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Abstract. We consider the problem of automatic precondition infer-
ence. We argue that the common notion of sufficient precondition in-
ference (i.e., under which precondition is the program correct?) imposes
too large a burden on callers, and hence it is unfit for automatic program
analysis. Therefore, we define the problem of necessary precondition in-
ference (i.e., under which precondition, if violated, will the program al-
ways be incorrect?). We designed and implemented several new abstract
interpretation-based analyses to infer atomic, disjunctive, universally and
existentially quantified necessary preconditions.

We experimentally validated the analyses on large scale industrial
code. For unannotated code, the inference algorithms find necessary pre-
conditions for almost 64% of methods which contained warnings. In 27%
of these cases the inferred preconditions were also sufficient, meaning all
warnings within the method body disappeared. For annotated code, the
inference algorithms find necessary preconditions for over 68% of meth-
ods with warnings. In almost 50% of these cases the preconditions were
also sufficient. Overall, the precision improvement obtained by precon-
dition inference (counted as the additional number of methods with no
warnings) ranged between 9% and 21%.

1 Introduction

Design by Contract [28] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions and object
invariants (collectively called contracts) at design time. Contracts allow auto-
matic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for divide and conquer static program anal-
ysis and verification. In the real world, relatively few methods have contracts
that are sufficient to prove the method correct. Typically, the precondition of
a method is weaker than necessary, resulting in unproven assertions within the
method, but making it easier to prove the precondition at call-sites. Inference
has been advocated as the holy grail to solve this problem.

In this paper we focus on the problem of computing necessary preconditions
which are inevitable checks from within the method that are hoisted to the
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method entry. This should be contrasted to sufficient preconditions which guar-
antee the absence of possible assertion violations inside the method but may rule
out good runs. Programmers will object to the inference of too strong precondi-
tions as they introduce more false warnings at call sites.

Contribution. The basis for this work is [11] which introduced the theoreti-
cal framework formalizing the notion of necessary precondition inference. We
extend this theoretical framework by introducing the inter-method analysis, by
refining the intra-method analyses combining them with Clousot [16], by identi-
fying under which circumstances the generated precondition is also sufficient, by
showing how one can infer existential preconditions, by introducing a simplifica-
tion step for scalability, by adding the provenance relation, and by implementing
and validating the approach on realistic code bases.

2 Semantics

The semantics of a given program P (e.g. a method) is a non-empty set S of runs
modeled as finite or infinite execution traces over states Σ. S can be partitioned
into disjoint subsets S = E ∪ T ∪ I where the traces in E are finite bad runs
terminating in an error state, the traces in T are finite good runs terminating in
a correct state, and the infinite traces in I, which correspond to non-termination.
If X is a set of traces and s ∈ Σ, we write X(s) for the set of traces in X starting
from state s.

Assertions are either induced by the language semantics (e.g., null-pointer
dereference, division by zero, array out of bounds, . . . ) or they are annota-
tions in the source text (programmer-provided assertions, preconditions, and
postconditions). Boolean expressions are side effect free and they are always
well-defined when evaluated with shortcut semantics for conjunctions and dis-
junctions. The set � denotes the set of the potential failures of P. � contains
pairs 〈c, b〉, where b is an assertion at the program point c. In general, there may
be more than one assertion per program point. The bad runs E � {σs′ | ∃〈c,
b〉 ∈ � : πs′ = c∧¬�b�s′} are all traces σs′ ending in a state s′ ∈ Σ at a control
point πs′ = c where the evaluation of a language or programmer assertion b

fails, that is �b�s′ is false.
Given a formula C ⇒ S, we say that C is a sufficient condition for S and

S is a necessary condition for C. A sufficient condition for a statement S is a
condition that, if satisfied, ensures S’s correctness. A necessary condition for a
statement S must be satisfied for the statement to be true.

The first step in our precondition inference algorithm is the collection of all fail-
ure points 〈c, b〉 from which we will then try to derive necessary preconditions. In
practice, the candidate assertions in � are those assertions which cannot be stat-
ically proven by cccheck [16](or similar tools). We will use the assertions in � to
infer necessary preconditions. This consists in propagating these conditions back-
wards to the origin of the traces of the semantics S, at the entry control point. The
inference of termination preconditions is a separate problem [10], so we ignore the
non-terminating behaviors I, or equivalently, assume termination i.e. I = ∅.
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public static void Example(object[] a) {
Contract.Requires(a != null);

for (var i = 0; i <= a.Length; i++) {
a[i] = ...f(a[i])... ; // (*)
if (NonDet()) return;

}
}

Fig. 1. The weakest precondition for this code is false, which rules out good exe-
cutions. Our technique only excludes bad runs, inferring the necessary precondition
0 < a.Length.

3 Sufficient Preconditions

The weakest (liberal) preconditions provide sufficient preconditions which guar-
antee the (partial) correctness, i.e., the absence of errors in the program
[2, 5, 9, 22, 29, 31]:

∀s ∈ Σ : wlp(P, true)(s) � (E(s) = ∅).
The main drawbacks preventing the use of the weakest (liberal) preconditions
calculus for automatic precondition inference are: (i) in the presence of loops,
there is no algorithm that computes weakest (liberal) precondition wlp(P, true),
(ii) due to loop over-approximation, the inferred preconditions are sufficient but
no longer the weakest, and (iii) the resulting sufficient (liberal) preconditions
may be too strong and rule out good runs.

