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Abstract. Polyhedra abstract domain is one of the most expressive
and used abstract domains for the static analysis of programs. Together
with Kleene algorithm, it computes precise yet costly program invariants.
Widening operators speed up this computation and guarantee its termi-
nation, but they often induce a loss of precision, especially for numerical
programs. In this article, we present a process to accelerate Kleene it-
eration with a good trade-off between precision and computation time.
For that, we use two tools: convex analysis to express the convergence of
convex sets using support functions, and numerical analysis to accelerate
this convergence applying sequence transformations. We demonstrate the
efficiency of our method on benchmarks.

1 Introduction

Static analysis plays an important role in software engineering. It allows to ver-
ify some safety properties on programs, like for example the absence of runtime
errors, which is crucial in the verification of embedded programs. Static analysis
uses the (concrete) program semantic function F to define a program invariant
X , such that F (X) = X . This represents the set of reachable program states,
but is however not computable. To deal with that, an over-approximation is
introduced using abstract interpretation [10]. The main idea is to define a new
(abstract) semantic function F � that computes an abstract program invariant
that includes the concrete one. This inclusion guarantees the safety of the re-
sult but not its accuracy: the larger the over-approximation is, the higher the
probability to add false alarms. This over-approximation is due to the type of
elements manipulated by F �; the most common and expressive abstraction is to
represent the reachable states of numerical programs as convex polyhedra [9],
that represent the linear relations existing between program variables.

The applicability of this analysis is faced with the compromise between preci-
sion and complexity: the standard algorithms (union, intersection) for comput-
ing with polyhedra are as precise as possible, but are mainly exponential in the
number of program variables. A lot of work has been proposed to reduce this
complexity, often at the cost of a loss in precision.
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First, some less expressive domains were defined to decrease computational
time, such as intervals, octagons [22] and templates [24]. These domains allow
to express only a certain kind of linear relations between variables: for example,
the octagon abstract domain encodes relations of the kind ±x± y ≤ c for c ∈ R.
In the template abstract domain, the shape of the linear relations is fixed using
a predefined matrix (the so-called template), and the efficiency of the analysis
lies in the use of linear programming (LP) solvers that efficiently transform a
general polyhedron into a template polyhedron. However, each of these domains
limits the expressiveness of the computed invariants, which limits their use to
analyse complex programs for which the shape of the relations between variables
is difficult to establish a priori.

The other tool to reduce the computation time of the analysis is to modify
Kleene algorithm to make it faster. The most classical way to do this is to use
a widening operator [8] that ensures the termination of the analysis by extrap-
olating the limits of the iterates. The usual widening in the polyhedra domain
removes constraints that are not stable from one iteration to the other. Even if it
improves computation time, widening clearly creates a large over-approximation
of the result. Some techniques were developed in complement of widening to min-
imize this loss of accuracy. For example, widening with thresholds [19] predefines
a set of thresholds whose elements are used as limit candidates at each iteration.
The difficulty lies in the choice of a relevant set of thresholds, which is often
computed statically before the analysis. In our previous work [5], we presented
a method that dynamically computes thresholds using numerical analysis tools.
In [5], we defined this technique for the interval and octagon abstract domains,
it can be smoothly extended to the template polyhedra domain. In this paper,
we show how it can be extended to general polyhedra.

It can be noted that the solutions proposed to improve the computation time
of a polyhedral analysis can be divided into two categories: on the one hand,
a restricted representation of data to facilitate their manipulation, and on the
other hand techniques that improve fixpoint computation, generally using a good
widening operator. In this paper, we propose a novel method to accelerate the
fixpoint computation in the polyhedral domain that uses both ideas together:
polyhedra are represented using support functions [17,23] and Kleene algorithm
is modified using sequence transformation methods [6]. The representation of
polyhedra with support functions allows to use the notion of scalar conver-
gence [25] of a sequence of polyhedra. We show that this convergence can be
used with sequence transformation methods to accelerate the fixpoint computa-
tion with a good accuracy. Our main contribution is this method which offers a
good balance between efficiency and precision, depending on our chosen polyhe-
dra representation.

The paper is organized as follows: in Section 2, we present our method on a
simple example, in Section 3, we introduce some useful definitions. In Section 4,
we formally define our algorithm, and in Section 5, we compare it with the
analysis using template polyhedra and present some techniques to improve the
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Assume: −20 ≤ x ≤ 20
Assume:0 ≤ y ≤ 3
while 1 do

if y ≥ 50 ∧ x ≥ −20 then
y=x-0.1y+60
x=0.2x+40

else
x=0.5x-y-2.5
y=0.9y+10

end if
end while

Fig. 1. The prog example, left, and some polyhedra obtained using Kleene iteration
(iterates 1, 10, 20, 30 and 70, from dark to light), right

performance of our method. Some benchmarks are given in Section 6. Finally,
we conclude with related work and some perspectives.

Notations. We define by MK(n,m) the set of matrices of a field K with n rows
and m columns. Given M ∈ MK(n,m), Mi,j is the element at the ith row and
jth column. Given two vectors v, w ∈ MK(n, 1), let 〈v, w〉 ∈ K be the scalar
product of v and w. For a set D, a sequence of elements in D will be noted
(xk)k∈N.

2 A Simple Example

To illustrate our method, we consider the simple program presented in Figure 1
(left). It consists of a loop iterating a linear transformation, with a change if
the variables enter the zone x ≥ −20, y ≥ 50. It can be shown that with the
initial conditions x ∈ [−20, 20] and y ∈ [0, 3], the then branch of the loop is
never taken. We used this condition to demonstrate the precision of our method
compared to an analysis using template polyhedra.

