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Abstract. dpll(t) is a central algorithm for Satisfiability Modulo The-
ories (smt) solvers. The algorithm combines results of reasoning about
the Boolean structure of a formula with reasoning about conjunctions
of theory facts to decide satisfiability. This architecture enables modern
solvers to combine the performance benefits of propositional satisfiabil-
ity solvers and conjunctive theory solvers. We characterise dpll(t) as
an abstract interpretation algorithm that computes a product of two ab-
stractions. Our characterisation allows a new understanding of dpll(t)
as an instance of an abstract procedure to combine reasoning engines
beyond propositional solvers and conjunctive theory solvers. In addition,
we show theoretically that the split into Boolean and theory reasoning
is sometimes unnecessary and demonstrate empirically that it can be
detrimental to performance.

1 Introduction

The previous decade has witnessed the development of efficient solvers for decid-
ing satisfiability of formulae in a wide range of logical theories. The development
of these Satisfiability Modulo Theory (smt) solvers can be understood as a conse-
quence of three advances. Two advances are improvements in the performance of
solvers for Boolean satisfiability, and for the conjunctive fragments of first-order
theories such as equality with uninterpreted functions [12], difference logic [20],
or linear rational arithmetic [10]. The third advance is dpll(t), an algorithm
that efficiently combines the strengths of propositional sat solvers and conjunc-
tive theory solvers to decide satisfiability of a theory formula [12].

We explain the principles of dpll(t) with an example. A satisfiability checker
for the formula ϕ below has to reason about Boolean combinations of equality
constraints.

ϕ =̂(x = y ∨ y �= z) ∧ x = z ∧ y = z BoolSkel(ϕ) =̂(p ∨ ¬q) ∧ r ∧ q
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A dpll(t) solver first constructs a Boolean skeleton of ϕ, given as BoolSkel(ϕ)
above. The Boolean skeleton has the same structure as ϕ, but does not include in-
formation about the theory. If BoolSkel(ϕ) is unsatisfiable, so is ϕ. If BoolSkel(ϕ)
is satisfiable, each satisfying assignment defines a conjunction of equality con-
straints. A solver for the conjunctive fragment of the theory can be then used
to determine if the conjunction is satisfiable. If the conjunction defined by a
specific satisfying assignment π to BoolSkel(ϕ) is not satisfiable, the solver can
learn ¬π and iterate the process above with BoolSkel(ϕ)∧¬π. Propositional and
theory reasoning alternate in this manner until a first-order structure satisfying
the theory formula is found, or until the formula is shown to be unsatisfiable.

The primary aim of this paper is to explain and analyse dpll(t) in the
abstract interpretation framework. We show that reasoning about the Boolean
structure and about conjunctions of theory facts is, in a strict, mathematical
sense, an abstract interpretation of the semantics of a formula. Extensions of
dpll(t) such as theory propagation, early pruning, theory explanations, conflict
set generation and generation of multiple reasons for a single conflict have natural
characterisations in the language of abstract interpretation.

We emphasise that the purpose of this work is not to trivialise dpll(t) by
claiming it is “just abstract interpretation”. Instead we aim to illuminate the
link between SMT solvers and abstract interpretation to allow the transfer of
results and intuition. Though some of our results are intuitively clear and known
to the satisfiability community, our formalisation is not obvious. Our work shows
that dpll(t) is an instance of a generic, greatest fixed point computation that
overapproximates the reduced product of two abstract domains. This result al-
lows the static analysis community to better place dpll(t) in the rich landscape
of results concerning fixed point computations and domain combinations.

The secondary aim of this paper is to show that the product construction
involved in dpll(t) is sometimes unnecessary. We empirically compare splitting-
on-demand [2], an extension of classic dpll(t), with acdcl [14,8], an algebraic
generalisation of cdcl that does not operate over a product.1

Contributions. This paper makes the following contributions.
1. A new understanding of dpll(t) within the abstract interpretation frame-

work. We show that dpll(t) is an instance of a product construction over
a Boolean abstraction and a conjunctive theory abstraction.

2. A view of dpll(t) as an instance of a more abstract procedure which permits
combination of reasoning engines beyond the classic Boolean-theory split.

3. A empirical demonstration that, under some circumstances, the construction
of products in dpll(t) is unnecessary and detrimental to performance.

Related Work. A number of recent publications have given abstract interpre-
tation accounts of decision procedures: [7] gives an account of propositional sat
procedures such as dpll and cdcl using the same framework as this paper which

1 Our benchmarks and an extended version of this paper with proofs can be found at
http://www.cprover.org/papers/vmcai2013/

http://www.cprover.org/papers/vmcai2013/
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is the basis for the generalisation of cdcl in [8]. Independently of the above,
[23] gives an abstract-interpretation account and generalisation of St̊almarck’s
method. In [6], Nelson-Oppen theory combination is characterised as a product
construction over abstract domains.

A number of practical approaches have been derived directly from this point of
view. These include extensions of the cdcl algorithm to the interval abstraction
to decide floating-point logic [14] and reachability queries [9], and the synthesis of
abstract transformers using the generalisation of St̊almarck’s method mentioned
above [22]. Before these, [15] proposed combining propositional sat solvers and
abstract interpreters in a dpll(t)-style architecture.

A popular operational formalisation of dpll(t) is given in [21]. Our work
is closely related to research efforts to develop alternatives to dpll(t). These
approaches, called natural-domain smt [4], lift the cdcl algorithm to operate
directly on theory formulae. Notable examples have been presented for equal-
ity logic with uninterpreted functions [1], linear real arithmetic and difference
logic [19,4], linear integer arithmetic [17], non-linear arithmetic [11,18], and
floating-point arithmetic [14].

2 Abstract Satisfaction

This section provides a concise review of smt [3], abstract interpretation [5], and
the application of abstract interpretation to logic [7].

2.1 Satisfiability Modulo Theories

A signature Σ is a set of function symbols and predicate symbols, each associated
with a non-negative arity. Predicate and function symbols with arity zero are
called, respectively, propositions and constants. Ground terms are constants or
function applications f(t1, . . . , tn) where f is an n-ary function and the ti are
ground terms. All formulae we consider are quantifier-free and have no first-order
variables. For convenience, we omit these qualifiers in the rest of the paper. As is
common in the smt literature, we refer to uninterpreted constants as variables.

