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1 University of Freiburg
2 United Nations University, IIST, Macau

3 New York University

Abstract. Identifying the cause of an error is often the most time-
consuming part in program debugging. Fault localization techniques can
help to automate this task. Particularly promising are static proof-based
techniques that rely on an encoding of error traces into trace formu-
las. By identifying irrelevant portions of the trace formula, the possible
causes of the error can be isolated. One limitation of these approaches is
that they do not take into account the control flow of the program and
therefore miss common causes of errors, such as faulty branching condi-
tions. This limitation is inherent to the way the error traces are encoded.
In this paper, we present a new flow-sensitive encoding of error traces
into trace formulas. The new encoding enables proof-based techniques to
identify irrelevant conditional choices in an error trace and to include a
justification for the truth value of branching conditions that are relevant
for the localized cause of an error. We apply our new encoding to the
fault localization technique based on error invariants and show that it
produces more meaningful error explanations than previous approaches.

1 Introduction

Debugging programs is tedious. Often the most time consuming part in de-
bugging is the task of fault localization. To localize the fault of an error, the
programmer has to trace the program execution, e.g., starting from a malicious
test input, and identify the relevant statements that explain the error. Using
this information the programmer can then devise a solution to fix the program.
Automated fault localization tools [1, 6–8, 11, 14, 15, 17, 19, 20] that reduce the
manual effort involved in this task can significantly improve the programmer’s
work experience.

Particularly promising are proof-based fault localization techniques [6, 11].
These techniques rely on an encoding of error traces into so called error trace
formulas. An error trace formula is an unsatisfiable logical formula. A proof
of unsatisfiability of the error trace formula captures the reason why an exe-
cution of the error trace fails. By applying an automated theorem prover to
obtain such proofs of unsatisfiability, the relevant statements for the error can
be automatically identified. One advantage of this approach is that the proof of
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unsatisfiability provides additional valuable information that can help the pro-
grammer understand the error, such as information about the program states at
different points of execution.

A key limitation of existing proof-based fault localization techniques is that
they only consider statements in the explanation of an error that have side-
effects on the program’s data. Information about the control flow of the program
is ignored. This makes it difficult for the programmer to understand why the
statements that are reported as relevant are actually reachable. Existing proof-
based techniques therefore fail to explain common classes of program errors, such
as faulty branching conditions.

In this paper, we propose a flow-sensitive proof-based fault localization tech-
nique. The result of a flow-sensitive fault localization not only explains why the
error occurred, but also justifies why the statements leading to the error were
executed. We give a basic algorithm for flow-sensitive fault localization based
on our previous work on error invariants [6]. This algorithm applies fault local-
ization recursively to explain the truth values of branching conditions along the
error trace. We then observe that already the non-recursive algorithm from [6]
can produce a flow-sensitive error explanation if one uses a simple modification
in the encoding of the error trace formula. We refer to this new encoding of an
error trace as the flow-sensitive error trace formula.

We discuss a number of examples that demonstrate the usefulness of flow-
sensitive fault localization. We compare the results to the original fault localiza-
tion based on error invariants and show that the new technique precisely explains
why an error occurs.

Related Work. BugAssist [10, 11] minimizes a given error trace obtained from
bounded model checking using a Max-SAT algorithm. Similar to our previous
work [6], BugAssist encodes the error in an unsatisfiable formula. The fault
is localized by identifying fragments of the error trace that are not needed to
prove unsatisfiability of the trace formula. This results in the limitation that
only executable statements can be part of the minimized error trace. Branch
conditions, and those statements that explain why they hold, are always omitted
as the violation of the assertion causing the error can be proven even without
considering them. The main contribution of our work is a new way to encode
error traces as formulas such that branch conditions, and statements affecting
them, can appear in the result of the localization.

A common approach to fault localization is to compare failing with successful
executions (e.g., [1,7,8,14,15,17,19,20]). These approaches differ in the way the
failing and successful executions are obtained, the way they compare executions,
and in the information they report to the user. A detailed survey about the
differences among these approaches can be found in [16,18]. The main difference
to our approach is that we do not execute the program and that we do not need
a successful execution.

In [17], an approach is presented that compares similar failing and successful
executions of a program and returns a bug report that contains only those branch
conditions that have been evaluated differently in both executions. From a given
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1 void xZero(int input) {

2 int x = 1;

3 int y = input - 42;

4 if (y<0) {

5 x = 0;

6 }

7 //@ assert x != 0;

8 }

Fig. 1. The error occurs only if the
then block is taken. The condi-
tion and the derivation of its truth
value are important to reproduce
the error.

1 int yZero(int input) {

2 int x = 0;

3 int y = input - 42;

4 if (y<0) {

5 y = 0;

6 }

7 //@ assert x != 0;

8 }

Fig. 2. The error occurs no matter
which branch of the conditional is
taken

failing execution of a program, they automatically construct a similar successful
execution using a constraint solver. The evaluation of the branch conditions in
both executions is recorded during execution, and the difference is reported to
the user as a bug report. With this approach, we share the motivation that
branch conditions not only provide valuable information for debugging but are
often the reason for errors in a program and therefore are essential for fault
localization. However, unlike the approach in [17], our approach reports not
only branch conditions but also relevant statements, error invariants, and the
variables that need to be tracked.

Similar to dynamic approaches there are static approaches that do fault lo-
calization by comparing feasible traces in the model of the program with coun-
terexamples produced by a verifier. Ball et al. [1] present an algorithm to localize
faults in counterexamples produced by the model checker SLAM. They isolate
parts of a counterexample that do not occur on feasible traces. Groce et al. [7–9]
use causal dependencies (see, e.g. [2]) and distance metrics for program execu-
tions to find minimal abstractions of error traces. In contrast to our approach,
they use causal dependencies between variables and the difference between the
failing and the successful execution to generate error reports.