More formally, an under-approximation P of wlp(P, true) on states s ∈ Σ must
be computed such that

∀s ∈ Σ : P (s) ⇒ wlp(P, true)(s) �under-approximation�

⇔ ∀s ∈ Σ : P (s) ⇒ (E(s) = ∅) �def. wlp(P, true)�

⇔ ∀s ∈ Σ : P (s) ⇒ (T (s) �= ∅ ∨ I(s) �= ∅)
�since S(s) �= ∅ ∧ S = E ∪ T ∪ I so E(s) = ∅ implies (T (s) ∪ I(s)) �= ∅.�

⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [P (s) ⇒ (T (s) �= ∅)] (1)

The preconditionP on states s ∈ Σ is sufficient for the absence of definite runtime
errors (under the termination hypothesis) but ¬P (s) ∧ (T (s) �= ∅) is possible so if
execution stops in states s such that ¬P (s) (the sufficient precondition fails) then
T (s) �= ∅ implies that other valid executions may be ruled out.

We argue that in general the use of a sufficient precondition is unfair in an
automatic static analysis assume/guarantee reasoning setting, as: (i) it rules out
correct executions; and (ii) it imposes too strong a proof obligation at call-sites.

Example 1 (Ruling out good runs). Consider the code in Fig. 1, a very simplified
version of some pattern we found in System.dll. The function NonDet is a non-
deterministic Boolean function. At runtime, an out-of-bounds array access at
line (∗) may or may not appear. If the array is empty then the execution will fail
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int Sum(int[] xs)
{

Contract.Requires(xs != null);

int sum = 0;
for(var i = 0; i < xs.Length; i++)

sum += xs[i];

Assert(sum >= 0);

return sum;
}

Fig. 2. In presence of overflows, the weakest precondition of Sum is essentially the
method itself. The weakest precondition can be overapproximated (as customary in
deductive verification) with a sufficient precondition. Automatically inferred sufficient
preconditions may require the caller to establish a too strict condition.

while trying to access the first element. Otherwise, the failure will not appear if
some of the NonDet calls returns true.

The weakest (liberal) precondition is false, meaning that all the runs, even the
good ones, are rejected. To us, this is too strict. We propose a definition where no
good run is removed, but only bad ones. For instance according to our definition,
it is correct for our automatic tool to infer the precondition a.Length > 0 as an
empty array will definitely lead to a failure at runtime. ��

Example 2 (Requiring too much from the client). Let us consider the method
in Fig. 2, where int is a 32-bit integer, and overflows are not an error, but a de-
sired side-effect. Sum returns 19 for the input array {−2147483639,−2147483628,
−10}. The weakest precondition of the method Sum is essentially the method it-
self: (∑

0≤j<xs.Length
xs[i]

)
≥ 0. (2)

It is a second order formula as
∑

, the sum on two’s complement is defined in-
ductively. The automatic inference of (2) is tough, out of reach of the current
state-of-the-art tools and inference techniques. One can imagine tools inferring
weaker loop invariants, originating in stronger sufficient preconditions. Two pos-
sible sufficient preconditions for the method are

∀j ∈ [0, xs.Length). 0≤ xs[j]< MaxInt/xs.Length (3)

xs.Length = 3 ∧ xs[0] + xs[1] = 0 ∧ xs[2] ≥ 0. (4)

as they satisfy the correspondingHoare triples {(3)} C {Q}, {(4)} C {Q} and {(3)∨
(4)} C {Q}. However, it is unfair to use one of them for an automatic modular as-
sume/guarantee reasoning. For example, the input array above satisfies neither (3)
nor (4). So, a tool inferring a sufficient but not necessary precondition will report
a precondition violation for a caller with such an actual parameter. ��

A sufficient precondition may impose too large a burden on callers, thereby
making the precondition appear wrong to the user. In an early attempt at pre-
condition inference, we were inferring sufficient but not necessary preconditions.
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T (s)

P (s) ∅ �= ∅

E(s) ∅ true true

�= ∅ false false

T (s)

P (s) ∅ �= ∅

E(s) ∅ true true

�= ∅ false true

P (s) = wlp(P, true)(s) � (E(s) = ∅) P (s) = (T (s) �= ∅ ∨ E(s) = ∅)

Fig. 3. (a) Weakest sufficient precondition (b) Strongest necessary precondition

Our users (professional programmers with no background in formal methods)
filed several bug reports, marking such preconditions as “wrong” suggestions
from cccheck.

4 Necessary Preconditions

We advocate the use of necessary preconditions, i.e., preconditions which, once
violated, definitely lead to an error later in the program execution. Such a nec-
essary precondition P on states s ∈ Σ is

∀s ∈ Σ : [I(s) = ∅] ⇒ [(T (s) �= ∅) ⇒ P (s)] �inverse of (1)�

⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [¬P (s) ⇒ (T (s) = ∅)] �contraposition�

⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [¬P (s) ⇒ (T (s) = ∅ ∧ E(s) �= ∅)]
�since S(s) �= ∅, S = E ∪ T ∪ I, I(s) = ∅, and T (s) = ∅ imply E(s) �= ∅.�

If the necessary precondition P (s) does not hold then an execution from s either
diverges or else it definitely terminates in an error (since T (s) = ∅ so there is
no possible finite correct execution). Setting apart infinite traces (i.e. I(s) = ∅),
Fig. 3 shows that the difference is only when E(s) �= ∅ ∧ T (s) �= ∅. Whereas
the sufficient precondition rules out all correct executions (since P (s) = false)
the necessary precondition allows all of them (since P (s) = true), but maybe
including erroneous ones.

5 Intra-procedural Precondition Inference

We briefly recall and illustrate three of the four algorithms introduced in [11]
to infer under-approximations of necessary preconditions, that we have imple-
mented in Clousot/cccheck, the static analyzer of CodeContracts. These fully
automatic static analyses effectively compute preconditions with concretization
P � such that

∀s ∈ Σ : P �(s) ⇒ (T (s) = ∅ ∧ E(s) �= ∅) .
These preconditions P � are therefore sufficient to guarantee the presence of def-
inite errors (i.e. runtime error, programmer assertion or post condition failures)
or non-termination. So P � is an under-approximation of the error semantics
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void Partition(int[] array, int left, int right, int pivotIndex) {
1: var pivotValue = array[pivotIndex];
2: swap(ref array[pivotIndex], ref array[right]);
3: var storeIndex = left;
4: for (var i = left; i < right; i++)
5: {
6: if (array[i] < pivotValue) {
7: swap(ref array[i], ref array[storeIndex]);
8: storeIndex++; }
9: }

10: swap(ref array[storeIndex], ref array[right]);
}

Fig. 4. A partitioning routine as found in QuickSort implementations. Our technique
infers necessary preconditions (5) and (6) which turn out to be also sufficient.

