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Abstract. We present a new calculus where recent model-based deci-
sion procedures and techniques can be justified and combined with the
standard DPLL(T) approach to satisfiability modulo theories. The new
calculus generalizes the ideas found in CDCL-style propositional SAT
solvers to the first-order setting.

1 Introduction

Considering the theoretical hardness of SAT, the astonishing adeptness of SAT
solvers when attacking practical problems has changed the way we perceive
the limits of algorithmic reasoning. Modern SAT solvers are based on the idea
of conflict driven clause learning (CDCL) [11,15,13]. The CDCL algorithm is
a combination of an explicit backtracking search for a satisfying assignment
complemented with a deduction system based on Boolean resolution. In this
combination, the worst-case complexity of both components is circumvented
by the components guiding and focusing each other. The generalization of the
SAT problem into the first-order domain is called satisfiability modulo theories
(SMT). The common way to solve an SMT problem is to employ a SAT solver to
enumerate the assignment of the Boolean abstraction of the formula. The candi-
date Boolean assignment is then either confirmed or refuted by a decision pro-
cedure dedicated to reasoning about conjunctions of theory-specific constraints.
This framework is commonly called DPLL(T) [10,14] and is employed by most
of the SMT solvers today. Although DPLL(T) at its core relies on a CDCL SAT
solver, this SAT solver is only used as a black-box. This can be seen as an advan-
tage since the advances in SAT easily transfer to performance improvements in
SMT. On the other hand, in the last few years the idea of direct model construc-
tion complemented with conflict resolution has been successfully generalized to
fragments of SMT dealing with theories such as linear real arithmetic [4,12,9],
linear integer arithmetic [7], nonlinear arithmetic [8], and floating-point [6]. All
these procedures, although quite effective in their corresponding first-order do-
mains, have not seen a more widespread acceptance due to their limitations in
purely Boolean reasoning and incompatibility with DPLL(T).

In this paper we propose a model-constructing satisfiability calculus (mcSAT)
that encompasses all the decision procedures above, including the decision pro-
cedures aimed at DPLL(T), while resolving the limitations mentioned above.
The mcSAT framework extends DPLL(T) by allowing assignments of variables
to concrete values, while relaxing the restriction that decisions, propagations,
and explanations of conflicts must be in term of existing atoms.
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2 A Model Based Abstract Procedure

We assume that the reader is familiar with the usual notions and terminology of
first-order logic and model theory (for an introduction see e.g. [2]). We describe
the new procedure as an abstract transition system in the spirit of Abstract
DPLL [14]. The crucial difference of the system we present is that we are not
restricted to Boolean decisions. Instead, we allow the model that the theory is
trying to construct to be involved in the search and in explaining the conflicts,
while allowing new literals to be introduced so as to support more complex
conflict analyses.

The states in the transition system are pairs of the form 〈M, C〉, where M is a
sequence (usually called a trail) of trail elements, and C is a set of clauses. Each
trail element is either a decided literal, a propagated literal, or amodel assignment.
We refer to both decided literals and model assignments as decisions. A decided
literal is a literal that we assume to be true. On the other hand, a propagated
literal, denoted as C→L, marks a literal L that is implied to be true in the
current state by the clause C (the explanation). In both cases, we say that the
literal L appears in M , and write this as L ∈ M . A model assignment, written
as x �→α, is an assignment of a first-order uninterpreted symbol x to a value α.1

Given a trail M that contains model assignments xi1 �→α1, . . . , xik �→αk, we can
construct a first-order interpretation υ[M ] = [xi1 �→ α1, . . . , xik �→ αk]. Given
a term t, the interpretation υ[M ](t) is either a value of the term t under the
assignment in M , or undef if the the term cannot be fully evaluated.