An atomic formula is a proposition, an n-ary predicate p(t1, . . . , tn) applied
to terms t1, . . . , tn, or a truth value in B = {t, f}. A literal is an atomic formula
or its negation. A literal is in positive phase if it is an atomic formula and in
negative phase otherwise. For a literal l, we denote by neg(l) its opposite-phase
counterpart. For a set of formulae Ψ we denote by ¬Ψ the set {¬ψ | ψ ∈ Ψ}.
A clause is a disjunction of literals, and a formula is in Conjunctive Normal
Form (cnf) if it is a conjunction of clauses. We follow standard convention and
denote clauses and cnf formulae as sets of literals, resp., sets of clauses where
convenient. Unless otherwise specified, we assume all formulae to be in cnf. We
denote by A(ϕ) the set of atomic subformulae of ϕ, by L(ϕ) the set of literals
A(ϕ)∪¬A(ϕ) and by H(ϕ) the set of terms occurring in ϕ. We denote by V(ϕ)
the set of variables (uninterpreted constants) in ϕ.
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Semantics. Formulae are interpreted over first-order structures. A structure for
a signature Σ is a pair (U, ε) consisting of a non-empty set U called the universe
and an interpretation function ε which maps every element of the signature to
an appropriate object over U , e.g. constants are mapped to elements of U , n-ary
functions to n-ary functions over U , etc. We denote (U, ε) simply by ε when U is
clear from context or irrelevant. The semantic entailment relation |= is defined
as usual. Given a structure σ and formula ϕ, if σ |= ϕ holds, then σ satisfies ϕ,
and it is a model of ϕ. Otherwise, it is a countermodel.

Theories. We define a (Σ-)theory TΣ as a set of first-order structures over
a signature Σ (as is common in the smt literature, e.g. [3]). We call a model
σ ∈ TΣ of ϕ a TΣ-model and a formula ϕ TΣ-satisfiable if it has a TΣ-model. The
satisfiability problem modulo a theory TΣ , for a quantifier-free ground formula
ϕ, is to decide whether ϕ has a TΣ-model.

Let P be a fixed set of propositions. A propositional formula is a P -formula,
and a propositional structure or propositional assignment is an element of the
set PAP =̂P → B. When discussing theories TΣ in the context of propositional
logic, we assume that P is disjoint from the signature Σ.

2.2 Abstract Interpretation

We briefly review some concepts in abstract interpretation. For convenience, we

work in the Galois connection framework. We write (C,�) −−−→←−−−α
γ

(A,
) for a Ga-
lois connection between the complete lattices C and A. An underapproximation

is defined by a Galois connection (C,�) −−−→←−−−α
γ

(A,�). In this paper, we assume

all Galois connections we consider to satisfy γ(⊥) = ⊥ and γ(�) = �. A trans-
former is a monotone function on a lattice. A transformer f on a complete lattice
has a greatest fixed point, denoted gfp f or gfp X. f(X) and a least fixed point
lfp f or lfp X. f(X). The gfp closure f∗ of a transformer f is the transformer
a �→ gfp X. f(X) � a. The best approximation of f : C → C is g =̂α ◦ f ◦ γ.

A reduction operator is a transformer ρ in an abstract domain A that is
(i) reductive, i.e., for all a ∈ A it holds that ρ(a) 
 a and (ii) sound, i.e.,
γ ◦ ρ = γ. Reductions refine the representation of an abstract object without
changing its meaning. A dual reduction operator generalises the representation
without changing the meaning of an object.

Let (A,
) be an overapproximation of a powerset domain (℘(S),⊆) with

℘(S) −−−→←−−−α
γ

A. The downset completion of A is the lattice D(A) =̂(ds(A),⊆)
where ds(A) is the set of all Q ∈ ℘(A) s.t. Q is downwards closed, i.e. ∀a ∈
Q, a′ ∈ A. a′ 
 a =⇒ a′ ∈ Q. When possible, we represent a set in ds(A) as
the set of its maximal elements. It underapproximates the concrete domain ℘(S)
with αD : ℘(S) → D(A), αD(Q) =̂{a ∈ A | γ(a) ⊆ Q} and γD : D(A) → ℘(S),
γD(D) =̂

⋃
d∈D γ(d).

Let (A,
A), (B,
B) be abstract domains over the concrete domain (C,⊆),
with Galois connections (αA, γA) and (αB, γB), respectively. The Cartesian prod-
uct A × B is defined the abstract domain over the lattice (A × B,
) with
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(a, b) 
 (a′, b′) exactly if a 
 a′ and b 
 b′. There is a Galois connection to the
concrete given by αA×B(c) = (αA(c), αB(c)) and γA×B(a, b) = γA(a) ∩ γB(b).

2.3 Interpreting Logics over Theories

We can use the formal machinery of abstract interpretation to approximate the
meaning of logical formulae. Let TΣ be a Σ-theory. The concrete theory domain
of TΣ is the powerset lattice (℘(TΣ),⊆) together with the model transformer
and universal countermodel transformer for each Σ-formula ϕ, given below.

modsTΣ
ϕ (S) =̂{σ ∈ TΣ | σ ∈ S ∧ σ |= ϕ}

ucmodsTΣ
ϕ (S) =̂{σ ∈ TΣ | σ ∈ S ∨ σ �|= ϕ}

Abstractions of these operators are implemented in existing abstract domains
for program analysis for the following reason. The function modsTΣ

ϕ is equiva-

lent to the strongest post-condition of an assume(ϕ) statement, while ucmodsTΣ
ϕ

is equivalent to the weakest liberal pre-condition. In logical inference terms,
modsTΣ

ϕ implements deduction, since it maps a set of structures S to the strongest

consequence of S w.r.t. ϕ, expressed as a set. Similarly, ucmodsTΣ
ϕ implements

abduction, because it maps an element R to the weakest explanation for R.
Abstract domains and transformers can be used to perform sound but in-

complete satisfiability checks. We refer to an abstraction of the concrete theory
domain as an abstract theory domain.

Theorem 1 (Abstract Satisfaction). Let amods be an overapproximation of
modsTΣ

ϕ and aucmods be an underapproximation of ucmodsTΣ
ϕ . The formula ϕ

is not TΣ-satisfiable (i) gfp amods = ⊥ or (ii) lfp aucmods = �.

Refutational Completeness in Abstract Interpretation. Let f be a con-
crete transformer and g be a sound approximation of f in a lattice A, and a be
an element of A. Then g is γ-complete at a if γ ◦ g(a) = f ◦ γ(a) holds.