T (s) = ∅ ∧ E(s) �= ∅ while its negation ¬P � is weaker than the strongest neces-
sary precondition

∀s ∈ Σ : (T (s) �= ∅ ∨ E(s) = ∅) ⇒ ¬P �(s) .

The inferred preconditions are therefore necessary in that they do not guarantee
(in general) the correctness of the method, but if not established they certainly
imply its failure. As shown by the experiments, these necessary preconditions
may also be sufficient to prove the correctness of the assertion they originated
from.

5.1 All-Paths Precondition Analysis (APPA)

The all-paths precondition analysis (APPA) of [11, Sect. 7] symbolically hoists
assertions 〈c, b〉 ∈ � all the way back to the code/method entry. Three conditions
should hold: (i) the value of b is the same at c and at entry; (ii) the value
of b is checked on all paths from the entry; and (iii) the variables in b have
the correct visibility. In general, the generated precondition will be an atomic
formula, containing a disjunction if and only if b contains one. From the three
conditions above, it follows that if b holds at entry then it will also hold in all
the method paths, therefore the generated precondition is also sufficient (for b).

Example 3 (Atomic preconditions (APPA)). Consider the in-place version of
the partitioning phase of Quicksort (Fig. 4). In the example, cccheck verifies
20 assertions (null-pointer accesses, lower and upper array bounds) and issues
7 warnings. The warnings are the array dereference and the two array bounds
checks at line 1, two array bounds checks at line 2, the lower bound check at
line 6 and the upper bound check array[storeIndex] at line 10 (the analysis
infers storeIndex ≥ 0 at line 10). A necessary precondition has to be generated
for those warnings. The array dereference at line 1 definitely causes an error if
the actual value of array is null. Same for the array loads at lines 1 and 2: if
pivotIndex and right are not in the bounds of array then the program will
fail for sure. These assertions can be pushed up to the entry point to generate
the following necessary preconditions:
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public void Combination(string x, int z) {
Contract.Requires(z >= 0);

while (z > 0) { z--; }
// here Clousot infers z == 0

if (z == 0)
Assert(x != null);

}

Fig. 5. A simplified example from mscorlib where the information inferred by a for-
ward static analysis is used to generate better preconditions

Contract.Requires(array != null && 0 <= pivotIndex);

Contract.Requires(pivotIndex < array.Length);

Contract.Requires(0 <= right && right < array.Length); (5) ��

5.2 Conditional-Path Precondition Analysis (CPPA)

The conditional-path precondition analysis (CPPA) of [11, Sect. 9], hoists more
assertions 〈c, b〉 ∈ � to the procedure entry point than APPA by taking into
account program paths and tests, and using dual widening to cope with infinite
path lengths. The basic abstract predicates bp � ba mean that when the path
condition bp holds, execution will definitely be followed by an assert(b) and
checking ba at the beginning of the path is the same as checking this b later in
the path when reaching the assertion. The partial order is bp � ba �⇒ b′p � b′a
� b′p �⇒ bp ∧ ba �⇒ b′a where the abstract implication b �⇒ b′ underapproximates
the concrete implication ⇒: b �⇒ b′ implies that ∀s ∈ Σ : �b�s ⇒ �b′�s. In
general, the analysis will generate atomic preconditions containing disjunctions.
If no loops are encountered in the path between entry and c, then the generated
necessary precondition is also sufficient (for b).

Example 4. In the Combination procedure of Fig. 5, Clousot infers that z = 0

after the loop, so that the precondition x! = null is generated. Note that the
invariant inferred from Clousot is crucial to infer the precondition (no precon-
dition would be inferred otherwise). ��

Example 5 (Atomic preconditions (CPPA)). Continuing Ex. 3, we are left with
two candidate assertions. In one case the assertion is not checked on every path
(line 6, unreached if left≥ right). In the other case storeIndex may have
been modified (line 10). So the APPA analysis above does not apply. With
CPPA, the candidate assertions are propagated backwards, taking into account
tests and computing a fixpoint. We can then infer the disjunctive necessary
preconditions:

Contract.Requires(left < right || left < array.Length);

Contract.Requires(left >= right || 0 <= left); (6)

Informally, the two preconditions state that whenever left < right then left

should be non-negative otherwise left < array.Length.
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void ReadAndConsume(Message[] msg) {
1: Contract.Requires(msg != null);

2: for (var i = 0; i < msg.Length; i++) {
3: Assert(msg[i] != null);

// Do something with msg[i], then consume it
4: msg[i] = null;

}
// Here msg[*] == null

}

Fig. 6. To prevent an error, msg should not contain any null values. Inferring this
precondition (7) requires non-trivial reasoning about which elements of the array have
been tested and modified.

In this case, the inferred necessary preconditions are also sufficient, as it can
be easily checked by instrumenting Partition with the inferred preconditions
and running cccheck again. Please note that the preconditions above are weaker
than the usual ones found in the specification of the partition algorithm which
require 0 ≤ left and left < right to ensure functional correctness (e.g., in
Hoare’s original paper on QuickSort [24]). ��

5.3 Quantified Precondition Analysis (QPA)

The APPA and CPPA analyses cannot deal directly with unbounded data struc-
tures such as collections and arrays. [11, Sect. 10] uses a forward static analysis
based on [12] to synthesize quantified preconditions. This quantified precondi-
tion analysis (QPA) can deduce that a subset of the collection elements are: (i)
checked in every execution path; and (ii) when checked, they have the same value
they had at entry, so as to synthesize a universally quantified precondition.