The content of the trail implies an interpretation of literals and is the core
of our procedure. In order to evaluate the value of some literal L with respect
to a trail M , we define the functions valueB and valueT, the former interpreting
the literal according to the Boolean assignment, and the latter interpreting the
literal according to the model assignment of variables.

valueB(L,M) =

⎧
⎪⎨

⎪⎩

true L ∈ M

false ¬L ∈ M

undef otherwise

valueT(L,M) =

⎧
⎪⎨

⎪⎩

true υ[M ](L) = true

false υ[M ](L) = false

undef otherwise

We say that a trail M is consistent if the Boolean assignment and first-
order model are not in conflict, i.e. when for all L ∈ M we have that
valueT(L,M) �= false. Additionally we say that the trail M is complete when
each asserted first-order literal L ∈ M is justified by the first-order interpre-
tation, i.e. valueT(L,M) = true. We use the predicate consistent(M) to denote
that M is consistent and complete(M) to denote that M is complete. Note that
if a trail M is consistent, this does not mean that the assertions on the trail
are truly satisfiable (feasible), just that the current partial assignment does not
refute any of the individual trail literals. When there is a set of literals on the

1 The actual representation for values is theory specific and depends on the type of x.
For example, for the theory of liner real arithmetic, the values are rational numbers.
We never assign Boolean variables to values as they are considered literals.
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trail M that, together with the model assignments from M , is not satisfiable,
we call the trail infeasible and denote this with the predicate infeasible(M). We
have that ¬ consistent(M) implies infeasible(M).

Since the values of valueT(L,M) and valueB(L,M) do not disagree for all
L ∈ M , we define the value of a literal in a consistent state as

value(L,M) =

{
valueB(L,M) valueB(L,M) �= undef,

valueT(L,M) otherwise.

Example 1. Consider the trail M = �x > 0, x �→1, y �→0, z > 0�. The model
interpretation according to M is υ[M ] = [x �→ 1, y �→ 0]. Therefore we have
that valueT(x > 0,M) = valueB(x > 0,M) = true, valueT(x > 1,M) = false,
valueT(z > 0,M) = undef, valueB(z > 0,M) = true, υ[M ](x + y + 1) = 2, and
υ[M ](x + z) = undef. The trail M is consistent, but M ′ = �M, y < 0� is not
because valueT(y < 0,M ′) = false and valueB(y < 0,M ′) = true. The trail M is
not complete as it does not interpret z and therefore valueT(z > 0,M) = undef.
Finally, M ′′ = �M, z < x� is infeasible because {x �→ 1, z > 0, z < x} is
unsatisfiable, but M ′′ is consistent.

We extend the definition of value to clauses so that value(C,M) = true if at least
one literal of C evaluates to true, value(C,M) = false if all literals evaluate to
false, and value(C,M) = undef otherwise. We say a clause C is satisfied by trail
M if value(C,M) = true. A set of clauses C is satisfied by M if M is complete
(and therefore consistent), and all clauses C ∈ C are satisfied by M . We use the
predicate satisfied(C,M) to denote that C is satisfied by M ,

Given a set of clauses C0, our procedure starts with the state 〈��, C0〉 and
performs transitions according to the rules we explain below. The goal is to
either enter into a state sat denoting that the problem is satisfiable, or into a
state unsat denoting that the problem is unsatisfiable. The states we traverse are
either search states of the form 〈M, C〉 or conflict resolution states of the form
〈M, C〉 � C. In both types of states we keep the invariant that M is a consistent
trail and C0 ⊆ C. Additionally, in conflict resolution states the clause C is always
a clause implied by C0 and refuted by the trail, i.e. C0 � C and value(C) = false.
We call the clause C the conflicting clause.

To ensure termination, the transition system assumes existence of a finite set
of literals B that we call the finite basis. During a derivation of the system, any
literal added to the trail will be from B, and the clauses that the system uses will
only contain literals from B.2 The minimal assumption is that B must include all
literals (and their negations) from the initial problem C0, and the theory-specific
decision procedure must ensure that for any C0 such a finite basis exists.

2.1 Clausal Rules

We start by presenting the set of search rules and conflict analysis rules that
resemble those of abstract DPLL and are the backbone of CDCL-style SAT

2 Our finite basis corresponds to the closure of the literal-generating function used in
splitting-on-demand [1].
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Decide

〈M, C〉 −→ 〈�M,L�, C〉 if L ∈ B, value(L,M) = undef

Propagate

〈M, C〉 −→ 〈�M,C→L�, C〉 if

C = (L1 ∨ . . . ∨ Ln ∨ L) ∈ C
∀i : value(Li,M) = false
value(L,M) = undef

Conflict

〈M, C〉 −→ 〈M, C〉 � C if C ∈ C, value(C) = false

Sat

〈M, C〉 −→ sat if satisfied(C,M)

Forget

〈M, C〉 −→ 〈M, C \ {C}〉 if C ∈ C is a learned clause.

