...
23 (void) computation(task[i]);
24 }
25

26 for (i =0; i<workers; i++)
27 MPI Send(&task[i], 1, MPI INT, i+1, i, MPI COMM WORLD);
28 }
29

30 void worker component() {
31 int result , task;
32 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD, &status);
33 result = computation(task);
34 }
The main function is modified so that the workers are evaluated by separate
MPI tasks. The main MPI task becomes the master (compute). Tasks are sent

ParaPhrasing: Refactoring for Parallelism 243

Listing 3. Sequential Erlang Program Before Task Farm Refactoring

1 −module(taskFarm).
2 −export([run/2]).
3

4 run (Fun, Parameters) −>

5 [Fun (P) || P <− Parameters].

to the workers in a round-robin manner. At this stage the results are not yet
accumulated, and no termination checking has been introduced. This is done in
the final stage of the refactoring, which produces the code in Listing 2. Although
there were only a small number of steps needed to perform this refactoring
by hand, the programmer needs to understand how to implement a task farm
skeleton, including checking for termination, and also needs expert knowledge in
the use of MPI. It would be very easy to make a mistake at any of these steps,
which could make debugging the parallel version very difficult. A refactoring
tool, on the other hand, which automates this for a programmer, can eliminate
potential mistakes and so allow the programmer to focus their effort on program
design, rather than on the intricate details of implementing skeletons.

2.1 Erlang Example

We now show how to refactor an equivalent skeleton implementation of the same
task farm in Erlang. Erlang [11] is a strict, impure, dynamically-typed functional
programming language with support for higher-order functions, pattern match-
ing, concurrency, communication, distribution, fault-tolerance and dynamic code
loading. We begin with a sequential Erlang program, which simply maps a func-
tion Fun over a list, Parameters, as shown in Listing 3. Due to Erlang’s functional
style, functions are higher-order, meaning that they can take functions as argu-
ments and return functions as results. We want to refactor this program into a
task farm skeleton, as shown in Figure 1. The Erlang version is similar to the C
version: we need to identify a number of components that will act as the Workers
and the Master ; a Distribute function is also required to merge the results of
the workers. In Listing 3, the user has highlighted run as the Master component;
Fun as the Worker and Parameters as the list of tasks.

The refactored version is shown in Listing 4. Here the refactoring has intro-
duced a new function, do run that takes three arguments: Fun, the computation
to be performed by each worker; Parameter, the task sent to each worker; and
Origin, the address of the master node on the network. Clearly, do run acts as the
Worker function in the task farm, computing the result by applying the compu-
tation Fun to the task, Parameter, and then sending the result back to the Master.
Erlang uses the (!) primitive to send messages, and the receive primitive to re-
ceive messages. In the refactored example, the Merge function is expressed as the
expression [receive {P, R} −> R end || P <− Procs]. which receives messages from
the workers as they arrive. This list comprehension ensures that the merge only
waits for the same number of results as there were original tasks. This merged
list is then returned as the result of the program. It is also important to stress

244 C. Brown et al.

Listing 4. Parallel Erlang Program After Task Farm Refactoring

1 −module(taskFarm).
2

3 −export([run/2, do run/3]).
4

5 run(Fun, Parameters) −>
6 Procs = [spawn(?MODULE, do run, [Fun, P, self()]) || P <− Parameters],
7 [receive {P, R} −> R end || P <− Procs].
8

9 do run(Fun, Parameter, Origin) −>
10 Result = Fun(Parameter),
11 Origin ! {self (), Result}.

Listing 5. Parallel Erlang Program After a Renaming

1 −module(taskFarm).
2

3 −export([run/2, do run/3]).
4

5 run(Fun, Tasks) −>

6 Procs = [spawn(?MODULE, do run, [Fun, T , self()]) || T <− Tasks],

7 [receive { T , R} −> R end || T <− Procs].
8

9 do run(Fun, Task , Origin) −>

10 Result = Fun(Task),
11 Origin ! {self (), Result}.

that the program in Listing 4 can undergo a further renaming refactoring by
renaming Parameter in do run to Task, P to T, and Parameters in run to Tasks. The
completed code is shown in Listing 5.

3 The Design of the ParaPhrase Refactoring Tool

When constructing a refactoring tool, there are two main activities to consider:
program analysis and program transformation. Program analysis checks whether
certain side-conditions, which are necessary for the refactoring, are met and also
collects any information that is needed during the program transformation phase.
Program transformation performs the actual structural code changes that com-
prise a given refactoring. Both these steps are highly amenable to automation.
The ParaPhrase refactorer will be syntax independent, initially working over
C/C++ and Erlang. This demonstrates the generality of our approach, allowing
patterns and rewrite rules to be expressed in terms of components rather than
low-level language syntax. Targeting Erlang in addition to C/C++ also allows
us to explore the advantages and limitations of both the imperative and func-
tional paradigms, whilst also contributing to both user domains. Figure 2 shows

ParaPhrasing: Refactoring for Parallelism 245

Fig. 2. The ParaPhrase Refactorer Fig. 3. The ParaPhrase Refactorer API

the design of the ParaPhrase refactorer, for C,C++ and Erlang. We note a
number of components of the workflow in Figure 2:

1. The source syntax is parsed into a correspondingAbstract Syntax Tree (AST).
Suitable static semantics must also be represented, such as use- and bind-
locations for variables and the types of variables and functions. These static
semantics are vital in order to correctly apply refactorings that make use of
(and transform) the binding structure of a program, for example.

2. The AST is transformed into a unified AST, which must be general enough
to express concepts from different paradigms and languages, yet still offer a
sound representation of each syntax in order to transform and query it.

3. The unified AST is transformed into a component AST which can express the
high level constructs in the program source that are required as arguments to
the parallel patterns. Typically these constructs will be expressed as software
components that might be identified automatically.

4. The component AST is refactored with respect to a set of well-defined trans-
formation rules for the parallel patterns. The output of this refactoring will
often be a modified version of the unified AST.

5. The refactored component AST is “pretty-printed” in the source syntax.
Layout and comments should be preserved where possible, so that the pro-
grammer is presented with a refactored program that preserves their pro-
gramming style and idiom.

The ParaPhrase refactoring tool will be made user-extensible through a num-
ber of layers of API abstractions, as shown in Figure 3. We predict that the
following will be needed to support user-level pattern-based refactorings:

1. Patterns will be expressed in a high level abstract language that will allow
users to write rules to introduce and eliminate patterns, together with their
composition. This pattern language will be void of any syntax information
and will be general enough to express pattern rewrites for all syntaxes. These
rules are described in more detail in Section 3.1.

2. A language for expressing refactoring transformations will allow the refac-
torings themselves to be expressed in terms of a general syntax, including
pre- and post-conditions and transformation rules.

246 C. Brown et al.

Fig. 4. Map-Reduce pattern (left) and an equivalent Pipeline-Farm pattern (right)

3. A refactoring Domain Specific Language (DSL) framework will allow for the
composition of the refactorings to form larger refactorings.

4. A collection of utility functions such as traversal functions for the Abstract
Syntax Trees, retrieval of binding information, mapping an editor selection
onto its Syntax Tree representation, etc.

5. A Skeleton library that the refactored source program can import to access
low-level skeleton implementation details.

6. A concrete interface that will be integrated into a popular editing environ-
ment, such as Emacs or Eclipse.

Since there is already a refactoring tool for Erlang, Wrangler [17], that uses an
expressive Domain Specific Language (DSL) to define refactorings in terms of
their pre-conditions and transformation rules as Erlang macros, when dealing
with Erlang it may be possible to plug our pattern-rewrite rules directly into
the Wrangler DSL rather than using our own generic refactorer.

3.1 Patterns as Rewrite Rules

The ParaPhrase approach is based around the use of parallel patterns to drive
the program transformations in the refactoring tool. Parallel patterns impose a
clear and easily-recognised structure on the forms of parallelism that can be
exploited in an application. As an example, if we use the well-known map-reduce
pattern (Figure 4) to model parallel behaviour, then:

1. the signature of the function used to transform all the data collection items
during the map phase is known;

2. the signature of the function used to “sum up” all the items in the result
collection is known;

3. the data dependencies are known;
4. and it may, perhaps, be known whether the reduce operator is both associa-

tive and commutative.

All this information may be used to refactor the parallel computation in terms
of other parallel patterns. The map-reduce computation could be expressed, for
example, in terms of a pipeline pattern whose stages are:

– a stage splitting the input collection and delivering partitions of the collection
to the next stage (splitter stage, sequential);

– a stage modelled after the “embarrassingly parallel” parallel pattern (the
partition map-reduce stage, parallel), processing each partition by:

ParaPhrasing: Refactoring for Parallelism 247

• first applying the map operator to each partition item;
• then applying the reduce operator to “sum up” all the computed results;
• finally delivering the result to the stream leading to the next stage.

– a stage gathering the results from the partitions and summing them again,
using the reduce operator.

The overall refactoring in this case transforms a composition of map and reduce
patterns into a composition of pipeline and farm (the embarrassingly parallel
pattern on streams) patterns, as shown in Figure 4. For a stream of input collec-
tions, the refactored program may exploit more parallelism (and therefore better
performance). A number of “rewrite rules” can be used once parallel patterns
are identified with all their functional and non-functional parameters. Assuming
we have a pattern palette defined by the following BNF:

Pattern ::= Pipe | Farm | Comp | Map | Reduce | Seq
P ipe ::= pipe(Pattern, Pattern)
Farm ::= farm(Pattern)
Comp ::= comp(Pattern, Pattern)
Map ::= map(Pattern)
Reduce ::= reduce(Pattern)
Seq ::= 〈sequential code wrapping〉

then the rules in Table 1 can be used to apply “parallel” refactoring. All these
rules preserve the “functional” semantics, but not the “parallel” semantics. Both
sides of each rule give the same results, but the computation may involve differ-
ent parallel patterns and therefore different performance. The performance obvi-
ously depends on various parameters, including application-related and target-
architecture related ones. These rules are used de facto by the Pattern Rewrite
Rules box in Figure 3 to drive the refactorer. It is worth pointing out that:

– where all the parallel patterns are directly available as algorithmic skeletons
(e.g. as entries of a skeleton library), the refactoring process may simply
consist of substituting sequences of library calls;

Table 1. Parallel pattern rewriting rules. The coll2singleton and singleton2coll func-
tions transform a collection into a stream of collection item components and vice versa.

P → farm(P) farm introduction
farm(P) → P farm elimination
pipe(pipe(P1,P2),P3) ≡ pipe(P1,pipe(P2,P3)) pipeline assoc
pipe(map(P1),map(P2)) ≡ map(pipe(P1,P2)) pipe/map distrib
pipe(map(P1),reduce(P2)) → pipe(comp(map(P1),reduce(P2)),reduce(P2))

map reduce promotion
map(P1) ≡ pipe(coll2singleton,farm(P1),singleton2coll)

map/farm equivalence
pipe(P1,P2) → comp(P1,P2) stream par elimination
comp(P1,P2) → pipe(P1,P2) stream par introduction

248 C. Brown et al.

WiHj ≈ Vi,j

V1,1 V1,2 V1,n

V2,1 V2,2 V2,n

Vn,1 Vn,2 Vn,n

.

.

.

W1

W2

Wn

.

.

.

H1 H2 Hn· · ·

1 r

1

p

1

r

1 m

V,K,W,H
SGD

SGD

. . .

SGD

W,H
V,K

V0,l,K0,l,W0,Hl

V
1,l+1,K

1,l+1,W
1,H

l+1

V
n
−

1,l+
n
−

1 ,K
n
−

1,l+
n
−

1 ,W
n
−

1 ,H
l+
n
−

1

W1,Hl

W2
,Hl+1

W
n
,H

l+
n
−

1

iterate with l ←− (l + 1)%n

on convergence:

W,H

Fig. 5. Structure of coarse parallelization approach. By dividing matrix V into blocks,
only parts i and j of matrices W, H, respectively, are used for the approximation of
each block (i, j) of V. n blocks can thus be processed simultaneously with Stochastic
Gradient Descent (SGD) without conflicts of the parameter updates. After some SGD
iterations, the parameters W, H are collected again, and redistributed using a different
set of n non-overlapping blocks of V. As V has n × n different blocks, there are
n iterations of n parallel SGD updates until one sweep through all values in V is
completed (one epoch of an equivalent global SGD). K is a k× 2 matrix containing in
each row the index into V of one of the k known values of V, needed to compute the
SGD iterations.

– even where skeletons are available, the refactoring using the rules above may
require new sequential code to be generated. For example, for the task farm
refactoring above, the worker code for the second stage pipeline requires
some specific code to iterate the map operator over all the elements of the
partition. In most cases (e.g. in the rules of Table 1) the refactoring only
requires changing the (sequence of) calls to the skeleton library.

4 Use Case: Large Scale Matrix Factorization

Matrix Factorization for Data Modeling. Factorization of large matrices
is a method common in applications like recommender systems, and user pref-
erence modeling [16]. An example is a problem setting in which partial data of
the ratings of a large number of persons for a large number of movies are con-
sidered [1]. This problem setting provides a suitable vehicle for parallelization
and refactoring, as the approach and its parallelization are simple enough for
presentation here, while still being of real world significance. In the following
development we omit problem specific sequential code (cf. [13]), and concentrate
on the parallelization and refactoring.

The known and unknown ratings of users for movies are collected in a rating
matrix V with size p×m. The rows correspond to persons, and the columns to
movies. Most of the values in this matrix will be unknown, as usually users rate
only a limited number of movies. An auxiliary k × 2 matrix K is used to keep
track of the known values of V: row (s, t) ∈ K⇔ Vs,t is known.

To obtain estimates for probable ratings of users for movies they have not
rated (or even seen) so far, a factorization ofV into the p×r row factor matrixW
and the r×m matrix H is searched, with V ≈WH (for the known entries in V).
Estimate of an unknown rating of person s for movie t is the dot productWs·H·t.

ParaPhrasing: Refactoring for Parallelism 249

r is the number of factors, and W and H are the factor memberships of the
persons and movies. Factors could correspond to groups of movies and persons,
like action movies and action loving persons, or romantic movies/persons.

The factorization is performed by optimization of a cost function w.r.t. the
learned parameters W, H. The cost function is the mean of some loss over
the known rating values, e.g. the squared difference of the rating estimates to
the real ratings, for all known values (s, t) ∈ K. The optimization is performed
by gradient descent, which iterates epochs (one sweep through all known values)
of learning until convergence of the cost value.

Parallelization Approach. This problem can be parallelized on two levels.
The general approach for a high level parallelization is sketched in Figure 5. The
matrix V is split into blocks, the parameter matrices into stripes. The matrix
factorization can now be performed for each block of V separately, and all blocks
corresponding to independent stripes of W and H can be optimized in parallel.
As blocks of V in the same row or column share parameters and cannot be
optimized in parallel, one epoch of learning needs an additional loop around
these parallel optimizations, until all blocks are optimized once. Afterwards, the
whole process is repeated until convergence of the parameters. The square root
n of the number of blocks n×n of matrix V is the degree of parallelization, and
can be tuned to the number of processing elements, and to the problem size.

A sequential version of this approach, comprising the starting point of the
following refactoring, is shown in the C++-like pseudo code in Listing 6. The
details of functions stochasticGradientDescent, partitionMatrices and randomMatrix are
not important for the high level parallelization, and the implementation is just
sketched. The second level of parallelization can be performed inside the stochas-
tic gradient descent. The computations of stochastic gradient descent are mainly
linear algebra. They are well parallelizable using a data-parallel approach.Para-
Phrase will also provide appropriate patterns, e.g. Map-Reduce, and support
for heterogeneous parallel architectures, such as distributed multicore systems
with GPGPUs on each node. The matrix factorization example could then be
mapped onto such a cluster by distributing the matrix blocks to the available
computation nodes, and parallelizing the stochastic gradient descent on their
respective GPGPUs.

Parallelization by Refactoring. Listing 6 is the starting point of refactoring
for parallelization. We wish to use the Farm pattern to distribute the n parallel
SGD computations. Before the Farm pattern can be applied, the worker func-
tion performing the SGD needs to be wrapped inside a Seq pattern, as other
refactoring rules can only be applied to existing patterns (cf. Section 3.1). This
is achieved by using the refactorer to mark the stochasticGradientDescent function
and wrap it in a Seq pattern. Afterwards, the “P → farm(P)” rewriting rule
can be used, to make the sequential loop parallel. The code which results from
those refactorings is given in Listing 7, with the changes highlighted. Similar
refactorings are also possible to introduce map-reduce parallelism in the linear
algebra operations performed by the stochastic gradient. The convenience of code
rewriting is one advantage of automatic refactoring; in addition, the following
considerations make it a valuable tool for applications such as the one above:

250 C. Brown et al.

Listing 6. Sequential version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // initializations . . .
3 List<List<Matrix>> blocksV, filteredK;
4 List<Matrix> rowsW, colsH;
5 // assume that blocksV, . . . are views of parts of V, . . .,
6 // such that updates to rowsW, colsH also update W, H
7 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);
8 while (!converged(loss, V, K, W, H)) {
9 loss = 0;

10 for (l ∈ {0, . . . , n− 1}) {
11 for (i ∈ {0, . . . , n− 1}) {
12 int j = (l+i) % n;
13 (loss part, rowsW[i], colsH[j]) = stochasticGradientDescent(
14 blocksV[i,j], filteredK[i , j], rowsW[i], colsH[j]);
15 loss += loss part;
16 }
17 }
18 loss /= n;
19 }
20 return (W, H);
21 }
22

23 // Performs one epoch of Stochastic gradient descent, returning loss and new W, H.
24 // An epoch corresponds to one sweep over all (known) elements of the matrix
25 (double, Matrix, Matrix) stochasticGradientDescent(Matrix V, Matrix K,
26 Matrix W, Matrix H) {
27 // . . .
28 }
29

30 // split V, K, W, H into n partitions (n× n for V and K).
31 (List<List<Matrix>>, List<List<Matrix>>, List<Matrix>, List<Matrix>)
32 partitionMatrices(int n, Matrix V, Matrix K, Matrix W, Matrix H) {
33 // . . .
34 // filteredK[i][j] contains all rows u of K, for which K[u] = (s, t) is
35 // an index into block (i, j) of V, recomputed to be the
36 // equivalent index into blocksV[i][j]
37 return (blocksV, filteredK, rowsW, colsH);
38 }

– checks will be performed to determine whether the intended refactoring is
possible, and whether there are conflicts on the new identifiers;

– switches between different kinds of parallel patterns will be easier, facilitating
the optimization of the patterns used for the application and for the available
hardware; and

– guidance might be available regarding an optimal choice of patterns given
non-functional criteria such as run-time considerations.

ParaPhrasing: Refactoring for Parallelism 251

Listing 7. Farm version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // . . .
3 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);

4 Pattern seqSGD = SequentialPattern(stochasticGradientDescent);

5 Pattern farmSGDEpoch = FarmPattern(seqSGD);

6 while (!converged(loss, V, K, W, H)) {
7 loss = 0;
8 for (l ∈ {0, . . . , n− 1}) {
9 for (i ∈ {0, . . . , n− 1}) {

10 int j = (l+i) % n;

11 farmSGDEpoch.execute(blocksV[i,j], filterdK[i,j], rowsW[i], colsH[j]);

12 }
13 List<(double,Matrix,Matrix)> resList = farmSGDEpoch.waitforall();

14 for (i ∈ {0, . . . , n− 1}) {
15 int j = (l+i) % n;

16 loss part = resList[i][0]; rowsW[i] = resList[i][1]; colsH[j] = resList[i][2];

17 loss += loss part;

18 }
19 }
20 loss /= n;
21 }
22 return (W, H);
23 }

Pattern Refactoring. To exploit the ease of refactoring parallel patterns, a
refactoring to use a parallel Map pattern instead of a Farm pattern is now con-
sidered. Such refactoring could be useful for clarifying the program structure, or
it might be more appropriate for a given parallel architecture. Automatic Refac-
toring allows easy switching between such patterns, making it straightforward to
explore the available alternatives and find the optimal one for a given situation.
To apply the Map pattern, the input arguments for the Farm workers have to be
collected in a list, automatized as much as possible by the refactoring, to which
the already existing Seq pattern can then be applied by the Map, as shown in
Listing 8 with refactoring changes highlighted.

Refactoring Analysis. Comparing the three versions of the matrixFactorization

function, it is obvious that large parts are very similar, a prerequisite for auto-
matic refactoring. Still, it is also obvious that refactoring does not mean just a
simple exchange of a FarmPattern by a MapPattern, or similar. Parts of the sur-
rounding code have to be reorganized as well. In this example, the following
issues arise:

252 C. Brown et al.

Listing 8. Map version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // . . .
3 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);
4 Pattern seqSGD = SequentialPattern(stochasticGradientDescent);

5 Pattern mapSGDEpoch = MapPattern(seqSGD);

6 while (!converged(loss, V, K, W, H)) {
7 loss = 0;
8 for (l ∈ {0, . . . , n− 1}) {
9 List<(Matrix,Matrix,Matrix,Matrix)> mapList;

10 for (i ∈ {0, . . . , n− 1}) {
11 int j = (l+i) % n;

12 mapList.append((blocksV[i,j], filteredK[i,j], rowsW[i], colsH[j]));

13 }
14 List<(double,Matrix,Matrix)> resList = mapSGDEpoch.execute(mapList);

15 for (i ∈ {0, . . . , n− 1}) {
16 int j = (l+i) % n;
17 loss part = resList[i][0]; rowsW[i] = resList[i][1]; colsH[j] = resList[i][2];
18 loss += loss part;
19 }
20 }
21 loss /= n;
22 }
23 return (W, H);
24 }

– introducing new variables; e.g. the variables for the pattern instances, but
also those collecting the Farm or Map results;

– handling arguments of the original worker function and its results, e.g. by
wrapping and unwrapping to and from single list items;

– splitting of loops, such that results of several iterations can be collected
outside the loop, while unwrapping the results might necessitate replicating
the loop a second time and repeating parts of the loop (here, “int j=(l+i)%n”
is necessary a second time);

– here, the sequential version already contained the code necessary for split-
ting the four distributed matrices into blocks; it would be desirable, although
maybe not realistic, to also have the refactoring introduce such helper func-
tions as necessary;

– the sequential version has already ensured that the worker function has no
side effects; it might be desirable to introduce refactorings transforming func-
tions (and calls to them) which are not yet side-effect free.

How many of these tasks can be performed automatically, and what other tasks
might be necessary for other use cases, remains to be investigated during the
ParaPhrase project.

ParaPhrasing: Refactoring for Parallelism 253

5 Related Work

Program transformation has a long history, with early work in the field being
described by Partsch and Steinbruggen in 1983 [26] and Mens and Tourwé pro-
ducing an extensive survey of refactoring tools and techniques in 2004 [21]. The
first refactoring tool system was the fold/unfold system of Burstall and Dar-
lington [10] which was intended to transform recursively defined functions. The
overall aim of the fold/unfold system was to help programmers to write correct
programs which are easy to modify. There are six basic transformation rules that
the system is based on: unfolding; folding; instantiation; abstraction; definition
and laws. The advantage of using this methodology was that it deployed a num-
ber of simple, and yet effective, structural program transformations that aimed
to develop more efficient definitions; the disadvantage was that the use of the
fold rule sometimes resulted in non-terminating definitions.

The Haskell Refactorer, HaRe, is a semi-automated refactoring tool for se-
quential Haskell programs, developed at the University of Kent by Thompson,
Li and Brown [8]. HaRe works over the full Haskell 98 standard, and contains
a large catalog of refactorings that concentrate on small structural changes in
sequential Haskell programs, such as renaming, lambda lifting and type-based
refactorings. HaRe was recently extended by us to deal with a limited num-
ber of parallel refactorings. This technique is known as paraforming [9], and
allows Haskell programmers to construct data and task parallelism using small
structural refactoring steps, although it does not use pattern-based rewriting,
as in ParaPhrase. Wrangler [17], also developed at the University of Kent by
Thompson and Li, is similar to HaRe, but works over sequential Erlang instead.
Wrangler also contains a large database of refactorings for Erlang programs and
includes a Domain Specific Language for expressing transformations (together
with their conditions) [19] and a further language for composing refactorings
[18]. Unlike our requirements for the ParaPhrase project, Wrangler does not
deal with parallel refactorings in any way. Cocinelle and its DSL framework,
SmPL [25], is a program matching and transformation engine for specifying
desired matches and transformations in C code. Stratego/XT [7] provides a
language-independent framework for expressing refactorings over arbitrarily de-
fined syntaxes. It may be possible to use Stratego in the context of Paraphrase
for expressing the parallel refactorings.

There has been a limited amount of work on parallel refactoring in general,
mostly with loop parallelisation in Fortran [29] and Java [12]. However these
approaches are limited to concrete structural changes (such as loop unrolling)
rather than applying high-level pattern-based rewrites. A companion paper con-
tains a much more detailed survey of refactoring tools for parallelisation [14].

Rewriting of structured parallel programs has been studied in different con-
texts. Backus’ Turing award lecture note [4], although not explicitly dealing with
parallel patterns or design patterns, sets up a scenario that allows to “compute”
program transformations using an algebra of programs. In particular, several
transformations related to map and reduce second order functions are already
present in this work. As an example the “pipe/map” rule described in Table 1
was already present in that seminal work described as

αf ◦ αg ≡ α(f ◦ g)

254 C. Brown et al.

with the functional composition operator ◦ representing pipeline, as usual (stream
parallel), and the apply-to-all α representing the map skeleton. More recently
more rewriting rules have been designed for algorithmic skeletons. In [2] a con-
cept of “normal form” for stream parallel skeleton compositions is introduced
that maximizes the service time by applying systematic rewriting of arbitrary
stream parallel skeleton compositions to farms with sequential workers. Other
authors consider usage of different skeleton rewriting rules to target different
architectures, in particular those including GPUs [23]. The full SkeTo skele-
ton based programming framework (see http://sketo.ipl-lab.org/) uses the
results from Bird-Merteens theory [6,28] to optimize data parallel skeleton com-
positions [20]. The potential refactoring for C++ code by introducing algorith-
mic skeletons has been previously discussed in the context of FastFlow (see
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about). In par-
ticular, in [3] the refactoring of sequential code to introduce a task farm skeleton
is discussed. Finally, PEPPHER: Performance Portability and Programmability
for Heterogeneous Many-core Architectures [5], is an EU FP7 funded project that
started in January 2010. The aim of PEPPHER is to devise a unified framework
for programming and optimizing applications for a diverse range of architec-
tures such as heterogeneous many-core processes in order to ensure performance
portability. PEPPHER uses direct compilation to the target architectures, so
portability is supported by powerful composition methods with a toolbox of
adaptive algorithms. However, the PEPPHER project does not use refactoring
and pattern rewriting to increase the programmability of parallel systems as we
do here, relying instead on adaptive algorithms and architecture-directed com-
pilation.

6 Conclusions

This paper has described a new design methodology for the ParaPhrase refac-
toring tool, a radically new system that will refactor systems of software com-
ponents into efficient parallel implementations. The tool will refactor programs
written in C, C++ and Erlang (although we also expect to extend our tool to
deal with other languages such as Haskell and Python), by applying high-level
abstract pattern rewrite rules that can either:

– Introduce new patterns into an existing sequential program; or,
– Modify an existing parallel program by changing the pattern already speci-

fied, or introducing a new pattern, therefore composing patterns together.

A companion paper by Hammond et al. [14] gives an overview of the Para-

Phrase project encompassing many key technologies and techniques that we
will employ in addition to refactoring. Among these is the need to identify
means of specifying non-functional properties of systems in such a way that
it becomes possible to verify that a refactoring achieves its intended purpose.
We have demonstrated the effectiveness of having such a refactoring tool by
motivating our design with a number of key examples in C, Erlang and C++,
where we showed that having a refactoring tool can effectively automate the
majority of the boilerplate implementation detail of introducing a new skeleton,

http://sketo.ipl-lab.org/
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about

ParaPhrasing: Refactoring for Parallelism 255

such as adding MPI code in C, or adding a master/worker skeleton in Erlang.
This is potentially an enormous saving in effort, allowing the programmer to
focus on designing algorithms rather than worrying about the details of parallel
implementation. We believe this is the correct way to improve substantially the
programmability of such parallel systems. A refactoring tool such as the one de-
scribed here would be a key component in increasing the productivity of parallel
programming in general.

Acknowledgments. This work has been supported by the European Union
grants RII3-CT-2005- 026133 SCIEnce: Symbolic Computing Infrastructure in
Europe, IST-2010- 248828 ADVANCE: Asynchronous and Dynamic Virtuali-
sation through performance ANalysis to support Concurrency Engineering, and
IST-2011-288570ParaPhrase: Parallel Patterns for Adaptive HeterogeneousMul-
ticore Systems, and by the UK’s Engineering and Physical Sciences Research
Council grant EP/G055181/1 HPC-GAP: High Performance Computational
Algebra.

References

1. Netflix Prize Forum/Grand Prize Award (September 2009),
http://www.netflixprize.com/community/viewtopic.php?id=1537

2. Aldinucci, M., Danelutto, M.: Stream Parallel Skeleton Optimization. In: Proc. of
PDCS: Intl. Conference on Parallel and Distributed Computing and Systems, pp.
955–962. IASTED, ACTA Press, Cambridge, Massachusetts (1999)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating Code on Multi-cores with FastFlow. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 170–181. Springer, Heidelberg
(2011)

4. Backus, J.: Can Programming be Liberated from the von Neumann Style? Com-
munications of the ACM 21(8), 613–641 (1978)

5. Benkner, S., Pllana, S., Träff, J.L., Tsigas, P., Dolinsky, U., Augonnet, C., Bach-
mayer, B., Kessler, C.W., Moloney, D., Osipov, V.: PEPPHER: Efficient and Pro-
ductive Usage of Hybrid Computing Systems. IEEE Micro 31(5), 28–41 (2011)

6. Bird, R.S.: Lectures on Constructive Functional Programming. In: Broy, M. (ed.)
Constructive Methods in Computer Science. NATO ASI Series F, vol. 55, pp. 151–
218. Springer (1988); Also available as Technical Monograph PRG-69, from the
Programming Research Group, Oxford University

7. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/xt 0.17. A
Language and Toolset for Program Transformation. Sci. Comput. Program. 72(1-
2), 52–70 (2008)

8. Brown, C., Li, H., Thompson, S.: An Expression Processor: A Case Study in Refac-
toring Haskell Programs. In: Page, R., Horváth, Z., Zsók, V. (eds.) TFP 2010.
LNCS, vol. 6546, pp. 31–49. Springer, Heidelberg (2011)

9. Brown, C., Loidl, H.-W., Hammond, K.: ParaForming: Forming Parallel Haskell
Programs Using Novel Refactoring Techniques. In: Peña, R., Page, R. (eds.) TFP
2011. LNCS, vol. 7193, pp. 82–97. Springer, Heidelberg (2012)

10. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1), 44–67 (1977)

11. Cesarini, F., Thompson, S.: ERLANG Programming, 1st edn. O’Reilly Media, Inc.
(2009)

http://www.netflixprize.com/community/viewtopic.php?id=1537

256 C. Brown et al.

12. Dig, D.: A Refactoring Approach to Parallelism. IEEE Softw. 28, 17–22 (2011)
13. Gemulla, R., Haas, P.J., Sismanis, Y., Teflioudi, C., Makari, F.: Large-Scale Ma-

trix Factorization with Distributed Stochastic Gradient Descent. In: NIPS 2011
Workshop on Big Learning, Sierra Nevada, Spain (December 2011)

14. Hammond, K., Aldinucci, M., Brown, C., Cesarini, F., Danelutto, M., González-
Vélez, H., Kilpatrick, P., Keller, R., Rossbory, M., Shainer, G.: The ParaPhrase:
Project: Parallel Patterns for Adaptive Heterogeneous Multicore Systems. In: Beck-
ert, B., de Boer, F., Bonsangue, M., Damiani, F. (eds.) FMCO 2011. LNCS,
vol. 7542, pp. 218–236. Springer, Heidelberg (2012)

15. Klusik, U., Loogen, R., Priebe, S., Rubio, F.: Implementation Skeletons in Eden:
Low-Effort Parallel Programming. In: Mohnen, M., Koopman, P. (eds.) IFL 2000.
LNCS, vol. 2011, pp. 71–88. Springer, Heidelberg (2001)

16. Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recom-
mender Systems. IEEE Computer 42(8), 30–37 (2009)

17. Li, H., Thompson, S.: A Comparative Study of Refactoring Haskell and Erlang
Programs. In: SCAM 2006, pp. 197–206. IEEE (September 2006)

18. Li, H., Thompson, S.: A Domain-Specific Language for Scripting Refactorings in
Erlang. Technical Report 5-11, University of Kent (October 2011)

19. Li, H., Thompson, S.: A User-extensible Refactoring Tool for Erlang Programs.
Technical Report 4-11, University of Kent (October 2011)

20. Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A Library of Constructive Skeletons
for Sequential Style of Parallel Programming. In: Proceedings of the 1st Interna-
tional Conference on Scalable Information Systems, InfoScale 2006. ACM, New
York (2006)

21. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw.
Eng. 30(2), 126–139 (2004)

22. Moore, G.E.: Cramming more components onto integrated circuits. In: Readings in
Computer Architecture, pp. 56–59. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2000)

23. Nugteren, C., Corporaal, H., Mesman, B.: Skeleton-based Automatic Paralleliza-
tion of Image Processing Algorithms for GPUs. In: ICSAMOS 2011, pp. 25–32
(2011)

24. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL,
USA (1992)

25. Padioleau, Y., Lawall, J.L., Muller, G.: SmPL: A Domain-Specific Language for
Specifying Collateral evolutions in Linux device drivers. In: International ERCIM
Workshop on Software Evolution, Lille, France (April 2006)

26. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Comput.
Surv. 15(3), 199–236 (1983)

27. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove,
P., Roman, E.: The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing. International Journal of High Performance Computing Applica-
tions 19(4), 479–493 (2005)

28. Skillicorn, D.B.: The Bird-Meertens Formalism as a Parallel Model. In: Software
for Parallel Computation. NATO ASI Series F, vol. 106, pp. 120–133. Springer
(1993)

29. Wloka, J., Sridharan, M., Tip, F.: Refactoring for Reentrancy. In: ESEC/FSE 2009,
pp. 173–182. ACM, Amsterdam (2009)

An Abstract Annotation Model for Skeletons

Marco Aldinucci1, Sonia Campa2, Peter Kilpatrick3, Fabio Tordini1,
and Massimo Torquati2

1 Computer Science Department, University of Torino, Italy
{aldinuc,fabio.tordini}@di.unito.it

2 Computer Science Department, University of Pisa, Italy
{campa,torquati}@di.unipi.it

3 Computer Science Department, Queen’s University Belfast, UK
p.kilpatrick@qub.ac.uk

Abstract. Multi-core and many-core platforms are becoming increas-
ingly heterogeneous and asymmetric. This significantly increases the
porting and tuning effort required for parallel codes, which in turn often
leads to a growing gap between peak machine power and actual applica-
tion performance. In this work a first step toward the automated opti-
mization of high level skeleton-based parallel code is discussed. The paper
presents an abstract annotation model for skeleton programs aimed at
formally describing suitable mapping of parallel activities on a high-level
platform representation. The derived mapping and scheduling strategies
are used to generate optimized run-time code.