We now introduce new notions of completeness to express adequate precision.
The transformer g is γ⊥-complete at a ∈ A if γ◦g(a) = ⊥ exactly if f ◦γ(a) = ⊥,
and it is ⊥-complete at a ∈ A if g(a) = ⊥ whenever f ◦γ(a) = ⊥. If a transformer
is ⊥-complete at every element we simply say it is ⊥-complete. The same holds
for γ- and γ⊥-completeness. A reduction operator is ⊥-complete (respectively γ-
or γ⊥-complete) if it is complete w.r.t. the concrete identity function.

3 Boolean Reasoning as Abstract Interpretation

This section shows that the Boolean reasoning employed by the dpll(t) algo-
rithm is an instance of abstract interpretation. More precisely, we show that
computing propositional solutions over the Boolean skeleton of a formula is an
abstract interpretation of the formula’s theory semantics.

Fix ϕ to be a Σ-formula and P ⊆ Props to be a fresh set of propositions
disjoint from Σ. We assume a bijective function pmap : A(ϕ) → P that relates
the atoms in ϕ to the propositions in P .
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Definition 1. The Boolean skeleton BoolSkel(ϕ) is the propositional formula
obtained by replacing each atomic formula ψA occurring in ϕ with pmap(ψA).

Reasoning about Boolean structure can be understood as an abstraction of the
semantics of a formula. From this perspective, the introduction of propositions
for subformulae, and consequently the construction of an independent, proposi-
tional formula can be considered an implementation detail.

Definition 2. For a set of Σ-formulae F we define the Boolean abstraction
BoolF as the abstract lattice (℘(F → B),⊆) with the Galois connection below.

(℘(TΣ),⊆) −−−→←−−−
αB

γB
(BoolF ,⊆)

αB(S) =̂{β ∈ F → B | ∃σ ∈ S ∀ψ ∈ F. σ |= ψ ⇐⇒ β(ψ) = t}
γB(B) =̂{σ ∈ TΣ | ∃β ∈ B ∀ψ ∈ F. σ |= ψ ⇐⇒ β(ψ) = t}

dpll(t) applied to a formula ϕ employs the Boolean abstraction BoolA(ϕ). A
set of propositional assignments from PAP represents an element of BoolA(ϕ).
We can move between these views by lifting pmap to map a set S ⊆ A(ϕ) → B

bijectively to a subset of PAP by mapping each assignment from subformulae to
truth values to its corresponding assignment from propositions to truth values.
Formally, we define pmap(S) =̂{λa.β(pmap(a)) | β ∈ S}.

Relating Boolean Abstractions and the Skeleton. The set of propositional
models can be computed by implementing an abstract transformer on BoolA(ϕ).

Proposition 1. Let ψ = BoolSkel(ϕ), then the skeleton transformer

BSkelModels =̂ pmap−1 ◦modsPAP

ψ ◦ pmap

is a sound overapproximation of the model transformer modsTΣ
ϕ .

The object amodsϕ defined above is not the best overapproximation of the model
transformer, since it only captures Boolean, but not theory reasoning. It is still
precise when considered in the concrete.

Proposition 2. BSkelModels is γ⊥-complete w.r.t. modsTΣ
ϕ .

In other words, even though the resulting element may not be the best abstract
representation of the set of models of ϕ, its concretisation is precise. The remain-
ing question is how one can determine whether the set of models it represents is
empty. In dpll(t), this is performed using a satisfiability check.

Definition 3. The function BoolCheck : BoolF → BoolF , defined below, elimi-
nates assignments not consistent in the theory.

BoolCheck(B) =̂
{
β ∈ B |

∧
{ϕ | β(ϕ) = t} ∪ {¬ϕ | β(ϕ) = f} is TΣ-SAT

}

Proposition 3. BoolCheck is a ⊥-complete reduction operator over BoolF .
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Example 1. Consider the first-order formula below.

ϕ =̂ (x = y) ∧ (¬(y = z) ∨ ¬(x = z))

We fix the theory T to give equality its natural interpretation. We denote by
v1v2v3 the assignment {(x = y) �→ v1, (y = z) �→ v2, (x = z) �→ v3} in A(ϕ)→ B.
For the mapping pmap =̂{(x = y) �→ p, (y = z) �→ q, (x = z) �→ r} we obtain the
Boolean skeleton below, which yields a skeleton transformer.

BoolSkel(ϕ) =̂ p ∧ (¬q ∨ ¬r) BSkelModels(�) = {ttf, tft, tff}
BSkelModels(�) contains the assignment ttf which represents the empty set,
since no structure in the theory satisfies x = y, y = z but not x = z. The same
holds for tft. Since both represent the empty set, this does not affect the preci-
sion of the transformer in the concrete, i.e., the transformer is γ-complete at �
since γB(BSkelModels(�)) is equal to modsTϕ(�). Calling BoolCheck({ttf, tft, tff})
refines the representation to {tff}.
Satisfiability via Deduction and Reduction. We reformulate the initial
step of dpll(t) using abstract interpretation. Let amodsϕ be a γ⊥-complete

approximation of modsTΣ
ϕ and let ρ be a ⊥-complete reduction operator.

Step 1. Compute a = amodsϕ (e.g. with amodsϕ = BSkelModels)
Step 2. Return SAT if ρ(a) �= ⊥ (e.g. with ρ = BoolCheck)

We can sketch dpll(t) as depth-first variant of the above framework. Proposi-
tional models are enumerated on-the-fly by a sat solver rather than computed
in a single step; the reduction to ⊥ is computed and checked by a theory solver.
The following summarises the soundness and completeness argument.

Proposition 4. If amodsϕ is γ⊥-complete w.r.t. modsTΣ
ϕ and ρ is a ⊥-complete

reduction, then ρ(amodsϕ(�)) �= ⊥ exactly if ϕ is TΣ-satisfiable.

3.1 Efficient Disjunction via the Cartesian Abstraction

The transformer BSkelModels generates the set of models of a propositional for-
mula and is hence expensive to compute. Therefore, dpll(t) instead uses a
guided search process to enumerate models.

Partial Assignments and the Cartesian Abstraction. The main data
structure for the guided search in a dpll(t) solver is a partial assignment,
a map from propositions to t, f, an unknown value � or a value ⊥ representing
a conflict. Partial assignments are refined using deduction and search. A partial
assignment f : P → {t, f,�,⊥} represents a set of propositional literals Q such
that f(p) = t, f(p) = f, f(p) = � and f(p) = ⊥ represent, respectively, that
p ∈ Q, ¬p ∈ Q, p,¬p �∈ Q and p,¬p ∈ Q. Since we view the Boolean skeleton as
an implementation detail, the description below directly uses atomic formulae.