Fig. 1. Clausal search rules

solvers. The clausal search rules are presented in Fig. 1 and the clausal conflict
analysis rules are presented in Fig. 2.

Search Rules. The Decide rule can take any literal from the basis B that does
not yet have a value added to the trail. The Propagate performs Boolean
clause propagation by assigning to true the only unassigned literal from a clause
where all other literals already evaluate to false.3 If we encounter a clause C
such all literals in C evaluate to false, we use the Conflict to enter conflict
resolution state. During conflict analysis we can learn new clauses, and these can
be removed using the Forget rule. If our trail is complete and satisfies all the
clauses, we can finish the search using the Sat rule.

Conflict Anaysis Rules. As in CDCL, the conflict analysis rules recover from
a conflict encountered during the search, learn the reason of the conflict, and
backtrack to an appropriate state to continue the search. The main analysis
rule is the Resolve rule. This rule performs Boolean resolution of clauses C
and D over the literal L, obtaining the clause R = resolve(C,D,L). The clause
R is a valid deduction and moreover evaluates to false in M . If the result of
the resolution is an empty clause (denoted with false), we can deduce that the
problem is unsatisfiable using the Unsat rule. Since, in a conflict analysis state
〈M, C〉 � C, the clause C is a always a valid deduction, we can use the Learn

to add the clause C to set of clauses in order to aid in reducing the search space
in the future. If this learned clause is at a later point not deemed useful, we can
remove it using the Forget rule. The Consume rules skips over those decided
and propagated literals in the trail that are not relevant for the inconsistency of

3 Note that in both Decide and Propagate we do not need to ensure that the new
literal does not cause an infeasibility. Additionally, we can decide literals that do not
yet exist in C, enabling refinement decisions as found in [6].
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Resolve

〈�M,D→L�, C〉 � C −→ 〈M, C〉 � R if
¬L ∈ C,
R = resolve(C,D, L)

Consume

〈�M,D→L�, C〉 � C −→ 〈M, C〉 � C if ¬L 	∈ C

〈�M,L�, C〉 � C −→ 〈M, C〉 � C if ¬L 	∈ C

Backjump

〈�M,N�, C〉 � C −→ 〈�M,C→L�, C〉 if

C = L1 ∨ . . . ∨ Lm ∨ L
∀i : value(Li,M) = false
value(L,M) = undef
N starts with a decision

Unsat

〈M, C〉 � false −→ unsat

Learn

〈M, C〉 � C −→ 〈M, C ∪ {C}〉 � C if C 	∈ C

Fig. 2. Clausal conflict analysis rules

the conflicting clause. Finally, we exit conflict resolution using the Backjump

rule, if we have deduced a clause C such that implies a literal earlier in the trail,
skipping over at least one decision.

2.2 Theory-Specific Rules

We now extend the rules to enable theory-specific reasoning, allowing deductions
in the style of DPLL(T), but more flexible, and allowing for assignments of
variables to particular concrete values (Figure 3). As in DPLL(T), the basic
requirement for a theory decision procedure is to provide an explain function
that can explain theory-specific propagations and infeasible states. In DPLL(T),
the theory explanations are theory lemmas in form of clauses that only contain
negations of literals asserted so far. The explanation function explain here has
more flexibility. Given a literal L and a consistent trail M that implies L to be
true, i.e. such that �M,¬L� is infeasible, explain(L,M) must return a valid theory
lemma E = L1 ∨ . . . Lk ∨L. The literals of the clause E must be from the finite
basis B, and all literals Li must evaluate to false in M . Allowing explanations
containing more than just the literals off the trail allows for more expressive
lemmas and is crucial for model-based decision procedures. Limiting the literals
to a finite basis, on the other hand, is important for ensuring the termination of
the procedure.