Example 6 (Universally quantified preconditions). The method precondition for
the example in Fig. 6 is too weak to prevent a runtime error: if msg is not empty
and one of its elements is null then the program will definitely fail at runtime.
The precondition should be quantified over the array elements, so the inference
of atomic preconditions above does not help. The inference is non-trivial as the
content of the input array is modified inside the loop: The analysis should make
sure that the checked array elements are the same as in the pre-state. We infer
the necessary universally quantified precondition

Contract.Requires(ForAll(message, msg => msg != null)); (7)

Please note that: (i) the precondition encompasses the case of an empty array;
and (ii) it is also sufficient. ��

Inferred necessary preconditions may not be sufficient, in particular when the
condition must be weakened during backward propagation due to control flow
or loops.

Example 7 (Necessary but not sufficient preconditions). Consider the code in
Fig. 7, a simplified version of a common pattern used in C/C++ programs
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int FirstOccurrence(int[] a) {
Contract.Requires(a != null);

var i = 0;
while (a[i] != 3) { i++; }

return i;
}

Fig. 7. An example where all the inferred atomic preconditions are necessary but not
sufficient. A sufficient existentially quantified precondition (8) can be inferred by a
forward array content and modification analysis.

and .NET framework libraries. Pushing the array index condition backwards
produces the precondition

Contract.Requires(a.Length> 0),

which is not sufficient. If we semantically unroll the loop k times, we can generate
increasingly stronger necessary preconditions of the form

a.Length > 0 ∧ a[0] = 3 ∨ a.Length > 1 ∧ a[1] = 3 ∨ . . .,

yet none of them are sufficient. In general, the precondition inference requires a
fixpoint computation over an infinite domain. The convergence of the computa-
tion should be enforced using a widening operator. In the weakest precondition
calculus, using a widening can very easily bring to the inference of sufficient
preconditions. In necessary precondition inference, the dual widening can sim-
ply stop the iterations after k iterations — A widening over-approximates its
arguments, while a dual widening under-approximates them. The desired pre-
condition is existentially quantified:

∃j : j ∈ [0, array.Length) ∧ array[j] = 3 (8)

Such a precondition can be inferred by combining forward array content and
array modification analyses. ��

6 Scaling Up Thanks to Simplification

The disjunctive precondition P � represented as a set P� of terms in � may con-
tain redundant preconditions which should be removed for two main pragmatic
reasons. First, the more preconditions, the more proof obligations need to be dis-
charged in other methods. Second, more preconditions mean more suggestions
to the end-user, who may get irritated if they are redundant (as we experienced
with cccheck).

We would like to compute a minimal yet equivalent set Pm
�
. The set Pm

�
should

be: (i) a set of generators (∀p ∈ P� : ∃{p0 . . . pn} ⊆ Pm
�

: p0∧· · · ∧pn ⇒ p); and
(ii) minimal (∀p ∈ P� :

∧
{q | q ∈ Pm

�
\ {p}} �⇒ p). Unfortunately, computing

a minimal set of generators can be very expensive [15] or even impossible when
the inferred invariants are quantified. To see why, let p1 and p2 be two Boolean
expressions containing quantified facts over arrays, then p1 ⇒ p2 is not decid-
able [3]. There exist subsets for which the problem is decidable, e.g., equalities
or difference constraints. In general the minimal set of generators is not unique.
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simpl � λP .
true ∈ P → P \ {true}
true||b ∈ P → P \ {true||b} (|| is the non-commutative

short-cutting disjunction)false ∈ P → {false}
false||b ∈ P → P \ {false||b} ∪ {b}
b||t ∈ P ∧ t ∈ {true, false} → P \ {b||t} ∪ {t||b}
b1||b, b ∈ P → P \ {b1||b}
b1||b, !b1||b ∈ P → P \ {b1||b, !b1||b} ∪ {b}
b1||b, b2||b ∈ P ∧ s(b1) ⊆ s(b2) → P \ {b2||b}
f � ∀i ∈ [l, l+ 1) : b(i) ∈ P → P \ {f} ∪ {b(l)}
f1 � ∀i ∈ [l, v) : b(i), f2 � ∀i ∈ [v+ 1, u) : b(i) ∈ P
→ P \ {f1, f2} ∪ {∀i ∈ [l, u) : b(i)}

x1 − x2 ≤ v1, x2 − x3 ≤ v2, x1 − x3 ≤ v3 ∈ P
→ if v1 + v2 ≤ v3 then P \ {x1 − x3 ≤ v3} else P

Fig. 8. The simplification for the candidate preconditions. The function s(b) returns a
set whose constraints are the conjuncts in b.

In practice, we are not interested in getting the best Pm
�
, but only a good ap-

proximation. The approximation should be such that: (i) obviously-redundant
preconditions are removed; and (ii) it is fast, in that only an infinitesimal fraction
of the analysis time allocated for the procedure is spent on the simplification. In
our implementation we use a simple heuristics to simplify the candidate precon-
ditions and get a set Pm

�
⊇ Pm

�
such that #Pm

�
≤ #P�, for some minimal set

of generators Pm
�
.