Definition 4. For a set of Σ-formulae F we define the Cartesian abstraction
CartF as the abstract lattice (℘(F ∪ ¬F ),
) with 
=⊇, �

=
⋃

and
⊔

=
⋂
.

CartF abstracts BoolF (and, as a consequence, the concrete theory domain). The
Galois connections are as below.
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(℘(TΣ),⊆)
−−−→←−−−
αB

γB
(BoolF ,⊆) −−−−→←−−−−

αBC

γBC

−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
αC =̂ αBC◦αB

γC =̂ γBC◦γB (CartF ,
)

αBC(B) =̂{ψ | ∀β ∈ B. β(ψ) = t} � {¬ψ | ∀β ∈ B. β(ψ) = f}
γBC(Θ) =̂{β | ∀ψ ∈ F. (β(ψ) = t⇒ ¬ψ �∈ θ) ∧ (β(ψ) = f ⇒ ψ �∈ θ)}

The use of propositional partial assignments in existing dpll(t) solvers can be
viewed as a way of representing CartA(ϕ).

Unit Rule and BCP. dpll(t) solvers perform Boolean reasoning over par-
tial assignments using the unit rule, which states that if all but one literal in
a propositional clause are contradicted by the current partial assignment, the
remaining literal must be true. Below, we give the corresponding transformer
over CartF .

Definition 5. For a Σ-clause C and set of formulae F with A(C) ⊆ F , the
unit rule over CartF is the function unitFC : CartF → CartF defined as:

unitFC(Θ) =̂

⎧
⎪⎨

⎪⎩

⊥ if ψ,¬ψ ∈ Θ or for all l ∈ C, neg(l) ∈ Θ
Θ � {l} else if C = C′ ∪ {l} s.t. for all l′ ∈ C′, neg(l′) ∈ Θ
Θ otherwise

For a set of propositions P and propositional clause C, the propositional unit
rule is the rule unitPC : CartP → CartP .

Example 2. Consider the formula from before, ϕ =̂(x = y)∧C where C = (¬(y =

z) ∨ ¬(x = z)). We can apply unitA(ϕ)
x=y (�) to obtain the element Θ = {x = y}.

Applying unit
A(ϕ)
C (Θ) gives no new information but simply returns Θ. We can

refine the element with an unsound assumption by computing Θ′ = Θ � {y =

z} = {x = y, y = z}. Now, applying unit
A(ϕ)
C (Θ′) yields Θ′ � {¬(x = z)}.

Unit rule applications soundly approximate the model transformer, regardless of
the underlying theory.

Proposition 5. Let C be a clause such that A(C) ⊆ F . For any theory TΣ, the
transformer unitFC is a sound approximation of modsTΣ

C .

dpll(t) solvers use a process called Boolean Constraint Propagation (bcp) in
which the unit rule is applied exhaustively to deduce new theory facts. This
process computes a greatest fixed point with the function defined earlier.

Definition 6. For a Σ-formula ϕ and a set of Σ-formulae F ⊇ A(ϕ), the bcp
transformer bcpϕ : CartF → CartF is the following function.

bcpϕ(Θ) =̂ gfp X.
�

C∈ϕ
unitFC(X �Θ)
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During the run of dpll(t), the propositional formula changes in a process called
learning. Here, we take the point of view that the use of a propositional formula
is an implementation detail. Changing the propositional formula then amounts
to refining the model transformer over the Cartesian abstraction.

3.2 Satisfiability via Abstract Splitting

In lazy dpll(t), theory consistency is checked once a partial assignment that
satisfies every clause is found. The following operator is used for the check.

Definition 7. We define CartCheck : CartF → CartF as

CartCheck(Θ) =̂

{
⊥ if

∧
θ is not TΣ-satisfiable

Θ otherwise

Proposition 6. CartCheck is a ⊥-complete reduction operator.

The previous section showed that bcpϕ soundly approximates the model trans-
former and CartA(ϕ) is a ⊥-complete reduction. Proposition 4 cannot be applied
though, since bcpϕ lacks the necessary completeness requirement and solely per-
forming deduction and reduction does not give a complete procedure. In the
absence of this global completeness, dpll(t) searches for points at which the
model transformer is locally complete. The proposition below shows that a com-
mon stopping criterion in dpll(t) is a local completeness check.

Proposition 7. Let ϕ be a Σ-formula in cnf, and let Θ ∈ CartA(ϕ) such that
for every clause C ∈ ϕ there is a literal l ∈ C such that l ∈ Θ. Then bcpϕ is
γ-complete at Θ.

The search proceeds as follows. After the bcp step, classic dpll chooses a vari-
able in a partial assignment that is assigned to � and explores separately the
cases where it is t and f. In terms of abstract interpretation this amounts to
decomposing a partial assignment a into two more precise assignments a1, a2
that, taken together, have the same meaning as the original assignment, i.e.,
γ(a1) ∪ γ(a2) = a. Let amodsϕ : A → A be a sound approximation of modsTΣ

ϕ

and let ρ : A → A be a ⊥-complete reduction, then we can state the abstract
algorithm as follows.

(Init). Let ainit = �.
Step 1. Compute the greatest fixed point a = gfp X.amodsϕ(X � ainit).
Step 2. If a = ⊥ then return.
Step 3. If amodsϕ is γ⊥-complete at a and ρ(a) �= ⊥ then return SAT.
Step 4. Split a into two smaller elements a1, a2 s.t. a1 � a, a2 � a and γ(a1)∪

γ(a2) = γ(a), and call the algorithm recursively.
(a) If a call with ainit = a1 returns SAT then return SAT
(b) If a call with ainit = a2 returns SAT then return SAT
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f(a) = a
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b = c
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−∞
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−∞

B2T

T2B ◦ ρ
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(b) dl with Bellman-Ford

Fig. 1. Examples of theory solvers as abstract domains

Example 3. Consider again the formula ϕ =̂x = y ∧ C where C is the clause
(¬(y = z) ∨ ¬(x = z)) We fix the theory T to give equality its natural interpre-
tation. Computing bcpϕ(�) yields the result a = {x = y}. This is not γ-complete
reasoning, since it abstracts structures where x = y = z, which are not models.
We split Θ into the smaller elements a1 = a�{y = z} and a2 = a�{¬(y = z)}. In
the first recursive call, we obtain a′ = {x = y, y = z,¬(x = z)} from bcpϕ(a1).
The transformer bcpϕ is γ-complete at a′, therefore we know that a′ is a set
of models. It remains to check whether a′ is an empty set of models, by call-
ing CartCheck(a′), which returns ⊥. In the second recursive call, bcp yields no
further refinement. But bcpϕ is already γ-complete at a2, therefore we check
the conjunction (x = y) ∧ ¬(y = z) with CartCheck(a2). The check returns a2,
indicating that a2 represents a non-empty set and we return SAT.

