
Towards Efficient Parameterized Synthesis�

Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

Graz University of Technology, Austria

Abstract. Parameterized synthesis was recently proposed as a way to
circumvent the poor scalability of current synthesis tools. The method
uses cut-off results in token rings to reduce the problem to bounded dis-
tributed synthesis, and thus ultimately to a sequence of SMT problems.
This solves the problem of scalability in the size of the architecture, but
experiments show that the size of the specification is still a major issue.
In this paper we propose several optimizations of the approach. First, we
tailor the SMT encoding to systems with isomorphic processes and token-
ring architecture. Second, we extend the cut-off results for token rings
and refine the reduction, using modularity and abstraction techniques.
Some of our optimizations also apply to isomorphic or distributed syn-
thesis in arbitrary architectures. To evaluate these optimizations, we de-
veloped the first completely automatic implementation of parameterized
synthesis. Experiments show a speed-up of several orders of magnitude,
compared to the original method.

1 Introduction

By automatically generating correct implementations from a temporal logic spec-
ification, reactive synthesis tools relieve system developers from manual low-level
implementation and debugging. However, existing tools are not very scalable. For
instance, Bloem et al. [3] describe the synthesis of an arbiter for the ARM AMBA
Advanced High Performance Bus. The results, obtained using RATSY [2], show
that both the size of the implementation and the time for synthesis increase
steeply with the number of clients that the arbiter can handle. Since an arbiter
for n+ 1 clients is very similar to an arbiter for n clients, this is unexpected.

Similar to the AMBA arbiter, many other specifications in verification and
synthesis are naturally parameterized in the number of parallel interacting com-
ponents [15,14]. To address the poor scalability of reactive synthesis tools in
the number of components, Jacobs and Bloem [13] introduced a parameterized
synthesis approach. A simple example of a parameterized specification is the
following LTL specification of a simple arbiter:

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi)

� This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406).

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 108–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Efficient Parameterized Synthesis 109

In parameterized synthesis, we synthesize a building block that can be cloned to
form a system that satisfies such a specification, for any number of components.

Jacobs and Bloem [13] showed that parameterized synthesis is undecidable in
general, but semi-decision procedures can be found for classes of systems with
cut-offs, i.e., where parameterized verification can be reduced to verification
of a system with a bounded number of components. They presented a semi-
decision procedure for token-ring networks, building on results by Emerson and
Namjoshi [8], which show that for the verification of parameterized token rings,
a cut-off of 5 is sufficient for a certain class of specifications. Following these
results, parameterized synthesis reduces to distributed synthesis in token rings
of (up to) 5 identical processes. To solve the resulting problem, a modification of
the SMT encoding of the distributed bounded synthesis problem [12] was used.

Experiments with the parameterized synthesis method [13] revealed that only
very small specifications could be handled with this encoding. For example, the
simple arbiter presented in the beginning can be synthesized in a few seconds for a
ring of size 4, which is the sufficient cut-off for this specification. However, synthe-
sis does not terminate within 2 hours for a specification that also excludes spurious
grants, in a ring of the same size. Furthermore, the previously proposed method
uses cut-off results of Emerson and Namjoshi [8] and therefore inherits a restricted
language support and cannot handle specifications in assume-guarantee style [3].

Contributions. We propose several optimizations for the parameterized syn-
thesis method, and extend the supported specification language. Some of the
optimizations apply to the bounded synthesis approach in general, others only
to special cases like isomorphic synthesis, or synthesis in token rings. In partic-
ular, we introduce two kinds of optimizations:

1. We revisit the previously proposed SMT encoding and tailor it to systems
with isomorphic processes and token ring architecture. We use a bottom-up
approach that models the global system as a product of isomorphic processes,
in contrast to the top-down approach used before. Also, we encode particular
properties of token rings more efficiently by restricting the class of solutions
without losing completeness.

2. We consider optimizations that are independent of the SMT encoding. This
includes incremental solving, i.e. generating isomorphic processes in small
rings and testing the result in bigger rings. Furthermore, we use modular
generation of synthesis constraints when different classes of properties can
be encoded in token rings of different sizes. For local properties (that require
a ring of size two), we introduce an abstraction that replaces the second
process with assumptions on its behavior, thus reducing the ring of size two to
a single process with additional assumptions on its environment. Finally, we
show how to simplify specifications by strengthening, e.g. removing liveness
assumptions from parts that specify safety properties.

For some of the examples we consider in this paper, these optimizations show a
speedup of at least 3 orders of magnitude, which means that we need seconds
where we would otherwise need hours.

110 A. Khalimov, S. Jacobs, and R. Bloem

To allow the reader to assess the ideas behind our optimizations, and their
correctness, we present in some detail the background of distributed synthe-
sis in Sect. 2, and parameterized synthesis with the original SMT encoding in
Sect. 3. In Sect. 4 we introduce optimizations of the SMT encoding. In Sect. 5,
we consider extensions of our language, which allow us to support a broader
class of specifications. Sect. 6 introduces more general optimizations that are
independent of the encoding, and finally Sect. 7 gives experimental results.

2 Preliminaries

We consider the synthesis problem for distributed systems, with specifications
in (fragments of) LTL. Given a system architecture A and a specification ϕ,
we want to find implementations of all system processes in A, such that their
composition satisfies ϕ.

Architectures. An architecture A is a tuple (P, env, V, I, O), where P is a finite
set of processes, containing the environment process env and system processes
P− = P \ {env}, V is a set of Boolean system variables, I = {Ii ⊆ V | i ∈ P−}
assigns a set Ii of Boolean input variables to each system process, and O =
{Oi ⊆ V | i ∈ P} assigns a set Oi of Boolean output variables to each process,
such that ·⋃

i∈POi = V . In contrast to output variables, inputs may be shared
between processes. Wlog., we use natural numbers to refer to system processes,
and assume P− = {1, . . . , k} for an architecture with k system processes.

Implementations. An implementation Ti of a system process i with inputs Ii
and outputs Oi is a labeled transition system (LTS) Ti = (Ti, ti, δi, oi), where Ti

is a set of states including the initial state ti, δi : Ti × P(Ii) → Ti a transition
function, and oi : Ti → P(Oi) a labeling function.