Search Rules. We can propagate a literal L using the T-Propagate rule, if it
is implied in the current state, i.e. if adding the literal ¬L to the trail M makes
it infeasible. The side condition value(L,M) = undef ensures that we cannot
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T-Propagate

〈M, C〉 −→ 〈�M,E→L�, C〉 if

L ∈ B, value(L,M) = undef
infeasible(�M,¬L�)
E = explain(�M,¬L�)

T-Decide

〈M, C〉 −→ 〈�M,x �→α�, C〉 if

x ∈ varsT (C)
υ[M ](x) = undef
consistent(�M,x �→α�)

T-Conflict

〈M, C〉 −→ 〈M, C〉 � E if
infeasible(M)
E = explain(false,M)

T-Consume

〈�M,x �→α�, C〉 � C −→ 〈M, C〉 � C if value(C,M) = false

T-Backjump-Decide

〈�M,x �→α,N�, C〉 � C −→ 〈�M,L�, C〉 if

C = L1 ∨ . . . ∨ Lm ∨ L
∃i : value(Li,M) = undef
value(L,M) = undef

Fig. 3. Theory search and conflict rules

produce an inconsistent trail (value(L,M) = false), nor include redundant infor-
mation (value(L,M) = true). We use the T-Decide rule to assign an interpre-
tation/value (α) to a variable x that occurs in our set of clauses (x ∈ varsT (C)).
The side condition υ[M ](x) = undef ensures that we cannot assign a variable x
that is already assigned in M , and consistent(�M,x �→α�) ensures the new trail
is consistent. We require a consistent trail because the function value is not well
defined for inconsistent trails. We use the T-Conflict rule to enter conflict
resolution state, whenever we detect that the trail is infeasible.

Conflict Analysis Rules. The T-Consume rule is similar to the consume rules in
Figure 2, as it skips over a decided model assignment x �→α that is not relevant
for the inconsistency of the conflicting clause. The assignment is not relevant
because the conflicting clause C still evaluates to false after the assignment x �→ α
is removed from the trail. We use the T-Backjump-Decide rule when we reach
an assignment x �→ α that is relevant for the inconsistency of the conflicting
clause C, but the Backjump rule is not applicable because C contains more
than one literal that evaluates to undef after we remove the assignment x �→α
from the trail. The T-Backjump-Decide rule may generates doubts about the
termination argument for our abstract procedure, since it is just replacing a
decision x �→α with another decision L. In our termination proof, we justify
that by assuming that Boolean decisions (L) have “bigger” weight than model
assignment decisions (x �→α).
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2.3 Producing Explanations

A crucial component of our framework is the explanation function explain. Given
an infeasible trail M , it must be able to produce a valid theory lemma that is
inconsistent with M using only literals from the finite basis.

If the infeasibility of M only depends on literals that already occur M , then
explain can simply return the inconsistent clause¬L1∨. . .∨¬Lk where all literalLi

occur in M . For example, the trail M = �x < 0, y > 1, x > 0� is infeasible, and
explain(false,M) = ¬(x < 0)∨¬(x > 0) is a valid theory lemma that is inconsistent
with M . In such cases, the T-Conflict and T-Propagate rules correspond to
the theory propagation and conflict rules from the DPLL(T) framework.

The more interesting case occurs when the infeasibility on a trail M also
depends on decided model assignments x �→α in M . Consider, for example, the
infeasible (but consistent) trail

M = �y > 0, z > 0, x+ y + z < 0, x �→0� .

It might be tempting to define explain(false,M) to produce the valid theory
lemma

¬(y > 0) ∨ ¬(z > 0) ∨ ¬(x + y + z < 0) ∨ ¬(x = 0)

This näıve explain function that just replaces the assignments x �→α with literals
x = α, is inadequate as it does not satisfy the finite basis requirement for theories
that operate over infinite domains, such as the Integers or the Reals. Using such a
function, in this example, we would be able to continue indefinitely by assigning
x to 1, then 2, and so on.