1 Introduction

One central challenge of parallel programming today is to achieve performance
portability across a range of architectures. Most application programs are cur-
rently written at the low level of C or Fortran, combined with a communication
library such as MPI; moreover, they are often tuned toward one specific ma-
chine configuration. Since parallel computers are typically replaced within five
years, parallel programs which have a longer life span have to be re-tuned or
redesigned. In addition, programming at this low level of abstraction is cumber-
some and error-prone. Recent trends in platform design exacerbate the problem:
platforms are increasingly heterogeneous, e.g. including many general-purpose
and specialized cores, parallel accelerators (GPUs), soft cores (FPGAs). As a
consequence, even the development and tuning of applications for a specific ma-
chine configuration is complex and time consuming.

In sequential programming, the problem of having to recode for different ma-
chines was apparent three decades ago. The software engineering solution to
this issue was to introduce levels of abstraction, effectively yielding a tree of re-
finements, from the problem specification to alternative target programs [1]. The
derivation of a target program then follows a path down this tree. The transition
from one node to the next can be described formally by a semantics-preserving
program transformation or refinement. Conceptually, porting a program to a

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 257–276, 2013.
© Springer-Verlag Berlin Heidelberg 2013

258 M. Aldinucci et al.

different machine configuration means backtracking to a previous node on the
path and then following another path to a different target program.

This approach is not yet popular in the parallel programming setting. For
example, typically parallel accelerators such as GPUs are programmed by di-
rectly leveraging on low-level accelerator-specific APIs (e.g. NVidia CUDA and
OpenCL). Although these programming frameworks have been designed to keep
narrow the gap between CPU and GPU programming style, there are still several
differences, many of them emanating from the different nature of the architecture
and even from the different models of computation of the GPUs. For example,
when dealing with GPUs the programmer finds that all hardware facilities that
are traditionally used to simplify the programming model have been removed
(e.g. cache-coherence, branch prediction, virtual memory, global synchroniza-
tions) and so he/she must use very low-level mechanisms and must take into
account a range of board specific information in order to obtain acceptable per-
formance (e.g. local memory size, correct memory alignment, number of context,
memory interleaving, etc.). Furthermore, the selection of which parts of an ap-
plication should be executed on the GPU is completely the responsibility of the
programmer and even if the code can be easily identified, there is no guarantee
that it will be faster on the GPU than on a CPU. The programmer also has
to manage data movement between the host processor’s main shared memory
and the GPU’s core local memory taking care of memory alignment. Therefore
porting code to GPUs, or developing from scratch an efficient code for GPUs,
is not an easy task and can be a huge drain on resources. The typical code op-
timization curve grows very slowly and requires lots of performance testing and
tuning, especially in industrial contexts where standard procedures for accurate
testing and validation have to be performed.

Since the nineties, the “skeletons” research community [2] has been working
on high-level languages and methods for parallel programming [3–6]. Skeleton
programming requires the programmer to write a program using well-defined
abstractions (called skeletons) derived from higher-order functions that can be
parameterized to execute problem-specific code. Skeletons are parallel ab-initio
and do not expose to the programmer the complexity of concurrent code, for
example synchronization, mutual exclusion and communication. They instead
specify abstractly common patterns of parallelism – typically in the form of para-
metric orchestration patterns – which can be used as program building blocks,
and can be composed or nested like constructs of a programming language. A
typical skeleton set includes the pipeline, the task farm, reduction and scan.
For a given skeleton, usually, many efficient implementations for a given target
platform may exist. Skeletons exhibit well-defined functional semantics, i.e. what
is computed. As they describe parallelism exploitation paradigms, they also ex-
hibit extra-functional behaviour, i.e. how results are computed [7], which can be
also expressed by different realizations of the same pattern. For example, the
functional composition operator ◦ can be interpreted as pipeline or as sequence
of functions. We believe that the patterns/skeletons approach, which has been
demonstrated to be effective for multi-core platforms (e.g. TBB [8] and Fastflow

An Abstract Annotation Model for Skeletons 259

[9] among others) can be used also with heterogeneous architectures to obtain a
good trade-off between performance and code portability.

After incubation for over two decades in a quite restricted research commu-
nity, skeletons gained renewed popularity with the arrival of multi-core plat-
forms, the consequent diffusion of parallel programming frameworks, and their
adoption in some successful programming frameworks, such as Intel Threading
Building Block (TBB) [8]. Despite being complex to program, current multi-
cores are almost uniform machines and in many cases they can be programmed
with decent performance as if they were symmetric multiprocessors. However,
this uniformity is progressively decaying with each new generation of machine:
the current generation of multi-cores exhibit non-uniform memory access (typ-
ically cc-NUMA, i.e. cache-coherent Non Uniform Memory Access), while the
next generation (e.g. IBM PowerEN, Intel MIC) will have specialized cores and
accelerators to gain peak performance on critical tasks, and a non-uniform con-
nection latency among cores and memory modules.

The heterogeneity and reduced connectivity of forthcoming platforms will
make it all the more important for a programming framework to have the ability
to generate parallel code according to different orchestration patterns and to
map them on to different platforms in such a way that each task is run in the
best suited executor and the synchronization and communication patterns are
efficiently supported by the targeted platform. Currently, this activity is largely
left to programmer expertise and is not effectively supported by development
tools.

This work aims to make a step toward the formalization and the automation
of this process. In particular, program refinement is proposed as an abstract tool
to deal with the problem of the mapping of parallel activities onto heterogeneous
cores (i.e. CPUs and GPUs). These parallel activities are assumed to be automat-
ically generated by a high-level skeletal programming framework. In particular,
skeletons are annotated with mapping information along a process of refine-
ments. The first step annotates the tree with functional and extra-functional
information such as data access, data dependencies, parallelism degree and so
on; the next step maps the annotated tree on the given platform, taking into
account the underlying target architecture; the last step executes the mapped
tree and constantly notifies performance data to the upper levels so that, in case
of performance degradation and driven by a suitable a performance model, the
skeleton tree can be rewritten in a functional equivalent but better performing
one. This is envisaged as the first step on the path to automated optimization
of parallel codes onto heterogeneous platforms. In this respect, important mile-
stones will include definition of a complete set of attributes to abstractly describe
the key features of a specific parallel architecture, and the definition of suitable
performance models able to drive the optimization process across the tree of re-
finements. These activities are currently ongoing in the ParaPhrase EC-STREP
project.

The remainder of the paper is structured as follows: Sec. 2 introduces typical
parallel programming patterns, while Sec. 3 introduces the abstract annotation

260 M. Aldinucci et al.

model which drives the mapping and rewriting of a user program refactored as
a skeleton program. Sec. 4 provides some preliminary results of our approach
implementation obtained on a heterogeneous platform. Finally, Sec. 5 discusses
related work and Sec. 6 concludes the paper.

2 Parallelism Paradigms and Patterns

Attempts to reduce programming effort by raising the level of abstraction date
back at least three decades. Notable results have been achieved by the skeletal
approach [2, 10, 11], enabling pattern-based parallel programming. This approach
appears to be becoming increasingly popular after reinforcement by several suc-
cessful parallel programming frameworks [12–15].

Algorithmic skeletons capture common parallel programming paradigms (e.g.
ForAll, MapReduce, Divide&Conquer, etc.) and make them available to the pro-
grammer as high-level programming constructs equipped with well-defined func-
tional and extra-functional semantics [7]. Ideally, algorithmic skeletons address
the difficult problems of parallel programming (i.e. concurrency exploitation,
orchestration, mapping, tuning) moving them from the application design to de-
velopment tools by capturing and abstracting the common paradigms of parallel
programming and providing them with efficient implementations, i.e. a toolkit
of code generation techniques and a pre-optimized run-time support.

Differences between algorithmic skeletons and parallel design patterns lie
mainly in the motivations leading to these two apparently distinct concepts
and in the research environments where they have been developed: the parallel
programming community for algorithmic skeletons and the software engineering
community for parallel design patterns. As far this work is concerned, the two
concepts can be seen as synonymous.

Traditionally, in skeletal (and parallel pattern-based) programming the com-
putation is organized according to application-independent high-level paradigms,
which are usually categorized in three classes:

1. Data Parallelism is a method for parallelizing a single task by processing in-
dependent data elements in parallel. Data parallelism also supports loop-level
parallelism where successive iterations of a loop working on independent or
read-only data are parallelized in different flows-of-control and concurrently
executed. map and reduce are instances of data parallelism.

2. Task Parallelism consists of running the same or different code on different
executors (cores, machines, etc.). Task parallelism is usually explicit in the
algorithm. Different flows-of-control (threads, processes, etc.) may commu-
nicate with one another as they work. Communication usually takes place
to pass data from one thread/process to one or many others. The farm is a
typical representation of such class of patterns

3. Stream Parallelism consists in the parallel processing of different items of a
data stream, which can be either the input data or generated by the appli-
cation’s internal programming mechanisms (e.g. via asynchronous function

An Abstract Annotation Model for Skeletons 261

Seq
pgm

Par pgmRefactor
Annot.

tree
Exec
fileAnnotate Map

Perf/
Monitor

data
Run

Rewrite Perf.
Model

Fig. 1. Sketch of the proposed approach

calls). It can be used when there exists a partial or total order in a compu-
tation; the pipeline is a paradigmatic stream parallel pattern.

Pragmatically, a given computational problem typically admits several algorith-
mic solutions exploiting patterns in different classes, or different compositions
of them. In addition, in many cases, patterns in different classes can simulate
one another. The extent of this generality is dependent on the set of patterns
provided by a specific framework, which can also be designed to target one or
more application scenarios [15].

After Cole’s seminal work [2], early proposals for skeletal programming frame-
works have focused mainly on distributed memory platforms (e.g. clusters of
workstations, grid); some of them, e.g. Google’s MapReduce [13], have evolved
in mainstream programming tools [16]. Recent proposals, following the platform
architecture trend, have shifted the focus to include multi-cores and the shared
address model; in addition to academic initiatives such as FastFlow (Sec. 4), it is
worth mentioning consolidated industrial products such as the Intel Threading
Building Block (TBB) library [8] and, to a limited extent, the Microsoft Task
Parallel Library [17].

More recently, the skeletal approach has been proposed for GPGPUs and
hybrid architectures: the SkePU framework is an example [18].

Some of these skeleton frameworks explicitly include stream parallelism as
a major source of concurrency exploitation [7, 8, 12, 14]: rather than allow-
ing programmers to connect stages into arbitrary graphs, basic forms of stream
parallelism are provided to the programmer in high-level constructs such as
pipeline (modelling computations in stages), farm (modelling parallel compu-
tation of independent data tasks), and loop (supporting generation of cycles in
a stream graph and typically used in combination with a farm body to model
Divide&Conquer computations).

3 A Refinement Process for Skeletons

3.1 Approach Overview

Our approach to parallelization via skeletons is depicted in Fig. 1. The starting
point of the refinement process is a sequential program in which the user (or

262 M. Aldinucci et al.

eventually a tool) detects those parts of the code which can be parallelized. Par-
allelism can be introduced by a tool-assisted Refactoring process in which the
user identifies patterns that can be captured by high level constructs (or calls
to libraries) taking sequential code as parameter(s). This Refactoring process
results in a high level program written as a composition of patterns/skeletons,
i.e. a skeleton tree. The remainder of the development involves successively re-
fining this skeleton through a series of stages to an implementation on a target
architecture.

The Annotate phase uses a set of annotation rules to annotate the skeleton tree
with an abstract description of the target architecture incorporating information
such as number CPUs, number of GPUs, etc. In essence this annotated tree
represents a set of possible mappings of tree to architecture.

The Map phase specializes the set of mappings implicit in the annotation
tree to a particular mapping of components to resources. It uses more detailed
target architecture specific detail (such as bandwidth of connections, speed of
processors, etc.) and is informed by a performance model [19, 20] which allows
qualitative assessment of alternative mapping strategies. The mapping phase
produces an execution file that will be used by the architecture level for actively
running the application (Run phase).

In addition to the above process of deriving an initial running program, one
can envisage also a Rewrite phase which allows restructuring of the program as
a result of feedback obtained from the running program. This Rewrite phase
restructures the program in accordance with well-know functional equivalences
between parallel patterns, again informed by the performance model. The result
is a new (functionally equivalent) skeleton tree and so a new annotate phase can
be commenced.

In the following section we will give a formal representation of the skeletons
included in our semantic framework in order to define the Annotate and Map
phases which are the focus of the current paper.

3.2 Skeleton Definition

Data and stream parallelism can be conveniently expressed using high-level pat-
terns with well-defined functional semantics [7, 21, 22], whereas task parallelism,
in the most general form, often subsumes low-level parallelism exploitation where
synchronizations (as well as functional semantics) are deeply interwoven in the
business code. For this reason, usually, they are not embedded in high-level
pattern-based programming frameworks. In the following we use a generic two-
tier pattern-based programming language including stream and data parallelism.
Data parallel patterns can be nested within stream parallel patterns, but not
vice-versa.

Let P be a pattern-based program, and Pnc a non-cyclic pattern-based pro-
gram, i.e. a program not exhibiting cyclic data-dependencies among patterns.
Let Psp and Pdp be stream and data parallel high-level patterns, respectively
which can be composed as follows:

An Abstract Annotation Model for Skeletons 263

P ::= Pnc | parloop(Pnc, E)
Pnc ::= Psp | Pdp

Psp ::= Pnc ◦ Pnc | farm(P)
Pdp ::= map(Seq) | reduce(Seq) | Seq
Seq ::= 〈seq code〉
E ::= 〈seq expression〉

Here, for the sake of simplicity, the iterative usage of skeletons via the loop
pattern, which can also be used to implement Divide&Conquer, is limited to
the top level in order to simplify skeleton composition. Notice that in the most
general case the loop pattern, if nested within other patterns, can receive data
items from two different streams (input and feedback streams) and this requires
proper management of non-determinism among them to avoid deadlock.

Patterns are assumed to exhibit a pure functional semantics, i.e. they can be
defined as higher-order functions fully determined by their input-output behav-
ior. As happens in the FastFlow framework [9], the approach can be extended to
higher-order functions exhibiting a shared state. For example, using Ocaml-like
notation to define the functional behavior, farm and pipeline skeletons can be
described as follows:

let farm f x = (f x);;

let pipeline f g x = (g(f x));;

let map f x = Array.map f x;;

...

where streams, i.e. a (finite or infinite) sequence of values of the same type, are
represented as lists. Patterns working on streams can be modelled accordingly,
e.g.

let stream_parallel f x::y = (f x)::(stream_parallel f y);;

In Psp the stream items are potentially computed in parallel. As an example,
the farm skeleton uses a set of independent processing elements to compute the
input tasks. Each time a new input task is available one of these resources is
selected for the execution of the task, possibly using some kind of auto scheduling
policy. The pipeline skeleton uses independent processing elements to compute
the different stages in such a way that computation of stage i relative to task j
can proceed concurrently (in parallel) with both the computation of stage i− 1
for task j + 1 and the computation of stage i + 1 for task j − 1.
On the other hand, in Pdp the parallel computation is applied to the input data
as a whole. As an example, the map skeleton splits the input data collection
into chunks on the basis of different policies and the same function is applied in
parallel to each chunk by a different executor.

3.3 Skeleton Rewriting

As already mentioned, a skeleton is often defined by a functional semantics (what
is computed) and a non-functional semantics (how results are computed) and it is

264 M. Aldinucci et al.

useful to make distinction, even informally, between them. Examples of a formal
definition of (functional and non-functional) semantics for parallel patterns and
streams can be found in [7, 22].

The functional semantics allows programmers to “compute” the function de-
noted by a pattern-based program. It also allows reasoning about program equiv-
alence, in terms of the results computed, or to define semantics-preserving pro-
gram transformations [21, 23]. These transformations can also be driven by some
kind of analytical performance model associated with patterns, in such a way
that only those rewritings leading to efficient implementations of the pattern are
considered [21, 24, 25]. For instance, one can easily determine that the following
two programs actually compute the same result, even if they exhibit different
parallel behaviors:

let progA f g = stream_parallel (pipeline f g);;

let progB f g = stream_parallel (farm (pipeline f g));;

Also, streaming patterns can be normalized by reducing nesting of any depth of
farm and ◦ (i.e. pipeline in this context) to a farm(pipeline())) [25].

Because patterns carry both a functional and non-functional semantics (thus
the intent of the code [26]) they can also be used to support a generative ap-
proach to machine-specific run-time generation and optimization. For example,
in the FastFlow framework (see Sec. 4), patterns are used to generate graphs of
parallel activities and their orchestration in terms of (true) data dependencies.

We can refine this approach on a formal basis by defining a semantics allowing
augmentation of the skeletal description provided by the application graph with
mapping information and synchronization requirements with respect to the spe-
cific target architecture at hand. When the skeleton graph can be “rewritten”
to a semantically equivalent one but enriched with information related to (po-
tentially) optimal mapping, we can achieve better generation and optimization
of the actual run-time to the specific machine at hand.

3.4 Annotation Semantics

Preliminary notation. For the sake of simplicity, we will provide an abstraction
of a target architecture including one CPU (i.e a set of cores) and one or more
GPUs, although our approach can be easily extended to a number of CPUs and
GPUs available in a system. We will denote the set of n ≥ 0 cores on the same
CPU as

CPU = {core0, core1, . . . , coren}

representing the set of available cores on a given CPU.

GPU = {gpu0, gpu1, . . . , gpuk}

represents the set of available GPUs on a given architecture (k ≥ 0).
Moreover, we assume that given a skeleton P , the mapping of P onto a given

architecture x (x ∈ CPU or x ∈ GPU) is represented by the notation Px;

An Abstract Annotation Model for Skeletons 265

thus Pcore1 will define the mapping of skeleton P locally onto core1; Pgpui will
define the mapping of P onto the i-th GPU available in the system; if P is a
composite skeleton whose mapping could involve a set of computational resources
X = {core0, core1} ⊆ CPU , then PX will define the mapping between P and
the sub-architecture represented by X .

Seq annotation. Our goal is to define an abstract semantics driving suitable
mappings among (compositions of) skeletons as defined by Section 3 and the
available abstract architectures at hand.
The base case is represented by the Seq skeleton, which will be simply mapped
onto one of the cores available on the current CPU

x ∈ CPU = {core0, . . . , coren}
Seq → Seqx

(1)

or, since it could be encapsulated by a data parallel skeleton, it can be mapped
onto a GPU

x ∈ GPU = {gpu0, . . . , gpun}
Seq → Seqx

(2)

Farm annotation. Each instance of a farm will be rewritten in a notation high-
lighting the emitter (E) and the collector (C), in order to potentially allow
different mappings of all the nodes composing such a skeleton. Thus, hold that

farm(P) = farm(E,P,C)

There are two possible configurations in mapping a farm: i) all the nodes are
allocated on different cores of the same CPU:

E → Ex ∧ P → PY ∧ C → Cz ∧ x, z ∈ CPU ∧ x �= z ∧ Y ⊆ CPU − {x, z}
farm(E,P,C) → farm(Ex, PY , Cz)

(3)

ii) emitter and collector are mapped onto different cores of the same CPU while
the workers can be mapped onto a GPU

c0, c1 ∈ CPU ∧X ⊆ GPU ∧E → Ec0 ∧ P → PX ∧ C → Cc1

farm(E,P,C)→ farm(Ec0 , PX , Cc1)
(4)

With respect to such a rule we have to point out that in order to make suitable
mappings, we should also take into account how the communication costs for
moving data to and from the GPU influence the performance. In fact, placing
the workers onto a GPU could be worthwhile if a huge set of tasks is ready to be
delivered by the emitter for computation so that the workers can execute in a
“dataparallel-like” mode on the set of input tasks; or, such mapping could be a
good choice in those cases in which the task is, actually, a data parallel structure
to be computed. Thus, while rule 4 is a good starting point for formalizing the
mapping of workers onto a GPU, it needs to be further studied and enriched by
data description details.

266 M. Aldinucci et al.

Parloop annotation. The parloop skeleton can be mapped to host the inner
skeleton on any architecture while the condition is hosted on a CPU architecture:

x2 ∈ CPU ∧ (X1 ⊆ CPU ∨X1 ⊆ GPU) ∧ P → PX1 ∧ E → EX2

parloop(P,E)→ parloop(PX1 , Ex2)
(5)

Since the evaluation of E defines whether the loop stops or continues to iterate,
the rule above asserts that E is always evaluated on a CPU, while P (being a
data parallel or a stream parallel skeleton) could be mapped onto a CPU or a
GPU. Theoretically, if an iteration of P has been evaluated on xi, the system
memory of that node could still provide an up-to-date representation of data
needed to proceed in the computation.

Map/Reduce annotation. Map and reduce can both be mapped on a CPU or a
GPU architecture

x ⊆ GPU ∨ x ⊆ CPU ∧ Seq → Seqx
map(Seq)→ map(Seq)x

(6)

x ⊆ GPU ∨ x ⊆ CPU ∧ Seq → Seqx
reduce(Seq)→ reduce(Seq)x

(7)

Pipeline annotation. How a pipeline will be mapped depends at first on whether
its stages are represented by stream parallel or data parallel skeletons, i.e. how
data will flow through the graph and which dependencies among them are ex-
ploited. In the former case, the stages have to be placed on different cores (in
order to exploit parallelism), but possibly of the same CPU (in order to minimize
stream transfer costs):

x �= y ∧ x, y ∈ CPU ∧ P ′ → P ′
x ∧ P ′′ → P ′′

y ∧ P ′, P ′′ ∈ Psp

P ′ ◦ P ′′ → P ′
x ◦ P ′′

y

(8)

In the latter case, a pipeline of data parallel skeletons can be mapped onto
different cores (for instance, one stage per core) or onto different GPUs

x �= y ∧ (x, y ∈ CPU ∨ x, y ∈ GPU) ∧ P ′ → P ′
x ∧ P ′′ → P ′′

y ∧ P ′, P ′′ ∈ Pdp

P ′ ◦ P ′′ → P ′
x ◦ P ′′

y

(9)
However, the pipeline of two data parallel stages could imply some synchroniza-
tion steps between stages in the event of functional dependencies. For this reason,
if the system provides just one GPU, the pure functional pipelining of two or
more data parallel skeletons has to be rewritten in terms of a composition of
stages (denoted by “;”) because of the presence of some synchronization points
that can serialize the execution.

P ′ → P ′
gpu ∧ P ′′ → P ′′

gpu ∧ gpu ∈ GPU
P ′ ◦ P ′′ → P ′

gpu;P
′′
gpu

(10)

An Abstract Annotation Model for Skeletons 267

Comp annotation. Comp is a skeleton (represented by “;” syntax) defining the
sequential composition of two sub-skeletons which will be executed sequentially.
This pattern is particularly useful in those rewritings in which part of a skele-
ton tree has to “collapse” into a sequential piece of code to provide improved
performance, for example, in terms of communication costs.

x = y

P ′;P ′′ → P ′
x;P

′′
y

(11)

The composed skeletons are mapped both on to the same target node.

3.5 Mapping Strategies

Data parallelism onto heterogeneous architectures. Let us assume we have the
skeleton composition

map(Seq1) ◦map(Seq2)
Which suitable mappings can be provided, if the abstract target architecture is
represented by the system S = {cpu0, cpu1, gpu0} where CPU = {cpu0, cpu1}
and GPU = {gpu0} and �GPU = 1 represents the cardinality of the GPU set?
As skeletons, Seq1 and Seq2 can be indifferently placed onto a CPU or a GPU
architecture (rules 1 and 2), and so two branches are possible for the mapping
of the two outer maps, since it holds that

Seq1 → (Seq1)x ∧ ∀x.x ∈ S
map(Seq1)→ map(Seq1)x

and
Seq2 → (Seq2)x ∧ ∀x.x ∈ S
map(Seq2)→ map(Seq2)x

However, at a higher level of the skeleton graph, the maps are composed by a
pipeline operation. Recalling that our system provides just one GPU and two
cores, we have two different options: i) we could place the pipeline on the same
GPU but in a compositional manner so that they can eventually communicate
via a shared memory system, i.e. by applying rule 10

map(Seq1)→ map(Seq1)gpu ∧map(Seq2)→ map(Seq2)gpu
map(Seq1) ◦map(Seq2)→ map(Seq1)gpu;map(Seq2)gpu

ii) we could place the pipeline so that the first map is executed on cpu1 and the
second one on cpu2 and the stages will then communicate via a stream of data,
thus applying rule 9.

cpu0, cpu1 ∈ CPU ∧map(Seq1) → map(Seq1)cpu0 ∧map(Seq2) → map(Seq2)cpu1

map(Seq1) ◦map(Seq2) → map(Seq1)cpu0 ◦map(Seq2)cpu1

Which of these two options will be actually chosen will depend on the ability
of the system to make predictions on the cost of each configuration. Provid-
ing the semantics with a cost model allowing an estimation of each candidate
configuration will be the goal of future work.

268 M. Aldinucci et al.

noise Seq 8 cores 8 cores
(1 CPU) + 24 CPUs + 1 GPUs

10 % 32.0 s 1.8 s 1.9 s
50 % 162.1 s 6.5 s 2.3 s
90 % 290.0 s 10.9 s 2.8 s

Lena - 30% noise Lena - 50% noise Lena - 90% noise

Lena 30% - Restored
PSNR=35.1 MAE=1.2

Lena 50% - Restored
PSNR=31.9 MAE=2.3

Lena 90% - Restored
PSNR=22.5 MAE=11.3

Fig. 2. Left) Execution time of different configuration of theDetect+Restore functions
on Lena image. Right) Restoration result with PSNR (Peak Signal-to-Noise Ratio) and
MAE (Mean Absolute Error).

Bringing down data transfer costs. Let now assume that we have the following
skeleton composition

Seq1 ◦ Seq2 ◦ Seq3

From a functional perspective the pipeline operation exploits the associative
properties so that

(Seq1 ◦ Seq2) ◦ Seq3 ≡ Seq1 ◦ (Seq2 ◦ Seq3)

However, from a mapping point of view, these two options could imply very dif-
ferent performance effects: for example, let us suppose that a number of dual-core
CPUs are available so that CPU0 = {core0, core1} and CPU1 = {core2, core3}:
the better mappings are those assigning cores belonging to the same CPU to
(possibly) contiguous stages. Thus, while

(Seq1core0 ◦ Seq2core1) ◦ Seq3core2

(Seq1core1 ◦ Seq2core0) ◦ Seq3core2

Seq1core1 ◦ (Seq2core2 ◦ Seq3core3)

Seq1core0 ◦ (Seq2core2 ◦ Seq3core3)

would be good combinations since they minimize the extra-CPU communication
to just one occurrence, all the other combinations, such as for example

Seq1core0 ◦ (Seq2core2 ◦ Seq3core1)

will need two extra-CPU communications, maybe accessing a shared memory or
even across the network in the case of a cluster. In Sec. 4 we will see a concrete
instantiation of this principle applied to a specific architecture.

An Abstract Annotation Model for Skeletons 269

4 Preliminary Results

In the current section we will exemplify the proposed methodology through some
examples implemented on top of FastFlow, a parallel programming framework
aimed at simplifying the development of applications for multi-core platforms,
whether these applications are brand new or ports of existing legacy codes [27].
FastFlow promotes pattern-based programming and has been specifically de-
signed to efficiently support fine-grained parallel computations. The FastFlow
patterns can be arbitrarily nested to model increasingly complex parallelism
exploitation patterns. The FastFlow implementation guarantees an efficient exe-
cution of the skeletons on currently available multi-core systems by building the
skeletons themselves on top of a library of lock-free producer/consumer queues.
The workstation on which we performed the tests is a “homogeneous” Intel
Nehalem microarchitecture equipped with 4 eight-core double context Xeon E7-
4820 @2.0GHz with 18MB L3 shared cache, 256K L2, and 24 GBytes of main
memory with Linux x86 64.

Current multi-core machines, such as Intel or AMD multi-core platforms are
typically programmed and managed as if they were symmetric multiprocessors.
However, the relation between performance and mapping of parallel activities
onto core can be easily shown. For example, Fig. 3 reports the latency of three dif-
ferent implementations of the FastFlow Single-Producer Single-Consumer queue
on the tested platform: a bounded array-based queue (SPSC), a dynamically
linked-list queue (dSPSC) and an unbounded array-based queue (uSPSC). All
implementations are lock-free and particularly optimized to avoid cache invalida-
tions [28].The queue implementations are compared on three different mappings
for the producer (P) and the consumer (C): 1) P and C are placed on two differ-
ent hardware contexts of the same core; 2) P and C are placed on two different
cores of the same socket; 3) P and C are placed on two different sockets. As can
be seen, the dSPSC queue is particularly sensitive to mapping as the latency
from one mapping to another changes the performance more than two orders of
magnitude. This gap is expected to grow in forthcoming platforms with increas-
ing core count and platform heterogeneity.

In the Table of Fig. 3, we report the performance obtained when running a very
simple benchmark test where one 3 stage pipeline computes a stream of 1M tasks
(double elements). Each stage is connected with the previous and following one
(if present) using the FastFlow dSPSC unbounded queue. The first stage mainly
generates the stream of tasks whereas the other two stages apply on each input a
function computing a trigonometric computation. The third stage of the pipeline
(s3) is the most computationally demanding. In this test we consider 4 possible
mapping strategies for the three stages on the considered architecture. The best
performance is obtained when the first 2 stages are mapped on the same core
(different contexts) of the first CPU and the third stage is mapped on the second
CPU (mappingC in the Table). In this way we are able to obtain a good trade-
off between communication costs and computation. In fact, the first and the
second stage do not interfere too much when placed on the same context since
the first stage does not perform any significant numerical computation; instead,

270 M. Aldinucci et al.

 4

 8

 16

 32

 64

 128

 256

 512

64 1k 8k 64 1k 8k 64 1k 8k

La
te

nc
y

(n
s

-
lo

gs
ca

le
)

SPSC
uSPSC
dSPSC

Diff. CPUsDiff. CoresDiff. Contexts

mapping strategies Compl. Time (ms)

mappingA 360
mappingB 530
mappingC 295
mappingD 480

– mappingA) s1,s2,s3 on adjacent cores of CPU1;
– mappingB) s1 on CPU1, s2 on CPU2 and s3 on

CPU3;
– mappingC) s1 and s2 on the same context of one

core of CPU1 and s3 on CPU2;
– mappingD) s2 and s3 on the same context of one

core of CPU1 and s1 on CPU2.

Fig. 3. Left) Latency of 3 different implementations of FastFlow queues tested with
three different mapping for the Producer and the Consumer threads [27]. Right) Per-
formance obtained for the 3-stage pipeline(s1,s2,s3) benchmark varying the stage map-
ping.

they are able to benefit from the lower level cache to increase communication
performance.

In order to validate the proposed methodology we describe a prototypical
example, an image restoration application. The edge-preserving denoiser is a
two-step filter for removing salt-and-pepper noise (see Fig. 2). In the first step,
an adaptive median filter is used to identify the set of noisy pixels; in the second
step, these pixels are restored according to an iterative variational approach up to
convergence. The detailed description of the sequential algorithm is beyond the
scope of this paper; it ensures state-of-the-art restoration quality and execution
time, and is able to restore also very noisy images (e.g. up to 90% random noisy
pixels) [29]. The same algorithm can also be used to restore video streams by
iterating frame-by-frame the detect-denoise filters.

Pattern/Skeleton selection. LetReadImg,Detect, Restore,WriteImg, F ixpoint
be chunks of sequential code (e.g. functions, i.e. Seq). The core of the edge-
preserving denoiser can be sketched as

Img=ReadImg;
NoisySet=Detect(Img);
while(!Fixpoint(MAE((Img)){Img=Restore(Img,NoisySet);}
WriteImg(Img);

which can be iterated in a loop to realize a video version that simply repeats
the same process on successive video frames. Notice that the Restore process
is iterated up to fixpoint times by way of the Fixpoint function. The fixpoint
is reached when the restoration process brings no improvement in the “quality”
of the image across two successive iteration. The quality of the image is usually
measured in term of Peak Signal-to-Noise Ratio (PSNR) or Mean Absolute Error

An Abstract Annotation Model for Skeletons 271

(MAE). The video version can be sketched as follows:

while(true){
Img=ReadImg;
NoisySet=Detect(Img);
while(!Fixpoint(MAE(Img))){Img=Restore(Img,NoisySet);}
WriteImg(Img);

}

where the two filters Detect and Denoise are both executed sequentially and
successively. Again, the latter filter is iterated up to fixpoint times. In order to
detect when the fixpoint value is reached, the MAE filter has to be computed at
each iteration. Computing MAE requires the analysis of the whole image Img.
The visual effect on a noisy image of the two filters is shown in Fig. 2 right),
together with the quality measures obtained (PSNR and MAE). The two prin-
cipal filters can be parallelized in a data-parallel fashion using the map pattern,
as follows:

while(true){
Img=ReadImg;
NoisySet=map(Detect(Img));
while(!Fixpoint(MAE(Img))){Img=map(Restore(Img,NoisySet));}
WriteImg(Img);

}

The MAE computation can be also parallelized in a data-parallel fashion using
the reduce pattern. In addition, the parallelized versions of Restore and MAE
can be composed and executed in a parallel loop in such a way that the whole
restoration loop can be wrapped and possibly offloaded to an accelerator.

while(true){
Img=ReadImg;

NoisySet=map(Detect(Img));

parloop((Fix=reduce(MAE,Img)) ◦ (Img=map(Restore(Img,NoisySet))),!Fix);

WriteImg(Img);

}

Annotate. From a semantic perspective and by following the syntax presented
in this proposal, the preceding piece of code can be represented as

map(SeqD) ◦ parloop((reduce(SeqM) ◦map(SeqR)), E)
where we assume Seq(Detect(Img)) = SeqD, Seq(Restore(Img,NoisySet)) =
SeqR, Seq(MAE) = SeqM and E =!Fix; our set of rules is then able to derive
for us the annotation of the syntax tree associated to this composite skeleton as
follows:

272 M. Aldinucci et al.

Seq parloop

Pipeline

Comp

Reduce Map

Seq Seq

x' x'

x'

x2

x1,x2

parloopMap

Pipeline

Seq Pipeline

Reduce Map

Seq Seq

x' x''

x1
x',x''

x2

x1,x2

Fig. 4. The annotated skeleton tree of the application: its implementation and perfor-
mance are parametric w.r.t. x1, x2, x

′, x′′

map(SeqD) ◦ parloop((reduce(SeqM) ◦map(SeqR)), E)
→{let x1, x2 two cores, rule 9 holds and SeqD → SeqDx1 hold }

map(SeqDx1) ◦ parloop((reduce(SeqM) ◦map(SeqR)), E)x2

→{ rule 5 and x′, x′′ potentially fresh id}

map(SeqDx1) ◦ parloop((reduce(SeqM)x′ ◦map(SeqRx′′)), Ex2)x2

The annotated tree associated with such mapping evaluation is depicted in Fig.
4 (left) where x1, x2, x

′, x′′ could identify a set of different or overlapping cores.
In addition, each of x1, x2, x

′, x′′ can also be either CPU or GPU cores. The per-
formance model provides the information needed to choose the mapping which
gives the best performance.