The simplification equations are given in Fig. 8. The rationale is that we want
to simplify as many disjunctive preconditions as possible, trivial quantified facts,
and difference constraints. The precondition true or any disjunct containing it
can be eliminated from the set. If false appears as an atom, then there is no
way to satisfy the precondition. false is the identity for disjunction, so it can
be cancelled. In general the language short-cutting disjunction || is not commu-
tative, but in our simplification procedure it can be moved to the front position
(to enable the previous two rules). If an expression b is already in P with no
antecedent, we can safely remove all the preconditions where b appears as a con-
sequence. When b is implied by some condition and by its negation, then we can
simply remove the conditions (we found this being a very common case in prac-
tice, when the precondition does not depend on the paths through a conditional
statement). For remaining pairs with the same conclusion, we only retain the (dis-
junctive) precondition with fewer hypotheses. As for quantified facts, we remove
those that boil down to a singleton and we merge together consecutive intervals.
Finally, we remove from the difference constraints those that are redundant. The
simplification should be iterated to a fixpoint: Simplify(P�) � simpl∗(P�).
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Next← ProceduresOf(P)
while Next �= ∅ do

m← PickOneProcedure(Next)
�← SpecificationFor(m, Clousot)
P� ← InferPrecondition(�, Clousot)

Pm
� ← Simplify(PreconditionsOf(m) ∪ P�)

if Pm
� �= PreconditionsOf(m) then

PreconditionsOf(m)← Pm
�

Next← (Next \ {m}) ∪ callersOf(m)
else

Next← Next \ {m}
end if

end while

Fig. 9. The inter-method preconditions inference algorithm

7 Inter-procedural Precondition Inference

The inter-procedural precondition inference algorithm is shown in Fig. 9. The
input program P can either be a complete program or a library. We assume that
each procedure m has an initial set of preconditions PreconditionsOf0(m), which
can be empty. The set Next contains the procedures to be analyzed (continuation
set). It is initialized with all the procedures in the program P.

In the loop body, we first pick a procedure m from the continuation set. We
leave the implementation of the policy PickOneProcedure as a parameter of the in-
ference algorithm. For instance PickOneProcedure may be the bottom-up traver-
sal of P’s call graph.

The function SpecificationFor returns the residual specification � of m by run-
ning Clousot to discharge as many proof obligations as possible. If � = ∅, then
we say that the preconditions PreconditionsOf(m) are sufficient to ensure that
each proof obligation in m is either always correct or always wrong. The analyzer
Clousot is left as a parameter.

We infer the set P� of necessary preconditions from the assertions in �. The
intra-method inference algorithm InferPrecondition is one of the previously de-
scribed analyses such as APPA, CPPA, or QPA.

Next, the function Simplify removes redundant preconditions so as to obtain
an approximate minimal set Pm

� of conditions as described in Sec. 6.
Finally, if we discovered new preconditions for m, we add them to the set of

its preconditions, and we update the continuation set by adding all the callers
of m, which we must re-analyze due to the stronger proof-obligations at these
call-sites. In case we discovered no new precondition, we simply remove m from
the continuation set.

The inter-method inference algorithm in Fig. 9 is a least fixpoint computation
on the abstract domain 〈ProceduresOf(P) → ℘(B), ⇐̇ 〉, where B is the set of side-
effect free Boolean expressions and ⇐̇ is a sound abstraction of the pointwise
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void f(string x, string y) {
Assert(x != null);
g(x, y);

}

void g(string u, string v) {
Assert(v != null);
f(u, v);

}

Fig. 10. An example of inference of preconditions for mutually recursive methods re-
quiring a fixpoint computation

inverse logical implication. In the presence of (mutual) recursion the algorithm
may not terminate: for instance it may infer the increasing chain of preconditions
{0 < a} ⇐̇ {1 < a} ⇐̇ . . . To enforce convergence, a dual widening operator
should be used: the simplification is incomplete so it does not solve the conver-
gence problem in the abstract even in case of convergence in the concrete. Easy
dual widening operators are either bounding the maximum number of times a
method is analyzed or the maximum cardinality of PreconditionsOf(m) or both.
Ignoring preconditions is safe: intuitively it means that fewer checks are pushed
up in the call stack but warnings are still reported in the callee.

In practice, we can stop inferring new necessary preconditions at any point.
The remaining methods in Next then simply need to be checked again (without
inferring new preconditions) to obtain the final set of warnings.

Example 8. Let us consider the two mutual procedures in Fig. 10. Ignore non-
termination: we choose a minimalistic example to illustrate the inter-method
fixpoint computation. Let us suppose f is the first method to be picked up.
The intra-method precondition inference algorithm obtains PreconditionsOf(f) =
{x! = null}. The preconditions for g are then {u! = null, v! = null}. The pro-
cedure f is a caller of g, so it is added to the continuation set. The re-analysis is
enough to reach the fixpoint: PreconditionsOf(f) = {x! = null, y! = null}. ��

7.1 Provenance

Each precondition p in P� originates from at least one failing proof obligation
〈c, b〉 ∈ �. We can construct a provenance relation p � b, with the intuitive
meaning that if p does not hold at the method entry, then b will fail later. We
use the provenance chain pn−1 � · · · � p0 � b to report an inter-method
error trace to the user. Furthermore, we can suppress the warning for b if we
detect that p is also sufficient to prove b safe, i.e., p holds at the entry point if
and only if b holds at program point c. This is the case when at least one of
these conditions holds: (i) the method m does not contain loops; (ii) p is inferred
using APPA (Sec. 5.1); (iii) p is inferred using CPPA (Sec. 5.2) and no loop
is encountered in the path between entry and c. Essentially, if we detect that
the generated necessary precondition p is also sufficient to discharge b, we can
push the full burden of the proof to the callers of m. Otherwise, we report the
warning to the user and we propagate p to the callers, as failure to establish
it will definitely cause an error in b: by propagating p we make explicit to the
callers thay they must establish p before calling m.
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Fig. 11. A screenshot of the error reporting with the precondition inference

8 Experience

We implemented the analyses described above in cccheck, an industrial-strength
static analyzer and contract checker for .NET bytecode based on abstract inter-
pretation. It uses abstract interpretation to infer facts about the program and
to discharge the proof obligations. cccheck performs a modular assume/guar-
antee analysis: for each method it assumes the precondition and it asserts the
postcondition. At method calls, it asserts the precondition, and it assumes the
postcondition. It performs a simple postcondition inference to propagate whether
a method returns a non-null value and the expression returned by getters. The
necessary precondition inference is enabled by default in every run of the ana-
lyzer, and used by our customers since June 2011 on a daily basis. The kind of
intra-method precondition inference algorithm can be selected by a command
line switch. The all-path precondition analysis (APPA) is the default. We im-
plemented the analyses faithfully respecting the formalization in the previous
sections. The only differences are in the quantified precondition analysis: (i) we
restrict it to arrays of objects (instead of collections of generic types); (ii) the
only assertions we check for are not-null; and (iii) the quantified preconditions
are suggested to the user but not propagated to the callers (yet).