2 Overview and Illustrative Example

We illustrate the benefits of flow-sensitive trace formulas on two simplified ex-
amples. Fig. 1 shows a procedure whose execution violates the assertion at line 7
if it is called with a value less than 42 for the parameter input. In this case, the
assignment in line 5 is executed and the assigned value of x conflicts the asser-
tion at line 7. An error is observable by executing an error trace starting from a
state that satisfies an error precondition. In our example, the error trace is the
sequence of statements obtained by restricting the program to the then branch
of the conditional, i.e., including the statement in line 5. The error precondi-
tion is the formula input < 42 (or any other formula that implies input < 42).
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The problem of fault localization is to identify the statements in the error trace
that are relevant for the error. Intuitively, a statement is relevant if the error no
longer occurs after removing the statement from the trace. Various notions of
relevancy have been considered in the literature depending on what it means to
remove a statement from a trace.

In proof-based fault localization techniques [6, 11] relevancy of statements
is determined by encoding the error into an unsatisfiable formula called the
extended trace formula. This formula consists of a trace formula of the error
trace in conjunction with the error precondition and the correctness assertion. A
proof of unsatisfiability of the extended trace formula provides information about
which statements are relevant. For our example, the extended trace formula is
as follows:

(input < 42) ∧ (x = 1) ∧ (y = input− 42) ∧ (y < 0) ∧ (x′ = 0) ∧ (x′ �= 0).

The first conjunct is the error precondition, the last conjunct is the failing asser-
tion, and the remaining conjuncts constitute the trace formula encoding of the
error trace, e.g., the conjunct (x′ = 0) results from the statement in line 5. The
conjuncts that are needed to prove the unsatisfiability of the formula are under-
lined, i.e., already (x′ = 0)∧ (x′ �= 0) is contradictory. Thus, it appears as if only
the statement in line 5 is relevant for the error. However, in order to reproduce
the error we also need to know that y<0 holds in line 4, otherwise the statement
in line 5 will not be executed. Hence, we need the statement y=input-42 and
the precondition input<42 to show that the condition in line 4 is true. Unfortu-
nately, we cannot derive this information from the unsatisfiability proof because
the values of y and input are irrelevant for the proof.

To overcome this problem, we introduce an alternative encoding of errors
into so-called flow-sensitive trace formulas. A flow-sensitive trace formula keeps
track of dependencies between statements and the branching conditions that are
relevant for the reachability of these statements in the control flow graph of the
program. A proof of unsatisfiability of such a formula includes a justification
for the truth value of every branching condition on which a relevant statement
depends. The flow-sensitive trace formula for the example in Fig. 1 is as follows:

(input < 42) ∧ (x = 1) ∧ (y = input− 42) ∧ (y < 0 =⇒ x′ = 0) ∧ (x′ �= 0)

For a proof of unsatisfiability we still need the information that x′ = 0 holds,
but this information is now encoded in an implication (y < 0 =⇒ x′ = 0).
The premise of the implication, (y < 0), is the branching condition at line 4
that needs to be satisfied to reach the statement in line 5. The implication
encodes that either the branching condition holds and the statement in line 5
is executed, or the branching condition does not hold and x′ takes an arbitrary
value (effectively over-approximating the else branch of the conditional). That
is, either the implication (y < 0 =⇒ x′ = 0) is relevant for the proof or we can
show that the value of x′ is completely irrelevant. If the implication is relevant,
then the branching condition y < 0 must also be relevant and so must be all
the statements that affect its truth value. Hence, a statement that affects the
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reachability of a relevant statement is also considered relevant. In this example,
the unsatisfiability of the flow-sensitive trace formula can only be proven if we can
show that the implication (input < 42)∧(x = 1)∧(y = input−42) =⇒ (y < 0)
is valid. The conjunct (y = input−42) resulting from line 3, and the precondition
(input < 42), which are both part of the premise, are sufficient for this. Hence,
using the flow-sensitive trace formula, we can still identify the conflict between
line 5 and line 7, but in addition, we can also explain why line 5 is reached. In
the end, only the statement in line 2 is considered irrelevant.

Flow-sensitive trace formulas also distinguish between conditional choices that
are relevant to reach the error and those that are irrelevant. We illustrate this
using the procedure yZero shown in Figure 2. The flow-sensitive trace formula
of yZero is either

(input < 42) ∧ (x = 0) ∧ (y = input− 42) ∧ (y < 0 =⇒ y′ = 0) ∧ (x �= 0)

if the trace to the error goes through the if-statement at line 4, or

(input < 42) ∧ (x = 0) ∧ (y = input− 42) ∧ (y ≥ 0 =⇒ y′ = y) ∧ (x �= 0)

if it does not. Note that both traces are error traces, as the correctness assertion
x �= 0 in line 7 is violated in each case. We reuse the error precondition (input <
42) from the previous example, though we might as well use any other constraint
on input (as long as it is satisfiable). To prove the formula unsatisfiable, it is
sufficient to prove the contradiction between the conjunct (x = 0), resulting
from line 2, and the assertion (x′ �= 0). The conjunct (y < 0 =⇒ y′ = 0),
respectively (y ≥ 0 =⇒ y′ = y.), is not needed. We thus conclude that the
conditional choice in line 4 is irrelevant to reproduce the error. Similarly, we
observe that the constraints resulting from the statement y=input-42 and the
precondition input<42 are not needed. Hence, we further conclude that neither
the value of input, nor the value of y are relevant to reproduce the error.

3 Preliminaries

We use first-order logic formulas to define programs. We assume standard syntax
and semantics of such formulas and use � and ⊥ to denote the Boolean constants
for true and false, respectively. For a set of variables X , we denote by Expr(X)
the set of terms built from variables in X and we denote by Preds(X) the set of
all quantifier-free formulas with free variables in X .

