

Lecture Notes in Computer Science 7737
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Roberto Giacobazzi Josh Berdine
Isabella Mastroeni (Eds.)

Verification,
Model Checking, and
Abstract Interpretation
14th International Conference, VMCAI 2013
Rome, Italy, January 20-22, 2013
Proceedings

13

Volume Editors

Roberto Giacobazzi
University of Verona, Department of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
E-mail: roberto.giacobazzi@univr.it

Josh Berdine
Microsoft Research
7 JJ Thomson Avenue, Cambridge, CB3 0FB, UK
E-mail: jjb@microsoft.com

Isabella Mastroeni
University of Verona, Department of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
E-mail: isabella.mastroeni@univr.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35872-2 e-ISBN 978-3-642-35873-9
DOI 10.1007/978-3-642-35873-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955045

CR Subject Classification (1998): F.3.1-2, D.2.4, C.2.4, F.4.1, F.1.1, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at VMCAI 2013, the 14th
International Conference on Verification, Model Checking, and Abstract Inter-
pretation, held during January 20–22, 2012, in Rome, co-located with POPL
2013 (the 40th ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming languages). Previous meetings were held in Port Jefferson (1997), Pisa
(1998), Venice (2002), New York (2003), Venice (2004), Paris (2005), Charleston
(2006), Nice (2007), San Francisco (2008), Savannah (2009), Madrid (2010),
Austin (2011), and Philadelphia (2012).

VMCAI is a major conference dealing with state-of-the art research in anal-
ysis and verification of programs and systems, with particular emphasis on the
cross-fertilization among communities that have developed different methods
and models for code and system verification and analysis. VMCAI topics in-
clude: program verification, model checking, abstract interpretation and abstract
domains, program synthesis, static analysis, type systems, deductive methods,
program certification, debugging techniques, program transformation, optimiza-
tion, hybrid and cyber-physical systems.

This year we had 72 submissions. Each submission was reviewed by at least
three Program Committee members. The committee decided to accept 27 pa-
pers, with an acceptance rate of 37%. The principal selection criteria were rel-
evance, quality, and originality. We are glad to include in the proceedings the
contributions of four invited keynote speakers: Leonardo de Moura (Microsoft
Research, USA) on “A Model-Constructing Satisfiability Calculus,” Andreas
Podelski (Freiburg, Germany) on “Automata as Proofs,” Francesco Ranzato
(University of Padova, Italy) on “Complete Abstractions Everywhere,”and Eran
Yahav (Technion, Israel) on “Abstraction-Guided Synthesis.”

We would like to thank the members of the Program Committee and all
sub-reviewers for their dedicated effort in evaluating and selecting the papers to
be presented at the conference. Our gratitude goes to the Steering Committee
members for their helpful advice and support, in particular to Lenore Zuck and
Dave Schmidt for their constant assistance and invaluable experience with the
organization of VMCAI. We would like to thank Liù Catena for the local ar-
rangements in Rome and for her terrific energy in organizing the logistics of all
events co-located with POPL2013. Moreover, we would like to thank Matthew
Might for the great help in coordinating the events co-located with POPL2013
and the staff of the Hotel Parco dei Principi for their help in making this event

VI Preface

easier to organize. Finally, we are also grateful to Andrei Voronkov for having set
up the EasyChair system that was used to handle the whole scientific production
workflow.

November 2012 Roberto Giacobazzi
Josh Berdine

Isabella Mastroeni

Organization

Program Committee

Josh Berdine Microsoft Research, UK
Nikolaj Bjorner Microsoft Research, USA
Sandrine Blazy IRISA - Université Rennes 1, France
Agostino Cortesi Università Ca’ Foscari di Venezia, Italy
Mads Dam KTH, Sweden
Michael Emmi Université Paris Diderot (Paris 7), France
Azadeh Farzan University of Toronto, Canada
Pierre Ganty IMDEA Software Institute, Spain
Samir Genaim Universidad Complutense de Madrid, Spain
Roberto Giacobazzi University of Verona, Italy
Orna Grumberg Technion - Israel Institute of Technology
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Jochen Hoenicke University of Freiburg, Germany
Sebastian Hunt City University, London, UK
Limin Jia Carnegie Mellon University, USA
Andy King University of Kent, UK
Arun Lakhotia University of Louisiana at Lafayette, USA
Akash Lal Microsoft Research, India
Rupak Majumdar UCLA, USA
Matthieu Martel Université de Perpignan Via Domitia, France
Isabella Mastroeni University of Verona, Italy
Ganesan Ramalingam Microsoft Research, India
Roberto Sebastiani DISI, University of Trento, Italy
Saurabh Srivastava University of California, Berkeley, USA
Greta Yorsh IBM Research, USA
Enea Zaffanella University of Parma, Italy

Additional Reviewers

Adje, Assale
Amato, Gianluca
Atig, Mohamed Faouzi
Balliu, Musard
Barman, Shaon
Bouissou, Olivier
Bozzelli, Laura

Chapoutot, Alexandre
Chaudhuri, Swarat
Christ, Juergen
Christ, Jürgen
Costantini, Giulia
Dalla Preda, Mila
Delahaye, Benoit

VIII Organization

Donze, Alexandre
Dragoi, Cezara
Enea, Constantin
Esparza, Javier
Feret, Jerome
Ferrara, Pietro
Gori, Roberta
Guanciale, Roberto
Gupta, Ashutosh
Gurov, Dilian
Hamza, Jad
Hartmanns, Arnd
Hill, Patricia M
Ioualalen, Arnault
Jansen, Nils
Jeannet, Bertrand
Khakpour, Narges
Kincaid, Zachary
Kuperstein, Michael
Lagoon, Vitaly
Legay, Axel
Luccio, Flaminia
Macedonio, Damiano
Madhavan, Ravichandhran
Manevich, Roman
Marin, Andrea
Meller, Yael

Merro, Massimo
Meyerovich, Leo
Murano, Aniello
Parente, Mimmo
Piazza, Carla
Razavi, Niloofar
Rollini, Simone Fulvio
Rozier, Kristin Yvonne
Rybalchenko, Andrey
Samborski-Forlese, Julian
Sangnier, Arnaud
Sankaranarayanan, Sriram
Schuppan, Viktor
Segala, Roberto
Shoham, Sharon
Soffia, Stefano
Sosnovich, Adi
Spalazzi, Luca
Thakur, Aditya
Tonetta, Stefano
Vafeiadis, Viktor
Vasconcelos, Pedro
Vinco, Sara
Vizel, Yakir
Zuliani, Paolo
Zunino, Roberto

Table of Contents

Invited Talks

A Model-Constructing Satisfiability Calculus . 1
Leonardo de Moura and Dejan Jovanović

Automata as Proofs . 13
Andreas Podelski

Complete Abstractions Everywhere . 15
Francesco Ranzato

Abstraction-Guided Synthesis . 27
Eran Yahav

Session 1: Analysis of Systems with Continuous
Behavior

SMT-Based Bisimulation Minimisation of Markov Models 28
Christian Dehnert, Joost-Pieter Katoen, and David Parker

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 48
Pavithra Prabhakar, Parasara Sridhar Duggirala, Sayan Mitra, and
Mahesh Viswanathan

Quantifying Information Leakage of Randomized Protocols 68
Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and
Andrzej W ↪asowski

Session 2: Synthesis

Reductions for Synthesis Procedures . 88
Swen Jacobs, Viktor Kuncak, and Philippe Suter

Towards Efficient Parameterized Synthesis . 108
Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

Session 3: Analysis Algorithms and Theorem Proving
Techniques for Program Analysis

Automatic Inference of Necessary Preconditions . 128
Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and
Francesco Logozzo

X Table of Contents

Fixpoint Computation in the Polyhedra Abstract Domain Using
Convex and Numerical Analysis Tools . 149

Yassamine Seladji and Olivier Bouissou

SMT-Based Array Invariant Generation . 169
Daniel Larraz, Enric Rodŕıguez-Carbonell, and Albert Rubio

Flow-Sensitive Fault Localization . 189
Jürgen Christ, Evren Ermis, Martin Schäf, and Thomas Wies

Session 4: Automata-Based Techniques

Static Analysis of String Encoders and Decoders . 209
Loris D’Antoni and Margus Veanes

Robustness Analysis of Networked Systems . 229
Roopsha Samanta, Jyotirmoy V. Deshmukh, and Swarat Chaudhuri

Causality Checking for Complex System Models . 248
Florian Leitner-Fischer and Stefan Leue

Session 5: Tools

ClabureDB: Classified Bug-Reports Database: Tool for Developers of
Program Analysis Tools . 268

Jiri Slaby, Jan Strejček, and Marek Trt́ık

Tool Integration with the Evidential Tool Bus . 275
Simon Cruanes, Gregoire Hamon, Sam Owre, and Natarajan Shankar

Session 6: Types and Proof Methodologies

Compositional and Lightweight Dependent Type Inference for ML 295
He Zhu and Suresh Jagannathan

Abstract Read Permissions: Fractional Permissions without the
Fractions . 315

Stefan Heule, K. Rustan M. Leino, Peter Müller, and
Alexander J. Summers

Sound and Complete Flow Typing with Unions, Intersections and
Negations . 335

David J. Pearce

Table of Contents XI

Session 7: Abstract Domains

Knockout Prediction for Reaction Networks with Partial Kinetic
Information . 355

Mathias John, Mirabelle Nebut, and Joachim Niehren

Reduced Product Combination of Abstract Domains for Shapes 375
Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

Abstraction of Syntax . 396
Vijay D’Silva and Daniel Kroening

Session 8: Combining Boolean Solving and Abstract
Domains for Theories

Logico-Numerical Max-Strategy Iteration . 414
Peter Schrammel and Pavle Subotic

A Constraint Solver Based on Abstract Domains . 434
Marie Pelleau, Antoine Miné, Charlotte Truchet, and
Frédéric Benhamou

An Abstract Interpretation of DPLL(T) . 455
Martin Brain, Vijay D’Silva, Leopold Haller, Alberto Griggio, and
Daniel Kroening

Session 9: Distributed/Concurrent System
Verification

All for the Price of Few: (Parameterized Verification through View
Abstraction) . 476

Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Hoĺık

Uncovering Symmetries in Irregular Process Networks 496
Kedar S. Namjoshi and Richard J. Trefler

State Space Reduction for Sensor Networks Using Two-Level Partial
Order Reduction . 515

Manchun Zheng, David Sanán, Jun Sun, Yang Liu,
Jin Song Dong, and Yu Gu

Compositional Sequentialization of Periodic Programs 536
Sagar Chaki, Arie Gurfinkel, Soonho Kong, and Ofer Strichman

Author Index . 555

A Model-Constructing Satisfiability Calculus

Leonardo de Moura1 and Dejan Jovanović2

1 Microsoft Research
2 New York University

Abstract. We present a new calculus where recent model-based deci-
sion procedures and techniques can be justified and combined with the
standard DPLL(T) approach to satisfiability modulo theories. The new
calculus generalizes the ideas found in CDCL-style propositional SAT
solvers to the first-order setting.

1 Introduction

Considering the theoretical hardness of SAT, the astonishing adeptness of SAT
solvers when attacking practical problems has changed the way we perceive
the limits of algorithmic reasoning. Modern SAT solvers are based on the idea
of conflict driven clause learning (CDCL) [11,15,13]. The CDCL algorithm is
a combination of an explicit backtracking search for a satisfying assignment
complemented with a deduction system based on Boolean resolution. In this
combination, the worst-case complexity of both components is circumvented
by the components guiding and focusing each other. The generalization of the
SAT problem into the first-order domain is called satisfiability modulo theories
(SMT). The common way to solve an SMT problem is to employ a SAT solver to
enumerate the assignment of the Boolean abstraction of the formula. The candi-
date Boolean assignment is then either confirmed or refuted by a decision pro-
cedure dedicated to reasoning about conjunctions of theory-specific constraints.
This framework is commonly called DPLL(T) [10,14] and is employed by most
of the SMT solvers today. Although DPLL(T) at its core relies on a CDCL SAT
solver, this SAT solver is only used as a black-box. This can be seen as an advan-
tage since the advances in SAT easily transfer to performance improvements in
SMT. On the other hand, in the last few years the idea of direct model construc-
tion complemented with conflict resolution has been successfully generalized to
fragments of SMT dealing with theories such as linear real arithmetic [4,12,9],
linear integer arithmetic [7], nonlinear arithmetic [8], and floating-point [6]. All
these procedures, although quite effective in their corresponding first-order do-
mains, have not seen a more widespread acceptance due to their limitations in
purely Boolean reasoning and incompatibility with DPLL(T).

In this paper we propose a model-constructing satisfiability calculus (mcSAT)
that encompasses all the decision procedures above, including the decision pro-
cedures aimed at DPLL(T), while resolving the limitations mentioned above.
The mcSAT framework extends DPLL(T) by allowing assignments of variables
to concrete values, while relaxing the restriction that decisions, propagations,
and explanations of conflicts must be in term of existing atoms.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 L. de Moura and D. Jovanović

2 A Model Based Abstract Procedure

We assume that the reader is familiar with the usual notions and terminology of
first-order logic and model theory (for an introduction see e.g. [2]). We describe
the new procedure as an abstract transition system in the spirit of Abstract
DPLL [14]. The crucial difference of the system we present is that we are not
restricted to Boolean decisions. Instead, we allow the model that the theory is
trying to construct to be involved in the search and in explaining the conflicts,
while allowing new literals to be introduced so as to support more complex
conflict analyses.

The states in the transition system are pairs of the form 〈M, C〉, where M is a
sequence (usually called a trail) of trail elements, and C is a set of clauses. Each
trail element is either a decided literal, a propagated literal, or amodel assignment.
We refer to both decided literals and model assignments as decisions. A decided
literal is a literal that we assume to be true. On the other hand, a propagated
literal, denoted as C→L, marks a literal L that is implied to be true in the
current state by the clause C (the explanation). In both cases, we say that the
literal L appears in M , and write this as L ∈ M . A model assignment, written
as x �→α, is an assignment of a first-order uninterpreted symbol x to a value α.1

Given a trail M that contains model assignments xi1 �→α1, . . . , xik �→αk, we can
construct a first-order interpretation υ[M] = [xi1 �→ α1, . . . , xik �→ αk]. Given
a term t, the interpretation υ[M](t) is either a value of the term t under the
assignment in M , or undef if the the term cannot be fully evaluated.

The content of the trail implies an interpretation of literals and is the core
of our procedure. In order to evaluate the value of some literal L with respect
to a trail M , we define the functions valueB and valueT, the former interpreting
the literal according to the Boolean assignment, and the latter interpreting the
literal according to the model assignment of variables.

valueB(L,M) =

⎧⎪⎨⎪⎩
true L ∈M

false ¬L ∈M

undef otherwise

valueT(L,M) =

⎧⎪⎨⎪⎩
true υ[M](L) = true

false υ[M](L) = false

undef otherwise

We say that a trail M is consistent if the Boolean assignment and first-
order model are not in conflict, i.e. when for all L ∈ M we have that
valueT(L,M) �= false. Additionally we say that the trail M is complete when
each asserted first-order literal L ∈ M is justified by the first-order interpre-
tation, i.e. valueT(L,M) = true. We use the predicate consistent(M) to denote
that M is consistent and complete(M) to denote that M is complete. Note that
if a trail M is consistent, this does not mean that the assertions on the trail
are truly satisfiable (feasible), just that the current partial assignment does not
refute any of the individual trail literals. When there is a set of literals on the

1 The actual representation for values is theory specific and depends on the type of x.
For example, for the theory of liner real arithmetic, the values are rational numbers.
We never assign Boolean variables to values as they are considered literals.

A Model-Constructing Satisfiability Calculus 3

trail M that, together with the model assignments from M , is not satisfiable,
we call the trail infeasible and denote this with the predicate infeasible(M). We
have that ¬ consistent(M) implies infeasible(M).

Since the values of valueT(L,M) and valueB(L,M) do not disagree for all
L ∈ M , we define the value of a literal in a consistent state as

value(L,M) =

{
valueB(L,M) valueB(L,M) �= undef,

valueT(L,M) otherwise.

Example 1. Consider the trail M = �x > 0, x �→1, y �→0, z > 0�. The model
interpretation according to M is υ[M] = [x �→ 1, y �→ 0]. Therefore we have
that valueT(x > 0,M) = valueB(x > 0,M) = true, valueT(x > 1,M) = false,
valueT(z > 0,M) = undef, valueB(z > 0,M) = true, υ[M](x + y + 1) = 2, and
υ[M](x + z) = undef. The trail M is consistent, but M ′ = �M, y < 0� is not
because valueT(y < 0,M ′) = false and valueB(y < 0,M ′) = true. The trail M is
not complete as it does not interpret z and therefore valueT(z > 0,M) = undef.
Finally, M ′′ = �M, z < x� is infeasible because {x �→ 1, z > 0, z < x} is
unsatisfiable, but M ′′ is consistent.

We extend the definition of value to clauses so that value(C,M) = true if at least
one literal of C evaluates to true, value(C,M) = false if all literals evaluate to
false, and value(C,M) = undef otherwise. We say a clause C is satisfied by trail
M if value(C,M) = true. A set of clauses C is satisfied by M if M is complete
(and therefore consistent), and all clauses C ∈ C are satisfied by M . We use the
predicate satisfied(C,M) to denote that C is satisfied by M ,

Given a set of clauses C0, our procedure starts with the state 〈��, C0〉 and
performs transitions according to the rules we explain below. The goal is to
either enter into a state sat denoting that the problem is satisfiable, or into a
state unsat denoting that the problem is unsatisfiable. The states we traverse are
either search states of the form 〈M, C〉 or conflict resolution states of the form
〈M, C〉 � C. In both types of states we keep the invariant that M is a consistent
trail and C0 ⊆ C. Additionally, in conflict resolution states the clause C is always
a clause implied by C0 and refuted by the trail, i.e. C0 � C and value(C) = false.
We call the clause C the conflicting clause.

To ensure termination, the transition system assumes existence of a finite set
of literals B that we call the finite basis. During a derivation of the system, any
literal added to the trail will be from B, and the clauses that the system uses will
only contain literals from B.2 The minimal assumption is that B must include all
literals (and their negations) from the initial problem C0, and the theory-specific
decision procedure must ensure that for any C0 such a finite basis exists.

2.1 Clausal Rules

We start by presenting the set of search rules and conflict analysis rules that
resemble those of abstract DPLL and are the backbone of CDCL-style SAT

2 Our finite basis corresponds to the closure of the literal-generating function used in
splitting-on-demand [1].

4 L. de Moura and D. Jovanović

Decide

〈M, C〉 −→ 〈�M,L�, C〉 if L ∈ B, value(L,M) = undef

Propagate

〈M, C〉 −→ 〈�M,C→L�, C〉 if

C = (L1 ∨ . . . ∨ Ln ∨ L) ∈ C
∀i : value(Li,M) = false
value(L,M) = undef

Conflict

〈M, C〉 −→ 〈M, C〉 � C if C ∈ C, value(C) = false

Sat

〈M, C〉 −→ sat if satisfied(C,M)

Forget

〈M, C〉 −→ 〈M, C \ {C}〉 if C ∈ C is a learned clause.

Fig. 1. Clausal search rules

solvers. The clausal search rules are presented in Fig. 1 and the clausal conflict
analysis rules are presented in Fig. 2.

Search Rules. The Decide rule can take any literal from the basis B that does
not yet have a value added to the trail. The Propagate performs Boolean
clause propagation by assigning to true the only unassigned literal from a clause
where all other literals already evaluate to false.3 If we encounter a clause C
such all literals in C evaluate to false, we use the Conflict to enter conflict
resolution state. During conflict analysis we can learn new clauses, and these can
be removed using the Forget rule. If our trail is complete and satisfies all the
clauses, we can finish the search using the Sat rule.

Conflict Anaysis Rules. As in CDCL, the conflict analysis rules recover from
a conflict encountered during the search, learn the reason of the conflict, and
backtrack to an appropriate state to continue the search. The main analysis
rule is the Resolve rule. This rule performs Boolean resolution of clauses C
and D over the literal L, obtaining the clause R = resolve(C,D,L). The clause
R is a valid deduction and moreover evaluates to false in M . If the result of
the resolution is an empty clause (denoted with false), we can deduce that the
problem is unsatisfiable using the Unsat rule. Since, in a conflict analysis state
〈M, C〉 � C, the clause C is a always a valid deduction, we can use the Learn

to add the clause C to set of clauses in order to aid in reducing the search space
in the future. If this learned clause is at a later point not deemed useful, we can
remove it using the Forget rule. The Consume rules skips over those decided
and propagated literals in the trail that are not relevant for the inconsistency of

3 Note that in both Decide and Propagate we do not need to ensure that the new
literal does not cause an infeasibility. Additionally, we can decide literals that do not
yet exist in C, enabling refinement decisions as found in [6].

A Model-Constructing Satisfiability Calculus 5

Resolve

〈�M,D→L�, C〉 � C −→ 〈M, C〉 � R if
¬L ∈ C,
R = resolve(C,D, L)

Consume

〈�M,D→L�, C〉 � C −→ 〈M, C〉 � C if ¬L 	∈ C

〈�M,L�, C〉 � C −→ 〈M, C〉 � C if ¬L 	∈ C

Backjump

〈�M,N�, C〉 � C −→ 〈�M,C→L�, C〉 if

C = L1 ∨ . . . ∨ Lm ∨ L
∀i : value(Li,M) = false
value(L,M) = undef
N starts with a decision

Unsat

〈M, C〉 � false −→ unsat

Learn

〈M, C〉 � C −→ 〈M, C ∪ {C}〉 � C if C 	∈ C

Fig. 2. Clausal conflict analysis rules

the conflicting clause. Finally, we exit conflict resolution using the Backjump

rule, if we have deduced a clause C such that implies a literal earlier in the trail,
skipping over at least one decision.

2.2 Theory-Specific Rules

We now extend the rules to enable theory-specific reasoning, allowing deductions
in the style of DPLL(T), but more flexible, and allowing for assignments of
variables to particular concrete values (Figure 3). As in DPLL(T), the basic
requirement for a theory decision procedure is to provide an explain function
that can explain theory-specific propagations and infeasible states. In DPLL(T),
the theory explanations are theory lemmas in form of clauses that only contain
negations of literals asserted so far. The explanation function explain here has
more flexibility. Given a literal L and a consistent trail M that implies L to be
true, i.e. such that �M,¬L� is infeasible, explain(L,M) must return a valid theory
lemma E = L1 ∨ . . . Lk ∨L. The literals of the clause E must be from the finite
basis B, and all literals Li must evaluate to false in M . Allowing explanations
containing more than just the literals off the trail allows for more expressive
lemmas and is crucial for model-based decision procedures. Limiting the literals
to a finite basis, on the other hand, is important for ensuring the termination of
the procedure.

Search Rules. We can propagate a literal L using the T-Propagate rule, if it
is implied in the current state, i.e. if adding the literal ¬L to the trail M makes
it infeasible. The side condition value(L,M) = undef ensures that we cannot

6 L. de Moura and D. Jovanović

T-Propagate

〈M, C〉 −→ 〈�M,E→L�, C〉 if

L ∈ B, value(L,M) = undef
infeasible(�M,¬L�)
E = explain(�M,¬L�)

T-Decide

〈M, C〉 −→ 〈�M,x �→α�, C〉 if

x ∈ varsT (C)
υ[M](x) = undef
consistent(�M,x �→α�)

T-Conflict

〈M, C〉 −→ 〈M, C〉 � E if
infeasible(M)
E = explain(false,M)

T-Consume

〈�M,x �→α�, C〉 � C −→ 〈M, C〉 � C if value(C,M) = false

T-Backjump-Decide

〈�M,x �→α,N�, C〉 � C −→ 〈�M,L�, C〉 if

C = L1 ∨ . . . ∨ Lm ∨ L
∃i : value(Li,M) = undef
value(L,M) = undef

Fig. 3. Theory search and conflict rules

produce an inconsistent trail (value(L,M) = false), nor include redundant infor-
mation (value(L,M) = true). We use the T-Decide rule to assign an interpre-
tation/value (α) to a variable x that occurs in our set of clauses (x ∈ varsT (C)).
The side condition υ[M](x) = undef ensures that we cannot assign a variable x
that is already assigned in M , and consistent(�M,x �→α�) ensures the new trail
is consistent. We require a consistent trail because the function value is not well
defined for inconsistent trails. We use the T-Conflict rule to enter conflict
resolution state, whenever we detect that the trail is infeasible.

Conflict Analysis Rules. The T-Consume rule is similar to the consume rules in
Figure 2, as it skips over a decided model assignment x �→α that is not relevant
for the inconsistency of the conflicting clause. The assignment is not relevant
because the conflicting clause C still evaluates to false after the assignment x �→ α
is removed from the trail. We use the T-Backjump-Decide rule when we reach
an assignment x �→ α that is relevant for the inconsistency of the conflicting
clause C, but the Backjump rule is not applicable because C contains more
than one literal that evaluates to undef after we remove the assignment x �→α
from the trail. The T-Backjump-Decide rule may generates doubts about the
termination argument for our abstract procedure, since it is just replacing a
decision x �→α with another decision L. In our termination proof, we justify
that by assuming that Boolean decisions (L) have “bigger” weight than model
assignment decisions (x �→α).

A Model-Constructing Satisfiability Calculus 7

2.3 Producing Explanations

A crucial component of our framework is the explanation function explain. Given
an infeasible trail M , it must be able to produce a valid theory lemma that is
inconsistent with M using only literals from the finite basis.

If the infeasibility of M only depends on literals that already occur M , then
explain can simply return the inconsistent clause¬L1∨. . .∨¬Lk where all literalLi

occur inM . For example, the trailM = �x < 0, y > 1, x > 0� is infeasible, and
explain(false,M) = ¬(x < 0)∨¬(x > 0) is a valid theory lemma that is inconsistent
with M . In such cases, the T-Conflict and T-Propagate rules correspond to
the theory propagation and conflict rules from the DPLL(T) framework.

The more interesting case occurs when the infeasibility on a trail M also
depends on decided model assignments x �→α in M . Consider, for example, the
infeasible (but consistent) trail

M = �y > 0, z > 0, x+ y + z < 0, x �→0� .

It might be tempting to define explain(false,M) to produce the valid theory
lemma

¬(y > 0) ∨ ¬(z > 0) ∨ ¬(x + y + z < 0) ∨ ¬(x = 0)

This näıve explain function that just replaces the assignments x �→α with literals
x = α, is inadequate as it does not satisfy the finite basis requirement for theories
that operate over infinite domains, such as the Integers or the Reals. Using such a
function, in this example, we would be able to continue indefinitely by assigning
x to 1, then 2, and so on.

In principle, for any theory that admits elimination of quantifiers, it is pos-
sible to construct an explanation function explain that satisfy the finite basis
requirement. The basic idea is to eliminate all unassigned variables and produce
an implied formula that is also inconsistent with the assigned variables in the
infeasible trail. In the previous example, the variables y and z are unassigned,
so we can separate the infeasible literals that the näıve explain function return
into the literals from the trail and literals from assignments

A ≡ (y > 0) ∧ (z > 0) ∧ (x+ y + z < 0) B ≡ (x = 0) .

Given A, we use a quantifier elimination procedure to generate a CNF formula
F of the form C1 ∧ . . . ∧ Ck that is equivalent to (∃y, z : A), and therefore also
inconsistent with B while only using the assigned variables (in this case x). Note
that B corresponds to the assignment υ[M], and each clause Ci evaluates to
true or false under υ[M] because all variables occurring in Ci are assigned by
υ[M]. Moreover, at least one of these clauses must evaluate to false because F
is inconsistent with B. Let I be the clause Ci that evaluates to false. We have
that A =⇒ I is a valid clause because

A =⇒ (∃y, z : A) ⇐⇒ F =⇒ I

Since I is inconsistent with B, the clause A =⇒ I will also be inconsistent
with the trail and can be used as an explanation. Moreover, I is an interpolant

8 L. de Moura and D. Jovanović

for A and B. In this example, we obtain 0 < x by eliminating the variables y
and z from A using Fourier-Motzkin elimination, resulting in the explanation
A =⇒ (0 < x). When solving a set of linear arithmetic C, Fourier-Motzkin
elimination is sufficient to define the explain function, as shown in [12,9]. Fourier-
Motzkin elimination gives a finite-basis B with respect to C, and the basis can
be obtained by closing C under the application of Fourier-Motzkin elimination
step. It is fairly easy to show that the closure is a finite set, since we always
produce constraints with one variable less.

In the last example, 0 < x is an interpolant for A and B, but so is x �= 0. The
key point is that an arbitrary interpolation procedure does not guarantee a finite
basis. Nonetheless, this observation is useful when designing explanation functions
for more complex theories. For nonlinear arithmetic constraints, we describe how
to produce an explain procedure that produces an interpolant based on cylindrical
algebraic decomposition (CAD) in [8]. The theory of uninterpreted functions (UF)
does not admit quantifier elimination, but dynamic-ackermannization [5] can be
used to create an interpolant I between A and B without compromising the finite
basis requirement. For example, the trail M = �x �→0, y �→0, f(x) �= f(y)� is
infeasible with respect to UF. Then, we have A ≡ f(x) �= f(y) and B ≡ (x =
0)∧ (y = 0). Using dynamic-ackermannization we have that I ≡ x �= y is an inter-
polant for A and B, and f(x) �= f(y) =⇒ x �= y is a valid theory lemma that is
also inconsistent withM .We satisfy the finite basis requirement because dynamic-
ackermannization only “introduces” equalities between terms that already exist in
the trail. Finally, an explain function for the theory of arrays can be built on top
of the approach described in [3].

Example 2. For the sake of simplicity, we restrict ourselves to the case of linear
arithmetic. We illustrate the search rules by applying them to the following
clauses over Boolean and linear arithmetic atoms C = {x < 1 ∨ p, ¬p ∨ x = 2}.
We start the deduction from the initial state 〈��, C〉 and apply the rules of the
mcSAT system.

〈��,C〉
↓ T-Decide (x �→1)

〈�x �→1�, C〉
↓ Propagate (p must be true, since x < 1 evaluates to false in the current trail)

〈�x �→1, (x < 1 ∨ p)→p�,C〉
↓ Conflict (¬p and x = 2 evaluate to false in the current trail)

〈�x �→1, (x < 1 ∨ p)→p�,C〉 � ¬p ∨ x = 2

↓ Resolve (resolving x < 1 ∨ p and ¬p ∨ x = 2)

〈�x �→1�, C〉 � x < 1 ∨ x = 2

In this state, the Backjump rule is not applicable because in the conflicting
clause, both x < 1 and x = 2 evaluate to undef after the model assignment
x �→1 is removed from the trail. The intuition is that the model assignment was
“premature”, and the clause x < 1 ∨ x = 2 is indicating that we should decide
x < 1 or x = 2 before we assign x.

A Model-Constructing Satisfiability Calculus 9

〈�x �→1�, C〉 � x < 1 ∨ x = 2

↓ T-Backjump-Decide

〈�x < 1�, C〉
↓ T-Decide (the model assignment must satisfy x < 1)

〈�x < 1, x �→0�, C〉
↓ Propagate (¬p must be true, since x = 2 evaluates to false in the current trail)

〈�x < 1, x �→0, (¬p ∨ x = 2)→¬p�, C〉
↓ Sat (x �→0 and ¬p satisfy all clauses)

sat

Example 3. Now, we consider a set of linear arithmetic (unit) clauses

C = {x < 1, x < y, 1 < z, z < x} .

To simplify the presentation of this example, with a small abuse of notation, we
use ↪→L instead of L→L, whenever the literal L is implied by the unit clause L.

〈��, C〉
↓ Propagate × 4 (propagate all unit clauses)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x�,C〉
↓ T-Decide (the current trail is consistent with the model assignment x �→0)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0�, C〉
↓ T-Decide (peek a value for y, keeping consistency, y s.t. x < y)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉
↓ T-Conflict (1 < z and z < x implies that 1 < x)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉 � C

In the state above, the conflict was detected by noticing that we can not pick
a value for z, because the trail contains 1 < z, z < x and x �→0. The explain
procedure “generates” the explanation clause C ≡ ¬(1 < z) ∨ ¬(z < x) ∨ 1 < x
by eliminating z using Fourier-Motzkin elimination, and this clause evaluates to
false in the current trail. Note that, as in DPLL(T), we could have also explained
the infeasibility trail by producing the clause ¬(1 < z)∨¬(z < x)∨¬(x < 1) that
uses only literals that already exist in the trail. However, this is clause is weaker
since ¬(x < 1) ≡ (1 ≤ x) is weaker than 1 < x. We continue the deduction by
analyzing the conflict.

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0, y �→1�, C〉 � C

↓ T-Consume (the conflict does not depend on y)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, x �→0�, C〉 � C

↓ Backjump (after backtracking x �→0, the clause C implies 1 < x)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉

After the application of the backjump rule, the newly asserted literal 1 < x is
immediately in conflict with the literal x < 1 and we enter conflict resolution
again, with the explanation obtained by Fourier-Motzkin elimination.

10 L. de Moura and D. Jovanović

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉
↓ T-Conflict (1 < x and x < 1 implies false)

〈�↪→x < 1, ↪→x < y, ↪→1 < z, ↪→z < x, C→1 < x�,C〉 � ¬(1 < x) ∨ ¬(x < 1)

↓ Resolve × 3, Consume, Resolve, Unsat

unsat

Theorem 1. Given a set of clauses C, and assuming a finite basis explanation
function explain, any derivation starting from the initial state 〈��, C〉 will termi-
nate either in a state sat, when C is satisfiable, or in the unsat state. In the later
case, the set of clauses C is unsatisfiable.

Proof. Assume we have a set of clauses C, over the variables x1, . . . , xn, and a
finite-basis explanation function explain. Starting from the initial state 〈��, C〉,
we claim that any derivation of the transition system (finite or infinite), satisfies
the following properties

1. the only possible “sink states” are the sat and the unsat states;
2. all � C clauses are implied by the initial set of clauses C;
3. during conflict analysis value(C,M) = false for the � C clauses;

Assuming termination, and the above properties, the statement can be proven
easily. Since sat and unsat are the only sink states, the derivation will terminate
in one of these states. Since the Sat rule is only applicable if the set of clauses C
is satisfied, we have that the original problem is indeed satisfiable. On the other
hand, if we terminate in the unsat state, by the above properties, the conflicting
clause false is implied by the inital C. Given that false is implied by the original
set of clauses, the initial clauses themselves must truly be unsatisfiable.

The first property in the list above is a fairly easy exercise in case analysis
and induction, so we skip those and concentrate on the more interesting prop-
erties. Proving the properties of conflict analysis is also quite straightforward,
via induction on the number of conflicts, and conflict analysis steps. Clearly, ini-
tially, we have that C evaluates to false (the precondition of the Conflict and
T-Conflict rules), and is implied by C by induction. Then, every new clause
that we produce during conflict resolution is obtained by the Boolean resolve
rule, which will produce a valid deduction. Additionally, since the clause we are
resolving with is a proper explanation, it will have all literals except the one we
are resolving evaluate to false. Therefore, the resolvent also evaluates to false.
As we backtrack down the trail with the conflicting clause, by definition of value
and the preconditions of the rules, the clause still remains false.

Now, let us prove that the system terminates. It is clear that the conflict anal-
ysis rules (always removing elements from the trail) always terminate in a finite
number of steps, and return to the search rules (or the unsat state). For the sake
of the argument, let us assume that there is a derivation that does not terminate,
and therefore does not enter the unsat state. We can define a big-step transition
relation −→bs that covers a transition from a search state, applying one or more
transitions in the conflict analysis rules, and returns to a search state.

A Model-Constructing Satisfiability Calculus 11

By assumption, we have a finite-basis explanation function explain, so we can
assume a set of literals B from which all the clauses that we can see during the
search are constructed. In order to keep progress of the search, we define a partial
order M1 ≺ M2 on trails. The trail contains three different kinds of element:
model assignments decisions (x �→α), Boolean decisions (L) and propagations
(C→L). The basic idea is to consider that propagations are heavier than Boolean
decisions that are heavier than model assignments. We capture that by defining
a (weight) function w from trail elements into the set {1, 2, 3}.

w(C→L) = 3, w(L) = 2, w(x �→α) = 1

We define the M1 ≺ M2 using a lexicographical order based on the weights of
the trail elements, i.e.

�� ≺M = true if M �= ��
M ≺ �� = false

�a,M1� ≺ �b,M2� = w(a) < w(b) ∨ (w(a) = w(b) ∧M1 ≺ M2)

It is clear that �� is the minimal element, and any trail containing |B| propaga-
tions followed by n model assignments is maximal. It is easy to see that for all
trailsM and trail elements a we have thatM ≺ �M,a�. Thus, any rule that adds
a new element to the trail is essentially creating a “bigger” trail with respect to
the partial order ≺. This simple observation covers most of our rules.

Now, we consider the big-step−→bs transition from a state 〈M1, C1〉 into a state
〈M2, C2〉. If we return usingBackjump, then the trailM1 is of the form �M,L,N�
or �M,x �→α,N�, and the trailM2 is of the form �M,C→L′�. In both casesM1 ≺
M2 because aw(C→L′) is greater thanw(L) andw(x �→ α). Similarly, if we return
using T-Backjump-Decide, the trail M1 is of the form �M,x �→α,N�, and M2

is of the form �M,L�, once againM1 ≺ M2 since w(L) > w(x �→α).
Now, to justify the Forget rule, we define a partial order 〈M1, C1〉 � 〈M2, C2〉

as M1 ≺ M2 ∨ (M1 = M2 ∧ |C1| > |C2|). Using this definition, we have that
〈M, C〉�〈M, C\{C}〉, and consequently theForget rule also produces a “bigger”
state. The partial order � also have maximal elements 〈Mmax, C0〉, where Mmax

is a maximal element for ≺ and C0 is the initial set of clauses. Since all rules are
producing bigger states and we can not increase forever, the termination of the
system follows. �

3 Conclusion

We proposed a model-constructing satisfiability calculus (mcSAT) that encom-
passes all model-based decision procedures found in the SMT literature. The
mcSAT framework extends DPLL(T) by allowing assignments of variables to con-
crete values and relaxing the restriction on creation of new literals. The model
created during the search also takes part in explaining the conflicts, and the
full model is readily available as a witness if the procedure reports a satisfiable
answer. The new calculus also extends nlsat, proposed at [8], by removing unnec-
essary restrictions on the Boolean-level search rules – it allows efficient Boolean

12 L. de Moura and D. Jovanović

constraint propagation found in state-of-the-art SAT solvers and incorporates
theory propagation and conflict rules from the DPLL(T) framework. The mcSAT
calculus allows SMT developers to combine existing and successful techniques
from the DPLL(T) framework with the flexibility provided by the nlsat calculus.
We also presented a correctness proof for our procedure that is much simpler
than the one provided for nlsat.

In this article, we did not explore the theory combination problem. However,
we believe mcSAT is the ideal framework for combining implementations for
theories such as: arithmetic, bit-vectors, floating-point, uninterpreted functions,
arrays and datatypes.

References

1. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in
SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability. IOS Press (2009)

3. Brummayer, R., Biere, A.: Lemmas on Demand for the Extensional Theory of
Arrays. Journal on Satisfiability, Boolean Modeling and Computation 6 (2009)

4. Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

5. de Moura, L., Bjørner, N.: Model-based Theory Combination. In: Satisfiability
Modulo Theories. ENTCS, vol. 198, pp. 37–49 (2008)

6. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD (2012)

7. Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arith-
metic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 338–353. Springer, Heidelberg (2011)

8. Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

9. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

10. Krstić, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720,
pp. 1–27. Springer, Heidelberg (2007)

11. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM 52(8), 76–82 (2009)

12. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Log-
ics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476.
Springer, Heidelberg (2009)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC (2001)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

15. Silva, J.P.M., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability.
In: ICCAD (1997)

Automata as Proofs

Andreas Podelski

University of Freiburg, Germany

Abstract. A recent approach to the verification of programs constructs
a correctness proof in the form of a finite automaton. The automaton
recognizes a set of traces. Here, a trace is any sequence of statements
(not necessarily feasible and not necessarily on a path in the control flow
graph of the program). A trace can be formalized as a word over the
alphabet of statements. A trace can also be viewed as as special case of
a program. Applying static analysis or a symbolic method (e.g., SMT
solving with interpolant generation) to a single trace τ , a correctness
proof for the trace τ can be obtained in the form of a sequence of con-
secutive Hoare triples (or, phrased differently, an inductive sequence of
assertions). We can construct an automaton that contains a transition
qϕ

a−→ qϕ′ for each Hoare triple {ϕ}a{ϕ′} in the correctness proof for
the trace τ . The automaton accepts the trace τ . In fact, the automa-
ton accepts all traces whose correctness proof uses the same set of Hoare
triples as the trace τ . Given a program and a number of traces τ1, . . . , τn
of the program, we can construct an automaton from the n different
correctness proofs for the traces τ1, . . . , τn. The automaton recognizes
a set of correct traces. We still need to check whether this set includes
all the traces on a path in the control flow graph of the program. The
check is an automata-theoretic operation (which is reducible to non-
reachability in a finite graph). That is, the two steps of constructing
and checking a proof neatly separate the two concerns of data and con-
trol in program verification. The construction of a proof in the form of
an automaton accounts for the interpretation of statements in data do-
mains. The automaton, however, has a meaning that is oblivious to the
interpretation of statements: a set of words over a particular alphabet.
The check of the proof uses this meaning of the automaton and accounts
for the control flow of the program. The implementation of the check
of the proof as an automata-theoretic inclusion check is reminiscent of
model checking (the finite control flow graph defines the model, the au-
tomaton defines the property). The resulting verification method is not
compositional in the syntax of the program; it is compositional in a new,
semantics-directed sense where modules are sets of traces; the sets of
traces are constructed from mutually independent correctness proofs and
intuitively correspond to different cases of program executions. Depend-
ing on the verification problem (the correctness property being safety or
termination for sequential, recursive, or concurrent programs), the ap-
proach uses non-deterministic automata, nested-word automata, Büchi
automata, or alternating automata as proofs; see, e.g., [2,3,1].

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 13–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 A. Podelski

References

1. Farzan, A., Podelski, A., Kincaid, Z.: Inductive Data Flow Graphs. In: Cousot, R.,
Giacobazzi, R. (eds.) POPL. ACM (to appear, 2013)

2. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of Trace Abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

3. Heizmann, M., Hoenicke, J., Podelski, A.: Nested Interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)

Complete Abstractions Everywhere

Francesco Ranzato

Dipartimento di Matematica, University of Padova, Italy

Abstract. While soundness captures an essential requirement of the intrinsic ap-
proximation of any static analysis, completeness encodes approximations that are
as precise as possible. Although a static analysis of some undecidable program
property cannot be complete relatively to its reference semantics, it may well
happen that it is complete relatively to an approximated and decidable reference
semantics. In this paper, we will argue on the ubiquity of completeness properties
in static analysis and we will discuss the beneficial role that completeness can
play as a tool for designing and fine-tuning static analyses by reasoning on the
completeness properties of their underlying abstract domains.

1 Introduction

Static analysis relies on sound (a.k.a. correct) and computable semantic approximations.
A system S (or some observable behavior of it) is modeled by some semantics Sem�S�
and a static analysis of S is designed as an approximate semantics Sem��S� which must
be sound w.r.t. Sem�S�. This may be called global soundness of static analysis. A sys-
tem S is typically designed by some form of composition of a number of constituents
ci and this is reflected on its global semantics Sem�S� which is commonly defined by
some combinations of the semantics Sem�ci� of its components. Thus, global soundness
of a static analysis of S is ordinarily derived from local soundness of static analyses for
its components ci. This global vs. local picture of the soundness of static analysis is
very common, independently of the kind of systems (e.g., programs, reactive systems,
hardware systems), of static analysis techniques (dataflow analysis, model checking,
abstract interpretation, logical deductive systems, type systems, etc.), of system proper-
ties under analysis (safety, liveness, numerical properties, pointer aliasing, type safety,
etc.). We might single out a basic and rough proof principle in static analysis: global
soundness is derived from local soundness. In particular this applies to static analyses
that are designed using some form of abstract interpretation. Let us consider a simpli-
fied and recurrent scenario. A constituent of the global semantics is defined as least (or
greatest) fixpoint (denoted by lfp) of a monotone function f on some domain of prop-
erties D which is endowed with a partial order that encodes relative precision of prop-
erties. Here, lfp(f) play the role of global semantics which is therefore defined through
a component f : D → D that plays the role of local semantics (e.g., f is a transfer func-
tion in program analysis). In abstract interpretation, a static analysis is then specified
as an abstract fixpoint computation which must be sound for lfp(f). This is routinely
defined through an ordered abstract domain A of properties and an abstract semantic
function f � : A → A that give rise to a fixpoint-based static analysis lfp(f �) (whose
decidability and/or practical scalability is usually ensured by chain conditions on A,

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 15–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 F. Ranzato

widenings/narrowings, interpolations, etc.). Soundness relies on encoding approxima-
tion through a concretization map γ : A → D and/or an abstraction map α : D → A: the
approximation of some value d through an abstract property a is encoded as α(d) ≤A a
or — equivalently when α/γ form a Galois connection — d ≤D γ(a). Hence, global
soundness translates to α(lfp(f)) ≤ lfp(f �), local soundness means α ◦ f ≤ f � ◦ α,
and the well-known “fixpoint approximation lemma” tells us that local implies global
soundness. This fixpoint approximation lemma has been first used in the early abstract
interpretation papers [8, Section 9], [6, Chapter 5], [9, Theorem 7.1.0.4], and has been
later rediscovered a number of times (e.g., [1, Section 3]).

While (both global and local) soundness captures a basic requirement of any reason-
able semantic approximation, completeness encodes approximations that are as precise
as possible. Once an abstract domain of properties A has been chosen, A yields a strict
upper bound to the precision of static analyses that approximate Sem�S� over A: this
means that α(Sem�S�) represents the best approximation that one can achieve over A.
We refer to as completeness when α(Sem�S�) = Sem��S� happens. In fixpoint-based
semantics, an abstract interpretation is globally complete whenα(lfp(f)) = lfp(f �). Lo-
cally for f , completeness means that α◦f = f �◦α, meaning that in each local step, f � be-
haves in the best possible way as allowed by A. The approximation lemma for soundness
becomes the “transfer lemma” for completeness stating the proof principle that local
completeness implies global completeness. To the best of our knowledge, this transfer
lemma first appears in the early abstract interpretation paper [9, Theorems 7.1.0.4], and
has been later re-stated and re-proved multiple times, e.g., [3, Fact 2.3], [4, Lemma 4.3],
[1, Section 3] (where it is called μ-fusion rule).

Of course, completeness cannot happen when D is able to represent undecidable
properties of S and the static analysis Sem��S� is computable. Completeness may in-
stead occur and is actually quite common in comparative semantic modeling, i.e., in
studying semantic models at different levels of abstraction. For instance, Cousot [7]
defines a comprehensive abstract interpretation-based hierarchy of the most common
program semantics and highlights where completeness holds. It is important to remark
that although a static analysis cannot be complete relatively to its reference semantics,
it may well happen that it is complete relatively to an approximated and decidable ref-
erence semantics, e.g., as a notable case, a different and more precise static analysis.
In this paper, we will argue the important role that completeness can play as a tool for
designing and fine-tuning static analyses by reasoning on the completeness properties
of their underlying abstract domains. We will provide a number of examples ranging
from static analysis to model checking where the view of an abstract domain A under a
“completeness light” allows us to understand the deep reason of why and how A actually
works.

2 Complete and Exact Abstractions

As mentioned above, static program analysis will be here formalized in a simplified
abstract interpretation scenario.

Program Semantics. We consider simple while programs with integer variables in
Var, integer arithmetic expressions in Aexp and boolean expressions in Bexp. Hence,

Complete Abstractions Everywhere 17

Store � Var → ℘(Z) denotes the set of stores, �e� : Store → Z the semantics of an
arithmetic expression e and �b� : Store → {f, t} the semantics of a boolean expression
b. Transfer functions (| · |) : ℘(Store) → ℘(Store) model how assignments x := e
and boolean tests b affect the store: (|x := e |)S � {ρ[x �→ �e�ρ] ∈ Store | ρ ∈ S}
and (|b |)S � {ρ ∈ S | �b�ρ = t}. The program semantics is usually defined as least
fixpoint of a system of recursive equations indexed on program points. We consider here
a denotational-style program semantics �P� : ℘(Store) → ℘(Store) whose definition
is standard:

�stm1; stm2�S � �stm2�(�stm1�S), �if b then stm�S � �stm�(|b |)S ∪ (|¬b |)S,
�while b do stm�S � (|¬b |)

(
lfp(λT.S ∪ �stm�(|b |)T)).

Soundness, Completeness and Exactness. A static program analysis is defined by
an abstract semantics of while programs that relies on some store abstraction. Given a
generic domain of properties D, we denote by Abs(D) the class of all possible abstrac-
tions of D. Thus, given an abstraction A ∈ Abs(℘(Store)) of store properties, a static
analysis needs to define locally sound abstract transfer functions on A and an abstract
program semantics on A which relies on these abstract transfer functions and is required
to be globally sound. Let us briefly recall how abstractions and local/global soundness
are formalized in abstract interpretation.

Abstractions are formalized as domains in abstract interpretation. If A ∈ Abs(D)
then both D and A are partially ordered by an approximation ordering where x ≤ y
means that y approximates x (or x is more precise than y). D and A are required to be
complete lattices in order to have arbitrary lub’s that model concrete and abstract dis-
junctions. Finally, the abstraction A is related to D at least by a monotone concretization
function γ : A → D which provides the concrete meaning of abstract values, so that:
(1) d ≤D γ(a) means that a is an abstract approximation of d and (2) f ◦ γ ≤D γ ◦ f �

means that the abstract function f � : A → A is a correct (or sound) approximation of
the concrete function f : D → D. A concretization function does not ensure the ex-
istence of best abstractions in A for concrete properties, i.e., it is not guaranteed that
∧A{a ∈ A | d ≤D γ(a)} is an abstract approximation of d. Consequently, a con-
cretization function does not guarantee the existence of best correct approximations
of concrete functions. Actually, most abstract domains A are related to D also by an
abstraction function α : D → A which provides the best approximation in A of any
concrete property. Accordingly, f � is a correct approximation of f when α ◦ f ≤ f � ◦ α.
Clearly, γ and α must agree on the way they encode approximation: this translates to
α(d) ≤A a ⇔ d ≤D γ(a) and amounts to require that 〈α, γ〉 forms a Galois connection.
When f and f � are monotonic, and therefore have least (and greatest) fixpoints, local
soundness for f � implies global fixpoint soundness α(lfp(f)) ≤A lfp(f �).

If f ◦ γ = γ ◦ f � then f � is called an exact approximation of f , while f � is called
a complete approximation of f when α ◦ f = f � ◦ α holds. Here, we have that lo-
cal exactness/completeness implies global exactness/completeness: If f � is exact then
gfp(f) = γ(gfp(f �)) and if f � is complete then α(lfp(f)) = lfp(f �). These can be
viewed as two facets of the principle “local implies global completeness” translated in
abstract interpretation terms. Exactness and completeness are orthogonal notions. Let
us point out that global exactness means that the abstract fixpoint computation gfp(f �)

18 F. Ranzato

yields an exact representation in A of gfp(f) while global completeness guarantees that
the abstract fixpoint computation lfp(f �) provides the best representation in A of lfp(f).

When a Galois connection is assumed, we have that f � is sound iff α◦f ◦γ ≤ f �. Thus,
any function f has a best correct approximation in A which is, at least theoretically,
defined as f bestA � α ◦ f ◦ γ. Moreover, it turns out that the possibility of defining an
exact or complete abstract function f � on some abstraction A actually depends only on
A itself. In fact, we have that f � is complete iff f � = f bestA and α ◦ f = α ◦ f ◦ γ ◦ α,
while f � is exact iff f � = f bestA and f ◦ γ = γ ◦α ◦ f ◦ γ. In the following, we thus make
reference to a complete and exact abstraction A to mean completeness and exactness of
f bestA .

Abstract Program Semantics. Given a store abstraction A ∈ Abs(Store), abstract
transfer functions (|x := e |)A

: A → A and (|b |)A
: A → A must be locally sound, i.e.

correct: for any set S of stores, α((|x := e |)S) ≤A (|x := e |)A
α(S) and α((|b |)S) ≤A

(|b |)A
α(S). Also observe that the best abstract transfer functions on A are as follows:

(|x := e |)bestA a = α({ρ[x �→ �e�ρ] ∈ Store | ρ ∈ γ(a)})
(|b |)bestA a = α({ρ ∈ γ(a) | �b�ρ = t})

The abstract denotational semantics �P�A
: A → A is derived simply by composing

abstract transfer functions and by approximating concrete disjunctions of stores through
abstract lub’s in A:

�stm1; stm2�Aa � �stm2�A
(�stm1�Aa)

�if b then stm�Aa � �stm�A((|b |)Aa) �A (|¬b |)Aa

�while b do stm�Aa � (|¬b |)A(
lfp(λ x.a �A �stm�A

(|b |)Ax)
)

Of course, in the abstract fixpoint computation for a while-loop, a widening operator∇A

may be used in place of the lub �A for abstractions A that do not satisfy the ascending
chain condition or to accelerate convergence in A.

Soundness of the abstract semantics, that is α(�P�) ≤A �P�A, is a consequence of
three main points:

(1) Local soundness of abstract functions is preserved by their composition;
(2) The abstract lub �A is a sound approximation of the union ∪;
(3) Local soundness implies global fixpoint soundness.

3 Completeness in Program Analysis

Given a program P with n integer variables, in order to simplify the notation, we view
a n-tuple of integer values as a store for P so that 〈℘(Zn),⊆〉 plays the role of concrete
domain and store (either relational or non-relational) abstractions range in Abs(℘(Zn)).
Let us consider the simplest case of one single integer variable. Observe that the triv-
ial abstraction A� = {Z}, which abstracts each set of integers to the top value Z, is

Complete Abstractions Everywhere 19

always obviously complete, meaning that the mapping {Z �→ Z} is both a complete
abstract transfer function and a complete abstract program semantics. Let us there-
fore consider the simplest abstraction which is different from the trivial abstraction
A� : this is a two-point abstraction {Z,K} for some set of integers K ∈ ℘(Z). To be
concrete and simple, let K = {0}, so that we consider the corresponding abstraction
A0 � {Z, {0}} ∈ Abs(℘(Z)). Note that A0 is only able to represent precisely the fact
that an integer variable has a value equals to 0 and that A0(∅) = {0}. Let us observe
that A0 is not complete for the transfer function (|x > 0 |): for example, we have that
A0
(
(|x > 0 |){−1}

)
= A0(∅) = {0} � Z = (|x > 0 |)A0

A0({−1}). Why A0 is not
complete for the test x > 0? As the example highlights, the problem lies in the fact that
if S is a set of integers that do not satisfy the test x > 0 then the abstraction of (|x > 0 |)S
boils down to the abstraction of the empty set ∅ which is {0}, whereas the only option
for A0 is to abstract one such set S to Z and this gives rise to incompleteness. Suitable
refinements of the abstraction A0 can avoid this incompleteness: one such refined ab-
straction should be complete for (|x > 0 |) while preserving the expressiveness of A0 .
For example, the Sign abstraction [8] depicted below on the left

Sign

0

Z≤0 Z≥0

Z A′

0

Z≤0

Z A′′

0

Z≥0

Z

turns out to be complete for (|x > 0 |) and, clearly, is more precise than A0 . Yet, for the
specific goal of being complete for (|x > 0 |), Sign is too refined, i.e. precise. In fact, the
abstraction A′ depicted above in the middle is still complete for (|x > 0 |), while being
simpler than Sign and more precise than A0 . What we really need here is a minimal
refinement of A0 which is complete for (|x > 0 |). This type of abstraction refinements
have been called complete shell refinements [13].

3.1 Shells

Recall that abstractions of a common concrete domain D are preordered w.r.t. their
relative precision: If A1,A2 ∈ Abs(D), where 〈αi, γi〉 are the corresponding Galois
connections, then A1 � A2, i.e. A1 is a refinement of A2 and A2 is a simplification of
A1, when for all d ∈ D, γ1(α1(d)) ≤D γ2(α2(d)). Moreover, A1 and A2 are equivalent
when A1 � A2 and A2 � A1. By a slight abuse of notation, Abs(D) denotes the family
of abstractions of D up to the above equivalence. It is well known [9] that 〈Abs(D),�〉
is a complete lattice. Given a family of abstract domains X ⊆ Abs(D), their lub �X is
therefore the most precise domain in Abs(D) which is a simplification of any domain
in X .

In a general abstract interpretation framework, Giacobazzi et al. [13] have shown
that an abstraction A can be made complete for a family of continuous concrete func-
tions through a minimal refinement of A. Consider a continuous concrete function
f : D → D and an abstraction A ∈ Abs(D). Then, A is refined to the complete
shell CShellf (A) which can be obtained as follows (we use a simplified characteri-
zation proved in [2, Theorem 4.1]). We first define a transform Rf : ℘(D) → ℘(D)

20 F. Ranzato

as Rf (X)� ∪a∈X max{d ∈ D | f (d) ≤ a}, namely Rf (X) collects, for any value
a ∈ X, the maximal concrete values d whose f -image is approximated by a. Then, we
define CShellf (A)� Cl∧(Rω

f (γ(A))), where Cl∧ denotes the closure under glb’s ∧ of
subsets of D and Rω

f denotes the ω-closure of Rf , i.e., Rω
f (X)� ∪i∈NRi

f (X) (note that
R0

f (X) = X). The main result in [13] shows that

CShellf (A) = �{A′ ∈ Abs(D) | A′ � A, A′ is complete for f}

namely, CShellf (A) is the least f -complete refinement of A.
Similarly, an abstraction can be also minimally refined in order to be exact for any

given set of functions [12]. Given a concrete function f : D → D, any abstraction
A ∈ Abs(D) can be refined to the exact shell EShellf (A) for f as follows: we define
Sf : ℘(D) → ℘(D) as Sf (X)� {f (x) ∈ D | x ∈ X} and EShellf (A)� Cl∧(Sω

f (γ(A))).
Thus, Sω

f (γ(A)) is the closure of the abstraction A (more precisely, of its concrete image
γ(A)) under applications of the concrete function f while the exact shell EShellf (A) is
the closure of Sω

f (γ(A)) under glb’s in D. Here, we have that

EShellf (A) = �{A′ ∈ Abs(D) | A′ � A, A′ is exact for f}.

3.2 Signs

The above general solution [13] tells us that in order to make A complete we need to
iteratively add to A the maximal concrete values d such that f (d) ≤ a for some abstract
value a ∈ A until this process of adding new values to A converges, and at the end this
set of concrete values must be closed under glb’s. Thus, for the abstract value {0} ∈ A0 ,
we need to consider max{S ∈ ℘(Z) | (|x > 0 |)S ⊆ {0}} and this provides the concrete
value Z≤0 to join to A0 . In turn, max{S ∈ ℘(Z) | (|x > 0 |)S ⊆ Z≤0} = Z≤0, so that
we do not need to further refine A0 . Hence, Shell(|x>0|)(A) = A′. Likewise, we have
that A′′ = {Z,Z≥0, 0} (which is depicted above) is the complete shell refinement of A
for the transfer function (|x < 0 |). Furthermore, Sign can be obtained as complete shell
refinement of A for both transfer functions (|x > 0 |) and (|x < 0 |).

We have therefore analyzed the genesis of a toy abstract domain like Sign from
the viewpoint of completeness: Sign is characterized as the minimal refinement of a
basic domain {Z, 0} whose abstract transfer functions for the boolean tests x > 0?
and x < 0? are complete. In the following, we will show that this completeness-based
view on abstraction design can be very useful to understand the genesis of a range of
numerical abstractions.

3.3 Constant Propagation

Let us consider the standard abstraction CP used in constant propagation analysis [16]:

∅

0−1−2· · · 1 2 · · ·

Z

Complete Abstractions Everywhere 21

CP is more precise than the basic abstraction A0 , hence it makes sense to ask whether
CP can be viewed as a complete shell refinement of A0 for some transfer functions.
From the viewpoint of its completeness properties, one may observe that CP is clearly
complete for the transfer functions (|x := x + k |), for any k ∈ Z. Moreover, we also no-
tice that if an abstraction A is complete for (|x := x + 1 |) and (|x := x − 1 |) then, since
completeness is preserved by composing functions, A is also complete for all the trans-
fer functions (|x := x + k |), for all k ∈ Z, and this allows us to focus on (|x := x ± 1 |)
only. Actually, it turns out that completeness for (|x := x ± 1 |) completely character-
izes constant propagation CP, in the sense that the complete shell of A0 for both
(|x := x + 1 |) and (|x := x − 1 |) is precisely CP. To this aim, it is enough to note that

max{S ∈ ℘(Z) | (|x := x − 1 |)S ⊆ {0}} = {1}
max{S ∈ ℘(Z) | (|x := x − 1 |)S ⊆ {1}} = {2} · · ·
max{S ∈ ℘(Z) | (|x := x + 1 |)S ⊆ {0}} = {−1}
max{S ∈ ℘(Z) | (|x := x + 1 |)S ⊆ {−1}} = {−2} · · ·

and that at the end the closure under intersection adds the empty set ∅.

3.4 Intervals

Sign is not complete for the transfer function (|x := x + 1 |). In fact, notice that

Sign((|x := x + 1 |){−1}) = Sign({0}) = {0}
(|x := x + 1 |)Sign Sign({−1}) = (|x := x + 1 |)Sign(Z≤0) = Z

The well-known domain Int of integer intervals [8] is instead clearly complete for
(|x := x + 1 |) and (|x := x − 1 |). As shown in [13], the complete shell of Sign for
(|x := x + 1 |) and (|x := x − 1 |) turns out to be Int. In fact, we have that:

max{S ∈ ℘(Z) | (|x := x ± 1 |)S ⊆ Z≤0} = Z≤∓1

max{S ∈ ℘(Z) | (|x := x ± 1 |)S ⊆ Z≤−1} = Z≤∓2 · · ·
max{S ∈ ℘(Z) | (|x := x ± 1 |)S ⊆ Z≥0} = Z≥∓1

max{S ∈ ℘(Z) | (|x := x ± 1 |)S ⊆ Z≥1} = Z≥∓2 · · ·
and clearly the family of sets Z≤k andZ≥k, where k ranges in Z, generate by intersection
all the integer intervals in Int.

It is worth noting that, in general, completeness is not preserved under abstraction
refinements. In fact, while Sign is complete for (|x > 0 |), its complete shell Int for
(|x := x ± 1 |) loses this completeness: for example, we have that Int((|x > 0 |){0, 2}) =
[2, 2] while (|x > 0 |)Int Int({0, 2}) = [1,+∞) � [0, 2] = [1, 2]. It is simple to observe
that if we try to compensate this lack by the complete shell of Int for (|x > k |), for all
k ∈ Z, we end up with the whole concrete domain ℘(Z): this depends on the fact that

max{S ∈ ℘(Z) | (|x > k |)S ⊆ Z≥k+2} = Z	=k+1

and then by closing under intersections the family of sets {Z	=k}k∈Z we get ℘(Z). If
instead we consider the complete shell of Int for the specific transfer function (|x > 0 |)
then Int would be refined to Int	=1 � Int∪{I � {1} | I ∈ Int}, namely Int	=1 is able
to represent precisely integer intervals with an inner hole {1}.

22 F. Ranzato

3.5 Octagons

Let us consider the program P ≡ x := 0; y := 4; while x �= 0 do {x– –; y++}. Ac-
cording to Miné [17], this is one paradigmatic program showing the need for relational
abstract domains. In fact, we have that the interval abstraction Int is not complete for
P. Here, Store = ℘(Z2) so that:

Int(�P�〈x/{4}, y/{0}〉) = 〈x/[0, 0], y/[4, 4]〉
�P�Int Int(〈x/{4}, y/{0}〉) = 〈x/[0, 0], y/[0,+∞)〉

Of course, the problem of Int with P is that Int is not able to represent precisely the
invariant property x + y = 4 of the while-loop. Miné [17] then proposes to refine
intervals to the so-called octagon abstraction Oct ∈ Abs(℘(Store)), which is able to
express precisely sets of integers like {〈x, y〉 ∈ Z2 | x± y = k}, where k ∈ Z. Observe
that a set like S = {〈x/0, y/4〉, 〈x/2, y/2〉, 〈x/4, y/0〉} cannot be represented precisely
in Oct, since Oct must add 〈x/1, y/3〉 and 〈x/3, y/1〉 in the approximation of S. Thus,
the observation here is that Oct is exact for the function λ S.S ∪ (|x– –; y++ |)S which
is iterated in the fixpoint computation of the while-loop of P. It is worth remarking
that Oct is also complete for λ S.S ∪ (|x– –; y++ |)S, but this is not the distinguishing
feature of Oct compared to Int because Int is already complete for this function, as the
following picture suggests:

Int

(
•
A

•A′
•B

•B
′)

=

•
A

•A′
•B

•B
′

= Int

(
•
A

•A′
•B

•B
′)

What we really need is an abstract domain which is able to express precisely the invari-
ant x + y = 4 in each iteration step in the fixed point computation of the while-loop of
P. We thus refine Int to its exact shell for the function F � λ S.S ∪ (|x– –; y++ |)S and,
dually, for G � λ S.S ∪ (|x++; y– – |)S. This exact shell can be simply characterized as
follows: for a generic point 〈a, b〉 ∈ ℘(Z2), we have that

F0({〈a, b〉}) = {〈a, b〉}
F1({〈a, b〉}) = {〈a, b〉, 〈a − 1, b + 1〉}
F2({〈a, b〉}) = {〈a, b〉, 〈a − 1, b + 1〉, 〈a − 2, b + 2〉}
· · ·

so that Fω({〈a, b〉}) = {〈x, y〉 ∈ Z2 | x + y = a + b, x ≤ a, y ≥ b}. Likewise, we
have that Gω({〈a, b〉}) = {〈x, y〉 ∈ Z2 | x − y = a + b, x ≥ a, y ≤ b}. Then, by
closing under intersections Int, {Fω({〈a, b〉})}〈a,b〉∈Z2 and {Gω({〈a, b〉})}〈a,b〉∈Z2 we
precisely get all the octagons in Oct.

3.6 Polyhedra

The well-known polyhedra abstraction [10] can be characterized as a simple further step
of exact refinement of octagons. It is enough to consider a generic program scheme like

Complete Abstractions Everywhere 23

Q ≡ x := x0; y := y0; while (∗)do {x := x + kx; y := y + ky}
Of course, in this case Oct fails to represent precisely the invariant kxy − kyx = kxy0 −
kyx0 of the while-loop of Q.

It is therefore clear that the exact shell refinement of Oct (or Int) for the family of
functions F = {λ S.S∪(|x := x + kx; y := y + ky |)S}〈kx,ky〉∈Z2 adds to Oct all the linear
sets {〈x, y〉 ∈ Z2 | ax + by = c}, where a, b, c range in Z, so that the closure under
intersections (i.e., logical conjunction) precisely provides the polyhedra abstraction.

4 Completeness in Model Checking

Consider a system model specified as a Kripke structure K = (State,�). Standard
abstract model checking [5] consists in approximatingK by an abstract Kripke structure
A = (State�,��), where the set State� of abstract states is defined by a surjective map
h : State → State� that joins together indistinguishable concrete states. Thus, State�

determines a partition of State and vice versa any partition of State can be viewed as
a set of abstract states. It is simple to view state partitions as abstractions [19]. Any
state partition P ∈ Part(State) can be viewed as an abstraction Pa ∈ Abs(℘(State)⊆)
that approximates any set S of states by the minimal cover of S in the partition P, i.e.,
∪{B ∈ P | B ∩ S �= ∅}. Hence, Pa � {S ⊆ State | ∃{Bi}i∈I ⊆ P. S = ∪i∈IBi},
ordered by subset inclusion, is viewed as an abstraction in Abs(℘(State)) that encodes
the state partition P. Furthermore, if A ∈ Abs(℘(State)) is any abstraction then A is the
encoding of some state partition P, i.e. A = Pa, iff A is exact for the negation function
¬ : ℘(State) → ℘(State) such that ¬S = State�S. This embedding of the lattice
of partitions Part(State) into the lattice of abstractions Abs(℘(State)) allows us to
reason on the completeness and exactness properties of partitions, and hence of abstract
Kripke structures.

4.1 Strong Preservation

Given some temporal specification language L — like CTL, ACTL, μ-calculus, etc. —
and a corresponding interpretation of its formulae on the states of a Kripke structure
K, an abstract Kripke structure A preserves L when for any ϕ ∈ L and s ∈ State,
h(s) |=A ϕ ⇒ s |=K ϕ, while A strongly preserves L when h(s) |=A ϕ ⇔ s |=K ϕ
holds.

Given a language L and a Kripke structure K, a well-known key problem is to com-
pute the smallest abstract state space State�L, when this exists, such that one can define
an abstract Kripke structure AL = (State�L,��) that strongly preserves L. This prob-
lem admits solution for a number of well-known temporal languages like Hennessy-
Milner logic HML, CTL, ACTL and CTL-X (i.e. CTL without the next-time operator
X). A number of algorithms for solving this problem exist, like those by Paige and Tar-
jan [18] for HML and CTL, by Henzinger et al. [15] and Ranzato and Tapparo [21]
for ACTL, and Groote and Vaandrager [14] for CTL-X. These are coarsest partition
refinement algorithms: given a language L and an initial state partition P, which is de-
termined by a state labeling in K, these algorithms can be viewed as computing the
coarsest partition PL that refines P and induce an abstract Kripke structure that strongly

24 F. Ranzato

preserves L. It is worth remarking that these algorithms have been designed for com-
puting some well-known behavioural equivalences used in process algebra like bisim-
ulation (for CTL), simulation (for ACTL) and stuttering bisimulation (for CTL-X).
Our abstract interpretation approach allows us to provide a generalized view of these
partition refinement algorithms based on exactness properties.

4.2 Bisimulation

Given a partition P ∈ Part(State) and a state s, P(s) denotes the block of P that
contains s. Then, P is a bisimulation on a Kripke structure K when P(s) = P(t) and
s � s′ imply that there exists some state t′ such that t � t′ and P(s′) = P(t′). It is
well known [5] that P is a bisimulation iff the abstract Kripke structure AP = 〈P,�∃

〉 strongly preserves HML (or, equivalently, CTL), where B1 �∃ B2 iff there exist
si ∈ Bi such that s1 � s2. Moreover, the coarsest partition in Part(State) which is a
bisimulation on K exists and is called bisimulation equivalence.

Bisimulation for P can be expressed as an exacteness property of the abstraction
Pa [19]. The standard predecessor operator pre : ℘(State) → ℘(State) on K is defined
as pre(T)� {s ∈ State | s � t, t ∈ T} and is here considered as a concrete function.
Hence, it turns out that P is a bisimulation iff Pa is exact for pre. As a consequence, any
partition refinement algorithm for computing bisimulation can be characterized as an ex-
act shell abstraction refinement for: (1) the negation operator¬, in order to ensure that the
abstraction is indeed a partition and (2) the predecessor operator pre, in order to ensure
that the partition is a bisimulation. In particular, the Paige-Tarjan bisimulation algorithm
[18] can be viewed as an efficient implementation of this exact shell computation.

4.3 Simulation

Given a preorder relation R ∈ PreOrd(State) on states, R(s) denotes {t ∈ State |
(s, t) ∈ R} while PR � R ∩ R−1 ∈ Part(State) denotes the symmetric reduction of R,
which being an equivalence relation can be viewed as a state partition.

A preorder R is a simulation on a Kripke structure K if t ∈ R(s) and s � s′ imply
that there exists some state t′ such that t � t′ and t′ ∈ R(s′). It is well known [5] that
a preorder R is a simulation iff the abstract Kripke structure AR = 〈PR,�∃〉 strongly
preserves ACTL and that the largest preorder in PreOrd(State) which is a simulation
on K exists and is called simulation preorder.

The characterization of simulation as an exactness property follows the lines of
bisimulation [19]. Similarly to partitions, a preorder relation R can be viewed as an
abstraction Ra ∈ Abs(℘(State)) that approximates any set S ⊆ State with the image
of S through R, i.e. ∪s∈SR(s). Thus, Ra � {S ⊆ State | ∃ S ⊆ State . S = ∪s∈SR(s)},
ordered by subset inclusion, is viewed as an abstraction in Abs(℘(State)) that en-
codes the preorder relation R. On the other hand, an abstraction A ∈ Abs(℘(State))
is the encoding of some state preorder R, i.e. A = Ra, iff A is exact for the union
∪ : ℘(State)2 → ℘(State). We notice that A is exact for the union iff A is a so-called
disjunctive abstraction, so that the lattice of preorder relations PreOrd(State) can be
embedded into Abs(℘(State)) as the sublattice of disjunctive abstractions. This allows
us to get the following characterization: a preorder R is a simulation iff Ra is exact for

Complete Abstractions Everywhere 25

pre. Here, we obtain that any algorithm for computing the simulation preorder can be
characterized as an exact shell abstraction refinement for: (1) the union ∪, in order to
ensure that the abstraction represents a preorder and (2) the predecessor operator pre, in
order to ensure that this preorder is a simulation. In particular, the simulation algorithm
with the best time complexity [21] has been designed as an efficient implementation of
this exact shell computation.

4.4 Stuttering Bisimulation and Simulation

Stuttering bisimulation and simulation relations characterize temporal logics which do
not feature the next-time connectiveX. Let us focus on stuttering simulation. A preorder
relation R ∈ PreOrd(Σ) is a stuttering simulation on K if t ∈ R(s) and s � s′ imply that
there exist states t0, ..., tk, with k ≥ 0, such that: (i) t0 = t, (ii) for all i ∈ [0, k[, ti � ti+1

and ti ∈ R(s), (iii) tk ∈ R(s). It turns out that stuttering simulation can be characterized
as an exactness property [19]. Following [14], consider the binary stuttering operator
pos : ℘(State)× ℘(State) → ℘(State) which is defined as follows:

pos(S, T) �
{s ∈ S | ∃ k ≥ 0. ∃ s0, ..., sk. s0 = s & ∀ i ∈ [0, k). si ∈ S, si � si+1 & sk ∈ T}.

Hence, it turns out that a preorder R is a stuttering simulation iff Ra is exact for pos.
As shown in [20], this allows us to design an efficient algorithm for computing the
stuttering simulation preorder as an exact shell abstraction refinement for the union ∪
and the stuttering operator pos.

4.5 Probabilistic Bisimulation and Simulation

The main behavioral relations between concurrent systems, like simulation and bisim-
ulation, have been studied in probabilistic extensions of reactive systems like Markov
chains and probabilistic automata. As recently shown in [11], we mention that bisimula-
tion and simulation relations on probabilistic transition systems can still be characterized
as exactness properties in abstract interpretation and as a byproduct this allows to design
efficient algorithms that compute these behavioral relations as exact shell refinements.

5 Conclusion

We have shown how completeness and exactness properties of abstractions play an
ubiquitous role in static analysis by exhibiting an array of examples ranging from ab-
stract interpretation-based program analysis to abstract model checking. We are con-
vinced that it is often rewarding to look at scenarios based on some form of semantic
approximation under the light of completeness/exactness: this can be useful both to un-
derstand the deep logic of the approximation and to profit of the beneficial toolkit that
completeness brings, like complete and exact shell refinements.

Acknowledgements. I would like to thank Roberto Giacobazzi for his constant and
passionate brainstorming on completeness and exactness: Roberto and I are both per-
suaded that completeness can be spotted really everywhere.

26 F. Ranzato

References

1. Aarts, C., Backhouse, R., Boiten, E., Doornbos, H., van Gasteren, N., van Geldrop, R.,
Hoogendijk, P., Voermans, E., van der Woude, J.: Fixed-point calculus. Inform. Process.
Lett. 53(3), 131–136 (1995)

2. Amato, G., Scozzari, F.: Observational completeness on abstract interpretation. Fundamenta
Informaticae 47(12), 1533–1560 (2011)

3. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM 33(4),
724–767 (1986)

4. de Bakker, J.W., Meyer, J.-J.C., Zucker, J.: On infinite computations in denotational seman-
tics. Theoret. Comput. Sci. 26(1-2), 53–82 (1983)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
6. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Ph.D. disser-
tation, Université Scientifique et Médicale de Grenoble, Grenoble, France (1978)

7. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theoretical Computer Science 277(1-2), 47–103 (2002)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. 4th ACM POPL, pp. 238–
252 (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. 6th
ACM POPL, pp. 269–282 (1979)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Proc. 5th ACM POPL, pp. 84–97 (1978)

11. Crafa, S., Ranzato, F.: Bisimulation and simulation algorithms on probabilistic transition
systems by abstract interpretation. Formal Methods in System Design 40(3), 356–376 (2012)

12. Giacobazzi, R., Quintarelli, E.: Incompleteness, Counterexamples, and Refinements in Ab-
stract Model-Checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373.
Springer, Heidelberg (2001)

13. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete.
J. ACM 47(2), 361–416 (2000)

14. Groote, J.F., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation and Stutter-
ing Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer,
Heidelberg (1990)

15. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462. IEEE Press (1995)

16. Kildall, G.: A unified approach to global program optimization. In: Proc. 1st ACM POPL,
pp. 194–206 (1973)

17. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–
989 (1987)

19. Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpretation. J. Logic
and Computation 17(1), 157–197 (2007)

20. Ranzato, F., Tapparo, F.: Computing Stuttering Simulations. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 542–556. Springer, Heidelberg (2009)

21. Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract interpretation.
Information and Computation 208(1), 1–22 (2010)

Abstraction-Guided Synthesis�

Eran Yahav

Technion - Israel Institute of Technology
yahave@cs.technion.ac.il

Abstract. Given a program P , a specification S, and an abstraction
function α, verification determines whether P |=α S, that is, whether P
satisfies the specification S under the abstraction α. When P 	|=α S, it
may be the case that the program violates the specification, or that the
abstraction α is not precise enough to show that the program satisfies it.

When P 	|=α S, abstraction refinement approaches share the common
goal of trying to find a finer abstraction α′ such that P |=α′ S. In con-
trast, we investigate a complementary approach, of finding a program
P ′ such that P ′ |=α S under the original abstraction α and P ′ admits
a subset of the behaviors of P . Furthermore, we combine the two direc-
tions — refining the abstraction, and restricting program behaviors —
to yield a novel abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an algorithm
for obtaining such P ′ from the initial program P . In this talk, we focus
on concurrent programs, and consider changes to P that correspond to
restricting program executions by adding synchronization.

Although it is possible to apply our techniques to other settings, con-
current programs are a natural fit. Concurrent programs are often correct
on most interleavings and only miss synchronization in a few corner cases,
which can then be avoided by synthesizing additional synchronization.
Furthermore, in many cases, constraining the permitted interleavings re-
duces the set of reachable (abstract) states, possibly enabling verification
via a coarser abstraction and avoiding state-space explosion.

We show how abstraction-guided synthesis can be applied to automat-
ically synthesize atomic sections, conditional critical regions, inter-thread
ordering constraints, and memory fences.

This talk is based on joint work with Martin Vechev, Greta Yorsh,
Michael Kuperstein, and Veselin Raychev.

� This work was partially supported by The Israeli Science Foundation (grant no.
965/10).

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, p. 27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SMT-Based Bisimulation Minimisation

of Markov Models

Christian Dehnert1, Joost-Pieter Katoen1, and David Parker2

1 RWTH Aachen University, Germany
2 University of Birmingham, United Kingdom

Abstract. Probabilistic model checking is an increasingly widely used
formal verification technique. However, its dependence on computation-
ally expensive numerical operations makes it particularly susceptible to
the state-space explosion problem. Among other abstraction techniques,
bisimulation minimisation has proven to shorten computation times sig-
nificantly, but, usually, the full state space needs to be built prior to
minimisation. We present a novel approach that leverages satisfiability
solvers to extract the minimised system from a high-level description
directly. A prototypical implementation in the framework of the proba-
bilistic model checker Prism provides encouraging experimental results.

1 Introduction

Markov chains are omnipresent. They are used in reliability analysis, randomised
algorithms and performance evaluation. In the last decade, probabilistic model
checking has emerged as a viable and efficient alternative to classical analysis
techniques for Markov chains, which typically focus on transient and long-run
probabilities. This growing popularity is mainly due to the availability of ever
improving software tools such as Prism [15] and Mrmc [11]. Like traditional
model checkers, these tools suffer from the curse of dimensionality—the state
space grows exponentially in the number of system components and variables.
As numerical computations are at the heart of verifying Markov chains, several
numerical values need to be stored for each (reachable) state in addition to the
model itself, making the state space explosion problem even more pressing.

A variety of techniques has been recently developed to reduce the state space
of probabilistic models prior to verification. These include symmetry reduc-
tion [14], bisimulation minimisation [10] and abstraction, e.g., in the abstraction-
refinement paradigm [13,9]. Bisimulation [16] (also known as ordinary lump-
ing [3]) is of particular interest as it preserves widely used logics such as PCTL*,
PCTL and probabilistic LTL [1], and its coarsest quotient can be efficiently
computed [5,18]. In contrast to traditional model checking [6], it has proven
to significantly shorten computation times [10]. The main drawback of bisim-
ulation quotienting algorithms, however, is that they typically require the en-
tire reachable state space. Techniques to alleviate this effect include the use
of data structures based on binary decision diagrams (BDDs) to reduce storage

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 28–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SMT-Based Bisimulation Minimisation of Markov Models 29

costs [21,20,17], and compositional minimisation techniques [4]. This paper takes
a radically different approach: we extract the bisimulation quotient directly from
a high-level description using Smt (satisfiability modulo theories) solvers.

The starting-point of our approach is to take a probabilistic program rep-
resenting a Markov chain, described in the Prism modelling language. This
probabilistic program consists of guarded commands, each of which includes a
probabilistic choice over a set of assignments that manipulate program variables.
The main idea is to apply a partition-refinement bisimulation quotienting in a
truly symbolic way. Each block in the partition is represented by a Boolean ex-
pression and weakest preconditions of guarded commands yield the refinement
of blocks. All these computation steps can be dispatched as standard queries to
an Smt solver. The quotient distribution, over blocks, for a state is obtained by
summing up the probabilities (given by a command) attached to assignments
that lead into the respective blocks. This is determined using an AllSat enu-
meration query by the Smt solver. Whereas similar techniques have been used
for obtaining over-approximations of Markov models [19,12] —yielding sound
abstractions for a “safe” fragment of PCTL properties— this is (to the best of
our knowledge) the first bisimulation quotienting approach based on satisfiabil-
ity solvers. This paper focuses on bisimulation for discrete-time Markov chains
(DTMCs), but the techniques are also directly applicable to continuous-time
Markov chains (CTMCs). In addition, in Section 4, we discuss how to extend
them to models that incorporate nondeterminism, such as MDPs or CTMDPs.

Experiments on probabilistic verification benchmarks show encouraging re-
sults: speed-ups in total verification time by up to two orders of magnitude over
Prism on one example, and, on another, scalability to models that go far beyond
the capacity of current verification engines such as Prism and Mrmc. A com-
parison with the symbolic bisimulation engine Sigref [21] also yields favourable
results. Although —like for BDD-based quotienting— there are examples with
smaller improvements or where this approach is inferior, we believe that Smt-
based quotienting offers clear potential. Other advantages of our approach are
that it is applicable to infinite probabilistic programs whose bisimulation quo-
tient is finite and that it is directly applicable to parametric Markov chains [8].

Related Work. For non-probabilistic models, Graf and Säıdi [7] pioneered pred-
icate abstraction, which uses Boolean predicates and weakest precondition op-
erations to compute abstractions. This technique is rather en vogue in software
model checking, as is the use of SAT/SMT solvers to build abstractions [2].
Predicate abstraction has been adapted to the probabilistic setting [19,12] and
used to obtain abstractions of probabilistic models, e.g., through CEGAR [9]
or game-based abstraction refinement [13]. However, these methods usually only
focus on a specific subset of PCTL* and do not compute precise abstractions but
over-approximations. While the latter can be beneficial in some cases, in general
it requires a separate abstraction for each property to be verified. In contrast,
bisimulation minimisation is a precise abstraction, which coincides with PCTL*
equivalence [1], so all properties that can be formulated in that logic are pre-
served. Another important difference is that probabilistic abstraction-refinement

30 C. Dehnert, J.-P. Katoen, and D. Parker

techniques [9,13] usually require an expensive numerical solution phase to per-
form refinement, whereas partition refinement for bisimulation is comparatively
cheap. Omitting numerical analysis also makes our approach easily extendable
to systems with continuous time and parameters. Wimmer et al. [21] use BDDs
to symbolically compute the bisimulation quotient. However, this requires the
construction of a BDD representation of the state space of the full, unreduced
model prior to minimisation, which we deliberately try to avoid.

2 Preliminaries

We begin with some brief background material on discrete-time Markov chains,
bisimulation minimisation and the Prism modelling language.

Markov Models. Markov models are similar to transition systems in that they
comprise states and transitions between these states. In discrete-time Markov
chains, each state is equipped with a discrete probability distribution over suc-
cessor states. Let DistS be the set of discrete probability distributions over S.

Definition 1 (Discrete-time Markov chain (DTMC)). A DTMC is a tuple
D = (S,P, sinit, AP, L) where (i) S is a countable, non-empty set of states,
(ii) P : S × S → [0, 1] is the transition probability function that assigns to each
pair (s, s′) of states the probability P(s, s′) of moving from state s to s′ in one
step such that P(s, ·) ∈ DistS, (iii) sinit ∈ S is the initial state, (iv) AP is a
set of atomic propositions, and (v) L : S → 2AP is the labelling function that
assigns a (possibly empty) set of atomic propositions L(s) to a state s ∈ S.

For quantitative reasoning over DTMCs, we focus on the logic PCTL*, a proba-
bilistic extension of CTL* which subsumes other common logics such as PCTL
and probabilistic LTL. Instead of the path quantifiers (A and E) of CTL*, it
features the P��p(ϕ) operator, which asserts that the probability mass of paths
satisfying ϕ satisfies �� p, where �� ∈ {<,≤, >,≥}. For example, the property
“the probability that the system eventually fails lies below 70%” can be ex-
pressed as P<0.7(♦fail). Let s |=D Φ denote that state s of a DTMC D satisfies a
formula Φ. If sinit |=D Φ, the DTMC D satisfies Φ and we denote this by D |= Φ.

Bisimulation minimisation. Given a DTMC D = (S,P, sinit, AP, L) and an
equivalence relation R on S, the set of equivalence classes of S under R is denoted
S/R and [s]R is the equivalence class of s ∈ S under R.

Definition 2 (Quotient distribution). For equivalence relation R and dis-
tribution μ ∈ DistS, the quotient distribution of μ with respect to R, denoted
[μ]R ∈ DistS/R, is defined by [μ]R(C) =

∑
s∈C μ(s) for all C ∈ S/R.

Definition 3 ((Strong) probabilistic bisimulation). An equivalence rela-
tion R on S is a (strong) bisimulation on D if, for all (s1, s2) ∈ R:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C ∈ S/R

where P(s, C) denotes the sum
∑

s′∈C P(s, s′).

SMT-Based Bisimulation Minimisation of Markov Models 31

States s1, s2 ∈ S are (strongly) bisimilar, denoted s1 ∼ s2, if there exists a
bisimulation on D that relates s1 and s2. Note that ∼ is the coarsest bisimulation
on D. Intuitively, bisimilar states can stepwise simulate each other, meaning that
they can be merged while preserving important properties.

Definition 4 (Bisimulation quotient). For a DTMC D = (S,P, sinit, AP, L),
the bisimulation quotient is defined as D/∼ = (S/∼,P′, [sinit]∼, AP, L

′), where

P′([s]∼, [t]∼) = P(s, [t]∼) and L
′([s]∼) = L(s).

Note that D/∼ is well-defined. The preservation theorem of Aziz et al. [1] states
that strong bisimulation is sound and complete with respect to PCTL*:

Proposition 1. s |=D Φ ⇐⇒ [s]∼ |=D/∼ Φ for all PCTL* formulae Φ.

This implies D |= Φ if and only if D/∼ |= Φ for all PCTL* formulae Φ. Put
differently, a given formula may be verified on the (possibly much smaller) bisim-
ulation quotient while preserving the verification result of the original model.

The Prism modelling language. Prism is a widely used, state-of-the-art
probabilistic model checker. It features a high-level modelling language, adopted
by several other tools. We focus on a subset of this language whose semantics
corresponds to DTMCs. Let Var be a finite set of variables, each of which is
typed as either Boolean or bounded integer, and Σ(Var) be the set of all valua-
tions of variables in Var that respect these types. Furthermore, let ExprVar and
BExprVar denote the set of all expressions over Var and the Boolean expressions
thereof, respectively. For e ∈ ExprVar and s ∈ Σ(Var), let �e�s be the value of e
in s, i.e. the value of e when all occurring variables are replaced by their values in
s. Let s |= b for b ∈ BExprVar iff �b�s = 1 and let �b� be the set of all valuations
that assign the truth value 1 to b, i.e., �b� = {s ∈ Σ(Var) | s |= b}.

Definition 5 (Assignment). An assignment over a set Var of variables is a
function E : Var → ExprVar that complies with the respective types.

For a valuation s ∈ Σ(Var) and an assignment E over Var , we write s
E−→ s′

if and only if for all v ∈ Var we have �v�s′ = �E(v)�s with the intuition that s
is transformed into s′ by updating the values of all variables according to E. If

s
E−→ s′, we will say that the execution of E in s leads to state s′.

Definition 6 (Guarded command). A guarded command c = (a, g, (p1, E1),
. . . , (pn, En)) over Var and a set Act of actions consists of (i) an action a ∈ Act,
(ii) a guard g = guard(c) ∈ BExprVar and (iii) probabilities pi ∈ [0, 1] associated
with assignments Ei over Var for 1 ≤ i ≤ n such that

∑
1≤i≤n pi = 1.

Syntactically, we write c as [a] g −→ p1 : (Var ′=E1) + . . . + pn : (Var ′=En),
where Var ′=Ei is short for a list of entities of the form v′=e for v ∈ Var
and e = Ei(v). Intuitively, a guarded command can be executed in every state
that satisfies its guard. If it is executed, the ith assignment is executed with
probability pi. A probabilistic program comprises a set of guarded commands.

32 C. Dehnert, J.-P. Katoen, and D. Parker

pc : int[1, 4] init 1; h, f, r : bool init false;

[coin] pc=1 → 0.5 : (pc′=pc + 1)&(h′=¬h) + 0.5 : (pc′=pc + 1)&(h′=h);

[proc] pc=2 → 0.2 : (pc′=pc + 1)&(f ′=¬f) + 0.8 : (pc′=pc + 1)&(f ′=f);

[rtn1] pc=3 ∧ h ∧ ¬f → 0.2 : (pc′=pc + 1)&(r′=0)&(f ′=1) + 0.8 : (pc′=pc + 1)&(r′=1);

[rtn2] pc=3 ∧ ¬h ∧ ¬f → 0.5 : (pc
′
=pc + 1)&(r

′
=0)&(f

′
=1) + 0.5 : (pc

′
=pc + 1)&(r

′
=1);

[rest] pc=3 ∧ f → 0.99 : (pc′=1)&(h′=0)&(f ′=0)&(r′=0) + 0.01 : (pc′=pc + 1);

[done]pc=4 → 1 : (pc′=pc);

Fig. 1. Running example: The probabilistic program PEx

Definition 7 (Probabilistic program). A probabilistic program P = (Var ,
sinit, Act, Comm) consists of (i) a finite set Var of variables, (ii) an initial state
sinit ∈ Σ(Var), (iii) a finite set Act of actions and (iv) a finite set Comm of
guarded commands over Var and Act. (v) Additionally, for each s ∈ Σ(Var),
there must exist exactly one c ∈ Comm with s |= guard(c).

Example 1. Fig. 1 shows our running example: a probabilistic program PEx over
variables VarEx = {pc, h, f, r}, modelling a randomised algorithm with 4 phases
(indicated by pc). The algorithm starts by throwing a coin (h) before a process-
ing step that has certain probability (0.2) to fail (f). In case of a failure, the
algorithm restarts with high probability (0.99) and terminates in error other-
wise. If there is no failure, it returns a result r that is either true or false with
a certain probability that depends on the coin flip. As false is the (supposedly)
incorrect result, the fail flag is set in this case. Note that all variables v that
are not assigned any value in an assignment keep their previous value, i.e. have
v′ = v. For the sake of clarity, we sometimes include these superfluous assign-
ments. In further examples in this paper, we refer to the command with name
a by ca (for instance, the coin flip command will be referred to as ccoin) and we
denote the ith assignment of command ca by Ea,i.

The Prism modelling language also supports parallel composition of modules,
where some commands are executed synchronously. We deal with such models by
flattening them into one module, using a symbolic composition of the commands
that need to synchronise. While this may increase the number of commands in
the program, this is always possible in a totally automatic way and is thus no
restriction on the expressivity of the probabilistic programs considered.

The semantics of a probabilistic program P is a DTMC �P � whose state space
is Σ(Var) and whose transitions are defined by the guarded commands. The
additional constraint (see Def. 7 (v)) assures that a guarded command induces
a probability distribution over the successor states and that there are neither
deadlock states nor states that have multiple guarded commands enabled. Note
that this is no restriction. If there exists a state that satisfies no guard, the
state has no outgoing transition and is thus equipped with a self-loop for model
checking purposes. This can already be done at the language level by introducing
a loop command for states that do not have any outgoing transition. On the other
hand, if there is a state that satisfies multiple guards, this corresponds to a non-
deterministic choice in that state. Hence, the semantics of the program would be

SMT-Based Bisimulation Minimisation of Markov Models 33

〈1, 0, 0, 0〉start

〈2, 1, 0, 0〉 〈2, 0, 0, 0〉

〈3, 1, 1, 0〉

〈3, 1, 0, 0〉 〈3, 0, 0, 0〉

〈3, 0, 1, 0〉

〈4, 1, 1, 0〉

〈4, 1, 0, 1〉 〈4, 0, 0, 1〉

〈4, 0, 1, 0〉

1

1 1

1

0.99

0.01

0.99

0.01
0.5 0.5

0.2

0.8 0.8

0.2

0.2

0.8 0.5

0.5

Fig. 2. The (reachable) fragment of �PEx�, with states of the form 〈pc, h, f, r〉

an MDP instead of a DTMC. The extension of our approach to non-deterministic
models is possible (see Section 4), but not the main concern of this paper.

Example 2. The reachable part of the state space of the probabilistic program
PEx (see Fig. 1) is depicted in Fig. 2, where the states are of the form 〈pc, h, f, r〉.

3 SMT-Based Bisimulation Minimisation

We now give our Smt-based approach to bisimulation minimisation. We first
summarise how to perform minimisation using partition refinement, and then
describe its symbolic implementation using weakest preconditions and Smt.

Partition Refinement. The standard approach to deriving a bisimulation quo-
tient algorithmically prior to verification is to use partition refinement [5,18].
This technique starts with an initially coarse partition of the state space S and
successively splits (refines) blocks containing states that have different behaviour
with respect to the current partition until no more refinement is necessary. If
the initial partition is chosen based on the atomic propositions, this results in
the coarsest partition of S that induces a bisimulation, i.e., S/∼.

In the probabilistic setting, a block B of partition Π needs to be split if it
contains two states that possess different quotient distributions with respect to
the current partition, i.e. if there exist s1, s2 ∈ B such that [P(s1, ·)]R(Π) �=
[P(s2, ·)]R(Π) where R(Π) is the equivalence relation induced by the partition
Π . In other words, in order to implement a partition refinement approach, we
need to: (i) determine if B contains states with different quotient distributions
and (ii) if so, identify the subsets of B which agree on the quotient distribution,
because these form the blocks into which B is split.

In our work, a partition Π = {B1, . . . , Bk} of the state space S = Σ(V ar) is
represented symbolically by corresponding Boolean expressions π = {b1, . . . , bk}
such that Bi = �bi� for each 1≤i≤k. In the sections below, we describe how to
reason symbolically, using weakest preconditions, about: (i) whether a state’s
successors are contained in a particular block; and (ii) the quotient distribution
of a state. Once the partition refinement algorithm terminates (i.e., there are
no further blocks in the current partition to split), the quotient DTMC is con-
structed as follows: its state space is taken as the set Π of blocks in the final

34 C. Dehnert, J.-P. Katoen, and D. Parker

partition; and the transition probabilities for each block B ∈ Π are then given
by the (unique) corresponding quotient distribution for that block.

Weakest Preconditions. To reason symbolically about the effect of an assign-
ment E in a command of a probabilistic program, we use the weakest precondi-
tion operation. The weakest precondition of bi ∈ BExprVar with respect to E,
denoted wp(bi, E), characterizes exactly the valuations s of Σ(Var) for which
the successor valuation after assignment E satisfies bi:

s |= wp(bi, E) ⇐⇒ s
E−→ s′ with s′ |= bi.

We can determine wp(bi, E) through a purely syntactic modification of bi by
simultaneously replacing each occurrence of each variable v ∈ Var in bi by E(v).

Example 3. Consider the first assignment of the command ccoin in Example 1:

Ecoin,1(pc) = pc+ 1, Ecoin,1(h) = ¬h, Ecoin,1(f) = f, Ecoin,1(r) = r

and let b1=¬h. Then wp(b1, Ecoin,1) = ¬¬h ≡ h. This reflects the fact that
exactly the states s with s |= h are transformed into a state s′ by Ecoin,1 such
that s′ |= ¬h. Intuitively, this is because Ecoin,1 flips the truth value of h. �

We fix, from now on, a command c = [a] g −→ p1 : (Var ′=E1) + . . . + pn :
(Var ′=En) with n assignments. Given n Boolean expressions bi1 , . . . , bin for
indices i1, . . . , in ∈ {1, . . . , k}, observe that, for s ∈ Σ(V ar):

s |=
∧n

j=1
wp(bij , Ej) ⇐⇒ for all 1 ≤ j ≤ n . s

Ej−→ sj such that sj |= bij .

Note, however, that the command c is not necessarily enabled in all the states
s since some might fail to satisfy the guard g of c. If, in addition, such a state
satisfies g, we know that in the semantics of the probabilistic program, state s has
an outgoing probability distribution that goes with probability pj to a state sj
satisfying bij . We say that the jth assignment of c will lead into block Bij , which

we write as s
c−→ (Bi1 , . . . , Bin). If, on the other hand, ϕ = g∧

∧n
j=1 wp(bij , Ej)

is unsatisfiable, i.e. there is no s ∈ Σ(V ar) such that s |= ϕ, then there exists

no state s for which s
Ej−→ sj such that sj |= bij for all 1 ≤ j ≤ n.

Example 4. Consider the command ccoin and its two assignments Ecoin,1 and
Ecoin,2 (see Fig. 1) and let b1 = ¬h and b2 = h. Then:∧2

i=1
wp(bi, Ecoin,i) = ¬¬h ∧ h ≡ h .

So, for a state s where s |= guard(ccoin), i.e. s |= (pc = 1), and s |= h, we
conclude that command c is enabled, assignment Ecoin,1 will lead into a state
satisfying ¬h (b1) and assignment Ecoin,2 will lead into one satisfying h (b2). We

denote this by s
ccoin−→ (B1, B2). �

SMT-Based Bisimulation Minimisation of Markov Models 35

Quotient Distributions. Reasoning in a similar way, we can also determine the
quotient distribution for a state s with respect to the current partition. From
above, if s ∈ Σ(V ar) with s |= guard(c) and s |=

∧n
j=1 wp(bij , Ej), we have

that s
c−→ (Bi1 , . . . , Bin). Since command c has n assignments, each leading

into a block, we have an n-tuple (Bi1 , . . . , Bin) of target blocks per state. These
blocks Bij are not necessarily distinct. Accordingly, to determine the quotient
probability distribution of s with respect to the partition Π , we sum up the
probabilities that lead into the same blocks.

Note, however, that the probabilities do not appear in the formulas. Depend-
ing on whether or not a state satisfies the conjunction of weakest preconditions
for certain blocks, we know whether the corresponding assignments will take
that state to the associated blocks. Based on this knowledge, the probability
distribution is directly given by the probabilistic program.

Example 5. Consider again Example 4 and note that b1 = ¬h and b2 = h induce
a partition of Σ(V ar). From the (fixed) probabilities associated with the two
assignments, Ecoin,1 and Ecoin,2 in the program (Fig. 1), we can conclude that,
for all states s with s |= (pc = 1) and s |= h, there is a 0.5 probability to move
to block B1 in the next step and the same holds for B2.

In contrast, consider the partition Π ′ induced by b′1 = (pc �= 2) and b′2 =
(pc = 2). Then all states satisfying guard(ccoin) = (pc = 1) and∧2

i=1
wp(b′2, Ecoin,i) = (pc+ 1 = 2) ∧ (pc+ 1 = 2) ≡ (pc = 1)

will move to B′
2 with both assignments. In other words, the quotient probability

distribution for all states s with s |= (pc = 1) is given by P(s,B′
2) = 1.0 and

P(s,B′
1) = 0.0. This can also be seen by looking at the probabilistic program:

starting in a state with (pc = 1) will result in a state with (pc = 2) with
probability 1.0 after one step, because only ccoin is available in these states and
all assignments of that command increase pc by one. �

SMT-Based Block Refinement. Recall from the start of this section that
the key operation required to perform bisimulation minimisation using partition
refinement is to split a block B by identifying the different possible quotient
distributions for states within B. We now explain, building on the above, how
to perform this using queries executed by an Smt solver.

Suppose again, that the current partition is Π = {B1, . . . , Bk}, where each
block Bi is represented by a Boolean expression bi, i.e. Bi = �bi�, and that we
are to refine block B = �b� ∈ Π . We now formulate this computation step as
a series of queries to an Smt solver. Given a command c = [a] g −→ p1 :
(Var ′=E1) + . . .+ pn : (Var ′=En) as before, observe that there is a state s ∈ B
where c is enabled and the jth assignment of c leads into block Bij for all

1 ≤ j ≤ n, i.e. s
c−→ (Bi1 , . . . , Bin), if and only if the formula

b ∧ g ∧
∧n

j=1
wp(bij , Ej) (1)

36 C. Dehnert, J.-P. Katoen, and D. Parker

is satisfiable. While the first conjunct ensures that the state is in block B, the
rest of the formula guarantees that the state in question exhibits the appropriate
behaviour.

Example 6. Recall the partition given by b1=¬h, b2=h of Example 4. Since:

¬h︸︷︷︸
b1

∧ (pc = 1)︸ ︷︷ ︸
guard(ccoin)

∧ ¬h︸︷︷︸
wp(b2,Ecoin,1)

∧ h︸︷︷︸
wp(b2,Ecoin,2)

is unsatisfiable, we can conclude that there are no states in B1 that have ccoin
enabled such that both assignments lead into blockB2. Intuitively, this is because
the first assignment flips the value of h while the second one leaves the value
untouched. Therefore, there exists no possible value of h such that after executing
either one of the assignments h (b2) always holds. In contrast, because:

¬h︸︷︷︸
b1

∧ (pc = 1)︸ ︷︷ ︸
guard(ccoin)

∧ ¬h︸︷︷︸
wp(b2,Ecoin,1)

∧ ¬h︸︷︷︸
wp(b1,Ecoin,2)

≡ ¬h ∧ (pc = 1)

is satisfiable, we know that there is a state s ∈ B1 with s
ccoin−→ (B2, B1). Futher-

more, these states are exactly characterized by ¬h ∧ (pc = 1). �

Now, we can determine all possible target block tuples (and hence quotient
distributions) for a block B under c by checking the corresponding formulas
for satisfiability. The problem with this naive approach is the sheer number of
satisfiability queries. Consider a guarded command with n assignments and a
partition of k blocks. Then there are nk different block tuples the command
might lead into, and we would therefore need as many Smt queries in order to
determine all target block tuples, despite the fact that almost all of them will be
unsatisfiable. This observation justifies the key idea of our approach: we deter-
mine the different quotient probability distributions available in B via c using
an AllSat enumeration query answered by an Smt solver. That is, we present a
formula system to the Smt solver whose solutions correspond to available target
block tuples and let the Smt solver enumerate all possible solutions. This means
that we only need to create the formula system once and the solver will only
enumerate as many solutions as there are.

To that end, we construct a formula system SΠ,c that uses unique auxiliary
variables zi,j for each weakest precondition wp(bi, Ej) with the intention that
the values of these variables in a satisfying assignment encode the behaviour of
some states in B. More concretely, we assert that zi,j implies wp(bi, Ej) and,
additionally, for each assignment Ej we require at least one of the corresponding
zi,j to be true. This results in the following formula system SΠ,c:

b (2)

g (3)

zi,j → wp(bi, Ej) for all 1 ≤ i ≤ k and all 1 ≤ j ≤ n (4)∨k

i=1
zi,j for all 1 ≤ j ≤ n (5)

SMT-Based Bisimulation Minimisation of Markov Models 37

Observe that this yields a correspondence between satisfying assignments for the
variables zi,j and target block tuples under command c available in B as follows.

In general, given a satisfying assignment α of all variables in this system, (5)
guarantees that there exist indices 1 ≤ i1, . . . , in ≤ k such that α(zi1,1) = . . . =
α(zin,n) = 1. Then, because of (4), it follows that s |=

∧n
j=1 wp(bij , Ej). Together

with (2) and (3) this implies s |= b∧g∧
∧n

j=1 wp(bij , Ej) (cf. formula (1)). In other

words, we can conclude that there exists s ∈ B with s
c−→ (Bi1 , . . . , Bin). Note

that we are only interested in the values of the zi,j in a satisfying assignment
returned by the solver, as they alone enumerate the target block tuples. Also,
in (4), implications rather than equivalences suffice, because wp(bik , Ej) and
wp(bil , Ej) are mutually unsatisfiable for ik �= il. Intuitively, this is because the
jth assignment cannot lead to two different blocks Bik and Bil from one state.
Hence, because of (5), in each satisfying assignment exactly one of the zi,j is
assigned true for all 1 ≤ j ≤ n and each solution corresponds to one target
block tuple. The solution found can easily be ruled out by additionally asserting∧n

j=1 ¬zij ,j and the solver can then be used to retrieve the next solution if there
is any.

Example 7. Assume the solver returns a solution (i.e. a valuation s ∈ Σ(V ar)
such that all formulas evaluate to true) to the formula system SΠ,c with z1,j = 1
for all 1 ≤ j ≤ n. Obviously s ∈ B, because s |= b. Then, because of (3), the
command c is enabled in s. Also, due to (4), we have s |=

∧n
j=1 wp(b1, Ej). Stated

differently, there exists an s ∈ B such that s
c−→ (B1, . . . , B1).

The SmtRefine algorithm. Algorithm 1 presents an abstract implementation
of SmtRefine, our Smt-based block refinement procedure. It takes as input
a partition Π of Σ(V ar) given by Boolean expressions and a block B ∈ Π
given by Boolean expression b. It returns a partition ΠB of B given by Boolean
expressions, such that all states in each block of ΠB share the same quotient
distribution wrt. Π . In other words, ΠB is a stable partition of B wrt. Π .

The algorithm computes a (partial) mapping sig : DistΠ → 2BExprV ar from
DistΠ , the probability distributions over Π , to a set of (mutually unsatisfiable)
Boolean expressions. This is done such that a state s ∈ B has the quotient
probability distribution μ iff it satisfies one of the expressions in sig(μ), i.e.:

[P(s, ·)]R(Π) = μ ⇐⇒ there exists bμ ∈ sig(μ) such that s |= bμ (6)

where R(Π) is the equivalence relation induced by the partition Π . Put differ-
ently, sig maps all available quotient probability distributions in B to Boolean
expressions that characterize exactly the states having these distributions. Then,
upon termination of SmtRefine, ΠB is given by the expressions:{∨

bμ∈sig(μ)
bμ | μ ∈ keys(sig)

}
(7)

where keys(sig) denotes the domain of sig, i.e. the quotient distributions in B.

38 C. Dehnert, J.-P. Katoen, and D. Parker

The algorithm works as follows. We start by initialising the mapping sig to
the empty mapping. Then, for each command c in the probabilistic program, we
build the formula system SΠ,c and pass it to the solver (assert(SΠ,c)). As long
as the solver finds any solutions (hasNextSolution()), we retrieve that solution,
say α, via getSolution() from the Smt solver. Note that α is a mapping of all
the variables in V ar and the auxiliary variables zi,j to their respective domains
such that all formulas of SΠ,c evaluate to true. As we are only interested in the
values of the variables zi,j , we can drop the other parts of the assignment.

As previously shown, such a solution implies that there exists a state s ∈ B
with s

c−→ (Bi1 , . . . , Bin) for certain indices ij, 1 ≤ j ≤ n. Given a solution
α to the formula system, the function getBlockCombination(α) can compute
these indices. As there may be different assignments of c leading s into the same
block, we need to determine the quotient distribution μ by summing up the
corresponding probabilities given by c. This is done by the function compDist(),
which obviously needs to take the target block tuple as a parameter. Now that we
know that there exists (at least) one state s ∈ B whose quotient distribution is μ,
we need to update the mapping sig accordingly. This is done by adding to sig(μ)
the expression characterizing exactly those states that lead into the current
target block tuple via c. Finally, we rule out the solution α previously found
by the solver. More precisely, we rule out that particular combination of the zi,j
being set to 1, because we do not want to enumerate this target block tuple again.
If the solver now still finds possible target block tuples, we repeat the whole
procedure. Note that the while-loop in Alg. 1 realises an AllSat procedure, as
all solutions of the formula system are first found (via getSolution()) and ruled
out later (via ruleOutSolution(α)) as long as there exists another solution. After
all target block tuples have been enumerated, we need to determine whether the
block needs to be split. This is the case, if there is more than one quotient
probability distribution available in B, i.e. if the domain of sig consists of more
than one element. In that case, a stable partition of B is given by sig according
to equation (7). If there is exactly one quotient distribution available, we don’t
need to split B and just return b itself.

The correctness of the Smt-based refinement algorithm is given by:

Theorem 1 (Correctness). Given a partition Π = {B1, . . . , Bk} represented
by a set of Boolean expressions {b1, . . . , bk} and a block B = �b� ∈ Π, SmtRe-

fine returns a partition ΠB of B given by mutually unsatisfiable Boolean ex-
pressions {b′1, . . . , b′m} such that for all s1, s2 ∈ B:

P(s1, T) = P(s2, T) for all T ∈ S/Π iff s1 |= b′i ⇔ s2 |= b′i for all 1 ≤ i ≤ m

Example 8. Let PEx be the probabilistic program in Fig. 1. Furthermore, let the
initial partition be Πinit = {�pc �= 4�, �pc = 4�} given by the Boolean expressions
b1 = (pc �= 4) and b2 = (pc = 4). Now assume that the first block that is to be
refined is B1 = �b1�.

For the outermost loop in Alg. 1, we consider the commands in the order in
which they appear in PEx. Accordingly, we start with ccoin and build the formula
system SΠ,ccoin as:

SMT-Based Bisimulation Minimisation of Markov Models 39

Algorithm 1. Smt-based block refinement

Require: partition Π given by π = {b1, . . . , bk}, block B = �b� ∈ Π
Ensure: returns stable (wrt. Π) partition ΠB of B

procedure SmtRefine(b, π = {b1, . . . , bk}) � Refines B wrt. Π
sig = ∅ � Initialize mapping of DistΠ to set of expressions in BExprVar

for each c = [a] g −→ p1 : Var ′ = E1 + . . .+ pn : Var ′ = En ∈ Comm do
assert(SΠ,c)
while hasNextSolution() do

α ← getSolution() � Retrieve solution from solver

(Bi1 , . . . , Bin) ← getBlockCombination(α) � Compute a target block
combination induced by α

μ ← compDist(Bi1 , . . . , Bin) � Compute the corresponding distribution
sig(μ) ← sig(μ)∪ {b∧ g ∧

∧n
j=1 wp(bij , Ej)} � Update signature mapping

ruleOutSolution(α) � Rule out current solution for solver
end while

end for

if |keys(sig)| > 1 then
return {

∨
bμ∈sig(μ)

bμ | μ ∈ keys(sig)} � Split block only if necessary

else
return {b} � Otherwise return input block

end if
end procedure

pc �= 4︸ ︷︷ ︸
b1

pc = 1︸ ︷︷ ︸
guard(ccoin)

z1,1 → pc+ 1 �= 4︸ ︷︷ ︸
wp(b1,Ecoin,1)

z1,2 → pc+ 1 = 4︸ ︷︷ ︸
wp(b2,Ecoin,1)

z2,1 → pc+ 1 �= 4︸ ︷︷ ︸
wp(b1,Ecoin,2)

z2,2 → pc+ 1 = 4︸ ︷︷ ︸
wp(b2,Ecoin,2)

z1,1 ∨ z1,2

z2,1 ∨ z2,2

As the formula pc = 1 is part of the formula system, the value of pc is fixed to
one, which in turn means that z1,2 and z2,2 can never be set to true in a solution
of the system. This corresponds to the fact that all states that have ccoin enabled
(and therefore need to satisfy its guard, namely pc = 1) have no way of going to
block B2 with any of the assignments, because pc is only increased by 1.

In fact, the solver only returns a solution with z1,1 = 1 and z2,1 = 1, meaning
that, for all states in B1 that have ccoin enabled, both assignments lead into B1.
Accordingly, the quotient distribution μ1 is given by:

40 C. Dehnert, J.-P. Katoen, and D. Parker

μ1(B1) = 1.0 and μ1(B2) = 0.0

We update the previously empty mapping sig to:

sig = {μ1 �→ { pc �= 4 ∧ pc = 1︸ ︷︷ ︸
s∈B1∧s|=guard(ccoin)

∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4︸ ︷︷ ︸
s|=wp(b1,Ecoin,1)∧wp(b1,Ecoin,2)

}}

and continue with constructing the formula system for command cproc:

pc �= 4

pc = 2

z1,1 → pc+ 1 �= 4 z1,2 → pc+ 1 = 4

z2,1 → pc+ 1 �= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2

z2,1 ∨ z2,2

Except for the guard it is exactly as the previous formula system, because the
assignments of this command do exactly the same transformation to pc as the
assignments of ccoin . Exactly because of this, the solver will once again only
return a solution with z1,1 = 1 and z2,1 = 1, which means that the corresponding
states also possess the same quotient distribution μ1 as before. This yields:

sig = { μ1 �→ {pc �= 4 ∧ pc = 1 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4,

pc �= 4 ∧ pc = 2 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4} }

The next command to consider is crtn1. The formula system looks as follows:

pc �= 4

pc = 3 ∧ h ∧ ¬f
z1,1 → pc+ 1 �= 4 z1,2 → pc+ 1 = 4

z2,1 → pc+ 1 �= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2

z2,1 ∨ z2,2

This time, the solver will return z1,2 = z2,2 = 1 as the only solution. Intuitively,
this is due to the fact that all states satisfying the guard of crtn1 must have
pc = 3, which means that, after executing either one of the assignments, the
value of pc will be 4 and thus will lead to a state in block B2. As both updates
lead to B2, the corresponding quotient distribution in these states is given by:

μ2(B1) = 0.0 and μ2(B2) = 1.0

which results in:

sig = { μ1 �→ {pc �= 4 ∧ pc = 1 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4,

pc �= 4 ∧ pc = 2 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4},
μ2 �→ {pc �= 4 ∧ pc = 3 ∧ h ∧ ¬f} } .