In principle, for any theory that admits elimination of quantifiers, it is pos-
sible to construct an explanation function explain that satisfy the finite basis
requirement. The basic idea is to eliminate all unassigned variables and produce
an implied formula that is also inconsistent with the assigned variables in the
infeasible trail. In the previous example, the variables y and z are unassigned,
so we can separate the infeasible literals that the näıve explain function return
into the literals from the trail and literals from assignments

A ≡ (y > 0) ∧ (z > 0) ∧ (x+ y + z < 0) B ≡ (x = 0) .

Given A, we use a quantifier elimination procedure to generate a CNF formula
F of the form C1 ∧ . . . ∧ Ck that is equivalent to (∃y, z : A), and therefore also
inconsistent with B while only using the assigned variables (in this case x). Note
that B corresponds to the assignment υ[M ], and each clause Ci evaluates to
true or false under υ[M ] because all variables occurring in Ci are assigned by
υ[M ]. Moreover, at least one of these clauses must evaluate to false because F
is inconsistent with B. Let I be the clause Ci that evaluates to false. We have
that A =⇒ I is a valid clause because

A =⇒ (∃y, z : A) ⇐⇒ F =⇒ I

Since I is inconsistent with B, the clause A =⇒ I will also be inconsistent
with the trail and can be used as an explanation. Moreover, I is an interpolant
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for A and B. In this example, we obtain 0 < x by eliminating the variables y
and z from A using Fourier-Motzkin elimination, resulting in the explanation
A =⇒ (0 < x). When solving a set of linear arithmetic C, Fourier-Motzkin
elimination is sufficient to define the explain function, as shown in [12,9]. Fourier-
Motzkin elimination gives a finite-basis B with respect to C, and the basis can
be obtained by closing C under the application of Fourier-Motzkin elimination
step. It is fairly easy to show that the closure is a finite set, since we always
produce constraints with one variable less.

In the last example, 0 < x is an interpolant for A and B, but so is x �= 0. The
key point is that an arbitrary interpolation procedure does not guarantee a finite
basis. Nonetheless, this observation is useful when designing explanation functions
for more complex theories. For nonlinear arithmetic constraints, we describe how
to produce an explain procedure that produces an interpolant based on cylindrical
algebraic decomposition (CAD) in [8]. The theory of uninterpreted functions (UF)
does not admit quantifier elimination, but dynamic-ackermannization [5] can be
used to create an interpolant I between A and B without compromising the finite
basis requirement. For example, the trail M = �x �→0, y �→0, f(x) �= f(y)� is
infeasible with respect to UF. Then, we have A ≡ f(x) �= f(y) and B ≡ (x =
0)∧ (y = 0). Using dynamic-ackermannization we have that I ≡ x �= y is an inter-
polant for A and B, and f(x) �= f(y) =⇒ x �= y is a valid theory lemma that is
also inconsistent withM .We satisfy the finite basis requirement because dynamic-
ackermannization only “introduces” equalities between terms that already exist in
the trail. Finally, an explain function for the theory of arrays can be built on top
of the approach described in [3].

Example 2. For the sake of simplicity, we restrict ourselves to the case of linear
arithmetic. We illustrate the search rules by applying them to the following
clauses over Boolean and linear arithmetic atoms C = {x < 1 ∨ p, ¬p ∨ x = 2}.
We start the deduction from the initial state 〈��, C〉 and apply the rules of the
mcSAT system.

〈��,C〉
↓ T-Decide (x �→1)

〈�x �→1�, C〉
↓ Propagate (p must be true, since x < 1 evaluates to false in the current trail)

〈�x �→1, (x < 1 ∨ p)→p�,C〉
↓ Conflict (¬p and x = 2 evaluate to false in the current trail)

〈�x �→1, (x < 1 ∨ p)→p�,C〉 � ¬p ∨ x = 2

↓ Resolve (resolving x < 1 ∨ p and ¬p ∨ x = 2)

〈�x �→1�, C〉 � x < 1 ∨ x = 2

In this state, the Backjump rule is not applicable because in the conflicting
clause, both x < 1 and x = 2 evaluate to undef after the model assignment
x �→1 is removed from the trail. The intuition is that the model assignment was
“premature”, and the clause x < 1 ∨ x = 2 is indicating that we should decide
x < 1 or x = 2 before we assign x.
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〈�x �→1�, C〉 � x < 1 ∨ x = 2