A polyhedra based analysis of this program computes a sequence of polyhedra
(Pk)k∈N, some of which are depicted in Figure 1 (right). This sequence does not
terminate, and widening does not help here: it discards the lower-left constraints
thus computing an unbounded post-fixpoint while the least fixpoint is bounded.
Note however that, in this case, the use of widening allows to prove that the
program never enters the then branch but fails to compute a finite lower bound
for variables x and y. To over-approximate the least fixpoint, our method works
as follows. First, we chose a fixed set of directions Δ, i.e. a set of vectors in
R

2, and for each direction d ∈ Δ, we extract the sequence of the values of the
support functions of each polyhedron in this direction. As will be made clear in
Section 3.2, the support function δP of a convex set P is a function such that
∀d ∈ R

2, δP (d) = sup{〈x, d〉 : x ∈ P} . The property that we will use is that
the sequence of support functions of the polyhedra Pk pointwise converges to
the support function of the least fixpoint.
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Now, let us study the values of the support functions in direction X+6Y (for
example). We present in Figure 2(a) their values w.r.t. the number of iteration
(dashed line). We see that this sequence slowly converges to its limit, and actually
never reaches it. There exist many methods that help to quickly compute the
limit of such numerical sequences. Among these methods we can use sequence
transformations which automatically compute a new sequence that converges
faster towards the same limit (even after finitely many steps in some cases).
We depict in Figure 2(a) this new sequence (bold line); we clearly see that this
sequence converges much faster towards its limit, after some irrelevant values
due to the initialization of the process. Our method uses such a transformation
to compute the limit ld of the sequence of support functions in each direction
d ∈ Δ. Once all the limits are computed, we construct a new polyhedron using
the constraints 〈x, d〉 ≤ ld in each direction and insert it into Kleene iteration.
This result is shown in Figure 2(b) and is a post-fixpoint (named P

�) of the
program. Remark that this post-fixpoint is precise in the sense that the vertices
of the least-fixpoint touch the faces of P�. A more precise post-fixpoint can be
computed using more directions, as will be shown in Section 6. Let us also note
that this post-fixpoint is sufficiently precise to show that the then branch of the
loop is never taken, while a template based analysis with the same directions
could not prove that.

20 40 60

1

2

·103

(a) The sequence of value of the support
function in direction X + 6Y (dashed)
and the accelerated sequence (thick line).

(b) The polyhedra of Kleene algorithm (in
dark) and the post-fixpoint computed using
our method (in white).

Fig. 2. Results of our method on the example of Figure 1

3 Backgrounds

In this article, we are interested in computing invariants for programs with n
variables using Kleene iteration on the polyhedra abstract domain. We denote
the variables by x1, . . . , xn and we let X = (x1, . . . , xn)

t be the vector of all vari-
ables. We thus need to compute the limit of a sequence of convex subsets of Rn.
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We start by explaining how this sequence is defined, then we show that another
notion of convergence (namely the scalar convergence) can be used to compute
its limit. Finally, we present some methods that work well for accelerating the
convergence of sequences of real values.

3.1 Polyhedra Abstract Domain

A convex polyhedron is a subset of Rn defined as the intersection of finitely many
half-spaces, each half-space being given as a constraint of the form

∑n
i=1 αixi ≤ c

where ∀i ∈ [1, n], αi ∈ R and c ∈ R. We here adopt the constraint representa-
tion of polyhedron, which is best suited for static analysis. The set of all convex
polyhedra has a lattice structure with an exact intersection operator and the
convex hull as union. This was one of the first numerical abstract domains used
in abstract interpretation [9]. Obviously, for implementation issues, the coeffi-
cients of the constraints are usually chosen as rational numbers and the set of
constraints is encoded using a matrix representation.

Definition 1 (Polyhedra Abstract Domain). The abstract domain of con-
vex polyhedra is the set of all pairs (A, b) where A ∈ MQ(k, n) is a matrix and
b ∈ Q

k is a vector of dimension k for some k ∈ N. A polyhedron P given by the
pair (A, b) represents the set of all points (x1, . . . , xn) ∈ R

n such that

∀j ∈ [1, k],

n∑

i=1

Aj,ixi ≤ bj .

Let Cn be the abstract domain of convex polyhedra in R
n.

Given a polyhedron P = (A, b), the ith constraint of P is 〈Ai, X〉 ≤ bi where X
is the vector of variables and Ai is the ith line of A.

The static analysis of a program with the polyhedra domain consists in com-
puting the least fixpoint P∞ of a monotone map F : Cn → Cn given by the
program semantics. To do so, the most used method is Kleene algorithm that
uses the equation P∞ =

⊔
k∈N

F k(⊥), where ⊥ is the least element of Cn. Kleene
iteration can be summarized by the following algorithm:

1: P0 := ⊥
2: repeat
3: Pi := Pi−1 
 F (Pi−1)
4: until Pi � Pi−1

So we see that an abstract interpretation based static analysis of a program
consists of defining a sequence of polyhedra (Pk)k∈N and computing its order-
theoretic limit P∞ =

⊔
k∈N

Pk. As Kleene algorithm may not terminate, a widen-
ing operator is used to compute an over-approximation Pw � P∞. In this article,
we show that P∞ can also be computed using scalar convergence and that nu-
merical acceleration methods can be used to quickly compute an approximation
of the scalar limit.
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d

Ω

L = {x ∈ R
2 : 〈x, d〉 = δΩ(d)}

Fig. 3. Geometrical interpretation of the support function: the line L represents the
limit of the half-space H =

{
x ∈ R

2 : 〈x, d〉 ≤ δΩ(d)
}
, in which Ω lies

3.2 Convex Analysis Tools

A convenient representation of a convex set is the use of its support func-
tion [17,23]. In this section, we define the notion of support function and present
how they can be computed in the case of convex polyhedron. We also introduce
the notion of scalar convergence.

Definition 1 (Support Function). Let Ω ⊆ R
n be a non-empty convex set.