SMT-Based Bisimulation Minimisation of Markov Models 41

Apart from the guard, the formula system for the next command crtn2 is the
same as the one before and also has the same solution, which means that these
states also have μ2 as the outgoing quotient distribution. This updates sig to:

sig = { μ1 �→ {pc �= 4 ∧ pc = 1 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4,

pc �= 4 ∧ pc = 2 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4},
μ2 �→ {pc �= 4 ∧ pc = 3 ∧ h ∧ ¬f,

pc �= 4 ∧ pc = 3 ∧ ¬h ∧ ¬f} } .

The next command is crest , which leads to SΠ,crest as follows:

pc �= 4

pc = 3 ∧ f

z1,1 → 1 �= 4 z1,2 → 1 = 4

z2,1 → pc+ 1 �= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2

z2,1 ∨ z2,2

for which the solver identifies z1,1 = 1 and z2,2 = 1 as the only solution. Intu-
itively, this says that for all states s ∈ B1 that have this command enabled, the
first assignment will lead back into B1 while the second assignment leads into
B2, which is obvious considering that the first assignment resets pc to 1 and the
second assignment increases pc from 3 to 4. This means that all states s ∈ B1

with s |= guard(crest) possess the quotient distribution μ3 with:

μ3(B1) = 0.99 and μ3(B2) = 0.01

which updates sig to:

sig = { μ1 �→ {pc �= 4 ∧ pc = 1 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4,

pc �= 4 ∧ pc = 2 ∧ pc+ 1 �= 4 ∧ pc+ 1 �= 4},
μ2 �→ {pc �= 4 ∧ pc = 3 ∧ h ∧ ¬f,

pc �= 4 ∧ pc = 3 ∧ ¬h ∧ ¬f},
μ3 �→ {pc �= 4 ∧ pc = 3 ∧ f ∧ 1 �= 4 ∧ pc+ 1 = 4} } .

Finally, for the last command, namely cdone, the formula system is as follows:

pc �= 4 pc = 4

z1,1 → pc �= 4 z1,2 → pc = 4

z2,1 → pc �= 4 z2,2 → pc = 4

z1,1 ∨ z1,2

z2,1 ∨ z2,2

42 C. Dehnert, J.-P. Katoen, and D. Parker

1start 2

3

4

5 1

1 0.8
0.2

0.99
0.01

1

Fig. 3. The bisimulation quotient �PEx �/∼

where already the two formulas in the first line are (together) unsatisfiable. This
reflects the fact that no state in B1 = �pc �= 4� has this command enabled,
because its guard requires pc to be equal to 4. Therefore sig is not updated and
as there are no more commands to consider, the loop terminates.

Consequently, B needs to be split into three sub-blocks according to the dif-
ferent quotient distributions recorded in sig. Continuing this for all blocks, we
compute the stable partition (expressions have been simplified to improve read-
ability):

πsta
Ex = { pc = 1 ∧ ¬f︸ ︷︷ ︸

Bsta
1

, pc = 2 ∧ ¬f︸ ︷︷ ︸
Bsta

2

, pc = 3 ∧ f︸ ︷︷ ︸
Bsta

3

,

pc = 3 ∧ ¬f︸ ︷︷ ︸
Bsta

4

, pc = 4︸ ︷︷ ︸
Bsta

5

, pc = 1 ∧ f︸ ︷︷ ︸
Bsta

6

, pc = 2 ∧ f︸ ︷︷ ︸
Bsta

7

}.

For this final partition, we extract the quotient DTMC depicted in Fig. 3. Note
that the distributions for the blocks can easily be kept track of during the re-
finement steps and are thus known. Also note that we already omitted the un-
reachable blocks Bsta

6 and Bsta
7 . �

4 Experiments

Implementation. We implemented a C++-based prototype of our algorithm,
using Microsoft’s Z3 as the backend Smt solver and comprising about 5000
lines of code. We restrict our attention to PRISM models in which expressions
involve linear integer arithmetic, which is typically the case in practice. Also, we
use some optimisation techniques to the approach previously described, one of
which passes an additional conjunct to the solver that rules out some unreachable
blocks in the refinement procedure.

Case Studies. We evaluated our implementation on a set of probabilistic model
checking benchmarks,1 running our experiments on a Core i7 processor with
2.6GHz, and limited to 5GB RAM and 48 hours of runtime. If the experiment
ran out of time or memory, this is marked as TO and MO, respectively. For
the comparisons we considered all three engines of Prism (hybrid, sparse and
MTBDD) and give the times for the default (hybrid) and the respective best

1 All models are available from http://www.prismmodelchecker.org/casestudies/.

http://www.prismmodelchecker.org/casestudies/

SMT-Based Bisimulation Minimisation of Markov Models 43

Table 1. Results for the synchronous leader election protocol

original DTMC quotient DTMC factor

N K hybrid (default) best low high

states constr. verif. constr. verif. states constr.
4 9 19817 6.00 88.75 5.99 3.18 10 11.40 0.81 7.78
4 11 44107 41.74 543.85 23.91 14.20 10 26.57 1.43 22.04
5 9 236745 414.91 9456.78 483.86 13.48 12 497.91 1.0 18.99
5 11 644983 4083.82 60784.22 3695.16 45.60 12 1945.99 1.92 33.33
6 9 2659233 TO TO 53695.52 643.97 14 28548.85 1.90 −

engine for the corresponding example for both construction (column constr.) as
well as verification (column verif.). Please note that the quotient DTMCs were
first computed by our prototype as well as verified by Prism afterwards, but as
the verification of the quotient took negligible time (i.e. less than 5ms) for all
our experiments, we omitted these entries in the tables.

As it is already known that bisimulation minimisation can lead to drastically
smaller state spaces, the key point we want to compare is not the model size
in terms of states, but the time needed to verify the properties of interest. For
this reason, we list time reduction factors: they are the ratio of the total time
consumption of Prism for the given model to the total time needed to minimise
the model using our prototype and verify it afterwards using Prism, where the
verification, as explained earlier, took virtually no time at all. Since the time
Prism needs for the full model strongly depends on the engine used, we list two
reduction factors, where the lower is computed with respect to the best and the
higher with respect to the worst Prism engine for the given model.

Synchronous leader election protocol. In Itai and Rodeh’s protocol, N proces-
sors each probabilistically chose one of K different values to pass synchronously
around a ring in order to determine a unique leader. We computed the prob-
abilities that a leader is eventually elected and that a leader is elected within
L rounds, for L = 3. The results are shown in Table 1. The construction and
verification of the bisimulation quotient is about as fast as the best (i.e., sparse)
Prism engine. However, in comparison to the default Prism engine, we achieve
substantial speed-ups using Smt-based quotienting. Note that the quotient sys-
tem can be used to verify the step-bounded property for arbitrary values of L,
as it preserves all PCTL* formulae and does not depend on L. So, verifying this
property for more values of L will increase the reduction factors roughly linearly.

Crowds protocol. Reiter and Rubin’s Crowds protocol aims to send a message
anonymously to a destination by randomly routing it R times through a crowd of
size N . For this model, we restricted the reachable blocks by over-approximating
the reachable state space by an expression capturing the obvious fact that the
total number of member observations cannot exceed the number of instances the

44 C. Dehnert, J.-P. Katoen, and D. Parker

Table 2. Impact of bisimulation minimisation on the Crowds protocol model

original DTMC quotient DTMC factor

N R hybrid (default) best low high

states constr. verif. constr. verif. states constr.
10 5 110562 0.17 0.48 0.17 0.29 73 1.13 0.58 1.76
10 20 4.4 · 109 MO MO 31.18 1623.54 313 21.11 78.39 −
20 5 2036647 174.97 111.59 180.80 8.14 73 2.67 70.71 107.25
20 20 ? MO MO MO MO 313 56.26 − −
25 5 5508402 MO MO MO MO 73 3.74 − −
25 20 ? MO MO MO MO 313 80.03 − −

500 5 ? MO MO MO MO 73 8969.46 − −
500 20 ? MO MO MO MO 313 106724.27 − −
600 5 ? MO MO MO MO 73 18219.01 − −
600 20 ? MO MO MO MO MO MO − −

protocol has been run. Our model is a slight amendment of the model available
on the Prism website with less variables. Table 2 summarizes the results, where
we computed the probability that the original sender was discovered more than
once. Using our technique, we not only outperform Prism in terms of runtime,
but are also able to treat significantly larger model parameters. In fact, for
the parameters where the state space size is indicated as unknown (“?”), using
Prism we were not able to build the state space let alone perform the actual
verification.2 Here, the crucial advantage of the Smt-based quotienting becomes
apparent: since it avoids building the full state space of the original model, it
shortens computation times while reducing the required memory.

Comparison with Sigref. In addition to the comparison with Prism, we com-
pared our prototype to Sigref, a tool that performs bisimulation minimisation
symbolically on a BDD representation of the system [21]. We integrated Sigref

into Prism in a way that works directly on the internal format of the model
checker, which was possible because they share the MTBDD library Cudd. Ta-
ble 3 illustrates the experimental results for both case studies, where the time
reduction factor is the ratio of time needed for minimisation using Sigref plus
the verification using Prism to the time needed for the minimisation using our
Smt-based prototype plus the verification time using Prism. Note that while the
quotient DTMCs are isomorphic, the verification times differ between the two
approaches, because the BDD representing the (same) system is different. For
the first case study, we observe minor speed-ups compared to Sigref. However,
due to memory requirements, Sigref was unable to minimise the state space of
the last two models. For the Crowds protocol, note that Sigref needs to build
the full BDD representation of the state space prior to minimisation. As the
time needed for model construction dominates the runtime, there is (almost) no

2 We tried to build the state space of the smallest of these models (N=20, R=20) on
a cluster with 196GB of memory, but aborted the experiment after one week.

SMT-Based Bisimulation Minimisation of Markov Models 45

Table 3. Comparison with Sigref as the minimisation engine

(a) Synchronous leader election

N K constr. verif. red. factor

4 9 18.39 ≈ 0 1.61
4 11 51.57 ≈ 0 1.94
5 9 580.40 ≈ 0 1.17
5 11 MO MO −
6 9 MO MO −

(b) Crowds protocol

N R constr. verif. red. factor

10 5 9.67 ≈ 0 8.51
10 20 6100.093 90.26 293.26
20 5 481.022 ≈ 0 180.02
20 5 MO MO −

scope for Sigref to improve on Prism’s runtimes. Even worse, the additional
intermediate BDDs prevented the minimisation for the parameters 20/5 under
the memory restriction.

Possible Extensions. We conclude this section with an overview of several
ways that our SMT-based approach to bisimulation can be extended.

Rewards. A Markov Reward Model (MRM) (D, r) is a DTMC D equipped with
a function r : S → R≥0 that assigns a non-negative real value to each state of D.
Upon passing through state s the reward r(s) is gained, providing a quantitative
measure in addition to the probabilities. In the Prism modelling language, state-
based rewards are defined in a similar fashion as commands, essentially attaching
a reward expression e to all states satisfying a given Boolean expression b. If e is
an expression evaluating to a constant, i.e., all states satisfying b share the same
reward value, then rewards can be easily supported by our implementation by
adjusting the initial partition appropriately.

Nondeterminism. In its current form, both the algorithm and the implementa-
tion treat only DTMCs and CTMCs and do not support their nondeterministic
counterparts MDPs and CTMDPs, respectively. Our prototype can be extended
in order to also support these models. For this, we lift the formula system SΠ,c of
section 3 to a system SΠ incorporating all commands with additional auxiliary
variables xc for c ∈ Comm as follows:

b (8)

xc ↔ guard(c) for all c ∈ Comm (9)

zc,i,j → wp(bj , Ec,i) for all c ∈ Comm, all 1 ≤ j ≤ k and all 1 ≤ i ≤ |c| (10)

xc →
∨k

j=1
zc,i,j for all c ∈ Comm and 1 ≤ i ≤ |c| (11)

where the current partition Π = �π� is given by π = {b1, . . . , bk}, |c| refers
to the number of assignments of c and Ec,i denotes the ith assignment of c.
Enumerating the satisfying assignments will now induce sets of simultaneously
enabled commands and the corresponding target block combinations.

Parametric Markov chains. If the probabilities in a given probabilistic program
are not concrete values but rather parameters, it corresponds to a parametric

46 C. Dehnert, J.-P. Katoen, and D. Parker

Markov chain [8] instead of a DTMC. As the only part of our algorithm that
deals with probabilities is the computation of the probability distribution in-
duced by a command and a target block combination, it is fairly straightforward
to incorporate parameters. Instead of computing a concrete value associated
with each successor block, we symbolically derive an expression involving the
parameters and only consider two parametric probability distributions equal if
they syntactically coincide (in a certain normal form). This way, the computed
quotient preserves all PCTL* properties for all possible parameter values.

5 Conclusion and Further Work

We have presented an Smt-based approach to extract, from a probabilistic pro-
gram specified in the Prism modelling language, the Markov chain representing
its coarsest bisimulation quotient. No state space is generated—our bisimulation
minimisation is a truly symbolic program manipulation. Experiments yielded
encouraging results, even without optimisations such as formula simplification,
which we plan to incorporate in future work. Application of the Smt-based
approach to either parametric programs or programs with infinite state space
but finite bisimulation quotient is straightforward and the approach can easily
be adapted to perform compositional minimisation. We therefore believe that
this approach represents a promising alternative to enumerative and BDD-based
bisimulation minimisation algorithms.

Acknowledgements. The first two authors are funded by the EU FP7 project
CARP (see http://www.carpproject.eu/) and the MEALS project, and the
work was part-funded by the ERC Advanced Grant VERIWARE. We also thank
Marta Kwiatkowska for facilitating the first author’s visit to Oxford, where this
work was initiated.

References

1. Aziz, A., Singhal, V., Balarin, F.: It Usually Works: The Temporal Logic of Stochas-
tic Systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer,
Heidelberg (1995)

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

3. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31, 59–75 (1994)

4. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten Years
of Performance Evaluation for Concurrent Systems Using CADP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 128–142. Springer,
Heidelberg (2010)

5. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

6. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking.
Formal Methods in System Design 21(1), 39–78 (2002)

http://www.carpproject.eu/

SMT-Based Bisimulation Minimisation of Markov Models 47

7. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

8. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2011)

9. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

10. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation Minimisation
Mostly Speeds Up Probabilistic Model Checking. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

11. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perf. Ev. 68(2), 90–104 (2011)

12. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based proba-
bilistic predicate abstraction in PRISM. Electr. Notes Theor. Comput. Sci. 220(3),
5–21 (2008)

13. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

14. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry Reduction for Probabilistic
Model Checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

16. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991)

17. Mumme, M., Ciardo, G.: A Fully Symbolic Bisimulation Algorithm. In: Delzanno,
G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 218–230. Springer, Heidelberg
(2011)

18. Valmari, A., Franceschinis, G.: Simple O(m logn) Time Markov Chain Lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

19. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo the-
ories. In: QEST, pp. 129–140 (2007)

20. Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with au-
tomatic balancing of time and space. Perform. Eval. 67(9), 816–836 (2010)

21. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref –
A Symbolic Bisimulation Tool Box. In: Graf, S., Zhang, W. (eds.) ATVA 2006.
LNCS, vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

Hybrid Automata-Based CEGAR

for Rectangular Hybrid Systems

Pavithra Prabhakar1, Parasara Sridhar Duggirala2,
Sayan Mitra2, and Mahesh Viswanathan2

1 IMDEA Software Institute, Madrid, Spain
2 University of Illinois at Urbana-Champaign, Urbana, IL

Abstract. In this paper we present a framework for carrying out counter-
example guided abstraction-refinement (CEGAR) for systems modelled
as rectangular hybrid automata. The main difference, between our ap-
proach and previous proposals for CEGAR for hybrid automata, is that
we consider the abstractions to be hybrid automata as well. We show
that the CEGAR scheme is semi-complete for the class of rectangular
hybrid automata and complete for the subclass of initialized rectangular
automata. We have implemented the CEGAR based algorithm in a tool
called Hare, that makes calls to HyTech to analyze the abstract mod-
els and validate the counterexamples. Our experiments demonstrate the
usefulness of the approach.

1 Introduction

Direct model checking of realistic hybrid systems is in general undecidable and
often foiled by the state-space explosion problem. Hence, one has to rely on some
sort of abstraction. Finding the right abstraction is in itself a difficult problem. To
this end, the counterexample guided abstraction refinement (CEGAR) [7] tech-
nique (see Section 3) which combines automatic refinement with model checking
has gained preeminence in a number of contexts [4,19,8,14] including in timed
and hybrid systems [2,6,5,24,11,23,9,20].

The space over which CEGAR performs the abstractions and refinements is
key in determining both the efficiency (of model checking) and the completeness
of the procedure. For example, in [2,6,5,24,23] abstraction-refinement is carried
out in the space of finite-state discrete transition systems. Computing the tran-
sitions for this abstract finite state machine involves computing the unbounded
time reachable states from the states in the concrete system corresponding to a
particular state in the abstract system, which is difficult in practice for hybrid
systems with complex continuous dynamics.

In this paper, we investigate CEGAR in the context of abstractions which are
hybrid systems as well. When compared to using finite-state abstractions, using
hybrid abstractions in a CEGAR framework requires carrying out computation-
ally simpler tasks when constructing abstractions, refining them and validating
counterexamples. Instead of the computationally expensive unbounded time suc-
cessor computation, constructing hybrid abstractions only involves making local

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 48–67, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 49

checks about flow equations. Moreover when validating counterexamples in a hy-
brid CEGAR scheme, one is only required to compute time-bounded successors
(see 4.4). Computing time-bounded successors is often computationally easier
than computing time-unbounded successors; for example, for automata with lin-
ear differential dynamics, time-bounded posts can be efficiently approximated,
while no such algorithms exist for time-unbounded posts.

In this paper, we focus on hybrid abstraction-based CEGAR framework for
rectangular hybrid systems. We abstract such automata using initialized rectan-
gular hybrid automata [16]. The choice of initialized rectangular hybrid automata
as the abstract space is motivated by the desire to have a rich space of abstrac-
tions, with a decidable model checking problem, and effective tools to analyze
them. Our abstraction consists of the following operations: collapsing the control
states and transitions, dropping the continuous variables and scaling the vari-
ables. Variable scaling changes the constants that appear in the abstract hybrid
automaton which in turn can positively influence the efficiency of model check-
ing the abstract automaton. Our refinement algorithm involves splitting control
states/transitions, and/or adding variables that may have new dynamics (due
to scaling).

Our main results in this paper are complete/semi-complete CEGAR algo-
rithms for rectangular hybrid systems - (semi-completeness) if the hybrid sys-
tem we are analyzing is a rectangular hybrid automaton and is faulty, then our
CEGAR algorithm will terminate by demonstrating the error; (completeness)
on the other hand, if the hybrid system is an initialized rectangular hybrid au-
tomaton then our CEGAR algorithm will always terminate. Such completeness
results are usually difficult to obtain. In our case, one challenge is the fact that
the collection of abstract counterexamples is not enumerable as the executions
of an abstract hybrid system are uncountable. Thus, in order to argue that all
abstract counterexamples are eventually considered, we need to change the no-
tion of a counterexample to be a (infinite) set of executions, rather than a single
execution. This change in the definition of counterexample also forces the valida-
tion algorithms to be different. The completeness proof then exploits topological
properties, like compactness, to argue for termination.

Another highlight of our presentation is that we view our CEGAR framework
as a composition of a few CEGAR loops. To carry this out, we identify some
concepts and obtain a few results about the composition of CEGAR loops. Such
a compositional approach simplifies the presentation of the refinement algorithm
in our context, which is otherwise unwieldy, and helps identify more clearly the
subtle concepts needed for the completeness proof to go through.

We have implemented our CEGAR based algorithm for rectangular hybrid au-
tomata in a tool that we call Hybrid Abstraction Refinement Engine (Hare[1]).
Hare makes calls to HyTech [17] to analyze abstract models and generate coun-
terexamples; we considered PHAVer [13] and SpaceEx [12], but at the time of
writing they do not produce counterexamples. We analyzed the tool on several
benchmark examples which illustrate that its total running time is compara-
ble with that of HyTech, and on some examples Hare is a couple of orders of

50 P. Prabhakar et al.

magnitude faster. Moreover, in some cases Hare can prove safety with dramati-
cally small abstractions. Fair running-time comparison of Hare with other tools,
such as d/dt [3] and checkmate [5], is not possible because of the differences in
the runtime environments. Experimental comparison of finite-state and hybrid
abstractions was also not possible because to the best of our knowledge, the
tools implementing finite-state abstractions are not publicly available. We be-
lieve that in terms of efficiency, the approaches of finite state abstractions and
hybrid abstractions are incomparable.

Related Work. CEGAR with hybrid abstractions have been investigated in [9,20]
where the abstractions are constructed by ignoring certain variables. Counterex-
amples are used to identify new variables to be added to the abstraction. This
approach has been carried out for timed automata [9] and linear hybrid au-
tomata [20]. In comparison to the above, our abstractions (may) change both
the control graph and variable dynamics, and are not restricted to only for-
getting continuous variables. In contrast, the scheme in [20] considers a more
general class of hybrid automata, though the abstractions in that scheme are
not progressively refined. Finally, in [10] hybrid systems with flows described by
linear differential equations are approximated by rectangular hybrid automata.
Even though, their scheme progressively refines abstractions, the refinements are
not guided by counter-examples.

2 Preliminaries

Notation, Images and Inverse Images. Let N, Z, Q, R and R≥0 denote the set of
natural numbers, integers, rationals, reals and non-negative reals, respectively.
Given a function f : A→ B and a subset A′ ⊆ A, f(A′) is defined to be the set
{f(x) |x ∈ A′}. Similarly, for B′ ⊆ B, f−1(B′) is the set {x | ∃y ∈ B′, f(x) = y}.
When B′ is a singleton set {y}, we also use f−1(y) to denote f−1({y}).

Transition Systems. A transition system T is a tuple (S, S0, Σ,−→), where S is
a set of states, S0 ⊆ S is a set of initial states, Σ is a set of transition labels, and
−→⊆ S×Σ ×S is a transition relation. We call (s, a, s′) ∈−→ a transition of T
and denote it as s

a−→ s′. We denote the elements of a transition system using
appropriate subscripts. For example, the set of states of a transition system Ti
is denoted by Si.

An execution fragment σ of a transition system T is a sequence of transitions
t0t1t2t3 · · · tn, such that s′i = si+1 for 0 ≤ i < n, where ti is given by si

ai−→ s′i. We

denote the above execution fragment by σ = s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn.

We say that the length of σ is n, denoted by |σ|. An execution of σ is an execution
fragment starting from a state in S0. We denote the set of all execution fragments
of T by ExecF (T) and the set of all executions by Exec(T).

Given a set of states S′ ⊆ S and a symbol a ∈ Σ, PreT (S
′, a) is defined to be

the set {s1 | ∃s2 ∈ S′ : s1
a−→ s2} and PostT (S

′, a) as {s2 | ∃s1 ∈ S′ : s1
a−→ s2}.

Given a subset Σ′ of Σ, PreT (S
′, Σ′) =

⋃
a∈Σ′ PreT (S

′, a) and PostT (S
′, Σ′) =⋃

a∈Σ′ PostT (S
′, a).

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 51

Hybrid Automata. A hybrid system is a system which exhibits mixed discrete-
continuous behaviors. A popular model for representing hybrid systems is that
of hybrid automata [16], which combine finite state automata modeling the dis-
crete dynamics, and differential equations or inclusions modeling the continuous
dynamics. An execution of such a system begins in a state of the automaton
with some values to the variables representing the continuous dynamics. It then
either evolves continuously, wherein only the values of the continuous variables
change according to the continuous dynamics associated with the current dis-
crete state of the automaton, or takes a discrete transition, where potentially
both the discrete and continuous state of the automaton can change. During the
latter, the state of the automaton changes from the source of an edge to its tar-
get, and the discrete transition is enabled only if the continuous state before the
transition satisfies the enabling condition associated with the edge. The value of
the continuous state after the transition either remains the same or is reset to
some other value.

Definition 1. A hybrid automaton H is a tuple (Loc, Edges, Source, Target,
qinit, n, Cont0, inv, flow, jump), where

– Loc is a finite set of (discrete) control states or locations.
– Edges is a finite set of edges.
– Source, Target: Edges → Loc are functions which associate a source and a

target location to every edge, respectively.
– qinit ∈ Loc is the initial location. The components above represent the dis-

crete part of the automaton.
– n ∈ N is the dimension of H, also denoted by Dim(H), which represents the

number of continuous variables in the system. The set of continuous states
is given by Cont = Rn.

– Cont0 ⊆ Cont is the initial set of continuous states.
– inv: Loc → 2Cont associates with every location an invariant set. The con-

tinuous state of the system belongs to the invariant of a location as long as
the control is in that location.

– flow: Loc → 2Traj(Cont) associates with every location a set of trajectories,
where Traj(Cont) is the set of continuous functions from R≥0 → Cont.

– jump: Edges → 2Cont×Cont, associates with every edge a set of pair of states
describing the value of the continuous state before and after the edge is taken.

Next we present the semantics of a hybrid automaton as a transition system
it represents. The semantics of a hybrid automaton H is defined in terms of
the transition system [[H]] = (Q,Q0, Σ,−→) over Σ = R≥0 ∪ Edges, where
Q = Loc×Cont, Q0 = qinit ×Cont0, and the transition relation −→ is given by:

– Continuous transitions - For t ∈ R≥0, (q1, x1)
t−→ (q2, x2) iff q1 = q2 = q

and there exists a function f ∈ flow(q) such that x1 = f(0), x2 = f(t) and
for all t′ ∈ [0, t], f(t′) ∈ inv(q).

– Discrete transitions - For e ∈ Edges, (q1, x1)
e−→ (q2, x2) iff q1 = Source(e),

q2 = Target(e), x1 ∈ inv(q1), x2 ∈ inv(q2) and (x1, x2) ∈ jump(e).

52 P. Prabhakar et al.

We focus on the problem of control state reachability, namely, given a hybrid
automaton H and a location q �= qinit, is q reachable in H, or equivalently does
there exist an execution of H from a state in {qinit} × Cont0 to {q} × Cont?
Typically, q is a “bad” or “unsafe” location that we do not want to reach, and
we are interested in determining the safety of the system, namely, no execution
reaches the unsafe location.

3 CEGAR Framework

A counter-example guided abstraction refinement algorithm consists of the four
steps, namely, abstraction, model-checking, validation and refinement. We focus
on safety verification here. CEGAR loop begins with the construction of an ab-
straction (an overapproximation) of the original system (also called the concrete
system). The abstract system is then model-checked to determine if there ex-
ists an execution from the initial location to an unsafe location. Such a path
if one exists is called an abstract counter-example. If the abstract system has
no counter-examples, then it can be deduced from the properties of abstraction
that even the concrete system does not have any counter-examples, and hence is
safe. However, if an abstract counter-example is returned in the model-checking
phase, then one cannot in general make any conclusions about the safety of the
concrete system, and the counterexample is validated to determine if there ex-
ist a counter-example in the concrete system corresponding to it. If a concrete
counter-example is found, then the concrete system is unsafe, and the concrete
counter-example exhibits a bug in the system. Otherwise, the analysis in vali-
dating the abstract counter-example is used to construct a new abstract system
which is a refinement of the current abstract system. The CEGAR algorithm
continues with the model-checking of the new abstract system. In general, the
CEGAR loop might not terminate.

The purpose of this section is to fix notation and highlight some differences
with the standard CEGAR loop. We present several CEGAR algorithms in the
next section, which provide various guarantees about the termination, namely,
completeness and semi-completeness. Completeness refers to the fact that there
are only finitely many iterations of the CEGAR loop in any execution; and
semi-completeness refers to the fact that the CEGAR loop always terminates
on a faulty machine exhibiting a counter-example. Semi-completeness is easy to
guarantee when the set of concrete executions of a system are (efficiently) enu-
merable, which is lacking for the class of systems we consider. Hence, we need to
change the notion of a counter-example to encapsulate a possibly (uncountable)
number of counter-examples, and perform the validation simultaneously on this
infinite set. This requires us to perform validation in a slightly different manner,
namely, we first need to find the actual set of abstract executions corresponding
to the counter-example, and then perform the standard validation on the com-
puted set. Further, in order to guarantee termination, we need to at the least
guarantee that we make progress in each iteration of the CEGAR loop.

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 53

In the rest of the section, we setup notation and explain our notion of counter-
example, the modified validation algorithm, and distill some local condition
which ensure progress of the CEGAR loop.

We fix some notation for the rest of this section. Our concrete systems and
abstract systems are both hybrid automata. Let HC be a concrete hybrid au-
tomaton and let HA be an abstract hybrid automaton. Let TC = [[HC]] =
(SC , S

0
C , ΣC ,−→C) and TA = [[HA]] = (SA, S

0
A, ΣA,−→A) be the transition

systems associated with HC and HA, respectively. Let us fix an unsafe location
qunsafeC �= qinitC in HC , and we want to check if qunsafeC is reachable in HC .

3.1 Abstraction

In the next section, we present several methods for constructing abstractions.
Here, we define formally the relation that holds between a system and its ab-
straction.

Given transition systems T1 = (S1, S
0
1 , Σ1,−→1) and T2 = (S2, S

0
2 , Σ2,−→2),

an abstraction or simulation function from T1 to T2 is a pair of functions α =
(αS , αΣ), where αS : S1 → S2 and αΣ : Σ1 → Σ2 such that

– αS(S
0
1) ⊆ S0

2 , and

– for every s1, s
′
1 ∈ S1 and a1 ∈ Σ1, s1

a1−→1 s
′
1 implies αS(s1)

αΣ(a1)−→ 2 αS(s
′
1).

We say that T2 is an abstraction of T1, denoted by T1 � T2. We denote the fact
that α is an abstraction function from T1 to T2 by T1 �α T2.
Notation. Given an abstraction function α = (αS , αΣ), we will drop the sub-
scripts S and Σ when it is clear from the context. For example, for a state
s, we will use α(s) to mean αS(s). Note that if α is an abstraction func-

tion from T1 to T2 and σ = s1
a1−→1 · · · sn is an execution fragment of T1,

σ′ = α(s1)
α(a1)−→ 2 · · ·α(sn) is an execution fragment of T2. Let us denote

α(s1)
α(a1)−→ 2 · · ·α(sn) by α(σ).

Let us fix an abstraction function α from the concrete system TC to the
abstract system TA. Since, we are interested in control state reachability, we
need certain consistency conditions on α to ensure that property is preserved. We
assume that there exists a location qunsafeA �= qinitA in HA satisfying α({qunsafeC }×
ContC) ⊆ {qunsafeA } × ContA, that is, α maps the elements of the unsafe set
of concrete states to states corresponding to an unique location of HA. Let
UnsafeC = {sC} × ContC and UnsafeA = {sA} × ContA. Note that if qunsafeA is

not reachable in the abstract hybrid automatonHA, then qunsafeC is not reachable
in the concrete hybrid automaton HC .

3.2 Counter-Examples

If qunsafeA is reachable in HA, then the model-checker returns a counter-example.
In order to guarantee semi-completeness, we need a set of counter-examples
which are enumerable, and spawn the set of all executions of the system. Hence,

54 P. Prabhakar et al.

we define a counter-example to be a path in the control flow graph of the abstract
hybrid automaton, which is feasible, that is, has an execution corresponding to
it. Note that such a counter-example exhibits potentially an infinite set of unsafe
abstract executions.

Given an element π = q0e0q1 · · · qn ∈ (LocEdges)∗Loc, define PathToExecF (π)

to be the set of all execution σ = (q0, x0)
t0−→ (q0, y0)

e0−→ (q1, x1)
t1−→ (q1, y1) · · ·

(qn−1, yn−1)
en−1−→ (qn, xn)

tn−→ (qn, yn). Formally, a counter-example of a hybrid
automaton H given an unsafe location qunsafe is an alternating sequence of loca-
tions and edges, that is, an element π of qinitEdges(LocEdges)∗ qunsafe such that
PathToExecF (π) is not empty. The length of a counter-example is the number
of elements in the sequence. We will call a counter-example of HC with unsafe
location qunsafeC , a concrete counter-example, and a counter-example of HA with

unsafe location qunsafeC , an abstract counter-example.

3.3 Validation

We think of an abstract counter-example as representing a possibly infinite set of
abstract unsafe executions. Hence, validation needs to check if there is a concrete
unsafe execution corresponding to any of the abstract unsafe executions repre-
sented by the abstract counter-example. This requires us to perform validation
in a slightly different manner. Validation takes place in two phases: In the first
phase, a forward analysis is done to compute a representation of the abstract ex-
ecutions corresponding to the counter-example. In particular, the set of abstract
states reached by traversing the abstract counter-example is computed. In the
next phase, a backward reachability computation is performed in the concrete
system, along the potentially infinite set of abstract executions computed in
the previous step, and represented by a sequence of sets of abstract states. The
precise algorithm is given in Figure 1. There exists a concrete unsafe execution
corresponding to the abstract counter-example πA iff ReachπA,α(0) ∩ S0

C �= ∅.

Remark 1. Observe that just running a standard backward reachability algo-
rithm on the counter-example does not suffice, since the reach sets thus obtained
might contain concrete state which do not correspond to an actual abstract ex-
ecution. This is because, running a backward reachability would correspond to
“validating” all abstract execution fragments corresponding to any “subpath” of
the counter-example, simultaneously.

Given an execution fragment σ′ of TA and an abstraction function α from
TC to TA, we denote by Concα(σ

′), the set of execution fragments in TC cor-
responding to TA, namely, the set {σ ∈ ExecF (TC) |α(σ) = σ′}. Validation is
the process of checking if Concα(PathToExecF (πA)) contains an execution of
TC reaching sC .

Proposition 1. Concα(PathToExecF (πA)) contains an execution of TC reach-
ing sC iff ReachπA,α(0) ∩ S0

C �= ∅.

If ReachπA,α(0) ∩ S0
C = ∅, then we call πA a spurious counter-example.

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 55

Input: πA, an abstract counter-example in HA of length l.

Phase 1: Forward reachability in the abstract automaton.

Compute FReachπA
(i), for 0 ≤ i ≤ 2l + 1.

• FReachπA
(0) = S0

A.
• FReachπA

(i+ 1) = PostTA
(FReachπA

(i), a), where
– (Time Elapse) a = R≥0 if i is even, and
– (Edge) e′(i−1)/2 if i is odd, for 0 ≤ i < 2l + 1.

Phase 2: Backward reachability in the concrete automaton.

Compute Sk for 0 ≤ i ≤ 2l + 1:

Sk = α−1(FReachπA
(k)), 0 ≤ i < 2l + 1

S2l+1 = α−1(FReachπA
(k)) ∩ (qunsafe

C × ContC)

Compute ReachπA,α(k), 0 ≤ k ≤ 2l + 1.
• ReachπA,α(2l + 1) = S2l+1.
• ReachσA,α(k) = Sk∩PreTC

(ReachπA,α(k+1), a), where
– (Time elapse) a = R≥0 if k is even, and
– (Edge) α−1(e′(k−1)/2), if k is odd.

Fig. 1. Validation Algorithm

3.4 Refinement

We formalize the conditions which ensure that the refinement is making progress
by “eliminating” spurious abstract counter-examples. The refinement algorithms
we present in the next section ensure the progress conditions presented here.

Definition 2. Given two transition systems T1 and T2 such that T1 � T2, a
transition system T3 is said to be a refinement of T2 with respect to T1, if T1 �
T3 � T2.

Notation.Wewill sayH3 is a refinement ofH2 with respect toH1 tomean that [[H3]]
is a refinement of [[H2]] with respect to [[H1]], and denote it byH1 � H3 � H2.

Our goal is to find a refinement HR such that HC � HR � HA. Note that
HR = HA is such a system, however, we want to make progress by eliminating
the spurious counter-example. Hence, we define good refinements to be those in
which some “potential” execution fragment of the counter-example in the current
abstraction is not a “potential” execution fragment of any counter-example in
the refinement.

To formalize progress, we need some definitions. Given a transition system
T , a potential execution fragment of T is a sequence ρ = s0a0s1a1 · · · sl−1al−1sl
alternating between elements of S and Σ. Further, given an abstraction function

γ from T1 to T2, and an execution fragment σ′ = s′0
a′
0−→2 s

′
1

a′
1−→2 · · · s′l−1

a′
l−1−→2

s′l of T2, Potentialγ(σ
′) is the set of all potential execution fragments ρ =

s0a0s1a1 · · · sl−1al−1sl of T1 such that γ(si) = s′i and γ(ai) = a′i. Note that
a potential execution fragment might not correspond to an actual execution
fragment.

Definition 3. LetHC �α HA andHC �β HR. Given a spurious counter-example
πA of HA, a refinement HR of HA with respect to HC is said to be good with re-
spect to πA if there exists a ρ ∈ Potentialα(PathToExecF (πA)) such that ρ �∈
Potentialβ(PathToExecF (πR)) for any counter-example πR ofHR.

In validating a spurious counter-example πA of HA, we see that ReachπA,α(0)
∩S0

C is empty. Note that if ReachπA,α(k) = ∅ for some k, then ReachπA,α(i)

56 P. Prabhakar et al.

is empty for all i ≤ k. Let k̂ be the largest integer such that ReachπA,α(k̂)

is empty, if ReachπA, α(k) is empty for some k, otherwise, let k̂ = 0 (since

ReachπA,α(0) ∩ S0
C is definitely empty). We call k̂ the infeasibility index of πA

with respect to α. The next proposition states a local sufficient condition to
ensure that a refinement is good.

Proposition 2. Let α be the an abstraction function which is surjective. Let
πA = s′0e

′
0s

′
1 · · · s′l−1e

′
l−1s

′
l be a spurious counter-example of HA with an infeasi-

bility index k̂ with respect to α. Suppose that HC �β HR is a refinement of HA

with respect to HC satisfying:

Post[[HR]](β(Sk̂), β(ak̂)) ∩ β(ReachπA,α(k̂ + 1)) = ∅, (1)

where Sk̂ is as defined in Figure 1 and ak̂ = R≥0 if k̂ is even and is
{α−1(e′

(k̂−1)/2
)} otherwise. Then HR is a refinement of HA with respect to HC

which is good with respect to πA.

Remark 2. Validation can be done by checking if Concα(PathToExecF (πA))
contains an execution of TC reaching sC , which can be verified by perform-
ing a backward reachability in the concrete system with respect to the abstract
counter-example and checking if the reach set becomes empty. However, in order
to guarantee progress in the refinement step, in particular, to be able to per-
form refinement which satisfies Equation 1, we need to identify and eliminate a
potential concrete execution of some abstract unsafe execution.

3.5 Completeness, Semi-completeness and Composition

A CEGAR algorithm for a class of systems takes as input a finite representation
of a system from the class and (a) either outputs “YES” or (b) outputs “NO”
and returns a counter-example of the system, or (c) does not terminate. If it
outputs “YES”, then it is guaranteed that the system is safe, that is, the unsafe
location is not reachable, and if it outputs “NO”, then it is unsafe. We will assume
that the different phases of any loop of the CEGAR algorithm terminate, but
CEGAR algorithm itself may or may not terminate. Next, we define the notions
of completeness and semi-completeness of a CEGAR algorithm.

Abstract1 Model Check1

Refine1 Validate1

A1

Abstract2

Model Check2

Refine2 Validate2

A2

Unsafe

Safe

Fig. 2. A2[A1]: Composition of CEGAR Algorithm A1 with A2

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 57

Definition 4. A CEGAR algorithm is said to be complete for a subclass C of
hybrid automata if it terminates for all inputs from the class C. It is said to be
semi-complete if it terminates at the least for inputs from C which are unsafe,
that is, have an execution to an unsafe location.

We say that a CEGAR algorithm is fair, if it returns a smallest length counter-
example whenever it terminates on an unsafe system, under the assumption that
the model-checker always returns a smallest length counter-example.

Note that a CEGAR algorithm is essentially a model-checking algorithm.
Hence, we can compose CEGAR algorithms by using a CEGAR algorithm A1

as a model-checker for a CEGAR algorithm A2 as shown in Figure 2. We denote
the composed algorithm by A2[A1].

Proposition 3. Let Ai be a CEGAR algorithm with input and abstraction spaces
Ci and Di respectively, for i = 1, 2, such that D2 ⊆ C1. Then:

– If A1 and A2 are complete and fair CEGAR algorithms, then A2[A1] is
complete and fair.

– If A2 is semi-complete and fair, and if A1 is complete and fair, then A2[A1]
is also semi-complete and fair.

4 CEGAR for Rectangular Hybrid Automata

In this section, we focus on a subclass of hybrid automata called rectangular
hybrid automata. We present three CEGAR algorithms for this class. In order to
keep the presentation simple, we choose to illustrate the ideas in the algorithms
using examples. The formal description and details can be found in [22].

We begin with a brief overview of the class of rectangular hybrid systems. A
rectangular (hybrid) automaton is a hybrid automaton in which the invariants,
guards, jumps and flow are specified using rectangular constraints. A rectangular
constraint is of the form x ∈ I, where x is a variable and I is an interval whose
finite end-points are integers. Figure 3 shows a rectangular hybrid automaton.

It has four locations, namely, l1, l2, l3 and l4, as shown by the circles and
four edges e1, e2, e3 and e4, as shown by the arrows between the circles. The
invariant at location l3 is given by x ∈ [−1, 1]. To keep the diagram simple, we
have omitted the constraints x ∈ [−10, 10] and y ∈ [−10, 10] from the invariants
of every location. The flow is specified by rectangular differential inclusions of
the form ẋ ∈ I. The flow associated with it are all functions whose projection to
the x-component is such that the derivative with respect to time belongs to the
interval I at all times.

The jump relation is specified using two kinds of constraints, namely, guards
and resets. A guard specifies the enabling condition on the edge, and the reset
specifies the value of the continuous state after the edge is taken. An edge is
labelled by a constraint of the form x ∈ I, which specifies that the edge can
be taken when the value of x belongs to the interval I. If an edge is labelled
by a constraint of the form x :∈ I, it means that the value of x after the edge

58 P. Prabhakar et al.

x :∈ [−1,−1]

y :∈ [−1,−1]

l4l3

l2l1

x :∈ [0, 1]
y :∈ [0, 2]

x :∈ [−10, 10]

y :∈ [−10, 10]

x ∈ [−10, 1]
y ∈ [3, 10]

x ∈ [−1, 0]
y ∈ [−1, 0]

x ∈ [−1, 1] x ∈ [−10, 1]
y ∈ [6, 10]

e1

e2 e3

e4

x ∈ [−1, 1]
ẋ ∈ [1, 1]

ẏ ∈ [0, 1] ẏ ∈ [3, 3]

ẋ ∈ [2, 2]

ẋ ∈ [1, 1]

ẏ ∈ [2, 2]

ẋ ∈ [1, 1]

ẏ ∈ [2, 2]

Fig. 3. H1: An example of a rectangu-
lar hybrid automaton

x :∈ [−1,−1]

y :∈ [−1,−1]

l4l3

l2l1

x :∈ [0, 1]
x :∈ [−10, 10]

x ∈ [−10, 1]

x ∈ [−1, 1]
x ∈ [−10, 1]

x ∈ [−1, 1]
ẋ ∈ [1, 1]

ẏ ∈ [0, 1]

ẋ ∈ [1, 1]ẋ ∈ [1, 1]

ẋ ∈ [2, 2]

ẏ ∈ [1, 2]

ẏ ∈ [1, 1] ẏ ∈ [1, 1]

x ∈ [−1, 0]
y ∈ [−1, 0]

x :∈ [−1, 0]
y :∈ [−1, 0]

y ∈ [1, 5]

y :∈ [−5, 5]

y ∈ [3, 5]

y :∈ [0, 1]

Fig. 4. H5: Flow abstraction of H2

scaling down y by a factor of 2

is taken is reset non-deterministically to some value in the interval I. When a
constraint of the form x :∈ I is absent, it means that the value of a variable
remains the same after taking an edge. We call a reset of the first form as strong
reset and a reset of the second form as an identity reset. Note that the jump
relation associated with a constraint x ∈ I1, x :∈ I2 is I1 × I2, where as that
associated with just x ∈ I is {(x, x) |x ∈ I}.

The control state reachability problem is undecidable for the class of rect-
angular hybrid automata [15]. Hence, to ensure that the model-checking phase
of a CEGAR loop terminates, we consider as the abstraction space, a subclass
of rectangular hybrid automata called initialized rectangular hybrid automata,
which have the property that whenever the differential inclusions associated with
a variable is different for the source and target of an edge, then the edge is nec-
essarily labelled by a reset constraint for that variable, that is, the value of the
variable is non-deterministically reset to some value in an interval (as opposed to
carrying over the value from previous location). The control state reachability
problem has been shown to be decidable for the class of initialized rectangu-
lar hybrid automata [15]. For example, the variable x is non-initialized along
the edge e1, since the constraints associated with ẋ in locations l1 and l2 are
different, but the edge e1 does not have a reset constraint for x.

Before presenting the CEGAR algorithm, let us discuss briefly the computabil-
ity of the validation step. For a transition system T arising from a rectangular
hybrid automaton H, one can compute PreT (S, a) and PostT (S, a) where S is
any linear set and a is either the set of non-negative reals R≥0 or a subset of
edges Edges of the hybrid automaton H. Further, the resulting sets are linear
too. This implies that FReachπ(i) can be computed for any counter-example π
of H and any position i in π. Further FReachπ(i) is a linear set. We distill the
conditions for ReachπA,α(i) to be computable in the following proposition.

Proposition 4. Let α be an abstraction function from HC to HA. Suppose that
for any linear subset S of the state space, α−1(S) is a linear set and can be com-
puted. Then ReachπA,α(k) is a linear set and is computable for each k. Further,
ReachπA,α(k) is a compact set.

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 59

Proof. Compactness follows from the fact that the invariants associated with
the locations are compact (closed and bounded).

In this section, we present three CEGAR algorithms. For each of these we present
the “hybrid abstraction” which can be thought of as a symbolic representation of
the abstraction function, and a specific method to construct an abstract system
using the hybrid abstraction. Further, the resulting abstraction function will be
such that it satisfies the hypothesis of Proposition 4. Hence, we can effectively
carry out the validation phase. We will present our refinement algorithm which
ensures progress as given by Equation 1.

The first CEGAR algorithm abstracts a rectangular hybrid automaton to an
initialized rectangular hybrid automaton by abstracting the identity resets of the
edges which violate the initialization condition by strong resets. This algorithm
is semi-complete for the class of rectangular automata. Next, we present two
CEGAR algorithms for the class of initialized rectangular automata, which are
complete for this class. One abstracts a system, by merging together different
locations/edges and the other abstracts by dropping/scaling variables. All these
algorithms are fair. Hence, they can be composed as sketched in Proposition 3
to obtain more sophisticated CEGAR algorithms which are complete and semi-
complete, respectively.

4.1 Strong Reset Abstraction Based CEGAR

Abstraction. The broad idea is to abstract a rectangular hybrid automaton
to an initialized rectangular hybrid automaton by abstracting an identity reset
which violates the initialization condition by a strong reset. A naive approach
is to replace a constraint x ∈ I associated with a pair non-initialized edge e
and variable x, by the constraint x ∈ I, x :∈ I. It transforms an identity reset
to a strong reset, and is such that the jump relation associated with the new
constraint {(v1, v2) | v1, v2 ∈ I} is a superset of the jump relation before the
transformation {(v, v) | v ∈ I}. Observe that one can interpret the identity reset
{(v, v) | v ∈ I} as an infinite set of strong resets ({(v, v)})v∈I . We choose to
abstract an identity reset by a finite set of strong resets for the verification to
be computationally feasible. More generally, we abstract a constraint x ∈ I by a
set of constraints x ∈ Ji, x :∈ Ji, i ∈ K, where Ji, i ∈ K is a finite partition of I.

Consider the rectangular automaton H1 in Figure 3. The only non-initialized
edge in the automaton is e1. The strong rest abstraction of H1 is exactly the
same as H1, except that the constraint associated with edge e1 is x ∈ [−1, 0],
x :∈ [−1, 0], y ∈ [−1, 0], y :∈ [−1, 0]. Let us call this automaton H2.

Refinement. The refinement step constructs a new abstraction by replacing
the jump relation associated with a non-initialized edge by a smaller set. The
validation step identifies the two sets as given by Equation 1 that need to be
separated. One can show that the infeasibility index always corresponds to a
non-initialized edge of the concrete automaton. The refinement corresponds to

60 P. Prabhakar et al.

refining the partition used in transforming the non-initialized edge to an initial-
ized edge.

Let us consider the counter-example l1e1l2e3l4 of the strong reset abstraction
of H1, namely, H2, where l4 is the unsafe state. Validation step returns that the
sets A = {(−1, 0)} and B = {(v1, v2) | v1 ∈ [−1, 0], v2 ∈ [−1, 0], v1 ≥ v2}. The
minimum distance (Euclidean) between A and B is

√
2/2. Hence, any square

whose sides are 1/2 units will not overlap with both A and B. Therefore, we
partition the guard x ∈ [−1, 0], y ∈ [−1, 0] into square chunks of width 1/2. So
the edge e1 in the refinement is labelled by the multi-rectangular constraints cor-
responding to the partition (x ∈ [−1,−1/2], y ∈ [−1,−1/2]), (x ∈ [−1/2, 0], y ∈
[−1,−1/2]), (x ∈ [−1,−1/2], y ∈ [−1/2, 0]), and (x ∈ [−1/2, 0], y ∈ [−1/2, 0]).
Note that the refinement step could force us to use rational end-points, even
if we begin with integer end-points for all the intervals which appear in the
constraints.

Remark 3. Compactness of the reach set is a crucial property we exploit here,
since this guarantees that there exists a minimum distance between the two sets
that need to be separated according to Equation 1.

It is easy to see that if the model-checker always return a smallest counter-
example in the abstract system when one exists, then the CEGAR algorithm
will find a smallest length counter-example if it terminates. However, the CE-
GAR loop might not terminate in general (a consequence of the undecidability
of control state reachability for rectangular automata). Hence, we obtain the
following partial guarantee about the termination of the CEGAR loop.

Theorem 1. The strong reset abstraction based CEGAR algorithm is semi-
complete for the class of rectangular hybrid automata, and is fair.

Remark 4. Note that the semi-completeness depends crucially on our choice of
the notion of a counter-example. For example, the above theorem would not hold
had we chose an abstract execution fragment as the notion of counter-example.

4.2 Control Abstraction Based CEGAR

We present a CEGAR algorithm for the class of initialized rectangular automata.
Hence, this CEGAR loop can be used as a model-checker for the strong reset
abstraction based CEGAR algorithm of the previous section.

Abstraction. As the name suggests, we abstract the underlying control flow
graph of the initialized rectangular automaton. More precisely, we define a con-
sistent partition of locations/edges and merge the locations/edges in the each of
the partitions. We define the constraints for the invariants, differential inclusions,
guards and resets to be a the smallest rectangular constraints which contain the
corresponding constraints for the elements in each partition.

Figure 5 shows an abstraction of the initialized rectangular automaton H2 in
which location l2 and l3 are merged and edges e3 and e4 are merged.

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 61

x :∈ [−1,−1]

y :∈ [−1,−1]

l4l1 x :∈ [0, 1]

y :∈ [0, 2]

x :∈ [−10, 10]

y :∈ [−10, 10]

x ∈ [−10, 1]

y ∈ [3, 10]

x ∈ [−1, 0]

y ∈ [−1, 0] x ∈ [−1, 1]

e1

e2

x :∈ [−1, 0]

y :∈ [−1, 0]

ẋ ∈ [1, 2]

ẏ ∈ [2, 3]

l2,3

e3,4
ẋ ∈ [1, 1]

ẏ ∈ [0, 1]

ẋ ∈ [1, 1]

ẏ ∈ [2, 2]

Fig. 5. H3: Control Abstraction of the Hybrid Automaton H2

The constraint on ẋ in l2,3 is a constraint which corresponds to the smallest
rectangular set containing [2, 2] and [1, 1], the constraints on ẋ in l2 and l3,
respectively. Similarly, the guard for the variable y on the edge e3,4 is the union
of the sets [3, 10] and [6, 10].

We call the smallest rectangular set containing a given set, the rectangular
hull of the set. We use the following rules in constructing the constraints for an
abstract edge E. If all the concrete edges corresponding to E have identity resets,
then E is an identity reset and the constraint for the guard is the rectangular
hull of the constraints on the concrete edges. If at least one the edges does not
have an identity reset, then the edges with identity reset are transformed into
the naive strong reset explained in the previous section. Then the guard and
reset are obtained by taking the rectangular hull of the the guards and resets,
respectively, of the concrete strong reset transformed edges. The only exception
to the above rule is when E is a singleton edge, in which case, the last step of
taking the rectangular hull is skipped. This is to ensure that after finite number
of refinement (essentially, when the abstract locations and edges are singleton
sets), the abstract automaton is identical to the concrete automaton.

Refinement. The refinement algorithm essentially constructs a new control
abstraction by splitting the equivalence class of locations and edges near the
point of infeasibility. We present a specific method to refine along the above
lines. Let us define L2 to be the set of locations appearing in ReachπA,α(k̂ + 1).
If the infeasibility edge corresponds to an abstract edge e, then we also define E
and L1. E is the set of concrete edges in α−1(e), whose target is a location in

L2. And L1 is the locations appearing in ReachπA,α(k̂) which is a source of some
edge in E. We then split the equivalence classes such that the elements in L1,
L2 and E appear in singleton sets. The intuition behind the above construction
is that the only elements which effect satisfaction of Equation 1 are those in the
above sets. The above splitting will force the refined system to be equivalent to
the concrete system locally, and hence Equation 1 is trivially satisfied.

Let us consider the counter-example πA = l1e2l2,3e3,4l4. The infeasibility

index k̂ corresponds to the time transition from l2,3 to l2,3. In more detail,

FReachπA(k̂) and FReachπA(k̂ + 1) are the regions C given by the constraints
x ∈ [0, 1], y ∈ [0, 1] and D given by the constraints x ∈ [0, 1], y ∈ [0, 4], x ≥ y− 3,

respectively. However, ReachπA,α(k̂ + 1) is given by l2 × {(1, 4)}. And taking

62 P. Prabhakar et al.

the predecessor of l2 × {(1, 4)} with respect to ẋ ∈ [2, 2] and ẏ ∈ [3, 3], has a
non-empty intersection with the region C. Hence, we split the equivalence class
{l2, l3} such that l2 is in a singleton equivalence class. We will also need to split
the edges e3 and e4 to obtain a consistent partition. Therefore, the refinement
step results in the concrete automaton.

The control abstraction based CEGAR will always terminate, since starting
with any partition of locations and edges, it is possible to refine the partitions
only finitely many times due to the fact that the set of locations and edges is
finite. Hence, we obtain a complete CEGAR algorithm for the class of initialized
rectangular automata. Further, it is fair.

Theorem 2. The control abstraction based CEGAR algorithm is complete for
the class of initialized rectangular hybrid automata, and is fair.

4.3 Flow Abstraction Based CEGAR

We present another complete algorithm for the class of initialized rectangular
automata which abstracts the continuous dynamics by dropping certain vari-
ables or applying a limited form of linear transformation, namely, scaling on the
variables.

Abstraction. A flow abstraction preserves the underlying control flow graph.
A specification of a flow abstraction provides a subset of the variables of the
concrete automaton and a scaling factor, a natural number, for each of the
variables in the subset. The abstraction is constructed by first dropping the
variables not in the specified subset, that is, only the constraints corresponding
to the variables in the subset are retained in the invariants, guards, resets and
differential inclusions. Next, the constraints are scaled according to the scaling
factors provided. A scaling factor of k ∈ N for a variable x involves, replacing
every constant c appearing in the constraints involving x by c/k. Note that
this step may result in an automaton with rational end-points. Hence, we take
the rectangular hull of the sets obtained. The only exception is when the scaling
factor is 1, in which case we do not take the rectangular hulls. This is to guarantee
that when all the variables are included with a scaling factor of 1, we obtain the
concrete automaton. Scaling factor helps in reducing the granularity for the
purpose of analyzing the system.

Let us consider the automaton H1, and a flow abstraction which keeps the
variable x with scaling factor of 1. The resulting abstract system is obtained
by removing all the constraints involving y from H1. Let us consider another
abstraction in which we keep both the variables, x with a scaling factor of 1 and
y with a scaling factor of 2. The resulting abstract automaton is shown in Figure
4. The flow of y in H2 is given by ẏ ∈ [3, 3], which when scaled down by 2 gives
the ẏ ∈ [1.5, 1.5], and then taking the rectangular hull of the set gives ẏ ∈ [1, 2].
Similarly, the guard on e3 is transformed from y ∈ [3, 10] to y ∈ [1, 5].

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 63

Refinement. The refinement algorithm consists of two steps. Broadly, in the
first step we choose a subset of variables, and in the second step assign appropri-
ate scaling factors to the chosen variables. We iterate over all subsets of variable
in the increasing order of size and check if Equation 1 holds, when the scaling
factor for all the variables is taken to be 1. Then we assign a scaling factor for a
variable in the chosen set, to be the g.c.d of the previous scaling factor and all the
constants appearing in the constraints involving the variable locally, that is, the
constants appearing the invariants and flows of the location, if the infeasibility
index corresponds to a time transition, otherwise, one considers the constants
appearing in the guards and reset of the edge corresponding to the infeasibility
index. These conditions ensure that Equation 1 is satisfied.

Let us consider the abstraction H4 and the counter-example l1e2l3e4l4. We
observe that the infeasibility index corresponds to transition from l3 to l3 with
time elapse. Hence, we need to add y. However, since the g.c.d of the constants
corresponding to location l3, namely, the differential inclusion ẏ ∈ [2, 2] and the
invariant y ∈ [−10, 10], is 2, we assign a scaling factor of 2 with y. The resulting
refinement is the automaton H5 shown in Figure 4.

Again, the flow abstraction based CEGAR algorithm always terminates, be-
cause there are only finite number of refinements starting from any abstraction.
Every refinement entails adding a variable or changing the scaling associated
with a variable. Note that the new scaling factor is necessarily lower than or
equal to the previous scaling factor, because by definition the new scaling factor
is a divisor of the previous scaling factor. Since the number of variable is finite,
and the scaling factor associated with a newly introduced variable is finite, we
obtain that the CEGAR algorithm terminates in a finite number of iterations.
Also, the CEGAR algorithm is fair.

Theorem 3. The flow abstraction based CEGAR algorithm is complete for the
class of initialized rectangular hybrid automata, and is fair.

4.4 Discussion

We obtain a semi-complete algorithm for the class of rectangular hybrid au-
tomata by composing all the three algorithms, and a complete algorithm for the
class of initialized rectangular automata by composing the last two algorithms.
The compositional CEGAR framework provides a convenient method to describe
and implement CEGAR algorithms in a modular fashion.

The hybrid abstraction based CEGAR algorithms have the advantage that the
various phases of the CEGAR loop are more efficient. As said before, construc-
tion of the abstraction is simpler because one can avoid expensive unbounded
Post computations with respect to time. However, the validation phase as de-
scribed requires computing unbounded Pre. One can avoid unbounded Pre com-
putations, by using a small trick. One can add a new clock (a variable x with
ẋ = 1), which forces taking a discrete transition every τ time units. This is
achieved by adding self loops on the locations with a guard x ∈ [τ, τ] and reset
x :∈ [0, 0] and adding the constraint x ∈ [0, τ] to the invariant. The new system

64 P. Prabhakar et al.

is equivalent to the old system in terms of checking safety. However, validating a
counter-example of the new system requires computing Pre with respect to the
time interval [0, τ].

5 Implementation and Experimental Results

The tool, which we call Hybrid Abstraction Refinement Engine (Hare), im-
plements the CEGAR algorithm in C++. Hare input consists of a hybrid au-
tomaton and a single initial abstraction function (which combines all the three
different types of abstractions). This function defines the initial abstract hybrid
automaton. The default initial abstract automaton has no variables and has
three locations—an initial location, an unsafe location, and a third location cor-
responding to all the other locations of the concrete automaton. This abstract
automaton is automatically translated to the input language for HyTech [18]
and then model-checked. If HyTech does not produce a counterexample for the
safety property, Hare returns the current abstraction. Otherwise, the counterex-
ample is parsed and validated. In order to validate the counter-example, we need
to compute Pre and Post with respect to certain edges and/or time. However,
HyTech allows taking Pre and Post only with respect to the set of all the tran-
sitions. Thus, our implementation of the validation involves construction of new
hybrid automata corresponding to the counter-example, and calls HyTech’s Pre
and Post functions on these automata. These calls to HyTech, at least in part,
contribute to the relatively large time that Hare spends in the validation step
for some of the case studies. Our implementation consists of a single CEGAR
algorithm which is a combination of the the three CEGAR schemes presented
in Section 4. It does not correspond to any particular composition of the al-
gorithms, and our presentation of the algorithm as a composition is purely for
highlighting the ideas in the implementation in a readable manner.

5.1 Experimental Results

Our experimental evaluation of Hare (see Table 1) is based on five classes of
examples:

Class 1: BILL n models a ball in an n-dimensional bounded reflective rectangle.
The unsafe set is a particular point in the bounded rectangle.
Class 2: NAV n models the motion of a point robot in an n × n grid where
each region in the grid is associated with a rectangular vector field. When the
robot is in a region, its motion is described by the flow equations of that region.
The unsafe set is a particular set of regions. NAV n A and NAV n B represent
the two different configurations of the vector fields, the initial and the unsafe
regions. NAV n C models two robots on the same the n× n grid with different
initial conditions; the unsafe set being the set of states where the two robots
simultaneously reach the same unsafe region.
Class 3: SATS n models a distributed air traffic control protocol with n aircraft
presented in [21]. The model of each aircraft captures several (8 or 10) physical

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 65

regions in the airspace where the aircraft can be located, such as the left holding
region at 3K feet, the left approach region, the right missed-approach region, the
runway, etc. The continuous evolution of the aircraft are described by rectangular
dynamics within each region. An aircraft transitions from one to another region
based on the rules defined by the traffic control protocol, which involves the
state of the current aircraft and also other aircrafts. Thus, the automata for
the different aircraft communicate through shared variables. The safety property
requires that the distance between two aircraft is never less than a safety constant
c. We have worked on two variants of SATS: SATS n S models just one side of
the airspace and the full SATS n C has two sides.
Class 4: FISME n models Fischer’s timing-based mutual exclusion algorithm
with n concurrent processes.
Class 5: ZENO is a variant of the well-known 2D bouncing ball system where
the system has zeno executions.

Table 1. The columns (from left) show the problem name, sizes of the concrete and final
abstract hybrid automaton, number of CEGAR iterations, time taken for validation,
time taken for refinement, total time by Hare and the time taken by HyTech

Problem Conc. size Abst. size Iter. Validation Abstraction Hare HyTech
(locs, vars) (locs, vars) (sec) Refinement(sec) (sec) (sec)

BILL 2 A (6,2) (4, 1) 1 0.02 0.04 0.06 0.03

BILL 3 A (8,3) (4, 1) 1 0.04 0.06 0.1 0.04

NAV 10 A (100,2) (6, 2) 4 0.64 0.16 0.8 0.16

NAV 15 A (225,2) (6, 2) 4 1.07 0.18 1.25 0.27

NAV 10 B (100,2) (5, 1) 4 0.67 0.16 0.83 0.24

NAV 15 B (225,2) (5, 1) 4 1.84 0.29 2.13 0.52

NAV 8 C (642,4) (72, 4) 5 1.45 1.39 2.84 23.54

NAV 10 C (1002,4) (72, 4) 5 2.41 1.51 3.92 58.24

NAV 14 C (1962,4) (72, 4) 5 5.38 1.74 7.12 346.83

SATS 3 S (512,3) (320, 2) 4 0.48 1.92 2.40 2.64

SATS 4 S (4096,4) (1600, 2) 4 5.25 15.38 20.63 23.75

SATS 5 S (32786,5) (8000,2) 4 45.79 106.58 154.17 189.65

SATS 3 C (1000,4) (500, 2) 5 2.04 3.82 5.86 6.26

SATS 4 C (10000,5) (2500, 2) 5 22.25 41.37 63.98 76.63

FISME 2 (42,4) (9, 4) 4 0.03 0.07 0.1 0.02

FISME 3 (43,5) (36, 4) 4 0.44 1.34 1.78 1.98

FISME 4 (44,6) (144, 4) 4 28.27 22.21 50.48 78.23

ZENO BOX (7,2) (5,1) 1 0.04 0.04 0.08 —

It is clear from Table 1 that Hare produces relatively small abstractions: in
some cases with two orders of magnitude reduction in the number of locations,
and often reducing the continuous state space by one or two dimensions. In
the extreme case of NAV n A, an abstraction with 6 discrete states is found in
4 iterations, independent of the size of the grid. This is not too surprising in

66 P. Prabhakar et al.

hindsight because the final abstraction clearly illustrates why only a constant
number of control locations can reach the unsafe region in this example, and it
successfully lumps all the unreachable locations together. Yet, the total verifica-
tion time is better for HyTech for NAV n A and NAV n B than Hare primarily
because, as discussed earlier, Hare makes numerous calls to HyTech not only
for model checking the abstract automaton but also for the validation and the
refinement refinement steps. Note that the time taken for abstraction refinement
is comparable to that of the time taken for direct verification by HyTech. Hare

’s advantage is apparent in the case of NAV C *, SATS, and FISME, where the
system consists of several automata evolving in parallel. In NAV C, for example,
since the motion of each of the robots can be abstracted into a simpler automa-
ton with less number of discrete locations, the state space of the composition of
these abstract automaton is reduced dramatically (exponentially in the number
of robots) and this is apparent in the differences in the running time.

In SATS, the time taken for validation is less compared to the time taken
for abstraction and refinement steps. This is primarily because of the nature
of the system. In SATS case study, the time taken to verify the abstractions is
considerable while compared to other case studies.

The advantage of variable-hiding abstraction is apparent in ZENO (HyTech
does not terminate in this case), as a subset of variables are sufficient to infer the
safety of the system.We believe that in a complex hybrid automaton, with several
components, adding the sufficient number of variables and abstracting the state
space of hybrid automaton will yield better abstractions. All of this suggests, a
direction of research, one we plan on pursuing, where the model-checker is more
closely integrated with an abstraction refinement tool such as Hare.

Acknowledgements. The authors would like to thank Nima Roohi for com-
ments on the draft. This work was supported in part by NSF Grant CNS 1016791.

References

1. HARE, https://wiki.cites.uiuc.edu/wiki/display/MitraResearch/HARE
2. Alur, R., Dang, T., Ivančić, F.: Counter-Example Guided Predicate Abstraction of

Hybrid Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208–223. Springer, Heidelberg (2003)

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid system
(2002)

4. Ball, T., Rajamani, S.: Bebop: A Symbolic Model Checker for Boolean Programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

5. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model
Checking of Hybrid Systems. JFCS 14(4), 583–604 (2003)

6. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Ver-
ification of Hybrid Systems Based on Counterexample-Guided Abstraction Re-
finement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
192–207. Springer, Heidelberg (2003)

https://wiki.cites.uiuc.edu/wiki/display/MitraResearch/HARE

Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems 67

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

8. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng,
H.: Bandera: Extracting finite-state models from Java source code. In: ICSE, pp.
439–448 (2000)

9. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement
for Timed Automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)

10. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic Rectangular Refinement of
Affine Hybrid Systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

11. Fehnker, A., Clarke, E.M., Jha, S., Krogh, B.: Refining Abstractions of Hybrid
Systems Using Counterexample Fragments. In: Morari, M., Thiele, L. (eds.) HSCC
2005. LNCS, vol. 3414, pp. 242–257. Springer, Heidelberg (2005)

12. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

13. Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: POPL
2002, pp. 58–70 (2002)

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proc. of STOC, pp. 373–382 (1995)

16. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
17. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A Model Checker for Hybrid Systems. In:

Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–483. Springer, Heidelberg
(1997)

18. Henzinger, T.A., Ho, P.-H., Howard, W.-T.: Hytech: A Model Checker for Hy-
brid Systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–483.
Springer, Heidelberg (1997)

19. Holzmann, G., Smith, M.: Automating software feature verification. Bell Labs
Technical Journal 5(2), 72–87 (2000)

20. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for Linear Hybrid
Automata Using Iterative Relaxation Abstraction. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007)

21. Munoz, C.A., Dowek, G., Carreo, V.: Modeling and verification of an air traffic
concept of operations. In: ISSTA, pp. 175–182 (2004)

22. Prabhakar, P., Duggirala, S., Mitra, S., Viswanathan, M.: Hybrid
automata-based cegar for rectangular hybrid automata, http://software.

imdea.org/people/pavithra.prabhakar/Papers/vmcai2013tr.pdf
23. Segelken, M.: Abstraction and Counterexample-Guided Construction of ω-

Automata for Model Checking of Step-Discrete Linear Hybrid Models. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Hei-
delberg (2007)

24. Sorea, M.: Lazy Approximation for Dense Real-Time Systems. In: Lakhnech,
Y., Yovine, S. (eds.) FORMATS/FTRFTS 2004. LNCS, vol. 3253, pp. 363–378.
Springer, Heidelberg (2004)

http://software.imdea.org/people/pavithra.prabhakar/Papers/vmcai2013tr.pdf
http://software.imdea.org/people/pavithra.prabhakar/Papers/vmcai2013tr.pdf

Quantifying Information Leakage
of Randomized Protocols�

Fabrizio Biondi1, Axel Legay2, Pasquale Malacaria3, and Andrzej Wąsowski1

1 IT University of Copenhagen, Denmark
2 INRIA Rennes, France

3 Queen Mary University of London, United Kingdom

Abstract. The quantification of information leakage provides a quanti-
tative evaluation of the security of a system. We propose the usage of
Markovian processes to model and analyze the information leakage of
deterministic and probabilistic systems. We show that this method gen-
eralizes the lattice of information approach and is a natural framework
for modeling refined attackers capable to observe the internal behavior
of the system. We also use our method to obtain an algorithm for the
computation of channel capacity from our Markovian models. Finally, we
show how to use the method to analyze timed and non-timed attacks on
the Onion Routing protocol.

1 Introduction

Quantification of information leakage is a recent technique in security analysis that
evaluates the amount of information about a secret (for instance about a password)
that can be inferred by observing a system. It has sound theoretical bases in In-
formation Theory [1,2]. It has also been successfully applied to pratical problems
like proving that patches to the Linux kernel effectively correct the security errors
they address [3]. It has been used for analysis of anonymity protocols [4,5] and
analysis of timing channels [6,7]. Intuitively, leakage of confidential information
of a program is defined as the difference between the attacker’s uncertainty about
the secret before and after available observations about the program [1].

The underlying algebraic structure used in leakage quantification for deter-
ministic programs is the lattice of information (LoI) [1]. In the LoI approach
an attacker is modelled in terms of possible observations of the system she can
make. LoI uses an equivalence relation to model how precisely the attacker can
distinguish the observations of the system. An execution of a program is modeled
as a relation between inputs and observables. In this paper we follow the LoI
approach but take a process view of the system. A process view of the system is a
more concise representation of behaviour than an observation relation. Moreover
a process view does not require that the system is deterministic, which allows us

� The research presented in this paper has been partially supported by MT-LAB, a
VKR Centre of Excellence for the Modelling of Information Technology.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 68–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantifying Information Leakage of Randomized Protocols 69

to handle randomized protocols—for the first time using a generic, systematic
and implementable LoI-based methodology.

We use Markov Decision Processes to represent the probabilistic partial-
information semantics of programs, using the nondeterminism of the model for
the choices that depend on the unknown secret. We define the leakage directly
on such model. With our method we can distinguish the inherent randomness
of a randomized algorithm from the unpredictability due to the lack of knowl-
edge about the secret. We exploit this distinction to quantify leakage only for
the secret, as the information leakage about the random numbers generated is
considered uninteresting (even though it is an information in information theo-
retical sense). We thus work with both deterministic and randomized programs,
unlike the previous LoI approach.

We give a precise encoding of an attacker by specifying her prior knowledge
and observational capabilities. We need to specify which of the logical states
of the system can be observed by the attacker and which ones he is able to
distinguish from each other. Given a program and an attacker we can calculate
the leakage of the program to the attacker.

We also show how to turn the leakage computation into leakage optimization:
we compute the maximum leakage over all possible prior information of attackers
ceteris paribus, or in other words, the leakage for the worst possible attacker
without specifying the attacker explicitly. This maximum leakage is known as
the channel capacity of the system [8]. Since we are able to model a very large
class of attackers the obtained channel capacity is robust. Computing channel
capacity using this method requires solving difficult optimization problems (as
the objective is nonlinear), but we show how the problem can be reduced to
standard reward optimization techniques for Markovian models for a class of
interesting examples.

Our method can be applied to finite state systems specified using a simple im-
perative language with a randomization construct. It can also be used for systems
modeled directly as Markov Decision Processes. We demonstrate the technique
using an MDP model of the known Onion Routing protocol [9], showing that
we can obtain the channel capacity for a given topology from an appropriate
Markov Decision Process describing the probabilistic partial information behav-
ior of the system. Also, our behavioral view of the system allows us to encode
an attacker with time-tracking capabilities and prove that such an attacker can
leak more information than the canonical attacker that only observes the traffic
on the compromised nodes. Timing-based attacks to the Onion Routing protocol
have been implemented before [10,11], but to our best knowledge the leakage of
timing-attacks has not been quantified before.

Our contributions include:

– A method for modeling attack scenarios consisting of process models of
systems and observation models of attackers, including a simple partial-
observability semantics for imperative programs, so that these models can
also be obtained from code.

70 F. Biondi et al.

– A definition of leakage that generalizes the LoI approach to programs with
randomized choices (strictly including the class of deterministic programs),
and dually the first application of the LoI approach to process specifications
of systems.

– A method for computing leakage for scenarios modeled as described above.
The method is fully implementable.

– A method to parameterize the leakage analysis on the attacker’s prior infor-
mation about the secret, to allow the computation of channel capacity by
maximizing an equation characterizing leakage as a function of prior infor-
mation.

– The worst-case analysis of the Onion Routing protocol when observed by
non time-aware and time-aware attackers able to observe the traffic passing
through some compromised nodes.

The paper proceeds as follows. Section 2 provides the core background on prob-
abilistic systems and the LoI approach. Section 3 gives an overview of our new
leakage quantification method. The non-obvious steps are further detailed in
Sections 4–6. In Sect. 7 we explain how to use the method for computing chan-
nel capacity, and we use this technique to analyze leakage in the onion routing
protocol against untimed and timing attacks (Sect. 8). We discuss the related
work (Sect. 9) and conclude (Sect. 10).

2 Background

2.1 Markovian Models

Definition 1. A tuple C = (S, s0, P) is a Markov Chain (MC), if S is a finite
set of states, s0 ∈S is the initial state and P is an |S| × |S| probability transition
matrix, so ∀s, t∈S. Ps,t ≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

The probability of transitioning from any state s to a state t in k steps can
be found as the entry of index (s, t) in P k [12]. We call π(k) the probability
distribution vector over S at time k and π

(k)
s the probability of visiting the state

s at time k; note that π(k) = π0P k, where π
(0)
s is 1 if s = s0 and 0 otherwise.

A state s ∈ S is absorbing if Ps,s = 1. In the figures we will not draw the
looping transition of the absorbing states, to reduce clutter.

Let ξ(s, t) denote the expected residence time in a state t in an execution
starting from state s given by ξ(s, t) =

∑∞
n=0 P n

s,t. We will write ξs for ξ(s0, s).
Given a Markov chain C = (S, s0, P) let a discrimination relation R be an

equivalence relation over S. Given C and R define the quotient of C by R as a
new Markov chain C/R = (S/R, s′

0, P ′) where

– S/R is the set of the equivalence classes of S induced by R
– s′

0 is the equivalence class of s0

Quantifying Information Leakage of Randomized Protocols 71

– P ′ : S/R × S/R → [0, 1] is a probability transition function between equiva-
lence classes of S/R such that

∀c, d ∈ S/R. P ′
c,d = 1

|c|
∑

s∈c
t∈d

Ps,t

Given k Markov chains C1 = (S1, s1
0, P 1),...,Ck = (Sk, sk

0 , P k) their synchronous
parallel composition is a MC C = (S, s0, P) where S is S1×...×Sk, s0 is s1

0×...×sk
0

and Ps1×...×sk,t1×...×tk =
∏k

i=1 Psi,ti .

Definition 2. A Markov Decision Process (MDP) is a tuple P = (S, s0, P, Λ)
where S is a finite set of states containing the initial state s0, Λs is the finite set
of available actions in a state s ∈ S and Λ =

⋃
s∈S Λs, and P : S ×Λ×S → [0, 1]

is a transition probability function such that ∀s, t ∈ S.∀a ∈ Λs. P (s, a, t) ≥ 0 and
∀s ∈ S.∀a ∈ Λs.

∑
t∈S P (s, a, t) = 1.

We we will write s
a−→ [P1 �→ t1, ..., Pn �→ tn] to denote that in state s ∈ S

the system can take an action a ∈ Λs and transition to the states t1, ..., tn with
probabilities P1, ..., Pn.

We will enrich our Markovian models with a finite set V of integer-valued
variables, and an assignment function A : S → Z|V| assigning to each state the
values of the variables in that state. We will use the expression vs to denote the
value of the variable v ∈ V in the state s ∈ S. Later we will use the values of the
variables to define the discrimination relations, as explained in Section 6.

2.2 Reward and Entropy of a Markov Chain

A real-valued reward functions on the transitions of a MC C = (S, s0, P) is a
function R : S × S → R. Given a reward function on transitions, the expected
reward R(s) for a state s ∈ S can be computed as R(s) =

∑
t∈S Ps,tR(s, t), and

the expected total reward R(C) of C as R(C) =
∑

s∈S R(s)ξs.
The entropy of a probability distribution is a measure of the unpredictabil-

ity of the events considered in the distribution [13]. Entropy of a discrete
distribution over the events x ∈ X is computed as

∑
x∈X P(x) log2

1
P(x)=-

∑
x∈X P(x) log2 P(x). We will sometimes write H(P(x1), P(x2), .., P(xn)) for

the entropy of the probability distribution over x1, ..., xn.
Since every state s in a MC C has a discrete probability distribution over the

successor states we can calculate the entropy of this distribution. We will call it
local entropy, L(s), of s: L(s) = −

∑
t∈S Ps,t log2 Ps,t. Note that L(s) ≤ log2(|S|).

As a MC C can be seen as a discrete probability distribution over all of its
possible traces, we can assign a single entropy value H(C) to it. The global
entropy H(C) of C can be computed by considering the local entropy L(s) as the
expected reward of a state s and then computing the expected total reward of
the chain [14]:

H(C) =
∑

s∈S

L(s)ξs

72 F. Biondi et al.

2.3 Lattice of Information

Let Σ be a finite set of observables over a deterministic program P . Consider all
possible equivalence relations over Σ; each of them represents the discriminating
power of an attacker. Given two equivalence relations ≈, ∼ over Σ define a
refinement ordering as

≈
 ∼ iff ∀σ1, σ2 ∈ Σ (σ1 ∼ σ2 ⇒ σ1 ≈ σ2) (1)

The ordering forms a complete lattice over the set of all possible equivalence
relations over Σ [15]: the Lattice of Information (abbreviated as LoI).

If ≈
 ∼ then classes in ∼ refine (split) classes in ≈, thus ∼ represents an
attacker that can distinguish more while ≈ represents an attacker that can dis-
tinguish less observables.

By equipping the set Σ with a probability distribution we can see an equiva-
lence relation as a random variable (technically it is the set theoretical kernel of
a random variable but for information theoretical purposes can be considered a
random variable [1]). Hence the LoI can be seen as a lattice of random variables.

The connection between LoI and leakage can be illustrated by this simple
example: consider a password checking program checking whether the user input
is equal to the secret h. Then an attacker observing the outcome of the password
check will know whether the secret is h or not, hence we can model the leakage
of such a program with the equivalence relation {{h}, {x|x �= h}}.

More generally, observations over a deterministic program P form an equiva-
lence relation over the possible states of P . A particular equivalence class will be
called an observable. Hence an observable is a set of states indistinguishable by
an attacker making that observation. If we consider an attacker able to observe
the outputs of a program then the random variable associated to a program P
is given by the equivalence relation on any two states σ, σ′ from the universe of
program states Σ defined by

σ σ′ ⇐⇒ [[P]](σ) = [[P]](σ′) (2)

where [[P]] represents the denotational semantics of P [16]. Hence the equivalence
relation amounts to “having the same observable output”. This equivalence rela-
tion is nothing else than the set-theoretical kernel of the denotational semantic
of P [17].

Given a random variable associated to an attacker’s observations of a deter-
ministic program P the leakage of P is then defined as the Shannon entropy of
that random variable. It is easy to show that for deterministic programs such
entropy is equal to the difference between the attacker’s a priori and a posteriori
uncertainty about the secret and that it is zero if and only if the program is
secure (i.e. non interferent) [1].

More intentional attackers in the LoI setting are studied in [18,7], however this
is the first work where LoI is used to define leakage in a probabilistic setting.

Quantifying Information Leakage of Randomized Protocols 73

Fig. 1. Simple loop example a) MDP semantics b) MC model

3 Information Leakage of Markov Chains

We begin with an overview of the proposed technique for leakage quantification.
It proceeds in five steps, that are all fully automatable for finite state programs.
Let a scenario be a pair (P , A), where P is the system we want to analyze and A
is an attacker. We will call P the program, even if it can be any system suitably
modeled as an MDP as explained in Sect. 4.

Step 1: Define a MDP representing P (Sections 4, 8). We first give a probabilistic
semantics to the program in the form of an MDP, in which probabilistic choices
are represented by successor state distributions and branching is represented by
decision states. This is more or less standard definition of operational semantics
for randomized imperative programs.
Example [17]. A program has two variables l and h. Variable h is 2-bit long and
private, while variable l is public. The attacker can read l but not h:

l = 0; while (l != h) do l = l + 1;

The MDP representing the probabilistic partial information semantics of the
program is depicted in Fig. 1a. The states in which the system stops and produces
an output are encoded with the absorbing states of the MDP, i.e. the states with
a probability of transitioning to themselves equal to 1. In the MDP in Fig. 1a
states S1, S3, S5 and S6 are absorbing states.

Step 2: Define the attacker A. An attacker is an external agent observing the
system to infer information about its private data. We assume that the attacker
knows the implementation of the system (white-box), but is not necessarily able
to observe and discriminate all the logical states of the system at runtime. We
specify the prior information about the system that the attacker might have,
and which system states she can observe and discriminate at runtime.
Definition 3. An attacker is a triple A = (I, RA, TA) where I is a probability
distribution over the possible values of the secret encoding the attacker’s prior in-
formation about it, RA is a discrimination relation over the states of the system

74 F. Biondi et al.

Fig. 2. Simple loop example c) Observable reduction d) Relabeling e) Quotient

in which two states are in the same class iff the attacker cannot discriminate
them, and TA ⊆ S is the set of states hidden to the attacker.
Example. In our example we will use the following attacker: I = (1/4, 1/4, 1/4, 1/4)
(no prior information), TA = (S2, S4) (cannot observe internal states) and RA =
{(S1, S5), (S3, S6)} (cannot distinguish states S1 from S5 and S3 from S6).

Step 3: Resolve the nondeterminism in the MDP. To transform the MDP in a
MC, an thus compute leakage, we need to exploit the prior information I of the
attacker. We use it to compute a probability distribution over possible values of
private variables in each states of the MDP. To do this for a given state s we
just need to normalize I on the allowed values of the private variables for the
state. The probability of the each action a ∈ Λs is computed as the probability
of the event labelling a given the probability distribution over the values of the
secret in s. We will denote the obtained MC by C.
Example. In state S0 the probability distribution over h is I = (1/4, 1/4, 1/4, 1/4)
and l=0. The program transitions to state S1 if h=l and to state S2 if h �=l. We
have that PS0,S1 is P(h = l|S0) = 1/4 and the probability distribution on h in S1
is (1, 0, 0, 0). Complementarily, PS0,S2 is 3/4 and the probability distribution on
h in S2 is (0, 1/3, 1/3, 1/3). Figure 1b shows the outcome after repeating this step
in all states of the MDP of Fig. 1a.

Step 4: Hide non-observable states (Sect. 5). In the above example the attacker
cannot observe the internal states of the system. We expressed this by taking
TA = (S2, S4). Since these states are not observable, we remove them from
the MC and redistribute the probability of visiting them to their successors.
If a hidden state has no or only hidden successors, it will never produce any
observable—we call this event divergence. In general we assume that the observer
can understand if the program diverges, so divergence is one of the possible
outputs of the system. We write C for the MC resulting from hiding in C the
states of TA. We call C the observable reduction of the scenario.
Example. Figure 2c presents the observable reduction for the running example.

Quantifying Information Leakage of Randomized Protocols 75

Step 5: Compute the leakage (Sect. 6). From the observable reduction C and
the attacker’s discrimination relation RA we can compute the leakage for the
scenario (P , A). The definition of leakage for this model is based on the quotient
operator for Markov chains. A quotiented MC C/R captures the view of the
chain when observed by an agent able to distinguish equivalence classes of R.
Let Rh be a discrimination relation that relates states with the same possible
values of the secret that is finer than probabilistic bisimulation. Then leakage
is the mutual information between the attacker and the system as seen by an
agent able to discriminate only states with different values of the secret:

Definition 4. Let (P , A) be a scenario, A = (I, RA, TA) an attacker, C the
observable reduction of the scenario and Rh = {(s, t) ∈ S|hs = ht}. Then the
information leakage of P to A is

I(C/Rh;C/RA) = H(C/Rh) + H(C/RA) − H(C/RA ∩ Rh).

Corollary 1. If P is a deterministic program, then the leakage is H(C/RA).

Example. Recall that in the running example the attacker is only able to read the
parity of l. We have that RA = {(S1, S5), (S3, S6)}. We name the equivalence
classes even and odd and relabel the state with the classes (see Fig. 2d). The
quotient C/RA is depicted in Fig. 2e. The program is deterministic, so by Corol-
lary 1 the leakage of the scenario is equivalent to the entropy of such quotient,
or 1 bit [14].

4 Handling Randomized Imperative Programs

We give a simple probabilistic partial-observation semantics for an imperative
language with randomization. This semantics, akin to abstract interpretation,
derives Markovian models of finite state programs automatically. Let all vari-
ables be integers of predetermined size and class (public, private) declared before
execution. Private variables are read-only, and cannot be observed externally. De-
note by l (resp. h) names of public (resp. private) variables; by p reals from [0; 1];
by label all program points; by f (g) pure arithmetic (Boolean) expressions.
Assume a standard set of expressions and the following statements:

stmt ::= l := f(l...) | l := rand p | skip | goto label |
return | if g(l...,h...) then stmt-list else stmt-list

The first statement assigns to a public variable the value of expression f depend-
ing on other public variables. The second assigns zero with probability p, and
one with probability 1−p, to a public variable. The return statement outputs
values of all public variables and terminates. A conditional branch first evalu-
ates an expression g dependent on private and public variables; the first list
of statements is executed if the condition holds, and the second otherwise. For
simplicity, all statement lists must end with an explicit jump, as in: if g(l,h)
then ...; goto done; else ...; goto done; done: Each program can be

76 F. Biondi et al.

pc: skip

(pc, L, H) �−→ [1 �→ (pc + 1, L, H)]

pc: v := f(l)

(pc, L, H) �−→ [1 �→ (pc + 1, L[f(l)/v], H)]

pc: v := rand p

(pc, L, H) �−→ [p �→ (pc + 1, L[0/v], H), (1 − p) �→ (pc + 1, L[1/v], H)]

pc: goto label

(pc, L, H) �−→ [1 �→ (label, L, H)]

pc: return

(pc, L, H) �−→ [1 �→ (pc, L, H)]

pc: if g(l,h) then la: A else lb: B

(pc, L, H) g(l,h)−−−−→ [1 �→ (la, L, H |g(l,h))]

pc: if g(l,h) then la: A else lb: B

(pc, L, H) ¬g(l,h)−−−−−→ [1 �→ (lb, L, H |¬g(l,h))]

Fig. 3. Execution rules in probabilistic partial information semantics

easily transformed to this form. Loops can be added in a standard way as a
syntactic sugar.

The probabilistic partial-information semantics assumes an external view of
the program, so private variables are not visible. A state in this view is a triple
(pc, L, H), where pc is the current program counter, L maps public variables to
integer values of the appropriate size, and H maps private variables to sets of
their possible values. If the observer knows nothing about a private variable h,
the set H(h) holds all the values of h’s type. If the observer holds some prior
information, or learns through interaction with the system, this set is smaller.

The semantics (Fig. 3) is a small-step operational semantics with transitions
from states to distributions over states, labeled by expressions dependent on h
(only used for the conditional statement). It generates an MDP over the reach-
able state space. In Fig. 3, v, l are public variables and h is a private variable.
Expressions in rule consequences stand for values obtain in a standard way. L[X/l]
denotes substition of X as the new value for l in mapping L. Finally, H |g denotes
a restriction of each set of possible values in a mapping H , to contain only val-
ues that are consistent with Boolean expression g. Observe that the return rule
produces an absorbing state—this is how we model termination in an MDP. The
rand rules produces a proper distribution, unlike the other Dirac distributions.
The if rule produces a nondeterministic decision state.

In the obtained MDP states are labelled by values of public variables and
sets of values of private variables. Actions from each state represent the secret-
dependent events for the state. Our leakage quantification technique works for
any MDP of this shape, even the ones not necessarily obtained from code. In
Sect. 8 we will create such a model directly from a topology of the Onion Routing
protocol.

Quantifying Information Leakage of Randomized Protocols 77

1. Take C \ T = (S, s0,P) and P = P
2. Add to the MC the divergence state ↑ with P↑,↑ = 1
3. Choose a hidden state t ∈ T , or terminate if T is empty
4. Let Pred(t) = {s ∈ S \{t} | Ps,t > 0} be the set of predecessors of t
5. Let Succ(t) = {u ∈ S \{t} | Pt,u > 0} be the set of successors of t
6. If Pt,t = 1:

(a) For each state s ∈ Pred(t) set Ps,↑ = Ps,t

(b) Remove t from S and T and go back to step 3
7. Else

(a) For each u ∈ Succ(t) set Pt,u := Pt,u

1−Pt,t

(b) Set Pt,t = 0
(c) For each s ∈ Pred(t) and u ∈ Succ(t) set Ps,u := Ps,u + Ps,tPt,u

(d) Remove t from S and T and go back to step 3

Fig. 4. Computing C\T = (S \T, s0, P) for a MC C = (S, s0, P) and hidden states
T ⊂S

5 Hiding Non-observable States

In the simple loop example of Sect. 3 the attacker is unable to observe states S2
and S4; we call these non-observable states hidden. His view of the system is thus
adequately represented by the MC in Fig. 2c. In this figure the probability of trans-
ferring from the state S0 to state S5 is the probability of reaching S5 from S0 in the
MC of Fig. 1b eventually, so after visiting zero or more hidden states.

Note that the initial state cannot be hidden, as we assume the attacker knows
that the system is running. This assumption does not restrict the power of the
approach, since one can always model a system, whose running state is unknown,
by prefixing its initial state by a pre-start state, making it initial, and hiding the
original initial state.

We present the hiding algorithm in Fig. 4. We will overload the symbol \ to use
for the hiding operation: we write C \ T for the observable MC obtained from C
by hiding the states in set T . If a system stays in a hidden state forever, we say it
diverges. Divergence will be symbolized by a dedicated absorbing state named ↑.
Otherwise, we compute the new successor probabilities for t; we accomplish this
by setting the probability of transitioning from t to itself to 0 and normalizing
the other probabilities accordingly. Then we compute the probability that each
of its predecessors s would transition to each of its successors u via t and add it
to the transition probability from s to u, and finally we remove t from the MC.

The difference between states that cannot be discriminated and hidden states
is of primary importance. The former assumes that the attacker is aware of the
existence of such states, and thus knows when the system is in one of them, but is
not able to discriminate them because they share the same observable properties.
For instance, if the attacker can only read the system’s output he will not be
able to discriminate between different states that produce the same output. In
contrast the attacker has no way to observe the behavior of the system when
it is in an hidden state, not even by indirect methods like keeping track of the

78 F. Biondi et al.

discrete passage of time. For instance, if the attacker can only read the system’s
output, the states of the system that produce no output will be hidden to him.

6 Collapsing Non-discriminable States

Discrimination relations are equivalence relations that we use to encode the
fact that some states cannot be observed separately by the attacker, since they
share some observable properties. Different attackers are able to observe different
properties of the states, and thus discriminate them differently.

The discrimination relation RA represents the attacker’s inability to deter-
mine when the system is in a particolar state due to the fact that different states
have the same observable properties. We define equivalence classes based on RA,
and the attacker knows that the system is in one of these classes but not in which
state. This is encoded by relabelling the states of the MC with their equivalence
classes in RA and then quotienting it by RA.

We need to impose a restriction to RA, since not all discrimination relations
are suitable for encoding attackers: the attacker is always able to discriminate
states if they behave differently in the relabelled model. Let CRA be the MC
C in which the states are labeled with their equivalence class in S/RA. Then
RA encodes the discrimination relation of an attacker only if the states with the
same label in CRA are probabilistically bisimilar.

As a result of this condition, all traces in C/RA are relabelled projections of
traces in C. This is fundamental to prevent the attacker from expecting traces
that do not appear in the actual computation. It also allows us to generalize
the discrimination relation ordering used in the LoI approach [1]. Let A1 =
(I1, TA1 , RA1) and A2 = (I2, TA2 , RA2) be two attackers, and define

A1
 A2 iff I1 = I2 ∧ TA1 = TA2 ∧ RA1 ⊆ RA2

Theorem 1. Let A1 and A2 be two attackers such that A1
 A2. Then for
any program P, the leakage of the scenario (P , A1) is greater or equal then the
leakage of the scenario (P , A2).
Effectively, the attacker that is able to discriminate more states (a language-like
qualitative property) is able to leak more information (an information-theoretical
quantitative property). The attacker with the highest leakage can discriminate
all states, thus its discrimination relation is the identity; the attacker with the
lowest leakage cannot discriminate any state from any other, and thus has leak-
age 0.

The common definition of leakage of the LoI approach [2] assumes that the
attacker can observe the different output of a deterministic system. It can be
easily encoded in our method. Consider a deterministic program P with a low-
level variable o encoding the output of the program. Let the an attacker AI/O

have RAI/O
= {(s, t) ∈ S × S | os = ot} and TAI/O

being the set of all internal
states of the MDP semantics of P . The following proposition states that such
attacker is the one considered in [2]:

Quantifying Information Leakage of Randomized Protocols 79

Theorem 2. Let (P , AI/O) be a scenario, AI/O being the attacker defined above.
Then H(C/RAI/O) = Leakage(P).

7 Computing Channel Capacity

The method we presented computes the leakage for a scenario, but it is common
in security to ask what is the leakage of a given program in the worst-case sce-
nario, i.e. for the scenario with the highest leakage. We consider the maximum
leakage over all the attackers with the same discrimination relation RA and hid-
den states TA but different prior information I. We define a class of attackers
this way because maximizing over all discrimination relations would just con-
clude that the attacker able to discriminate all states leaks all the information
in the system. The maximum leakage for a class of attackers is known as channel
capacity, and it is the upper bound to the leakage of the system to any attacker
[8]:

Definition 5. Let P be a program and A the class of all attackers with discrim-
ination relation RA and hidden states TA. Let Â ∈ A be the attacker maximizing
the leakage of the scenario (P , A) for all A ∈ A. Then the channel capacity of
P is the leakage of the scenario (P , Â).

Fig. 5. Reduction from MDP
to parameterized MC

To compute it we procede as follows. We first
transform the MDP semantics of P in a param-
eterized MC with constraints. Then we define a
MC and a reward function from it such that the
expected total reward of the MC is equivalent to
the leakage of the system. Then we extract an
equation with constraints characterizing this re-
ward as a function of the prior information I of
the attacker. Finally, we maximize the equation
and obtain the maximum leakage, i.e. the chan-
nel capacity. In the next Section we will apply
this method to compute the channel capacity of
attacks to the Onion Routing protocol.

Step 1: Find the parameterized MC. We abuse
the notation of Markov chain allowing the use of
variables in the transition probabilities. This allows us to transform the MDP se-
mantics of a program P in a MC with the transition probabilities parameterized
by the probability of choosing the actions in each state.

Consider the MDP in Fig 5a; in state S0 either h = 0 or h �= 0 and the system
moves to the next state with the appropriate transition probability. Let P(0)
and P(¬0) be P(h = 0|S0) and P(h �= 0|S0) respectively; then we can transform
the MDP in the MC in Fig 5b, with the constraint P(0) + P(¬0) = 1.

We hide the states in TA in the MC obtaining the observational reduction C,
as described in Sect. 5.

80 F. Biondi et al.

Step 2: Define a reward function for leakage. We want to define a reward function
on the parameterized MC such that the expected total reward of the chain is
equivalent to the leakage of the system. This step can be skipped if the leakage
equation can be obtained directly from the model, like in the examples in the
next Section. In the example in Fig. 5 the system is deterministic, so its leakage
is equal to its entropy by Corollary 1, and we just need to define the entropy
reward function on transitions R(s, t) = − log2 Ps,t, as explained in [14].

For a probabilistic system we need to build another MC by composing C/Rh,
C/RA and C/RA ∩ Rh, and we define the leakage reward function on the com-
posed chain:

Theorem 3. Let C be the parallel composition of C/Rh, C/RA and C/RA∩Rh.
Let R be a reward function on the transitions of C such that

R(s1 × s2 × s3, t1 × t2 × t3) = log2
Ps1,t1 Ps2,t2

Ps3,t3

.

Then the expected total infinite time reward of C with the reward function R is
equivalent to H(C/Rh) + H(C/RA) − H(C/RA ∩ Rh) and thus to the leakage.

Step 3: Extract the leakage as an equation. Now that we have a reward function
R on the transitions of a MC characterizing the leakage of the system, we need
to maximize it. One possible strategy is to extract the explicit equation of the
reward of the chain as a function of the transition probabilities, which them-
selves are a function of the prior information I. For a reward function R(s, t) on
transitions the reward for the MC is

R(C) =
∑

s∈S

R(s)ξs =
∑

s∈S

(
∑

t∈S

Ps,tR(s, t) ·
∞∑

k=0
Ps0,s

)

Since for the leakage reward function R(s, t) is a function of Ps,t, the transition
probabilities are the only variables in the equation.

In the example in Fig. 5 the leakage is equal to the entropy, so the reward
function is R(s, t) = − log2 Ps,t and the leakage equation is

R(C) = − (P(0)/4 + P(¬0)/2) log ((P(0)/4 + P(¬0)/2)) −
− (3P(0)/4 + P(¬0)/2) log ((3P(0)/4 + P(¬0)/2)) (3)

under the constraint above.

Step 4: Maximize the leakage equation Maximizing the extracted constrained
leakage equation computes the channel capacity of the system. This can be done
with any maximization method. Note that in general the strategy maximizing
this reward function will be probabilistic, and thus will have to be approximated
numerically. In the cases in which the maximum leakage strategy is determin-
istic, an analytical solution can be defined via Bellman equations. This case is
more complex that standard reward maximization for MDPs, since the strategy

Quantifying Information Leakage of Randomized Protocols 81

in every state must depend on the same prior information I, and this is a global
constraint that cannot be defined in a MDP. A theoretical framework to auto-
mate this operation is being studied, but most cases are simple enough to not
need it, like the examples in the next Section.

8 Onion Routing

8.1 Case: Channel Capacity of Onion Routing

Onion Routing [9] is an anonymity protocol designed to protect the identity of
the sender of a message in a public network. Each node of the network is a router
and is connected to some of the others, in a directed network connection topology;
the topology we consider is the depicted in Fig. 6. When one of the nodes in the
topology wants to send a message to the receiver node R, it initializes a path
through the network to route the message instead of sending it directly to the
destination. The node chooses randomly one of the possible paths from itself to
R, respecting the following conditions:

1. No node can appear in the path twice.
2. The sender node cannot send the message directly to the receiver.
3. All paths have the same probability of being chosen.

If some nodes are under the control of an attacker, he may try to gain information
about the identity of the sender. In this example node 3 is a compromised node;
the attacker can observe the packets transitioning through it, meaning that when
a message passes through node 3 the attacker learns the previous and next node
in the path. The goal of the attacker is to learn the identity of the sender of the
message; since there are 4 possible senders, this is a 2-bit secret.

Fig. 6. Network topology for
Onion Routing

h Path o P(O|h)
1(h1) 1 → 2 → R NN 1

2
1 → 2 → 3 → R 2R 1

2
2(h2) 2 → 3 → R 2R 1
3(h3) 3 → 2 → R N2 1
4(h4) 4 → 3 → R 4R 1

2
4 → 3 → 2 → R 42 1

2

Fig. 7. Onion Routing paths, ob-
servations and probabilities

Figure 7 summarizes the possible secrets of the protocol, the corresponding
paths, the observation for each path assuming node 3 is compromised and the
probability that a given sender will choose the path.

82 F. Biondi et al.

Fig. 8. Markov Decision Process for Onion Routing

We give directly the MDP semantics of the system in Fig. 8; its WHILE code
is not shown for simplicity. The prior information I of the attacker consists of
the prior probabilities he assigns to the identity of the sender; we use hi to
denote P(h =i), for i = 1...4. Clearly h1 + h2 + h3 + h4 = 1. The full system is
represented in Fig. 8, parameterized on the hi parameters. Each state is labelled
with the low-level variables l and o and the confidential variable h. Variable l
represents the name of the node being visited in the Onion Routing topology,
o represents the observables in that node (the nodes before and after it in the
path), and h the name of the sender of the message.

Since the attacker can observe only node 3, all states with l �= 3 except the
initial state are unobservable τ -states. We reduce the chain accordingly; the
resulting observational reduction is shown in Fig. 9a. We call it C. Note that one
of the paths does not pass through node 3, so if that path is chosen the attacker
will never observe anything; in that case the system diverges. We assume that
the attacker can recognize this case, using a timeout or similar means.

To compute the leakage we need also to define Rh and RA. This is straightfor-
ward; Rh is ((s, t) ∈ (S×S)|hs = ht) and RA is ((s, t) ∈ (S×S)|os = ot). The re-
sulting MCs C/Rh and C/RA are shown in Fig. 9bc. Note that C/Rh ∩RA = C.

Quantifying Information Leakage of Randomized Protocols 83

Fig. 9. Markov chains for Onion Routing: a) Observable reduction C b) C/Rh c) C/RA

Since the system is very simple, we can extract the leakage equation directly
from Def. 4. The leakage parameterized on I is

H(C/Rh) + H(C/RA) − H(C/RA ∩ Rh) =

= H(h1, h2, h3, h4) + H(h1
2

,
h1
2

+ h2, h3,
h4
2

,
h4
2

)−

H(h1
2

,
h1
2

, h2, h3,
h4
2

,
h4
2

)

(4)

Under constraints 0 ≤ hi ≤ 1 and h1 + h2 + h3 + h4 = 1 it has its maximum of
1.819 bits at h1 = 0.2488, h2 = 0.1244, h3 = 0.2834, h4 = 0.2834, thus these are
the channel capacity and the attacker with highest leakage.

8.2 Case: Channel Capacity of Discrete Time Onion Routing

Due to our intensional view of the system, we can naturally extend our analysis
to integrate timing leaks. Time-based attacks on the Tor implementation of the
Onion Routing network have been proven to be effective, particularly in low-
latency networks [10,11]. We show how to quantify leaks for an attacker capable
to make some timing observations about the network traffic.

In this example there are two compromised nodes, A and B, and the attacker
is able to count how many time units pass between the message being forwarded
by A and the message arriving in B. The topology of the network is shown in
Fig. 10 and the relative paths, observations and probabilities in Fig. 11. We will
ignore messages departing from the compromised nodes A and B for simplicity.

84 F. Biondi et al.

Fig. 10. Network topology for
Timed Onion Routing

h Path o P(O|h)
1(h1) 1 → A → 3 → 4 → B → R 13, 4R 1

2
1 → A → 3 → 2 → 4 → B → R 13, 4R 1

2
2(h2) 2 → 4 → B → R NN, 4R 1

2
2 → 1 → A → 3 → 4 → B → R 13, 4R 1

2
3(h3) 3 → 4 → B → R NN, 4R 1

2
3 → 2 → 4 → B → R NN, 4R 1

2
4(h4) 4 → B → R NN, 4R 1

Fig. 11. Timed Onion Routing paths, observations
and probabilities

We add to the system a low-level variable t that represents the passage of the
time between the message passing by A and passing by B. Variable t is initialized
to 0 when the message passes by A and increased by 1 at each subsequent step.
We will analyze the difference of leakage between the attacker AT that can
discriminate states with different values of t and the attacker AN that does not
have this power.

Both attackers are able to observe nodes A and B, so they have the same
hidden states. Their observable reduction C of the system is the same, depicted
in Fig. 12a. The secret’s discrimination relation is also the same: Rh is ((s, t) ∈
(S × S)|hs = ht), and the resulting quotient C/Rh is depicted in Fig. 12b.

The two attackers have two different discrimination relations. For the attacker
AN , who is not able to keep count of the discrete passage of time, the relation
is RAN = ((s, t) ∈ (S × S)|os = ot), while for the time-aware attacker AT it
is RAT = ((s, t) ∈ (S × S)|os = ot ∧ ts = tt). The resulting MCs C/RAN and
C/RAT are shown in Fig. 13.

Note that since the time-aware attacker has strictly more discriminating power,
since RAT ⊆ RAN , we expect that he will leak more information. We show now
how to validate this intuition by computing the difference of the leakage between
AT and AN . The difference of the leakage between the two attackers is

I(C/Rh;C/RAT) − I(C/Rh;C/RAN) =
H(C/Rh) + H(C/RAT) − H(C/RAT ∩ Rh) − H(C/Rh)−

− H(C/RAN) + H(C/RAN ∩ Rh) =
H(C/RAT) − H(C/RAN) =

H

(

h1 + h2
2

,
h2
2

+ h3 + h4

)

+
(

h1 + h2
2

)

H

(
1
3

,
2
3

)

−

− H

(

h1 + h2
2

,
h2
2

+ h3 + h4

)

=
(

h1 + h2
2

)

H

(
1
3

,
2
3

)

≈

0.91829
(

h1 + h2
2

)

(5)

Quantifying Information Leakage of Randomized Protocols 85

Fig. 12. Markov chains for Timed Onion Routing: a) Observable reduction C b) C/Rh

showing that the time-aware attacker AT leaks ≈ 0.91829
(
h1 + h2

2
)

bits of in-
formation more than the time-unaware attacker AN .

9 Related Work

Alvim, Andrés and Palamidessi [19] study leakage and channel capacity of interac-
tive systems where secrets and observables can alternate during the computation.

Chen and Malacaria study leakage and channel capacity of traces and sub-
traces of programs [18], and, in [20], consider transition systems with particular
attention to multi-threaded programs. They use Bellman equations to determine
the minimal and maximal leakage. None of these works however deal explicitly
with Markov Chains and randomized systems.

Intensional aspects of systems like timing leaks have been investigated by
Köpf et al. in [7,6] and more recent work by Köpf, Mauborgne and Ochoa has
investigated caching leaks [21].

Channel capacity for the Onion Routing protocol has been first characterized
by Chen and Malacaria using Lagrange multipliers [5].

Recently Alvim et al. [22] have proposed a generalization of min-leakage by
encapsulating it in problem-dependent gain functions. They suggest a general-
ization of LOI which would be interesting to compare with our work. On the
other hand the use of alternative measure of leakage like g-leakage is a relatively

86 F. Biondi et al.

Fig. 13. Markov chains for Timed Onion Routing: a) C/RAN b) C/RAT

orthogonal idea and could be applied to our approach as well, substituting min-
leakage with Shannon leakage.

The Lattice of Information approach to security seems to be related to the
Abstract Interpretation approach to code obfuscation investigated by Giacobazzi
et al. [23]; it would be interesting to further understand the connection between
these approaches.

10 Conclusion
We presented a method to quantify the information leakage of a probabilistic sys-
tem to an attacker. The method considers the probabilistic partial information se-
mantics of the system and allows to encode attackers that can partially observe
the internal behavior of the system. The method presented can be fully automated,
and an implementation is being developed. The paper extends the consolidated LoI
approach for leakage computation to programs with randomized behavior.

We extended the method to compute the channel capacity of a program, thus
giving a security guarantee that does not depend on a given attacker, but consid-
ers the worst case scenario. We show how this can be obtained by maximizing an
equation parameterized on the prior information of the attacker. The automati-
zation of this computation raises interesting theoretical problems, as it requires
to encode the property that all probability distributions on state must be derived
from the same prior information, and thus involves a global constraint. We in-
tend to work further on identifying suitable optimizations for constraints arising
in this problem.

Finally, we analyzed the channel capacity of the Onion Routing protocol,
encoding the classical attacker able to observe the traffic in a node and also a new
attacker with time-tracking capacilities, and we proved that the time-tracking
attacker is able to infer more information about the secret of the system.

References
1. Malacaria, P.: Algebraic foundations for information theoretical, probabilistic and

guessability measures of information flow. CoRR abs/1101.3453 (2011)
2. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information

flow in a simple imperative language. Journal of Computer Security 15, 321–371
(2007)

Quantifying Information Leakage of Randomized Protocols 87

3. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Gates, C.,
Franz, M., McDermott, J.P. (eds.) ACSAC, pp. 261–269. ACM (2010)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comput. 206, 378–401 (2008)

5. Chen, H., Malacaria, P.: Quantifying maximal loss of anonymity in protocols. In:
Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.)
ASIACCS, pp. 206–217. ACM (2009)

6. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: CSF, pp. 44–56. IEEE Computer Society (2010)

7. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference
on Computer and Communications Security, pp. 286–296. ACM (2007)

8. Millen, J.K.: Covert channel capacity. In: IEEE Symposium on Security and Pri-
vacy, pp. 60–66 (1987)

9. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing. Commun. ACM 42,
39–41 (1999)

10. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: Proceedings of
the 2005 IEEE Symposium on Security and Privacy, SP 2005, pp. 183–195. IEEE
Computer Society, Washington, DC (2005)

11. Abbott, T.G., Lai, K.J., Lieberman, M.R., Price, E.C.: Browser-Based Attacks on
Tor. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 184–199.
Springer, Heidelberg (2007)

12. Cover, T., Thomas, J.: Elements of information theory. Wiley, New York (1991)
13. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-

nical Journal 27, 379–423 (1948)
14. Biondi, F., Legay, A., Nielsen, B.F., Wąsowski, A.: Maximizing entropy over markov

processes (2012) (under review), http://www.itu.dk/people/fbio/maxent.pdf
15. Landauer, J., Redmond, T.: A lattice of information. In: CSFW, pp. 65–70 (1993)
16. Winskel, G.: The formal semantics of programming languages - an introduction.

Foundation of computing series. MIT Press (1993)
17. Malacaria, P.: Risk assessment of security threats for looping constructs. Journal

of Computer Security 18, 191–228 (2010)
18. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage

in different observational models. In: Erlingsson, Ã., Pistoia, M. (eds.) PLAS, pp.
135–146. ACM (2008)

19. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Quantitative information flow in in-
teractive systems. Journal of Computer Security 20, 3–50 (2012)

20. Chen, H., Malacaria, P.: The Optimum Leakage Principle for Analyzing Multi-
threaded Programs. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 177–
193. Springer, Heidelberg (2010)

21. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic Quantification of Cache Side-
Channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
564–580. Springer, Heidelberg (2012)

22. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: CSF (2012)

23. Preda, M.D., Giacobazzi, R.: Semantics-based code obfuscation by abstract inter-
pretation. Journal of Computer Security 17, 855–908 (2009)

http://www.itu.dk/people/fbio/maxent.pdf

Reductions for Synthesis Procedures�

Swen Jacobs1, Viktor Kuncak2, and Philippe Suter2

1 Graz University of Technology, Austria
swen.jacobs@iaik.tugraz.at

2 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract. A synthesis procedure acts as a compiler for declarative spec-
ifications. It accepts a formula describing a relation between inputs and
outputs, and generates a function implementing this relation. This paper
presents the first synthesis procedures for 1) algebraic data types and 2)
arrays. Our procedures are reductions that lift a synthesis procedure for
the elements into synthesis procedures for containers storing these ele-
ments. We introduce a framework to describe synthesis procedures as
systematic applications of inference rules. We show that, by interpreting
both synthesis problems and programs as relations, we can derive and
modularly prove widely applicable transformation rules, simplifying both
the presentation and the correctness argument.

1 Introduction

Software synthesis is an active area of research [6, 17, 19, 22]. It has received in-
creased attention recently, but has been studied for decades [3, 11, 12, 16]. Our
paper pursues the synthesis of functions mapping inputs to outputs. The synthe-
sized functions are guaranteed to satisfy a given input/output relation expressed
in a decidable logic. We call this approach complete functional synthesis [8, 9].
The appeal of this direction is that it can synthesize functions over unbounded
domains, and that the produced code is guaranteed to satisfy the specification for
the entire unbounded range of inputs. If the synthesis process always terminates,
we speak of synthesis procedures, analogously to decision procedures.

Previous work described synthesis procedures for linear arithmetic and sets
[8,9] as well as extensions to unbounded bitvector constraints [4,18]. In this pa-
per we make further steps towards systematic derivation of synthesis procedures
by showing how inference rules that describe decision procedure steps (possibly
for a combination of theories) can be generalized to synthesis procedures. Within
this framework we derive the first synthesis procedures for two relevant decid-
able theories of data structures: term algebras (algebraic data types), and the

� Swen Jacobs was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), the Austrian Science Fund (FWF) through
the national research network RiSE (S11406), the Swiss NSF Grant 200021 132176,
and COST Action IC0901. Philippe Suter was supported in part by the Swiss NSF
Grant 200021 120433.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 88–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reductions for Synthesis Procedures 89

theory of integer-indexed arrays with symbolic bounds on index ranges. The two
synthesis procedures that we present are interesting in their own right. Synthesis
for algebraic data types can be viewed as a generalization of the compilation of
pattern matching, and is therefore a useful way to increase the expressive power
of functional programs. Synthesis for arrays is useful for synthesizing fragments
of imperative programs. Synthesizing from constraints on arrays is challenging
because it requires, in general, iteration over the space of indices. It therefore
illustrates the importance of synthesizing not only individual values that meet
a constraint, but also functions that enumerate all values.

Our synthesis procedures are expressed as a set of modular transformation
rules whose correctness can be checked in a straightforward way, and which
can be more easily implemented (even in foundational proof assistants). The
transformations gradually evolve a constraint into a program. Sound rules for
such transformations can be formulated for each decidable theory separately, and
they can be interleaved for more efficient synthesis and more efficient synthesized
programs. Our framework therefore contributes to the methodology for synthesis
in general. We start from proof rules for a decision procedure, and extend them
into transformation rules that can be viewed as a result of partially evaluating
the execution of inference rules.