It is worth pointing out that at this level the semantic framework could also be
able to define (under specific performance requirements) an alternative skeleton
tree, functional equivalent to the preceding one for which a new set of mapping
alternatives could hold. Fig. 4 suggests a possible rewriting of the skeleton in
which map(SeqD1) has been rewritten as sequential and the pipeline iterated by
parloop has collapsed in a comp. Such skeleton could be eligible if, for instance,
the costs involved in the implementation of the map and the pipeline are too
high with respect to a sequential execution, possibly because of a too fine grain
computation.

Mapping. According to the methodology introduced in Sec. 3, the parallelized
versions of Detect and Restore can be mapped onto different processors (i.e.
x1 �= x′′), resulting in different performance figures. For example, Fig. 2 presents,
together with the sequential execution time, the performance when the Detect
and Restore filters are executed in parallel using, respectively, 8 and 24 cores
of the 32 cores of the Intel workstation described at the beginning of this sec-
tion. Alternatively, the restoration loop can be offloaded to a GPGPU (NVidia

An Abstract Annotation Model for Skeletons 273

Tesla 448 cores) with even better results. In this mapping process, the described
methodology is intended to ensure that only appropriate compositions of pat-
terns are mapped onto the GPGPU.

5 Related Work

Early proposals of pattern-based parallel programming frameworks have been
focused mainly on distributed memory platforms, such as clusters of worksta-
tions and grids [12, 30]. Google MapReduce [13] brings to the mainstream of
out-of-core data processing the map-reduce paradigm. All these skeleton frame-
works provide several parallel patterns (algorithmic skeletons) covering mostly
task and data parallelism. These patterns can usually nested to model more
complex parallelism exploitation patterns according to the constraints imposed
by the specific programming framework. More recent pattern-based frameworks,
following the platform architecture trend, have shifted the focus to multi-cores
and the shared address model; in addition to FastFlow, it is worth mentioning
the Intel Threading Building Block (TBB) library [8], and to a limited extent
the Microsoft Task Parallel Library [17]. All of them are certainly higher-level
compared to the Pthread library that has been used in the shared memory imple-
mentations of classification algorithms previously mentioned. The main features
of these and other frameworks are surveyed in [11].

Programming frameworks based on algorithmic skeletons have been recently
introduced to alleviate the task of the application programmer when targeting
data parallel computations on GPUs. In Muesli [31] the programmer must ex-
plicitly indicate whether GPUs are to be used for data parallel skeletons. SkePU
[18] provides programmers with GPU implementations of map and reduce skele-
tons and relies on StarPU for the execution of stream parallel skeletons (pipe
and farm).

In addition to pattern-based frameworks, other high-level programming frame-
works also aim to simplify the design of efficient applications on multi-cores
and thus are related to FastFlow and to the present work. StreamIt [14] is
an explicitly parallel programming language based on the Synchronous Data
Flow model that enables the assembly of program modules (called filters) in
a pipeline fashion, possibly with a FeedbackLoop, or according to a SplitJoin
data-parallel schema. Streaming applications are also targeted by TBB through
the pipeline construct, which also provides programmers with thread-safe con-
tainers and some parallel patterns (called “algorithms”); TBB does not support
any kind of non-linear streaming network, which thus has to be embedded in a
pipeline with significant programming and performance drawbacks. Intel’s Con-
current Collections (CnC), which declaratively models concurrent activities as
data streams and control dependencies, has been recently proposed as a candi-
date substrate for parallel patterns [32]. OpenMP [33] is a popular thread-based
framework for multi-core architectures mostly targeting data parallel program-
ming even if it is currently being extended to incorporate stream processing.
OpenMP supports, by way of language pragmas, the low-effort parallelization

274 M. Aldinucci et al.

of sequential programs; however, these pragmas are mainly designed to exploit
loop-level data parallelism (e.g. do independent). CnC and OpenMP do not na-
tively support either farm or Divide&Conquer patterns, even though they can
be simulated with lower-level features.

MCUDA [34] is a framework to mix CPU and GPU programming. In MCUDA
it is mandatory to define kernels for all available devices but the framework can
not make any assumptions about the relative performance of the supported
devices.

Recently OpenACC [35] has been proposed by some major vendors as a possi-
ble new standard for programming GPUs and HW accelerators in general. Like
OpenMP it is based on a set of pragma directives allowing automatic acceleration
of loops and parallel regions by directly offloading computation on the accelera-
tor. Our approach differs from #pragma-based approaches because we require an
explicit parallelization of the code thus making it possible to avoid cluttering the
sequential code with complex directives. Furthermore, in our vision, the declar-
ative approach gives, in many cases, less control to the programmer and hence
lessens the possibility to exploit all the available parallelism in the application.

Overall, our approach aims to provide a high-level programming model based
on algorithmic skeletons and a high-level skeleton-based intermediate represen-
tation with mapping annotations, which are used for taking mapping decisions.
In our vision such an approach is able to ensure portability of the parallel code
onto different heterogeneous platforms while maintaining good performance.

6 Conclusions

The mapping problem, and in general the optimization of parallel code for current
and next generation parallel platforms is a particularly important problem as it
might significantly affect performance and efficiency of applications. Ideally, so-
lutions to this problem should address performance portability while not requir-
ing excessive effort on the part of the application developer. In this respect, the
pattern-based approach has been demonstrated to have the potential to address
the problem. In this position paper we have stated the problem and the approach
we are undertaking to define an intermediate formalism to support the compila-
tion and the optimization of patterns on heterogeneous multi-core and many-core
platforms. The intermediate languagebasically aims to equip patternswith several
platform attributes in such a way that suitable mapping and scheduling heuristics
aimed at generating optimized run-time code can be derived.

Acknowledgment. The work described in this paper is supported by the EU
ParaPhrase project (http://www.paraphrase-ict.eu, 2011-2014).

References

1. Parnas, D.L.: On the design and development of program families. IEEE Trans.
on Software Engineering SE-2(1), 1–9 (1976)

2. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computa-
tions. Research Monographs in Par. and Distrib. Computing. Pitman (1989)

http://www.paraphrase-ict.eu

An Abstract Annotation Model for Skeletons 275

3. Botorog, G.H., Kuchen, H.: Skil: An imperative language with algorithmic skele-
tons for efficient distributed programming. In: Proc. of the 5th International Sym-
posium on High Performance Distributed Computing, HPDC 1996, pp. 243–252.
IEEE Computer Society Press (1996)

4. Darlington, J., Guo, Y., Jing, Y., To, H.W.: Skeletons for structured parallel com-
position. In: Proc. of the 15th Symposium on Principles and Practice of Parallel
Programming (1995)

5. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A Struc-
tured High level programming language and its structured support. Concurrency
Practice and Experience 7(3), 225–255 (1995)

6. Hamdan, M., King, P., Michaelson, G.: A scheme for nesting algorithmic skele-
tons. In: Hammond, K., Davie, T., Clack, C. (eds.) Proc. of the 10th International
Workshop on the Implementation of Functional Languages, IFL 1998, Department
of Computer Science, University College London, pp. 195–211 (1998)

7. Aldinucci, M., Danelutto, M.: Skeleton based parallel programming: functional
and parallel semantics in a single shot. Computer Languages, Systems and Struc-
tures 33(3-4), 179–192 (2007)

8. Intel Corp.: Threading Building Blocks (2011)
9. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level

and efficient streaming on multi-core. In: Pllana, S., Xhafa, F. (eds.) Programming
Multi-core and Many-core Computing Systems. Parallel and Distributed Comput-
ing. Wiley (2012)

10. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

11. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks:
High-level structured parallel programming enablers. Software: Practice and Ex-
perience 40(12), 1135–1160 (2010)

12. Vanneschi, M.: The programming model of ASSIST, an environment for paral-
lel and distributed portable applications. Parallel Computing 28(12), 1709–1732
(2002)

13. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Usenix OSDI 2004, pp. 137–150 (December 2004)

14. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. In: CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg
(2002)

15. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Comm. of the ACM 52(10), 56–67 (2009)

16. Apache Software Foundation: Hadoop (2008), http://hadoop.apache.org/
17. Leijen, D., Hall, J.: Optimize managed code for multi-core machines. MSDN Mag-

azine (October 2007)
18. Enmyren, J., Kessler, C.W.: Skepu: a multi-backend skeleton programming library

for multi-gpu systems. In: Proceedings of the Fourth International Workshop on
High-level Parallel Programming and Applications, HLPP 2010, pp. 5–14. ACM,
New York (2010)

19. Aldinucci, M., Coppola, M., Danelutto, M.: Rewriting skeleton programs: How
to evaluate the data-parallel stream-parallel tradeoff. In: Gorlatch, S. (ed.) Proc.
of CMPP: Intl. Workshop on Constructive Methods for Parallel Programming,
Fakultät für mathematik und informatik, Uni. Passau, Germany, pp. 44–58 (May
1998)

http://hadoop.apache.org/

276 M. Aldinucci et al.

20. Skillicorn, D.B., Cai, W.: A cost calculus for parallel functional programming. J.
Parallel Distrib. Comput. 28(1), 65–83 (1995)

21. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel program-
ming by transformation: The FAN skeleton framework. Parallel Algorithms and
Applications 16(2-3), 87–121 (2001)

22. Caromel, D., Henrio, L., Leyton, M.: Type safe algorithmic skeletons. In: 16th Eu-
romicro Intl. Conference on Parallel, Distributed and Network-Based Processing,
PDP, Toulouse, France, pp. 45–53. IEEE (February 2008)

23. Gorlatch, S., Lengauer, C., Wedler, C.: Optimization rules for programming with
collective operations. In: Proc. of the 13th International Parallel Processing Sym-
posium & 10th Symposium on Parallel and Distributed Processing, IPPS/SPDP
1999, pp. 492–499. IEEE Computer Society Press (1999)

24. Skillicorn, D.B., Cai, W.: A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing 28, 65–83 (1995)

25. Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: Proc. of
PDCS: Intl. Conference on Parallel and Distributed Computing and Systems, Cam-
bridge, Massachusetts, USA, pp. 955–962. IASTED, ACTA Press (November 1999)

26. Pottenger, B., Eigenmann, R.: Idiom recognition in the Polaris parallelizing com-
piler. In: Proc. of the 9th Intl. Conference on Supercomputing, ICS 1995, pp.
444–448. ACM Press, New York (1995)

27. Aldinucci, M., Torquati, M.: FastFlow website (2009),
http://mc-fastflow.sourceforge.net/

28. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An Ef-
ficient Unbounded Lock-Free Queue for Multi-core Systems. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 662–
673. Springer, Heidelberg (2012)

29. Aldinucci, M., Drocco, M., Giordano, D., Spampinato, C., Torquati, M.: A parallel
edge preserving algorithm for salt and pepper image denoising. Technical Report
138/2011, Università degli Studi di Torino, Dip. di Informatica, Italy (May 2011)

30. Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

31. Ernsting, S., Kuchen, H.: Data parallel skeletons for gpu clusters and multi-gpu
systems. In: Proceedings of PARCO 2011. IOS Press (2011)

32. Newton, R., Schlimbach, F., Hampton, M., Knobe, K.: Capturing and composing
parallel patterns with Intel CnC. In: Proc. of USENIX Workshop on Hot Topics
in Parallelism, HotPar 2010, Berkley, CA, USA (June 2010)

33. Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9, 143–161 (2001)

34. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: MCUDA: An Efficient Implementation
of CUDA Kernels for Multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

35. Khronos Compute Working Group: OpenACC Directives for Accelerators (Novem-
ber 2012), http://www.openacc-standard.org

http://mc-fastflow.sourceforge.net/
http://www.openacc-standard.org

PRO3D, Programming for Future 3D Manycore

Architectures: Project’s Interim Status

Christian Fabre1,7, Iuliana Bacivarov3, Ananda Basu2,7, Martino Ruggiero4,
David Atienza6, Éric Flamand5, Jean-Pierre Krimm1,7, Julien Mottin1,7,
Lars Schor3, Pratyush Kumar3, Hoeseok Yang3, Devesh B. Chokshi3,
Lothar Thiele3, Saddek Bensalem2,7, Marius Bozga2,7, Luca Benini4,

Mohamed M. Sabry6, Yusuf Leblebici6, Giovanni De Micheli6,
and Diego Melpignano5

1 CEA, LETI, Campus Minatec, Grenoble, France
{christian.fabre1,jean-pierre.krimm,julien.mottin}@cea.fr

2 VERIMAG, Centre Équation, 2 av. de vignate, 38610 Gières, France
{ananda.basu,saddek.bensalem,marius.bozga}@imag.fr

3 ETHZ, Computer Engineering and Networks Laboratory, 8092 Zürich, Switzerland
{bacivarov,lschor,kumarpr,hyang,dchokshi,thiele}@tik.ee.ethz.ch

4 Università di Bologna, Bologna, Italy
{martino.ruggiero,luca.benini}@unibo.it

5 STMicroelectronics, Grenoble, France
{eric.flamand,diego.melpignano}@st.com

6 EPFL, Lausanne, Switzerland
{david.atienza,mohamed.sabry,yusuf.leblebici,giovanni.demicheli}@epfl.ch

7 CRI – Centre de recherche intégrative, 7 al. de palestine, 38610 Gières, France
http://www.cri-grenoble.fr

Abstract. PRO3D tackles two important 3D technologies, that are Th-
rough Silicon Via (TSV) and liquid cooling, and investigates their con-
sequences on stacked architectures and entire software development. In
particular, memory hierarchies are being revisited and the thermal im-
pact of software on the 3D stack is explored. As a key result, a software
design flow based on the rigorous assembly of software components and
monitoring of the thermal integrity of the 3D stack has been developed.
After 30 months of research, PRO3D proposes a complete tool-chain for
3D manycore, that integrates state-of-the-art tools ranging from system-
level formal specification and 3D exploration, to actual programming and
runtime control on the 3D system. Current efforts are directed towards
extensive experiments on an industrial embedded manycore platform.

1 Introduction

Three dimensional stacked integrated circuits (3D ICs) are extremely attractive
for overcoming the barriers in interconnect scaling, offering an opportunity to
continue CMOS performance trends for the next decade. With the ever increas-
ing demand for higher data rates and performance as well as multi-functional
capabilities in circuits, vertical integration of IC dies using through-silicon vias

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 277–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 C. Fabre et al.

Fig. 1. PRO3D Exploration & Design Flow for 3D Manycore

is envisioned to be one of the most viable solutions for the development of new
generation of electronic products. 3D integration of multi-core processors offers
massive bandwidth improvements while reducing the effective chip footprint.
However 3D integration introduces several challenges, mostly related to the fol-
lowing factors:

– increasing amount of logic that can be placed onto a single 3D IC,
– related thermal dissipation problem,
– a necessary shift in programming models towards more parallelism.

The manycore revolution and the ever-increasing complexity of 3D ICs is
dramatically changing system design, analysis and programming of computing
platforms. Future 3D architectures will feature hundreds of cores and on-chip
memories connected through complex 3D communication architectures. More-
over, the third dimension leads to a tremendous increase in heat dissipation per
unit area of the chip. This in turn results in higher chip temperatures and ther-
mal stress, hence, (a) limiting the performance and reliability of the chip and (b)
requiring software development tools and runtime to address thermal concerns.

PRO3D addresses the above mentioned challenges and proposes Fig. 1 a soft-
ware and exploration design flow based on the rigorous assembly of software
components and monitoring of the thermal integrity of the 3D stack: Section 2
investigates memory hierarchies and thermal-aware architectural exploration
(corresponding to TSV, Active Cooling, MPARM, MPARM-3D & Architecture
Exploration in Fig. 1 above); Section 3 details the active cooling strategy for the
proposed 3D stacks (correspponding to TSV, Active Cooling & Thermal Models);
Section 4 investigates system-level formal solutions that guarantee thermal prop-
erties during mapping of application tasks on the 3D architecture (corresponding

PRO3D, Programming for Future 3D Manycore Architectures 279

to 3D DOL SW Exploration & Thermal Models); Section 5 describes formal ver-
ification methods for PRO3D systems (From Programming Model to Manycore
Binary, plus 3D DOL & BIP Tools in Fig. 1); Section 6 provides an overview of
STHORM, the PRO3D target platform (corresponding to STHORM). Finally,
our current achievements are summarized in Section 7.

2 3D Architectural Exploration

With three dimensional stacked integrated circuits (3D ICs), accurate 3D
thermal-aware system-level architectural exploration plays a fundamental role in
system design. System-level architectural explorations and thermal issues have so
far been addressed independently at different levels of the system design. Hence,
new methodologies that address the heat removal problem concurrently at all
stages and levels of the 3D chip design need to be developed and to be exploited
by high-level software programming frameworks. Designers of upcoming 3D chip
will need new distinctive tools for thermal-aware 3D architectural exploration,
enabling a cooling-aware design of 3D ICs.

PRO3D has developed a flexible virtual platform infrastructure (VPI) for mod-
elling and analysis of 3D integrated architectures and memory systems, as well
as accurate thermal models for calculating the costs of operating the cooling,
determining the overall energy budget and performing run-time thermal man-
agement.

MPARM [28] has been used as main VPI tool for design space explorations. It
is a virtual SoC platform based on the SystemC simulation kernel, which could
be used to model both HW & SW of complex systems. The system architec-
ture simulated by the default MPARM distribution is represented by a homo-
geneous multicore system based on shared bus communication. During PRO3D,
MPARM has been enhanced with several HW parametric models of the main
micro-architectural components of a 3D integrated interconnect and memory hi-
erarchy [6,31], and a support of modular plug-ins for thermal models interfacing.
The new models are highly parametric, flexible and customizable.

2.1 Functional Modelling of 3D Memory Hierarchy

To keep the pace of Moore’s law, future 3D-IC platforms will be embracing
the many-core paradigm, where a large number of simple cores are integrated
onto the same die. Current examples of many-cores include GP-GPUs such as
NVIDIA Fermi [23], the HyperCore Architecture Line (HAL) [24] processors
from Plurality, or ST Microelectronics Platform 2012 [5,20,36].

While there is renewed interest in Single Instruction Multiple Data (SIMD)
computing, thanks to the success of GP-GPU architectures, strict instruction
scheduling policies enforced in current GP-GPUs are being relaxed in the most
recent many-core designs to exploit data parallelism in a flexible way. Single
Program Multiple Data (SPMD) parallelism can thus be efficiently implemented
in these designs, where processors are not bound to execute the same instruction
stream in parallel to achieve peak performance.

280 C. Fabre et al.

All of the cited architectures share a few common traits: their fundamental
computing tile is a tightly coupled cluster with a shared multibanked L1 mem-
ory for fast data access and a fairly large number of simple cores, with ≈ 1
Instruction Per Cycle (IPC) per core. Key to providing I-fetch bandwidth for
cluster-based CMP is an effective instruction cache architecture design, therefore
a detailed design space exploration and analysis have been conducted to evalu-
ate how microarchitectural differences in L1 instruction cache architectures may
affect the overall system behavior and IPC.

We analyzed and compared the two most promising architectures for instruc-
tion caching targeting tightly coupled CMP clusters, namely private instruction
caches per core and shared instruction cache per cluster.

Experimental results showed that private cache performance can be signifi-
cantly affected by the higher miss cost; on the other hand the shared cache has
better performance, with speedup up to almost 60%. However, it is very sensitive
to execution misalignment, which can lead to cache access conflicts and high hit
cost [6].

2.2 Enabling Thermal-Aware System-Level Architectural
Exploration

PRO3D has also produced 3D-ICE, a compact transient thermal model (CTTM)
for liquid cooling that provides fast and accurate thermal simulations of 3D ICs
with inter-tier microchannel cooling [42]. 3D-ICE can accurately predict the tem-
poral evolution of chip temperatures when system parameters (heat dissipation,
coolant flow rate, etc.) change during dynamic thermal management. We have
validated the accuracy of the model with a commercial computational fluid dy-
namics simulation tool as well as measurement results from a 3D test IC and
have foudn a maximum error of 3.4 % in temperature.

PRO3D has also defined and characterized (electrically and thermally) a 3D
integration process flow [21,35,45] that combines TSV and microchannels fab-
rication for liquid cooling of multiple tiers and has developed 3D-ICE [34], a
complete transient thermal simulation tool that can be used to validate 3D inte-
gration stacks of multi-core designs in a very early stage of the design flow, thus
enabling much more thermally-balanced and controlled 3D multi-core designs.
These high-level technology models of complete 3D stacks have been successfully
used to validate the effects of the cooling methods while executing benchmarks
in the VPI [18].

3 Thermal Management

Inter-tier liquid cooling is a recently proposed and a promising thermal packaging
solution to counter the aggravated thermal issues arising from vertical stacking
in 3D-multiprocessor ICs [8]. With this packaging solution, inter-tier thermal
resistances are reduced considerably, enabling the 3D ICs to operate at much
lower temperatures than those with conventional heat sinks [30,26].

PRO3D, Programming for Future 3D Manycore Architectures 281

However, inter-tier liquid cooling also brings with it new design-time and run-
time challenges for the designers. For instance, a serious challenge that single-
phase liquid cooling brings is the increased thermal gradient. The sensible heat
absorption that occurs as the coolant flows along the microchannels raises its
temperature [34]. This results in an increase of coolant temperature from inlet
to the outlet, which in turn, results in an undesirably augmented thermal gra-
dient on the IC surface [30]. These gradients cause uneven thermally-induced
stresses on different parts of the IC, significantly undermining overall system
reliability [10].

In this respect, we propose a novel design-time thermal balancing technique
by modulating the microchannel width from inlet to outlet, without adding
to the existing fabrication costs. This technique, referred to as channel mod-
ulation, relies on the well-known observation that the thermal resistance of
microchannel heat sinks reduces with increasing aspect ratio of the channel
cross-section [41]. Our proposed work provides an optimal solution for thermal
balancing and hotspot minimization. This work contributes to providing an addi-
tional dimension of design-space exploration, in the form of channel modulation,
to IC designers for the purpose of thermal balancing.

3.1 Thermal Model and Problem Formulation

The goal of our optimization is to find a sequence of channel widths, as a function
of the distance from the inlet, which minimizes the intended cost function: the
temperature gradient. Hence, the steady-state temperatures of the 3D IC
must be written as a function of this distance in the analytical formulation,
with the channel widths as an input parameter. In other words, if the distance
from the inlet is measured along the coordinate axis z, then we need to find an
equation of the form:

d

dz
T(z) = Φ(z,wC(z),T(z)), (1)

where T(z) is the steady-state temperatures vector on the IC and wC(z) is
a vector of width functions of different microchannels written as a function of
z. Our goal, then, is to find wC(z) that minimizes the gradients in T(z). It
is important to mention that there are five heat transfers occurring along the
channel that must be taken into account in the thermal model [34,35]:

1. Longitudinal heat conduction inside the two active silicon layers, parallel to
the microchannel.

2. Vertical heat conduction from the active silicon layers to surface of the top
and bottom microchannel walls.

3. Vertical heat conduction between the active silicon layers through the mi-
crochannel silicon side walls.

4. Convective heat transfer from the surface of the microchannel walls into the
bulk of the coolant.

282 C. Fabre et al.

A B

SPARC core
L2 cache

Crossbar
Other

A

B

E E

E

C D
C

D

Arch. 1

Arch. 2

Arch. 3

Fig. 2. Layout of the 3D-MPSoCs Used in our Experiments

5. Convective heat transport downstream along the channel due to the mass
transfer (flow) of the coolant.

In our optimization, we define our cost function as the square of the Euclidean
norm of the thermal gradient (T′). Our optimal control design problem can be
formulated as:

min
wC(z)

J =

∫ d

0

‖T′‖2dz (2)

Subject to : 1. System state-variable equations

2. Design constraints

3.2 Experimental Results

We apply the optimal channel modulation design to different liquid-cooled 3D-
MPSoC architectures to demonstrate how the optimal channel modulation tech-
nique can be used with the conventional floorplan exploration to obtain the
desired thermal behavior during the IC design. We use different configurations
of the 90 nm UltraSPARC T1 (Niagara-1) processor [16] architecture. Fig. 2
shows the layout of the 3D-MPSoCs used in this experiment [30,16]. The dies
are of size 1 cm × 1.1 cm and the heat flux densities range from 8 W/cm2 to
64 W/cm2.

In our optimization technique, we are using the worst-case (peak) power dis-
sipation of the 3D-MPSoC functional elements [30,16]. Our proposed method
achieves a thermal gradient reduction of 31% (23oC to 16oC). When the peak
heat flux levels were replaced by average values, this same optimal channel mod-
ulation configuration manages to reduce the thermal gradient by 21 % compared

PRO3D, Programming for Future 3D Manycore Architectures 283

5

10

15

20

25

Peak Average Peak Average Peak Average

Arch. 1 Arch. 2 Arch. 3

Th
er

m
al

 g
ra

di
en

t (
 °C

)

Minimum channel width Maximum channel width Optimal channel modulation

Fig. 3. Thermal Gradients Observed in the Different 3D-MPSoC Architectures Dissi-
pating Peak and Average Level Heat Fluxes, Using Maximum, Minimum and Optimally
Modulated Channel Widths

to the uniform channel width case. In addition, we observe that the peak temper-
ature in the optimally modulated channel case equals to the peak temperature
of the minimum channel width case. Thus, our proposal implicitly minimizes the
peak temperature to the lowest value achievable within a given channel width
range. The thermal gradients obtained for the different cases and for various
channel types are plotted in Fig. 3. Sample thermal maps of the Arch. 1 top-die,
for the case of peak heat flux are also plotted in Fig. 4 to illustrate the amelio-
rating effect our proposed method has on the thermal gradients. The direction
of coolant flow is from bottom to top of the figures.

(a) Minimum (b) Optimal (c) Maximum

Fig. 4. Thermal Maps of Arch. 1 (Fig. 2) Top Die with Peak Heat Flux Levels, when
Minimum, Maximum and Optimally Modulated Channel Widths are Applied. All the
Thermal Maps are Drawn With Identical Temperature Scale ([30 − 55]◦C)

4 Thermal-Aware Application Mapping on 3D Platforms

Distributing tasks optimally on a parallel platform is known to be NP-hard [9,40],
but approximate methods exist. 3D platforms add new aspects to the problem
and require rethinking the methods for system-level analysis, optimization, and

284 C. Fabre et al.

Split-
stream

ARM 1

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

A
R

M
 2

Merge-
frame

Split-
stream

ARM 2

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

A
R

M
 1

Merge-
frame

Split-
stream

ARM 1

Merge-
stream

De-
code

A
R

M
 3

Split-
frame

Merge-
frame

ARM 2

Split-
stream

ARM 1

Merge-
stream

De-
code

A
R

M
 2

Split-
frame

Merge-
frame

ARM 1

Split-
stream

ARM 1

Merge-
stream

De-
code

ARM 3

Split-
frame

ARM 2

Merge-
frame

Split-
stream

ARM 1

Merge-
stream

De-
code

ARM 3

Split-
frame

ARM 2

Merge-
frame

(a) T*=342.2K, l*=11.7s

(b) T*=350.6K, l*=11.7s

(c) T*=359.9K, l*=3.1s

(d) T*=358.2K, l*=3.1s

(e) T*=364.5K, l*=2.4s

(f) T*=365.0K, l*=2.4s

Fig. 5. Worst-case Latency Versus Worst-case Peak Temperature for Similar Bindings
but Different Placements, of an MJPEG Decoder Evaluated on MPARM Platform [4]

exploration of the design space. Although considering thermodynamics of 3D
stacks at system-level is crucial, none of the existing system-level mapping frame-
works is thermally aware. Considering thermal management at system-level is
important not only because of high cooling costs or the potential reliability prob-
lems if the circuit is not correctly designed, but also because latencies and other
performance metrics might depend on temperature. In particular, if temperature
variations are ignored, unpredictable runtime overheads or unexpected perfor-
mance degradations might occur, e.g., due to reactive thermal mechanisms such
as dynamic voltage and frequency scaling.

Let us consider the diagram in Figure 5 that has been first introduced in [19]
and [33]. Solution pairs where only the placement of processing components is
different are illustrated and indicate that physical placement cannot be ignored
in temperature analysis, e.g., mappings (a) and (b) have the same latency, but
their peak temperatures differ by more than 8 K. Therefore, even if the mapping
is already predefined, the system designer might still reduce the temperature by
selecting a different placement. The same is true for the opposite case, when
designs might violate temperature thresholds if the physical placement has not
been properly included in the system-level analysis. These experiments show
that temperature distributions and temperature peaks are not easy to infer at
system level, since they are governed by complex dependencies on the actual
topology of the chip, its physical parameters, heat transfer rules, and accumu-
lated bursts of jobs in applications’ workloads that actually produce worst-case
temperatures [27]. In fact, for any manycore design, without accurate worst-case
chip temperature analysis tools included into system performance analysis, no
guarantees can be given and mappings cannot be ruled out at system-level. To
answer all these challenges, we have extended the distributed operation layer
(DOL) [39] to consider system-level thermal-aware task to processors mapping.

4.1 Mapping Optimization Framework

The mapping optimization cycle implemented in the distributed operation layer
[39] is illustrated in Fig. 6. In PRO3D, DOL considers parallel streaming

PRO3D, Programming for Future 3D Manycore Architectures 285

design space exploration
(mapping optimization)timing/thermal analysis

application
specification

architecture
specification

optimal mapping

(set of mappings)model

parameters

final

implementation

software synthesis
execution on

hardware

simulation on

virtual platform

Fig. 6. Real-time and Thermal-aware Mapping Optimization Loop in Distributed Op-
eration Layer for PRO3D (DOL3D)

applications represented as synchronous dataflow graphs (SDF) [15] and specified
independently from the given PRO3D architecture. After the analysis of differ-
ent design alternatives, a set of optimized mappings are provided. In PRO3D,
each mapping is individually analyzed in terms of performance and (worst-case)
thermal behavior. Finally, the chosen mapping specification will be further syn-
thesized and implemented on the final system or can be simulated on the virtual
platform. Typically, we use this low level simulation in a feedback loop for au-
tomatically calibrating the time and thermal analysis models [11,12,38].

4.2 Thermal Models and Analysis in DOL3D

Several system-level analysis models are included in DOL [39], ranging from very
simple, static models to more complex, dynamic analytic models such as mod-
ular performance analysis (MPA). MPA [43] is an analytic approach targeting
real-time systems and based on real-time calculus (RTC) [37]. From elementary
knowledge about the best-case and worst-case behavior of system components in
all operating conditions, MPA provides hard upper and lower bounds for various
performance criteria of the system, such as end-to-end delays, buffer require-
ments, or resource utilizations. The system is abstractly modeled by bounded
timing properties of event streams traversing the system, bounded capabilities
of architectural units, and bounded execution requirements of event streams
on individual components. Abstract components define the semantics of task
executions and resource sharing mechanisms. Based on these abstractions, in
classical timing analysis, the critical instant of task releases is used to guarantee
the system worst-case execution time. Inspired from this time critical instant,
we determine the temperature critical instant guaranteeing the worst-case peak
temperature in the system in [27]. Similar to timing analysis, this critical tem-
perature trace is identified among infinitely many traces that comply with the
event stream specification in MPA and then the temperature of the system is
simulated for the identified critical temperature trace. To apply the proposed
method in [27] to a multi-core system such as PRO3D, in [33] we have extended
the analysis to also consider the heat transfer among neighboring components.

286 C. Fabre et al.

Core 2

Core 3Core 1 1 2

1.60 GHz0.0 GHz 0.0 GHz

(a) 339.22K.

Core 2

Core 3

Core 1

1 2

1.60 GHz1.60 GHz 0.0 GHz

(b) 343.61K.

Core 3

Core 2

Core 1

1 2

1.60 GHz1.60 GHz 0.0 GHz

(c) 340.47K.

Core 2

Core 3Core 1 1 2

1.49 GHz0.0 GHz 0.0 GHz

(d) 335.69K.

Core 2

Core 3

Core 1

1 2

0.74 GHz0.74 GHz 0.0 GHz

(e) 322.21K.

Core 3

Core 2

Core 1

1 2

0.74 GHz0.74 GHz 0.0 GHz

(f) 321.73K.

Fig. 7. Worst-Case Chip Temperature for Different Task Assignments and Clock Fre-
quencies

Therefore, in [33] we provide a tight upper bound on the worst-case peak tem-
perature of the entire multi-core system.