Programs and Statements. Let X be a fixed set of variables, which we call
program variables, and let L be a set of labels. A program statement st is either
a conditional choice, a while loop, a sequence of statements, an assignment, or
a label:

x ∈ X, � ∈ L, e ∈ Expr(X), cond ∈ Preds(X)

st ::= if cond then st else st | while cond do st

| st ; st | x := e | label �
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Labels have no operational meaning. They are only used to uniquely identify
certain points during the execution of a program statement. We require therefore
that each label � occurs at most once in a statement. We use the short-hand
notation � : st for the program statement label �; st .

A program P = 〈st , Φ〉 consists of a program statement st , and an assertion
map Φ : L → Preds(X) which maps each label � in st to a formula that should
hold at the point of execution of st determined by �.

Atomic Statements and Traces. We define the semantics of program statements
and programs in terms of atomic statements (or simply statements), which are
defined by the following grammar:

sta ::= if cond | endif | x := e | label � | havoc cond

A trace π is a finite sequence of atomic statements. Let π be a trace of length
n. For 0 ≤ i < n, we denote by π[i] the i-th atomic statement of π, and for
0 ≤ i < j < n, we denote by π[i, j] the sub-trace π[i]; . . . ;π[j − 1] of π. Traces
obtained from programs do not contain havoc cond statements. We will use such
statements later to define abstract traces.

A program statement st defines a possibly infinite, prefix-closed set of traces
Traces(st). The setTraces(st) is obtained by unwinding the loops in st arbitrarily
often. Formally, we define the set of complete traces CTraces(st) of a statement
st as the least fixed point of the following system of equations:

CTraces(x := e) = {x := e}
CTraces(label �) = {label �}
CTraces(st1 ; st2) = { π1;π2 | π1 ∈ CTraces(st1), π2 ∈ CTraces(st2) }
CTraces(if cond then st1 else st2) =
{ if cond ;π; endif | π ∈ CTraces(st1) } ∪
{ if ¬cond ;π; endif | π ∈ CTraces(st2) }

CTraces(while cond do st) =
{if ¬cond ; endif} ∪
{ if cond ;π; endif;π′ | π ∈ CTraces(st), π′ ∈ CTraces(while cond do st) }

The set of traces Traces(st) of a program statement st is then defined as the
set of all prefixes of its complete traces CTraces(st). The traces of a program
P = 〈st , Φ〉 are the traces of its program statement, i.e., Traces(P) = Traces(st).

The purpose of using the above notation for the syntax of programs and
traces, instead of more common notations such as guarded commands and pas-
sive programs, is that it allows to identify the scope of a branching condition
from the syntax. We might as well use a more common syntax but then we need
to recompute this scope in a preprocessing step.

Semantics of Traces and Programs. A program state s is a function that assigns
a value s(x) to each program variable x ∈ X . We call the formulas Preds(X)
state formulas and we write s |= F to denote that a state s satisfies a state
formula F .
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For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the variable obtained
from x by adding i primes to it. The variable x〈i〉 models the value of x in a
state that is shifted i time steps into the future. We extend this shift function
from variables to sets of variables, as expected, and we denote by X ′ the set of
variables X〈1〉. For a formula F with free variables from Y , we write F 〈i〉 for the
formula obtained by replacing each occurrence of a variable y ∈ Y in F with the
variable y〈i〉. We denote by x〈−i〉 the inverse operation of x〈i〉.

The formulas Preds(X ∪X ′) are called transition formulas. We use transition
formulas to represent the semantics of statements in a trace, where the vari-
ables X ′ denote the values of the variables from X in the next state. We write
s, s′ |= T to denote that the states s and s′ satisfy the transition formula T ,
where s′ is used to interpret the variables in X ′. We associate with each atomic
statement sta a transition formula T [sta] as shown in Figure 3. Here, frame(Y )
denotes the formula

∧
y∈Y y = y′. The atomic statement havoc cond assigns

non-deterministic values to all variables in vars(cond) and has no effect on the
values of the remaining variables. Note that these statements do not occur in
traces from the program as our programs are deterministic.

sta T [sta]

if cond cond ∧ frame(X)
endif frame(X)
label � frame(X)
x := e x′ = e ∧ frame(X \ {x})
havoc cond cond ′ ∧ frame(X \ vars(cond))

Fig. 3. The transition formulas describing the semantics of the statements in traces

An execution of a trace π of length n is a sequence of states s0 . . . sn such
that for all 0 ≤ i < n, si, si+1 |= T [π[i]]. We denote by Execs(π) the set of all
executions of π. The trace formula of π is the formula

TF(π) := T [π[0]]〈0〉 ∧ . . . ∧ T [π[n− 1]]〈n−1〉 .

The trace formula is satisfiable if and only if π has a (feasible) execution. That is,
if Execs(π) is non-empty. In fact, there is a one-to-one correspondence between
the executions of π and the models of TF(π). We call a trace feasible if its trace
formula is satisfiable, otherwise we call it infeasible.

A program P = (st , Φ) is safe if for every trace π ∈ Traces(P) whose final
statement is a label statement label � and every execution σ of π, the final state
of σ satisfies Φ(�). If a program is not safe, an error can be witnessed along a
trace. The error corresponds to a set of executions that violate the assertion
associated with the last label of the trace.

Definition 1. An error of a program P = 〈st , Φ〉 is a tuple (ψ, π, φ) where ψ
and φ are state formulas and π = sta0 ; . . . st

a
n−2; label � is a trace of P with

Φ(�) = φ such that the following conditions hold:
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1. ψ ∧TF(π) is satisfiable, and
2. ψ ∧TF(π) ∧ φ〈n〉 is unsatisfiable.