As remarked in [9], compiled synthesis procedures could be viewed as a result
of partial evaluation of the execution of a constraint solver at run time. This is
a useful observation from a methodological point of view. However, it likely has
similar limitations as an attempt to automatically transform an interpreter into
a compiler. We therefore expect that the insights of researchers will continue
to play a key role in designing synthesis procedures. These insights both take
the form of understanding decidable logics, but also understanding how to solve
certain classes of problems efficiently. Examples of manually deriving compiled
code that can be more efficient than run-time search appear in both synthesis for
term algebras and the synthesis of arrays. We can assume that the values in these
theories are finitely generated by terms. Because these terms become known only
at run time, it appears, at first, necessary to continue running decision procedure
at run time. However, because the nature of processing steps is known at compile
time, it was possible to generate statically known loops instead of an invocation
of a general-purpose constraint solver at run time. The main advantage is not
only that such code can be more efficient by itself, but that it can then be further
analyzed and simplified, automatically or manually, to obtain code that is close
or better than one written using conventional development methodology.

Contributions. In summary, this paper makes the following contributions:

1. the first synthesis procedure for quantifier-free theory of algebraic data types;
2. the first synthesis procedure for a theory of (symbolically bounded) arrays;
3. a formalization of the above procedures, as well as a simple synthesis proce-

dure for Presburger arithmetic, in a unified framework supporting:
(a) proving correctness of synthesis steps, and
(b) combining synthesis procedures in a sound way.

90 S. Jacobs, V. Kuncak, and P. Suter

We start by introducing our framework and illustrate it with a simple synthesis
procedure for Presburger arithmetic. We then present the synthesis procedures
for algebraic data types and for arrays.

2 Synthesis Using Relation Transformations

A synthesis problem is a triple

�ā 〈φ〉 x̄�
where ā is a set of input variables, x̄ is a set of output variables and φ is a
formula whose free variables are a subset of ā ∪ x̄. A synthesis problem denotes
a binary relation {(ā, x̄) | φ} between inputs and outputs. The goal of synthesis
is to transform such relations until they become executable programs. Programs
correspond to formulas of the form P ∧ (x̄ = T̄) where vars(P) ∪ vars(T̄) ⊆ ā.
We denote programs

〈P | T̄ 〉
We call the formula P a precondition and call the term T̄ a program term.

We use � to denote the transformation on synthesis problems, so

�ā 〈φ〉 x̄� � �ā 〈φ′〉 x̄� (1)

means that the problem �ā 〈φ〉 x̄� can be transformed into the problem�ā 〈φ′〉 x̄�. The variables on the right-hand side are always the same as on the
left-hand side. Our goal is to compute, given ā, one value of x̄ that satisfies φ.
We therefore define the soundness of (1) as a process that refines the binary rela-
tion given by φ into a smaller relation given by φ′, without reducing its domain.
Expressed in terms of formulas, the conditions become the following:

φ′ |= φ refinement
∃x̄.φ |= ∃x̄.φ′ domain preservation

In other words, � denotes domain-preserving refinement of relations. Note that
the dual entailment ∃x̄.φ′ |= ∃x̄.φ also holds, but it follows from refinement.
Note as well that � is transitive.

Equivalences in the theory of interest immediately yield useful transformation
rules: if φ and φ′ are equivalent, (1) is sound. We can express fact as the following
inference rule:

|= φ1 ↔ φ2

�ā 〈φ1〉 x̄� � �ā 〈φ2〉 x̄� (2)

In most cases we will consider transformations whose result is a program:

�ā 〈φ〉 x̄� � 〈P | T̄ 〉

The correctness of such transformations reduces to

P |= φ[x̄ �→ T̄] refinement
∃x̄.φ |= P domain preservation

Reductions for Synthesis Procedures 91

A synthesis procedure for a theory T is given by a set of inference rules and a
strategy for applying them such that every formula in the theory is transformed
into a program.

2.1 Theory-Independent Inference Rules

We next introduce inference rules for a logic with equality. These rules are gen-
erally useful and are not restricted to a particular theory.

Equivalence. From the transitivity of � and (2), we can derive a rule for synthe-
sizing programs from equivalent predicates.

�ā 〈φ1〉 x̄� � 〈P | T̄ 〉 |= φ1 ↔ φ2

�ā 〈φ2〉 x̄� � 〈P | T̄ 〉

Ground. In the case where no input variables are given, a synthesis problem is
simply a satisfiability problem.

M |= φ

�∅ 〈φ〉 x̄� � 〈" | M〉
¬∃M.M |= φ

�∅ 〈φ〉 x̄� � 〈⊥ | ⊥〉

(In these rules M is a model for φ and should be thought of as a tuple of ground
terms.) Note that the second rule can be generalized: even in the presence of
input variables, if the synthesis predicate φ is unsatisfiable, then the generated
program must be 〈⊥ | ⊥〉.

Assertions. Parts of a formula that only refer to input variables are essentially
assertions and can be moved to the precondition.

�ā 〈φ1〉 x̄� � 〈P | T̄ 〉 vars(φ2) ⊆ ā

�ā 〈φ1 ∧ φ2〉 x̄� � 〈φ2 ∧ P | T̄ 〉

Case Split. A top-level disjunction in the formula can be handled by deriving
programs for both disjuncts and combining them with an if-then-else structure.

�ā 〈φ1〉 x̄� � 〈P1 | T̄1〉 �ā 〈φ2〉 x̄� � 〈P2 | T̄2〉
�ā 〈φ1 ∨ φ2〉 x̄� � 〈P1 ∨ P2 | if(P1) {T̄1} else {T̄2}〉

Unconstrained Output. Output variables that are not constrained by φ can be
assigned any value.

�ā 〈φ〉 x̄� � 〈P | T̄ 〉 x0 /∈ vars(φ)

�ā 〈φ〉 x0 ; x̄� � 〈P | any ; T̄ 〉

92 S. Jacobs, V. Kuncak, and P. Suter

In the program, any denotes a nullary function that returns an arbitrary of the
appropriate type.

One-point. Whenever the value of an output variable is uniquely determined by
an equality atom, it can be eliminated by a simple substitution.

�ā 〈φ[x0 �→ t]〉 x̄� � 〈P | T̄ 〉 x0 /∈ vars(t)

�ā 〈x0 = t ∧ φ〉 x0 ; x̄� � 〈P | let x̄ := T̄ in (t ; x̄)〉

Definition. The definition rule is in a sense dual to One-point, and is convenient
to give a name to a subterm appearing in a formula. Typical applications include
purification and flattening of terms.

�ā 〈x0 = t ∧ φ[t �→ x0]〉 x0 ; x̄� � 〈P | T̄ 〉 x0 /∈ vars(φ)

�ā 〈φ〉 x̄� � 〈P | let (x0 ; x̄) := T̄ in x̄〉

Sequencing. The sequencing rule allows us to synthesize values for two groups of
variables one after another. It fixes the values of some of the output variables,
treating them temporarily as inputs, and then continues with the synthesis of
the remaining ones.

�ā ; x̄ 〈φ〉 ȳ� � 〈P1 | T̄1〉 �ā 〈P1〉 x̄� � 〈P2 | T̄2〉
�ā 〈φ〉 x̄ ; ȳ� � 〈P2 | let x̄ := T̄2 in (x̄ ; T̄1)〉

Static Computation. A basic rule is to perform computational steps when possible.

�a0 ; ā 〈φ[t �→ a0]〉 x̄� � 〈P | T̄ 〉 vars(t) ⊆ ā a0 /∈ vars(φ)

�ā 〈φ〉 x̄� � 〈let a0 := t in P | let a0 := t in T̄ 〉

Variable Transformation. The � transformation preserves the variables. To show
how we can change the set of variables soundly, we next present in our framework
variable transformation by a computable function ρ [8], as an inference rule on
two � transformations.

�ā 〈φ[x̄ �→ ρ(x̄′)]〉 x̄′� � 〈P | T̄ 〉
�ā 〈φ〉 x̄� � 〈P | ρ(T̄)〉

Slightly more generally, we have the following:

�ā 〈φ′〉 x̄′� � 〈P | T̄ 〉 ∃x̄.φ |= ∃x̄′.φ′ φ′ |= φ[x̄ �→ ρ(x̄′)]

�ā 〈φ〉 x̄� � 〈P | ρ(T̄)〉

Existential Projection. This rule is a special case of variable transformation, where
ρ simply projects out some of the variables.

�ā 〈φ〉 x̄ ; x̄′� � 〈P | T̄ 〉
�ā 〈∃x̄′.φ〉 x̄� � 〈P | let (x̄ ; x̄′) := T̄ in x̄〉

Reductions for Synthesis Procedures 93

3 Synthesis for Presburger Arithmetic

This section summarizes a simple version of a synthesis procedure for Presburger
arithmetic using our current synthesis rules. Our goal is to give a complete
procedure that is easy to prove correct, as opposed to one that generates efficient
code. The reader will observe that our description reads like a description of
quantifier elimination. Note, however, that the inference rules that we refer to
are from the previous section and therefore also specify how to compute the
corresponding program.

Unlike the procedure in [9] the procedure below does not perform efficient
solving of equations, but could be refined to do so by adapting the description
in [9] to our inference rules.

As in the preprocessing steps for simple quantifier elimination for Presburger
arithmetic, the equivalences we use as rules include replacing t1 �= t2 with t1 <
t2 ∨ t2 < t1. In principle, we can rewrite t1 = t2 into t1 ≤ t2 ∧ t2 ≤ t1 (see [9] for
more efficient approaches). We rewrite t1 ≤ t2 into t1 < t2+1. When needed, we
assume that we apply the Case Split rule to obtain only a conjunction of literals.
We also assume that we apply the Sequencing rule to fix the remaining variables
and only consider one output variable x. Finally, thanks to the Assertions rule,
we assume that all literals contain x.

A rule that takes into account divisibility is the following:

�ā 〈φ[kx �→ y] ∧ y ≡k 0〉 y� � 〈P | T 〉 k �= 0 x in φ only as kx

�ā 〈φ〉 x� � 〈P | T/k〉

The rule is a case of Variable Transformation with ρ(y) = y/k.
To enable the previous rule, we can ensure that all occurrences of a variable

have the same coefficient by multiplying constraints by a positive constant (e.g.,
the least common multiple of all coefficients). These transformations are based
on using (in a context) equivalences between t1 �� t2 and kt1 �� kt2, for k > 0
and �� ∈ {=, <, >,≡p}.

Using the rules so far, we can ensure that an output variable has a coefficient
1. If such a variable occurs in at least one equality, we can eliminate it using
One-point. If the variable occurs only in inequalities, we perform the main step
of the procedure.

Elimination of Inequalities. Based on the discussion above, we can assume
that the formula φ in the synthesis problem is of the form

L�
i=1

li < x ∧
U�

j=1

x < uj ∧
D�
i=1

x+ ti ≡Ki 0

We aim to replace φ with φ′ such that

�ā 〈φ〉 x� � �ā 〈φ′〉 x� (3)

94 S. Jacobs, V. Kuncak, and P. Suter

We define φ′ as
L�

i=1

K�
k=1

(φ ∧ x = li + k)

where K is the least common multiple of K1, . . . ,KD. Clearly φ′ is stronger
than φ because each disjunct is stronger than φ, so it remains to argue about
domain preservation. Suppose there exists values for x so that φ holds. Let lI
be the largest value among the values of lower bounds li and let T be such that
lI + T ≡K x holds. Then letting x to be lI + T makes φ′ true as well.

After performing disjunctive splitting (Case Split), we can eliminate x using
the One-point rule. The correctness follows by (3) and the correctness of One-
point. The cases where some of the bounds do not exist can be treated similarly.

This completes the overview of synthesis of functions given by Presburger
arithmetic relations.

Enumerating Solutions. In addition to finding one solution x̄ such that φ
holds, it is useful to be able to find all solutions, when this set is finite. When
solving constraints at run time, a simple way to find all solutions is to maintain
a list of previously found solutions v̄1, . . . , v̄n for x̄ and add to φ an additional
conjunct

�n
i=1 x̄ �= v̄n, see [7].

One possible approach to compile this process is to enrich Presburger arith-
metic with finite uninterpreted relations as parameters. This enables a synthesis
procedure to, for example, take the set of previous solutions as the input. If R
is such a finite-relation symbol or arity n and x̄ are n variables, we introduce
an additional literal x̄ /∈ R into the logic, with the intention that R stores the
previously found solutions. The elimination of inequalities then produces terms
that avoid the elements of R by considering not only the value li + k for x,
but enumerating a larger number of solutions, li + k + αN , for multiple values
of α ≥ 0. Because R is known only at run time, the generated code contains
a loop that increases α ≥ 0 to allow x to leave the range of the correspond-
ing coordinate of R. The value of α is bounded at run time by, for example,
$(max(Rx)−min(Rx))/K%+1 where Rx is the projection of R onto the coordi-
nate at which x appears in the literal x̄ /∈ R. The generated loop is guaranteed
to terminate.

4 Synthesis for Term Algebras

This section presents a synthesis procedure for quantifier-free formulas in the
theory of term algebras. We start by assuming a pure term algebra, and later
extend the system to algebras with elements from parameter theories. In both
cases, we present a series of normal forms and inference rules, and argue that
together they can be used to build a synthesis procedure.

Reductions for Synthesis Procedures 95

4.1 Pure Term Algebras

The grammar of atoms over our term algebra is given by the following two
production rules, where c and F denote a constant and a function symbol from
the algebraic signature, respectively:

A ::= T = T | T �= T | isc(T) | isF (T)
T ::= x | c | F (T̄) | Fi(T)

In the following we assume that the algebra defines at least one constant and
one non-nullary constructor function. Formulas are built from atoms with the
usual propositional connectives. We use an extension of the standard theory
of term algebras. The extension defines additional unary tester functions isc(·)
and isF (·) for constant and functions in the algebraic signature respectively, and
unary selector functions Fi(·), with 1 ≤ i ≤ n where n is the arity of F . These
extra symbols form a definitional extension [5] given by the axioms:

∀x.isc(x) ↔ x = c (4)

∀x.isF (x) ↔ ∃ȳ.x = F (ȳ) (5)

∀x, y.Fi(x) = y ↔ (∃ȳ.y = ȳ [i] ∧ F (ȳ) = x) (6)

∨¬(∃ȳ.F (ȳ) = x) ∧ x = y

Note that the case analysis in (6) is required only to make the selector functions
total. In practice, we are only interested in cases where the selectors are applied
to arguments of the proper type. We will therefore assume in the following that
each selector application Fi(x) is accompanied with a side condition isF (x).

Rewriting of tester and selector functions. By applying the axioms (4) and (5),
we can rewrite all applications of a tester function into an existentially quantified
equality over terms. We can similarly eliminate applications of testers by existen-
tially quantifying over the arguments of the corresponding constructors. Using
the Existential Projection rule, we can in turn consider the obtained synthesis
problem as a quantifier-free one.

Elimination through unification. We can at any point apply unification to a
conjunction of equalities over terms. Unification rewrites a conjunction of term
equations into either ⊥, if the equations contain a cycle or an equality involving
incompatible constructors, or into an equivalent conjunction of atoms

�
i vi = ti,

where vi is a variable and ti is a term. This set of equations has the additional
property that ��

i

{vi}
�
∩
��

i

vars(ti)

�
= ∅

In other words, it defines a set of variables as a set of terms built from another
disjoint set of variables [2]. This form is particularly suitable for applications of
the One-point rule: indeed, whenever vi is an output variable, we can apply it,
knowing that vi does not appear in ti (or in any other equation).

96 S. Jacobs, V. Kuncak, and P. Suter

Dual view. Unification allows us to eliminate output variables that are to the left
of an equality. When instead an input variable appears in such position, we can
resort to a dual form to eliminate output variables appearing in the right-hand
side. We obtain the dual form by applying as much as possible the following two
rules to term equalities:

t = c

isc(t)

t = F (t1, . . . , tn)

F1(t) = t1 ∧ . . . ∧ Fn(t) = tn ∧ isF (t)

Note that these are rewrite rules for formulas. Because they preserve the set of
variables and equisatisfiability, they can be lifted to inference rules for programs
using the Equivalence rule. Observe that at saturation, the generated atoms are
of two kinds: 1) applications of tester predicates and 2) equalities between two
terms, each containing at most one variable. In particular, all equalities between
an output variable and a term are amenable to applications of the One-point
rule.

Disequalities. Finally, we introduce a dedicated rule for the treatment of dise-
qualities between terms. The rule is defined for disequalities over variables and
constants in conjunctive normal form (CNF). From a conjunction of disequali-
ties over terms, we can obtain CNF by applying the following rewrite rules until
saturation:

F (t̄1) �= G(t̄2) F �= G

"
F (t̄1) �= F (t̄2)

t11 �= tn1 ∨ . . . ∨ t12 �= tn2

Intuitively, the first rule captures the fact that terms built with distinct con-
structors are trivially distinct (note that this also captures distinct constants,
which are nullary constructors). The second rule breaks down a disequality into
a disjunction of disequalities over subterms.

To obtain witness terms from the CNF, it suffices to satisfy one disequality
in each conjunct. We achieve this by eliminating one variable after another,
applying for each a diagonalization principle, as follows. In the following rule
φCNF denotes the part of the CNF formula over atomic disequalities that does
not contain a given variable of interest x0.

�ā 〈φCNF〉 x̄� � 〈P | T̄ 〉 x0 /∈ φCNF�
���ā

�
(x0 �= t1 ∨ . . .)

∧ . . .
∧ (x0 �= tn ∨ . . .)
∧ φCNF

�
x0 ; x̄

�
		
 � 〈P | let x̄ := T̄ in (Δ(t1, . . . , tn) ; T̄)〉

In the generated program,Δ denotes an n-ary computable function that returns,
at run time, a term distinct from all its arguments. Such a value is guaranteed
to exist, since the term algebra is assumed to have at least one constructor. This
function runs in time polynomial in the number of its arguments.

Reductions for Synthesis Procedures 97

Synthesis Procedure for Algebraic Data Types. We now argue that the
reductions to normal forms and the rules presented above are sufficient to form
a complete synthesis procedure for any given pure term algebra structure. The
procedure (a strategy for applying the rules) is given by the following steps:

1. Reduce an arbitrary propositional structure to a conjunction through appli-
cations of the Case Split rule.

2. Remove selectors and testers through rewrites and applications of Existential
Projection.

3. Apply unification to all equalities, then apply One-point as often as possible.
As a result, the only equalities remaining have the form a = t, where a is an
input variable and a /∈ vars(t).

4. Rewrite into dual form, then apply One-point as much as possible. After
applying Assertions, the problem is reduced to a conjunction of disequalities,
each involving at least one output variable.

5. Transform the conjunction into CNF and eliminate all remaining variables
by successive applications of the diagonalization rule.

Given a conjunctions of literals, the generated program runs in time polynomial
in the size of the input terms: it consists of a sequence of assignments, one for
each output variable, and each term has polynomial size.

4.2 Reduction to an Interpreted Theory

We now consider the case of a term algebra defined over an interpreted theory
T . A canonical example is the algebra of integer lists, where T is the theory
of integers, and defined by the constant Nil : List and the constructor Cons :
Z× List → List. In this theory, the selector function Cons1(·), for instance, is of
type List → Z. We show how to reduce a synthesis problem in the combination
of theories to a synthesis problem in T . We focus on the important differences
with the previous case.

Purification. We can assume without loss of generality that constructor terms
contain no subterms from T other than variables. Indeed one can always apply
the Definition rule to separate such terms.

Unification. Applying unification can result in derived equalities between vari-
ables of T . These should simply be preserved in the reduced problem.

Dual view. Applying the rewriting into the dual view can result in derived
equalities of the form x = t, where x is a variable from T and t is an application
of selectors to an input variable. Because T cannot handle these selectors, we
need to rewrite t into a simple variable. By using the Definition and Sequencing
rules, we make this variable an input of the problem in T .

98 S. Jacobs, V. Kuncak, and P. Suter

Disequalities. Contrary to the pure case, we cannot always eliminate all con-
juncts in the CNF by applying a diagonalization; we can eliminate variables
that belong to the term algebra, but not variables of T . Instead, for each dise-
quality v �= w over T in the CNF, we introduce at the top-level a disjunction
v = w ∨ v �= w, and apply the Case Split rule to encode a guess. This in essence
compiles the guessing of the partitioning of shared variables that is tradition-
ally introduced in a Nelson-Oppen setting [15]. Because Case Split preserves the
relation entirely, this is a sound and complete reduction step.

Once all the disequalities have been handled, either through diagonalization
if they are over algebraic terms, or by case-splitting if they are over T variables,
we have entirely reduced the synthesis problem into a synthesis problem for T .

5 Synthesis for Arrays with Symbolic Bounds

This section introduces a synthesis procedure for a theory of arrays. In contrast
to many other theories for which synthesis procedures have been introduced, the
standard (unbounded) array theory does not admit quantifier elimination. With
a known finite bound on the size of all arrays, there is a procedure that reduces
the synthesis problem to synthesis problems over indices and elements, in a
similar way as the satisfiability problem for arrays is reduced to these component
theories. However, if we do not know the size bounds at compile time, we need
to employ a mixed approach, which postpones some of the reasoning to run
time. The reduction is the same as before, but now the component synthesis
procedures not only return one solution of the synthesis problem, but instead
an iterator over all possible solutions (given by any limited knowledge about the
inputs contained in the specification formula). Then, at run time, the synthesized
code examines all the solutions for constraints on indices, searching for one that
matches the current array inputs.

In the rest of this section we focus on this more general case of symbolic
bounds, then revisit briefly statically bounded arrays as a special case.

5.1 Preliminaries

We present synthesis for a theory of arrays with symbolic bounds. We consider
arrays with the usual read and write operations, an index theory TI with an
ordered, discrete domain, and an element theory TE . We assume that our input
formula φ is a conjunction of literals, and that we have synthesis procedures for
these theories. Additionally, we assume that we have a predicate ≈I between
arrays, where I can be any set of variables or constants, and a ≈I b evaluates
to true iff a and b are equal up to (the elements stored at) indices i ∈ I. In
particular, this also subsumes extensionality of arrays (with I = ∅).

Arrays with Symbolic Bounds. We assume that our specification φ contains,
for every array variable a, two special variables al, au, standing for the lower and
upper bound of the array. Additionally, we assume that φ contains, for every

Reductions for Synthesis Procedures 99

index variable i used to read or write into a, the constraints al ≤ i ∧ i ≤ au.
These constraints ensure that synthesized programs to not contain out-of-bounds
array accesses, and that the number of possible solutions for index variables will
be bounded at run time. If a is an array parameter, then al, au are additional
parameters. For convenience, if we have b = write(a, i, e) or a ≈I b, then we
assume that al = bl and au = bu, i.e. we need not introduce multiple lower and
upper bounds for “connected” arrays.

Enumerating Solutions For the index theory TI , we need a synthesis proce-
dure that not only returns one solution T , but allows us to iterate over the set
T

∗
of all possible solutions. We assume that one of the following cases holds:

1. the synthesis procedure computes T
∗
as a finite set of solutions

2. the synthesis procedure computes T
∗
as a solved form of φ, that allows us

to access solutions iteratively (like mentioned in Sect. 3; this is also possible
if there are infinitely many possible solutions at compile time)

3. the synthesis procedure produces code T
∗
, representing a specialized solver

for the index theory, that is instantiated with φ and allows to add more
constraints ψ to obtain solutions satisfying φ ∧ ψ (in the limit this means
integrating a constraint solver procedure into the generated code [7]).

5.2 A Reduction-Based Synthesis Procedure for Arrays

We introduce a synthesis procedure for arrays, consisting of the following steps:

– Array reduction: φ is reduced to TE ∪ TI , along with a set of definitions
that allows us to generate witness terms for array variables;

– “Partial Synthesis” reduction: part of the reasoning is postponed to
runtime, assuming we get an enumerator of all possible solutions in TE ∪TI ;

– Separation and synthesis in TE and TI : we separate the specification into
parts talking purely about TE and TI , and synthesize all possible solutions.

Array Reduction. We introduce fresh variables for array writes and reads,
allowing us to reduce the problem to the combined theory TI ∪ TE :

1. For every array write write(a, i, e) in φ: i) use Definition to introduce a fresh
array variable b, and obtain b = write(a, i, e) ∧ φ[write(a, i, e) �→ b], and ii)
by Equivalence, add b[i] = e ∧ a ≈{i} b to φ.

2. Until saturation, use Equivalence to add for every pair of literals a ≈I b and
b ≈J c in φ the literal a ≈I∪J c.

3. For every array read a[i] and predicate a ≈J b in φ: use Equivalence to add
a formula (

�
j∈J i �= j) → a[i] = b[i] to φ.

4. For every array read a[i] in φ: i) use Definition to introduce a fresh element
variable ai , and obtain ai = a[i] ∧ φ[a[i] �→ ai].

5. For every pair of variables ai, aj in φ: use Equivalence to add a formula
i = j → ai = aj to φ.

100 S. Jacobs, V. Kuncak, and P. Suter

Let D ≡ D1 ∧D2, where D1, D2 are the sets of definitions introduced in 1 and
4, respectively. Let EqA be the saturated set of all literals a ≈I b after 2, Impl
the set of all implications introduced in 3 and 5, and φ′ the remaining part of
φ, after the rewriting steps in 1 and 5. Let furthermore b̄, āi be the sets of fresh
variables introduced in steps 1 and 5, respectively. Then array reduction can be
depicted as a macro-step

�
ā 〈φ′ ∧ Impl ∧ EqA ∧D〉 b̄ ; āi ; x̄

�
� 〈P | T̄ 〉

�ā 〈φ〉 x̄� � 〈P | let (b̄ ; āi ; x̄) := T̄ in x̄〉

Let x̄A ; x̄E ; x̄I be a separation of x̄ into array, element and index variables. As
an array-specific step, based on EqA ∧D we can now already give witness terms
for array variables b̄ ; x̄A, assuming that we will get witness terms T̄ai for āi and
T̄I for x̄I :

Let a be an array variable, and I the set of all index variables i for which
ai = a[i] is in D. For a given v, let J be the maximal subset of I s.t. ∀i, j ∈
J. v |= i �= j. By construction, there must be an array variable b s.t. a ≈I b is
in EqA. If b is not a parameter array, all positions not explicitly defined can be
defined arbitrarily. Then the witness term Ta for variable a is defined by:

Ta := write(. . . (write(b, Tj1 , Taj1
) . . .), Tjn , Tajn

)

where the Tj are witness terms for index variables j ∈ J , and the Taj witness
terms for the corresponding element variables. Let T̄A be the sequence of witness
terms for all array variables b̄ ; x̄A. Then this step can be depicted as

�ā 〈φ′ ∧ Impl ∧D2〉 āi ; x̄E ; x̄I� � 〈P | T̄ 〉�
ā 〈φ′ ∧ Impl ∧ EqA ∧D〉 b̄ ; x̄A ; āi ; x̄E ; x̄I

�
� 〈P | let (āi ; x̄E ; x̄I) := T̄ in (T̄A ; āi ; x̄E ; x̄I)〉

Correctness of this step follows from the correctness of array decision procedures
using the same reduction. Note that we also remove EqA and D1 from our
specification, as they will not be needed anymore.

Partial Synthesis with Run-Time Checks. Since the theory of arrays does
not allow quantifier elimination, we in general need to postpone some of the
reasoning to run time. The following is a general rule to separate the specification
into a part φ that allows for compile-time synthesis, and another part ψ that is
checked (against the possible solutions of φ) at run time. Here, we assume that
the result T̄ ∗ is an iterator over all possible solutions, and that for any given ā
only finitely many solutions exist:

Reductions for Synthesis Procedures 101

�ā 〈φ〉 x̄� � 〈P | T̄ ∗〉

�ā 〈φ ∧ ψ〉 x̄� �
�
P ∧ ∃i. ψ[x̄ �→ T̄ ∗.next(i)]

								
x̄ := T̄ ∗;
while(¬ψ(ā, x̄))
if(T̄ ∗.hasNext) {x̄ := T̄ ∗.next}
else {return UNSAT}

�

If T̄ ∗ is not an iterator, but a specialized decision procedure for the given theory
and constraint φ, then the loop is replaced by a call to T̄ ∗ with constraint ψ.

For array synthesis, we apply the rule to remove D2, reducing the synthesis
problem to �ā 〈φ′ ∧ Impl〉 āi ; x̄E ; x̄I� � 〈P | T̄ ∗〉, in the theory TE ∪ TI .

Separation of TI ∪ TE We use the Sequencing rule to separately synthesize
element and index variables:1

�ā ; x̄I 〈φ′ ∧ Impl〉 āi ; x̄E� � 〈PE | T̄E〉 �ā 〈PE〉 x̄I� � 〈P | T̄ ∗
I 〉�ā 〈φ′ ∧ Impl〉 x̄ ; ȳ� � 〈P | let x̄I := T̄ ∗

I in (T̄E ; x̄I)〉

TE-Synthesis To solve the left-hand side, note that φ′ is a conjunction of
literals and does not contain array variables anymore, so it can be separated
into φE ∧φI , with φE , φI pure constraints in TE and TI , respectively. We use the
Assertions rule to move φI into PE . The only other occurrences of index variables
are in Impl. To remove these, we use Equivalence to introduce a disjunction over
all possible valuations of equalities between index variables, and Case Split to
branch synthesis of element variables for all these cases:

Let EqI be the set of all equalities i = j s.t. either i = j or i �= j appears in
an implication in Impl. Let VE be the set of truth valuations of elements of EqI ,
each described by a conjunction of literals v ∈ VE (containing for every l ∈ EqI
either l or ¬l). For every v ∈ VE , obtain a new formula φv by adding to φE ∧ v
the succedent of all implications in Impl for which the antecedent is in v.

For each v ∈ VE , we solve �ā ; x̄I 〈φv〉 āI ; x̄E� � 〈Pv | T̄ ∗
v 〉, where φv is a pure

TE-constraint. Joining results according to Case Split, we get 〈PE | T̄ ∗〉.

TI-Synthesis We solve the right-hand side of the Sequencing rule,�ā 〈PE〉 x̄I� � 〈P | T̄ ∗
I 〉. As before we use Assertions to obtain a pure TI -

constraint.2

1 Note that we do not have to explicitly compute all possible solutions in TE ; since
x̄I is used as an input in T̄E , we will obtain a suitable solution of āi ; x̄E for every
solution of x̄I .

2 If bounds for all arrays (or all array indices in φ) can be computed at compile time,
then all solutions can be computed statically. Otherwise, array bounds are symbolic
and will only have values at run time, i.e. we need to be able to compute solutions
during runtime.

102 S. Jacobs, V. Kuncak, and P. Suter

Remarks For efficiency, it may be useful to deduce, both in TI and TE , equal-
ities that are implied by φ at any time, and replacing clauses in Impl by their
succedents if the antecedent is implied by φ, or the negation of the antecedent, if
the negation of the succedent is implied. This will avoid unnecessary branching,
speeding up synthesis and removing dead branches from the resulting code.

Theory Combination TE ∪ TI The reduction above assumes that theories
TE and TI are strongly disjoint, i.e. they share not even the equality symbol.
Alternatively, we can make the restriction that variables that are used for array
reads may never be compared to variables that are used as elements. In this
case, implications from congruence of array reads is the only connection between
the theories, and TI -synthesis can run completely independent of TE -synthesis,
provided the latter accounts for all possible cases of TI -equalities. If the theories
are not strongly disjoint, we really need a synthesis procedure for the combined
theory. In this case, we directly use the combined decision procedure to produce
an iterator over all possible solutions in both element and index theory.

Statically Bounded Arrays If all arrays in φ are statically bounded, i.e.
values of upper and lower bounds are known or can be computed at compile
time, then we can statically compute all solutions for constraints in TI that are
within array bounds. In that case the generated code does not need an iterator
that computes additional solutions, and we can give a constant bound on the
maximum number of traversals of the loop at compile time.

5.3 Complexity of Synthesis and Synthesized Code

Complexity of the array synthesis procedure is dominated by the branching on
equalities of index variables: we may need exponentially many (in the number
of index variables) calls to the synthesis procedure for TE . The array reduction
itself runs in polynomial time.

Correspondingly, the size of the synthesized code is also exponential in the
number of index variables. The code can contain branches for all possible cases
of equalities (arrangements) among indices. Although only one of these branches
will be explored at runtime, the worst-case running time of the synthesized code
will still be exponential in the number of index variables: for a size bound n on
a given array, there may be ni many solutions to the constraints in TI . In the
worst case, the condition of the while-loop needs to be checked for all of these
solutions.

5.4 Example of Array Synthesis

Suppose we want to synthesize a most general precondition P and program code
s.t. for any input array a and bounds al, au that satisfy P , the synthesized code

Reductions for Synthesis Procedures 103

computes values for an array b and integer variables i, j, k such that the following
is satisfied:3

φ ≡ al = 0 ∧ i > al ∧ i = j + j ∧ i < au ∧ k ≥ al ∧ k < i
∧ a[i] > 0 ∧ a[k] ≤ 0 ∧ b[i] > a[i− 2] ∧ b[k] = a[i]
∧ a′ = write(a, i, e1) ∧ b = write(a′, k, e2).

Array reduction: We obtain

D1 := {a′ = write(a, i, e1), b = write(a′, k, e2)}
EqA := {a′ ≈i a, b ≈k a

′, a ≈{i,k} b}

Impl =

���������
k �= i → ak = a′k, i− 2 �= i → ai−2 = a′i−2,
i �= k → a′i = bi, i− 2 �= k → a′i−2 = bi−2,
i− 2 �= i ∧ i− 2 �= k → ai−2 = bi−2 ,
i = k → ai = ak, i− 2 = k → ai−2 = ak,
i = k → a′i = a′k, i− 2 = k → a′i−2 = a′k,
i = k → bi = bk, i− 2 = k → bi−2 = bk

�����������
D2 :=

�ai = a[i], ai−2 = a[i− 2], ak = a[k],
a′i = a′[i], a′i−2 = a′[i − 2], a′k = a′[k],
bi = b[i], bi−2 = b[i− 2], bk = b[k]

���
φ′ :=

al = 0 ∧ i > al ∧ i = j + j ∧ i < au ∧ k ≥ al ∧ k < i
∧ ai > 0 ∧ ak ≤ 0 ∧ bi > ai−2 ∧ bk = ai
∧ a′i = e1 ∧ bk = e2

Implied equalities and disequalities: From φ′ we can conclude that i �= j, k �= i
and i− 2 �= i, as well as ai �= ak, bi �= ai−2.

Propagating equalities through Impl: k �= i implies ak = a′k and a′i = bi. i− 2 �= i
implies ai−2 = a′i−2. In the opposite direction, ai �= ak implies i �= k (which we
already knew). We get

φ′′ := φ′ ∧ ai �= ak ∧ bi �= ai−2 ∧ a′i = bi ∧ ai−2 = a′i−2 ∧ i �= k ∧ i− 2 �= i.

Separation of TI ∪ TE We use the Sequencing rule, obtaining subproblems�ā ; x̄I 〈φ′′ ∧ Impl〉 āi ; x̄E� � 〈PE | T̄E〉 and �ā 〈PE〉 x̄I� � 〈P | T̄ ∗
I 〉.

TE-Synthesis From the three equations that appear in antecedents of Impl,
valuations for two are fixed by φ′′. Thus, we only branch on the valuation of
i− 2 = k. Let v1 ≡ i− 2 = k, which implies ai−2 = ak, a

′
i−2 = a′k and bi−2 = bk.

Let v2 ≡ i − 2 �= k, which implies a′i−2 = bi−2 and (together with i − 2 �= i)
ai−2 = bi−2.

3 Note that the last two literals imply a ≈{i,k} b, which in turn implies that there exist
valuations for a′, e1, e2 satisfying these literals. Thus, we can allow statements of the
form a ≈I b in specifications, and replace them with a number of write definitions
according to the size of I , with fresh element and array variables in every write.

104 S. Jacobs, V. Kuncak, and P. Suter

Assuming v1, we obtain the following valuations for variables x̄E :

e2 := bk := bi−2 := ai, e1 := bi := a′i := ai−2 + 1, a′k := a′i−2 := ak.

Assuming v2, valuations are the same except for bi−2 := a′i−2 := ai−2. The
precondition is in both cases PE ≡ ai > 0 ∧ ak ≤ 0 (plus the TI -part of φ′′).

TI-Synthesis We obtain j := ' i
2(and an iterator T̄ ∗

I of solutions for (i, k):

T ∗
I := (0,2)

T ∗
I .next = let (k,i) = T ∗

I in
if(k+1<i) (k+1,i)
else if(i+2<a u) (0,i+2)
else return UNSAT

along with a precondition P ≡ ai > 0 ∧ ak ≤ 0 ∧ au > 2.

Array synthesis: Lifting the witness terms for elements to array b, we obtain

b := if(i− 2 = k)
write(write(a, i, a[Ti−2] + 1), Tk, a[Ti])
else write(write(write(a, i, a[Ti−2] + 1), Ti−2, a[Ti]), Tk, a[Ti])

Result: Finally, we obtain the precondition

au > 2 ∧ ∃n.
�
(i, k) = T ∗

I .next
(n) → a[i] > 0 ∧ a[k] ≤ 0

�
and the program4 in Fig. 1 for computing i, j, k and b from a and au.

5.5 Example: Inverting Program Fragments

The synthesis procedure for arrays can also be used to invert given code frag-
ments, e.g. for automatically obtaining a program that reverts (some of) the
changes a given piece of code did to some data. Consider the code fragment

if(a[i]==0)
a[i]:=a[i+1]

else if (a[i]==1)
a[i]:=a[0]

else if (a[i]>1)
a[i]:=a[i]−1

else a[i]:= a[i]+2

which translates into the specification

(a0[i] = 0 ∧ a1 = write(a0, i, a0[i+ 1]))
∨ (a0[i] = 1 ∧ a1 = write(a0, i, a0[0]))
∨ (a0[i] > 1 ∧ a1 = write(a0, i, a0[i]− 1))
∨ (a0[i] < 0 ∧ a1 = write(a0, i, a0[i] + 2)),

4 The code can be significantly simplified by merging parts that are not affected by
case distinctions.

Reductions for Synthesis Procedures 105

if(au > 2) {
(i,k) := T ∗

I in
while (¬(a[i] > 0 && a[k] ≤ 0))

if (T ∗
I .hasNext)

(i,k) := T ∗
I .next

else throw new Exception(”Unsatisfiable constraint.”)
let j = i / 2 in
if (i−2 = k) {

bi := a[i−2]+1
bk := a[i]

} else {
bi := a[i−2]+1
bk := a[i]
bi2 := a[i−2]

}
if (i−2 = k)

b := write(write(write(a,i,bi),k,bk))
else

b := write(write(write(a,i,bi),k,bk),i−2,bi2)
(b,i,j,k)

} else throw new Exception(”Unsatisfiable constraint.”)

Fig. 1. Example of code generated by array synthesis procedure

where a0 refers to the pre-, and a1 to the post-state value of array a. For syn-
thesizing the inverted code, we assume that a1 is the input, and a0 the output.
The synthesis procedure will return a piece of code

if(a[i]==a[i+1])
a[i]:=0

else if(a[i]=a[0])
a[i]:=1

else if(a[i]>0)
a[i]:=a[i]+1

else a[i]:=a[i]−2

Since the relation given by the input code does not model a bijection, applying
the inverted code after the input code will not result in exactly the same state.
However, for a deterministic code, the resulting state will be equivalent with
respect to the original piece of code: if we run the original program for the
second time from such state, we will get the same final result as when running
the program once.

6 Related Work

Term algebras admit quantifier elimination [5, 21] and are thus natural candi-
dates for synthesis. Our synthesis procedure is similar to quantifier elimination

106 S. Jacobs, V. Kuncak, and P. Suter

when it comes to eliminating variables that are constrained by an equality, with
the additional requirement that the witness term be stored to serve in the pro-
gram. However, we simplified the treatment of disequalities: existing elimination
procedures typically rewrite a disequality between a variable and a term into a
disjunction of equalities between the same variable and terms constructed with
different constructors [5, p.63sqq]. This has the advantage that the language of
formulas needs not be extended, allowing for nested quantifiers to be eliminated
one after the other. In our synthesis setting, this is not necessary: we can rely
on additional computable functions, as we have illustrated with the use of Δ,
greatly simplifying the resulting program. A related area of research is compila-
tion of unification in Prolog [1]. This process typically does not require handling
of disequalities, so it deals with a simpler language.

Pattern-matching compilation is a task for which specialized procedures for
term algebras have been developed [13, 23]. When viewed through the prism of
synthesis procedures, these algorithms can be thought of as procedures that are
specialized for disjunctions of term equalities, and where the emphasis is put
on code reuse. We expect that using a combination of our synthesis procedures
and common subexpression elimination techniques, one should be able to de-
rive pattern-matching compilation schemes that would support, e.g., disjunctive
patterns, non-linear patterns, and could take into account guards referring to
integer predicates.

Our synthesis procedure for arrays is based on a reduction of constraints
over arrays to constraints in the combined theory of indices and elements. In
particular, our reduction is very close to the decision procedure for extensional
arrays introduced by Stump et al. [20]. Combination of strongly disjoint theories
is also used in the array decision procedure of de Moura and Bjørner [14], but the
main focus of their work was to make array decision procedures more efficient by
restricted application of fine-grained reduction rules. In the presence of unknown
inputs, these techniques are not applicable in general.

Specialization of decision procedures for the purpose of predicate abstraction
was considered in [10]. In addition to covering a different set of theories, our
results are broader because our process generates not only a satisfiability check
but also the values of variables.

7 Conclusions

We presented synthesis procedures for two important theories: algebraic data
types and arrays, formulated in a unified framework. Our contribution fills an
unexplored area between two approaches: running SMT solvers at run time [7]
and using quantifier-elimination-like algorithms to compile specifications. In this
paper we have shown that for two important theories supported by SMT solvers,
compilation of constraints is also feasible. Moreover, much like SMT can be built
and proved correct modularly, synthesis procedures can be combined as well
using our framework.

Reductions for Synthesis Procedures 107

References

1. Aı̈t-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press
(1991) (available online as PDF)

2. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning.
Elsevier (2001)

3. Flener, P.: Logic Program Synthesis from Incomplete Information. Kluwer Aca-
demic Publishers (1995)

4. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: FMCAD, pp. 101–109 (2010)

5. Hodges, W.: A Shorter Model Theory. Cambridge University Press (1997)
6. Jobstmann, B., Bloem, R.: Optimizations for ltl synthesis. In: FMCAD, pp. 117–

124 (2006)
7. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. In: POPL, pp. 151–164

(2012)
8. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis procedures.

CACM 55(2), 103–111 (2012)
9. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:

PLDI, pp. 316–329 (2010)
10. Lahiri, S.K., Ball, T., Cook, B.: Predicate Abstraction via Symbolic Decision Pro-

cedures. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
24–38. Springer, Heidelberg (2005)

11. Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. CACM 14(3),
151–165 (1971)

12. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis.
TOPLAS 2(1), 90–121 (1980)

13. Maranget, L.: Compiling pattern matching to good decision trees. In: ML, pp.
35–46 (2008)

14. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD, pp. 45–52 (2009)

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
TOPLAS 1(2), 245–257 (1979)

16. Smith, D.R.: KIDS: A semiautomatic program development system. TSE 16(9),
1024–1043 (1990)

17. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415 (2006)

18. Spielmann, A., Kuncak, V.: Synthesis for unbounded bit-vector arithmetic. In:
IJCAR, pp. 499–513 (2012)

19. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL, pp. 313–326 (2010)

20. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: LICS, pp. 29–37 (2001)

21. Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras: The case of
finite languages. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer
Algebra in Scientific Computing (CASC). TUM München (2002)

22. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-
tion. In: POPL, pp. 327–338 (2010)

23. Wadler, P.: The Implementation of Functional Programming Languages: Efficient
Compilation of Pattern-matching, ch. 5, pp. 78–103 (1987)

Towards Efficient Parameterized Synthesis�

Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

Graz University of Technology, Austria

Abstract. Parameterized synthesis was recently proposed as a way to
circumvent the poor scalability of current synthesis tools. The method
uses cut-off results in token rings to reduce the problem to bounded dis-
tributed synthesis, and thus ultimately to a sequence of SMT problems.
This solves the problem of scalability in the size of the architecture, but
experiments show that the size of the specification is still a major issue.
In this paper we propose several optimizations of the approach. First, we
tailor the SMT encoding to systems with isomorphic processes and token-
ring architecture. Second, we extend the cut-off results for token rings
and refine the reduction, using modularity and abstraction techniques.
Some of our optimizations also apply to isomorphic or distributed syn-
thesis in arbitrary architectures. To evaluate these optimizations, we de-
veloped the first completely automatic implementation of parameterized
synthesis. Experiments show a speed-up of several orders of magnitude,
compared to the original method.

1 Introduction

By automatically generating correct implementations from a temporal logic spec-
ification, reactive synthesis tools relieve system developers from manual low-level
implementation and debugging. However, existing tools are not very scalable. For
instance, Bloem et al. [3] describe the synthesis of an arbiter for the ARM AMBA
Advanced High Performance Bus. The results, obtained using RATSY [2], show
that both the size of the implementation and the time for synthesis increase
steeply with the number of clients that the arbiter can handle. Since an arbiter
for n+ 1 clients is very similar to an arbiter for n clients, this is unexpected.

Similar to the AMBA arbiter, many other specifications in verification and
synthesis are naturally parameterized in the number of parallel interacting com-
ponents [15,14]. To address the poor scalability of reactive synthesis tools in
the number of components, Jacobs and Bloem [13] introduced a parameterized
synthesis approach. A simple example of a parameterized specification is the
following LTL specification of a simple arbiter:

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi)

� This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406).

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 108–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Efficient Parameterized Synthesis 109

In parameterized synthesis, we synthesize a building block that can be cloned to
form a system that satisfies such a specification, for any number of components.

Jacobs and Bloem [13] showed that parameterized synthesis is undecidable in
general, but semi-decision procedures can be found for classes of systems with
cut-offs, i.e., where parameterized verification can be reduced to verification
of a system with a bounded number of components. They presented a semi-
decision procedure for token-ring networks, building on results by Emerson and
Namjoshi [8], which show that for the verification of parameterized token rings,
a cut-off of 5 is sufficient for a certain class of specifications. Following these
results, parameterized synthesis reduces to distributed synthesis in token rings
of (up to) 5 identical processes. To solve the resulting problem, a modification of
the SMT encoding of the distributed bounded synthesis problem [12] was used.

Experiments with the parameterized synthesis method [13] revealed that only
very small specifications could be handled with this encoding. For example, the
simple arbiter presented in the beginning can be synthesized in a few seconds for a
ring of size 4, which is the sufficient cut-off for this specification. However, synthe-
sis does not terminate within 2 hours for a specification that also excludes spurious
grants, in a ring of the same size. Furthermore, the previously proposed method
uses cut-off results of Emerson and Namjoshi [8] and therefore inherits a restricted
language support and cannot handle specifications in assume-guarantee style [3].

Contributions. We propose several optimizations for the parameterized syn-
thesis method, and extend the supported specification language. Some of the
optimizations apply to the bounded synthesis approach in general, others only
to special cases like isomorphic synthesis, or synthesis in token rings. In partic-
ular, we introduce two kinds of optimizations:

1. We revisit the previously proposed SMT encoding and tailor it to systems
with isomorphic processes and token ring architecture. We use a bottom-up
approach that models the global system as a product of isomorphic processes,
in contrast to the top-down approach used before. Also, we encode particular
properties of token rings more efficiently by restricting the class of solutions
without losing completeness.

2. We consider optimizations that are independent of the SMT encoding. This
includes incremental solving, i.e. generating isomorphic processes in small
rings and testing the result in bigger rings. Furthermore, we use modular
generation of synthesis constraints when different classes of properties can
be encoded in token rings of different sizes. For local properties (that require
a ring of size two), we introduce an abstraction that replaces the second
process with assumptions on its behavior, thus reducing the ring of size two to
a single process with additional assumptions on its environment. Finally, we
show how to simplify specifications by strengthening, e.g. removing liveness
assumptions from parts that specify safety properties.

For some of the examples we consider in this paper, these optimizations show a
speedup of at least 3 orders of magnitude, which means that we need seconds
where we would otherwise need hours.

110 A. Khalimov, S. Jacobs, and R. Bloem

To allow the reader to assess the ideas behind our optimizations, and their
correctness, we present in some detail the background of distributed synthe-
sis in Sect. 2, and parameterized synthesis with the original SMT encoding in
Sect. 3. In Sect. 4 we introduce optimizations of the SMT encoding. In Sect. 5,
we consider extensions of our language, which allow us to support a broader
class of specifications. Sect. 6 introduces more general optimizations that are
independent of the encoding, and finally Sect. 7 gives experimental results.

2 Preliminaries

We consider the synthesis problem for distributed systems, with specifications
in (fragments of) LTL. Given a system architecture A and a specification ϕ,
we want to find implementations of all system processes in A, such that their
composition satisfies ϕ.

Architectures. An architecture A is a tuple (P, env, V, I, O), where P is a finite
set of processes, containing the environment process env and system processes
P− = P \ {env}, V is a set of Boolean system variables, I = {Ii ⊆ V | i ∈ P−}
assigns a set Ii of Boolean input variables to each system process, and O =
{Oi ⊆ V | i ∈ P} assigns a set Oi of Boolean output variables to each process,
such that ·⋃

i∈POi = V . In contrast to output variables, inputs may be shared
between processes. Wlog., we use natural numbers to refer to system processes,
and assume P− = {1, . . . , k} for an architecture with k system processes.

Implementations. An implementation Ti of a system process i with inputs Ii
and outputs Oi is a labeled transition system (LTS) Ti = (Ti, ti, δi, oi), where Ti
is a set of states including the initial state ti, δi : Ti × P(Ii) → Ti a transition
function, and oi : Ti → P(Oi) a labeling function.

The composition of a set of implementations {T1, . . . , Tk} is the LTS TA =
(TA, t0, δ, o), with TA = T1 × · · · × Tk, initial state t0 = (t1, . . . , tk), labeling
function o : TA → P(·

⋃
1≤i≤kOi) with o(t1, . . . , tk) = o1(t1) ∪ · · · ∪ ok(tk), and

transition function δ : TA × P(Oenv) → TA with

δ((t1, . . . , tk), e) = (δ1(t1, (o(t1, . . . , tk)∪e)∩I1), . . . , δk(tk, (o(t1, . . . , tk)∪e)∩Ik)),

i.e., every process advances according to its own transition function and input
variables, where inputs from other system processes are interpreted according to
the labeling of the current state.

Asynchronous Systems. An asynchronous system is an LTS such that in ev-
ery transition, only a subset of the system processes changes their state. This is
decided by a scheduler, which determines for every transition the processes that
are allowed to make a step. We assume that the environment is always sched-
uled, and the scheduler is a part of the environment. Formally, Oenv contains
additional scheduling variables s1, . . . , sk, and si ∈ Ii for every i. We require
δi(t, I) = t for any i and set of inputs I with si �∈ I.

Token Rings. We consider a class of architectures called token rings, where
processes can only communicate by passing a token. At any time only one process

Towards Efficient Parameterized Synthesis 111

can possess the token, and in a ring of size k, a process i which has the token can
pass it to process i+1 mod k by raising an output sendi ∈ Oi∩ Ii+1. We assume
that token rings are implemented as asynchronous systems, where in every step
only one system process may change its state, except for token-passing steps, in
which both of the involved processes change their state.

Distributed Synthesis. The distributed synthesis problem for an architecture
A and specification ϕ, is to find implementations for the system processes of A,
such that the composition of the implementations T1, . . . , Tk satisfies ϕ, written
A, (T1, . . . , Tk) |= ϕ. Specification ϕ is realizable with respect to an architecture
A if such implementations exist. Synthesis and checking realizability of LTL
specifications have been shown to be undecidable for architectures in which not
all processes have the same information wrt. environment outputs [10].

Bounded Synthesis. The bounded synthesis problem for given architecture
A, specification ϕ and a family of bounds {bi ∈ N | i ∈ P−} on the size of
system processes, as well as a bound bA for their composition TA, is to find
implementations Ti for the system processes such that their composition TA
satisfies ϕ, with |Ti| ≤ bi for all process implementations, and |TA| ≤ bA.

Automata. A universal co-Büchi tree automaton (UCT) is a tuple U = (Σ, Υ,Q,
ρ, α), where Σ is a finite output alphabet, Υ is a finite input alphabet, ρ : Q ×
Σ×Υ → P(Q) is the transition relation, and α is the set of rejecting states. We
call U a one-letter UCT if |Σ| = |Υ | = 1. A one-letter UCT is accepting if all its
paths visit α only finitely often. The run graph of a UCT U on an implementation
T is a one-letter UCT obtained by taking the usual synchronous product and
replacing all labels by an arbitrary one. An implementation is accepted if its run
graph is accepting. The language of U consists of all accepted implementations.
In the graph defined by Q and δ, we call a strongly connected component (SCC)
accepting (rejecting) if it does not (does) contain states in α.

3 Parameterized Synthesis

In this section we recapitulate the method for parameterized synthesis introduced
by Jacobs and Bloem [13].

Parameterized Architectures and Specifications. Let A be the set of all
architectures. A parameterized architecture is a function Π : N → A. A parame-
terized token ring is a parameterized architecture R with
R(n) = (Pn, env, V n, In, On), where
– Pn = {env, 1, . . . , n},
– In assigns to each process a set Ii of isomorphic inputs. That is, for some
I, Ii consists of the inputs in I subscripted with i. Additionally, Ii contains
the token-passing input sendi−1 from process i− 1 (mod n).

– Similarly, On assigns isomorphic, indexed sets of outputs to all system pro-
cesses, with sendi ∈ Oi, and every output of env is indexed with all values
from 1 to n.

112 A. Khalimov, S. Jacobs, and R. Bloem

1

2

3

4

r1

g1

send1

r2

g2

send2

r3

g3

send3

r4

g4

send4

Fig. 1. Token ring with 4 processes

A parameterized specification ϕ is an LTL specification with indexed variables,
and universal quantification over indices. We say that a parameterized architec-
ture Π and a process implementation T satisfy a parameterized specification
(written Π, T |= ϕ) if for any n, Π(n), (T , . . . , T) |= ϕ.

Example 1. Consider the parameterized token ring Rarb with
Rarb(n) = (Pn, env, V n, In, On), where

Pn = {env, 1, . . . , n}
V n = {r1, . . . , rn, g1 . . . , gn, send1, . . . , sendn}
Ii = {ri, sendi−1}
Oenv = {r1, . . . , rn}
Oi = {gi, sendi}

The architecture Rarb(n) defines a token ring with n system processes, with each
process i receiving an input ri from the environment and another input sendi−1

from the previous process in the ring, and an output sendi to the next process,
as well as an output gi to the environment.

An instance of this parameterized architecture for n = 4 is depicted in Fig. 1,
and the following is the parameterized specification from the introduction:

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi).

Isomorphic and Parameterized Synthesis. The isomorphic synthesis prob-
lem for an architecture A and a specification ϕ is to find an implementation
T for all system processes (1, . . . , k) such that A, (T , . . . , T) |= ϕ, also written
A, T |= ϕ. The parameterized synthesis problem for a parameterized architecture
Π and a parameterized specification ϕ is to find an implementation T for all sys-
tem processes such that Π, T |= ϕ. The parameterized (isomorphic) realizability
problem is the question whether such an implementation exists.

A cut-off for Π and ϕ is a number k ∈ N such that

Π(k), T |= ϕ ⇒ Π(n), T |= ϕ for all n ≥ k.

Towards Efficient Parameterized Synthesis 113

3.1 Reduction of Parameterized to Isomorphic Synthesis

Emerson and Namjoshi [8] have shown that verification of LTL\X properties for
implementations of parameterized token rings can be reduced to verification of a
small ring with up to five processes, depending on the form of the specification.

Theorem 1 ([8]). Let R be a parameterized token ring, T an implementation
of the isomorphic system processes that ensures fair token passing, and ϕ a
parameterized specification. For a sequence t of index variables and terms in
arithmetic modulo n, let f(t) be a formula that only refers to system variables
indexed by terms in t. Then,

R, T |= ϕ ⇐⇒ R(k), T |= ϕ for 1 ≤ k ≤ n,

where n is a cut-off depending on the specification: (a) if ϕ = ∀i. f(i), then
n = 2; (b) if ϕ = ∀i. f(i, i + 1), then n = 3, (c) if ϕ = ∀i �= j. f(i, j), then
n = 4, and (d) if ϕ = ∀i �= j. f(i, i+ 1, j), then n = 5. 1

Thus, verification of such structures is decidable. For synthesis, we obtain the
following corollary:

Corollary 1 ([13]). For a given parameterized token ring R and parametric
specification ϕ, parameterized synthesis can be reduced to isomorphic synthesis
in rings of size 2 (3, 4, 5) for specifications of type a) (b, c, d, resp.).

Using a modification of undecidability proofs for the distributed synthesis prob-
lem [16,10], Jacobs and Bloem [13] showed undecidability of isomorphic synthesis
in token rings, which implies undecidability of parameterized synthesis.

3.2 Bounded Isomorphic Synthesis

The reduction from Sect. 3.1 allows us to reduce parameterized synthesis to
isomorphic synthesis with a fixed number of processes. To solve the resulting
problem, bounded synthesis is adapted for isomorphic synthesis in token rings.

Bounded Synthesis. Following [12], the bounded synthesis procedure consists
of three steps:

1. Automata translation. The LTL specification ϕ (including fairness as-
sumptions like fair scheduling) is translated into a UCT U which accepts an
LTS T iff T satisfies ϕ.

2. SMT Encoding. Existence of an LTS which satisfies ϕ is encoded into a
set of SMT constraints over the theory of integers and free function symbols.
States of the LTS are represented by natural numbers, state labels as free

1 The results of [8] allow to fix one of the indices in the specification. For ∀i. f(i) it
is enough to verify the property f(0) under the assumption that initially the token
is given to a randomly chosen process. For ∀i 	= j. f(i, j) it is enough to verify
∀j 	= 0. f(0, j). See Lemma 3 in [8].

114 A. Khalimov, S. Jacobs, and R. Bloem

functions of type N → B, and the global transition function as a free function
of type N × B|Oenv | → N. To obtain an interpretation of these symbols
that satisfies the specification ϕ, we introduce labels λBq : N → B and free

functions λ#q : N → N, which are defined such that (i) λBq (t) is true iff the
product of T and U contains a path from an initial state to a state (t, q)
with q ∈ Q and (ii) valuations of the λ#q must be non-decreasing along paths
of U , and strictly increasing for transitions that visit a rejecting state of
U . This ensures that an LTS satisfying these constraints cannot have runs
which enter rejecting states infinitely often. The corresponding constraint
for an UCT (Σ, Υ,Q, ρ, α) and an implementation (T, t, δ, o) is∧

t

∧
I

∧
q,q′

λBq (t) ∧ q′ ∈ ρ(q, o(t), I) → λBq′ (δ(t, I)) ∧ λ#q′ (δ(t, I))�q λ
#
q (t), (1)

where �q equals > if q ∈ α, and �q equals ≥ otherwise. Furthermore, we
add a constraint that λB holds in the initial state of the run graph.
Finally, transition functions of individual processes are defined indirectly by
introducing projections di : N → N, mapping global to local states. To
ensure that local transitions of process i only depend on inputs in Ii, we add
a constraint

∧
i

∧
t,t′

∧
I,I′

di(t) = di(t
′) ∧ I ∩ Ii = I ′ ∩ Ii → di(δ(t, I)) = di(δ(t

′, I ′)). (2)

3. Iteration for Increasing Bounds. To obtain a decidable problem, the
number of states in the LTS that we are looking for is bounded, which
allows us to instantiate all quantifiers over state variables t, t′ explicitly with
all values in the given range. If the constraints are unsatisfiable for a given
bound, we increase it and try again. If they are satisfiable, we obtain a model,
giving us an implementation for the system processes such that ϕ is satisfied.

Adaption to Token Rings. The bounded synthesis approach is adapted for
synthesis in token rings, along with some first optimizations for a better perfor-
mance of the synthesis method.2

– We want to obtain an asynchronous system in which the environment is
always scheduled, along with exactly one system process. In general, we
could add a constraint

∧
i

∧
I si �∈ I → di(δ(t, I)) = di(t) (where I is a set

of inputs and si is the scheduling variable for process i). For our case, we do
not need |P | scheduling variables, but can encode the index of the scheduled
process into a binary representation with log2(|P−|) inputs.

– We use the semantic variation where environment inputs are not stored in
system states, but are directly used in the transition term that computes the
following state (cp. [12], Sect. 8). This results in an implementation which
is a factor of |Oenv| smaller.

2 This includes modifications and optimizations mentioned in [12], as well as [13].

Towards Efficient Parameterized Synthesis 115

– We encode the special features of token rings: i) Exactly one process should
have the token at any time; ii) Only a process which has the token can send
it; iii) If process i is scheduled, currently has the token, and wants to send
it, then in the next state process i+1 has the token and process i does not;
iv) If process i has the token and does not send it (or is not scheduled), it
also has the token in the next state, and v) if process i does not have the
token and does not receive it from process i − 1, then it will also not have
the token in the next step. Properties ii) – v) are encoded in the following
constraints, where toki(di(t)) is true in state t iff process i has the token,
send(di(t)) is true iff i is ready to send the token, and schedi(I) is true iff
the scheduling variables in I are such that process i is scheduled:∧

i

∧
t

∧
I tok(di(t)) → (send(di(t)) ∧ schedi(I)) ∨ tok(di(δ(t, I)))∧

i

∧
t ¬tok(di(t)) → ¬send(di(t))∧

i

∧
t

∧
I send(di(t)) ∧ schedi(I) → ¬tok(di(δ(t, I)))∧

i

∧
t

∧
I send(di−1(t)) ∧ schedi−1(I) → tok(di(δ(t, I)))∧

i

∧
t

∧
I ¬tok(di(t)) ∧ ¬(send(di−1(t)) ∧ schedi−1(I)) → ¬tok(di(δ(t, I))).

(3)
We do not encode property i) directly, because it is implied by the remaining
constraints whenever we start in a state where only one process has the token.

– Token passing is an exception to the rule that only the scheduled process
changes its state: if process i is scheduled in state t, and both tok(di(t)) and
send(di(t)) hold, then in the following transition both processes i and i + 1
will change their state. The constraint which ensures that only scheduled
processes may change their state is modified into∧

i

∧
t

∧
I ¬schedi(I) ∧ ¬(schedi−1(I) ∧ tok(di−1(t)) ∧ send(di−1(t)))
→ di(δ(t, I)) = di(t).

(4)

– We use isomorphism constraints to encode that the processes are identical.
To this end, we use the same function symbols for state labels of all system
processes, and restrict local transitions such that they result in the same local
state whenever the previous local states and the visible inputs are equivalent.
Since our definition allows processes that are not scheduled to receive the
token, we add a rule for this special case. The resulting constraints for local
transitions are:∧

i>1

∧
t,t′
∧

I,I′ d1(t) = di(t
′) ∧ sched1(I) ∧ schedi(I

′) ∧ I ∩ I1 = I ′ ∩ Ii
→ d1(δ(t, I)) = di(δ(t

′, I ′))∧
i>1

∧
t,t′
∧

I,I′ d1(t) = di(t
′) ∧ send(dn(t)) ∧ send(di−1(t

′))

∧ schedn(I) ∧ schedi−1(I
′) ∧ I ∩ I1 = I ′ ∩ Ii

→ d1(δ(t, I)) = di(δ(t
′, I ′)).

(5)
– Finally, a precondition of Thm. 1 is that the implementation needs to en-

sure fair token-passing. Let fair scheduling stand for
∧

j GF schedj . Then, we
always add ∧

i

(fair scheduling → (G(toki → F sendi))) (6)

116 A. Khalimov, S. Jacobs, and R. Bloem

0

1 ⊥ 2

3 5 46

r1g1 g1g2 r2g2

∗

s1g1

s1g1
s2g1

s2g1

s1g1s2g1 s2g2s1g2

s1g2
s2g2s1g2

s2g2

7 8

9 11 1012

tok1send1 tok2send2

s1send1

s1send1
s2send1

s2send1

s1send1s2send1 s2send2s1send2

s1send2
s2send2s1send2

s2send2

Fig. 2. Universal co-Büchi automaton for Example 2 for two processes

to ϕ. Similarly, the fair scheduling assumption needs to be added to any
liveness conditions of the specification, as without fair scheduling in general
liveness conditions cannot be guaranteed.
Note that these additional formulas need not be taken into account when
choosing which case of Thm. 1 needs to be applied.

Example 2. To synthesize an implementation of the simple arbiter from Exam-
ple 1, we first add constraints for fair scheduling and fair token-passing. The
resulting specification is

∀i �= j. G¬(gi ∧ gj)
∀i. fair scheduling → (G(ri → F gi))
∀i. fair scheduling → (G(toki → F sendi)).

For a ring of two processes, this specification translates to the co-Büchi automa-
ton shown in Fig. 2. This automaton is encoded into a set of SMT constraints,
part of which is shown in Fig. 3 (only constraints for states 0, 1, 3, 5 of the au-
tomaton are shown). These constraints, together with general constraints for
asynchronous systems, isomorphic processes, token rings, and size bounds, are
handed to the SMT solver.

Correctness and Completeness of Bounded Synthesis for Token Rings.
For a specification ϕ that is realizable in a token ring of size n, the given semi-
algorithm will eventually find an implementation satisfying ϕ in token rings of

Towards Efficient Parameterized Synthesis 117

λB
0(0)

tok(d1(0)) ∧ ¬tok(d2(0))
∀t. ∀I. λB

0(t) → λB
0(δ(t, I)) ∧ λ#

0 (δ(t, I)) ≥ λ#
0 (t)

∀t. λB
0(t) → ¬(g(di(t)) ∧ g(dj(t)))

∀t. ∀I. λB
0(t) ∧ r1 ∈ I → λB

1(δ(t, I)) ∧ λ#
1 (δ(t, I)) > λ#

0 (t)

∀t. ∀I. λB
1(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

3(δ(t, I)) ∧ λ#
3 (δ(t, I)) ≥ λ#

1 (t)

∀t. ∀I. λB
1(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(δ(t, I)) ∧ λ#
5 (δ(t, I)) ≥ λ#

1 (t)

∀t. ∀I. λB
3(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

3(δ(t, I)) ∧ λ#
3 (δ(t, I)) ≥ λ#

3 (t)

∀t. ∀I. λB
5(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(δ(t, I)) ∧ λ#
5 (δ(t, I)) ≥ λ#

5 (t)

∀t. ∀I. λB
5(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

1(δ(t, I)) ∧ λ#
1 (δ(t, I)) > λ#

5 (t)
.

Fig. 3. Constraints for Example 2 for two processes

size n. If ϕ furthermore falls into one of the classes described in Theorem 1, then
the implementation will satisfy ϕ in token rings of arbitrary size.

4 Optimizations of the Encoding

In this section, we describe a first set of optimizations that make synthesis sig-
nificantly more efficient. We consider the encoding of the problem into SMT
constraints, and aim to remove as much decision freedom from the SMT solver
as possible. All optimizations presented in this section are sound and complete.
Optimization of counters was introduced in [12,7] and applies to bounded syn-
thesis in general. Bottom-up encoding is possible in general (to some extent),
but will be most useful for isomorphic systems. Finally, fixed token function is
an optimization specific to token rings (or token-passing systems in general).

Counters. As mentioned in Sect. 3, labeling functions λ# count the visits to
rejecting states, and a satisfying valuation for them exists only if all run paths
visit rejecting states only finitely often. In a run path, a repeated visit to the same
rejecting state is possible only if the path stays in an SCC of the specification
UCT U . Therefore, we can reduce the number of λ# annotations by introducing
them only for states of U that are in a rejecting SCC. This optimization reduces
the number of counters as well as their maximum value significantly.

Example 3. In the simple arbiter, this optimization means that we do not need
λ# annotations in the initial state. The benefit becomes more visible in a full
arbiter, which in addition requires that there are no spurious grants and that
every grant is lowered eventually. A simplified UCT for such a specification is
given in Fig.4. Besides mutual exclusion of the grants, this presentation of the
UCT only shows the constraints for arbiter i. In the figure, si stands for schedi
and ai = schedi ∨ sendi−1 means the process is active and can react to the
environment input. Note that the SCCs around states 2 and 3 only reject rings
with fair scheduling — they become larger when processes are added. For this
UCT, counters λ# are only needed for states 3, 6, 8, 2, 5, and 7.

118 A. Khalimov, S. Jacobs, and R. Bloem

0 1 4

3

6

8

2

5

7

⊥ ⊥

∗

g1g2

airigi airigi

airigiairi gi

rigi rigi

airigi

airigi

sirigi

sirigi

sirigi

sirigi

sirigi

sirigi

sigi

sigi

sigi

sigi

sigi

sigi

Fig. 4. UCT of the full arbiter

Bottom-Up. In the original approach described in Sect. 3, the SMT solver
searches for a global transition function and projection functions di that satisfy
input dependence, scheduling, and isomorphism constraints (2)(4)(5). Instead,
we propose to go bottom-up: to search for a single process transition function
and build the global one from local ones. Thus, all the processes share the same
transition function symbol – this ensures their isomorphism, and constraints (5)
can be removed. Also, process transitions functions now depend only on cor-
responding to the process inputs, and we can safely remove constraints (2). In
addition, we wrap the transition function into an auxiliary function which calls
the original if the process is scheduled or receives the token, and otherwise re-
turns the current process state. This obviates the need for constraints (4).

λB
0(0, 1)

tok(0) ∧ ¬tok(1)
∀t1. ∀t2. ∀I1. ∀I2. λB

0(t1, t2) → λB
0(t

′
1, t

′
2)

∀t1. ∀t2. λB
0(t1, t2) → ¬(g(t1) ∧ g(t2))

∀t1. ∀t2. ∀I1. ∀I2. λB
0(t1, t2) ∧ r1 ∈ I1 → λB

1(t
′
1, t

′
2)

∀t1. ∀t2. ∀I1 .∀I2. λB
1(t1, t2) ∧ sched2 ∧ ¬g(t1) → λB

5(t
′
1, t

′
2) ∧ λ#

5 (t′1, t
′
2) ≥ λ#

1 (t1, t2)

∀t1. ∀t2. ∀I1 .∀I2. λB
5(t1, t2) ∧ sched2 ∧ ¬g(t1) → λB

5(t
′
1, t

′
2) ∧ λ#

5 (t′1, t
′
2) ≥ λ#

5 (t1, t2)

∀t1. ∀t2. ∀I1 .∀I2. λB
5(t1, t2) ∧ sched1 ∧ ¬g(t1) → λB

1(t
′
1, t

′
2) ∧ λ#

1 (t′1, t
′
2) > λ#

5 (t1, t2)

Fig. 5. Some of constraints for Example 2 for two processes using the Bottom-up
encoding and Counters optimizations; t′i = δ(ti, Ii), δ is a wrapped local transition

function; labeling functions changed its type: λ
#/B
q : N× N → N/B.

Similar approach that uses process transition functions explicitly was pro-
posed in [11], but they still keep projection functions and a global transition
function to describe the system. We removed these notions at all (see Fig. 5).

On the downside, this optimization does not allow us to bound the number
of global states independently of the number of local states as in the original
approach [13] or in [11] (and the number of global states is always equal to |T |n).

Towards Efficient Parameterized Synthesis 119

Fixed Token Function. In the original approach, possession of the token is
encoded by an uninterpreted function tok. We fix process states without/with
a token T¬tok/Ttok and define tok(t) := (t ∈ Ttok), thus exempting the SMT
solver from finding a valuation for tok. Fixing token possession functions has
two important consequences.

First, it allows us to precompute global states with exactly one token in a
ring. In case of 3 processes, global states are {(t∗, t, t) ∪ (t, t∗, t) ∪ (t, t, t∗)},
where t∗ ∈ Ttok, t ∈ T¬tok. Then we build main constraints (1) only for these
precomputed global states, and ignore other, invalid, global states. The system
cannot move into an invalid global state with number of tokens different from
one due to token ring constraints (3). In the original approach, invalid global
states constitutes most of the global state space, and ignoring them reduces
the state space significantly (exponentially in number of processes), leading to
smaller SMT queries.

The second consequence of fixing tok is a possible restriction of generality
of solutions. Different separations T¬tok/Ttok may lead to different solutions. In
general, systems with larger ratio p = |T¬tok|/|Ttok| have a larger global state
space, and processes without a token have more possibilities for transitions.
With a maximal p, the system is completely parallel, and a minimal p leads to
a sequential processing. The choice of p also affects the synthesis time because
it changes the number of global states and, therefore, the size of the query.

A related optimization is to use binary encoding for token possession and
sending that would automatically remove bad states from the consideration.

5 Extensions of Supported Language

Before introducing a second set of optimizations, we consider some extensions
of our specification language, enabling us to treat more interesting examples.
While the results of Emerson and Namjoshi [8] give us cut-offs that allow for
parameterized synthesis in principle, a closer inspection of examples from the
literature shows that the supported language is not expressive enough to handle
many of them. Consider the parameterized arbiter specification introduced by
Piterman, Pnueli and Sa’ar [15] with a specification of the form

Assume → Guarantee, where

Assume ≡
∧

i (ri ∧ G ((ri 	= gi) → (ri = X ri)) ∧ G ((ri ∧ gi) → F ri))

Guarantee ≡
∧

i�=j (G¬(gi ∧ gj)) ∧
∧

i

⎛
⎝gi ∧

⎛
⎝ G((ri = gi) → (gi = X gi))
∧ G((ri ∧ gi) → F gi)
∧ G((ri ∧ gi) → F gi)

⎞
⎠
⎞
⎠ .

This specification points to three limitations in the language considered by Emer-
son and Namjoshi:

120 A. Khalimov, S. Jacobs, and R. Bloem

First, the conjunction over all processes in the assumption turns into a disjunc-
tion when we bring the formula into a prenex form. Disjunctions over processes
are however not supported by Emerson and Namjoshi. Second, this formula will
quantify over (at least) three independent variables, which is also not supported
in their framework. We will show that these two limitations can be effectively
overcome in token-rings by using more general results by Clarke et al. [5] on
network decomposition.

Finally, the specifications of Assume and Guarantee contain the X operator,
which is completely excluded from the language of both Emerson/Namjoshi and
Clarke et al. One may assume that one of the reasons for excluding the X operator
is that, in asynchronous distributed systems, the presence of a (fair but otherwise
arbitrary) scheduler can invalidate statements about the next state of a given
process by simply not scheduling it. We will make some observations about cases
where the usual X operator can still be used, and furthermore introduce a local
variant of the X operator, that takes scheduling of a process into account.

5.1 Network Decomposition for Token Rings

The results by Clarke et al. allow for specifications with both conjunctions and
disjunctions over all processes, and also allow an arbitrary number of index
variables. For checking a property φ in a token-passing network, the consider
decompositions into possible network topologies, where processes that are not
represented by an index in φ are replaced by so-called hubs which simply pass on
the token. A k-indexed property is a formula with arbitrary quantification that
refers to system variables of at most k different processes. Their main result is

Theorem 2 ([5]). For checking any k-indexed LTL\X property φ in token-
passing networks, it is sufficient to check φ on up to 3k(k−1)2k network topologies
of size up to 2k.

However, in general this result is not constructive, a suitable decomposition into
network topologies still needs to be found (for arbitrary network architectures).
For the case of token rings, it is easy to find the suitable decomposition: for every
number of processes n, there is only one ring of this size. Thus, Thm. 2 directly
implies that for any k-indexed property, it is sufficient to check it on rings of all
sizes up to 2k. We can even get a result that is a bit stronger (in that it does
not require to check small rings if we only consider rings of size > 2k):

Corollary 2. If φ is a k-indexed property and Π a parameterized token-ring
architecture, then 2k is a cut-off for φ.

Proof. Suppose φ holds in a ring of size 2k, but not in some bigger ring. This
means that there is a tuple (p1, . . . , pk), or a set of such tuples, such that for this
combination of processes, φ is not satisfied. Using the terminology of Clarke et
al., each of these tuples defines a network topology, by abstracting processes that
are not in the tuple into hubs, where all neighboring processes are abstracted into
one hub. By Clarke et al., every network with the same topology will not satisfy

Towards Efficient Parameterized Synthesis 121

φ. Since the size of this network topology is at most 2k (hubs and processes pi
alternating), we can find tuples of processes with the same topology in the ring
of size 2k. Thus, φ cannot hold in the ring of size 2k. Contradiction. ��

With this result, parameterized synthesis in token rings can be extended to
include specifications with an arbitrary number of quantified variables, and ar-
bitrary quantifier alternations.

5.2 Handling the X Operator

In the example given above, all X operators are used in a way that forbids
change as long as some conditions hold. We note that this special usage of the
X operator is not a problem when we use this specification in asynchronous
distributed systems, for two reasons:

1. In this use case, X operators do not make the specification unrealizable
because of the scheduling. Indeed, the environment cannot simply invalidate
the property by not scheduling the process, since it will trivially hold in the
next step if the process controlling the output does not change it.

2. Cut-off results we use holds for LTL\X, but they still hold for this specifi-
cation, since we can always rewrite such usage of X operators into a form
without X: G(ϕ → p = X p) ⇔ G(ϕ → pW ¬ϕ) ∧ G(ϕ → ¬pW ¬ϕ).

In addition to this special usage of the usual X operator, we can consider exam-
ples with a local variant Xi useful for specifying Globally Asynchronous Locally
Synchronous [4] systems. The local Xi specifies the next state from the perspec-
tive of process i,

Xi pi ⇔ F(schedi ∧ X pi).

Obviously, this operator is insensitive to scheduling (in the sense that the en-
vironment cannot invalidate properties by not scheduling the process). Further-
more, all our cut-off results still hold for specifications that are conjunctions
ϕ1 ∧ . . . ∧ ϕn, if we allow Xi to appear only in local properties ϕi.

6 General Optimizations

In this section we describe high-level optimizations that are not specific to
the SMT encoding. The first two optimizations, incremental solving and mod-
ular generation of constraints, are sound and complete. The third, specification
strengthening, is based on automatic rewriting of the specification and introduces
incompleteness. The last optimization, hub abstraction is sound and complete.

Modular generation of constraints and specification strengthening apply to
bounded synthesis (although the first is particularly useful for parameterized
synthesis), while incremental solving only applies to parameterized synthesis.
Hub abstraction is specific to token-passing systems.

122 A. Khalimov, S. Jacobs, and R. Bloem

Incremental Solving. Corollary 2 states that it is sufficient to synthesize a
token ring of size 2k for k-indexed properties. However, a solution for a smaller
number of processes can still be correct in bigger rings. We propose to proceed
incrementally, synthesizing first a ring of size 1, then 2, etc., up to 2k. After
synthesizing a process that works in a ring of size n, we check whether it satisfies
the specification also in a ring of size n + 1. Only if the result is negative, we
start the computationally much harder task to synthesize a ring of size n+ 1.

Modular Generation of Constraints for Conjunctive Properties. A very
useful property of the SMT encoding for parameterized synthesis is that we can
separate conjunctive specifications into their parts, generate constraints for the
parts separately, and finally search for a solution that satisfies the conjunction of
all constraints. In the following, for a parametric specification ϕ and a number of
processes k, let C(ϕ, k) be the set of SMT constraints generated by the bounded
synthesis procedure (for a fixed parameterized architecture Π).

We start from the following observation: let ϕ1∧ϕ2 be a parametric specifica-
tion, Π a parameterized architecture, T a process implementation. If Π, T |= ϕ1

and Π, T |= ϕ2, then Π, T |= ϕ1 ∧ ϕ2. While this may seem trivial, when com-
bined with Thm. 1 and Cor. 1, we obtain the following3

Theorem 3. Let Π be a parameterized architecture and ϕ1 ∧ ϕ2 a parametric
specification, s.t. n1 is a cut-off for ϕ1, and n2 a cut-off for ϕ2 in Π. Then,

T |= C(ϕ1, n1) ∧ C(ϕ2, n2) ⇒ Π(k), T |= ϕ1 ∧ ϕ2 for k ≥ max(n1, n2).

In parameterized synthesis, this not only allows us to use separate sets of con-
straints to ensure different parts of the specification, but also to use different
cut-offs for different parts. By conjoining the resulting constraints of all parts,
we obtain an SMT problem s.t. any solution will satisfy the complete specifica-
tion. For a specification like

∀i �= j. G¬(gi ∧ gj)
∀i. G(ri → F gi),

this allows us to separate the global safety condition from the local liveness
condition. Then, only for the former we need to generate constraints for a ring
of size 4, while for the latter a ring of size 2 is sufficient. This is particularly
useful for specifications where the local part is significantly more complex than
the global part, like our more complex arbiter examples.

Specification Strengthening. To simplify the specification in assume-
guarantee style, we remove some of its assumptions with two rewriting steps.
These steps are sound but incomplete, and lead to more robust specifications.

Consider a specification in assume-guarantee style AL∧AS → GL ∧GS with
liveness and safety assumptions and guarantees. Our first strengthening is based
on the intuition that in practice AL is not needed to obtain GS , so we strengthen

3 Note that, in a slight abuse of notation, we use T both for the model of the SMT
constraints, and for the implementation represented by this model.

Towards Efficient Parameterized Synthesis 123

the formula to (AS → GS) ∧ (AL ∧ AS → GL). This step is incomplete for
specifications where the system can falsify liveness assumptions AL and therefore
ignore guarantees, or if the assumptions AS ∧ AL are unrealizable but AS is
realizable. We assume that such cases are not important in practice4.

Our second strengthening “localizes” assumptions and guarantees. Consider
a 2-indexed specification in assume-guarantee style:

∧
iAi →

∧
j Gj . Adding

assumptions on fairness of scheduling and token ring guarantees, we get:∧
i GF schedi ∧ Ai →

∧
j Gj∧

i GF schedi ∧ Ai →
∧

j TRj

where TRj are token ring constraints (3), Ai, Gj are assumptions and guarantees
referring only to a single process5. The truth of ∧jTRj implies the truth of fair
token passing ∧j GF tokj , therefore we can add it as an assumption to the first
line (logically equivalent to the original specification). After that we “localize”
the specification by letting every implication only refer to one process (sound,
but incomplete) and get the final strengthened specification:∧

i(GF schedi ∧ Ai ∧ GF toki → Gi)∧
i(GF schedi ∧ Ai → TRi)

The second step, where we add ∧i GF toki as an assumption to the first con-
straint, is crucial. Otherwise, the final specification becomes too restrictive and
we may miss solutions. The reason why GF toki may prevent this is that GF toki
may work as a local trigger of a violation of an assumption. This is confirmed
in the “Pnueli” arbiter experiment, where a violation of one of the assumptions
Ai prevents fair token passing in the ring, falsifying GF tokj for all j �= i.

Filiot et al. in [9] proposed a rewriting heuristic which is essentially a lo-
calization step mentioned above. Our version is slightly different since we add
GF toki assumptions before localization to prevent missing the solutions.

These two strengthenings may change the type, and hence the cut-off, of a
specification. For example, after strengthening, the “Pnueli” arbiter specifica-
tion changes its type from 3-indexed to 2-indexed. Furthermore, most properties
become local, and can be efficiently synthesized with the following optimization.

Hub-Abstraction. From Clarke et al. [5] it follows that checking local proper-
ties in a token ring is equivalent to checking properties of one process in a ring
of size 2, while the second process is a hub process which is only required to pass
tokens it receives. Instead of introducing an explicit hub process, we model its
behavior with environment assumptions Ahub for the first process: i) if the pro-
cess does not have the token, then the environment will finally send the token,
ii) if the process has the token, then the environment can not send the token:

G(¬tok → F sendhub)
G(tok → ¬ sendhub).

4 For example, well known class of GR1 specifications [3] used to describe some indus-
trial systems does not use liveness assumptions for safety guarantees. Specifications
with unrealizable assumptions likely contain designer errors.

5 This can be generalized to k-indexed assumptions and guarantees.

124 A. Khalimov, S. Jacobs, and R. Bloem

We add the hub assumptions Ahub above to the original specification and syn-
thesize a single process. Therefore the final property to synthesize becomes:

GF sched ∧ A ∧ Ahub → G ∧ TR.

This property is equivalent to the original one, that is, the abstraction step is
sound and complete. The abstracted property is more complex than the original
one, but it can be synthesized in a single process setting. Therefore we trade size
of a token ring to be synthesized for the size of the specification.

We can go further and replace GF sched with true, which can introduce un-
soundness in general. But this step is still sound for the class of specifications
mentioned in Sect. 5.2, where the environment cannot violate guarantees by not
scheduling the process. This is true for all examples we consider in this paper,
and a reasonable assumption for many asynchronous systems.

7 Experiments

For the evaluation of optimizations we developed an automatic parameterized
synthesis tool that 1) identifies the cut-off of a given LTL specification 2) adds
token ring constraints and fair scheduling assumptions to the specification 3)
translates the modified specification into a UCT using LTL3BA [1] 4) for a
given cut-off and model size bound encodes the automaton into SMT constraints
5) solves the constraints using SMT solver Z3 v.4.1 [6]. If the solver reports
unsatisfiability, then no model for the current bound exists, and the tool goes to
step 4 and increases the bound until the user interrupts execution or a model is
found. A model synthesized represents a Moore machine that can be cloned and
stacked together into a token ring of any size.

We have run our experiments on a single core of a Linux machine with two
4-core 2.66 GHz Intel Xeon processors and 64 GB RAM. Reported times in
tables include all the steps of the tool. For long running examples, SMT solving
contributes most of the time.

For the evaluation of optimizations we run the tool, with different sets of
optimizations enabled, on three examples: a simple arbiter, a full arbiter, and a
“Pnueli” arbiter. We show solving times in seconds in Table 1 and Table 2. The
horizontal axis of the table has columns for token rings of different sizes – up to
a cut-off size – 4 for simple and full arbiters, and 6 for “Pnueli” arbiter.

7.1 Encoding Optimizations

Each successive optimization below includes previous optimizations as well.

Original. The implementation of the original version is described in Sect. 3. It
starts with a global transition function and uses projection functions and SMT
constraints to specify the underlying architecture and isomorphism of processes.

Counters. We use SCC-based counters for rejecting states, minimizing the nec-
essary annotations of our implementations.

Towards Efficient Parameterized Synthesis 125

Table 1. Effect of encoding optimizations on synthesis time (in seconds, t/o=2h)

simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnueli5/6

original 11 t/o t/o t/o 52 t/o t/o t/o
counters 8 2316 t/o t/o 19 t/o t/o t/o
bottom-up 3 24 934 t/o 23 6737 t/o t/o
fixed tok function 1 2 28 327 7 252 5691 t/o

total speedup 11 ≥103 ≥102 ≥20 7 ≥30 ≥1.5 -

Bottom-Up. In this version we use the same local transition and output symbols
for all the processes. The significant speedup (two orders of magnitude for full2)
is caused by two factors: the number of unknowns gets smaller (we don’t need
projection functions) and the size of SMT query becomes smaller (no need for
constraints (2),(4),(5)).

Fixed Token Function. In this version SMT queries contain constraints only
for global states with exactly one token in a ring. It is possible because we
hard-code tok by dividing a process state space into two equal sets of states
without/with a token (1/2 in case of 3 states). Similar to the previous, this
optimization is efficient because it reduces the size of SMT queries and the
number of unknowns.

In all experiments, constraints were encoded in AUFLIA logic. We also tried
bitvector and real number encodings, but with no considerable speed-up.

7.2 General Optimizations

Each successive optimization below includes previous optimizations except Fixed
token function, since it is not clear how to divide process state space in a general
way. As a “non-optimized” reference version we use bottom-up implementation.

Incremental Solving. Solving times can be sped up considerably by synthesiz-
ing a ring of size 2, and checking whether the solution is correct for a ring of size
4. For instance, for the full arbiter, the general solution is found in 24 seconds
when synthesizing a ring of size 2 (time from the “bottom-up” row in Table 1).
Checking that the solution is correct for a ring of size 4 takes additional 30 sec-
onds, thus reducing the synthesis time from more than 2 hours to 54 seconds.
Times for incremental solving are not given in the table.

Strengthening. This version refers to two optimizations described in Sect. 6
- localizing of assume-guarantee properties and removing liveness assumptions
from properties with safety guarantees. Specification rewriting works very well,
significantly reducing the size of the specification automaton: for example, the
automaton corresponding to the “Pnueli” arbiter in a ring of size 4 after rewriting
reduces its size from 1700 to 31 nodes (from 41 to 16 for the full arbiter). Also,
this optimization changes the cut-off from 6 to 4 for the “Pnueli” arbiter. We left
token rings of size 5/6 in rows below to demonstrate scalability of optimizations.

126 A. Khalimov, S. Jacobs, and R. Bloem

Table 2. Effect of general optimizations on synthesis time (in seconds, t/o=2h)

simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnueli5 pnueli6

bottom-up 3 24 934 t/o 23 6737 t/o t/o t/o
strengthening 1 6 81 638 2 13 90 620 6375
modular 1 4 8 13 2 4 11 49 262
async hub 1 2 2 5 2 3 9 37 236
sync hub 1 1 2 4 2 3 8 42 191

total speedup 3 20 102 ≥103 10 103 ≥103 ≥102 ≥40

Modular. In this version, constraints for specifications of the form φi ∧φi,j are
generated separately for local properties φi and for global properties φi,j , using
the same symbols for transition and output functions. Constraints for φi are
generated for a ring of size 2, and constraints for φi,j for a ring of size 4. These
sets of constraints are then conjoined in one query and fed to the SMT solver.
Such separate generation of constraints leads to smaller automata and queries,
resulting in approximately 10x speed up.

Hub Abstractions. By replacing one of the processes in a ring of size 2 with
assumptions on its behavior, we reduce the synthesis of a ring of size two to
the synthesis of a single process. In row “async hub” the process is synthesized
in an asynchronous setting, while in row “sync hub” the process is assumed to
be always scheduled. The results do not show a considerable speed up, but this
optimization might work in cases of larger specifications.

Remarks. It should be noted that our set of experiments is relatively small, and
that SMT solvers are sensitive to small changes in the input. Thus, the experi-
ments would certainly benefit from a larger set of benchmarks, and the individual
comparison of any two numbers in the table should be taken with a grain of salt.
At the same time, the table shows a clear and significant improvement of the
solving time when all optimizations are turned on.

8 Conclusions

We showed how optimizations of the SMT encoding, along with modular ap-
plication of cut-off results, strengthening and abstraction techniques, leads to
a significant speed-up of parameterized synthesis. Experimental results show
speed-ups of more than three orders of magnitude for some examples. We also
showed that using the X operator does not necessarily break cut-off results or
make the specification unrealizable in an asynchronous setting. Finally, we ap-
plied cut-off results from verification of general token passing systems [5] to
synthesis in token rings, thus extending the specification language that the pa-
rameterized synthesis method [13] can handle.

The current bottleneck of SMT-based bounded (and thus, parameterized) syn-
thesis is the construction of the UCT automaton. In our experiments, LTL3BA

Towards Efficient Parameterized Synthesis 127

could not generate the UCT for an AMBA arbiter with only 1 client within two
hours. Therefore, we think that it will be important to develop techniques that
help us to avoid construction of the whole automaton (for example by separate
tracking of assumptions and guarantees violations, as in [7]).

Acknowledgments. We thank Helmut Veith for inspiring discussions on pa-
rameterized systems, Bernd Finkbeiner and Sven Schewe for discussions on dis-
tributed and bounded synthesis, and Leonardo de Moura for help with Z3.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Trans-
lation: Fast and More Deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

2. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY – A New Requirements Analysis Tool with
Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 425–429. Springer, Heidelberg (2010)

3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78, 911–938 (2012)

4. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis,
Stanford Univ., CA (1984)

5. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decom-
position. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Ehlers, R.: Symbolic bounded synthesis. Formal Methods in System Design 40,
232–262 (2012)

8. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. International Journal
of Foundations of Computer Science 14, 527–549 (2003)

9. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

10. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Logic in Computer
Science (LICS), pp. 321–330. IEEE Computer Society Press (2005)

11. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Proc.
Workshop on Automated Formal Methods, pp. 69–76. ACM (2007)

12. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. on Software Tools for Tech-
nology Transfer, 1–21 (2012)

13. Jacobs, S., Bloem, R.: Parameterized Synthesis. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

14. Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using
Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

15. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

16. Pnueli, A., Rosner, R.: Distributed systems are hard to synthesize. In: Foundations
of Computer Science (FOCS), pp. 746–757. IEEE Computer Society Press (1990)

Automatic Inference of Necessary Preconditions

Patrick Cousot1, Radhia Cousot2, Manuel Fähndrich3, and Francesco Logozzo3

1 NYU, ENS, CNRS, INRIA
pcousot@cims.nyu.edu
2 CNRS, ENS, INRIA

rcousot@ens.fr
3 Microsoft Research

{maf,logozzo}@microsoft.com

Abstract. We consider the problem of automatic precondition infer-
ence. We argue that the common notion of sufficient precondition in-
ference (i.e., under which precondition is the program correct?) imposes
too large a burden on callers, and hence it is unfit for automatic program
analysis. Therefore, we define the problem of necessary precondition in-
ference (i.e., under which precondition, if violated, will the program al-
ways be incorrect?). We designed and implemented several new abstract
interpretation-based analyses to infer atomic, disjunctive, universally and
existentially quantified necessary preconditions.

We experimentally validated the analyses on large scale industrial
code. For unannotated code, the inference algorithms find necessary pre-
conditions for almost 64% of methods which contained warnings. In 27%
of these cases the inferred preconditions were also sufficient, meaning all
warnings within the method body disappeared. For annotated code, the
inference algorithms find necessary preconditions for over 68% of meth-
ods with warnings. In almost 50% of these cases the preconditions were
also sufficient. Overall, the precision improvement obtained by precon-
dition inference (counted as the additional number of methods with no
warnings) ranged between 9% and 21%.

1 Introduction

Design by Contract [28] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions and object
invariants (collectively called contracts) at design time. Contracts allow auto-
matic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for divide and conquer static program anal-
ysis and verification. In the real world, relatively few methods have contracts
that are sufficient to prove the method correct. Typically, the precondition of
a method is weaker than necessary, resulting in unproven assertions within the
method, but making it easier to prove the precondition at call-sites. Inference
has been advocated as the holy grail to solve this problem.

In this paper we focus on the problem of computing necessary preconditions
which are inevitable checks from within the method that are hoisted to the

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 128–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Inference of Necessary Preconditions 129

method entry. This should be contrasted to sufficient preconditions which guar-
antee the absence of possible assertion violations inside the method but may rule
out good runs. Programmers will object to the inference of too strong precondi-
tions as they introduce more false warnings at call sites.

Contribution. The basis for this work is [11] which introduced the theoreti-
cal framework formalizing the notion of necessary precondition inference. We
extend this theoretical framework by introducing the inter-method analysis, by
refining the intra-method analyses combining them with Clousot [16], by identi-
fying under which circumstances the generated precondition is also sufficient, by
showing how one can infer existential preconditions, by introducing a simplifica-
tion step for scalability, by adding the provenance relation, and by implementing
and validating the approach on realistic code bases.

2 Semantics

The semantics of a given program P (e.g. a method) is a non-empty set S of runs
modeled as finite or infinite execution traces over states Σ. S can be partitioned
into disjoint subsets S = E ∪ T ∪ I where the traces in E are finite bad runs
terminating in an error state, the traces in T are finite good runs terminating in
a correct state, and the infinite traces in I, which correspond to non-termination.
If X is a set of traces and s ∈ Σ, we write X(s) for the set of traces in X starting
from state s.

Assertions are either induced by the language semantics (e.g., null-pointer
dereference, division by zero, array out of bounds, . . .) or they are annota-
tions in the source text (programmer-provided assertions, preconditions, and
postconditions). Boolean expressions are side effect free and they are always
well-defined when evaluated with shortcut semantics for conjunctions and dis-
junctions. The set � denotes the set of the potential failures of P. � contains
pairs 〈c, b〉, where b is an assertion at the program point c. In general, there may
be more than one assertion per program point. The bad runs E � {σs′ | ∃〈c,
b〉 ∈ � : πs′ = c∧¬�b�s′} are all traces σs′ ending in a state s′ ∈ Σ at a control
point πs′ = c where the evaluation of a language or programmer assertion b

fails, that is �b�s′ is false.
Given a formula C ⇒ S, we say that C is a sufficient condition for S and

S is a necessary condition for C. A sufficient condition for a statement S is a
condition that, if satisfied, ensures S’s correctness. A necessary condition for a
statement S must be satisfied for the statement to be true.

The first step in our precondition inference algorithm is the collection of all fail-
ure points 〈c, b〉 from which we will then try to derive necessary preconditions. In
practice, the candidate assertions in � are those assertions which cannot be stat-
ically proven by cccheck [16](or similar tools). We will use the assertions in � to
infer necessary preconditions. This consists in propagating these conditions back-
wards to the origin of the traces of the semantics S, at the entry control point. The
inference of termination preconditions is a separate problem [10], so we ignore the
non-terminating behaviors I, or equivalently, assume termination i.e. I = ∅.

130 P. Cousot et al.

public static void Example(object[] a) {
Contract.Requires(a != null);

for (var i = 0; i <= a.Length; i++) {
a[i] = ...f(a[i])... ; // (*)
if (NonDet()) return;

}
}

Fig. 1. The weakest precondition for this code is false, which rules out good exe-
cutions. Our technique only excludes bad runs, inferring the necessary precondition
0 < a.Length.

3 Sufficient Preconditions

The weakest (liberal) preconditions provide sufficient preconditions which guar-
antee the (partial) correctness, i.e., the absence of errors in the program
[2, 5, 9, 22, 29, 31]:

∀s ∈ Σ : wlp(P, true)(s) � (E(s) = ∅).
The main drawbacks preventing the use of the weakest (liberal) preconditions
calculus for automatic precondition inference are: (i) in the presence of loops,
there is no algorithm that computes weakest (liberal) precondition wlp(P, true),
(ii) due to loop over-approximation, the inferred preconditions are sufficient but
no longer the weakest, and (iii) the resulting sufficient (liberal) preconditions
may be too strong and rule out good runs.

More formally, an under-approximation P of wlp(P, true) on states s ∈ Σ must
be computed such that

∀s ∈ Σ : P (s) ⇒ wlp(P, true)(s) under-approximation�
⇔ ∀s ∈ Σ : P (s) ⇒ (E(s) = ∅) def. wlp(P, true)�
⇔ ∀s ∈ Σ : P (s) ⇒ (T (s) �= ∅ ∨ I(s) �= ∅)

since S(s) �= ∅ ∧ S = E ∪ T ∪ I so E(s) = ∅ implies (T (s) ∪ I(s)) �= ∅.�
⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [P (s) ⇒ (T (s) �= ∅)] (1)

The preconditionP on states s ∈ Σ is sufficient for the absence of definite runtime
errors (under the termination hypothesis) but ¬P (s) ∧ (T (s) �= ∅) is possible so if
execution stops in states s such that ¬P (s) (the sufficient precondition fails) then
T (s) �= ∅ implies that other valid executions may be ruled out.

We argue that in general the use of a sufficient precondition is unfair in an
automatic static analysis assume/guarantee reasoning setting, as: (i) it rules out
correct executions; and (ii) it imposes too strong a proof obligation at call-sites.

Example 1 (Ruling out good runs). Consider the code in Fig. 1, a very simplified
version of some pattern we found in System.dll. The function NonDet is a non-
deterministic Boolean function. At runtime, an out-of-bounds array access at
line (∗) may or may not appear. If the array is empty then the execution will fail

Automatic Inference of Necessary Preconditions 131

int Sum(int[] xs)
{

Contract.Requires(xs != null);

int sum = 0;
for(var i = 0; i < xs.Length; i++)

sum += xs[i];

Assert(sum >= 0);

return sum;
}

Fig. 2. In presence of overflows, the weakest precondition of Sum is essentially the
method itself. The weakest precondition can be overapproximated (as customary in
deductive verification) with a sufficient precondition. Automatically inferred sufficient
preconditions may require the caller to establish a too strict condition.

while trying to access the first element. Otherwise, the failure will not appear if
some of the NonDet calls returns true.

The weakest (liberal) precondition is false, meaning that all the runs, even the
good ones, are rejected. To us, this is too strict. We propose a definition where no
good run is removed, but only bad ones. For instance according to our definition,
it is correct for our automatic tool to infer the precondition a.Length > 0 as an
empty array will definitely lead to a failure at runtime. ��

Example 2 (Requiring too much from the client). Let us consider the method
in Fig. 2, where int is a 32-bit integer, and overflows are not an error, but a de-
sired side-effect. Sum returns 19 for the input array {−2147483639,−2147483628,
−10}. The weakest precondition of the method Sum is essentially the method it-
self: (∑

0≤j<xs.Length
xs[i]

)
≥ 0. (2)

It is a second order formula as
∑

, the sum on two’s complement is defined in-
ductively. The automatic inference of (2) is tough, out of reach of the current
state-of-the-art tools and inference techniques. One can imagine tools inferring
weaker loop invariants, originating in stronger sufficient preconditions. Two pos-
sible sufficient preconditions for the method are

∀j ∈ [0, xs.Length). 0≤ xs[j]< MaxInt/xs.Length (3)

xs.Length = 3 ∧ xs[0] + xs[1] = 0 ∧ xs[2] ≥ 0. (4)

as they satisfy the correspondingHoare triples {(3)} C {Q}, {(4)} C {Q} and {(3)∨
(4)} C {Q}. However, it is unfair to use one of them for an automatic modular as-
sume/guarantee reasoning. For example, the input array above satisfies neither (3)
nor (4). So, a tool inferring a sufficient but not necessary precondition will report
a precondition violation for a caller with such an actual parameter. ��

A sufficient precondition may impose too large a burden on callers, thereby
making the precondition appear wrong to the user. In an early attempt at pre-
condition inference, we were inferring sufficient but not necessary preconditions.

132 P. Cousot et al.

T (s)

P (s) ∅ 	= ∅

E(s) ∅ true true

	= ∅ false false

T (s)

P (s) ∅ 	= ∅

E(s) ∅ true true

	= ∅ false true

P (s) = wlp(P, true)(s) � (E(s) = ∅) P (s) = (T (s) 	= ∅ ∨ E(s) = ∅)

Fig. 3. (a) Weakest sufficient precondition (b) Strongest necessary precondition

Our users (professional programmers with no background in formal methods)
filed several bug reports, marking such preconditions as “wrong” suggestions
from cccheck.

4 Necessary Preconditions

We advocate the use of necessary preconditions, i.e., preconditions which, once
violated, definitely lead to an error later in the program execution. Such a nec-
essary precondition P on states s ∈ Σ is

∀s ∈ Σ : [I(s) = ∅] ⇒ [(T (s) �= ∅) ⇒ P (s)] inverse of (1)�
⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [¬P (s) ⇒ (T (s) = ∅)] contraposition�
⇔ ∀s ∈ Σ : [I(s) = ∅] ⇒ [¬P (s) ⇒ (T (s) = ∅ ∧ E(s) �= ∅)]

since S(s) �= ∅, S = E ∪ T ∪ I, I(s) = ∅, and T (s) = ∅ imply E(s) �= ∅.�
If the necessary precondition P (s) does not hold then an execution from s either
diverges or else it definitely terminates in an error (since T (s) = ∅ so there is
no possible finite correct execution). Setting apart infinite traces (i.e. I(s) = ∅),
Fig. 3 shows that the difference is only when E(s) �= ∅ ∧ T (s) �= ∅. Whereas
the sufficient precondition rules out all correct executions (since P (s) = false)
the necessary precondition allows all of them (since P (s) = true), but maybe
including erroneous ones.

5 Intra-procedural Precondition Inference

We briefly recall and illustrate three of the four algorithms introduced in [11]
to infer under-approximations of necessary preconditions, that we have imple-
mented in Clousot/cccheck, the static analyzer of CodeContracts. These fully
automatic static analyses effectively compute preconditions with concretization
P � such that

∀s ∈ Σ : P �(s) ⇒ (T (s) = ∅ ∧ E(s) �= ∅) .
These preconditions P � are therefore sufficient to guarantee the presence of def-
inite errors (i.e. runtime error, programmer assertion or post condition failures)
or non-termination. So P � is an under-approximation of the error semantics

Automatic Inference of Necessary Preconditions 133

void Partition(int[] array, int left, int right, int pivotIndex) {
1: var pivotValue = array[pivotIndex];
2: swap(ref array[pivotIndex], ref array[right]);
3: var storeIndex = left;
4: for (var i = left; i < right; i++)
5: {
6: if (array[i] < pivotValue) {
7: swap(ref array[i], ref array[storeIndex]);
8: storeIndex++; }
9: }

10: swap(ref array[storeIndex], ref array[right]);
}

Fig. 4. A partitioning routine as found in QuickSort implementations. Our technique
infers necessary preconditions (5) and (6) which turn out to be also sufficient.

T (s) = ∅ ∧ E(s) �= ∅ while its negation ¬P � is weaker than the strongest neces-
sary precondition

∀s ∈ Σ : (T (s) �= ∅ ∨ E(s) = ∅) ⇒ ¬P �(s) .

The inferred preconditions are therefore necessary in that they do not guarantee
(in general) the correctness of the method, but if not established they certainly
imply its failure. As shown by the experiments, these necessary preconditions
may also be sufficient to prove the correctness of the assertion they originated
from.

5.1 All-Paths Precondition Analysis (APPA)

The all-paths precondition analysis (APPA) of [11, Sect. 7] symbolically hoists
assertions 〈c, b〉 ∈ � all the way back to the code/method entry. Three conditions
should hold: (i) the value of b is the same at c and at entry; (ii) the value
of b is checked on all paths from the entry; and (iii) the variables in b have
the correct visibility. In general, the generated precondition will be an atomic
formula, containing a disjunction if and only if b contains one. From the three
conditions above, it follows that if b holds at entry then it will also hold in all
the method paths, therefore the generated precondition is also sufficient (for b).

Example 3 (Atomic preconditions (APPA)). Consider the in-place version of
the partitioning phase of Quicksort (Fig. 4). In the example, cccheck verifies
20 assertions (null-pointer accesses, lower and upper array bounds) and issues
7 warnings. The warnings are the array dereference and the two array bounds
checks at line 1, two array bounds checks at line 2, the lower bound check at
line 6 and the upper bound check array[storeIndex] at line 10 (the analysis
infers storeIndex ≥ 0 at line 10). A necessary precondition has to be generated
for those warnings. The array dereference at line 1 definitely causes an error if
the actual value of array is null. Same for the array loads at lines 1 and 2: if
pivotIndex and right are not in the bounds of array then the program will
fail for sure. These assertions can be pushed up to the entry point to generate
the following necessary preconditions:

134 P. Cousot et al.

public void Combination(string x, int z) {
Contract.Requires(z >= 0);

while (z > 0) { z--; }
// here Clousot infers z == 0

if (z == 0)
Assert(x != null);

}

Fig. 5. A simplified example from mscorlib where the information inferred by a for-
ward static analysis is used to generate better preconditions

Contract.Requires(array != null && 0 <= pivotIndex);

Contract.Requires(pivotIndex < array.Length);

Contract.Requires(0 <= right && right < array.Length); (5) ��

5.2 Conditional-Path Precondition Analysis (CPPA)

The conditional-path precondition analysis (CPPA) of [11, Sect. 9], hoists more
assertions 〈c, b〉 ∈ � to the procedure entry point than APPA by taking into
account program paths and tests, and using dual widening to cope with infinite
path lengths. The basic abstract predicates bp � ba mean that when the path
condition bp holds, execution will definitely be followed by an assert(b) and
checking ba at the beginning of the path is the same as checking this b later in
the path when reaching the assertion. The partial order is bp � ba �⇒ b′p � b′a
� b′p �⇒ bp ∧ ba �⇒ b′a where the abstract implication b �⇒ b′ underapproximates
the concrete implication ⇒: b �⇒ b′ implies that ∀s ∈ Σ : �b�s ⇒ �b′�s. In
general, the analysis will generate atomic preconditions containing disjunctions.
If no loops are encountered in the path between entry and c, then the generated
necessary precondition is also sufficient (for b).

Example 4. In the Combination procedure of Fig. 5, Clousot infers that z = 0

after the loop, so that the precondition x! = null is generated. Note that the
invariant inferred from Clousot is crucial to infer the precondition (no precon-
dition would be inferred otherwise). ��

Example 5 (Atomic preconditions (CPPA)). Continuing Ex. 3, we are left with
two candidate assertions. In one case the assertion is not checked on every path
(line 6, unreached if left≥ right). In the other case storeIndex may have
been modified (line 10). So the APPA analysis above does not apply. With
CPPA, the candidate assertions are propagated backwards, taking into account
tests and computing a fixpoint. We can then infer the disjunctive necessary
preconditions:

Contract.Requires(left < right || left < array.Length);

Contract.Requires(left >= right || 0 <= left); (6)

Informally, the two preconditions state that whenever left < right then left

should be non-negative otherwise left < array.Length.

Automatic Inference of Necessary Preconditions 135

void ReadAndConsume(Message[] msg) {
1: Contract.Requires(msg != null);

2: for (var i = 0; i < msg.Length; i++) {
3: Assert(msg[i] != null);

// Do something with msg[i], then consume it
4: msg[i] = null;

}
// Here msg[*] == null

}

Fig. 6. To prevent an error, msg should not contain any null values. Inferring this
precondition (7) requires non-trivial reasoning about which elements of the array have
been tested and modified.

In this case, the inferred necessary preconditions are also sufficient, as it can
be easily checked by instrumenting Partition with the inferred preconditions
and running cccheck again. Please note that the preconditions above are weaker
than the usual ones found in the specification of the partition algorithm which
require 0 ≤ left and left < right to ensure functional correctness (e.g., in
Hoare’s original paper on QuickSort [24]). ��

5.3 Quantified Precondition Analysis (QPA)

The APPA and CPPA analyses cannot deal directly with unbounded data struc-
tures such as collections and arrays. [11, Sect. 10] uses a forward static analysis
based on [12] to synthesize quantified preconditions. This quantified precondi-
tion analysis (QPA) can deduce that a subset of the collection elements are: (i)
checked in every execution path; and (ii) when checked, they have the same value
they had at entry, so as to synthesize a universally quantified precondition.

Example 6 (Universally quantified preconditions). The method precondition for
the example in Fig. 6 is too weak to prevent a runtime error: if msg is not empty
and one of its elements is null then the program will definitely fail at runtime.
The precondition should be quantified over the array elements, so the inference
of atomic preconditions above does not help. The inference is non-trivial as the
content of the input array is modified inside the loop: The analysis should make
sure that the checked array elements are the same as in the pre-state. We infer
the necessary universally quantified precondition

Contract.Requires(ForAll(message, msg => msg != null)); (7)

Please note that: (i) the precondition encompasses the case of an empty array;
and (ii) it is also sufficient. ��

Inferred necessary preconditions may not be sufficient, in particular when the
condition must be weakened during backward propagation due to control flow
or loops.

Example 7 (Necessary but not sufficient preconditions). Consider the code in
Fig. 7, a simplified version of a common pattern used in C/C++ programs

136 P. Cousot et al.

int FirstOccurrence(int[] a) {
Contract.Requires(a != null);

var i = 0;
while (a[i] != 3) { i++; }

return i;
}

Fig. 7. An example where all the inferred atomic preconditions are necessary but not
sufficient. A sufficient existentially quantified precondition (8) can be inferred by a
forward array content and modification analysis.

and .NET framework libraries. Pushing the array index condition backwards
produces the precondition

Contract.Requires(a.Length> 0),

which is not sufficient. If we semantically unroll the loop k times, we can generate
increasingly stronger necessary preconditions of the form

a.Length > 0 ∧ a[0] = 3 ∨ a.Length > 1 ∧ a[1] = 3 ∨ . . .,

yet none of them are sufficient. In general, the precondition inference requires a
fixpoint computation over an infinite domain. The convergence of the computa-
tion should be enforced using a widening operator. In the weakest precondition
calculus, using a widening can very easily bring to the inference of sufficient
preconditions. In necessary precondition inference, the dual widening can sim-
ply stop the iterations after k iterations — A widening over-approximates its
arguments, while a dual widening under-approximates them. The desired pre-
condition is existentially quantified:

∃j : j ∈ [0, array.Length) ∧ array[j] = 3 (8)

Such a precondition can be inferred by combining forward array content and
array modification analyses. ��

6 Scaling Up Thanks to Simplification

The disjunctive precondition P � represented as a set P� of terms in � may con-
tain redundant preconditions which should be removed for two main pragmatic
reasons. First, the more preconditions, the more proof obligations need to be dis-
charged in other methods. Second, more preconditions mean more suggestions
to the end-user, who may get irritated if they are redundant (as we experienced
with cccheck).

We would like to compute a minimal yet equivalent set Pm
�
. The set Pm

�
should

be: (i) a set of generators (∀p ∈ P� : ∃{p0 . . . pn} ⊆ Pm
�

: p0∧· · · ∧pn ⇒ p); and
(ii) minimal (∀p ∈ P� :

∧
{q | q ∈ Pm

�
\ {p}} �⇒ p). Unfortunately, computing

a minimal set of generators can be very expensive [15] or even impossible when
the inferred invariants are quantified. To see why, let p1 and p2 be two Boolean
expressions containing quantified facts over arrays, then p1 ⇒ p2 is not decid-
able [3]. There exist subsets for which the problem is decidable, e.g., equalities
or difference constraints. In general the minimal set of generators is not unique.

Automatic Inference of Necessary Preconditions 137

simpl � λP .
true ∈ P → P \ {true}
true||b ∈ P → P \ {true||b} (|| is the non-commutative

short-cutting disjunction)false ∈ P → {false}
false||b ∈ P → P \ {false||b} ∪ {b}
b||t ∈ P ∧ t ∈ {true, false} → P \ {b||t} ∪ {t||b}
b1||b, b ∈ P → P \ {b1||b}
b1||b, !b1||b ∈ P → P \ {b1||b, !b1||b} ∪ {b}
b1||b, b2||b ∈ P ∧ s(b1) ⊆ s(b2) → P \ {b2||b}
f � ∀i ∈ [l, l+ 1) : b(i) ∈ P → P \ {f} ∪ {b(l)}
f1 � ∀i ∈ [l, v) : b(i), f2 � ∀i ∈ [v+ 1, u) : b(i) ∈ P

→ P \ {f1, f2} ∪ {∀i ∈ [l, u) : b(i)}
x1 − x2 ≤ v1, x2 − x3 ≤ v2, x1 − x3 ≤ v3 ∈ P

→ if v1 + v2 ≤ v3 then P \ {x1 − x3 ≤ v3} else P

Fig. 8. The simplification for the candidate preconditions. The function s(b) returns a
set whose constraints are the conjuncts in b.

In practice, we are not interested in getting the best Pm
�
, but only a good ap-

proximation. The approximation should be such that: (i) obviously-redundant
preconditions are removed; and (ii) it is fast, in that only an infinitesimal fraction
of the analysis time allocated for the procedure is spent on the simplification. In
our implementation we use a simple heuristics to simplify the candidate precon-
ditions and get a set Pm

�
⊇ Pm

�
such that #Pm

�
≤ #P�, for some minimal set

of generators Pm
�
.