The support function δΩ : Rn �→ R ∪ {+∞} of Ω is given by

∀d ∈ R
n, δΩ(d) = sup{〈x, d〉 : x ∈ Ω} .

As stated by Definition 1, the support function is defined only for the non-
empty convex set. In the following, we consider only non-empty convex sets.
The support function of a convex set Ω associates to each direction d ∈ R

n the
biggest value of the scalar product 〈x, d〉 for x ∈ Ω. The interest of this notion
is that any convex set Ω is uniquely and completely determined by the values
of its support function for all d ∈ R

n (see Property 1). So the set of all support
functions (i.e. the set of positive homogeneous, convex real valued functions over
R

n) is isomorphic to the set of convex sets over Rn.

Property 1. Let Ω be a non-empty convex set and δΩ be its support function.
We have:

Ω =
⋂

d∈Rn

{x ∈ R
n : 〈x, d〉 ≤ δΩ(d)} .

The value of δΩ in a direction d ∈ R
n might be infinite depending on whether Ω

is bounded in this direction. Figure 3 gives a geometrical interpretation of δΩ:
in the direction d, δΩ(d) defines the smallest half-space (delimited by the thick
line L) that contains Ω. When Ω is a polyhedron represented by its constraints
system, its support function can be obtained using linear programming.

Let now (Ωk)k∈N be a sequence of convex sets, with Ωk ⊆ R
n for all k ∈ N.

From a topological point of view, there are many ways to define the convergence
of the sequence (Ωk)k∈N [21], each of them leading to a (possibly different)
limit. We choose to use the notion of scalar-convergence because it is based
on support function and because it corresponds to the notion of limit used in
abstract interpretation when the sequence (Ωk)k∈N is monotone.
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Definition 2 (Scalar-convergence). Let (Ωk)k∈N be a sequence of convex
sets. For each k ∈ N, let δΩk

be the support function of Ωk. Let Ω be a con-
vex set and let δΩ be its support function. We say that (Ωk)k∈N scalar-converges
(or S-converges) to Ω, denoted by s-limk→+∞ Ωk = Ω, iff

∀d ∈ R
n, lim

k→+∞
(δΩk

(d)) = δΩ(d) .

The S-convergence defines the limit of a sequence of convex sets (Ωk)k∈N via
infinitely many limits of numerical sequences (δΩk

(d))k∈N, for all d ∈ R
n. Prop-

erty 2 shows that the S-convergence of an increasing sequence is the supremum
of its elements.

Property 2. Let (Ωk)k∈N be a sequence of closed convex sets and let cl be the
convex closure function. If we have that ∀k ∈ N, Ωk ⊆ Ωk+1, then

s-limk→∞ Ωk = cl(
⋃

k≥0

Ωk) .

Recall that, as defined in Section 3.1, Kleene algorithm computes program in-
variants as the union of a sequence of convex polyhedra. These polyhedra form
an increasing sequence, so Property 2 shows that the S-convergence can be used
to compute the result of Kleene iteration. We use this idea in Section 4 to define
an accelerated version of Kleene algorithm for convex polyhedra.

3.3 Numerical Analysis Tools

In this section, we present techniques called sequence transformations that are
used to quickly compute the limit of a numerical sequence of real numbers. These
techniques were already used in [5] to accelerate the convergence of the fixpoint
computation for the box or octagon abstract domains. We recall the basic notions
of sequence transformation that are needed to understand our framework, a good
review on the theory and applications of these methods can be found in [6].

We equip R with the euclidean distance and define Seq(R) as the set of all
sequences of real numbers (i.e. functions from N to R). We say that a sequence
(xk)k∈N ∈ Seq(R) converges towards x ∈ R, denoted by limk→∞ xk = x, if
limk→∞ |xk − x| = 0. More formally, we have:

lim
k→∞

xk = x ⇔ ∀ε > 0, ∃K ∈ N : ∀k ≥ K, |xk − x| ≤ ε .

Given two sequences (xk)k∈N and (yk)k∈N with the same limit �, we say that
(yk) converges faster to � than (xk) if limk→∞

(
yk−l
xk−l

)
= 0. The goal of sequence

transformations is to automatically compute, from a slowly converging sequence
(xk), a sequence (yk) that converges towards the same limit faster than (xk).
In this way, we can use (yk) to quickly obtain an approximation of the limit of
(xk). This is formally stated in Definition 3.
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Definition 3. A sequence transformation is a function T : Seq(R) → Seq(R)
such that, for all converging sequences (xk)k∈N ∈ Seq(R), the sequence (yk) de-
fined by (yk) = T (xk) is convergent with limk→∞ yk = limk→∞ xk. The sequence
(yk) is said to be accelerated if limk→∞ yk−l

xk−l = 0.

An example of a sequence transformation is the well-known Δ2-Aitken transfor-
mation Θ : Seq(R) → Seq(R), defined by:

∀x ∈ Seq(R), ∀k ∈ N, Θ(x)k = xk − (xk+1 − xk)
2

xk − 2xk+1 + xk+2
.

We apply this transformation method to xk = 1 + 1
k+1 (∀k ∈ N), a sequence

that converges to 1. The result is given in the following table, where (Θ(x)k)k∈N

converges faster than (xk)k∈N toward 1.

xk 2.00 1.5 1.33 1.25 1.2 1.16 1.14 1.125 1.11
Θ(x)k 1.25 1.16 1.12 1.10 1.08 1.07 1.06

For more details on Δ2-Aitken transformation see [7].
Obviously, a sequence transformation does not accelerate all converging se-

quences, i.e. (T (xk))k∈N does not always converge faster than (xk)k∈N. Remark
however that it is required that T (xk) still converges towards the same limit. An
important notion is the kernel of a sequence transformation, which is the set of
all sequences x ∈ Seq(R) such that T (x) is ultimately constant, see Definition 4.