Depending on details of the logic and abstract domain used the above algorithm
may not be complete, i.e., it may not return SAT exactly if ϕ is satisfiable. We
will discuss conditions for completeness in a bit more detail later. Whenever the
algorithm returns SAT, then the formula is satisfiable.

Proposition 8. Let amodsϕ : A→ A be an overapproximation of modsTΣ
ϕ and

ρ be a ⊥-complete reduction operator. If for some element a ∈ A, amodsϕ is
γ⊥-complete at a and ρ(amodsϕ(a)) �= ⊥, then ϕ is satisfiable.

4 Theory Solvers as Abstract Domains

In this section, we show that theory solvers for equality with uninterpreted func-
tions, and for difference logic can be viewed as reduction operators. These serve
as examples of the general approach as it is not feasible to cover all theory solvers
in one paper.
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4.1 Equality with Uninterpreted Functions

An equality formula contains the predicate = and function symbols. We use
t �= t′ as a shorthand to denote ¬(t = t′). We define the theory of Equality with
Uninterpreted Functions (euf) as the set Teuf containing all structures (Z, ε)
where ε interprets = as the standard equality relation over Z. The congruence
closure algorithm decides satisfiability of conjunctions of equality literals. The
algorithm constructs congruence classes containing terms from H(ϕ) (often im-
plemented using union-find data structures) and a set of pairs in H(ϕ) that are
known to be unequal. The data structure used by congruence closure forms a
lattice. A partition of a set X is a collection of disjoint, non-empty subsets of X
whose union is X . Part(X) denotes the partitions of a set X .

Definition 8. For an euf ϕ, the euf abstraction, EUFϕ is (TS,
) where:
TS =̂Part(H(ϕ)) × ℘(H(ϕ) ×H(ϕ))

and (P,D) 
 (P ′, D′) exactly if ∀p′ ∈ P ′.∃p ∈ P s.t. p ⊇ p′ and D ⊇ D′.
Note that EUFϕ abstracts the concrete and refines CartA(ϕ). As both domains
are lattices, αTS and B2T are uniquely defined from γTS and T2B.

(℘(TΣ),⊆) −−−−→←−−−−
αTS

γTS
(TS,
) −−−−→←−−−−

T2B

B2T
(CartA(ϕ),⊇)

γTS(P,D) =̂{σ | ∀(t1, t2) ∈ D. σ |= t1 �= t2 ∧ ∀p ∈ P ∀t1, t2 ∈ p. σ |= t1 = t2}
T2B(P,D) =̂L(ϕ) ∩ ({t1 = t2 | ∃p ∈ P. t1, t2 ∈ p} ∪ {t1 �= t2 | (t1, t2) ∈ D})

We define the steps of the algorithm as transformers over the abstraction. A con-
gruence operator Congr : EUFϕ → EUFϕ merges the congruence classes of two
terms if all their subterms s, t are pairwise congruent in the current element P ,
i.e., if they are in the same congruence class. If in (P,D) ∈ EUFϕ terms are
found to both equal and unequal, i.e., for some p ∈ P and (t1, t2) ∈ D it
holds that t1, t2 ∈ p, then ⊥ is returned. Otherwise, we define for a partition
P = {p1, . . . , pk}:

Congr(P,D) =̂

⎧
⎪⎨

⎪⎩

(P \ {p, p′} ∪ {p ∪ p′}, D) for some disjoint p, p′ ∈ P s.t.

f(s1, . . . , sk) ∈ p, f(t1, . . . , tk) ∈ p′ s.t. all si, ti are congr. in P

(P,D) if no such p, p′ exist

The congruence operator is reductive (it gains in precision in each step), and re-
fines the representation of a set of structures without changing the set itself. Figure
1(a) illustrates Congr along with the Galois connection between the euf and the
Cartesian abstractions. The set of formulae in the top right can be concretised to
the pair of congruence classes in the top left. These are then merged by Congr as
a = c implies f(a) = f(c) and finally can be abstracted to give the set of formulae
in the bottom right; simulating inference in the Cartesian domain.

Proposition 9. Congr is a reduction operator.
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The congruence closure algorithm then computes the greatest fixed point
gfp Congr over EUFϕ by iterating Congr until no new information can be de-
duced. It is a refutationally complete procedure, i.e., if a conjunction of equality
literals is empty, then the fixed point will be ⊥.

Proposition 10. The gfp closure Congr∗ is ⊥-complete.

4.2 Difference Logic

Formulae in difference logic (dl) contain the binary function symbol − and the
binary predicate ≤, and have atoms of the form x− y ≤ c. The theory of integer
difference logic (Tidl) is the set of structures of the form (Z, ε) where ε maps the
symbols ≤ and − to their natural interpretations over the integers.

A conjunct of difference logic atoms can be modelled by a weighted directed
graph in which the set of nodes N corresponds to the set of variables in the
conjunct. An atom x − y ≤ c is denoted as an edge (x, y) with weight c. The
conjunct is satisfiable if and only if the graph contains no negative cycles.

Negative cycles can be detected using the Bellman-Ford algorithm (bf). The
main data structure of bf associates a weight in Z∞ =̂Z ∪ {−∞,∞} with each
node n. The weight is an upper bound on the shortest path from the source to n.
The weight −∞ indicates a negative cycle. For handling dl, we choose the source
to be s, a fresh node, and assume that s is connected to all variables with weight
Mϕ, which is an integer constant larger than the longest possible path.

2 The initial
node weights are also Mϕ. Node weights are reduced in each round if there is a
neighbouring node that gives a shorter, negative cost path. After |N |−1 iterations,
the path lengths will have converged if and only if there are no negative cycles. If
a final iteration changes the scores, the graph contains a negative cycle.

We make two observations which allow us to simplify presentation: (i) since
edge weights represent upper bounds on the minimal distance between two vari-
ables, node weights can simply be viewed as special edges (s, n), (ii) bf can then
be viewed to operate solely over edge weights (missing edges are given weight∞).
For a formula ϕ, we define the edge set Eϕ as the set ({s}∪V(ϕ))×V(ϕ), where
s is the fresh source node.