The simplification equations are given in Fig. 8. The rationale is that we want
to simplify as many disjunctive preconditions as possible, trivial quantified facts,
and difference constraints. The precondition true or any disjunct containing it
can be eliminated from the set. If false appears as an atom, then there is no
way to satisfy the precondition. false is the identity for disjunction, so it can
be cancelled. In general the language short-cutting disjunction || is not commu-
tative, but in our simplification procedure it can be moved to the front position
(to enable the previous two rules). If an expression b is already in P with no
antecedent, we can safely remove all the preconditions where b appears as a con-
sequence. When b is implied by some condition and by its negation, then we can
simply remove the conditions (we found this being a very common case in prac-
tice, when the precondition does not depend on the paths through a conditional
statement). For remaining pairs with the same conclusion, we only retain the (dis-
junctive) precondition with fewer hypotheses. As for quantified facts, we remove
those that boil down to a singleton and we merge together consecutive intervals.
Finally, we remove from the difference constraints those that are redundant. The
simplification should be iterated to a fixpoint: Simplify(P�) � simpl∗(P�).

138 P. Cousot et al.

Next ← ProceduresOf(P)
while Next 	= ∅ do

m← PickOneProcedure(Next)
�← SpecificationFor(m, Clousot)
P� ← InferPrecondition(�, Clousot)

Pm
� ← Simplify(PreconditionsOf(m) ∪ P�)

if Pm
� 	= PreconditionsOf(m) then

PreconditionsOf(m) ← Pm
�

Next ← (Next \ {m}) ∪ callersOf(m)
else

Next ← Next \ {m}
end if

end while

Fig. 9. The inter-method preconditions inference algorithm

7 Inter-procedural Precondition Inference

The inter-procedural precondition inference algorithm is shown in Fig. 9. The
input program P can either be a complete program or a library. We assume that
each procedure m has an initial set of preconditions PreconditionsOf0(m), which
can be empty. The set Next contains the procedures to be analyzed (continuation
set). It is initialized with all the procedures in the program P.

In the loop body, we first pick a procedure m from the continuation set. We
leave the implementation of the policy PickOneProcedure as a parameter of the in-
ference algorithm. For instance PickOneProcedure may be the bottom-up traver-
sal of P’s call graph.

The function SpecificationFor returns the residual specification � of m by run-
ning Clousot to discharge as many proof obligations as possible. If � = ∅, then
we say that the preconditions PreconditionsOf(m) are sufficient to ensure that
each proof obligation in m is either always correct or always wrong. The analyzer
Clousot is left as a parameter.

We infer the set P� of necessary preconditions from the assertions in �. The
intra-method inference algorithm InferPrecondition is one of the previously de-
scribed analyses such as APPA, CPPA, or QPA.

Next, the function Simplify removes redundant preconditions so as to obtain
an approximate minimal set Pm

� of conditions as described in Sec. 6.
Finally, if we discovered new preconditions for m, we add them to the set of

its preconditions, and we update the continuation set by adding all the callers
of m, which we must re-analyze due to the stronger proof-obligations at these
call-sites. In case we discovered no new precondition, we simply remove m from
the continuation set.

The inter-method inference algorithm in Fig. 9 is a least fixpoint computation
on the abstract domain 〈ProceduresOf(P) → ℘(B), ⇐̇ 〉, where B is the set of side-
effect free Boolean expressions and ⇐̇ is a sound abstraction of the pointwise

Automatic Inference of Necessary Preconditions 139

void f(string x, string y) {
Assert(x != null);
g(x, y);

}

void g(string u, string v) {
Assert(v != null);
f(u, v);

}

Fig. 10. An example of inference of preconditions for mutually recursive methods re-
quiring a fixpoint computation

inverse logical implication. In the presence of (mutual) recursion the algorithm
may not terminate: for instance it may infer the increasing chain of preconditions
{0 < a} ⇐̇ {1 < a} ⇐̇ . . . To enforce convergence, a dual widening operator
should be used: the simplification is incomplete so it does not solve the conver-
gence problem in the abstract even in case of convergence in the concrete. Easy
dual widening operators are either bounding the maximum number of times a
method is analyzed or the maximum cardinality of PreconditionsOf(m) or both.
Ignoring preconditions is safe: intuitively it means that fewer checks are pushed
up in the call stack but warnings are still reported in the callee.

In practice, we can stop inferring new necessary preconditions at any point.
The remaining methods in Next then simply need to be checked again (without
inferring new preconditions) to obtain the final set of warnings.

Example 8. Let us consider the two mutual procedures in Fig. 10. Ignore non-
termination: we choose a minimalistic example to illustrate the inter-method
fixpoint computation. Let us suppose f is the first method to be picked up.
The intra-method precondition inference algorithm obtains PreconditionsOf(f) =
{x! = null}. The preconditions for g are then {u! = null, v! = null}. The pro-
cedure f is a caller of g, so it is added to the continuation set. The re-analysis is
enough to reach the fixpoint: PreconditionsOf(f) = {x! = null, y! = null}. ��

7.1 Provenance

Each precondition p in P� originates from at least one failing proof obligation
〈c, b〉 ∈ �. We can construct a provenance relation p * b, with the intuitive
meaning that if p does not hold at the method entry, then b will fail later. We
use the provenance chain pn−1 * · · · * p0 * b to report an inter-method
error trace to the user. Furthermore, we can suppress the warning for b if we
detect that p is also sufficient to prove b safe, i.e., p holds at the entry point if
and only if b holds at program point c. This is the case when at least one of
these conditions holds: (i) the method m does not contain loops; (ii) p is inferred
using APPA (Sec. 5.1); (iii) p is inferred using CPPA (Sec. 5.2) and no loop
is encountered in the path between entry and c. Essentially, if we detect that
the generated necessary precondition p is also sufficient to discharge b, we can
push the full burden of the proof to the callers of m. Otherwise, we report the
warning to the user and we propagate p to the callers, as failure to establish
it will definitely cause an error in b: by propagating p we make explicit to the
callers thay they must establish p before calling m.

140 P. Cousot et al.

Fig. 11. A screenshot of the error reporting with the precondition inference

8 Experience

We implemented the analyses described above in cccheck, an industrial-strength
static analyzer and contract checker for .NET bytecode based on abstract inter-
pretation. It uses abstract interpretation to infer facts about the program and
to discharge the proof obligations. cccheck performs a modular assume/guar-
antee analysis: for each method it assumes the precondition and it asserts the
postcondition. At method calls, it asserts the precondition, and it assumes the
postcondition. It performs a simple postcondition inference to propagate whether
a method returns a non-null value and the expression returned by getters. The
necessary precondition inference is enabled by default in every run of the ana-
lyzer, and used by our customers since June 2011 on a daily basis. The kind of
intra-method precondition inference algorithm can be selected by a command
line switch. The all-path precondition analysis (APPA) is the default. We im-
plemented the analyses faithfully respecting the formalization in the previous
sections. The only differences are in the quantified precondition analysis: (i) we
restrict it to arrays of objects (instead of collections of generic types); (ii) the
only assertions we check for are not-null; and (iii) the quantified preconditions
are suggested to the user but not propagated to the callers (yet).

The main motivation for this work was to help our users getting started with
cccheck, by suggesting preconditions, so that users can simply add them to their
code (or automatically with support from the IDE).

In an early stage of this work, we had a simple analysis to infer sufficient
preconditions (Sect. 3). Essentially, if we could prove that the value of an un-
proven proof obligation was unchanged from the entry point, then we suggested
the corresponding expression as a precondition. This is similar to the ESC/-
Java /suggest switch [18]. The problem with this näıve approach was that it
did not take into account tests and different execution paths and so can also
eliminate good runs. The result was confusing for our customers, who filed sev-
eral bug reports about “wrong” suggestions (essentially preconditions that were
too strong according to the user). For instance, in the code of Fig. 11 our old

Automatic Inference of Necessary Preconditions 141

analysis would have produced the too strong precondition p! =null for the
method InferNotNull.

Necessary precondition inference reduces the warning noise of the analyzer
and raises the automation bar by providing inter-method propagation of precon-
ditions. If a necessary precondition can be inferred from a proof obligation and
cccheck determines that it is also sufficient then the warning can be omitted,
i.e., the full burden of establishing it is pushed to the callers. The check for
sufficiency can be: (i) by construction, e.g., when APPA is used; (ii) inferred
from the analysis, e.g., by detecting that the dual widening in CPPA, if any, has
introduced no loss of precision; (iii) by re-analysis, the generated precondition
is injected in the method which is then reanalyzed. In cccheck we use (i) and
(ii). We instrumented cccheck to perform (iii) to collect the data for Sec. 8.3.

Example 9. Let us consider the screenshot in Fig. 11 showing the result of a
run of cccheck inside Visual Studio. On the right is the list of suggestions and
warnings produced by cccheck for the code on the left. The analyzer performs
a bottom-up analysis, based on a precomputed approximation of the call graph.
First it analyzes InferNotNull. It determines that when x is non-negative and p

is null then a runtime error may occur. It infers a necessary precondition (mes-
sage #1) which is also sufficient—no approximation comes from loops. Therefore
the generated precondition fully captures the safety requirement and no warn-
ing is issued to the user for p’s dereference since the proof burden is pushed
to the callers—in our example CallInferNotNull. This method does not fully
establish precondition #1, and our inference computes another necessary pre-
condition #2. Please note that this precondition is simpler than #1 since our
simplification procedure removed the trivial disjunct 1 < 0. Precondition #2 hap-
pens to also be sufficient in this case as there are no loops. cccheck detects this
fact, and no warning is issued in method CallInferNotNull. Instead, precon-
dition #2 is propagated to the call-site within CallWithNull. There, cccheck
determines that the call does not satisfy the inferred necessary precondition of
CallInferNotNull. It reports the error message (#3) as well as the inter-method
provenance trace (messages #4 . . .#6). The generated precondition #7 encodes
the fact that all invocations of CallWithNull will definitely cause an error. ��

8.1 Benchmarks

We report our experience on two different sets of benchmarks. The first one
contains industrial libraries without existing contracts. We have chosen the lat-
est versions of mscorlib.dll, System.dll and System.Core.dll as they are
the main libraries of the .NET framework, and System.Data.dll because, in
our experience, it causes trouble for static analyzers. The first three libraries
contain the most common shared functionalities of the .NET framework (sys-
tem type definitions, collections, reflection, cryptographic and communication
primitives, etc.). The last one contains common code to access data from di-
verse sources. cccheck analyzes bytecode, so we can use it directly on the
shipped binaries. The libraries are in every copy of Windows under the direc-
tory Windows/Microsoft.Net/Framework/. For our experiments we run cccheck

142 P. Cousot et al.

All-paths APPA Conditional-path CPPA QPA

Library P� Pm
� % rem. P� Pm

� % rem. ∀
mscorlib 5133 3437 33.04% 8756 6564 25.03% 36
System 4409 3446 21.84% 6709 5533 17.53% 9
System.Core 3202 2197 31.39% 4723 3744 20.73% 32
System.Data 5899 3563 39.60% 8435 5642 33.11% 11
Total 18643 12643 32.18% 28623 21483 24.94% 88

Facebook 146 119 18.49% 171 145 15.20% 1
Facebook.Web 53 53 0.00% 86 86 0.00% 0
Facebook.Web.Mvc 49 31 36.73% 25 10 60.00% 0
Total 248 203 18.15% 282 241 14.54% 1

Fig. 12. The number of inferred preconditions, for APPA, CPPA, and QPA, and the
percentage of redundant preconditions removed by the simplification routine Simplify

with the default checks: non-null, array-out-of bounds obligations and contracts.
Since the version of the libraries we analyzed contained no contracts, the only
contracts are the inferred necessary preconditions propagated by cccheck itself.

The second benchmark is the open-source C# Facebook SDK which is avail-
able for download at facebooksdk.codeplex.com. It contains a set of libraries
to help .NET programmers (Windows, Silverlight, Windows Phone 7, etc.) in-
tegrate their application with Facebook. We selected it because the code base
is almost completely annotated with contracts. In our experiments, we opened
the solution containing the SDK, built the source as-it-is and let cccheck run
with the same settings as in the distribution: the collected proof obligations are
non-null, array-out-of bounds, arithmetic errors, redundant assumptions detec-
tion, and the explicit contracts. We only added switches to force the analyzer to
collect the data reported in the tables.

8.2 Inferred Necessary Preconditions

The table in Fig. 12 reports the number of necessary preconditions inferred
for the benchmarks for all three analyses (APPA, CPPA, and QPA), when the
fixpoint of the inter-method inference algorithm has been reached.

For the system libraries, the all-paths analysis (APPA) infers 18, 643 necessary
preconditions. The simplification step removes more than 32% of the candidates,
resulting in 12, 643 necessary preconditions that are suggested and propagated.
For the Facebook SDK, APPA infers 248 candidates, filtering only 45.

The conditional-path analysis (CPPA) infers roughly 69% additional neces-
sary preconditions than APPA for the system libraries but only 18% more for
the Facebook SDK. The price to pay for the more refined analysis is time: in our
experience CPPA can be up to 4 times slower than APPA. However, at worst
the total inference time (including simplification) is less than 4 minutes for very
complex libraries (System.Data). Otherwise the overall running time is on the
order of tenths of seconds.

facebooksdk.codeplex.com
http://facebooksdk.codeplex.com

Automatic Inference of Necessary Preconditions 143

of methods precision # m.
at least inferred inferred % % improve- with 0

Library total one warn. nec. pre. suff. pre. inferred suff. ment warns

mscorlib 21226 6663 2765 1519 41.50% 22.80% 7.15% 16082
System 14799 5574 2684 1378 48.15% 24.72% 9.31% 10603
System.Core 5947 2669 1625 765 60.88% 28.66% 12.8% 4043
System.Data 11492 4696 2388 1152 50.85% 24.53% 10.02% 7948
Total 53464 19602 9462 4814 48.27% 24.56% 9.00% 38676

Facebook 455 186 111 93 59.68% 50.00% 20.43% 362
Facebook.Web 194 57 30 18 52.63% 31.58% 9.27% 155
Facebook.Web.Mvc 92 40 29 26 72.50% 65.00% 28.26% 78
Total 741 283 170 137 60.07% 48.41% 18.48% 595

Fig. 13. The experimental results for the all-paths precondition analysis (APPA)

of methods precision # m.
at least inferred inferred % % improve- with 0

Library total one warn. nec. pre. suff. pre. inferred suff. ment warns

mscorlib 21226 7107 4062 1811 57.15% 25.48% 8.53% 15930
System 14799 5759 3546 1576 61.57% 27.37% 10.64% 10616
System.Core 5947 2740 2104 810 76.79% 29.56% 13.62% 4017
System.Data 11492 4824 3280 1292 67.99% 26.78% 11.24% 7960
Total 53464 20430 12992 5489 63.59% 26.87% 10.26% 38523

Facebook 455 186 130 92 69.89% 49.46% 20.22% 361
Facebook.Web 194 110 80 61 72.73% 55.45% 31.44% 145
Facebook.Web.Mvc 92 23 8 5 34.78% 21.74% 5.43% 74
Total 741 319 218 158 68.34% 49.53% 21.32% 580

Fig. 14. The experimental results for the conditional path precondition analysis
(CPPA)

We manually inspected the necessary preconditions inferred for the Facebook
SDK to check whether the simplification algorithm left any redundancy. We
found only one redundant precondition, inferred by CPPA for Facebook.Web.

As one may expect, we inferred fewer universally quantified necessary pre-
conditions. We inspected the 36 quantified necessary preconditions inferred for
mscorlib.dll. It turns out that the analysis inferred conditions that at first
looked suspicious. After a deeper investigation, we found that the analysis was
right. However, it is more difficult to judge whether the analysis missed necessary
preconditions it should have inferred. So, we inspected the proof obligations for
the Facebook SDK. In Facebook we found only two proof obligations requiring a
quantified contract. However, the needed contracts are not preconditions but an
object invariant and a postcondition. The other two libraries make little use of
arrays, so there was nothing interesting to be inferred there. Overall, we found
the quantified necessary precondition analysis precise and fast enough.

144 P. Cousot et al.

8.3 Quality of the Inferred Preconditions

We are left with the problem of judging the quality of the inferred necessary
preconditions. Counting the number of inferred preconditions is not a good mea-
sure of success. Measuring the number of warnings without inference and with
inference is a better approach, but can also be misleading for the following rea-
son: if a method contains a warning and is called by n other methods, then if
that single warning can be turned into a necessary precondition, it potentially
results in n warnings at all call-sites. We decided to measure how the inference
of necessary preconditions reduces the number of methods for which we report
warnings. If we reduce the number of methods with warnings, we say that we
improved the precision of our analyzer cccheck.

The tables in Fig. 13 and Fig. 14 report the effects of the all-path (APPA)
and the conditional-path (CPPA) analyses on the precision of cccheck. For each
library we report (i) the total number of methods analyzed; (ii) the number of
methods on which cccheck originally reports at least one warning (without any
inference); (iii) the number of methods for which cccheck infers at least one
necessary precondition; and (iv) the number of methods for which the neces-
sary preconditions were also sufficient to reduce the warnings in that method to
zero. The next three columns indicate (i) the fraction of methods with inferred
necessary preconditions; (ii) the fraction of these for which the inferred precon-
ditions are also sufficient; and (iii) the precision improvement as an increase
in the number of methods with zero warnings. The last column contains the
final total number of methods with 0 warnings, i.e. the methods which either
did not require the inference of any precondition, plus the methods for which
the inferred necessary precondition is sufficient. To check whether the necessary
preconditions are also sufficient, we check: (i) that we inferred some necessary
precondition for the method; and (ii) that � = ∅ after re-analysis.

The conditional-path precondition analysis (CPPA) infers far more precondi-
tions than APPA, and in general those preconditions are also more complicated,
because they can be disjunctive. As a consequence, it is not a surprise that the
final number of methods with zero warnings is smaller in the case of CPPA: the
additional warnings are generated by the propagated inferred preconditions that
cannot be proven by cccheck at call-sites.

In the framework libraries we were able to infer a necessary precondition for
48% of methods with APPA and for 63% of methods with CPPA. Interestingly,
the necessary preconditions turned out to be also sufficient in 25% of methods
for either analysis. The precision is even better for the Facebook SDK where we
inferred necessary preconditions for more than 60% of methods. Additionally, the
necessary preconditions where sufficient to prove the method correct in almost
50% of cases! We manually inspected the methods with remaining warnings.
These resulted from missing contracts, e.g. postconditions for interface calls and
abstract methods and object invariants.

Overall, precondition inference improved the precision of cccheck by roughly
10% for the framework assemblies and roughly 20% for the Facebook SDK.

Automatic Inference of Necessary Preconditions 145

9 Related Work

Our objectives are hardly comparable with those of unsound tools like PREfix [4]
or its lightweight version PREfast which filter out potential errors, bug-finding
tools like SAGE [20] that extends systematic dynamic test generation with for-
mal methods, property checking tools combining static analysis and testing like
YOGI [30], or verification environments like VCC [14] because an unsound as-
sertion or a series of failing tests cannot be used as formal specifications and
automatic inference of program properties is much more difficult than static
verification of given properties annotating programs. However, automatically in-
ferred necessary preconditions would definitely be useful for all these tools.

The closest related work we are aware of is Success typings [26], where types
of function arguments are used instead of first-order formulae to express precon-
ditions. Similar to our work, success typings capture as types, the conditions
under which a function will definitely cause a runtime type error. Their analysis
is limited to runtime type errors as opposed to general assertions, and appears
to be used only to detect definite bugs in an untyped language. In addition, our
approach can be used to reduce the annotation burden in verification, and the
expressiveness of our preconditions is more general.

Most of the work on precondition inference focuses on the inference of suffi-
cient preconditions for the partial correctness of a module, e.g., [2, 5, 9, 29, 31],
even if it is never explicitly expressed in those terms. We have discussed in Sec. 3
the drawbacks of using sufficient precondition inference in an automatic analysis
setting. We are not aware of papers on sufficient precondition inference exper-
imentally validating the inferred preconditions: (i) at call-sites; and (ii) on as
large a scale as we did.

The related problem of generating procedure summaries (to scale up whole
program analyses) received much attentions. Summaries can either be obtained
via a combination of heuristics and static analyses [17, 23], or via firm semantic
and logical grounds, e.g., [6, 9, 22]. However, the practical effectiveness of the so-
inferred preconditions is still unclear: e.g., [6] reports the inference of thousands
of contracts but their quality—for instance to prove a property of interest like
memory safety—is unknown.

Some of these approaches are also less modular than ours. E.g., the Houdini
approach [17] starts out by adding a set of candidate preconditions (generated
from a template) to all methods and then uses repeated sound modular reasoning
to reject candidates that lead to unproven assertions. This approach produces
preconditions that are non-necessary (no assertion would be triggered if vio-
lated). Worse, the set of preconditions produced for a method depends on the
contexts that call the method. The fewer such contexts exist, the stronger the
inferred precondition (in the worst case false). Our approach is more modular.
The necessary preconditions inferred for a method do not depend at all on how
the method is called.

Some authors focused on inferring preconditions of a fixed template [21, 34]
or summaries on abstract domains of finite height [33, 36]. Those approaches to
precondition inference inherit the problems of the techniques they are based on.

146 P. Cousot et al.

Templates require too much user attention (to provide the template), are brittle,
and do not scale up. Finite height abstract domains are not powerful enough [8].
We do not make any of those hypotheses in this work.

SnuggleBug [7], the dual analysis of [32], as well as other authors [19, 25, 35]
use under-approximating symbolic backwards or dynamic analyses to find bugs.
Our work is different in that we start out with a program verification problem
with a number of unproven assertions. We use necessary preconditions to reduce
the annotation burden experienced by the programmer. Using our static analysis,
we can tell when a method has no more errors, whereas bug finding cannot. At
the same time, our approach can also expose definite bugs, as shown in the
scenario of Fig. 11. A main difference of our work with all the above is the
handling of loops via fixpoints rather than some finite, partial unrolling.

For instance, with a (minor) modification of the universally quantified forward
analysis, the implementation infers the necessary precondition newCarsOnly ⇒
∀x ∈ c : x.getYear() = 2009 for the running example of [7], requiring that all
cars in a list are manufactured in 2009. Snugglebug unrolls loops once or twice
and will find violations only if it can find a list where the first or second car has
the wrong date, but not the third.

Necessary preconditions are needed to define the problem of extract method
with contracts [13]. They can be extended for the inference of necessary object
invariants [1] and to propose automatic and verified code repairs [27].

Finally, our inferred necessary preconditions are human readable and can be
persisted into code as documentation and to help future analysis runs, whereas
the intermediate state of bug finding tools is rarely in a form that would make
it useful for human consumption.

10 Conclusions

We presented the design and implementation of a system for the inference of
necessary preconditions. We illustrated the algorithm for the inter-procedural in-
ference. The algorithm is parameterized by the static analyzer used to discharge
the proof obligations, the intra-method inference analysis, and the candidate pre-
condition simplification routine. We improved the intra-method analyses of [11]
by refining them with the invariants inferred by the static analyzer. We have
implemented the inference in cccheck, an industrial static contract checker, and
evaluated the analysis on real industrial code. We showed that our simplification
algorithm, even if not complete, performs very well in practice by removing up to
33% of redundant preconditions and finding only one case in which a redundant
precondition was not removed. We were able to infer necessary preconditions for
up to 60% of methods reporting some warning. We validated the quality of the
inferred preconditions by checking whether they were also sufficient to remove
all warnings in a method (not only the warning they originated from). This was
the case for 25% of methods with warnings. Overall, the necessary precondition
inference has a large positive impact on cccheck, by improving its precision (in
terms of methods with no warnings) up to 21%.

Automatic Inference of Necessary Preconditions 147

Looking forward, we want to investigate necessary preconditions inference
for program optimization (by factoring and pushing up inevitable checks) and
extend the approach to the inference of necessary postconditions (by pushing
the assertions back to method calls).

Acknowledgments. Leonardo De Moura for the discussions on simplification.
Work supported in part by the National Science Foundation under Grant No.
0926166.

References

[1] Bouaziz, M., Fahndrich, M., Logozzo, F.: Inference of necessary field conditions
with abstract interpretation. In: APLAS. LNCS (2012)

[2] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In:
PLDI, pp. 46–55 (1993)

[3] Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2006)

[4] Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic
programming errors. Softw., Pract. Exper. 30(7), 775–802 (2000)

[5] Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint Analysis: A
Shape Analysis That Discovers Preconditions. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007)

[6] Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300 (2009)

[7] Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weak-
est preconditions. In: PLDI, pp. 363–374 (2009)

[8] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: PLILP, pp. 269–295 (1992)

[9] Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 159–178. Springer, Heidelberg (2002)

[10] Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
POPL, pp. 245–258 (2012)

[11] Cousot, P., Cousot, R., Logozzo, F.: Precondition Inference from Intermittent
Assertions to Contracts on Collections. In: Jhala, R., Schmidt, D. (eds.) VMCAI
2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011)

[12] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118 (2011)

[13] Cousot, P., Cousot, R., Logozzo, F., Barnett, M.: An abstract interpretation frame-
work for refactoring with application to extract methods with contracts. In: OOP-
SLA. ACM (2012)

[14] Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C. In: ICSE Companion, pp. 429–430
(2009)

[15] Dillig, I., Dillig, T., Aiken, A.: Small Formulas for Large Programs: On-Line Con-
straint Simplification in Scalable Static Analysis. In: Cousot, R., Martel, M. (eds.)
SAS 2010. LNCS, vol. 6337, pp. 236–252. Springer, Heidelberg (2010)

[16] Fähndrich, M., Logozzo, F.: Static Contract Checking with Abstract Interpre-
tation. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp.
10–30. Springer, Heidelberg (2011)

148 P. Cousot et al.

[17] Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for eSC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

[18] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: PLDI, pp. 234–245 (2002)

[19] Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

[20] Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. Commun. ACM 55(3), 40–44 (2012)

[21] Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-Based Invariant Inference
over Predicate Abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

[22] Gulwani, S., Tiwari, A.: Computing Procedure Summaries for Interprocedural
Analysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267.
Springer, Heidelberg (2007)

[23] Hackett, B., Das, M., Wang, D., Yang, Z.: Modular checking for buffer overflows
in the large. In: ICSE, pp. 232–241 (2006)

[24] Hoare, C.A.R.: Algorithm 63: Partition. Communications of the ACM 4(7), 321
(1961)

[25] Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: It’s Doomed; We
Can Prove It. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 338–353. Springer, Heidelberg (2009)

[26] Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In:
PPDP, pp. 167–178. ACM (2006)

[27] Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: OOP-
SLA, pp. 133–146. ACM (2012)

[28] Meyer, B.: Eiffel: The Language. Prentice Hall (1991)
[29] Moy, Y.: Sufficient Preconditions for Modular Assertion Checking. In: Logozzo,

F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008)

[30] Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The Yogi Project: Software
Property Checking via Static Analysis and Testing. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

[31] Podelski, A., Rybalchenko, A., Wies, T.: Heap Assumptions on Demand. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer,
Heidelberg (2008)

[32] Popeea, C., Chin, W.-N.: Dual analysis for proving safety and finding bugs. In:
SAC, pp. 2137–2143 (2010)

[33] Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

[34] Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI, pp. 223–234 (2009)

[35] Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE
(2011)

[36] Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure
summaries. In: POPL, pp. 221–234 (2008)

Fixpoint Computation in the Polyhedra

Abstract Domain Using Convex
and Numerical Analysis Tools

Yassamine Seladji and Olivier Bouissou

CEA LIST
CEA Saclay Nano-INNOV Institut CARNOT

91 191 Gif sur Yvette CEDEX, France
firstname.lastname@cea.fr

Abstract. Polyhedra abstract domain is one of the most expressive
and used abstract domains for the static analysis of programs. Together
with Kleene algorithm, it computes precise yet costly program invariants.
Widening operators speed up this computation and guarantee its termi-
nation, but they often induce a loss of precision, especially for numerical
programs. In this article, we present a process to accelerate Kleene it-
eration with a good trade-off between precision and computation time.
For that, we use two tools: convex analysis to express the convergence of
convex sets using support functions, and numerical analysis to accelerate
this convergence applying sequence transformations. We demonstrate the
efficiency of our method on benchmarks.

1 Introduction

Static analysis plays an important role in software engineering. It allows to ver-
ify some safety properties on programs, like for example the absence of runtime
errors, which is crucial in the verification of embedded programs. Static analysis
uses the (concrete) program semantic function F to define a program invariant
X , such that F (X) = X . This represents the set of reachable program states,
but is however not computable. To deal with that, an over-approximation is
introduced using abstract interpretation [10]. The main idea is to define a new
(abstract) semantic function F � that computes an abstract program invariant
that includes the concrete one. This inclusion guarantees the safety of the re-
sult but not its accuracy: the larger the over-approximation is, the higher the
probability to add false alarms. This over-approximation is due to the type of
elements manipulated by F �; the most common and expressive abstraction is to
represent the reachable states of numerical programs as convex polyhedra [9],
that represent the linear relations existing between program variables.

The applicability of this analysis is faced with the compromise between preci-
sion and complexity: the standard algorithms (union, intersection) for comput-
ing with polyhedra are as precise as possible, but are mainly exponential in the
number of program variables. A lot of work has been proposed to reduce this
complexity, often at the cost of a loss in precision.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 149–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 Y. Seladji and O. Bouissou

First, some less expressive domains were defined to decrease computational
time, such as intervals, octagons [22] and templates [24]. These domains allow
to express only a certain kind of linear relations between variables: for example,
the octagon abstract domain encodes relations of the kind ±x± y ≤ c for c ∈ R.
In the template abstract domain, the shape of the linear relations is fixed using
a predefined matrix (the so-called template), and the efficiency of the analysis
lies in the use of linear programming (LP) solvers that efficiently transform a
general polyhedron into a template polyhedron. However, each of these domains
limits the expressiveness of the computed invariants, which limits their use to
analyse complex programs for which the shape of the relations between variables
is difficult to establish a priori.

The other tool to reduce the computation time of the analysis is to modify
Kleene algorithm to make it faster. The most classical way to do this is to use
a widening operator [8] that ensures the termination of the analysis by extrap-
olating the limits of the iterates. The usual widening in the polyhedra domain
removes constraints that are not stable from one iteration to the other. Even if it
improves computation time, widening clearly creates a large over-approximation
of the result. Some techniques were developed in complement of widening to min-
imize this loss of accuracy. For example, widening with thresholds [19] predefines
a set of thresholds whose elements are used as limit candidates at each iteration.
The difficulty lies in the choice of a relevant set of thresholds, which is often
computed statically before the analysis. In our previous work [5], we presented
a method that dynamically computes thresholds using numerical analysis tools.
In [5], we defined this technique for the interval and octagon abstract domains,
it can be smoothly extended to the template polyhedra domain. In this paper,
we show how it can be extended to general polyhedra.

It can be noted that the solutions proposed to improve the computation time
of a polyhedral analysis can be divided into two categories: on the one hand,
a restricted representation of data to facilitate their manipulation, and on the
other hand techniques that improve fixpoint computation, generally using a good
widening operator. In this paper, we propose a novel method to accelerate the
fixpoint computation in the polyhedral domain that uses both ideas together:
polyhedra are represented using support functions [17,23] and Kleene algorithm
is modified using sequence transformation methods [6]. The representation of
polyhedra with support functions allows to use the notion of scalar conver-
gence [25] of a sequence of polyhedra. We show that this convergence can be
used with sequence transformation methods to accelerate the fixpoint computa-
tion with a good accuracy. Our main contribution is this method which offers a
good balance between efficiency and precision, depending on our chosen polyhe-
dra representation.

The paper is organized as follows: in Section 2, we present our method on a
simple example, in Section 3, we introduce some useful definitions. In Section 4,
we formally define our algorithm, and in Section 5, we compare it with the
analysis using template polyhedra and present some techniques to improve the

Fixpoint Computation in the Polyhedra Abstract Domain 151

Assume: −20 ≤ x ≤ 20
Assume:0 ≤ y ≤ 3
while 1 do

if y ≥ 50 ∧ x ≥ −20 then
y=x-0.1y+60
x=0.2x+40

else
x=0.5x-y-2.5
y=0.9y+10

end if
end while

Fig. 1. The prog example, left, and some polyhedra obtained using Kleene iteration
(iterates 1, 10, 20, 30 and 70, from dark to light), right

performance of our method. Some benchmarks are given in Section 6. Finally,
we conclude with related work and some perspectives.

Notations. We define by MK(n,m) the set of matrices of a field K with n rows
and m columns. Given M ∈ MK(n,m), Mi,j is the element at the ith row and
jth column. Given two vectors v, w ∈ MK(n, 1), let 〈v, w〉 ∈ K be the scalar
product of v and w. For a set D, a sequence of elements in D will be noted
(xk)k∈N.

2 A Simple Example

To illustrate our method, we consider the simple program presented in Figure 1
(left). It consists of a loop iterating a linear transformation, with a change if
the variables enter the zone x ≥ −20, y ≥ 50. It can be shown that with the
initial conditions x ∈ [−20, 20] and y ∈ [0, 3], the then branch of the loop is
never taken. We used this condition to demonstrate the precision of our method
compared to an analysis using template polyhedra.

A polyhedra based analysis of this program computes a sequence of polyhedra
(Pk)k∈N, some of which are depicted in Figure 1 (right). This sequence does not
terminate, and widening does not help here: it discards the lower-left constraints
thus computing an unbounded post-fixpoint while the least fixpoint is bounded.
Note however that, in this case, the use of widening allows to prove that the
program never enters the then branch but fails to compute a finite lower bound
for variables x and y. To over-approximate the least fixpoint, our method works
as follows. First, we chose a fixed set of directions Δ, i.e. a set of vectors in
R2, and for each direction d ∈ Δ, we extract the sequence of the values of the
support functions of each polyhedron in this direction. As will be made clear in
Section 3.2, the support function δP of a convex set P is a function such that
∀d ∈ R2, δP (d) = sup{〈x, d〉 : x ∈ P} . The property that we will use is that
the sequence of support functions of the polyhedra Pk pointwise converges to
the support function of the least fixpoint.

152 Y. Seladji and O. Bouissou

Now, let us study the values of the support functions in direction X+6Y (for
example). We present in Figure 2(a) their values w.r.t. the number of iteration
(dashed line). We see that this sequence slowly converges to its limit, and actually
never reaches it. There exist many methods that help to quickly compute the
limit of such numerical sequences. Among these methods we can use sequence
transformations which automatically compute a new sequence that converges
faster towards the same limit (even after finitely many steps in some cases).
We depict in Figure 2(a) this new sequence (bold line); we clearly see that this
sequence converges much faster towards its limit, after some irrelevant values
due to the initialization of the process. Our method uses such a transformation
to compute the limit ld of the sequence of support functions in each direction
d ∈ Δ. Once all the limits are computed, we construct a new polyhedron using
the constraints 〈x, d〉 ≤ ld in each direction and insert it into Kleene iteration.
This result is shown in Figure 2(b) and is a post-fixpoint (named P�) of the
program. Remark that this post-fixpoint is precise in the sense that the vertices
of the least-fixpoint touch the faces of P�. A more precise post-fixpoint can be
computed using more directions, as will be shown in Section 6. Let us also note
that this post-fixpoint is sufficiently precise to show that the then branch of the
loop is never taken, while a template based analysis with the same directions
could not prove that.

20 40 60

1

2

·103

(a) The sequence of value of the support
function in direction X + 6Y (dashed)
and the accelerated sequence (thick line).

(b) The polyhedra of Kleene algorithm (in
dark) and the post-fixpoint computed using
our method (in white).

Fig. 2. Results of our method on the example of Figure 1

3 Backgrounds

In this article, we are interested in computing invariants for programs with n
variables using Kleene iteration on the polyhedra abstract domain. We denote
the variables by x1, . . . , xn and we let X = (x1, . . . , xn)

t be the vector of all vari-
ables. We thus need to compute the limit of a sequence of convex subsets of Rn.

Fixpoint Computation in the Polyhedra Abstract Domain 153

We start by explaining how this sequence is defined, then we show that another
notion of convergence (namely the scalar convergence) can be used to compute
its limit. Finally, we present some methods that work well for accelerating the
convergence of sequences of real values.

3.1 Polyhedra Abstract Domain

A convex polyhedron is a subset of Rn defined as the intersection of finitely many
half-spaces, each half-space being given as a constraint of the form

∑n
i=1 αixi ≤ c

where ∀i ∈ [1, n], αi ∈ R and c ∈ R. We here adopt the constraint representa-
tion of polyhedron, which is best suited for static analysis. The set of all convex
polyhedra has a lattice structure with an exact intersection operator and the
convex hull as union. This was one of the first numerical abstract domains used
in abstract interpretation [9]. Obviously, for implementation issues, the coeffi-
cients of the constraints are usually chosen as rational numbers and the set of
constraints is encoded using a matrix representation.

Definition 1 (Polyhedra Abstract Domain). The abstract domain of con-
vex polyhedra is the set of all pairs (A, b) where A ∈ MQ(k, n) is a matrix and
b ∈ Qk is a vector of dimension k for some k ∈ N. A polyhedron P given by the
pair (A, b) represents the set of all points (x1, . . . , xn) ∈ Rn such that

∀j ∈ [1, k],

n∑
i=1

Aj,ixi ≤ bj .

Let Cn be the abstract domain of convex polyhedra in Rn.

Given a polyhedron P = (A, b), the ith constraint of P is 〈Ai, X〉 ≤ bi where X
is the vector of variables and Ai is the i

th line of A.
The static analysis of a program with the polyhedra domain consists in com-

puting the least fixpoint P∞ of a monotone map F : Cn → Cn given by the
program semantics. To do so, the most used method is Kleene algorithm that
uses the equation P∞ =

⊔
k∈N F

k(⊥), where ⊥ is the least element of Cn. Kleene
iteration can be summarized by the following algorithm:

1: P0 := ⊥
2: repeat
3: Pi := Pi−1 � F (Pi−1)
4: until Pi + Pi−1

So we see that an abstract interpretation based static analysis of a program
consists of defining a sequence of polyhedra (Pk)k∈N and computing its order-
theoretic limit P∞ =

⊔
k∈N Pk. As Kleene algorithm may not terminate, a widen-

ing operator is used to compute an over-approximation Pw , P∞. In this article,
we show that P∞ can also be computed using scalar convergence and that nu-
merical acceleration methods can be used to quickly compute an approximation
of the scalar limit.

154 Y. Seladji and O. Bouissou

d

Ω

L = {x ∈ R2 : 〈x, d〉 = δΩ(d)}

Fig. 3. Geometrical interpretation of the support function: the line L represents the
limit of the half-space H =

{
x ∈ R2 : 〈x, d〉 ≤ δΩ(d)

}
, in which Ω lies

3.2 Convex Analysis Tools

A convenient representation of a convex set is the use of its support func-
tion [17,23]. In this section, we define the notion of support function and present
how they can be computed in the case of convex polyhedron. We also introduce
the notion of scalar convergence.

Definition 1 (Support Function). Let Ω ⊆ Rn be a non-empty convex set.
The support function δΩ : Rn �→ R ∪ {+∞} of Ω is given by

∀d ∈ Rn, δΩ(d) = sup{〈x, d〉 : x ∈ Ω} .

As stated by Definition 1, the support function is defined only for the non-
empty convex set. In the following, we consider only non-empty convex sets.
The support function of a convex set Ω associates to each direction d ∈ Rn the
biggest value of the scalar product 〈x, d〉 for x ∈ Ω. The interest of this notion
is that any convex set Ω is uniquely and completely determined by the values
of its support function for all d ∈ Rn (see Property 1). So the set of all support
functions (i.e. the set of positive homogeneous, convex real valued functions over
Rn) is isomorphic to the set of convex sets over Rn.

Property 1. Let Ω be a non-empty convex set and δΩ be its support function.
We have:

Ω =
⋂

d∈Rn

{x ∈ Rn : 〈x, d〉 ≤ δΩ(d)} .

The value of δΩ in a direction d ∈ Rn might be infinite depending on whether Ω
is bounded in this direction. Figure 3 gives a geometrical interpretation of δΩ:
in the direction d, δΩ(d) defines the smallest half-space (delimited by the thick
line L) that contains Ω. When Ω is a polyhedron represented by its constraints
system, its support function can be obtained using linear programming.

Let now (Ωk)k∈N be a sequence of convex sets, with Ωk ⊆ Rn for all k ∈ N.
From a topological point of view, there are many ways to define the convergence
of the sequence (Ωk)k∈N [21], each of them leading to a (possibly different)
limit. We choose to use the notion of scalar-convergence because it is based
on support function and because it corresponds to the notion of limit used in
abstract interpretation when the sequence (Ωk)k∈N is monotone.

Fixpoint Computation in the Polyhedra Abstract Domain 155

Definition 2 (Scalar-convergence). Let (Ωk)k∈N be a sequence of convex
sets. For each k ∈ N, let δΩk

be the support function of Ωk. Let Ω be a con-
vex set and let δΩ be its support function. We say that (Ωk)k∈N scalar-converges
(or S-converges) to Ω, denoted by s-limk→+∞Ωk = Ω, iff

∀d ∈ Rn, lim
k→+∞

(δΩk
(d)) = δΩ(d) .

The S-convergence defines the limit of a sequence of convex sets (Ωk)k∈N via
infinitely many limits of numerical sequences (δΩk

(d))k∈N, for all d ∈ Rn. Prop-
erty 2 shows that the S-convergence of an increasing sequence is the supremum
of its elements.

Property 2. Let (Ωk)k∈N be a sequence of closed convex sets and let cl be the
convex closure function. If we have that ∀k ∈ N, Ωk ⊆ Ωk+1, then

s-limk→∞Ωk = cl(
⋃
k≥0

Ωk) .

Recall that, as defined in Section 3.1, Kleene algorithm computes program in-
variants as the union of a sequence of convex polyhedra. These polyhedra form
an increasing sequence, so Property 2 shows that the S-convergence can be used
to compute the result of Kleene iteration. We use this idea in Section 4 to define
an accelerated version of Kleene algorithm for convex polyhedra.

3.3 Numerical Analysis Tools

In this section, we present techniques called sequence transformations that are
used to quickly compute the limit of a numerical sequence of real numbers. These
techniques were already used in [5] to accelerate the convergence of the fixpoint
computation for the box or octagon abstract domains. We recall the basic notions
of sequence transformation that are needed to understand our framework, a good
review on the theory and applications of these methods can be found in [6].

We equip R with the euclidean distance and define Seq(R) as the set of all
sequences of real numbers (i.e. functions from N to R). We say that a sequence
(xk)k∈N ∈ Seq(R) converges towards x ∈ R, denoted by limk→∞ xk = x, if
limk→∞ |xk − x| = 0. More formally, we have:

lim
k→∞

xk = x ⇔ ∀ε > 0, ∃K ∈ N : ∀k ≥ K, |xk − x| ≤ ε .

Given two sequences (xk)k∈N and (yk)k∈N with the same limit �, we say that
(yk) converges faster to � than (xk) if limk→∞

(
yk−l
xk−l

)
= 0. The goal of sequence

transformations is to automatically compute, from a slowly converging sequence
(xk), a sequence (yk) that converges towards the same limit faster than (xk).
In this way, we can use (yk) to quickly obtain an approximation of the limit of
(xk). This is formally stated in Definition 3.

156 Y. Seladji and O. Bouissou

Definition 3. A sequence transformation is a function T : Seq(R) → Seq(R)
such that, for all converging sequences (xk)k∈N ∈ Seq(R), the sequence (yk) de-
fined by (yk) = T (xk) is convergent with limk→∞ yk = limk→∞ xk. The sequence
(yk) is said to be accelerated if limk→∞

yk−l
xk−l = 0.

An example of a sequence transformation is the well-known Δ2-Aitken transfor-
mation Θ : Seq(R) → Seq(R), defined by:

∀x ∈ Seq(R), ∀k ∈ N, Θ(x)k = xk − (xk+1 − xk)
2

xk − 2xk+1 + xk+2
.

We apply this transformation method to xk = 1 + 1
k+1 (∀k ∈ N), a sequence

that converges to 1. The result is given in the following table, where (Θ(x)k)k∈N

converges faster than (xk)k∈N toward 1.

xk 2.00 1.5 1.33 1.25 1.2 1.16 1.14 1.125 1.11
Θ(x)k 1.25 1.16 1.12 1.10 1.08 1.07 1.06

For more details on Δ2-Aitken transformation see [7].
Obviously, a sequence transformation does not accelerate all converging se-

quences, i.e. (T (xk))k∈N does not always converge faster than (xk)k∈N. Remark
however that it is required that T (xk) still converges towards the same limit. An
important notion is the kernel of a sequence transformation, which is the set of
all sequences x ∈ Seq(R) such that T (x) is ultimately constant, see Definition 4.

Definition 4. Let T : Seq(R) → Seq(R) be a sequence transformation. The
kernel of T , denoted by K(T) ⊆ Seq(R), is the set of sequences defined by:

∀x ∈ Seq(R), x ∈ K(T) ⇔ y = T (x) and ∃n ∈ N : ∀k ≥ n, yk = yn .

So clearly, sequences in the kernel of a transformation T are very interesting
because we can compute their limit in a finite time by looking at the elements of
the accelerated sequence. However, computing exactly the kernel of a sequence
transformation is very complicated [7]. In our experimentations, we used the
ε-algorithm [26], which is often cited as the best general purpose acceleration
algorithm. The ε-algorithm is a generalization of the Δ2-algorithm that is less
sensible to numerical instability. For the sake of conciseness, we do not present
it, let us just mention that its kernel contains a large class of sequences like
convergent linear sequences and totally monotonic ones [6, Chap. 2, pp. 85–91].

4 The Acceleration Process

In this section, we present our main contribution which is a new fixpoint algo-
rithm on the polyhedra abstract domain. For that, we define in Section 4.1 an
accelerated version of the S-convergence, called the accelerated S-convergence.
In section 4.2, we propose an abstract version of the accelerated S-convergence
which is used in Section 4.3 for the fixpoint computation.

Fixpoint Computation in the Polyhedra Abstract Domain 157

4.1 The Accelerated S-Convergence

In this section, we show how support function can be combined with sequence
transformations to accelerate the s-convergence of convex polyhedra sequences.
The method we develop is called the accelerated S-convergence.

Now, let Ω be a convex set and (Pk)k∈N be a sequence of polyhedra such
that s-limk→+∞ Pk = Ω. We want to compute Ω in a fast way. Let δPk

be the
support functions of Pk for all k ∈ N. We put ∀d ∈ Rn, ∀k ∈ N, Sd

k = δPk
(d).

From Definition 2, we have that if limk→+∞ Sd
k = Sd, then Sd = δΩ(d). It means

that Ω =
⋂

d∈Rn{x ∈ Rn : 〈x, d〉 ≤ Sd}. So, the S-limit of (Pk)k∈N can be defined

using the limit of numerical sequences (Sd
k)k∈N, for all d ∈ Rn.

Property 3. Let (Pk)k∈N be a convex polyhedra sequence, and δPk
be the support

function of each Pk.

If (∀d ∈ Rn), lim
k→+∞

δPk
(d) = Sd then s-limk→+∞ Pk =

⋂
d∈Rn

Hd

where Hd = {x ∈ Rn : 〈x, d〉 ≤ Sd} is a supporting hyperplane of the S-limit of
(Pk)k∈N.

Property 3 shows that it is possible to use numerical methods of Section 3.3
to accelerate the computation of the S-limit of (Pk)k∈N. Let T be a sequence
transformation as presented in Section 3.3. We compute the sequence (T (Sd

k))k∈N

for all d ∈ Rn, we assume that the sequence (Sd
k)k∈N belongs to the kernel of

T (see Definition 4). So (T (Sd
k))k∈N converges faster than (Sd

k)k∈N towards Sd,
thus accelerating the computation of Ω. This is stated by Definition 5.

Definition 5 (Accelerated S-convergence). Let (Pk)k∈N be a convex poly-
hedra sequence. For each k ∈ N, let δPk

be the support function of Pk, and let
T be a sequence transformation. The accelerated S-convergence, noted sA-lim, is
defined as:

sA-limk→∞ Pk =
⋂

d∈Rn

{
x ∈ Rn : 〈x, d〉 ≤ lim

k→+∞
T (δPk

(d))
}
.

In particular, we have s-limk→+∞ Pk = sA-limk→∞ Pk.

In practice, the sA-lim of (Pk)k∈N cannot be used because we must compute
limk→+∞ T (δPk

(d)) for all d in Rn. We can easily prove that this set can be
restricted to directions in the unit ball Bn, but then the accelerated S-limit still
required infinitely many limit computations. In Section 4.2, a finite abstraction
of the accelerated S-convergence, called the abstract S-convergence, is defined.

4.2 The Abstract S-Convergence

Let Ω be a convex set, and Bn ⊆ Rn be the unit ball. Using support function
properties, we have that ∀d ∈ Bn, Ω ⊆ Hd with Hd = {x ∈ Rn : 〈x, d〉 ≤ δΩ(d)}.
In particular, Ω is included in every intersection of finitely many supporting

158 Y. Seladji and O. Bouissou

hyperplanes. So we can over-approximate Ω using a finite set of directions and
computing each supporting hyperplane in these directions. Property 4 presents
that.

Property 4. For a convex set Ω, we have :

– (∀Δ ⊆ Bn), Ω ⊆
⋂

di∈Δ{x ∈ Rn : 〈x, di〉 ≤ δΩ(di)}.
– If (Δ = Bn) then Ω =

⋂
di∈Δ{x ∈ Rn : 〈x, di〉 ≤ δΩ(di)}.

In the sequel, we define the set Λ = P(Bn), Λ is the power set of Bn. (Λ,⊆Λ)
forms a complete lattice with ⊥ = ∅, " = Bn, ⊆Λ,∪Λ and ∩Λ being the usual
set operations.

The abstract S-convergence applies the accelerated S-convergence on an el-
ement Δ of the lattice (Λ,⊆Λ) to compute an over-approximation of the limit
of (Pk)k∈N. The idea is to apply the accelerated S-convergence partially using
directions in Δ. This is defined in Definition 6.

Definition 6 (The Abstract S-convergence). Let (Λ,⊆Λ) be the lattice of
direction sets. The abstract S-convergence of a sequence (Pk)k∈N ⊆ Cn, noted

s�A-lim, is a function from Λ× (N → Cn) to Cn, such that:

∀Δ ∈ Λ, s�A-lim(Δ,Pk) =
⋂

di∈Δ

{
x ∈ Rn : 〈x, di〉 ≤ lim

k→+∞
T (δPk

(di))
}

where T is a sequence transformation and δPk
are the support functions of Pk.

Now, we can consider the abstract S-convergence as a finite approximation of
the accelerated S-convergence, if the chosen direction set Δ is finite. As stated
by Property 4, it computes an over-approximation of the S-limit of a polyhedra
sequence.

Property 5. For a sequence (Pk)k∈N ⊆ Cn, we have that, if sA-limk→+∞(Pk) =
Ω then:

– (∀Δ ∈ Λ), Ω ⊆ s�A-lim(Δ,Pk) = Ω�, where Ω� is the best abstraction of Ω
using the direction set Δ, i.e. Ω� =

⋂
di∈Δ

{
x ∈ Rn : 〈x, di〉 ≤ δΩ(di)

}
.

– (∀Δ1, Δ2 ∈ Λ), if Δ1 ⊆Λ Δ2 then Ω ⊆ s�A-lim(Δ2,Pk) ⊆ s�A-lim(Δ1,Pk)

Informally Property 5 says that the more directions we have, the more precise
the result will be. In the case where Ω is a polyhedron, there exists a minimal set
ΔΩ ⊆ Λ, such that Ω = ∩d∈ΔΩ{x ∈ Rn : 〈x, d〉 ≤ δΩ(d)}. This ΔΩ represents
the set of all normal vectors of the constraints of Ω. However, these constraints
are generally unknown, so we do not know ΔΩ . Even worse, when Ω is not a
polyhedron, there is no finite set Δ which is optimal to compute s�A-lim(Δ,Pk)
(because there is no best abstraction of a general convex set into the abstract
domain of polyhedra). The efficiency and precision of our method depends on
the choice of a relevant set Δ. We discuss this choice in Section 5.2.

Fixpoint Computation in the Polyhedra Abstract Domain 159

Algorithm 1. Accelerated Kleene Algorithm.

Input: Δ ∈ Λ, finite
Input: ε > 0
1: P0 := ⊥
2: i := 1
3: P� := {} //Initialize P� to the empty sequence
4: repeat
5: Pi := Pi−1 � F �(Pi−1)
6: P� = P� ∪ {Pi} //Add the result of the iteration Pi to P�

7: P
�
∞(i) := s�A-lim

(
Δ,P�

)
8: if (distance(P�

∞(i),P
�
∞(i−1)) ≤ ε) then

9: Pi := P
�
∞(i)

10: end if
11: i := i+ 1
12: until Pi � Pi−1

4.3 The Accelerated Kleene Iteration Algorithm

In this section, we use the abstract S-convergence with Kleene iteration to ac-
celerate fixpoint computation. This improvement proposes a trade-off between
precision and computation time by including more directions in the set Δ used
for the abstract S-convergence. If we run the Kleene algorithm with the poly-
hedra abstract domain, the collection of successive iterates forms a sequence of
convex polyhedra, noted (Pk)k∈N, such that:{

P0 = ⊥
Pk+1 = Pk � F �(Pk), (∀k ∈ N)

We assume that ∀k ≥ 1,Pk �= ⊥.
The abstract semantic function F � is monotone by definition and (Pk)k∈N is

an increasing sequence, i.e. ∀k ∈ N, Pk + Pk+1. As stated in Property 2, the
S-limit of an increasing sequence is the convex hull of its elements, so for the
sequence of Kleene iterates, the S-limit of (Pk)k∈N is the least fixpoint of F �,
denoted P∞. So we have:

P∞ = s-limk→+∞ Pk

So P∞ = sA-limk→+∞ Pk (By transitivity).

Thus (∀Δ ∈ Λ), P∞ + s�A-lim(Δ,Pk) (Using Property 5).

This shows that we can compute an over-approximation of P∞ using the new
notion of convergence introduced in Section 4.2. Note that the quality of the
over-approximation depends on the choice of the direction set Δ.

In Algorithm 1, we define a new accelerated Kleene algorithm, which is the
standard Kleene algorithm combined with the abstract S-convergence. The main
idea is to compute in parallel the sequence (Pk)k∈N and its s�A-lim. Once this limit
is computed, we use it as a fixpoint candidate.

160 Y. Seladji and O. Bouissou

Using a direction set Δ given as an input, in each iteration Algorithm 1
computes the abstract element Pi and puts it as a new element of P�. We have
that P

�
∞(i) is the result of the abstract S-convergence applied on P� and Δ.

Collecting these results, we obtain the accelerated sequence, called (P�
∞(k))k∈N.

So we construct simultaneously P� and (P�
∞(k))k∈N. When the algorithm detects

that the sequence (P�
∞(k))k∈N stabilizes, we assume that it is close to its limit and

thus we use the last element of (P�
∞(k))k∈N, noted P

�
∞(i), as a relevant threshold,

i.e. we modify the current Kleene iterate Pi to be P
�
∞(i). Thanks to the properties

of the abstract S-convergence, this threshold is obtained after a few iterations,
and it is a good approximation of the fixpoint.

Algorithm 1 detects the stabilization of the sequence (P�
∞(k))k∈N by computing

the distance between two successive elements. The distance dΔ we use is given
by:

∀P1,P2 ∈ Cn, dΔ(P1,P2) = sup
di∈Δ

|δP1(di)− δP2(di)| .

Clearly if Δ is finite (or Δ ⊂ Bn), dΔ is not a distance on Cn. In particular,
there exist infinitely many pairs (P,P′), P �= P′, with dΔ(P,P′) = 0. However,

the sequence (P�
∞(k))k∈N is made of polyhedra whose directions are given by the

set Δ, i.e. they are template polyhedra. The function dΔ is a distance between
template polyhedra and can be used to detect the stabilization of the sequence.
Moreover, it can be computed in linear time as the support function in a direction
di are just the inhomogeneous term of the associated constraint. So we say that
the sequence (P�

∞(k))k∈N has stabilized when dΔ(P�
∞(i),P

�
∞(i−1)) ≤ ε, where

ε > 0 is a user-defined parameter (usually around 10−3).
We can prove that Algorithm 1 terminates when P� can be accelerated by

s�A-lim, i.e. when P� belongs to the kernel of the sequence transformation used to

compute s�A-lim. Note that practical experiments show that many sequences are
accelerated even if they are not in the kernel, so we believe that Algorithm 1 can
be efficiently used for many types of programs. However, it’s hard to establish a
priori if a sequence will be accelerated, and we know that no method accelerates
all convergent sequences [12]. To overcome this, we combine our method with
widening by replacing lines 6 to 10 of Algorithm 1 by:

if i ≤ nbDelay then
P� = P� ∪ {Pi}
P
�
∞(i) := s�A-lim

(
Δ,P�

)
if (distance(P�

∞(i),P
�
∞(i−1)) ≤ ε) then

Pi := P
�
∞(i)

end if
else
Pi := Pi−1∇Pi //The widening operator.

end if

Fixpoint Computation in the Polyhedra Abstract Domain 161

The idea is similar to widening with delay: we apply the accelerated S-convergence
during the first nbDelay iterations. If the computation doesn’t terminate we use
the widening to force the termination. In our experiments, however, we did
not need to use the widening to make the analysis terminate. Note that in the
case where s�A-lim accelerates sequences obtained in some directions and not the
others, a way to improve this algorithm is to use the polyhedron defined by
the accelerated directions as a threshold for widening. This allows to keep the
information obtained by s�A-lim and thus improves the precision of the widen-
ing result. Note that other widening techniques, as defined in [2], can also be
smoothly combined with our technique.

5 Performance

The performance of the method presented in this paper mainly depends on two
parameters. First, the choice of the transformation method to accelerate the se-
quences convergence is important. Clearly, each transformation accelerates very
well sequences in its kernel (see definition in Section 3.3), so we must choose an
algorithm with a large kernel. In our experimentations, we used the ε-algorithm.
Second and mainly, our method depends on the choice of directions used to com-
pute the abstract S-limit. We discuss this choice in Section 5.2. The direction
set used in our technique can be seen as a template defined in [24]. We next
emphasize this comparison and the differences between both methods.

5.1 Comparison with Template Abstract Domain

The template abstract domain [24] represents a derivation of the polyhedra do-
main in which the polyhedra are restricted to have a fixed shape. This shape
is defined by a n×m matrix, called template constraint matrix (TCM), where
n is the number of program variables and m the number of constraints used
to define the polyhedra shape. The analogue of the TCM in our method is the
direction set Δ: each line of a TCM is a direction, so clearly the set of all TCMs
is equivalent to the lattice Λ of direction sets. Given a TCM Γ , we denote by TΓ
the template domain with template Γ and by ΔΓ ∈ Λ the equivalent direction
set; we want to compare the fixpoint we obtain using Kleene iteration in the TΓ
and s�A-lim(ΔΓ ,Pk).

Let Γ be a TCM, and αΓ : Cn → TΓ be the abstraction function for the
template domain, such that ∀P ∈ Cn represented as a conjunction of constraints
of the form (A,b) (see Definition 1), αΓ (P) = ∩di∈Γ {x| 〈x, di〉 ≤ ci}, where ci is
the solution of the following problem: min bTλ s.t λ ≥ 0 ∧ ATλ = di. Note that
ci = δP(di), so αΓ (P) can be defined as:

αΓ (P) = ∩di∈Γ {x| 〈x, di〉 ≤ δP(di)} .

Let now P be a program and F � be its abstract semantic function in the poly-
hedra domain. An analysis of P in the template domain computes the invariant
Pt
∞ = �tPt

k such that:

162 Y. Seladji and O. Bouissou{
Pt
0 = αΓ (P0)

Pt
k+1 = Pt

k �t αΓ (F
�(Pk)), ∀k ∈ N

.

In other words, it performs the standard Kleene iteration, but abstracts each
intermediate value into the template abstract domain. Here �t is the union in
TΓ which is very easy to compute [24].

Let (Pk)k∈N be the sequence computed by Kleene iteration in the polyhe-
dra domain. It is easy to prove by induction that ∀k ∈ N, αΓ (Pk) + Pt

k. So
�t
k∈NαΓ (Pk) + �k∈NP

t
k = Pt

∞. As αΓ is continuous, we know that:

αΓ

(
�k∈N Pk

)
+ Pt

∞. (1)

Let P∞ = �k∈NPk be the least fixpoint of F � in the polyhedra domain. From
the definitions of αΓ and s�A-lim(ΔΓ ,Pk), we can easily prove that:

s�A-lim(ΔΓ ,Pk) = αΓ (P∞) . (2)

From Equation 1 and 2, we obtain that s�A-lim(ΔΓ ,Pk) + Pt
∞.

It means that, using the same TCM, the result of our method is more precise
than the one obtained with template abstract domain. The cause is that, in the
template case, all the analysis is made in a less expressive domain, so some over-
approximation is added at each iteration. In our method, the over-approximation
is done once, when the result of the abstract S-convergence is injected in the
Kleene iteration to accelerate its termination. From Equation 2, our method
automatically computes the best abstraction of the fixpoint in the template
domain. The use of numerical acceleration methods allows to compute it without
having to compute the fixpoint itself.

5.2 Discussion on Direction Set

Given a direction set Δ, the abstract S-convergence computes the template ab-
straction of the least fixpoint computed by Kleene iterates. So clearly, the choice
of Δ has a major influence on the quality of the abstraction. Moreover, as we
want to stabilize every sequence δPk

(d) for all d ∈ Δ, the choice of Δ also influ-
ences the performance of the algorithm as some sequences will be less likely to
be accelerated. However, there is no best direction set and choosing a good one
is a difficult problem [24]. We mainly have two methods to choose the directions.

Uniformly Distributed Directions. First, one can choose directions that are uni-
formly distributed on a surface of the n-dimensional sphere (n represents the
program dimension). This technique guarantees that the entire space is cov-
ered, so that if the limit of Kleene iterates is bounded, our method computes a
bounded polyhedra as well. This technique is also used in [14], where support
functions are used to represent convex sets for hybrid systems analysis. This
technique however does not consider the dynamics of the program to choose the
directions and is thus often not optimal.

Fixpoint Computation in the Polyhedra Abstract Domain 163

Using Partial Traces. A better solution is to use and extend the work of [1] where
statistical tools, namely principal component analysis (or PCA), are used to
refine the box abstract domain by changing the axis in which boxes are defined.
PCA is a commonly used tool in statistics for analysing data. Given a set of
points in a n-dimensional space, PCA computes an orthogonal coordinate system
that better represents the points, i.e. the new axes maximize the variance of the
projection of the initial values. Then, we can remove the most extreme points and
we obtain new axes, that are not orthogonal to the first, and that best represent
the reduced set of points. Iterating this idea, we obtain a set of directions that
contain many information on how the points are distributed in space.

In our case, we generate points by computing partial evaluation traces of the
program and collecting all the values of the variables. After the PCA analysis,
we obtain a direction set Δ with which we can perform our static analysis as in
Algorithm 1. We present in Section 6 the results we obtain using this technique,
which are very encouraging and our future work will consist in applying this
PCA analysis dynamically to discover relevant directions.

5.3 Case of Affine Programs

The main bottleneck of our algorithm is the fact that we must compute the
polyhedra given by Kleene iteration before computing the support functions in
the chosen directions. For programs with many variables, this quickly becomes
impossible as Kleene iteration is very time consuming. When the program iter-
ates an affine transformation (i.e. when the semantic function F is of the form
F (X) = AX+b, with A a matrix and b a vector), we can overcome this problem
by directly computing the value of the support function of Pi in each direction
without computing Pi, using ideas from [4]. We briefly describe this method
here. On the one hand, using Kleene algorithm and the semantic function F , Pi

is obtained by :

Pi = Pi−1 � F (Pi−1). (3)

On the other hand, the support functions of convex sets can be computed effi-
ciently using the following operations. For any convex sets S, S′ ⊆ Cn, we have:

– ∀M ∈MR(n,m), δMS(d) = δS(M
Td).

– δS�S′(d) = max(δS(d), δS′ (d)).

– δS⊕S′(d) = δS(d) + δS′(d).

In these formula, MS denotes the transformation of S by M , such that MS =
{Mx|x ∈ S} and S ⊕ S′ denotes the Minkowski sum: S ⊕ S′ = {x + x′ | x ∈
S, x′ ∈ S′}. Using these properties and Equation 3, the support function of Pi,
for a given direction set Δ, can be computed as follow:
∀d ∈ Δ, δPi(d) = δPi−1�F (Pi−1)(d)

= max(δPi−1(d), δAPi−1⊕b(d))
= max(δPi−1(d), δPi−1(A

Td) + 〈b, d〉)

164 Y. Seladji and O. Bouissou

This can be generalized to:

δPi(d) = max
(
δPinit(d), δPinit(A

Tjd) +

j∑
k=1

〈b, AT (k−1)d〉, j = 1, . . . , i
)
. (4)

Note that in Equation 4, the support function of Pi are obtained using only
support function of Pinit, which is the polyhedron obtained just before the ex-
ecution of the loop, i.e. it is often the polyhedron representing the initialized
variables. This allows us to compute efficiently δPi without having to deal with
the complexity of the polyhedra abstract domain operations.

Remark that the technique presented in this section allows for a very efficient
fixpoint computation for affine loops. Such loops are very common in embedded
systems (for example linear filters are such loops) and are difficult to analyze.
In particular, other acceleration techniques such as [15] are not able to handle
affine loops, they can only compute the fixpoint for translations loop only. Our
technique is much more general.

6 Experimentation

In this section, we apply Algorithm 1, presented so far, on some benchmark
programs. We have implemented our framework on top of Apron [18] using the
Parma Polyhedra Library (PPL) [3]. The experimentations are done on 2.4GHz
Intel Core2 Duo laptop, with 8Gb of RAM.

Benchmarks Programs. Next, we present the results of our method on a collec-
tion of programs1 implementing digital filters that are known to be hard to anal-
yse using the standard polyhedra analysis. We used two filters inspired by [13]
(named filter1 and filter2) and five filters from the tests of the “Filter Ver-
ification Framework” software [11]. We choose filters of order 2 (lp iir 9600 2)
to 10 (bs iir 9600 12000 10 chebyshev) to study how our method scales with
the number of variables (a filter of order n has 2n+ 2 variables).

Comparison with Classical Kleene Iteration. Our benchmarks contain infinite loops
without guards: in this case, it is hard to define thresholds for widening statically
as techniques defined in [19] for example do not apply. So we analyse these pro-
grams using widening with delay (and no thresholds) on polyhedra abstract do-
main, with a delay of 15 iterations. The results are compared with ones obtained
with our method. These results are given in Figure 4. In the “Program” column,
|V | denotes the number of variables of the program and |Δ| the number of chosen
directions. In this table, ”Yes” means that the analysis reaches a bounded fixpoint
and " means an unbounded fixpoint. In this case, we give the execution time t.
The sign−means that the analysis did not terminate (with a time-out after 5 min-
utes). The results of Figure 4 shows that our method converges for all programs

1 All programs can be found at
http://www.lix.polytechnique.fr/~{}bouissou/vmcai13

http://www.lix.polytechnique.fr/~{}bouissou/vmcai13

Fixpoint Computation in the Polyhedra Abstract Domain 165

Program Widening Our method

Name |V | |Δ| Converging t(s) Converging t(s)

prog 2 8 � 0.091 Yes 0.029
filter1 6 24 � 0.156 Yes 0.316
filter2 4 48 � 0.053 Yes 0.672
lp iir 9600 2 6 72 � 0.208 Yes 0.049
lp iir 9600 4 10 200 � 6.563 Yes 0.167
lp iir 9600 4 elliptic 10 200 − − Yes 0.308
lp iir 9600 6 elliptic 14 392 − − Yes 2.564
bs iir 9600 12000 10 chebyshev 22 968 − − Yes 19.780

Fig. 4. Results of analysis obtained using different methods

with a good execution time, where the widening fails to compute a bounded post-
fixpoint. For these experiments, the direction sets we used are:

– prog, a randomly chosen direction set of 8 vectors.
– for filter1 and filter2, we used the PCA analysis to determine a good di-

rections set. We used 6 directions for filter1 and 20 directions for filter2.
Note that we also added to the directions set the box directions (i.e. ±X
for each variable X) and for each direction d given by the PCA analysis,
we added −d to have a better coverage of the unit ball. The PCA analysis
is done before programs analysis, and it is not taken into account in the
execution time t.

– the octagonal directions for other programs.

Note that we also tried an analysis of these programs using the template domain,
with a fixed template given by the directions set we used. In all cases, the analysis
without widening did not terminate and widening with delay converged to ".

In Figure 5, we show the post fixpoint we obtain for prog (with 100 direc-
tions), filter2 and lp iir 9600 4. We also show an under-approximation of
the fixpoint, so the actual fixpoint is between both. This shows the quality of
the invariant we compute.

Impact of the Acceleration Method. Finally, we want to stress out the importance
of using an acceleration method to speed up the convergence of the algorithm.
To do so, we compare the computation time and number of iterations of our al-
gorithm with the same algorithm but with the identity as acceleration method,
i.e. we stop when the sequence of support functions reaches its limit and not
the accelerated sequence. As shown by the table of Figure 6, the use of a trans-
formation method greatly improves the performance of the algorithm. We also
compare two acceleration methods: the Δ2-algorithm presented in Section 3.3
and the ε-algorithm. We see that both methods work well, the computation
time being smaller for Δ2 while the number of iterations needed to reach a
post-fixpoint is smaller for the ε-algorithm. This was expected: the ε-algorithm
is known to compute sequences that converge faster than Δ2-algorithm, but its
principle is that it repeatedly applies Δ2-algorithm to the accelerated sequences.
So its time and memory complexity are quadratic in the number of iteration,

166 Y. Seladji and O. Bouissou

x

y

(a) prog.

yn

yn+2

(b) filter2.

yn

yn+2

(c) lp iir 9600 4.

Fig. 5. Results of the benchmarks programs. The filled polyhedron is the post fixpoint
we obtain, the dashed on is the under-approximation of the fixpoint after, respectively,
100, 80 and 15 iterations of Kleene algorithm.

Without acceleration With Δ2 method With ε-method
t (s) ni t (s) ni t (s) ni

lp iir 9600 2 0.058 47 0.037 16 0.047 17
lp iir 9600 4 0.258 100 0.159 31 0.197 27
lp iir 9600 4 elliptic 0.726 276 0.255 71 0.311 40
lp iir 9600 6 elliptic 5.119 702 1.552 172 2.553 91
bs iir 9600 12000 10 chebyshev 104.325 2391 19.873 524 - -

Fig. 6. Influence of the acceleration method on the performance on execution time (t)
and number of iterations (ni)

while the complexity of Δ2 is linear. This is the reason why the computation
of the bs iir 9600 12000 10 chebyshev program with the ε-algorithm timed
out. Figure 6 shows that, even if theoretically neither the termination nor the
acceleration is guaranteed, acceleration methods are in practice very useful for
computing fixpoint of numerical programs.

7 Conclusion

Related work Improving the fixpoint computation in abstract interpretation has
been a major concern since the beginning. Many techniques were proposed to
improve Kleene iteration, like widening with thresholds [19], guided static anal-
ysis [16] or the use of acceleration techniques inspired from model checking [15].
Our method is complementary to these as it works well for numerical programs
with a complex dynamics and for which no static constraints can be used to
define relevant thresholds. As stated in the article, our technique finds its in-
spiration in the template abstract domain [24] and the use of support functions
for hybrid systems analysis [20]. It however differs from an application of the
abstract acceleration of [5] on the template domain as we follow the dynamics
of the polyhedral analysis, which makes the result more precise than with the
template domain. This was shown by our program prog in which our analysis

Fixpoint Computation in the Polyhedra Abstract Domain 167

was able to prove that some part of the code is never reached while a template
based analysis could not.

Conclusion and FutureWork. In this article, we proposed a novel method to over-
approximate the least fixpoint of the program semantics in the polyhedra domain.
Our method uses a novel notion of convergence of convex sets, the abstract S-
convergence,which is based on numerical and convex analysis tools. The algorithm
we propose is very close to Kleene algorithm and its implementation does not re-
quiremany changes in existing fixpoint solvers.One of the strengths of this method
is that it can be tuned using many parameters (number and choice of the direc-
tions, ...) and thus offers a good trade-off between precision and computation time.
Our experiments show that this method improves standard widening techniques
on representative examples, as our prototype was able to compute a bounded post
fixpoint for programs that the widening method was unable to bound.

Clearly, this method strongly depends on the choice of the directions to ac-
celerate. We saw that the use of an apriori analysis using PCA and partial ex-
ecution traces can help to determine relevant directions, the generalization and
automatization of this process will be investigated. Also, our implementation is
currently based on the ε-algorithm for accelerating the convergence of numerical
sequences, we must consider other techniques in order to efficiently treat more
kinds of programs. Our method is efficient to analyse affine programs, to gener-
alize it to the non affine ones, we would like to experiment techniques of program
linearisation. Finally, we would like to investigate the use of our technique to
extrapolate on the dynamics of hybrid systems as defined in [20]: we believe that
the abstract S-convergence can be used to approximate the limit of a dynamical
system with unbounded horizon.

Acknowledgement. We want to thank A. Adjé and E. Goubault for their
helpful suggestions and precious advices. The authors are also thankful to the
anonymous reviewers for their helpful comments.

References

1. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. J. Symb. Comput. 47(12), 1533–1560 (2012)

2. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening oper-
ators for convex polyhedra. Sci. Comput. Program. 58(1-2), 28–56 (2005),
http://dx.doi.org/10.1016/j.scico.2005.02.003

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Not necessarily closed convex polyhedra
and the double description method. Formal Asp. Comput. 17(2), 222–257 (2005)

4. Bouissou, O., Seladji, Y.: Numerical abstract domain using support function.
Presented at the Fifth International Workshop on Numerical Software Verification,
http://www.lix.polytechnique.fr/ bouissou/pdf/bouissou seladji nsv 12

.pdf

5. Bouissou, O., Seladji, Y., Chapoutot, A.: Acceleration of the abstract fixpoint
computation in numerical program analysis. J. Symb. Comput. 47(12), 1479–1511
(2012)

http://dx.doi.org/10.1016/j.scico.2005.02.003
http://www.lix.polytechnique.fr/~bouissou/pdf/bouissou_seladji_nsv_12.pdf
http://www.lix.polytechnique.fr/~bouissou/pdf/bouissou_seladji_nsv_12.pdf

168 Y. Seladji and O. Bouissou

6. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods-Theory and Practice.
North-Holland (1991)

7. Brezinski, C., Redivo Zaglia, M.: Generalizations of Aitken’s process for accelerat-
ing the convergence of sequences. Comp. and Applied Math. 26(2) (2007)

8. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation, Invited Paper. In:
Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295.
Springer, Heidelberg (1992)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–97. ACM Press (1978)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM Press (1977)

11. Cox, A., Sankaranarayanan, S., Chang, B.-Y.E.: A Bit Too Precise? Bounded Ver-
ification of Quantized Digital Filters. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 33–47. Springer, Heidelberg (2012)

12. Delahaye, J.P., Germain-Bonne, B.: Résultats négatifs en accélération de la con-
vergence. Numerische Mathematik 35, 443–457 (1980)

13. Feret, J.: Static Analysis of Digital Filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

14. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

15. Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Re-
lation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

16. Gopan, D., Reps, T.W.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

17. Hiriart-Urrut, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer
(2004)

18. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

19. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with Thresholds for Pro-
grams with Complex Control Graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011)

20. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems (2010)

21. Löhne, A., Zălinescu, C.: On convergence of closed convex sets. Journal of Mathe-
matical Analysis and Applications 319(2), 617–634 (2006)

22. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

23. Rockafellar, R.: Convex analysis, vol. 28. Princeton Univ. Pr. (1997)
24. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-

tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

25. Sonntag, Y., Zălinescu, C.: Scalar convergence of convex sets. J. Math. Anal.
Appl. 164(1), 219–241 (1992)

26. Wynn, P.: The epsilon algorithm and operational formulas of numerical analysis.
Mathematics of Computation 15(74), 151–158 (1961)

SMT-Based Array Invariant Generation�

Daniel Larraz, Enric Rodrı́guez-Carbonell, and Albert Rubio

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. This paper presents a constraint-based method for generating univer-
sally quantified loop invariants over array and scalar variables. Constraints are
solved by means of an SMT solver, thus leveraging recent advances in SMT solv-
ing for the theory of non-linear arithmetic. The method has been implemented in a
prototype program analyzer, and a wide sample of examples illustrating its power
is shown.

Keywords: Program correctness, Invariant generation, SMT.

1 Introduction

Discovering loop invariants is an essential task for verifying the correctness of software.
In particular, for programs manipulating arrays, usually one has to take into account in-
variant relationships among values stored in arrays and scalar variables. However, due to
the unbounded nature of arrays, invariant generation for these programs is a challenging
problem. In this paper we present a method for generating universally quantified loop
invariants over array and scalar variables.

Namely, programs are assumed to consist of unnested loops and linear assignments,
conditions and array accesses. Let a = (A1, . . . , Am) be the array variables. Given an
integer k > 0, our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v) − 1 : Σm
i=1Σ

k
j=1ai jAi[di jα + Ei j(v)] + B(v) + bαα ≤ 0 ,

where C,Ei j,B are linear polynomials with integer coefficients over the scalar variables
v and ai j, di j, bα ∈ Z for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}. This family of properties is
quite general and allows handling a wide variety of programs.

Our method builds upon the so-called constraint-based invariant generation ap-
proach for discovering linear invariants [1], i.e., invariants expressed as linear inequali-
ties over scalar variables. By means of Farkas’ Lemma, the problem of the existence of
an inductive invariant for a loop is transformed into a satisfiability problem in proposi-
tional logic over non-linear arithmetic. Despite the potential of the approach, its appli-
cation has been limited so far due to the lack of good solvers for the obtained non-linear
constraints.

However, recently significant progress has been made in SMT modulo the theory of
non-linear arithmetic. In particular, the Barcelogic SMT solver has shown to be very
effective on finding solutions in quantifier-free non-linear integer arithmetic [2]. These
advances motivated us to revisit the constraint-based approach for linear invariants and
extend it to programs with arrays.

� Partially supported by Spanish MEC/MICINN under grant TIN 2010-21062-C02-01.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 169–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

2 Preliminaries

2.1 Transition Systems

Henceforth we will model programs by means of transition systems. A transition system
P = 〈u,L, �0,T〉 consists of a tuple of variables u, a set of locations L, an initial
location �0 and a set of transitions T . Each transition τ ∈ T is a triple 〈�, �′, ρτ〉, where
�, �′ ∈ L are the pre and post locations respectively, and ρτ is the transition relation:
a first-order Boolean formula over the program variables u and their primed versions
u′, which represent the values of the variables after the transition. In general, to every
formula P (or expression E) over the program variables u we associate a formula P′

(or expression E′) which is the result of replacing every variable ui in P (or E) by its
corresponding primed version u′i .

In this paper we will consider scalar variables, which take integer values, and array
variables. We will denote scalar variables by v and array variables by a. The size of
an array A ∈ a is denoted by |A| and the domain of its indices is {0 . . . |A| − 1} (i.e.,
indices start at 0, as in C-like languages). We assume that arrays can only be indexed
by expressions built over scalar variables. Hence, by means of the read/write semantics
of arrays, we can describe transition relations as array equalities (possibly guarded by
conjunctions of equalities and disequalities between scalar expressions) and quantified
information of the form ∀α : 0 ≤ α ≤ |A| − 1 ∧ P(α) : A′[α] = A[α], where P
does not depend on array variables. For example, Fig. 1 shows a program together
with its transition system. A path π between two locations is associated to a transition

int main() {

int l=4, r=5, A[8];

while (l>=0 and r<8)

if (???)

A[r++]=0;

else

A[l--]=0;

}
l1

∀α : 0 ≤ α < 8 ∧ α �= l : A′[α] = A[α]

τ4 : l
′ = l − 1 ∧ r′ = r ∧ A′[l] = 0 ∧

∀α : 0 ≤ α < 8 ∧ α �= r : A′[α] = A[α]

τ3 : r
′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧

l2

l3

L = {l0, l1, l2, l3}

v = (l, r), a = (A) T = {τ0, τ1, τ2, τ3, τ4}

Initial location is l0

l0

τ2 : l ≥ 0 ∧ r < 8 ∧ Id(l, r, A)

τ0 : l
′ = 4 ∧ r′ = 5

τ1 : (l < 0 ∨ r ≥ 8) ∧ Id(l, r, A)

Fig. 1. Program and its transition system. Predicate Id(u1, . . . , uk) is short for u1 = u′1 ∧ · · · ∧ uk =

u′k, i.e., indicates those variables that remain identical after a transition.

relation ρπ which is obtained by composition of the corresponding transitions relations.
For instance, in the transition system in Fig. 1, the transition relations of the paths
π0 = (l0, τ0, l1), π1 = (l1, τ2, l3, τ3, l1) and π2 = (l1, τ2, l3, τ4, l1) are:

SMT-Based Array Invariant Generation 171

ρπ0 : l′ = 4 ∧ r′ = 5

ρπ1 : l ≥ 0 ∧ r < 8 ∧ r′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧
∀α : 0 ≤ α < 8 ∧ α � r : A′[α] = A[α]

ρπ2 : l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r′ = r ∧ A′[l] = 0 ∧
∀α : 0 ≤ α < 8 ∧ α � l : A′[α] = A[α] .

A path is cyclic if it contains a cycle. A set of locations S is a cutset if every cyclic path
contains a location in S. Locations in a cutset are cutpoints. In our example, paths π1

and π2 are cyclic, {l1} is a cutset and thus l1 is a cutpoint.
Let P be a transition system with initial location �0, and S a cutset of P. We call the

control-flow-graph of P induced by S the graph whose nodes are N = {�0} ∪ S, and
such that for every path πi j in the transition system connecting two locations �i and � j of
N there exists a directed edge 〈�i, � j, πi j〉. Note that therefore, every edge of the graph
has an associated path in the transition system.

For a given strongly connected component (SCC) s of the control-flow-graph, its ini-
tiation paths are those paths in the transition system that label an edge from a location
out of s to a location in s, and its consecution paths are those labeling an edge connect-
ing only locations in s. For instance, the control-flow graph resulting from taking the
cutset {l1} in our example has two nodes, l0 and l1, with one edge from l0 to l1 (π0), and
two self-edges at l1 (π1 and π2). Thus, the SCC consisting of l1 has one initiation path
(π0), and two consecution paths (π1 and π2).

2.2 Constraint-Based Invariant Generation

Here we review the constraint-based invariant generation approach [1]. Let us assume
that we have selected all cutpoints, obtained all the SCCs and identified all respective
initiation and consecution paths. The following well-known theorem establishes suffi-
cient conditions for a set of properties to be invariant at the cutpoints:

Theorem 1. Let lC1 , . . . , l
C
p be a cutset of a SCC s. Let P1, . . . , Pp be properties over the

program variables u such that the following implications hold:

i) for all initiation paths πI from some l to some lCi : ∀u, u′ ρπI ⇒ P′i
ii) for all consecution paths πC from some lCj to some lCi : ∀u, u′ ρπC ∧ P j ⇒ P′i

Then P1, . . . , Pp are invariant at lC1 , . . . , l
C
p . We say P1, . . . , Pp are inductive invariants.

The idea of the constraint-based method is to consider a template for candidate invari-
ant properties, e.g., linear inequalities in the scalar variables. These templates involve
both program variables as well as parameters whose values are initially unknown and
have to be determined so as to ensure invariance. To this end, the implications in The-
orem 1 are expressed by means of constraints (hence the name of the approach) on the
unknowns. If implications are encoded soundly, any solution to the constraints yields
invariant properties for the cutpoints. In particular, if linear inequalities are taken as tar-
get invariants as in [1], implications can be transformed into arithmetic constraints over
the unknowns by means of the following result from polyhedral geometry:

172 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

Theorem 2 (Farkas’ Lemma [3]). Consider a system S of linear inequalities ai1x1 +

· · · + ainxn + bi ≤ 0 (i ∈ {1, . . . ,m}) over real-valued variables x1, . . . , xn. When S is
satisfiable, it entails a linear inequality c1x1 + · · · + cnxn + d ≤ 0 iff there exist non-
negative real numbers λ0, λ1, . . . , λm, such that c1 =

∑m
i=1 λiai1, . . . , cn =

∑m
i=1 λiain, d =

(
∑m

i=1 λibi) − λ0. Further, S is unsatisfiable iff the inequality 1 ≤ 0 can thus be derived.

Therefore, Farkas’ Lemma allows one to transform an ∃∀ problem into an ∃ problem.
If all ai j and bi are known values, the resulting satisfiability problem is an SMT prob-
lem over linear arithmetic. Otherwise, an SMT problem over non-linear arithmetic is
obtained. Moreover, if one is interested in linear invariants with integer coefficients, as
some unknowns are integer (the invariant coefficients) and some are real (the multipliers
λ0, λ1, . . . , λm), an SMT problem in mixed arithmetic is obtained. However, as Farkas’
Lemma applies to reals, one may lose some inductive invariants, namely those that only
hold using the fact that the program variables are integers.

3 Array Invariants

In this section we present a constraint-based technique for generating array invariants
for loop programs without nesting. Moreover, programs are assumed to contain linear
expressions in assignments, if and while conditions, as well as in array accesses.

The idea of the method is, similarly as in [1], to express the conditions of Theorem 1
as algebraic constraints on the parameters of a prefixed invariant template. In order
to provide the reader with intuition on how this is achieved, let us consider again the
example in Fig. 1. In this program, an array A is filled with zeros from the middle
outwards, moving alternatively to the left and to the right. Let us show that property
P ≡ ∀α : 0 ≤ α < r − l − 1 : A[α + l + 1] = 0 is an inductive invariant for this
program.

First of all, let us prove that initiation paths (namely, π0) entail the property. In par-
ticular, we have to prove that l′ = 4 ∧ r′ = 5 → P′.1 This is trivial, since l′ = 4 and
r′ = 5 imply that r′ − l′ − 1 is 0, i.e., the domain of the universally quantified variable α
in P′ is empty.

In general, our invariant generation method is aimed at universally quantified formu-
las, and we ensure that initiation paths imply the invariants by forcing that the domains
of the universally quantified variables are empty.

Secondly, let us prove that consecution paths (i.e., π1 and π2) preserve the property.
For example, for π1 we have to prove that

P ∧ l ≥ 0 ∧ r < 8 ∧ r′ = r + 1 ∧ l′ = l ∧ A′[r] = 0
∧ ∀α : 0 ≤ α < 8 ∧ α � r : A′[α] = A[α] → P′ .

Now notice that the expression r′ − l′ − 1, which determines the domain of α in P′, also
has the property that r′ − l′ −1 = (r+1)− l−1 = (r− l−1)+1. This means that, after π1,
the domain of α has exactly one new element, α = r− l−1. First, let us see that, after the
path, property A′[α+ l′ + 1] = A′[α+ l+ 1] = 0 holds for the other values of α, i.e., α ∈
{0, . . . , r − l − 2}. Indeed this is the case: since ∀α : 0 ≤ α < 8∧ α � r : A′[α] = A[α],

1 From now on, program variables and their primed versions are universally quantified.

SMT-Based Array Invariant Generation 173

all positions of A′ except for the r-th remain the same. But A′[r] = A′[(r− l−1)+ l′+1]
precisely corresponds to α = r − l− 1. Hence from P we have that A′[α+ l′ + 1] = 0 for
all α ∈ {0, . . . , r− l− 2}. Now we only need to prove A′[α+ l′ + 1] = 0 for α = r− l− 1,
which follows from the premise A′[r] = 0. In conclusion, P′ holds.

In general, our invariant generation method will require that, after each consecution
path, at most one new element is added to the domain of our universally quantified
invariant, and that the contents of the arrays involved in the invariant are not changed
after the path.

Back to the example, as regards π2 we have to prove that

P ∧ l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r′ = r ∧ A′[l] = 0
∧ ∀α : 0 ≤ α < 8 ∧ α � l : A′[α] = A[α] → P′ .

Again, the expression r′−l′−1 also satisfies that r′−l′−1 = r−(l−1)−1 = (r−l−1)+1.
Hence the domain of α has exactly one new element. But unlike in the previous case, l
changes its value. To prove P′ from P, it is convenient to rewrite P so that array accesses
are expressed in terms of A[α + l′ + 1]. By making a shift, P is equivalent to ∀α : 1 ≤
α < r′ − l′ −1 : A[α+ l′+1] = 0. Again, since ∀α : 0 ≤ α < 8 ∧ α � l : A′[α] = A[α],
all positions of A′ except for the l-th remain the same. But A′[l] = A′[l′ + 1] precisely
corresponds to α = 0. Therefore A′[α+ l′+1] = 0 for all α ∈ {1, . . . , r′ − l′ −2}. Further,
as A′[l] = 0, we have that A′[α + l′ + 1] = 0 for α = 0. Thus P′ holds.

Apart from proving that P is invariant, we may also want to check that the array
accesses that occur in it are correct. As regards initiation paths, since the domain of α
after π0 is empty, there is nothing to check. Regarding consecution paths, for example
for π1 we have to see that

l≥0 ∧ r<8 ∧ r′=r + 1 ∧ l′= l→ ∀α : 0≤α<r′ − l′ − 1 : α + l′ + 1≥0 ∧ α + l′ + 1<8,

where for the sake of simplicity we have ignored the array variable. Now, given that
array accesses are linear functions in α, it is sufficient to check correctness for α = 0
and α = r′ − l′ −2, i.e., that the above premises entail l′ +1 ≥ 0 ∧ l′+1 < 8 ∧ r′ −1 ≥
0 ∧ r′−1 < 8. Let us assume that we have already looked for linear inequality invariants
over scalar variables (e.g., with the techniques in [1,4]), and have found that l ≤ r − 1
is a loop invariant. Adding this invariant to the transition relation suffices to prove the
above implication. A similar argument applies for π2.

In general, our invariant generation method guarantees that the array accesses oc-
curring in the synthesized invariants are correct. As in the example, this is achieved
by ensuring that the accesses of the extreme values of universally quantified variables
are correct. Since this often requires arithmetic properties of the scalar variables of the
program, in practice it is convenient that, prior to the application of our array invariant
generation techniques, a linear relationship analysis for the scalar variables has already
been carried out.

3.1 Invariant Generation for Programs with Arrays

Let a = (A1, . . . , Am) be the tuple of array variables. Given a positive integer k > 0, our
method generates invariants of the form

174 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

∀α : 0 ≤ α ≤ C(v) − 1 : Σm
i=1Σ

k
j=1ai jAi[di jα + Ei j(v)] + B(v) + bαα ≤ 0 ,

where C, Ei j and B are linear polynomials with integer coefficients over the scalar vari-
ables v = (v1, . . . , vn) and ai j, di j, bα ∈ Z, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}.

This template covers a quite general family of properties. See Sect. 5 for a sample
of diverse programs for which we can successfully produce useful invariants and which
cannot be handled by already existing techniques.

The invariant generation process at the cutpoint of the unnested loop under consid-
eration is split into three steps, in order to make the approach computationally feasible:

1. Expressions C are generated such that the domain {0 . . .C − 1} is empty after every
initiation path reaching the cutpoint, and C does not change or is increased by one
after every consecution path. This guarantees that any property universally quan-
tified with this domain holds after all initiation paths and the domain includes at
most one more element after every consecution path. We avoid the synthesis of dif-
ferent expressions that under the known information define the same domain. In the
running example, we generate C(l, r) = r − l − 1.

2. For every expression C obtained in the previous step and for every array Ai, linear
expressions diα+Ei over the scalar variables are generated such that: (i) Ai[diα+Ei]
is a correct access for all α in {0 . . .C − 1}; (ii) none of the already considered po-
sitions in the quantified property is changed after any execution of the consecution
paths; and (iii), after every consecution path, either Ei does not change or its value
is Ei − di. Namely, if C does not change, then E′i = Ei ensures that the invariant
is preserved. Otherwise, the invariant has to be extended for a new value of α. If
Ei does not change, from the previous condition for all α ∈ {0, . . . ,C − 1} we have
A′i[diα + E′i] = Ai[diα + Ei]. So we will try to extend the invariant with α = C.
Otherwise, if E′i = Ei − di, then for all α ∈ {1, . . . ,C} we have A′i[diα + E′i] =
Ai[di(α − 1) + Ei]. So we will try to extend the invariant with α = 0.
In the running example, we generate d11 = 1 and E11 = l + 1.

3. For the selected C we choose k expressions Ei j for every array Ai among the gener-
ated Ei, such that for each consecution path either all selected Ei j remain the same
after the path, or all have as new value Ei j−di j after the path. Then, in order to gen-
erate invariant properties we just need to find integer coefficients ai j and bα and an
expression B such that, depending on the case, either the property is fulfilled when
α = C at the end of all consecution paths that increase C or it is fulfilled when α = 0
at the end of all consecution paths that increase C. Further, B and bα have to fulfill
that the quantified property is maintained for α ∈ {0 . . .C − 1}, assuming that the
contents of the already accessed positions are not modified.
For instance, in the running example for k = 1 we generate a11 = 1, B = bα = 0,
corresponding to the invariant ∀α : 0 ≤ α < r−l−1 : A[α+l+1] ≤ 0; and a11 = −1,
B = bα = 0, corresponding to the invariant ∀α : 0 ≤ α < r−l−1 : −A[α+l+1] ≤ 0.

Next we formalize all these conditions, which ensure that every solution to the last
phase provides an invariant, and show how to encode them as SMT problems.

While for scalar linear templates the conditions of Theorem 1 can be directly trans-
formed into constraints over the parameters [1], this is no longer the case for our tem-
plate of array invariants. To this end we particularize Theorem 1 in a form that is suitable

SMT-Based Array Invariant Generation 175

for the constraint-based invariant generation method. The proof of this specialized theo-
rem, given in detail below, mimics the proof of invariance of the running example given
at the beginning of this section.

Let πI
1 . . . π

I
p be the initiation paths to our cutpoint and πC

1 . . . π
C
q the consecution paths

going back to the cutpoint.

Theorem 3. Let C, B and Ei j be linear polynomials with integer coefficients over the
scalar variables, and ai j, di j, bα ∈ Z, for i ∈ {1 . . .m} and j ∈ {1 . . . k}. If

1. Every initiation path πI
r with transition relation ρπI

r
satisfies ρπI

r
⇒ C′ = 0.

2. For all consecution paths πC
s with transition relation ρπC

s
, we have ρπC

s
⇒ (C′ =

C ∨ C′ = C + 1).
3. For all consecution paths πC

s , all i ∈ {1 . . .m} and j ∈ {1 . . . k}, we have ρπC
s
∧ C′ >

0⇒ 0 ≤ E′i j ≤ |Ai| − 1 ∧ 0 ≤ di j(C′ − 1) + E′i j ≤ |Ai| − 1.
4. For all consecution paths πC

s we have either
(a) ρπC

s
∧ C′ > 0⇒ E′i j = Ei j for all i ∈ {1 . . .m} and j ∈ {1 . . . k}, or

(b) ρπC
s
⇒ C′ = C + 1 ∧ E′i j = Ei j − di j for all i ∈ {1 . . .m} and j ∈ {1 . . . k}.

5. For all consecution paths πC
s , we have ρπC

s
⇒ ∀α : 0 ≤ α ≤ C− 1 : A′i[di jα+Ei j] =

Ai[di jα + Ei j] for all i ∈ {1 . . .m} and j ∈ {1 . . . k}.
6. For all consecution paths πC

s , we have
– ρπC

s
∧ C′ = C + 1 ⇒ Σm

i=1Σ
k
j=1ai jA′i[di jC + E′i j] + B′ + bαC ≤ 0, if case 4a

applies.
– ρπC

s
⇒ Σm

i=1Σ
k
j=1ai jA′i[E′i j] + B′ ≤ 0, if case 4b applies.

7. For all consecution paths πC
s , we have

– ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bαα ≤ 0⇒ x + B′ + bαα ≤ 0 for some fresh

universally quantified variable x, if case 4a applies.
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bαα ≤ 0⇒ x + B′ + bα(α + 1) ≤ 0 for some

fresh universally quantified variable x, if case 4b applies.

Then ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1ai jAi[di jα + Ei j] + B + bαα ≤ 0 is invariant.

Proof. Following Theorem 1, we show that the property holds after each initiation path,
and that it is maintained after each consecution path.

The first condition easily holds by applying 1, since we have that ρπI
r
⇒ C′ = 0 for

every initiation path πI
r, which implies ∀α : 0 ≤ α ≤ C′ −1 : Σm

i=1Σ
k
j=1ai jA′i [di jα+E′i j]+

B′ + bαα ≤ 0, since the domain of the quantifier is empty.
For the consecution conditions we have to show that for all consecution paths πC

s ,
we have ρπC

s
∧ ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai jAi[di jα + Ei j] + B + bαα ≤ 0 implies

∀α : 0 ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai jA′i[di jα + E′i j] + B′ + bαα ≤ 0.

By condition 2, we have ρπC
s
⇒ (C′ = C ∨ C′ = C + 1), and by condition 4 either

ρπC
s
∧C′ > 0⇒ E′i j = Ei j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}, or ρπC

s
⇒ C′ = C+1∧E′i j =

Ei j − di j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}. We distinguish three cases:

1. C′ = C and all E′i j = Ei j. Then we have to ensure ∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai jA′i[di jα + Ei j] + B′ + bαα ≤ 0. By condition 5, we can replace A′i by

Ai in the given domain, and hence we have to show that ∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai jAi[di jα + Ei j] + B′ + bαα ≤ 0. Then, since the array part coincides with

176 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

the one of the assumption, we can replace it in both places by some fresh variable
x. Now it suffices to show that, assuming x+B+bαα ≤ 0, we have x+B′+bαα ≤ 0
for all value of x, which follows from the premises and condition 7.

2. C′ = C + 1 and all E′i j = Ei j. Then we have to ensure ∀α : 0 ≤ α ≤ C :
Σm

i=1Σ
k
j=1ai jA′i[di jα + Ei j] + B′ + bαα ≤ 0. By conditions 1 and 2 we have 0 ≤ C,

and hence C = C′ − 1 belongs to the domain {0 . . .C} and C′ > 0. Then, by condi-
tion 3, we have that 0 ≤ di jC + Ei j ≤ |Ai| − 1 = |A′i | − 1 for all i and j. Therefore,
we can extract the case α = C from the quantifier obtaining ∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai jA′i[di jα+Ei j]+B′+bαα ≤ 0 and Σm

i=1Σ
k
j=1ai jA′i [di jC+Ei j]+B′+bαC ≤ 0.

The first part holds as before by the premises and conditions 5 and 7, and the second
part holds by the premises and condition 6.

3. C′ = C + 1 and all E′i j = Ei j − di j. Then we have to ensure ∀α : 0 ≤ α ≤ C :
Σm

i=1Σ
k
j=1ai jA′i[di jα+Ei j−di j]+B′+bαα ≤ 0. Since, by conditions 1 and 2, we have

0 ≤ C, we have that C belongs to the domain {0 . . .C}. By condition 3, we have
0 ≤ E′i j = Ei j − di j ≤ |A′i | − 1. Therefore, we can extract the case α = 0 from the
quantifier obtaining∀α : 1 ≤ α ≤ C : Σm

i=1Σ
k
j=1ai jA′i[di jα+Ei j−di j]+Σn

u=1B
′+bαα ≤

0 and Σm
i=1Σ

k
j=1ai jA′i[Ei j−di j]+B′ ≤ 0. For the first one, replacing α by α+1 we have

∀α : 1 ≤ α+1 ≤ C : Σm
i=1Σ

k
j=1ai jA′i[di j(α+1)+Ei j−di j]+Σn

u=1B
′+bα(α+1) ≤ 0, or

equivalently ∀α : 0 ≤ α ≤ C−1 : Σm
i=1Σ

k
j=1ai jA′i[di jα+Ei j]+Σn

u=1B
′+bα(α+1) ≤ 0,

which holds by applying conditions 5 and 7 as before. The second part holds again
by the premises and condition 6, using the fact that E′i j = Ei j − di j. ��

As we have described, our invariant generation method consists of three phases. The
first phase looks for expressions C satisfying conditions 1 and 2. The second one pro-
vides, for every generated C and for every array Ai, expressions Ei with their corre-
sponding integers di that fulfill conditions 3, 4 and 5. Note that, to satisfy condition 4,
we need to record for each expression and path whether we have E′i = Ei or E′i = Ei−di,
so as to ensure that all expressions Ei j have the same behavior. Finally, in the third phase
we have to find coefficients ai j and bα and an expressionB fulfilling conditions 6 and 7.

Solutions to all three phases are obtained by encoding the conditions of Theorem 3
into SMT problems in non-linear arithmetic thanks to Farkas’ Lemma. Note that, be-
cause of array updates, transition relations may not be conjunctions of literals (i.e.,
atomic predicates or negations of atomic predicates). As in practice the guarded array
information is useless until the last phase, in the first two phases we use the uncondi-
tional part of a transition relation ρ, i.e., the part of ρ that is a conjunction of literals,
denoted by U(ρ).

3.2 Encoding Phase 1

Let C be c1v1 + . . . + cnvn + cn+1, where v are the scalar variables and c are the integer
unknowns. Then conditions 1 and 2 can be expressed as:

∃c∀v, v′
∧p

r=1(U(ρπI
r
)⇒ C′ = 0) ∧

∧q
s=1(U(ρπC

s
)⇒ C′ = C ∨ C′ = C + 1) .

We cannot apply Farkas’ Lemma directly due to the disjunction in the conclusion of
the second condition. To solve this, we move one of the two literals into the premise

SMT-Based Array Invariant Generation 177

and negate it. As the literal becomes a disequality, it can be split into a disjunction
of inequalities. Finally, thanks to the distributive law, Farkas’ Lemma can be applied
and an existentially quantified SMT problem in non-linear arithmetic is obtained. We
also encode the condition that each newly generated C must be different from all pre-
viously generated expressions at the cutpoint, considering all already known scalar
invariants.

3.3 Encoding Phase 2

Here, for each C obtained in the previous phase and for each array Ai, we generate
expressions Ei and integers di that satisfy conditions 3 and 5, and also condition 4 as a
single expression and not combined with the other expressions.

The encoding of condition 3 is direct using Farkas’ Lemma. Now let us sketch the
encoding of condition 4. Let Ei be e1v1+ . . .+envn+en+1, where e are integer unknowns.
Then, as Ei is considered in isolation, we need

∃e, di ∀v, v′
∧q

s=1 ρπC
s
⇒ ((C′ = C + 1 ∧ E′i = Ei − di) ∨ C′ ≤ 0 ∨ E′i = Ei) .

To apply Farkas’ Lemma, we use a similar transformation as for condition 2. In addition,
it is imposed that the newly generated expressions are different from the previous ones.

Regarding condition 5, the encoding is rather different. In this case, for every conse-
cution path πC

s , array Ai and expression G ⇒ A′i[W] = M in ρπC
s
, we ensure that

∀α (ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ G ⇒ (W � diα + Ei ∨ M = Ai[W])

)
.

To avoid generating useless expressions, we add in the encoding a condition stating that
if E′i = Ei then for every consecution path where C is incremented, there is at least an
access Ai[W] in the path such that W = di(C′ − 1) + E′i . Otherwise, i.e., if E′i = Ei − di,
then for every consecution path whereC is incremented, there is at least an access Ai[W]
in the path such that W = E′i .

3.4 Encoding Phase 3

Condition 7 is straightforward. Regarding condition 6, the encoding does not need non-
linear arithmetic, but requires to handle arrays:

∃a, b, bα ∀v, v′, A, A′∧q
s=1 (ρπC

s
⇒ Σm

i=1Σ
k
j=1ai jA′i[E

′
i j] + B′ ≤ 0) ∧

(ρπC
s
∧ C′ = C + 1 ⇒ Σm

i=1Σ
k
j=1ai jA′i[C + E

′
i j] + B′ + bαC ≤ 0) .

Here, the use of the guarded array information is crucial. However, since we want to
apply Farkas’ Lemma, array accesses have to be replaced by new universally quantified
integer variables. In order to avoid losing too much information, we add the array read
semantics after the replacement; i.e., if A[i] and A[j] have been respectively replaced
by fresh variables zi and z j, then i = j⇒ zi = z j is added.

178 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

4 Extensions

4.1 Relaxations on Domains

Let us consider the following program:

int A[2*N], min, max, i;

if (A[0] < A[1]) { min = A[0]; max = A[1]; }

else { min = A[1]; max = A[0]; }

for (i = 2; i < 2*N; i += 2) {

int tmpmin, tmpmax;

if (A[i] < A[i+1]) { tmpmin = A[i]; tmpmax = A[i+1]; }

else { tmpmin = A[i+1]; tmpmax = A[i]; }

if (max < tmpmax) max = tmpmax;

if (min > tmpmin) min = tmpmin; }

It computes the minimum and the maximum of an even-length array simultaneously,
using a number of comparisons which is 1.5 times its length. To prove correctness, the
invariants ∀α : 0 ≤ α ≤ i − 1 : v[α] ≥ min and ∀α : 0 ≤ α ≤ i − 1 : v[α] ≤ max are
required. To discover them, two extensions of Theorem 3 are required:

– The domain of the universally quantified variable α cannot be forced to be initially
empty. In this example, when the loop is entered, both invariants already hold for
α = 0, 1. This can be handled by applying our invariant generation method as
described in Sect. 3.1, and for each computed invariant trying to extend the property
for decreasing values of α = −1, −2, etc. as much as possible. Finally, a shift of α
is performed so that the domain of α begins at 0 and the invariant can be presented
in the form of Sect. 3.1.

– The domain of the universally quantified variable α cannot be forced to increase at
most by one at each loop iteration. For instance, in this example at each iteration
the invariants hold for two new positions of the array. Thus, for a fixed parameter
Δ, Condition 2 in Theorem 3 must be replaced by ρπC

s
⇒ (C′ = C ∨ C′ =

C + 1 ∨ · · · ∨ C′ = C + Δ). In this example, taking Δ = 2 is required. Further,
conditions 4b, 6 and 7 must also be extended accordingly in the natural way.

4.2 Sorted Arrays

The program below implements binary search: given a non-decreasingly sorted array A
and a value x, it determines whether there is a position in A containing x:

assume(N > 0);

int A[N], l = 0, u = N-1;

while (l <= u) {

int m = (l+u)/2;

if (A[m] < x) l = m+1;

else if (A[m] > x) u = m-1;

else break; }

SMT-Based Array Invariant Generation 179

To prove that, on exiting due to l > u, the property ∀α : 0 ≤ α ≤ N − 1 : A[i] � x
holds, one can use that ∀α : 0 ≤ α ≤ l − 1 : A[α] < x and ∀α : u + 1 ≤ α ≤ N − 1 :
A[α] > x are invariant. To synthesize them, the fact that A is sorted must be taken into
account. The following theorem results from incorporating the property of sortedness
into Theorem 3:

Theorem 4. Let C, B and Ei j be linear polynomials with integer coefficients over the
scalar variables, and ai j, di j, bα ∈ Z, for i ∈ {1 . . .m} and j ∈ {1 . . . k}. If

1. For all i ∈ {1 . . .m} and j ∈ {1 . . . k} we have bα ≥ 0, and di j > 0 ⇒ ai j ≥ 0, and
di j < 0⇒ ai j ≤ 0.

2. Each initiation path πI
r with transition relation ρπI

r
fulfills ρπI

r
⇒ C′ = 0.

3. Each initiation path πI
r with transition relation ρπI

r
fulfills

ρπI
r
⇒ ∀β : 0 < β ≤ |A′i | − 1 : A′i[β − 1] ≤ A′i[β] for all i ∈ {1 . . .m}.

4. Each consecution path πC
s with transition relation ρπC

s
fulfills ρπC

s
⇒ C′ ≥ C.

5. For all consecution paths πC
s all i ∈ {1 . . .m} and j ∈ {1 . . . k} we have

ρπC
s
∧ C′ > 0⇒ 0 ≤ E′i j ≤ |Ai| − 1 ∧ 0 ≤ di j(C′ − 1) + E′i j ≤ |Ai| − 1.

6. For all consecution paths πC
s we have one of the following:

(a) ρπC
s
∧ C′ > 0 ∧ ai j > 0⇒ E′i j ≤ Ei j and

ρπC
s
∧ C′ > 0 ∧ ai j < 0⇒ E′i j ≥ Ei j for all i ∈ {1 . . .m}, j ∈ {1 . . . k};

(b) ρπC
s
⇒ C′ > C and

ρπC
s
∧ ai j > 0⇒ E′i j ≤ Ei j − (C′ − C)di j and

ρπC
s
∧ ai j < 0⇒ E′i j ≥ Ei j − (C′ − C)di j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}.

7. For all consecution paths πC
s , we have ρπC

s
⇒ ∀β : 0 ≤ β ≤ |Ai| − 1 : A′i[β] = Ai[β]

for all i ∈ {1 . . .m}.
8. For all consecution paths πC

s , we have
– ρπC

s
∧ C′ > C ⇒ Σm

i=1Σ
k
j=1ai jA′i[di j(C′ − 1) + E′i j] + B′ + bα(C′ − 1) ≤ 0,

if case 6a applies.
– ρπC

s
⇒ Σm

i=1Σ
k
j=1ai jA′i[di j(C′ − C − 1) + E′i j] + B′ + bα(C′ − C − 1) ≤ 0,

if case 6b applies.
9. For all consecution paths πC

s , we have
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bαα ≤ 0⇒ x + B′ + bαα ≤ 0 for some fresh

universally quantified variable x, if case 6a applies.
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bαα ≤ 0⇒ x + B′ + bα(α + C′ − C) ≤ 0 for

some fresh universally quantified variable x, if case 6b applies.

Then ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1ai jAi[di jα + Ei j] + B + bαα ≤ 0 is invariant.

Proof. First of all, let us remark that arrays are always sorted in non-decreasing order,
and that their contents are never changed. This follows by induction from conditions 3
and 7. Moreover, it can also be seen from conditions 2 and 4 that C ≥ 0 is an invariant
property.

Now, we will show that the property in the statement of the theorem holds after every
initiation path reaching our cutpoint and that it is maintained after every consecution
path going back to the cutpoint.

The first condition easily holds applying 2, since we have that ρπI
r
⇒ C′ = 0 for

every initiation path πI
r, which implies ∀α : 0 ≤ α ≤ C′ −1 : Σm

i=1Σ
k
j=1ai jA′i [di jα+E′i j]+

B′ + bαα ≤ 0, since the domain of the quantifier is empty.

180 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

For the consecution conditions we have to show that for all consecution paths πC
s ,

we have ρπC
s
∧ ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai jAi[di jα + Ei j] + B + bαα ≤ 0 implies

∀α : 0 ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai jA′i[di jα + E′i j] + B′ + bαα ≤ 0.

By condition 4, we have that ρπC
s
⇒ C′ ≥ C. We distinguish three cases:

1. C′ = C and case 6a holds. If C′ = 0 there is nothing to prove. Otherwise C′ > 0, and
by hypothesis we have that ∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai jAi[di jα+Ei j]+B+bαα ≤

0. Together with ρπC
s
, this implies ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai jAi[di jα + Ei j] +

B′ + bαα ≤ 0 by instantiating appropriately x in condition 9.
Now, let us show that for all i ∈ {1 . . .m}, for all j ∈ {1 . . . k} and for all α ∈
{0 . . .C − 1} we have ai jAi[di jα + E′i j] ≤ ai jAi[di jα + Ei j]. Let us consider three
subcases:

– ai j > 0. Then E′i j ≤ Ei j by condition 6. Hence for all α ∈ {0 . . .C − 1} we have
di jα + E′i j ≤ di jα + Ei j. This implies Ai[di jα + E′i j] ≤ Ai[di jα + Ei j] as Ai is
sorted in non-decreasing order. Therefore ai jAi[di jα+E′i j] ≤ ai jAi[di jα+ Ei j].

– ai j < 0. Then E′i j ≥ Ei j by condition 6. Hence for all α ∈ {0 . . .C − 1} we
have di jα + E′i j ≥ di jα + Ei j. This implies Ai[di jα + E′i j] ≥ Ai[di jα + Ei j] as
Ai is sorted in non-decreasing order (note that, by condition 5, we have that
0 ≤ di jα + E′i j ≤ |Ai| − 1 = |A′i | − 1, so array accesses are within bounds).
Therefore ai jAi[di jα + E′i j] ≤ ai jAi[di jα + Ei j].

– ai j = 0. Then the inequality trivially holds.
Altogether we have that ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai jAi[di jα + E′i j] + B′ +

bαα ≤ 0. Now our goal easily follows, taking into account that C′ = C and that by
condition 7 we can replace Ai by A′i .

2. C′ > C and case 6a holds. Then C′ > 0, and following the same argument as in the
previous case we get that ∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai jA′i[di jα+E′i j]+B′+bαα ≤

0, where Ai has been replaced by A′i by virtue of condition 7.
It only remains to prove that ∀α : C ≤ α ≤ C′ − 1 : Σm

i=1Σ
k
j=1ai jA′i[di jα + E′i j] +

B′ + bαα ≤ 0 (note that, by condition 5, we have that 0 ≤ E′i j ≤ |A′i | − 1 and
0 ≤ di j(C′ − 1) + E′i j ≤ |A′i | − 1, so again array accesses are within bounds). To
this end, let us consider α ∈ {C . . .C′ − 1} and let us show that ai jA′i[di jα + E′i j] ≤
ai jA′i[di j(C′ − 1) + E′i j] for all i ∈ {1 . . .m} and for all j ∈ {1 . . . k}. We distinguish
three cases:

– di j > 0. Then α ≤ C′ − 1 implies di jα ≤ di j(C′ − 1), and hence di jα + E′i j ≤
di j(C′ − 1) + E′i j. As A′i is sorted in non-decreasing order, we have A′i[di jα +
E′i j] ≤ A′i[di j(C′ − 1) + E′i j]. Finally, by condition 1 it must be ai j ≥ 0, and
multiplying at both sides the last inequality the goal is obtained.

– di j < 0. Then α ≤ C′ − 1 implies di jα ≥ di j(C′ − 1), and hence di jα + E′i j ≥
di j(C′ − 1) + E′i j. As A′i is sorted in non-decreasing order, we have A′i[di jα +
E′i j] ≥ A′i[di j(C′ − 1) + E′i j]. Finally, by condition 1 it must be ai j ≤ 0, and
multiplying at both sides the last inequality the goal is obtained.

– di j = 0. The goal trivially holds.
Thus Σm

i=1Σ
k
j=1ai jA′i[di jα+E′i j]+B′ ≤ Σm

i=1Σ
k
j=1ai jA′i[di j(C′−1)+E′i j]+B′. Now, by

condition 1 we have bα ≥ 0, hence α ≤ C′ − 1 implies bαα ≤ bα(C′ − 1). Therefore
Σm

i=1Σ
k
j=1ai jA′i[di jα + E′i j] + B′ + bαα ≤ Σm

i=1Σ
k
j=1ai jA′i[di j(C′ − 1) + E′i j] + B′ +

bα(C′ − 1) ≤ 0 by condition 8.