Definition 4. Let T : Seq(R) → Seq(R) be a sequence transformation. The
kernel of T , denoted by K(T ) ⊆ Seq(R), is the set of sequences defined by:

∀x ∈ Seq(R), x ∈ K(T ) ⇔ y = T (x) and ∃n ∈ N : ∀k ≥ n, yk = yn .

So clearly, sequences in the kernel of a transformation T are very interesting
because we can compute their limit in a finite time by looking at the elements of
the accelerated sequence. However, computing exactly the kernel of a sequence
transformation is very complicated [7]. In our experimentations, we used the
ε-algorithm [26], which is often cited as the best general purpose acceleration
algorithm. The ε-algorithm is a generalization of the Δ2-algorithm that is less
sensible to numerical instability. For the sake of conciseness, we do not present
it, let us just mention that its kernel contains a large class of sequences like
convergent linear sequences and totally monotonic ones [6, Chap. 2, pp. 85–91].

4 The Acceleration Process

In this section, we present our main contribution which is a new fixpoint algo-
rithm on the polyhedra abstract domain. For that, we define in Section 4.1 an
accelerated version of the S-convergence, called the accelerated S-convergence.
In section 4.2, we propose an abstract version of the accelerated S-convergence
which is used in Section 4.3 for the fixpoint computation.
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4.1 The Accelerated S-Convergence

In this section, we show how support function can be combined with sequence
transformations to accelerate the s-convergence of convex polyhedra sequences.
The method we develop is called the accelerated S-convergence.

Now, let Ω be a convex set and (Pk)k∈N be a sequence of polyhedra such
that s-limk→+∞ Pk = Ω. We want to compute Ω in a fast way. Let δPk

be the
support functions of Pk for all k ∈ N. We put ∀d ∈ R

n, ∀k ∈ N, Sd
k = δPk

(d).
From Definition 2, we have that if limk→+∞ Sd

k = Sd, then Sd = δΩ(d). It means
that Ω =

⋂
d∈Rn{x ∈ R

n : 〈x, d〉 ≤ Sd}. So, the S-limit of (Pk)k∈N can be defined

using the limit of numerical sequences (Sd
k)k∈N, for all d ∈ R

n.

Property 3. Let (Pk)k∈N be a convex polyhedra sequence, and δPk
be the support

function of each Pk.

If (∀d ∈ R
n), lim

k→+∞
δPk

(d) = Sd then s-limk→+∞ Pk =
⋂

d∈Rn

Hd

where Hd = {x ∈ R
n : 〈x, d〉 ≤ Sd} is a supporting hyperplane of the S-limit of

(Pk)k∈N.

Property 3 shows that it is possible to use numerical methods of Section 3.3
to accelerate the computation of the S-limit of (Pk)k∈N. Let T be a sequence
transformation as presented in Section 3.3. We compute the sequence (T (Sd

k))k∈N

for all d ∈ R
n, we assume that the sequence (Sd

k)k∈N belongs to the kernel of
T (see Definition 4). So (T (Sd

k))k∈N converges faster than (Sd
k)k∈N towards Sd,

thus accelerating the computation of Ω. This is stated by Definition 5.

Definition 5 (Accelerated S-convergence). Let (Pk)k∈N be a convex poly-
hedra sequence. For each k ∈ N, let δPk

be the support function of Pk, and let
T be a sequence transformation. The accelerated S-convergence, noted sA-lim, is
defined as:

sA-limk→∞ Pk =
⋂

d∈Rn

{
x ∈ R

n : 〈x, d〉 ≤ lim
k→+∞

T (δPk
(d))

}
.

In particular, we have s-limk→+∞ Pk = sA-limk→∞ Pk.

In practice, the sA-lim of (Pk)k∈N cannot be used because we must compute
limk→+∞ T (δPk

(d)) for all d in R
n. We can easily prove that this set can be

restricted to directions in the unit ball Bn, but then the accelerated S-limit still
required infinitely many limit computations. In Section 4.2, a finite abstraction
of the accelerated S-convergence, called the abstract S-convergence, is defined.

4.2 The Abstract S-Convergence

Let Ω be a convex set, and B
n ⊆ R

n be the unit ball. Using support function
properties, we have that ∀d ∈ B

n, Ω ⊆ Hd with Hd = {x ∈ R
n : 〈x, d〉 ≤ δΩ(d)}.

In particular, Ω is included in every intersection of finitely many supporting
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hyperplanes. So we can over-approximate Ω using a finite set of directions and
computing each supporting hyperplane in these directions. Property 4 presents
that.

Property 4. For a convex set Ω, we have :

– (∀Δ ⊆ B
n), Ω ⊆ ⋂

di∈Δ{x ∈ R
n : 〈x, di〉 ≤ δΩ(di)}.

– If (Δ = B
n) then Ω =

⋂
di∈Δ{x ∈ R

n : 〈x, di〉 ≤ δΩ(di)}.

In the sequel, we define the set Λ = P(Bn), Λ is the power set of Bn. (Λ,⊆Λ)
forms a complete lattice with ⊥ = ∅, � = B

n, ⊆Λ,∪Λ and ∩Λ being the usual
set operations.

The abstract S-convergence applies the accelerated S-convergence on an el-
ement Δ of the lattice (Λ,⊆Λ) to compute an over-approximation of the limit
of (Pk)k∈N. The idea is to apply the accelerated S-convergence partially using
directions in Δ. This is defined in Definition 6.

Definition 6 (The Abstract S-convergence). Let (Λ,⊆Λ) be the lattice of
direction sets. The abstract S-convergence of a sequence (Pk)k∈N ⊆ Cn, noted

s�A-lim, is a function from Λ× (N → Cn) to Cn, such that:

∀Δ ∈ Λ, s�A-lim(Δ,Pk) =
⋂

di∈Δ

{
x ∈ R

n : 〈x, di〉 ≤ lim
k→+∞

T (δPk
(di))

}

where T is a sequence transformation and δPk
are the support functions of Pk.