However, the method proposed in [33] uses linear search to calculate a tight
bound on the worst-case peak temperature, and therefore exhibits a too long
execution time for the design space exploration of a multi-core system with tens
of processing components. An approximate method with a lower time complex-
ity and that is three orders of magnitude faster has been determined in [32] to
calculate an upper bound on the maximum temperature of a multi-core system.
To extend the search options in the design space, in a thermal-aware task as-
signment is currently investigated such that the worst-case chip temperature is
minimized and all real-time deadlines are met. This is possible due to individual
static frequency selection for all cores in the system. An illustrative example is
shown in Figure 7, where two identical tasks are mapped on three homogeneous
processing components. When assigning the maximum operation frequency on
all cores, the worst-case chip temperature is obtained when the tasks are assigned
to different processing components. This is because both processing components
process in parallel in the thermal critical scenario. When the operation frequency
of every processing component is the minimum frequency such that all deadlines
are just met, the lowest peak temperature is found when both tasks are mapped
to different, non-adjoined processing components. This is because the individual
operation frequencies can drastically be reduced when tasks are mapped onto
different processing components.

The techniques described so far can be applied at design time, having the ad-
vantage of thermal-aware performance estimations and early thermal optimiza-
tions. However, in spite of thermal-aware design-time choices, there may be the
need to respond to run-time thermal emergencies. In this case, specific thermal
management actions might be applied as those described in section . However,
to benefit of pre-calculated and still predictable performance, these dynamics
have to be a-priori considered and included in the design strategy. One option is
to select a set of optimized mappings after the design space exploration, instead
of just one mapping. Each such mapping is having different guaranteed perfor-
mance and temperature characteristics that can be exploited at run-time. The
alternative is to apply control-theory to control the speed of processors in a loop
receiving feedback from temperature sensors as described in [14]. The solution

PRO3D, Programming for Future 3D Manycore Architectures 287

in [14] is designed to meet thermal constraints and simultaneously provide safe
bounds on worst-case delays suffered by all jobs in the system.

5 Generation and Simulation of the System-Model

The PRO3D system construction method [7] starts from a DOL [39,12] specifi-
cation and is both rigorous and allows fine-grain analysis of system dynamics. It
is rigorous because it is based on formal BIP models [3] with precise semantics
that can be analyzed by using formal techniques. A system model in BIP is de-
rived by progressively integrating constraints induced on an application software
by the underlying hardware. It is obtained, in a compositional and incremen-
tal manner, from BIP models of the application software and respectively, the
hardware platform, by application of source-to-source transformations that are
proven correct-by-construction [7]. The system model describes the behavior of
the mixed HW/SW system and can be simulated and formally verified using the
BIP toolset.

����������������

generation
code

BIP

System Model

transformation
model

Runtime

Platform (Virtual)

Glue CodeFunctional Code

execution &
calibration

Application
Software

Application

translation

BIPModel

DOL

BIP

DOL

Mapping

Software

System Model
Abstract

Hardware
Architecture

Model

translation

BIP

DOLArchitecture
Hardware

transformation
model

MappingApplication

Fig. 8. System Model Construction & Code Generation

The method for the construction of mixed HW/SW system models is illus-
trated in Fig. 8. It takes as inputs: (i) the (untimed) application software, (ii)
the (timed) hardware architecture and (iii) the mapping between them described
in DOL. It proceeds in two main steps. The first step is the construction of the
abstract system model. This model represents the behavior of the application
software running on the hardware platform according to the mapping, but with-
out taking into account execution times for the software actions. In the second
step, the (bounds for) execution times are obtained by running every software
process in isolation on the platform. These bounds are injected into the abstract
system model and lead to the system model. This final model allows for the accu-
rate estimation through simulation of real-time characteristics (response times,

288 C. Fabre et al.

delays, latencies, throughput, etc.) and indicators regarding resource usage (bus
conflicts, memory conflicts, etc.).

System models are furthermore used for platform-dependent code generation.
As illustrated in the Fig. 8, the generated code consists mainly of two parts:
the functional code, which implements the different application tasks and their
communication and the glue code, which implements the deployment of the ap-
plication onto the platform according to the mapping and manages its execution
lifecycle. This code is built on top of platform runtimes, that is, available APIs
and libraries for thread management, memory allocation, communication and
synchronization, etc. Once generated, the code is compiled by the native plat-
form compiler and linked with the runtime libraries to produce the binary image
for execution on the platform. This approach has been implemented and vali-
dated on mpsim (MPARM cycle-accurate simulator), Gepop (STHORM Posix
simulator), STHORM TLM simulator and will be tested on the real STHORM
silicon during Fall 2012. As for the target runtimes, we originally started using
the Native Programming Layer (NPL), a common runtime implemented for both
MPARM and STHORM; since mid-2012 we developed an implementation of the
MCAPI standard for the STHORM platform [22].

6 STHORM, a Manycore Platform

Formerly known as P2012 [5,20,36] the STHORM modular architecture is shown
Fig. 9. At the fabric level, an asynchronous NoC (Network-on-Chip) is organized
in a 2D-mesh topology of clock-less routers. Each router has a NI (Network
Interface) that connects to a cluster made of up to 16 cores in SMP and a number

Encore16
Cluster

Controller

Local InterconnectNI

CVP

F
L
L

hopping

C
T
R
L

F
L
L

F
L
L

hopping

C
T
R
L

hopping

C
T
R
L

Vhigh
Vlow

CVP CVP

HWPEHWPE

En16CC

HPE HPE

En16CC

HPE HPE

En16CC

HPE HPE

Fabric
Controller

DMA

DMA

P2012 Fabric
Template

Power & frequency domain

GALS interface

Fig. 9. The STHORM Computing Fabric Template

PRO3D, Programming for Future 3D Manycore Architectures 289

of communication engines to connect user defined HW IPs. This archtecture
is a natural Globally Asynchronous Locally Synchronous (GALS) scheme and
isolates logically the clusters. The NI gives access to the cluster main Clock,
Variability and Power (CVP) controller, to control a power management harness.
Within PRO3D we investigate 3-tier stacking for STHORM: a bottom SoC carrier
for the general purpose host and IOs, a STHORM computing die, and a memory
die. The experiments will include a number of VPI thermal modeling extensions
to exercise the whole PRO3D SW development flow.

7 Conclusion after 30 Months into PRO3D

Two years and a half into its workplan, PRO3D has developed a number of tools
and already assembled them into a consistent 3D exploration and programming
workflow: A compact transient thermal model for simulation of 3D ICs with
liquid cooling and its corresponding monitoring runtimes, a flexible virtual plat-
form infrastructure for modelling and analysis of 3D architecture, a high level
mapping optimisation tool focusing on peformance and preliminary support for
temperature analyses, a rigorous transformation toolset for components that
allow for the construction and assembly of system models and the generation
of distributed intermediate format for deployment on the target platform. The
last year of PRO3D will be focused on experiments with an actual industrial
embedded manycore platform STHORM. Experiments have started on virtual
platforms, and will move to real STHORM silicon during Fall of 2012.

Challenges for 3D and Programming
Besides these practical results, we think that the main challenges raised by 3D
are a related to a retrofit of characteristics of the architecture into compilation
flows and runtimes. Somehow, this is very similar to the issues encountered in
HPC with distributed machines in the early ’90. The problem is difficult, but
a wide body of literature exists for purely topological issues. The new issues
introduced by 3D stacking are mostly related to thermal aspects. Theses issues
have two main origins:

1. Thermal cross-coupling of execution units. The relative position of processing
units as a whole, or computing units from therein (operators, instructions
decoders, register files, caches, etc.) and memory defines how heat from one
element impacts another one. If two processors are too close to each other,
we may have to offload both of them in situations where a single one could
have run without harm. So not only the topoplogy of the manycore will have
to be know from the compilation flow and the runtime, but also the geometry
and thermal characteristics of the hardware [38];

2. Different time scale for thermal propagation and computation forecast.Many-
core architecture are in the GHz range, while the evolution of the tempera-
ture is in the Hz range. This means several order of magnitude between the
cause of heating –computations– and heating itself [34]. This gap in dynamic

290 C. Fabre et al.

magnitude is reinforced by the fact that even at constant frequency, energy
consumption increases with temperature. All this makes it difficult to re-
verse temperature variations. Any decision related to thermal management
will probably have to use predictive thermal models [1].

We thing that this will bring a number of consequence on programming models,
compilation and runtimes:

– The fading of pure static compilation. Due to the huge gap of time scale
between computation and thermal effects, it seems very difficult, if doable
at all, to build full-static compilation schemes where the compiler will decide
of the mapping off-line, before execution, once and for all. At least to en-
sure platform’s thermal integrity, some level of responsibility w.r.t. mapping
must be left to the runtime [44]. To ensure this integrity the runtime will
have to deal with tasks scheduling and resource allocation while taking into
account not only the architecture’s topology and the computation load [18],
but also the actual geometry and thermal characteristics of the material in-
volved in the architecture [29]. This will require programming models that
can provide enough flexibility at execution whereas essential properties can
be guaranteed at compile-time [3].

– The fading of von Neumann as a programming model. As for programming
models, we should move away from von Neumann –only as programming
model, not as computing architecture– and consider other kinds of program-
ming models naturally parallel, like process network and message passing
already discussed [2,13,17]. Even these parallel programming models must
be checked to be amendable to analyses that can predict the amount of com-
puting load, if not to an absolute time reference, at least towards a moving
horizon. This is necessary to provide computation forecasts to a runtime
scheduler that can efficiently use the stacked architecture while preserving
its thermal integrity.

Acknowledgments and Consortium. PRO3D is funded by the EU under FP7
GA no 248776. It brings together CEA, Commissariat à l’énergie atomique et
aux énergies alternatives (coord.), Fr.; VERIMAG, represented by Université
Joseph Fourier Grenoble 1, Fr.; ETHZ, Eidgenössische Technische Hochschule
Zürich, CH; UNIBO, Università di Bologna, It.; STM, STMicroelectronics, Fr.;
EPFL, École polytechnique fédérale de Lausanne, CH. PRO3D Started in Jan.
2010 for an original duration of 30 months. It has been granted a six months
extension to experiment with actual STHORM silicon, and will now end in Dec.
2012

References

1. Aly, S., Mostafa, M., Coskun, A.K., Atienza Alonso, D.: Fuzzy Control for En-
forcing Energy Efficiency in High-Performance 3D Systems. In: Proceedings of the
2010 International Conference on Computer-Aided Design, ICCAD 2010, New York
(2010)

PRO3D, Programming for Future 3D Manycore Architectures 291

2. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in
BIP. In: Software Engineering and Formal Methods SEFM 2006 Proceedings, pp.
3–12. IEEE Computer Society Press (2006)

3. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Software,
Special Edition – Software Components: Beyond Programming 28(3), 41–48 (2011)

4. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: MPARM: Ex-
ploring the Multi-Processor SoC Design Space with SystemC. J. VLSI Signal Pro-
cess. 41(2), 169–182 (2005)

5. Benini, L., Flamand, E., Fuin, D., Melpignano, D.: P2012: Building an ecosystem
for a scalable, modular and high-efficiency embedded computing accelerator. In:
Rosenstiel, W., Thiele, L. (eds.) DATE 2012, pp. 983–987. IEEE (March 2012)

6. Bortolotti, D., Paterna, F., Pinto, C., Marongiu, A., Ruggiero, M., Benini, L.: Ex-
ploring instruction caching strategies for tightly-coupled shared-memory clusters.
In: Int. Symp. on Systems-on-Chip (2011)

7. Bourgos, P., Basu, A., Bozga, M., Bensalem, S., Sifakis, J., Huang, K.: Rigorous
system level modeling and analysis of mixed HW/SW systems. In: Proceedings of
MEMOCODE, pp. 11–20. IEEE/ACM (2011)

8. Brunschwiler, T., et al.: Interlayer cooling potential in vertically integrated pack-
ages. Microsyst. Technol. 15(1), 57–74 (2009)

9. Burns, A.: Scheduling hard real-time systems: a review. Softw. Eng. J. 6, 116–128
(1991)

10. Coskun, A.K., et al.: Utilizing predictors for efficient thermal management in mul-
tiprocessor socs. IEEE Transactions on CAD 28(10), 1503–1516 (2009)

11. Haid, W., Keller, M., Huang, K., Bacivarov, I., Thiele, L.: Generation and cali-
bration of compositional performance analysis models for multi-processor systems.
In: Proc. Intl Conference on Systems, Architectures, Modeling and Simulation,
SAMOS, pp. 92–99. IEEE, Samos (2009)

12. Huang, K., Haid, W., Bacivarov, I., Keller, M., Thiele, L.: Embedding formal per-
formance analysis into the design cycle of MPSoCs for real-time streaming appli-
cations. ACM Trans. Embed. Comput. Syst. 11(1), 8:1–8:23 (2012),
http://doi.acm.org/10.1145/2146417.2146425

13. Joven, J., Marongiu, A., Angiolini, F., Benini, L., De Micheli, G.: Explor-
ing programming model-driven QoS support for noc-based platforms. In: 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS, pp. 65–74 (October 2010)

14. Kumar, P., Thiele, L.: Timing analysis on a processor with temperature-controlled
speed scaling. In: Proc. IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS. IEEE Computer, Beijing (2012)

15. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

16. Leon, A., et al.: A power-efficient high-throughput 32-thread SPARC processor.
In: ISSCC, vol. 42(1), pp. 7–16 (2007)

17. Marongiu, A., Benini, L.: An OpenMP compiler for efficient use of distributed
scratchpad memory in MPSoCs. IEEE Transactions on Computers PP(99), 1
(2010)

18. Marongiu, A., Burgio, P., Benini, L.: Vertical stealing: robust, locality-aware do-all
workload distribution for 3D MPSoCs. In: Kathail, V., Tatge, R., Barua, R. (eds.)
CASES, pp. 207–216. ACM (2010)

http://doi.acm.org/10.1145/2146417.2146425

292 C. Fabre et al.

19. Marwedel, P., Teich, J., Kouveli, G., Bacivarov, J., Thiele, L., Ha, S., Lee, C., Xu,
Q., Huang, L.: Mapping of applications to MPSoCs. In: 2011 Proceedings of the 9th
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS, pp. 109–118 (October 2011)

20. Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Cler-
midy, F., Dutoit, D.: Platform 2012, a many-core computing accelerator for embed-
ded SoCs: performance evaluation of visual analytics applications. In: Groeneveld,
P., Sciuto, D., Hassoun, S. (eds.) DAC, pp. 1137–1142. ACM (June 2012)

21. Micheli, G.D., Pavlidis, V., Alonso, D.A., Leblebici, Y.: Design methods and tools
for 3D integration. In: Proceedings of the Symposium on VLSI Technology, Kyoto,
Japan, pp. 182–183 (June 2011)

22. The Multicore Association: The Multicore Communications API (MCAPITM)
v2.015 (2011), http://www.multicore-association.org

23. NVIDIA:NextGeneration CUDAComputeArchitecture: Fermi, whitepaper (2010),
http://www.nvidia.com

24. Plurality: The HyperCore Processor. Plurality Ltd. (2010),
http://www.plurality.com

25. PRO3D – Programming for Future 3D Multicore Architectures (2010),
http://pro3d.eu

26. Qian, H., et al.: Cyber-physical thermal management of 3D multi-core cache-
processor system with microfluidic cooling. ASP Journal of Low Power Electron-
ics 7(1), 1–12 (2011)

27. Rai, D., Yang, H., Bacivarov, I., Chen, J.J., Thiele, L.: Worst-case temperature
analysis for real-time systems. In: Design, Automation Test in Europe Conference
Exhibition, DATE, pp. 1–6 (March 2011)

28. Ruggiero, M., Angiolini, F., Poletti, F., Bertozzi, D., Benini, L., Zafalon, R.: Scal-
ability analysis of evolving SoC interconnect protocols. In: Int. Symp. on Systems-
on-Chip, pp. 169–172 (2004)

29. Sabry, M.M., Atienza, D., Coskun, A.K.: Thermal Analysis and Active Cooling
Management for 3D MPSoCs. In: Proceedings of IEEE International Symposium
on Circuits and Systems, ISCAS 2011 (2011)

30. Sabry, M.M., et al.: Energy-Efficient Multi-Objective Thermal Control for Liquid-
Cooled 3D Stacked Architectures. IEEE Transactions on CAD 30(12), 1883–1896
(2011)

31. Sabry, M.M., Ruggiero, M., Del Valle, P.G.: Performance and energy trade-offs
analysis of L2 on-chip cache architectures for embedded MPSoCs. In: Proceedings
of the 20th Symposium on Great Lakes Symposium on VLSI, GLSVLSI 2010, pp.
305–310. ACM, New York (2010)

32. Schor, L., Bacivarov, I., Yang, H., Thiele, L.: Fast worst-case peak temperature
evaluation for real-time applications on multi-core systems. In: Proc. IEEE Latin
American Test Workshop, LATW. IEEE, Quito (2012)

33. Schor, L., Bacivarov, I., Yang, H., Thiele, L.: Worst-case temperature guaran-
tees for real-time applications on multi-core systems. In: Proc. IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS. IEEE Computer,
Beijing (2012)

34. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., Atienza, D.: 3D-ICE:
Fast compact transient thermal modeling for 3D ICs with inter-tier liquid coo-
ling. In: 2010 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD, pp. 463–470 (2010)

http://www.multicore-association.org
http://www.nvidia.com
http://www.plurality.com
http://pro3d.eu

PRO3D, Programming for Future 3D Manycore Architectures 293

35. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., Atienza, D.: Compact
transient thermal model for 3D ICs with liquid cooling via enhanced heat transfer
cavity geometries. In: 2010 16th International Workshop on Thermal Investigations
of ICs and Systems, THERMINIC, pp. 1–6 (2010)

36. STMicroelectronics, CEA: Platform 2012 – A Manycore Programmable Accelerator
for Ultra-Efficient Embedded Computing in Nanometer Technology (November
2010) (whitepaper)

37. Thiele, L., Chakraborty, S., Naedele, M.: Real-Time Calculus for Scheduling Hard
Real-Time Systems. In: Proc. IEEE Int’l Symposium on Circuits and Systems,
ISCAS, vol. 4, pp. 101–104 (2000)

38. Thiele, L., Schor, L., Yang, H., Bacivarov, I.: Thermal-aware system analysis and
software synthesis for embedded multi-processors. In: Proc. Design Automation
Conference, DAC, pp. 268–273. ACM, San Diego (2011)

39. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping Applications to Tiled Mul-
tiprocessor Embedded Systems. In: Proc. Int’l Conf. on Application of Concurrency
to System Design, ACSD, pp. 29–40 (2007)

40. Tindell, K.W., Burns, A., Wellings, A.J.: Allocating hard real-time tasks: an np-
hard problem made easy. Real-Time Syst. 4, 145–165 (1992)

41. Tuckerman, D.B., Pease, R.F.W.: High-performance heat sinking for VLSI. IEEE
Electron. Device Letters 5, 126–129 (1981)

42. Vincenzi, A., Sridhar, A., Ruggiero, M., Atienza, D.: Fast thermal simulation of
2D/3D integrated circuits exploiting neural networks and GPUs. In: Proceedings
of the 17th IEEE/ACM International Symposium on Low-Power Electronics and
Design, ISLPED 2011, pp. 151–156. IEEE Press, Piscataway (2011)

43. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis - a case study. Software Tools for Technology
Transfer (STTT) 8(6), 649–667 (2006)

44. Zanini, F., Atienza, D., Benini, L., de Micheli, G.: Thermal-Aware System-Level
Modeling and Management for Multi-Processor Systems-on-Chip. In: Proceedings
of IEEE International Symposium on Circuits and Systems, ISCAS 2011 (2011)

45. Zervas, M., Temiz, Y., Leblebici, Y.: Fabrication and characterization of wafer-level
deep tsv arrays. In: Proceedings of 2012 Electronic Components and Technology
Conference, San Diego, CA (2012)

Thermal-Aware Task Assignment for Real-Time

Applications on Multi-Core Systems

Lars Schor, Hoeseok Yang, Iuliana Bacivarov, and Lothar Thiele

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

Abstract. The reduced feature size of electronic systems and the
demand for high performance lead to increased power densities and
high chip temperatures, which in turn reduce the system reliability.
Thermal-aware task allocation and scheduling algorithms are promising
approaches to reduce the peak temperature of multi-core systems with
real-time constraints. However, as long as the worst-case chip tempera-
ture is not incorporated into system analysis, no guarantees on the per-
formance can be given. This paper explores thermal-aware task assign-
ment strategies for real-time applications with non-deterministic work-
load that are running on a multi-core system. In particular, tasks are
assigned to the multi-core system so that the worst-case chip tempera-
ture is minimized and all real-time deadlines are met. Each core has its
own clock domain and the static assigned frequency corresponds to the
minimum operation frequency such that no real-time deadline is missed.
Finally, we show that the proposed temperature minimization problem
can efficiently be solved by metaheuristics.

Keywords: Real-Time Systems, Worst-Case Chip Temperature, Task
Assignment, Thermal Analysis, Multi-Core Systems.

1 Introduction

Multi-core systems outperform single-core platforms by offering higher perfor-
mance and better power efficiency. However, the demand for increased perfor-
mance and the reduced feature sizes lead to increasing power densities and high
chip temperatures, which in turn reduce the system reliability. For example, ex-
ceeding the chip’s peak temperature could lead to a reduction of performance or
even damage the physical system. Reactive thermal management mechanisms,
cooling systems, and thermal-aware task allocation and scheduling algorithms
are potential techniques to tackle thermal and reliability issues.

Cooling systems for embedded real-time systems have to be designed for the
worst-case chip temperature, i.e., the maximum chip temperature under all fea-
sible scenarios of task arrivals. As the packaging costs of cooling systems increase
super-linearly in power consumption [1], its design might be very expensive with-
out the use of other thermal management mechanisms. Reactive thermal man-
agement mechanisms such as DVFS [2, 3] are widely used to address thermal

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 294–313, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Thermal-Aware Task Assignment for Real-Time Applications 295

issues. Despite their thermal effectiveness, these techniques cause a significant
degradation of performance or lead to an expensive run-time overhead, both
unacceptable in today’s embedded real-time systems.

Various thermal-aware task allocation and scheduling algorithms have recently
been studied [4–7]. However, as long as the worst-case chip temperature is not
incorporated into system analysis, no guarantees on performance can be given
and violations of real-time deadlines cannot be ruled out. Consequently, this
paper explores thermal-aware task assignment and frequency selection strate-
gies to reduce the worst-case chip temperature under real-time constraints. In
particular, we consider the following problem:

Given are a set of tasks that are mapped onto a multi-core chip. Then,
the goal is to assign each processing component its optimal frequency and
to select a static assignment of tasks to processing components such that
all real-time deadlines are met and the worst-case chip temperature is
minimized.

To this end, we propose a thermal analysis method to calculate a non-trivial
upper bound on the maximum temperature of an embedded real-time system
with multiple cores and non-deterministic workload that is later incorporated
into the task assignment problem. Arrival curves from real-time calculus [8] are
used to upper bound the task’s workload in any time interval. Each processing
component executes at a static frequency assigned at compile-time. This fre-
quency is selected such that the real-time deadlines of all tasks are met and the
worst-case chip temperature is minimized. The considered thermal model is able
to address various thermal effects like the heat exchange between neighboring
cores and temperature-dependent leakage power. The contributions of this paper
can be summarized as follows:

– A novel method to calculate the worst-case chip temperature of an embed-
ded real-time system with multiple cores and non-deterministic workload is
formally derived.

– The minimization of the worst-case chip temperature with respect to real-
time constraints is formulated as a nonlinear binary integer problem.

– We show the viability of the proposed methods in various case studies on
hardware platforms with up to 16 cores.

The remainder of the paper is organized as follows: First, the considered problem
is motivated by an introductory example in Section 2. Afterwards, in Section 3,
the thermal and computational models considered in this paper are introduced.
In Section 4, we discuss a method to calculate the worst-case chip temperature
and show how to select the optimal operation frequency. The optimal task assign-
ment problem is formulated as a nonlinear binary integer problem in Section 5.
Finally, Section 6 presents case studies to highlight the viability of our methods
and related work is discussed in Section 7.

296 L. Schor et al.

2 Motivational Example

System Description. In order to motivate the considered problem, we examine
various task to processing component assignments of a simple system with two
identical tasks ν1 and ν2, and three homogeneous processing components with
a maximum operation frequency of 1.6GHz. The chip floorplan corresponds to
the one outlined in Fig. 2. The parameters of the thermal model and the power
dissipation parameters are summarized in Table 1(a) and Table 1(b). Both tasks
have an invocation interval of 200ms, a jitter of 400ms, and a computational
demand of 5 ·107 cycles, i.e., 31.25ms when the processing component is running
at its maximum operation frequency. Furthermore, the real-time deadline of a
task is equal to its period.

Maximum Operation Frequency. First, we suppose that each processing compo-
nent can only process at its maximum operation frequency, i.e., 1.6GHz. Then,
we calculate the worst-case chip temperature, i.e., the maximum chip temper-
ature under all feasible scenarios of task arrivals for different mappings by the
method proposed in Section 4.1. Mapping both tasks ν1 and ν2 to the same
processing component results in a worst-case chip temperature of 339.22K while
mapping both tasks to different adjoined and non-adjoined processing compo-
nents leads to a worst-case chip temperature of 343.61K and 340.47K, respec-
tively. Note that the worst-case chip temperature is higher when both tasks are
assigned to different processing components as both processing components are
concurrently processing in the thermal critical scenario.

Optimal Operation Frequency. Next, the operation frequency of every processing
component is the minimum frequency such that all deadlines are just met, calcu-
lated by (21). When both tasks are mapped onto the same processing component,
the frequency can be reduced to 1.49GHz and the maximum temperature of the
system is 335.69K. Assigning both tasks to different adjoined and non-adjoined
processing components results in a worst-case chip temperature of 322.21K and
321.73K, respectively. As the operation frequency can be reduced to 0.74GHz
when both tasks are mapped onto different processing components, we observe
the lowest worst-case chip temperature when both tasks are mapped onto non-
adjoined processing components. In particular, the worst-case chip temperature
was reduced by almost 22K by selecting an adequate task to processing compo-
nent assignment and optimal operation frequencies.

3 System Model and Problem Definition

In this section, the task, power, and temperature models are described.

Notation: Bold characters will be used for vectors and matrices, and non-bold
characters will be used for scalars. For example, H denotes a matrix whose
(k, �)-th element is denoted as Hk� and T denotes a vector whose k-th element
is denoted as Tk.

Thermal-Aware Task Assignment for Real-Time Applications 297

3.1 Task Model

The task model considered in this paper is based on real-time calculus [8]. Let
ν be the set of tasks that are executed. We suppose that task νj is a stream of
events and has a total workload of Rνj (s, t) cycles in time interval [s, t). Each
event has to complete its execution within Dνj time units after its arrival. The
arrival curve ανj upper bounds all possible cumulative workloads:

Rνj (s, t) ≤ ανj (t− s) ∀0 ≤ s < t (1)

with ανj (Δ) = 0 for all Δ ≤ 0. In other words, Rνj (0, t) is the cumulative
number of computing cycles of all events arrived in [0, t). Arrival curves are a
generalization of various well-know event arrival models as, for example, periodic
event arrivals with jitter [9].

We use the concept of a demand bound function [10] to model the maximum
resource demand of a task, and later to check the schedulability. In particular,
the demand bound function dbfνj (Δ) of task νj is:

dbfνj (Δ) = ανj (Δ−Dνj) ∀Δ ≥ 0 . (2)

In other words, the maximum accumulated computational demand of all events
that arrive and have deadline in any interval of length Δ does not exceed
dbfνj (Δ).

3.2 Processor Model

We consider a homogeneous multi-core system with a set of processing compo-
nents Θ. The total accumulated workload of Θ� at time t is denoted as R�(0, t)
and is, in any time interval of length Δ ≤ t, upper bounded by the arrival curve
α� [8]:

R�(t−Δ, t) ≤ α�(Δ) =

|ν|∑
j=1

Γ (νj , Θ�) · ανj (Δ) (3)

with the assignment function:

Γ (νj, Θ�) =

{
1 if νj executes on processing component Θ�

0 otherwise.
(4)

Likewise, the demand bound function dbf�(Δ) of a processing component Θ�

can be calculated. For example, suppose that an earliest-deadline-first (EDF)
scheduler runs on each processing component to arbitrate between events of
different tasks assigned to the same processing component. Then, the demand
bound function dbf�(Δ) is [10]:

dbf�(Δ) =

|ν|∑
j=1

Γ (νj , Θ�) · dbfνj (Δ) . (5)

298 L. Schor et al.

0 5 10 15 20
0

200

400

αν1

αν2

αν3

time interval Δ [ms]

co
m

p.
 d

em
an

d
[c

yc
le

s]

α� = αν1

+ αν2
+ αν3

γ�

Fig. 1. Typical arrival curve α�(Δ) with
its corresponding upper bound on the ac-
cumulated computing time γ�(Δ)

T1 G12 = G21

K11 C11

T2

P1

T3

K22 C22 P2 K33 C33 P3

G23 = G32

to upper layer to upper layer

Fig. 2. RC circuit of the silicon layer for
a chip with three processing components

Each processing component executes at a static frequency f� with 0 < f� ≤
fmax
� . Therefore, the cumulated number of available computing cycles in time
interval [s, t) is W�(s, t) = f� · (t − s). If there are no waiting or arriving tasks
in [s, t), the available resources W�(s, t) are wasted. Otherwise, they are used to
process incoming and waiting events.

The accumulated computing time Q�(0, t) describes the amount of cycles that
processing component Θ� is spending to process an incoming workload of R�(0, t)
time units. Using arrival curve α�(Δ), the accumulated computing time Q�(t−
Δ, t) can be upper bounded by γ�(Δ) for all intervals of length Δ ≤ t [11]:

Q�(t−Δ, t) ≤ γ�(Δ) = inf
0≤λ≤Δ

{α�(λ) +W�(0, Δ− λ)} . (6)

From the properties of the arrival curve, it follows that γ�(Δ) is monotonically
increasing. The operation mode of a component can be expressed by the mode
function S�(t), which is S�(t) = 1 if the component is in ‘active’ processing mode
at time t and S�(t) = 0 if the component is in ‘idle’ processing mode at time t:

S�(t) =
dQ�(0, t)

dt
· 1

f�
=

{
1 Θ� is processing some events at time t

0 Θ� is ‘idle’ at time t.
(7)

A typical arrival curve and its corresponding upper bound on the accumulated
computing time are outlined in Fig. 1.

The results of the paper also hold for heterogeneous platforms, but the task
model becomes more complex. The workload Rνj (s, t) would just specify the
number of events in time interval [s, t). To calculate the accumulated computing
time Q�(s, t), the workload of task νj is multiplied by the computation-time in
cycles of an event of task νj when νj is assigned to processing component Θ�.

3.3 Power Model

The power consumption of a processing component is the sum of the dynamic
and leakage power consumption [4, 12]. Whenever a component is processing
some events, the component is in ‘active’ mode, and consumes both dynamic and
leakage power. Otherwise, it is in ‘idle’ mode, and consumes only leakage power.

Thermal-Aware Task Assignment for Real-Time Applications 299

Each processing component Θ� has its own clock domain and we suppose that
the dynamic power consumption P�,dyn of component Θ� growths quadratically
with its supply voltage v� and linearly with its operation frequency f� [13]:

P�,dyn(t) ∝ v2� · f� · S�(t) (8)

where the mode function S�(t) implies that P�,dyn(t) = 0 if the component is
in ‘idle’ processing mode. Note that the results of the paper also hold for other
relations between supply voltage and frequency as long as they are monotone.

The leakage power consumption P�,leak of component Θ� is super linearly
dependent on the temperature that can approximately be modeled by a linear
function of the temperature [6, 14]:

P�,leak(t) = φ�� · T�(t) + ψ� (9)

with T� the temperature of processing component �, and the constants φ�� and
ψ�. We assume that the square of the supply voltage scales linearly with the
operation frequency [5] and therefore, the total power consumption is:

P(t) = Pdyn(t) +Pleak(t) = φ ·T(t) + ρ · diag(f)3 · S(t) +ψ (10)

with the diagonal matrix diag(f) of vector f and a constant diagonal matrix ρ.

3.4 Temperature Model

We model the temperature evolution of a multi-core system by an equivalent
RC circuit [4, 15–17]. The vertical layout of the chip is modeled by four layers,
namely the heat sink, heat spreader, thermal interface, and silicon die. Each
layer is divided into a set of blocks according to architecture-level units, i.e.,
processing components, see Fig. 2 for the RC circuit of the silicon layer for
a chip with three processing components. Every block is then mapped onto a
node of the thermal circuit. The number of nodes and therefore, the order of
the thermal model is n = 4 · |Θ|. In particular, the n-dimensional temperature
vector T(t) at time t is described by a set of first-order differential equations:

C · dT(t)

dt
=
(
P(t) +K ·Tamb

)
− (G+K) ·T(t) (11)

with the n × n thermal capacitance matrix C, the n × n thermal conductance
matrix G, the n× n thermal ground conductance matrix K, the n-dimensional
power dissipation vector P, and the ambient temperature vector Tamb = T amb ·
[1, . . . , 1]′. The initial temperature vector is denoted as T0 and the system is
assumed to start at time t0 = 0.

Rewriting (11) with (10) leads to the state-space representation of the thermal
model:

dT(t)

dt
= A ·T(t) +B · u(t) (12)

300 L. Schor et al.

0 1 2 3 4 5
0

2.5

5

7.5

time t

H
k
k
(
t
)

(a) Self impulse response Hkk(t).

0 1 2 3 4 5
0

0.5

1

1.5

t
Hk�

max

time t

H
k
�
(
t
)

(b) General impulse response Hk�(t).

Fig. 3. Impulse responses

with input vector u(t) = ρ · diag(f)3 · S(t) + ψ + K · Tamb, A = −C−1 ·
(G+K− φ), and B = C−1. As the thermal system is linear and time-invariant,
the temperature of node k is:

Tk(t) = T
init
k (t) +

n∑
�=1

Tk,�(t) (13)

with Tinit(t) = eA·t ·T0. Tk,�(t) is the convolution of input u� and Hk�, i.e., the
impulse response between nodes � and k:

Tk,�(t) =

∫ t

0

Hk�(ξ) · u�(t− ξ) dξ (14)

with

u�(t) = ρ�� · f3� · S�(t) + ψ� +K�� · T amb = ρ�� · f3� · S�(t) + uidle� . (15)

Nodes that do not correspond to a processing component have input u� = u
idle
� =

ψ�+K�� ·T amb. Similar to [17], we assume that Hk�(t) is a non-negative unimodal
function that has its maximum at time tHk�

max, see Fig. 3 for an illustration.