The main motivation for this work was to help our users getting started with
cccheck, by suggesting preconditions, so that users can simply add them to their
code (or automatically with support from the IDE).

In an early stage of this work, we had a simple analysis to infer sufficient
preconditions (Sect. 3). Essentially, if we could prove that the value of an un-
proven proof obligation was unchanged from the entry point, then we suggested
the corresponding expression as a precondition. This is similar to the ESC/-
Java /suggest switch [18]. The problem with this näıve approach was that it
did not take into account tests and different execution paths and so can also
eliminate good runs. The result was confusing for our customers, who filed sev-
eral bug reports about “wrong” suggestions (essentially preconditions that were
too strong according to the user). For instance, in the code of Fig. 11 our old
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analysis would have produced the too strong precondition p! =null for the
method InferNotNull.

Necessary precondition inference reduces the warning noise of the analyzer
and raises the automation bar by providing inter-method propagation of precon-
ditions. If a necessary precondition can be inferred from a proof obligation and
cccheck determines that it is also sufficient then the warning can be omitted,
i.e., the full burden of establishing it is pushed to the callers. The check for
sufficiency can be: (i) by construction, e.g., when APPA is used; (ii) inferred
from the analysis, e.g., by detecting that the dual widening in CPPA, if any, has
introduced no loss of precision; (iii) by re-analysis, the generated precondition
is injected in the method which is then reanalyzed. In cccheck we use (i) and
(ii). We instrumented cccheck to perform (iii) to collect the data for Sec. 8.3.

Example 9. Let us consider the screenshot in Fig. 11 showing the result of a
run of cccheck inside Visual Studio. On the right is the list of suggestions and
warnings produced by cccheck for the code on the left. The analyzer performs
a bottom-up analysis, based on a precomputed approximation of the call graph.
First it analyzes InferNotNull. It determines that when x is non-negative and p

is null then a runtime error may occur. It infers a necessary precondition (mes-
sage #1) which is also sufficient—no approximation comes from loops. Therefore
the generated precondition fully captures the safety requirement and no warn-
ing is issued to the user for p’s dereference since the proof burden is pushed
to the callers—in our example CallInferNotNull. This method does not fully
establish precondition #1, and our inference computes another necessary pre-
condition #2. Please note that this precondition is simpler than #1 since our
simplification procedure removed the trivial disjunct 1 < 0. Precondition #2 hap-
pens to also be sufficient in this case as there are no loops. cccheck detects this
fact, and no warning is issued in method CallInferNotNull. Instead, precon-
dition #2 is propagated to the call-site within CallWithNull. There, cccheck
determines that the call does not satisfy the inferred necessary precondition of
CallInferNotNull. It reports the error message (#3) as well as the inter-method
provenance trace (messages #4 . . .#6). The generated precondition #7 encodes
the fact that all invocations of CallWithNull will definitely cause an error. ��

8.1 Benchmarks

We report our experience on two different sets of benchmarks. The first one
contains industrial libraries without existing contracts. We have chosen the lat-
est versions of mscorlib.dll, System.dll and System.Core.dll as they are
the main libraries of the .NET framework, and System.Data.dll because, in
our experience, it causes trouble for static analyzers. The first three libraries
contain the most common shared functionalities of the .NET framework (sys-
tem type definitions, collections, reflection, cryptographic and communication
primitives, etc.). The last one contains common code to access data from di-
verse sources. cccheck analyzes bytecode, so we can use it directly on the
shipped binaries. The libraries are in every copy of Windows under the direc-
tory Windows/Microsoft.Net/Framework/. For our experiments we run cccheck
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All-paths APPA Conditional-path CPPA QPA

Library P� Pm
� % rem. P� Pm

� % rem. ∀
mscorlib 5133 3437 33.04% 8756 6564 25.03% 36
System 4409 3446 21.84% 6709 5533 17.53% 9
System.Core 3202 2197 31.39% 4723 3744 20.73% 32
System.Data 5899 3563 39.60% 8435 5642 33.11% 11
Total 18643 12643 32.18% 28623 21483 24.94% 88

Facebook 146 119 18.49% 171 145 15.20% 1
Facebook.Web 53 53 0.00% 86 86 0.00% 0
Facebook.Web.Mvc 49 31 36.73% 25 10 60.00% 0
Total 248 203 18.15% 282 241 14.54% 1

Fig. 12. The number of inferred preconditions, for APPA, CPPA, and QPA, and the
percentage of redundant preconditions removed by the simplification routine Simplify

with the default checks: non-null, array-out-of bounds obligations and contracts.
Since the version of the libraries we analyzed contained no contracts, the only
contracts are the inferred necessary preconditions propagated by cccheck itself.

The second benchmark is the open-source C# Facebook SDK which is avail-
able for download at facebooksdk.codeplex.com. It contains a set of libraries
to help .NET programmers (Windows, Silverlight, Windows Phone 7, etc.) in-
tegrate their application with Facebook. We selected it because the code base
is almost completely annotated with contracts. In our experiments, we opened
the solution containing the SDK, built the source as-it-is and let cccheck run
with the same settings as in the distribution: the collected proof obligations are
non-null, array-out-of bounds, arithmetic errors, redundant assumptions detec-
tion, and the explicit contracts. We only added switches to force the analyzer to
collect the data reported in the tables.