The composition of a set of implementations {T1, . . . , Tk} is the LTS TA =
(TA, t0, δ, o), with TA = T1 × · · · × Tk, initial state t0 = (t1, . . . , tk), labeling
function o : TA → P(·

⋃
1≤i≤kOi) with o(t1, . . . , tk) = o1(t1) ∪ · · · ∪ ok(tk), and

transition function δ : TA × P(Oenv) → TA with

δ((t1, . . . , tk), e) = (δ1(t1, (o(t1, . . . , tk)∪e)∩I1), . . . , δk(tk, (o(t1, . . . , tk)∪e)∩Ik)),

i.e., every process advances according to its own transition function and input
variables, where inputs from other system processes are interpreted according to
the labeling of the current state.

Asynchronous Systems. An asynchronous system is an LTS such that in ev-
ery transition, only a subset of the system processes changes their state. This is
decided by a scheduler, which determines for every transition the processes that
are allowed to make a step. We assume that the environment is always sched-
uled, and the scheduler is a part of the environment. Formally, Oenv contains
additional scheduling variables s1, . . . , sk, and si ∈ Ii for every i. We require
δi(t, I) = t for any i and set of inputs I with si �∈ I.

Token Rings. We consider a class of architectures called token rings, where
processes can only communicate by passing a token. At any time only one process

Towards Efficient Parameterized Synthesis 111

can possess the token, and in a ring of size k, a process i which has the token can
pass it to process i+1 mod k by raising an output sendi ∈ Oi∩ Ii+1. We assume
that token rings are implemented as asynchronous systems, where in every step
only one system process may change its state, except for token-passing steps, in
which both of the involved processes change their state.

Distributed Synthesis. The distributed synthesis problem for an architecture
A and specification ϕ, is to find implementations for the system processes of A,
such that the composition of the implementations T1, . . . , Tk satisfies ϕ, written
A, (T1, . . . , Tk) |= ϕ. Specification ϕ is realizable with respect to an architecture
A if such implementations exist. Synthesis and checking realizability of LTL
specifications have been shown to be undecidable for architectures in which not
all processes have the same information wrt. environment outputs [10].

Bounded Synthesis. The bounded synthesis problem for given architecture
A, specification ϕ and a family of bounds {bi ∈ N | i ∈ P−} on the size of
system processes, as well as a bound bA for their composition TA, is to find
implementations Ti for the system processes such that their composition TA
satisfies ϕ, with |Ti| ≤ bi for all process implementations, and |TA| ≤ bA.

Automata. A universal co-Büchi tree automaton (UCT) is a tuple U = (Σ, Υ,Q,
ρ, α), where Σ is a finite output alphabet, Υ is a finite input alphabet, ρ : Q ×
Σ×Υ → P(Q) is the transition relation, and α is the set of rejecting states. We
call U a one-letter UCT if |Σ| = |Υ | = 1. A one-letter UCT is accepting if all its
paths visit α only finitely often. The run graph of a UCT U on an implementation
T is a one-letter UCT obtained by taking the usual synchronous product and
replacing all labels by an arbitrary one. An implementation is accepted if its run
graph is accepting. The language of U consists of all accepted implementations.
In the graph defined by Q and δ, we call a strongly connected component (SCC)
accepting (rejecting) if it does not (does) contain states in α.

3 Parameterized Synthesis

In this section we recapitulate the method for parameterized synthesis introduced
by Jacobs and Bloem [13].

Parameterized Architectures and Specifications. Let A be the set of all
architectures. A parameterized architecture is a function Π : N → A. A parame-
terized token ring is a parameterized architecture R with
R(n) = (Pn, env, V n, In, On), where
– Pn = {env, 1, . . . , n},
– In assigns to each process a set Ii of isomorphic inputs. That is, for some

I, Ii consists of the inputs in I subscripted with i. Additionally, Ii contains
the token-passing input sendi−1 from process i− 1 (mod n).

– Similarly, On assigns isomorphic, indexed sets of outputs to all system pro-
cesses, with sendi ∈ Oi, and every output of env is indexed with all values
from 1 to n.

112 A. Khalimov, S. Jacobs, and R. Bloem

1

2

3

4

r1

g1

send1

r2

g2

send2

r3

g3

send3

r4

g4

send4

Fig. 1. Token ring with 4 processes

A parameterized specification ϕ is an LTL specification with indexed variables,
and universal quantification over indices. We say that a parameterized architec-
ture Π and a process implementation T satisfy a parameterized specification
(written Π, T |= ϕ) if for any n, Π(n), (T , . . . , T) |= ϕ.

Example 1. Consider the parameterized token ring Rarb with
Rarb(n) = (Pn, env, V n, In, On), where

Pn = {env, 1, . . . , n}
V n = {r1, . . . , rn, g1 . . . , gn, send1, . . . , sendn}
Ii = {ri, sendi−1}
Oenv = {r1, . . . , rn}
Oi = {gi, sendi}

The architecture Rarb(n) defines a token ring with n system processes, with each
process i receiving an input ri from the environment and another input sendi−1

from the previous process in the ring, and an output sendi to the next process,
as well as an output gi to the environment.

An instance of this parameterized architecture for n = 4 is depicted in Fig. 1,
and the following is the parameterized specification from the introduction:

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi).

Isomorphic and Parameterized Synthesis. The isomorphic synthesis prob-
lem for an architecture A and a specification ϕ is to find an implementation
T for all system processes (1, . . . , k) such that A, (T , . . . , T) |= ϕ, also written
A, T |= ϕ. The parameterized synthesis problem for a parameterized architecture
Π and a parameterized specification ϕ is to find an implementation T for all sys-
tem processes such that Π, T |= ϕ. The parameterized (isomorphic) realizability
problem is the question whether such an implementation exists.

A cut-off for Π and ϕ is a number k ∈ N such that

Π(k), T |= ϕ ⇒ Π(n), T |= ϕ for all n ≥ k.

Towards Efficient Parameterized Synthesis 113

3.1 Reduction of Parameterized to Isomorphic Synthesis

Emerson and Namjoshi [8] have shown that verification of LTL\X properties for
implementations of parameterized token rings can be reduced to verification of a
small ring with up to five processes, depending on the form of the specification.