4 System Analysis

In this section, we propose a novel method to calculate the worst-case chip
temperature of a multi-core system with non-deterministic workload and show
how to select the operation frequencies in an optimal manner.

4.1 Peak Temperature Analysis

Suppose that the thermal RC network of a multi-core system is composed of n
nodes. Then, the worst-case chip temperature T ∗

S of a multi-core system is the
maximum temperature of all individual nodes:

T ∗
S = max (T ∗

1 , . . . , T
∗
n) (16)

where T ∗
k is the worst-case peak temperature of node k. The following theorem

follows from the results of [17] and states that the worst-case peak temperature
is composed of n+ 1 summands, that can be calculated individually.

Thermal-Aware Task Assignment for Real-Time Applications 301

0 1 2 3 4 5
0

0.5

1

1.5

time t

H
k
�
(
t
)

(a) Original impulse response Hk�(t).

0 1 2 3 4 5
0

0.5

1

1.5

time t

H̃
k
�
(
t
)

(b) Non-increasing left-continuous sort-

ing H̃k�(t).

Fig. 4. Example of a typical impulse response Hk�(t) and its non-increasing left-

continuous sorting equivalent H̃k�(t)

Theorem 1. Suppose that T ∗
k,�(τ) = maxu�∈U�

(Tk,�(τ)) with U� the set of all
possible inputs u�, Tk,�(t) defined as in (14), and a certain time instance τ . Then,
an upper bound on the maximum temperature of node k at time τ is:

T ∗
k (τ) ≤ T init

k +

n∑
�=1

T ∗
k,�(τ) (17)

where n is equal the number of nodes of the thermal RC circuit.

Proof. Rewriting (13) with T ∗
k,�(τ) = maxu�∈U�

(Tk,�(τ)) leads to:

T ∗
k (τ) = max

u∈U
(Tk(τ)) = max

u∈U

(
T init
k +

n∑
�=1

Tk,�(τ)

)

≤ T init
k +

n∑
�=1

max
u�∈U�

(Tk,�(τ)) = T
init
k +

n∑
�=1

T ∗
k,�(τ). *+

(18)

As T ∗
k,� only depends on the workload ofΘ�, we can individually maximize Tk,�(τ)

at time instance τ for each processing component Θ�. The remaining question
is how to calculate an upper bound T ∗

k,�(τ) on Tk,�(τ) for a given time instance
τ and all possible input sequences u�. To this end, we first introduce the non-
increasing left-continuous sorting H̃k�(t) ofHk�(t) [18]. Roughly speaking, H̃k�(t)
is Hk�(t) sorted in non-increasing order, see Fig. 4 for an example of a typical

impulse response Hk�(t) and its sorted equivalent H̃k�(t). For illustration, we
suppose discrete time, i.e., Hk�(t) may change values only at multiples of δ and

is constant for t ∈ [r·δ, (r+1)·δ) for all r ≥ 0. Then, H̃k�[r] has the same elements

as Hk�[r], however, they are ordered non-increasingly, i.e., H̃k�[r] ≥ H̃k�[r + 1]
for all r ≥ 0.

The next theorem shows that T ∗
k,�(τ) is obtained by first calculating the sorted

equivalent H̃k�(t) of Hk�(t), and then by convoluting H̃k�(t) with S
∗
� (t). S

∗
� (t) is

the mode function defined as in (7) resulting from the accumulated computing
time Q∗

�(0, t) = γ�(τ)− γ�(τ − t) for all 0 ≤ t ≤ τ . Q∗
� (0, t) is called the thermal

critical accumulated computing time. In particular, Q∗
�(0, t) shifts the computing

302 L. Schor et al.

αℓ(Δ)

+

Wℓ(Δ) = fℓ· Δ

γℓ(Δ)

Qℓ*(t) = γℓ(Δ) - γℓ(τ-Δ)

tasks mapped onto proc-
essing component ℓ

cumulated arrival curve

upper bound on accumulated
computing time
critical accumulated
computing time
critical mode function

αν1(Δ) αν2(Δ) αν3(Δ) fℓ

Sℓ*(t)

Fig. 5. Steps to calculate the critical ac-
cumulated computing time Q∗

� (0, t) and
the critical mode function S∗

� (t).

0 5 10 15 20
0

200

400

600

time interval Δ [ms]

co
m

p.
 d

em
an

d
[c

yc
le

s]

α�

dbf�

W�(t −Δ, t) = f� ·Δ

Fig. 6. Example of calculating the min-
imum operation frequency of compo-
nent �. α�(Δ) is the arrival curve defined
as in Fig. 1, dbf�(Δ) the demand bound
function, and W�(t − Δ, t) = f� · Δ the
resulting available computing resources.

time as late as possible to observation time τ . The steps required to calculate
Q∗

� (0, t) are detailed in Section 3 and summarized in Fig. 5.

Theorem 2. Suppose that H̃k�(t) is the non-increasing left-continuous sorting
of Hk�(t) [18], Q

∗
� (0, t) = γ�(τ)−γ�(τ−t) for all 0 ≤ t ≤ τ , and Tk,�(t) is defined

as in (14). Then, for any given time instance τ , T ∗
k,�(τ) defined as:

T ∗
k,�(τ) = u

idle
� ·

∫ τ

0

Hk�(t− ξ) dξ + ρ�� · f3� ·
∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ (19)

with S∗
� (t) =

dQ∗
� (0,t)
dt is an upper bound on Tk,�(τ), i.e., T

∗
k,�(τ) ≥ Tk,�(τ).

Proof. The proof of this theorem is in the Appendix. *+

So far, we have shown how to calculate an upper bound on the maximum tem-
perature T ∗

k (τ) of processing component k at time τ . However, we did not dwell
on the amount of the observation time τ . The following theorem states that
increasing the observation time τ will not decrease the worst-case peak temper-
ature if T0 ≤ (T∞)

i
, where (T∞)

i
is the steady-state temperature vector if all

components are in ‘idle’ processing mode.

Theorem 3. Suppose that T ∗
k (τ) defined as in (17) is an upper bound on the

maximum temperature of processing component k at time τ . Then, T ∗
k (τ) ≥ Tk(t)

for all 0 ≤ t ≤ τ and for any set of feasible workload traces with the same initial
temperature vector T0 ≤ (T∞)i.

Proof. With T ∗
k,�(τ) defined as in (19), the proof is equivalent to the proof of

Lemma 6 in [17]. *+

In summary, Theorems 1 to 3 form together a method to calculate a non-trivial
upper bound on the maximum temperature of a multi-core chip. First, we
individually calculate T ∗

k,�(τ) for all k, � by (19). Then, in a second step, the
maximum temperature T ∗

k (τ) of each node k is calculated by (17). Finally, the

Thermal-Aware Task Assignment for Real-Time Applications 303

worst-case chip temperature T ∗
S follows from (16). The proposed method pro-

vides a safe bound on the maximum temperature, i.e., the method guarantees
that the actual chip temperature will never exceed the temperature T ∗

S .

4.2 Optimal Frequency Assignment

As a frequency reduction always leads to an accumulated computing time that
is in all time intervals Δ ≥ 0 smaller or equal the original accumulated comput-
ing time, a frequency reduction results in a lower worst-case chip temperature.
Therefore, the optimal frequency of every processing component Θ� is the mini-
mum operation frequency such that no real-time deadline is missed. In particular,
Θ� is schedulable, i.e., the real-time deadlines of all events are met, if the cu-
mulated number of available computing resources W� is in no time interval Δ
smaller than the maximum resources demand dbf� defined as in (5) [10]:

dbf�(Δ) ≤W�(t−Δ, t) = f� ·Δ ∀Δ ≥ 0 . (20)

Therefore, the minimum operation frequency f� of processing component Θ�,
such that all real-time deadlines are met, is:

f� = sup
Δ≥0

{
dbf�(Δ)

Δ

}
. (21)

In other words, the frequency is selected such that the computing resource curve
W�(t − Δ, t) = f� · Δ upper bounds the maximum resources demand dbf�(Δ)
in every time interval Δ ≥ 0. From a geometric point of view, the problem is
equivalent to determine a tangent to the curve dbf�(Δ) that crosses the origin.
Practically, the optimal frequency can be calculated by the RTC toolbox [19].
Figure 6 illustrates this calculation with the help of an example.

5 Optimal Task Assignment

In this section, the optimal task assignment formulation is stated that solves the
problem defined in Section 1.

5.1 Temperature Minimization Problem

In the last section, we proposed a method to calculate the optimal operation
frequency of each processing component. Now, we apply these results to calcu-
late an optimal task assignment that minimizes the worst-case chip temperature
and guarantees that all real-time deadlines are met. If the worst-case chip tem-
perature is smaller than the critical chip temperature, the system can safely
execute the assignment without involving other (dynamic) thermal management
strategies, that may lead to unpredictable behavior.

The objective of the temperature minimization problem (TMP) is to reduce
the worst-case chip temperature:

minimize T ∗
S = max (T ∗

1 , . . . , T
∗
n) (22)

304 L. Schor et al.

f1 < f1
max

dbf1(Δ)

task assignment

dbf2(Δ) dbf|Θ|(Δ)

f1 f2 f|Θ|

f2 < f2
max f|Θ| < f|Θ|

max non-schedulable

TS*

worst-case chip temperature

S1*(t) S2*(t) S|Θ|*(t)

demand bound function of every
processing component

minimum operation frequency

check schedulability

critical mode function

upper bound on maximum
temperature of the system

yes yes yes

no no no

Fig. 7. Overview of the flow to analyze a single task assignment for schedulability and
worst-case chip temperature

where T ∗
k ≥ Tk(t) for all t ≥ 0 is the worst-case peak temperature of node k and

n the number of nodes of the thermal RC circuit of the chip.
Furthermore, the operation frequency f� of processing component Θ� has to

fulfill the following constraints following from (2) , (5) and (21):

f� = sup
Δ≥0

{∑|ν|
j=1 Γ (νj , Θ�) · ανj (Δ−Dνj)

Δ

}
≤ fmax

� . (23)

This constraint is also used to guarantee the schedulability. Whenever the opera-
tion frequency f� is smaller or equal to the maximum frequency fmax

� of process-
ing component �, the considered task assignment is schedulable, and otherwise,
the task assignment is infeasible.

Finally, we have to guarantee that all tasks are assigned to exactly one pro-
cessing component:

|Θ|∑
�=1

Γ (νj, Θ�) = 1 ∀νj ∈ ν . (24)

5.2 Evaluating a Task Assignment

So far, we formulated the TMP as a nonlinear binary optimization problem.
Next, we will describe how to apply the methods presented in Section 4 to verify
the schedulability and, if the task assignment is feasible, to calculate an upper
bound on the maximum chip temperature of a task assignment.

The proposed method is summarized in Fig. 7. First, the demand bound
function related to every processing component is individually computed by (5).
Then, the minimum operation frequency f� is calculated for all processing com-
ponents Θ� by (21) and the schedulability is tested. In particular, the system
is only schedulable if all frequencies f� are smaller or equal their maximum fre-
quency fmax

� . Once we know that the system is schedulable with a particular set

Thermal-Aware Task Assignment for Real-Time Applications 305

of operation frequencies, we calculate the worst-case chip temperature. To this
end, the critical mode function S∗

� is calculated for all processing components
Θ� by the approach shown in Fig. 5. Finally, the worst-case chip temperature
T ∗
S follows by (16).

5.3 Efficient Temperature Reevaluation

Calculating the optimal task assignment might be expensive when all steps de-
scribed in Section 5.2 are repeated for every possible assignment. Next, we show
how to efficiently calculate the worst-case chip temperature of multiple related
task assignments as it is the case in many metaheuristics. In a first step, we
rewrite the formula to calculate an upper bound on the maximum temperature
of a node k as two terms, thereof one is assignment-independent, i.e., reusable,
and one is assignment-dependent. Rewriting (17) with (19) leads to:

T ∗
k (τ) ≤ T init

k +
n∑

�=1

(
uidle� ·

∫ τ

0

Hk�(t− ξ) dξ
)

+
n∑

�=1

(
ρ�� · f3� ·

∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ

)
= T const

k +

|Θ|∑
�=1

Mk,� (S
∗
�)

with the number of nodes n of the thermal RC circuit, T const
k = T init

k +∑n
�=1

(
uidle� ·

∫ τ

0
Hk�(t− ξ) dξ

)
and Mk,� (S

∗
�) = ρ�� · f3� ·

∫ τ

0
S∗
� (ξ) · H̃k�(τ − ξ) dξ.

In the last step, we used the fact, that Mk,� is all zero if node � does not cor-
respond to a processing component, to change the bound of summation. T const

k

is independent of the assignment, thus it is calculated once for all possible task
assignments. Suppose that the worst-case chip temperature is calculated for two
task assignments that only differ in the assignment of task νy. In particular, the
first assignment maps task νy to component i and the second assignment maps
task νy to component j. After calculating the worst-case chip temperature for
the first assignment, the only elements that have to be recalculated for the sec-
ond task assignment are allM∗,i andM∗,j. In particular, the number of elements

to be recalculated is reduced by a factor of |Θ|−2
|Θ| .

6 Case Studies

In order to study the viability of the proposed approaches, we solved TMP
with four different solvers for different task sets and floorplans. To this end, the
discussed methods are implemented in the real-time calculus toolbox [19].

6.1 System Description

We are targeting a reconfigurable homogeneous multi-core ARM platform with
a variable number of processing components. The maximum frequency of all

306 L. Schor et al.

Table 1. Thermal configuration of HotSpot and the power dissipation parameters of
the power model defined as in (10)

(a) Thermal configuration of HotSpot.

Parameter Symbol Value

Silicon thermal cond. [W/(m ·K)] kchip 150
Silicon specific heat [J/(m3 ·K)] pchip 1.75 · 106
Thickness of the chip [mm] tchip 3.5
Convection resistance [K/W] rconvec 2
Heatsink thickness [mm] tsink 0.01
Heatsink thermal cond. [W/(m ·K)] ksink 400
Heatsink specific heat [J/(m3 ·K)] psink 3.55 · 106
Ambient temperature [K] Tamb 300

(b) Power configuration.

Parameter Value

φ�� [W/K] 0.0228
ρ�� [W/GHz3] 3.936
ψ� [W] −2.756

cores is 1.6GHz and an EDF scheduler is running on each core to arbitrate
between events of different tasks assigned to the same core. HotSpot [16] is
used to calculate the thermal parameters of the platform, i.e., C, G, and K
matrices, see Table 1(a) for the detailed thermal configuration. The temperature-
dependency of leakage power is addressed by linearizing the model described
in [15] and the parameters of the power model for the platform with a 3× 1 core
layout are summarized in Table 1(b). As we consider a homogeneous platform,
every component has the same power values. In all experiments, the traces start
from the steady-state temperature in ‘idle’ mode, i.e., T0 = (T∞)i.

6.2 Performance of Four Different TMP Solvers

The optimal solution of the TMP can exhaustively be calculated for small task
sets and platforms with a low number of processing components. We assess the
performance of metaheurstics compared to exhaustive search for three different
platforms and six different sets of tasks. The considered hardware platforms have
a 3× 1, 2× 2, and 3× 2 layout with three, four, and six cores, respectively. The
event model of task νj is described using a set of two parameters, namely the
period pνj and jitter jνj [9]. In particular, the period pνj is uniformly chosen
from [1, 400]ms, its jitter jνj is uniformly chosen from [1ms, 2 · pνj], and the
computational demand is uniformly chosen from

[
1, pνj · fmax/5

]
cycles with

fmax = 1.6GHz. The real-time deadline of a task is equal to its period. Finally,
the number of tasks in one set is randomly chosen between four and six tasks.

In total, we evaluate the performance of four different solvers for TMP. The first
one exhaustively tests all possible assignments to compute the optimal solution
from the TMP formulation. The optimal solution is compared, on the one hand,
to the solution of simulated annealing [20] and, on the other hand, to the solution of
a local search algorithm, and the average peak temperature of 20 feasible random
assignments. The local search algorithm fully exploits the characteristics of the
considered peak temperature computation algorithm as described in Section 5.3

Thermal-Aware Task Assignment for Real-Time Applications 307

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
315

320

325

330

335

benchmark

pe
ak

 te
m

pe
ra

tu
re

 [
K

]

3 x 1 2 x 2 3 x 2

exhaustive simulated annealing local search random

Fig. 8. Performance of four different TMP solvers. The hardware platforms have a
3× 1, 2× 2, and 3× 2 layout, respectively.

by testing the peak temperature of all neighbor assignments, and then, selecting
the assignment that minimizes the peak temperature the most.

Fig. 8 compares the performance of the four different solvers. The peak tem-
perature of the optimal task assignment is on average 2.27K lower than the
peak temperature of the random assignments. Simulated annealing found in all
considered benchmarks an assignment that has a peak temperature that is no
more than 0.11K higher than the optimal assignment. This shows that proba-
bilistic metaheuristics are well suited to solve TMP. The local search algorithm
calculates an assignment that is no more than 0.4K higher than the peak tem-
perature of the optimal assignment. In particular, one can see that there are
a few task sets where the local search algorithm proposes a task assignment
that is significantly worse than the optimal solution. This could be prevented
by extending the local search algorithm such that it does not only consider the
direct neighborhood of the current assignment, but all assignments up to its k-th
neighborhood. The difference in terms of peak temperature between the solvers
becomes even larger if the number of tasks per task set is increased as more local
optima emerge. As frequency reduction damps the effect of burst on the peak
temperature, most solvers are able to find an acceptable solution. However, once
the damping is removed, the peak temperature might drastically increase, which
in turn results in higher peak temperature differences between the solvers.

On a 2.55GHz Intel Core i5-2400S processor, calculating the optimal solution
for the hardware platform with 6 cores took on average 1.52 h. Simulated an-
nealing and the local search algorithm finished on average in 22.6 s and 0.77 s,
respectively. Finally, calculating the peak temperature of 20 random assignments
took on average 3.1 s.

6.3 Performance for Different Utilizations and Floorplans

In the second case study, we evaluate the worst-case chip temperature for differ-
ent floorplans and utilizations. The layout of the considered platforms is 3 × 1,
3 × 2, and 4 × 4 with 3, 6, and 16 cores, respectively. In all benchmarks, the
TMP is solved by simulated annealing. The task sets are iteratively generated,
starting with an initial size of |Θ| randomly generated tasks. Then, as long as the

308 L. Schor et al.

10 20 30 40

320

330

340

350

360

370

average utilization [%]

pe
ak

 te
m

pe
ra

tu
re

 [
K

]

(a) 3× 1 layout.

10 20 30
320

330

340

350

360

average utilization [%]

pe
ak

 te
m

pe
ra

tu
re

 [
K

]
(b) 3× 2 layout.

10 15 20 25 30
315

320

325

330

335

340

345

average utilization [%]

pe
ak

 te
m

pe
ra

tu
re

 [
K

]

(c) 4× 4 layout.

�� maximum frequency �� optimal frequency

Fig. 9. Worst-case chip temperature for three hardware platforms. To calculate the
worst-case peak temperature, TMP is once solved under the assumption that all pro-
cessing components are running at maximum frequency, and once under the assumption
that the components are running at optimal frequency.

system is schedulable, we add a new randomly generated task to the collection.
In total, we generate 50 different task sets for each hardware platform.

For each benchmark, we resolve the TMP once under the assumption that
all processing components are running at maximum frequency, i.e., 1.6GHz, and
once under the assumption that the components are running at their optimal fre-
quency such that each benchmark is characterized by a triple (T ∗

fmax
, T ∗

fopt
, util).

T ∗
fmax

is the peak temperature when the components are running at maximum
frequency, T ∗

fopt
is the peak temperature when the components are running at

optimal frequency and util is the average utilization of all cores when the com-
ponents are running at their optimal frequency and the jitter is ignored. Even
thought the components are running at their optimal frequency, the utilization
is not 100% as the jitter has a high impact on the selection of the frequencies.

Finally, in Fig. 9, we plot T ∗
fmax

and T ∗
fopt

as a function of util for three
hardware platforms. It shows that the chip temperature can drastically be re-
duced when the processing components are running at their optimal frequency.
In particular, the peak temperature can be reduced on average by 23.6K for the
3 × 1 layout, by 17.0K for the 3 × 2 layout, and by 12.1K for the 4 × 4 lay-
out. Furthermore, Fig. 9 shows that the worst-case chip temperature does not
necessarily increase with the utilization as different amounts of non-determinism
might cause higher chip temperatures for lower utilizations.

7 Related Work

Xie and Hung [21] were the first to identify the topic of thermal-aware task
allocation and scheduling. Later, a convex optimization technique for
temperature-aware frequency assignment is proposed to maximize the per-
formance under temperature constraints [5] and the task scheduling problem is
statically solved using integer linear programming for minimizing energy, and
reducing hot spots [7].

Thermal-Aware Task Assignment for Real-Time Applications 309

The minimization of the peak temperature in the presence of real-time dead-
lines is formulated as a nonlinear programming problem in [22]. A mixed-integer
linear programming formulation for assigning and scheduling tasks with hard
real-time constraints to reduce the peak temperature is proposed in [4]. Fi-
nally, Fisher et al. [6] proposed a global scheduling algorithm such that all
cores are running at their ideally preferred speed, and the peak temperature
is minimized. However, as the peak temperature is calculated in these works
by either steady-state temperature analysis or transient temperature evolution,
the proposed methods cannot be used to optimize the task to processing compo-
nent assignment of a system with non-deterministic workload and hard real-time
guarantees. As high chip temperatures can significantly reduce the system’s per-
formance, real-time constraints can only be guaranteed if the worst-case chip
temperature is incorporated in real-time analysis, at design-time.

HotSpot [16] is the most popular simulator for thermal analysis. However, as
thermal simulation methods only cover a fraction of all possible system behav-
iors, they are not able to capture the maximum temperature of an application
with non-deterministic workload. Tackling this challenge, a method to calculate
the worst-case chip temperature of a multi-core system with non-deterministic
workload has been proposed in [17]. In comparison with the method proposed
in this paper, the authors of [17] use periodic event streams with burst [9] for
the event model of every processing component.

8 Conclusion

In this paper, we formulated the thermal-aware task assignment and frequency
selection problem to optimize the worst-case chip temperature under real-time
constraints as a nonlinear binary integer problem. In order to solve the proposed
problem, we described a novel analytical method to calculate an upper bound on
the maximum chip temperature under all feasible scenarios of task arrivals. Each
core has its own clock domain and the static assigned frequencies correspond to
the minimum operation frequencies such that no real-time deadline is missed.
The considered thermal model is able to address various thermal effects like
heat exchange between neighboring cores and temperature-dependent leakage
power. Arrival curves from real-time calculus are used to upper bound the task’s
workload in any time interval. Case studies have shown that the worst-case chip
temperature of an embedded multi-core system can be reduced by more than
20K by assigning each processing component its ideally preferred frequency and
selecting the optimal task to processing component assignment.

Acknowledgments. This work was supported by EU FP7 projects EURETILE
and PRO3D, under grant numbers 247846 and 249776.

References

1. Gunther, S., Binns, F., Carmean, D., Hall, J.: Managing the Impact of Increasing
Microprocessor Power Consumption. Intel Technology Journal 5(1), 1–9 (2001)

310 L. Schor et al.

2. Donald, J., Martonosi, M.: Techniques for Multicore Thermal Management: Clas-
sification and New Exploration. In: Proc. Int’l Symposium on Computer Architec-
ture, ISCA, Boston, MA, USA, pp. 78–88. IEEE (2006)

3. Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M.: An Analysis
of Efficient Multi-Core Global Power Management Policies: Maximizing Perfor-
mance for a Given Power Budget. In: Proc. Int’l Symposium on Microarchitecture,
MICRO, pp. 347–358. IEEE (2006)

4. Chantem, T., Dick, R., Hu, X.: Temperature-Aware Scheduling and Assignment
for Hard Real-Time Applications on MPSoCs. In: Proc. Design, Automation and
Test in Europe, DATE, Munich, Germany, pp. 288–293. ACM/IEEE (2008)

5. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., De Micheli, G.:
Temperature-Aware Processor Frequency Assignment for MPSoCs Using Convex
Optimization. In: Proc. Int’l Conf. on Hardware/Software Codesign and System
Synthesis, CODES+ISSS, Salzburg, Austria, pp. 111–116. ACM (2007)

6. Fisher, N., Chen, J.J., Wang, S., Thiele, L.: Thermal-Aware Global Real-Time
Scheduling on Multicore Systems. In: Proc. Real-Time and Embedded Technol-
ogy and Applications Symposium, RTAS, San Francisco, USA, pp. 131–140. IEEE
(2009)

7. Coskun, A., Rosing, T., Whisnant, K., Gross, K.: Static and Dynamic Temperature-
Aware Scheduling for Multiprocessor SoCs. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 16(9), 1127–1140 (2008)

8. Thiele, L., Chakraborty, S., Naedele, M.: Real-Time Calculus for Scheduling Hard
Real-Time Systems. In: Proc. Int. Symposium on Circuits and Systems, ISCAS,
Geneva, Switzerland, vol. 4, pp. 101–104. IEEE (2000)

9. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System Level
Performance Analysis - The SymTA/S Approach. IEEE Proc. Comp. and Digital
Tech. 152(2), 148–166 (2005)

10. Baruah, S., Mok, A., Rosier, L.: Preemptively Scheduling Hard-Real-Time Sporadic
Tasks on One Processor. In: Proc. Real-Time Systems Symposium, RTSS, Lake
Buena Vista, FL, USA, pp. 182–190. IEEE (1990)

11. Wandeler, E., Maxiaguine, A., Thiele, L.: Performance Analysis of Greedy Shapers
in Real-Time Systems. In: Proc. Design, Automation and Test in Europe, DATE,
Munich, Germany, pp. 444–449 (2006)

12. Chen, J.J., Wang, S., Thiele, L.: Proactive Speed Scheduling for Real-Time Tasks
under Thermal Constraints. In: Proc. Real-Time and Embedded Technology and
Applications Symposium, RTAS, San Francisco, CA, USA, pp. 141–150. IEEE
(2009)

13. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits, 3rd edn.
Prentice Hall Press (2008)

14. Liu, Y., Dick, R.P., Shang, L., Yang, H.: Accurate Temperature-Dependent Inte-
grated Circuit Leakage Power Estimation is Easy. In: Proc. Design, Automation
and Test in Europe, DATE, Nice, France, pp. 1526–1531 (2007)

15. Skadron, K., et al.: Temperature-Aware Microarchitecture: Modeling and Imple-
mentation. ACM Trans. Architec. Code Optim. 1(1), 94–125 (2004)

16. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan,
M.: HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI
Design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)

17. Schor, L., Bacivarov, I., Yang, H., Thiele, L.: Worst-Case Temperature Guaran-
tees for Real-Time Applications on Multi-Core Systems. In: Proc. Real-Time and
Embedded Technology and Applications Symposium, RTAS, Beijing, China, pp.
87–96. IEEE (2012)

Thermal-Aware Task Assignment for Real-Time Applications 311

18. Ferreira, P.: Sorting Continuous-Time Signals: Analog Median and Median-Type
Filters. IEEE Trans. Signal. Proces. 49(11), 2734–2744 (2001)

19. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006),
http://www.mpa.ethz.ch/Rtctoolbox

20. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Sci-
ence 220(4598), 671–680 (1983)

21. Xie, Y., Hung, W.L.: Temperature-Aware Task Allocation and Scheduling for Em-
bedded Multiprocessor Systems-on-Chip (MPSoC) Design. The Journal of VLSI
Signal Processing 45(3), 177–189 (2006)

22. Liu, Y., Yang, H., Dick, R., Wang, H., Shang, L.: Thermal vs Energy Optimization
for DVFS-Enabled Processors in Embedded Systems. In: Proc. Int’l Symposium on
Quality Electronic Design, ISQED, San Jose, CA, USA, pp. 204–209. IEEE (2007)

Appendix: Proof of Theorem 2

In the following, we will show that T ∗
k,�(τ) ≥ Tk,�(τ) for any valid Tk,�(τ). Rewrit-

ing (14) with (15) leads to Tk,�(t) = uidle� ·
∫ t

0
Hk�(t − ξ) dξ + ρ�� · f3� ·

∫ t

0
S�(ξ) ·

Hk�(t− ξ) dξ. Then we have:

T ∗
k,�(τ)− Tk,�(τ) = ρ�� · f3

� ·
(∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ −

∫ τ

0

S�(ξ) ·Hk�(τ − ξ) dξ

)

with ρ�� ·f3� > 0. In other words, we have to show that
∫ τ

0
S∗
� (ξ) ·H̃k�(τ−ξ) dξ ≥∫ τ

0
S�(ξ) ·Hk�(τ − ξ) dξ.

Discretization

In order to simplify the proof technicalities, we suppose discrete time, i.e.,
S�(t), S

∗
� (t), H̃k�(t), and Hk�(t) may change values only at multiples of δ and

are constant for t ∈ [r · δ, (r + 1) · δ) for all r ≥ 0. With rτ = τ · δ, we have:∫ τ

0

S∗
� (ξ) · H̃k�(τ − ξ) dξ = δ ·

rτ−1∑
r=0

S∗
� [r] · H̃k� [rτ − 1− r] (25)

and ∫ τ

0

S�(ξ) ·Hk�(τ − ξ) dξ = δ ·
rτ−1∑
r=0

S� [r] ·Hk� [rτ − 1− r] . (26)

Next, we show that
∑rτ−1

r=0 S� [r] ·Hk� [rτ − 1− r] ≤
∑rτ−1

r=0 S
∗
� [r] ·H̃k� [rτ − 1− r]

for all S� that satisfy (6), by induction. To this end, we will prove that:

w+π−1∑
r=w

S� [r] ·Hk� [rτ − 1− r]︸ ︷︷ ︸
T (π,w,S�)

≤
rτ−1∑

r=rτ−π

S∗
� [r] · H̃k� [rτ − 1− r]︸ ︷︷ ︸

T ∗(π)

(27)

for any π ∈ [0, rτ] and any w ∈ [0, rτ − π].

http://www.mpa.ethz.ch/Rtctoolbox

312 L. Schor et al.

Base Case

First, we show that the statement is true for π = 1. Rewriting (27) with

π = 1 leads to S� [w] · Hk� [rτ − 1− w] ≤ S∗
� [rτ − 1] · H̃k� [rτ − 1− (rτ − 1)] =

S∗
� [rτ − 1] · H̃k� [0]. As S

∗
� [rτ − 1] = 1 and H̃k� [0] ≥ Hk� [η] for all η ≥ 0, the

statement is true for π = 1.

Induction Hypothesis

Next, we show that the statement is true for π if it is true for π − 1. In other
words, we assume as induction hypothesis that:

T (π − 1, w, S�) ≤ T ∗(π − 1) (28)

holds for all w ∈ [0, rτ − π + 1].

Induction Step

Let us prove by contradiction that (27) is true for any π. Therefore, assume for
contradiction that there exists a w such that:

T (π,w, S�) > T ∗(π) . (29)

Now, we differ between the following cases:

Case 1: S� [w + π − 1] = 0.
The contradiction follows from T (π,w, S�) = T (π − 1, w, S�) +
S� [w + π − 1] · Hk� [rτ − 1− (w + π − 1)] = T (π − 1, w, S�) + 0 ·
Hk� [rτ − 1− (w + π − 1)] ≤ T ∗(π − 1) ≤ T ∗(π).

Case 2: S� [w + π − 1] = 1, S∗
� [rτ − π] = 1.

As T ∗(π) = T ∗(π − 1) + H̃k� [rτ − 1− (rτ − π)] and T (π,w, S�) =
T (π − 1, w, S�) + Hk� [rτ − 1− (w + π − 1)], it follows that

H̃k� [π − 1] < Hk� [rτ − (w + π)].

First, we show that H̃k� [π − 1] < Hk� [rτ − (w + π)] implies that

Hk� [rτ − w] ≤ H̃k� [π − 1]. As Hk� is a non-negative unimodal func-

tion, the condition Hk� [rτ − w] > H̃k� [π − 1] requires that all π + 1

elements Hk�[η] for η ∈ [rτ−(w+π), rτ−w] fulfill Hk�[η] > H̃k� [π − 1],

see Fig. 10 for an illustration. However, as H̃k� [π − 1] is the π-th largest

element of Hk�, this is a contradiction, and Hk� [rτ − w] ≤ H̃k� [π − 1].
As T (π − 1, w, S�) ≤ T ∗(π − 1) for any w, in particular also for w =
w + 1, we find T (π,w, S�) ≤ Hk� [rτ − w] + T (π − 1, w + 1, S�) ≤
H̃k� [π − 1] + T ∗(π − 1) = T ∗(π), which is a contradiction.

Case 3: S� [w + π − 1] = 1, S∗
� [rτ − π] = 0.

From S∗
� [rτ − π] = 0 follows that

∑rτ−1
r=rτ−π+1S

∗
� [r] = γ[π − 2] =∑rτ−1

r=rτ−πS
∗
� [r] = γ[π − 1].

Thermal-Aware Task Assignment for Real-Time Applications 313

3 4 5
0

0.5

1

1.5

rτ − (w + π) rτ −w

π

time t

H
k
�
(
t
)

Fig. 10. Sketch of the proof that in Case
2, H̃k� [π − 1] < Hk� [rτ − (w + π)] im-

plies that H̃k� [π − 1] ≥ Hk� [rτ − w]

0

1

w w + π − 1

∑
S�[.] < γ[π − 2]

∑
S�[.] < γ[π − 2]

time t

S
k
�
[t
]

Fig. 11. Sketch of Case 3(b) that illus-
trates how the accumulated computing
time is upper bounded

a) S� [w] = 0.
From S� [w] = 0 follows that T (π,w, S�) = T (π − 1, w + 1, S�) ≤
T ∗(π − 1) = T ∗(π), which is a contradiction.

b) S� [w] = 1.