SMT-Based Array Invariant Generation 181

3. C′ > C and case 6b holds (notice that C′ = C and case 6b together are not possible).
By hypothesis we have ∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai jAi[di jα+Ei j]+B+bαα ≤ 0.

Together with ρπC
s
, this implies ∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai jAi[di jα+Ei j]+B′+

bαα ≤ 0 by instantiating appropriately x in condition 9. By shifting the universally
quantified variable the previous formula can be rewritten as ∀α : C′ − C ≤ α ≤
C′ − 1 : Σm

i=1Σ
k
j=1ai jAi[di j(α − (C′ − C)) + Ei j] + B′ + bα(α − (C′ − C)) ≤ 0.

Now, let us show that for all i ∈ {1 . . .m}, for all j ∈ {1 . . . k} and for all α ∈
{C′ − C . . .C′ − 1} we have ai jAi[di jα+ E′i j] ≤ ai jAi[di j(α− (C′ − C))+Ei j]. Let us
consider three subcases:

– ai j > 0. Then E′i j ≤ Ei j − (C′ − C)di j by condition 6. Hence for all α ∈
{C′ − C . . .C′ − 1} we have di jα + E′i j ≤ di j(α − (C′ − C)) + Ei j. This implies
Ai[di jα + E′i j] ≤ Ai[di j(α − (C′ − C)) + Ei j] as Ai is sorted in non-decreasing
order. Therefore ai jAi[di jα + E′i j] ≤ ai jAi[di j(α − (C′ − C)) + Ei j].

– ai j < 0. Then E′i j ≥ Ei j − (C′ − C)di j by condition 6. Hence for all α ∈
{C′ − C . . .C′ − 1} we have di jα + E′i j ≥ di j(α − (C′ − C)) + Ei j. This implies
Ai[di jα + E′i j] ≥ Ai[di j(α − (C′ − C)) + Ei j] as Ai is sorted in non-decreasing
order. Therefore ai jAi[di jα + E′i j] ≤ ai jAi[di j(α − (C′ − C)) + Ei j].

– ai j = 0. Then the inequality trivially holds.

Altogether we have that ∀α : C′ − C ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai jA′i [di jα + E′i j] +

B′ + bαα ≤ 0, where Ai has been replaced by A′i by virtue of condition 7.
It only remains to prove that ∀α : 0 ≤ α ≤ C′ − C − 1 : Σm

i=1Σ
k
j=1ai jA′i[di jα +

E′i j] +B′ + bαα ≤ 0 (note that, by condition 5, we have that 0 ≤ E′i j ≤ |A′i | − 1 and
0 ≤ di j(C′ − 1)+ E′i j ≤ |A′i | − 1, so again array accesses are within bounds). To this
end, let us consider α ∈ {0 . . .C′ − C − 1} and let us show that ai jA′i [di jα + E′i j] ≤
ai jA′i[di j(C′−C−1)+E′i j] for all i ∈ {1 . . .m} and for all j ∈ {1 . . . k}. We distinguish
three cases:

– di j > 0. Then α ≤ C′ − C − 1 implies di jα ≤ di j(C′ − C − 1), and hence
di jα+E′i j ≤ di j(C′ − C − 1)+ E′i j. As A′i is sorted in non-decreasing order, we
have A′i[di jα+E′i j] ≤ A′i[di j(C′ − C− 1)+E′i j]. Finally, by condition 1 it must
be ai j ≥ 0, and multiplying at both sides the last inequality the goal is obtained.

– di j < 0. Then α ≤ C′ − C − 1 implies di jα ≥ di j(C′ − C − 1), and hence
di jα+E′i j ≥ di j(C′ − C − 1)+ E′i j. As A′i is sorted in non-decreasing order, we
have A′i[di jα+E′i j] ≥ A′i[di j(C′ − C− 1)+E′i j]. Finally, by condition 1 it must
be ai j ≤ 0, and multiplying at both sides the last inequality the goal is obtained.

– di j = 0. The goal trivially holds.

Thus Σm
i=1Σ

k
j=1ai jA′i[di jα+E′i j]+B′ ≤ Σm

i=1Σ
k
j=1ai jA′i[di j(C′−C−1)+E′i j]+B′. Now,

by condition 1 we have bα ≥ 0, hence α ≤ C′ −C− 1 implies bαα ≥ bα(C′ −C− 1).
Therefore Σm

i=1Σ
k
j=1ai jA′i[di jα+E′i j]+B′+bαα ≤ Σm

i=1Σ
k
j=1ai jA′i[di j(C′−C−1)E′i j]+

B′ + bα(C′ − C − 1) ≤ 0 by condition 8.
��

By means of the previous theorem, (an equivalent version of) the desired invariants
can be discovered. However, to the best of our knowledge, results on the synthesis of
invariants for programs with sorted arrays are not reported in the literature. See Sect. 5
for other examples that can be handled by means of this extension.

182 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

5 Experimental Evaluation

The method presented in Sects. 3 and 4 has been implemented in the tool CppInv2. For
solving the generated constraints, we use the Barcelogic SMT solver [5]. As discussed
in Sect. 2.2, after applying Farkas’ Lemma an SMT problem for mixed non-linear arith-
metic is obtained. For this theory, Barcelogic has proved to be very effective in finding
solutions [2]; e.g., it won the division of quantifier-free non-linear integer arithmetic
(QF NIA) in the 2009 edition of the SMT-COMP competition (www.smtcomp.org/
2009), and since then no other competing solver in this division has solved as many
problems.

In addition to the examples already shown in this paper, CppInv automatically gen-
erates array invariants for a number of different programs. The following table shows
some of them, together with the corresponding loop invariants:

Heap property: Partial initialization [6]:

const int N;
assume(N >= 0);
int A[2∗N], i;
for (i = 0; 2∗i+2 < 2∗N; ++i)
if (A[i]>A[2∗i+1] or A[i]>A[2∗i+2])
break;

const int N;
assume(N >= 0);
int A[N], B[N], C[N], i, j;
for (i = 0, j = 0; i < N; ++i)
if (A[i] == B[i])
C[j++] = i;

Loop invariants: Loop invariant:

∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 2] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≤ α + i − j
∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 1] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≥ α

Array palindrome: Array initialization [6]:

const int N;
assume(N >= 0);
int A[N], i;
for (i = 0; i < N/2; ++i)
if (A[i] != A[N-i-1]) break;

const int N;
assume(N >= 0);
int A[N], i;
for (i = 0; i < N; ++i)
A[i] = 2∗i+3;

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i − 1 : A[α] = A[N − α − 1] ∀α : 0 ≤ α ≤ i − 1 : A[α] = 2α + 3

Array insertion: Sequential initialization [7]:

const int N;
int A[N], i, x, j;
assume(0 <= i and i < N);
for (x = A[i], j = i-1;

j >=0 and A[j] > x; --j)
A[j+1] = A[j];

const int N;
assume(N > 0);
int A[N], i;
for (i = 1, A[0] = 7; i < N; ++i)
A[i] = A[i-1] + 1;

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i − j − 2 : A[i − α] ≥ x + 1 ∀α : 0 ≤ α ≤ i − 2 : A[α + 1] = A[α] + 1

2 The tool, together with a sample of example programs it can analyze, can be downloaded at
www.lsi.upc.edu/˜albert/cppinv-bin.tar.gz.

www.lsi.upc.edu/~albert/cppinv-bin.tar.gz

SMT-Based Array Invariant Generation 183

Array copy [7]: First not null [7]:

const int N;
assume(N >= 0);
int A[N], B[N], i;
for (i = 0; i < N; ++i)
A[i] = B[i];

const int N;
assume(N >= 0);
int A[N], s, i;
for (i = 0, s = N; i < N; ++i)
if (s == N and A[i] != 0) {
s=i;
break;

}

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i − 1 : A[α] = B[α] ∀α : 0 ≤ α ≤ i − 1 : A[α] = 0

Array partition [8]: Array maximum [7]:

const int N;
assume(N >= 0);
int A[N], B[N], C[N], a, b, c;
for (a=0, b=0, c=0; a < N; ++a)
if (A[a] >= 0) B[b++]=A[a];
else C[c++]=A[a];

const int N;
assume(N > 0);
int A[N], i, max;
for (i = 1, max = A[0]; i < N; ++i)
if (max < A[i])
max = A[i];

Loop invariants: Loop invariant:

∀α : 0 ≤ α ≤ b − 1 : B[α] ≥ 0 ∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ max
∀α : 0 ≤ α ≤ c − 1 : C[α] < 0

First occurrence: Sum of pairs:

const int N;
assume(N > 0);
int A[N], x = getX(), l, u;
// A is sorted in ascending order
for (l = 0, u = N; l < u;) {
int m = (l+u)/2;
if (A[m] < x) l = m+1;
else u = m; }

const int N;
assume(N > 0);
int A[N], x = getX(), l = 0, u = N-1;
// A is sorted in ascending order
while (l < u)
if (A[l] + A[u] < x) l = l+1;
else if (A[l] + A[u] > x) u = u-1;
else break;

Loop invariants: Loop invariants:

∀α : 0 ≤ α ≤ l − 1 : A[α] < x ∀α : 0 ≤ α ≤ l − 1 : A[α] + A[u] < x
∀α : 0 ≤ α ≤ N − 1 − u : A[N − 1 − α] ≥ x ∀α : 0 ≤ α ≤ N − u − 2 : A[N − 1 − α] + A[l] > x

As a final experiment, we have run CppInv over a collection of programs written
by students. It consists of 38 solutions to the problem of finding the first occurrence
of an element in a sorted array of size N in O(log N) time. These solutions have been
taken from the online learning environment for computer programming Jutge.org (see
www.jutge.org), which is currently being used in several programming courses in the
Universitat Politècnica de Catalunya. The benchmark suite corresponds to all submitted
iterative programs that have been accepted, i.e., such that for all input tests the output
matches the expected one. These programs can be considered more realistic code than
the examples above (First occurrence program), since most often they are not the most
elegant solution but a working one with many more conditional statements than neces-
sary. For example, here is an instance of such a program:

www.jutge.org

184 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

int first_occurrence(int x, int A[N]) {
assume(N > 0);
int e = 0, d = N - 1, m, pos;
bool found = false, exit = false;
while (e <= d and not exit) {
m = (e+d)/2;
if (x > A[m]) {
if (not found) e = m+1;
else exit = true;

}
else if (x < A[m]) {
if (not found) d = m-1;
else exit = true;

}
else {
found = true; pos = m; d = m-1;

} }
if (found) {
while (x == A[pos-1]) --pos;
return pos; }

return -1; }

This particular example is interesting because, with the aid of our tool, we realized that
it does not work in O(log N) time as required, and is thus a false positive. Namely, our
tool produces the following invariants for the first loop:

∀α : 0 ≤ α ≤ e − 1 : A[α] < x ,
∀α : d + 1 ≤ α ≤ N − 1 : A[α] ≥ x .

By manual inspection one can see that found → (A[pos] = x ∧ d = pos − 1) and
exit → found are also invariant. Therefore, if on exit of the loop the property e ≤ d
holds, then exit and found are true and, with all this information, it is unknown whether
the contents of the array between e and pos − 1 are equal to x. Since this segment can
be arbitrarily long, the second loop may take O(N) time to find the first occurrence of
x. This reasoning allowed us to cook an input for which indeed the program behaves
linearly. On the other hand, by means of the generated invariants it can be seen that
the problem is that the loop may be exited too early, and that by replacing in the first
loop the body of the first conditional by e = m+1 and the second one by d = m-1, the
program becomes correct and meets the complexity requirements.

In general, for all programs in the benchmark suite our tool was able to find auto-
matically both standard invariants. The time consumed was very different depending on
how involved the code was. Anyway, the main problem as regards efficiency is that in
its current form our prototype exhaustively generates first all scalar invariants and then,
using all of them, generates all array invariants. Further work is needed to heuristically
guide the search of scalar invariants, so that only useful information is inferred.

We also applied our tool to some of the submissions rejected by Jutge.org. In some
cases the generated invariants helped us to fix the program. E.g., for the following code:

int first_occurrence(int x, int A[N]) {
assume(N > 0);
int i = 0, j = N-1;
while (i <= j) {
if (x == A[i]) return i;
if (x < A[i]) return -1;
int m = (i+j)/2;
if (x < A[m]) j = m-1;
else i = m+1; }

return -1; }

SMT-Based Array Invariant Generation 185

In this case, the generated invariants are:

∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ x ,
∀α : j + 1 ≤ α ≤ N − 1 : A[α] > x .

One may notice that the first invariant should have a strict inequality, and that this
problem may be due to a wrong condition in the last conditional. Indeed, by replacing
the condition x < A[m] by x ≤ A[m], we obtain a set of invariants that allow proving
the correctness of the program.

6 Related Work

There is a remarkable amount of work in the literature aimed at the synthesis of quan-
tified invariants for programs with arrays. Some of the techniques fall into the frame-
work of abstract interpretation [9]. In [6], the index domain of arrays is partitioned into
several symbolic intervals I, and then each subarray A[I] is associated to a summary
auxiliary variable AI . Although assignments to individual array elements can thus be
handled precisely, in order to discover relations among the contents at different indices,
hints must be manually provided. This shortcoming is overcome in [7], where addition-
ally relational abstract properties of summary variables and shift variables are intro-
duced to discover invariants of the form ∀α : α ∈ I : ψ(A1[α + k1], ..., Am[α + km], v),
where k1, . . . , km ∈ Z and v are scalar variables. In comparison with our techniques,
the previous approaches force all array accesses to be of the form α + k. As a conse-
quence, programs like Array palindrome or Heap property (see Sect. 5) cannot be
handled. Moreover, the universally quantified variable is not allowed to appear outside
array accesses. For this reason, our analysis can be more precise, e.g., in the Array
initialization and the Partial initialization [6] examples. Another technique based on
abstract interpretation is presented in [10]. While their approach can discover more
general properties than ours, it requires that the user provides templates to guide the
analysis. Yet another abstract interpretation-based method is given in [11], where fluid
updates are defined on a symbolic heap abstraction.

Predicate abstraction techniques [12] can also be seen as instances of abstract inter-
pretation. Here, a set of predefined predicates is considered, typically provided manu-
ally by the user or computed heuristically from the program code and the assertions to
be proved. Then one generates an invariant built only over those predicates. This track
of research was initiated in [13], where by introducing Skolem constants, universally-
quantified loop invariants for arrays can be discovered. In [14], it is shown how the
strongest universally quantified inductive invariant over the given predicates can be
generated. Further works integrate predicate abstraction into the CEGAR loop [15,16],
apply algorithmic learning [17] or discover invariants with complex pre-fixed Boolean
structure [18]. Unlike most of these predicate abstraction-based techniques, our ap-
proach does not require programs to be annotated with assertions, thus allowing one
to analyze code embedded into large programs, or with predicates, which sometimes
require ingenuity from the user. To alleviate the need of supplying predicates, in [19]
parametric predicate abstraction was introduced. However, the properties considered
there express relations between all elements of two data collections, while our approach
is able to express pointwise relations.

186 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

Another group of techniques is based on first-order theorem proving. In
[20,21], the authors generate invariants with alternations of quantifiers for loop pro-
grams without nesting. First, one describes the loop dynamics by means of first-order
formulas, possibly using additional symbols denoting array updates or loop counters.
Then a saturation theorem prover eliminates auxiliary symbols and reports the conse-
quences without these symbols, which are the invariants. One of the problems of the
method is the limited capability of arithmetic reasoning of the theorem prover (as op-
posed to SMT solvers, where arithmetic reasoning is hard-wired in the theory solvers).
In [22] a related approach is presented, where invariants are generated by examining
candidates supplied by an interpolating theorem prover. In addition to suffering from
similar arithmetic reasoning problems as [20], the approach also requires program as-
sertions.

Other methods use computational algebra, e.g., [23]. One of the limitations of [23]
is that array variables are required to be either write-only or read-only. Hence, unlike
our method, programs such as Sequential initialization [7] and Array insertion (see
Sect. 5) cannot be handled.

Finally, the technique that has been presented in this paper belongs to the constraint-
based methods. In this sense it is related to that in [24]. There, the authors present a
constraint-based algorithm for the synthesis of invariants expressed in the combined
theory of linear integer arithmetic (LI) and uninterpreted function symbols (UIF). By
means of the reduction of the array property fragment to LI+UIF, it is claimed that the
techniques can be extended for the generation of universally quantified invariants for
arrays. However, the language of our invariants is outside the array property fragment,
since we can generate properties where indices do not necessarily occur in array ac-
cesses (e.g., see the Array initialization or the Partial initialization examples in Sect.
5). Finally, the technique in [24] is applied in [8] to generating path invariants in the
context of the CEGAR loop. As the framework in [8] is independent of any concrete in-
variant generation technique, we believe that our method could be used as an alternative
in a portfolio approach to path invariant-based program analysis.

7 Conclusions and Future Work

In short, the contributions of this paper are:

– a new constraint-based method for the generation of universally quantified invari-
ants of array programs. Unlike other techniques, it does not require extra predicates
nor assertions. It does not need the user to provide a template either, but it can take
advantage of hints by partially instantiating the global template considered here.

– extensions of the approach for sorted arrays. To our knowledge, results on the syn-
thesis of invariants for programs with sorted arrays are not reported in the literature.

– an implementation of the presented techniques that is freely available. The con-
straint solving engine of our prototype depends on SMT. Hence, our techniques
will directly benefit from any further advances in SMT solving.

For future work, we plan to extend our approach to a broader class of programs. As a
first step we plan to relax Theorem 3, so that, e.g., overwriting on positions in which the

SMT-Based Array Invariant Generation 187

invariant already holds is allowed. We would also like to handle nested loops, so that
for instance sorting algorithms can be analyzed. Another line of work is the extension
of the family of properties that our approach can discover as invariants. E.g., a possibil-
ity could be considering disjunctive properties, or allowing quantifier alternation. The
former allows analyzing algorithms such as sentinel search, while the latter is necessary
to express that the output of a sorting algorithm is a permutation of the input.

Moreover, the invariants that our method generates depend on the coefficients and
expressions obtained in each of its three phases, which in turn depend on the previous
linear relationship analysis of scalar variables. We leave for future research to study
how to make the approach resilient to changes in the outcome of the different phases.

Finally, as pointed out in Sect. 5, the efficiency of CppInv can be improved. In par-
ticular, further work is needed to heuristically guide the search of scalar invariants, so
that only useful information is inferred.

Acknowledgments. We would like to thank Jutge.org team for providing us with pro-
grams written by students. We are also grateful to the anonymous referees of a previous
version of this paper for their helpful comments.

References

1. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear Invariant Generation Using Non-linear
Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
420–432. Springer, Heidelberg (2003)

2. Borralleras, C., Lucas, S., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: SAT Modulo
Linear Arithmetic for Solving Polynomial Constraints. J. Autom. Reasoning 48(1), 107–131
(2012)

3. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (June 1998)
4. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Variables of a

Program. In: POPL, pp. 84–96 (1978)
5. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: The Barcel-

ogic SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 294–298.
Springer, Heidelberg (2008)

6. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In:
Palsberg, J., Abadi, M. (eds.) POPL, pp. 338–350. ACM (2005)

7. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In:
Gupta, R., Amarasinghe, S.P. (eds.) PLDI, pp. 339–348. ACM (2008)

8. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Ferrante, J.,
McKinley, K.S. (eds.) PLDI, pp. 300–309. ACM (2007)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

10. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 235–246. ACM (2008)

11. Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010)

12. Graf, S., Saı̈di, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, pp. 191–
202 (2002)

188 D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio

14. Lahiri, S.K., Bryant, R.E.: Constructing Quantified Invariants via Predicate Abstraction. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidel-
berg (2004)

15. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

16. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI: SMT-Based
Abstraction for Arrays with Interpolants. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 679–685. Springer, Heidelberg (2012)

17. Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically Inferring Quantified Loop
Invariants by Algorithmic Learning from Simple Templates. In: Ueda, K. (ed.) APLAS 2010.
LNCS, vol. 6461, pp. 328–343. Springer, Heidelberg (2010)

18. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstraction.
In: Hind, M., Diwan, A. (eds.) PLDI, pp. 223–234. ACM (2009)

19. Cousot, P.: Verification by Abstract Interpretation. In: Dershowitz, N. (ed.) Verification: The-
ory and Practice. LNCS, vol. 2772, pp. 243–268. Springer, Heidelberg (2004)

20. Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theo-
rem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

21. Hoder, K., Kovács, L., Voronkov, A.: Case Studies on Invariant Generation Using a Sat-
uration Theorem Prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS,
vol. 7094, pp. 1–15. Springer, Heidelberg (2011)

22. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427.
Springer, Heidelberg (2008)

23. Henzinger, T.A., Hottelier, T., Kovács, L., Rybalchenko, A.: Aligators for Arrays (Tool Pa-
per). In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 348–356.
Springer, Heidelberg (2010)

24. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant Synthesis for Com-
bined Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 378–
394. Springer, Heidelberg (2007)

Flow-Sensitive Fault Localization

Jürgen Christ1, Evren Ermis1, Martin Schäf2,�, and Thomas Wies3

1 University of Freiburg
2 United Nations University, IIST, Macau

3 New York University

Abstract. Identifying the cause of an error is often the most time-
consuming part in program debugging. Fault localization techniques can
help to automate this task. Particularly promising are static proof-based
techniques that rely on an encoding of error traces into trace formu-
las. By identifying irrelevant portions of the trace formula, the possible
causes of the error can be isolated. One limitation of these approaches is
that they do not take into account the control flow of the program and
therefore miss common causes of errors, such as faulty branching condi-
tions. This limitation is inherent to the way the error traces are encoded.
In this paper, we present a new flow-sensitive encoding of error traces
into trace formulas. The new encoding enables proof-based techniques to
identify irrelevant conditional choices in an error trace and to include a
justification for the truth value of branching conditions that are relevant
for the localized cause of an error. We apply our new encoding to the
fault localization technique based on error invariants and show that it
produces more meaningful error explanations than previous approaches.

1 Introduction

Debugging programs is tedious. Often the most time consuming part in de-
bugging is the task of fault localization. To localize the fault of an error, the
programmer has to trace the program execution, e.g., starting from a malicious
test input, and identify the relevant statements that explain the error. Using
this information the programmer can then devise a solution to fix the program.
Automated fault localization tools [1, 6–8, 11, 14, 15, 17, 19, 20] that reduce the
manual effort involved in this task can significantly improve the programmer’s
work experience.

Particularly promising are proof-based fault localization techniques [6, 11].
These techniques rely on an encoding of error traces into so called error trace
formulas. An error trace formula is an unsatisfiable logical formula. A proof
of unsatisfiability of the error trace formula captures the reason why an exe-
cution of the error trace fails. By applying an automated theorem prover to
obtain such proofs of unsatisfiability, the relevant statements for the error can
be automatically identified. One advantage of this approach is that the proof of

� Supported in part by the projects SAFEHR and COLAB, funded by Macau Science
and Technology Development Fund.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 189–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://swt.informatik.uni-freiburg.de/staff/christ
http://swt.informatik.uni-freiburg.de/staff/ermis
https://iist.unu.edu/people/schaef
http://cs.nyu.edu/wies/

190 J. Christ et al.

unsatisfiability provides additional valuable information that can help the pro-
grammer understand the error, such as information about the program states at
different points of execution.

A key limitation of existing proof-based fault localization techniques is that
they only consider statements in the explanation of an error that have side-
effects on the program’s data. Information about the control flow of the program
is ignored. This makes it difficult for the programmer to understand why the
statements that are reported as relevant are actually reachable. Existing proof-
based techniques therefore fail to explain common classes of program errors, such
as faulty branching conditions.

In this paper, we propose a flow-sensitive proof-based fault localization tech-
nique. The result of a flow-sensitive fault localization not only explains why the
error occurred, but also justifies why the statements leading to the error were
executed. We give a basic algorithm for flow-sensitive fault localization based
on our previous work on error invariants [6]. This algorithm applies fault local-
ization recursively to explain the truth values of branching conditions along the
error trace. We then observe that already the non-recursive algorithm from [6]
can produce a flow-sensitive error explanation if one uses a simple modification
in the encoding of the error trace formula. We refer to this new encoding of an
error trace as the flow-sensitive error trace formula.

We discuss a number of examples that demonstrate the usefulness of flow-
sensitive fault localization. We compare the results to the original fault localiza-
tion based on error invariants and show that the new technique precisely explains
why an error occurs.

Related Work. BugAssist [10, 11] minimizes a given error trace obtained from
bounded model checking using a Max-SAT algorithm. Similar to our previous
work [6], BugAssist encodes the error in an unsatisfiable formula. The fault
is localized by identifying fragments of the error trace that are not needed to
prove unsatisfiability of the trace formula. This results in the limitation that
only executable statements can be part of the minimized error trace. Branch
conditions, and those statements that explain why they hold, are always omitted
as the violation of the assertion causing the error can be proven even without
considering them. The main contribution of our work is a new way to encode
error traces as formulas such that branch conditions, and statements affecting
them, can appear in the result of the localization.

A common approach to fault localization is to compare failing with successful
executions (e.g., [1,7,8,14,15,17,19,20]). These approaches differ in the way the
failing and successful executions are obtained, the way they compare executions,
and in the information they report to the user. A detailed survey about the
differences among these approaches can be found in [16,18]. The main difference
to our approach is that we do not execute the program and that we do not need
a successful execution.

In [17], an approach is presented that compares similar failing and successful
executions of a program and returns a bug report that contains only those branch
conditions that have been evaluated differently in both executions. From a given

Flow-Sensitive Fault Localization 191

1 void xZero(int input) {

2 int x = 1;

3 int y = input - 42;

4 if (y<0) {

5 x = 0;

6 }

7 //@ assert x != 0;

8 }

Fig. 1. The error occurs only if the
then block is taken. The condi-
tion and the derivation of its truth
value are important to reproduce
the error.

1 int yZero(int input) {

2 int x = 0;

3 int y = input - 42;

4 if (y<0) {

5 y = 0;

6 }

7 //@ assert x != 0;

8 }

Fig. 2. The error occurs no matter
which branch of the conditional is
taken

failing execution of a program, they automatically construct a similar successful
execution using a constraint solver. The evaluation of the branch conditions in
both executions is recorded during execution, and the difference is reported to
the user as a bug report. With this approach, we share the motivation that
branch conditions not only provide valuable information for debugging but are
often the reason for errors in a program and therefore are essential for fault
localization. However, unlike the approach in [17], our approach reports not
only branch conditions but also relevant statements, error invariants, and the
variables that need to be tracked.

Similar to dynamic approaches there are static approaches that do fault lo-
calization by comparing feasible traces in the model of the program with coun-
terexamples produced by a verifier. Ball et al. [1] present an algorithm to localize
faults in counterexamples produced by the model checker SLAM. They isolate
parts of a counterexample that do not occur on feasible traces. Groce et al. [7–9]
use causal dependencies (see, e.g. [2]) and distance metrics for program execu-
tions to find minimal abstractions of error traces. In contrast to our approach,
they use causal dependencies between variables and the difference between the
failing and the successful execution to generate error reports.

2 Overview and Illustrative Example

We illustrate the benefits of flow-sensitive trace formulas on two simplified ex-
amples. Fig. 1 shows a procedure whose execution violates the assertion at line 7
if it is called with a value less than 42 for the parameter input. In this case, the
assignment in line 5 is executed and the assigned value of x conflicts the asser-
tion at line 7. An error is observable by executing an error trace starting from a
state that satisfies an error precondition. In our example, the error trace is the
sequence of statements obtained by restricting the program to the then branch
of the conditional, i.e., including the statement in line 5. The error precondi-
tion is the formula input < 42 (or any other formula that implies input < 42).

192 J. Christ et al.

The problem of fault localization is to identify the statements in the error trace
that are relevant for the error. Intuitively, a statement is relevant if the error no
longer occurs after removing the statement from the trace. Various notions of
relevancy have been considered in the literature depending on what it means to
remove a statement from a trace.

In proof-based fault localization techniques [6, 11] relevancy of statements
is determined by encoding the error into an unsatisfiable formula called the
extended trace formula. This formula consists of a trace formula of the error
trace in conjunction with the error precondition and the correctness assertion. A
proof of unsatisfiability of the extended trace formula provides information about
which statements are relevant. For our example, the extended trace formula is
as follows:

(input < 42) ∧ (x = 1) ∧ (y = input− 42) ∧ (y < 0) ∧ (x′ = 0) ∧ (x′ �= 0).

The first conjunct is the error precondition, the last conjunct is the failing asser-
tion, and the remaining conjuncts constitute the trace formula encoding of the
error trace, e.g., the conjunct (x′ = 0) results from the statement in line 5. The
conjuncts that are needed to prove the unsatisfiability of the formula are under-
lined, i.e., already (x′ = 0)∧ (x′ �= 0) is contradictory. Thus, it appears as if only
the statement in line 5 is relevant for the error. However, in order to reproduce
the error we also need to know that y<0 holds in line 4, otherwise the statement
in line 5 will not be executed. Hence, we need the statement y=input-42 and
the precondition input<42 to show that the condition in line 4 is true. Unfortu-
nately, we cannot derive this information from the unsatisfiability proof because
the values of y and input are irrelevant for the proof.

To overcome this problem, we introduce an alternative encoding of errors
into so-called flow-sensitive trace formulas. A flow-sensitive trace formula keeps
track of dependencies between statements and the branching conditions that are
relevant for the reachability of these statements in the control flow graph of the
program. A proof of unsatisfiability of such a formula includes a justification
for the truth value of every branching condition on which a relevant statement
depends. The flow-sensitive trace formula for the example in Fig. 1 is as follows:

(input < 42) ∧ (x = 1) ∧ (y = input− 42) ∧ (y < 0 =⇒ x′ = 0) ∧ (x′ �= 0)

For a proof of unsatisfiability we still need the information that x′ = 0 holds,
but this information is now encoded in an implication (y < 0 =⇒ x′ = 0).
The premise of the implication, (y < 0), is the branching condition at line 4
that needs to be satisfied to reach the statement in line 5. The implication
encodes that either the branching condition holds and the statement in line 5
is executed, or the branching condition does not hold and x′ takes an arbitrary
value (effectively over-approximating the else branch of the conditional). That
is, either the implication (y < 0 =⇒ x′ = 0) is relevant for the proof or we can
show that the value of x′ is completely irrelevant. If the implication is relevant,
then the branching condition y < 0 must also be relevant and so must be all
the statements that affect its truth value. Hence, a statement that affects the

Flow-Sensitive Fault Localization 193

reachability of a relevant statement is also considered relevant. In this example,
the unsatisfiability of the flow-sensitive trace formula can only be proven if we can
show that the implication (input < 42)∧(x = 1)∧(y = input−42) =⇒ (y < 0)
is valid. The conjunct (y = input−42) resulting from line 3, and the precondition
(input < 42), which are both part of the premise, are sufficient for this. Hence,
using the flow-sensitive trace formula, we can still identify the conflict between
line 5 and line 7, but in addition, we can also explain why line 5 is reached. In
the end, only the statement in line 2 is considered irrelevant.

Flow-sensitive trace formulas also distinguish between conditional choices that
are relevant to reach the error and those that are irrelevant. We illustrate this
using the procedure yZero shown in Figure 2. The flow-sensitive trace formula
of yZero is either

(input < 42) ∧ (x = 0) ∧ (y = input− 42) ∧ (y < 0 =⇒ y′ = 0) ∧ (x �= 0)

if the trace to the error goes through the if-statement at line 4, or

(input < 42) ∧ (x = 0) ∧ (y = input− 42) ∧ (y ≥ 0 =⇒ y′ = y) ∧ (x �= 0)

if it does not. Note that both traces are error traces, as the correctness assertion
x �= 0 in line 7 is violated in each case. We reuse the error precondition (input <
42) from the previous example, though we might as well use any other constraint
on input (as long as it is satisfiable). To prove the formula unsatisfiable, it is
sufficient to prove the contradiction between the conjunct (x = 0), resulting
from line 2, and the assertion (x′ �= 0). The conjunct (y < 0 =⇒ y′ = 0),
respectively (y ≥ 0 =⇒ y′ = y.), is not needed. We thus conclude that the
conditional choice in line 4 is irrelevant to reproduce the error. Similarly, we
observe that the constraints resulting from the statement y=input-42 and the
precondition input<42 are not needed. Hence, we further conclude that neither
the value of input, nor the value of y are relevant to reproduce the error.

3 Preliminaries

We use first-order logic formulas to define programs. We assume standard syntax
and semantics of such formulas and use " and ⊥ to denote the Boolean constants
for true and false, respectively. For a set of variables X , we denote by Expr(X)
the set of terms built from variables in X and we denote by Preds(X) the set of
all quantifier-free formulas with free variables in X .

Programs and Statements. Let X be a fixed set of variables, which we call
program variables, and let L be a set of labels. A program statement st is either
a conditional choice, a while loop, a sequence of statements, an assignment, or
a label:

x ∈ X, � ∈ L, e ∈ Expr(X), cond ∈ Preds(X)

st ::= if cond then st else st | while cond do st

| st ; st | x := e | label �

194 J. Christ et al.

Labels have no operational meaning. They are only used to uniquely identify
certain points during the execution of a program statement. We require therefore
that each label � occurs at most once in a statement. We use the short-hand
notation � : st for the program statement label �; st .

A program P = 〈st , Φ〉 consists of a program statement st , and an assertion
map Φ : L → Preds(X) which maps each label � in st to a formula that should
hold at the point of execution of st determined by �.

Atomic Statements and Traces. We define the semantics of program statements
and programs in terms of atomic statements (or simply statements), which are
defined by the following grammar:

sta ::= if cond | endif | x := e | label � | havoc cond

A trace π is a finite sequence of atomic statements. Let π be a trace of length
n. For 0 ≤ i < n, we denote by π[i] the i-th atomic statement of π, and for
0 ≤ i < j < n, we denote by π[i, j] the sub-trace π[i]; . . . ;π[j − 1] of π. Traces
obtained from programs do not contain havoc cond statements. We will use such
statements later to define abstract traces.

A program statement st defines a possibly infinite, prefix-closed set of traces
Traces(st). The setTraces(st) is obtained by unwinding the loops in st arbitrarily
often. Formally, we define the set of complete traces CTraces(st) of a statement
st as the least fixed point of the following system of equations:

CTraces(x := e) = {x := e}
CTraces(label �) = {label �}
CTraces(st1 ; st2) = { π1;π2 | π1 ∈ CTraces(st1), π2 ∈ CTraces(st2) }
CTraces(if cond then st1 else st2) =
{ if cond ;π; endif | π ∈ CTraces(st1) } ∪
{ if ¬cond ;π; endif | π ∈ CTraces(st2) }

CTraces(while cond do st) =
{if ¬cond ; endif} ∪
{ if cond ;π; endif;π′ | π ∈ CTraces(st), π′ ∈ CTraces(while cond do st) }

The set of traces Traces(st) of a program statement st is then defined as the
set of all prefixes of its complete traces CTraces(st). The traces of a program
P = 〈st , Φ〉 are the traces of its program statement, i.e., Traces(P) = Traces(st).

The purpose of using the above notation for the syntax of programs and
traces, instead of more common notations such as guarded commands and pas-
sive programs, is that it allows to identify the scope of a branching condition
from the syntax. We might as well use a more common syntax but then we need
to recompute this scope in a preprocessing step.

Semantics of Traces and Programs. A program state s is a function that assigns
a value s(x) to each program variable x ∈ X . We call the formulas Preds(X)
state formulas and we write s |= F to denote that a state s satisfies a state
formula F .

Flow-Sensitive Fault Localization 195

For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the variable obtained
from x by adding i primes to it. The variable x〈i〉 models the value of x in a
state that is shifted i time steps into the future. We extend this shift function
from variables to sets of variables, as expected, and we denote by X ′ the set of
variables X〈1〉. For a formula F with free variables from Y , we write F 〈i〉 for the
formula obtained by replacing each occurrence of a variable y ∈ Y in F with the
variable y〈i〉. We denote by x〈−i〉 the inverse operation of x〈i〉.

The formulas Preds(X ∪X ′) are called transition formulas. We use transition
formulas to represent the semantics of statements in a trace, where the vari-
ables X ′ denote the values of the variables from X in the next state. We write
s, s′ |= T to denote that the states s and s′ satisfy the transition formula T ,
where s′ is used to interpret the variables in X ′. We associate with each atomic
statement sta a transition formula T [sta] as shown in Figure 3. Here, frame(Y)
denotes the formula

∧
y∈Y y = y′. The atomic statement havoc cond assigns

non-deterministic values to all variables in vars(cond) and has no effect on the
values of the remaining variables. Note that these statements do not occur in
traces from the program as our programs are deterministic.

sta T [sta]

if cond cond ∧ frame(X)
endif frame(X)
label � frame(X)
x := e x′ = e ∧ frame(X \ {x})
havoc cond cond ′ ∧ frame(X \ vars(cond))

Fig. 3. The transition formulas describing the semantics of the statements in traces

An execution of a trace π of length n is a sequence of states s0 . . . sn such
that for all 0 ≤ i < n, si, si+1 |= T [π[i]]. We denote by Execs(π) the set of all
executions of π. The trace formula of π is the formula

TF(π) := T [π[0]]〈0〉 ∧ . . . ∧ T [π[n− 1]]〈n−1〉 .

The trace formula is satisfiable if and only if π has a (feasible) execution. That is,
if Execs(π) is non-empty. In fact, there is a one-to-one correspondence between
the executions of π and the models of TF(π). We call a trace feasible if its trace
formula is satisfiable, otherwise we call it infeasible.

A program P = (st , Φ) is safe if for every trace π ∈ Traces(P) whose final
statement is a label statement label � and every execution σ of π, the final state
of σ satisfies Φ(�). If a program is not safe, an error can be witnessed along a
trace. The error corresponds to a set of executions that violate the assertion
associated with the last label of the trace.

Definition 1. An error of a program P = 〈st , Φ〉 is a tuple (ψ, π, φ) where ψ
and φ are state formulas and π = sta0 ; . . . st

a
n−2; label � is a trace of P with

Φ(�) = φ such that the following conditions hold:

196 J. Christ et al.

1. ψ ∧TF(π) is satisfiable, and
2. ψ ∧TF(π) ∧ φ〈n〉 is unsatisfiable.

That is, for an error (ψ, π, φ), no execution of the trace π that starts in a state
satisfying ψ ends in a state satisfying the postcondition φ. However, there must
exist at least one execution of π that starts in a state satisfying ψ. We refer to
the unsatisfiable formula ψ ∧TF(π) ∧ φ〈n〉 as the extended trace formula of the
error.

4 Flow-Sensitive Fault Localization

Proof-based fault localization techniques such as the ones described in [11] and [6]
use the unsatisfiability proof of the extended trace formula to identify the parts
of the trace formula that are relevant for the error. However, the extended trace
formula only encodes that the trace does not have any execution for the given pre
and postcondition. That is, to show that this formula is unsatisfiable, it might
be sufficient to identify a single statement in the trace that establishes a con-
tradiction with the postcondition. Though, to understand why the execution is
possible at all, and thus to understand why the undesired post-state is reachable
on this execution, more statements might be necessary. Therefore we propose
flow-sensitive fault localization which localizes the fault and further explains for
each statement in the result of the localization why the conditions needed to
reach this statement are satisfied.

In this section, we show how existing fault localization algorithms can be made
flow-sensitive while using the underlying algorithm as a black box. We do this
for the fault localization technique based on error invariants [6], but the same
principle also applies to other algorithms.

Error Invariants. Given an error (ψ, π, φ) with trace π of length n, let 0 ≤ i ≤ n
be a position in the trace1. An error invariant for position i is a state formula I
such that (i) ψ ∧TF(π[0, i]) |= I〈i〉 and (ii) I ∧TFπ[i, n]∧ φ〈n−i〉 |= ⊥. That is,
I over-approximates the final states of the executions Execs(π[0, i]) that start in
a state satisfying ψ. Furthermore, the final state of any execution of π[i, n] that
starts in a state satisfying the error invariant still violates φ. An error invariant
is inductive for positions i ≤ j if it is an error invariant for both positions
i and j.

Fault Localization. We formulate fault localization as the problem of finding
an abstract error for a given error that describes the essence of why the er-
ror occurred. The abstract error comprises an abstract error trace that over-
approximates the executions of the original error trace and fails for the same
reason. We define these abstract error traces using inductive error invariants.
If an error invariant I is inductive for positions j > i, then the statements be-
tween positions i and j are not needed to reproduce the error. We can drop

1 Position n is the position where the assertion φ is supposed to hold.

Flow-Sensitive Fault Localization 197

these statements from the error trace and replace them by a summary tran-
sition that non-deterministically changes the values of variables, but preserves
the error invariant I. The statements in the error trace for which we cannot find
an encompassing inductive invariant is considered relevant and remains in the
abstract error trace.

Definition 2 (Abstract error trace). Given an error (ψ, π, φ) with trace π
of length n. Let π# = havoc I0; st

a
1 ; havoc I1; . . . ; st

a
k; havoc Ik be a trace where

all Ii, 0 ≤ i ≤ k, are state formulas. We call π# an abstract error trace for
(ψ, π, φ) if there exist positions i0 < . . . < ik+1 such that i0 = 0, ik+1 = n+ 1,
for all j with 1 ≤ j ≤ k, staj = π[ij], and for all j with 0 ≤ j ≤ k, Ij is an

inductive error invariant for positions ij and ij+1 − 1. We call (ψ, π#, φ) an
abstract error associated with error (ψ, π, φ).

Example 3. Consider again the example program from Fig. 1. We get an er-
ror for input = 41 and the trace x := 1; y := input − 42; if y < 0; x :=
0; endif; label � where the condition assigned to label � is x �= 0. One possible
abstract error trace is havoc "; x := 0; havoc x = 0.

Craig Interpolants. There is a close connection between error invariants and
Craig interpolants that we exploit to compute error invariants using the extended
trace formula associated with the error.

Given two formulas A and B whose conjunction is unsatisfiable, a Craig in-
terpolant for (A,B) - hereafter called interpolant - is a formula I such that (a)
A =⇒ I is valid, (b) B ∧ I is unsatisfiable, and (c) the free variables in I occur
free in both A and B. This concept has been extended to inductive sequences of
interpolants [13]. Given n formulas F1, . . . , Fn whose conjunction is unsatisfiable,
an inductive sequences of interpolants is a sequence I0, . . . , In of n+ 1 formula
such that (a) I0 is ", (b) In is ⊥, (c) Ii−1 ∧ Fi =⇒ Ii is valid for 0 < i ≤ n,
and (d) the free variables in Ii occur free in both, the formulas with index less
than or equal to i, and the remaining formulas. Such inductive sequences of in-
terpolants can be computed automatically from proofs of unsatisfiability using
an appropriate interpolation procedure (see, e.g., [12]). We assume that such an
interpolation procedure is given.

For an error (ψ, π, φ) with trace π of length n and a position 0 ≤ i ≤ n, let
A = ψ ∧TF(π[0, i]) and B = TF(π[i, n])〈i〉 ∧ φ〈n〉. Then for every interpolant I
of (A,B), the formula I〈−i〉 is an error invariant for position i of π.

Flow-sensitivity. An abstract error trace π# for an error (ψ, π, φ) is an abstrac-
tion of the concrete error trace π. Since the abstraction only has to preserve the
error, it might lose information about the control flow that is vital to reproduce
the error in the original program. For instance, the abstract error trace in Exam-
ple 3 does not provide any information about how line 5, the assignment x := 0,
is reached. In particular, the abstract error trace does not incorporate any in-
formation about the variable y that is used in the condition of the if -statement
(line 4) surrounding this assignment. In general, an error might not be caused

198 J. Christ et al.

directly by the execution of a specific statement, but by the reachability of that
statement under the given error precondition. For short error traces it is often
easy to see why a certain statement is reachable. However, for longer error traces
this is non-trivial. Hence, automation in form of fault localization that precisely
captures the relevant control flow is desirable.

We introduce flow-sensitive abstract error traces to solve this problem. A flow-
sensitive abstract error trace π# is an abstract error trace with the property that
for every statement sta in π#, a prefix of π# can be used to explain why sta is
reachable in the original trace. To formalize this concept, we introduce two helper
functions Conds and Prev . We denote by Conds(π) the conditions needed to
reach π[n], i. e., the conditions of the if -statements whose corresponding endif-
statements are not part of π:

Conds(π) = Conds(∅, π, n)
Conds(S, ε, 0) = S

Conds(S, π ; endif, i) = Conds(S, π[0,Prev (π)],Prev (π))

Conds(S, π ; if cond , i) = Conds(S ∪ {cond}, π, i− 1)

Conds(S, π ; label �, i) = Conds(S, π ; x := e, i)

= Conds(S, π ; havoc cond , i)

= Conds(S, π, i − 1)

Here, ε denotes the empty trace. If Conds(π) is used within a formula, it is inter-
preted as the conjunction of its elements. The helper function Prev (π) computes
for a trace of length n the position of the last if -statement that does not have a
corresponding endif-statement in π:

Prev(π) = Prev(1, π, n)

Prev(0, π, i) = i+ 1

Prev(k, π ; endif, i) = Prev(k + 1, π, i− 1)

Prev (k, π ; if cond , i) = Prev(k − 1, π, i− 1)

Prev(k, π ; label �, i) = Prev(k, π ; havoc cond , i)

= Prev(k, π ; x := e, i)

= Prev(k, π, i− 1)

Definition 4 (Flow-sensitive). Let P be a program. An abstract error (ψ, π#, φ)
for an error (ψ, π, φ) of P is called flow-sensitive if for every statement sta in
π# with sta = π[i] = π#[k], some prefix of π#[0, k] is an abstract error trace
for the error (ψ, π[0, i],¬Conds(π[0, i])) of the program that is obtained from P
by inserting2 the statement label � before the statement π[i] and mapping the
fresh label � to the assertion ¬Conds(π[0, i]).

2 Note that the insertion of labels into a program does not change the semantics of
the program.

Flow-Sensitive Fault Localization 199

To make fault localization flow-sensitive, we need to know the scope of the
statement, i.e., the conditions that have to hold for the statement to be reachable.
With this knowledge, we can make any fault localization technique flow-sensitive
by using recursive calls to find out why the conditions have to hold when reaching
statements in conditional branches. As an example, we show in Algorithm 1 how
to make the fault localization based on error invariants flow-sensitive. In general,
this algorithm can easily be adapted to other fault localization techniques.

Algorithm 1. FSEI(ψ, π, φ): naive algorithm to compute error invariants
for flow-sensitive fault localization.
Input: Pre-condition ψ, Trace π of length n, and post-condition φ
Output: Sequence of n+ 1 error invariants
E0, . . . , En ← ErrorInvariants(ψ,π, φ) (1)
Pos ← Changes(E0, . . . , En) (2)
Conditions ←

⋃
i∈Pos Scope(i) (3)

foreach (i, cond) in Conditions do
S0, . . . , Si ← FSEI(ψ, π[0, i],¬cond) (4)
foreach 0 ≤ j ≤ i do Ej ← Ej ∧ Sj (5)

return E0, . . . , En

In the line marked by (1) it uses an algorithm for fault localization based on
error invariants [6] as a black box. This algorithm is supposed to return an error
invariant for every position in the trace and one for the post-condition. Hence,
for an input trace of length n the result consists of n + 1 error invariants. The
flow-sensitive localization then extracts, in (2), the positions in the sequence of
error invariants where the invariant changes. These positions index the relevant
statements in the trace. At this point, we get the result of the fault localization
without considering flow-sensitivity. Hence, (1) and (2) could be substituted by
any fault localization algorithm that computes a set of relevant statements for
the error. From the list generated in (2) the algorithm extracts, in (3), the scope
of every statement as a set of pairs of positions and conditions. Let j be the
position of a statement in a trace π, then Scope(j) returns the set of all pairs
(i, cond) such that (1) i < j, (2) π[i] is if cond , and (3) the corresponding
endif-statement is not in π[0, j].

When this information is available, we can reduce flow-sensitive fault localiza-
tion to a simpler subproblem. For every pair (i, cond) we insert2 a fresh label �i
before the statement π[i] and map the label to ¬cond . Then, in line (4), we re-
cursively call the flow-sensitive fault localization for the error (ψ, π[0, i],¬cond)
in the modified program. Essentially we ask the question “Why does cond hold
after executing π[0, i] from states in ψ?”

To understand why this procedure works, we first note that the condition
cond has to hold for all execution of π[0, i] that start in ψ since our programs
are deterministic. Hence, the tuple (ψ, π[0, i],¬cond) is an error in the modified
program.

200 J. Christ et al.

In our algorithm, the recursive calls return error invariants that explain why
every execution of the prefix up to the condition that starts in ψ must satisfy
the condition. The results of the recursive calls have to be combined with the
result of the initial call to the error invariant generation. We are only allowed to
strengthen the error invariants. Otherwise we might introduce executions that
do not violate the postcondition in which case the result would not be a flow-
sensitive abstract error trace. Thus, we conjoin the invariants derived by the
recursive call with the current invariants.

A binary search algorithm similar to the one presented in [6] can be used to
find for each error invariant a maximal interval of positions for which this error
invariant is inductive. We denote by Localize the procedure that takes as input
a sequence of error invariants and an error (ψ, π, φ), and builds an abstract error
Localize(〈E0, . . . , En〉 , (ψ, π, φ)), by replacing each subsequence π[i, j] of π by
havoc Ek, if Ek is an inductive invariant for positions i < j, for some 0 ≤ k ≤ n.

Theorem 5. Let (ψ, π, φ) be an error and E0, . . . , En = FSEI(ψ, π, φ) a se-
quence of error invariants. Then, Localize(〈E0, . . . , En〉 , (ψ, π, φ)) is a flow-
sensitive abstract error.

A downside of Algorithm 1 is that it might need one recursive call to fault
localization per if -statement in the trace, which results in a quadratic worst
case complexity. This will be inefficient for long traces. We therefore propose a
new encoding of an error into a flow-sensitive trace formula. The benefit of this
new encoding is that it yields a more efficient non-recursive flow-sensitive fault
localization algorithm.

5 Flow-Sensitive Trace Formulas

We denote the flow-sensitive trace formula of a trace π by FSTF(π). The idea
behind flow-sensitive trace formulas is that, in addition to encoding the execu-
tions of the trace π, they also encode an over-approximation of the executions
of all other traces that only differ from π in conditional statements. That is, if
we need a statement that is only reachable under certain conditions to prove
(ψ ∧FSTF(π) ∧ φ〈n〉) unsatisfiable, we also prove that every execution starting
in a state in ψ inevitably has to reach this condition.

Algorithm 2 shows how the flow-sensitive trace formula FSTF(π) is computed
for a given trace π. Similar to a trace formula, we compute a conjunction of
(appropriately shifted) transition formulas for each statement of π. However,
instead of adding conjuncts for branch conditions if cond , we memorize the
branch conditions that have to hold to reach a particular position on the trace
(see �1 and �3), and for every statement other than if cond and endif, we add
a chain of implications for these branch conditions to the transition formula of
this statement (see �5). Hence, whenever we want to show that a statement is
needed to prove that the trace formula contradicts with pre and postcondition,
we also have to prove that all conditions needed to reach this statement can be

Flow-Sensitive Fault Localization 201

Algorithm 2. FSTF(π): flow-sensitive trace formula.

Input: Trace π of length n
Output: flow-sensitive trace formula ret

Stack conds;
Formula ret = true;
for (i = 0 to n− 1){
if (π[i] is (if cond)) {

�1 conds.push(cond 〈i〉);
�2 ret = ret ∧ frame(X)〈i〉; //stub for TF(π[i])

} else if (π[i] is (endif)) {
�3 conds.pop();

�4 ret = ret ∧ frame(X)〈i〉; //stub for TF(π[i])
} else {

�5 ret = ret ∧
(
(
∧

c∈conds c) =⇒ (T [π[i]]〈i〉)
)
;

}
}

Algorithm 3. FSErrInvs(ψ, π, φ): algorithm to compute a flow-sensitive
error invariants.
Input: Precondition ψ, Trace π of length n, and postcondition φ
Output: Sequence of n+ 1 error invariants
I0, . . . , In ← InductiveInterpolants(ψ ∧ FSTF(π) ∧ φ) (1)

return I
〈−0〉
0 , . . . , I

〈−n〉
n

satisfied. This guarantees that our fault localization will consider these branch
conditions and all the statements affecting their truth values.

Algorithm 3 is our non-recursive flow-sensitive fault localization algorithm
that computes the error invariants directly via Craig interpolation of the flow-
sensitive trace formula. The resulting abstract error is still guaranteed to be
flow-sensitive:

Theorem 6. Let (ψ, π, φ) be an error with trace π of length n and E0, . . . , En =
FSErrInvs(ψ, π, φ) be a sequence of error invariants computed by Algorithm 3.
Then, Localize(〈E0, . . . , En〉 , (ψ, π, φ)) is a flow-sensitive abstract error.

Proof (sketch). Let the result of Localize(〈E0, . . . , En〉 , (ψ, π, φ)) be (ψ, π#, φ)
with π# ≡ (havoc E0, st

a
1 ; havoc E1; . . . ; havoc Ek) where no stai is a havoc

statement. Since π# is an abstract error trace by construction, we only have to
show that it is also flow-sensitive. Note that Localize guarantees that for all
0 ≤ i ≤ k and 0 ≤ j ≤ k, if i �= j then Ei is not an error invariant that can
replace Ej .

Let j be a position in the abstract error trace with 0 < j ≤ k. Furthermore, let
ij denote the position of staj in the concrete error trace π. If Conds(π[0, ij]) = ∅,

202 J. Christ et al.

i. e., the statement does not occur under an if -statement, flow-sensitivity holds
trivially for this statement. Otherwise, we denote by ξ the formula corresponding
to Conds(π[0, ij]). Note that FSTF(π[ij]) ≡ ξ → TF(π[ij]).

We know that Ej is an error invariant at position ij and Ej−1 is an error
invariant at position ij−1. Furthermore, we know that the following equivalences
hold:

ψ ∧FSTF(π[0, ij]) ≡ ψ ∧ FSTF(π[0, ij − 1]) ∧ FSTF(π[ij])
〈ij−1〉

≡ ψ ∧ FSTF(π[0, ij − 1]) ∧ ξ → TF(π[ij])
〈ij−1〉

If ξ does not hold in Ej−1 it is not relevant for the error. Hence, the state-
ment staj cannot appear in the abstract error trace. This contradicts the prop-
erty guaranteed by Localize considering Ej and Ej−1. Hence, a prefix of the
abstract error trace up to the error invariant Ej−1 has to ensure that ξ has
to hold.

input < 42
input < 42

x′ = 1
input < 42

y′ = input− 42
y′ < 0

y′ < 0 =⇒ x′′ = 0
x′′ = 0

x′′ 	= 0
(a) using flow-sensitive trace formula

input < 42 �
x′ = 1 �
y′ = input− 42 �
y′ < 0 ∧ x′′ = 0

x′′ = 0
x′′ 	= 0
(b) using trace formula

Fig. 4. Interpolant derivation for the program from Figure 1

Example 7. Figure 4(a) shows the derived interpolants for the flow-sensitive
trace formula of the error in our motivating example given in Fig. 1. Every
conjunct of the trace formula is written on a single line. The first formula is the
precondition of the error, the last formula is the postcondition, and the remain-
ing formulas are the flow-sensitive trace formulas for the statements in the trace.
The horizontal lines separating the different formula parts correspond to the po-
sitions where an interpolant is computed. Adjacent to each line, we annotate the
computed interpolant. Note that each interpolant is unsatisfiable in conjunction
with the formulas below the adjacent line3. Consider the last interpolant x′′ = 0.
This interpolant suffices to show that the postcondition is violated. The flow-
sensitive encoding however forces the prover to justify why the condition y′ < 0
holds. This justification is given in the preceding interpolants.

Figure 4(b) shows the derivation of interpolants for the same error encoded
with the original extended trace formula. In this encoding, the fact x′′ = 0 holds
unconditionally. Therefore, only the last interpolant is non-trivial because no
justification has to be given why the assignment statement x = 0 is actually
reachable.

3 The interpolants actually form an inductive sequence. We omit the initial � and
final ⊥ interpolant of this sequence.

Flow-Sensitive Fault Localization 203

1 void process () {

2 int x, y, z;

3 z = 0;

4 lock = 1;

5 if (x == 0) {

6 if (y == 0)

7 z = 1;

8 }

9 if (y != 0) {

10 z = y;

11 }

12 if (x != 0) {

13 z = 2;

14 lock = 0;

15 } else if (z > 0) {

16 z = 3;

17 lock = 0;

18 }

19 //@ assert lock == 0;

20 }

Fig. 5. Faulty locking with a simplified locking mechanism

6 Evaluation

For our prototype implementation we use the software model checker Kojak

which is based on Ultimate [5] and the interpolating theorem prover SMT-
Interpol [4]. Kojak implements the fault localization algorithm based on error
invariants [6]. We modified the implementation to perform flow-sensitive fault
localization using the flow-sensitive trace formula encoding.

In the following, we demonstrate the benefits of flow-sensitive trace formulas
in fault localization on two examples taken from the literature to which we have
applied our implementation. We prefix statements in abstract error traces with
their corresponding line numbers in the original program. For frame conditions
we use the line number of the associated conditional choice and add the subscript
fc. For the sake of presentation we limit ourselves to small examples. Compared
to previous approaches, our new method results in longer abstract error traces
since it now provides additional information about the program’s control flow.

Faulty Locking. The first example is taken from [3] and shown in Figure 5. The
program uses a locking mechanism to protect the access to variables. For the
purpose of demonstration we simplified the lock/unlock steps by introducing a
simple Boolean variable lock. The program sets lock = 1, then starts operations
on the variables x, y, z, and finally checks if lock has been set to zero at the end
of the procedure using an assertion in line 19. We use the model checker Kojak

to check the safety of this assertion. The model checker finds a counterexample
trace π and provides an initial failing state ψ ≡ x = 0 ∧ y = −1. Conjoining the
obtained information yields the extended trace formula

(x = 0 ∧ y = −1) ∧ (z′ = 0) ∧ (lock ′ = 1) ∧
((x = 0) ∧ (y �= 0) ∧ (z′′ = z′)) ∧ ((y �= 0) ∧ (z′′′ = y)) ∧

((x = 0) ∧ (z′′′ ≤ 0) ∧ (lock ′′ = lock ′)) ∧ (lock ′′ = 0) .

We can see that only the variable lock is relevant to prove this formula unsatis-
fiable. Hence, the vanilla algorithm from [6] provides us only two inductive error

204 J. Christ et al.

invariants, " and lock = 1. The corresponding abstract error trace is shown on
the right side of Figure 6. The abstract error trace explains the direct cause of
the error, but it does not show why the error is reachable.

havoc x = 0 ∧ y = −1

4 :lock := 1;

havoc x = 0 ∧ y = −1 ∧ lock = 1

10 :z := y;

havoc x = 0 ∧ lock = 1 ∧ z = −1

18fc :lock := lock;

havoc lock = 1

havoc �
4 :lock := 1;

havoc lock = 1

Fig. 6. Abstract error traces of the example in Fig. 5 with and without flow-sensitive
encoding of the error.

Using flow-sensitive trace formulas for this error we get a different sequence
of interpolants. Again, we show the formula one conjunct above the other with
the interpolants written adjacent to the separating line:

x = 0 ∧ y = −1
x = 0 ∧ y = −1

z′ = 0
x = 0 ∧ y = −1

lock′ = 1 x = 0 ∧ y = −1 ∧ lock′ = 1
(x = 0) ⇒ (y �= 0) ⇒ (z′′ = z′)

x = 0 ∧ y = −1 ∧ lock′ = 1
(y �= 0) ⇒ (z′′′ = y)

x = 0 ∧ lock′ = 1 ∧ z′′′ = −1
(x = 0) ⇒ (z′′′ ≤ 0) ⇒ (lock′′ = lock′) lock′′ = 1
lock′′ = 0

From this sequence of interpolants we obtain the flow-sensitive abstract error
trace shown in Figure 6. The first error invariant only represents the error pre-
condition. Note that, in general, this invariant might be more general than the
concrete values given by the model checker for the error precondition.

The second error invariant summarizes the control flow from line 5 to line 9
and the effect of the program up to line 5 that is relevant for the error. In
particular, this invariant describes that the then-branch of the if -statement in
line 5, the else-branch of the if -statement in line 6, and the then-branch of the
if -statement in line 9 are taken. Furthermore, no assignment statement and no
frame for the code between lines 5 to 9 affects the occurrence of the error.

The statement in line 10, however, has such an effect which can be seen in
the next error invariant. The value of y becomes irrelevant for the remainder
of the trace, but the value of the variable z now becomes relevant. From this
error invariant it is easy to see that both conditions in lines 12 and 15 are not
satisfied. Hence, the if -statement is skipped and we have to insert appropriate

Flow-Sensitive Fault Localization 205

frame conditions into our SSA-encoded error trace. This frame condition actually
changes the error invariant. From this change we can conclude that the case
distinction in lines 12 to 18 is incomplete. Note that this change is only enforced
by the symbol condition for interpolants. To enforce this change in general,
we introduce fresh auxiliary variables for the conditions needed to execute the
statement. These variables are always local to exactly one interpolant and, hence,
cannot be shifted. To improve readability we omitted these variables as they are
not needed for the example.

1 int absValue(int input) {

2 int sign ,abs;

3 abs = input;

4 if (input == 0)

5 return 0;

6 if (input <0) {

7 sign = -1;

8 printf("negative");

9 } else {

10 sign = 1;

11 printf("positive");

12 }

13 if(sign == -1) {

14 sign = input *-1;

15 } else {

16 abs = input;

17 }

18 //@ assert abs >= 0;

19 return abs;

20 }

Fig. 7. Example code of a faulty program that computes the absolute value and sign
of the variable input

Faulty Absolute Value. The second example program is shown in Fig. 7. It com-
putes the absolute value of an input variable input. The procedure absValue

takes a variable input as input. If this variable is 0, the procedure returns with-
out further computations (line 4-5). Otherwise the procedure sets sign to −1 if
input is negative and to 1 if not (line 6-12) and prints a corresponding message
to the console. Then, it computes the absolute value of input and writes it to
abs (line 3-17). However, there is an error in the computation of the absolute
value in line 14. The absolute value is written to sign instead of abs, which
causes abs to have the original (negative) value of input that was assigned to it
in line 3. This violates the assertion in line 18 which expects abs to be greater
or equal to zero. The challenge here is that the error occurs because the variable
abs is not modified in line 14. The above error is detected by Kojak and the
error is witnessed using the example input input=-1. For this input, we can
then extract an error trace π of the procedure absValue. The right column of
Fig. 8 shows the abstract error trace obtained by analyzing π using the approach
from [6] with non flow-sensitive encoding of trace formulas. To reproduce the
failing execution it is sufficient to know that input is initially −1, and that in
line 3 abs is set to the value of input. Since abs is not changed after that,
these statements, together with the postcondition constitute an execution that
fails the same way as the original error trace. However, what we are actually
interested in is to see that the problem occurs because sign is modified instead
of abs in line 14. This information is missing in the abstract error trace.

206 J. Christ et al.

havoc input ≤ −1

3 :abs := input;

havoc input ≤ −1 ∧ abs ≤ −1

7 :sign := −1;

havoc abs ≤ −1 ∧ sign = −1

15fc :abs := abs;

havoc abs ≤ −1

havoc input ≤ −1

3 :abs := input;

havoc abs ≤ −1

Fig. 8. Abstract error traces of the example in Fig. 7

We now consider the abstract error trace produced by the flow-sensitive al-
gorithm. Again, we show the flow-sensitive trace formula and the sequence of
interpolants computed for it:

input = −1 input ≤ −1
abs′ = input

input ≤ −1 ∧ abs′ ≤ −1
(input �= 0) ⇒ . . . input =≤ 1 ∧ abs′ ≤ −1
(input < 0) ⇒ (sign′ = −1) abs′ ≤ −1 ∧ sign′ = −1
(sign′ = −1) ⇒ (sign′′ = input ∗ −1)

abs′ ≤ −1 ∧ sign′ = −1
(sign′ = −1) ⇒ (abs′′ = abs′) abs′′ ≤ −1
abs′′ ≥ 0

From this sequence of interpolants we obtain the abstract error trace shown in
Fig. 8.

The first error invariant in the abstract error trace is a generalization of the
error precondition produced by Kojak. It shows that the error also occurs if the
value of input is any value less than or equal to −1. The next error invariant
incorporates the effect of the assignment in line 3. Furthermore, it states that
the if -statement in line 4 can be ignored when analyzing the error and that the
then-branch of the if -statement in line 6 is important. The statement at line 7
which is contained in the then-branch is the next statement to change the error
invariants. From the next error invariant we realize that, from line 7 to the end
of the program, the value of the variable input is irrelevant, but the value of
the variables abs and sign should be tracked. Furthermore, this invariant states
that the then-branch of the if -statement in line 13 is taken. In this branch, the
variable abs is not assigned, but the else-branch assigns it. Hence, we get a
frame condition which then changes the error invariant again. From this change
we can see that the missing assignment to abs is a potential reason for the failing
assertion.

Flow-Sensitive Fault Localization 207

7 Conclusion

We have introduced the concept of flow-sensitive trace formulas. This new en-
coding of error traces into logical formulas enables proof-based fault localization
methods to explain why relevant statements are reached in an erroneous execu-
tion of a program. Flow-sensitive trace formulas encode conditional choices of
the error trace in such a way that the theorem prover can argue about the valid-
ity of the condition in the context of its prefix on the error trace. The resulting
proof of unsatisfiability provides control-flow-related information on why the er-
ror occurred. We applied the flow-sensitive trace formula encoding to our fault
localization technique based on error invariants. The resulting method identifies
irrelevant portions of the code and finds a justification for the reachability of the
remaining portions. Our evaluation shows that, while the produced abstract er-
ror traces are longer, they provide more useful error explanations. We therefore
believe that the new encoding helps the programmer considerably to understand
the faulty code fragment.

The application of the flow-sensitive trace formula encoding is not restricted
to fault locations based on error invariants but can also be used in other methods.
We will study such applications to other methods in our future work.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. SIGPLAN Not., 97–105 (2003)

2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining Counterex-
amples Using Causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 94–108. Springer, Heidelberg (2009)

3. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. SIG-
SOFT Softw. Eng. Notes 29(6), 73–82 (2004)

4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

5. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via Interpolants. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 186–201. Springer,
Heidelberg (2012)

6. Ermis, E., Schäf, M., Wies, T.: Error Invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012)

7. Groce, A.: Error Explanation with Distance Metrics. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004)

8. Groce, A., Kroening, D.: Making the Most of BMC Counterexamples. ENTCS,
67–81 (2005)

9. Groce, A., Kroning, D., Lerda, F.: Understanding Counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004)

10. Jose, M., Majumdar, R.: Bug-Assist: Assisting Fault Localization in ANSI-C Pro-
grams. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
504–509. Springer, Heidelberg (2011)

208 J. Christ et al.

11. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI 2011, pp. 437–446. ACM (2011)

12. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci., 101–121
(2005)

13. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

14. Qi, D., Roychoudhury, A., Liang, Z., Vaswani, K.: Darwin: an approach for debug-
ging evolving programs. In: ESEC/SIGSOFT FSE, pp. 33–42 (2009)

15. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE,
pp. 30–39 (2003)

16. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3, 121–189 (1995)

17. Wang, T., Roychoudhury, A.: Automated path generation for software fault local-
ization. In: ASE, pp. 347–351. ACM (2005)

18. Wong, W.E., Debroy, V.: Software fault localization (2009)
19. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT

FSE, pp. 1–10 (2002)
20. Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate

switching. In: ICSE, pp. 272–281. ACM, New York (2006)

Static Analysis of String Encoders

and Decoders�

Loris D’Antoni1 and Margus Veanes2

1 University of Pennsylvania
lorisdan@cis.upenn.edu

2 Microsoft Research
margus@microsoft.com

Abstract. There has been significant interest in static analysis of pro-
grams that manipulate strings, in particular in the context of web secu-
rity. Many types of security vulnerabilities are exposed through flaws in
programs such as string encoders, decoders, and sanitizers. Recent work
has focused on combining automata and satisfiability modulo theories
techniques to address security issues in those programs. These techniques
scale to larger alphabets such as Unicode, that is a de facto character
encoding standard used in web software.

One approach has been to use character predicates to generalize finite
state transducers. This technique has made it possible to perform pre-
cise analysis of a large class of typical sanitization routines. However, it
has not been able to cope well with decoders, that often require to read
more than one character at a time. In order to overcome this limitation
we introduce a conservative generalization of Symbolic Finite Transduc-
ers (SFTs) called Extended Symbolic Finite Transducers (ESFTs) that
incorporates the notion of a bounded lookahead. We demonstrate the
advantage ESFTs on analyzing programs for which previous approaches
did not scale.

In our evaluation we use a UTF-16 to UTF-8 translator (utf8encoder)
and a UTF-8 to UTF-16 translator (utf8decoder). We show, among other
properties, that utf8encoder and utf8decoder are functionally correct.

1 Introduction

There has been significant recent interest in decision procedures for solving string
constraints. Much of this work has focused on designing domain specific decision
procedures for string analysis that use state-of-the art constraint solvers in the
backend [17,4,19,20]. Many of the tools use automata based techniques, including
JSA [5], and Bek [9]. A comprehensive comparison of various algorithmic design
choices in this space is studied in [10]. The growing interest in string analysis has
also started a discussion for developing standards for regular expressions modulo
alphabet theories [3] to unify some of the notations and underlying theory in the
tool support.

� This work was done during an internship at Microsoft Research and this research
was partially supported by NSF Expeditions in Computing award CCF 1138996.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 209–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

210 L. D’Antoni and M. Veanes

One reason for this focus is security vulnerabilities caused by strings. Some
recent work has studied sanitizer correctness through static analysis based on
automata theory [12,5,13], including the Bek project and symbolic transduc-
ers [9] that our work is based on. Here we extend the analysis of Bek to a richer,
more expressive class of problems. In particular we consider string coders that
require symbolic lookahead. Symbolic lookahead allows programs to read more
than one symbol at a time. For example, in order to decode a (html encoded)
string "&" back to the string "&" a lookahead of two digits is needed. Con-
cretely, in the paper we consider unicode encodings UTF-16 and UTF-8, that
have emerged as the most commonly used character encodings. UTF-8 is used
for representing Unicode text in text files and is perhaps the most widely ac-
cepted character encoding standard in the internet today. UTF-16 is used for
in-memory representation of characters in modern programming and scripting
languages. Transformations between these two encodings are ubiquitous.

Despite the wide adoption of these encodings, their analysis is difficult, and
carefully crafted invalid UTF-8 sequences have been used to bypass security val-
idations. Several attacks have been demonstrated [16] based on over-encoding
the characters ‘.’ and ‘/’ in malformed URLs. For example, the invalid sequence
[C016, AF16] (that decodes to ‘/’) has been used to bypass a literal check in the
Microsoft IIS server (in unpatched Windows 2000 SP1) to determine if a URL
contains “../../” by encoding it as “..%C0%AF../”. Similar vulnerability ex-
ists in Apache Tomcat (≤ 6.0.18), where “%C0%AE” has been used for encoding
‘.’ [14]. Further attacks use double-encoding [15]. We show how our new exten-
sion of symbolic transducers can make analysis of such coding routines possible.

Our analysis starts from a compilation from Bek programs to symbolic trans-
ducers (ST). In a symbolic transducer, transitions are annotated with logical
formulas instead of specific characters, and the transducer takes the transi-
tion on any input character that satisfies the formula. A symbolic transducer
is then transformed to a representation called extended symbolic finite trans-
ducer (ESFT), that uses lookahead to avoid state space explosion. For exam-
ple, an ESFT may treat the pattern "&#[0-9]{6};" of an html decoder using
a single transition rather than 100k transitions required by an SFT (without
lookahead). Our representation enables leveraging satisfiability modulo theories
(SMT) solvers, tools that take a formula and attempt to find inputs satisfying
that formula. These solvers have become robust in the last several years and
are used to solve complicated formulas in a variety of contexts. At the same
time, our representation allows leveraging automata theoretic methods to rea-
son about strings of unbounded length, which is not possible via direct encoding
to SMT formulas. One advantage of SMT solvers is that they work with formulas
from any theory supported by the solver, while other previous approaches are
specialized to specific types of inputs. This is a crucial feature for our algorithms
and analysis, in particular we use a combination of theories, involving sequences,
numbers, and records.

After the analysis, programs written in Bek can be compiled back to tradi-
tional languages such as JavaScript or C#. This ensures that the code analyzed

Static Analysis of String Encoders and Decoders 211

is functionally equivalent to the code which is actually deployed for sanitization,
up to bugs in our compilation. Bek is available online [2].

This paper makes the following contributions:

– it introduces ESFTs as a new effective model for analysis of string coders;
– it presents an algorithm for STs register elimination that improves the ef-

ficiency and expressiveness of the previous state of the art technique based
on exhaustive exploration;

– it proves UTF8 encoder and decoder to be correct; and
– it uses realistic coding routines to show how ESFTs scale for big programs.

We first define ESFTs (Section 2) and STs with registers (Section 2.2). Secondly,
we provide an algorithm to transform a subclass of STs into ESFTs (Section 3).
We then describe UTF-8 encoders and decoders and their Bek implementation
(Section 4). We use our technique to prove those coders correct. Finally, we show
how our technique scales for bigger programs (Section 5).

2 Extended Symbolic Finite Transducers

We assume a background structure that has a recursively enumerable (r.e.) multi-
typed carrier set or background universe U , and is equipped with a language of
function and relation symbols with fixed interpretations. We use τ , σ and γ to
denote types, and we write Uτ for the corresponding sub-universe of elements
of type τ . As a convention, we abbreviate Uσ by Σ and Uγ by Γ , due to their
frequent use. The Boolean type is B, with UB = {t, f} and the integer type is Z.
Terms and formulas are defined by induction over the background language and
are assumed to be well-typed. The type τ of a term t is indicated by t : τ . Terms
of type B, or Boolean terms, are treated as formulas, i.e., no distinction is made
between formulas and Boolean terms. A k-tuple type is a type T〈τ0, . . . , τk−1〉
where k ≥ 0 and all τi are types. The 0-tuple type T〈〉 is assumed to be such that

UT〈〉 is the singleton sub-universe {()} and the 1-tuple type T〈τ〉 def
= τ . If τ is a

type and k ≥ 0 then τk stands for the type T〈τ0, . . . , τk−1〉 of k-way Cartesian
product where all τi = τ . For example, Z2 is T〈Z,Z〉. If t is a k-tuple (k > 1)
then πi(t), also written t[i], projects the i’th element of t for 0 ≤ i < k. The
k-tuple constructor for k > 1 is simply (t0, . . . , tk−1).

If τ is a type, then τ∗ is the type over finite sequences of elements of
type τ . We assume the standard accessors head : τ∗ → τ and tail : τ∗ → τ∗

over sequences and the constructors cons : τ × τ∗ → τ∗ and [] : τ∗. A term
cons(t0, cons(t1, . . . , cons(tn−1, []))) of sort τ

∗ is also denoted by [t0, t1, . . . , tn−1]
and is called an explicit sequence of length n. We use the following shorthands to

access elements of a sequence t : τ∗, tail0(t)
def
= t, tailk+1(t)

def
= tail(tailk(t)), and

for k ≥ 0, t[k]
def
= head(tailk(t)). Given a set S, we write S∗ for the Kleene closure

of S. The justification behind overloading the ∗-operator both as a type annota-
tor and Kleene closure operator is that, for any type τ , we assume U (τ∗) = (Uτ)∗.
In particular U (σ∗) = Σ∗ and U (γ∗) = Γ ∗.

212 L. D’Antoni and M. Veanes

All elements in U are also used as constant terms. A term without free vari-
ables (such as a constant term) is closed. Closed terms t have standard Tarski
semantics [[t]] over the background structure. Substitution of a variable x : τ in t
by a term u : τ is denoted by t[x/u].

A λ-term is an expression of the form λx̄.t, where x̄ is a (possibly empty)
tuple of distinct variables, and t is a term all of whose free variables occur in
x̄. It is sometimes technically convenient to view x̄ as a single variable of the
corresponding product (tuple) type.

To indicate the types, we say (σ→ γ)-term for a λ-term λx.t such that x :σ
and t : γ. A (σ→ γ)-term f = λx.t denotes the function [[f]] that maps a ∈ Σ to
[[t[x/a]]] ∈ Γ . We use f, g, h to stand for λ-terms. We do not distinguish between
the λ-term λ().t and t.

A (σ→B)-term is called a σ-predicate. We use ϕ and ψ for σ-predicates and,
for a ∈ Σ, we write a ∈ [[ϕ]] for [[ϕ]](a) = t. Given a (σ→ γ)-term f = (λx.t)
and a term u :σ, f(u) stands for the term t[x/u]. A σ-predicate ϕ is unsatisfiable
when [[ϕ]] = ∅; ϕ is satisfiable, otherwise. A (σ→ γ∗)-term f = λx.[t0, . . . , tn−1]

is called a (σ→ γ)-sequence and |f | def
= n.

A label theory is given by an r.e. set Ψ of formulas that is closed under Boolean
operations, substitution, equality and if-then-else terms. When talking about
satisfiability of formulas, we assume implicit λ-closures. A label theory Ψ is
decidable when satisfiability for ϕ ∈ Ψ , IsSat(ϕ), is decidable.

Next, we describe an extension of finite state transducers through a symbolic
representation of labels and by adding a lookahead component to the rules.

Definition 1. An Extended Symbolic Finite Transducer (ESFT) over σ→ γ is
a tuple A = (Q, q0, R),

– Q is a finite set of states ;
– q0 ∈ Q is the initial state;
– R is a finite set of rules, R = Δ ∪ F , where

– Δ is a set of transitions r = (p, �, ϕ, f, q), denoted p
ϕ/f−−→
�

q, where

p ∈ Q is the start state of r;
� ≥ 1 is the lookahead of r;
ϕ, the guard of r, is a σ�-predicate;
f , the output of r, is a (σ� → γ)-sequence;
q ∈ Q is the end state of r.

– F is a set of final rules r = (p, �, ϕ, f), denoted p
ϕ/f−−→
�

•, with components

as above and where � is allowed to be 0.

The lookahead of A is the maximum of all lookaheads of rules in R.

We use the following abbreviated notation for rules, by omitting explicit λ’s.
We write

p
t/[u0,...,uk]−−−−−−−→

�
q for p

λx̄.t/λx̄.[u0,...,uk]−−−−−−−−−−−→
�

q,

where t and ui are terms whose free variables are among x̄ = (x0, . . . , x�−1). Final
rules are a generalization of final states. A final rule with lookahead � applies

Static Analysis of String Encoders and Decoders 213

only when the remaining input has exactly � elements remaining as opposed to
a transition with lookahead � that applies when the remaining input has at least
� elements remaining.

The typical case of a final rule that corresponds to the classical final state p

is p
t/[]−−→
0

•, i.e., p accepts the empty input and produces no additional outputs.

But there could be a non-empty output like in p
t/[‘#’]−−−−→

0
•. There could also be a

final rule with a non-zero lookahead. For example, suppose that characters are
integers, the state is q, and there are two rules from q, a final rule: if there is a

single input character remaining it is output “as is” q
t/[x0]−−−→

1
•; and a transition,

if there are at least two input characters, their sum is output q
t/[x0+x1]−−−−−−→

2
q. It is

not possible to separate these two cases without introducing nondeterminism, if
final rules with positive lookahead are not allowed. It is also not practical to lift
the input type by adding a new “end of input” symbol as is done in the classical
case. Such type lifting non trivially affects properties of the label theory and
complicates use of specific theories over a given type such as standard linear
arithmetic.

An ESFT with lookahead 1 and whose all final rules have lookahead 0 is an
SFT [20]. In the sequel let A = (Q, q0, R), R = Δ ∪ F , be a fixed ESFT over
σ→ γ. The semantics of rules in R is as follows:

[[p
ϕ/f−−→
�

q]]
def
= {p [a0,...,a�−1]/[[f]](a0,...,a�−1)−−−−−−−−−−−−−−−−−−→ q | (a0, . . . , a�−1) ∈ [[ϕ]]}

We write s1 · s2 for concatenation of two sequences s1 and s2.

Definition 2. For a ∈ Σ∗, b ∈ Γ ∗, q ∈ Q, q′ ∈ Q ∪ {•}, define q a/b−−→→A q′ as

follows: there exists n ≥ 0 and {pi
ai/bi−−−→ pi+1 | i ≤ n} ⊆ [[R]] such that

a = a0 · a1 · · ·an, b = b0 · b1 · · · bn, q = p0, q′ = pn+1.

Let also q
[]/[]−−→→A q for all q ∈ Q.

Does lookahead add expressiveness compared to SFTs? For finiteΣ, the answer is

no, because any concrete transition p
[a0,a1]/b−−−−−−→ q can be split into two transitions

p
[a0]/b−−−−→ p′

[a1]/[]−−−−→ q where p′ is a new (non final) state (as a consequence of the

standard form [22, Theorem 2.17]). However, ESFTs are strictly more expressive
than SFTs as the following example clearly illustrates. In general, ESFTs with
lookahead k + 1 are strictly more expressive than ESFTs with lookahead k.

Example 1. Let A be following ESFT

A = ({q}, q, {q (x0=x1)/[]−−−−−−−→
2

q, q
t/[]−−→
0

•})

Then q
a/[]−−→→A • iff a[2 ∗ i] = a[2 ∗ i + 1] for all i ≥ 0. No SFT can express this

dependency. 	

214 L. D’Antoni and M. Veanes

The above example can be generalized to any k. For a function f : X → 2Y ,

define the domain of f as D(f)
def
= {x ∈ X | f(x) �= ∅}; f is total when D(f) = X .

Definition 3. The transduction of A, TA(a)
def
= {b | q0 a/b−−→→A •}.

The following subclass of SFTs captures transductions that behave as partial
functions from Σ∗ to Γ ∗.

Definition 4. A is single-valued when |TA(a)| ≤ 1 for all a ∈ Σ∗.

A sufficient condition for single-valuedness is determinism. We define ϕ
 ψ,
where ϕ is a σm-predicate and ψ a σn-predicate, as the σmax(m,n)-predicate
λ(x1, . . . , xmax(m,n)).ϕ(x1, . . . , xm) ∧ ψ(x1, . . . , xn). We define equivalence of f
and g modulo ϕ, f ≡ϕ g, as: IsValid(λx̄.(ϕ(x̄) ⇒ f(x̄) = g(x̄))).

Definition 5. A is deterministic if and only if for all p
ϕ/f−−→
�

q, p
ϕ′/f ′
−−−→

�′
q′ ∈ R

the following holds:

(a) Assume q, q′ ∈ Q. If IsSat(ϕ
 ϕ′) then q = q′, � = �′ and f ≡ϕ�ϕ′ f ′.

(b) Assume q = q′ = •. If IsSat(ϕ
 ϕ′) and � = �′ then f ≡ϕ�ϕ′ f ′.

(c) Assume q ∈ Q and q′ = •. If IsSat(ϕ
 ϕ′) then � > �′.

Proposition 1. If A is deterministic then A is single-valued.

Determinism is not a necessary condition for single-valuedness. Moreover, deter-
ministic ESFTs with lookahead k + 1 are in general more expressive and more
succinct than deterministic ESFTs with lookahead k. A few examples of ESFTs
are given below to illustrate the definitions.

When A is total and single valued, and a ∈ D(A), we write A(a) for the
value b such that TA(a) = {b}. In other words, we treat A as a function from
Σ∗ to Γ ∗.

Example 2. Consider characters as their integer codes. We construct an ESFT
Decode over Z→Z that replaces all occurrences of the regex pattern #[0-9][0-9]
in the input with the corresponding encoded character. For example, since the
code ‘A’ = 65 and ‘B’ = 66, we have Decode("##65#66#") = "#AB#".1

The states are q0 and q1, where q0 is the initial state. The intuition behind
the final rules is the following. In q0 there is no unfinished pattern so the output
is [], while in q1 the symbol ‘#’ is the prefix of the unfinished pattern that needs
to be output upon reaching the end of the input, and if there is only a single
character x0 remaining in the input then the output is [‘#’, x0].

1 A literal string "ABC" stands for the sequence [‘A’, ‘B’, ‘C’], where ‘A’ is the char-
acter code of letter A.

Static Analysis of String Encoders and Decoders 215

The rules of D are as follows where IsDigit is the predicate λx.‘0’ ≤ x ≤ ‘9’

(recall that ‘0’ = 48 and ‘9’ = 57).

F = { q0
t/[]−−→
0

•, q1
t/[‘#’]−−−−→

0
•, q1

IsDigit(x0)/[‘#’,x0]−−−−−−−−−−−−−→
1

•}

Δ = { q0
(x0 	=‘#’)/[x0]−−−−−−−−−→

1
q0, q0

(x0=‘#’)/[]−−−−−−−→
1

q1, q1
(x0=‘#’)/[‘#’]−−−−−−−−−→

1
q1,

q1
(x0 	=‘#’∧¬IsDigit(x0))/[‘#’,x0]−−−−−−−−−−−−−−−−−−−−→

1
q0,

q1
(IsDigit(x0)∧x1 	=‘#’∧¬IsDigit(x1))/[‘#’,x0,x1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
q0,

q1
(IsDigit(x0)∧x1=‘#’)/[‘#’,x0]−−−−−−−−−−−−−−−−−−−→

2
q1,

q1
(IsDigit(x0)∧IsDigit(x1))/[10∗(x0−48)+x1−48]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
q0}

The last three rules have non-overlapping guards because the conditions on x1
are mutually exclusive. An equivalent SFT would require a state pd for each

d ∈ [[IsDigit]] and a rule q1
x0=d/[]−−−−−→

1
pd in order to eliminate the rules with

lookahead 2. 	

2.1 Composition of ESFTs

For composing ESFTs we first convert them to STs, as explained in Section 2.2,
and then convert the resulting ST back to an ESFT using the semi-decision
procedure explained in Section 3. In general, ESFTs are not closed under com-
position, as shown next.

Given f :X→ 2Y and x ⊆ X , f(x)
def
=
⋃

x∈x f(x). Given f :X→ 2Y and

g :Y → 2Z , f ◦ g(x)
def
= g(f(x)). This definition follows the convention in [7],

i.e., ◦ applies first f , then g, contrary to how ◦ is used for standard function
composition. The intuition is that f corresponds to the relation Rf :X × Y ,

Rf
def
= {(x, y) | y ∈ f(x)}, so that f ◦ g corresponds to the binary relation com-

position Rf ◦Rg
def
= {(x, z) | ∃y(Rf (x, y) ∧Rg(y, z))}.

Definition 6. A class of transducer C is closed under composition iff for every
T1 and T2 that are C-definable T1 ◦ T2 is also C-definable.

Theorem 1. ESFTs are not closed under composition.

Proof. We show two ESFTs whose composition cannot be expressed by any
ESFT. Let A be following ESFT over Z→Z

A = ({q}, q, {q t/[x1,x0]−−−−−→
2

q, q
t/[]−−→
0

•}).

and B be following ESFT over Z→Z

B = ({q0, q1}, q0, {q0
t/[x0]−−−→

1
q1, q1

t/[x1,x0]−−−−−→
2

q1, q1
t/[x0]−−−→

1
•})

216 L. D’Antoni and M. Veanes

The two transformations behave as in the following examples:

TA([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a0, a3, a2, a5, a4, a7, . . .]

TB([b0, b1, b2, b3, b4, b5, . . .]) = [b0, b2, b1, b4, b3, b6, . . .]

When we compose TA and TB we get the following transformation:

TA◦B([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a3, a0, a5, a2, a7, . . .]

Intuitively, looking at TA◦B we can see that no finite lookahead seems to suffice
for this function. The following argument is illustrated by this figure:

a0 a1 a2 a3 a4 a5 a6 a7 · · ·
A :

a1 a0 a3 a2 a5 a4 a7 a6 · · ·
B :

a1 a3 a0 a5 a2 a7 a4 · · ·

Formally, for each ai such that i ≥ 0, TA◦B is the following function:

– if i = 1, ai is output at position 0;

– if i is even and greater than 1, ai is output at position i− 2;

– if i is equal to k−2 where k is the length of the input, ai is output at position
k − 1;

– if i is odd and different from k − 2, ai is output at position i+ 2.

It is easy to see that the above transformation cannot be computed by any ESFT.
Let’s assume by contradiction that there exists an ESFT that computes TA◦B.
We consider the ESFT C with minimal lookahead (let’s say n) that computes
TA◦B.

We now show that on an input of length greater than n+2, C will misbehave.
The first transition of C that will apply to the input will have a lookahead of
size l ≤ n. We now have three possibilities (the case n = k − 2 does not apply
due to the length of the input):

l = 1: before outputting a0 (at position 2) we need to output a1 and a3 which
we have not read yet. Contradiction;

l is odd: position l + 1 is receiving al−1 therefore C must output also the el-
ements at position l. Position l should receive al+2 which is not reachable
with a lookahead of just l. Contradiction;

l is even and greater than 1: since l > 1, position l is receiving al−2. This
means C is also outputting position l− 1. Position l− 1 should receive al+1

which is not reachable with a lookahead of just l. Contradiction;

We now have that n cannot be the minimal lookahead which contradicts our
initial hypothesis. Therefore TA◦B is not ESFT-definable. 	

Static Analysis of String Encoders and Decoders 217

2.2 Symbolic Transducers with Registers

Registers provide a practical generalization of SFTs. SFTs with registers are
called STs, since their state space (reachable by registers) may no longer be
finite. An ST uses a register as a symbolic representation of states in addition
to explicit (control) states. The rules of an ST are guarded commands with
a symbolic input and output component that may use the register. By using
Cartesian product types, multiple registers are represented with a single (com-
pound) register. Equivalence of STs is undecidable but STs are closed under
composition [20].

Definition 7. A Symbolic Transducer or ST over σ→ γ and register type τ is
a tuple A = (Q, q0, ρ0, R),

– Q is a finite set of states ;
– q0 ∈ Q is the initial state;
– ρ0 ∈ Uτ is the initial register value;
– R is a finite set of rules R = Δ ∪ F ;

– Δ is a set of transitions r = (p, ϕ, o, u, q), also denoted p
ϕ/o;u−−−−→ q,

• p ∈ Q is the start state of r;
• ϕ, the guard of r, is a (σ × τ)-predicate;
• o, the output of r, is a finite sequence of ((σ × τ)→ γ)-terms;
• u, the update of r, is a ((σ × τ)→ τ)-term;
• q ∈ Q is the end state of r.

– F is a set of final rules r = (p, ϕ, o), also denoted p
ϕ/o−−→ •,

• p ∈ Q is the start state of r;
• ϕ, the guard of r, is a τ -predicate;
• o, the output of r, is a finite sequence of (τ → γ)-terms.

All ST rules in R have lookahead 1 and all final rules have lookahead 0. Longer
lookaheads are not needed because registers can be used to record history, in
particular they may be used to record previous input characters. A canonical
way to do so is to let τ be σ∗ that records previously seen characters, where
initially ρ0 = [], indicating that no input characters have been seen yet.

An ESFT transition

p
λ(x0,x1,x2).ϕ(x0,x1,x2)/λ(x0,x1,x2).o(x0,x1,x2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3
q

can be encoded as the following set of ST rules where p1 and p2 are new states

p
(λ(x,y).t)/[];λ(x,y).cons(x,[])−−−−−−−−−−−−−−−−−−→ p1 p1

(λ(x,y).t)/[];λ(x,y).cons(x,y)−−−−−−−−−−−−−−−−−−→ p2

p2
(λ(x,y).ϕ(y[1],y[0],x))/λ(x,y).o(y[1],y[0],x);λ(x,y).[]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

Final rules are encoded similarly. The only difference is that q above is • and
the register updated is not used in the third rule. An ST rule (p, ϕ, o, u, q) ∈ R
denotes the following set of concrete transitions:

[[(p, ϕ, o, u, q)]]
def
= {(p, s) a/[[o]](a,s)−−−−−−→ (q, [[u]](a, s)) | (a, s) ∈ [[ϕ]]}

218 L. D’Antoni and M. Veanes

A final ST rule (p, ϕ, o) ∈ F denotes the following set of concrete transitions:

[[(p, ϕ, o)]]
def
= {(p, s) []/[[o]](s)−−−−−→ • | s ∈ [[ϕ]]}

The reachability relation p
a/b−−→→A q for a ∈ Σ∗, b ∈ Γ ∗, p ∈ (Q × Uτ), q ∈

(Q×Uτ)∪{•} is defined analogously to ESFTs and TA(a)
def
= {b | (q0, ρ0) a/b−−→ •}.

3 Register Elimination

The main advantage of STs is their succinctness and the fact that Bek programs
can directly be mapped to STs. The downside of using STs is that many of the
desired properties, such as equivalence, idempotence, and commutativity, are no
longer decidable. One approach to decide those properties is to transform STs to
SFTs by exploring all the possible register values. However, this is only possible
for finite alphabets and in general not feasible due to state space explosion. This
is where ESFTs play a central role.

In this section we describe an algorithm that allows us to transform a class of
STs into ESFTs. The algorithm has several applications.

One application is to eliminate registers at the expense of increasing the looka-
head. The algorithm can be applied to a class of product STs with two outputs.
The algorithm is agnostic about how the output looks like. Product STs are used
in the single-valuedness checking algorithm of SFTs.

While ESFTs provide a powerful generalization of SFTs, they are unfortu-
nately not closed under composition as shown in Section 2.1. Another applica-
tion of the transformation algorithm is a semi-decision procedure for composing
ESFTs. The technique is to first translate the ESFTs to STs, as outlined in
Section 2.2, then compose the STs, and finally apply the register elimination
algorithm to convert the composed ST back to an ESFT, if possible. We are
currently investigating which subclasses of ESFT are effectively closed under
composition.

The core idea that underlies the register elimination algorithm is a symbolic
generalization of the classical state elimination algorithm for converting an NFA
to a regular expression (see e.g. [22, Section 3.3]), that uses the notion of extended
automata whose transitions are labelled by regular expressions. Here the labels of
the ST are predicates over sequences of elements of fixed lookahead. Essentially
the intermediate data structure of the algorithm is an Extended ST.

Input: ST Aσ/γ;τ .
Output: ⊥ or an ESFT over σ→ γ that is equivalent to A.

1. Lift A to use the input sort σ∗ by replacing each transition p
ϕ/o;u−−−−→ q with

the following transition annotated with a lookahead of 1 and with x : σ∗,

p
λ(x,y).x 	=[]∧ϕ(x[0],y)/λ(x,y).o(x[0],y);λ(x,y).u(x[0],y)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1
q

(Apply similar transformation to final rules and give them lookahead 0.)

Static Analysis of String Encoders and Decoders 219

2. Repeat the steps 2.a-2.c while there exists a state that does not have a self
loop (a self loop is a transition whose start and end states are equal).

2.a Choose a state p, such that p is not the state of any self loop and p is not
the initial state.

2.b Do for all transitions p1
ϕ1/o1;u1−−−−−−→

k
p

ϕ2/o2:u2−−−−−−→
�

p2 in R:

let ϕ = λ(x, y).ϕ1(x, y) ∧ ϕ2(tail
k(x), u1(x, y))

let o = λ(x, y).o1(x, y) · o2(tailk(x), u1(x, y))
let u = λ(x, y).u2(tail

k(x), u1(x, y))

if IsSat(ϕ) then let r = p1
ϕ/o;u−−−−→
k + �

p2 and add r as a new rule

2.c Delete the state p.
3. If no guard and no output depends on the register, remove the register from

all the rules in the ST and return the resulting ST as an ESFT, otherwise
return ⊥.

After the first step, the original ST accepts an input [a0, a1, a2] and produces
output v iff the transformed ST accepts [cons(a0,), cons(a1,), cons(a2,)] and
produces output v, where the tails are unconstrained and irrelevant. Step 2
further groups the inputs characters, e.g., to [cons(a0, cons(a1,)), cons(a2,)],
etc, while maintaining this input/output property with respect to the original
ST. Finally, in step 3, turning the ST into an ESFT, leads to elimination of the
register as well as lowering of the character sort back to σ, and replacing each
occurrence of tailk(x) with corresponding individual tuple element variable xk.
Soundness of the algorithm follows.

The algorithm omits several implementation aspects that have considerable
effect on performance. One important choice is the order in which states are
removed. In our implementation the states with lowest total number of incoming
and outgoing rules are eliminated first. It is also important to perform the choices
in an order that avoids unreachable state spaces. For example, the elimination
of a state p in step 2 may imply that ϕ is unsatisfiable and consequently that
p2 is unreachable if the transition from p is the only transition leading to p2. In
this case, if p is reachable from the initial state, choosing p2 before p in step 2
would be wasteful.

4 Unicode Case Study

In this section we show how to describe realistic encoding and decoding routines
using STs. We use Bek as the concrete programming language for STs.

A hextet is a non-negative integer < 216, and an octet is a non-negative inte-
ger < 28, i.e., hextets correspond to 16-bit bitvectors and octets correspond
to bytes. Hextets are used in modern programming and scripting languages
to represent character codes. For example, in C# as well as in JavaScript,
string representation involves arrays of characters, where each character has a
unique numeric code in form of a hextet. For example, the JavaScript expression
String.fromCharCode(0x48,0x65, 0x6C, 0x6C, 0x153, 0x21) equals to the string “Hellœ!”.

220 L. D’Antoni and M. Veanes

A Unicode code point is an integer between 0 and 1,112,064 (10FFFF16). Sur-
rogates are code points between D80016 and DFFF16 and are not valid character
code points according to the UTF-8 definition.2

program utf8encode(input){
return iter(c in input)[H:=false; r:=0;]
{

case (!H&&(0<=c)&&(c<=0x7F)): yield(c); //one octet
case (!H&&(0x7F<c)&&(c<=0x7FF)):

yield(0xC0|((c>>6)&0x1F), 0x80|(c&0x3F)); //two octets
case (!H&&(0x7FF<c)&&(c<=0xFFFF)&&((c<0xD800)||(c>0xDFFF))):

yield(0xE0|((c>>12)&0xF), 0x80|((c>>6)&0x3F), 0x80|(c&0x3F)); //three octets
case (H&&(0xDC00<=c)&&(c<=0xDFFF)): H:=false; r:=0; //low surrogate
yield((0x80|(r << 4))|((c>>6)&0xF), 0x80|(c&0x3F));

case (!H&&(0xD800<=c)&&(c<=0xDBFF)): H:=true; r:=c&3; //high surrogate
yield (0xF0|(((1+((c>>6)&0xF))>>2)&7),(0x80|(((1+((c>>6)&0xF))&3)<<4))|((c>>2)&0xF));

case (true): raise InvalidInput;
end case (H): raise InvalidInput;

};
}

program utf8decode(input){
return iter(c in input)[q:=0; r:=0;]

{
case ((q==0)&&(0<=c)&&(c<=0x7F)): yield (c);
case ((q==0)&&(0xC2<=c)&&(c<=0xDF)): q:=3; r:=(c&0x3F)<<6;

case ((q==0)&&(c==0xE0)): q:=7;
case ((q==0)&&(c==0xED)): q:=6;

case ((q==0)&&(0xE1<=c)&&(c<=0xEF)): q:=2; r:=(c&0xF)<<12;
case ((q==0)&&(0xF1<=c)&&(c<=0xF3)): q:=1; r:=(c&7)<<8;

case ((q==0)&&(c==0xF0)): q:=4;
case ((q==0)&&(c==0xF4)): q:=5; r:=0x400;
case ((q==1)&&(0x80<=c)&&(c<=0xBF)): q:=8; r:=0xD800|(((r|((c&0x30)<<2))-0x40)|((c&0x0F)<<2));

case ((q==4)&&(0x90<=c)&&(c<=0xBF)): q:=8; r:=0xD800|((((c&0x30)<<2)-0x40)|((c&0x0F)<<2));
case ((q==5)&&(0x80<=c)&&(c<=0x8F)): q:=8; r:=0xD800|(((r|((c&0x30)<<2))-0x40)|((c&0x0F)<<2));

case ((q==2)&&(0x80<=c)&&(c<=0xBF)): q:=3; r:=r|((c&0x3F)<<6);
case ((q==6)&&(0x80<=c)&&(c<=0x9F)): q:=3; r:=0xD000|((c&0x3F)<<6);
case ((q==7)&&(0xA0<=c)&&(c<=0xBF)): q:=3; r:=(c&0x3F)<<6;

case ((q==8)&&(0x80<=c)&&(c<=0xBF)): q:=3; yield(r|((c>>4)&3)); r:=0xDC00|((c&0xF)<<6);
case ((q==3)&&(0x80<=c)&&(c<=0xBF)): q:=0; yield(r|(c&0x3F)); r:=0;

case (true): raise InvalidInput;
end case (!(q==0)): raise InvalidInput;

};
}

Fig. 1. UTF-8 encoder and decoder in Bek

UTF-16 is the standard character encoding used in modern programming and
scripting languages. With UTF-16 format, Unicode symbols are represented ei-
ther directly by hextets, or as pairs of hextets, so called surrogate pairs, that
represent symbols in the upper Unicode range, e.g., the musical symbol c called
“cut time” has Unicode code point 1D13516 that is encoded in UTF-16 by the
surrogate pair [D83416, DD3516].

Not all sequences of hextets represent well-formed UTF-16 strings. Well-
formed UTF-16 strings are precisely all those sequences of hextets that match
the regular expression and corresponding symbolic finite automaton in Figure 2.

2 http://tools.ietf.org/html/rfc3629

Static Analysis of String Encoders and Decoders 221

q0 q0 q1
D800-DBFF

DC00-DFFF

0-D7FF|E000-FFFF

^([\0-\uD7FF\uE000-\uFFFF]|([\uD800-\uDBFF][\uDC00-\uDFFF]))*$

Fig. 2. UTF-16 validator. All numbers use hexadecimal notation and the range expres-
sion m-n is short for the predicate λx.m ≤ x ≤ n.

Elements in the ranges [\uD800-\uDBFF] and [\uDC00-\uDFFF] are called
high surrogates and low surrogates, respectively. A surrogate pair [high , low]
represents the Unicode symbol whose code point is ((high〈9,0〉 / 10)|low 〈9,0〉) +
1000016, where x〈m,n〉 extracts bits m through n from x.

UTF-8 UTF-8 uses sequences of one up to four octets to encode single Unicode
code points. Let c be a Unicode codepoint, the UTF-8 encoding of c is:

Utf8 (c)
def
=

⎧⎪⎪⎨⎪⎪⎩
[c], if 0 ≤ c ≤ 7F16;
[C016|c〈10,6〉, 8016|c〈5,0〉], if c ≤ 7FF16;
[E016|c〈15,12〉, 8016|c〈11,6〉, 8016|c〈5,0〉], if c ≤ FFFF16;
[F016|c〈20,18〉, 8016|c〈17,12〉, 8016|c〈11,6〉, 8016|c〈5,0〉], otherwise.

Some codepoints are not valid. In particular, in the third case, c may not be
a surrogate, i.e., c < D80016 or c > DFFF16. Also, any number greater than
10FFFF16 is invalid. The exact details of how the UTF-8 encoding is computed
from the UTF-16 encoding follows from the Bek program in Figure 1 and is
discussed below.

Conversions. A UTF-16 to UTF-8 encoder takes a well-formed UTF-16 encoded
string and converts it into the equivalent UTF-8 representation. Figure 1 shows
the Bek program of such an encoder. The program makes essential use of bitwise
operations over hextets, in particular, it uses bit shifting operations and logical
bit operations. The input to the program is a sequence of hextets. The output
produced by the encoder is a sequence of octets.

The Bek program represents a symbolic transducer that uses two registers:
the Boolean register H and the character register r. The value of H is true if the
previous character was a high surrogate, in which case the register r contains
the two least significant bits of that high surrogate. When a low surrogate is
input, it is used together with the value of r to yield the remaining two octets
of the combined code point (the first two octets were output when the high
surrogate was read). Both registers can be effectively eliminated by using an
exploration algorithm. The resulting SFT is illustrated in Figure 3, where HS is
the predicate for high surrogates and LS is the predicate for low surrogates. The
rules of the SFT correspond to the different branches of the Bek program, where
the exception cases correspond to the cases that are disabled at the respective
states. What is quite remarkable is that the SFT has 11 rules and 5 states

222 L. D’Antoni and M. Veanes

f, 0 f, 0

t, r

(HS(x) ∧ r = x〈1,0〉)/
[F016|(1 + x〈9,6〉)〈4,2〉,
8016|((1 + x〈9,6〉)〈1,0〉 � 4)|x〈5,2〉]

LS(x)/[8016|(r � 4)|x〈9,6〉, 8016|x〈5,0〉]

(0 ≤ x ≤ 7F16)/[x]

(7F16 < x ≤ 7FF16)/[C016|x〈10,6〉, 8016|x〈5,0〉]

(7FF16 < x ≤ FFFF16 ∧ ¬HS(x) ∧ ¬LS(x))/[E016|x〈15,12〉, 8016|x〈11,6〉, 8016|x〈5,0〉]

Fig. 3. SFT that is equivalent to the Bek program utf8encode in Figure 1. States are
labelled by values of (H, r), there are five states: (f, 0), (t, 0), (t, 1), (t, 2), and (t, 3).

in total, compared to an equivalent classical finite state transducer that would
require 216 transitions (one transition per hextet).

The program utf8decode in Figure 1 provides the inverse conversion from
valid UTF-8 encoded sequences to valid UTF-16 encoded sequences. The equiv-
alent SFT has in this case 1284 states and 6371 rules, that is in sharp contrast
to the 5 states and 11 rules of the encoder.

5 Experiments and Evaluation

We first verify the functional correctness of UTF8 encoder and decoder. Sec-
ondly, we analyze how the register elimination algorithm of Section 3 scales for
different program’s sizes.

5.1 Functional Correctness of Encoders and Decoders

The Bek programs in Figure 1 can be analyzed for various properties of interest
by first converting them to STs and then to ESFT. While this analysis is very
efficient for the ESFT of the encoder in Figure 3 it is more demanding for the
decoder because of the size of the state space. As a fundamental correctness
criterion, the valid input sequences of utf8decode should be the set of all valid
UTF-8 sequences: D(utf8decode) = D(UTF8) where UTF8 is the UTF-8 val-
idator expressed as a Symbolic Automaton. An inspection of UTF8 shows that
the following validity properties are checked:

1. Octets C016, C116, F516, . . . , FF16 are disallowed.
2. Invalid combinations of start-octets and continuation-octets are disallowed.
3. Sequences that decode to a value with a shorter encoding (so called “over-

long” sequences) are disallowed.
4. Sequences starting with F416 encoding a value > 10FFFF16 are disallowed.
5. Encodings of surrogates (having start-octet ED16) are disallowed.

Static Analysis of String Encoders and Decoders 223

In particular, overlong encodings, such as the encoding [C016, AE16] of ‘.’, are
disallowed.

Moreover, we expect the decoder to perform the inverse of the encoder and
vice versa. Let I be the identity SFT, i.e., I has a single state q0 and a single

rule q0
λx.t/[λx.x]−−−−−−−→ q0. Let E = Tutf8encode , D = Tutf8decode , Uutf16 = D(UTF16),

and Uutf8 = D(UTF8). The following must hold:

– E ◦D 1
= I, D(E) = D(E ◦D) = Uutf16

– D ◦ E 1
= I, D(D) = D(D ◦ E) = Uutf8

A
1
= B, iff A and B produce the same output on each of the inputs in their

domain intersection (1-equality [20]). Consider D : Uutf16 → Uutf8 and E :
Uutf8 → Uutf16 as functions. Thus D and E are bijections and inverses of each
other.

5.2 Use of Register Elimination

In general, an ESFT to SFT conversion is needed for deciding 1-equality. The
previous technique eliminated the registers by fully exploring their reachable
state space and created an SFT prior to invoking the equivalence algorithm [21].
The technique introduced here takes a step further. It gradually increases the
lookahead of a 2-output ST by shortcutting intermediate states in an attempt
to completely eliminate register dependencies from the guards and the out-
put terms. First, we convert ESFTs to STs by introducing registers, as ex-
plained in Section 2.2. Second, we compute a 2-output ST as a product of
the two STs that has synchronized input and where infeasible guard combi-
nations have been eliminated, corresponding to product-SFTs in [20, Defini-
tion 7]. Third, we compute an equivalent 2-output ESFT (when possible) from
the 2-output ST using the register elimination algorithm explained in Section 3.
Fourth, we convert that 2-output ESFT into a 2-output SFT whose characters
are grouped into sequences of characters of given lookahead length and note
that this transformation preserves one-equality of the original ESFTs due to
the synchronized inputs. Finally, we apply a variation of the one-equality al-
gorithm for SFTs to the 2-output product SFT that is the value of C in the
one-equality algorithm [20, Figure 3]. The procedure described above might not
terminate. However this has not been the case in our case study. We are cur-
rently investigating decidability of one-equality of ESFTs, and a more direct
approach.

We illustrate the register elimination algorithm, in the case of composition,
using some rules of the case study. Consider the composition ED = E ◦ D
(encoding followed by decoding). The resulting ST ED uses a register (inherited
from D), and has 5 states and 22 rules. Besides the initial state q0, all other
states q are non-final and intermediate in the following sense: all paths through
q have the form:

224 L. D’Antoni and M. Veanes

q0
ϕ(x0)/([],f(x0))−−−−−−−−−−→

1
q

ψ(x0,y)/(β(x0,y),0)−−−−−−−−−−−−→
1

q0

where the first rule is independent of the register (depends only on the input ele-
ment x0). The path can be represented with an equivalent rule with a lookahead
of 2 elements:

q0
ϕ(x0)∧ψ(x1,f(x0))/(β(x1,f(x0)),0)−−−−−−−−−−−−−−−−−−−−−−→

2
q0

After the removal of all such intermediate states from ED , the register y can
be deleted from all the new rules because no guard or output depends on the
register.3

Table 1 shows the running times of the operations needed to perform the
checks described above.

Table 1. Running Times for Functional Correctness

Operation Running Time

D(E) = Uutf16 47 ms
D(E ◦D) = Uutf16 109 ms

D(D) = Uutf8 156 ms
D(D ◦ E) = Uutf8 320 ms

E ◦D 1
= I (exploration) 82,000 ms

D ◦ E 1
= I (exploration) 134,000 ms

E ◦D 1
= I (reg. elim.) 123 ms

D ◦ E 1
= I (reg. elim.) 215 ms

The first four entries of Table 1 show the running time for the domain checks.
The times are all under 0.4 seconds. To perform the domain checks we compute
the ESFAs (ESFTs with empty outputs) corresponding to domain of the ESFTs,
and we check for automata equivalence. In order to improve the efficiency, when
possible, we transform ESFAs into equivalent SFAs (SFTs with empty outputs)
and use the equivalence algorithm for SFAs [20]. Without this transformation,
some of the running times would be above 1 minute.

The next two entries of Table 1 show the running times for 1-equality with
the exploration algorithm in [21]. It is clear from the data (> 100 seconds) that
the state explosion causes the algorithm to work only on programs of small
sizes. Finally, the last two entries of the table represent the running time for
the improved algorithm of Section 3 with register elimination. It is important to
point out that in this case we do not check for domain equivalence but only for
1-equality. Performing the check after the register elimination algorithm achieves
a 600x speed-up against the full exploration version in this particular case study.
This is a consequence of the succinctness of ESFTs.

3 The online Bek tutorial http://www.rise4fun.com/Bek/tutorial/utf8 contains
further analysis scenarios.

Static Analysis of String Encoders and Decoders 225

5.3 Running Time Analysis with Register Elimination

In this section we run our register elimination algorithm on bigger program
instances. Most of the checks performed in this section will time out (longer
than 1 hour) when using the full exploration algorithm.

We consider consecutive compositions of encoders and decoders and analyze
their correctness using 1-equality for ESFTs. This experiment is motivated by
a common form of attack called double encoding [15]. This attack technique
consists of encoding the user input twice in order to cause unexpected behaviour.
We define the following notation for consecutive composition of STs. Given an
ST P we define P 1 ≡ P and P i+1 ≡ P ◦ P i. We verify the following properties
and analyze their execution times.

Equivalence for Enc/Dec: Ei ◦Di 1
= I for 1 ≤ i ≤ 9, Figure 4(a);

Inequivalence for Enc/Dec: Ei+1 ◦Di � 1= I for 1 ≤ i ≤ 9, Figure 4(a);

Equivalence for Dec/Enc: Di ◦ Ei 1
= I for 1 ≤ i ≤ 3, Figure 4(b);

Inequivalence for Dec/Enc: Di ◦ Ei+1 � 1= I for 1 ≤ i ≤ 3, Figure 4(b).

Figure 4(a) shows the running times for the case in which we first encode and
then decode. The figure plots the following measures where i varies between 1
and 9:

Composition: cost of computing Ei+1 ◦ Di (we omit the cost of computing
Ei ◦Di since it is almost equivalent);

Equivalence: cost of checking Ei ◦Di 1
= I;

Inequivalence: cost of checking Ei+1 ◦Di � 1= I.

In this case the algorithm scales pretty well with the number of STs. It is worth
noticing that at every i we are analyzing the composition of 2i transducers in
the case of equivalence and 2i+ 1 transducers in the case of inequivalence.

Figure 4(b) shows the running times for the case in which we first decode
and then encode. The plot has the same meaning as before, but in this case the
running time increases at a faster pace. This happens for two reasons: 1) the
state space is bigger, and 2) the lookahead is bigger.

In the case in which we first encode the number of states and transitions does
not grow when i increases. However, when we first decode, we early (i = 3)
reach a big number of states (3645) and transitions (6791). Moreover, while
the size of the lookahead in the first case remains the same (it is always 2),
it grows exponentially with i when we first decode. Indeed for i = 1, 2, 3 we
have lookaheads of size 4, 8, 16 respectively. This causes the register elimination
algorithm to explore more paths.

We noticed when we composed the encoder with the decoder, that the looka-
head size and the number of states and transitions do not grow when i increases.
However, Figure 4(a) shows that the running time grows exponentially in i. The
complexity indeed does not only depend on the size of the ESFT, but also on
the size of its predicates. The predicate sizes increase when we compose STs,
causing the SMT solver to affect the performance of both the composition and
equivalence algorithms, which perform several satisfiability checks on predicates.

226 L. D’Antoni and M. Veanes

(a) Encoding then Decoding

(b) Decoding then Encoding

Fig. 4. Running time in seconds for equivalence/inequivalence checking of multiple
compositions of encoders and decoders

6 Related Work

Symbolic finite transducers (SFTs) and Bek were originally introduced in [9]
with a focus on security analysis of sanitizers. The key properties that are stud-
ied in [9] from a practical point of view are idempotence, commutativity and
equivalence checking of sanitizers. The formal foundations and the theoretical
analysis of the underlying SFT algorithms, in particular, an algorithm for decid-
ing equivalence of single-valued SFTs, modulo a decidable background theory is
studied in [20], including a more general 1-equality algorithm that factors out
the decision problem for single-valuedness, and allows non-determinism with-
out violating single-valuedness. The formalism of SFTs is extended in [20] to
Symbolic Transducers (STs) that allow the use of registers. A “brute-force” ex-
ploration algorithm for register elimination is analyzed in [21]. However, the
algorithm only copes with finite-ranged register updates and generally produces
large state spaces. The focus and the motivation of the current paper is efficient
register elimination. We introduce extended symbolic finite transducers (ESFTs)

Static Analysis of String Encoders and Decoders 227

which are strictly more expressive than SFTs. We then propose an algorithm
that compiles a subclass of STs to ESFTs and that does not assume the input
alphabet to be finite. Finally, the succinctness of ESFTs enables fast analysis of
previously intractable (or not expressible) programs.