↓ T-Backjump-Decide

〈�x < 1�, C〉
↓ T-Decide (the model assignment must satisfy x < 1)

〈�x < 1, x �→0�, C〉
↓ Propagate (¬p must be true, since x = 2 evaluates to false in the current trail)

〈�x < 1, x �→0, (¬p ∨ x = 2)→¬p�, C〉
↓ Sat (x �→0 and ¬p satisfy all clauses)

sat

Example 3. Now, we consider a set of linear arithmetic (unit) clauses

C = {x < 1, x < y, 1 < z, z < x} .

To simplify the presentation of this example, with a small abuse of notation, we
use ↪→L instead of L→L, whenever the literal L is implied by the unit clause L.

〈��, C〉
↓ Propagate × 4 (propagate all unit clauses)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x�,C〉
↓ T-Decide (the current trail is consistent with the model assignment x �→0)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0�, C〉
↓ T-Decide (peek a value for y, keeping consistency, y s.t. x < y)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉
↓ T-Conflict (1 < z and z < x implies that 1 < x)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉 � C

In the state above, the conflict was detected by noticing that we can not pick
a value for z, because the trail contains 1 < z, z < x and x �→0. The explain
procedure “generates” the explanation clause C ≡ ¬(1 < z) ∨ ¬(z < x) ∨ 1 < x
by eliminating z using Fourier-Motzkin elimination, and this clause evaluates to
false in the current trail. Note that, as in DPLL(T), we could have also explained
the infeasibility trail by producing the clause ¬(1 < z)∨¬(z < x)∨¬(x < 1) that
uses only literals that already exist in the trail. However, this is clause is weaker
since ¬(x < 1) ≡ (1 ≤ x) is weaker than 1 < x. We continue the deduction by
analyzing the conflict.

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉 � C

↓ T-Consume (the conflict does not depend on y)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0�, C〉 � C

↓ Backjump (after backtracking x �→0, the clause C implies 1 < x)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉
After the application of the backjump rule, the newly asserted literal 1 < x is
immediately in conflict with the literal x < 1 and we enter conflict resolution
again, with the explanation obtained by Fourier-Motzkin elimination.
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〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉
↓ T-Conflict (1 < x and x < 1 implies false)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉 � ¬(1 < x) ∨ ¬(x < 1)

↓ Resolve × 3, Consume, Resolve, Unsat

unsat

Theorem 1. Given a set of clauses C, and assuming a finite basis explanation
function explain, any derivation starting from the initial state 〈��, C〉 will termi-
nate either in a state sat, when C is satisfiable, or in the unsat state. In the later
case, the set of clauses C is unsatisfiable.

Proof. Assume we have a set of clauses C, over the variables x1, . . . , xn, and a
finite-basis explanation function explain. Starting from the initial state 〈��, C〉,
we claim that any derivation of the transition system (finite or infinite), satisfies
the following properties

1. the only possible “sink states” are the sat and the unsat states;
2. all � C clauses are implied by the initial set of clauses C;
3. during conflict analysis value(C,M) = false for the � C clauses;

Assuming termination, and the above properties, the statement can be proven
easily. Since sat and unsat are the only sink states, the derivation will terminate
in one of these states. Since the Sat rule is only applicable if the set of clauses C
is satisfied, we have that the original problem is indeed satisfiable. On the other
hand, if we terminate in the unsat state, by the above properties, the conflicting
clause false is implied by the inital C. Given that false is implied by the original
set of clauses, the initial clauses themselves must truly be unsatisfiable.

The first property in the list above is a fairly easy exercise in case analysis
and induction, so we skip those and concentrate on the more interesting prop-
erties. Proving the properties of conflict analysis is also quite straightforward,
via induction on the number of conflicts, and conflict analysis steps. Clearly, ini-
tially, we have that C evaluates to false (the precondition of the Conflict and
T-Conflict rules), and is implied by C by induction. Then, every new clause
that we produce during conflict resolution is obtained by the Boolean resolve
rule, which will produce a valid deduction. Additionally, since the clause we are
resolving with is a proper explanation, it will have all literals except the one we
are resolving evaluate to false. Therefore, the resolvent also evaluates to false.
As we backtrack down the trail with the conflicting clause, by definition of value
and the preconditions of the rules, the clause still remains false.