First note that
∑w+π−1

r=w S� [r] ≤ γ�[π − 1] = γ�[π − 2]. As

S� [w] = 1, we know that
∑w+π−1

r=w+1S� [r] <
∑rτ−1

r=rτ−π+1S
∗
� [r] =

γ�[π− 2] and as S� [w + π − 1] = 1, we know that
∑w+π−2

r=w S� [r] <∑rτ−1
r=rτ−π+1S

∗
� [r] = γ�[π − 2], see also Fig. 11.

In case that Hk� [rτ − 1− w] < Hk� [rτ − 1− (w + π − 1)], we
know that Hk�[η] ≥ Hk� [rτ − 1− w] for any η ∈ [rτ − (w+π), rτ −
w − 1] (see Fig. 10). Therefore, there exists:

S� [r] =

⎧⎪⎨⎪⎩
0 r = w

1 r = w′

S� [r] otherwise

(30)

with w < w′ < w + π − 1 and S� [w
′] = 0. As Hk�[rτ − 1 −

w′] ≥ Hk� [rτ − 1− w], we have T (π,w, S�) ≤ T (π,w, S�). Sim-
ilarly, we can find a S� and w′ for the case Hk� [rτ − 1− w] ≥
Hk� [rτ − 1− (w + π − 1)].
Now, applying Case 1 or Case 3.a to S� shows that T (π,w, S�) ≤
T ∗(π), and therefore, T (π,w, S�) ≤ T (π,w, S�) ≤ T ∗(π), which is
the contradiction.

As we have shown that (27) is true for any π, it is particularly true for π = rτ ,
and the theorem follows. *+

Component Assemblies

in the Context of Manycore�

Ananda Basu1, Saddek Bensalem1, Marius Bozga1,
Paraskevas Bourgos1, Mayur Maheshwari1, and Joseph Sifakis1,2

1 UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France
{basu,bensalem,bozga,bourgos,maheshwari,sifakis}@imag.fr

2 RISD Laboratory, EPFL
joseph.sifakis@epfl.ch

Abstract. We present a component-based software design flow for build-
ing parallel applications running on top of manycore platforms. The flow
is based on the BIP - Behaviour, Interaction, Priority - component frame-
work and its associated toolbox. It provides full support for modeling of
application software, validation of its functional correctness, modeling
and performance analysis on system-level models, code generation and
deployment on target manycore platforms. The paper details some of
the steps of the design flow. The design flow is illustrated through the
modeling and deployment of two applications, the Cholesky factoriza-
tion and the MJPEG decoding on MPARM, an ARM-based manycore
platform. We emphasize the merits of the design flow, notably fast per-
formance analysis as well as code generation and efficient deployment on
manycore platforms.

1 Introduction

The emergence of manycore platforms is nowadays challenging the design prac-
tices for embedded software. Manycore platforms built on increasingly complex
2D or 3D hardware architectures which, besides a high number of computational
cores, usually include complex memory/cache hierarchies, synchronization pat-
terns and/or communication buses and networks. Commonly, all hardware re-
sources are either partially or fully exposed to software developers. By doing so,
one expects optimized exploitation of resources while meeting requirements for
both software performance (e.g., real-time requirements) and efficient platform
management (e.g., thermal and power efficiency).

Concurrency is paramount for boosting software performance on manycore
platforms. Nonetheless, correct and fast development of highly parallel, fine-
grain concurrent software is known to be notoriously hard even for expert devel-
opers. In general, the inherent complexity of concurrent (handwritten) software

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 248776 (PRO3D) and from ARTEMIS JU grant agreement ARTEMIS-2009-1-
100230 (SMECY).

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 314–333, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Component Assemblies in the Context of Manycore 315

is hardly manageable by current verification and validation methods and tools.
Moreover, software adaptation and deployment to selected manycore platform
targets usually require significant manual transformation, with no strong guar-
antees about their correctness.

The PRO3D project [32] proposes a holistic approach for the development
of embedded applications on top of manycore 3D platforms. PRO3D activities
range from programming to architecture exploration and fabrication technolo-
gies. The major challenges are the thermal management of 3D platforms and the
rigorous, tool-supported design flow of parallel application software.

We propose and implement a design flow for applications based on the BIP
component framework [6]. This flow sticks to the general principles of rigorous
design introduced in [8]. It has several key features, namely:

– it is model-based, that is, both application software and mixed hardware/
software system descriptions are modeled by using a single, semantic frame-
work. As stated in [8], this allows maintaining the coherency along with the
flow by proving that various transformations used to move from one descrip-
tion to another preserve essential properties.

– it is component-based, that is, it provides primitives for building composite
components as the composition of simpler components. Using components
reduces development time by favoring component reuse and provides support
for incremental analysis and design, as introduced in [10,11,13]

– it is tool-supported, that is, all steps in the design flow are realized automat-
ically by tools. This ensures significant productivity gains, in particular due
to elimination of potential errors that can occur in manual transformations.

To the best of our knowledge, the BIP design flow is unique as it uses a sin-
gle semantic framework to support application modeling, validation of func-
tional correctness, performance analysis on system models and code generation
for manycore platforms. Building faithful system models is mandatory for val-
idation and performance analysis of concurrent software running on manycore
platforms. Existing system modeling formalisms either seek generality at the
detriment of rigorousness, such as SySML [30] and AADL [20] or have a limited
scope as they are based on specific models of computation such as Ptolemy [18].
Simulation based methods use ad-hoc executable system models such as [22] or
tools based on SystemC [28]. The latter provide cycle-accurate results, but in
general, they have long simulation time as a major drawback. As such, these
tools are not adequate for thorough exploration of hardware platform dynam-
ics, neither for estimating effects on real-life software execution. Alternatives
include trace-based co-simulation methods as used in Spade [26], Sesame [19] or
Daedalus [29]. Additionally, there exist much faster techniques that work on ab-
stract system models e.g., Real Time Calculus [36] and SymTA/S [4]. They use
formal analytical models representing a system as a network of nodes exchanging
streams. They often oversimplify the dynamics of the execution characterized by
execution times. Moreover, they allow only estimation of pessimistic worst-case
quantities (delays, buffer sizes, etc) and require adequate abstract models of the

316 A. Basu et al.

application software. Building such models entails an additional significant mod-
eling effort. Similar difficulties arise in performance analysis techniques based on
Timed-Automata [3,33]. These can be used for modeling and solving scheduling
problems. An approach combining simulation and analytic models is presented
in [23], where simulation results can be propagated to analytic models and vice
versa through adequate interfaces.

The paper is organized as follows. Section 2 provides a brief overview of the
BIP component framework and toolbox. Section 3 introduces the BIP design flow
and details several of its steps. An illustration of the design flow is provided in
section 4. We provide results about performance analysis and implementation of
two non-trivial concurrent applications on manycore. Finally, section 5 concludes
and provides future work directions.

2 The BIP Framework

The BIP – Behaviour / Interaction / Priority – framework [6] is aiming at design
and analysis of complex, heterogeneous embedded applications. BIP is a highly
expressive, component-based framework with rigorous semantical basis. It allows
the construction of complex, hierarchically structured models from atomic com-
ponents characterized by their behavior and their interfaces. Such components
are transition systems enriched with data. Transitions are used to move from
a source to a destination location. Each time a transition is taken, component
data (variables) may be assigned new values, computed by user-defined functions
(in C). Atomic components are composed by layered application of interactions
and priorities. Interactions express synchronization constraints and define the
transfer of data between the interacting components. Priorities are used to fil-
ter amongst possible interactions and to steer system evolution so as to meet
performance requirements e.g., to express scheduling policies.

Atomic Components. We define atomic components as transition systems
extended with a set of ports and a set of variables. Formally, an atomic compo-
nent B is a labelled transition system represented by a tuple (Q,X, P, T) where
Q is a set of control locations, X is a set of variables, P is a set of communication
ports and T is a set of transitions. Each transition τ is of the form (q, p, g, f, q′)
where q, q′ ∈ Q are control locations, p ∈ P is a port, g is the guard and f is
the update function of τ . g is a predicate defined over variables in X and f is a
function (or a sequential procedure) that computes new values for X according
to the current ones.

Interactions. In order to compose a set of n atomic components {Bi =
(Qi, Xi, Pi, Ti)}ni=1, we assume that their respective sets of ports and variables
are pairwise disjoint; i.e., for all i �= j we require that Pi∩Pj = ∅ andXi∩Xj = ∅.
We define the global set P

def
=
⋃n

i=1 Pi of ports. An interaction a is a triple
(Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga is a guard, and Fa is a data
transfer function. By definition Pa contains at most one port from each compo-
nent. We denote Pa = {pi}i∈I with I ⊆ {1..n} and pi ∈ Pi. We assume that Ga

Component Assemblies in the Context of Manycore 317

and Fa are defined on the variables of participating components, (i.e.
⋃

i∈I Xi).
We denote by F i

a the restriction of Fa on variables Xi.

Priorities. Given a set γ of interactions, we define a priority as a strict partial
order π ⊆ γ× γ. We write aπb for (a, b) ∈ π, to express the fact that interaction
a has lower priority than interaction b.

Composite Components. A composite component πγ(B1, . . . , Bn) is defined
by a set of atomic components B1, · · · , Bn, composed by a set of interactions γ
and a priority π ⊆ γ × γ. If π is the empty relation, then we may omit π and
simply write γ(B1, · · · , Bn).

A global state of πγ(B1, · · · , Bn) where Bi = (Qi, Xi, Pi, Ti) is defined by a
couple (q, v), where q = (q1, · · · , qn) is a tuple of control locations such that
qi ∈ Qi and v = (v1, · · · , vn) is a tuple of valuations of variables such that vi ∈
Val(Xi) = {σ : Xi → D}, for all i = 1, · · ·n and for D being some universal data
domain. The behavior of a composite component without priority γ(B1, · · · , Bn)
is a labeled transition system (S, γ,→γ), where S =

⊗n
i=1 Qi ×

⊗n
i=1 Val(Xi)

and →γ is the least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ va = {vi}i∈I Ga(va)
∀i ∈ I. (qi, gi, pi, fi, q

′
i) ∈ Ti gi(vi) v′i = fi(F

i
a(va))

∀i �∈ I. (qi, vi) = (q′i, v
′
i)

((q1, . . . , qn), (v1, . . . , vn))
a→γ ((q′1, . . . , q

′
n), (v

′
1, . . . , v

′
n))

[interaction]

Intuitively, the inference rule interaction specifies that a composite component
B = γ(B1, . . . , Bn) can execute an interaction a ∈ γ, iff (1) for each port pi ∈ Pa,
the corresponding atomic component Bi allows a transition from the current
location labelled by pi (i.e. the corresponding guard gi evaluates to true), and
(2) the guard Ga of the interaction evaluates to true. If the two above conditions
hold for an interaction a at state (q, v), a is enabled at that state. Execution of a
modifies participating components’ variables by first applying the data transfer
function Fa on variables of all interacting components and then the update
function fi for each interacting component. The (local) states of components
that do not participate in the interaction stay unchanged.

We define the behavior of the composite component B = πγ(B1, . . . , Bn) as
the labeled transition system (S, γ,→πγ) where→πγ is the least set of transitions
satisfying the rule:

(q, v)
a→γ (q′, v′) ∀a′ ∈ γ. aπa′ =⇒ (q, v)

a′
�γ

(q, v)
a→πγ (q′, v′)

[priority]

The inference rule priority filters out interactions which are not maximal with
respect to the priority order. An interaction is executed only if no other one with
higher priority is enabled.

Example 1. Figure 1 shows a graphical representation of an example model in
BIP. It consists of atomic components Sender, Buffer and Receiver. The behavior

318 A. Basu et al.

out
x

out
z

Sender

in

tick tick tick
y y

in

Buffer Receiver

tick

tick

tick

tick

tick

int yint x, c int z, c

y=x z=y

out
in out

c=c+1

c=c+1

c=0
x=f(...)
τ τ

c=0
in

io1 io2
[10≤c] [c≤20]

L1

L2 L4

L3 L5

L6

Fig. 1. BIP Example: Sender/Buffer/Receiver System

of Sender is described as a transition system with control locations L1 and L2. It
communicates through ports tick and out. Port out exports the variable x. Com-
ponents Sender, Buffer and Receiver are composed by two binary connectors io1,
io2 and a ternary connector tick. tick represents a rendezvous synchronization
between the tick ports of the respective components. io1 represents an interac-
tion with data transfer from the port out of Sender to the port in of Buffer. As a
result of the data transfer associated with io1, the value of variable x of Sender
is assigned to the variables y of the Buffer.

BIP is supported by a rich toolset[1] which includes tools for checking correct-
ness, for source-to-source transformations and for code generation. Correctness
can be either formally proven using invariants and abstractions, or tested by
using simulation. For the latter case, simulation is driven by a specific middle-
ware, the BIP engine, which allows to explore and inspect traces corresponding
to BIP models. Source-to-source transformations allow to realize static optimiza-
tions as well as specific transformations towards implementation i.e., distribu-
tion. Finally, code generation targets different platforms and operating systems
support (e.g., distributed, multi-threaded, real-time, for single/multi-core plat-
forms, etc.).

3 BIP Design Flow for Manycore

The BIP design flow uses a single language to ensure consistency between the dif-
ferent design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. The design flow involves several distinct
steps, as illustrated in figure 2 and explained below:

1. The translation of the application software into a BIP model. This allows
its representation in a rigorous semantic framework. Translations for several

Component Assemblies in the Context of Manycore 319

programming models (including synchronous, data-flow and event-driven)
and domain specific languages into BIP are defined and implemented.

2. Correctness checking of functional properties of the application software.
Functional verification needs to be done only on high-level models since
safety properties and deadlock-freedom are preserved by different transfor-
mations applied along the design flow. To avoid inherent complexity limi-
tations, the verification method relies on compositionality and incremental
techniques.

3. The construction of an abstract system model. This model is automatically
generated from 1) the BIP model representing the application software; 2)
a BIP model of the target execution platform; 3) a mapping of the atomic
components of the application software model into processing elements of
the platform. The abstract system model takes into account hardware con-
straints such as various latencies, mutual exclusion induced from sharing
physical resources (like buses, memories and processors) as well as schedul-
ing policies seeking optimal use of these resources.

4. The construction of a distributed system model. This model is automatically
generated from the abstract system model by expressing high-level coordi-
nation mechanisms e.g., interactions and priorities, in terms of primitives
of the execution platform. This transformation involves the replacement of
atomic multiparty interactions and/or dynamic priorities by protocols using
asynchronous message passing (send/receive primitives) and arbiters ensur-
ing semantics preservation. These transformations are proved correct-by-
construction [14].

5. The generation of platform dependent code, including both functional and
glue code for deploying and running the application on the target many-
core. In particular, components mapped on the same core can be statically
composed thus avoiding extra overhead for (local) coordination at runtime.

6. The calibration step, which consists in estimating execution times of actions
of the distributed system model. These are obtained through execution and
profiling of code fragments compiled on the target platform. They are used
to obtain an instrumented system model which takes into account dynamic
behavior of the execution platform.

7. The performance analysis step involving simulation-based methods combined
with statistical model checking on the instrumented system model.

Some of the steps of the design flow are detailed hereafter. We focus on the
translation of the application software in BIP (step 1), functional correctness
checking by using D-Finder (step 2), platform dependent code generation (step
5), calibration and performance analysis (steps 6 and 7). The construction of
the abstract system model (step 3) is presented in [15]. A complete presentation
of transformations for building distributed system models (step 4), ready for
implementation on distributed platforms, can be found in [14].

320 A. Basu et al.

��������
��������
��������
��������

Software
Application

Model BIP

D−Finder

Platform

Hardware

Model BIP

step 3

Mapping

step 1

step 2
model

transformation step 3correctness

translation translation

Application Hardware
Software

Platform

BIP
model

transformation step 4

System Model
Abstract

code

BIP
execution & calibration

transformation
model

generation

step 5

step 6

System Model
Distributed

Platform (MPARM)

Runtime

Functional Code Glue Code

BIP

Statistical Model Checking
Simulation

performance
analysis step 7

System Model
Instrumented

Fig. 2. BIP Design Flow for Manycore

3.1 Translating Application Software into BIP

The first step in the design flow requires the generation of a BIP model for the
application software. We have developed a general method for generating BIP
models from languages with well-defined operational semantics. We have imple-
mented BIP model generators for several programming models and languages
such as Lustre, Simulink and NesC/TinyOS. In this paper, we focus on applica-
tions described in the DOL (Distributed Operation Layer) framework [35].

An application software in DOL is a Kahn process network that consists of
three basic entities: Processes, FIFO channels, and Connections. The network
structure is described in XML. Processes are defined as sequential C programs
with a particular structure. For a process P, its state is defined as an arbitrary
C data structure named P state and its behavior as the program P init(); while
(true) P fire(); where P init(), P fire() are arbitrary functions operating on the
process state. Communication is realized by two primitives, namely write and
read for respectively sending and receiving data to FIFO channels. Moreover, the
P fire() method invokes a detach primitive in order to terminate the execution
of the process.

The construction of the application software model in BIP is done through
translation of the above entities in BIP. The construction is structure-preserving:
every process and every FIFO are independently translated into atomic compo-
nents in BIP and then connected according to the connections in the process
network [15]. The translation of process behavior requires extraction of an ex-
plicit control flow graph from the C code and its representation as an atomic

Component Assemblies in the Context of Manycore 321

component in BIP. A FIFO channel is translated into a predefined BIP atomic
component.

Example 2. The C description of a DOL process is presented in Figure 3. This
process belongs to a process network used for the Cholesky factorization ex-
periment, presented later in section 4. The BIP atomic component generated
from the DOL process is shown in figure 4. It has ports IN SPLIT, IN 2 1,
OUT JOIN, control locations L1 . . . L6 and variables index, len, A, L and X.
Transitions are labeled by ports IN SPLIT, IN 2 1, OUT JOIN and β (internal).

void p 2 2 init(DOLProcess *p) {
p->local->index = 0;

p->local->len = LENGTH; }
int p 2 2 fire(DOLProcess *p) {

if (p->local->index < p->local->len) {
// read input block A22 from splitter
read((void*)IN SPLT, p->local->A,

(K)*(K)*sizeof(double), p);

// read result block L21 from P21

read((void*)IN 2 1, p->local->X,

(K)*(K)*sizeof(double), p);

// compute A22 = A22 − L21 × Lt
21

SubtractTProduct(p->local->A,

p->local->X, p->local->X);

// compute L22 = seq-cholesky(A22)
Cholesky(p->local->L, p->local->A);

// send the result L22 to the joiner
write((void*)OUT JOIN, p->local->L,

(K)*(K)*sizeof(double), p);

p->local->index++; }
else {

// termination
detach(p);

return -1; }
return 0; }

Fig. 3. DOL Process Description in C

L6 L3L2

L5 L4

OUT_JOIN IN_2_1 IN_SPLIT
L X A

[!index<len] IN_SPLIT[index<len]

index=0; len=LENGTH;

var: index, len, A, L, X

Cholesky(L,A);

SubtractTProduct(A,X,X);

IN_2_1OUT_JOIN
index++;

L1

β β

β

Fig. 4. Translation as BIP Atomic Compo-
nent

3.2 Checking Application Correctness

The BIP design flow includes a verification step for checking essential functional
properties. Application software models in BIP are verified by using the D-
Finder tool[10,11]. D-Finder implements compositional methods for generation
of invariants and verification of safety properties, including deadlock-freedom.

In general, compositional verification techniques [5,2,17,16,21,27,31,34] are
used to cope with state explosion in concurrent systems. The idea is to ap-
ply divide-and-conquer approaches to infer global properties of complex systems
from properties of their components. Separate verification of components lim-
its state explosion. Nonetheless, designing compositional verification techniques

322 A. Basu et al.

is difficult since components mutually interact in a system and their behavior
and properties are inter-related. As explained in [24], compositional rules are in
general of the form:

B1 < Φ1 >, B2 < Φ2 >, C(Φ1, Φ2, Φ)
B1‖B2 < Φ >

(1)

That is, if two components with behaviors B1, B2 meet individually properties
Φ1, Φ2 respectively, and C(Φ1, Φ2, Φ) is some condition taking into account the
semantics of parallel composition operation and relating the individual properties
with the global property, then the system B1‖B2 resulting from the composition
of B1 and B2 will satisfy a global property Φ.

D-Finder[10,11] provides a novel approach for compositional verification of
invariants in BIP based on the following rule:

{Bi < Φi >}ni=1, Ψ ∈ II(‖γ , {Bi}ni=1, {Φi}ni=1), (
∧

i Φi) ∧ Ψ ⇒ Φ
γ(B1, · · ·Bn) < Φ >

(2)

The rule (2) allows to prove a global invariant Φ for a composite component
γ(B1, . . . , Bn), obtained by composing a set of atomic components B1, ..., Bn

by using a set of interactions γ. The premises ensure respectively that, Φi is a
local invariant of component Bi for every i = 1, · · ·n and Ψ is an interaction
invariant of γ(B1, . . . , Bn) computed automatically from interactions γ, compo-
nents Bi and local invariants Φi. D-Finder provides methods for computing both
component invariants and interaction invariants as follows:

– Invariants for atomic components are generated by static forward analysis
of their behavior. D-Finder uses different strategies which allow to derive
local assertions, that is, predicates attached to control locations and which
are satisfied whenever the computation reaches the corresponding control
location. These assertions are obtained through syntactic analysis of the
predicates occuring in guards and actions [12].

– Interaction invariants express global synchronization constraints between
atomic components. Their computation consists of the following steps. First,
for given component invariants Φi of the atomic components Bi, we com-
pute a finite-state abstractions Bαi

i of Bi where αi is the abstraction in-
duced by the elementary predicates occurring in Φi. This step is necessary
only for components Bi which are infinite state. Second, the composition
γ(Bα1

1 , · · · , Bαn
n) which is an abstraction of γ(B1, · · · , Bn), can be consid-

ered as a 1-safe finite Petri net. The set of structural invariants (traps and
locks) and linear invariants of this Petri net defines a global abstract inter-
action invariant, which is computed symbolically by D-Finder. Finally, the
concretization of this invariant gives an interaction invariant of the original
system.

Component Assemblies in the Context of Manycore 323

D-Finder relies on a semi-algorithm to prove invariance of Φ by iterative ap-
plication of the rule (2). The semi-algorithm takes a composite component
γ(B1, . . . , Bn) and a predicate Φ. It iteratively computes invariants of the form
X = Ψ ∧ (

∧n
i=1 Φi) where Ψ is an interaction invariant and Φi an invariant of

component Bi. If X is not strong enough for proving that Φ is an invariant
(X ∧ ¬Φ = false) then either a new iteration with stronger Φi is started or the
algorithm stops. In this case, we cannot conclude about invariance of Φ.

Checking global deadlock-freedom of a component γ(B1, . . . , Bn) is a particu-
lar case of proving invariants - proving invariance of the predicate ¬DIS, where
DIS is the set of the states of γ(B1, . . . , Bn) from which all interactions are
disabled.

3.3 Platform Dependent Code Generation

The design flow provides the facility for generating code for the MPARM plat-
form [9] from distributed system models in BIP. The generated code is tar-
geted for a runtime called Native Programming Layer (NPL) implemented for
MPARM. The runtime provides APIs for thread management, memory allo-
cation, communication and synchronization. The code generation consists of
two parts, the generation of the functional code and the generation of the glue
code.

The functional code is generated from the application components consisting
of processes and FIFOs. Processes are implemented as threads, and FIFOs are
implemented as shared queue objects provided by the NPL library. Each pro-
cess component is translated into a thread. The implementation in C contains
the thread local data, queue handles and the routine implementing the specific
thread functionality. The latter is a sequential program consisting of plain C
computation statements and communication calls (e.g., queue API) provided by
the runtime. A read transition is substituted by a pop API call on the respective
queue handle. Similarly a write transition is substituted by a push API call on
its respective queue handle.

The glue code implements the deployment of the application to the platform,
i.e., allocation of threads to cores and the allocation of data to memories. The
glue code is essentially obtained from the mapping. Threads are created and
allocated to cores according to the process mapping. Data allocation deals with
allocation of the thread stacks and allocation of FIFO queues for communication.
In particular, for MPARM deployment, every thread stack is allocated into the
L1 memory of the core to which the thread is deployed. Queue handles and queue
objects are allocated from the cluster shared L2 memory. All these operations
are implemented by using the API provided by the runtime.

The code generator has been fully integrated into a tool-chain and connected
to the BIP system model generation flow. The generated code is compiled by
the arm-gcc compiler. The compiled code is linked with the runtime library to
produce the binary image for execution on the MPARM virtual simulator.

324 A. Basu et al.

3.4 System Level Modeling and Performance Analysis

In the BIP design flow, systemmodels are used to integrate the (extra-functional)
hardware constraints into the software model according to some chosen
deployment mapping. The abstract system model is constructed through a series
of transformations from the BIP models of respectively the application software
and the hardware platform. These two models are composed according to the
mapping. The construction has been introduced in [15]. The transformations
preserve functional properties of the application software model.

The abstract system model is then transformed for distributed implemen-
tation and progressively refined by including timing constraints for execution
on the chosen platform. These constraints define execution times for elementary
functional blocks, that is, BIP transitions within the application software model.
More precisely, execution times are measured by running the executable code on
MPARM. We measure the CPU time spent by each process performing blocks of
computations. This is done by instrumenting the generated code with profiling
API provided by the runtime. The API provides cycle accurate estimates for
executing a block of code in each processor.

The instrumented system model is therefore used to analyze non-functional
properties such as contention for buses and memory accesses, transfer latencies,
contention for processors, etc. In the BIP design flow, these properties are evalu-
ated by simulation of the system model extended with observers. Observers are
regular BIP components that sense the state of the system model and collect
pertinent information with respect to relevant properties i.e., delay for particu-
lar data transfers, blocking time on buses, etc. Actually, we provide a collection
of predefined observers monitoring and recording specific information for most
common non-functional properties.

Simulation is performed by using the native BIP simulation tool[1]. The BIP
system model extended with observers is used to produce simulation code that
runs on top of the BIP engine, that is, the middleware for execution/simulation
of BIP models. The outcome of the simulation with the BIP engine is twofold.
First, the information recorded by observers can be used as such to gain in-
sight about the properties of interest. Second, the same information can be used
to build much simpler, abstract stochastic models. These models can be fur-
ther used to compute probabilistic guarantees on properties by using statistical-
model checking. This two-phase approach combining simulation and statistical
model-checking has been successfully experimented in a different context[7]. It
is fully scalable and allows (at least partially) overcoming the drawbacks re-
lated to simulation-based approaches, that is, long simulation times and lack of
confidence in the obtained results.

4 Experiments

In this section, we report results about implementation and performance evalu-
ation of two applications using the BIP design flow. We consider Cholesky fac-
torization, a useful inverse-like operation on particular matrices, and MJPEG

Component Assemblies in the Context of Manycore 325

decoding, a streaming application for decoding of video streams. For both ap-
plications, we target the MPARM platform, which is a highly customizable,
experimental, many-core platform available in the PRO3D project.

4.1 MPARM Platform

The MPARM [9] platform is a virtual ARM-based multi-cluster manycore plat-
form. It is configured by the number of clusters, the number of ARM cores per
cluster, and the interconnect between the clusters. The MPARM simulator al-
lows experimentation with at most four clusters, each with eight ARM7-TDMI
processors. The clusters are connected through a 2 × 2 NoC interconnect. The
architecture is shown in Figure 5. Inside a cluster, each ARM core is connected
with its private (L1) memory through a local bus. There is also a shared cluster
memory (L2) which is connected with the cores through a cross-bar intercon-
nect. A NoC-based infrastructure is used for inter-cluster communication, which
consists of a router, a link, and the network interface (NI) of the individual
clusters. The simulator provides cycle-accurate measurements for the execution
on the virtual platform. Henceforth, we will use the term MPARM execution to
denote execution on the MPARM virtual simulator.

ARM 1 ARM 2 ARM 8

Bus Bus Bus

L1L1L1

L2NI

Cluster 1

Router

RouterRouter

Cluster 4 Cluster 3

Cluster 2

Cross−Bar

Router

Fig. 5. An MPARM architecture with four clusters

As input to our design flow, we have used the hardware model in BIP gener-
ated from a structural description in DOL. The DOL description of the hardware
architecture specifies resources connected by communication paths. Resources
are of type computation (processors, memories) or communication (buses, cross-
bar interconnect, routers and links, etc.). Communication paths define the con-
nections between the resources. A part of the DOL description of MPARM is
given in Figure 6.

4.2 Cholesky Factorization

Cholesky Factorization decomposes a Hermitian positively-defined real-valued
matrix A into the product L · LT of a lower triangular real-valued matrix L
and its conjugate transpose LT . The Cholesky decomposition is used for solving
numerically linear equations Ax = b. If A is symmetric and positive definite, then

326 A. Basu et al.

<cluster name="C1" type="MPARM">

<processor name="P1" type="ARMv7">

<memory name="Private" type="L1">

<configuration name="cycles" value="1"/>

</memory>

<hw_channel name="local" type="Bus"> </hw_channel>

</processor>

. . .

<processor name="P8" type="ARMv7">

<memory name="Private" type="L1">

<configuration name="cycles" value="1"/>

</memory>

<hw_channel name="local" type="Bus"> </hw_channel>

</processor>

<hw_channel name="X-bar" type="CrossBar">

<configuration name="cyclesperbyte" value="1"/>

</hw_channel>

<memory name="Shared" type="L2">

<configuration name="cyclesperbyte" value="2"/>

</memory>

</cluster>

Fig. 6. Fragment of the DOL description of an MPARM cluster

we can solve Ax = b by first computing the Cholesky decomposition A = L ·LT ,
then solving Ly = b for y, and finally solving LTx = y for x.

The sequential Cholesky factorization algorithm has computational complex-
ity O(N3) for matrices of size N × N . In this paper, our starting point is the
sequential right-looking block-based version [25] provided as algorithm 1 which
provides immediate support for parallelization. In this algorithm, B denotes the
number of blocks composing the original matrix A, that is A = (Aij)1≤j≤i≤B

and every Aij is a block matrix of size K = N/B. The algorithm computes
the matrix L, block by block, such that A = L · LT . The algorithm 1 is easily
parallelizable by separating computations related to different ij-blocks on differ-
ent processes Pij . Nevertheless, interactions between these processes are highly
non-trivial. There are complex patterns for data dependencies, as illustrated in
Figure 7 for the cases B = 2, 3, 4. Moreover, the amount of computation carried
by each process is different. That is, as factorization proceeds, processes with
higher indexes (i, j) become computationally more intensive. Furthermore, both
data dependencies and the local amount of computation are tightly related to
the decomposition size B as well as to the block size K. Altogether, finding
optimal implementation on multi-processor platforms with fixed communication
and computation resources is a non-trivial problem.

For every B, we denote by Cholesky(B) the Cholesky factorization using a
B × B block decomposition. For our experiments, we implemented three ver-
sions in DOL, for respectively B = 2, 3, 4. In all cases, the process networks
contain a Splitter process, a Joiner process and the computational processes for
each block (Pij)1≤j≤i≤B . Process Splitter splits the initial A matrix into blocks

Component Assemblies in the Context of Manycore 327

Algorithm 1. Right-Looking Block-Based Cholesky Factorization

Require: A Hermitian, positive definite matrix
Ensure: A = L · LT , L lower triangular

for k = 1 to B do
Lkk := seq-cholesky(Akk)
L−T

kk := invert(transpose(Lkk))
for i = k + 1 to B do

Lik := Aik · L−T
kk

end for
for j = k + 1 to B do

LT
jk := transpose(Ljk)

for i = j to B do
Aij := Aij − Lik · LT

jk

end for
end for

end for

and dispatches them to computational processes. Every process Pij implements
the computation required on its corresponding matrix blocks Aij and Lij. As
an example, the computational processes for Cholesky(4) are P11, P21, P22, P31

. . .P44 as shown in Figure 7. The final L matrix is re-constructed by the Joiner
process. Explicit communication between Pij processes is used to enforce data
dependencies. In these models, a dedicated FIFO is used for every pair of depen-
dent processes to transfer the result block from the source to the target process.
In the MPARM implementation, each computational process is deployed into an
ARM processor and all the FIFO buffers are allocated to the L2 shared memory.
It is to be noted that for B = 2, 3 the implementation fits into a single cluster,

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

P11

P21

P31

P22

P32 P33

P43 P44P41P31

P11

P21 P22

P32 P33

P11

P22

(B)(A) (C)

P21 P42

Fig. 7. Data dependencies for 2 × 2(A), 3 × 3(B) and 4 × 4(C) process decomposi-
tion. Identical patterns indicate respectively a similar amount of local computation
(processes) or potential for parallel communication (data dependencies).

328 A. Basu et al.

Table 1. DOL, BIP Models and MPARM Implementation Characteristics

B = 2 B = 3 B = 4

processes 5 8 12
DOL Process Network # FIFOs 8 20 40

lines of code 864 1400 2171

components 40 120 181
BIP System Model # interactions 182 445 882

lines of code 5207 7491 13648

MPARM implementation # lines of code 1977 3163 4923

Table 2. Execution times for computational routines on matrix blocks (in 106 cycles)

B = 2 B = 3 B = 4
K = 30 K = 20 K = 15

seq-cholesky 33.82 15.47 14.94

invert 34.85 16.06 15.47

transpose 0.13 0.08 0.08

multiply 115.64 53.23 47.16

tmultiply 104.80 45.01 34.89

subtract 1.66 1.05 1.05

and for B = 4, two clusters have been used. The magnitude of the different rep-
resentations produced along the BIP design flow (number of processes, FIFOs,
components, interactions, lines of code) is depicted in Table 1.

For every B = 2, 3, 4, we evaluate Cholesky(B) on 60 × 60 input matrices
of double precision floating point numbers. Therefore, computational processes
operate on matrix blocks of size 30 × 30, 20 × 20 and 15 × 15 for respectively
B = 2, 3, 4. During the calibration phase, each computational routine on matrix
blocks is characterized by the number of cycles required to execute it on an ARM
processor. This is done by running the generated application code on MPARM
and by accurate measurement of the number of cycles, for each routine. Table 2
reports the worst case execution times for different size of matrix blocks.