8.2 Inferred Necessary Preconditions

The table in Fig. 12 reports the number of necessary preconditions inferred
for the benchmarks for all three analyses (APPA, CPPA, and QPA), when the
fixpoint of the inter-method inference algorithm has been reached.

For the system libraries, the all-paths analysis (APPA) infers 18, 643 necessary
preconditions. The simplification step removes more than 32% of the candidates,
resulting in 12, 643 necessary preconditions that are suggested and propagated.
For the Facebook SDK, APPA infers 248 candidates, filtering only 45.

The conditional-path analysis (CPPA) infers roughly 69% additional neces-
sary preconditions than APPA for the system libraries but only 18% more for
the Facebook SDK. The price to pay for the more refined analysis is time: in our
experience CPPA can be up to 4 times slower than APPA. However, at worst
the total inference time (including simplification) is less than 4 minutes for very
complex libraries (System.Data). Otherwise the overall running time is on the
order of tenths of seconds.

facebooksdk.codeplex.com
http://facebooksdk.codeplex.com
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# of methods precision # m.
at least inferred inferred % % improve- with 0

Library total one warn. nec. pre. suff. pre. inferred suff. ment warns

mscorlib 21226 6663 2765 1519 41.50% 22.80% 7.15% 16082
System 14799 5574 2684 1378 48.15% 24.72% 9.31% 10603
System.Core 5947 2669 1625 765 60.88% 28.66% 12.8% 4043
System.Data 11492 4696 2388 1152 50.85% 24.53% 10.02% 7948
Total 53464 19602 9462 4814 48.27% 24.56% 9.00% 38676

Facebook 455 186 111 93 59.68% 50.00% 20.43% 362
Facebook.Web 194 57 30 18 52.63% 31.58% 9.27% 155
Facebook.Web.Mvc 92 40 29 26 72.50% 65.00% 28.26% 78
Total 741 283 170 137 60.07% 48.41% 18.48% 595

Fig. 13. The experimental results for the all-paths precondition analysis (APPA)

# of methods precision # m.
at least inferred inferred % % improve- with 0

Library total one warn. nec. pre. suff. pre. inferred suff. ment warns

mscorlib 21226 7107 4062 1811 57.15% 25.48% 8.53% 15930
System 14799 5759 3546 1576 61.57% 27.37% 10.64% 10616
System.Core 5947 2740 2104 810 76.79% 29.56% 13.62% 4017
System.Data 11492 4824 3280 1292 67.99% 26.78% 11.24% 7960
Total 53464 20430 12992 5489 63.59% 26.87% 10.26% 38523

Facebook 455 186 130 92 69.89% 49.46% 20.22% 361
Facebook.Web 194 110 80 61 72.73% 55.45% 31.44% 145
Facebook.Web.Mvc 92 23 8 5 34.78% 21.74% 5.43% 74
Total 741 319 218 158 68.34% 49.53% 21.32% 580

Fig. 14. The experimental results for the conditional path precondition analysis
(CPPA)

We manually inspected the necessary preconditions inferred for the Facebook
SDK to check whether the simplification algorithm left any redundancy. We
found only one redundant precondition, inferred by CPPA for Facebook.Web.

As one may expect, we inferred fewer universally quantified necessary pre-
conditions. We inspected the 36 quantified necessary preconditions inferred for
mscorlib.dll. It turns out that the analysis inferred conditions that at first
looked suspicious. After a deeper investigation, we found that the analysis was
right. However, it is more difficult to judge whether the analysis missed necessary
preconditions it should have inferred. So, we inspected the proof obligations for
the Facebook SDK. In Facebook we found only two proof obligations requiring a
quantified contract. However, the needed contracts are not preconditions but an
object invariant and a postcondition. The other two libraries make little use of
arrays, so there was nothing interesting to be inferred there. Overall, we found
the quantified necessary precondition analysis precise and fast enough.
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8.3 Quality of the Inferred Preconditions

We are left with the problem of judging the quality of the inferred necessary
preconditions. Counting the number of inferred preconditions is not a good mea-
sure of success. Measuring the number of warnings without inference and with
inference is a better approach, but can also be misleading for the following rea-
son: if a method contains a warning and is called by n other methods, then if
that single warning can be turned into a necessary precondition, it potentially
results in n warnings at all call-sites. We decided to measure how the inference
of necessary preconditions reduces the number of methods for which we report
warnings. If we reduce the number of methods with warnings, we say that we
improved the precision of our analyzer cccheck.

The tables in Fig. 13 and Fig. 14 report the effects of the all-path (APPA)
and the conditional-path (CPPA) analyses on the precision of cccheck. For each
library we report (i) the total number of methods analyzed; (ii) the number of
methods on which cccheck originally reports at least one warning (without any
inference); (iii) the number of methods for which cccheck infers at least one
necessary precondition; and (iv) the number of methods for which the neces-
sary preconditions were also sufficient to reduce the warnings in that method to
zero. The next three columns indicate (i) the fraction of methods with inferred
necessary preconditions; (ii) the fraction of these for which the inferred precon-
ditions are also sufficient; and (iii) the precision improvement as an increase
in the number of methods with zero warnings. The last column contains the
final total number of methods with 0 warnings, i.e. the methods which either
did not require the inference of any precondition, plus the methods for which
the inferred necessary precondition is sufficient. To check whether the necessary
preconditions are also sufficient, we check: (i) that we inferred some necessary
precondition for the method; and (ii) that � = ∅ after re-analysis.

The conditional-path precondition analysis (CPPA) infers far more precondi-
tions than APPA, and in general those preconditions are also more complicated,
because they can be disjunctive. As a consequence, it is not a surprise that the
final number of methods with zero warnings is smaller in the case of CPPA: the
additional warnings are generated by the propagated inferred preconditions that
cannot be proven by cccheck at call-sites.