Now, we can consider the abstract S-convergence as a finite approximation of
the accelerated S-convergence, if the chosen direction set Δ is finite. As stated
by Property 4, it computes an over-approximation of the S-limit of a polyhedra
sequence.

Property 5. For a sequence (Pk)k∈N ⊆ Cn, we have that, if sA-limk→+∞(Pk) =
Ω then:

– (∀Δ ∈ Λ), Ω ⊆ s�A-lim(Δ,Pk) = Ω�, where Ω� is the best abstraction of Ω
using the direction set Δ, i.e. Ω� =

⋂
di∈Δ

{
x ∈ R

n : 〈x, di〉 ≤ δΩ(di)
}
.

– (∀Δ1, Δ2 ∈ Λ), if Δ1 ⊆Λ Δ2 then Ω ⊆ s�A-lim(Δ2,Pk) ⊆ s�A-lim(Δ1,Pk)

Informally Property 5 says that the more directions we have, the more precise
the result will be. In the case where Ω is a polyhedron, there exists a minimal set
ΔΩ ⊆ Λ, such that Ω = ∩d∈ΔΩ{x ∈ R

n : 〈x, d〉 ≤ δΩ(d)}. This ΔΩ represents
the set of all normal vectors of the constraints of Ω. However, these constraints
are generally unknown, so we do not know ΔΩ . Even worse, when Ω is not a
polyhedron, there is no finite set Δ which is optimal to compute s�A-lim(Δ,Pk)
(because there is no best abstraction of a general convex set into the abstract
domain of polyhedra). The efficiency and precision of our method depends on
the choice of a relevant set Δ. We discuss this choice in Section 5.2.
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Algorithm 1. Accelerated Kleene Algorithm.

Input: Δ ∈ Λ, finite
Input: ε > 0
1: P0 := ⊥
2: i := 1
3: P

� := {} //Initialize P
� to the empty sequence

4: repeat
5: Pi := Pi−1 � F �(Pi−1)
6: P

� = P
� ∪ {Pi} //Add the result of the iteration Pi to P

�

7: P
�
∞(i) := s�A-lim

(
Δ,P�

)

8: if (distance(P�
∞(i),P

�
∞(i−1)) ≤ ε) then

9: Pi := P
�
∞(i)

10: end if
11: i := i+ 1
12: until Pi 
 Pi−1

4.3 The Accelerated Kleene Iteration Algorithm

In this section, we use the abstract S-convergence with Kleene iteration to ac-
celerate fixpoint computation. This improvement proposes a trade-off between
precision and computation time by including more directions in the set Δ used
for the abstract S-convergence. If we run the Kleene algorithm with the poly-
hedra abstract domain, the collection of successive iterates forms a sequence of
convex polyhedra, noted (Pk)k∈N, such that:

{
P0 = ⊥
Pk+1 = Pk 
 F �(Pk), (∀k ∈ N)

We assume that ∀k ≥ 1,Pk �= ⊥.
The abstract semantic function F � is monotone by definition and (Pk)k∈N is

an increasing sequence, i.e. ∀k ∈ N, Pk � Pk+1. As stated in Property 2, the
S-limit of an increasing sequence is the convex hull of its elements, so for the
sequence of Kleene iterates, the S-limit of (Pk)k∈N is the least fixpoint of F �,
denoted P∞. So we have:

P∞ = s-limk→+∞ Pk

So P∞ = sA-limk→+∞ Pk (By transitivity).

Thus (∀Δ ∈ Λ), P∞ � s�A-lim(Δ,Pk) (Using Property 5).

This shows that we can compute an over-approximation of P∞ using the new
notion of convergence introduced in Section 4.2. Note that the quality of the
over-approximation depends on the choice of the direction set Δ.

In Algorithm 1, we define a new accelerated Kleene algorithm, which is the
standard Kleene algorithm combined with the abstract S-convergence. The main
idea is to compute in parallel the sequence (Pk)k∈N and its s�A-lim. Once this limit
is computed, we use it as a fixpoint candidate.
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Using a direction set Δ given as an input, in each iteration Algorithm 1
computes the abstract element Pi and puts it as a new element of P�. We have
that P

�
∞(i) is the result of the abstract S-convergence applied on P

� and Δ.

Collecting these results, we obtain the accelerated sequence, called (P�
∞(k))k∈N.

So we construct simultaneously P
� and (P�

∞(k))k∈N. When the algorithm detects

that the sequence (P�
∞(k))k∈N stabilizes, we assume that it is close to its limit and

thus we use the last element of (P�
∞(k))k∈N, noted P

�
∞(i), as a relevant threshold,

i.e. we modify the current Kleene iterate Pi to be P
�
∞(i). Thanks to the properties

of the abstract S-convergence, this threshold is obtained after a few iterations,
and it is a good approximation of the fixpoint.

Algorithm 1 detects the stabilization of the sequence (P�
∞(k))k∈N by computing

the distance between two successive elements. The distance dΔ we use is given
by:

∀P1,P2 ∈ Cn, dΔ(P1,P2) = sup
di∈Δ

|δP1(di)− δP2(di)| .