That is, for an error (ψ, π, φ), no execution of the trace π that starts in a state
satisfying ψ ends in a state satisfying the postcondition φ. However, there must
exist at least one execution of π that starts in a state satisfying ψ. We refer to
the unsatisfiable formula ψ ∧TF(π) ∧ φ〈n〉 as the extended trace formula of the
error.

4 Flow-Sensitive Fault Localization

Proof-based fault localization techniques such as the ones described in [11] and [6]
use the unsatisfiability proof of the extended trace formula to identify the parts
of the trace formula that are relevant for the error. However, the extended trace
formula only encodes that the trace does not have any execution for the given pre
and postcondition. That is, to show that this formula is unsatisfiable, it might
be sufficient to identify a single statement in the trace that establishes a con-
tradiction with the postcondition. Though, to understand why the execution is
possible at all, and thus to understand why the undesired post-state is reachable
on this execution, more statements might be necessary. Therefore we propose
flow-sensitive fault localization which localizes the fault and further explains for
each statement in the result of the localization why the conditions needed to
reach this statement are satisfied.

In this section, we show how existing fault localization algorithms can be made
flow-sensitive while using the underlying algorithm as a black box. We do this
for the fault localization technique based on error invariants [6], but the same
principle also applies to other algorithms.

Error Invariants. Given an error (ψ, π, φ) with trace π of length n, let 0 ≤ i ≤ n
be a position in the trace1. An error invariant for position i is a state formula I
such that (i) ψ ∧TF(π[0, i]) |= I〈i〉 and (ii) I ∧TFπ[i, n]∧ φ〈n−i〉 |= ⊥. That is,
I over-approximates the final states of the executions Execs(π[0, i]) that start in
a state satisfying ψ. Furthermore, the final state of any execution of π[i, n] that
starts in a state satisfying the error invariant still violates φ. An error invariant
is inductive for positions i ≤ j if it is an error invariant for both positions
i and j.

Fault Localization. We formulate fault localization as the problem of finding
an abstract error for a given error that describes the essence of why the er-
ror occurred. The abstract error comprises an abstract error trace that over-
approximates the executions of the original error trace and fails for the same
reason. We define these abstract error traces using inductive error invariants.
If an error invariant I is inductive for positions j > i, then the statements be-
tween positions i and j are not needed to reproduce the error. We can drop

1 Position n is the position where the assertion φ is supposed to hold.
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these statements from the error trace and replace them by a summary tran-
sition that non-deterministically changes the values of variables, but preserves
the error invariant I. The statements in the error trace for which we cannot find
an encompassing inductive invariant is considered relevant and remains in the
abstract error trace.

Definition 2 (Abstract error trace). Given an error (ψ, π, φ) with trace π
of length n. Let π# = havoc I0; st

a
1 ; havoc I1; . . . ; st

a
k; havoc Ik be a trace where

all Ii, 0 ≤ i ≤ k, are state formulas. We call π# an abstract error trace for
(ψ, π, φ) if there exist positions i0 < . . . < ik+1 such that i0 = 0, ik+1 = n+ 1,
for all j with 1 ≤ j ≤ k, staj = π[ij ], and for all j with 0 ≤ j ≤ k, Ij is an

inductive error invariant for positions ij and ij+1 − 1. We call (ψ, π#, φ) an
abstract error associated with error (ψ, π, φ).

Example 3. Consider again the example program from Fig. 1. We get an er-
ror for input = 41 and the trace x := 1; y := input − 42; if y < 0; x :=
0; endif; label � where the condition assigned to label � is x �= 0. One possible
abstract error trace is havoc �; x := 0; havoc x = 0.

Craig Interpolants. There is a close connection between error invariants and
Craig interpolants that we exploit to compute error invariants using the extended
trace formula associated with the error.

Given two formulas A and B whose conjunction is unsatisfiable, a Craig in-
terpolant for (A,B) - hereafter called interpolant - is a formula I such that (a)
A =⇒ I is valid, (b) B ∧ I is unsatisfiable, and (c) the free variables in I occur
free in both A and B. This concept has been extended to inductive sequences of
interpolants [13]. Given n formulas F1, . . . , Fn whose conjunction is unsatisfiable,
an inductive sequences of interpolants is a sequence I0, . . . , In of n+ 1 formula
such that (a) I0 is �, (b) In is ⊥, (c) Ii−1 ∧ Fi =⇒ Ii is valid for 0 < i ≤ n,
and (d) the free variables in Ii occur free in both, the formulas with index less
than or equal to i, and the remaining formulas. Such inductive sequences of in-
terpolants can be computed automatically from proofs of unsatisfiability using
an appropriate interpolation procedure (see, e.g., [12]). We assume that such an
interpolation procedure is given.

For an error (ψ, π, φ) with trace π of length n and a position 0 ≤ i ≤ n, let
A = ψ ∧TF(π[0, i]) and B = TF(π[i, n])〈i〉 ∧ φ〈n〉. Then for every interpolant I
of (A,B), the formula I〈−i〉 is an error invariant for position i of π.

Flow-sensitivity. An abstract error trace π# for an error (ψ, π, φ) is an abstrac-
tion of the concrete error trace π. Since the abstraction only has to preserve the
error, it might lose information about the control flow that is vital to reproduce
the error in the original program. For instance, the abstract error trace in Exam-
ple 3 does not provide any information about how line 5, the assignment x := 0,
is reached. In particular, the abstract error trace does not incorporate any in-
formation about the variable y that is used in the condition of the if -statement
(line 4) surrounding this assignment. In general, an error might not be caused
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directly by the execution of a specific statement, but by the reachability of that
statement under the given error precondition. For short error traces it is often
easy to see why a certain statement is reachable. However, for longer error traces
this is non-trivial. Hence, automation in form of fault localization that precisely
captures the relevant control flow is desirable.