In the framework libraries we were able to infer a necessary precondition for
48% of methods with APPA and for 63% of methods with CPPA. Interestingly,
the necessary preconditions turned out to be also sufficient in 25% of methods
for either analysis. The precision is even better for the Facebook SDK where we
inferred necessary preconditions for more than 60% of methods. Additionally, the
necessary preconditions where sufficient to prove the method correct in almost
50% of cases! We manually inspected the methods with remaining warnings.
These resulted from missing contracts, e.g. postconditions for interface calls and
abstract methods and object invariants.

Overall, precondition inference improved the precision of cccheck by roughly
10% for the framework assemblies and roughly 20% for the Facebook SDK.
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9 Related Work

Our objectives are hardly comparable with those of unsound tools like PREfix [4]
or its lightweight version PREfast which filter out potential errors, bug-finding
tools like SAGE [20] that extends systematic dynamic test generation with for-
mal methods, property checking tools combining static analysis and testing like
YOGI [30], or verification environments like VCC [14] because an unsound as-
sertion or a series of failing tests cannot be used as formal specifications and
automatic inference of program properties is much more difficult than static
verification of given properties annotating programs. However, automatically in-
ferred necessary preconditions would definitely be useful for all these tools.

The closest related work we are aware of is Success typings [26], where types
of function arguments are used instead of first-order formulae to express precon-
ditions. Similar to our work, success typings capture as types, the conditions
under which a function will definitely cause a runtime type error. Their analysis
is limited to runtime type errors as opposed to general assertions, and appears
to be used only to detect definite bugs in an untyped language. In addition, our
approach can be used to reduce the annotation burden in verification, and the
expressiveness of our preconditions is more general.

Most of the work on precondition inference focuses on the inference of suffi-
cient preconditions for the partial correctness of a module, e.g., [2, 5, 9, 29, 31],
even if it is never explicitly expressed in those terms. We have discussed in Sec. 3
the drawbacks of using sufficient precondition inference in an automatic analysis
setting. We are not aware of papers on sufficient precondition inference exper-
imentally validating the inferred preconditions: (i) at call-sites; and (ii) on as
large a scale as we did.

The related problem of generating procedure summaries (to scale up whole
program analyses) received much attentions. Summaries can either be obtained
via a combination of heuristics and static analyses [17, 23], or via firm semantic
and logical grounds, e.g., [6, 9, 22]. However, the practical effectiveness of the so-
inferred preconditions is still unclear: e.g., [6] reports the inference of thousands
of contracts but their quality—for instance to prove a property of interest like
memory safety—is unknown.

Some of these approaches are also less modular than ours. E.g., the Houdini
approach [17] starts out by adding a set of candidate preconditions (generated
from a template) to all methods and then uses repeated sound modular reasoning
to reject candidates that lead to unproven assertions. This approach produces
preconditions that are non-necessary (no assertion would be triggered if vio-
lated). Worse, the set of preconditions produced for a method depends on the
contexts that call the method. The fewer such contexts exist, the stronger the
inferred precondition (in the worst case false). Our approach is more modular.
The necessary preconditions inferred for a method do not depend at all on how
the method is called.

Some authors focused on inferring preconditions of a fixed template [21, 34]
or summaries on abstract domains of finite height [33, 36]. Those approaches to
precondition inference inherit the problems of the techniques they are based on.
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Templates require too much user attention (to provide the template), are brittle,
and do not scale up. Finite height abstract domains are not powerful enough [8].
We do not make any of those hypotheses in this work.

SnuggleBug [7], the dual analysis of [32], as well as other authors [19, 25, 35]
use under-approximating symbolic backwards or dynamic analyses to find bugs.
Our work is different in that we start out with a program verification problem
with a number of unproven assertions. We use necessary preconditions to reduce
the annotation burden experienced by the programmer. Using our static analysis,
we can tell when a method has no more errors, whereas bug finding cannot. At
the same time, our approach can also expose definite bugs, as shown in the
scenario of Fig. 11. A main difference of our work with all the above is the
handling of loops via fixpoints rather than some finite, partial unrolling.

For instance, with a (minor) modification of the universally quantified forward
analysis, the implementation infers the necessary precondition newCarsOnly ⇒
∀x ∈ c : x.getYear() = 2009 for the running example of [7], requiring that all
cars in a list are manufactured in 2009. Snugglebug unrolls loops once or twice
and will find violations only if it can find a list where the first or second car has
the wrong date, but not the third.

Necessary preconditions are needed to define the problem of extract method
with contracts [13]. They can be extended for the inference of necessary object
invariants [1] and to propose automatic and verified code repairs [27].

Finally, our inferred necessary preconditions are human readable and can be
persisted into code as documentation and to help future analysis runs, whereas
the intermediate state of bug finding tools is rarely in a form that would make
it useful for human consumption.

10 Conclusions

We presented the design and implementation of a system for the inference of
necessary preconditions. We illustrated the algorithm for the inter-procedural in-
ference. The algorithm is parameterized by the static analyzer used to discharge
the proof obligations, the intra-method inference analysis, and the candidate pre-
condition simplification routine. We improved the intra-method analyses of [11]
by refining them with the invariants inferred by the static analyzer. We have
implemented the inference in cccheck, an industrial static contract checker, and
evaluated the analysis on real industrial code. We showed that our simplification
algorithm, even if not complete, performs very well in practice by removing up to
33% of redundant preconditions and finding only one case in which a redundant
precondition was not removed. We were able to infer necessary preconditions for
up to 60% of methods reporting some warning. We validated the quality of the
inferred preconditions by checking whether they were also sufficient to remove
all warnings in a method (not only the warning they originated from). This was
the case for 25% of methods with warnings. Overall, the necessary precondition
inference has a large positive impact on cccheck, by improving its precision (in
terms of methods with no warnings) up to 21%.
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Looking forward, we want to investigate necessary preconditions inference
for program optimization (by factoring and pushing up inevitable checks) and
extend the approach to the inference of necessary postconditions (by pushing
the assertions back to method calls).
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