Theorem 1 ([8]). Let R be a parameterized token ring, T an implementation
of the isomorphic system processes that ensures fair token passing, and ϕ a
parameterized specification. For a sequence t of index variables and terms in
arithmetic modulo n, let f(t) be a formula that only refers to system variables
indexed by terms in t. Then,

R, T |= ϕ ⇐⇒ R(k), T |= ϕ for 1 ≤ k ≤ n,

where n is a cut-off depending on the specification: (a) if ϕ = ∀i. f(i), then
n = 2; (b) if ϕ = ∀i. f(i, i + 1), then n = 3, (c) if ϕ = ∀i �= j. f(i, j), then
n = 4, and (d) if ϕ = ∀i �= j. f(i, i+ 1, j), then n = 5. 1

Thus, verification of such structures is decidable. For synthesis, we obtain the
following corollary:

Corollary 1 ([13]). For a given parameterized token ring R and parametric
specification ϕ, parameterized synthesis can be reduced to isomorphic synthesis
in rings of size 2 (3, 4, 5) for specifications of type a) (b, c, d, resp.).

Using a modification of undecidability proofs for the distributed synthesis prob-
lem [16,10], Jacobs and Bloem [13] showed undecidability of isomorphic synthesis
in token rings, which implies undecidability of parameterized synthesis.

3.2 Bounded Isomorphic Synthesis

The reduction from Sect. 3.1 allows us to reduce parameterized synthesis to
isomorphic synthesis with a fixed number of processes. To solve the resulting
problem, bounded synthesis is adapted for isomorphic synthesis in token rings.

Bounded Synthesis. Following [12], the bounded synthesis procedure consists
of three steps:

1. Automata translation. The LTL specification ϕ (including fairness as-
sumptions like fair scheduling) is translated into a UCT U which accepts an
LTS T iff T satisfies ϕ.

2. SMT Encoding. Existence of an LTS which satisfies ϕ is encoded into a
set of SMT constraints over the theory of integers and free function symbols.
States of the LTS are represented by natural numbers, state labels as free

1 The results of [8] allow to fix one of the indices in the specification. For ∀i. f(i) it
is enough to verify the property f(0) under the assumption that initially the token
is given to a randomly chosen process. For ∀i �= j. f(i, j) it is enough to verify
∀j �= 0. f(0, j). See Lemma 3 in [8].

114 A. Khalimov, S. Jacobs, and R. Bloem

functions of type N → B, and the global transition function as a free function
of type N × B

|Oenv | → N. To obtain an interpretation of these symbols
that satisfies the specification ϕ, we introduce labels λB

q : N → B and free

functions λ#
q : N → N, which are defined such that (i) λB

q (t) is true iff the
product of T and U contains a path from an initial state to a state (t, q)
with q ∈ Q and (ii) valuations of the λ#

q must be non-decreasing along paths
of U , and strictly increasing for transitions that visit a rejecting state of
U . This ensures that an LTS satisfying these constraints cannot have runs
which enter rejecting states infinitely often. The corresponding constraint
for an UCT (Σ, Υ,Q, ρ, α) and an implementation (T, t, δ, o) is

∧

t

∧

I

∧

q,q′
λB

q (t) ∧ q′ ∈ ρ(q, o(t), I) → λB

q′ (δ(t, I)) ∧ λ#
q′ (δ(t, I))�q λ

#
q (t), (1)

where �q equals > if q ∈ α, and �q equals ≥ otherwise. Furthermore, we
add a constraint that λB holds in the initial state of the run graph.
Finally, transition functions of individual processes are defined indirectly by
introducing projections di : N → N, mapping global to local states. To
ensure that local transitions of process i only depend on inputs in Ii, we add
a constraint

∧

i

∧

t,t′

∧

I,I′
di(t) = di(t

′) ∧ I ∩ Ii = I ′ ∩ Ii → di(δ(t, I)) = di(δ(t
′, I ′)). (2)

3. Iteration for Increasing Bounds. To obtain a decidable problem, the
number of states in the LTS that we are looking for is bounded, which
allows us to instantiate all quantifiers over state variables t, t′ explicitly with
all values in the given range. If the constraints are unsatisfiable for a given
bound, we increase it and try again. If they are satisfiable, we obtain a model,
giving us an implementation for the system processes such that ϕ is satisfied.

Adaption to Token Rings. The bounded synthesis approach is adapted for
synthesis in token rings, along with some first optimizations for a better perfor-
mance of the synthesis method.2

– We want to obtain an asynchronous system in which the environment is
always scheduled, along with exactly one system process. In general, we
could add a constraint

∧
i

∧
I si �∈ I → di(δ(t, I)) = di(t) (where I is a set

of inputs and si is the scheduling variable for process i). For our case, we do
not need |P | scheduling variables, but can encode the index of the scheduled
process into a binary representation with log2(|P−|) inputs.

– We use the semantic variation where environment inputs are not stored in
system states, but are directly used in the transition term that computes the
following state (cp. [12], Sect. 8). This results in an implementation which
is a factor of |Oenv| smaller.

2 This includes modifications and optimizations mentioned in [12], as well as [13].

Towards Efficient Parameterized Synthesis 115

– We encode the special features of token rings: i) Exactly one process should
have the token at any time; ii) Only a process which has the token can send
it; iii) If process i is scheduled, currently has the token, and wants to send
it, then in the next state process i+1 has the token and process i does not;
iv) If process i has the token and does not send it (or is not scheduled), it
also has the token in the next state, and v) if process i does not have the
token and does not receive it from process i − 1, then it will also not have
the token in the next step. Properties ii) – v) are encoded in the following
constraints, where toki(di(t)) is true in state t iff process i has the token,
send(di(t)) is true iff i is ready to send the token, and schedi(I) is true iff
the scheduling variables in I are such that process i is scheduled:

∧
i

∧
t

∧
I tok(di(t)) → (send(di(t)) ∧ schedi(I)) ∨ tok(di(δ(t, I)))∧

i

∧
t ¬tok(di(t)) → ¬send(di(t))∧

i

∧
t

∧
I send(di(t)) ∧ schedi(I) → ¬tok(di(δ(t, I)))∧

i

∧
t

∧
I send(di−1(t)) ∧ schedi−1(I) → tok(di(δ(t, I)))∧

i

∧
t

∧
I ¬tok(di(t)) ∧ ¬(send(di−1(t)) ∧ schedi−1(I)) → ¬tok(di(δ(t, I))).

(3)
We do not encode property i) directly, because it is implied by the remaining
constraints whenever we start in a state where only one process has the token.