We introduce flow-sensitive abstract error traces to solve this problem. A flow-
sensitive abstract error trace π# is an abstract error trace with the property that
for every statement sta in π#, a prefix of π# can be used to explain why sta is
reachable in the original trace. To formalize this concept, we introduce two helper
functions Conds and Prev . We denote by Conds(π) the conditions needed to
reach π[n], i. e., the conditions of the if -statements whose corresponding endif-
statements are not part of π:

Conds(π) = Conds(∅, π, n)
Conds(S, ε, 0) = S

Conds(S, π ; endif, i) = Conds(S, π[0,Prev (π)],Prev (π))

Conds(S, π ; if cond , i) = Conds(S ∪ {cond}, π, i− 1)

Conds(S, π ; label �, i) = Conds(S, π ; x := e, i)

= Conds(S, π ; havoc cond , i)

= Conds(S, π, i − 1)

Here, ε denotes the empty trace. If Conds(π) is used within a formula, it is inter-
preted as the conjunction of its elements. The helper function Prev (π) computes
for a trace of length n the position of the last if -statement that does not have a
corresponding endif-statement in π:

Prev(π) = Prev(1, π, n)

Prev(0, π, i) = i+ 1

Prev(k, π ; endif, i) = Prev(k + 1, π, i− 1)

Prev (k, π ; if cond , i) = Prev(k − 1, π, i− 1)

Prev(k, π ; label �, i) = Prev(k, π ; havoc cond , i)

= Prev(k, π ; x := e, i)

= Prev(k, π, i− 1)

Definition 4 (Flow-sensitive). Let P be a program. An abstract error (ψ, π#, φ)
for an error (ψ, π, φ) of P is called flow-sensitive if for every statement sta in
π# with sta = π[i] = π#[k], some prefix of π#[0, k] is an abstract error trace
for the error (ψ, π[0, i],¬Conds(π[0, i])) of the program that is obtained from P
by inserting2 the statement label � before the statement π[i] and mapping the
fresh label � to the assertion ¬Conds(π[0, i]).
2 Note that the insertion of labels into a program does not change the semantics of
the program.
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To make fault localization flow-sensitive, we need to know the scope of the
statement, i.e., the conditions that have to hold for the statement to be reachable.
With this knowledge, we can make any fault localization technique flow-sensitive
by using recursive calls to find out why the conditions have to hold when reaching
statements in conditional branches. As an example, we show in Algorithm 1 how
to make the fault localization based on error invariants flow-sensitive. In general,
this algorithm can easily be adapted to other fault localization techniques.

Algorithm 1. FSEI(ψ, π, φ): naive algorithm to compute error invariants
for flow-sensitive fault localization.
Input: Pre-condition ψ, Trace π of length n, and post-condition φ
Output: Sequence of n+ 1 error invariants
E0, . . . , En ← ErrorInvariants(ψ,π, φ) (1)
Pos← Changes(E0, . . . , En) (2)
Conditions← ⋃

i∈Pos Scope(i) (3)
foreach (i, cond) in Conditions do
S0, . . . , Si ← FSEI(ψ, π[0, i],¬cond) (4)
foreach 0 ≤ j ≤ i do Ej ← Ej ∧ Sj (5)

return E0, . . . , En

In the line marked by (1) it uses an algorithm for fault localization based on
error invariants [6] as a black box. This algorithm is supposed to return an error
invariant for every position in the trace and one for the post-condition. Hence,
for an input trace of length n the result consists of n + 1 error invariants. The
flow-sensitive localization then extracts, in (2), the positions in the sequence of
error invariants where the invariant changes. These positions index the relevant
statements in the trace. At this point, we get the result of the fault localization
without considering flow-sensitivity. Hence, (1) and (2) could be substituted by
any fault localization algorithm that computes a set of relevant statements for
the error. From the list generated in (2) the algorithm extracts, in (3), the scope
of every statement as a set of pairs of positions and conditions. Let j be the
position of a statement in a trace π, then Scope(j) returns the set of all pairs
(i, cond) such that (1) i < j, (2) π[i] is if cond , and (3) the corresponding
endif-statement is not in π[0, j].

When this information is available, we can reduce flow-sensitive fault localiza-
tion to a simpler subproblem. For every pair (i, cond) we insert2 a fresh label �i
before the statement π[i] and map the label to ¬cond . Then, in line (4), we re-
cursively call the flow-sensitive fault localization for the error (ψ, π[0, i],¬cond)
in the modified program. Essentially we ask the question “Why does cond hold
after executing π[0, i] from states in ψ?”

To understand why this procedure works, we first note that the condition
cond has to hold for all execution of π[0, i] that start in ψ since our programs
are deterministic. Hence, the tuple (ψ, π[0, i],¬cond) is an error in the modified
program.
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In our algorithm, the recursive calls return error invariants that explain why
every execution of the prefix up to the condition that starts in ψ must satisfy
the condition. The results of the recursive calls have to be combined with the
result of the initial call to the error invariant generation. We are only allowed to
strengthen the error invariants. Otherwise we might introduce executions that
do not violate the postcondition in which case the result would not be a flow-
sensitive abstract error trace. Thus, we conjoin the invariants derived by the
recursive call with the current invariants.

A binary search algorithm similar to the one presented in [6] can be used to
find for each error invariant a maximal interval of positions for which this error
invariant is inductive. We denote by Localize the procedure that takes as input
a sequence of error invariants and an error (ψ, π, φ), and builds an abstract error
Localize(〈E0, . . . , En〉 , (ψ, π, φ)), by replacing each subsequence π[i, j] of π by
havoc Ek, if Ek is an inductive invariant for positions i < j, for some 0 ≤ k ≤ n.