In recent years there has been considerable interest in automata using infinite
alphabets [18], starting with the work on register automata [11]. Finite words
over an infinite alphabet are often called data words in the literature. This line
of work focuses on fundamental questions about definability, decidability, com-
plexity, and expressiveness on classes of automata on one hand and fragments
of logic on the other hand.

Streaming transducers [1] provide another recent symbolic extension of finite
transducers where the label theories are restricted to be total orders, in order to
maintain decidability of equivalence. Streaming transducers are largely orthog-
onal to SFTs or the extension of ESFTs, as presented in the current paper. For
example, streaming transducers allow reversing the input, which is not possible
with ESFTs, while arithmetic is not allowed in streaming transducers but plays
a central role in our applications of ESFTs to string encoders.

We use the SMT solver Z3 [6] for incrementally solving label constraints that
arise during the exploration algorithm. Similar applications of SMT techniques
have been introduced in the context of symbolic execution of programs by us-
ing path conditions to represent under and over approximations of reachable
states [8]. The distinguishing feature of our exploration algorithm is that it com-
putes a precise transformation that is symbolic with respect to input labels,
while allowing different levels of concretization with respect to the state vari-
ables. The resulting extended symbolic finite transducer is not an under or over
approximation, but functionally equivalent to the original symbolic transducer.
This is important for achieving a sound and complete analysis.

Our work is complementary to previous efforts in using SMT solvers to solve
problems related to list transformations. Kaluza [17] extends the SMT solver to
handle equations over strings and equations with multiple variables. We are not
aware of previous work investigating the use of finite transducers for verifying
code as complex as utf8encoder and utf8decoder. One obvious explanation for this
is that classical finite transducers are not directly suited for this purpose; indeed,
symbolic finite transducers can be exponentially more succinct than classical
finite transducers with respect to alphabet size.

7 Conclusions

Several web applications assume the correctness of encoding and decoding func-
tions. However, practical experience shows that writing correct encoders and
decoders is a hard task. This paper presents an algorithmic extension of Bek,
a language for writing, analyzing string manipulation routines. We introduce
extended symbolic finite transducers (ESFTs) to enable analysis of previously
intractable programs such as string decoders. We prove correctness of UTF8
encoder and decoder, even in the case of double encoding. We show that our al-
gorithms are fast in practice, and scale up to 20 encoder/decoder compositions.

228 L. D’Antoni and M. Veanes

References

1. Alur, R., Cerný, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL 2011, pp. 599–610. ACM (2011)

2. Bek, http://research.microsoft.com/bek
3. Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB format for sequences

and regular expressions. In: Fontaine, P., Goel, A. (eds.) SMT 2012, pp. 76–86 (2012)
4. Bjørner, N., Tillmann, N., Voronkov, A.: Path Feasibility Analysis for String-

Manipulating Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

5. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

6. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree
Transducers. EATCS. Springer (1998)

8. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54
(2007)

9. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with Bek. In: Proceedings of the USENIX Security Symposium
(August 2011)

10. Hooimeijer, P., Veanes, M.: An Evaluation of Automata Algorithms for String
Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
248–262. Springer, Heidelberg (2011)

11. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
12. Livshits, B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: specification in-

ference for explicit information flow problems. In: PLDI 2009, pp. 75–86. ACM
(2009)

13. Minamide, Y.: Static approximation of dynamically generated web pages. In:
WWW 2005: Proceedings of the 14th International Conference on the World Wide
Web, pp. 432–441 (2005)

14. NVD, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938
15. OWASP. Double encoding, https://www.owasp.org/index.php/Double_Encoding
16. SANS. Malware faq,

http://www.sans.org/security-resources/malwarefaq/w-nt-unicode.php
17. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic

execution framework for javascript. Technical Report UCB/EECS-2010-26 (March
2010)

18. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet.
In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg
(2006)

19. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression Ex-
plorer. In: ICST 2010, pp. 498–507. IEEE (2010)

20. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: Algorithms and applications. In: POPL 2012, pp. 137–150 (2012)

21. Veanes, M., Molnar, D., Mytkowicz, T., Livshits, B.: Data-parallel string-
manipulating programs. Technical Report MSR-TR-2012-72, Microsoft Research
(2012)

22. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer (1997)

http://research.microsoft.com/bek
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938
https://www.owasp.org/index.php/Double_Encoding
http://www.sans.org/security-resources/malwarefaq/w-nt-unicode.php

Robustness Analysis of Networked Systems�

Roopsha Samanta1, Jyotirmoy V. Deshmukh2, and Swarat Chaudhuri3

1 University of Texas at Austin
roopsha@cs.utexas.edu

2 University of Pennsylvania
djy@cis.upenn.edu
3 Rice University
swarat@rice.edu

Abstract. Many software systems are naturally modeled as networks of
interacting elements such as computing nodes, input devices, and output
devices. In this paper, we present a notion of robustness for a networked
system when the underlying network is prone to errors. We model such
a system N as a set of processes that communicate with each other over
a set of internal channels, and interact with the outside world through
a fixed set of input and output channels. We focus on network errors
that arise from channel perturbations, and assume that we are given
a worst-case bound δ on the number of errors that can occur in the
internal channels of N . We say that the system N is (δ, ε)-robust if the
deviation of the output of the perturbed system from the output of the
unperturbed system is bounded by ε.

We study a specific instance of this problem when each process is a
Mealy machine, and the distance metric used to quantify the deviation
from the desired output is either the L1-norm or the Levenshtein dis-
tance (also known as the edit distance). For the former, we present a
decision procedure for (δ, ε)-robustness that is polynomial in the size of
the network. For the latter, we present a decision procedure that is poly-
nomial in the size of the network and exponential in the error bound on
the output channel. Our solution draws upon techniques from automata
theory, essentially reducing the problem of checking (δ, ε)-robustness to
the problem of checking emptiness for a certain class of reversal-bounded
counter automata.

1 Introduction

More than ever before, we live in an era where computation does not exist in
a vacuum, but is tightly integrated with networked communication and, often,
interactions with the physical world. The heterogeneous systems that result from
such integration — medical devices, power plants, vehicles and aircrafts — are
often safety-critical. Unsurprisingly, they have long been regarded as important
targets for formal methods.

� This research was partially supported by CCC-CRA Computing Innovation Fellows
Project, NSF Award 1162076 and NSF CAREER award 1156059.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 229–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

One aspect of such systems that has received relatively less attention in the
formal methods literature is uncertainty. Uncertainty is pervasive in complex
heterogeneous systems—for example, the data generated by sensors in the sys-
tem can be inexact or corrupted, or the network channels implementing com-
munication between the components of the system can be corrupt or lose data
packets. Left unchecked, such uncertainty can wreak havoc. For a large class
of systems, we often wish to determine to what extent the system behavior is
predictable, when the system faces uncertainty. Traditional system correctness
properties like safety and liveness are qualitative assertions about individual sys-
tem traces, and proof techniques for such properties typically do not provide
any quantitative measure on predictable system execution. In most engineering
disciplines, the core property in reasoning about uncertain system behavior is
robustness: “small perturbations to the operating environment or parameters
of the system does not change the system’s observable behavior substantially.”
This property is differential, in the sense that it relates a range of system traces
possible under uncertainty. Furthermore, proof techniques to prove robustness
demand a departure from traditional correctness checking algorithms as they
require quantitative reasoning about the system behavior.

Given the above, formal reasoning about robustness of systems is a problem of
practical aswell as conceptual importance. Inwell-established areas such as control
theory, robustness has always been a fundamental concern; in fact, there is an entire
sub-area of control— robust control—that extensively studies this problem. How-
ever, as robust control typically involves reasoning about continuous state-spaces,
the techniques and results therein are not directly applicable to cyber-physical sys-
tems which contain large amounts of discretized, discontinuous behavior.

In the context of cyber-physical systems, robustness analysis has only recently
begun to gain attention. While several recent papers explore quantitative formal
reasoning about robustness of software, the problem of reasoning about robust-
ness with respect to errors in networked communication has been largely ignored.
This is unfortunate as communication between different computation nodes is a
fundamental feature of most modern systems. In particular, it is a key feature in
emerging cyber-physical systems [20,21] where runtime error-correction features
for ruling out uncertainty may not be an option. In this paper, we focus on such
networked systems, and characterize an efficiently verifiable notion of robustness
for them. At a high level, our contributions in this paper are as follows:

1. We present a model for communicating processes that is representative of
the complexity of real systems.

2. We present a model for perturbations in the communication channels in the
network, and formulate a notion of robustness for a networked system in the
presence of these unreliable channels.

3. We present efficient, automata-theoretic, decision procedures for analyzing
the robustness of the networked system with respect to different metrics
characterizing the deviation of the observed behavior of the system.

In this paper, we model a synchronous, networked, systemN as a set of communi-
cating Mealy machines (processes). Processes communicate over a set of internal

Robustness Analysis of Networked Systems 231

channels, and interact with the outside world through a set of external input and
output channels. We assume that processes communicate with each other using
symbols from a finite alphabet, and perform computations over strings of such
symbols. Each such symbol can be treated as an abstraction of complex data
used for computation and communication in a real-world networked system.

As observed in [9], a critical requirement in networked cyber-physical systems
is for all components of the system to have a common sense of time. This is usu-
ally ensured by protocols that guarantee that the global clock remains consistent
across components. Thus, bearing this observation in mind, and following in the
footsteps of recent papers on wireless control networks [20,21], classic models
like Kahn process networks [16], and languages like Esterel [3], we assume our
networks to have synchronous communication.

An input to the networked system N is a word capturing the sequence of sym-
bols appearing on the input channels of N ; the externally observable behavior
of N is a sequence of symbols appearing on its output channels. We model un-
certainty by letting each internal channel perturb the data that is sent through
it at any given point. Perturbations can include deletion of symbols and mutat-
ing symbols to other symbols. Deviations from the ideal, unperturbed, system’s
observable behavior are defined using suitable distance metrics on words. In this
paper, we consider two such metrics: Levenshtein distance and the L1-norm.
We define the networked system N to be (δ, ε)-robust if for any given input, the
maximum change to the observable behavior of N is bounded by ε as long as the
number of perturbations introduced by the internal channels of N is bounded
by δ.

Our central technical result is a decision procedure for determining whether
a given system N is (δ, ε)-robust. Our algorithm reduces this problem to the
problem of checking the emptiness of a certain class of reversal-bounded counter
automata. A key step in our algorithm is the construction of automata that
accept pairs of strings (s, t) if and only if the distance between s and t (w.r.t. a
chosen metric) exceeds a specified constant. We present constructions for such
automata for Levenshtein distance and the L1-norm metric. We remark we can
check robustness of a networked system with respect to any metric for which
such automata constructions are possible. For the Levenshtein distance metric,
the complexity of our algorithm is polynomial in the size of N and exponential
in the error bound ε on the output channels. For the L1-norm distance metric,
the complexity of our algorithm is polynomial in the size of N .

The rest of the paper is organized as follows. In Sec. 2 we define our model
of robust networked systems. In Sec. 3 and Sec. 4, we present the automata
constructions involved in our decision procedure for checking robustness of such
systems. We discuss related work in Sec. 5, and conclude with a discussion of
future work in Sec. 6.

2 Robust Networked Systems

In this section, we present a formal model for a synchronous networked system.
We then introduce a notion of robustness for computations of such networked

232 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

systems when the communication channels are prone to errors. In what follows,
we use the following notation. Strings are typically denoted by lowercase letters
s, t etc., with output strings sometimes denoted by primed lowercase letters s′,
t′ etc. We denote the concatenation of strings s and t by s.t, the jth character
of string s by s[j], the substring s[i].s[i + 1].s[j] by s[i, j], the length of
the string s by |s|, and the empty string by λ. We sometimes denote vectors
of objects using bold letters such as s and ε, with the jth object in the vector
denoted sj and εj respectively.

2.1 Synchronous Networked System

A networked system, denoted N , can be described as a directed graph (P , C),
with a set of processes P = {P1, . . . , Pn} and a set of communication channels
C. The set of channels consists of internal channels N , external input channels I,
and external output channels O. An internal channel Cij ∈ N connects a source
process Pi to a destination process Pj . An input channel has no source process,
and an output channel has no destination process in N .

Process Definition and Semantics. A process Pi in the networked system is
defined as a tuple (Ini,Outi,Mi), where Ini ⊆ (I ∪ N) is the set of Pi’s input
channels, Out i ⊆ (O∪N) is the set of Pi’s output channels, andMi is a machine
describing Pi’s input/output behavior. We assume a synchronous model of com-
putation: (1) at each tick of the system, each process consumes an input symbol
from each of its input channels, and produces an output symbol on each its out-
put channels, and (2) message delivery through the channels is instantaneous.
We further assume that a networked system N has a computation alphabet Σ
for describing the inputs and outputs of each process, and for describing commu-
nication over the channels. Please see Fig. 2.1 for an example networked system.
Observe that a process may communicate with one, many or all processes in N
using its output channels. Thus our network model subsumes unicast, multicast
and broadcast communication schemes.

In this paper, we focus on processes described as Mealy machines. Recall that
a Mealy machine [19] M is a deterministic finite-state transducer that in each
step, reads an input symbol, possibly changes state, and generates an output
symbol. Formally,M is described as a tuple (Σin, Σout, Q, q0, R), where Σin and
Σout are input and output alphabets respectively, Q is a finite, nonempty set
of states, q0 is an initial state, and R ⊆ Q × Σin × Σout × Q is the transition
function.

The operational semantics ofM is defined in terms of its run ρ(s) on an input
string s = s[1] . . . s[m]. A run is a sequence of the form (q0, λ), (q1, s

′[1]), . . .,
(qm, s

′[m]), where for each j, 1 ≤ j ≤ m, (qj−1, s[j], s
′[j], q′j) ∈ R. Such a run

ρ(s) of a Mealy machine defines the output function �M� : Σ�
in → Σ�

out, with�M�(s[1].s[2] . . . s[m]) = s′[1].s′[2].s′[m].
In each tick, a Mealy machine process in a networked system N consumes

a composite symbol (the tuple of symbols on its input channels), and outputs
a composite symbol (the tuple of symbols on its output channels). Thus, the

Robustness Analysis of Networked Systems 233

M3

M2
M1

C3,2,
δ2

Cout, ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

Fig. 2.1. Networked System

input alphabet Σin forMi is Σ
|Ini|, and the output alphabet Σout is Σ

|Outi|. Let
(Σ|Ini|, Σ|Outi|, Qi, q0i , Ri) be the tuple describing the Mealy machine underlying
process Pi.

Operational Semantics of a Network. We define a network state q as the
tuple (q1, . . . , qn, c1, . . . , c|N |), where for each i, qi ∈ Qi is the state of Pi, and

for each k, ck is the state of the kth internal channel, i.e., the current symbol in
the channel. A transition of N has the following form:

(q1, . . . , qn, c1, . . . , c|I|)

(q′1, . . . , q
′
n, c

′
1, . . . , c

′
|I|)

(a1, . . . , a|I|), (a
′
1, . . . , a

′
|O|)

Here (a1, . . . , a|I|) denote the symbols on the external input channels, and
(a′1, . . . , a

′
|O|) denote the symbols on the external output channels. During a

transition of N , each process Pi consumes a composite symbol (given by the
states of all internal channels in Ini and the symbols in the external input chan-
nels in Ini), changes state from qi to q

′
i, and outputs a composite symbol. The

generation of an output symbol by Pi causes an update to the states of all in-
ternal channels in Outi and results in the output of a symbol on each output
channel in Outi.

Thus, we can view the networked system N itself as a machine that in each
step, consumes an |I|-dimensional input symbol a from its external input chan-
nels, changes state according to the transition functions Ri of each process, and
outputs an |O|-dimensional output symbol a′ on its external output channels.

Formally, we define the semantics of a computation of N using the tuple
(Σ|I|, Σ|O|, Q,q0, R), where Q = (Q1 × . . .×Qn ×Σ|N |) is the set of states and
R ⊆ (Q ×Σ|I| × Σ|O| ×Q) is the network transition function. The initial state

234 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

qo = (q01, . . . , q0n, c01, . . . , c0|N |) of N is given by the initial process states
and internal channel states. An execution ρ(s) of N on an input string s =
s[1]s[2] . . . s[m] is defined as a sequence of configurations of the form (q0, λ),
(q1, s

′[1]), . . . , (qm, s
′[m]), where for each j, 1 ≤ j ≤ m, (qj−1, s[j], s

′[j],qj) ∈ R.

The output function computed by the networked system �N � : (Σ|I|)
� → (Σ|O|)

�

is then defined such that �N �(s[1].s[2] . . . s[m]) = s′[1].s′[2] . . . s′[m].

2.2 Channel Perturbations and Robustness

An execution of a networked system is said to be perturbed if one or more of
the internal channels are perturbed one or more times during the execution. A
channel perturbation can be modeled as a deletion or substitution of the current
symbol in the channel. To model symbol deletions1, we extend the alphabet of
each internal channel to Σλ = Σ∪λ. A perturbed execution includes transitions
corresponding to channel perturbations, of the form:

(q1, . . . , qn, c1, . . . , c|I|)

(q′1, . . . , q
′
n, c

′
1, . . . , c

′
|I|),

λ,λ

Here, for each i, the states q′i and qi are identical, and for some k, ck �= c′k. Such
transitions, termed τ -transitions2, do not consume any input symbol and model
instantaneous channel errors.We say that the kth internal channel is perturbed in
a τ -transition if ck �= c′k. A perturbed network execution ρτ (s) on an input string
s = s[1]s[2] . . . s[m] is a sequence of configurations (q0,λ), . . . , (qτ , s

′[m]), where
for any j either (qj−1, s[�], s

′[�],qj) ∈ R or (qj−1,λ,λ,qj) is a τ -transition.
Note that there can be several possible perturbed executions of N on a

string s which differ in their exact instances of τ -transitions and the chan-
nels perturbed in each instance. Each such perturbed execution generates a
different perturbed output. For a specific perturbed execution ρτ (s) of the form
(q0,λ), (q1, s

′[1]), . . . , (qτ , s
′[m]), we denote the string s′ = s′[1].s′[2] . . . s′[m]

output by N along that execution by �ρτ �(s). We denote by �Nτ �(s) the set
of all possible perturbed outputs corresponding to the input string s. Formally,�Nτ �(s) is the set {s′ | ∃ρτ (s) s.t. s′ = �ρτ �(s)}.
1 Note that though a perturbation can cause a symbol on an internal channel to get
deleted in a given step, we expect that the processes reading from this channel will
output a nonempty symbol in that step. In this sense, we treat an empty input
symbol simply as a special symbol, and assume that each process can handle such a
symbol.

2 Note that a network transition of the form ((q1, . . . , qn, c1, . . . , c|N|), λ, a′,
(q′1, . . . , q

′
n, c

′
1, . . . , c

′
|N|)) where for some i, qi 	= q′i is not considered a τ -transition:

such a transition involves a state change by some process on an empty input symbol
along with the generation of a nonempty output symbol.

Robustness Analysis of Networked Systems 235

Robustness. A distance metric d : Σ∗ × Σ∗ → R over a set Σ∗ of strings
is a function with the following properties: ∀s, t, u ∈ Σ∗: (1) d(s, t) = 0 iff
s = t, (2) d(s, t) = d(t, s), and (3) d(s, u) ≤ d(s, t) + d(t, u). Let d be such a
distance metric over strings. We extend the metric to vectors of strings in the
standard fashion. Let w = (w1, . . . , wL) be a vector of strings; then d(w,v) =
(d(w1, v1), . . . , d(wL, vL)).

Let τk denote the number of perturbations in the kth internal channel in ρτ (s).
Then, the channel-wise perturbation count in ρτ (s), denoted ‖ρτ (s)‖ is given by
the vector (τ1, . . . , τ|N |). We define robustness of a networked system as follows.

Definition 2.1 (Robust networked system).
Given an upper bound δ = {δ1, . . . , δ|N |} on the number of possible perturbations
in each internal channel, and an upper bound ε = (ε1, . . . , ε|O|) on the acceptable
error in each external output channel of a networked system N , we say that N
is (δ, ε)-robust if:

∀s ∈ (Σ|I|)
�
, ∀ρτ (s) : ‖ρτ(s)‖≤ δ =⇒ d(�N �(s), �ρτ �(s))≤ ε

3 Distance Tracking Automata

The above formulation of the robustness problem is independent of the metric
used to measure the distance between strings in the output channels. In this
paper, we focus on distance metrics such as the Levenshtein distance and L1-
norm that are the most prevalent metrics used in practice to measure distances
between strings. In Sec. 4, we show that the robustness problem with respect to
each of these metrics is efficiently analyzable by reducing it to the problem of
checking language emptiness of a suitably constructed reversal-bounded counter
machine. But first, we briefly review reversal-bounded counter machines, as we
use them extensively in the rest of the paper.

3.1 Review: Reversal-bounded Counter Machines [14,15]

A (one-way, nondeterministic) h-counter machine A is a (one-way, nondetermin-
istic) finite automaton, augmented with h integer counters. Let G be a finite set
of integer constants (including 0). In each step, A may read an input symbol,
perform a test on the counter values, change state, and increment each counter
by some constant g ∈ G. A test on a set of integer counters Z = {z1, . . . , zh} is a
Boolean combination of tests of the form zθg, where z ∈ Z, θ ∈ {≤,≥,=, <,>}
and g ∈ G. Let TZ be the set of all such tests on counters in Z.

Formally, A is defined as a tuple (Σin, X, x0, Z,G,E, F) where Σin, X , xo, F ,
are the input alphabet, set of states, initial state, and final states respectively.
Z is a set of h integer counters, and E ⊆ X × (Σin ∪ λ) × TZ × X × G|Z| is
the transition relation. Each transition (x, σ, t, x′, g1, . . . , gh) denotes a change
of state from x to x′ on symbol σ ∈ Σin ∪λ, with t ∈ TZ being the enabling test
on the counter values, and gk ∈ G being the amount by which the kth counter
is incremented.

236 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

A configuration of a one-way multi-counter machine is defined as the tuple
(x, σ, z1, . . . , zh), where x is the state of the automaton, σ is a symbol of the input
string being read by the automaton and z1, . . . , zh are the values of the coun-
ters. We define a move relation →A on the configurations: (x, σ, z1, . . . , zh) →A

(x′, σ′, z′1, . . . , z
′
h) iff (x, σ, t(z1, . . . , zh), x

′, g1, . . . , gh) ∈ E, where, t(z1, . . . , zh)
is true, ∀k: z′k = zk + gk, and σ′ is the next symbol in the input string be-
ing read. A path is a finite sequence of configurations μ1 . . . , μm where for all
j : μj →A μj+1. A string s ∈ Σ�

in is accepted by A if there exists a path from
(x0, s0, 0, . . . 0) to (x, sj , z1, . . . , zh) for some x ∈ F and j ≤ |s|. The set of strings
(language) accepted by A is denoted L(A).

In general, multi-counter machines do not possess good algorithmic properties
as they can simulate actions of Turing machines (even with just 2 counters). In
[14], the author presents a class of counter machines that with certain restrictions
on the counters possess efficiently decidable properties. We now briefly review
these machines.

A counter is said to be in the increasing mode between two successive con-
figurations if the value of the counter increases, and in the decreasing mode if
the value of the counter decreases. We say that a counter changes mode if for
(three) successive configurations, it goes from the increasing mode to the de-
creasing mode or vice versa. We say that a counter is r-reversal bounded if the
maximum number of times it changes mode along any path is r. We say that a
one-way multi-counter machine A is r-reversal bounded if each of its counters is
at most r-reversal bounded. We denote the class of h-counter, r-reversal-bounded
machines by NCM(h, r).

Lemma 3.1. [12] The nonemptiness problem for a NCM(h, r) A can be solved
in time polynomial in the size of A (i.e., the number of states of A and the
number of counters h).

In Sec. 4, we show how we can algorithmically construct composite machines
that can check robustness of networked systems. A key component of these
constructions are machines that accept a pair of strings iff the two strings are
more than ε distance apart according to the chosen metric. We now present
the construction of a deterministic finite automaton (dfa) Dε

Lev that accepts a
pair of strings iff their Levenshtein distance is greater than ε, followed by the
construction of a reversal-bounded counter automaton Dε

L1
that accepts a pair

of strings iff their L1-norm is greater than ε. In what follows, we assume that
for all i > |s|, si = #, where # is a special end-of-string symbol not in Σ. Let
Σ# = Σ ∪ {#}.

3.2 Automaton for Tracking Levenshtein Distance

Levenshtein distance. The Levenshtein distance dLev(s, t) between strings s
and t is the minimum number of symbol insertions, deletions and substitutions

Robustness Analysis of Networked Systems 237

required to transform one string into another. The Levenshtein distance, or edit
distance, is also defined by the following recurrence relations, for i, j ≥ 1, and
s[0] = t[0] = λ:

dLev(s[0], t[0]) = 0, dLev(s[0, i], t[0]) = i, dLev(s[0], t[0, j]) = j
dLev(s[0, i], t[0, j]) = min(dLev (s[0, i-1], t[0, j-1]) + diff(s[i], t[j]),

dLev (s[0, i-1], t[0, j]) + 1,
dLev (s[0, i], t[0, j-1]) + 1)

(1)

Here, diff(a, b) is defined to be 0 if a = b and 1 otherwise. The first three
relations, that involve empty strings, are obvious. The edit distance between
the nonempty prefixes, s[0, i] and t[0, j], is the minimum of three distances: (1)
the distance corresponding to editing s[0, i-1] into t[0, j-1] and substituting s[i]
for t[j] if they are different symbols, (2) the distance corresponding to editing
s[0, i-1] into t[0, j] and deleting s[i], and, (3) the distance corresponds to editing
s[0, i] into t[0, j-1] and inserting t[j].

In [11], the authors show that for a given integer k, a relation R ⊆ Σ� × Σ�

is rational if and only if for every (s, t) ∈ R, |s| − |t| < k. It is known from
[10], that a subset is rational iff it is the behavior of a finite automaton. Thus,
it follows from the above results that there exists a dfa that accepts the set of
pairs of strings that are within bounded edit distance from each other. However,
these theorems do not provide a constructive procedure for such an automaton.
In what follows, we present a novel construction for a dfa Dε

Lev that accepts a
pair of strings (s, t) iff dLev(s, t) > ε.

The standard algorithm for computing the Levenshtein distance dLev(s, t)
uses a dynamic programming-based approach that uses the above recurrence re-
lations. This algorithm organizes the bottom-up computation of the Levenshtein
distance with the help of a table tab of height |s| and width |t|. The 0th row and
column of tab account for the base case of the recursion. The tab(i, j) entry
stores the Levenshtein distance of the strings s[0, i] and t[0, j]. In general, the
entire table has to be populated in order to compute dLev(s, t). However, when
one is only interested in some bounded distance ε, then for every i, the algorithm
only needs to compute values for the cells from tab(i, i− ε) to tab(i, i+ ε) [13].
We call this region the ε-diagonal of tab, and use this observation to construct
the finite-state automaton Dε

Lev.
The dfa Dε

Lev is defined to run on a pair of strings (s, t), and accept iff
dLev(s, t) > ε. In each step, Dε

Lev reads a pair of input symbols and changes state
to mimic the bottom-up edit distance computation by the dynamic programming
algorithm. We illustrate the operation of Dε

Lev with an example.

Example Run. A run of Dε
Lev on the string pair (s, t) that checks if dLev(s, t) > ε,

for ε = 2 is shown in Fig. 3.1. After reading the ith input symbol pair, Dε
Lev uses

its state to remember the last ε = 2 symbols of s and t that it has read, and
transitions to a state that contains the values of tab(i, i) and the cells within
the ε-diagonal, above and to the left of tab(i, i).

238 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

a

c

b

c

d

#

0

1

2

3

4

5

6

c c f f # #

0 1 2 3 4 5 6

0

1 1

1 2

2

112

�
2

222

�
�
��2

�
�
���

�
�
���

(λ, λ, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 1, 1,⊥〉)

(ac, cc, 〈2, 1, 1, 2, 2〉)

(cb, cf, 〈2, 2, 2, 2,�〉)

(bc, ff, 〈2,�,�,�,�〉)

(cd, f#, 〈�,�,�,�,�〉)

accept

(a, c)

(c, c)

(b, f)

(c, f)

(d, #)

(#, #)

Fig. 3.1. Dynamic programming table emulated by Dε
Lev . The table tab filled by the

dynamic programming algorithm is shown to the left, and a computation of Dε
Lev on

the strings s = acbcd and t = ccff is shown to the right. Here, ε = 2.

Formally, Dε
Lev is defined as a tuple (Σ#×Σ#, QLev,q0Lev, RLev, FLev), where

(Σ#×Σ#), QLev, q0Lev, RLev, FLev are the input alphabet, the set of states, the
initial state, the transition relation and the set of final states respectively. FLev =
{accLev} is a singleton set. In what follows, we define the other components.

We first note that as indicated earlier, Dε
Lev synchronously runs on a pair of

strings, i.e., in each step it reads a symbol from (Σ#×Σ#). We assume that each
string is well-formed, i.e., each string is an element of Σ∗.#∗. A state of Dε

Lev is
defined as the tuple (x, y, e), where x and y are strings of length at most ε and
e is a vector containing 2ε+1 entries, with at most ε+3 possible values for each
entry. A state of Dε

Lev maintains the invariant that if i symbol pairs have been
read, then x = s[i-ε+1, i], y = t[i-ε+1, i] and the entries in e correspond to the
values {tab(i, j) | j ∈ [i-ε, i-1]}, {tab(j, i) | j ∈ [i-ε, i-1]}, and tab(i, i). The
values in these cells greater than ε are replaced by ". The initial state of Dε

Lev

is q0Lev = (λ, λ, 〈⊥, . . . ,⊥, 0,⊥, . . . ,⊥〉), where λ denotes the empty string, ⊥
is a special symbol denoting an undefined value, and the value 0 corresponds to
entry tab(0, 0).

Upon reading the ith input symbol pair, the transition of Dε
Lev from state qi-1

to qi is as shown in Fig. 3.2. Note that to compute values in e corresponding
to the ith row, we need the substring t[i-ε, i-1], the values tab(i-1-ε, i-1) to
tab(i-1, i-1), and the symbol si. From the invariant on the state, it follows that
the values of the required cells from tab and the required substring t[i-ε, i-1]
are present in qi-1 and the input symbol. Similarly, to compute tab(j, i), where
j ∈ [i-1-ε, i] the string in y, values in e of qi−1 and the input symbol suffice.
Thus, given any state of Dε

Lev and an input symbol pair, we can construct the
unique next state that satisfies the state-invariant.

Recall that for strings s,t, the value of dLev(s, t) is stored in the entry tab(|s|, |t|)
of tab. Keeping this in mind, upon reading the symbol (#, #), we add transitions
to the accepting state accLev iff:

Robustness Analysis of Networked Systems 239

s[i-ε, i-1], t[i-ε, i-1], tab

(i-1-ε, i-1) (i-1, i-1)

(i-1, i-ε-1)

s[i], t[i]

s[i-ε, i], t[i-ε, i],

(i-ε+1, i) (i, i)

(i, i-ε+1)

tab

Fig. 3.2. A transition of Dε
Lev

– |s| = |t|, i.e., x and y do not contain #, and the (ε+ 1)th entry in e is ", or,
– |s| = |t|+ �, i.e., y contains � #’s, x contains no #, and the (ε+1− �)th entry

in e is ", or,
– |t| = |s|+ �, i.e., x contains � #’s, y contains no #, and the (ε+1+ �)th entry

in e is ".

This shows how we can construct a Dε
Lev that exactly mimics the dynamic pro-

gramming algorithm. The following lemma states the correctness of this con-
struction. The proof follows from the state-invariant maintained by Dε

Lev and its
acceptance condition.

Lemma 3.2. Dε
Lev accepts a pair of strings (s, t) iff dLev(s, t) > ε.

3.3 Automaton for Tracking L1-norm

The L1-norm measures the number of positions in which two strings differ. As
before, let s[0] = t[0] = λ. Formally, we define dL1(s, t) using the following
recurrence relations:

dL1(s[0], t[0]) = 0 dL1(s[0, j], t[0, j]) = dL1(s[0, j-1], t[0, j-1]) + diff(s[j], t[j])

We now define the automaton Dε
L1

that accepts pairs of strings (s, t) such that
dL1(s, t) > ε. The automaton Dε

L1
is a 1-reversal-bounded 1-counter machine

(i.e., in NCM(1,1)), defined as a tuple (Σ# × Σ#, XL1 , x0L1
, Z,GL1 , EL1 , FL1),

where (Σ#×Σ#) is its input alphabet, XL1 = {x0L1 , xL1 , accL1}, is a set of three
states, x0L1 is the initial state, Z = {z} is a single 1-reversal-bounded counter,

240 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

GL1 = {ε, 0,−1} is a set of integers, and FL1 = {accL1} is the singleton set of
final states. The transition relation contains the following types of transitions:

1. The transition (x0L1 , (λ, λ), true, xL1 , ε) is an initialization transition that
sets the counter to ε.

2. The transition (xL1 , (a, a), z ≥ 0, xL1 , 0) keeps the state and counter of Dε
L1

unchanged upon reading a pair of the same symbols.
3. Transitions of the form (xL1 , (a, b), z > 0, xL1 ,−1), for a �= b, decrement

the counter by 1 upon reading a pair of distinct symbols. These transitions
essentially count the number of differing positions of the two strings.

4. The transition (xL1 , (a, b), z = 0, accL1 , 0), for a �= b, moves Dε
L1

to an ac-

cepting state when it finds the (ε + 1)th differing position. This indicates
that the L1-norm between the strings being read is greater than ε.

Lemma 3.3. Dε
L1

accepts a pair of strings (s, t) iff dL1(s, t) > ε.

Remark: The construction of Dε
Lev is significantly more involved than that of

Dε
L1
. This is perhaps clear from the difference in the complexity of the respective

recurrence relations. Unlike the L1-norm, for edit distance computation, it is not
sufficient to focus on the positions of edits in each string. One must also obtain
the optimal alignment or matching between strings s and t. For instance, the
L1-norm between the strings shin and hind is 4, while the edit distance is only
2 (delete s, align/match hin, insert d).

4 Analyzing Robustness of a Networked System

In this section, we present an automata-theoretic framework for checking robust-
ness of a networked system in the presence of bounded channel perturbations.
Checking if a networked system N is (δ, ε)-robust is equivalent to checking if,
for each output channel o� ∈ O (with an error bound of ε�), N is (δ, ε�)-robust.
Thus, in what follows, we focus on the problem of checking robustness of the
networked system N for a single output channel. Rephrasing the robustness defi-
nition from before, we need to check if for all input strings s ∈ (Σ|I|)�.(#|I|)�, and
all runs ρτ (s) of N , ‖ρτ (s)‖ ≤ δ implies that d(�N �|�(s), �ρτ �|�(s)) ≤ ε�. Here,�N �|�(s), �ρτ �|�(s) respectively denote the projections of �N �(s) and �ρτ �(s) on
the �th output channel. For simplicity in notation, henceforth, we drop the � in
the error bound on the channel, and denote it simply by ε.

In what follows, we define composite machines A that accept input strings cer-
tifying the non-robust behavior of a given networked system N . In other words,
A accepts a string s ∈ (Σ|I|)�.(#|I|)� iff there exists a perturbed execution ρτ (s)
of the networked systemN such that: ‖ρτ(s)‖ ≤ δ and d(�N �|�(s), �ρτ �|�(s)) > ε.
Thus, the networked system N is (δ, ε)-robust iff L(A) is empty.

4.1 Robustness Analysis for the Levenshtein Distance Metric

The composite machine Aδ,ε
Lev, certifying non-robustness with respect to the Lev-

enshtein distance metric, is a nondeterministic 1-reversal-bounded |N |-counter

Robustness Analysis of Networked Systems 241

machine, i.e., in the class NCM(|N |,1). In each run on an input string s, Aδ,ε
Lev si-

multaneously does the following: (a) it simulates an unperturbed execution ρ(s)
and a perturbed execution ρτ (s) of N , (b) keeps track of all the internal channel
perturbations along ρτ (s), and (c) tracks the Levenshtein distance between the
outputs generated along ρ(s) and ρτ (s).

Similar to the semantics of a networked system N with multiple output chan-
nels, we can define the semantics of N for the �th output channel using the
tuple (Σ|I|, Σ,Q,q0, R|�). Here, R|� denotes the projection of the transition re-
lation R of N onto the �th output channel. To incorporate the addition of #
symbols at the end of strings, the semantics of N is further modified to the
tuple (Σ|I| ∪ {#|I|}, Σ#, Q,q0, R

#), where R# = R|� ∪ {(q, ((#, . . . , #), #),q) :
q ∈ Q}. Also recall from Sec. 3, that the automaton Dε

Lev, accepting pairs of
strings with edit distance greater than ε from each other, is defined by the tu-
ple ((Σ# × Σ#), QLev,q0Lev, RLev, FLev). Formally, the machine Aδ,ε

Lev, in the
class NCM(|N |,1), is defined as the tuple (Σ|I|∪{#|I|}, X,x0, Z,G,E, F), where
X,x0, Z,G,E, F are respectively the set of states, initial state, set of counters,
a finite set of integers, the transition relation and the final states of Aδ,ε

Lev. We
define these below.

The set of states X = Y ∪ {acc, rej}, where Y ⊆ (Q×Q×QLev). Each state

x ∈ Y of Aδ,ε
Lev is a tuple (q, r,qLev), where the component labeled q tracks the

state of N when it has no channel perturbations, the component r tracks the
state of the network when it has channel perturbations, and qLev is a state in
Dε
Lev.

The initial state of Aδ,ε
Lev, x0, is given by the tuple (q0,q0,q0Lev). The set of

counters Z = {z1, . . . , z|N |} tracks the number of perturbations in each internal
channel of N . The initial value of each counter is 0. G = {0,−1, δ1, δ2, . . . , δ|N |}
is the set of all integers that can be used in tests on counter values, or by which
any counter in Z can be incremented. The set of final states is the singleton set
{acc}.

The transition relation E of Aδ,ε
Lev is constructed using the following steps:

1. Initialization transition:
From the initial state x0, we add a single transition of the form:(

(q0,q0,q0Lev), λ,
∧
k

zk = 0, (q0,q0,q0Lev), (+δ1, . . . ,+δ|N |)

)

In this transition, Aδ,ε
Lev sets each counter zk to the error bound δk on the

kth internal channel, without consuming an input symbol or changing state.
Note that the counter test ensures that this transition can be taken only
once from x0.

2. Unperturbed network transitions:
For all pairs of transitions in the transition relation R# with the same input
symbol, i.e., (q, a, b,q′) and (r, a, b′, r′), and transitions of the form (qLev,

(b, b′), q′
Lev) ∈ RLev, we add a transition of the following form to Aδ,ε

Lev:

242 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

(
(q, r,qLev), a,

∧
k

zk ≥ 0, (q′, r′,q′
Lev), 0

)
In each such transition, Aδ,ε

Lev consumes an input symbol a ∈ Σ|I| ∪ {#|I|}
and simulates a pair of transitions of the unperturbed network N on a in the
first two components of its state. The distance between the corresponding
outputs of N (b and b′ above) is tracked by the third component. Note that
in such transitions, all counter values are required to be non-negative in the
source state and are not modified.

3. Perturbed network transitions:
From each state x ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∧
k

zk ≥ 0, (q, rτ ,qLev), g

)
In each such transition, Aδ,ε

Lev simulates a τ -transition of the form (r,λ,λ, rτ).
In the transition, g denotes a vector with entries in {0,−1}, where gk = −1
iff the kth internal channel is perturbed in (r,λ,λ, rτ). Thus, we model a per-
turbation on the kth internal channel by decrementing the (nonnegative) zk
counter of Aδ,ε

Lev. Note that in these transitions, no input symbol is consumed,
and the first and third components, i.e. q and qLev remain unchanged.

4. Rejecting transitions:
From each state x ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∨
k

zk < 0, rej, 0

)
From the state rej, for all a ∈ Σ|I|, we add a transition: (rej, a, true, rej,0).

We add a transition to a designated rejecting state whenever the value of
some counter zk goes below 0, i.e., whenever the perturbation count in some
kth internal channel exceeds the error bound δk. Once in the state rej, Aδ,ε

Lev

ignores any further input read, and remains in that state.

5. Accepting transitions:
Finally, from each state (q, r, accLev) ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∧
k

zk ≥ 0, acc, 0

)
We add a transition to the unique accepting state whenever qLev = accLev

and
∧

k zk ≥ 0. The first criterion ensures that d(�N �|�(s), �ρτ �|�(s)) > ε
(as indicated by reaching the accepting state in Dε

Lev). The second criterion
ensures that ‖ρτ (s)‖ ≤ δ, i.e., the run ρτ (s) of N on s models perturbations
on the network that respect the internal channel error bounds.

Robustness Analysis of Networked Systems 243

Theorem 4.1. Given an upper bound δ on the number of perturbations in the
internal channels, and an upper bound ε on the acceptable error for a particular
output channel, the problem of checking if the networked system N is (δ, ε)-
robust with respect to the Levenshtein distance is polynomial in the size of N
and exponential in ε.

Proof. We first note that the construction of Aδ,ε
Lev reduces the problem of check-

ing (δ, ε)-robustness ofN (w.r.t. the Levenshtein distance) to checking emptiness

of Aδ,ε
Lev. From the construction of Aδ,ε

Lev, we can see that its number of states i.e.
|X | is O(|Q|2.|QLev|). From Sec. 3, we know that |QLev| is exponential in ε. As

Aδ,ε
Lev belongs to the class NCM(|N |, 1) from Lemma 3.1, we know that checking

emptiness of Aδ,ε
Lev is polynomial in the number of states |X | and the number

of counters |N | of Aδ,ε
Lev. Thus, checking emptiness of Aδ,ε

Lev can be done in time
polynomial in |Q| and |N | (i.e., the size of the network), and exponential in ε.

4.2 Robustness Analysis for the L1-norm Distance Metric

The composite machine Aδ,ε
L1

certifying non-robustness with respect to the L1-
norm metric, is a nondeterministic, 1-reversal-bounded (|N | + 1)-counter ma-

chine, i.e., in the class NCM(|N | + 1, 1). Similar to Aδ,ε
Lev, the machine Aδ,ε

L1

also simultaneously simulates a perturbed and unperturbed execution of the
networked system, while tracking the L1-norm between the outputs generated
along both the runs.

Recall from Sec. 3, that the automaton Dε
L1
, accepting pairs of strings with L1-

norm greater than ε from each other, is in the class NCM(1,1), and is defined by

the tuple (Σ# ×Σ#, XL1 , x0L1
, Z,GL1 , EL1 , FL1). Formally, the machine Aδ,ε

L1
, in

the class NCM(|N |+ 1, is defined as the tuple (Σ|I| ∪ {#|I|}, X,x0, Z,G,E, F),
where all components have their usual meaning. The set of states X = Y ∪
{acc, rej}, where Y ⊆ (Q×Q×XL1). The initial state x0 is (q0,q0, x0L1). The
set of counters Z = {z1, . . . , z|N |}∪{z}, where z is an additional counter used to
track the L1-norm for the output strings. The set G = {0,−1, δ1, δ2, . . . , δ|N |, ε},
the set F of final states is the singleton set {acc}.

We add transitions to E in a step-wise fashion similar to that for Aδ,ε
Lev:

1. Initialization transition:
We add a single transition of the form:(
(q0,q0, x0L1), λ,

∧
k

zk=0 ∧ z = 0, (q0,q0, x0L1), (+δ1, . . . ,+δ|N |, +ε)

)
In addition to initializing the counters for tracking the internal channel error
bounds, this transition also initializes the counter for tracking the L1-norm
of the output strings.

2. Unperturbed network transitions:
For all pairs of transitions in R# with the same input symbol and out-
put symbol, i.e., (q, a, b,q′) and (r, a, b, r′), and transitions of the form

244 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

(xL1 , (b, b), z ≥ 0, xL1 , 0) in EL1 , we add a transition of the following form

to Aδ,ε
L1

:(
(q, r, xL1), a,

∧
zk ≥ 0 ∧ z ≥ 0, (q′, r′, xL1), (0, . . . , 0, 0)

)
.

For all pairs of transitions in R# with the same input symbol and different
output symbols, i.e., (q, a, b,q′) and (r, a, b′, r′), and transitions of the form
(xL1 , (b, b

′), z > 0, xL1 ,−1) in EL1 , we add a transition of the following form

to Aδ,ε
L1

:(
(q, r, xL1), a,

∧
zk ≥ 0 ∧ z > 0, (q′, r′, xL1), (0, . . . , 0,−1)

)
.

For all pairs of transitions in R# with the same input symbol and different
output symbols, i.e., (q, a, b,q′) and (r, a, b′, r′), and transitions of the form
(xL1 , (b, b

′), z = 0, accL1 , 0) in EL1 , we add transitions of the following form

to Aδ,ε
L1

:(
(q, r, xL1), a,

∧
zk ≥ 0 ∧ z = 0, (q′, r′, accL1), (0, . . . , 0, 0)

)
.

The perturbed network transitions, rejecting transitions, and accepting transi-
tions are added in a similar fashion to Aδ,ε

Lev, (substitute qLev in all transitions

for Aδ,ε
Lev by xL1).

Theorem 4.2. Given an upper bound δ on the number of perturbations in the
internal channels, and an upper bound ε on the acceptable error for a particular
output channel, the problem of checking if the networked system N is (δ, ε)-robust
with respect to the L1-norm is polynomial in the size of the network N .

Proof. We note that the construction of Aδ,ε
L1

reduces the problem of checking

(δ, ε)-robustness for N (w.r.t. the L1-norm) to checking emptiness of Aδ,ε
L1

. As

Aδ,ε
L1

belongs to the class NCM(|N |+1,1), from Lemma 3.1, we know that checking

emptiness of Aδ,ε
L1

is polynomial in |X | (number of states of Aδ,ε
L1

) and (|N |+ 1).

From the construction of Aδ,ε
L1

, we know that |X | = O(|Q|2.|QL1 |), and from

Sec. 3, we know that |QL1 | is a small constant. Thus, checking emptiness of Aδ,ε
L1

can be done in time polynomial in |Q| and |N |, i.e., polynomial in the size of
the network.

5 Related Work

There is a growing interest in the study of robustness in the formal methods
and software engineering communities. The initial papers by Majumdar and
Saha [17] and by Chaudhuri et al [5,6,7] consider robustness of infinite-state
programs. The programs considered in these papers are essentially functional;
their scope does not extend to concurrent systems with channel errors like ours.

Robustness Analysis of Networked Systems 245

More recent papers have aimed to develop a notion of robustness for reactive
systems. In [22], the authors propose a comprehensive notion of input-output
stability of finite-state transducers that bounds both the deviation of the out-
put from disturbance-free behaviour under bounded disturbance, as well as the
persistence of the effect on the output of a sporadic disturbance. The deviations
are measured using cost functions that map strings to nonnegative integers. The
authors present polynomial-time algorithms for the analysis and synthesis of ro-
bust transducers. Exploring extensions of techniques presented in our paper to
address persistence of a sporadic disturbance would be interesting.

In [18,4,2], the authors develop different notions of robustness for reactive
systems, with ω-regular specifications, interacting with uncertain environments.
In [18], the authors present metric automata, which are automata equipped with
a metric on states. The authors assume that at any step, the environment can
perturb any state q to a state at most γ(q) distance away, where γ is some
function mapping states to real numbers. A winning strategy for a finite-state
or Büchi automaton A is a strategy that satisfies the corresponding acceptance
condition (stated as reachability of states in F or as infinitely often visiting states
in F respectively). Such a winning strategy is defined to be σ-robust if it is a
winning strategy for A where the set F ′ characterizing the acceptance condition
includes all states at most σ.supq∈F γ(q) distance away from the F . We note that
while there are some similarities in how a disturbance is modeled, our approach
is quite different, as we quantify and analyze the effect of errors over time, and
do not associate metrics with individual states.

In [8], the authors study robustness of sequential circuits w.r.t. a common
suffix distance metric. Their notion of robustness essentially bounds the persis-
tence of the effect of a sporadic disturbance in the input of a sequential circuit.
To be precise, a circuit is said to be robust iff the position of the last mismatch
in any pair of output sequences is a bounded number of positions from the last
mismatch position in the corresponding pair of input sequences. The authors
present a polynomial-time algorithm to decide robustness of sequential circuits
modeled as (single) Mealy machines. The metric and its subsequent treatment
developed in this paper is useful for analyzing circuits; however, for networked
systems communicating via strings, metrics such as edit distance and the L1-
norm provide a more standard way to measure the effect of errors.

In [9], the authors present modeling techniques for cyber-physical systems.
Further, the authors also discuss the challenges of including a network in a
cyber-physical system. A key observation is that to maintain discrete-event se-
mantics of components in such a system, it is important to have a common sense
of time across all components. A critical requirement in such systems is that the
communication remain synchronized, which is typically fulfilled by using proto-
cols that bound the allowed drift in the value of the global clock. In our model,
we do not analyze such details, and abstract them away, assuming that some
underlying protocol ensures synchronous communication.

Work in the area of robust control seeks to analyze and design networked
control systems where communication between sensors, the controller, and

246 R. Samanta, J.V. Deshmukh, and S. Chaudhuri

actuators occurs over unreliable networks such as wireless networks [1]. On the
other hand, work on wireless control networks [20,21] focuses on design of dis-
tributed controllers where the components of the controller communicate over
unreliable wireless networks. In such applications, robustness typically means
desirable properties of the control loop such as stability. We note that these pa-
pers typically assume a synchronous communication schedule as supported by
wireless industrial control protocols such as ISA 100 and WirelessHART.

6 Discussion

We have presented a framework for the analysis of robustness of networked
systems in the presence of bounded channel perturbations. There are a few
directions in which this framework can be developed further. The first is a more
extensive treatment of distance metrics. We observe that the symbol sequences
(in Σ∗) in a networked cyber-physical system could represent a wide range of
digital signals. To accurately model the deviation of such signals in an error-
prone network from their error-free counterparts, one must track the magnitude
of the signals. This necessitates defining and computing distances that are based
on mapping individual symbols or symbol sequences to numbers [22].

The second direction is a generalization of the error model and subsequently,
the robustness definition. In this work, we only focus on internal channel errors
in a network, and assume that the input and output channels are error-free.
However, in a real-world scenario, there can be multiple sources of uncertainty
such as sensor and actuator noise, modeling errors and process failures. A com-
prehensive robustness analysis should thus check if small disturbances in the
inputs or internal channels or processes result in small deviations in the system
behaviour.

Finally, we also wish to investigate the extension of our current techniques to
the design of robust networks.

References

1. Alur, R., D’Innocenzo, A., Johansson, K.H., Pappas, G.J., Weiss, G.: Composi-
tional Modeling and Analysis of Multi-Hop Control Networks. IEEE Transactions
on Automatic Control 56(10), 2345–2357 (2011)

2. Bloem, R., Greimel, K., Henzinger, T., Jobstmann, B.: Synthesizing Robust Sys-
tems. In: Proceedings of Formal Methods in Computer Aided Design (FMCAD),
pp. 85–92 (2009)

3. Boussinot, F., De Simone, R.: The ESTEREL language. Proceedings of the
IEEE 79(9), 1293–1304 (1991)

4. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation Distances. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer,
Heidelberg (2010)

5. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity Analysis of Programs. In:
Proceedings of Principles of Programming Languages (POPL), pp. 57–70 (2010)

Robustness Analysis of Networked Systems 247

6. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and Robustness of Pro-
grams. Communications of the ACM (2012)

7. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving Programs Ro-
bust. In: Proceedings of Foundations of Software Engineering, pp. 102–112 (2011)

8. Doyen, L., Henzinger, T.A., Legay, A., Ničković, D.: Robustness of Sequential Cir-
cuits. In: Proceedings of Application of Concurrency to System Design (ACSD),
pp. 77–84 (2010)

9. Eidson, J.C., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed Real-Time
Software for Cyber-Physical Systems. Proceedings of the IEEE (Special Issue on
CPS) 100(1), 45–59 (2012)

10. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New
York (1974)

11. Frougny, C., Sakarovitch, J.: Rational Relations with Bounded Delay. In: Jantzen,
M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 50–63. Springer, Heidel-
berg (1991)

12. Gurari, E.M., Ibarra, O.H.: The Complexity of Decision Problems for Finite-Turn
Multicounter Machines. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115,
pp. 495–505. Springer, Heidelberg (1981)

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

14. Ibarra, O.H.: Reversal-Bounded Multicounter Machines and Their Decision Prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

15. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.A.: Counter Machines:
Decidable Properties and Applications to Verification Problems. In: Nielsen, M.,
Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 426–435. Springer, Heidelberg
(2000)

16. Kahn, G.: The Semantics of Simple Language for Parallel Programming. In: IFIP
Congress, pp. 471–475 (1974)

17. Majumdar, R., Saha, I.: Symbolic Robustness Analysis. In: 30th IEEE Real-Time
Systems Symposium, pp. 355–363 (2009)

18. Majumdar, R., Render, E., Tabuada, P.: A Theory of Robust Software Synthesis.
CoRR abs/1108.3540 (2011)

19. Mealy, G.H.: A Method for Synthesizing Sequential Circuits. Bell Systems Techni-
cal Journal, 1045–1079 (1955)

20. Pajic, M., Sundaram, S., Pappas, G.J., Mangharam, R.: The Wireless Control
Network: A New Approach for Control Over Networks. IEEE Transactions on
Automatic Control 56(10), 2305–2318 (2011)

21. Pappas, G.J.: Wireless Control Networks: Modeling, Synthesis, Robustness, Secu-
rity. In: Proceedings of Hybrid Systems: Computation and Control (HSCC), pp.
1–2 (2011)

22. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input Out-
put Stability for Discrete Systems. In: Proceedings of International Conference on
Embedded Software, EMSOFT (2012)

Causality Checking for Complex System Models

Florian Leitner-Fischer and Stefan Leue

University of Konstanz, Germany

Abstract. We present an approach for the algorithmic computation of
causalities in system models that we refer to as causality checking. We
base our notion of causality on counterfactual reasoning, in particular
using the structural equation model approach by Halpern and Pearl that
we recently have extended to reason about computational models. In
this paper we present a search-based on-the-fly approach that nicely
integrates into finite state verification techniques, such as explicit-state
model checking. We demonstrate the applicability of our approach using
an industrial case study.

1 Introduction

Model Checking [1] is an established technique for the automated analysis of sys-
tem properties. If a model of the system and a formalized property is given to the
model checker, it automatically checks whether it can find property violations.
In case some property is violated, the model checker returns a counterexample,
which consists of a system execution trace leading to the property violation.
While a counterexample helps in retracing the system execution leading to the
property violation, it does not identify causes of the property violation.

We present an approach based on explicit state space search towards the auto-
mated computation of causalities that we refer to as causality checking. Instead of
returning just a single counterexample at the end of the model checking process,
we compute causal events that lead to the violation of a desired system property.
The notion of causality that we use is based on counterfactual reasoning [2, 3].

In precursory work [4] causality computation was performed as a postprocess-
ing step on a set of probabilistic counterexamples. In addition we presented a
mapping of the computed causality relationships between events to fault trees.
For the causality computation all possible execution traces need to be computed
and stored on disk prior to the causality checking. The current paper focuses on a
extension of our causality model and an integration of the causality computation
into standard state-space search as used by explicit-state model checkers. Conse-
quently, it is no longer necessary to store all good and bad execution traces before
performing the causality computation. We tailor the causality model from [4] so
that it can be used for the analysis of concurrent system models described by
transition systems. We also show how the causality checks can be mapped to
sub- and superset comparisons of execution traces. The proposed algorithm for
causality checking is an extension of the depth-first search and breadth-first

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 248–267, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Causality Checking for Complex System Models 249

search algorithms used for state-space exploration in explicit-state model check-
ing. In keeping with standard practice in this domain we design our algorithms
to work on-the-fly. To his end we propose a data-structure called subset graph
that is used to store the counterexamples that are needed for causality checking.
A further contribution of our current paper is an application of this approach
to two case studies, one of them of industrial size, and a comparison of various
search strategies.

The remainder of this paper is structured as follows. In Section 2 we discuss
how causality relationships can be formally established within system models.
The on-the-fly algorithm for causality computation and its integration in state-
space exploration algorithms is presented in Section 3. In Section 4 we demon-
strate the causality checking approach using two case studies. Related work is
discussed throughout the paper and in Section 5. We conclude in Section 6.

2 Causality Reasoning in System Models

Our goal is to identify the events that cause the violation of a non-reachablitiy
requirement. Such a violation could, for instance, represent a hazard or a po-
tentially unsafe state of the system. We use the explicit state model checker
SPIN [5] to check whether there are system executions that lead to such an
undesired state.

2.1 System Model

The systems that we wish to apply causality checking to are concurrent systems.
For the formalization of the system model we follow the formalization of a model
for concurrent computing systems proposed in [6]. The system model is given by
a Transition System which is defined as follows:

Definition 1. Transition System. A transition system TS is a tuple (S,Act,
→, I,AP, L) where S is a finite set of states, Act is a finite set of actions,
→ ⊆ S ×Act×S is a transition relation, I ⊆ S is a set of initial states, AP is a
set of atomic propositions, and L ∶ S → 2AP is a labeling function.

A Transition System defines a Kripke structure. Each state s ∈ S is labeled with
the set L(s) of all atomic state propositions that are true in this state. The set
Act contains all actions that can trigger the system to transit from some state
into a successor state. The execution semantics of a transition system is defined
as follows:

Definition 2. Execution Trace of a Transition System. Let T = (S,Act,→,
I,AP, L) be a transition system. A finite execution σ of T is an alternating se-
quence of states s ∈ S and actions α ∈ Act ending with a state. σ = s0 α1 s1 α2 ...

αn sn s.t. si
αi+1
��→ si+1 for all 0 ≤ i < n.

The analysis aims at identifying the violation of functional safety requirements.
Such a violation is also referred to as a hazard. We use linear time temporal

250 F. Leitner-Fischer and S. Leue

logic (LTL) using its standard syntax and semantics as defined in [7] in order to
specify hazards. Hazards imply the reachability of unsafe states and they hence
belong to the class of reachability properties. Hence we only need to consider
finite execution fragments [6]. Hazards fall within the class of safety properties
in the commonly used classification scheme of safety and liveness properties. We
use T ⊧l ϕ to express that the LTL formula ϕ holds for the transition system T
and σ ⊧l ϕ respectively for execution traces.

We will demonstrate the presented definitions on a running example of a
railroad crossing system. In the running example a train can approach the cross-
ing (Ta), cross the crossing (Tc) and finally leave the crossing (Tl). When-
ever a train is approaching, the gate should close (Gc) and will open when
the train has left the crossing (Go). It might also be the case that the gate
fails (Gf). The car approaches the crossing (Ca) and crosses the crossing (Cc)
if the gate is open and finally leaves the crossing (Cl). We are interested in
finding those events that lead to a hazard state in which both the car and the
train are in the crossing. This hazard can be characterized by the LTL formula
ϕ = �¬(car crossing ∧ train crossing).

In the following we will use short-hand notation σ = “aα1 ,aα2 , ... , aαn” for an
execution trace σ = s0 α1 s1 α2 ... αn sn. The trace σ = “Ta, Ca, Gf, Cc, Tc”,
for instance, is a trace of the railroad example where the train and the car are
approaching the crossing (Ta, Ca), the gate fails to close (Gf), the car crosses
the crossing (Cc) and finally the train crosses the crossing (Tc).

We can partition the set of all possible execution traces Σ of a transition
system T into the set of “good” execution traces, denoted ΣG, where the LTL
formula is not violated and thus the hazard does not occur, and the set of “bad”
execution traces, denoted ΣB, where the LTL formula is violated and thus the
hazard occurs. The elements of ΣB are also referred to as counterexamples in
model checking. The trace σ = “Ta, Ca, Gf, Cc, Tc” we already discussed above
is a “bad” execution trace, since bot the car and the train are on the crossing at
the same time and thus the LTL property is violated. An example for a “good”
trace is σ′ = “Ta,Ca,Gf,Cc,Cl, T c” where the car leaves the crossing (Cl) before
the train is crossing (Tc) and consequently the train and the car are not on the
crossing at the same time and the LTL formula is not violated.

Definition 3. Good and Bad Execution Traces. Let T = (S,Act, →, I,AP, L)
be a transition system, let ϕ an LTL formula over AP and Σ that set of all
possible finite executions of T. The set Σ is divided into into the set of “good”
execution traces ΣG and in the set of “bad” execution traces ΣB as follows:
ΣG = {σ ∈ Σ ∣ σ ⊧l ϕ}, ΣB = {σ ∈ Σ ∣ σ /⊧l ϕ} and ΣG∪ΣB = Σ and ΣG∩ΣB = ∅.

2.2 Causality Reasoning

Our goal is to automatically identify those events that are causal for the violation
of an LTL property. We assume that for a given execution trace σ of a transition
system T , Act contains the events that we wish to reason about. For an LTL
formula ϕ specifying a safety requirement and an execution trace σ, the hazard

Causality Checking for Complex System Models 251

described by the safety requirement occurs on σ if and only if σ /⊧l ϕ holds.
Notice that since each transition is only labeled with one action, only one event
can occur per transition. In order to be able to reason about the causality of
events we have to formally capture the occurrence of events. We assume that
there exists a set A of event variables that contains a boolean variable a for each
action α ∈ Act for some given transition system. The variable aTa for instance
represents the event train approaching the crossing. If multiple instances of one
event type occur on one execution trace, for example the two train approaching
events on “Ta,Gc,Tc,Tl,Go,Ta”, the variables representing them are numbered
according to their occurrence, for our example aTa1 and aTa2 . In other words,
the i-th occurrence of some action of type α will be represented by the boolean
variable aαi . In the following we also abbreviate the event variable aTa by Ta.

Definition 4. Events, Event Types and Event Variables. Let T = (S,Act,→,
I,AP, L) a transition system and σ = s0, α1, s1, α2, . . . αn, sn a finite execution
trace of T. We define the following: each α ∈ Act defines an event type α. αi

of σ denotes the i-th occurrence of an event of the event type α. The variable
representing the occurrence of the event αi is denoted by aαi , and the set A =
{aα1 , ..., aαn} contains a boolean variable for each occurrence of an event.

Event variables allow us to reason about the occurrence of single events, but since
we want to reason about the combination of events, we need a formalism that
allows us to express the occurrence of event combinations. In [4] we presented
the event order logic (EOL) which allows one to connect event variables from A
with the boolean connectives ∧, ∨ and ¬. To express the ordering of events we
introduced the ordered conjunction operator �. The formula a � b with a, b ∈ A
is satisfied if and only if events a and b occur in a trace and a occurs before b.
We present here an amended version of the event order logic and further refine
it in order to enable causality reasoning for concurrent system models specified
by transition systems. In addition to the � operator we introduce the interval
operators �[, �], and �< φ �>, which define an interval in which an event has to
hold in all states. As we will see later, these interval operators are necessary to
express the causal non-occurrence of events.

Definition 5. Syntax of Event Order Logic (EOL). Simple event order logic
formulas over the set A of event variables are formed according to the following
grammar:

φ ∶∶= a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∨ φ2

where a ∈ A and φ, φ1 and φ2 are simple event order logic formulas. Complex
event order logic formulas are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ψ2 ∣ ψ1 ∨ψ2 ∣ ψ1 � ψ2 ∣ ψ �[φ ∣ φ �] ψ ∣ ψ1 �< φ �> ψ2

where φ is a simple event order logic formula and ψ1 and ψ2 are complex event
order logic formulas. Note that the ¬ operator binds more tightly than the �, �[,
�], and �< φ �>, operators and those bind more tightly than the ∨ and ∧ operator.

252 F. Leitner-Fischer and S. Leue

The formal semantics of this logic is defined on execution traces. Notice that the
�, �

[
, �
]
, and �< φ �> operators are linear temporal logic operators and that the

execution trace σ is akin to a linearly ordered Kripke structure.

Definition 6. Semantics of Event Order Logic (EOL). Let T = (S,Act,→, I,AP,
L) a transition system, let φ, φ1, φ2 simple event order logic formulas, let ψ, ψ1,
ψ2 complex event order logic formulas, and let A a set of event variables, with
aαi ∈ A, over which φ, φ1, φ2 are built. Let σ = s0, α1, s1, α2, . . . αn, sn a finite
execution trace of T and σ[i..r] = si, αi+1, si+1, αi+2, . . . αr, sr a partial trace. We
define that an execution trace σ satisfies a formula ψ, written as σ ⊧e ψ, as
follows:

– sj ⊧e aαi iff sj−1
αi
�→ sj

– sj ⊧e ¬φ iff not sj ⊧e φ

– σ[i..r] ⊧e φ iff ∃j ∶ i ≤ j ≤ r . sj ⊧e φ

– σ ⊧e ψ iff σ[0..n] ⊧e ψ, where n is the length of σ.

– σ[i..r] ⊧e φ1 ∧ φ2 iff σ[i..r] ⊧e φ1 and σ[i..r] ⊧e φ2
– σ[i..r] ⊧e φ1 ∨ φ2 iff σ[i..r] ⊧e φ1 or σ[i..r] ⊧e φ2
– σ[i..r] ⊧e ψ1 ∧ψ2 iff σ[i..r] ⊧e ψ1 and σ[i..r] ⊧e ψ2

– σ[i..r] ⊧e ψ1 ∨ψ2 iff σ[i..r] ⊧e ψ1 or σ[i..r] ⊧e ψ2

– σ[i..r] ⊧e ψ1 �ψ2 iff ∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

– σ[i..r] ⊧e ψ �[φ iff (∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧e ψ and (∀k ∶ j ≤ k ≤ r . σ[k..k] ⊧e
φ))

– σ[i..r] ⊧e φ �] ψ iff (∃j ∶ i ≤ j ≤ r . σ[j..r] ⊧e ψ and (∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧e
φ))

– σ[i..r] ⊧e ψ1 �< φ �> ψ2 iff (∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e
ψ2 and (∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧e φ))

We define that the transition system T satisfies the formula ψ, written as T ⊧e ψ,
iff ∃σ ∈ T . σ ⊧e ψ.

Each execution trace σ specifies an assignment of the boolean values true and
false to the variables in the set A. If an event αi occurs on σ its value is set
to true. If the event does not occur on σ its value is set to false. We define
a function valA(σ) that represents the valuation of all variables in A for a
given σ.

Definition 7. Valuation of the Set of Event Variables. Let T = (S,Act,→,
I,AP, L) a transition system, σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace
of T and A the set of event variables then we define the function valA(σ) as
follows:

valA(σ) = (aα1 , ..., aαn) ∣ aαi = {
true if σ ⊧e aαi

false, else
.

Further we define valA(σ) = valA(σ
′) if for all aαi ∈ A the values assigned by

valA(σ) and valA(σ
′) are equal and valA(σ) ≠ valA(σ

′) else.

Causality Checking for Complex System Models 253

In fact, we can represent an execution trace by an EOL formula. Suppose we want
to represent the execution trace σ = “Ta, Ca, Gf, Cc, Tc” by an EOL formula.
We partition the set A of event variables in the set Z containing all the event
variables of the events that occur on σ and the set W containing all the event
variables of the events that do not occur on σ. Consequently, Z contains Ta, Ca,
Gf, Cc, and Tc. The resulting EOL formula over Z is ψ = Ta�Ca�Gf�Cc�Tc.

Definition 8. Event Order Logic (EOL) Formula over Executions. Let T =
(S,Act, →, I,AP, L) a transition system, and σ = s0 α1 s1 α2 ... αn sn an
execution trace of T. The EOL over the execution σ denoted by ψσ is defined
as follows: We partition the set of event variables A into sets Z and W in
such a way that Z contains all event variables of the events that occur on σ
and W contains all event variables of the events that do not occur on σ. ψσ is
the EOL formula containing all events in Z in the order they occur on σ (e.g.
ψσ = aα1 � aα2 � ... � aαn).

Now that we have established the formal basis to reason about the occurrence
of events we have to formally define the notion of causality that we will use. A
commonly adopted notion of causality is that of counterfactual reasoning and the
related alternative world semantics of Lewis [2, 8]. The “naive” counterfactual
causality criterion according to Lewis is as follows: event A is causal for the
occurrence of event B if and only if, were A not to happen, B would not occur.
The testing of this condition hinges upon the availability of alternative worlds.
A causality can be inferred if there is a world in which A and B occur, whereas
in an alternative world neither A nor B occurs. In our setting possible system
execution traces represent the alternative worlds.

The structural equation model (SEM) by Halpern and Pearl [3] extends the
counterfactual reasoning approach by Lewis. The SEM introduces the notion of
causes being logical combinations of events as well as a distinction of relevant
and irrelevant causes. In the SEM events are represented by variable values and
the minimal number of causal variable valuation combinations is determined. In
order to do so the counterfactual test is extended by contingencies. Contingencies
can be viewed as possible alternative worlds, where a variable value is changed.
A variable X is causal if there exists a contingency, that is a variable valuation
for other variables, that makes X counterfactual. In our precursory work [4],
we extended the SEM by considering the order of the occurrences of events as
possible causal factors. We now present an adaption of the SEM that can be used
to decide whether a given EOL formula ψ describes the causal process of the
violation of some LTL formula ϕ in a transition system. The causal process [3]
comprises the causal events for the property violation and all events that mediate
between the causal events and the property violation. Those events which are
not root causes, are needed to propagate the cause through the system until
the property violation is being triggered. If ψ describes the causal process of a
property violation we also say ψ is causal for the property violation.

In a naive causality checking algorithm we perform the tests defined in Def-
inition 9 for the induced EOL formula ψσ of each σ ∈ ΣB. The disjunction of

254 F. Leitner-Fischer and S. Leue

all ψσ1 , ψσ2 , ..., ψσn that satisfy the conditions AC1-AC3 is the EOL formula
describing all possible causes of the hazard.

Definition 9. Cause for a Property Violation (Adapted SEM). Let T = (S,Act,
→, I,AP, L) a transition system, and σ, σ′ and σ′′ some execution traces of T.
We partition the set of event variables A into sets Z and W. An EOL formula
ψ consisting of the event variables in Z is considered a cause for an effect rep-
resented by the violation of the LTL formula ϕ, if the following conditions are
satisfied:

– AC1: There exists an execution σ, for which both σ ⊧e ψ and σ /⊧l ϕ hold.
– AC2 (1): ∃σ′ s.t. σ′ /⊧e ψ ∧ (valZ(σ) ≠ valZ(σ

′) ∨ valW (σ) ≠ valW (σ
′)) and

σ′ ⊧l ϕ. In words, there exists an execution σ′ where the order and occurrence
of events is different from execution σ and ϕ is not violated on σ′.

– AC2 (2): ∀σ′′ with σ′′ ⊧e ψ ∧ (valZ(σ) = valZ(σ
′′) ∧ valW (σ) ≠ valW (σ

′′))
it holds that σ′′ /⊧l ϕ for all subsets of W . In words, for all executions where
the events in Z have the value defined by valZ(σ) and the order defined by
ψ, the value and order of an arbitrary subset of the events in W have no
effect on the violation of ϕ.

– AC3: The EOL formula ψ is minimal: no subset of ψ satisfies conditions
AC1 and AC2.

If we want, for instance, to show that ψ = Ta � Ca �Gf �Cc �Tc is causal, we
need to show that AC1, AC2(1), AC2(2) and AC3 are fulfilled for ψ.

– AC1 is fulfilled, since there exists an execution σ = “Ta, Ca, Gf, Cc, Tc” for
which σ ⊧e ψ, and both the train and the car are in the crossing at the same
time.

– AC2(1) is fulfilled since there exists an execution σ′ = “Ta, Ca, Gc, Tc” for
which σ′ /⊧e ψ ∧ (valZ(σ) ≠ valZ(σ

′) ∧ valW (σ) ≠ valW (σ
′)) holds and σ′

does not violate the property.
– Now we need to check the condition AC2(2). For the execution σ′′ =“Ta,

Ca, Gf, Cc, Cl, Tc” and the partition Z,W ⊆ A, σ′′ ⊧e ψ and valZ(σ) =
valZ(σ

′′)∧valW (σ) ≠ valW (σ
′′) hold. The property is not violated since the

car leaves the crossing (Cl) before the train enters the crossing (Tc). As a
consequence, AC2(2) is not fulfilled by ψ because if Cl occurs between Cc
and Tc, the property violation is prevented.

The example showed that the non-occurrence of events can be causal as well,
and that this is not yet captured by the adapted SEM. The non-occurrence of
an event is causal when ever AC1 and AC2(1) are fulfilled but AC2(2) fails for
a EOL formula ψσ. If AC2(2) fails there is at least one event α on σ′′ which
did not occur on σ and the occurrence of α prevents the property violation.
Consequently, the non-occurrence of α on σ is causal. We need to reflect the
causal effect of the non-occurrence of α in ψσ. For the models that we analyze
there are three possibilities for such a preventing event α to occur, namely,
at the beginning of the execution trace, at the end of the execution trace, or
between two other events α1 and α2. Furthermore, it is possible that the property

Causality Checking for Complex System Models 255

violation is prevented by more than one event, hence we need to find the minimal
set of events that are needed to prevent the property violation. This is achieved
by finding the minimal true subset Q ⊂ W of event variables that need to be
changed in order to prevent the property violation.

Definition 10. Non-Occurrence of Events. Let T = (S,Act, →, I,AP, L) a tran-
sition system, and σ and σ′′ execution traces of T. We partition the set of event
variables A into sets Z and W . Let ψ an EOL formula consisting of the event
variables in Z. The non-occurrence of the events which are represented by the
event variables aα ∈ Q with Q ⊆ W on execution σ is causal for the viola-
tion of the LTL formula ϕ if ψ satisfies AC1 and AC2(1) but violates AC2(2),
and if Q is minimal, which means that there is no true subset of Q for which
σ′′ ⊧e ψ ∧ valZ(σ) = valZ(σ

′′) ∧ valQ(σ) ≠ valQ(σ
′′) ∧ valW∖Q(σ) = valW∖Q(σ

′′)
and σ′′ /⊧l ϕ holds.

For each event variable aα ∈ Q we determine the location of the event in ψ′′ and
prohibit the occurrence of α in the same location in ψ. We add ¬aα�] at the
beginning of ψ if the event occurred at the beginning of σ′′ and �[¬aα at the
end of ψ if the event occurred at the end of σ′′. If α occurred between the two
events α1 and α2 we insert �<¬aα�> between the two event variables aα1 and
aα2 in ψ. Additionally, each event variable in Q is added to Z. In our example,
Cl is the only event that can prevent the property violation on σ and occurs
between the events Cc and Tc. Consequently ¬Cl is added to Z and ψ and we
get ψ = Ta �Ca �Gf �Cc �< ¬Cl �> Tc.

If a formula ψ meets conditions AC1 through AC3, the occurrence of the
events included in ψ is causal for the violation of ϕ. However, condition AC2
does not imply that the order of the occurring events is causal. For instance, we
do not know whether Ta occurring before Ca is causal in our example or not. If
the order of the events is not causal, then there has to exists an execution for
each ordering of the events that is possible in the system, and these executions
all violate the property. Whether the order of events is causal is checked by the
following Order Condition (OC1). Note that the outcome of OC1 has no effect
on ψ being causal, but merely indicates whether in addition the order of events
in ψ is causal.

Definition 11. Order Condition (OC1). Let T = (S,Act, →, I,AP, L) a tran-
sition system, and σ, σ′ execution traces of T. Let ψ an EOL formula over Z
that holds for σ and let ψ∧ the EOL formula that is created by replacing all
�-operators in ψ by ∧-operators. The �

[
, �
]
, and �< φ �> are not replaced in ψ∧.

OC1: The order of a subset of events Y ⊆ Z represented by the EOL formula
χ is not causal if the following holds: σ ⊧e χ ∧ ∃σ

′ ∈ ΣB ∶ σ
′ /⊧e χ ∧ σ

′ ⊧e χ∧.

In our example, the order of the events Gf, Cc, ¬Cl, Tc is causal since only if
the gate fails before the car and the train are entering the crossing, and the car
does not leave the crossing before the train is entering the crossing an accident
happens. Consequently after OC1 we obtain the EOL formula ψ = Gf ∧ ((Ta ∧
(Ca �Cc)) �< ¬Cl �> Tc).

256 F. Leitner-Fischer and S. Leue

3 On-The-Fly Causality Checking

3.1 Preliminaries

In order to compute causality relationships, it is necessary to compute good
and bad execution traces. If depth-first search or breadth-first search is used
for model checking, good and bad executions can easily be retrieved by the
counterexample reporting capabilities of the model checker in use.

The key idea of the proposed algorithm is that the conditions AC1, AC2(1),
AC2(2) and AC3 defined in Section 2 can be mapped to computing sub- and
superset relationships between good and bad execution traces. In the following
we also use the terms sub-execution and super-execution to refer to sub- or
superset relationships between execution traces. We define a number of execution
trace comparison operators as follows.

Definition 12. Execution Trace Comparison Operators. Let T = (S,Act,→,
I,AP, L) a transition system, and σ1 and σ2 execution traces of T.

=: σ1 = σ2 iff ∀a ∈ A . σ1 ⊧e a ≡ σ2 ⊧e a.
≐: σ1 ≐ σ2 iff ∀a1, a2 ∈ A . σ1 ⊧e a1 � a2 ≡ σ2 ⊧e a1 � a2.
⊆: σ1 ⊆ σ2 iff ∀a ∈ A . σ1 ⊧e a⇒ σ2 ⊧e a.
⊂: σ1 ⊂ σ2 iff σ1 ⊆ σ2 and not σ1 = σ2.
⊆̇: σ1⊆̇σ2 iff ∀a1, a2 ∈ A . σ1 ⊧e a1 � a2 ⇒ σ2 ⊧e a1 � a2.
⊂̇: σ1⊂̇σ2 iff σ1⊆̇σ2 and not σ1 ≐ σ2.

In the following let ϕ a safety property specification given in LTL, σ,σ′, σ′′, σ′′′

execution traces and ψσ, ψσ′ , ψσ′′ , ψσ′′′ the event order logic formulas representing
these execution traces, respectively.

Theorem 1. AC1 is fulfilled for all ψσ where σ ∈ ΣB.

Proof. For each σ ∈ ΣB we can partition the set A of event variables into the
sets Z and W such that Z consists of the variables of the events that occur on σ
and ψσ consists of the variables in Z. Consequently, σ ⊧e ψσ and σ /⊧l ϕ because
σ is a bad execution. Therefore, AC1 is fulfilled for all ψσ where σ ∈ ΣB. ⊓⊔

Theorem 2. AC2(1) holds for ψσ if there is an execution σ′ ∈ ΣG with σ′ ⊂ σ.

Proof. To show AC2(1) for a execution σ we need to show that there exists an
execution σ′ for which σ′ /⊧e ψσ ∧ (valσ(Z) ≠ valσ′(Z) ∨ valσ(W) ≠ valσ′(W))
and σ′ ⊧l ϕ holds. For each σ′ ∈ ΣG with σ′ ⊂ σ there is at least one event
on σ that does not occur on σ′. Because that missing event is part of ψσ and
Z it follows σ′ /⊧e ψσ and (valσ(Z) ≠ valσ′(Z) ∨ valσ(W) ≠ valσ′(W)) follows,
since the value of the event variable representing the missing event assigned by
valσ(Z) is true and the value assigned by valσ′(Z) is false. Therefore, we can
show AC2(1) for ψσ by finding an execution σ′ ∈ ΣG for which σ′ ⊂ σ holds. ⊓⊔

Theorem 3. AC2(2) holds for ψσ if there is no execution σ′′ ∈ ΣG with σ⊂̇σ′′.

Causality Checking for Complex System Models 257

Proof. AC2(2) requires that ∀σ′′ with σ′′ ⊧e ψσ∧(valσ(Z) = valσ′′(Z)∧valσ(W)
≠ valσ′′(W)) it holds that σ′′ /⊧l ϕ for all subsets of W . Suppose there exists a
σ′′ for which σ⊂̇σ′′ holds. For a σ′′ to satisfy the condition σ′′ ⊧e ψ ∧ valσ(Z) =
valσ′′(Z) all events that occur on σ have to occur in the same order on σ′′, which
is the case if σ⊆̇σ′′ holds. The set W contains the event variables of the events
that did not occur on σ and valσ(W) assigns false to all event variables in W .
For valσ′′(W) to be different from valσ(W) there has to be at least one event
variable that is set to true by valσ′′(W). This is only the case if an event that
does not occur on σ occurs on σ′′. Consequently, σ′′ consists of all events that
did occur on σ and at least one event that did not occur on σ, which is true if
σ⊂̇σ′′ holds. σ′′ /⊧l ϕ holds if σ′′ ∈ ΣB and is false if σ′′ ∈ ΣG. Hence, AC2(2)
holds for σ if there is no σ′′ ∈ ΣG for which σ⊂̇σ′′ holds. ⊓⊔

Theorem 4. If AC1 and AC2(1) hold for ψσ and ψσ is modified according to
Def. 10 in order to fulfill AC2(2), then AC1 and AC2(1) hold for the modified
ψσ.

Proof. The modification defined in Def. 10 prohibits the occurrence of events
that did not occur on σ but occur on σ′′ by adding their corresponding negated
event variables to ψσ. Since the prohibited events did not occur on σ, the mod-
ified ψσ holds for σ and AC1 holds. AC2(1) holds for the modified ψσ because
for AC2(1) to hold in the first place there has to be an execution σ′ ∈ ΣG with
σ′ ⊂ σ. For the modification of ψσ to be necessary an execution σ′′ ∈ ΣG with
σ⊂̇σ′′ has to exist. If σ⊂̇σ′′ holds, σ ⊂ σ′′ holds and σ′ ⊂ σ′′ holds as well. Conse-
quently, AC2(1) holds for the modified ψσ. ⊓⊔

Theorem 5. AC(3) holds for ψσ if there does not exists an execution σ′′′ ∈ ΣB

for which σ′′′ ⊂ σ holds.

Proof. In AC(3) we have to show that no subset of the event order logic formula
ψ satisfies AC1, AC2(1) and AC2(2). Suppose there exists a σ′′′ ∈ ΣB with
σ′′′ ⊂ σ. We can partition A in Zσ′′′ and Wσ′′′ such that Zσ′′′ consists of the
variables of the events that occur on σ′′′ and ψσ′′′ consists of the variables in
Zσ′′′ . For σ we partition A in Zσ andWσ such that Zσ consists of the variables of
the events that occur on σ and ψσ consists of the variables in Zσ. Consequently,
Zσ′′′ ⊂ Zσ and ψσ′′′ ⊂ ψσ. If ψσ′′′ satisfies AC1, AC2(1), AC2(2), then AC3 would
be violated. If we can not find a σ′′′with σ′′′ ⊂ σ, then no subset of ψσ satisfies
AC1, AC2(1) and AC2(2), and consequently AC3 holds. ⊓⊔

We use these theorems in order to devise an algorithm and a corresponding data-
structure called subset graph for on-the-fly causality checking. The pseudo-code
for the proposed algorithms can be found in [9].

3.2 Subset Graph Data-Structure

In order to store the execution traces we have devised a data-structure called
subset graph. This data-structure enables us to make causality decisions on-the-
fly which means that we can decide whether an execution trace is causal as soon

258 F. Leitner-Fischer and S. Leue

as we add it to the subset graph. The subset graph is structured into levels where
each level corresponds to the length of the execution traces on that level. Each
node represents exactly one execution trace. Figure 1 shows a part of the subset
graph for the railroad crossing example. The execution traces on adjoining levels
are connected by edges indicating subset relationships between the respective
execution traces. In order to improve readability the edges between executions
on the same level are not displayed in the figure. The nodes representing the

Fig. 1. Subset-graph of the railroad crossing example

execution traces are colored in green, red, black or orange in order to indicate
their potential causality relation according to the following rules:

– Green: a node is colored green if it represents a good execution trace and all
nodes on the level below that are connected with it are also colored green.
An example of such a trace is “Ca,Ta,Gc,Tc,Tl” in the railroad crossing
example. Green traces can not be causal because they are good traces. The
green traces can be prefixes of either bad or good execution traces.

– Red: a node is colored red if it represents a bad execution trace and all nodes
on the level below that are connected with it are colored green. Red nodes
correspond to the shortest bad traces found at any point of the state-space
exploration. They are considered to be causal. As an example consider the
trace “Ta,Ca,Gf,Cc,Tc” in the railroad crossing example.

– Black: a node is colored black if it represents a good execution trace, but at
least one node on the level below that it is connected with is colored red.
Black traces cannot be causal themselves, since they are good traces, but
since a sub-trace of them with one less element is a minimal bad trace, the
transition in the subset graph from red to black identifies an event that turns

Causality Checking for Complex System Models 259

a bad execution into a good one. We hence take advantage of black traces
when checking condition AC2(2). As an example for a black node consider
the the trace “Ta,Ca,Gf,Cc,Cl,Tc” of the railroad crossing example, which
is connected with the red execution “Ta,Ca,Gf,Cc,Tc” on the level below,
the introduced “Cl” event turns the bad execution into a good one.

– Orange: A node is colored orange if it represents a bad execution trace and
at least one node on the level below that is connected to the orange node
is colored red. If a trace is colored orange, there exists a shorter red trace
on a level below and hence a orange trace does not fulfill the minimality
constraint AC3 for being causal. An example for an orange colored trace is
the trace “Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc” which, due to space restrictions,
is not depicted in Figure 1. The trace “Ca,Ta,Gf,Cc,Tc” is a shorter red trace
and a subset of the trace “Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc”, hence the trace
does not fulfill the minimality constraint.

3.3 Causality Checking

The causality checking that we propose is embedded into both of the standard
state-space exploration algorithms used in explicit state model checking, namely
depth-first and breadth-first search. Whenever a bad or a good execution is
found by the search algorithm it is added to the subset graph. After adding a
trace the algorithm first checks whether there are executions at the same level
that consist of the same events but in a different order. If we find such an
execution, then all subset relationships of the execution already in the subset
graph hold also for the newly added execution. For instance in our example all
subset relationships that hold for the execution “Ta,Ca,Gf,Cc,Tc” also hold for
the execution “Ta,Gf,Ca,Cc,Tc”. If we don’t find such a trace on the same level,
we have to check the subset relationships with the execution traces on the level
below (level-1) and, if depth-first search is used, on the level above (level+1)
as well. It is not necessary to check the subset relationships on the level above
(level+1) if breadth-first search is used, because breadth-first search adds the
traces by increasing length.

Once all subset relationships are established, the nodes representing the ex-
ecutions are colored according to the above described coloring rules. If a trace
is colored red, we additionally need to check whether we have already found a
shorter red trace which is a sub-set of the new red-trace. If such a shorter red
trace is found, the current trace is colored orange. In our example the execution
traces Ta,Ca,Gf,Cc,Tc and Ta,Gf,Ca,Cc,Tc and Ca,Ta,Gf,Cc,Tc are colored red
and hence considered to be causal.

The following theorems show that for an execution σ that is colored red, ψσ

is a candidate for being causal and fulfills AC1, AC2(1) and AC3.

Theorem 6. AC1 is fulfilled for ψσ of each execution trace σ that is colored
red.

Proof. By definition an execution trace is only colored red if it is a bad trace
and according to Theorem 1 AC1 is fulfilled for all σ ∈ ΣB. ⊓⊔

260 F. Leitner-Fischer and S. Leue

Theorem 7. AC2(1) is fulfilled for ψσ of each execution trace σ that is colored
red.

Proof. According to Theorem 2 we can show AC2(1) by finding an execution
σ′ ∈ ΣG for which σ′ ⊂ σ holds. For an execution σ to be colored red, all sub
execution traces on the level below have to be colored green. Consequently, for
each execution σ′ for which σ′ ⊂ σ holds also σ′ ∈ ΣG holds because it is colored
green and hence needs to be a good trace. Therefore, AC2(1) is fulfilled according
to Theorem 2. ⊓⊔

Theorem 8. If breadth-first search is used, AC3 is fulfilled for ψσ of each ex-
ecution trace σ that is colored red. If depth-first search is used, AC3 is fulfilled
for ψσ of each execution trace σ that is colored red as soon as the state-space
exploration has terminated.

Proof. According to Theorem 5, ψ fulfills AC3 if there does not exists a trace
σ′′′ ∈ ΣB for which σ′′′ ⊂ σ holds. This is due to the fact that by definition
an execution trace is only colored red if all its subsets are colored green, which
means there is no bad sub-execution σ′′′ of σ. If breadth-first search is used the
shortest paths are added first, hence all sub-executions are known at the time
where σ is inserted and colored. Consequently, if breadth-first search is used,
AC3 is fulfilled for ψσ of each execution trace σ that is colored red. If depth-first
search is used it is possible that new sub-executions are found as long as the
state-space exploration is not complete. As a result, AC3 is fulfilled for ψσ of
each execution trace σ that is colored red as soon as the state-space exploration
with depth-first search has terminated. ⊓⊔

Once the state space search is completed we have to perform the tests for AC2(2)
and OC1 for all red execution traces.

According to Theorem 3, AC2(2) holds for ψσ if there is no σ′′ ∈ ΣG for
which σ⊂̇σ′′ holds. If such a σ′′ exists, it is a black superset of σ because σ ⊂ σ′′

holds for each black superset of σ. σ′′ is only colored black if it is a good trace.
Consequently, we need to check for each black superset σ′′ of σ whether σ⊂̇σ′′

holds. If there is no σ′′ for which σ⊂̇σ′′ holds, then ψσ fulfills AC2(2). If σ⊂̇σ′′

holds for a black superset, then we need to modify ψσ as specified by Definition
10. Hence, we have shown that AC1, AC2(1), AC2(2) and AC3 are fulfilled for
ψσ of each red execution σ and, consequently, that ψσ is causal for the property
violation.

Notice that the AC2(2) test is needed in order to detect whether the non-
occurrence of an event is causal. It is necessary to store all traces that are colored
black only to test AC2(2). We have added a runtime switch in the implementation
of the causality checking method that allows the user to turn the AC2(2) test
off in order to save memory at the expense of not being able to take the possible
causality of the non-occurrence of an event into account. If the AC2(2) test is
fulfilled by ψσ, then the OC1 test is performed. Due to the structure of the subset
graph, it is sufficient to check for each red execution trace whether there exists
a red execution trace on the same level for which the unordered ⊆ relationship

Causality Checking for Complex System Models 261

holds. For all those execution traces, we check for each pair of events whether
they appear on all execution traces in the same order or not. If a pair of events
does not occur in the same order, then the order of this pair is marked as having
no influence on causality.

Causality Checking with Breadth-First Search (BFS). When using bread-
th-first search, the execution trace leading from the initial state to a property
violating state can be generated by iterating backwards through the predecessor
links until an initial state is reached. Whenever a bad or a good execution is
found, it is added to the subset graph. If BFS encounters a state that is already
in the state-space and hence all successors of this state have already been ex-
plored, the successors are not explored for a second time. Since BFS explores the
state-space following an exploration order that leads to a monotonically increas-
ing length of the execution traces, this new execution trace reaching the state
either has the same length as the already known execution trace containing the
same state, or the new execution is longer than the already known execution
trace. If the new execution trace has the same length, the events on the trace
have an order that is different from the one in the already known execution trace.
Hence the new execution trace needs to be added to the subset graph since a
later OC1 test needs to be performed on it.

Causality Checking with Depth-First Search (DFS). We adapted the
depth-first search algorithm to add an execution trace to the subset graph data
structure whenever either a bad state is reached or a good execution trace has
been found. If depth-first search is used it is sufficient to print the search stack
in order to retrieve the execution trace. Similarly to BFS, if DFS encounters a
duplicate, which is a state that is already in the state-space, and hence all succes-
sors of the duplicate have already been explored, the successors are not explored
a second time. It is possible that this new trace to the duplicate is shorter or has
a different event order than the already known execution traces that contain the
duplicate. Hence we store this new execution trace on a match list in the subset
graph and generate all execution traces starting from the duplicate state with
the new trace as a prefix.

Complexity. [10] contains a careful analysis of the complexity of computing
causality in the SEM. Most notable is the result that even for an SEM with only
binary variables, in the general case computing causal relationships between vari-
ables is NP-complete. Results in [11] show that causality can be computed in poly-
nomial time if the causal graph over the events forms a directed causal tree. A
directed causal tree consists of directed paths, where the nodes represent events,
and the edges represent the causality relationships and the root node represents
the hazard or effect. Each bad execution trace in the counterexample is a directed
path containing the variables representing the events leading to the hazard or ef-
fect. Consequently, a set of counterexamples resembles a directed causal tree and
our algorithm can compute the causal process in polynomial time. A more com-
prehensive discussion of the complexity of our approach can be found in [9].

262 F. Leitner-Fischer and S. Leue

4 Case Studies

In order to evaluate the proposed approach, we have implemented our causality
checking algorithms within the SpinJa toolset [12], a Java re-implementation
of the explicit state model checker Spin [5]. Our SpinCause tool1 computes the
causality relationships for a Promela model and a given LTL property. In order to
compute all interleavings and all executions partial-order reduction was disabled
during the state-space exploration. The Promela models used for the case studies
have been created manually, in practical usage scenarios the Promela models can
also be automatically synthesized from higher-level design models, as for instance
by the QuantUM tool [13]. The following experiments were performed on a PC
with an Intel Xeon Processor (3.60 Ghz) and 144 GBs of RAM.

4.1 Railway Crossing

The Promela model of the railway crossing that we constructed as a running
example for the purpose of this paper comprises 133 states and 237 transitions.
A total of 47 bad execution traces are found. The causality checking algorithm
identified two event order logic formulas describing the causal factors for a train
and a car being on the crossing at the same time.

– First, if the gate fails at some point of the execution and a train (Ta) and
a car (Ca) are approaching this results in a hazardous situation if the car
is on the crossing (Cc) and does not leave the crossing (Cl) before the train
(Tc) enters the crossing (Gf ∧ ((Ta ∧ (Ca �Cc)) �< ¬Cl �> Tc)).

– Second, if a train (Ta) and a car (Ca) are approaching but the gate closes
(Gc) when the car (Cc) is already on the railway crossing and is not able to
leave (Cl) before the gate is closing and the train is crossing (Tc), this also
corresponds to a hazardous situation ((Ta∧(Ca�Cc))�< ¬Cl�> (Gc∧Tc)).

4.2 Airbag Control Unit

The industrial size model of an airbag system that we use in this case study is
taken from [14]. The architecture of this system was provided by our industrial
partner TRW Automotive GmbH. The architecture of this system consists of two
acceleration sensors, one microcontroller to perform the crash evaluation, and
an actuator that controls the deployment of the airbag. Although airbags save
lifes in crash situations, they may cause fatal accidents if they are inadvertently
deployed. This is because the driver may lose control of the car when this deploy-
ment occurs. It is a pivotal safety requirement that an airbag is never deployed if
there is no crash situation. We are interested in computing the causal events for
the hazard corresponding to an inadvertent ignition of the airbag. The Promela
model of the airbag system consists of 155,464 states and 697,081 transitions.

Figure 2 shows the fault tree generated by the SpinCause tool. All execution
traces that are colored red are part of the fault tree representation. The fault

1 http://se.uni-konstanz.de/research1/tools/spincause

http://se.uni-konstanz.de/research1/tools/spincause

Causality Checking for Complex System Models 263

Fig. 2. Fault tree of the airbag system

trees generated by our approach all have a normal form, that is they start with
an intermediate gate representing the top level event, that is connected to an
OR gate. The execution traces that are colored red are represented by Priority-
AND (PAND) gates if the order of some events is causal and by AND gates
if the order is not causal. The events of the execution traces are connected
to the corresponding AND or PAND gates, respectively. Since fault trees are
not sufficiently expressive to completely represent an event oder logic formula,
we display for each PAND gate the event order logic formula constraining the
order of the events connected to the PAND-gate (omitted in Figure 2 for better
readability).

While there are a total of 20,300 bad execution traces, the fault tree com-
prises only 5 paths. Obviously, a manual analysis of this large number of traces
in order to determine causal factors would be impossible. It is easy to see in
the fault tree which basic events cause an inadvertent deployment of the airbag.
For instance, there is only one single fault that can lead to an inadvertent de-
ployment, namely FASICShortage, which is represented by the event order logic
formula FASICShortage. It is also obvious that the combination of the basic
events FETStuckHigh and FASICStuckHigh only leads to an inadvertent de-
ployment of the airbag if the basic event FETStuckHigh occurs prior to the
basic event FASICStuckHigh, which is represented by the event order logic for-
mula FETStuckHigh�FASICStuckHigh. The basic event MicroControllerFailure
can lead to an inadvertent deployment if it is followed by the following sequence
of basic events: enableFET, armFASIC, and fireFASIC. This sequence is repre-
sented by the event order logic formula MicroControllerFailure � enableFET �
armFASIC � fireFASIC. If the basic event FETStuckHigh occurs prior to the
MicroControllerFailure the sequence in which armFASIC and fireFASIC occur
after the MicroControllerFailure event suffices to lead to the top level event.

264 F. Leitner-Fischer and S. Leue

This sequence is represented by the event order logic formula FETStuckHigh �
MicroControllerFailure�armFASIC�fireFASIC. If the basic event FASICStuck-
High occurs after MicroControllerFailure and enableFET this also leads to a
sequence leading to an inadvertent deployment. It is represented by the event
order logic formula MicroControllerFailure� enableFET �FASICStuckHigh.

The case study shows that the fault tree is a compact and concise visualization
of the counterexample which allows for an easy identification of the basic events
that cause the inadvertent deployment of the airbag. If the order of the events
is important for the events causing the effect, this can be seen in the fault tree
by the PAND gate and the corresponding EOL formula. In the counterexamples
computed by SpinJa one would have to manually compare the order of the events
in all execution traces.

4.3 Discussion

Table 1 shows the memory and run time consumption of the on-the-fly causality
checking approach presented in this paper for both case studies and the memory
and run time consumption of the in off-line approach presented in [4], where all
execution traces are stored on disk during model checking (Run. MC., Mem. MC)
and the causality checking is performed as a post-processing step (Run. Caus.,
Mem. Caus.), for the airbag case study. The following trends can be identified:

Table 1. This table shows the experiment results with the on-the-fly approach for the
railway crossing and airbag case studies. Run. MC and Mem. MC show the runtime
and memory consumption for model checking only. Run. CC1 and Mem. CC1 show the
runtime and memory needed to perform model checking and causality checking with
the AC2(2) test disabled and Run. CC2 and Mem. CC2 with the AC2(2) test enabled.
Additionally, the experiment results for off-line causality checking of the airbag case
study are given.

On-the-fly Approach Off-line Approach
Run time (sec.) Memory (MB) Run time Memory (MB)
MC CC 1 CC2 MC CC1 CC 2 MC Caus. MC Caus.

Airbag

DFS 0.98 338.17 597.57 25.08 15,711.20 27,687.50 871.14 945.68 1,478.34 28,563.47

BFS 0.96 148.52 195.05 25.74 1,597.54 3,523.04 486.01 512.3 1,331.29 13,860.10

Railway

DFS 0.01 0.29 0.31 16.40 20.38 21.68 - - - -

BFS 0.01 0.12 0.13 16.24 16.70 17.45 - - - -

– If no causality checking is done, DFS and BFS have approximately the same
runtime and memory consumption. The causality checking adds a run-time
and memory penalty, but the experiments show that causality checking is
applicable to industrial size Promela models. In addition causality checking
provides valuable insight as to why the hazard occurred, which is very tedious

Causality Checking for Complex System Models 265

or even impossible to determine if standard model checking and manual
counterexample analysis is used.

– When performing causality checking, BFS outperforms DFS in terms of both
runtime and memory consumption. BFS outperforms DFS because if BFS is
used, we can safely rely on the assumption that when a bad trace is found all
shorter bad traces already have been found. This assumption assures that
the minimality condition holds for each bad trace which was found using
BFS and colored red by the causality checking algorithm. If DFS is used, no
assumptions on the length of the bad trace can be made. The main reason
why the assumption on the bad trace length is important and has such a
high impact on the memory consumption when using DFS compared to BFS
is that all good traces which are supersets of a red trace have to be taken
into account for the AC2(2) test. When BFS is used only the traces which
are supersets of red traces need to be stored, whereas when DFS is used all
good traces need to be stored. Because the good traces are needed in case
a shorter red trace is found later in the search for which we need the good
super-traces for the AC2(2) test.

– The on-the-fly approach proposed in this paper outperforms the off-line ap-
proach both in terms of runtime and memory consumption. The main rea-
son for this observation is that when using the on-the-fly approach only the
execution traces needed for causality checking, namely the red and black
execution traces, need to be stored, whereas all execution traces have to be
stored for the off-line approach.

5 Related Work

The application of counterfactual reasoning to software debugging has been pro-
posed by Zeller in [15]. However, [15] does not support complex logical rela-
tionships as causes and is mainly applicable to sequential software programs,
whereas our approach is also applicable to concurrent software and hardware
systems. Work documented in [16] uses the Halpern and Pearl approach to
explain counterexamples in CTL model checking by determining causality. How-
ever, this approach considers only single counterexamples. Furthermore, it fo-
cuses on the causality of variable value-changes for the violation of CTL
sub-formulas, whereas our approach identifies the events that lead to the variable
value-changes. Consider the railway crossing example in which the CTL formula
consists of the two boolean variables train on crossing and car on crossing. Ob-
viously, both variables changing to true is causal for a crash. Consequently the
approach from [16] will indicate the variable value-change of train on crossing
and car on crossing from false to true as being causal. But this obvious answer
does not give any insight on why the train and the car are on the crossing at the
same time. In [17] a formal framework for reasoning about contract violations is
presented. In order to derive causality the notion of precedence established by
Lamport clocks [18] is used. While this captures a partial order of the observed
contract violations it is not clear to what extent this order information also

266 F. Leitner-Fischer and S. Leue

expresses causality. Work described in [19] establishes causality based on coun-
terfactual reasoning by computing distance metrics between execution traces.
The delta between the counterexample and the most similar good execution is
identified as causal for the bad behavior. For all the above mentioned approaches
it is necessary to compute the counterexamples prior to the causality analysis
whereas our approach works on-the-fly. To the best of our knowledge we are
not aware of any other causality checking algorithm that can be integrated with
explicit state-space exploration algorithms and which works on-the-fly. As an al-
ternative to the event order logic that we defined we also investigated the usage
of the interval logics [20] and [21]. We felt that in light of the relatively simple
ordering constraints that we need to describe those logics are overly expressive,
and we hence decided to define our own tailored, relatively simple event order
logic.

6 Conclusions

We have discussed how causality relationships can be established in system ex-
ecutions and have shown how the causality checks can be mapped to finding
sub- and super-sets of execution traces. Furthermore we have proposed an ap-
proach for causality computation that works on-the-fly and can be integrated
into explicit state-space model checking algorithms. We have evaluated our ap-
proach on two case studies, one of which is of industrial size. The experimental
evaluation indicates that breadth-first search outperforms depth-first search in
terms of memory and runtime, and that the on-line approach presented here
outperforms the precurosy off-line approach. Furthermore, we have shown that
causality checking is applicable to industrial size Promela models.

In future work we plan to give a soundness and completeness argument for
causality checking and embed causality checking into a symbolic reasoning en-
vironment in order to avoid the explicit storing of traces. In addition we plan
to combine our work on causality checking for probabilistic models with the
approach presented here.

Acknowledgment. We wish to thank Stefan Heindorf for a careful review of
an earlier version of this work.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, 3rd edn. The MIT
Press (2001)

2. Lewis, D.: Counterfactuals. Wiley-Blackwell (2001)
3. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.

Part I: Causes. The British Journal for the Phil. of Science (2005)
4. Kuntz, M., Leitner-Fischer, F., Leue, S.: From Probabilistic Counterexamples

via Causality to Fault Trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.)
SAFECOMP 2011. LNCS, vol. 6894, pp. 71–84. Springer, Heidelberg (2011)

Causality Checking for Complex System Models 267

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addision–Wesley (2003)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
7. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.

Springer-Verlag New York, Inc. (1992)
8. Collins, J. (ed.): Causation and Counterfactuals. MIT Press (2004)
9. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models.

Chair for Software Engineering, University of Konstanz, Technical Report soft-
12-02 (2012), http://www.inf.uni-konstanz.de/soft/research/publications/
pdf/soft-12-02.pdf

10. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artifi-
cial Intelligence (2002)

11. Eiter, T., Lukasiewicz, T.: Causes and explanations in the structural-model ap-
proach: Tractable cases. Artificial Intelligence (2006)

12. de Jonge, M., Ruys, T.C.: The SpinJa Model Checker. In: van de Pol, J., We-
ber, M. (eds.) Model Checking Software. LNCS, vol. 6349, pp. 124–128. Springer,
Heidelberg (2010)

13. Leitner-Fischer, F., Leue, S.: QuantUM: Quantitative safety analysis of UML mod-
els. In: Proc. of the 9th Workshop on Quantitative Aspects of Programming Lan-
guages, QAPL 2011 (2011)

14. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety Analysis of an Airbag System Using Probabilistic FMEA and Probabilistic
Counterexamples. In: Proc. of QEST 2009. IEEE Computer Society (2009)

15. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier (2009)
16. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining Counterex-

amples Using Causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 94–108. Springer, Heidelberg (2009)

17. Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality Analysis in Contract Violation.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–284.
Springer, Heidelberg (2010)

18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21, 558–565 (1978)

19. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with dis-
tance metrics. International Journal on Software Tools for Technology Transfer
(STTT) 8(3) (2006)

20. Schwartz, R.L., Melliar-Smith, P.M., Vogt, F.H.: An interval logic for higher-level
temporal reasoning. In: Proc. of the 2nd Annual ACM Symposium on Principles
of Distributed Computing. ACM (1983)

21. Dillon, L., Kutty, G., Moser, L., Melliar-Smith, P., Ramakrishna, Y.: A graphical
interval logic for specifying concurrent systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 3(2), 131–165 (1994)

http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-12-02.pdf
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-12-02.pdf

��������	: Classified Bug-Reports Database

Tool for Developers of Program Analysis Tools

Jiri Slaby, Jan Strejček, and Marek Trt́ık

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic
{slaby,strejcek,trtik}@fi.muni.cz

Abstract. We present a database that can serve as a tool for tuning
and evaluation of miscellaneous program analysis tools. The database
contains bug-reports produced by various tools applied to various source
codes. The bug-reports are classified as either real errors or false pos-
itives. The database currently contains more than 800 bug-reports de-
tected in the Linux kernel 2.6.28. Support of other software projects
written in various programming languages is planned. The database can
be downloaded and manipulated by SQL queries, or accessed via a web
frontend.

1 Introduction

Many successful bug-finding tools based on various program analysis methods
appeared during the last ten years. None of them is perfect. Each tool either
reports both real errors and false positives, or it discovers only a part of real
errors. To improve or evaluate such a tool, one needs to run the tool on some
source codes and then analyze the obtained bug-reports1, i.e. classify them as
false positives or real errors, and find errors in the sources that were missed by
the tool. This work is usually tedious and time consuming, especially when one
tunes or studies performance of a tool for real software projects. The tedious
work can be avoided if suitable benchmarks, i.e. programs with information
about their errors, are available.

There exist benchmark suites consisting of small synthetic programs [1,2,4,6,7]
and those consisting of real-world programs [2,3,5]. In benchmark suites [1,4,6],
relevant program locations in small synthetic programs are explicitly marked
as either erroneous or safe. The benchmark suite [2] marks only known real
errors. The situation is different for benchmarks with real-world programs: [5]
contains marked test cases triggering/non-triggering errors, while [3] provides
bug-reports (both real errors and false positives mixed together) produced by
Findbugs and sorted according to priority levels assigned to the reports by the
tool. The benchmark suites discussed so far consider different error types and

1 We deliberately use term “bug” in the paper. It stems from the need of the database
to comprehend for example coding style violations. In those cases, commonly used
terms like “failure” or “fault” fail to apply.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 268–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

ClabureDB: Classified Bug-Reports Database 269

provide their own error taxonomies with exception of suites [1,2], where errors
types are linked to Common Weakness Enumeration (CWE) [10].

As far as we know, there is no benchmark suite containing big real-life projects
with a significant list of uniformly described bug-reports classified as real errors
or false positives. Our benchmark suite ClabureDB should fill this gap.

ClabureDB currently contains only a single project, namely the Linux kernel
2.6.28. We have collected about 850 bug-reports of 11 error types produced by
several bug-detection tools run on the kernel. The reports have been manually
classified as either real errors or false positives by skilled programmers with a
help of Linux kernel developers. In fact, it would be sufficient to store only real
errors assuming that we know all of them (and thus we can assume that all other
bug-reports are false positives). As this assumption is completely unrealistic for
a real-life project, we store both real errors and false positives.

The database is still developing in several directions: we plan to add more bug-
reports for the Linux kernel, to support other software projects, and to augment
the web interface to allow other users to add and maintain the database content.

The database can be downloaded in the SQLite 3 format for local use under
the Open Database License v1.0 [11] or accessed via a web interface at:

http://claburedb.fi.muni.cz/

The paper is organized as follows. The following section introduces the basic
structure of the database and our web interface. Section 3 describes the current
content of the database including considered kinds of errors and an overview
of collected bug-reports and their sources. Section 4 suggests possible use of
the database for evaluation of a program analysis tool. Finally, the last section
presents our future plans with ClabureDB.

2 Database Structure

The database is designed to accommodate various kinds of errors from diverse
projects and project versions. As projects can be written in arbitrary program-
ming languages, can contain very specific kinds of errors, can be maintained
by different teams, and can be interesting for distinct user groups, we decided
to have each project in a separate sub-database. A sub-database comprises in-
formation about considered error types, bug-reports, users, tools, and relations
between them. There are two main tables in each sub-database:

error type. This table keeps a specification of considered kinds of errors. We
will outline some of possible types later in Section 3.2. The table contains a
name of the type, short description and a reference CWE number if exists
(see later).

error. Each line in this table corresponds to one bug-report. It is specified
by the error type, location (usually file and line), URL for reference (to pro-
vide more information), classification (false positive, real error, unclassified),
confirmation (an argument supporting the validity of the bug-report classi-
fication, e.g. a commit ID of the corresponding bug-fix), user who inserted
the entry, and timestamp of the moment of insertion.

http://claburedb.fi.muni.cz/

270 J. Slaby, J. Strejček, and M. Trt́ık

Fig. 1. List of seven bug-reports with one record expanded showing detailed informa-
tion about the bug-report

Figure 1 depicts a list of seven bug-reports of type Double Resource Put as pre-
sented in the ClabureDB’s web interface at http://claburedb.fi.muni.cz/.
Four of these reports are false positives (green), the other three are real errors
(orange). One of the reports is expanded, so that we can see its details and a
highlighted source code with a marked error line.

Recall that the database can be also downloaded in the SQLite 3 format for
local use under the Open Database License v1.0 [11].

3 Current Contents of the Database

ClabureDB currently contains only bug-reports produced for the Linux ker-
nel 2.6.28. We have chosen Linux kernel for several reasons: it is a big (20484
files with nearly 9 millions LOC in total), real-life, self-contained, and open-
source project with several public sources of information about errors. More-
over, the kernel contains many distinct parts (core, hardware drivers, filesystems,

http://claburedb.fi.muni.cz/

ClabureDB: Classified Bug-Reports Database 271

networking etc.) that cover some standard application areas of program analysis
tools.

3.1 Sources of Bug-Reports

We used three program analysis tools to gather bug-reports for the kernel:
Clang 3 [9], Stanse 1.2 [8], and one commercial tool which wanted to stay in
anonymity. Note that Clang does not natively detect locking errors in the Linux
kernel. Hence, we slightly modified experimental.unix.PthreadLock checker
just to understand kernel locking functions. The database also comprises bug-
reports from kernel and Novell bug tracking systems and mailing lists. For that
purpose we implemented our own web crawler. Finally, there are few bug-reports
detected manually.

3.2 Linux Kernel Error Types

We have analyzed output of available tools applicable to the Linux kernel and we
have decided to focus on the following 11 error types. Nine of these error types
are present in Common Weakness Enumeration (CWE) [10] and we provide
their CWE identification numbers. The two remaining error types are specific
for the Linux kernel (they can be seen as a violation of the kernel coding policy)
and thus they are not covered by CWE.

The list of considered error types follows. For each error type we explicitly
describe the program location associated with an error of this type. This is to
evade misinterpretation, because diverse tools can associate the same error with
different program locations. For example, an error present at an outgoing edge
of a function may be associated to the opening brace of the function, the closing
brace, or to the corresponding return statement.

BUG/WARNING (CWE 617) Developers often inject asserts to their code,
e.g. to ensure that their function is given a correct input. For example, a
destroy function of an object obj can contain a line assert(!obj->active)
to check that the object to be destroyed is inactive. An error occurs if a
condition of some assert is violated.
Error location: the line with the violated assertion.

Division by Zero (CWE 369) The code contains a division instruction but
the actual value of the divisor is zero.
Error location: the line with the division.

Double Lock (CWE 764) Some lock is locked by a thread twice in a row and
it leads to an inconsistent lock state. Note that we ignore double locks of
semaphores as this may be their intentional application.
Error location: the line with the second call of lock.

Double Unlock (CWE 765) Some lock is unlocked by a thread twice in a row
and it leads to an inconsistent lock state. Again, we ignore double unlocks
of semaphores.
Error location: the line with the second call of unlock.

272 J. Slaby, J. Strejček, and M. Trt́ık

Double Free (CWE 415) A freeing function is called twice on the same address
while no reassignment to the passed pointer occurred between the two calls.
Most allocators can detect this and usually kill the program.
Error location: the line of the invalid (second) free.

Memory Leak (CWE 401) Some code omits to free a memory which was
allocated previously.
Error location: the line with the allocation statement.

Invalid Pointer Dereference (CWE 465) The code tries to access some
memory, but the pointer used is invalid. It may become invalid in many
ways. For example, the pointer may point to a released memory (known as
dangling pointer or use after free) or it can be set to NULL (known as NULL
pointer dereference) or uninitialized. Another source of the problem may be
accessing an array out of bounds.
Error location: the line of the dereference.

Double Resource Put (CWE 763) The code requests one copy of a resource
(e.g. a structure holding hardware status) from a system, but there is more
than one attempt to put that resource back to the system. Like in this
example:

������ pci_dev *pdev = pci_get_device(vendor, device , NULL); // get
�� (pdev) {

work_with_pdev(pdev)
pci_dev_put(pdev); // first put

}
pci_dev_put(pdev); // second (illegal) put of the same

Error location: the line of the second put.