– Token passing is an exception to the rule that only the scheduled process
changes its state: if process i is scheduled in state t, and both tok(di(t)) and
send(di(t)) hold, then in the following transition both processes i and i + 1
will change their state. The constraint which ensures that only scheduled
processes may change their state is modified into

∧
i

∧
t

∧
I ¬schedi(I) ∧ ¬(schedi−1(I) ∧ tok(di−1(t)) ∧ send(di−1(t)))
→ di(δ(t, I)) = di(t).

(4)

– We use isomorphism constraints to encode that the processes are identical.
To this end, we use the same function symbols for state labels of all system
processes, and restrict local transitions such that they result in the same local
state whenever the previous local states and the visible inputs are equivalent.
Since our definition allows processes that are not scheduled to receive the
token, we add a rule for this special case. The resulting constraints for local
transitions are:

∧
i>1

∧
t,t′

∧
I,I′ d1(t) = di(t

′) ∧ sched1(I) ∧ schedi(I
′) ∧ I ∩ I1 = I ′ ∩ Ii

→ d1(δ(t, I)) = di(δ(t
′, I ′))

∧
i>1

∧
t,t′

∧
I,I′ d1(t) = di(t

′) ∧ send(dn(t)) ∧ send(di−1(t
′))

∧ schedn(I) ∧ schedi−1(I
′) ∧ I ∩ I1 = I ′ ∩ Ii

→ d1(δ(t, I)) = di(δ(t
′, I ′)).

(5)
– Finally, a precondition of Thm. 1 is that the implementation needs to en-

sure fair token-passing. Let fair scheduling stand for
∧

j GF schedj . Then, we
always add ∧

i

(fair scheduling → (G(toki → F sendi))) (6)

116 A. Khalimov, S. Jacobs, and R. Bloem

0

1 ⊥ 2

3 5 46

r1g1 g1g2 r2g2

∗

s1g1

s1g1
s2g1

s2g1

s1g1s2g1 s2g2s1g2

s1g2
s2g2s1g2

s2g2

7 8

9 11 1012

tok1send1 tok2send2

s1send1

s1send1
s2send1

s2send1

s1send1s2send1 s2send2s1send2

s1send2
s2send2s1send2

s2send2

Fig. 2. Universal co-Büchi automaton for Example 2 for two processes

to ϕ. Similarly, the fair scheduling assumption needs to be added to any
liveness conditions of the specification, as without fair scheduling in general
liveness conditions cannot be guaranteed.
Note that these additional formulas need not be taken into account when
choosing which case of Thm. 1 needs to be applied.

Example 2. To synthesize an implementation of the simple arbiter from Exam-
ple 1, we first add constraints for fair scheduling and fair token-passing. The
resulting specification is

∀i �= j. G¬(gi ∧ gj)
∀i. fair scheduling → (G(ri → F gi))
∀i. fair scheduling → (G(toki → F sendi)).

For a ring of two processes, this specification translates to the co-Büchi automa-
ton shown in Fig. 2. This automaton is encoded into a set of SMT constraints,
part of which is shown in Fig. 3 (only constraints for states 0, 1, 3, 5 of the au-
tomaton are shown). These constraints, together with general constraints for
asynchronous systems, isomorphic processes, token rings, and size bounds, are
handed to the SMT solver.

Correctness and Completeness of Bounded Synthesis for Token Rings.
For a specification ϕ that is realizable in a token ring of size n, the given semi-
algorithm will eventually find an implementation satisfying ϕ in token rings of

Towards Efficient Parameterized Synthesis 117

λB

0(0)
tok(d1(0)) ∧ ¬tok(d2(0))

∀t. ∀I. λB

0(t) → λB

0(δ(t, I)) ∧ λ#
0 (δ(t, I)) ≥ λ#

0 (t)
∀t. λB

0(t) → ¬(g(di(t)) ∧ g(dj(t)))

∀t. ∀I. λB

0(t) ∧ r1 ∈ I → λB

1(δ(t, I)) ∧ λ#
1 (δ(t, I)) > λ#

0 (t)

∀t. ∀I. λB

1(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

3(δ(t, I)) ∧ λ#
3 (δ(t, I)) ≥ λ#

1 (t)

∀t. ∀I. λB

1(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(δ(t, I)) ∧ λ#
5 (δ(t, I)) ≥ λ#

1 (t)

∀t. ∀I. λB

3(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

3(δ(t, I)) ∧ λ#
3 (δ(t, I)) ≥ λ#

3 (t)

∀t. ∀I. λB

5(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(δ(t, I)) ∧ λ#
5 (δ(t, I)) ≥ λ#

5 (t)

∀t. ∀I. λB

5(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

1(δ(t, I)) ∧ λ#
1 (δ(t, I)) > λ#

5 (t)
.

Fig. 3. Constraints for Example 2 for two processes

size n. If ϕ furthermore falls into one of the classes described in Theorem 1, then
the implementation will satisfy ϕ in token rings of arbitrary size.

4 Optimizations of the Encoding

In this section, we describe a first set of optimizations that make synthesis sig-
nificantly more efficient. We consider the encoding of the problem into SMT
constraints, and aim to remove as much decision freedom from the SMT solver
as possible. All optimizations presented in this section are sound and complete.
Optimization of counters was introduced in [12,7] and applies to bounded syn-
thesis in general. Bottom-up encoding is possible in general (to some extent),
but will be most useful for isomorphic systems. Finally, fixed token function is
an optimization specific to token rings (or token-passing systems in general).

Counters. As mentioned in Sect. 3, labeling functions λ# count the visits to
rejecting states, and a satisfying valuation for them exists only if all run paths
visit rejecting states only finitely often. In a run path, a repeated visit to the same
rejecting state is possible only if the path stays in an SCC of the specification
UCT U . Therefore, we can reduce the number of λ# annotations by introducing
them only for states of U that are in a rejecting SCC. This optimization reduces
the number of counters as well as their maximum value significantly.

Example 3. In the simple arbiter, this optimization means that we do not need
λ# annotations in the initial state. The benefit becomes more visible in a full
arbiter, which in addition requires that there are no spurious grants and that
every grant is lowered eventually. A simplified UCT for such a specification is
given in Fig.4. Besides mutual exclusion of the grants, this presentation of the
UCT only shows the constraints for arbiter i. In the figure, si stands for schedi
and ai = schedi ∨ sendi−1 means the process is active and can react to the
environment input. Note that the SCCs around states 2 and 3 only reject rings
with fair scheduling — they become larger when processes are added. For this
UCT, counters λ# are only needed for states 3, 6, 8, 2, 5, and 7.