Clearly if Δ is finite (or Δ ⊂ B
n), dΔ is not a distance on Cn. In particular,

there exist infinitely many pairs (P,P′), P �= P
′, with dΔ(P,P′) = 0. However,

the sequence (P�
∞(k))k∈N is made of polyhedra whose directions are given by the

set Δ, i.e. they are template polyhedra. The function dΔ is a distance between
template polyhedra and can be used to detect the stabilization of the sequence.
Moreover, it can be computed in linear time as the support function in a direction
di are just the inhomogeneous term of the associated constraint. So we say that
the sequence (P�

∞(k))k∈N has stabilized when dΔ(P�
∞(i),P

�
∞(i−1)) ≤ ε, where

ε > 0 is a user-defined parameter (usually around 10−3).
We can prove that Algorithm 1 terminates when P

� can be accelerated by
s�A-lim, i.e. when P

� belongs to the kernel of the sequence transformation used to

compute s�A-lim. Note that practical experiments show that many sequences are
accelerated even if they are not in the kernel, so we believe that Algorithm 1 can
be efficiently used for many types of programs. However, it’s hard to establish a
priori if a sequence will be accelerated, and we know that no method accelerates
all convergent sequences [12]. To overcome this, we combine our method with
widening by replacing lines 6 to 10 of Algorithm 1 by:

if i ≤ nbDelay then
P
� = P

� ∪ {Pi}
P
�
∞(i) := s�A-lim

(
Δ,P�

)

if (distance(P�
∞(i),P

�
∞(i−1)) ≤ ε) then

Pi := P
�
∞(i)

end if
else
Pi := Pi−1∇Pi //The widening operator.

end if
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The idea is similar to widening with delay: we apply the accelerated S-convergence
during the first nbDelay iterations. If the computation doesn’t terminate we use
the widening to force the termination. In our experiments, however, we did
not need to use the widening to make the analysis terminate. Note that in the
case where s�A-lim accelerates sequences obtained in some directions and not the
others, a way to improve this algorithm is to use the polyhedron defined by
the accelerated directions as a threshold for widening. This allows to keep the
information obtained by s�A-lim and thus improves the precision of the widen-
ing result. Note that other widening techniques, as defined in [2], can also be
smoothly combined with our technique.

5 Performance

The performance of the method presented in this paper mainly depends on two
parameters. First, the choice of the transformation method to accelerate the se-
quences convergence is important. Clearly, each transformation accelerates very
well sequences in its kernel (see definition in Section 3.3), so we must choose an
algorithm with a large kernel. In our experimentations, we used the ε-algorithm.
Second and mainly, our method depends on the choice of directions used to com-
pute the abstract S-limit. We discuss this choice in Section 5.2. The direction
set used in our technique can be seen as a template defined in [24]. We next
emphasize this comparison and the differences between both methods.

5.1 Comparison with Template Abstract Domain

The template abstract domain [24] represents a derivation of the polyhedra do-
main in which the polyhedra are restricted to have a fixed shape. This shape
is defined by a n×m matrix, called template constraint matrix (TCM), where
n is the number of program variables and m the number of constraints used
to define the polyhedra shape. The analogue of the TCM in our method is the
direction set Δ: each line of a TCM is a direction, so clearly the set of all TCMs
is equivalent to the lattice Λ of direction sets. Given a TCM Γ , we denote by TΓ

the template domain with template Γ and by ΔΓ ∈ Λ the equivalent direction
set; we want to compare the fixpoint we obtain using Kleene iteration in the TΓ

and s�A-lim(ΔΓ ,Pk).
Let Γ be a TCM, and αΓ : Cn → TΓ be the abstraction function for the

template domain, such that ∀P ∈ Cn represented as a conjunction of constraints
of the form (A,b) (see Definition 1), αΓ (P) = ∩di∈Γ {x| 〈x, di〉 ≤ ci}, where ci is
the solution of the following problem: min bTλ s.t λ ≥ 0 ∧ ATλ = di. Note that
ci = δP(di), so αΓ (P) can be defined as:

αΓ (P) = ∩di∈Γ {x| 〈x, di〉 ≤ δP(di)} .

Let now P be a program and F � be its abstract semantic function in the poly-
hedra domain. An analysis of P in the template domain computes the invariant
P
t
∞ = 
t

P
t
k such that:



162 Y. Seladji and O. Bouissou

{
P
t
0 = αΓ (P0)

P
t
k+1 = P

t
k 
t αΓ (F

�(Pk)), ∀k ∈ N
.

In other words, it performs the standard Kleene iteration, but abstracts each
intermediate value into the template abstract domain. Here 
t is the union in
TΓ which is very easy to compute [24].

Let (Pk)k∈N be the sequence computed by Kleene iteration in the polyhe-
dra domain. It is easy to prove by induction that ∀k ∈ N, αΓ (Pk) � P

t
k. So


t
k∈N

αΓ (Pk) � 
k∈NP
t
k = P

t
∞. As αΓ is continuous, we know that:

αΓ

( 
k∈N Pk

) � P
t
∞. (1)

Let P∞ = 
k∈NPk be the least fixpoint of F � in the polyhedra domain. From
the definitions of αΓ and s�A-lim(ΔΓ ,Pk), we can easily prove that:

s�A-lim(ΔΓ ,Pk) = αΓ (P∞) . (2)

From Equation 1 and 2, we obtain that s�A-lim(ΔΓ ,Pk) � P
t
∞.

It means that, using the same TCM, the result of our method is more precise
than the one obtained with template abstract domain. The cause is that, in the
template case, all the analysis is made in a less expressive domain, so some over-
approximation is added at each iteration. In our method, the over-approximation
is done once, when the result of the abstract S-convergence is injected in the
Kleene iteration to accelerate its termination. From Equation 2, our method
automatically computes the best abstraction of the fixpoint in the template
domain. The use of numerical acceleration methods allows to compute it without
having to compute the fixpoint itself.

5.2 Discussion on Direction Set

Given a direction set Δ, the abstract S-convergence computes the template ab-
straction of the least fixpoint computed by Kleene iterates. So clearly, the choice
of Δ has a major influence on the quality of the abstraction. Moreover, as we
want to stabilize every sequence δPk

(d) for all d ∈ Δ, the choice of Δ also influ-
ences the performance of the algorithm as some sequences will be less likely to
be accelerated. However, there is no best direction set and choosing a good one
is a difficult problem [24]. We mainly have two methods to choose the directions.