Resource Leak (CWE 404) The code requests a resource from a system, but
omits to return that back. For example, the error occurs in the previous
example if we remove both pci dev put calls.
Error location: the line of the request/get.

Calling Function from Invalid Context (not in CWE, Linux kernel specific)
Some function is called at an inappropriate place or within an invalid context.
This includes calling functions like sleep or wait inside spin-lock critical
sections or in interrupt handlers. This is considered to be an error because
results of such a call are undefined: the system may become unresponsive or
may crash for instance.
Error location: the line of the inappropriate call.

Leaving Function in Locked State (not in CWE, Linux kernel specific)
This error type originates from the kernel requirements that a process has
to release all locks before returning control to userspace. This error occurs if
a function has an execution path where some lock is locked and left locked
when leaving the function. It is considered to be an error (violation of the
kernel coding policy) as such an execution may lead to a deadlock on the
next invocation of any function wanting to take the same lock.
Error location: the line of the corresponding return statement or closing
brace if there is no return.

ClabureDB: Classified Bug-Reports Database 273

Table 1. Reports in ClabureDB

Error Type Real Err. False Pos. Unclassified Total

BUG/WARNING 8 0 0 8
Division by Zero 2 0 0 2
Double Lock 16 95 4 115
Double Unlock 22 90 9 121
Double Free 0 1 0 1
Memory Leak 7 13 0 20
Invalid Pointer Dereference 17 17 0 34

NULL Pointer Dereference 17 14 0 31

Use After Free 0 3 0 3

Double Resource Put 3 4 0 7
Resource Leak 13 51 24 88
Calling function from invalid context 16 19 0 35
Leaving function in locked state 30 352 37 419

Overall Count 134 642 74 850

3.3 Bug-Reports in the Database

Currently the database comprises 850 reports: 134 real errors, 642 false positives,
and 74 entries which are unclassified. Many of the unclassified entries were added
even recently and are about to be classified soon. Table 1 depicts how each kind
of bug-reports is represented in the database. As seen from the table, most of
the bug-reports in the database are related to locking errors.

4 Intended Use of the Database

Typical use of ClabureDB is tuning and evaluation of a bug-finding program
analysis tool. To evaluate such a tool, one chooses a project (or its part) from
our benchmark suite and run the tool on these source codes. As the second step,
the sub-database of classified bug-reports corresponding to the chosen project
is downloaded from ClabureDB. The installation and local database usage is
described in the ClabureDB documentation.

The bug-reports produced by the tool are compared to the downloaded data.
This way, one immediately gets a classification (real error/false positive) of all
the reports matched in the database and also information about missed real er-
rors if there are any. It remains to manually classify the bug-reports unmatched
with the database content. The numbers of produced false positives, detected
and missed real errors can be further statistically processed according to method-
ologies of [2,3] which produce several metrics including accuracy and precision.
The missed errors and false positives are valuable inputs for tuning the tool.

Finally, the user is kindly asked to insert newly discovered bug-reports with
their classification into the database.

274 J. Slaby, J. Strejček, and M. Trt́ık

5 Conclusion and Future Plans

We have presented ClabureDB: the database of classified bug-reports. It is
intended as an open platform for sharing valuable benchmarks for developers
of program analysis tools. The database already contains a large collection of
uniformly described bug-reports produced by various tools on a large real-life
project, namely the Linux kernel 2.6.28.

We plan to extend the database in several directions. Namely, we intend to
collect more bug-reports and to support more error types in the Linux kernel
project. For example, we plan to add error types connected to deadlock and
livelock. Further, we plan to add other real-life projects. We also plan to extend
the web interface to enable developers of program analysis tools to maintain and
augment the database.

In general, the future of ClabureDB depends on a feedback from the pro-
gram analysis community. At this point, we would like to encourage you to con-
tact us at claburedb@fi.muni.cz if you have any comments, suggestions (for
example which projects should be added to the database), questions, or sources
of bug-reports for the Linux kernel or other interesting projects. We would es-
pecially welcome people willing to participate on creating and maintaining the
database content for another project.

Acknowledgements. All authors have been supported by The Czech Science
Foundation (GAČR), grant No. P202/12/G061.

References

1. Chatzieleftheriou, G., Katsaros, P.: Test-driving static analysis tools in search of C
code vulnerabilities. In: Proceedings of COMPSACW, pp. 96–103. IEEE Computer
Society (2011)

2. Cifuentes, C., Hoermann, C., Keynes, N., Long, S., Li, L., Mealy, E., Mounteney,
M., Scholz, B.: BegBunch – Benchmarking for C Bug Detection Tools. In: Proceed-
ings of DEFECTS, pp. 16–20. ACM (2009)

3. Heckman, S., Williams, L.: On establishing a benchmark for evaluating static anal-
ysis alert prioritization and classification techniques. In: Proceedings of ESEM, pp.
41–50. ACM (2008)

4. Kratkiewicz, K.: Using a diagnostic corpus of C programs to evaluate buffer over-
flow detection by static analysis tools. In: Proceedings of BUGS (2005)

5. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on ESDDT (2005)

6. Newsham, T., Chess, B.: ABM: A prototype for benchmarking source code ana-
lyzers. In: Proceedings of SSATTM, pp. 52–59. NIST Special Publication (2005)

7. NIST. Samate reference dataset project, http://samate.nist.gov/SRD/
8. Obdržálek, J., Slabý, J., Trt́ık, M.: STANSE: Bug-Finding Framework for C Pro-

grams. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 167–178. Springer, Heidelberg (2012)

9. Clang: a C language family frontend for LLVM, http://clang.llvm.org/
10. Common Weakness Enumeration (CWE), http://cwe.mitre.org/
11. Open Database License 1.0, http://opendatacommons.org/licenses/odbl/1.0/

http://samate.nist.gov/SRD/
http://clang.llvm.org/
http://cwe.mitre.org/
http://opendatacommons.org/licenses/odbl/1.0/

Tool Integration with the Evidential Tool Bus�

Simon Cruanes1, Gregoire Hamon2, Sam Owre2, and Natarajan Shankar2

1 Ecole Polytechnique, Palaiseau, France
2 Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA

simon.cruanes.2007@polytechnique.org,

{Hamon,Owre,Shankar}@csl.sri.com

Abstract. Formal and semi-formal tools are now being used in large
projects both for development and certification. A typical project inte-
grates many diverse tools such as static analyzers, model checkers, test
generators, and constraint solvers. These tools are usually integrated
in an ad hoc manner. There is, however, a need for a tool integration
framework that can be used to systematically create workflows, to gen-
erate claims along with supporting evidence, and to maintain the claims
and evidence as the inputs change. We present the Evidential Tool Bus
(ETB) as a tool integration framework for constructing claims supported
by evidence. ETB employs a variant of Datalog as a metalanguage for
representing claims, rules, and evidence, and as a scripting language for
capturing distributed workflows. ETB can be used to develop assurance
cases for certifying complex systems that are developed and assured using
a range of tools. We describe the design and prototype implementation
of the ETB architecture, and present examples of formal verification
workflows defined using ETB.

Keywords: Certification, Formal techniques, Hybrid techniques, Tool
integration, Workflow.

1 Introduction

Formal techniques such as model checking, static analysis, and theorem proving
are playing an increasingly prominent role in the design and analysis of complex
hardware and software systems [22,32]. Any given project features workflows
that employ multiple tools and techniques. For example, a workflow might use a
combination of test case generation and static analysis to identify bugs, synthesis
to generate correct code, and verification to establish correctness properties.
Since formal techniques are typically used to achieve a high degree of assurance
for certifying the validity of a system, it is important to extract evidence for any
associated formal and informal claims. This evidence should be explicit so that it
can be examined, replayed, and maintained even as the constituent components

� This work was supported by NSF Grant CSR-EHCS(CPS)-0834810, NASA Cooper-
ative Agreement NNX08AY53A, and by DARPA under agreement number FA8750-
12-C-0284. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S. Government.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 275–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

276 S. Cruanes et al.

are modified. The idea of an Evidential Tool Bus (ETB) was proposed and
motivated by Rushby [30]. Building on these ideas, we recently designed and
implemented an architecture for ETB as a distributed framework for integrating
diverse tools into coherent workflows for producing claims supported by explicit
evidence. We motivate the need for such an architecture and describe the design,
implementation, and application of ETB.

Recent years have witnessed an explosion in the growth of formal verification
tools. We now have a range of powerful formal tools for specialized tasks, but
a typical application of formal techniques employs multiple tools. Examples of
such integrated formal techniques include

1. Counterexample-guided abstraction refinement (CEGAR) combining model
checking and abstraction, which is itself typically implemented using a sat-
isfiability solver [8].

2. Concolic execution combining symbolic evaluation with a constraint solver
for generating test cases [31].

3. Hardware verification toolchains that exploit different representations in-
cluding hardware description languages and Boolean representations such
as and-inverter graphs, binary decision diagrams, and conjunctive normal
form [6].

4. Deductive program verification to generate proof obligations that are then
discharged using a theorem prover [25].

5. Invariant generation combining static analysis, templates, dynamic analysis,
k-induction, and property-directed reachability [9,15,5].

These examples employ several tools within a script to produce formal claims
that either verify software properties or produce concrete counterexamples. Quite
often, these tools have specific platform requirements so that any framework for
combining them must support multiple diverse platforms.

Software and system certification is another motivation for ETB as a frame-
work for the construction and maintenance of arguments and evidence. A for-
mally supported software design lifecycle includes several phases from require-
ments and specification to design and implementation to testing and integration.
These phases are connected to each other through formal and semi-formal claims.
The resulting system is often accompanied by an assurance case [4], which is “a
documented body of evidence that provides a convincing and valid argument that
a specified set of critical claims about a systems properties are adequately justi-
fied for a given application in a given environment.” Such an assurance case is
an argument employing claims that are supported by evidence, where some of
the evidence is the result of applying individual tools.

The main purpose of ETB is the production of claims supported by arguments
based on evidence. Some sub-claims in the argument can be established by ex-
ternal tools. This yields several desiderata that guide the design of the evidential
tool bus.

1. ETB should be extensible with new claim forms and rules of argumentation.
2. It should admit new external tools (including human oracles) through an

API to produce claims and generate queries.

Tool Integration with the Evidential Tool Bus 277

3. New workflows should be definable as scripts.
4. There should be support for maintaining an argument even as the underlying

tools and inputs change.
5. A certifying agent should be able to replay and check any part of a completed

development, relative to explicitly stated assumptions.

The most important design principle for ETB is semantic neutrality. The frame-
work should not be biased toward any specific tools, languages, models, forms
of evidence, or applications. Any semantic interpretation is provided solely by
the tools. The ETB merely provides the plumbing and book-keeping so that
tools can communicate with each other to exchange services while recording the
resulting claims and evidence.

Given these considerations, we have designed ETB as a distributed client-
server architecture where the coordination between services is defined using a
variant of the Datalog programming language [1,7]. We use Datalog both as a
metalanguage for representing claims, inference rules, and arguments, as well as
a scripting and coordination language for capturing distributed workflows. Dat-
alog was initially conceived as a database query language, but in recent years, it
has been used for other interesting applications such as static analysis, declar-
ative networking, and verification [17,21]. In our variant of Datalog, claims are
expressed using Datalog predicates. We incorporate external tool invocations
through interpreted predicates. These external tools are available as services
provided by one or more servers on the ETB network. At these servers, tool
wrappers are defined to map Datalog queries of these predicates to the corre-
sponding tool invocation and bind the results back to variables in the query.
A typical interpreted query would be minisatCheck(Formula,Result), which
invokes the MiniSAT [14] SAT solver on the given formula to bind the variable
Result to either sat or unsat. Claims can also be expressed using uninterpreted
predicates. For example, we might have a more generic satisfiability query given
by satisfiable(Formula,Result) which can be defined to invoke one of several
SAT solvers such as MiniSAT. Datalog programs are defined as Horn clauses,
where the head atom is expressed using an uninterpreted predicate. A subset of
these program clauses can be identified as inference rules that are admissible
as steps within an argument, while the remaining clauses are used as scripts to
direct the workflow.

ETB features a distributed architecture for processingDatalog queries.AnETB
network is a fully-connected graph of ETB servers operating on a local area net-
work. ETB nodes or networks running outside of the local network can be inte-
grated through proxy servers. Each server advertises the tool services that it offers
on the network. The ETB network offers a client API that can be used to define,
initiate, and monitor computations on the ETB network as well as to maintain the
structure of the network itself. An ETB network can be used simultaneously by
several clients. Each server also maintains a claims table and a version-controlled
file system. The claims table monitors the status of queries and records claims
together with the associated inference steps. The claims are about data, some of
which are maintained in files. It is important to note that the claims are actually
about (the contents of) file versions, so that a claim about one version may not

278 S. Cruanes et al.

be valid about other versions of the same file. ETB can be used to maintain the
validity of claims and arguments as file versions are modified.

Failure is a pervasive problem with distributed applications, and ETB is no
exception. ETB server nodes can go down, communication links can fail, and
tool invocations can trigger errors. Such erroneous computations might corrupt
the data in files. In ETB, errors generate error claims that can be logged or used
to trigger notification and recovery actions.

ETB has applications beyond supporting workflows for formal verification and
certification. ETB can be used as a middleware platform for orchestrating dis-
tributed computations that involve the production and maintenance of claims.
Examples include any scientific workflow where it is useful to maintain informa-
tion about the provenance of files. Another such application is a distributed make

(described in Section 4) that keeps system builds synchronized with changes to
the source code files. Here, claims about the relationship between source and
binary files, as well as configuration details, are used to direct the build process.
Unlike the Unix utility make, the ETB version is sensitive only to file contents
and not their write dates. Another application is in tying together tools that
run only on specific platforms, e.g., Windows, Linux, iOS, and Android. ETB
can also be used to distribute tasks such as regression testing that can be easily
parallelized and distributed across a network of servers.

It is important to identify the problems that are not addressed by ETB. It is
meant for coarse-grained integration of tasks over a distributed network, and not
for fine-grained integration as in a Nelson–Oppen combination [26] of inference
procedures. The integration in ETB is especially suited to workflows where the
individual tools are employed on large tasks where the inputs and outputs can
be saved to and read from files. In such workflows, much of the data saved in
files is part of the evidence that has to be preserved along with any associated
claims for certification purposes. While ETB can be used as a general-purpose
framework for coarse-grained distributed computing, the main advantage it offers
over task distribution frameworks like Condor [33] or Hadoop is its ability to re-
tain evidence together with reproducible claims. Unlike Programatica [19], which
embeds certificates into Haskell programs, ETB is a general-purpose distributed
framework for integrating tools as well as evidence. ETB, by itself, is not a se-
mantic interchange framework like PROSPER [12], ToolBus [11], Veritech [18],
Boogie [3], Why [16], or Frama-C [10] where different tools interact through a
common interchange language. However, ETB could be used to implement such
frameworks or to work in conjunction with them. ETB has some similarity to
service-oriented architectures such as ETI/JETI [24] or Orc [23] which can also
be used to define workflows, but unlike ETB, these do not support the construc-
tion of version-controlled, evidence-based arguments. Dedalus[2] is a time and
space-aware declarative language that extends Datalog for declarative network-
ing and computation. It explicitly embeds a discrete notion of time to perform
atomic updates on the set of extensive set of atoms considered true at any mo-
ment. Unlike ETB, which supports the exchange of files and tool services, the
operational semantics of Dedalus only supports the exchange of Datalog atoms
between nodes (“locations”). ETB is also different from metalogical frameworks

Tool Integration with the Evidential Tool Bus 279

like LF [20], Isabelle [27], and Twelf [28]. These frameworks are used to represent
formal object logics and support proof construction. In contrast, ETB is neutral
about syntactic representations and semantic interpretations and focuses purely
on the interaction between tools through scripts, queries, and claims. The design
of ETB has been influenced by ideas from these projects, but the focus has been
on semantically neutral, evidence-based tool integration.

We outline the use of Datalog as the metalanguage of ETB in Section 2,
and describe the ETB architecture in Section 3. In Section 4, we illustrate the
workings of ETB with some examples, and conclude with a discussion of future
work in Section 5.

2 Datalog as a Metalanguage

Datalog was initially introduced as a deductive database language, but in recent
years, it has been employed as a declarative framework for other applications
such as program analysis and networking. We describe how ETB uses a variant
of Datalog to represent data, claims, queries, inference rules, workflows, and
arguments. We illustrate our variant of Datalog with an example. The key ideas
in the representation of ETB artifacts are

1. Data in the ETB consists of file handles, tool session handles, as well as
JSON data objects (Booleans, numbers, strings, structures, or arrays).

2. An ETB atom is an n-ary predicate applied to n arguments that are either
data objects or variables.

3. A claim is a ground (i.e., fully instantiated) atom or its negation.
4. A query atom is a partially instantiated atom where some of the arguments

can be variables. A query is a sequence of query atoms.
5. Information in the ETB is exchanged in the form of queries and claims about

these data objects. Files related to the queries and claims are also exchanged
across the ETB network.

6. External tools are integrated into ETB through interpreted predicates.
7. Scripts are ETB programs built from derivation rules, i.e., Horn clauses

where the head atom contains an uninterpreted predicate.
8. Inference rules are a subset of the derivation rules that are used to construct

exportable proofs of claims from those of sub-claims. Such proofs may need
to satisfy constraints on the subset of external tools and rules that can be
used.

9. An ETB proof is a tree of claims: each claim follows from the subclaims by
an inference rule.

10. A query triggers backward chaining on derivation rules to instantiate a work-
flow. A successful computation yields a set of claims instantiating the query,
and each such a claim is supported by one or more derivations.

11. Forward chaining is employed on inference rules to derive claims and con-
struct exportable proofs.

12. Multiple derivations (including exportable proofs) can be saved. These deriva-
tions are used to recreate claims when the input data has changed. Multiple
exportable proofs are also useful in strengthening the validity of a claim.

We describe each of these aspects of ETB’s use of Datalog as a metalanguage.

280 S. Cruanes et al.

Data. The data processed by ETB can include programs, transition systems,
formulas, files, contexts, models, test cases, analysis results, and tool sessions.
ETB provides no built-in interpretation of the data beyond what is provided by
these tools. Among the tools in the ETB are translators from one data represen-
tation to another. For example, an ETB tool might translate formulas generated
by a hardware description language to the input language of a model checker.
ETB data is represented as a JSON object. File and tool handles are represented
as JSON structures. File handles can contain metadata, but are uniquely identi-
fied by the hash of the file contents. This ensures that any claims about files are
about their contents rather than their file IDs or other metadata. Tool sessions
are also similarly identified along with any metadata, but are uniquely identified
by a session ID and a hash of the session state that is maintained by the tool
wrapper. ETB can be extended with new forms of data, but the above forms are
sufficient for most applications.

Claims. The notion of a claim is central to ETB. The whole point of ETB is
to produce a replayable argument for a claim that is supported by evidence.
Such an argument can include sub-claims generated by external tools. Claims
are given in the form of judgements that are applied to data. A claim is a ground
ETB atom of the form p(d1, . . . , dn), where p is an n-ary predicate and d1, . . . , dn
is a sequence of n data elements. A predicate p can either be an uninterpreted
predicate or an interpreted predicate. The latter class of predicates is mapped
to tool invocations, whereas the former corresponds to conventional Datalog
predicates. In describing these claims, we make reference to external tools such
as the PVS theorem prover, the Yices SMT solver, and the SAL model checker.
Simple examples of judgements used to make claims include:

1. pvsFormula(P): P is a PVS formula
2. pvs2Yices(P, Y): Y is the Yices translation of PVS formula P
3. yicesModel (Y,C): C is a model for Yices formula Y
4. yicesUnsat(Q): Q is an unsatisfiable Yices context
5. salModule(M): M is a SAL transition system module
6. invariant(M,P): P is an invariant property of module M

The actual claim predicates might take additional arguments such as tool version
or auxiliary arguments.

Most of the predicates in the above list of claims are interpreted, i.e., they
are directly implemented by invoking external tools. A predicate like invariant
is uninterpreted in that it is defined by means of ETB rules. In Datalog, the
predicates are partitioned as (extensional) database predicates and (intentional)
defined ones. In ETB, the extensional predicates are treated as interpreted since
the database can be regarded as an external tool. Another side-effect of using
interpreted predicates is that we can recover the power of Prolog-style unifi-
cation through external tool invocations. Datalog treats the data elements as
unstructured, whereas Prolog can use unification to decompose a term of the
form f(X,Y). With interpreted predicates, we can replace a goal formula of the
form p(f(X,Y)) by p(Z), decomposef (Z,X, Y), where the interpreted predicate

http://pvs.csl.sri.com
http://yices.csl.sri.com

Tool Integration with the Evidential Tool Bus 281

decomposef holds exactly when Z = f(X,Y). A program clause of the form
p(f(X,Y)) :- q(X,Y) can be replaced by p(Z) :- decomposef (Z,X, Y), q(X,Y).

Claims in ETB are not restricted to logical assertions. For example, a claim
can provide statistical information such as the percentage of coverage provided
by a test suite. Claims can even be speculative, as in the assertion that a formula
is a potential invariant as generated by a tool like Daikon [15].

Queries. A query is a non-empty sequence of partially instantiated ETB atoms of
the form p(a1, . . . , an) where some arguments ai can be variables. If {X1, . . . , Xn}
is the set of free variables in the query sequence A1, . . . , Ak, andK is the Datalog
program, then a Datalog computation searches for a set of instantiations of
the form [X1 �→ b1, . . . , Xn �→ bn], where each bi is a data object, such that
K =⇒ A1[X1 �→ b1, . . . , Xn �→ bn] ∧ · · · ∧ Ak[X1 �→ b1, . . . , Xn �→ bn]. When
this is the case, we can assert Ai[X1 �→ b1, . . . , Xn �→ bn] as a claim, for i in
{1 . . . k}.

Queries in ETB are used to trigger computations to establish the correspond-
ing claims. Typical queries might include

1. Translation from one language, e.g., PVS to Yices: pvs2Yices(‘x+y < 3′, Y)
2. Type Checking: pvsTypecheck(′x : real , y : int ′,′ (x + y)/(x − y)′,T ,Q), where

the first argument is the context, and the output T is the type of the ex-
pression, and output Q is the set of proof obligations, e.g., x− y �= 0.

3. Satisfiability checking: yicesUnsat(filehandle), where the file handle is pro-
vided by some other tool, e.g., the translator from PVS.

Scripts. An ETB program is collection of Horn clauses, where each clause is
either a derivation rule of the form H :- C or an inference rule of the form
H ⇐ C, where H is an atom, and C is a list of atoms such that every free
variable in H also occurs free in some atom of C. In ETB, the predicate symbol
for the head atom, the head predicate, must be uninterpreted, and the set of
clauses in which p occurs as the head predicate constitutes the definition of
p. As in Prolog and Datalog, variables are represented by identifiers where the
leading character is in upper case, whereas the leading character for identifiers for
constants is in lower case. For example, one could write the following reachability
script for a transition system using a BDD package that checks if some bad state
satisfying P is reachable by a transition systemM . In this script, we first extract
the initialization predicate I and the transition relation N from module M , and
then check if P is reachable with I and N . The predicate reachable is defined to
construct the BDD versions of I, N , and P as L, W , and Q, and to invoke the
predicate bddReachable on these. The latter predicate is defined to iteratively
compute the image of W with respect to L as J , and then check the reachability
of Q from J .

reach(M,P) :- init(M, I), transition(M,N), reachable(I,N, P).

reachable(I,N, P) :- bdd(I, L), bdd(N,W), bdd(P,Q), bddReachable(L,W,Q).

bddReachable(L,W,Q) :- bddAnd(L,Q,R), bddNonempty(R).

bddReachable(L,W,Q) :- bddImage(W,L, J), bddReachable(J,W,Q).

282 S. Cruanes et al.

Semantics. We describe the distributed evaluation of ETB queries in Section 3.2.
We focus here on the semantics of the Datalog variant used by ETB. With
external tool invocations, the data domain is no longer finite. For example, a
simple successor relation succ(X,Y) which holds exactly when Y = X+1 would
generate an infinite set. We assume that the interpreted queries are bounded,
so that p(a,X) binds X to a list of instantiations for X . The processing of
interpreted queries through a tool wrapper can trigger back-chaining, so that
the query p(a,X) can introduce the query q(b). Our semantics is proof-theoretic.
Given a program Π and a query atom Q, the meaning Π [[Q]] consists of the set
of ground instances Q of Q such that there is an SLD-resolution proof of Q from
Π . There can be unboundedly many such instances, as for example for the query
lt(0, Y) in the program below.

lt(X,Y) :- succ(X,Y).

lt(X,Y) :- lt(X,Z), lt(Z, Y).

In such cases, the computation diverges.

Inference Rules. Some of the clauses in the ETB programs can be designated as
inference rules that are sanctioned for use in ETB proofs. For example, in the
inference rules below, P is asserted to be an invariant for a transition module with
initialization I and transition relation N , if it is implied by another invariant,
or it is an inductive invariant. The premises of the rule involving the predicates
implies and inductiveInvariant can be established by other rules or by means of
tool invocation.

invariant(I,N, P) ⇐ invariant(I,N,Q), implies(Q,P).

invariant(I,N, P) ⇐ inductiveInvariant(I,N, P).

Inference rules are ETB program clauses and can also be used as scripts. Other
examples of inference rules include

1. Counterexample traces: A valid trace is one that leads from an initial state
to an error state on zero or more computation steps.

2. Abstraction: If one program is an abstraction of a (concrete) program, then
the concrete counterpart of a property of the abstract program holds of the
concrete one.

3. Refinement: A concrete program is a refinement of an abstract one if any
concrete computation step can be simulated by the abstract program through
the simulation relation. Separate inference rules can be specified for the
different forms of refinement.

4. Termination: A while-loop terminates if there is a ranking function on the
variables that decreases with each execution of the loop. Other termination
techniques, e.g., disjunctive well-foundedness of the transitive closure of the
transition relation, can also be specified [17].

Proofs. A proof is a derivation, a tree whose root node is a claim that is an
instance of the head atom of an inference rule, where the corresponding instances

Tool Integration with the Evidential Tool Bus 283

of the body atoms are proved by the subtrees. Each ETB claim that has been
established

Typically, an interpreted claim is the leaf node of a proof, but it is possible for
the proof of an interpreted claim to also have sub-proofs corresponding to queries
dynamically generated during the tool invocation. In this case, the validity of
the inference step relative to the sub-proofs is checked by the tool itself.

In some cases, the tool might be somewhat nondeterministic so that the proof
cannot be exactly replicated. In such cases, the proof is merely used as a template
for reconstructing the steps in the justification. ETB proofs are thus a subset
of ETB derivations where the proof steps only employ program clauses that are
designated as inference rules. The proof construction feature has not yet been
implemented in ETB.

2.1 An Example: Iterated k-Induction

Given a transition systemM = 〈I,N〉 with initialization I and transitionN , and
a predicate P , we want to prove that P is an invariant by finding the smallest
k such that P is k-inductive. The inference rule for demonstrating that P is an
invariant of M is given below. It asserts that one possible way of demonstrating
the P is an invariant of M is by establishing that P is a k-inductive. (There
are other possible ways, such as by showing that P is entailed by some other
invariant Q.)

invariant(M,P) ⇐ transitionSystem(M),
initialization(M, I),
transition(M,N),
kInductive(I,N, P,K).

The inference rule for k-inductivity decomposes the claim into the subclaims
that P holds for the first K steps (i.e., the bounded model checking claim bmc
holds of I, N , P , K), and that if P holds for any K states in a computation,
then it holds for the K + 1st state of the computation.

kInductive(I,N, P,K) ⇐ bmc(I,N, P,K),
inductionStep(N,P,K).

The above inference rules are used to build ETB proof, but the actual value
of K is found by a script defining the predicate iterInductive that tries each
value K starting from 1 up to some upper bound U using the tool invocation
in range(K, 1, U). We can also define a script for proving invariant(M,P) by
invoking the script for iterInductive to find a suitable K for some fixed upper
bound, e.g., 5.

iterInductive(I,N, P,K,U) :- in range(K, 1, U), kInductive(I,N, P,K).

invariant(M,P) :- transitionSystem(M),
initialization(M, I),
transition(M,N),
iterInductive(I,N, P,K, 5).

284 S. Cruanes et al.

The predicates bmc and inductionStep invoke Yices, by first invoking an in-
terpreted predicate yicesBmcFormula to construct the bounded model checking
query formula F , and then invoking the interpreted predicate yicesUnsat to
determine if F is unsatisfiable using Yices.

bmc(I,N, P,K) ⇐ yicesBmcFormula(I,N, P,K, F),
yicesUnsat(F).

The induction step generates the k-induction formula F using the interpreted
predicate yicesInductionFormula , and checks for unsatisfiability invoking the
interpreted predicate yicesUnsat as above.

inductionStep(N,P,K) ⇐ yicesInductionFormula(N,P,K, F),
yicesUnsat(F).

We omit the details of the construction of the Yices formulas for BMC and k-
induction. If kInductive(I,N, P, k) succeeds for some k, then forward chaining
on the rule of inference for invariant yields the claim invariant(M,P) with a
proof using the inference rules.

3 The Architecture of ETB

ETB is based on a distributed client-server architecture. An ETB cluster consists
of a fully connected network of ETB servers as shown in Figure 1. Each server
maintains a version controlled file system, specifically Git, and tables of claims
and queries. It also advertises a set of services and subscribes to a list of claim
forms. A server can itself be a proxy for other ETB clusters, thus serving as a
bridge between two or more ETB clusters. An ETB cluster is operated through
a client which offers an application programming interface (API). Through a
client, a user can configure and program the server, connect other servers to
the cluster, add new content, initiate the processing of queries, and monitor the
progress of a computation.

We describe some of the key features of the ETB architecture: the software
stack, the server, the client API, and the mechanics of distributed query pro-
cessing in ETB. The current ETB prototype is implemented in Python.

3.1 The ETB Software Stack

The ETB stack consists of the following layers:

1. Network: Maintains the connectivity status of the ETB cluster and shares
information about tool wrappers and cluster-wide ETB programs.

2. File: Each server operates a Git repository from which files/directories are
synchronized with servers as needed.

3. Session: Servers exchange claims and queries, as needed to invoke external
tools.

http://git-scm.com
http://python.org

Tool Integration with the Evidential Tool Bus 285

Clients

Server Server

Server Server

Clients Clients

Clients

Fig. 1. The ETB Client-Server Architecture

The Network Layer. Basic to the network layer is a heartbeat. Each server
periodically broadcasts a heartbeat message to the other servers in the network.
This heartbeat is used to maintain the membership of the network; in case of
a server failing, other servers will delete it from the cluster. Servers also share
information about the predicate symbols they can interpret, e.g., a server on a
Linux machine on which Yices [13] is installed may declare that it can interpret
yicesUnsat .

When two servers are in the same cluster, they can access one another through
the network. XML-RPC calls are used for all communication between servers.
For instance, the heartbeat messages are remote invocations of a ping()method.

The File Layer. Each server has a local, private Git repository that it uses to
store files involved in claims. If several versions of a file are involved in claims,
each such version is stored, and referred to by its unique SHA1 hash. The purpose
of this storage is two-fold:

1. To replay derivations and proofs of claims, which may require restoring old
versions of files

2. Sharing files with other servers by extracting the content of the file (indexed
by its SHA1 hash) and sending it through the network layer.

Using Git in this way ensures the immutability of claims involving the contents
of files. If we state that yicesUnsat(filehandle), and want to replay it later, the
file may have been deleted or modified. However, since the contents of the file
is saved in the Git repository, and the claim actually contains the hash of the
file, we can create the original file again to replay Yices on it. File contents can
therefore be seen as constant values indexed by their SHA1 hash even though
the file itself might have been modified in the repository.

286 S. Cruanes et al.

The Session Layer. The session layer supports query processing in order to pro-
duce claims and evidence. Each server executes scripts locally and only invokes
the other servers for external tools. The queries corresponding to the tools are
sent to a suitable server using XML-RPC. The target server uses the File layer
to obtain the relevant files. The processing of the query at the target server
can recursively invoke other queries on the ETB network. Any resulting claims
are returned to the source server along with the derivation. The claims are also
broadcast to servers that have registered subscriptions associated with this claim.
The source server then obtains the files associated with the resulting claims. The
source server can choose a target server based on load parameters or other fac-
tors. If the target server fails during the processing of a query, the query can be
retargeted to a different server. Each server has a consistent copy of the ETB
scripts, but a server can also have local scripts where only the service provided
by these scripts is exported.

3.2 Query Processing in ETB

We present the details on the operational semantics of query processing through
the evaluation of ETB rules. A goal is an ETB atom, possibly with variables.
Claims are ground atoms with an associated derivation. The query processing
rules have the form: R, T,S ⇓ T ′,S ′, meaning that a set of ETB rules R, a
set of established claims T , and a set of processing clauses S, produce in one
step a new set of established claims T ′ and a new set of processing clauses S ′.
Established claims in T are pairs of a ground claim h and a justifying clause
h :- g1, ..., gn. Processing clauses in S are pairs of a justifying clause and a clause
(the justifying clause will be used to turn derived unit clauses into claims).
Claims that are already in the claims table T are reused, as in tabled logic
programming [29], and are not recomputed.

Figure 2 contains a set of inference rules that are applied to the query set S
and the claims table T in a nondeterministic order until no rule affecting S and
T is applicable; the set S is then saturated and contains clauses and justifications
that can be used to construct derivations from the rules supporting the claims
in T .

– The rule Claim transfers unit clauses to the claims table.
– The rule Application instantiates a rule from R to the set S if the rule

may help solving the first goal (g1) of some clause in S.
– The rule Resolution removes the first goal g1 if g1σ is a claim. It is really

a unit resolution inference rule. Note that the justification cσ[c′] captures
the resolution step.

– The rule Interpretation schedules the interpretation of an interpreted
atom g1 if it occurs as the first premise of a clause in S. Intuitively, a tool
invocation solves this goal in the hope that it will add claims matching g1,
that will in turn remove g1 by the Resolution rule. All claims matching
g1 generated by the interpretation I are added to T when all the claims
in Q corresponding to recursive queries have been established in T . A tool
can also introduce additional claims H to T , and each additional claim f is

Tool Integration with the Evidential Tool Bus 287

Claim

(c : h :-) ∈ S
R, T,S ⇓ T + (c : h),S

Application

(c : h :- g1, ..., gn) ∈ S r ≡ a :- b1, ..., bk ∈ R ∃σ.aσ = g1σ

R, T,S ⇓ T,S + (rσ : aσ :- b1σ, ..., bkσ)

Resolution

(c : h :- g1, ..., gn) ∈ S ∃σ.(c′ : g1σ) ∈ T

R, T,S ⇓ T,S + (cσ[c′]) : hσ :- g2σ, ..., gnσ)

Interpretation

(c : h :- g1, ..., gn) ∈ S g1 interpreted I(g1) = Σ,H,Q Q ⊆ T

R, T,S ⇓ T + {(f :- g1Q) : f |f ∈ H}+ {(g1σ :- Q) : g1σ|σ ∈ Σ},S

Query

(c : h :- g1, ..., gn) ∈ S
g1 interpreted q query generated during interpretation of g1

R, T,S ⇓ T,S + (g1 : q)

Fig. 2. Rules for query processing

tagged with the derivation (f :- g1Q) to indicate that it was derived during
the invocation g1 and is conditional on Q.

– The rule Query allows new queries to be added to S during the evaluation
of an interpreted atom g1 by the corresponding external tool.

This calculus is trivially sound (the rule Resolution is an instance of unit
resolution). It is also complete for well-formed first-order clauses (such that all
variables of the head of a clause also occur in the body). Any SLD-resolution
refutation proof can be transformed to a derivation in the ETB calculus.

3.3 Tool Wrappers

Tools are connected to the ETB by means of thin wrappers. Wrappers are written
in Python and are short, simple programs that map queries to tool invocations.
A wrapper for a tool is a Python class that defines one or more predicates to be
interpreted by the ETB. Predicates are given by a triplet: a name, a predicate
signature, and a Python function. The name and signature of the predicate
are shared among all ETB nodes, informing other nodes that the ETB can now
interpret this predicate. The function is local, and is executed when the predicate
needs to be interpreted.

288 S. Cruanes et al.

Predicate Signatures. A predicate signature is defined by the following grammar:

predicate signature sig ::= arg spec | sig, arg spec
argument specification arg spec ::= sign arg : type
argument type type ::= value | file | files
argument sign sign ::= + | −

The signature associate modes and types to each argument of the predicate.
Types are either value, which indicates a JSON value, or file, which indicates
an ETB file references, or files, in which case the argument is a list of files.
The mode associated to each argument in the signature represents inputs and
outputs: a + argument is an input to the predicate and is required to be ground
when the predicate is invoked. A - argument indicates an output and can be
either a constant or a variable at invocation: if it is a constant, the predicate
is expected to check that the predicate holds for this particular value, if it is a
variable, the predicate is expected to return one or more substitutions for this
variable.

For example, the signature for a predicate invoking the yices SMT solver on
a file containing a formula and returning either of the string “sat” or “unsat”
could be:

yices :: +input: file, -result: value

The predicate yicesUnsat used earlier (page 284) can be defined as a separate
wrapper or as an uninterpreted predicate using the yices predicate.

Implementation of a Wrapper An ETB tool wrapper is a Python class that inher-
its from the class etb.wrapper.Tool. This class provides a decorator predicate
which is used to declare particular methods of the class as predicates as well as
give the predicate signature. A template wrapper for the yices SMT solver is
the following:

class Yices(Tool):

@predicate(’+input: file, -result: value’)

def yices(self, formula, result):

...

It declares the predicate yices with the signature we saw previously.
The code of the wrapper then typically calls the tool on the input arguments,

gets the results from the tool and translates them for the ETB. The results
returned to the ETB when the query succeeds, include a (possibly empty) list of
substitutions, additional ground claims, and claims associated with ETB queries
dynamically generated during the tool invocation.

The etb.wrapper.Tool class provides utilities that help in interpreting and
producing ETB values. The etb.wrapper.BatchTool class extends it with util-
ities to make it easy to call external batch tools. Using these utilities, we can
write the code of the yices wrapper as follows:

@Tool.predicate("+input: file, -result: value")

def yices(self, input, result):

return self.run(result, ’yices’, input[’file’])

Tool Integration with the Evidential Tool Bus 289

The wrapper takes as output argument a value result, which can be either a
constant or a variable. If it is a constant, the wrapper checks that yices produces
the same value, and returns an empty substitution representing success. If it is
a variable, it returns a substitution binding the variable to yices output. If the
yices command fails for any reason (e.g. yices is not found, or the file is not a
valid yices file, etc.), it returns failure (no substitution), as well as an additional
error claim.

3.4 The Client API

Interaction with an ETB network is done through a client. The client can ex-
change files with the ETB repository. It can also initiate queries, monitor the
progress of a query, and access the substitutions and claims established by query
evaluation.

The basic client included with ETB is a read-eval-print interaction loop which
can interpret scripts interacting with the ETB. Specialized clients can be built
for specific applications — a GUI client has been implemented for a hardware
analysis project. We have also defined a shell client for accessing ETB.

A client connects to one server of an ETB network, and communicates with
that node using XML-RPC calls. Clients can therefore be written in any language
that supports XML-RPC. The main functions of the client API to the ETB are
presented in Figure 3 – other functions not listed here enable the client to manage
the state of the ETB and observe a visual representation of running queries.

Method Description
ref = put file(src, dst) Put the file src as dst on the ETB, and return

a reference to the destination.
get file(srcref, dst) Get the file corresponding to the reference srcref

from the ETB and copy it locally under dst.
id = eval(claim) Create a new query looking for solution for claim,

and return a query ID.
answers = wait query(id) Wait for the query id to complete and returns

its set of answers.
answers = query answers(id) Return the current set of answers for the query id.
claims = query claims(id) Return the current set of claims generated

as part of the query id.
ret = connect(host, port) Connect the remote ETB node running at host:port

with the local ETB.

Fig. 3. The ETB Client API

4 ETB Examples

In this section, we present two simple application of the ETB. The first is a
distributed implementation of make that can also handle multiple platforms,

290 S. Cruanes et al.

and the second is a näıve AllSAT script. ETB is currently being used in a couple
of projects: one, to integrate various hardware analysis tools, and another, to
combine model-based design/analysis capabilities.

4.1 A Simple Distributed Make

In our first example, we use the ETB to build a binary executable from source
C files as would typically be done using make or similar tools.

C Compiler Wrappers We first define a wrapper for gcc. This wrapper declares
two predicates, one to compile a C source file into an object file, the other one
to link several object files together into a binary.

@Tool.predicate("+src: file, +dependencies: files, -obj: file")

def gcc_compile(self, src, deps, obj):

dst = os.path.splitext(src[’file’])[0] + ’.o’

self.callTool(’gcc’, ’-c’, ’-o’, dst, src[’file’])

objref = self.fs.put_file(dst)

return self.bindResult(obj, objref)

The first wrapper takes a source file, a list of files that the compilation depends
on, typically header files, and returns an object file. We first create the output
file name, then run gcc. Finally, we put the generated object file on the ETB and
bind the output variable to this file. Note that the dependencies do not appear
in the command that is run, but appear in the claim, and as such the files are
copied to the server that handles the compilation together with the source file.

@Tool.predicate("+ofiles: files, +exename: value, -exe: file")

def gcc_link(self, ofiles, exename, exe):

filenames = [r[’file’] for r in ofiles]

args = [’gcc’, ’-o’, str(exename)] + filenames

self.callTool(*args, env=env)

exeref = self.fs.put_file(str(exename))

return self.bindResult(exe, exeref)

The second predicate is similar to the first one. It takes a list of objects files and
produces a binary executable.

A rule to build a program. We can now use these wrappers to build a program.
Our example is built from three C source files: two independent components
with associated header files, and a main program using these two components.

The following rule compiles each source file in turn, then links them:

main(Src1, H1, Src2, H2, Main, Name, Exe) :-

gcc_compile(Src1, [H1], Obj1),

gcc_compile(Src2, [H2], Obj2),

gcc_compile(Main, [H1, H2], ObjMain),

gcc_link([Obj1, Obj2, ObjMain], Name, Exe).

The rule defines a predicate main which takes as argument the three source files
and two header files. It also takes the name of the binary and the binary itself.

Tool Integration with the Evidential Tool Bus 291

To build an actual binary, we just need to make an ETB query applying actual
files to the rule.

Our example does not take into account the architecture on which the ETB
node is running, or the version of the compiler used. This kind of information,
as well as additional compilation flags, or other metadata can be tracked using
the ETB.

4.2 AllSAT on Top of Yices

In our second example, we build a tool that can generate all satisfying truth
assignments for a formula using a SAT solver. The idea is straightforward: ask
the solver if the formula is satisfiable, if it is, ask the solver to generate a solution,
add a clause blocking this solution to the formula, and iterate. Each iteration
finds a new solution until they have all been found.

Assuming that we have two predicates sat and unsat that can establish
whether a formula is satisfiable, and return a solution if it is, we can write
derivation rules for a predicate allsat as follows:

allsat(F, Answers) :- sat(F, M),

negateModel(F, M, NewF),

allsat(NewF, T),

cons(M, T, Answers).

allsat(F, Answers) :- unsat(F), Answers = nil.

We use the additional predicate negateModel that extends an existing formula
with a blocking clause built from a solution, as well as utility predicates cons
and nil to build the list of answers and equal to test for equality. cons and
nil are interpreted predicates that bind their last argument to new identifiers
(similar to dynamic allocation that “creates” new memory addresses) to identify
list nodes.

Given a solver, and its chosen representation of a formula, we can instantiate
the predicates sat, unsat, and negateModel to get a working implementation
of allsat. In this example, we use the yices SMT solver, and its native input
language. We write a single interpreted predicate that calls the solver on a file
containing a formula, and returns either “sat” or “unsat” as well as a model if
available:

@Tool.predicate("+formula: file, -result: value, -model: value")

def yices(self, formula, result, model):

...

From this, we can derive the two predicates sat and unsat:

sat(F, M) :- yices(F, S, M), equal(S, ’sat’).

unsat(F) :- yices(F, S, M), equal(S, ’unsat’).

5 Conclusions and Future Work

We have outlined our vision for the Evidential Tool Bus, and described the de-
sign, implementation, and application of the framework. We have implemented

292 S. Cruanes et al.

the basic components of our proposed design, including the server engine, the
client and wrapper APIs, wrappers for Yices and SAL, and several small scripts.
We have also built capabilities for single-stepping the execution and observing
execution traces. A lot of work remains to be done in extending the implementa-
tion, developing applications, and optimizing the implementation based on these
applications. These include

1. Wrappers for a range of verification tools and static and dynamic analysis
tools, through the use of standardized languages front-ends. Many of these
wrappers will, we hope, be contributed by third-party developers.

2. Scripts for abstraction, invariant generation, termination, test generation,
code generation, synthesis, and result certification.

3. Support for ETB proofs using forward-chaining on inference rules.

We also plan to develop a network of ETB servers operating in the cloud, and to
aggressively explore novel applications of tool integration and coordination that
require the construction and custody of evidence.

In summary, ETB is a semantically simple framework for formal tool integra-
tion that yields replayable evidence for use in assurance cases. It uses a variant of
Datalog as the metalanguage for representing claims, queries, workflows, and ar-
guments. Tools are integrated as uninterpreted predicates through wrappers, and
made available through a client-server network. Claims are established through
distributed query processing over this network, and proofs are constructed from
these claims. ETB will be made available in open source form for community-
wide experimentation and enhancement.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Alvaro, P., Marczak, W., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.C.:
Dedalus: Datalog in Time and Space. Technical report, EECS Department, Uni-
versity of California, Berkeley (December 2009)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

4. Bloomfield, R.E., Bishop, P.G., Jones, C.C.M., Froome, P.K.D.: Adelard Safety
Case Development Manual. Adelard (1998)

5. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012)

6. Brayton, R., Mishchenko, A.: ABC: An Academic Industrial-Strength Verification
Tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

7. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1(1), 146–166 (1989)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

Tool Integration with the Evidential Tool Bus 293

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

10. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - A Software Analysis Perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012)

11. de Jong, H., Klint, P.: ToolBus: The Next Generation. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 220–241.
Springer, Heidelberg (2003)

12. Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gor-
don, M., Melham, T.: The PROSPER Toolkit. In: Graf, S., Schwartzbach, M. (eds.)
TACAS 2000. LNCS, vol. 1785, pp. 78–92. Springer, Heidelberg (2000)

13. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

14. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming (2006)

16. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

17. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier Based on Horn Clauses- (Competition Contribution). In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer,
Heidelberg (2012)

18. Grumberg, O., Katz, S.: Veritech: a framework for translating among model de-
scription notations. STTT 9(2), 119–132 (2007)

19. Hallgren, T., Hook, J., Jones, M.P., Kieburtz, R.B.: An overview of the Progra-
matica toolset. In: High Confidence Software and Systems Conference, HCSS 2004
(2004)

20. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. In: IEEE
Symposium on Logic in Computer Science, Ithaca, NY (1987)

21. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an in-
teractive tutorial. In: Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y.
(eds.) SIGMOD Conference, pp. 1213–1216. ACM (2011)

22. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Sur-
veys 41(4), 21:1–21:54 (2009)

23. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming Language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 1–25. Springer, Heidelberg (2009)

24. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of veri-
fication tools in JETI. In: ECBS, pp. 431–436. IEEE Computer Society (2005)

25. Nelson, G.: Techniques for program verification. Technical Report CSL-81-10, Xe-
rox Palo Alto Research Center, Palo Alto, Ca. (1981)

26. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

27. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002), Isabelle home page: http://isabelle.in.tum.de/

http://isabelle.in.tum.de/

294 S. Cruanes et al.

28. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In: Ganzinger, H. (ed.) CADE-16. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

29. Rao, P., Sagonas, K.F., Swift, T., Warren, D.S., Freire, J.: XSB: A System for
Effciently Computing WFS. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS, vol. 1265, pp. 430–440. Springer, Heidelberg (1997)

30. Rushby, J.M.: An Evidential Tool Bus. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 36–36. Springer, Heidelberg (2005)

31. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Wermelinger, M., Gall, H. (eds.) Proceedings of the 10th European Software En-
gineering Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering 2005, Lisbon, Portugal, September
5-9, pp. 263–272. ACM (2005)

32. Shankar, N.: Automated deduction for verification. ACM Computing Surveys
41(4), 20:1–20:56 (2009)

33. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
Condor experience. Concurrency - Practice and Experience 17(2-4), 323–356 (2005)

Compositional and Lightweight Dependent Type

Inference for ML

He Zhu and Suresh Jagannathan

Dept. of Computer Science
Purdue University

Abstract. We consider the problem of inferring expressive safety prop-
erties of higher-order functional programs using first-order decision pro-
cedures. Our approach encodes higher-order features into first-order logic
formula whose solution can be derived using a lightweight counterex-
ample guided refinement loop. To do so, we extract initial verification
conditions from dependent typing rules derived by a syntactic scan of
the program. Subsequent type-checking and type-refinement phases infer
and propagate specifications of higher order functions, which are treated
as uninterpreted first-order constructs, via subtyping chains. Our tech-
nique provides several benefits not found in existing systems: (1) it en-
ables compositional verification and inference of useful safety properties
for functional programs; (2) additionally provides counterexamples that
serve as witnesses of unsound assertions: (3) does not entail a complex
translation or encoding of the original source program into a first-order
representation; and, (4) most importantly, profitably employs the large
body of existing work on verification of first-order imperative programs
to enable efficient analysis of higher-order ones. We have implemented
the technique as part of the MLton SML compiler toolchain, where it has
shown to be effective in discovering useful invariants with low annotation
burden.

1 Introduction

Dependent or refinement types [20,10,28] offer a promising way to express rich
invariants in functional programs that can go beyond the capabilities of tra-
ditional type systems [8] or control-flow analyses [25], albeit at the price of
automatic inference. Recently, there has been substantial progress in reduc-
ing this annotation burden [15,23,14,13,16,17,19,18,22] using techniques adopted
from model-checking and verification of first-order imperative programs [11,7].
These solutions, however, either (a) involve a complex reformulation of the in-
tuitions underlying invariant detection and verification from a first-order con-
text to a higher-order one [17,18], making it difficult to directly reuse existing
tools and methodologies, (b) infer dependent types by solving a set of con-
straints collected by a whole-program analysis [15,23], additionally seeded with
programmer-specified qualifiers, that can impact compositionality and usabil-
ity, or (c) entail a non-trivial translation to a first-order setting [13], making it

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 295–314, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 H. Zhu and S. Jagannathan

more complicated to relate the inferences deduced in the translated first-order
representation back to the original higher-order source when there is a failure.

In this paper, we present Popeye, a compositional verification system that
integrates a first-order verification engine, unaware of higher-order control- and
dataflow, into a path- and context-sensitive dependent type inference framework
for Standard ML. Notably, our solution treats uses of higher-order functions as
uninterpreted terms. In this way, we are able to directly exploit the scalability
and efficiency characteristics of first-order verification tools without having to
either consider a sophisticated translation or encoding of our functional source
program into a first-order one [13], or to re-engineer these tools for a higher-
order setting [17]. Our verification strategy is based on a counterexample-guided
refinement loop that systematically strengthens a function’s inferred dependent
type based on new predicates discovered during examination of a derived coun-
terexample path. Moreover, our strategy allows us not to only verify the validity
of complex assertions, but can also be used to directly provide counterexample
witnesses that disprove the validity of presumed invariants that are incorrect.

Our technique is compositional because it lazily propagates refinements com-
puted at call-sites to procedures and vise versa, allowing procedure specifications
to be strengthened incrementally. It is lightweight because it directly operates
on source programs without the need to generate arbitrary program slices [26],
translate the source to a first-order program [13], or abstract the source to a
Boolean program [18]. Popeye’s design consists of two distinct parts:

1. Dependent Type Checking. Initially, we infer coarse dependent types for
all local expressions within a procedure using dependent type rules that
encode intraprocedural path information in terms of first-order logic formulae
that range over linear arithmetic and uninterpreted functions, the latter
used to abstract a program’s higher-order control-flow. We build verification
conditions that exploit the dependent types and which are subsequently
supplied into a first-order decision procedure. Verification failure yields an
intraprocedural counterexample path.

2. Dependent Type Refinement. The counterexample path can be used by
existing predicate discovery algorithms to appropriately strengthen pre- and
post-conditions at function calls. Newly discovered refinement predicates are
propagated along subtyping chains that capture interprocedural dependen-
cies to strengthen the dependent type signatures of the procedures used at
these call-sites.

The remainder of the paper is organized as follows. In the next section, we present
an informal overview of our approach. Section 3 defines a small dependently-
typed higher-order core language. We formalize our verification strategy for this
language in Section 4. Section 5 discusses the implementation and experimental
results. Related work and conclusions are given in Sections 6 and 7.

Compositional and Lightweight Dependent Type Inference for ML 297

2 Overview and Preliminaries

Dependent Types. We consider two kinds of dependent type expressions:

1. a dependent base type written {ν : B| r}, where ν is a special value variable
undefined in the program whose scope is limited to r, B is a base type, such
as int or bool, and r is a boolean-valued expression (called a refinement).
For instance, {ν : int | ν > 0} defines a dependent type that represents the
set of positive integers.

2. a dependent function type written:

{x : P1x → P1} ⊕ {x : P2x → P2} ⊕ . . .⊕ {x : Pnx → Pn}

abbreviated as ⊕i{x : Pix → Pio}, where each {x : Pix → Pi} defines a
function type whose argument x is constrained by dependent type Pix and
whose result type is specified by Pi. The different components of a dependent
function type distinguish different contexts in which the function may be
used. For instance,

{x : {ν : int | ν > 0} → {ν : int | ν > x}}⊕{x : {ν : int| ν < 0} → {ν : int| ν < x}}

specifies the function that, in one call-site, given a positive integer returns an
integer greater than x, while in another, given a negative integer returns an
integer less than x. Components in a dependent function type are indexed
by an implicit label, e.g., a finite call-string used in polyvariant control-flow
analyses [24,12].

As shorthand, we sometimes write only the refinement predicate to represent
the dependent type, omitting its type constructor. Thus, in the following, we
sometimes write {r} as shorthand for {ν : B | r}. For example, {ν > 0} repre-
sents {ν : int | ν > 0}. We also write B as shorthand for {ν : B | true}. For
perspicuity, we use syntactic sugar to allow the ⊕ operator to be “pushed into”
refinements:

{ν : B | r1} ⊕ {ν : B | r2} = {ν : B | r1 ⊕ r2}
{x : P1 → Pr1} ⊕ {x : P2 → Pr2} = {x : P1 ⊕ P2 → Pr1 ⊕ Pr2}

As a result, context-sensitive dependent types reuse the shape of ML types (Sec-
tion 3.1). Additionally, we define P.i to return the dependent type indexed by la-
bel i. When a function is used in a single context, we simply write {x : Px → P}.
Procedure Specifications. A procedure specification is given in terms of a
pre- and post-condition of a procedure; we express these conditions in terms of a
dependent function type where the type of the function’s domain can be thought
of as the function’s pre-condition, and where the type of the function’s range
defines its post-condition.

298 H. Zhu and S. Jagannathan

fun f g x =

if x>=0 then

let r = g x in r

else

let p = f g

q = compute x

s = f p q

in s

fun main h n =

let r = f h n

in assert (r >= 0)

Fig. 1. The use of higher-order procedures can make compositional dependent type
inference challenging

2.1 Example

Consider the program shown in Fig. 1. This program exhibits complex dataflow
(e.g., it can create an arbitrary number of closures via the partial application of
f) and makes heavy use of higher-order procedures (e.g., the formal parameter
g in function f). We wish to infer a useful specification for f without having
to (a) supply candidate qualifiers used in the dependent types that define the
specification, (b) know the possible concrete arguments that can be supplied to
g , or (c) require details about compute ’s definition. In spite of these constraints,
our technique nonetheless associates the following non-trivial type to f :

f : {g : {garg : {ν ≥ 0}} → {ν ≥ 0}} → x : {true} → {ν ≥ 0}}

This type ascribes an invariant to g that asserts that g must take a non-
negative number as an argument (as a consequence of the path constraint (x

>= 0) within which it is applied) and returns a non-negative number as a result
(as a consequence of the assertion made in main).

fun g x y = x

fun twice f x y =

let p = f x

in f p y

fun neg x y = -(x ())

fun main n =

if n >= 0 then

assert(twice neg (g n) () >= 0)

else ()

Fig. 2. A function’s specification can be refined based on the context in which it is used

The utility of context-sensitive dependent types arises when a function is
called in different (potentially inconsistent) contexts. Consider the program
shown in Fig. 2. Here, function f (which is supplied the argument neg in main)
is called in two different contexts in the procedure twice . The first argument
to f is a higher-order procedure - in the first call, this procedure is bound to
the result of evaluating g n ; in the second call, the procedure (bound to p) is
the result of the first partial application. Since f negates the value yielded by
applying its procedure argument to () , we thus infer the following specification:

farg1 : {{true⊕ true} → {ν ≥ 0 ⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0 ⊕ ν ≥ 0}

Compositional and Lightweight Dependent Type Inference for ML 299

3 Language

We formalize our ideas in the context of a call-by-value variant of the λ-calculus
with support for dependent types. The syntax of the language is shown in Fig. 3.
We use f, g, x, y, . . . to range over variables; typically, f and g (as well as their
subscripted variants) are only bound to abstractions, while x and y (as well
as their subscripted variants) can be bound to values of any type. The special
variable ν is used to denote the value of a term in its corresponding dependent
type refinement predicate. The language supports a small set of base types (B),
monotypes (τ), type schemas (σ) that introduce polymorphic types via type
variables that are universally quantified at the outermost level, and dependent
types (P) that include dependent base types and dependent function types.

Predicates (p) are Boolean expressions built from a predefined set (Q) of
first-order logical, arithmetic, and relational operators; the arguments to these
operators are simple expressions - variables, constants, or function applications;
to simplify the technical development, we assume function applications are A-
normalized, ensuring every abstraction and function argument is associated with
a program variable. A refinement expression is either a refinement variable (κ)
that represents an initially unknown refinement or a concrete predicate (p).
Templates (PT) are dependent types whose refinement expressions are only re-
finement variables (κ). The pick or selection operator κ.i on refinement variable
allows ⊕ to be pushed into refinements (as described in Section 2), and hence
omitted in template definitions. Instantiation of the refinement variables to con-
crete predicates takes place through the type refinement algorithm described in
Section 4. An assert statement of the form “assert p; e′” evaluates expression e′

if predicate p evaluates to true and returns the special value fail otherwise.

f, g, x, y, . . . ∈ Var c ∈ Constant ::= 0, 1, . . ., true, false, . . . B ∈ Base ::= int | bool
τ ∈ Monotype ::= B| α | τ → τ σ ∈ PolyType ::= τ | ∀α.σ

P ∈ DepType ::= {ν : B | r} | ⊕i {x : P → P}
r ∈ Refinement ::= κ | p p ∈ Predicate ::= Q(s, . . . , s)

κ ∈ RefinementVar ::= κ | κ.i PT ∈ Template ::= {ν : B |κ} | {x : PT → PT }
s ∈ SimpleExp ::= ν | x | f x v ∈ Value ::= c | λ x. e

e ::= s | v | fix e | fail | if p then et else ef | let x = e in e | assert p; e | [Λα] e | [τ] e

Fig. 3. Syntax

3.1 Dependent Type System

Type inference and checking use an ordered type environment Γ that consists of
a sequence of dependent type bindings x : Px along with guard expressions drawn
from conditional expression predicates. The use of these guard expressions makes

300 H. Zhu and S. Jagannathan

the type system path-sensitive since the dependent types inferred for a term are
computed using the guard expressions that encode the program path taken to
reach this term. We define the shape of a dependent type as its corresponding
ML type; thus, Shape(P) is obtained by replacing all refinements in P with true.
We generalize its definition to type environments in the obvious way - hence,
Shape(Γ) consists only of bindings that relate variables to ML types, with all
refinements replaced with true and guard expressions found in Γ removed.

Γ (x) = {ν : B | e}
Γ � x : {ν : B | ν = x} VarBase

Γ (x) not a base type

Γ � x : Γ (x)
VarFunc

Γ � c : ty(c)
Const

Γ � e1 : P1 Γ ;x : P1 � e2 : P2

Γ � let x = e1 in e2 : P2
Let

∀ i. Γi;x : Pix � e : Pie Γi;x : Pix � Pie <: Pi

⊕iΓi � λx.e : ⊕i {x : Pix → Pi}
Fun

Γ � e : {f : Pf → ⊕i {x : Pix → Pi}}
Γ ; f : Pf � fix e : ⊕i {x : Pix → Pi}

Fix

Γ � y : Py Γ � Py <: Px Γ � fi : (x : Px → P)

Γ � fi(y) : [y/x]P
App

Γ � p : bool Γ ; p � et : Pt Γ ;¬p � ef : Pf

Γ � if p then et else ef : C(p, Pt, Pf)
If

Γ � f : ⊕i {x : Pix → Pi}
Γ � fj : {x : Pjx → Pj}

Pick

∀ i. Γi � fi : {x : Pix → Pi}
⊕iΓi � f : ⊕i {x : Pix → Pi}

Conc
Γ � {bool | true} <: {bool | p} Γ � e : P

Γ � assert p; e : P
Assert

Γ � e : ∀α.P Γ � P ′ Shape(P ′) = γ

Γ � [γ]e : [P ′/α]P
Inst

Γ � e : P α not free in Γ

Γ � [Λα]e : ∀α.P Gen

〈Γ 〉 ∧ 〈r1〉 ⇒ 〈r2〉
Γ � {ν : B | r1} <: {ν : B | r2}

BaseSub
Γ � P ′

x <: Px Γ ;x : P ′
x � P <: P ′

Γ � {x : Px → P} <: {x : P ′
x → P ′} FunSub

∀ i. Γ � {x : Pix → Pi} <: {x : P ′
i x → P ′

i}
Γ � ⊕i {x : Pix → Pi} <: ⊕i {x : P ′

i x → P ′} ConcFunSub

Fig. 4. Dependent typing rules

Fig. 4 defines the dependent type inference rules; these rules are adapted from
[23], generalized to deal with richer path and context-sensitive types. Syntacti-
cally, Γ � e : P states that expression e has type dependent type P under
type environment Γ . Our typing rules are refinements of the ML typing rules. If
Γ � e : P then Shape(Γ) � e : Shape(P). Γ ; x : P defines the type environment
that extends the sequence Γ with a binding for x to P . The rules for variables,
constants, let-expressions are standard. Rule Fun associates a context-sensitive
dependent function type with an abstraction. The structure of this type is deter-
mined by the different contexts in which the abstraction is applied (Γi) generated

Compositional and Lightweight Dependent Type Inference for ML 301

from rule Conc described below. The first judgment in the antecedent considers
the type of the abstraction body in all type environments Γi enriched by a type
binding of bound variable x with dependent type Pix . The second judgment
asserts that Pie , the type associated with the body of the abstraction, be a
subtype of the return type of the abstraction. Rule Fix defines recursive functions
in the obvious way. Rule App establishes a subtyping relation between the actual
and formal parameters in the application. The abstract labels that subscript
function identifiers in the rules are used to express context-sensitivity but are
not part of the program syntax, and are constructed during the interprocedural
type refinement phase.

In the If rule, we independently infer types Pt and Pf for branch expressions
et and ef , resp. Then, the dependent type of the entire expression is given using
operator C that enforces the guard expression (or its negation) p (or ¬p) to be
a precondition of the corresponding type:

C(p, {τ | r1}, {τ | r2}) = {τ | p ⇒ r1 ∧ ¬p ⇒ r2}
C(p,⊕i{x : P1 → Pr1},⊕i{x : P2 → Pr2}) = ⊕i{x : C(p, P1, P2) → C(p,Pr1 , Pr2)}

There are two rules for extracting and generating context-sensitive dependent
type functions. A term f with type ⊕i {x : Pix → Pi} reflects the type of all
uses of f in different contexts; the type at a given context can be indexed by
the label at the use (rule Pick). Conversely, we can construct the concatanation
of the types at each context to yield the actual type of the function (rule Conc).
The subtype judgment in rule Assert enforces that the assertion predicate p hold.
Polymorphic instantiation and generalization are defined in the standard way.

There are three subtyping rules. In rule Base Subtyping, the premise check
〈Γ 〉 ∧ 〈r1〉 ⇒ 〈r2〉 requires that the conjunction of environment formula 〈Γ 〉 and
r1 imply r2. As in [23], 〈Γ 〉 is defined as a first order logic formula:∧

{r | r ∈ Γ} ∧
∧

{[[x/ν] r] | x : {ν : B | r} ∈ Γ}

Rule FunSubtype defines the usual subtyping relation on functions and rule Con-
cFun generalizes this rule to deal with context-sensitivity. These three rules im-
plicitly encode subtyping chains, allowing specifications to be propagated across
function boundaries.

Our semantics enjoys the usual progress and preservation properties; evalua-
tion preserves types, and well-typed programs do not get stuck. (An assertion
violation causes the program to halt with the special value fail.)

Theorem 1 (Dependent Type Safety)

1. (Preservation) If Γ � e : P and e ↪→ e′ then Γ � e′ : P
2. (Progress) If Γ � e : P , where e �= fail then e is either a constant or an

abstraction, or there exists an e′ such that e ↪→ e′.

302 H. Zhu and S. Jagannathan

4 Verification Procedure

Our verification system consists of (a) a type-checking algorithm that encodes
intra-procedural path constraints and generates verification conditions whose va-
lidity can be checked by a first-order decision procedure, and (b) a counterexam-
ple guided dependent type refinement loop that uses the counterexample yielded
by a verification failure to strengthen existing invariants, and propagate new ones
inter-procedurally via dependent subtyping chains.

4.1 Dependent Type Checking

The first step of our verification procedure is to assign each function a dependent
type template as described earlier. By applying our inference rules, with the
type template, given a type environment Γ and expression e, we can construct
dependent types for local expressions and derive a set of subtyping constraints,
which will be subsequently used to generate verification conditions (VC).

There are three verification conditions generated from the type checking rules.
First, a subtyping constraint introduced by an assert expression:

Γ � {bool | true} <: {bool | p}

entails a verification condition that checks the validity of p under the path con-
straints and type bindings defined by Γ . Second, the subtyping constraint asso-
ciated with function abstraction:

Γ ;x : PT x � PT e <: PT

establishes a verification condition on the post-condition of this abstraction that
requires it be consistent with the invariants inferred for its body. Third, the
subtyping constraint associated with function application:

Γ � PT y <: PT x

entails a verification condition that checks that the specification of the function’s
pre-condition subsumes the invariants associated with the argument at the call.

A solution in our system is defined by a refinement environment Σ that maps
refinement variables κ to refinements. We lift this notion to dependent types
Σ(PT) and type environment Σ(Γ) by substituting each place holder κ with
Σ(κ) appearing in PT and Γ . A verification condition c is valid if Σ(c) is valid.
We say Σ satisfies a subtyping constraint Γ � PT 1 <: PT 2 if Σ(Γ) � Σ(PT 1) <:
Σ(PT 2). Σ is a valid solution if it satisfies all subtype constraints.

Like [23], we deconstruct arbitrary subtyping constraints to base subtyping
constraints (Fig. 4). According to the Base Subtyping rule, the verification con-
dition formula is generated as

〈Σ(Γ)〉 ∧ 〈Σ(r1)〉 ⇒ 〈Σ(r2)〉

To allow our verification engine to deal with unknown higher-order functions,
we encode higher-order functions into an uninterpreted form. Suppose the type

Compositional and Lightweight Dependent Type Inference for ML 303

of function f is x0 : Px0 → · · · → xn : Pxn → Pf . We encode Pf to be {ν =
Rf (arg0(f), . . . , argn(f))}; here, Rf and argi are uninterpreted terms representing
the result of function f and the ith argument supplied to f at a call. Applications
of higher-order function f are encoded by substituting actuals for the appropriate
(suitably encoded) formal as Encode(f). This gives us the ability to verify a
function modularly without having to know the set of definitions referenced by
a functional argument or result. For example, for the program shown in Fig. 1,
the variable r in the let-binding, r = g x , is encoded as [x/arg0(g)]Rg(arg0(g)),
which is simply Rg(x). The subtyping constraint built for checking the post-
condition during the verification of f , leads to the construction of the verification
condition:

((x ≥ 0 ∧ r = Rg(x)) ⇒ ν = r) ∧ ((¬(x ≥ 0) ∧ s ≥ 0) ⇒ ν = s) ⇒ (ν ≥ 0)

4.2 Dependent Type Refinement

The heart of our counterexample-guided type refinement loop is given in Fig. 5.
Our refinement algorithm exploits the dependent type template and subtyping
constraints generated from type inference rules and finally returns solution Σ. In
Solve , our method iteratively type checks each procedure of the given program
using the subtyping rules listed in Fig. 4 until a fix-point is reached. When
a procedure cannot be typed with the set of current refinements, our method
supplies the unverified procedure’s type environment Γ , the current refinement
map Σ, its type template x : PT x → PT , the unverified function λx.e, and the
verification conditions C constructed for the function to Refine which can then
proceed to strengthen the function’s dependent type.

Counterexample Generation. Our refinement algorithm first constructs a
counterexample ce for an unverified verification condition. The counterexample
is derived by solving the negation of the desired verification condition:

〈Σ(Γ)〉 ∧ 〈Σ(r1)〉 ∧ ¬〈Σ(r2)〉

The encoding of Γ and r1 reflects path information; by the structure of the rules
in Fig. 4, the encoding of refinement r2, on the other hand, reflects a safety
property that is implied by 〈Γ 〉∧〈r1〉. Thus, an assignment to this formula leads
to a counterexample of a possible safety violation; this counterexample path is
represented as a straight-line program.

A path expression of the form: “ if p then et else ef” is translated to:
“ assume p; et” if an assignment from the VC evaluates p to true and “ assume
¬p; ef” otherwise. Consider our example from Fig. 1. A first-order decision
procedure would find an assignment to the the negation of the VC as an error
witness, e.g., r = -1 and x = 1 . The representation of the counterexample
path of procedure f given in Fig. 1 is thus:

fun f g x = assume (x >= 0); let r = g x in r

304 H. Zhu and S. Jagannathan

Refine (Γ , Σ, {x : PT x → PT }, λx.e, C) =
if exists c ∈ C such that Σ(c) is not valid with a witness of ce
then

let Σ′ = case c of
| Γ � {ν : B|p1} <: {ν : B|r2} ⇒

let pred = case r2 of | p2 ⇒ r2 | ⇒ Σ[r2]
in Strengthen ({x : PT x → PT }, Σ, wp (ce, pred), r2)

| Γ � {ν : B| κ1} <: {ν : B| κ2} ⇒
Σ[κ1 �→ (Σ[κ1]) ∧ (Σ[κ2])]

in Refine (Γ , Σ′, {x : PT x → PT }, λx.e, C)
else Σ

Solve (procedures as List[Γ , {x : PT x → PT }, λx.e, C], Σ) =
if exists (Γ , {x : PT x → PT }, λx.e, C) for a procedure needs to be checked
then

Solve (procedures, Refine (Γ , Σ, {x : PT x → PT }, λx.e, C))
else Σ

Fig. 5. Type refinement algorithm

According to the two different forms of subtyping constraints generated, depen-
dent types can be refined from the counterexample path in one of two ways:
weakest precondition generation or procedure specification propagation.

Weakest Precondition Generation. In this setting, the constraint is of the
form: Γ � {ν : B | p1} <: {ν : B | r2}, corresponding to the first case in Refine

in Fig. 5, where p1 is a concrete predicate and r2 is either a concrete predicate or
a refinement variable or a selection of refinement variable. This constraint is gen-
erated when based typed expression is supplied as function argument or return
or establishing assertions. Our type refinement in this case can be implemented
by a backward symbolic analysis analogous to weakest precondition generation,
operating over a counterexample path. Recall that the weakest pre-condition of
an expression S is a function wp(S,Q) mapping the post-condition Q to a pre-
condition P , ensuring the execution of S terminates in a final state satisfying Q.
Similarly, our weakest precondition generation simply pushes up post-conditions
backwards, substituting terms for values in the presumed post-condition based
on the structure of the term used to generate the pre-condition.

Our weakest precondition semantics is extended to deal with counterexample
paths that include unknown function calls but for which context information
constraining their arguments or results is available. Here, we can only strengthen
relevant signatures, deferring the re-verification of the procedure being invoked
until it becomes known. The called function’s post-condition will be eventually
propagated via dependent subtyping chains back to the procedures that flow into
this call-site; in doing so, pre-conditions of these functions could be strengthened,
requiring re-verification of the calling contexts in which they occur to ensure that
these contexts imply the pre-condition. Such flows are handled directly by the
subtyping chains analyzed by the refinement phase. For a called higher-order

Compositional and Lightweight Dependent Type Inference for ML 305

wp(e, φ) = case e of

| λx.e⇒ wp(e, φ)

| assume ψ; e ⇒ (ψ ⇒ wp(e, φ))

| let x = e′ in e ⇒ wp(x = e′, wp(e, φ))

| v = x ⇒ [x/v]φ

| v = c ⇒ [c/v]φ

| v = f−→a ⇒ [Encode(f)/v]φ

| ⇒ wp(ν = e, φ)

Fig. 6. Weakest precondition generation definition

function f , we use Encode (f) to represent its value. The definition of our wp
is given in Fig. 6. Consider the example in Fig. 1. The post-condition inferred
is ν ≥ 0. We can infer the precondition shown in Section 2 by applying our wp
rules as follows:

wp(assume (x ≥ 0); let r = g x in r), ν ≥ 0) =

wp(assume (x ≥ 0),wp(let r = g x in r , ν ≥ 0)) =

wp(assume (x ≥ 0),wp(r = g x , (wp(ν = r , ν ≥ 0)))) =

wp(assume (x ≥ 0),wp(r = g x , r ≥ 0)) =

wp(assume (x ≥ 0),Rg(x) ≥ 0) =

x ≥ 0 ⇒ Rg(x) ≥ 0

Thus g’s specification is strengthened to g : {{ν ≥ 0} → {ν ≥ 0}}.
When a function call f(x) is encountered and the abstraction to which f is

bound is known precisely (e.g., based on a syntactic or control-flow analysis pre-
processing phase), our method strengthens the post-condition of the function’s
body of f to that available at the call. wp recursively applies our verification
technique to refine the function’s precondition based on the post-condition de-
fined by the context in which it is called. wp can then be executed from this call
site operating on the rest of statements of the counterexample beyond the call
site and the newly strengthened precondition.

Procedure Specification Propagation. In this setting, the subtyping con-
straint is of the form: Γ � {ν : B | κ1} <: {ν : B | κ2}, corresponding to
the second case in Refine in Fig. 5, Refinement variables are introduced when
defining dependent type templates; this occurs during inference of function ab-
straction and fix expressions. Ensuring the subtyping constraint holds requires
that any instantiation of κ2 be propagated to κ1. This enables refinements asso-
ciated with the post-condition of a higher order function to be propagated into
the real function body, and conversely to propagate refinements associated with
a function’s pre-condition back to the parameters of higher order function.

306 H. Zhu and S. Jagannathan

Consider how we might verify the program shown in Fig. 2. Our method
initially infers a dependent type template for f as {{κ11 → κ12} → κ2 → κf}.
The assertion in main drives a new post-condition {ν ≥ 0} for twice , and
hence f2 which is the second the call to f, instantiating κf to {true ⊕ ν ≥
0}. This constraint is then propagated to the post-condition of neg since neg

subtypes to f at the call site of twice in main . The weakest pre-condition
backward analysis of our system then strengthens the pre-condition for neg and
propagates it back to f , instantiating {κ12} to {true ⊕ ν ≤ 0}. In twice , our
technique needs to ensure, at the second call site of f2, the actual higher-order
function p subtypes to the first argument of f where p is derived from the
first call to f notated as f1. The subtyping relation can then be expressed as
Γ � {κ2.1 → κf.1} <: {κ11 .2 → κ12 .2}. The post-condition in κ12 .2 ({ν ≤ 0}) is
then propagated to κf.1, which becomes {ν ≤ 0 ⊕ ν ≥ 0}. Finally, the context-
sensitive type for f is derived as

farg1 : {{true⊕ true} → {ν ≥ 0 ⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0 ⊕ ν ≥ 0}

4.3 Correctness

We provide two correctness results for our verification algorithm V(Γ,Prog)
where Γ is top-level typing environment and Prog is a program1. The first
(Soundness) states that the dependent types inferred by our verification pro-
cedure are consistent with our type rules. The second (Weak) states that our
procedure generates the least type necessary to discharge the subtyping con-
straints collected by the inference algorithm. In the following, R(Γ) recursively
extracts dependent base types {ν : B|κ} from the domain of Γ .

Theorem 2 (Verification Algorithm)

1. (Soundness) Let ((. . . , {Γ, x : PT x → PT , λx.e, C}, . . .), Σ) be the result of
V(Γ,Prog). Then, provided V(Γ,Prog) terminates, Σ(Γ) � λx.e : {x :
Σ(PT x) → Σ(PT)}.

2. (Weak) And, for all other valid solution Σ′, the algorithm generates the
weakest solution: ∀c as {Γ � {ν : B|r1} <: {ν : B|r2}} ∈ C, and ∀ {ν :
B|κ} ∈ {R(Γ) ∪ {ν : B|r1}}, Σ′(Γ) � {ν : B|Σ′(κ)} <: {ν : B|Σ(κ)}.

4.4 Invariant Generation

Because our technique does not guarantee termination given the undecidability
of automatically synthesizing loop invariants, the size of a dependent function
type may grow into an infinite representation, and a fixed-point may never be
reached. Consider the ML program fragment shown in Fig. 7 adapted from [13].
The procedure iteri visits the elements of a list xs , applying function f to
each element and its index in the list. Procedure mask calls iteri when the
length of its array and list arguments are the same. It supplies function g as the

1 The proof can be found in www.cs.purdue.edu/homes/zhu103/pubs/vmcai13full.pdf

www.cs.purdue.edu/homes/zhu103/pubs/vmcai13full.pdf

Compositional and Lightweight Dependent Type Inference for ML 307

higher-order argument to iteri which performs some computation involving a
list and array element at the same index. We desire to verify the array bound
safety property j < len(a) for the array access in procedure g (Note j ≥ 0 can
be directly proved by our method introduced in Section 4.2).

fun iteri i xs f =

case xs of

[] => ()

| x :: xs’ => (f i x; iteri (i+1) xs’ f)

fun mask a xs =

let g j y = · · · y · · · Array.sub (a, j) · · · in

if Array.length a = List.length xs then

iteri 0 xs g

else () end

Fig. 7. A program that has a non-trivial loop invariant

During the course of verifying this program, we would need to discharge a spec-
ification that forms a pre-condition for iteri asserting that len(xs) �= 0 ⇒ i

< len(a). However, verifying this specification requires a theorem prover to con-
clude that len(xs)-1 �= 0 ⇒ i+1 < len(a) as precondition for the recursive call
to iteri (i+1) xs’ . In trying to discover a counter-example to this claim,
a theorem prover would likely generate an infinite number of pre-conditions,
len(xs) - k �= 0 ⇒ i + k < len(a) where k = 0, 1, 2 · · · What is required is a
sufficiently strong invariant that can be used to validate the required safety prop-
erties. While programmers could certainly write such specifications if necessary,
we follow the idea of interpolation-based model-checking [21] to automatically
infer them when possible.

When our mainline verification algorithm diverges or reaches a pre-determined
timebound during the analysis of a recursive procedure, it is unrolled incremen-
tally together with its calling context. Our method then infers dependent type
templates and generates subtyping constraints for the k-unrolled procedures.
Pre-conditions of the higher order functions used in recursive procedure are
propagated via subtyping chain from that of the real function they represent
for. Post-conditions of the higher order functions are also propagated from that
of the real function which can be obtained from our type inference algorithm.
We then exploit a technique described in [27] to infer dependent types from the
collected base subyping constraints. The basic idea is to use the interpolation
of the first-order formulas derived from the subtyping constraints to deduce an
instantiation for a given type refinement variable κ. We desire that the prover re-
turns a more suitable refinement beyond that yielded by a weakest precondition
generator. Refinements synthesized from k-unrolled non-recursive procedures are
folded back to the original procedure as candidates.

308 H. Zhu and S. Jagannathan

For example, suppose our method discovers that it must unroll the recursive
procedure iteri two times, obtaining the program shown below:

fun iteri0 i0 xs0 f0 =

case xs0 of

[] => ()

| x0 :: xs0’ => (f0 i0 x0; iteri1 (i0+1) xs0’ f0)

fun iteri1 i1 xs1 f1 =

case xs1 of

[] => ()

| x1 :: xs1’ => (f1 i1 x1; iteri2 (i1+1) xs1’ f1)

fun iteri2 i2 xs2 f2 = halt

Fig. 8. Unrolling a recursive procedure to enable loop invariant discovery using inter-
polation

Here, halt is a special term, representing a termination point. Because we
maintain the original calling context of iteri , we have len a = len xs in
the typing environment and leverage subtyping constraints to establish that the
actual g subtypes to the formal f0 . We infer refinements for this unrolled ex-
cerpt using the obtained base subtyping constraints. We thus have the following
subtyping constraint:

i1 : κi1, i0 : κi0, xs0 : κxs0, len (xs0) = len (xs0′) + 1, len (xs) = len (a)

� {ν = xs0′ } <: κxs1

that establishes that the actual xs0’ given to iteri1 subtypes to the formal
xs1 . In the body of iteri1 , there is another constraint for the call to f1 i1 :

i1 : κi1, xs1 : κxs1, len (xs1) = len (xs1′) + 1 � {ν′ = i1} <: {ν′ < len (a) }

Because we have already inferred the dependent type for procedure g before
typing iteri and obtained precondition ν′ < len(a) for its first argument, we
can use it to also serve as the precondition of the first argument of f1 propagated
through the subtyping chains.

We extend the above constraints into first order logic formulas:

{ i1 = i0 + 1 ∧ i0 = 0 ∧ xs0 = xs ∧ len (xs0) = len (xs0′) + 1 ∧
len (xs) = len (a) ∧ ν = xs0′ }(a) ⇒ κxs1

κxs1 ⇒ { i1 = i0 + 1 ∧ ν = xs1 ∧ len (xs1) = len (xs1′) + 1 ∧
ν′ = i1 ⇒ ν′ < len (a) }(b)

The unknown refinement represented by κxs1 is indeed an interpolation of for-
mula (a) and formula (b) and can be inferred by feeding them into an appropriate

Compositional and Lightweight Dependent Type Inference for ML 309

interpolation theorem prover [21] which may return len(ν) + i1 = len (a) as
result. Our method then yields len(ν) + i = len (a) (discarding subscript) as
a refinement candidate of the second argument xs of procedure iteri .

After candidate refinement synthesis, our method then applies an elimination
procedure [23] to filter out incorrect candidates. If the original procedure is still
not typable, the process is repeated, unrolling it k + 1 times. For this example,
with the above refinement candidate, we can correctly verify the pre-condition
of f in iteri . Since the theorem prover can use the case condition to know
length(xs) > 0 and based on the invariant i + len(xs) = len(a), it can deter-
mine that i < len(a) must hold. Our method finally generates the appropriate
dependent type for iteri as:

iteri : i : int → {xs : ′a list| i+ len(ν) = len(a)} →
{f : {farg1 : int | 0 ≤ ν < len(a)} → ′a → unit} → unit

Note the invariant generation module is only invoked when our system diverges
during the verification of a recursive procedure. We differ from [27] in two re-
spects: first, [27] does not use an elimination procedure since it tries to infer de-
pendent types for the original program using a whole program analysis; second,
we only infer refinement candidates for a non-recursive unrolled code fragment
instantiated upon divergence, instead of the original whole program, greatly re-
ducing the number of instances where interpolation computation is required.

5 Implementation

We have implemented our verification system in Popeye. Popeye takes as input
an SML program (not necessarily closed) and outputs specifications inferred
for the procedures defined by the program. We have provided specifications for
built-in primitive datatypes as well as arrays, lists, tuples, and records that
are used to bootstrap the inference procedure. The Yices theorem prover is
used as the verification engine. CSIsat [5] is employed to generate interpolations
when inferring candidate refinements for recursive procedures and loops. The
implementation is incorporated within the MLton whole-program optimizing
compiler toolchain and consists of roughly 14KLOC written in SML2.

5.1 Case Study: Bit Vectors

To gauge Popeye’s utility, we applied it to an open-source bit vector library
(bitv) [6] (version 0.6). A bit vector is represented as a record of two fields, bits ,
an array containing vector’s elements, and length , an integer that represents
the number of bits that the vector holds. Operations on bit vectors should enforce
the invariant that (bits.length - 1) · b < bits.length · b , where b is a
constant that defines the number of bits intended to be stored per array element.

2 The Popeye implementation is available at http://code.google.com/p/
popeye-type-checker/

http://code.google.com/p/popeye-type-checker/
http://code.google.com/p/popeye-type-checker/

310 H. Zhu and S. Jagannathan

This invariant is assumed for all procedures. Popeye successfully type checks
the program combined with 5 manually generated preconditions (for recursive
procedures as prover [5] cannot deal with mod operation heavily used in the
library) by relatively longer verification time than that of Dsolve [23] in this
benchmark; however Dsolve requires manual addition of extra 14 user-supplied
qualifiers.

Bug Detection. Without any programmer annotations, Popeye discovered an
array out-of-bounds error that occurs in the blit function:

fun blit {bits=b1, length=l1} {bits=b2, length=l2}
ofs1 ofs2 n =

if n < 0 || ofs1 < 0 || ofs1 + n > l1

|| ofs2 < 0 || ofs2 + n > l2

then assert false

else unsafe blit b1 ofs1 b2 ofs2 n

This function calls unsafe blit only if a guard condition that checks that all
offset value and the number of bits (n) to be copied are positive, and that the
range of the copy fit within the bounds of the source and target vectors. The
counterexample reported for blit procedure corresponds to an input as {length
(b1)=2, length (b2)=0, l1=60, ofs1=32, l2=0, ofs2=0, len=0}. The guard holds
under this assignment, but because unsafe blit attempts to access the offset
in the target bit-vector that is the starting point for the copy, before initiating
the copy loop, an array out-of-bounds exception gets thrown. In this example,
Popeye reports a test case that serves as a witness to the bug, and can help
direct the programmer to identify the source of the error. The primary novelty
of this technique in this regard is its ability to generate a precise counterexam-
ple path with concrete inputs that serve as a witness to the violation without
requiring explicit user confirmation as Dsolve.

Complex Refinement Generation. Procedure unsafe blit found in this library
tries to copy n bits starting at offset ofs1 from bit-vector v1 to bit-vector v2

with target offset ofs2 . Popeye discovers the following precondition:

((ofs2 + n)− 1)/b) < v2.length

This is a non-trivial specification comprised of refinements that we believe would
be difficult, in general, for programmers to construct. Systems such as Dsolve

require users to provide these qualifiers explicitly. The ability to generate non-
trivial refinements automatically only using counterexamples is an important
distinguishing feature of our approach compared to e.g., Liquid Types.

5.2 Experimental Results

To test its accuracy, we have applied Popeye to a number of synthetic SML
programs from the benchmark suite used to evaluate MoCHI [18]. While these

Compositional and Lightweight Dependent Type Inference for ML 311

benchmarks are small (typically less than 100 LOC), they exercise complex
control- and dataflow, and exploit higher-order procedures heavily, in ways in-
tended to make dependent type inference challenging. Details of these bench-
marks are provided in [18]. In the table, column num ref denotes the number
of refinements discovered by Popeye. num cegar shows how many iterations of
the refinement loop were necessary for Popeye to converge. prover call gives
the number of theorem prover calls; there are typically more prover calls than
CEGAR loop iterations because the results of a counterexample usually entails
propagation of newly discovered invariants to other contexts, thus requiring re-
verification (and hence additional theorem prover calls). cegar time shows the
time spent on refinement loops. run time gives the total running time taken.

The first seven benchmarks shown in Table 1 cannot be verified by Dsolve

using its default set of simple qualifiers since either context-sensitive dependent
types or non-trivial invariants are required. The last two of these seven (suffixed
with -e) are buggy, and thus cannot cannot also be automatically proved by
Dsolve. The last two benchmarks requires recursive procedure invariants which
can be synthesized by our invariant generation module. Here, a single unrolling of
the recursive procedure in repeat-e was sufficient to witness the error; in contrast,
Popeye required three unrollings of the recursive procedure in array-init to find
a suitable set of candidate refinements. We note that MoCHI fails to verify the
array-init program. While MoCHI can also verify the first eight benchmarks
in this table, its formulation is a bit more complex than ours, and does not easily
generalize to deal with data structures and user-level datatypes.

6 Related Work

There has been much work on the use of dependent types for checking complex
safety properties of ML programs. Freeman and Pfenning [10] describe a refine-
ment type inference scheme defined in terms of an abstract interpretation over
a programmer-specified lattice of refinements for each ML type, and a restricted
use of intersection types to combine these refinements that still preserves de-
cidability of type inference. DML [28] is a conservative extension of ML’s type
system that supports type checking of programmer-specified dependent types;
the system supports a form of partial type inference whose solution depends
upon the set of refinements found in a linear constraint domain.

To reduce the annotation burden imposed by systems like DML, Liquid Types
[23,14] requires programmers to only specify simple candidate qualifiers from
which more complex dependent types defined as conjunctions of these refine-
ments are inferred by a whole program abstract interpretation. Our approach
differs from liquid types in four important respects: (1) we attempt to infer re-
finements, (2) a counterexample path together with a test case can be reported
as a program bug witness; (3) the type refinement fixpoint loop enables compo-
sitional verification, propagating specifications via dependent subtyping chains
on demand; (4) the dependent types we inferred are context-sensitive.

Broadly related to our goals, HMC [13] also borrows techniques from imper-
ative program verification to verify functional programs. It does so by reducing

312 H. Zhu and S. Jagannathan

Table 1. Benchmark Results

Program num ref num cegar prover call cegar time run time

fhnhn 3 4 35 0s 0.014s
neg 15 20 230 0.004s 0.18s
max 10 11 175 0.005s 0.95s
r-file 11 21 205 0.012s 1.56s
r-lock 10 18 108 0.006s 0.60s
r-lock-e 13 18 113 0.01s 0.68s
repeat-e 39 18 237 0.11s 4.87s
list-zip 2 4 149 0.01s 1.55s
array-init 35 106 3617 0.03 102.3s

the problem of checking the satisfiability of the constraints generated in a liq-
uid type system to a safety checking problem of a simple imperative program.
However, the translated imperative program loses the structure of the original
source semantics. Thus, it is not obvious how we might convert a counterexample
reported in the translated program into the original source for debugging.

Terauchi [26] also proposes a counterexample-guided dependent type infer-
ence scheme, albeit based on a whole-program analysis. A counterexample in
his approach is an “unwound” slice of the program that is untypable using the
current set of candidate types, rather than a counterexample path. Since the
unfolded program may be involved in multiple program paths, many of which
may not be relevant to the verification obligation, it would appear that the size
of the constraint sets that needs to be solved may become quite large.

There has been much recent interest in using higher-order recursion schemes
[17,19] to define expressive model-checkers for functional programs. In [18,22],
predicate abstraction is proposed to abstract higher-order program with infinite
domains like integers to a finite data domain; the development in these papers is
limited to pure functional programs without support for data structures. Model
checking arbitrary μ-calculus properties of finite data programs with higher or-
der functions and recursions can be reduced to model checking for higher-order
recursion schemes [17]. Finding suitable refinements relies on a similar constraint
solving to [26,27] for a straight-line higher-order counterexample program. Such
techniques involve substantial re-engineering of first-order imperative verification
tools to adapt them for a higher-order setting.

One important motivation for our work is to reuse well-studied imperative pro-
gram verification techniques. For example, predicate abstraction [11] has been
effectively harnessed by tools such as slam [2] and blast [4] to verify complex
properties of imperative programs with intricate shape and aliasing properties.
Software verification tools, such as Boogie [3], ESC/Java [9] and CALYSTO
[1] construct first order logic formula to encode a program’s control flow. If a
verification condition, expressed via programmer-specified assertions or specifi-
cations, cannot be discharged, the counterexample path can be used to refine
and strengthen it.

Compositional and Lightweight Dependent Type Inference for ML 313

7 Conclusion

In this paper, we present a compositional inter-procedural verification technique
for functional programs. We use dependent type checking rules to generate de-
pendent type templates for local expressions inside a procedure. Dependent sub-
typing rules are then used to generate verification conditions. From an unprov-
able verification condition, we can construct a counterexample path to infer
dependent types for procedure arguments and results, and to propagate inferred
specifications between procedures and call-sites where they are applied. Thus,
our technique effectively leverages a variety of strategies used in the verification
of first-order imperative programs within a higher-order setting.

Acknowledgements. We thank Ranjit Jhala, Aditya Nori, and Francesco
Zappa-Nardelli for many useful comments and discussions. This work was sup-
ported in part by the Center for Science of Information (CSoI), an NSF Science
and Technology Center, under grant agreement CCF-0939370.

References

1. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007)

2. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static Driver Verification
with Under 4% False Alarms. In: FMCAD, pp. 35–42 (2010)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast: Applications to Software Engineering. Int. J. Softw. Tools Technol. Transf. 9,
505–525 (2007)

5. Beyer, D., Zufferey, D., Majumdar, R.: cSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

6. http://www.lri.fr/~filliatr/software.en.html

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

8. Damas, L., Milner, R.: Principal Type-Schemes for Functional Programs. In:
POPL, pp. 207–212 (1982)

9. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI, pp. 234–245 (2002)

10. Freeman, T., Pfenning, F.: Refinement Types for ML. In: PLDI, pp. 268–277 (1991)
11. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
12. Jagannathan, S., Weeks, S.: A Unified Treatment of Flow Analysis in Higher-Order

Languages. In: POPL, pp. 393–407 (1995)

http://www.lri.fr/~filliatr/software.en.html

314 H. Zhu and S. Jagannathan

13. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying Functional Programs
Using Abstract Interpreters. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 470–485. Springer, Heidelberg (2011)

14. Kawaguci, M., Rondon, P., Jhala, R.: Type-based Data Structure Verification. In:
PLDI, pp. 304–315 (2009)

15. Knowles, K., Flanagan, C.: Type Reconstruction for General Refinement Types. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 505–519. Springer, Heidelberg
(2007)

16. Kobayashi, N.: Model-Checking Higher-Order Functions. In: PPDP, pp. 25–36
(2009)

17. Kobayashi, N.: Types and Higher-Order Recursion Schemes for Verification of
Higher-Order Programs. In: POPL, pp. 416–428 (2009)

18. Kobayashi, N., Sato, R., Unno, H.: Predicate Abstraction and CEGAR for Higher-
Order Model Checking. In: PLDI, pp. 222–233 (2011)

19. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL, pp. 495–508
(2010)

20. Martin-Löf, P.: Constructive Mathematics and Computer Programming (312),
501–518 (1984)

21. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

22. Ong, C.H.L., Ramsay, S.J.: Verifying Higher-Order Functional Programs with
Pattern-Matching Algebraic Data Types. In: POPL, pp. 587–598 (2011)

23. Rondon, P., Kawaguci, M., Jhala, R.: Liquid Types. In: PLDI, pp. 159–169 (2008)
24. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis.

In: Program Flow Analysis (1981)
25. Shivers, O.: Control-Flow analysis in Scheme. In: PLDI, pp. 164–174 (1988)
26. Terauchi, T.: Dependent types from Counterexamples. In: POPL, pp. 119–130

(2010)
27. Unno, H., Kobayashi, N.: Dependent Type Inference with Interpolants. In: PPDP,

pp. 277–288 (2009)
28. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: POPL, pp.

214–227 (1999)

Abstract Read Permissions:
Fractional Permissions without the Fractions

Stefan Heule1, K. Rustan M. Leino2,
Peter Müller1, and Alexander J. Summers1

1 ETH Zurich, Switzerland
stheule@ethz.ch,

{peter.mueller,alexander.summers}@inf.ethz.ch
2 Microsoft Research, USA
leino@microsoft.com

Abstract. Fractional Permissions are a popular approach to reasoning
about programs that use shared-memory concurrency, because they pro-
vide a way of proving data race freedom while permitting concurrent
read access. However, specification using fractional permissions typically
requires the user to pick concrete mathematical values for partial permis-
sions, making specifications overly low-level, tedious to write, and harder
to adapt and re-use. This paper introduces abstract read permissions: a
flexible and expressive specification methodology that supports fractional
permissions while allowing the user to work at the abstract level of read
and write permissions. The methodology is flexible, modular, and sound.
It has been implemented in the verification tool Chalice.

1 Introduction

An important part of reasoning about concurrent programs concerns their pat-
terns of access to memory and other shared resources. A useful aid in the spec-
ification of such patterns is to use a model of resource permissions that can
be transferred between program entities to specify how individual threads are
currently allowed to access shared resources. By allowing permissions to be frac-
tional [4], it is possible to distinguish between acceptable read and write accesses,
which is necessary for expressive reasoning about programs with shared-memory
concurrency. Permissions are a fictional notion used for static reasoning about
a program; they are used in specifications and during program verification, but
are not present at program execution.

The traditional model of fractional permissions associates an access permis-
sion with every memory location. The permission can be divided into fractions,
which can be held by and transferred between threads and method activation
records. An activation record may read a memory location only if it holds a
non-zero fraction of the memory location’s permission. To write to the memory
location, the activation record must hold the entire permission. Since fractional
permissions can only be divided and combined, but never forged or duplicated,

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 315–334, 2013.
© Springer-Verlag Berlin Heidelberg 2013

316 S. Heule et al.

this discipline ensures race freedom for memory updates, while allowing con-
current reads. In the verification of both sequential and concurrent programs,
permissions also enable framing; as long as the caller of a method holds on to
a non-zero fraction of the permission for a memory location, it may soundly
assume that the call will not affect the value stored in the location, because the
callee method cannot obtain the full (write) permission to modify it.

While fractional permissions give rise to a flexible model for reasoning, writing
specifications in this model can be tedious and overly low-level due to the need
to work with some concrete mathematical representation of the permissions.
The problem is exacerbated by the fact that programmers are concerned with
permissions only in the abstract sense of reading or writing to locations; the
concrete values representing these permissions are largely irrelevant.

In this paper, we present abstract read permissions; a novel specification
methodology that allows the programmer to reason at the level of read and write
permissions. Our methodology is expressive, modular, and sound. We present it
in the context of implicit dynamic frames [20], but it also applies to other permis-
sion logics; in particular, separation logic [19]. This paper builds on our previous
workshop presentation [8]. Our methodology is implemented in two verifiers for
the class-based, concurrent language Chalice [13]; one based on verification con-
dition generation [12] and one on symbolic execution [11].

Outline. The next section motivates abstract read permissions through an ex-
ample. Sec. 3 summarizes the background concerning permission-based verifica-
tion that is used in the rest of the paper. We present the core ideas of abstract
read permissions in Sec. 4, and the syntax of permission expressions in Sec. 5.
Sec. 6 explains the encoding of permissions in the program verifier, and Sec. 7
provides an informal soundness argument. Sec. 8 discusses issues and solution
approaches for the use of abstract read permissions in monitor invariants. We
discuss related work in Sec. 9 and conclude in Sec. 10.

2 Motivation

To understand the problem of writing specifications with fractional permissions,
consider a class Expr for arithmetic expressions with a method eval(s : State),
which evaluates an expression in the state s. The method reads the state’s map-
ping of variables to values, denoted by s.map. The precondition of eval requires
read permission to s.map, written acc(s.map, π) for some non-zero fraction π.
Here and throughout, we use a Chalice-like syntax, but there are other nota-
tions in use; for example, in separation logic [17,3,18] this condition is written
as s.map

π�→ _. The postcondition of the method ensures that this permission is
transferred back to the caller, allowing it to re-assemble a full permission and to
update the state. The resulting specification is displayed in Listing 1. The prob-
lem that we address is how to specify the permission amount π. To illustrate the
challenge, we present three existing options and discuss their shortcomings.

Abstract Read Permissions: Fractional Permissions without the Fractions 317

method eval(s : State)
requires acc(s.map, π) && s.map �= null
ensures acc(s.map, π)

Listing 1. Specification of method eval. The method also requires read permission to
the fields of its receiver, but we ignore this aspect here for brevity.

class Add extends Expr {
var left, right : Expr

method eval(s : State) {
leftVal := call left.eval(s)
rightVal := call right.eval(s)
return leftVal + rightVal

}
}

Listing 2. An implementation of method Add.eval. The specification of eval is pre-
sented in Listing 1.

Concrete Fractions. One option is to represent π as a concrete fraction, such
as .18. This approach has four major shortcomings:

(1) Re-usability: Using a concrete fraction forbids calls from a context in
which the caller has a smaller fractional permission to s.map, say .17. If the
specifications cannot be changed to use different fractions (for instance, when
eval and its caller are library methods), the call is not permitted even though
the caller holds a read permission, and eval needs read permission.

(2) Abstraction: For many implementations, the permission amount is irrele-
vant so long as it provides read access. Nevertheless, this approach forces pro-
grammers to choose a specific value and, thus, to clutter up the specification.

(3) Framing: Consider a subclass Add of Expr that represents the addition of
two sub-expressions. Its implementation of eval recursively evaluates the left
and right operands, and returns the sum of the results, as shown in Listing 2.

The recursive call left.eval(s) consumes the entire permission amount that
the caller has (here, .18) before returning the permission to the caller. There-
fore, modular verification of Add.eval must make the worst-case assumption that
the callee (which is dynamically bound to a statically-unknown implementation)
might obtain full permission to s.map and modify the field. Thus, the first recur-
sive call removes any information that the caller has about the value of s.map
before the call: in particular, that the field has a non-null value. Verification of
the second recursive call then fails, since the second conjunct of the precondi-
tion (i.e., s.map �= null) cannot be proved. Failing to frame this information even
though the calls require only read permission weakens verification considerably.

(4) Permission Splitting: Since the recursive calls to eval only read s.map, it
seems reasonable that they could be called in parallel, as shown in Listing 3.

318 S. Heule et al.

leftTk := fork left.eval(s)
rightTk := fork right.eval(s)
return (join leftTk) + (join rightTk)

Listing 3. A parallel implementation of method Add.eval. In Chalice, the fork state-
ment launches an asynchronous method call, which entails checking the method’s pre-
condition and transferring the specified permissions to the new thread. The local vari-
ables leftTk and rightTk store thread identifiers (tokens) that are used in the join
statements to join the threads and to obtain the results of the forked method calls, as
well as the permissions they return.

However, there is no concrete fraction that one could choose for π that lets
one verify this implementation. The entire permission of the forking thread is
transferred to a new thread during the first fork, meaning that no permission is
left to satisfy the precondition of the second fork.

Counting Permissions. A second option is to use counting permissions [3],
which allow one to split a write permission into any positive number of indivis-
ible units. Such a unit then grants read access. So we could represent π in the
specification of eval as a number of such units; say one unit.

Counting permissions address the first two shortcomings of concrete fractions,
but not shortcomings (3) and (4): as with concrete fractions, the recursive call
left.eval in Listing 2 consumes all of the permission to s.map that the caller
has and, thus, doesn’t permit the framing of any information about its value;
the second call then does not verify for the same reason as before. Moreover, a
specification using a fixed number of units does not permit the parallel imple-
mentation in Listing 3 since, again, the first fork consumes the entire permission
of the forking thread such that no permission remains to satisfy the precondi-
tion of the second fork. The number of units used in a method pre-condition also
imposes a static bound on the amount of parallelization possible in a method
implementation, breaking abstraction and impairing re-use.

Ghost Parameters. A third option is to let the calling context decide which
permission amount to transfer to a method call; that is, what π should be for a
particular call. This can be achieved by making π a parameter of the method.
The parameter can be considered a ghost parameter, since it is needed only for
the proof and can be omitted in the executing program. In separation logic, such
a parameter π is typically represented as a logical variable that is bound for each
invocation of the method. Both approaches are very similar: ghost parameters
require programmers to provide a value for the ghost parameter when imple-
menting a call, whereas logical variables require the verifier to provide a value
when reasoning about a call. The specification for method eval using a ghost
parameter is shown in Listing 4.

When this option is applied to all methods that require read permission, it
addresses many of the shortcomings described above. It solves the problems of

Abstract Read Permissions: Fractional Permissions without the Fractions 319

method eval(s : State, ghost π : rational)
requires 0 < π && π ≤ 1 && acc(s.map, π)
ensures acc(s.map, π)

Listing 4. Specification of method eval using a ghost parameter π

re-use, framing, and permission splitting by allowing a caller to choose a value
for the ghost parameter that ensures that it has enough permission to make
the desired calls (even in parallel), and that some permission remains, to enable
framing. The abstraction problem is reduced, but specifications are still cluttered
up with ghost parameters (or logical variables) and constraints over them.

The abstract read permissions presented in this paper provide most of the
flexibility and expressiveness of the ghost-parameter option above, but without
requiring the user to manually specify the π values or constraints over them. In
particular, our specification methodology does not require a concrete mathemat-
ical representation of permission amounts; especially no concrete fractions.

3 Background

Abstract read permissions are independent of any particular permission logic or
verification technique. For concreteness, we present them for the Chalice lan-
guage and verifier [12], which is based on the verification condition generator
Boogie [1]. This section introduces the background on Chalice that is needed in
the remainder of the paper.

Permissions. Chalice associates permissions with memory locations, as de-
scribed in the introduction, and the permissions held by a method activation
can be fractional [4]. The Chalice language builds in specification constructs,
such as the pre- and postconditions shown in the example above. The specifi-
cations are written in the style of implicit dynamic frames [20], which means
they include accessibility predicates. Accessibility predicates instigate the trans-
fer of permissions at the point where the specification takes effect. For example,
a method precondition acc(this.f, π) says that, at the time of a call to the
method, a (strictly positive) fraction π of the permission to this.f is transferred
from caller to callee, and the caller satisfies the precondition only if it possesses
at least this amount of permission to this.f at the time of the call.

To keep track of permissions, the formalization of Chalice [12] associates with
each method activation a permission mask, that is, a map Mask from locations to
the method activation’s permission to that location. We assume here that per-
mission amounts are represented by rational numbers, but other structures are
also possible. Initially, the permission mask is empty: that is, 0 for all locations.

The semantics of read and write statements in Chalice include proof obliga-
tions that the current method’s mask contains the necessary permissions. So for
a read access to e.f, the verifier checks Mask[[[e]],f] > 0, and for a write access
it checks Mask[[[e]],f] = 1, where [[e]] represents the translation of a Chalice
expression into an appropriate Boogie expression.

320 S. Heule et al.

Permission Transfer. The treatment of specifications is formalized using two
operations: inhale and exhale. Analogously to sequential verification, in which
a method precondition is checked at a call site and assumed inside the method
body, Chalice says that the caller exhales the precondition and the callee inhales
it, and vice versa for the postcondition.

The inhale and exhale operations are defined recursively over the syntax of
specifications. Each sub-expression is encoded as a sequence of Boogie state-
ments, which are composed sequentially. Conditions in a specification (such as
implications) are encoded as conditional statements.

For an expression e not containing accessibility predicates, inhaling e means
assume [[e]], where assume indicates a condition that the verifier is allowed
to assume, and exhaling e means assert [[e]], where assert indicates a proof
obligation. Inhaling an accessibility predicate acc(e.f, p) adds the permission
amount p to the permission mask:

Mask[[[e]], f] := Mask[[[e]], f] + [[p]];

Exhaling acc(e.f, p) checks that the mask contains at least the permission
amount p and then removes p from the permission mask:

assert Mask[[[e]], f] ≥ [[p]];
Mask[[[e]], f] := Mask[[[e]], f] - [[p]];

In addition, exhaling an expression assigns an arbitrary value to those heap loca-
tions for which the mask contains no permission after the exhale. This “havoc”
operation models possible state updates by other method activations, including
those in different threads. It says that if a memory location e.f is no longer
readable by the current method activation, then any knowledge about its value
is removed. In contrast, if the current method activation still holds a non-zero
permission to e.f after the exhale, then no other method activation can have
the full (write) permission to e.f, and so whatever the current method activa-
tion already knows about the value e.f can be soundly retained; that is, can be
framed.

Because of the recursive definition of exhale, exhaling an expression such as
acc(e.f, p) && acc(e.f, p) will exhale acc(e.f, p) twice; the expression is
essentially equivalent to acc(e.f, 2p) (the conjunction behaves multiplicatively
with respect to permissions [18]). This conjunction can be formally related to
the separating conjunction of separation logic [18].

4 Abstract Read Permissions

In this paper, we propose abstract read permissions, which allow the program-
mer to reason abstractly at the level of read and write permissions rather than
concrete fractions. In this section, we introduce the main ideas behind abstract
read permissions in method specifications. We discuss details of the encoding in
Sec. 6 and extensions to other forms of specifications in Sec. 8.

Abstract Read Permissions: Fractional Permissions without the Fractions 321

We use two main kinds of accessibility predicates. A full permission (corre-
sponding to a “1”-valued fractional permission) to a location e.f is denoted
by acc(e.f, 1) and allows a method to both read and write the location. To
specify read permissions, we introduce an accessibility predicate of the form
acc(e.f, rd), called an rd-predicate. The abstract permission expression rd de-
notes a positive amount of permission to e.f and, thus, permits read access,
regardless of what the actual amount is. Every occurrence of rd in the specifica-
tion of one method invocation denotes the same permission amount (regardless
of the location mentioned), but the particular amount may be different for other
method invocations. In particular, different activations of a recursive method
may interpret rd differently.

Compared with the options mentioned in Sec. 2, our abstract permission ex-
pression rd is most similar to a ghost parameter that is passed to the method.
But instead of the programmer having to compute the amount to be passed in,
our approach handles the specification of the amount automatically. Intuitively,
the positive amount chosen is small enough for the caller to handle (that is, it
stays within a budget of the permissions that the caller has) and small enough
that it does not completely rob the caller of all permissions to a memory loca-
tion (thus enabling framing). The program verifier will produce an error if such
a value does not exist.

Note that the exact amount chosen for a call is never revealed in our permis-
sion model. Indeed, as we shall see, we encode the amount as a symbolic value
that satisfies certain constraints. The main challenge in our design is to identify
where and how we should constrain the amount for an rd-predicate.

Example. Methods frequently require some permission to a location e.f and
return this permission to their callers. That is, both the pre- and postcondition
mention some rd-predicate such as in method foo in Listing 5. Because both
occurrences of rd in the specification of foo denote the same amount of permis-
sion, method main is able to recombine this permission to obtain full permission
again (as required by the assignment that follows the call). This part of the ex-
ample motivates our design decision that every occurrence of rd in one method
specification is interpreted as the same permission amount. Furthermore, the
permission amount automatically chosen for the call to foo is strictly less than
what the caller has. Therefore, the caller retains some permission to c.val across
the call, which enables framing. In our example, this implies that the value of
c.val cannot be changed by the call to foo; thus, the right-hand side of the last
assignment to c.val evaluates to 5 (as required by the postcondition of main).

4.1 Method Implementations

For the verification of each method implementation, we introduce a new permis-
sion constant πmethod, which is used to interpret every rd-predicate in the specifi-
cation of that method for every location. No precise value is given to πmethod; we
assume only that it is a proper read permission: 0 < πmethod < 1. The method is
then verified as usual in Chalice: we inhale the precondition, execute the method

322 S. Heule et al.

method main(c : Cell)
requires acc(c.val, 1)
ensures acc(c.val, 1) && c.val = 5

{
c.val := 0
call foo(c)
c.val := c.val + 5

}
method foo(c : Cell)

requires acc(c.val, rd)
ensures acc(c.val, rd)

{ /* ... */ }

Listing 5. A simple example that illustrates the choice to interpret all rd-predicates
as the same fraction in a method specification

body, and then exhale the postcondition. Because the assumption about πmethod
is so weak, a successful verification of the method implementation accommodates
any permission amount between 0 and 1 chosen for the call and transferred by
the caller. Of course, as usual, only those pre-states and parameter values — and
now also the value of rd — that can feasibly satisfy the precondition need to be
considered when verifying the implementation. For example, for a precondition
acc(e.f, rd) && acc(e.f, rd), the precondition can be satisfied only for values
of rd that are bounded by .5.

4.2 Method Calls

A call to a method m is verified using m’s specification, which may mention
rd-predicates. Since we verify that the implementation of m is correct for any
permission amount that one might use to interpret these predicates, the caller
is free to choose any fraction between 0 and 1 to interpret them. But we must
take care when constraining this choice automatically, because if the constraints
are too weak then it will cause callers to fail to verify, and our system would not
be practical to use.

If the called method m requires an rd-predicate to some location e.f, we need
to check only that the caller holds a positive amount of permission to e.f. If
it does, intuitively we can always find a (positive) fraction that is smaller than
the held amount, and we can transfer this fraction to the callee. This idea is
reflected in the encoding of method calls as follows.

We first introduce a permission constant πcall, which is used to interpret ev-
ery rd-predicate in the specification of the callee m for every location. πcall is
constrained to be strictly positive (via a Boogie assume statement). When ex-
haling m’s precondition, we further constrain πcall to be smaller than the permis-
sion amount currently held by the caller, for any location for which m requires
an rd-predicate. More precisely, for each rd-predicate to be exhaled (that is,
each occurrence of acc(e.f, rd) for some e.f), we first check that the caller

Abstract Read Permissions: Fractional Permissions without the Fractions 323

has a positive amount of permission to e.f, and we constrain πcall to be strictly
smaller than this positive amount. Next, we subtract πcall from the permission
mask (which we can do symbolically even if there will be further constraints
on the value of πcall) and continue exhaling the precondition. This encoding is
reflected in the following Boogie code:

assert Mask[[[e]], f] > 0;
assume πcall < Mask[[[e]], f];
Mask[[[e]], f] := Mask[[[e]], f] - πcall;

The encoding ensures that the callee m is provided with the required read per-
mission for each relevant location, while m’s caller also retains read permissions
to those locations. The latter lets the caller prove that m does not modify those
locations; that is, it enables framing.

Note that our design interprets all rd-predicates in a method specification as
the same permission amount, regardless of the corresponding memory location.
This is not a restriction, because the amount is always implicitly chosen to be
smaller than any corresponding amount held by the caller. Also, note that if
the specification mentions multiple rd-predicates to the same location, then we
effectively choose an amount that is small enough such that giving away all of
those rd-predicates is allowed. This is achieved by constraining πcall multiple
times, once for every rd-predicate. The main soundness argument shows that
the generated constraints are satisfiable: see Sec. 7.

After exhaling the callee’s precondition, our encoding of a call inhales the
postcondition, using the same value πcall to interpret any rd-predicates men-
tioned. This allows the caller to regain the same amount of permission that it
gave away, if rd is mentioned in both the pre- and postcondition. So, in the
example from Listing 5, method main regains write permission to c.val after the
call to foo and, thus, may write to the field.