118 A. Khalimov, S. Jacobs, and R. Bloem

0 1 4

3

6

8

2

5

7

⊥ ⊥

∗

g1g2

airigi airigi

airigiairi gi

rigi rigi

airigi

airigi

sirigi

sirigi

sirigi

sirigi

sirigi

sirigi

sigi

sigi

sigi

sigi

sigi

sigi

Fig. 4. UCT of the full arbiter

Bottom-Up. In the original approach described in Sect. 3, the SMT solver
searches for a global transition function and projection functions di that satisfy
input dependence, scheduling, and isomorphism constraints (2)(4)(5). Instead,
we propose to go bottom-up: to search for a single process transition function
and build the global one from local ones. Thus, all the processes share the same
transition function symbol – this ensures their isomorphism, and constraints (5)
can be removed. Also, process transitions functions now depend only on cor-
responding to the process inputs, and we can safely remove constraints (2). In
addition, we wrap the transition function into an auxiliary function which calls
the original if the process is scheduled or receives the token, and otherwise re-
turns the current process state. This obviates the need for constraints (4).

λB

0(0, 1)
tok(0) ∧ ¬tok(1)

∀t1. ∀t2. ∀I1. ∀I2. λB

0(t1, t2) → λB

0(t
′
1, t

′
2)

∀t1. ∀t2. λB

0(t1, t2) → ¬(g(t1) ∧ g(t2))
∀t1. ∀t2. ∀I1. ∀I2. λB

0(t1, t2) ∧ r1 ∈ I1 → λB

1(t
′
1, t

′
2)

∀t1. ∀t2. ∀I1 .∀I2. λB

1(t1, t2) ∧ sched2 ∧ ¬g(t1) → λB

5(t
′
1, t

′
2) ∧ λ#

5 (t′1, t
′
2) ≥ λ#

1 (t1, t2)

∀t1. ∀t2. ∀I1 .∀I2. λB

5(t1, t2) ∧ sched2 ∧ ¬g(t1) → λB

5(t
′
1, t

′
2) ∧ λ#

5 (t′1, t
′
2) ≥ λ#

5 (t1, t2)

∀t1. ∀t2. ∀I1 .∀I2. λB

5(t1, t2) ∧ sched1 ∧ ¬g(t1) → λB

1(t
′
1, t

′
2) ∧ λ#

1 (t′1, t
′
2) > λ#

5 (t1, t2)

Fig. 5. Some of constraints for Example 2 for two processes using the Bottom-up
encoding and Counters optimizations; t′i = δ(ti, Ii), δ is a wrapped local transition

function; labeling functions changed its type: λ
#/B
q : N× N → N/B.

Similar approach that uses process transition functions explicitly was pro-
posed in [11], but they still keep projection functions and a global transition
function to describe the system. We removed these notions at all (see Fig. 5).

On the downside, this optimization does not allow us to bound the number
of global states independently of the number of local states as in the original
approach [13] or in [11] (and the number of global states is always equal to |T |n).

Towards Efficient Parameterized Synthesis 119

Fixed Token Function. In the original approach, possession of the token is
encoded by an uninterpreted function tok. We fix process states without/with
a token T¬tok/Ttok and define tok(t) := (t ∈ Ttok), thus exempting the SMT
solver from finding a valuation for tok. Fixing token possession functions has
two important consequences.

First, it allows us to precompute global states with exactly one token in a
ring. In case of 3 processes, global states are {(t∗, t, t) ∪ (t, t∗, t) ∪ (t, t, t∗)},
where t∗ ∈ Ttok, t ∈ T¬tok. Then we build main constraints (1) only for these
precomputed global states, and ignore other, invalid, global states. The system
cannot move into an invalid global state with number of tokens different from
one due to token ring constraints (3). In the original approach, invalid global
states constitutes most of the global state space, and ignoring them reduces
the state space significantly (exponentially in number of processes), leading to
smaller SMT queries.

The second consequence of fixing tok is a possible restriction of generality
of solutions. Different separations T¬tok/Ttok may lead to different solutions. In
general, systems with larger ratio p = |T¬tok|/|Ttok| have a larger global state
space, and processes without a token have more possibilities for transitions.
With a maximal p, the system is completely parallel, and a minimal p leads to
a sequential processing. The choice of p also affects the synthesis time because
it changes the number of global states and, therefore, the size of the query.

A related optimization is to use binary encoding for token possession and
sending that would automatically remove bad states from the consideration.

5 Extensions of Supported Language

Before introducing a second set of optimizations, we consider some extensions
of our specification language, enabling us to treat more interesting examples.
While the results of Emerson and Namjoshi [8] give us cut-offs that allow for
parameterized synthesis in principle, a closer inspection of examples from the
literature shows that the supported language is not expressive enough to handle
many of them. Consider the parameterized arbiter specification introduced by
Piterman, Pnueli and Sa’ar [15] with a specification of the form

Assume → Guarantee, where

Assume ≡
∧

i (ri ∧ G ((ri �= gi) → (ri = X ri)) ∧ G ((ri ∧ gi) → F ri))

Guarantee ≡
∧

i�=j (G¬(gi ∧ gj)) ∧
∧

i

⎛

⎝gi ∧

⎛

⎝
G((ri = gi) → (gi = X gi))

∧ G((ri ∧ gi) → F gi)
∧ G((ri ∧ gi) → F gi)

⎞

⎠

⎞

⎠ .

This specification points to three limitations in the language considered by Emer-
son and Namjoshi:

120 A. Khalimov, S. Jacobs, and R. Bloem

First, the conjunction over all processes in the assumption turns into a disjunc-
tion when we bring the formula into a prenex form. Disjunctions over processes
are however not supported by Emerson and Namjoshi. Second, this formula will
quantify over (at least) three independent variables, which is also not supported
in their framework. We will show that these two limitations can be effectively
overcome in token-rings by using more general results by Clarke et al. [5] on
network decomposition.

Finally, the specifications of Assume and Guarantee contain the X operator,
which is completely excluded from the language of both Emerson/Namjoshi and
Clarke et al. One may assume that one of the reasons for excluding the X operator
is that, in asynchronous distributed systems, the presence of a (fair but otherwise
arbitrary) scheduler can invalidate statements about the next state of a given
process by simply not scheduling it. We will make some observations about cases
where the usual X operator can still be used, and furthermore introduce a local
variant of the X operator, that takes scheduling of a process into account.