Uniformly Distributed Directions. First, one can choose directions that are uni-
formly distributed on a surface of the n-dimensional sphere (n represents the
program dimension). This technique guarantees that the entire space is cov-
ered, so that if the limit of Kleene iterates is bounded, our method computes a
bounded polyhedra as well. This technique is also used in [14], where support
functions are used to represent convex sets for hybrid systems analysis. This
technique however does not consider the dynamics of the program to choose the
directions and is thus often not optimal.
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Using Partial Traces. A better solution is to use and extend the work of [1] where
statistical tools, namely principal component analysis (or PCA), are used to
refine the box abstract domain by changing the axis in which boxes are defined.
PCA is a commonly used tool in statistics for analysing data. Given a set of
points in a n-dimensional space, PCA computes an orthogonal coordinate system
that better represents the points, i.e. the new axes maximize the variance of the
projection of the initial values. Then, we can remove the most extreme points and
we obtain new axes, that are not orthogonal to the first, and that best represent
the reduced set of points. Iterating this idea, we obtain a set of directions that
contain many information on how the points are distributed in space.

In our case, we generate points by computing partial evaluation traces of the
program and collecting all the values of the variables. After the PCA analysis,
we obtain a direction set Δ with which we can perform our static analysis as in
Algorithm 1. We present in Section 6 the results we obtain using this technique,
which are very encouraging and our future work will consist in applying this
PCA analysis dynamically to discover relevant directions.

5.3 Case of Affine Programs

The main bottleneck of our algorithm is the fact that we must compute the
polyhedra given by Kleene iteration before computing the support functions in
the chosen directions. For programs with many variables, this quickly becomes
impossible as Kleene iteration is very time consuming. When the program iter-
ates an affine transformation (i.e. when the semantic function F is of the form
F (X) = AX+b, with A a matrix and b a vector), we can overcome this problem
by directly computing the value of the support function of Pi in each direction
without computing Pi, using ideas from [4]. We briefly describe this method
here. On the one hand, using Kleene algorithm and the semantic function F , Pi

is obtained by :

Pi = Pi−1 
 F (Pi−1). (3)

On the other hand, the support functions of convex sets can be computed effi-
ciently using the following operations. For any convex sets S, S′ ⊆ Cn, we have:

– ∀M ∈ MR(n,m), δMS(d) = δS(M
Td).

– δS�S′(d) = max(δS(d), δS′ (d)).

– δS⊕S′(d) = δS(d) + δS′(d).

In these formula, MS denotes the transformation of S by M , such that MS =
{Mx|x ∈ S} and S ⊕ S′ denotes the Minkowski sum: S ⊕ S′ = {x + x′ | x ∈
S, x′ ∈ S′}. Using these properties and Equation 3, the support function of Pi,
for a given direction set Δ, can be computed as follow:
∀d ∈ Δ, δPi(d) = δPi−1�F (Pi−1)(d)

= max(δPi−1(d), δAPi−1⊕b(d))
= max(δPi−1(d), δPi−1(A

Td) + 〈b, d〉)
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This can be generalized to:

δPi(d) = max
(
δPinit(d), δPinit(A

Tjd) +

j∑

k=1

〈b, AT (k−1)d〉, j = 1, . . . , i
)
. (4)

Note that in Equation 4, the support function of Pi are obtained using only
support function of Pinit, which is the polyhedron obtained just before the ex-
ecution of the loop, i.e. it is often the polyhedron representing the initialized
variables. This allows us to compute efficiently δPi without having to deal with
the complexity of the polyhedra abstract domain operations.

Remark that the technique presented in this section allows for a very efficient
fixpoint computation for affine loops. Such loops are very common in embedded
systems (for example linear filters are such loops) and are difficult to analyze.
In particular, other acceleration techniques such as [15] are not able to handle
affine loops, they can only compute the fixpoint for translations loop only. Our
technique is much more general.

6 Experimentation

In this section, we apply Algorithm 1, presented so far, on some benchmark
programs. We have implemented our framework on top of Apron [18] using the
Parma Polyhedra Library (PPL) [3]. The experimentations are done on 2.4GHz
Intel Core2 Duo laptop, with 8Gb of RAM.

Benchmarks Programs. Next, we present the results of our method on a collec-
tion of programs1 implementing digital filters that are known to be hard to anal-
yse using the standard polyhedra analysis. We used two filters inspired by [13]
(named filter1 and filter2) and five filters from the tests of the “Filter Ver-
ification Framework” software [11]. We choose filters of order 2 (lp iir 9600 2)
to 10 (bs iir 9600 12000 10 chebyshev) to study how our method scales with
the number of variables (a filter of order n has 2n+ 2 variables).

Comparison with Classical Kleene Iteration. Our benchmarks contain infinite loops
without guards: in this case, it is hard to define thresholds for widening statically
as techniques defined in [19] for example do not apply. So we analyse these pro-
grams using widening with delay (and no thresholds) on polyhedra abstract do-
main, with a delay of 15 iterations. The results are compared with ones obtained
with our method. These results are given in Figure 4. In the “Program” column,
|V | denotes the number of variables of the program and |Δ| the number of chosen
directions. In this table, ”Yes” means that the analysis reaches a bounded fixpoint
and � means an unbounded fixpoint. In this case, we give the execution time t.
The sign−means that the analysis did not terminate (with a time-out after 5 min-
utes). The results of Figure 4 shows that our method converges for all programs

1 All programs can be found at
http://www.lix.polytechnique.fr/~{}bouissou/vmcai13

http://www.lix.polytechnique.fr/~{}bouissou/vmcai13
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Program Widening Our method