Now, let us prove that the system terminates. It is clear that the conflict anal-
ysis rules (always removing elements from the trail) always terminate in a finite
number of steps, and return to the search rules (or the unsat state). For the sake
of the argument, let us assume that there is a derivation that does not terminate,
and therefore does not enter the unsat state. We can define a big-step transition
relation −→bs that covers a transition from a search state, applying one or more
transitions in the conflict analysis rules, and returns to a search state.
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By assumption, we have a finite-basis explanation function explain, so we can
assume a set of literals B from which all the clauses that we can see during the
search are constructed. In order to keep progress of the search, we define a partial
order M1 ≺ M2 on trails. The trail contains three different kinds of element:
model assignments decisions (x �→α), Boolean decisions (L) and propagations
(C→L). The basic idea is to consider that propagations are heavier than Boolean
decisions that are heavier than model assignments. We capture that by defining
a (weight) function w from trail elements into the set {1, 2, 3}.

w(C→L) = 3, w(L) = 2, w(x �→α) = 1

We define the M1 ≺ M2 using a lexicographical order based on the weights of
the trail elements, i.e.

�� ≺ M = true if M �= ��

M ≺ �� = false

�a,M1� ≺ �b,M2� = w(a) < w(b) ∨ (w(a) = w(b) ∧M1 ≺ M2)

It is clear that �� is the minimal element, and any trail containing |B| propaga-
tions followed by n model assignments is maximal. It is easy to see that for all
trails M and trail elements a we have that M ≺ �M,a�. Thus, any rule that adds
a new element to the trail is essentially creating a “bigger” trail with respect to
the partial order ≺. This simple observation covers most of our rules.

Now, we consider the big-step−→bs transition from a state 〈M1, C1〉 into a state
〈M2, C2〉. If we return usingBackjump, then the trailM1 is of the form �M,L,N�
or �M,x �→α,N�, and the trailM2 is of the form �M,C→L′�. In both casesM1 ≺
M2 because aw(C→L′) is greater thanw(L) andw(x �→ α). Similarly, if we return
using T-Backjump-Decide, the trail M1 is of the form �M,x �→α,N�, and M2

is of the form �M,L�, once again M1 ≺ M2 since w(L) > w(x �→α).
Now, to justify the Forget rule, we define a partial order 〈M1, C1〉 � 〈M2, C2〉

as M1 ≺ M2 ∨ (M1 = M2 ∧ |C1| > |C2|). Using this definition, we have that
〈M, C〉�〈M, C\{C}〉, and consequently theForget rule also produces a “bigger”
state. The partial order � also have maximal elements 〈Mmax, C0〉, where Mmax

is a maximal element for ≺ and C0 is the initial set of clauses. Since all rules are
producing bigger states and we can not increase forever, the termination of the
system follows. �

3 Conclusion

We proposed a model-constructing satisfiability calculus (mcSAT) that encom-
passes all model-based decision procedures found in the SMT literature. The
mcSAT framework extends DPLL(T) by allowing assignments of variables to con-
crete values and relaxing the restriction on creation of new literals. The model
created during the search also takes part in explaining the conflicts, and the
full model is readily available as a witness if the procedure reports a satisfiable
answer. The new calculus also extends nlsat, proposed at [8], by removing unnec-
essary restrictions on the Boolean-level search rules – it allows efficient Boolean
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constraint propagation found in state-of-the-art SAT solvers and incorporates
theory propagation and conflict rules from the DPLL(T) framework. The mcSAT
calculus allows SMT developers to combine existing and successful techniques
from the DPLL(T) framework with the flexibility provided by the nlsat calculus.
We also presented a correctness proof for our procedure that is much simpler
than the one provided for nlsat.

In this article, we did not explore the theory combination problem. However,
we believe mcSAT is the ideal framework for combining implementations for
theories such as: arithmetic, bit-vectors, floating-point, uninterpreted functions,
arrays and datatypes.
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