5.1 Network Decomposition for Token Rings

The results by Clarke et al. allow for specifications with both conjunctions and
disjunctions over all processes, and also allow an arbitrary number of index
variables. For checking a property φ in a token-passing network, the consider
decompositions into possible network topologies, where processes that are not
represented by an index in φ are replaced by so-called hubs which simply pass on
the token. A k-indexed property is a formula with arbitrary quantification that
refers to system variables of at most k different processes. Their main result is

Theorem 2 ([5]). For checking any k-indexed LTL\X property φ in token-
passing networks, it is sufficient to check φ on up to 3k(k−1)2k network topologies
of size up to 2k.

However, in general this result is not constructive, a suitable decomposition into
network topologies still needs to be found (for arbitrary network architectures).
For the case of token rings, it is easy to find the suitable decomposition: for every
number of processes n, there is only one ring of this size. Thus, Thm. 2 directly
implies that for any k-indexed property, it is sufficient to check it on rings of all
sizes up to 2k. We can even get a result that is a bit stronger (in that it does
not require to check small rings if we only consider rings of size > 2k):

Corollary 2. If φ is a k-indexed property and Π a parameterized token-ring
architecture, then 2k is a cut-off for φ.

Proof. Suppose φ holds in a ring of size 2k, but not in some bigger ring. This
means that there is a tuple (p1, . . . , pk), or a set of such tuples, such that for this
combination of processes, φ is not satisfied. Using the terminology of Clarke et
al., each of these tuples defines a network topology, by abstracting processes that
are not in the tuple into hubs, where all neighboring processes are abstracted into
one hub. By Clarke et al., every network with the same topology will not satisfy

Towards Efficient Parameterized Synthesis 121

φ. Since the size of this network topology is at most 2k (hubs and processes pi
alternating), we can find tuples of processes with the same topology in the ring
of size 2k. Thus, φ cannot hold in the ring of size 2k. Contradiction. ��

With this result, parameterized synthesis in token rings can be extended to
include specifications with an arbitrary number of quantified variables, and ar-
bitrary quantifier alternations.

5.2 Handling the X Operator

In the example given above, all X operators are used in a way that forbids
change as long as some conditions hold. We note that this special usage of the
X operator is not a problem when we use this specification in asynchronous
distributed systems, for two reasons:

1. In this use case, X operators do not make the specification unrealizable
because of the scheduling. Indeed, the environment cannot simply invalidate
the property by not scheduling the process, since it will trivially hold in the
next step if the process controlling the output does not change it.

2. Cut-off results we use holds for LTL\X, but they still hold for this specifi-
cation, since we can always rewrite such usage of X operators into a form
without X: G(ϕ → p = X p) ⇔ G(ϕ → pW ¬ϕ) ∧ G(ϕ → ¬pW ¬ϕ).

In addition to this special usage of the usual X operator, we can consider exam-
ples with a local variant Xi useful for specifying Globally Asynchronous Locally
Synchronous [4] systems. The local Xi specifies the next state from the perspec-
tive of process i,

Xi pi ⇔ F(schedi ∧ X pi).

Obviously, this operator is insensitive to scheduling (in the sense that the en-
vironment cannot invalidate properties by not scheduling the process). Further-
more, all our cut-off results still hold for specifications that are conjunctions
ϕ1 ∧ . . . ∧ ϕn, if we allow Xi to appear only in local properties ϕi.

6 General Optimizations

In this section we describe high-level optimizations that are not specific to
the SMT encoding. The first two optimizations, incremental solving and mod-
ular generation of constraints, are sound and complete. The third, specification
strengthening, is based on automatic rewriting of the specification and introduces
incompleteness. The last optimization, hub abstraction is sound and complete.

Modular generation of constraints and specification strengthening apply to
bounded synthesis (although the first is particularly useful for parameterized
synthesis), while incremental solving only applies to parameterized synthesis.
Hub abstraction is specific to token-passing systems.

122 A. Khalimov, S. Jacobs, and R. Bloem

Incremental Solving. Corollary 2 states that it is sufficient to synthesize a
token ring of size 2k for k-indexed properties. However, a solution for a smaller
number of processes can still be correct in bigger rings. We propose to proceed
incrementally, synthesizing first a ring of size 1, then 2, etc., up to 2k. After
synthesizing a process that works in a ring of size n, we check whether it satisfies
the specification also in a ring of size n + 1. Only if the result is negative, we
start the computationally much harder task to synthesize a ring of size n+ 1.

Modular Generation of Constraints for Conjunctive Properties. A very
useful property of the SMT encoding for parameterized synthesis is that we can
separate conjunctive specifications into their parts, generate constraints for the
parts separately, and finally search for a solution that satisfies the conjunction of
all constraints. In the following, for a parametric specification ϕ and a number of
processes k, let C(ϕ, k) be the set of SMT constraints generated by the bounded
synthesis procedure (for a fixed parameterized architecture Π).

We start from the following observation: let ϕ1∧ϕ2 be a parametric specifica-
tion, Π a parameterized architecture, T a process implementation. If Π, T |= ϕ1

and Π, T |= ϕ2, then Π, T |= ϕ1 ∧ ϕ2. While this may seem trivial, when com-
bined with Thm. 1 and Cor. 1, we obtain the following3

Theorem 3. Let Π be a parameterized architecture and ϕ1 ∧ ϕ2 a parametric
specification, s.t. n1 is a cut-off for ϕ1, and n2 a cut-off for ϕ2 in Π. Then,

T |= C(ϕ1, n1) ∧ C(ϕ2, n2) ⇒ Π(k), T |= ϕ1 ∧ ϕ2 for k ≥ max(n1, n2).

In parameterized synthesis, this not only allows us to use separate sets of con-
straints to ensure different parts of the specification, but also to use different
cut-offs for different parts. By conjoining the resulting constraints of all parts,
we obtain an SMT problem s.t. any solution will satisfy the complete specifica-
tion. For a specification like

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi),

this allows us to separate the global safety condition from the local liveness
condition. Then, only for the former we need to generate constraints for a ring
of size 4, while for the latter a ring of size 2 is sufficient. This is particularly
useful for specifications where the local part is significantly more complex than
the global part, like our more complex arbiter examples.