Name |V | |Δ| Converging t(s) Converging t(s)

prog 2 8 � 0.091 Yes 0.029
filter1 6 24 � 0.156 Yes 0.316
filter2 4 48 � 0.053 Yes 0.672
lp iir 9600 2 6 72 � 0.208 Yes 0.049
lp iir 9600 4 10 200 � 6.563 Yes 0.167
lp iir 9600 4 elliptic 10 200 − − Yes 0.308
lp iir 9600 6 elliptic 14 392 − − Yes 2.564
bs iir 9600 12000 10 chebyshev 22 968 − − Yes 19.780

Fig. 4. Results of analysis obtained using different methods

with a good execution time, where the widening fails to compute a bounded post-
fixpoint. For these experiments, the direction sets we used are:

– prog, a randomly chosen direction set of 8 vectors.
– for filter1 and filter2, we used the PCA analysis to determine a good di-

rections set. We used 6 directions for filter1 and 20 directions for filter2.
Note that we also added to the directions set the box directions (i.e. ±X
for each variable X) and for each direction d given by the PCA analysis,
we added −d to have a better coverage of the unit ball. The PCA analysis
is done before programs analysis, and it is not taken into account in the
execution time t.

– the octagonal directions for other programs.

Note that we also tried an analysis of these programs using the template domain,
with a fixed template given by the directions set we used. In all cases, the analysis
without widening did not terminate and widening with delay converged to �.

In Figure 5, we show the post fixpoint we obtain for prog (with 100 direc-
tions), filter2 and lp iir 9600 4. We also show an under-approximation of
the fixpoint, so the actual fixpoint is between both. This shows the quality of
the invariant we compute.

Impact of the Acceleration Method. Finally, we want to stress out the importance
of using an acceleration method to speed up the convergence of the algorithm.
To do so, we compare the computation time and number of iterations of our al-
gorithm with the same algorithm but with the identity as acceleration method,
i.e. we stop when the sequence of support functions reaches its limit and not
the accelerated sequence. As shown by the table of Figure 6, the use of a trans-
formation method greatly improves the performance of the algorithm. We also
compare two acceleration methods: the Δ2-algorithm presented in Section 3.3
and the ε-algorithm. We see that both methods work well, the computation
time being smaller for Δ2 while the number of iterations needed to reach a
post-fixpoint is smaller for the ε-algorithm. This was expected: the ε-algorithm
is known to compute sequences that converge faster than Δ2-algorithm, but its
principle is that it repeatedly applies Δ2-algorithm to the accelerated sequences.
So its time and memory complexity are quadratic in the number of iteration,
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x

y

(a) prog.

yn

yn+2

(b) filter2.

yn

yn+2

(c) lp iir 9600 4.

Fig. 5. Results of the benchmarks programs. The filled polyhedron is the post fixpoint
we obtain, the dashed on is the under-approximation of the fixpoint after, respectively,
100, 80 and 15 iterations of Kleene algorithm.

Without acceleration With Δ2 method With ε-method
t (s) ni t (s) ni t (s) ni

lp iir 9600 2 0.058 47 0.037 16 0.047 17
lp iir 9600 4 0.258 100 0.159 31 0.197 27
lp iir 9600 4 elliptic 0.726 276 0.255 71 0.311 40
lp iir 9600 6 elliptic 5.119 702 1.552 172 2.553 91
bs iir 9600 12000 10 chebyshev 104.325 2391 19.873 524 - -

Fig. 6. Influence of the acceleration method on the performance on execution time (t)
and number of iterations (ni)

while the complexity of Δ2 is linear. This is the reason why the computation
of the bs iir 9600 12000 10 chebyshev program with the ε-algorithm timed
out. Figure 6 shows that, even if theoretically neither the termination nor the
acceleration is guaranteed, acceleration methods are in practice very useful for
computing fixpoint of numerical programs.

7 Conclusion

Related work Improving the fixpoint computation in abstract interpretation has
been a major concern since the beginning. Many techniques were proposed to
improve Kleene iteration, like widening with thresholds [19], guided static anal-
ysis [16] or the use of acceleration techniques inspired from model checking [15].
Our method is complementary to these as it works well for numerical programs
with a complex dynamics and for which no static constraints can be used to
define relevant thresholds. As stated in the article, our technique finds its in-
spiration in the template abstract domain [24] and the use of support functions
for hybrid systems analysis [20]. It however differs from an application of the
abstract acceleration of [5] on the template domain as we follow the dynamics
of the polyhedral analysis, which makes the result more precise than with the
template domain. This was shown by our program prog in which our analysis
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was able to prove that some part of the code is never reached while a template
based analysis could not.

Conclusion and FutureWork. In this article, we proposed a novel method to over-
approximate the least fixpoint of the program semantics in the polyhedra domain.
Our method uses a novel notion of convergence of convex sets, the abstract S-
convergence,which is based on numerical and convex analysis tools. The algorithm
we propose is very close to Kleene algorithm and its implementation does not re-
quiremany changes in existing fixpoint solvers.One of the strengths of this method
is that it can be tuned using many parameters (number and choice of the direc-
tions, ...) and thus offers a good trade-off between precision and computation time.
Our experiments show that this method improves standard widening techniques
on representative examples, as our prototype was able to compute a bounded post
fixpoint for programs that the widening method was unable to bound.

Clearly, this method strongly depends on the choice of the directions to ac-
celerate. We saw that the use of an apriori analysis using PCA and partial ex-
ecution traces can help to determine relevant directions, the generalization and
automatization of this process will be investigated. Also, our implementation is
currently based on the ε-algorithm for accelerating the convergence of numerical
sequences, we must consider other techniques in order to efficiently treat more
kinds of programs. Our method is efficient to analyse affine programs, to gener-
alize it to the non affine ones, we would like to experiment techniques of program
linearisation. Finally, we would like to investigate the use of our technique to
extrapolate on the dynamics of hybrid systems as defined in [20]: we believe that
the abstract S-convergence can be used to approximate the limit of a dynamical
system with unbounded horizon.
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anonymous reviewers for their helpful comments.
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