Table 3 presents an overview of the system-level performance analysis results
obtained using two methods, respectively simulation of the system model vs.
implementation and measurement of code execution on the MPARM platform.
For both methods, we report the total execution time taken by the application to
run on the platform and the analysis time, that is, the time taken by the methods
to produce the results. We point out that simulation of BIP system models
produces fairly accurate results (max 20.95% relative error with respect to the
cycle-accurate MPARM execution) while significantly reducing the analysis time
(up to 19 times, in some situations). Note that forB = 4, the MPARM simulation
did not terminate in 72 hours and the simulation data is unavailable. However,
an estimate is obtained from the BIP system model simulation. A higher cycle
count reflects the communication overhead due to the presence of two clusters
with the NoC interconnect.

Component Assemblies in the Context of Manycore 329

Table 3. Performance Analysis: MPARM Execution vs BIP System Model Simulation

B = 2 B = 3 B = 4

Total Execution Time MPARM Execution 317.70 229.58 -
(in 106 cycles) BIP System Model Simulation 325.23 277.69 356.00

Accuracy 2.37% 20.95% -

Analysis Time MPARM Execution 69′49′′ 34′25′′ -
(in minutes) BIP System Model Simulation 3′43′′ 7′54′′ 26′5′′

Speed-up 18.78 4.35 -

 0

 50

 100

 150

 200

 250

P11 P21 P22 P31 P32 P33 P41 P42 P43 P44

C
o
m

p
u
ta

ti
o
n
 D

e
la

y
s
 (

1
0

6
 c

y
c
le

s
)

Computation
Idle Time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

P11 P21 P22 P31 P32 P33 P41 P42 P43 P44

C
o
m

m
u
n
ic

a
ti
o
n
 D

e
la

y
s
 (

1
0

6
 c

y
c
le

s
)

Memory Conflict

Fig. 8. Performance Results of Computational Processes in Cholesky(4)

Finally, Figure 8 presents a detailed view of execution times and communi-
cation delays for computational processes for Cholesky(4). For each process, the
idle time denotes the waiting time spent before it gets access to read or write
on FIFO channels. The communication time denotes the time effectively spent
on reading or writing. The computation time denotes the total execution time
without the idle and the communication time. The figure 8 (left) confirms that
processes with higher indexes (i, j) are indeed computationally more intensive
than the others. Additionally, the same processes are also idle for longer time
than the others. This happens because of an increased number of data dependen-
cies from processes with lower indexes (i, j). Communication time is impacted
by memory conflicts. Memory conflicts occur when two different processes try to
access simultaneously FIFO buffers located in the same shared memory. Figure 8
(right) depicts the delays due to memory conflicts for each process.

4.3 MJPEG Decoding

The MJPEG decoder application software reads a sequence of JPEG frames and
displays the decompressed video frames. The process network of the application
software is shown in Figure 9. It contains five processes SplitStream (SS), Split-
Frame (SF), IqzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream (MS).
The DOL description of the application processes contains approximately 1600
lines of C code.

330 A. Basu et al.

IqzigzagIDCT MergeStreamMergeFrameSplitFrameSplitStream

Fig. 9. Process Network of the MJPEG Decoder Application

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

SS SF IDCT MF MS

C
o
m

p
u
ta

ti
o
n
 D

e
la

y
s
 (

1
0

6
 c

y
c
le

s
)

Computation
Idle Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

SS SF IDCT MF MS
C

o
m

m
u
n
ic

a
ti
o
n
 D

e
la

y
s
 (

1
0

6
 c

y
c
le

s
)

Memory Conflict

Fig. 10. Performance Results of Computational Processes in MJPEG Decoder

The system model in BIP contains 42 atomic components with 198 interac-
tions, and consists of approximately 7325 lines of BIP code. The implementation
generated for MPARM is approximately 3174 lines of code.

For the experiments, we mapped the application on a single MPARM cluster.
Each computational process is deployed into an ARM processor and all the
FIFO buffers are allocated to the L2 shared memory. The performance results
per process obtained by simulation of the system model are depicted in Figure 10.
We remark that process IqzigzagIDCT is the heaviest in terms in computation,
while processMergeStream stays idle most of the time. The low values of memory
conflicts highlights the restricted parallelism within the application.

At system level, we measured the total execution time needed for the de-
compression of a single frame. Using BIP system model simulation, this time is
estimated at 472.88 Mcycles. This result is very close to the cycle-accurate value
obtained by measuring the MPARM execution, which is 468.83 Mcycles. The
relative error of our estimation is therefore less than 0.87%. Regarding analysis
time, BIP system model simulation outperforms execution on (virtual) MPARM.
The former completes in 9′46′′ and is approximately 5.2 times faster than the
second, which completes in 50′48′′.

The above experiments show the capability of the BIP design flow for fine
grain performance analysis on manycore platforms. It also shows the speedup
compared to simulation based techniques, without adversely affecting the accu-
racy of the measurements.

5 Discussions

The presented method allows generation of a correct-by-construction system
model for manycore platforms from an application software and a mapping. The

Component Assemblies in the Context of Manycore 331

method is based on source-to-source correct-by-construction transformation of
BIP models. It is completely automated and supported by the BIP toolset. The
system model is obtained by first refining the application software model and
then composing it with the hardware architecture model. The composition is
defined by the mapping. The construction of the system model is incremental
and structure-preserving. This ensures scalability as the complexity of system
models increases polynomially with the size of the application software and of
the target hardware architecture. Mastering system model complexity is achieved
thanks to the expressiveness of the BIP modeling framework.

The method clearly separates software and hardware design issues. It is also
parameterized by design choices related to resource management such as schedul-
ing policies, memory size and execution times. This allows estimation of the
impact of each parameter on system behavior. Using BIP as a unifying model-
ing formalism for both hardware and software confers multiple advantages, in
particular rigorousness. The obtained systemmodels are correct-by-construction.
This is a main difference from other ad hoc model construction techniques.

When the generated system model is adequately instrumented with execution
times, it can be used for performance analysis and design space exploration.
Experimental results show the feasibility of the approach for fine grain analysis
of architecture and mapping constraints on system behavior. The method is
tractable and allows design space exploration to determine optimal solutions.

References

1. http://www-verimag.imag.fr/bip-tools,93.html

2. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17(3), 507–534 (1995)

3. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with Timed Automata. Theo-
retical Computer Science 354, 272–300 (2006)

4. Henia, R., et al.: System-level performance analysis - the SymTA/S approach. In:
IEEE Proceedings Computers and Digital Techniques, vol. 152, pp. 148–166 (2005)

5. Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of LICS 1996, pp. 207–
218. IEEE Computer Society Press (1996)

6. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in BIP.
In: Proceedings of SEFM 2006, pp. 3–12. IEEE Computer Society Press (2006)

7. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
Abstraction and Model-Checking of Large Heterogeneous Systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp. 32–46.
Springer, Heidelberg (2010)

8. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Software,
Special Edition – Software Components beyond Programming – from Routines to
Services 28(3), 41–48 (2011)

9. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: MPARM: Explor-
ing the Multi-Processor SoC Design Space with SystemC. Journal of VLSI Signal
Processing Systems 41, 169–182 (2005)

http://www-verimag.imag.fr/bip-tools,93.html

332 A. Basu et al.

10. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for
Component-Based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

11. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: A Tool for Com-
positional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

12. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. FMSD 15(1), 75–
92 (1999)

13. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental
Component-based Construction and Verification using Invariants. In: Proceedings
of FMCAD 2010, pp. 257–266. IEEE (2010)

14. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A Framework for
Automated Distributed Implementation of Component-based Models. Distributed
Computing (to appear, 2012)

15. Bourgos, P., Basu, A., Bozga, M., Bensalem, S., Sifakis, J., Huang, K.: Rigorous
system level modeling and analysis of mixed HW/SW systems. In: Proceedings of
MEMOCODE 2011, pp. 11–20. IEEE/ACM (2011)

16. Chandy, K., Misra, J.: Parallel program design: a foundation. Addison-Wesley Pub-
lishing Company (1988)

17. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings
of LICS 1989, pp. 353–362 (1989)

18. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity: The Ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (2003)

19. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level
modeling and simulation of embedded systems architectures. EURASIP Journal on
Embedded Systems 2007 (2007)

20. Feiler, P.H., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Lan-
guage (AADL) Standard: A basis for model-based architecture-driven embedded
systems engineering. In: Proceedings of RTAS Workshop on Model-driven Embed-
ded Systems, pp. 1–10 (2003)

21. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

22. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quan-
titative analysis of application-specific dataflow architectures. In: Proceedings of
ASAP 1997, pp. 338–349. IEEE Computer Society (1997)

23. Künzli, S., Poletti, F., Benini, L., Thiele, L.: Combining Simulation and Formal
Methods for System-level Performance Analysis. In: Proceedings of DATE 2006,
pp. 236–241 (2006)

24. Kupferman, O., Vardi, M.Y.: Modular Model Checking. In: de Roever, W.-P.,
Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 381–401.
Springer, Heidelberg (1998)

25. Leary, D.P., Stewart, G.: Data-flow algorithms for parallel matrix computations.
Communications of the ACM 28(8), 840–853 (1985)

26. Lieverse, P., Stefanov, T., van der Wolf, P., Deprettere, E.: System level design
with SPADE: an M-JPEG case study. In: ICCAD, pp. 31–38 (2001)

27. McMillan, K.L.: A Compositional Rule for Hardware Design Refinement. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 24–35. Springer, Heidelberg (1997)

Component Assemblies in the Context of Manycore 333

28. Moussa, I., Grellier, T., Nguyen, G.: Exploring SW Performance Using SoC
Transaction-Level Modeling. In: Proceedings of DATE 2003, pp. 20120–20125
(2003)

29. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zis-
sulescu, C., Deprettere, E.: Daedalus: toward composable multimedia mp-soc de-
sign. In: Proceedings of DAC 2008, pp. 574–579. ACM (2008)

30. OMG: OMG Systems Modeling Language SysML (OMG SysML). Object Manage-
ment Group (2008)

31. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams, pp. 123–144 (1985)

32. PRO3D: Programming for Future 3D Architecture with Many Cores, FP7 project
funded by the EU under grant agreement 248 776, http://pro3d.eu/

33. Salah, R.B., Bozga, M., Maler, O.: Compositional Timing Analysis. In: Proceedings
of EMSOFT 2009, pp. 39–48 (2009)

34. Stark, E.W.: A Proof Technique for Rely/Guarantee Properties. In: Maheshwari,
S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 369–391. Springer, Heidelberg (1985)

35. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping Applications to Tiled
Multiprocessor Embedded Systems. In: Proceedings of ACSD 2007, pp. 29–40.
IEEE Computer Society (2007)

36. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proceedings of ISCAS 2002, vol. 4, pp. 101–104. IEEE (2002)

http://pro3d.eu/

Low-Cost Dynamic Voltage and Frequency

Management Based upon Robust Control
Techniques under Thermal Constraints

Sylvain Durand1, Suzanne Lesecq2, Edith Beigné2,
Christian Fabre2, Lionel Vincent2, and Diego Puschini2

1 NECS Team, INRIA/GIPSA-lab joint team
Inovallée, 655 avenue de l’Europe, 38334 Saint Ismier Cedex, France

sylvain@durandchamontin.fr
2 CEA, LETI MINATEC Campus

17 rue des Martyrs, 38054 Grenoble Cedex 9, France
firstname.lastname@cea.fr

Abstract. Mobile computing platforms need ever increasing perfor–
mance, which implies an increase in the clock frequency applied to the
processing elements (PE). As a consequence, the distribution of a sin-
gle global clock over the whole circuit is tremendously difficult. Globally
Asynchronous Locally Synchronous (GALS) designs alleviate the prob-
lem of clock distribution by having multiple clocks, each one being dis-
tributed on a small area of the chip. Energy consumption is the main
limiting factor for mobile platforms as they are powered by batteries.
Dynamic Voltage and Frequency Scaling (DVFS) in each Voltage and
Frequency Island (VFI) has proven to be highly effective to reduce the
power consumption of the chip while meeting the performance require-
ments. Environmental parameters (i.e. temperature and supply voltage)
changes also strongly affect the chip performance and its power con-
sumption. Some sensors can be buried in order to estimate via data fu-
sion techniques the supply voltage and the temperature variations. For
instance the knowledge of the gap between the temperature and its max-
imum value can be used to adapt the power management technique. The
present paper deals with the design of a voltage and frequency manage-
ment approach (DVFS) that explicitly takes into account the thermal
constraints of the platform.

1 Introduction

Mobile computing platforms need ever increasing performance which implies
an increase in the clock frequency applied to the processing elements (PE).
Unfortunately, this performance increase together with the technology shrinking
render the distribution of a single global clock over a digital circuit extremely
difficult. The problem of clock distribution can be soften by the design of Globally
Asynchronous Locally Synchronous (GALS) architectures: a clock is applied on
a small area of the chip (the synchronous domain), and several asynchronous
clocks are used to clock the whole chip.

B. Beckert et al. (Eds.): FMCO 2011, LNCS 7542, pp. 334–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Robust Power Management under Thermal Constraints 335

Energy availability is one of the main limiting factors for mobile platforms
as they are powered by batteries. Power management techniques try to provide
just enough power to the PE in order to finish the task on its deadline. Actually,
dynamic power consumption depends on the clock frequency F but also on the
supply voltage Vdd. As a consequence, the power consumption can be minimized
with an appropriate setting of F and Vdd. The power consumption also depends
on the threshold voltage Vth that can be as well adjusted. Last but not least,
it depends on the temperature of the die, as the leakage highly depends on the
temperature.

Another limiting factor for mobile platforms is the thermal aspect. Indeed,
the circuit temperature has a significant impact on the power consumption and
performance, but also on the cooling and packaging costs [1]. Dynamic Thermal
Management (DTM) techniques have been developed in order to ensure for the
circuit not to reach a prohibitive temperature. The thermal management can be
obtained thanks to DVFS approaches but also with task migration among the
cores for multicore platforms [2].

In these situations, control algorithms must be developed to ensure that the
performance requirements are met while the power consumption is minimized
and the temperature of the whole circuit stays below a pre-defined threshold.
Moreover, the limitation of spatial and temporal temperature gradients or peaks
is of great interest in order to improve the circuit reliability. These algorithms
must be simple enough in order to limit the overhead they may introduce. More-
over, even if most of the existing methods address power consumption manage-
ment and temperature control separately, both the power consumption and the
temperature should be jointly controlled in order to meet the goal defined above.

The objective of the present paper is to describe a new way of applying Dy-
namic Voltage and Frequency Scaling in order to minimize temperature cycling
and/or peaks. The voltage and frequency values applied to the so-called Voltage
and Frequency Island (VFI) depend on the computational workload. Moreover,
instead of applying the different voltage and frequency values in order to meet
the task deadline one after the other one, they are applied in a chopped way.
Note that this chopping has a beneficial side effect as it smoothes and limits the
temperature increase. As a consequence, simple control laws as developed in [3]
can be applied at run-time while the temperature increase or decrease is limited
when a new task is run.

The rest of the paper is organized as follows. Section 2 gives a short overview
of recent works in the area of power- and thermal-aware DVFS techniques. Then
section 3 provides the problem statement. The power consumption management
method based on DVFS approach is described in section 4. For comparison pur-
pose, a “classical” approach is given in section 4.1 while its chopped version that
limits temperature increase/decrease is provided in section 4.2. Some simulation
results are also presented. Concluding remarks and on-going work highlight are
provided in section 5.

336 S. Durand et al.

2 Survey of Existing Works

Various power management approaches have been described in the literature
and a short survey can be found in [4]. Most of these approaches rely on two
“actuators”, namely, the supply voltage Vdd and the clock frequency F whose
values are tuned to minimize the power consumption. Note that both values
cannot be fixed independently in order to avoid timing faults. These F and Vdd

control approaches are usually called “Dynamic Voltage and Frequency Scaling”
(DVFS). For instance, [3] supposes that several pairs of (F, Vdd) values are avail-
able for each PE. A predictive control law minimizes the time spent in the most
energy-consuming mode under the constraint for the task to be finished on the
deadline. The estimation of the switching time is performed at each sampling
time, the initial knowledge of the number of instructions to be run being possibly
uncertain.

Other works also consider the use of another actuator, i.e. the threshold volt-
age Vth. In [5], three frequency values and a dynamic adaptive biasing are used
to manage the power consumption. The values of F and Vth are dynamically
chosen without any optimization at run-time. The work from Firouzi et al. [6]
tries to perform a tradeoff between reliability, performance and power consump-
tion using both Body Biasing and DVFS techniques to meet the optimization
objective while [7] implements Dynamic Voltage and Threshold Scaling (DVTS)
techniques in order to find the optimum power point.

All DVFS and/or DVTS approaches have proven to be highly effective to
reduce the power consumption of a digital circuit while meeting the performance
requirements [8]. The voltage(s) and frequency are adapted in each VFI [9] of
the GALS architecture to minimize the power consumption under performance
constraints [10].

Unfortunately, thermal constraints highly limit the use of mobile platforms as
the temperature influences both the power consumption and the performance.
Moreover, cooling and packaging costs [1] are increased when the temperature
of use is higher. Several Dynamic Thermal Management (DTM) techniques have
been proposed in the literature, see for instance [11] or [2] and references therein.
This latter proposes to control the voltages and frequencies applied to the cores
of an heterogeneous multicore platform to guarantee execution of “thermally
constrained tasks” with hard deadlines where a thermally constrained task is a
task which if executed on a core at the maximum possible speed, the temperature
of this core exceeding a given safe temperature limit. The problem is formulated
as an optimization one whose objective is to determine the voltages and fre-
quencies applied to the cores such that all tasks running on the cores meet their
deadline while satisfying the thermal constraints. The proposed method makes
use of accurate power and thermal models, including leakage dependence on tem-
perature, which appears in the set of constraints of the optimization problem.
The voltages and speeds are computed so as for the hottest core not to exceed
the maximum acceptable temperature. Even if the approach proposed is very
appealing, its computational time (in min) is incompatible with an implementa-
tion at run-time. Actually, accurate power and thermal models for the underlying

Robust Power Management under Thermal Constraints 337

platform must be available and an optimization routine with constraints has to
be run at each sampling time.

In [12], the problem of power control under temperature constraints for a
multi-processor platform is addressed. A chip-level temperature-constrained
power control algorithm based on Model Predictive Control (MPC) theory for
Multi-Inputs Multi-Outputs (MIMO) systems is considered. The solution in-
tends to optimize the processor performance while the total power consumption
of the circuit is controlled to reach a given setpoint (i.e. the desired constraint)
and the temperature is lower than a pre-fixed threshold. Measurements provided
by a temperature sensor in each core and a power monitor for the whole circuit
are used by the feedback control loop. Moreover, the CPU utilization and the
number of instructions for each core are also provided to the centralized con-
troller. The DVFS is implemented with “DVFS levels” that indeed correspond
to frequency levels. Moreover, the desired DVFS levels (i.e. the various frequency
clocks to be applied to the cores) computed by the MPC are approximated with
a sequence of supported DVFS levels (i.e. frequency clocks that are available on
the circuit). Note that supply voltage changes do not seem considered in [12]
and their power model consumption is supposed linear in the DVFS level. Recall
that a Model Predictive Controller optimizes a cost function. The system model
is used to predict the control behaviour over a prediction horizon. The control
objective is to select an input trajectory that minimizes a cost function while
satisfying the constraints. Thus, an optimization problem has to be solved at
each sampling time, and the system models must be available.

3 Context and Problem Statement

Due to the complexity and size of today computing platforms, power consump-
tion and/or thermal managements cannot be any more based on open-loop
strategies [12]. Moreover, for advanced technologies, the power consumption con-
trol must be coupled with thermal aspects as the power leakage highly depends
on the temperature. Lastly, the implementation of closed-loop control helps the
platform to adapt its functioning to Process, Voltage and Temperature (PVT)
variability.

Closed-loop control approaches require the knowledge of the state of the cir-
cuit, for instance its internal temperature or the value of the supply voltage Vdd

really applied to the Voltage Frequency Island, and of the progress of the software
that is running on the PE (e.g. the number of instructions already treated by
the task that is currently running on the PE). Therefore, sensors must be buried
within the chip as well as monitors have to be implemented for the software as-
pects. Various “environmental” sensors have been developed to monitor Vdd and
the Temperature T within integrated circuits. They are divided in two sets. The
first one corresponds to ”specialized” sensors that are designed to be sensitive
to only one of the environmental parameters. For instance, they are sensitive to
Vdd (resp. T) changes [13][14]. Unfortunately, their design is tricky as they must
be insensitive to all but one parameter. The second set contains general purpose

338 S. Durand et al.

sensors, built of standard digital blocks, that are sensitive to several parameters.
For example, the oscillating frequency F at a Ring Oscillator (RO) output de-
pends on its current Process-Voltage-Temperature state. A counter associated
to this RO provides a raw digital measurement, sensitive to all these parameters
[15][16]. The output of this RO cannot directly provide information on one of
these parameters. Thus, a set of ROs (e.g. similar to the MultiProbe described
in [17]) must be used in conjunction with a fusion technique to monitor the state
of the chip [18].

It is well admitted that for CMOS technologies, the dynamic power consump-
tion P is a quadratic function of the supply voltage Vdd and a linear function of
the clock frequency F [19]:

P = KV 2
ddF (1)

where K mainly depends on the technology. As a consequence, an appropriate
choice of Vdd and F to perform a given task Ti before its deadline via DVFS
techniques [20] clearly optimizes the power consumption. The deadline can be in-
terpreted as a constraint when the problem is solved via optimization techniques.
Recall that Vdd and F cannot be freely fixed in order to avoid timing faults. The
control of the energy-performance tradeoff in a voltage scalable device can hence
be formulated as follows (Problem 1):

– minimize the energy consumption by the reduction (as much as possible) of
the penalizing supply voltage;

– while ensuring a “good” computational performance so that the tasks meet
their deadline [21].

Note that when the voltage actuator is realised with a Vdd-hopping technique,
the voltage transitions have to be minimized as the actuator will consume more
during these transitions, see [22] for further details. A solution for such a prob-
lem was for instance proposed in [23] where a control law computes dynamically
an energy-efficient speed setpoint (given as the number of instructions per sec-
ond) that the system has to track in order to satisfy the control objective, by
adapting the control variables (i.e. the voltage and frequency levels, afterwards
denoted Vlevel and flevel respectively). [23] proposes three overlapped control
loops applied at different architecture levels1 to dynamically manage the energy
and activity into a digital circuit:

– the inner loop controls the supply voltage Vdd and the clock frequency F
actuators applied to each PE;

– the second loop, at a higher level, is used to control the tradeoff between the
energy consumption and the computational performance in each VFI;

– the external loop deals with the Quality of Service (QoS) at the applicative
level. This latter loop runs at the Operating System (OS) or scheduler level.
It manages the different VFIs of the chip with their own performance.

1 This suggestion has been done in the context of the French Minalogic project AR-
AVIS. Its main goal was to provide some architectural advices and solutions for the
power management of computational platforms in advanced technology.

Robust Power Management under Thermal Constraints 339

The whole architecture is depicted in Fig. 1. Note that the dynamics of the
different loops depends on the integration level. Indeed, the deepest loops exhibit
the fastest updates of the control signals, with a gain of 100 to 1000. As a result,
the dynamics of the deepest level can be neglected. Consequently, the different
levels interact without conflict.

fclk

ω

Processing
Elements

Vdd

flevel

Vlevel

ωsp − ω

ωsp

Frequency
Actuator

Voltage
Actuator

Energy/Performance
Controller

Voltage/Frequency Island

λsp

λ

λsp − λ QoS Controller

Fig. 1. Power control within a digital circuit, organized with 3 feedback loops

Unfortunately, the approach by Durand et al. does not take into account
the thermal constrains, and an external mechanism should be added in order
to ensure that the temperature T does not exceed its maximum allowed value.
Therefore, the power minimization problem must be recast as a new optimization
one so as to take into account the thermal constraints (Problem 2):

– minimize the energy consumption by the reduction (as much as possible) of
the penalizing supply voltage Vdd;

– while ensuring “good” computational performance so that the tasks meet
their deadline [21];

– under thermal constraints.

The objective of this paper is to propose a solution to this problem.

4 Power Consumption Management

The present paper focuses on the energy-performance tradeoff loop of each VFI,
see Figure 1. The control signals directly act on the voltage and frequency closed-
loop actuators that modify the supply power of the VFI at given transition times.
Note that the voltage and frequency actuators are supposed to provide a set of
discrete values. The “setpoint” λ is provided by the OS. It is related to the
real-time requirements used to define a computational load profile with respect
to time.

340 S. Durand et al.

Here, Problem 2 is solved via a particular implementation of the DVFS
developed forProblem 1. Actually, Problem 1 is easier to solve than Problem
2 as the thermal constraint depends on the power consumption [2]. Thus a
simpler control law is developed for Problem 1 and the supply voltage values
are applied in a chopped way in order to limit the thermal influences. Note that
in the solution proposed, an external mechanism must be added in order to be
sure that the platform will not exceed its maximum allowed temperature.

Section 4.1 summarizes the results from [3][23] while Section 4.2 extends the
previous results in order to limit the thermal effects.

4.1 Control of the Energy-Performance Tradeoff

Durand [3] proposes to control the energy-performance tradeoff of a VFI by
the adaptation of the control variables Vlevel and flevel. The setpoint is based
on some information provided by the OS or scheduler for each task Ti to be
run, namely, the number of instructions Ωi and the remaining available time to
complete the task, denoted the laxity Λi. In the present paper, two supply voltage
values are considered, Vhigh and Vlow. Let ω

max and ωmax denote the maximal
computational speeds when the system is running at Vhigh and Vlow respectively.
It follows that Vhigh is applied as soon as the average speed setpoint for a task is
higher than ωmax in order to meet the associated deadline. An intuitive method
consists in building the average speed setpoint of each task:

ω̄ = Ωi/Δi (2)

where Δi is the deadline associated to task Ti, in such a way that the number
of instructions to run is performed at the end of the task. However, this method
is not energy-efficient since a whole task can be computed with the penalizing
high supply voltage Vhigh. The solution proposed in [3] consists in splitting the
tasks into two parts, see Figure 2(a) for task task2. The PE starts to run at
Vhigh – if required – with the maximal available frequency in order to achieve
the maximal possible speed ωmax. Therefore, it runs faster than the average
speed ω̄, from time t2 to k. Then, task2 can be finished at Vlow with a speed
lower than ωmax. Only one frequency Fhigh is supposed available when running
at Vhigh whereas several frequency levels can be applied to the PE when Vlow

is used. Here, two frequencies Flow1 and Flow2 , Flow1 > Flow2 , are supposed
available. These frequency levels allow the task to finish exactly on its deadline.

The time when the voltage switches from Vhigh to Vlow has to be suitably
calculated by the controller in order to ensure the required computational per-
formance, e.g. the deadline is never missed. However, k is not a priori known (as
the number of instructions to be run might be not exactly known). Therefore,
a predictive control law is used to dynamically calculate the switching time k.
Recall that predictive control consists in finding a certain control profile over a
time horizon to achieve a given objective. The predictive issue can be formu-
lated as an optimization problem. However, this optimal criterion is associated
to a high computational cost, which is not acceptable in embedded systems with
limited resources.

Robust Power Management under Thermal Constraints 341

energy-efficient computational speed setpoint

time

voltage

Vhigh

Vlow

timet2 t3

Ω2

Δ2

Ω1

Δ1

Ω3

Δ3 task3

task2

task1

ωmax

ωmax

t2 t3kt1

t1 k

temperature

Thigh

time

Tamb

Tlow

t3kt2t1

(a) Energy-efficient speed setpoint.

time

voltage

Vhigh

Vlow

timet2 t3

Ω2

Δ2

Ω1

Δ1

Ω3

Δ3 task3

task2

task1

ωmax

ωmax

t2 t3t1

t1

τ

temperature

Thigh

Tamb

time

Tlow

t3t1 t2

thermal-aware computational speed setpoint

(b) Thermal-aware speed setpoint.

Fig. 2. Different computational speed setpoint profiles: whereas the energy-efficient
profile is used to save energy while ensuring good performance, the thermal-aware one
allows to reduce the temperature increase as well.

Nevertheless, the strategy adopted here is called fast predictive control. It con-
sists in taking advantage of the structure of the dynamical system to fasten the
determination of the control profile [24]. Indeed, the closed-loop solution yields
an easier and faster algorithm as one simply needs to calculate the speed required
to fit the task into its deadline regarding what has already been executed:

δ =
Ωi −Ω

Λi
(3)

where δ is the predicted speed and Ω is the number of instructions executed
from the beginning of the task Ti. The energy-efficient speed setpoint is then
directly deduced from the value of the predicted speed and so are the voltage
and frequency levels.

Indeed, the system has to run at (Vhigh, Fhigh) when the required speed is
higher than the maximal speed at low voltage, i.e. δ(tk+1) > ωmax. Otherwise,
Vlow and one of its associated frequency will be applied to finish the task on the
deadline. The determination of the frequency level at Vlow is similar. A so-called
clock-gating phase [25] can also be applied. In this situation, Vlow is applied
to the processor with a null clock frequency F . This situation is useful to save
some power when a task is ended before its deadline. Furthermore, in order to
be robust to uncertainties in ωmax and ωmax, these speeds are estimated using
a weighted average of the measured speed. The reader can refer to [23] for a
complete presentation of this approach. Few tricks were also suggested in this
latter reference to provide a low-cost implementation of the control strategy.

342 S. Durand et al.

Simulation Results. A scenario with three tasks to be executed is now pre-
sented. The number of instruction and deadline for each task are supposed
known. The simulation results are depicted in Figure 3. The first plots (top)
represent the number of instruction and deadline for each task. The laxity is
plotted with the deadline. The plots in the middle of the figure show the average
speed setpoint for each task, the predicted speed and the measured computa-
tional speed. The bottom plot shows the supply voltage. For this scenario, the
system runs during about 80% of the simulation time at low voltage and a
reduction of about 30% and 65% of the energy consumption is achieved (in
comparison with a system without DVS and DVFS mechanism respectively).

In
s
tr

u
c
ti
o
n

n
u
m

b
e
r

0

40

80

T
im

e

[x
1
0

−
6
 s

]

Time [x10
−6

 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

instruction number

deadline

laxity

C
o
m

p
u
ta

ti
o
n
a
l

s
p
e
e
d
s

[x
1
0

7
 I
P

S
]

0

1

2

3

4
average speed setpoint

predicted speed

measured speed

V
o
lt
a
g
e

[V
]

Time [x10
−6

 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
2 voltage levels and 3 frequency levels −− using of the clock gating

Fig. 3. Simulation results of the energy-performance tradeoff control loop in Figure 1
.

4.2 Thermal-Aware Control of the Energy-Performance Tradeoff

Whereas the previous control strategy manages the tradeoff between energy and
performance, it does not consider the thermal effects. The main contribution of
the present paper is to overcome this drawback. Note that the thermal dynamics
of a circuit can be approximated by a first-order model [26]:

dT (t)

dt
= aP (t)− b

[
T (t)− Tamb

]
(4)

where P and T are the power consumption and the temperature of the chip
respectively and Tamb is the ambient temperature. This equation is similar to a
RC electrical circuit where a = 1/C and b = 1/RC are some constants related to
the thermal system, see Figure 4.

When a power mode (defined with the supply voltage and its associated clock
frequency) is applied to the VFI for a long period of time, the temperature
within the chip reaches a steady-state value. For the two power modes previ-
ously defined, these temperatures are denoted Tlow and Thigh. Applying Vhigh

Robust Power Management under Thermal Constraints 343

RC

P1 P2

1 2

T

Tamb

Fig. 4. RC equivalent electrical model of the thermal problem

(and its associated frequency) for a long time period can lead to the occur-
rence of a (possible) hot spot within the chip, as can be seen in Figure 2(a).
Whereas Tlow cannot be reduced, the temperature achieved at the penalizing
high voltage mode can be decreased. The idea previously suggested for instance
in [27][26][28][29][30][31] consists in switching between both voltage levels in or-
der not to reach the maximum temperature Thigh. Note that these papers are
restrained to periodic tasks whereas the strategy proposed here can be applied
to periodic but also non-periodic tasks. The execution of a task is divided into
different periods, as depicted in Figure 2(b). The side effect of this chopping
strategy is that the energy consumption will slightly increase because several
new transitions are introduced. The control problem hence naturally becomes a
tradeoff between energy, performance and temperature.

Furthermore, the power also varies with the temperature due to the leakage
term [32][28]. It is hence mandatory to propose a thermal-aware control of the
energy-performance tradeoff. Note that in the present work, the leakage power is
considered as constant w.r.t. the temperature. The reader is invited to refer to [2]
where the dependence of the temperature constraint with respect to the power
consumption that itself depends on the temperature is taken into account in the
optimization problem. Even if the power modes are applied in a chopped way, the
ratio between high and low voltage levels has to remain (for a given task) equal
to the one applied with the energy-efficient scheme of Section 4.1 in order to keep
the performance. This ratio, denoted hereafter duty ratio κ, is computed thanks
to the previous predictive control law. Moreover, κ is dynamically updated at the
beginning of each period of oscillation τ in order to be robust to uncertainties
in the task information. First, τ is supposed constant. However, the duty ratio
κ can be represented as the distance between the speed to apply until the end
of the task – that is the predicted speed δ previously defined in (3) – and the
possible maximal speeds at high and low voltage levels:

κ =
δ − ωmax

ωmax − ωmax
(5)

The task is hence successively executed at Vhigh and Vlow during κτ and (1−κ)τ
respectively, and this process is repeated until the end of the task. The average
temperature as well as its ripple can be analytically obtained from the RC elec-
trical equivalent model [33] of the thermal equation (4). This is represented in
Fig. 4 where the components are assumed to be ideal and, therefore, do not
dissipate power.

344 S. Durand et al.

Suppose that the transition time of the actuators is negligible. Then the differ-
ent power values Pi are related to different couples (Vi, Fi). Here, P1 corresponds
to (Vhigh, Fhigh) and P2 is consumed when (Vlow , Flow1) is applied to the VFI.
Moreover, P1 ≥ P2. Note that the other settling points at Vlow (i.e. correspond-
ing to the different frequency levels that can be applied at Vlow) are not detailed
here but the principle can be easily extended. The temperature increases when
P switches from P2 to P1 and it decreases otherwise. The average power value
depends on the duty cycle of the switching control. This scheme is classical in
electronic engineering [34].