Specification Strengthening. To simplify the specification in assume-
guarantee style, we remove some of its assumptions with two rewriting steps.
These steps are sound but incomplete, and lead to more robust specifications.

Consider a specification in assume-guarantee style AL∧AS → GL ∧GS with
liveness and safety assumptions and guarantees. Our first strengthening is based
on the intuition that in practice AL is not needed to obtain GS , so we strengthen

3 Note that, in a slight abuse of notation, we use T both for the model of the SMT
constraints, and for the implementation represented by this model.

Towards Efficient Parameterized Synthesis 123

the formula to (AS → GS) ∧ (AL ∧ AS → GL). This step is incomplete for
specifications where the system can falsify liveness assumptions AL and therefore
ignore guarantees, or if the assumptions AS ∧ AL are unrealizable but AS is
realizable. We assume that such cases are not important in practice4.

Our second strengthening “localizes” assumptions and guarantees. Consider
a 2-indexed specification in assume-guarantee style:

∧
iAi →

∧
j Gj . Adding

assumptions on fairness of scheduling and token ring guarantees, we get:
∧

i GF schedi ∧ Ai →
∧

j Gj∧
i GF schedi ∧ Ai →

∧
j TRj

where TRj are token ring constraints (3), Ai, Gj are assumptions and guarantees
referring only to a single process5. The truth of ∧jTRj implies the truth of fair
token passing ∧j GF tokj , therefore we can add it as an assumption to the first
line (logically equivalent to the original specification). After that we “localize”
the specification by letting every implication only refer to one process (sound,
but incomplete) and get the final strengthened specification:

∧
i(GF schedi ∧ Ai ∧ GF toki → Gi)∧
i(GF schedi ∧ Ai → TRi)

The second step, where we add ∧i GF toki as an assumption to the first con-
straint, is crucial. Otherwise, the final specification becomes too restrictive and
we may miss solutions. The reason why GF toki may prevent this is that GF toki
may work as a local trigger of a violation of an assumption. This is confirmed
in the “Pnueli” arbiter experiment, where a violation of one of the assumptions
Ai prevents fair token passing in the ring, falsifying GF tokj for all j �= i.

Filiot et al. in [9] proposed a rewriting heuristic which is essentially a lo-
calization step mentioned above. Our version is slightly different since we add
GF toki assumptions before localization to prevent missing the solutions.

These two strengthenings may change the type, and hence the cut-off, of a
specification. For example, after strengthening, the “Pnueli” arbiter specifica-
tion changes its type from 3-indexed to 2-indexed. Furthermore, most properties
become local, and can be efficiently synthesized with the following optimization.

Hub-Abstraction. From Clarke et al. [5] it follows that checking local proper-
ties in a token ring is equivalent to checking properties of one process in a ring
of size 2, while the second process is a hub process which is only required to pass
tokens it receives. Instead of introducing an explicit hub process, we model its
behavior with environment assumptions Ahub for the first process: i) if the pro-
cess does not have the token, then the environment will finally send the token,
ii) if the process has the token, then the environment can not send the token:

G(¬tok → F sendhub)
G(tok → ¬ sendhub).

4 For example, well known class of GR1 specifications [3] used to describe some indus-
trial systems does not use liveness assumptions for safety guarantees. Specifications
with unrealizable assumptions likely contain designer errors.

5 This can be generalized to k-indexed assumptions and guarantees.

124 A. Khalimov, S. Jacobs, and R. Bloem

We add the hub assumptions Ahub above to the original specification and syn-
thesize a single process. Therefore the final property to synthesize becomes:

GF sched ∧ A ∧ Ahub → G ∧ TR.

This property is equivalent to the original one, that is, the abstraction step is
sound and complete. The abstracted property is more complex than the original
one, but it can be synthesized in a single process setting. Therefore we trade size
of a token ring to be synthesized for the size of the specification.

We can go further and replace GF sched with true, which can introduce un-
soundness in general. But this step is still sound for the class of specifications
mentioned in Sect. 5.2, where the environment cannot violate guarantees by not
scheduling the process. This is true for all examples we consider in this paper,
and a reasonable assumption for many asynchronous systems.

7 Experiments

For the evaluation of optimizations we developed an automatic parameterized
synthesis tool that 1) identifies the cut-off of a given LTL specification 2) adds
token ring constraints and fair scheduling assumptions to the specification 3)
translates the modified specification into a UCT using LTL3BA [1] 4) for a
given cut-off and model size bound encodes the automaton into SMT constraints
5) solves the constraints using SMT solver Z3 v.4.1 [6]. If the solver reports
unsatisfiability, then no model for the current bound exists, and the tool goes to
step 4 and increases the bound until the user interrupts execution or a model is
found. A model synthesized represents a Moore machine that can be cloned and
stacked together into a token ring of any size.

We have run our experiments on a single core of a Linux machine with two
4-core 2.66 GHz Intel Xeon processors and 64 GB RAM. Reported times in
tables include all the steps of the tool. For long running examples, SMT solving
contributes most of the time.

For the evaluation of optimizations we run the tool, with different sets of
optimizations enabled, on three examples: a simple arbiter, a full arbiter, and a
“Pnueli” arbiter. We show solving times in seconds in Table 1 and Table 2. The
horizontal axis of the table has columns for token rings of different sizes – up to
a cut-off size – 4 for simple and full arbiters, and 6 for “Pnueli” arbiter.

7.1 Encoding Optimizations

Each successive optimization below includes previous optimizations as well.

Original. The implementation of the original version is described in Sect. 3. It
starts with a global transition function and uses projection functions and SMT
constraints to specify the underlying architecture and isomorphism of processes.

Counters. We use SCC-based counters for rejecting states, minimizing the nec-
essary annotations of our implementations.

Towards Efficient Parameterized Synthesis 125

Table 1. Effect of encoding optimizations on synthesis time (in seconds, t/o=2h)

simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnueli5/6

original 11 t/o t/o t/o 52 t/o t/o t/o
counters 8 2316 t/o t/o 19 t/o t/o t/o
bottom-up 3 24 934 t/o 23 6737 t/o t/o
fixed tok function 1 2 28 327 7 252 5691 t/o

total speedup 11 ≥103 ≥102 ≥20 7 ≥30 ≥1.5 -

Bottom-Up. In this version we use the same local transition and output symbols
for all the processes. The significant speedup (two orders of magnitude for full2)
is caused by two factors: the number of unknowns gets smaller (we don’t need
projection functions) and the size of SMT query becomes smaller (no need for
constraints (2),(4),(5)).