Theorem 5. Let (ψ, π, φ) be an error and E0, . . . , En = FSEI(ψ, π, φ) a se-
quence of error invariants. Then, Localize(〈E0, . . . , En〉 , (ψ, π, φ)) is a flow-
sensitive abstract error.

A downside of Algorithm 1 is that it might need one recursive call to fault
localization per if -statement in the trace, which results in a quadratic worst
case complexity. This will be inefficient for long traces. We therefore propose a
new encoding of an error into a flow-sensitive trace formula. The benefit of this
new encoding is that it yields a more efficient non-recursive flow-sensitive fault
localization algorithm.

5 Flow-Sensitive Trace Formulas

We denote the flow-sensitive trace formula of a trace π by FSTF(π). The idea
behind flow-sensitive trace formulas is that, in addition to encoding the execu-
tions of the trace π, they also encode an over-approximation of the executions
of all other traces that only differ from π in conditional statements. That is, if
we need a statement that is only reachable under certain conditions to prove
(ψ ∧FSTF(π) ∧ φ〈n〉) unsatisfiable, we also prove that every execution starting
in a state in ψ inevitably has to reach this condition.

Algorithm 2 shows how the flow-sensitive trace formula FSTF(π) is computed
for a given trace π. Similar to a trace formula, we compute a conjunction of
(appropriately shifted) transition formulas for each statement of π. However,
instead of adding conjuncts for branch conditions if cond , we memorize the
branch conditions that have to hold to reach a particular position on the trace
(see �1 and �3), and for every statement other than if cond and endif, we add
a chain of implications for these branch conditions to the transition formula of
this statement (see �5). Hence, whenever we want to show that a statement is
needed to prove that the trace formula contradicts with pre and postcondition,
we also have to prove that all conditions needed to reach this statement can be
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Algorithm 2. FSTF(π): flow-sensitive trace formula.

Input: Trace π of length n
Output: flow-sensitive trace formula ret

Stack conds;
Formula ret = true;
for (i = 0 to n− 1){
if (π[i] is (if cond)) {

�1 conds.push(cond 〈i〉);
�2 ret = ret ∧ frame(X)〈i〉; //stub for TF(π[i])

} else if (π[i] is (endif)) {
�3 conds.pop();

�4 ret = ret ∧ frame(X)〈i〉; //stub for TF(π[i])
} else {

�5 ret = ret ∧ (
(
∧

c∈conds c) =⇒ (T [π[i]]〈i〉)
)
;

}
}

Algorithm 3. FSErrInvs(ψ, π, φ): algorithm to compute a flow-sensitive
error invariants.
Input: Precondition ψ, Trace π of length n, and postcondition φ
Output: Sequence of n+ 1 error invariants
I0, . . . , In ← InductiveInterpolants(ψ ∧ FSTF(π) ∧ φ) (1)

return I
〈−0〉
0 , . . . , I

〈−n〉
n

satisfied. This guarantees that our fault localization will consider these branch
conditions and all the statements affecting their truth values.

Algorithm 3 is our non-recursive flow-sensitive fault localization algorithm
that computes the error invariants directly via Craig interpolation of the flow-
sensitive trace formula. The resulting abstract error is still guaranteed to be
flow-sensitive:

Theorem 6. Let (ψ, π, φ) be an error with trace π of length n and E0, . . . , En =
FSErrInvs(ψ, π, φ) be a sequence of error invariants computed by Algorithm 3.
Then, Localize(〈E0, . . . , En〉 , (ψ, π, φ)) is a flow-sensitive abstract error.

Proof (sketch). Let the result of Localize(〈E0, . . . , En〉 , (ψ, π, φ)) be (ψ, π#, φ)
with π# ≡ (havoc E0, st

a
1 ; havoc E1; . . . ; havoc Ek) where no stai is a havoc

statement. Since π# is an abstract error trace by construction, we only have to
show that it is also flow-sensitive. Note that Localize guarantees that for all
0 ≤ i ≤ k and 0 ≤ j ≤ k, if i �= j then Ei is not an error invariant that can
replace Ej .

Let j be a position in the abstract error trace with 0 < j ≤ k. Furthermore, let
ij denote the position of staj in the concrete error trace π. If Conds(π[0, ij ]) = ∅,
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i. e., the statement does not occur under an if -statement, flow-sensitivity holds
trivially for this statement. Otherwise, we denote by ξ the formula corresponding
to Conds(π[0, ij ]). Note that FSTF(π[ij ]) ≡ ξ → TF(π[ij ]).

We know that Ej is an error invariant at position ij and Ej−1 is an error
invariant at position ij−1. Furthermore, we know that the following equivalences
hold:

ψ ∧FSTF(π[0, ij ]) ≡ ψ ∧ FSTF(π[0, ij − 1]) ∧ FSTF(π[ij ])
〈ij−1〉

≡ ψ ∧ FSTF(π[0, ij − 1]) ∧ ξ → TF(π[ij ])
〈ij−1〉

If ξ does not hold in Ej−1 it is not relevant for the error. Hence, the state-
ment staj cannot appear in the abstract error trace. This contradicts the prop-
erty guaranteed by Localize considering Ej and Ej−1. Hence, a prefix of the
abstract error trace up to the error invariant Ej−1 has to ensure that ξ has
to hold.