Definition 9. For a dl-formula ϕ, the bf abstraction BFϕ is (TS,
) where:
TS =̂{f : Eϕ → Z∞ | ∀x ∈ V(ϕ). f(s, x) ≤Mϕ}

f 
 g iff ∀e ∈ Eϕ. f(e) ≤ g(e)
BFϕ abstracts the concrete and refines CartA(ϕ) and again, only half of each
Galois connection is explicitly defined.

(℘(TΣ),⊆) −−−−→←−−−−
αTS

γTS
(TS,
) −−−−→←−−−−

T2B

B2T
(CartA(ϕ),⊇)

γTS(f) =̂{σ | ∀(x, y) ∈ V(ϕ)× V(ϕ). σ |= x− y ≤ f(x, y)}
B2T(Θ) =̂λ(x, y). min({k | x− y ≤ k ∈ Θ} ∪ {�BF(x, y)})

2 E.g., Mϕ can be the sum of the absolute values of all the integer constants in ϕ.
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As in the case of EUF, the steps of the algorithm are reduction operators. In the
case of bf, there are two reductions; the relax step and the cycle check.

Proposition 11. Relax : BFϕ → BFϕ and NegC : BFϕ → BFϕ are reductions:

Relax(f)(x, y) =̂

{
f(x, y) x �= s

min({f(x, y)} ∪ {f(x, z) + f(z, y) | z ∈ V(ϕ)}) x = s

NegC(f) =̂

{
⊥ if Relax|V(ϕ)| �= Relax|V(ϕ)|−1

Relax|V(ϕ)| otherwise

In addition to the above function, consider a simple canonicity reduction ρ s.t.
ρ(f) = ⊥ if f maps some edge to −∞ and ρ(f) = f otherwise. Relax, ρ and the
Galois connections to the Cartesian domain are shown in Figure 1(b). Similarly
to Figure 1(a), the Cartesian domain is on the right and by mapping to the
concrete (bf on the left) and performing reduction, it is possible to find the in-
consistency. The function NegC can then be viewed as a fixed point computation
(not based on Kleene iteration) over the relaxation function.

Proposition 12. NegC computes the fixed point (ρ◦Relax)∗ and is ⊥-complete.

5 DPLL(T) as a Product Construction

We have given separate accounts of the Boolean and theory reasoning compo-
nents of dpll(t) as abstract interpretation. We now show that dpll(t) can be
viewed to compute a fixed points over a product between the Cartesian abstrac-
tion over the formula atoms CartA(ϕ) and an abstract theory domain TS.

Definition 10. We define a dpll(t) theory domain to be an abstract lattice
(TS,
) such that the following conditions hold.
(i) TS abstracts the concrete with Galois connection (αTS, γTS),
(ii) CartA(ϕ) abstracts TS with Galois connection (T2B,B2T),
(iii) γC = γTS ◦ B2T and αC = αTS ◦ T2B.

(℘(TΣ),⊆)
−−−−→←−−−−
αTS

γTS
(TS,
) −−−−→←−−−−

T2B

B2T

−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
αC =̂ T2B◦αTS

γC =̂ γTS◦B2T (CartA(ϕ),
)

The first condition ensures that datastructure of the theory solver represent sets
of TΣ structures. The other conditions require some motivation: The second
condition ensures that conjunctions of literals in A(ϕ) can be expressed in TS
without loss of precision. This corresponds to the requirement that the logic
fragment handled by the theory solver includes conjunctions over A(ϕ)∪¬A(ϕ),
i.e., that satisfiability queries generated by CartCheck can be expressed. For
convenience, we use a Galois connection to model this relation, even though
in practice a weaker relation between the two might suffice. We assume that
T2B and B2T can be computed. The third condition ensures that the Galois
connections are compatible. We can now formally define dpll(t) abstractions.
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Definition 11. For a TΣ-formula ϕ and a dpll(t) theory domain TS, the
dpll(t) abstract domain DPLL(TS) is the product domain CartA(ϕ) × TS.

Example 4. We consider equality formulae ϕ. EUFϕ is a dpll(t) theory domain,
since it abstracts the concrete, and it refines the Cartesian abstraction.

We illustrate operations described in this section over DPLL(EUFϕ). For conve-
nience, we denote for three terms x, f(x), z the partition {{x}, {f(x), z}} either
by [x][f(x), z] or simply by [f(x), z], omitting singleton partitions.

BCP with Theory Propagation. The classic dpll(t) architecture only uses
theory reasoning to check satisfiability of candidates. Theory propagation is a
common refinement of this basic architecture. There, an element Θ ∈ CartA(ϕ) is
refined with information deduced in the theory solver. One propagation step in a
dpll(t) solver with theory propagation can be broken down into these substeps:

(i) Boolean deduction: Perform Boolean reasoning.
(ii) Theory instantiation: Communicate Boolean facts to theory.
(iii) Theory deduction: Perform theory reasoning.
(iv) Theory propagation: Find implied Boolean consequences.

Definition 12. We define the theory instantiation and theory propagation
transformers over dpll(t) below.

tinst(Θ, te) =̂(Θ, te � B2T(Θ)) tprop(Θ, te) =̂(Θ � T2B(te), te)

Example 5. We assume that A(ϕ) = {x = y, y = z}. Consider the element
(Θ, te) =̂({x = y}, ([x][y][z], {y, z}) of DPLL(EUFϕ). Applying tinst(Θ, te) yields
(Θ, ([x, y][z], {y, z})). Applying tprop(Θ, te) yields ({x = y,¬(y = z)}, te). Nei-
ther operator changes the semantics of the tuple.

Proposition 13. The transformers tinst and tprop are reductions overDPLL(TS).

We note that early pruning [3] is just a special case of theory propagation in the
lattice theoretic setting, i.e., it is the case where theory propagation finds ⊥.

Deduction over CartA(ϕ) is performed using the unit rule, while deduction
inside the theory solver is handled by some reduction operator.

Definition 13. The Boolean deduction transformer bdedϕ is a sound overap-

proximation of modsTΣ
ϕ over CartA(ϕ).

In practice, bdedϕ = bcpϕ, but in principle other sound abstract transformers
could be used.

Definition 14. A theory deduction transformer tded is a reduction over TS.

We extend the functions bdedϕ and tded to DPLL(TS) as follows.

bded×ϕ (Θ, te) =̂(bdedϕ(Θ), te) tded×(Θ, te) =̂(Θ, tded(te))

We can now describe bcp with theory deduction as the following function, which
executes the steps listed in the beginning of this section.
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Definition 15. We define deduceϕ : DPLL(TS)→ DPLL(TS) as follows.

deduceϕ =̂ tprop ◦ tded× ◦ tinst ◦ bded×ϕ
Proposition 14. deduceϕ is a sound overapproximation of modsTΣ

ϕ .