Fixed Token Function. In this version SMT queries contain constraints only
for global states with exactly one token in a ring. It is possible because we
hard-code tok by dividing a process state space into two equal sets of states
without/with a token (1/2 in case of 3 states). Similar to the previous, this
optimization is efficient because it reduces the size of SMT queries and the
number of unknowns.

In all experiments, constraints were encoded in AUFLIA logic. We also tried
bitvector and real number encodings, but with no considerable speed-up.

7.2 General Optimizations

Each successive optimization below includes previous optimizations except Fixed
token function, since it is not clear how to divide process state space in a general
way. As a “non-optimized” reference version we use bottom-up implementation.

Incremental Solving. Solving times can be sped up considerably by synthesiz-
ing a ring of size 2, and checking whether the solution is correct for a ring of size
4. For instance, for the full arbiter, the general solution is found in 24 seconds
when synthesizing a ring of size 2 (time from the “bottom-up” row in Table 1).
Checking that the solution is correct for a ring of size 4 takes additional 30 sec-
onds, thus reducing the synthesis time from more than 2 hours to 54 seconds.
Times for incremental solving are not given in the table.

Strengthening. This version refers to two optimizations described in Sect. 6
- localizing of assume-guarantee properties and removing liveness assumptions
from properties with safety guarantees. Specification rewriting works very well,
significantly reducing the size of the specification automaton: for example, the
automaton corresponding to the “Pnueli” arbiter in a ring of size 4 after rewriting
reduces its size from 1700 to 31 nodes (from 41 to 16 for the full arbiter). Also,
this optimization changes the cut-off from 6 to 4 for the “Pnueli” arbiter. We left
token rings of size 5/6 in rows below to demonstrate scalability of optimizations.

126 A. Khalimov, S. Jacobs, and R. Bloem

Table 2. Effect of general optimizations on synthesis time (in seconds, t/o=2h)

simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnueli5 pnueli6

bottom-up 3 24 934 t/o 23 6737 t/o t/o t/o
strengthening 1 6 81 638 2 13 90 620 6375
modular 1 4 8 13 2 4 11 49 262
async hub 1 2 2 5 2 3 9 37 236
sync hub 1 1 2 4 2 3 8 42 191

total speedup 3 20 102 ≥103 10 103 ≥103 ≥102 ≥40

Modular. In this version, constraints for specifications of the form φi ∧φi,j are
generated separately for local properties φi and for global properties φi,j , using
the same symbols for transition and output functions. Constraints for φi are
generated for a ring of size 2, and constraints for φi,j for a ring of size 4. These
sets of constraints are then conjoined in one query and fed to the SMT solver.
Such separate generation of constraints leads to smaller automata and queries,
resulting in approximately 10x speed up.

Hub Abstractions. By replacing one of the processes in a ring of size 2 with
assumptions on its behavior, we reduce the synthesis of a ring of size two to
the synthesis of a single process. In row “async hub” the process is synthesized
in an asynchronous setting, while in row “sync hub” the process is assumed to
be always scheduled. The results do not show a considerable speed up, but this
optimization might work in cases of larger specifications.

Remarks. It should be noted that our set of experiments is relatively small, and
that SMT solvers are sensitive to small changes in the input. Thus, the experi-
ments would certainly benefit from a larger set of benchmarks, and the individual
comparison of any two numbers in the table should be taken with a grain of salt.
At the same time, the table shows a clear and significant improvement of the
solving time when all optimizations are turned on.

8 Conclusions

We showed how optimizations of the SMT encoding, along with modular ap-
plication of cut-off results, strengthening and abstraction techniques, leads to
a significant speed-up of parameterized synthesis. Experimental results show
speed-ups of more than three orders of magnitude for some examples. We also
showed that using the X operator does not necessarily break cut-off results or
make the specification unrealizable in an asynchronous setting. Finally, we ap-
plied cut-off results from verification of general token passing systems [5] to
synthesis in token rings, thus extending the specification language that the pa-
rameterized synthesis method [13] can handle.

The current bottleneck of SMT-based bounded (and thus, parameterized) syn-
thesis is the construction of the UCT automaton. In our experiments, LTL3BA

Towards Efficient Parameterized Synthesis 127

could not generate the UCT for an AMBA arbiter with only 1 client within two
hours. Therefore, we think that it will be important to develop techniques that
help us to avoid construction of the whole automaton (for example by separate
tracking of assumptions and guarantees violations, as in [7]).

Acknowledgments. We thank Helmut Veith for inspiring discussions on pa-
rameterized systems, Bernd Finkbeiner and Sven Schewe for discussions on dis-
tributed and bounded synthesis, and Leonardo de Moura for help with Z3.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Trans-
lation: Fast and More Deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

2. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY – A New Requirements Analysis Tool with
Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 425–429. Springer, Heidelberg (2010)

3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78, 911–938 (2012)

4. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis,
Stanford Univ., CA (1984)

5. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decom-
position. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Ehlers, R.: Symbolic bounded synthesis. Formal Methods in System Design 40,
232–262 (2012)

8. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. International Journal
of Foundations of Computer Science 14, 527–549 (2003)

9. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

10. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Logic in Computer
Science (LICS), pp. 321–330. IEEE Computer Society Press (2005)

11. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Proc.
Workshop on Automated Formal Methods, pp. 69–76. ACM (2007)

12. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. on Software Tools for Tech-
nology Transfer, 1–21 (2012)

13. Jacobs, S., Bloem, R.: Parameterized Synthesis. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

14. Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using
Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

15. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

16. Pnueli, A., Rosner, R.: Distributed systems are hard to synthesize. In: Foundations
of Computer Science (FOCS), pp. 746–757. IEEE Computer Society Press (1990)

	Towards Efficient Parameterized Synthesis
	Introduction
	Preliminaries
	Parameterized Synthesis
	Reduction of Parameterized to Isomorphic Synthesis
	Bounded Isomorphic Synthesis

	Optimizations of the Encoding
	Extensions of Supported Language
	Network Decomposition for Token Rings
	Handling the `3́9`42`"̇613A``45`47`"603AX Operator

	General Optimizations
	Experiments
	Encoding Optimizations
	General Optimizations

	Conclusions
	References