input < 42
input < 42

x′ = 1
input < 42

y′ = input− 42
y′ < 0

y′ < 0 =⇒ x′′ = 0
x′′ = 0

x′′ �= 0
(a) using flow-sensitive trace formula

input < 42 �
x′ = 1 �
y′ = input− 42 �
y′ < 0 ∧ x′′ = 0

x′′ = 0
x′′ �= 0
(b) using trace formula

Fig. 4. Interpolant derivation for the program from Figure 1

Example 7. Figure 4(a) shows the derived interpolants for the flow-sensitive
trace formula of the error in our motivating example given in Fig. 1. Every
conjunct of the trace formula is written on a single line. The first formula is the
precondition of the error, the last formula is the postcondition, and the remain-
ing formulas are the flow-sensitive trace formulas for the statements in the trace.
The horizontal lines separating the different formula parts correspond to the po-
sitions where an interpolant is computed. Adjacent to each line, we annotate the
computed interpolant. Note that each interpolant is unsatisfiable in conjunction
with the formulas below the adjacent line3. Consider the last interpolant x′′ = 0.
This interpolant suffices to show that the postcondition is violated. The flow-
sensitive encoding however forces the prover to justify why the condition y′ < 0
holds. This justification is given in the preceding interpolants.

Figure 4(b) shows the derivation of interpolants for the same error encoded
with the original extended trace formula. In this encoding, the fact x′′ = 0 holds
unconditionally. Therefore, only the last interpolant is non-trivial because no
justification has to be given why the assignment statement x = 0 is actually
reachable.

3 The interpolants actually form an inductive sequence. We omit the initial � and
final ⊥ interpolant of this sequence.
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1 void process () {

2 int x, y, z;

3 z = 0;

4 lock = 1;

5 if (x == 0) {

6 if (y == 0)

7 z = 1;

8 }

9 if (y != 0) {

10 z = y;

11 }

12 if (x != 0) {

13 z = 2;

14 lock = 0;

15 } else if (z > 0) {

16 z = 3;

17 lock = 0;

18 }

19 //@ assert lock == 0;

20 }

Fig. 5. Faulty locking with a simplified locking mechanism

6 Evaluation

For our prototype implementation we use the software model checker Kojak
which is based on Ultimate [5] and the interpolating theorem prover SMT-
Interpol [4]. Kojak implements the fault localization algorithm based on error
invariants [6]. We modified the implementation to perform flow-sensitive fault
localization using the flow-sensitive trace formula encoding.

In the following, we demonstrate the benefits of flow-sensitive trace formulas
in fault localization on two examples taken from the literature to which we have
applied our implementation. We prefix statements in abstract error traces with
their corresponding line numbers in the original program. For frame conditions
we use the line number of the associated conditional choice and add the subscript
fc. For the sake of presentation we limit ourselves to small examples. Compared
to previous approaches, our new method results in longer abstract error traces
since it now provides additional information about the program’s control flow.

Faulty Locking. The first example is taken from [3] and shown in Figure 5. The
program uses a locking mechanism to protect the access to variables. For the
purpose of demonstration we simplified the lock/unlock steps by introducing a
simple Boolean variable lock. The program sets lock = 1, then starts operations
on the variables x, y, z, and finally checks if lock has been set to zero at the end
of the procedure using an assertion in line 19. We use the model checker Kojak
to check the safety of this assertion. The model checker finds a counterexample
trace π and provides an initial failing state ψ ≡ x = 0 ∧ y = −1. Conjoining the
obtained information yields the extended trace formula

(x = 0 ∧ y = −1) ∧ (z′ = 0) ∧ (lock ′ = 1) ∧
((x = 0) ∧ (y �= 0) ∧ (z′′ = z′)) ∧ ((y �= 0) ∧ (z′′′ = y)) ∧

((x = 0) ∧ (z′′′ ≤ 0) ∧ (lock ′′ = lock ′)) ∧ (lock ′′ = 0) .

We can see that only the variable lock is relevant to prove this formula unsatis-
fiable. Hence, the vanilla algorithm from [6] provides us only two inductive error
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invariants, � and lock = 1. The corresponding abstract error trace is shown on
the right side of Figure 6. The abstract error trace explains the direct cause of
the error, but it does not show why the error is reachable.

havoc x = 0 ∧ y = −1
4 :lock := 1;

havoc x = 0 ∧ y = −1 ∧ lock = 1

10 :z := y;

havoc x = 0 ∧ lock = 1 ∧ z = −1
18fc :lock := lock;

havoc lock = 1

havoc �
4 :lock := 1;

havoc lock = 1

Fig. 6. Abstract error traces of the example in Fig. 5 with and without flow-sensitive
encoding of the error.

Using flow-sensitive trace formulas for this error we get a different sequence
of interpolants. Again, we show the formula one conjunct above the other with
the interpolants written adjacent to the separating line:

x = 0 ∧ y = −1
x = 0 ∧ y = −1

z′ = 0
x = 0 ∧ y = −1

lock′ = 1 x = 0 ∧ y = −1 ∧ lock′ = 1
(x = 0) ⇒ (y �= 0) ⇒ (z′′ = z′)

x = 0 ∧ y = −1 ∧ lock′ = 1
(y �= 0) ⇒ (z′′′ = y)

x = 0 ∧ lock′ = 1 ∧ z′′′ = −1
(x = 0) ⇒ (z′′′ ≤ 0) ⇒ (lock′′ = lock′) lock′′ = 1
lock′′ = 0

From this sequence of interpolants we obtain the flow-sensitive abstract error
trace shown in Figure 6. The first error invariant only represents the error pre-
condition. Note that, in general, this invariant might be more general than the
concrete values given by the model checker for the error precondition.

The second error invariant summarizes the control flow from line 5 to line 9
and the effect of the program up to line 5 that is relevant for the error. In
particular, this invariant describes that the then-branch of the if -statement in
line 5, the else-branch of the if -statement in line 6, and the then-branch of the
if -statement in line 9 are taken. Furthermore, no assignment statement and no
frame for the code between lines 5 to 9 affects the occurrence of the error.