Analysis of the Temperature Steady-State Mean Value and Ripple.
The thermal equation (4) solution depends on the switch position in Figure
4. The system is supplied by a high power source P1 (respectively a low power
source P2) when the switch is in position 1 (respectively 2). This behaviour
cyclically repeats with a constant period τ , while the duty ratio of this switching
control is κ, previously defined in (5). As a consequence, equation (4) becomes:

dT (t)

dt
=

{
aP1 − bT (t) + c if 0 ≤ t ≤ κτ
aP1 − bT (t) + c if κτ ≤ t ≤ τ

where c = bTamb. The temperature can then be analytically calculated by solving
these thermal differential equations, which yields to:

T (t) =

{
k1e

−bt + T1 if 0 ≤ t ≤ κτ
k2e

−b(t−κτ) + T2 if κτ ≤ t ≤ τ
(6)

with T1 :=
aP1 + c

b
and T2 :=

aP2 + c

b
(7)

where T1 ≥ T2 by construction. Furthermore, k1 and k2 are some parameters
which can also be analytically obtained from:

– the continuous behaviour at t = κτ for both expressions, and
– the periodicity of the temperature in the steady state, i.e. T (0) = T (τ).

This finally leads to:

k1 = −ΔT
1− e−b(1−κ)τ

1− e−bτ
, −ΔT

[
1− κ+ b

κ(1− κ)

2
τ

]
k2 = ΔT

1− e−bκτ

1− e−bτ
, ΔT

[
κ+ b

κ(1− κ)

2
τ

] (8)

with ΔT := T1 − T2 =
a

b

(
P1 − P2

)
The expressions can be linearised – applying a first order Taylor expansion –
since the oscillating period is very small compared with the time constant of the
system, i.e. τ - RC. Then, the linearised expression becomes

T (t) , μt+ ν (9)

Robust Power Management under Thermal Constraints 345

with μ =

{
−bk1 if 0 ≤ t ≤ κτ
−bk2 if κτ ≤ t ≤ τ

and ν =

{
k1 + T1 if 0 ≤ t ≤ κτ(
1 + bκτ

)
k2 + T2 if κτ ≤ t ≤ τ

The waveform of the temperature in steady-state condition is given in
Figure 5(a).

Tmin

timetn tn + κτ

Tmax

tn+1

(1− κ)τκτ

τ

temperature

ΥTavg

(a) Steady-state oscillation.

T2

time

T1

temperature

τ

transient steady state

Tavg

Υ

(b) Transient phase when the power is
increased.

Fig. 5. Thermal-aware control behaviour: the system alternatively runs with the switch
in position 1 during κτ and then in position 2 during (1 − κ)τ . A certain dynamics
is required before the oscillations reach a given steady state where the temperature
finally varies with a constant average value Tavg and a given ripple Υ .

The temperature starts with the initial value T (0). Then it increases dur-
ing the first subinterval, when the switch is in position 1, with a positive slope
given by μ in (9). At time t = κτ , the switch changes from position 1 to posi-
tion 2, and the temperature decreases with a negative slope. At time t = τ , the
switch changes back to position 1 and the process repeats. The average value of
the temperature as well as its ripple can be easily computed. Both depend on
the minimum and maximum temperature peak values, denoted Tmin and Tmax,
which occurs at t = 0 (or t = τ) and t = κτ respectively:

Tmax = k2 + T2 and Tmin = k1 + T1 (10)

The average temperature Tavg and the ripple Υ can then be computed with:

Tavg =
ΔT

2

1− e−bκτ − e−bτ + e−b(1−κ)τ

1− e−bτ
+ T2 , ΔTκ+ T2

Υ = ΔT
1− e−bκτ − e−b(1−κ)τ + e−bτ

1− e−bτ
, bΔTκ(1− κ)τ

(11)

Note that these expressions depend on the duty ratio and

– the higher κ is, the higher the average steady-state temperature is. Also, one
can verify the equilibrium temperatures T1 and T2 when the input power
is always P1 and P2 respectively. They were initially defined in (7). They
can as well be deduced from (11) when the duty ratio is κ = 1 and κ = 0
respectively;

– the ripple is maximum when κ = 0.5.

346 S. Durand et al.

Furthermore, the temperature variation depends on the period: the smaller τ
the lower the ripple.

Remark that chopping the power mode application has a nice effect on the
maximum temperature Tmax in (10) – as well as on the average temperature
Tavg in (11) – as it is lower than the one achieved at Vhigh, i.e. Thigh = T1, as
soon as the power (and consequently the voltage) oscillates, that is when the
duty ratio κ is lower than 1.

Transient Phase Analysis. The behaviour of the temperature in the transient
phase is now analysed. Suppose that the system runs at Vlow for a long time, the
temperature being stabilized in its lower value T2. Then, a new task that needs
the PE to (partially) run under Vhigh, is applied. Thus, the chopping scheme
presented above is applied. At the very beginning of this chopping process, the
temperature is not in steady-state, i.e. T (t = 0) �= T (t = τ). During the transient
phase, the thermal expression in (6) becomes:

T (t) =

{
k1(n)e

−b(t−nτ) + T1 if nτ ≤ t ≤ nτ + κτ

k2(n)e
−b(t−κτ−nτ) + T2 if nτ + κτ ≤ t ≤ (n+ 1)τ

where n ∈ N is incremented at each new oscillating period. The parameters
in (8) now depend on n:

k1(n) = −ΔT

[
1 +

(
1− ebκτ

) n∑
i=1

e−ibτ

]

k2(n) = ΔT

(
1− e−bκτ

) n∑
i=0

e−ibτ

(12)

The geometric series can be expressed as follows

n∑
i=1

e−ibτ = e−bτ 1− e−nbτ

1− e−bτ

As a consequence, the transient phase parameters can be given with their steady-
state values – previously defined in (8) – plus a term decreasing with respect
to n:

k1(n) = k1 +ΔT
1− ebκτ

1− e−bτ
e−(n+1)bτ

k2(n) = k2 −ΔT
1− e−bκτ

1− e−bτ
e−(n+1)bτ

Note that the latter term exhibits an exponential decrease. Moreover, the initial
temperature slope μ(n = 0) can be expressed from (9) and (12). Then, at each
new oscillating period, the slope is equal to the previous one plus an extra term
η defined as follows:

Robust Power Management under Thermal Constraints 347

μ(n) = μ(n− 1) + η(n) (13)

with η(n) = σbΔT

(
1− eσbκτ

)
e−nbτ

and σ :=

{
+1 if nτ ≤ t ≤ nτ + κτ
−1 if nτ + κτ ≤ t ≤ (n+ 1)τ

Remark that from (12) one can derive the steady-state expressions in (8), i.e.
when n �→ ∞, using the polylogarithm closed form:

∞∑
i=1

e−ibτ =
e−bτ

1− e−bτ

The resulting “turn-on” transient phase is depicted in Figure 5(b) where the
initial temperature is equal to T2 defined in (7). An input power P1 is then
applied during the first oscillating period, with the switch in position 1. Hence,
the temperature increases with an initial slope equal to μ(0) = bΔT . During
the second part of the oscillating period (i.e. after the switch has changed from
position 1 to position 2), the temperature decreases with an initial slope equal
to μ(0) = −bΔT

(
1− e−bκτ

)
. At time t = τ , a new oscillating period occurs and

n = 1. The temperature during the first part of this second oscillating period
increases, but with a smaller initial slope when compared with the first oscillat-
ing period since the added term η is negative, see (13). Then, the temperature
decreases during the second part of the second oscillating period, but with a
higher slope since the added term η is positive during the second subinterval.
The process is repeated until the steady state condition is attained.

Length of the Oscillating Period τ . The length τ of the oscillating period
has to be fixed by the designer. Firstly, it could be constant (as assumed until
now). Otherwise, it could vary with respect to a given criterion to satisfy. As
shown in (11), τ fixes the temperature ripple in steady state (which also varies
with κ). A small period leads to small variations. However, fast oscillations
increase the energy consumption because the transitions consume some power
that is not strictly speaking used for the computations.

Hence, the energy-temperature tradeoff clearly appears here and a suggested
solution is to have slow oscillations when the temperature is not “too” important,
that is when the average temperature is low – i.e. κ is small, as suggested in (11)
– and, inversely, to allow fast oscillations when the temperature becomes high,
that is when the duty ratio is important. This results in fixing the product κτ
instead of choosing a constant oscillating period, such that

τ =
ϕ

κ
(14)

where ϕ denotes the rising temperature time when the switch is set in position 1.
Note that this parameter has also to be chosen by the designer but the energy-
temperature tradeoff is now self-adjusted.

348 S. Durand et al.

Another solution could be to decide this time from the monitoring of the chip
internal temperature. This latter solution has not been studied here. Actually,
the proposed strategy is based on the previous work, summarised in subsection
4.1, whose low-cost implementation property was demonstrated in [23]. More-
over, taking into account the thermal constraints only requires to run a given
task in a chopped version. This requires to determine the duty ratio and the
oscillation period defined in (5) and (14) respectively, which are both easily
computed. Moreover, the robustness property is still available. As a result, the
thermal-aware proposal is low cost and robust to PVT variability.

Simulation Results. It is quite difficult to find experimental values for the pa-
rameters of the thermal model (4) in the literature. For the simulation presented
now, the ones deduced from [32][35][36] will be used. Thus, the different values
are R = 2 ◦C/W and C = 34mJ/◦C, which leads to a thermal time constant of
68ms. The oscillating period τ is chosen smaller than the thermal time constant.
Moreover, the ambient temperature is Tamb = 25◦C and the chip temperature
varies from 35 to 95◦C when successively applying a power of 5 and 35W .
The different tests are depicted in Figure 6, where the chopped schemes as well
as the classical strategy are represented. For the classical scheme, the task dead-
line is supposed equal to the time of the whole simulation, i.e. τsimu = 0.4 s. The
system then runs with the switch in position 1 during the time interval κτsimu

and then with the switch in position 2 during (1 − κ)τsimu. As expected, the
temperature highly increases.

Thanks to the chopped scheme for the DVFS application, the temperature can
be reduced. Some tests are performed for different values of the duty ratio κ and
of the oscillating period τ . The corresponding chip temperatures are depicted
in Figure 6(a). As shown above, the steady-state average temperature and its
ripple depend on the duty ratio κ and the length of the period τ . Consequently,
the maximal attained temperature highly depends on the switching control since
it could be decreased with a small duty ratio and some fast oscillations. How-
ever, a certain tradeoff between temperature and energy has to be taken into
account. For this reason, it is proposed to automatically compute the length of
the oscillating period from (14) in order to bound the time when the temperature
increase is allowed. This solution is highlighted in Figure 6(b) where ϕ = 0.3 s .
Finally, one can remark slow and fast oscillations when the temperature is low
and high respectively (i.e. when κ is small and large respectively).
The different cases presented highlight how hot spots within the chip can be
reduced using the chopped strategy. Indeed, thanks to such a scheme both the
temperature variations and the maximal temperature are decreased, when com-
pared to the classical scheme.

The whole thermal-aware control of the energy-performance tradeoff is also
tested in simulation. The idea is to reduce the energy consumption while ensur-
ing “good” computational performance, as suggested in subsection 4.1, taking
also into account the temperature within the chip. A scenario with three tasks
to be executed is run, the number of instructions and deadline for each task

Robust Power Management under Thermal Constraints 349

kappa = 0.2 / tau = 6.8ms ; 20.4ms

0 0.1224 s 0.2448 s 0.3672 s
T2

T1

kappa = 0.5 / tau = 6.8ms ; 20.4ms

0 0.1224 s 0.2448 s 0.3672 s

kappa = 0.9 / tau = 6.8ms ; 20.4ms

0 0.1224 s 0.2448 s 0.3672 s

classical strategy

oscillating strategy with tau = 20.4ms

oscillating strategy with tau = 6.8ms

(a) Dynamics of the temperature with respect to the duty ratio κ and to the length
of the oscillating period τ .

kappa = 0.2 / varphi = 10.2ms

0 0.102 s 0.204 s 0.306 s

T2

T1

kappa = 0.5 / varphi = 10.2ms

0 0.102 s 0.204 s 0.306 s

kappa = 0.9 / varphi = 10.2ms

0 0.102 s 0.204 s 0.306 s

classical strategy

oscillating strategy

(b) Dynamics of the temperature when the product κτ is constant, for different
values of κ.

Fig. 6. Simulation results for the thermal-aware control scheme: impact of the different
parameters on the average temperature and the temperature ripple

being known. The simulation results are depicted in Figure 7 where the product
between the duty ratio and the period is fixed in order to manage the tradeoff
between energy and temperature, i.e. ϕ = 6.8ms in (14). The plots on the top
part of Figure 7 show the number of instructions, the deadline, and the laxity.
The speeds (average speed setpoint, predicted, measured) are provided on the
plot in the middle of the figure, as well as the voltage value. The bottom plot
shows the temperature of the chip, which is computed with (4). The temperature
reached with the classical strategy (without any thermal management) is also
represented. When the task to be run has a high computational load, the system
runs during κτ and (1 − κ)τ at high and low voltage respectively. Then, this is
repeated until the end of the task. As expected, the energy saving is (lightly) less
important than in the classical strategy but the maximal temperature highly de-
creases (about 1% increase and 40% decrease respectively). This approach will
basically decrease the hot spot appearance.

5 Conclusion and Future Work

In this paper, a thermal-aware DVFS approach is proposed. The scheme is based
upon previously published DVFS strategies but the various power modes are
applied, for each task to be run on the processing element not one after the other
one, but in a chopped way. Moreover, instead of taking explicitly into account
the temperature constraint, which leads to a complex optimisation problem, the
temperature is smoothed as the main advantage of the “chopped-DVFS” is that

350 S. Durand et al.

In
s
tr

u
c
ti
o
n
s

[x
1
0

6
]

0

10

20

T
im

e

[s
]

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.3

0.6

instruction number

deadline

laxity

C
o
m

p
u
ta

ti
o
n
a
l

s
p
e
e
d
s

[x
1
0

7
 I
P

S
]

0

1

2

3

4
average speed setpoint

predicted speed

measured speed

T
e
m

p
e
ra

tu
re

[°
C

]

25

60

95
classical strategy

oscillating strategy

V
o
lt
a
g
e

[V
]

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1.1
voltage

Thermal−aware control of the energy−performance tradeoff
Thermal−aware control (constant kappa*tau)

Fig. 7. Simulation results of the thermal-aware energy-performance tradeoff control
with constant rising temperature time

it limits the temperature increase/decrease, with a small temperature ripple that
depends on the oscillating period.

Some simulations results have been provided to show the effectiveness of the
approach proposed and its capability to efficiently reduce the temperature of the
chip. Note that the control law is based on a fast predictive control that has low
computational cost. Thus it can be used at run-time, and executed if necessary
at each oscillating period.

The chopped scheme proposed here will be implemented on the LoCoMo-
TIV Silicon platform [37][38][39] that has been designed at CEA-LETI Minatec
Campus in order to evaluate advanced closed-loop control strategies for power
management and PVT variability mitigations for advanced technology comput-
ing platforms.

Acknowledgements. This work has been performed while S. Durand was post-
doc fellow in the joint NeCS Team, INRIA/GIPSA-lab. It has been conducted
in cooperation with CEA, LETI Minatec Campus, under the PILSI-CRI, Greno-
ble, France. It has also received partial funding from the ARTEMIS Joint Un-
dertaking under grant agreement number 100230 (SMECY project) and from
the national funding authorities. It has been also supported by the FP7 project
Pro3D under grant agreement number 278776.

References

1. Liu, Y., Yang, H., Dick, R.P., Wang, H., Shang, L.: Thermal vs energy optimization
for dvfs-enabled processors in embedded systems. In: 8th International Symposium
on Quality Electronic Design, ISQED 2007 (2007)

Robust Power Management under Thermal Constraints 351

2. Hanumaiah, V., Vrudhula, S.: Temperature-aware dvfs for hard real-time applica-
tions on multi-core processors. IEEE Transactions on Computers (2011)

3. Durand, S.: Reduction of the Energy Consumption in Embedded Electronic Devices
with Low Control Computational Cost. PhD thesis, University of Grenoble, France
(2011)

4. Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, V.: Survey of
energy-cognizant scheduling techniques. IEEE Transactions on Parallel and Dis-
tributed Systems (2012)

5. Tschanz, J., Kao, J., Narendra, S., Nair, R., Antoniadis, D., Chandrakasan, A., De,
V.: Adaptive body bias for reducing impacts of die-to-die and within-die parameter
variations on microprocessor frequency and leakage. In: 2002 IEEE International
Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, vol. 1, pp.
422–478 (2002)

6. Firouzi, F., Yazdanbakhsh, A., Dorosti, H., Fakhraie, S.M.: Dynamic soft error
hardening via joint body biasing and dynamic voltage scaling. In: 2011 14th Eu-
romicro Conference on Digital System Design, DSD, August 31-September 2, pp.
385–392 (2011)

7. Mehta, N., Amrutur, B.: Dynamic supply and threshold voltage scaling for cmos
digital circuits using in-situ power monitor. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems PP(99), 1–10 (2011)

8. Horowitz, M., Indermaur, T., González, R.: Low-power digital design. In: IEEE
Symposium on Low Power Electronics, Digest of Technical Papers, pp. 8–11 (Oc-
tober 1994)

9. Choudhary, P., Marculescu, D.: Hardware based frequency/voltage control of volt-
age frequency island systems. In: Proceedings of the 4th International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2006, pp.
34–39 (October 2006)

10. Choi, K., Soma, R., Pedram, M.: Fine-grained dynamic voltage and frequency scal-
ing for precise energy and performance tradeoff based on the ratio of off-chip access
to on-chip computation times. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24(1), 18–28 (2005)

11. Sabry, M., Coskun, A., Atienza, D., Simunic Rosing, T., Brunschwiler, T.: Energy-
efficient multi-objective thermal control for liquid-cooled 3D stacked architectures.
IEEE Transactions on Computer Aided Design (2011)

12. Wang, X., Ma, K., Wang, Y.: Adaptive power control with online model estimation
for chip multiprocessors. IEEE Trans. on Parallel and Distributed Systems 29(10),
1681–1696 (2011)

13. Chen, P., Chen, C.-C., Tsai, C.-C., Lu, W.-F.: A time-to-digital-converter-based
cmos smart temperature sensor. IEEE Journal of Solid-State Circuits 40, 1642–
1648 (2005)

14. Aoki, H., Ikeda, M., Asada, K.: On-chip voltage noise monitor for measuring voltage
bounce in power supply lines using a digital tester. In: International Conference
on Microelectronic Test Structures, ICMTS (2000)

15. Datta, B., Burleson, W.: Low-power and robust on-chip thermal sensing using
differential ring oscillators. In: 50th Midwest Symposium on Circuits and Systems,
MWSCAS (2007)

16. Quenot, G., Paris, N., Zavidovique, B.: A temperature and voltage measurement
cell for vlsi circuits. In: Euro ASIC 1991 (1991)

17. Vincent, L., Beigne, E., Alacoque, L., Lesecq, S., Bour, C., Maurine, P.: A fully
integrated 32 nm multiprobe for dynamic pvt measurements within complex digital
soc. In: VARI 2011, Grenoble, France (2011)

352 S. Durand et al.

18. Vincent, L., Maurine, P., Lesecq, S., Beigné, E.: Embedding statistical tests for on-
chip dynamic voltage and temperature monitoring. In: 49th ACM/EDAC/IEEE
Design Automation Conference, DAC (2012)

19. Chandrakasan, A.P., Brodersen, R.W.: Minimizing power consumption in digital
CMOS circuits. Proceedings of the IEEE 83(4), 498–523 (1995)

20. Varma, A., Ganesh, B., Sen, M., Choudhury, S.R., Srinivasan, L., Bruce, J.: A
control-theoretic approach to dynamic voltage scheduling. In: Proceedings of the
International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (2003)

21. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable
voltage processors. In: Proceedings of the International Sympsonium on Low Power
Electronics and Design (1998)

22. Miermont, S., Vivet, P., Renaudin, M.: A Power Supply Selector for Energy- and
Area-Efficient Local Dynamic Voltage Scaling. In: Azémard, N., Svensson, L. (eds.)
PATMOS 2007. LNCS, vol. 4644, pp. 556–565. Springer, Heidelberg (2007)

23. Durand, S., Marchand, N.: Fully discrete control scheme of the energy-performance
tradeoff in embedded electronic devices. In: Proceedings of the 18th World Congress
of IFAC (2011)

24. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control
Schemes: A Parametrized Approach for Fast Systems. LNCIS, vol. 339. Springer,
Heidelberg (2006)

25. Kuzmicz, W., Piwowarska, E., Pfitzner, A., Kasprowicz, D.: Static power consump-
tion in nano-cmos circuits: Physics and modelling. In: Proceeding of the 14th In-
ternational Conference on Mixed Design of Integrated Circuits and Systems (2007)

26. Yang, C.-Y., Chen, J.-J., Lothar, T., Kuo, T.-W.: Energy-efficient real-time task
scheduling with temperature-dependent leakage. In: Conference & Exhibition on
Design, Automation and Test in Europe (2010)

27. Yuan, L., Leventhal, S., Qu, G.: Temperature-aware leakage minimization
technique for real-time systems. In: IEEE/ACM International Conference on
Computer-Aided Design (2006)

28. Chaturvedi, V., Huang, H., Quan, G.: Leakage aware scheduling on maximum
temperature minimization for periodic hard real-time systems. In: 10th IEEE In-
ternational Conference on Computer and Information Technology (2010)

29. Huang, H., Quan, G.: Leakage aware energy minimization for real-time systems un-
der the maximum temperature constraint. In: Conference & Exhibition on Design,
Automation and Test in Europe (2011)

30. Chaturvedi, V., Quan, G.: Leakage conscious DVS scheduling for peak tempera-
ture minimization. In: 16th Asia and South Pacific Design Automation Conference
(2011)

31. Huang, H., Quan, G., Fan, J., Qiu, M.: Throughput maximizaion for peri-
odic real-time systems under the maximal temperature constraint. In: 48th
ACM/EDAC/IEEE Design Automation Conference (2011)

32. Quan, G., Zhang, Y.: Leakage aware feasibility analisys for temperature-
constrained hard real-time periodic tasks. In: 21st Euromicro Conference on Real-
Time Systems (2009)

33. Zhang, S., Chatha, K.S.: Approximation algorithm for the temperature-aware
scheduling problem. In: IEEE/ACM International Conference on Computer-Aided
Design (2007)

34. Erickson, R.W., Maksimović, D.: Fundamentals of Power Electronics, 2nd edn.
Springer Science (2001)

Robust Power Management under Thermal Constraints 353

35. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., Atienza, D.: 3D-ICE:
Fast compact transient thermal modeling for 3D-ICs with inter-tier liquid cooling.
In: International Conference on Computer-Aided Design (2010)

36. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., Atienza, D.: Compact
transient thermal model for 3D ICs with liquid cooling via enhanced heat transfer
cavity geometries. In: 16th International Workshop on Thermal Investigations of
ICs and Systems (2010)

37. Beigne, E., Vivet, P.: An innovative local adaptive voltage scaling architecture for
on-chip variability compensation. In: IEEE Int. Conf. New Circuits and Systems,
NEWCAS, pp. 510–513 (June 2011)

38. Albea, C., Puschini, D., Vivet, P., Miro Panades, I., Beigné, E., Lesecq, S.: Archi-
tecture and robust control of a digital frequency-locked loop for fine-grain dynamic
voltage and frequency scaling in globally asynchronous locally synchronous struc-
tures. J. Low Power Electronics 7(3), 328–340 (2011)

39. STMicroelectronics and CEA. Platform 2012 – A Manycore Programmable Accel-
erator for Ultra-Efficient Embedded Computing in Nanometer Technology (Novem-
ber 2010) (Whitepaper)

Author Index

Aldinucci, Marco 199, 218, 257
Atienza, David 277

Bacivarov, Iuliana 277, 294
Basu, Ananda 277, 314
Beigné, Edith 334
Benini, Luca 277
Bennaceur, Amel 133
Bensalem, Saddek 277, 314
Bourgos, Paraskevas 314
Bozga, Marius 277, 314
Breddin, Tino 237
Breu, Ruth 150, 169
Brown, Christopher 218, 237
Bruni, Roberto 49

Campa, Sonia 257
Cesarini, Francesco 218
Chokshi, Devesh B. 277

Danelutto, Marco 199, 218, 237
de Leastar, Eamonn 184
De Micheli, Giovanni 277
De Nicola, Rocco 25
Durand, Sylvain 334

Elger, Peter 184

Fabre, Christian 277, 334
Felderer, Michael 150, 169
Ferrari, Gianluigi 25
Flamand, Éric 277

Gander, Matthias 150, 169
González-Vélez, Horacio 218
Griffin, Leigh 184

Hähnle, Reiner 109
Hammond, Kevin 218, 237
Helvensteijn, Michiel 109
Hölzl, Matthias 1

Issarny, Valérie 133

Johansson, Richard 133
Johnsen, Einar Broch 89, 109

Katt, Basel 150, 169
Keller, Rainer 218
Kilpatrick, Peter 199, 218, 237, 257
Krimm, Jean-Pierre 277
Kumar, Pratyush 277

Lamprecht, Anna-Lena 69
Leblebici, Yusuf 277
Lesecq, Suzanne 334
Lienhardt, Michael 109
Loreti, Michele 25

Maheshwari, Mayur 314
Margaria, Tiziana 69
Melgratti, Hernán 49
Melpignano, Diego 277
Montanari, Ugo 49
Montangero, Carlo 199
Moschitti, Alessandro 133
Mottin, Julien 277

Pugliese, Rosario 25
Puschini, Diego 334

Rossbory, Michael 218
Ruggiero, Martino 277

Sabry, Mohamed M. 277
Sangiorgi, Davide 109
Schaefer, Ina 69, 109
Schlatte, Rudolf 89
Schöner, Holger 237
Schor, Lars 277, 294
Semini, Laura 199
Shainer, Gilad 218
Sifakis, Joseph 314
Spalazzese, Romina 133
Steffen, Bernhard 69
Sykes, Daniel 133

Tapia Tarifa, Silvia Lizeth 89
Thiele, Lothar 277, 294
Tordini, Fabio 257
Torquati, Massimo 257
Tribastone, Mirco 1

356 Author Index

Vincent, Lionel 334

Wirsing, Martin 1
Wong, Peter Y.H. 109

Yang, Hoeseok 277, 294

Zambonelli, Franco 1

	Title
	Preface
	Organization
	Table of Contents
	The ASCENS Project
	ASCENS: Engineering AutonomicService-Component Ensembles
	Introduction
	What Are Ensembles?
	The ASCENS Approach

	Example: Garbage-Collecting Robots
	SOTA: Domain and Requirements Modeling
	GEM: The General Ensemble Model
	The Trajectory Space
	Goals and Utilities
	Probabilistic GEM

	Adaptation and Awareness
	Adaptation
	Awareness

	Solution Models
	Introduction to SCEL
	SCEL Model of the Case Study

	Quantitative Analysis
	Quantitative Model
	Validation
	Black-Box Adaptation by Sensitivity Analysis

	Engineering Ensembles
	Best Practices and Patterns
	Awareness- and Knowledge-Cognizant Software Engineering
	Tool Support

	Concluding Remarks
	References

	A Language-Based Approachto Autonomic Computing
	Introduction
	SCEL: Design Principles
	Components
	Ensembles

	SCEL: Syntax
	SCEL: Operational Semantics
	Operational Semantics of Processes
	Operational Semantics of Systems

	How to `Cook' Your Own SCEL Dialect
	SCEL at Work
	Adaptation in SCEL
	Related Work
	Concluding Remarks and Future Directions
	References

	A Survey on Basic Connectors and Buffers
	Introduction
	Running Example
	The Reo Coordination Model
	Compensation Pair in Reo

	The BIP Component Framework, and BI(P)
	Compensation Pair in BI(P)

	Nets with Boundaries
	Compensation Pair as a Net with Boundaries

	Tiles, Wires and the Petri Calculus
	The Petri Calculus
	Compensation Pair in the Petri Calculus

	Comparison
	Conclusion and Future Work
	References

	The EternalS Coordination Action
	Synthesis-Based Variability Control:Correctness by Construction
	Introduction
	Constraint-Based Variability Modeling
	Domain Vocabulary
	Artifact Characterizations
	Domain Constraints

	Constraint-Driven Synthesis
	Running Example
	The Coffee Machine Example
	Constraint-Based Modeling of the Coffee Machine Family
	Synthesis of Constraint-Conform Coffee Machines
	Comparison with Other Approaches

	Conclusion
	References

	Modeling Application-Level Managementof Virtualized Resources in ABS
	Introduction
	Modeling Timed Behavior in ABS
	Core ABS
	Real-Time ABS

	Modeling Deployment Architectures in ABS
	Deployment Components
	Resource Costs

	Case Study: Application-Level Management of Virtualized Resources
	The Server and the Cloud Provider
	The User Scenarios
	Balancing Strategies
	Comparing Balancing Strategies

	Related Work
	Conclusion
	References

	HATS Abstract Behavioral Specification:The Architectural View
	Introduction
	Abstract Behavioral Specification
	The Delta Modeling Workflow
	Delta Modeling in ABS
	Delta Modeling Workflow in ABS
	Discussion

	Deployment Modeling
	The ABS Component Model
	Related Work
	Our Approach
	Example

	An Industrial Case Study
	Conclusion
	References

	Automatic Service Categorisation throughMachine Learning in Emergent Middleware
	Introduction
	Background
	Synthesising Emergent Middleware
	Affordance Learning and Categorisation
	Evaluation
	Related Work
	Conclusions
	References

	Towards a Model- and Learning-BasedFramework for Security Anomaly Detection
	Introduction
	Related Work
	BasicConcepts
	Motivating Example
	Threat Model
	Layered Concept and Associated Events

	Approach
	IT-Landscape Metamodel
	Workflow State Machines
	Profiling via Clustering
	Architecture

	Conclusion and Future Work
	References

	Enhancing Model Driven Securitythrough Pattern Refinement Techniques
	Introduction
	Contributions

	Case Study
	Methodology: SECTET Framework
	Platform Independent Models: SECTET PIM Metamodel
	Pattern Refinement Models: Pattern Models
	Platform Specific Models
	Implementation Specific Models

	Case Study Example
	Modeling Functional Workflow with Security Requirements
	Modeling Pattern Refinement
	Platform Specific Model and Generated Artefacts

	Prototypical Implementation
	UML Models Import
	Selection and Refinement Wizards

	Related Work
	Conclusion
	References

	Project Zeppelin: A Modern Web Application DevelopmentFramework
	Introduction
	Technical Context
	Web Evolution
	Revolution

	Concurrency Challenges
	Threads
	Actors
	Non Blocking IO
	C10K Problem

	Platforms and Frameworks
	Platforms
	Frameworks

	Project Zeppelin
	Future Work and Conclusion
	References

	The ParaPhrase Project
	Managing Adaptivity in Parallel Systems
	Introduction
	Non-functional Concern Management in Parallel Computing
	Autonomic Management of Non-functional Concerns
	Behavioural Skeletons

	Conflict Detection and Resolution in Rule-Based Systems
	Multiple Non-functional Concern Management: Formal Tool Support
	An Experiment in Static Conflict Detection for Autonomic Managers
	Preliminary Results

	Conclusions
	References

	The ParaPhrase Project: Parallel Patterns for Adaptive HeterogeneousMulticore Systems
	Introduction
	Related Work
	The ParaPhrase Project
	Achieving the ParaPhrase Project Vision
	Key Technologies
	ParaPhrase Structure and Workplan
	ParaPhrase Use-Cases

	Conclusions
	References

	Paraphrasing:Generating Parallel Programs Using Refactoring
	Introduction
	Using Refactoring for Parallelism

	Motivation
	Erlang Example

	The Design of the ParaPhrase Refactoring Tool
	Patterns as Rewrite Rules

	Use Case: Large Scale Matrix Factorization
	Related Work
	Conclusions
	References

	An Abstract Annotation Model for Skeletons
	Introduction
	Parallelism Paradigms and Patterns
	A Refinement Process for Skeletons
	Approach Overview
	Skeleton Definition
	Skeleton Rewriting
	Annotation Semantics
	Mapping Strategies

	Preliminary Results
	Related Work
	Conclusions
	References

	The PRO3D Project
	PRO3D, Programming for Future 3D ManycoreArchitectures: Project’s Interim Status
	Introduction
	3D Architectural Exploration
	Functional Modelling of 3D Memory Hierarchy
	Enabling Thermal-Aware System-Level Architectural Exploration

	Thermal Management
	Thermal Model and Problem Formulation
	Experimental Results

	Thermal-Aware Application Mapping on 3D Platforms
	Mapping Optimization Framework
	Thermal Models and Analysis in DOL3D

	Generation and Simulation of the System-Model
	STHORM, a Manycore Platform
	Conclusion after 30 Months into PRO3D
	References

	Thermal-Aware Task Assignment for Real-TimeApplications on Multi-Core Systems
	Introduction
	Motivational Example
	System Model and Problem Definition
	Task Model
	Processor Model
	Power Model
	Temperature Model

	System Analysis
	Peak Temperature Analysis
	Optimal Frequency Assignment

	Optimal Task Assignment
	Temperature Minimization Problem
	Evaluating a Task Assignment
	Efficient Temperature Reevaluation

	Case Studies
	System Description
	Performance of Four Different TMP Solvers
	Performance for Different Utilizations and Floorplans

	Related Work
	Conclusion
	References

	Component Assembliesin the Context of Manycore
	Introduction
	The BIP Framework
	BIP Design Flow for Manycore
	Translating Application Software into BIP
	Checking Application Correctness
	Platform Dependent Code Generation
	System Level Modeling and Performance Analysis

	Experiments
	MPARM Platform
	Cholesky Factorization
	MJPEG Decoding

	Discussions
	References

	Low-Cost Dynamic Voltage and Frequency Management Based upon Robust ControlTechniques under Thermal Constraints
	Introduction
	Survey of Existing Works
	Context and Problem Statement
	Power Consumption Management
	Control of the Energy-Performance Tradeoff
	Thermal-Aware Control of the Energy-Performance Tradeoff

	Conclusion and Future Work
	References

	Author Index