Example 6. Consider the formula ϕ given as f(x) = y∧x = z∧(f(z) �= y∨y = z).
We compute deduceϕ, starting from (�,�). Applying bded×ϕ (�,�) refines the
left-hand side to {f(x) = y, x = z}. Applying tinst communicates the deduction
to the theory and obtains ([f(x), y][x, z], ∅) on the right. Theory deduction tded
refines this to ([f(x), y, f(z)][x, z], ∅) using congruence. Finally, theory propaga-
tion tprop obtains {f(x) = y, x = z, f(z) = y} on the left.

The deduction step in dpll(t) computes a greatest fixed point over deduceϕ. A
decision over an element Θ constructs an assignmentΘ∪l, where l is a literal that
occurs in neither positive nor negative phase in Θ. In abstract-interpretation ter-
minology, this corresponds to a jump down the lattice which underapproximates
the greatest fixed point and can be viewed as a dual widening operator [7].

Conflict Analysis with Theory Explanations. dpll(t) solvers are based
on propositional clause learning algorithms. The power of these algorithms rests
significantly in the conflict analysis step, which extracts general, sufficient con-
ditions for unsatisfiability from specific contradictory cases. We describe con-
flict analysis abstractly (see [14,8] for a lifting of conflict analysis algorithms to
abstract domains). Conflict analysis computes a least fixed point over sets of
elements over the underlying domain [7]: In general, there may be incomparable
reasons a and b for a given deduction c, the most general conflict analysis will
therefore return the set {a, b}. Indeed, conflict analyses that collect more than
one conflict do exist [16].

In order to integrate theory solvers meaningfully into the analysis, they need to
be able to supply explanations for deduced facts whenever theory propagation
was applied. A step during conflict analysis with theory explanations can be
broken down into the following substeps.

(i) Boolean abduction: Find Boolean conflict explanations.
(ii) Theory justification: Delegate explanations to the theory solver.
(iii) Theory abduction: Find theory explanations.
(iv) Theory explanation: Translate theory explanation into Boolean facts.

Recall that deduction corresponds to overapproximation of modsTΣ
ϕ . Conversely,

finding explanations for deductions corresponds to underapproximation of the
ucmodsTΣ

ϕ transformer.

Definition 16. A Boolean abduction transformer babdϕ is an underapproxi-

mation of ucmodsTΣ
ϕ over the downset completion D(CartA(ϕ)).

Example 7. Consider ϕ =̂ϕ′ ∧ (x �= y ∨ r = z) ∧ (x = y ∨ r �= z). Assume that
the element Θ =̂{x = y, r = z} leads to a contradiction. A sound abduction may
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obtain babdϕ({Θ}) = {{x = y}, {r = z}}, indicating that x = y and r = z are
both explanations for Θ, since one element in Θ suffices to deduce the other.

Theory solvers have no access to the original formula ϕ, but only to their inter-
nal state. Essentially, they correspond to abduction with respect to the truth-
constant t.

Definition 17. A theory abduction transformer tabd is a dual reduction over
the downset completion D(TS).
Example 8. Consider te = ([x, y, z], {(x, y), (y, z)}), which represents a conflict.
A sound abduction may return tabd({te}) = {([x, y], {(x, y)}) , ([y, z], {(y, z)})},
highlighting two separate reasons for the conflict.

We extend the functions babdϕ and tabd to sets in D(DPLL(TS)) as follows.
babd×ϕ (Γ ) =̂{(Θ, te) | ∃(Θ′, te) ∈ Γ. Θ ∈ babdϕ({Θ′})}
tabd×(Γ ) =̂{(Θ, te) | ∃(Θ, te′) ∈ Γ. te ∈ tabd({te′})}

The above transformers find reasons in their respective domains. The transform-
ers we define next explain facts by crossing domain boundaries. When crossing
from the theory abstraction to the less precise Cartesian abstraction the is-
sue of expressibility arises, since some abstract theory facts may not have pre-
cise counterparts in the Cartesian domain. For an element te ∈ TS, we write
expressible(te) to denote the condition that te is precisely expressible in CartA(ϕ),
i.e. γTS(te) = γC ◦ T2B(te).
Definition 18. We define the theory justification and theory explanation trans-
former over D(DPLL(TS)) below.

tjustify(Γ ) =̂{(Θ,B2T(Θ′) � te) | (Θ �Θ′, te) ∈ Γ}
texpl(Γ ) =̂{(Θ � T2B(te), te′) | (Θ, te � te′) ∈ Γ s.t. expressible(te)}

Example 9. Consider a set of atoms A(ϕ) = {x = y, y = z}, and an element
(θ, te) with θ = {x = y} and te = ([x][y][z], {(y, z)}). Then tjustify({(θ, te)})
contains the justification (�, ([x, y][z], {(y, z)}), and texpl({(θ, te)}) contains the
explanation ({x = y, ¬(y = z)},�).
The transformer tjustify explains information from the Cartesian domain in terms
of the theory domain. The transformer texpl does the opposite, but can only do
so if a given theory domain fact can be precisely expressed in CartA(ϕ). In both
cases, the formula ϕ is not taken into consideration.

Proposition 15. tjustify and texpl are dual reductions.

We note that conflict set generation [3] is a combination of theory abduction
tabd of the ⊥ element, followed by theory explanation.

A step of conflict analysis with theory justification can then be modelled as
a function that executes the steps outlined in the beginning of this section.
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BS × TSTS

B2T

T2B

bded tdedbabd tabd

γ⊥-complete deduction ⊥-complete reduction

Base domain Theory domain

Model Search

Domain BS× TS s.t. TS −−−−→←−−−−
T2B

B2T
BS

Req. Transfomers bded : BS→ BS, tded : TS→ TS overapprox. of modsTΣ
ϕ

Theory Instantiation tinst(be, te) =̂ (be, te � γTS(be))
Theory Propagation tprop(be, te) =̂ (be � αTS(te), te)

Deduction deduceϕ =̂ tprop ◦ tded× ◦ tinst ◦ bded×
Model Search gfp over deduceϕ with dual widening over BS

Conflict Analysis

Domain Downset completion D(BS× TS)

Req. Transfomers babd over D(BS), tabd over D(TS) u.-approx. of ucmodsTΣ
ϕ

Theory Justification tinst(Γ ) =̂ {(Θ, γTS(Θ
′) � te) | (Θ �Θ′, te) ∈ Γ}

Theory Explanation texpl(Γ ) =̂ {(Θ � T2B(te), te′) | (Θ, te � te′) ∈ Γ
s.t. expressible(te)}

Abduction abduceϕ(Γ ) =̂ texpl ◦ tabd× ◦ tjustify ◦ babd×
Conflict Analysis lfp over abduceϕ with dual narrowing

Fig. 2. DPLL(T) as Abstraction

Definition 19. We define the transformer abduceϕ over D(DPLL(TS)) as:

abduceϕ =̂ texpl ◦ tabd× ◦ tjustify ◦ babd×ϕ

Proposition 16. abduceϕ is a sound underapproximation of ucmodsTΣ
ϕ .