The statement in line 10, however, has such an effect which can be seen in
the next error invariant. The value of y becomes irrelevant for the remainder
of the trace, but the value of the variable z now becomes relevant. From this
error invariant it is easy to see that both conditions in lines 12 and 15 are not
satisfied. Hence, the if -statement is skipped and we have to insert appropriate
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frame conditions into our SSA-encoded error trace. This frame condition actually
changes the error invariant. From this change we can conclude that the case
distinction in lines 12 to 18 is incomplete. Note that this change is only enforced
by the symbol condition for interpolants. To enforce this change in general,
we introduce fresh auxiliary variables for the conditions needed to execute the
statement. These variables are always local to exactly one interpolant and, hence,
cannot be shifted. To improve readability we omitted these variables as they are
not needed for the example.

1 int absValue(int input) {

2 int sign ,abs;

3 abs = input;

4 if (input == 0)

5 return 0;

6 if (input <0) {

7 sign = -1;

8 printf("negative");

9 } else {

10 sign = 1;

11 printf("positive");

12 }

13 if(sign == -1) {

14 sign = input *-1;

15 } else {

16 abs = input;

17 }

18 //@ assert abs >= 0;

19 return abs;

20 }

Fig. 7. Example code of a faulty program that computes the absolute value and sign
of the variable input

Faulty Absolute Value. The second example program is shown in Fig. 7. It com-
putes the absolute value of an input variable input. The procedure absValue

takes a variable input as input. If this variable is 0, the procedure returns with-
out further computations (line 4-5). Otherwise the procedure sets sign to −1 if
input is negative and to 1 if not (line 6-12) and prints a corresponding message
to the console. Then, it computes the absolute value of input and writes it to
abs (line 3-17). However, there is an error in the computation of the absolute
value in line 14. The absolute value is written to sign instead of abs, which
causes abs to have the original (negative) value of input that was assigned to it
in line 3. This violates the assertion in line 18 which expects abs to be greater
or equal to zero. The challenge here is that the error occurs because the variable
abs is not modified in line 14. The above error is detected by Kojak and the
error is witnessed using the example input input=-1. For this input, we can
then extract an error trace π of the procedure absValue. The right column of
Fig. 8 shows the abstract error trace obtained by analyzing π using the approach
from [6] with non flow-sensitive encoding of trace formulas. To reproduce the
failing execution it is sufficient to know that input is initially −1, and that in
line 3 abs is set to the value of input. Since abs is not changed after that,
these statements, together with the postcondition constitute an execution that
fails the same way as the original error trace. However, what we are actually
interested in is to see that the problem occurs because sign is modified instead
of abs in line 14. This information is missing in the abstract error trace.
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havoc input ≤ −1
3 :abs := input;

havoc input ≤ −1 ∧ abs ≤ −1
7 :sign := −1;

havoc abs ≤ −1 ∧ sign = −1
15fc :abs := abs;

havoc abs ≤ −1

havoc input ≤ −1
3 :abs := input;

havoc abs ≤ −1

Fig. 8. Abstract error traces of the example in Fig. 7

We now consider the abstract error trace produced by the flow-sensitive al-
gorithm. Again, we show the flow-sensitive trace formula and the sequence of
interpolants computed for it:

input = −1 input ≤ −1
abs′ = input

input ≤ −1 ∧ abs′ ≤ −1
(input �= 0) ⇒ . . . input =≤ 1 ∧ abs′ ≤ −1
(input < 0) ⇒ (sign′ = −1) abs′ ≤ −1 ∧ sign′ = −1
(sign′ = −1) ⇒ (sign′′ = input ∗ −1)

abs′ ≤ −1 ∧ sign′ = −1
(sign′ = −1) ⇒ (abs′′ = abs′) abs′′ ≤ −1
abs′′ ≥ 0

From this sequence of interpolants we obtain the abstract error trace shown in
Fig. 8.

The first error invariant in the abstract error trace is a generalization of the
error precondition produced by Kojak. It shows that the error also occurs if the
value of input is any value less than or equal to −1. The next error invariant
incorporates the effect of the assignment in line 3. Furthermore, it states that
the if -statement in line 4 can be ignored when analyzing the error and that the
then-branch of the if -statement in line 6 is important. The statement at line 7
which is contained in the then-branch is the next statement to change the error
invariants. From the next error invariant we realize that, from line 7 to the end
of the program, the value of the variable input is irrelevant, but the value of
the variables abs and sign should be tracked. Furthermore, this invariant states
that the then-branch of the if -statement in line 13 is taken. In this branch, the
variable abs is not assigned, but the else-branch assigns it. Hence, we get a
frame condition which then changes the error invariant again. From this change
we can see that the missing assignment to abs is a potential reason for the failing
assertion.
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7 Conclusion

We have introduced the concept of flow-sensitive trace formulas. This new en-
coding of error traces into logical formulas enables proof-based fault localization
methods to explain why relevant statements are reached in an erroneous execu-
tion of a program. Flow-sensitive trace formulas encode conditional choices of
the error trace in such a way that the theorem prover can argue about the valid-
ity of the condition in the context of its prefix on the error trace. The resulting
proof of unsatisfiability provides control-flow-related information on why the er-
ror occurred. We applied the flow-sensitive trace formula encoding to our fault
localization technique based on error invariants. The resulting method identifies
irrelevant portions of the code and finds a justification for the reachability of the
remaining portions. Our evaluation shows that, while the produced abstract er-
ror traces are longer, they provide more useful error explanations. We therefore
believe that the new encoding helps the programmer considerably to understand
the faulty code fragment.

The application of the flow-sensitive trace formula encoding is not restricted
to fault locations based on error invariants but can also be used in other methods.
We will study such applications to other methods in our future work.
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