Conflict analysis can then be viewed to compute a least fixed point over abduceϕ,
starting from a propositional conflict {(⊥, te)} or theory conflict {(Θ,⊥)}. In
practice, solvers do not keep track of sets of explanations for a conflict, but will
instead consider only one. Choosing specific explanations can be viewed as a
dual narrowing, since it underapproximates a least fixed point [7].

6 Algebraic Extensions of DPLL(T)

In this section, we first generalise the product construction of dpll(t) and then
show empirically that the communication restrictions induced by products are
sometimes unnecessary and disadvantageous.

An Abstract View of DPLL(T). The overall architecture, domains and
required transformers for dpll(t) are depicted in Figure 2. We view the product
construction DPLL(TS), as a special instance of a more general construction in
which the Cartesian abstraction is a parameter. Due to space constraints, we
only cover splitting-based dpll(t) formally.
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Definition 20. An abstract dpll(t) domain for a base domain BS and theory
domain TS is the domain ADPLL(BS,TS) =̂BS × TS with Galois connections,
and transformers specified as in Figure 2.

In order to extract the algebraic essence of dpll(t), one can view the algorithm
in terms of two synergistic strategies: (i) dpll(t) uses γ-complete deduction to
obtain a precise representation of models, and then uses ⊥-complete reduction
to check emptiness; (ii) dpll(t) uses case splits (and learning) to resolve im-
precision. It is important to see that these two strategies are independent. To
illustrate, consider computing the γ-complete transformer BSkelModels explic-
itly, e.g., using bdds instead of a case split procedure.

Theorem 2. For an abstract dpll(t) domain ADPLL(BS,TS) where bded∗ is
γ⊥-complete and tded∗ is a ⊥-complete reduction, it holds that ϕ is satisfiable
exactly if gfp deduceϕ �= ⊥.
This property may be hard to achieve in practice unless an expensive abstraction
is chosen for BS. In this case, case analysis with splitting (or other techniques
such as clause learning) can be employed. We model these algorithms abstractly
as procedures that provide decompositions of elements into precise cases. For a
more detailed account, consider [7,14,8].

Definition 21. A γ⊥-precise decomposition is a function dc : BS → ℘(BS)
s.t. for all elements be ∈ BS it holds that (i) dc(be) is finite, (ii) γBS(be) ⊆⋃{γ(be′) | be′ ∈ dc(be)} and (iii) for any bded′ ∈ dc(bded) the transformer
bded∗ is γ⊥-complete at bded′.

Splitting or learning-based algorithms can be viewed to generate this decomposi-
tion on demand. For an element be′ ∈ BS, we denote by deduceϕ,be′ the function
λ(be, te). deduceϕ(be

′ � be, te).

Theorem 3. For an abstract dpll(t) domain ADPLL(BS,TS) with γ⊥-precise
decomposition function dc and ⊥-complete reduction tded, it holds that ϕ is
satisfiable exactly if there exists a be ∈ dc(�) such that gfp deduceϕ,be �= ⊥.

Unifying Base and Theory Reasoning. An interesting consequence of the
algebraic view of dpll(t) is that we can consider architectures of the form
ADPLL(TS,TS), which perform all steps of the algorithm directly over TS. We
refer to this strategy as Abstract Conflict Driven Clause Learning (acdcl), it is
developed in detail in [8]. We present experiments in this section, based on the
fp-acdcl solver [14], an smt solver for floating-point logic.

In dpll(t), the vocabulary of the primary solver is limited by the structure
of the formula. This can cause suboptimal performance, which is the reason
why refinements of dpll(t) introduce fresh propositions at certain points when
needed. We will consider splitting on demand [2], which allows the introduction
of new propositions during case splits, to model the effect of decision making
directly in the theory.
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Fig. 3. Experimental results

Comparing ACDCL and DPLL(T). We present two experiments: (i) A com-
parison of classic dpll(t) and acdcl on set of hand-crafted formulae, in which
the vocabulary restrictions of dpll(t) cause enumeration behaviour. (ii) A com-
parison of dpll(t) with splitting on demand and acdcl on a set conjunctive
formulae that require splitting within the theory for completeness. It is important
to note that the benchmarks are specifically chosen to illustrate some limitations
of dpll(t), which can be overcome in the algebraic framework advocated in this
paper. To compare against classic dpll(t), we have integrated fp-acdcl as a
black-box theory solver in the mathsat5 smt solver [13].

An example of a formula (parametrised by N) used in experiment (i) is below.

((x = 1) ∨ . . . ∨ (x = N)) ∧ ((y = 1) ∨ . . . ∨ (y = N)) ∧ ((x+ y < 0) ∨ (x+ y > 2N))

Classic dpll(t) generates lemmas only in terms of the propositions in the
Boolean skeleton. In fp-acdcl, lemmas are directly inferred over disjunctions
of interval constraints, independent of whether they occur in the formula or not.

The results of the comparison are given in Figure 3 (a), which plots the number
of solved instances against total execution time for fp-acdcl and dpll(t). To
boost the power of classic dpll(t) we experimented with a variant in which
fp-acdcl provides hints to the sat solver: At every theory conflict, we introduce
a set of propositions corresponding to the theory deductions leading up to the
conflict. Although this variant is a significant improvement over default dpll(t),
it still performs much worse than fp-acdcl.

For the second set of experiments, we have used the benchmark problems from
[14]. The formulae in this set are simple conjunctions of atoms, but they require a
significant amount of case splits in the interval domain. The plot in Figure 3 (b)
compares fp-acdcl and splitting-on-demand. The results show that performing
case splits directly in the interval domain is more effective than splitting-on-
demand. When generating lemmas during conflict analysis, fp-acdcl can use
conflict generalisation [14] to improve the strength of learnt lemmas. We at-
tribute the faster runtime of fp-acdcl to the better quality of the resulting
learnt lemmas.
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