Example. To illustrate abstract read permissions, we revisit method eval in
Listing 1, with the placeholder π replaced by the abstract permission expression
rd. When the method body of eval in Listing 2 is verified, the permission to
s.map starts out as πmethod after inhaling the precondition. The recursive call to
left.eval succeeds by exhaling a strictly smaller fraction, which is then regained
on inhaling eval’s postcondition. Analogously, a second fraction is given away
and regained for the second recursive call. Thus, the permission to s.map at the
end of the method is again πmethod, which is required to successfully exhale the
postcondition.

This example illustrates that abstract read permissions do not require the over-
head of the ghost-parameter option in Sec. 2; a programmer neither has to declare
ghost parameters nor provide concrete values for ghost parameters when a method
is called. Moreover, they address the first three of the four shortcomings of con-
crete fractions and counting permissions that we discussed in Sec. 2: (1) Since the
permission amount chosen is context-dependent, it is adjusted for each call, which
lends itself to flexible re-use. (2) The specification expresses only which read and

324 S. Heule et al.

write permissions are requested, but not any concrete permission amounts. There-
fore, they do not contain any irrelevant information. (3) For a call, rd-predicates
are constrained to be strictly smaller than the permission held by the caller, which
allows framing. In particular, s.map �= null is still known to hold after the first
recursive call because the caller retains some permission to s.map during the call,
which allows the verifier to prove the precondition of the second call. Abstract
read permissions also address shortcoming (4), as we discuss next.

4.3 Asynchronous Method Calls

Chalice supports asynchronous method calls, using fork and join statements. A
statement tk := fork m() forks off a new thread that executes the method m, and
returns a token which can be used to join the thread and wait on the result r of
the call, using a statement r := join tk. The verification of asynchronous calls
is analogous to synchronous calls, but with the inhale and exhale separated: when
a thread is forked to execute a method, the method’s precondition is exhaled;
at the time a forked thread is joined, the postcondition of the corresponding
method (which in Chalice is determined by the type of the token) is inhaled.

For the same reasons as for synchronous method calls, it is useful for asyn-
chronous calls to interpret all rd-predicates in a method specification as the same
permission amount. In particular, if a fork and its corresponding join occur in
a scoped fashion (in the same method body), we would like to be able to ex-
press that we can match up the same permission amounts from corresponding
rd-predicates. We encode this by adding a ghost field to tokens, which represents
the permission amount used to interpret rd-predicates for the associated asyn-
chronous call. We record this value in the ghost field when a token is created at
a fork statement, and refer to it when interpreting the permissions returned at a
join. This value is never changed; if we encounter the fork/join statements for a
token on the same path through a method body, the same permission fraction is
known to be used for both. However, if the join takes place in a different method
body, no information will be known about this fraction; it is effectively arbitrary
(although positive). In Sec. 5, we show how to avoid this loss of information
through additional specifications.

Example. Let us again consider method eval from Listing 1, with the place-
holder π replaced by the abstract permission expression rd, and the parallel
implementation from Listing 3. The verification of the parallel implementation
is performed as follows. First, the precondition of Add.eval is inhaled, adding
πmethod to the mask for the location s.map. Then, at the first fork statement, our
encoding introduces a fresh constant πfork1 > 0 to interpret all rd-predicates in
the specification of eval for the first fork statement. When exhaling the precon-
dition of the forked method, permission for s.map is (successfully) checked to be
positive, and πfork1 is constrained to be strictly smaller than the currently held
amount. Consequently, when πfork1 is transferred to the new thread, the forking
thread still holds a positive permission amount for s.map. The verification of the
second fork statement is analogous, with another constant πfork2 > 0. So after

Abstract Read Permissions: Fractional Permissions without the Fractions 325

the two fork statements, the forking method is left with πmethod −πfork1 −πfork2.
When inhaling the postcondition at the two join statements, the fractions πfork1
and πfork1 are regained; the verifier knows that these amounts are the same as
for the two fork statements, since the amounts were recorded in a ghost field of
the two tokens. Consequently, the forking method Add.eval now holds πmethod,
which allows it to exhale its postcondition.

This example illustrates that abstract read permissions enable flexible split-
ting of permissions. Since permission amounts are constrained to be strictly
smaller than the amounts held by the current method activation, abstract read
permissions even support unbounded permission splitting. That is, they also ad-
dress the final shortcoming (4) of concrete fractions and counting permissions
discussed in Sec. 2. Note that, in contrast to the ghost-parameter option from
Sec. 2, programmers do not have to devise a strategy to determine how to split
permissions (for instance by splitting the currently held permission in half when-
ever a fraction needs to be transferred) and how to re-combine the permissions,
which is tricky when the order in which the permissions are regained is not
statically known.

4.4 Losing Permission

Using the same permission amount to interpret all rd-predicates in a method
specification is useful for most implementations. However, this can be too restric-
tive when a method m gives away some permission to a location (for instance,
during a fork) and returns what is left. To handle these situations, we introduce
an alternative abstract read expression rd*, which gets interpreted as another
positive, but otherwise unrelated permission amount. In particular, there is no
guarantee that it corresponds to the same amount as any other permission ex-
pression used in the program. So we could specify m to require an rd-predicate
and to ensure an rd*-predicate.

When inhaling an rd*-predicate, no information is assumed about the permis-
sion amount it denotes, other than it being positive. Therefore, we can exhale
an rd*-predicate by checking that the current method activation has some per-
mission to the appropriate location, and then interpreting the rd*-predicate as
a strictly smaller amount.

5 Permission Expressions

Our design so far provides only two ways of specifying read permissions, rd-
predicates and rd*-predicates. The resulting expressiveness is insufficient for
some interesting examples. Consider for instance a method m that requires full
permission to some location, transfers an rd-predicate to a newly forked thread
tk, and returns the remaining permission (along with the token tk) to its caller.
So far, we can specify that m returns some permission to the caller using an
rd*-predicate, but we have no way of denoting the precise permission amount it
returns (the difference between two permission amounts). However, the precise
information is necessary for the caller to regain full permission by joining tk.

326 S. Heule et al.

To provide sufficient expressiveness for such examples, we generalise the acces-
sibility predicates acc(e.f, 1) and acc(e.f, rd) to the new form acc(e.f, p),
where p is a permission expression. Permission expressions p are defined induc-
tively as follows:

p ::= c concrete fraction
| rd abstract read permission
| rd(tk) token read permission
| p1 + p2 permission addition
| p1 − p2 permission subtraction
| n ∗ p permission multiplication

where c is a rational literal (0 < c ≤ 1), tk is a token,
and n is an integer-valued expression

The literal permission expression c subsumes full permissions, and rd is used
as before. The expression rd(tk) refers to the amount of permission associated
with an rd-expression for a particular asynchronous call, via its token. Finally,
we support addition, subtraction, and integer multiplication of permission ex-
pressions. This allows us in particular to specify the exact permission amount
returned by method m above, using the permission expression 1 - rd(tk) in its
postcondition.

In addition to the generalised accessibility predicates, we continue to support
rd*-predicates. However, we decided not to support permission expressions con-
taining rd* because the meaning of such expressions is sometimes un-intuitive
(for instance, 1 - rd* + rd* does not necessarily denote a full permission since
the two occurrences of rd* may be interpreted differently) and because they do
not provide extra expressiveness (for instance, 1 - rd* and rd* express the same
information, namely an unknown, positive permission amount).

6 Encoding

The introduction of permission expressions leads to new subtleties in the encod-
ing of abstract read permissions. This section revises the encoding sketched in
Sec. 4 to address these subtleties.

First, because permission expressions p can include subtraction and multipli-
cation, it is possible to write expressions such as rd-1 that are not guaranteed
to denote valid (that is, positive) permission amounts. Exhaling such permission
amounts naïvely could result in a total permission of more than 1 in a method
activation, leading to unsoundness. Therefore, we impose an additional well-
formedness constraint that each permission expression p must provably denote a
strictly positive amount of permission. The exact implementation of this check
varies for different kinds of permission expression, as shown later in this section.

Second, permission expressions require more sophisticated rules for constrain-
ing the permission constants πcall during exhale operations. So far, exhaling an
rd-predicate led to an upper bound on πcall by assuming that πcall is smaller
than the positive amount currently stored in the mask for a particular location.

Abstract Read Permissions: Fractional Permissions without the Fractions 327

method test(c : Cell)
requires acc(c.f)
ensures acc(c.f, rd*) && c.f = 3

{
c.f := 3;
call bar(c);

}

method bar(c : Cell)
requires acc(c.f, 1-rd) && acc(c.f, rd)

{
c.f := 4;

}

Listing 6. Occurrences of rd in negative positions need to be treated with care to
avoid inconsistencies

With the introduction of permission expressions, the abstract permission expres-
sion rd can also occur in negative positions, for instance in acc(e.f, 1-rd). If we
were to adopt the same behaviour when exhaling accessibility predicates with rd
in negative positions, then we also impose lower bounds, leading to potentially
unsatisfiable assumptions.

Exhaling negative occurrences of rd may also lead to difficulties with subse-
quent positive occurrences, as the example in Listing 6 shows. At the call to bar
in the body of test, the mask contains full permission to c.f. Exhaling the first
conjunct of bar’s precondition leaves us with exactly πcall. When the second
conjunct acc(c.f, rd) is exhaled, the encoding from Sec. 4 checks that some
permission is available and then assumes πcall to be strictly smaller than that
amount. This would lead to the inconsistent assumption πcall < πcall.

In our solution to these difficulties, we differentiate between three different
types of permission expressions:

Type 1: Those in which rd does not occur (e.g., 1-rd(tk)).
Type 2: Those in which rd occurs, but only in positive positions (e.g., rd-rd(tk)).
Type 3: Those in which rd occurs in negative position(s) (e.g., 1-rd).

We classify accessibility predicates acc(e.f, p) in the same way, according to
the type of p. The special rd*-predicates are handled like type-2 accessibility
predicates, but with respect to a fresh permission constant for each occurrence.

We now describe how to encode the exhale of a precondition at a (synchronous
or asynchronous) method call, in terms of how we generate appropriate Boogie
code. Inhales are encoded as described earlier; no constraints on πcall are gen-
erated. To encode a method call, we first introduce a fresh permission constant
πcall and constrain it to denote a proper read permission:

havoc πcall; assume 0 < πcall < 1;

328 S. Heule et al.

If the method call is asynchronous, we additionally store πcall in a ghost field
of the corresponding token. (Since the value of this ghost field never changes,
no permission management is necessary for that field.) Then, we exhale the
precondition in three phases, each handling one type of accessibility predicate.

Phase 1: The first phase handles logical expressions without accessibility predi-
cates and those accessibility predicates that denote permission amounts that
were already fixed before the call; that is, predicates of type 1. To do this, we
pass over the precondition, generating assertions for all logical expressions,
and ignoring all accessibility predicates of types 2 and 3. For each accessi-
bility predicate acc(e.f, p) of type 1, we encode the exhale as described in
Sec. 3; that is, by generating the following code:

assert [[p]] > 0;
assert Mask[[[e]], f] ≥ [[p]];
Mask[[[e]], f] := Mask[[[e]], f] - [[p]];

Phase 2: The second phase generates constraints on πcall that ensure that ac-
cessibility predicates of type 2 can be exhaled (if possible), leaving some
remainder. To do this, we pass over the precondition again, ignoring logical
expressions and accessibility predicates of types 1 and 3. For each accessi-
bility predicate acc(e.f, p) of type 2, we assume a rewriting of the form
p = p’ + n * rd (for n > 0) such that p’ is some permission expression not
mentioning rd. We then generate code that constrains the value of πcall:

assert [[p’]] ≥ 0;
assert Mask[[[e]], f] > [[p’]];
assume n * πcall < (Mask[[[e]], f] - [[p’]]);
Mask[[[e]], f] := Mask[[[e]], f] - ([[p’]] + n * πcall);

Phase 3: The third phase exhales the remaining accessibility predicates, with-
out introducing further constraints on πcall. To do this, we pass over the
precondition a third time, ignoring logical expressions and accessibility pred-
icates of types 1 and 2. For each accessibility predicate of type 3, we generate
the same code as in Phase 1.

Constraining πcall after accessibility predicates of type 1 have been exhaled re-
sults in stronger assumptions, since we assume the value of πcall is smaller than
the amounts held after Phase 1 is finished. A permission expression of type 2
comes with the requirement that the part that does not mention rd (the p’
above) is non-negative; thus, the whole expression denotes a positive amount.
Exhaling accessibility predicates of type 3 only after all constraints have been
generated in Phase 2 solves the problems mentioned at the beginning of this
section: exhaling rd in negative positions does not generate any constraints and,
thus, introduces no lower bounds on πcall. Moreover, the precondition of method
bar (Listing 6) is now exhaled soundly; we first exhale the second conjunct (in
Phase 2), which constrains πcall and leaves 1−πcall in the mask, and then exhale
the first conjunct (in Phase 3). This does not lead to additional constraints and,
thus, does not introduce inconsistent assumptions.

Abstract Read Permissions: Fractional Permissions without the Fractions 329

Any conditionals in the precondition are handled in each phase. However, the
evaluation of such conditionals are unaffected by our manipulation of permis-
sions, because conditionals in assertions are syntactically restricted not to depend
on permissions (assertions such as acc(x.f) ⇒ acc(y.f) are forbidden).

After all phases are complete, our encoding removes all knowledge about lo-
cations to which no permission remains in the mask, as we explained in Sec. 3.

7 Soundness

In this section, we give a brief argument for the soundness of our encoding.
A soundness proof for an entire verification methodology using our permission
model is beyond the scope of our paper, and for the most part involves arguments
that are orthogonal to the contributions of this paper.

Compared to the standard fractional permission model, we introduced ab-
stract read permissions and encode them as underspecified constants in Boogie.
The most relevant concern for soundness with respect to this paper is that the
assumptions that we introduce about the constants used to interpret abstract
permission expressions must not lead to contradictions. Apart from the points in
our encoding where these assumptions are generated, abstract read permissions
are treated just as any other permission amounts in permission expressions.

A new constant πcall to denote the underspecified amount is introduced at each
method call in the encoding of the source program. From the end of Phase 2 (as
described in the previous section), these amounts are treated just like any other
permission amount with a fixed interpretation. Therefore, it is sufficient for us
to justify that, for each method call, the assumptions generated in Phase 2 are
always satisfiable, provided that none of the assertions in the generated code
fail. Operationally (though this is never required in the verifier), one can think
of this amount as being chosen (by some oracle) at the point of the method call,
in such a way that the assumptions are all satisfied; we just need to justify that
this is possible. As we show below, each assumption during Phase 2 imposes a
(strictly positive) upper bound on the possible values of πcall. Since the only
lower bound imposed is 0 and since we assume that permission amounts are
rational numbers, the assumptions are then guaranteed to be satisfiable. In the
following, we focus on the permission expressions presented in Sec. 5, but the
arguments apply equally to rd*-predicates.

Let us consider the exhale of the method precondition for any given method
call, and let πcall be the permission constant introduced for that call. Let us
further consider the amount of permission (for any location) stored in the Mask up
to the start of Phase 2 of exhaling the precondition as a formula representing the
arithmetic performed so far during the verification. We first apply an inductive
argument that during Phase 2 of the exhale, this formula remains expressible
in the form ρ − m ∗ πcall, for some formula ρ not mentioning πcall and some
integer m ≥ 0: since πcall is chosen to be a fresh constant for each call, it is clear
that up to the start of Phase 2, the formula representing the current permission
amount in the mask for any location cannot depend on the fresh πcall constant.

330 S. Heule et al.

Each exhale of an accessibility predicate during Phase 2 subtracts multiples of
πcall from the mask, and so the amount stored remains expressible in the form
ρ − m ∗ πcall.

Now consider the handling of an arbitrary type-2 accessibility predicate
acc(e.f, p) during Phase 2. Just as in the encoding presented in the previous
section, we assume a rewriting of the form p = p’ + n * rd (for some n > 0)
such that p’ is some permission expression not mentioning rd. Using the argu-
ment so far, we may assume that there exist an integer m ≥ 0 and a formula ρ
not mentioning πcall, such that:

Mask[[[e]], f] = ρ − m ∗ πcall

We can now use this equality to rewrite the relevant code generated in Phase 2:

assert Mask[[[e]], f] > [[p’]];
assume n * πcall < (Mask[[[e]], f] - [[p’]]);
Mask[[[e]], f] := Mask[[[e]], f] - ([[p’]] + n * πcall);

into the following (equivalent) form:

assert ρ - m * πcall > [[p’]];
assume πcall < (ρ - [[p’]]) / (m + n);
Mask[[[e]], f] := ρ - [[p’]] - (m + n) * πcall;

Since m and πcall are non-negative, the assertion implies that (ρ − [[p’]]) > 0.
Combined with the facts m ≥ 0 and n > 0, this gives us that (ρ − [[p’]])/(m+ n) is
strictly positive. Therefore, the assumption only imposes an extra strictly posi-
tive upper bound on the permitted values of πcall. Since this argument applies
to each accessibility predicate generated in Phase 2, all assumptions generated
impose strictly positive upper bounds on πcall, and thus, combined with the only
other assumptions about this value, that 0 < πcall < 1, the assumptions about
πcall are always satisfiable.

8 Monitors

Chalice supports monitors, which have an associated monitor invariant, describ-
ing the permissions held and properties guaranteed while the monitor is un-
locked. When a monitor is acquired, the monitor invariant is inhaled, and when
the monitor is released, it is exhaled [12]. It can be useful for a monitor invariant
to provide read permissions to the fields it describes. A typical example is a
single-writer, multiple-reader scenario, which can be handled by splitting a full
permission between the writer thread and the monitor. By acquiring the mon-
itor, a thread can obtain read permission. The writer can combine the fraction
from the monitor with the fraction it already holds to obtain full permission.

Supporting abstract read permissions for monitor invariants is more difficult
than for methods. If we allowed a thread to choose a permission amount for rd-
expressions when exhaling the monitor invariant upon release (analogously to
choosing the amount when exhaling a method precondition) then one could not

Abstract Read Permissions: Fractional Permissions without the Fractions 331

soundly assume that the next acquire in the same thread will inhale the same
amount — other threads might have acquired and released the monitor in the
meantime and interpreted the rd-expressions in the monitor invariant differently.
Similar issues arise with folding and unfolding abstract predicates [17] as well as
with sending and receiving messages [14].

If the threads interacting with a monitor never need to know that the amount of
read permission that they inhale from a monitor invariant is related to some other
amount earlier in the program execution, then we can employ rd*-predicates in the
monitor invariant and handle them just as for method calls.

However, in situations like the single-writer, multiple-reader example above,
we must associate a persistent amount of permission with a monitor invariant
to allow the writer thread to obtain full permission. We have considered various
solutions to this problem. One is to fix the permission amount that rd-expressions
are interpreted with “once and for all”, either for all monitors (which has the
advantage that such permissions can be transferred between monitors), or when
a new monitor is created (which has the advantage that the amount can be
chosen with respect to what is held at that point). An alternative is to store the
permission amount in a ghost field of the object, similarly to the ghost-parameter
option in Sec. 2. This is more flexible, but permissions to this ghost field must
then be appropriately handled, and information about the field value needs to
be communicated in specifications for this to really give an advantage.

In our implementation, we currently take the simplest approach described
above; we generate one (underspecified) permission constant to interpret all rd-
expressions in monitor invariants, abstract predicates, and message invariants.
This has been sufficiently expressive, but we are also evaluating the other options.

9 Related Work
Fractional permissions were proposed by Boyland [4]. He uses them in a type
system to check non-interference of the branches of a parallel composition and
to show that non-interfering parallel compositions have deterministic results.
Zhao [21] uses fractional permissions to prevent data races in concurrent Java
programs. Neither of the two systems supports the verification of a program
w.r.t. to a programmer-supplied specification.

The use of fractional permissions for program verification was first explored
in the context of separation logic. Bornat et al. [3], Gotsman et al. [7], and
Hobor et al. [9] all employ separation logic with fractional permissions. They use
concrete fractions and logical variables in specifications, which has the drawbacks
discussed in Sec. 2.

Our original verification methodology for Chalice [12] supports fractional per-
missions (expressed as integer percentages) and infinitesimal permissions, which
are similar to counting permissions. We built on implicit dynamic frames [20],
which allows us to generate first-order verification conditions, which can be han-
dled by automatic SMT solvers. The permission model used in this work suffers
from the shortcomings discussed in Sec. 2. To solve these problems, we intro-
duced the idea of underspecified, constrained fractions in a workshop paper [8].

332 S. Heule et al.

The present paper extends our earlier work with more detailed explanations
(especially of the encoding) and with a soundness argument.

Other systems have also aimed to package fractions in more abstract ways. In
his original work on fractional permissions, Boyland uses a type system that al-
lows permission polymorphism [4]. A non-deterministic type checker determines
the possible ways fraction variables used in method signatures can be instan-
tiated. Only a sketch of an algorithm for coming up with the instantiation is
provided; it is not clear how the sketched approach deals with repeated fraction
variables or with fraction variables occurring in negative positions.

The separation-logic based verifier VeriFast supports fractional permissions
and logical variables [10]. When a logical variable specifies a permission amount,
there is some limited support to set it automatically at a call site. However, only
the first use of the variable is considered (so fractions cannot be correlated) and
that first use will soak up all the permission that the caller has (so framing is
not supported).

Bierhoff et al. [2,16] recently presented fraction-free permission type systems.
Their permissions, which have intuitive names such as “unique” and “local im-
mutable”, are held by variables, whereas our permissions are held by method
activation records (and monitors, etc.). Permission transfers happen at assign-
ments and parameter passing. If the target of the transfer only needs a fraction,
the type system automatically carves up the permission held. Permissions that
cross method boundaries can be borrowed (meaning they will be transferred back
upon return of the method) or consumed. Borrowing is related to our rule of in-
terpreting all rd-expressions in one method specification as the same permission
amount, while consuming is related to our rd*-predicates.

Bierhoff [2] presents a verification system that makes use of permissions as a
subsequent step after permission type checking. The integration of both steps in
our system provides more expressiveness, for instance, because permissions can
be denoted conditionally, using logical implication.

Recent work of Militão et al. [15] generalizes fractional permissions to user-
defined views, which can describe permissions to sets of fields, and properties
such as reference uniqueness. They also employ fractions whose values are hidden
from the user, but do not have an analogue to permission expressions (cf. Sec. 5).

There are other ways of specifying that a method will treat something as
read-only. The C verifier VCC employs claims [5], which can specify a certain
set of objects which cannot be modified while the claim exists. Using reference
counting, an object keeps track of how many outstanding claims it has. Claims
are themselves (ghost) objects, so there can be claims on claims. This allows
programs like our eval example in Sec. 2 to be specified and verified, but at the
cost of having to write the (ghost) code that sets up and destroys the claims.

10 Conclusions

We have presented a novel methodology for specifying sequential and concur-
rent programs based on fractional permissions. Our abstract read permissions

Abstract Read Permissions: Fractional Permissions without the Fractions 333

allow programmers to specify access permissions at the level of read and write
permissions, without the need to reason using a concrete mathematical model
or syntax. Our methodology avoids shortcomings of working with concrete frac-
tions and, by picking a judicious interpretation for abstract read permissions in
method specifications, imposes less specification and verification overhead than
solutions based on ghost parameters or logical variables. In cases where the dif-
ferences between permission amounts are important, our permission expressions
provide a natural and abstract way of conveying the relevant information.

We have explained our methodology in terms of implicit dynamic frames and
verification condition generation. However, abstract read permissions are inde-
pendent of any particular permission logic or verification technique. So far, our
methodology has been implemented in two verifiers for Chalice: one based on
verification condition generation and one on symbolic execution. Both verifiers
make use of the support for real numbers in Z3 [6].

Our permission expressions support the addition and subtraction of a bounded
number of rd-expressions. As future work, we plan to handle the (statically) un-
bounded case, for instance, by supporting mathematical sums over unbounded
sets or sequences. We could then specify a method that forks an unbounded num-
ber of threads (each requiring read permission to some shared data) and stores
the tokens in a list. By removing tokens from the list, we could easily support a
specification for rejoining the threads, regardless of the order of joins. This kind
of example would be difficult to support with concrete fractional permissions.

We are also exploring other possible uses of abstract read permissions; exploit-
ing the use of permission amounts which can be freely constrained (from above).
We are considering the possibility of manually introducing such amounts in other
verification situations, and also basing an approach to handling immutable data
on this novel specification concept.

Acknowledgements. We would like to thank the attendees and reviewers of
the Formal Techniques for Java-like Programs 2011 workshop, as well as the at-
tendees of the Dublin Concurrency Workshop 2011, particularly Andrew Butter-
field and Peter O’Hearn, for encouraging feedback on a preliminary presentation
of this work. We thank John Boyland for discussions of the comparisons with
fractional permissions. We are grateful to Malte Schwerhoff for many discussions
about the details of our model and to Martin Vechev for useful feedback on a
draft of this paper.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

2. Bierhoff, K.: Automated program verification made SYMPLAR: symbolic permis-
sions for lightweight automated reasoning. In: ONWARD, pp. 19–32. ACM (2011)

334 S. Heule et al.

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270. ACM (2005)

4. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local Verification of Global In-
variants in Concurrent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010)

6. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for
Storable Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.
19–37. Springer, Heidelberg (2007)

8. Heule, S., Leino, K.R.M., Müller, P., Summers, A.J.: Fractional permissions with-
out the fractions. In: Formal Techniques for Java-like Programs, FTfJP (2011)

9. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle Semantics for Concurrent Separa-
tion Logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

10. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010)

11. Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing Verification Condition Gen-
eration with Symbolic Execution: An Experience Report. In: Joshi, R., Müller, P.,
Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 196–208. Springer, Heidel-
berg (2012)

12. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

13. Leino, K.R.M., Müller, P., Smans, J.: Verification of Concurrent Programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009.
LNCS, vol. 5705, pp. 195–222. Springer, Heidelberg (2009)

14. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-Free Channels and Locks. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407–426. Springer, Heidelberg
(2010)

15. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate. In:
FTfJP, pp. 7:1–7:7. ACM (2010)

16. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A type system for borrowing
permissions. In: POPL, pp. 557–570. ACM (2012)

17. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL. ACM
(2005)

18. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Logical Methods in Computer Science (to appear,
2012)

19. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. IEEE (2002)

20. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

21. Zhao, Y.: Concurrency Analysis based on Fractional Permission System. PhD the-
sis, The University of Wisconsin–Milwaukee (2007)

Sound and Complete Flow Typing
with Unions, Intersections and Negations

David J. Pearce

Victoria University of Wellington
Wellington, New Zealand
djp@ecs.vuw.ac.nz

Abstract. Flow typing is becoming a popular mechanism for typing existing
programs written in untyped languages (e.g. JavaScript, Racket, Groovy). Such
systems require intersections for the true-branch of a type test, negations for the
false-branch, and unions to capture the flow of information at meet points. Type
systems involving unions, intersections and negations require a subtype operator
which is non-trivial to implement. Frisch et al. demonstrated that this problem
was decidable. However, their proof was not constructive and does not lend itself
naturally to an implementation. In this paper, we present a sound and complete
algorithm for subtype testing in the presence of unions, intersections and nega-
tions.

1 Introduction

Statically typed programming languages lead to programs which are more efficient and
where errors are easier to detect ahead-of-time [1, 2]. Static typing forces some disci-
pline on the programming process. For example, it ensures at least some documenta-
tion regarding acceptable function inputs is provided. In contrast, dynamically typed
languages are more flexible in nature which helps reduce overheads and increase pro-
ductivity [3–6].

A common complaint against statically typed languages is the need for often unnec-
essarily verbose type declarations. Hindley-Milner Type inference [7, 8] is a common
approach to addressing this problem, where type declarations are inferred automatically.
Scala [9], C#3.0 [10] and OCaml [11] provide good examples of this in an imperative
setting. However, such languages still require each program variable to have exactly
one type. Flow typing offers an alternative to Hindley-Milner type inference where a
variable may have different types at different program points. The technique is adopted
from flow-sensitive program analysis and has been used for non-null types [12–15],
information flow [16–18], purity checking [19] and more [12, 13, 20–26].

Few languages exist which incorporate flow typing directly. Typed Racket [23, 24]
provides a typed sister language for untyped Racket, where flow typing is used to cap-
ture common idioms in the untyped language. Similarly, the recent 2.0 release of the
popular Groovy language includes a flow typing algorithm [27]. Again, this is de-
signed to handle common idioms in (previously) untyped Groovy programs. Finally,
the Whiley language employs flow-typing to give it the look-and-feel of an untyped
language [28–30].

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 335–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

336 D.J. Pearce

1.1 Flow Typing

A defining characteristic of flow typing is the ability to retype a variable — that is,
assign it a completely unrelated type. The JVM Bytecode Verifier [31], perhaps the
most widely-used example of a flow typing system, provides a good illustration:

public static float convert(int):
iload 0 // load register 0 on stack
i2f // convert int to float
fstore 0 // store float to register 0
fload 0 // load register 0 on stack
freturn // return value on stack

In the above, register 0 contains the parameter value on entry and, initially, has type
int. The type of register 0 is subsequently changed to float by the fstore bytecode.
To ensure type safety, the JVM bytecode verifier employs a typing algorithm based
upon dataflow analysis [32]. This tracks the type of a variable at each program point,
allowing it easily to handle the above example.

Flow typing can also retype variables after conditionals. A non-null type system
(e.g. [12–15]) prevents variables which may hold null from being dereferenced. The
following illustrates:

int cmp(String s1, @NonNull String s2) {
if(s1 != null) {

return s1.compareTo(s2);
} else {

return -1;
} }

The modifier @NonNull indicates a variable definitely cannot hold null and, hence,
that it can be safely dereferenced. To deal with the above example, a non-null type
system will retype variable s1 to @NonNull on the true branch — thus allowing it to
type check the subsequent dereference of s1.

Whiley [28–30] employs a flow type system to give it the look-and-feel of a dynam-
ically typed language. Variable retyping through conditionals is supported using the is
operator (similar to instanceof in Java) as follows:

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.r * s.r
else:

return s.w * s.h

A Shape is either a Rect or a Circle (which are both record types). The type test
“s is Circle” determines whether s is a Circle or not. Unlike Java, Whiley auto-
matically retypes s to have type Circle (resp. Rect) on the true (resp. false) branches
of the if statement. There is no need to explicitly cast variable s to the appropriate
Shape before accessing its fields.

Sound and Complete Flow Typing with Unions, Intersections and Negations 337

1.2 Unions, Intersections and Negations

Union types (e.g. T1 ∨ T2) are commonly used in flow typing systems to capture the
type of variables at meet points. For example, consider this code snippet:

if ...:
x = 1

else:
x = true

...

After the assignment x=1, the type of variable x is int. Likewise, after the assignment
x=true it is bool. Finally, x has type int ∨ bool immediately after the if statement
(i.e. at the meet point). This indicates x can hold either an int or a bool at that point.

Retyping variables after runtime type tests is typically achieved through a type sys-
tem which supports both intersections (e.g. T1 ∧ T2) and negations (e.g. ¬T1). For ex-
ample, consider again this code snippet:

real area(Shape s):
if s is Circle:

return PI * s.r * s.r
else:

return s.w * s.h

To determine the type of variable s on the true branch, we intersect its declared type
(i.e. Shape) with the type test (i.e. Circle). Likewise, on the false branch, we compute
the difference of these two types (i.e. Shape - Circle). Observe that the difference of
two types in such a system is given by: T1 − T2 ≡ T1 ∧ ¬T2.

1.3 Contributions

Subtype testing (i.e. establishing whether T1 ≤ T2 holds or not) is a challenging al-
gorithmic problem for a type system involving unions, intersections and negations. In
particular, we desire that subtyping is both sound and complete with respect to a se-
mantic model where types are viewed as sets. The former requires T1 ≤ T2 holds only
when T1 is a subset of T2, whilst the latter requires that T1 ≤ T2 holds whenever T1 is a
subset of T2. Frisch et al. demonstrated that this problem was decidable [33]. However,
their proof was not constructive and does not lend itself naturally to an implementation.
In this paper, we present a sound and complete algorithm for subtyping in the presence
of unions, intersections and negations. This contrasts with previous flow type systems
(e.g. [23, 24]) which are shown sound, but not complete.

2 A Flow-Typing Calculus — FT

We now introduce our flow-typing calculus, FT, within which we frame our flow typ-
ing problem. The calculus is specifically kept to a minimum to allow us to succinctly
capture the important issues. In this section, we introduce the syntax, semantics and
subtyping rules for FT. We tacitly assume at this point that an appropriate subtyping op-
erator exists. Subsequently, in §3 and §4, we will detail the algorithms which implement
this operator (and which are the core contribution of this paper).

338 D.J. Pearce

2.1 Types

The following gives a syntactic definition of types in FT:

T ::=any | int | (T1, . . . , Tn) | ¬T | T1 ∧ . . . ∧ Tn | T1 ∨ . . . ∨ Tn

Here, any represents ", int the set of all integers and (T1, . . . , Tn) represents tuples
with one or more elements. The union T1 ∨ T2 is a type whose values are in T1 or T2.
Union types are generally useful in flow typing systems, as they can characterise types
generated at meet points in the control-flow graph. The intersection T1 ∧ T2 is a type
whose values are in T1 and T2. Intersections are needed in our flow type system to
capture the type of a variable (e.g. x) after a type test (e.g. x is T). The type ¬T is
the negation type containing those values not in T. Thus, ¬any represents ⊥ (i.e. the
empty set) and we will often write void as a short-hand for this. Negations are also
useful for capturing the type of a variable on the false branch of a type test. Finally, we
make some simplifying assumptions regarding unions and intersections: namely, that
elements are unordered and duplicates are removed. Thus, T1 ∨ T2 is indistinguishable
from T2 ∨ T1. Likewise, T1 ∨ T1 is not distinguishable from T1. Whilst these simplifi-
cations are not strictly necessary, they simplify our presentation. Furthermore, they can
be implemented easily enough by sorting elements according to a fixed total ordering
of types.

To better understand the meaning of types in FT, it is helpful to give a semantic
interpretation (following e.g. [33–36]). The aim is to give a set-theoretic model where
subtype corresponds to subset. The domain D of values in our model consists of the
integers and all records constructible from values in D:

D = Z ∪
{
(v1, . . . , vn) | v1∈D, . . . , vn∈D

}
Definition 1 (Type Semantics). Every type T is characterised by the set of values it
accepts, given by �T� and defined as follows:

�any� = D�int� = Z�(T1, . . . , Tn)� = {(v1, . . . , vn) | v1∈�T1�, . . . , vn∈�Tn�}�¬T� = D− �T��T1 ∧ . . . ∧ Tn� = �T1� ∩ . . . ∩ �Tn��T1 ∨ . . . ∨ Tn� = �T1� ∪ . . . ∪ �Tn�
It is important to distinguish the syntactic representation from the semantic model of
types. The former corresponds (roughly speaking) to a physical machine representa-
tion, whilst the latter is a mathematical ideal. As such, the syntactic representation
diverges from the semantic model and, to compensate, we must establish a correla-
tion between them. For example int and ¬¬int have distinct syntactic representa-
tions, but are semantically indistinguishable. Similarly for (int ∨ (int, int), any) and
(int, any)∨ ((int, int), any).

Ultimately, we want to construct a subtyping algorithm that is both sound and com-
plete (i.e. that T1 ≤ T2 ⇐⇒ �T1� ⊆ �T2�). The distinction between syntactic and se-
mantic forms presents a significant challenge in doing this.

Sound and Complete Flow Typing with Unions, Intersections and Negations 339

Syntax:
t ::= terms:
x variable
(t1, . . . , tn) tuple
f t1 application
f(T x) = t1 in t2 declaration
if(x is T) t1 else t2 type test

v ::= values:
i integer
(v1, . . . , vn) tuple

Operational Semantics:
Δ � tk −→ t′k

Δ � (. . . , tk, . . .) −→ (. . . , t′k, . . .)
(E-TUP)

Δ � t1 −→ t′1
Δ � f t1 −→ f t′1

(E-APP1)

Δ(f) = 〈T, x, t2〉 v1∈�T�

Δ � f v1 −→ t2[x �→v1]
(E-APP2)

Δ[f �→〈T, x, t1〉] � t2 −→ t′2
Δ � f(T x)=t1 in t2 −→

f(T x)=t1 in t′2
(E-DEC1)

Δ � f(T x)=t1 in v2 −→ v2
(E-DEC2)

v1∈�T�

Δ � if(v1 is T) t2 else t3 −→ t2
(E-IF1)

v1 	∈�T�

Δ � if(v1 is T) t2 else t3 −→ t3
(E-IF2)

Fig. 1. Syntax and (small-step) operational semantics for FT

2.2 Syntax and Semantics

Figure 1 gives the syntax of FT along with a small-step operational semantics, where
Δ[f �→ 〈T, x, t〉] returns Δ with f now mapped to a triple 〈T, x, t〉 representing its dec-
laration. Here, T denotes the parameter type, x the parameter name and t the function
body. Similarly, t[x �→v] returns the term t with all occurrences of x now substituted
with v. To avoid issues of variable capture, we assume parameter names are unique and
may only occur within their function body (i.e. that for f(T x)=t1 in t2 parameter x
can only occur in t1).

From the figure, we see that a semantic notion of type is explicitly required for the
operational semantics (as e.g. E-APP2 uses �T�). Thus, the semantic notion of execution
is separated from the algorithmic notion of subtyping — and our goal in developing
a complete subtyping algorithm is to ensure as many correct programs as possible are
typeable. The reader may be surprised to see that FT does not include a first-class notion
of function value (i.e. a term of the form λx.t). This avoids a well-known problem of
circularity in the definitions (i.e. where the semantic definition of types depends on the
operational semantics and vice-versa [33, 36, 37]). In short, including function values
adds unnecessary complexity and is therefore omitted. Instead, functions are declared
explicitly and a runtime environment,Δ, is used to maintain the mapping from declared
functions to their bodies.

340 D.J. Pearce

An example FT program and its evaluation is given below:

f(any x) = if(x is int) 1 else 0

in (f 1, f (1, 2))

↪→ f(any x) = if(x is int) 1 else 0

in (if(1 is int) 1 else 0, f (1, 2))

↪→ f(any x) = if(x is int) 1 else 0

in (1, f (1, 2))

↪→ f(any x) = if(x is int) 1 else 0

in (1, if((1, 2) is int) 1 else 0)

↪→ f(any x) = if(x is int) 1 else 0

in (1, 0)

↪→ (1, 0)

This example illustrates a few interesting aspects of Figure 1. Firstly, for simplicity, the
order of evaluation for tuples is undefined under E-TUP. This could easily be speci-
fied, but is not important here. Secondly, the term if(x is T) t1 else t2 implements
a runtime type test (similar to e.g. Java’s instanceof operator). The left-hand side
of this operator is restricted to a variable, rather than a general term. This succinctly
captures the problem of retyping a variable within the true (resp. false) branches of the
conditional.

2.3 Flow-Typing Rules

The flow-typing rules are given in Figure 2. These are presented as judgements of the
form Γ � t : T, which can be read as saying: term t can be shown to have type T un-
der environment Γ. The environment maps variable names to their current type, and
also function names to a pair T1→T2 capturing the declared parameter and inferred
return type. For simplicity, we assume that function names and parameter names do not
intersect.

Rules T-INT, T-VAR and T-TUP are straightforward and do not warrant further dis-
cussion. The remaining rules are more interesting, and we now consider them in more
detail:

– Rule T-APP. For a function application, the type of the argument is determined
recursively, whilst the function’s declared parameter and inferred return types are
obtained from the environment. The rule checks the argument type (i.e. T1) is a
subtype of the declared parameter type (i.e. T2) using the subtype operator (i.e.
T1 ≤ T2). The subtype operator will be discussed in more detail below.

– Rule T-DEC. For a function declaration, the return type is inferred by typing the
body (i.e. t2) using the current environment updated to map the parameter (i.e. x)
to its declared type (i.e. T1). Using this, the type of the outer term (i.e. t3) is then

Sound and Complete Flow Typing with Unions, Intersections and Negations 341

Flow-Typing:
v ∈ Z

Γ � v : int
(T-INT)

Γ(x) = T

Γ � x : T
(T-VAR)

Γ � t1 : T1, . . . , Γ � tn : Tn

Γ � (t1, . . . , tn) : (T1, . . . , Tn)
(T-TUP)

Γ � t1 : T1
Γ(f) = T2→T3 T1 ≤ T2

Γ � f t1 : T3

(T-APP)

Γ[x �→T1] � t2 : T2
Γ[f �→ T1→T2] � t3 : T3

Γ � f(T1 x)=t2 in t3 : T3

(T-DEC)

Γ[x �→Γ(x)∧T1] � t2 : T2
Γ[x �→Γ(x)∧¬T1] � t3 : T3

Γ � if(x is T1) t2 else t3 : T2∨ T3

(T-IF)

Fig. 2. Flow-typing rules for FT

determined. Observe that, under this rule, recursive function calls cannot be typed
as f is not included when typing t2 — however, this is of little relevance to the
problem being addressed.

– Rule T-IF. For a type test, the true and false branches are typed using updated
environments. For the true branch, the variable being tested (i.e. x) is mapped to
the intersection of its current type and that of the type test (i.e. to Γ(x) ∧ T1) —
this captures the fact that its values are known to be in both Γ(x) and T1. Similarly,
for the false branch, the variable being tested is mapped to the intersection of its
current type and that of the negated type test (i.e. to Γ(x) ∧ ¬T1) — this captures
the fact that its values are known to be in Γ(x) but not in T1. The resulting type of
the type test is then the most precise type which includes the types determined for
each branch (i.e. T2 ∨ T3).

Observe that, in rule T-IF, the type of the tested variable may be determined as void for
either branch — which, in such case, indicates that branch is unreachable. A modern
compiler would most likely report such a situation as a syntax error (but this is an
orthogonal issue).

Discussion. Having considered the flow-typing rules, we can now consider why certain
constructs are included in our calculus. Firstly, function application is included since
T-App requires a subtype test. Without this construct, there is no need for a subtyping
algorithm such as presented in this paper. Secondly, tuple types are included because

342 D.J. Pearce

Subtyping (incomplete):

T ≤ any
[S-ANY1]

void ≤ T
[S-ANY2]

int ≤ ¬(T1, . . . , Tn)
[S-INT1]

(T1, . . . , Tn) ≤ ¬int
[S-INT2]

∀i.Ti ≤ Si

(T1, . . . , Tn) ≤ (S1, . . . , Sn)
[S-TUP1]

n 	= m ∨ ∃i.Ti ≤ ¬Si
(T1, . . . , Tn) ≤ ¬(S1, . . . , Sm)

[S-TUP2]

∀i.Ti≥ Si

¬(T1, . . . , Tn) ≤ ¬(S1, . . . , Sn)
[S-TUP3]

∀i.Ti ≤ S

T1∨ . . . ∨ Tn ≤ S
[S-UNION1]

∃i.T ≤ Si

T ≤ S1∨ . . . ∨ Sn
[S-UNION2]

∃i.Ti ≤ S

T1∧ . . . ∧ Tn ≤ S
[S-INTERSECT1]

∀i.T ≤ Si

T ≤ S1∧ . . . ∧ Sn
[S-INTERSECT2]

Fig. 3. A sound but incomplete subtyping relation for the language of types defined in §2.1

they make the subtyping problem harder (in fact, without tuples the subtyping problem
for this system is fairly trivial).

2.4 Subtype Algorithm

Figure 2 employs an operation on types whose implementation is not immediately ob-
vious — namely, determining whether one type subtypes another (i.e. T1 ≤ T2). Indeed,
there are many possible implementations of this operator and it is useful to consider two
desirable properties:

Definition 2 (Subtype Soundness). A subtype operator, ≤, is sound if, for any types
T1 and T2, it holds that T1 ≤ T2 =⇒ �T1� ⊆ �T2�.

Definition 3 (Subtype Completeness). A subtype operator, ≤, is complete if, for any
types T1 and T2, it holds that �T1� ⊆ �T2� =⇒ T1 ≤ T2.

A subtype operator which exhibits both of these properties is said to be sound and
complete. We know of no previous flow typing system which has this property. The
most notable existing system is that of Tobin-Hochstadt and Felleisen, who developed a
flow type system for Racket (formerly PLT Scheme) [23, 24]. Like the system presented
here, this supports subtyping in the presence of unions and negations and was shown
to be sound. However, subtyping in their system is not complete, meaning that many
potentially typeable programs cannot be typed.

Sound and Complete Flow Typing with Unions, Intersections and Negations 343

Example. Figure 3 provides a typical set of rules defining a subtype relation over the
language of types from §2.1. These have a natural recursive implementation and are
comparable to those of [23, 24]. Rules S-ANY1, S-ANY2, S-INT1, S-INT2 and S-
TUP1 are straightforward. We illustrate the remainder by example. Under S-TUP2, we
have e.g. (int, int) ≤ ¬(int, int, int) and ((int, int), int) ≤ ¬(int, int)whilst,
similarly, we have ¬(any, any) ≤ ¬(int, int) under S-TUP3. Under S-UNION1 we
have e.g. (int, any)∨(any, int)≤ (any, any) and e.g. (int, int) ≤ int∨(int, any)
under S-UNION2. Finally, under S-INTERSECT1 we have e.g. int ∧ (int, int) ≤ int

and e.g. (int, int) ≤ (any, int)∧ (int, any) under S-INTERSECT2.
The rules of Figure 3 can be shown as sound with respect to our semantic interpretation
of types (i.e. Definition 1). However, they are evidently not complete. For example,
neither of the following can be shown under Figure 3 (but are implied by Definition 1):

any ≤ int∨¬int

(int ∨ (int, int), int) ≤ (int, int)∨ ((int, int), int)

The rules of Figure 3 can be further extended to handle specific cases (such as those
above). For example, we could add the following rules:

any ≤ T ∨ ¬T
[S-ANY3]

T = (T1, . . . , Tk−1, •, Tk+1, Tn)

T[• �→ S1∨ . . . ∨ Sn] ≤ T[• �→ S1] ∨ . . . ∨ T[• �→ Sn]
[S-TUP4]

S-ANY3 allows any ≤ int∨¬int to be shown, while S-TUP4 captures distributiv-
ity across tuples, allowing (int ∨ (int, int), int) ≤ (int, int)∨ ((int, int), int).
However, adding additional rules seems (in our experience) somewhat futile and just
forces ever-more esoteric counter-examples. For example, using the above rules we still
cannot showany ≤ (int, int) ∨ (int, int, int)∨

(
¬(int, int)∧ ¬(int, int, int)

)
(which is implied by Definition 1). In essence, the issue is that the number and variety
of possible equivalences between types make it very difficult to construct a set of com-
plete rules. To address this, our approach first normalises types to eliminate many such
equivalences, and to make them more manageable.

2.5 Problem Statement

We can now succinctly express the problem addressed in this paper, namely: to develop
a sound and complete subtype algorithm for the language of types defined in §2.1. We
know of no previous algorithm with this property for a comparable language of types.
In §4, we present such an algorithm which, in the worst case, requires an exponential
number of steps to answer a subtyping query (in the size of the types involved). This
complements the work of Frisch et al. who provided an existence proof but did not
present a practical algorithm [33]. Furthermore, determining whether a polynomial time
subtyping algorithm exists for this system remains, to the best of our knowledge, an
open problem.

344 D.J. Pearce

Positive Subtyping:

T+ ≤ T+
(S-REFLEX)

T+ ≤ any
(S-ANY)

∀i∈{1, . . . , n}.T+i ≤ S+i

(T+1 . . . , T+n) ≤ (S+1 , . . . , S
+
n)

(S-TUP)

Fig. 4. Subtyping rules for positive atoms in FW

3 Preliminaries

Before we present our algorithm for sound and complete subtyping over the language of
types defined in §2.1, we first introduce the key concepts which underpin it. These then
form the building blocks for our algorithmic developments in the following section.

3.1 Atoms

An important aspect of our algorithm is the definition of an atom. These are indivisible
types which are split into the positive and negative atoms as follows:

Definition 4 (Type Atoms). Let T∗ denote a type atom, defined as follows:

T∗ ::=T+ | T−
T− ::=¬T+
T+ ::=any | int | (T+1 , . . . , T+n)

Here, T+ denotes a positive atom whilst T− denotes a negative atom.

We can see from Definition 4 that a negative atom is simply a negated positive atom.
Furthermore, the elements of tuple atoms are themselves positive atoms — which dif-
fers from the original definition of types, where an element could hold any possible
type (including e.g. a union or intersection type). As we will see, one of the challenges
we face lies in the process of converting from the general types of §2.1 into the more
restricted forms used here. For example, (int ∨ (int, int), any) can be converted into
(int, any)∨ ((int, int), any) — which is a union of positive atoms.

The first building block we require is that of subtyping between atoms. For our pur-
poses, this operation need only be defined for positive atoms (a fact which at first sur-
prised us), but could be extended to negative atoms as well. Figure 4 presents the subtyp-
ing relation between positive atoms. These employ judgements of the form “T1 ≤ T2”,
which are read simply as: the set of values described by T1 subtypes those of T2. The
rules of Figure 4 are mostly straightforward. Furthermore, we can trivially obtain sound-
ness and completeness for the subtype relation given in Figure 4:

Sound and Complete Flow Typing with Unions, Intersections and Negations 345

Lemma 1. Let T+1 and T+2 be positive atoms. Then, T+1 ≤ T+2 ⇐⇒ �T+1 � ⊆ �T+2 �.

Proof. Straightforward by inspection of Definition 1 and Figure 4.

The second important building block is the observation that type atoms are finitely indi-
visible. That is, a type atom cannot be represented equivalently as a finite set of atoms
which does not include itself:

Lemma 2 (Atom Indivisibility). Let T+ and S+1 , . . . , S
+
n be positive type atoms where�T+� = �S+1 ∪ . . . ∪ S+n �. Then, for some 1 ≤ i ≤ n, we have T+ = S+i .

Proof. Straightforward by inspection of Definitions 1 + 4.

The implications of Lemma 2 should not be overlooked. By construction, we have that
∀i.�S+i � ⊆ �T+� and, hence, T+ is the unique canonical representative of the set it de-
scribes (i.e. �T+�). Furthermore, given any S+1 , . . . , S

+
n where �T+� = �S+1 ∪ . . . ∪ S+n �,

we can quickly and easily identify T+ using the subtype operator of Figure 4.
The third important building block we require is that of (positive) atom intersection.

We let T+1 � T+2 denote the construction of a type representing the intersection of the
values in T+1 with those of T+2 . Note that T+1 � T+2 produces either a positive atom or
void (in the case of no intersection):

Definition 5 (Atom Intersection). Let T+1 and T+2 be positive atoms. Then, T+1 � T+2 is
a positive atom or void determined as follows:

T+ � T+ = T+ (1)
any � T+ = T+ (2)
T+ � any = T+ (3)
int � (T+1 , . . . , T

+
n) = void (4)

(T+1 , . . . , T
+
n) � int = void (5)

(T+1 , . . . , T
+
n) � (S+1 , . . . , S

+
m) = void, if n �= m or ∃i.T+i � S+i = void (6)

= (T+1 � S+1 , . . . , T
+
n � S+n),otherwise (7)

Observe that (2) + (3) and (4) + (5) are symmetric.

Definition 5 is straightforward. For example, (int) � (int, int) = void as the num-
ber of fields differs (i.e. following Definition 1 where �(int)� ∩ �(int, int)� = ∅).
Also, (any, any) � (int, int) = (int, int) as expected. Note, int � (int) = void

since (T) is a tuple of arity-1 and is considered distinct from T. Finally, we can trivially
obtain soundness and completeness for this operation:

Lemma 3. Let T+1 and T+2 be atoms. Then, �T+1 � T+2 � = �T+1 � ∩ �T+2 �.

Proof. Straightforward by inspection of Definition 1 and Definition 5.

346 D.J. Pearce

3.2 Disjunctive Normal Form (DNF)

We now consider the procedure for converting a general type into a more classical
Disjunctive Normal Form (DNF):

Definition 6 (DNF). Let T =⇒∗ T′ denote the application of zero or more rewrite rules
(defined below) to type T, producing a potentially updated type T′.

¬¬T =⇒ T (1)
¬
∨

iTi =⇒
∧

i¬Ti (2)
¬
∧

iTi =⇒
∨

i¬Ti (3)(∨
i Si
)
∧
∧

jTj =⇒
∨

i

(
Si ∧

∧
jTj
)

(4)

(. . . ,
∨

iTi, . . .) =⇒
∨

i(. . . , Ti, . . .) (5)
(. . . ,

∧
iTi, . . .) =⇒

∧
i(. . . , Ti, . . .) (6)

(. . . ,¬T, . . .) =⇒ (. . . , any, . . .) ∧ ¬(. . . , T, . . .) (7)

DNF(T) = T′ denotes the computation T =⇒∗ T′, such that no more rewrite rules apply.

Here,
∨

iTi (resp.
∧

iTi) represents a finite disjunction of the form T1 ∨ . . . ∨ Tn (resp.
T1 ∧ . . . ∧ Tn). The above rules convert a type into something similar to the classi-
cal notion of disjunctive normal form for logical expressions, with the key difference
being that we must additionally factor unions, intersections and negations out of tu-
ples. Rules 2+3 push negations inwards such that, for example, ¬(T1 ∧ T2) rewrites to
¬T1 ∨ ¬T2. Rule 4 factors unions out of intersections, such that e.g. T1 ∧ (T2 ∨ T3)
rewrites to (T1 ∧ T2) ∨ (T1 ∧ T3). Recall from §2.1 that T1 ∧ T2 is indistinguishable
from T2 ∧ T1 and, hence, rule 4 is not restricted to rewriting only a leftmost union
(as the presentation might suggest). Rules 5, 6 + 7 are responsible for factoring union
and intersection types out of tuples. For example, (int ∨ (int, int), any) rewrites by
rule 4 to (int, any)∨ ((int, int), any). Similarly, (any ∧ ¬int, any) rewrites by rule
6 and then by rule 7 to give (any, any)∧ ¬(int, any). Finally, we note that DNF(T)may
produce an exponential number of terms in the worst-case [38–40].

We now list several properties which can be trivially shown for the function DNF(T),
and more details can be found in [41]:

Lemma 4 (DNF Construction). Let T be a type where DNF(T) = T′. Then, T′ has the
form

∨
i

∧
j T

∗
i,j.

Lemma 5 (DNF Preservation). Let T be a type where T =⇒ T′ by a rewrite rule from
Definition 6. Then, �T� = �T′�.

Lemma 6 (DNF Termination). Let T be a type. Then, there exists a type T′ for which
no further rewrite rules from Definition 6 apply, such that T =⇒∗ T′.

In considering Lemma 4, recall from Definition 4 that a type T∗ represents a positive
or negative atom. Thus, T∗ is either a positive atom or a negated positive atom and may
recursively contain only positive atoms.

Sound and Complete Flow Typing with Unions, Intersections and Negations 347

4 Subtyping Algorithm

We now present our algorithm for sound and complete subtyping over the language of
types defined in §2.1. We begin with an overview of the problem and our solution, and
then proceed to progressively introduce the main pieces of the algorithm.

4.1 Overview

Let us reconsider the example subtyping algorithm presented in Figure 3. Recall that,
whilst this algorithm can be shown sound, it is not complete. In particular, the following
two rules are problematic:

∀i.Ti ≤ S

T1∨ . . . ∨ Tn ≤ S
[S-UNION1]

∃i.T ≤ Si

T ≤ S1∨ . . . ∨ Sn
[S-UNION2]

The problem is that examples of the form T1 ∨ T2 ≤ T3 ∨ T4 where�T1 ∨ T2� ⊆ �T3 ∨ T4� exist, but where neither S-UNION1 nor S-UNION2 can apply
(and, hence, such examples cannot be shown under Figure 3). The following illustrates
two such examples:

int∨¬int ≤ (int, int)∨¬(int, int) (1)

((int, int), any) ≤ ((int, int), int)∨¬(any, int) (2)

Another example is (int, any)∧ (any, int) ≤ (int, int) which exploits a similar
problem with the S-INTERSECT1 rule.

The problem common to all these examples seems to be the number and variety of
equivalences between types. To tackle these problems, we build our algorithm around
the intuition that �T1� ⊆ �T2� iff �T1� − �T2� = ∅. This requires an algorithm for com-
puting the difference of two types, such that T1 − T2 = void iff �T1� − �T2� = ∅. When
types are represented as disjuncts of canonical conjuncts (referred to as Canonicalised
Disjunctive Normal Form or DNF+ for short), then computing their difference in a way
that obtains the desired property is relatively easy. We proceed by first defining the no-
tion of a canonical conjunct (§4.2) and then how one is constructed (§4.3). Finally, we
show how a general type can be converted into DNF+ (§4.4), and put the whole thing
together illustrated with an example (§4.5).

4.2 Canonical Conjuncts

The first step in the canonicalisation process is to canonicalise intersections of the
form T1 ∧ . . . ∧ Tn. For example, int ∧ any can be safely simplified to int. Likewise,
(int, int)∧ ¬(any, any) can be simplified to void, while (int, int)∧ ¬int can be
simplified to (int, int) and, finally, (any, int)∧ ¬(int, any) can be simplified to
(any, int)∧ ¬(int, int). As we will see, any intersection

∧
iT

∗
i between atoms can

be represented as a positive atom conjuncted with zero or more negative atoms, i.e. as
T+1 ∧ ¬T+2 ∧ . . . ∧ ¬T+n .

Given the tools developed in §3.1 (i.e. Figure 4 and Definition 5), we can now for-
malise the notion of a canonical conjunct as follows:

348 D.J. Pearce

Definition 7 (Canonical Conjunct). Let T∧ denote a canonical conjunct. Then, T∧ is
a type of the form T+1 ∧ ¬T+2 ∧ . . . ∧ ¬T+n where:

1. For every negation ¬T+k , we have T+1 �= T+k and T+1 ≥ T+k .
2. For any two distinct negations ¬T+k and ¬T+m , we have T+k �≥ T+m .

Recall the subtype relation, ≥, between positive atoms used in Definition 7 is given
in Figure 4. Now, rule 1 makes sense if we recall that T1 ∧ ¬T2 can be thought of
as T1 − T2; thus, in rule 1 we require that the amount “subtracted” from the pos-
itive atom by any given negative atom is strictly less than the total. For example,
(int, int)∧¬(any, any) is not permitted as this corresponds to the void (i.e. empty)
type. Likewise, (any, int)∧ ¬(int, any) is not permitted either since this is more pre-
cisely represented as (any, int) ∧ ¬(int, int). Rule 2 prohibits negative atoms from
subsuming each other. For example, (any, any) ∧ ¬(int, int)∧ ¬(any, int) is more
precisely represented as (any, any) ∧ ¬(any, int). Note, we need not worry about
atoms that overlap but where neither subsumes the other (i.e. where �T+1 � ∩ �T+2 � �= ∅
but �T+1 � �⊆ �T+2 � and �T+1 � �⊇ �T+2 �) — this follows from Lemma 2 (indivisibility) as
such types canonically represent distinct sets (hence must be retained in the conjunct).

We can make the following strong statement about canonical conjuncts based on Defi-
nition 7 — namely, that canonical conjuncts are indeed canonical:

Lemma 7 (Canonical Conjuncts). Let T∧ = T+1 ∧
∧

i¬T
+
i and S∧ = S+1 ∧

∧
j¬S

+
j

be canonical conjuncts. Then, it follows that �T∧� = �S∧� ⇐⇒ T∧ = S∧.

Proof. Follows from proof of atom indivisibility (Lemma 2). See [41] for details.

4.3 Conjunct Construction

We now develop the mechanism for constructing a canonical conjunct from an arbitrary
conjunct of atoms:

Definition 8 (Conjunct Canonicalisation). Let
∧

iT
∗
i =⇒∗ ∧

jS
∗
j denote the applica-

tion of zero or more rewrite rules (defined below) to
∧

iT
∗
i , producing a potentially

updated version
∧

jS
∗
j.

void ∧ . . . =⇒ void (1)
T+i ∧ T+j ∧ . . . =⇒ (T+i � T+j) ∧ . . . (2)
T+x ∧ ¬T+y ∧ . . . =⇒ void if T+x ≤ T+y (3)

=⇒ T+x ∧ . . . if T+x � T+y = void (4)
=⇒ T+x ∧ ¬(T+x � T+y) ∧ . . . if T+x �≥ T+y (5)

¬T+x ∧ ¬T+y ∧ . . . =⇒ ¬T+x ∧ . . . if T+x ≥ T+y (6)

Let CAN(
∧

iT
∗
i) =

∧
jS

∗
j denote the computation

∧
iT

∗
i =⇒∗ ∧

jS
∗
j , such that no further

rewrite rules apply.

Sound and Complete Flow Typing with Unions, Intersections and Negations 349

In considering the rules from Definition 8, we must recall that T1 ∧ T2 is not dis-
tinguishable from T2 ∧ T1. Therefore e.g. rule (2) picks two arbitrary positive atoms
from

∧
iT

∗
i , not just the leftmost two (as the presentation might suggest). Rule 2 sim-

ply combines all the positive atoms together using the intersection operator for posi-
tive atoms (Definition 5). After repeated applications of rule 2, there will be at most
one positive atom remaining. Rule 3 catches the case when the negative contribu-
tion exceeds the positive contribution (e.g. int ∧ ¬any =⇒ void). Rule 4 catches
negative components which lie outside the domain (e.g. int ∧ ¬(int, int) =⇒ int).
Rule 5 covers the case of negative components which lie partially outside the do-
main (e.g. (any, int) ∧ ¬(int, any) =⇒ (any, int)∧ ¬(int, int)). Finally, rule 6
catches the case where one negative component is completely consumed by another
(e.g. (any, any) ∧ ¬(int, any) ∧ ¬(int, int) =⇒ (any, any) ∧ ¬(int, any)).

Lemma 8. Let
∧

iT
∗
i be an arbitrary conjunct of atoms containing at least one positive

atom. Then, CAN(
∧

iT
∗
i) is either a canonical conjunct or void.

Proof. Straightforward by case analysis on the ways in which an arbitrary conjunct of
atoms does not meet the requirements of Definition 7 (and, for each case, that a rule
from Definition 8 applies). See [41] for details.

The requirement in Lemma 8 for at least one positive atom arises because the rules of
Definition 8 do not introduce positive atoms, but canonical conjuncts require them. In
fact, we can easily ensure an arbitrary conjunct of atoms,

∧
iT

∗
i, has at least one positive

atom — we simply add any to give any ∧
∧

iT
∗
i .

Definition 9 (Conjunct Intersection). Let T∧1 , . . . , T
∧
n be canonical conjuncts. Then,

T∧1 � . . . � T∧n denotes their intersection, and is defined as CAN(T∧1 ∧ . . . ∧ T∧n).

Observe that, by construction,
�

iT
∧
i yields either a canonical conjunct or void. Since a

canonical conjunct cannot represent void, we have the required property that�∧iT
∧
i � = ∅ ⇐⇒

�
iT

∧
i = void. To see why a canonical conjunct cannot represent

void, recall that void is short-hand for ¬any. Thus, we might consider any ∧ ¬any to
be a canonical conjunct representing void — but, this is invalid as, for a type T1 ∧ ¬T2
to be a canonical conjunct, Definition 7 requires T1 > T2. In fact, by construction, no
canonical conjunct T∧ exists where �T∧� = �void�. Finally, the following ensures the
overall canonicalisation process is sound:

Lemma 9. Let T∧1 , . . . , T
∧
n be canonical conjuncts. Then, �∧iT

∧
i � = � �

iT
∧
i �.

Proof. Straightforward by case analysis on the rules of Definition 8 to show that each
rule preserves the described semantic set before and after the rewrite. See [41] for de-
tails.

4.4 Canonicalised Disjunctive Normal Form (DNF+)

Finally, we can now formally define the process for converting an arbitrary type (as
defined in §2.1) into the variant of disjunctive normal form we refer to as Canonicalised
Disjunctive Normal Form (DNF+):

350 D.J. Pearce

Definition 10 (DNF+). Let T∨ denote a type in Canonicalised Disjunctive Normal
Form (DNF+). Then, either T∨ has the form

∨
iT

∧
i or is void.

In our definition of DNF+, we must include a special case for when T = void since (as
discussed earlier) void is not a canonical conjunct. We can now easily construct types
in DNF+ as follows:

Definition 11 (DNF+ Construction). Let T be a type where T′ = DNF(T) and, hence,
by Lemma 4 we have T′ =

∨
i

∧
j T

∗
i,j. Then, DNF+(T) =

∨
i

�
j T

∗
i,j.

In considering Definition 11, we must recall our assumption from §2.1 that T1∨ T1 is
indistinguishable from T1. This is important as it ensures that, if all the intersected
conjuncts give void, then the overall result is void (i.e. since void ∨ void = void,
etc). This reflects our overall goal of ensuring �T� = ∅ ⇐⇒ DNF+(T) = void. We
now present the overall theorem of this paper:

Theorem 1. Let T be a type (as defined in §2.1). Then, �T� = �DNF+(T)�.

Proof. Follows immediately from Lemma 9 and Definition 11.

4.5 Putting It All Together

We can now give a formal definition for our subtyping operator which is sound and
complete for the language of types defined in §2.1, and which replaces Figure 3:

Definition 12 (Subtyping). Let T1 and T2 be types (as defined in §2.1). Then, it follows
that T1 ≤ T2 ⇐⇒ DNF+(T1∧¬T2) = void.

The proof that this rule is sound and complete follows immediately from Theorem 1.
Furthermore it is important to realise that, whilst Definition 12 offers an improvement
over Figure 3 in terms of completeness, this comes at a cost. More specifically, the
subtype relation defined in Figure 3 can be implemented with a polynomial time algo-
rithm, whilst our replacement (i.e. Definition 12) requires exponential time in the worst
case. This is because the first step of the process which converts T into disjunctive nor-
mal form (i.e. Definition 6) can produce an exponential explosion in the number of
terms [38–40]. As such, determining whether a sound and complete polynomial time
subtyping algorithm exists remains an open problem.

We now return to consider a simple example from §2.4, and illustrate how it is re-
solved:

any ≤ int∨¬int ⇐⇒ DNF+(any ∧ ¬(int∨¬int)) = void

DNF+(any ∧ ¬(int∨¬int)) = CAN(DNF(any∧ ¬(int∨¬int)))
= CAN(any∧ ¬int ∧ int)
= void

Therefore, the algorithm correctly concludes that any ≤ int∨¬int holds.

Sound and Complete Flow Typing with Unions, Intersections and Negations 351

5 Related Work

Tobin-Hochstadt and Felleisen consider the problem of typing previously untyped Racket
(aka Scheme) programs using a flow-typing algorithm [23, 24]. Their system retypes
variables within expressions dominated by type tests. However, they employ only union
types and do not consider intersections or negations, making their system significantly
more conservative than presented here. The work of Guha et al. focuses on flow-
sensitive type checking for JavaScript [25]. This assumes programmer annotations are
given for parameters, and operates in two phases: first, a flow analysis inserts special
runtime checks; second, a standard (i.e. flow-insensitive) type checker operates on the
modified AST. Their system employs union types, but does not support negations or
intersections. Furthermore, it can retype variables as a result of runtime type tests, al-
though only simple forms are permitted.

Since locals and stack locations are untyped in Java Bytecode, the Java Bytecode
Verifier employs flow typing to ensure type safety [31]. The verifier retypes variables
after assignments, but does not retype them after instanceof tests. And, instead of
supporting explicit unions, it computes the least upper bound of the types for each
variable at a meet point. A well-known problem, however, is that Java’s subtype relation
does not form a complete lattice [32]. This arises because two classes can share the same
super-class and implement the same interface; thus, they may not have a unique least
upper bound. The solution adopted by the bytecode verifier ignores interfaces entirely
and, instead, maps them to java.lang.Object. This approach is conservative and
means some programs will fail to verify that we might otherwise expect to pass. Several
works on formalising the bytecode verifier have proposed the use of intersection types
as an alternative solution [42, 43].

Type qualifiers constrain the possible values a variable may hold. CQual is a flow-
sensitive qualifier inference supporting numerous type qualifiers, including those for
synchronisation and file I/O [12]. CQual does not account for the effects of condition-
als and, hence, retyping is impossible. Fähndrich and Leino discuss a system for check-
ing non-null qualifiers in the context of C# [15]. Here, variables are annotated with
NonNull to indicate they cannot hold null. Non-null qualifiers are interesting because
they require variables be retyped after conditionals (i.e. retyping v from Nullable

to NonNull after v!=null). Fähndrich and Leino hint at the use of retyping, but fo-
cus primarily on issues related to object constructors. Ekman et al. implemented this
system within the JustAdd compiler, although few details are given regarding variable
retyping [13]. Pominville et al. also briefly discuss a flow-sensitive non-null analysis
built using SOOT, which does retype variables after v!=null checks [21]. The JACK
tool for verifying @NonNull type annotations extends the bytecode verifier with an
extra level of indirection called type aliasing [14]. This enables the system to retype a
variable x as @NonNull in the body of an if(x!=null) conditional. The algorithm
is formalised using a flow-sensitive type system operating on Java bytecode. JavaCOP
provides an expressive language for writing type system extensions, including non-null
types [22]. This system is flow-insensitive and cannot account for the effects of condi-
tionals; as a work around, the tool allows assignment from a nullable variable v to a
non-null variable if this is the first statement after a v!=null conditional.

352 D.J. Pearce

Finally, there have been some attempts to incorporate intersection and union types
into mainstream languages. The most relevant is that of Büchi and Weck who intro-
duce compound types in to Java to overcome limitations caused by a lack of multiple
inheritance [44]. Another interesting work is that of Igarashi and Nagira, who introduce
union types into Java to increase code reusability [45]. Likewise, Plümicke introduces
intersection types into Java to ensure methods have principle types [46]. This helps to
alleviate the burden of writing complex types in some situations.

6 Conclusion

Flow-typing systems often require complex type systems involving unions, intersec-
tions and/or negations. For example, unions are often used to describe the types of
variables at meet points. Likewise, intersections and negations can describe the effect
of runtime type tests. However, subtype testing is a challenging algorithmic problem
for a type system containing these features. In particular, to ensure the greatest number
of programs as possible can be typed, we desire that subtyping is both sound and com-
plete. Frisch et al. demonstrated that this problem was decidable [33]. However, their
proof was not constructive and did not lend itself naturally to an implementation. In
this paper, we presented a sound and complete algorithm for subtyping in the presence
of unions, intersections and negations. This contrasts with previous flow type systems
(e.g. [23, 24]) which are shown sound, but not complete.

We framed our algorithm in the context of a flow typing system, which is a nat-
ural fit for this work and has many well-known practical applications. Furthermore,
our motivation for developing this algorithm stems from our work on the Whiley pro-
gramming language [28–30], which incorporates an ambitious flow type system. How-
ever, there are other potential applications for our algorithm, such as e.g. typing XML
Schema [47, 48].

Acknowledgements. The author would like to thank Sophia Drossopoulou and Nicholas
Cameron for helpful comments on earlier drafts of this paper. This work is supported
by the Marsden Fund, administered by the Royal Society of New Zealand.

References

1. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of the ACM Conference on Program-
ming Language Design and Implementation (PLDI), pp. 278–292 (1991)

2. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.D.: RPython: a step towards reconciling
dynamically and statically typed OO languages. In: Proceedings of the Dynamic Languages
Symposium (DLS), pp. 53–64 (2007)

3. Ousterhout, J.K.: Scripting: Higher-level programming for the 21st century. IEEE Com-
puter 31(3), 23–30 (1998)

4. Spinellis, D.: Java makes scripting languages irrelevant? IEEE Software 22(3), 70–71 (2005)
5. Loui, R.P.: In praise of scripting: Real programming pragmatism. IEEE Computer 41(7),

22–26 (2008)

Sound and Complete Flow Typing with Unions, Intersections and Negations 353

6. Bloom, B., Field, J., Nystrom, N., Östlund, J., Richards, G., Strnisa, R., Vitek, J., Wrigstad,
T.: Thorn: robust, concurrent, extensible scripting on the JVM. In: Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pp. 117–136 (2009)

7. Hindley, J.R.: The principal type-scheme of an object in combinatory logic. Transactions of
the AMS 146, 29–60 (1969)

8. Milner, R.: A theory of type polymorphism in programming. Journal of Computer and Sys-
tem Sciences 17, 348–375 (1978)

9. The Scala programming language, http://lamp.epfl.ch/scala/
10. Bierman, G., Meijer, E., Torgersen, M.: Lost in translation: formalizing proposed extensions

to C#. In: Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pp. 479–498 (2007)

11. Remy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to ML. Theory
And Practice of Object Systems 4(1), 27–50 (1998)

12. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings of the
ACM Conference on Programming Language Design and Implementation (PLDI), pp. 1–12
(2002)

13. Ekman, T., Hedin, G.: Pluggable checking and inferencing of non-null types for Java. Journal
of Object Technology 6(9), 455–475 (2007)

14. Male, C., Pearce, D.J., Potanin, A., Dymnikov, C.: Java bytecode verification for @NonNull
types. In: Proceedings of the Confererence on Compiler Construction (CC), pp. 229–244
(2008)

15. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented
language. In: Proceedings of the ACM Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pp. 302–312 (2003)

16. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proceedings of
the ACM symposium on the Principles Of Programming Languages (POPL), pp. 228–241
(1999)

17. Hunt, S., Sands, D.: On flow-sensitive security types. In: Proceedings of the ACM Sympo-
sium on the Principles Of Programming Languages (POPL), pp. 79–90 (2006)

18. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In: Proc. CSF,
pp. 186–199 (2010)

19. Pearce, D.J.: JPure: A Modular Purity System for Java. In: Knoop, J. (ed.) CC 2011. LNCS,
vol. 6601, pp. 104–123. Springer, Heidelberg (2011)

20. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: Proceedings of
the ACM conference on Programming Language Design and Implementation (PLDI),
pp. 192–203 (1999)

21. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L., Verbrugge, C.: A Framework for Opti-
mizing Java Using Attributes. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 334–554.
Springer, Heidelberg (2001)

22. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing plug-
gable type systems. In: Proceedings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pp. 57–74 (2006)

23. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed Scheme. In:
Proceedings of the ACM Symposium on the Principles Of Programming Languages (POPL),
pp. 395–406 (2008)

24. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Proceedings of
the ACM International Conference on Functional Programming (ICFP), pp. 117–128 (2010)

25. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing Local Control and State Using Flow Anal-
ysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256–275. Springer, Heidelberg
(2011)

http://lamp.epfl.ch/scala/

354 D.J. Pearce

26. Winther, J.: Guarded type promotion: eliminating redundant casts in Java. In: Proceedings of
the Workshop on Formal Techniques for Java-like Programs, pp. 6:1–6:8 (2011)

27. What’s new in Groovy 2.0?,
http://www.infoq.com/articles/new-groovy-20

28. The Whiley programming language, http://whiley.org
29. Pearce, D., Noble, J.: Implementing a language with flow-sensitive and structural typing on

the JVM. Electronic Notes in Computer Science 279(1), 47–59 (2011)
30. Pearce, D.J., Cameron, N., Noble, J.: Whiley: a language with flow-typing and updateable

value semantics. Technical Report ECSTR12-09, Victoria University of Wellington (2012)
31. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. Addison-Wesley

(1999)
32. Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of Automated

Reasoning 30(3/4), 235–269 (2003)
33. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-theoretically with

function, union, intersection, and negation types. Journal of the ACM 55(4), 19:1–19:64
(2008)

34. Aiken, A., Wimmers, E.L.: Type inclusion constraints and type inference. In: Proc. FPCA,
pp. 31–41 (1993)

35. Damm, F.M.: Subtyping with Union Types, Intersection Types and Recursive Types. In:
Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706. Springer,
Heidelberg (1994)

36. Castagna, G., Frisch, A.: A Gentle Introduction to Semantic Subtyping. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 30–34. Springer, Heidelberg (2005)

37. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping. In: Proceedings of the
ACM/IEEE Symposium on Logic In Computer Science (LICS), pp. 137–146 (2002)

38. Garey, M.R., Johnson, D.S.: Computers and intractability; a guide to the theory of NP-
completeness. W.H. Freeman (1979)

39. Umans, C.: The minimum equivalent DNF problem and shortest implicants. Journal of Com-
puter and System Sciences 63 (2001)

40. Buchfuhrer, D., Umans, C.: The complexity of boolean formula minimization. Journal of
Computer and System Sciences 77(1), 142–153 (2011)

41. Pearce, D.J.: Sound and complete flow typing with unions, intersections and negations. Tech-
nical Report ECSTR12-20, Victoria University of Wellington (2012)

42. Goldberg, A.: A specification of Java loading and bytecode verification. In: Proc. CCS, pp.
49–58 (1998)

43. Pusch, C.: Proving the Soundness of a Java Bytecode Verifier Specification in Isabelle/HOL.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 89–103. Springer, Heidelberg
(1999)

44. Büchi, M., Weck, W.: Compound types for java. In: Proceedings of the ACM conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), pp.
362–373 (1998)

45. Igarashi, A., Nagira, H.: Union types for object-oriented programming. In: Proceedings of
the Symposium on Applied Computing (SAC), pp. 1435–1441 (2006)

46. Plümicke, M.: Intersection types in java. In: Proceedings of the Conference on Principles and
Practices of Programming in Java (PPPJ), pp. 181–188. ACM, New York (2008)

47. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language. ACM Trans-
actions on Internet Technology 3(2), 117–148 (2003)

48. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric general-purpose language.
In: Proceedings of the ACM International Conference on Functional Programming (ICFP),
pp. 51–63 (2003)

http://www.infoq.com/articles/new-groovy-20
http://whiley.org

Knockout Prediction for Reaction Networks

with Partial Kinetic Information

Mathias John1,2, Mirabelle Nebut1,2, and Joachim Niehren1,3

1 BioComputing, Lifl (Cnrs Umr8022)
2 University of Lille

3
Inria Lille

Abstract. In synthetic biology, a common application field for compu-
tational methods is the prediction of knockout strategies for reaction
networks. Thereby, the major challenge is the lack of information on re-
action kinetics. In this paper, we propose an approach, based on abstract
interpretation, to predict candidates for reaction knockouts, relying only
on partial kinetic information. We consider the usual deterministic steady
state semantics of reaction networks and a few general properties of re-
action kinetics. We introduce a novel abstract domain over pairs of real
domain values to compute the differences between steady states that are
reached before and after applying some knockout. We show that this ab-
stract domain allows us to predict correct knockout strategy candidates
independent of any particular choice of reaction kinetics. Our predictions
remain candidates, since our abstract interpretation over-approximates
the solution space. We provide an operational semantics for our abstrac-
tion in terms of constraint satisfaction problems and illustrate our ap-
proach on a realistic network.

Keywords: Abstract interpretation, deterministic semantics, steady
state, constraint satisfaction, synthetic biology.

1 Introduction

Synthetic biology aims at creating artificial micro-organisms, either by construct-
ing them from scratch or by modifying existing once [2,1,21]. To this end, com-
putational modeling is applied to predict the dynamic behavior of the resulting
organisms [24,32]. Thereby, it is a common task to abstract micro-organisms as
sets of chemical reactions and to predict the effects of reaction deletion on the
dynamics of the concentrations of chemical species [38,5]. Such knockout consid-
erations are in particular applied to predict strategies that increase the rate of
some target reactions of interest.

Kinetic information is essential to predict the dynamics of chemical sys-
tems [22]. In reaction networks, each reaction is endowed with a kinetic rate
law, that is a function that defines a rate in dependence of the concentration
of the reaction’s reactants. Common examples of rate laws are the law of mass
action and Michaelis-Menten kinetics. These depend on kinetic rate constants

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 355–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

356 M. John, M. Nebut, and J. Niehren

that, however, remain mostly unknown. Moreover, in practice, many of a model’s
reactions combine several unknown reaction steps to one, see e.g. [19,20]. In these
cases, only basic properties of the kinetics function are given, e.g. that the rate
increases or decreases with the concentration of some chemical species. Thus,
the precise prediction of the dynamics of chemical systems remains out of reach.

The commonly accepted dynamic semantics of systems of chemical reactions
describes species concentrations in terms of stochastic processes [18]. When deal-
ing with high concentrations, a meaningful approximation is to ignore the mo-
ments of probability distributions with an order greater than one [40,17]. Such,
so called, deterministic semantics is then represented by systems of ordinary
differential equations (Odes) that describe the changes in the mean of species
concentrations over time. Knockout predictions then usually regard fix points of
Odes when no more changes in concentrations occur (steady state). It is known
that in nature systems of chemical reactions exist that have none or more than
one steady state [37,11,14].

Abstract interpretation [8] has been introduced for the static analysis of pro-
gram semantics. The idea is to approximate the state space of programs based on
approximations of domains and computations. In the realm of chemical reaction
systems, abstract interpretation has been applied to obtain different approxi-
mations of their dynamic, stochastic semantics [12,10] or to decrease the size of
(infinitely) large sets of Odes representing their deterministic semantics [6,13].

In this paper we propose an approach based on abstract interpretation, that
predicts candidates for reaction knockout, with only partial kinetic informa-
tion. We focus on cases that are on one hand simple, since reaction systems are
assumed to always reach a steady state as it is usually done when predicting re-
action knockouts [39,5]. On the other hand, they are complicated, since kinetics
functions are completely unknown, except for a few basic properties. Our major
idea is to compare steady states of reaction systems before and after a reaction
knockout is applied. We use abstract interpretation to reason about the effects of
knockouts in the absence of kinetic information. Therefore, we introduce a small
abstract domain that works on relations of pairs of non negative real numbers
and abstract operators that represent an over-approximation of real domain ad-
dition and multiplication. We then propose a small set of properties for kinetics
functions that are general enough to be also fulfilled by mass action kinetics
and Michaelis-Menten kinetics. As our central contribution, we show that the
predictions obtained with our abstract interpretation are independent of any
particular choice of kinetics functions, as long as these fulfill these properties.
Our predictions remain candidates due to the over-approximating nature of our
approach. We also present an operational semantics for our approach based on a
mapping of the abstract reaction semantics to constraint satisfaction problems
[33].

We start off by introducing the deterministic and steady state semantics of
reaction systems (Section 2). Then we formalize the reaction knockout task in
terms of a real domain constraint satisfaction problem (Section 3). To do so, in
the first instance, we restrict ourselves to reactions with mass action kinetics.

Knockout Prediction for Reaction Networks with Partial Kinetic Information 357

Then we define our abstract domain and the abstract interpretation of our mass
action knockout constraints yielding sets of finite domain constraints (Section
4). We show that our abstract interpretation is a correct over-approximation in
that every solution of the real domain problem is reflected by the solutions of
the abstract domain problem. We proceed by introducing properties of kinetics
functions and show that these are fulfilled by mass action kinetics and Michaelis-
Menten kinetics (Section 5). Then, we prove that every kinetics function with
these properties yields the same results in our abstraction, which allows us to
generally stick to mass action in our abstract interpretation. We next show how
to solve the thus obtained table constraints (Section 6). As this may yield large
sets of solutions, we propose to integrate Branch-And-Bound optimization w.r.t.
different criteria. We then provide in Section 7 a real-world example based on
a model from literature and our own implementation and discuss the obtained
solutions. These, on one hand, confirm results already known in literature and on
the other hand represent new interesting strategies that are currently evaluated
in wet-lab experiments. To finish, we provide a discussion of existing approaches
for prediction reaction knockouts in absence of kinetic information (Section 8).
An extended version of this paper with appendices containing detailed informa-
tion on proofs and on the example model is provided online.1

2 Reaction Networks

Let M be a finite set of chemical species (molecule types). A chemical solution
S with molecules in M is a tuple (Sm)m∈M with Sm ∈ R≥0. We call Sm the
concentration of m in S, that is the number of molecules of species m in S
divided by the volume of S.

A reaction network over M is a finite set R of chemical reactions with species
in M . Thereby, a chemical reaction is a rewrite rule that states how chemical
solutions change over time. More formally, a chemical reaction r with species in
M is a tuple of the the following form:

(r) m1, . . . ,mj : mj+1, . . . ,mk
κ−→ mk+1, . . . ,ml

where m1, . . . ,ml ∈ M and κ : Rk
≥0 → R≥0 is a function. Species mj+1, . . . ,mk

are called the reactants of r, i.e. molecules of this type are consumed when r
is applied. Species on the right hand side are called the products of r, which
are produced at application time. Species m1, . . . ,mj are called enzymes of r.
They are neither consumed nor produced but may increase the rate of reaction
r, which is defined by the kinetics function κ. We assume that species can only
play a single role in every reaction, i.e. they are either enzyme, reactant, or
product. However, in every role they might occur more than once. We write
enzr(m), reactr(m), and prodr(m) for the number of occurrences of m as an
enzyme, reactant, or product of r.

1 http://www.lifl.fr/BioComputing/extendedPapers/vmcai13.pdf

http://www.lifl.fr/BioComputing/extendedPapers/vmcai13.pdf

358 M. John, M. Nebut, and J. Niehren

(spec)
m ∈ M

dSm
dt

(t) =
∑

r∈R(prodr(m)− reactr(m)) · rateS,r(t)

(rate)
r ∈ R enz(r) = (m1, . . . ,mj) react(r) = (mj+1, . . . ,mk)

rateS,r(t) = κr(Sm1(t), . . . , Smk(t))

Fig. 1. Deterministic semantics of reaction network R over M

A kinetics function of arity k, κ : Rk
≥0 → R≥0, defines the rate (propensity) at

which k-tuples of molecules of S may react, in function of the concentrations of
the reactant and enzyme types in the solution. If (m1, . . . ,mk) are the enzyme
and reactant types of a chemical reaction with kinetics function κ then the
reaction rate for a chemical solution S is equal to κ(Sm1 , . . . , Smk

). We write κr
for the kinetics function of r ∈ R.

Standard chemical reactions have two reactants, no enzymes, and follow mass
action kinetics [18]. The kinetics of such standard reactions is then simply defined
as the product of the concentration of its reactants times some rate constant (see
the Appendix of the extended version of this paper for more details). However,
as a first approximation this reaction model can be extended to arbitrary many
enzymes and reactants. We denote this generalized version of the mass action
kinetics function as mac : Rk

≥0 → R≥0 for some constant c ∈ R≥0, such that
mac(x1, . . . , xk) = c · x1 · . . . · xk.

Other kinds of kinetics functions give better models of enzymatic reactions.
These are justified by compositions of several standard reactions with mass-
action kinetics. The most frequent example is Michaelis-Menten kinetics, which
accounts for a single-reactant reaction that is triggered by a single enzyme. It is
given by the kinetics function mmc1,c2 : R2

≥0 → R≥0, such that mmc1,c2(a, e) =
c1 ·a ·e/(c2+a), where a, e are the concentrations of the reactant and enzyme, re-
spectively. Rates following Michaelis-Menten kinetics describe a saturation curve
that steadily increases with the concentration of the reactant but approaches a
limit depending on the enzyme concentration. Yet another interesting alternative
are Hill kinetics.

Deterministic Semantics. The deterministic semantics of a reaction network R is
a collection of functions (Sm)m∈M of type Sm : R≥0 → R≥0. The value of Sm(t)
defines the concentration ofm in the solution at time point t, so that the solution
at time point t is (Sm(t))m∈M . If the initial solution at time point 0 is fixed then
the solutions at all later time points t > 0 are determined by a collection of Odes
(see below). However, we might not know the initial solution in practice.

The deterministic semantics of a reaction network R over M is defined by
applying rule (spec) to each species in M . The resulting Odes compute the
change of Sm at time point t by substituting reactants by products for all chem-
ical reactions r ∈ R according to their rate, see Fig. 1. Rule (rate) defines the
rate of a reaction r at time point t by rateS,r(t) = κr(Sm1(t), . . . , Smk

(t)).

Knockout Prediction for Reaction Networks with Partial Kinetic Information 359

(specst)
m ∈M∑

r∈R prodr(m) · rateS,r =
∑

r′∈R reactr′(m) · rateS,r′

(ratest)
r ∈ R enz(r) = (m1, . . . ,mj) react(r) = (mj+1, . . . , mk)

rateS,r = κr(Sm1 , . . . , Smk)

Fig. 2. Steady state semantics of reaction network R over M

Steady-State Semantics. The steady state semantics assumes that reaction net-
works reach a fixed point in which all reactions continue to perform with constant
speed. This means that the changes for all m ∈M become zero:

dSm

dt
(t) = 0

The amounts Sm(t) will thus become constant for all species m ∈M , so that we
can denote them by Sm. Furthermore, reactions r ∈ R become constant fluxes
with constant rates, so that rateS,r(t) becomes constant and can thus be denoted
by rateS,r.

The steady state semantics of a reaction network R is given by the system of
arithmetic equations in Fig. 2. These equations relate molecule concentrations
Sm to reaction rates rateS,r. Rule (specst) states that the production and con-
sumption must coincide for any molecule type. It should be noticed that these
equations are only a necessary condition for steady states of the dynamic system
(and that some systems may not have any steady state). However, as mentioned
earlier, we assume that reaction networks always reach a steady state.

Example. We consider a reaction network where A’s and B’s are inputs from
the environment that can react to a complex C which is then released into the
environment. We assume that all inputs and outputs are done such that an
equilibrium must be reached.

(r1)
ma1−−−→ A (r2)

ma2−−−→ B (r3) A,B
ma3−−−→ C

(r4) A
ma4−−−→ (r5) B

ma5−−−→ (r6) C
ma6−−−→

Note that we chose artificial rate constants i for reaction ri. In practice the
situation will be even worse in that most rate constants will be unknown. The
deterministic semantics is given by the following system of Odes:

dSA

dt (t) = 1− 3 · SA(t) · SB(t)− 4 · SA(t),
dSB

dt (t) = 2− 3 · SA(t) · SB(t)− 5 · SB(t),
dSC

dt (t) = 3 · SA(t) · SB(t)− 6 · SC(t).

In order to determine the functions SA, SB, and SC , it is sufficient to fix the
initial solution. We will choose SA(0) = SB(0) = SC(0) = 0 for illustration,

360 M. John, M. Nebut, and J. Niehren

Fig. 3. Dynamics of example reaction network

which leads to the dynamics drawn in Fig. 3. It should be noticed that the con-
centrations of all molecules stabilize when time t tends to infinity, i.e., a steady
state solution is reached. The Odes induce the following arithmetic equations
for this steady state:

1 = 3 · SA · SB + 4 · SA, 2 = 3 · SA · SB + 5 · SB, 3 · SA · SB = 6 · SC .

One can now solve these quadratic equations to determine two solutions for SA:

(1) SA =
−23 +

√
769

24
(2) SA =

−23−
√
769

24

As only the second solution is positive, we obtain a single steady state at SA =
0.197119, SB = 0.357695, and SC = 0.0352542.

3 Reaction Knockouts

We are now interested in modifying reaction networks, such that the rate of some
reactions are increased or decreased in the steady state. The only modifications
that we permit are reaction knockouts, i.e. inactivation of some reactions. As
mentioned in introduction, we assume in this section that all reactions have
mass action kinetics. In Section 5, we extend our approach to a more general,
only partially known kinetics, relying on our abstract interpretation given in
Section 4.

The knockout problem that we want to study is the following: we are given
a reaction network R and some objective O. An objective compares the rate of
reactions in steady states that R reaches before and after applying some reaction
knockouts. O may state that the rate of some reactions r should be increased
(denoted inc(r)), decreased (dec(r)), that a reaction may not be knocked out

Knockout Prediction for Reaction Networks with Partial Kinetic Information 361

(r1)
ma2−−→ A (r2) A

ma1−−→ B (r4) B
ma1−−→

(r3) A
ma1−−→ C (r5) C

ma1−−→∧5
i=1 xonri

∈ {0, 1} xr3 = xA · xonr3
xr1 = xr2 + xr3

∃x.(xr1 = x · xonr1
∧ x = 2) xr4 = xB · xonr4

xr2 = xr4

xr2 = xA · xonr2
xr5 = xC · xonr5

xr3 = xr5

Fig. 4. Example of a simple knockout problem: the knockout problem on top with its
reaction network and objective O, its knockout constraint below

(specko)
m ∈M∑

r∈R prodr(m) · rateon
S,r =

∑
r′∈R reactr′(m) · rateon

S,r′

(rateko)
r ∈ R κr = macr enz(r) = (m1, . . . ,mj) react(r) = (m1, . . . ,mk)

rateon
S,r = cr · Sm1 · . . . · Smk · onr

Fig. 5. Knockout steady states semantics of mass action reaction networks R over M

(on(r)), or conjunctions thereof. We then try to find a set of reactions R′ ⊆ R
to knockout, i.e. a knockout strategy, such that there exist solutions S, S′ that
are steady states for R and R \ R′, respectively, and satisfy O. Notice that this
knockout problem could also be defined to compare several steady states that
are possibly reached before and after applying some knockout. We leave such
extensions to future work, see Section 9.

As a simple example consider the reaction network in Figure 4 and the ob-
jective to increase the rate of reaction r4. Intuitively, this can be achieved by
knocking out reaction r3, such that more of the A molecules produced by reac-
tion r1 are transformed to B. A higher concentration of B in return leads to an
increase in the speed of reaction r4. Another idea could be to knockout reaction
r5. Then, however, the C molecules produced by reaction r3 are no more con-
sumed. Consequently, the concentration of C continuously increases, such that
a steady state can never be reached.

In order to generally solve the above problem, we have to reason about the
steady state semantics of a system of chemical reactions and all its subsets at the
same time. Therefore, we first introduce the notion of reaction knockout in the
semantics (knockout steady state semantics) and then we reduce the problem to
reasoning with a single set of arithmetic constraints.

Knockout Steady State Semantics. We enrich our steady state semantics, such
that it supports the knockout of a subset of chemical reactions. The idea is to
introduce a Boolean value onr ∈ {0, 1} for all reactions r ∈ R, which expresses
whether or not reaction r is switched on (that is onr = 1). This leads us to the
knockout steady state semantics in Fig. 5.

Arithmetic Constraints. We introduce the following set of variables:

V = {xr, xonr | r ∈ R} ∪ {xm | m ∈ M}

362 M. John, M. Nebut, and J. Niehren

(arithmcon) φR =
∧

m∈M φm ∧
∧

r∈R φr

(speccon)
m ∈M

φm =
(∑

r∈R prodr(m) · xr =
∑

r′∈R reactr′(m) · xr′
)

(ratecon)
r ∈ R κr = macr enz(r) = (m1, . . . ,mj) react(r) = (m1, . . . ,mk)

φr = (xr = cr · xm1 · . . . · xmk · xonr ∧ xonr ∈ {0, 1})

Fig. 6. Knockout constraint φR for mass action reaction networks R

Variables xm denote the unknown concentration Sm, variables xr the unknown
reaction rate rateonS,r

, and variables xonr
the unknown Boolean value onr. We

then consider the following language of arithmetic constraints where x, y, z ∈ V
and c ∈ R≥0:

φ ::= x+ y=z | x · y=z | x=c | x ∈ {0, 1} | φ ∧ φ′ | ∃x.φ

The conditions of the knockout semantics for a mass action reaction network R
can now be expressed by the arithmetic constraint φR defined in Fig. 6. Notice
that the constraint given there can be flattened easily, so that it belongs to the
constraint language specified above. Notice further that equalities of the form
x = y can be expressed by ∃z.(x+z = y∧z = 0). As an exemplary mapping from
a reaction network to a knockout constraint, consider the one in Figure 4. One
can see that the constraint has no solution when knocking out only reaction r5,
i.e. setting xonr5

= 0, since in that case we obtain the following contradiction:

xr3 = xr5 = xC · xonr5
= 0 by xonr5

= 0
⇒ xr3 = xA · xonr3

= 0 = xA by xonr3
= 1

⇒ xr2 = xA · xonr2
= 0 by xA = 0

⇒ xr1 = 2 · xon1 = 2 = xr2 + xr3 = 0 by xonr1
= 1

Let ν be a variable assignment into the domain R≥0. The constraint problem
that we try to solve is now as follows: given a reaction network R, with its
knockout constraint φR and an objective O, find variable assignments ν, ν′, such
that ν, ν′ satisfy φR, for all reactions r ∈ R it holds that ν(xonr) = 1, and (ν, ν′)
satisfies objective O. The reactions r for which it holds that ν′(xonr

) = 0 then
define our reaction knockout strategy.

4 Abstract Interpretation

The next idea is to reason about changes in concentrations in steady states
when switching off reactions. This is done by interpreting arithmetic constraints
abstractly into finite domain table constraints.

Knockout Prediction for Reaction Networks with Partial Kinetic Information 363

+α ↑ ⇑ ↓ ⇓ ∼ ≈
↑ ↑ ↑ ↑,↓,∼ ↑,↓,∼ ↑ ↑
⇑ sy. ⇑ ↑,↓,∼ ↑,↓,∼ ↑ ⇑
↓ sy. sy. ↓ ↓ ↓ ↓
⇓ sy. sy. sy. ⇓ ↓ ⇓
∼ sy. sy. sy. sy. ∼ ∼
≈ sy. sy. sy. sy. sy. ≈

·α ↑ ⇑ ↓ ⇓ ∼ ≈
↑ ↑ ⇑ ↑,↓,∼ ⇓ ↑ ≈
⇑ sy. ⇑ ⇑ ≈ ⇑ ≈
↓ sy. sy. ↓ ⇓ ↓ ≈
⇓ sy. sy. sy. ⇓ ⇓ ≈
∼ sy. sy. sy. sy. ∼ ≈
≈ sy. sy. sy. sy. sy. ≈

Fig. 7. Abstraction of binary addition and multiplication functions (sy. = symmetric)

Abstract Domain & Relations. We are interested in capturing the differences
between pairs of nonnegative real numbers (u, u′) ∈ R2

≥0. We distinguish the
cases where u > u′, u < u′, and u = u′, and in addition those cases where
u or u′ are equal to 0. More formally, we define the following set of difference
relations:

Δ = {↑, ↓,∼,⇑,⇓,≈} ⊆ R2
≥0

such that the following properties hold for all u, u′ ∈ R≥0:

u ↑u′ ⇔ 0 < u < u′ u⇑u′ ⇔ 0 = u < u′

u ↓u′ ⇔ u > u′ > 0 u⇓u′ ⇔ u > u′ = 0
u∼u′ ⇔ u = u′ > 0 u≈u′ ⇔ u = u′ = 0

Lemma 1. For any (u, u′) ∈ R2
≥0, there exists a unique δ ∈ Δ such that

(u, u′) ∈ δ.

Given an arithmetic relation p ⊆ Rn
≥0, we next define an abstract relation pα ⊆

Δn, such that for all difference relations (δ1, . . . , δn) ∈ Δn:

(δ1, . . . , δn) ∈ pα ⇔ ∃(u1, . . . , un) ∈ p ∃(u′1, . . . , u′n) ∈ p.
∧n

i=1(ui, u
′
i) ∈ δi

In particular, we define abstract multiplication and addition functions ·α,+α ∈
Δ3 from binary multiplication and addition functions, seen as ternary relations.
The tables of these two relations are spelled out in Fig. 7.

Abstract Constraints. Abstract constraints are finite domain table constraints,
whose variables have values in Δ, subject to constraints based on the abstract
relations +α and ·α. We consider the following language of abstract constraints
where x, y, z ∈ V and Δ′ ⊆ Δ:

ψ ::= +α(x, y, z) | ·α(x, y, z) | x ∈ Δ′ | ψ ∧ ψ′

We first show who to compile objectives to abstract constraints:

�inc(r)� = xr ∈ {↑,⇑} �on(r)� = xonr ∈ {∼}�dec(r)� = xr ∈ {↓,⇓} �O ∧O′� = �O� ∧ �O′�

364 M. John, M. Nebut, and J. Niehren

The condition that initially all reactions are on is expressed by:∧
r∈R

xonr ∈ Δ \ {≈,⇑}

We next use abstract interpretation in order to map arithmetic constraints to
abstract constraints:

�x+ y = z� = +α(x, y, z) �x · y = z� = ·α(x, y, z)�x = c� = x ∈ {∼},with c > 0 �x ∈ {0, 1}� = x ∈ Δ \ {↑, ↓}�x = c� = x ∈ {≈},with c = 0 �φ ∧ φ′� = �φ� ∧ �φ′��∃x.φ� = ∃x.�φ�
Consider the constraint x = c which means that x is a constant that cannot be
changed. Therefore, it is interpreted as x ∈ {∼}, if c > 0 or x ∈ {≈}, else. Or
consider the constraint x+y = z∧y = 0. This is expressed by the corresponding
abstract constraint +α(x, y, z) ∧ y ∈ {≈}.

A pair (ν, ν′) of two variable assignments into R≥0 induces a variable assign-
ment μ into Δ, such that μ(x) is the difference relation between ν(x) and ν′(x)
which is unique by Lemma 1. That is for all δ ∈ Δ and x ∈ V :

μ(x) = δ ⇔ (ν(x), ν′(x)) ∈ δ

We say that a pair (ν, ν′) satisfies ψ if and only if μ is a solution of ψ.
We are now able to compile knockout constraint satisfaction problems into

abstract domains. Reconsider the example in Figure 4 with the objective to
increase the rate of reaction r4. Our objective is compiled by xr4 ∈ {↑,⇑} and the

condition that initially all reactions are on is expressed by
∧5

i=1 xoni
∈ Δ\{≈,⇑}.

Furthermore, the constraint
∧5

i=1 xoni
∈ {0, 1} is mapped to

∧5
i=1 xoni

∈ Δ \
{↑, ↓}, such that it holds

∧5
i=1 xoni ∈ {∼,⇓}. To complete the translation, it

only remains to replace arithmetic relations by their abstract interpretation.
Solving the resulting constraint, we obtain that xr1 ∈ {∼,⇓}, such that for
any solution μ also satisfying our objective it holds that μ(xr1) = ∼. Thus,
there exist only two solutions, either a knockout of r3 alone (μ(xon3

) = ⇓) or of
both reactions r3 and r5. As for the real domain constraints, a knockout of only
reaction r5 does not give any solution, since we analogously obtain contradiction
xr1 = ∼ = xr2 + xr3 = ⇓.

Correctness. We now show that the abstract interpretation is correct in that
every solution of the real domain problem is reflected by the solutions of the
abstract domain problem.

Proposition 1 (Correctness of abstract interpretation). Let φ be an arith-
metic constraint and ν, ν′ variable assignments into R≥0. It holds that if ν, ν′

satisfy φ then (ν, ν′) satisfies �φ�.
Proof. By induction on the definition of arithmetic constraints.

Knockout Prediction for Reaction Networks with Partial Kinetic Information 365

φ = x+ y = z Let ν and ν′ be both solutions of x + y = z. Then we have
ν(x) + ν(y) = ν(z) and ν′(x) + ν′(y) = ν′(z). It follows from the definitions
of μ and +α that (μ(x), μ(y), μ(z)) ∈ +α, i.e., μ is a solution of the abstract
constraint +α(x, y, z), i.e. of �φ�

φ = x · y = z analogous to +.
φ = (x = c) If c > 0 then ν(x) = c = ν′(x) and thus μ(x) = ∼, i.e., μ satisfies�φ� = x. The case of φ being x = 0 is analogous.
φ = x ∈ {0, 1} It holds that ν(x) and ν′(x) belong to {0, 1}. There are 4 possible

cases, showing that the difference relation μ(x) between ν(x) and ν′(x) must
be either of {⇑,⇓,∼,≈} and thus μ satisfies �φ� = x ∈ {⇑,⇓,∼,≈}.

φ = ∃x.φ′ We obtain that �φ� = ∃x.�φ′�. Since ν, ν′ satisfy φ, there exist x and
u, u′ ∈ R≥0, such that ν ∪ (x, u), ν′ ∪ (x, u′) satisfy φ′. Thus, by induction
hypothesis, it holds that (ν ∪ (x, u), ν′ ∪ (x, u′)) satisfy �φ′� and thus that
(ν, ν′) satisfies �φ�.

φ = φ1 ∧ φ2 Since ν, ν′ satisfy both φ1 and φ2, the induction hypothesis provides
that (ν, ν′) satisfies �φ1� and �φ2�. Thus, (ν, ν′) also satisfies �φ1� ∧ �φ2�,
which equals �φ�.

Proposition 1 states that every solution of a model in the real domain is reflected
by its abstract interpretation. However, the converse does not hold. Consider,
e.g., the constraint φ = φ1∧φ2, with φ1 = (x1 = x2) and φ2 = (x1 = x2+x3). For
all ν that satisfy φ∧φ′, we obtain that ν(x3) = 0. However, with our abstraction
interpretation, μ satisfies �φ�∧ �φ′�, even with μ(x1) = μ(x2) = μ(x3) = ↑. This
is a correct approximation, since there exist pairs (ν1, ν

′
1), (ν2, ν

′
2), such that

ν1, ν
′
1 satisfy φ1 and ν2, ν

′
2 satisfy φ2, and that, although differing, correspond

both to μ. For example:

ν1 = {(x1, 1), (x2, 1)} ν2 = {(x1, 2), (x2, 1), (x3, 1)}
ν′1 = {(x1, 2), (x2, 2)} ν′2 = {(x1, 4), (x2, 2), (x3, 2)}

ν1(xi) ↑ ν′1(xi), i ∈ {1, 2} ν2(xi) ↑ ν′2(xi), i ∈ {1, 2, 3}
Such a constraint results, e.g., from applying rule (substcon) to species A and
B, considering the following cyclic reaction network:

(r1) A
ma1−−−→ B (r2) B

ma1−−−→ A (r3) B
ma1−−−→

To this end, our approach, can be improved in different ways. On one hand, addi-
tional abstract relations could be defined, e.g. for commonly occurring patterns
in reaction sets, like cycles of certain length. On the other hand, different meth-
ods could be applied to simplify equations. For example, one could use Gaussian
elimination to symbolically solve the system of linear equations given by φ1, φ2
and account for the fact that x3 = 0 by adding the constraint x3 ∈ {≈}. We
leave such improvements as subject to future work.

5 Abstract Kinetics Functions

In the following, we extend our approach to more general kinetics. That is,
we introduce properties of kinetics functions and show how kinetics functions
fulfilling these properties are treated in our abstract interpretation.

366 M. John, M. Nebut, and J. Niehren

The three properties of kinetics functions we consider are continuity, strict
monotonicity, and conjunctiveness. Rates following strictly monotonic kinetics
increase in the concentration of any reactant or enzyme. More formally, we call
a kinetics function κ : Rn

≥0 → R≥0 strictly monotonic if and only if for all
x1, . . . , xn, x ∈ R≥0 and all i ∈ {1, . . . , n} it holds:

xi < x ⇒ κ(x1, . . . , xn) < κ(x1, . . . , xi−1, x, xi+1, . . . , xn)

Reactions that come with conjunctive kinetics can only perform if all its reactants
and enzymes are present. More precisely, a kinetics function κ : Rn

≥0 → R≥0 is
called conjunctive if and only of for all i ∈ {1, . . . , n} it holds:

n∧
i=1

xi �= 0 ⇔ κ(x1, . . . , xn) �= 0

In fact, the most widely used kinetics, mass action and Michaelis-Menten, are
continuous, strictly monotonic, and conjunctive.

Lemma 2. Any mass action function mac (with c > 0) is strictly monotonic,
continuous, and conjunctive.

Proof. Clear, since, by definition, we obtain mac(x1, . . . , xn) = c ∗
∏n

i=1 xi for a
reactions with order n. ��
Lemma 3. The Michaelis-Menten function mmc,c′ (with c, c′ > 0) is strictly
monotonic, continuous, and conjunctive.

Proof. By definition, we obtain mmc,c′(x1, x2) = c ∗ x1 ∗ x2/(c′ + x1). Strictly
monotonic in x2, continuous, and conjunctive clear. Strictly monotonic in x1
becomes obvious by:

c ∗ x1 ∗ x2
c′ + x1

=
c ∗ x1 ∗ x2
x1 ∗ (c′

x1
+ 1)

=
c ∗ x2
c′
x1

+ 1

��
We obtain that in our abstract interpretation any two kinetics functions of the
same arity provide the same results.

Proposition 2. Let κ1, κ2 ⊆ Rn
≥0 → R≥0 be strictly monotonic, continuous,

and conjunctive kinetics functions. It holds that κα1 = κα2 .

The proof is elaborated in the Appendix of the extended version of this paper.
Since also mass action defines a strictly monotonic, continuous, and conjunc-

tive kinetics function, we can represent any kinetics function by mass action in
our abstract interpretation. In this way, we obtain complete independence from
any kinetics information, except the three rather general properties listed above.

Corollary 1. Every strictly monotonic, continuous, and conjunctive, n-ary ki-
netics function can be abstracted as abstract mass action kinetics maαc of reac-
tions with order n, with any c.

Proof. By Lemma 2 and Proposition 2. ��

Knockout Prediction for Reaction Networks with Partial Kinetic Information 367

6 Constraint Solving

We apply the usual strategy of constraint programming to first propagate ex-
haustively and then to distribute. We use the common constraint propagation
rules for table constraints. Let p be either of the relations +α and ·α and assume
that we have a constraint p(x1, x2, x3). For all variables xi we maintain a finite
domain Δi ⊆ Δ of possible values. We can then reduce the domain of variables
xj as follows:

j ∈ {1, 2, 3}
xj ∈ {δj | (δ1, δ2, δ3) ∈ p, ∀i �= j. δi ∈ Δi}

The number of solutions would become huge if one tries to enumerate the values
of all variables of the constraints �φR�∧�O�. The usual method to deal with this
problem is to impose a quality measure on solutions and to search only for high
quality solutions. First of all, the fewer reactions are knocked out the better,
since knockouts in the wet lab impose high costs. Second, the fewer impact the
modifications have on the input-output environment of the network, the better.
Which reactions are to be considered as inputs and outputs is to be specified
(and is usually evident in the applications). The speed of such reactions should
change only if required by the objectives, but as few as possible otherwise. This
objective can be imposed by giving smaller weights to solutions that assign
abstract values ∼ or ≈ to variables xr of reactions reactions r.

The performance of a constraint solver largely benefits from such optimality
considerations by the usual means of branch and bound. That is, one maintains
a lower bound for the quality of the current pre-solution and only searches for
solutions that are better or equally well as any solution found previously.

Further reduction of the solution set can be achieved by adding existential
quantifiers to the model. Indeed, we are only interested in optimal knockout
strategies, that is in the values of the variables xonr

of all reactions and the
values of variables xr of input and output reactions. All other variables define
internal fluxes, so that they can be considered as existentially quantified. That
is, for every choice of values for these variables we will only verify whether there
exists one possible choice for the values of the other variables. From this follows
that the performance of our constraint solver largely depends on the number of
variables that are considered as part of the optimality criterion.

7 Leucine Overproduction: A Case Study

In this section, we apply our approach to predict knockout strategies for the
overproduction of Leucine in B. subtilis . Our model forms the current status
of our work in progress to extend the efforts of modeling the metabolism of B.
subtilis as presented in [19].

The reaction network is given in Figure 8. Molecules types are notated by
ovals and reactions by boxes, respectively. A reaction’s products are denoted
by outgoing arrows, reactants by continuous, and enzymes by dashed lines. Red

368 M. John, M. Nebut, and J. Niehren

Fig. 8. A model of Leucine production in B. subtilis in graphical form. This model
forms the current status of our work in progress to extend the efforts of modeling
the metabolism of B. subtilis as presented in [19]. - Ovals graphically denote molecule
types, rectangles reactions, arrows products and continuous and dashed lines reactants
and enzymes, respectively. Red boxes mark reactions that may be knocked out. For im-
proved readability, reactions and species are grouped where possible, which is denoted
by overlapping boxes and ovals. For example the red overlapping boxes annotated by
(dc;1−4) on the left hand side denote reactions (dc;1)Aba :→ Dehc, (dc;2)Abb :→ Dehc,
(dc;3)Abc : Dehc, and (dc;4)Abd :→ Dehc. The objective is to increase the rate of reac-
tion (le2). Arrows in boxes of different colors represent different knockout strategies.

boxes mark reactions that may be knocked out. For improved readability, reac-
tions and species are grouped where possible, which is denoted by overlapping
boxes and ovals. For example the red overlapping boxes annotated by (dc;1−4)
on the left hand side denote reactions (dc;1)Aba :→ Dehc, (dc;2)Abb :→ Dehc,
(dc;3)Abc : Dehc, and (dc;4)Abd :→ Dehc. Our objective is to increase the rate
of the Leucine secreting reaction (le2). The reaction network in textual form
and a legend for abbreviated species names is provided in the Appendix of the
extended version of this paper.

In a first experiment, the goal was to find knockout strategies that are opti-
mized w.r.t. a minimal number of knockouts. Based on our implementation, we
could solve this task in about 5s on a Dell Latitude E6320 machine (Intel Core
i7-2640M CPU, 2.8 GHz, 8 GB of memory).

Knockout Prediction for Reaction Networks with Partial Kinetic Information 369

Several single knockout solutions were proposed. Explanations for three of
them are graphically annotated in Figure 8 by orange, brown, and green boxed
arrows, respectively. The first one is to knock out one of the four reactions
(dc;1−4) (orange). This leads to the removal of species Dehc and therefore to a
stop of reaction (kc;2), i.e. the degradation of species Ketc. In this way the rate
of reaction (le1) increases and so do the concentration of species Leu and the
rate of reaction (le2).

Knocking out reaction (ra;1) (brown) leads to a total lack of Rega. Since this
is involved in the degradation of Aib and Aih (reactions (ib;4) and (ra;1)), the
concentrations of Aib and Aih increase. Consequently, reactions (sa;1) and (sa;2)
are accelerated, such that more Syna is produced. This leads to an increase in the
speed of reaction (kb;1), by this raising the concentrations of Ketb, Ketc, and Leu.
This knockout strategy confirms what is presented in literature (cf. [4], knockout
of gene codY).

The deletion of reaction (da;1) (green) also leads to an acceleration of reac-
tion (kb;1). When disabling reaction (da;1), Deha is entirely removed from the
system, such that the transformation of Thr to Akb (reaction (ak2)) stops. Thus,
the concentration of Akb is decreased, such that reaction (ka;1) is slowed down.
Therefore, the concentration of Pyr is increased, augmenting the rate of reaction
(kb;1).

We performed a second experiment, where we were interested in optimizing
additionally subject to the number of side effects w.r.t. to species Thr,Akb,Pyr,Iso,
and Val. Therefore, we set reactions (th2), (ak3), (py2), (is2), and (va2) to be
output reactions. For example the green strategy is likely to have a side effect on
species Akb, because it decreases the rate of reaction (ak2). Since in steady state,
the sum of the rates of reactions (ak1) and (ak2) has to equal the sum of the rates
of reactions (ak3) and (ka;1), this may lead to a decrease of the speed of reaction
(ak3), which in return can only be achieved by lowering the concentration of
Akb. Alternatively, the rate of reaction (ka;1) could be decreased by reducing the
concentrations of Pyr or Syna. However, this may require additional knockouts,
e.g. in case of Syna, and again lead to different side effects.

The computation of the experiment took about 163s on the same machine.
We obtained that the orange strategy and the combination of the brown and the
green strategy are valuable candidates.

We further tested the obtained strategies on false solutions by mapping them
to finite integer domain problems. This was done based on the knockout seman-
tics in Figure 6 and by encoding the results into additional constraints. That is,
given the knockout constraint φ of our reaction network with variables x1, . . . , xn
and solution μ, we formulated the finite integer domain problem φ∧φ′∧

∧n
i=1 φxi

over variables x1, x
′
1, . . . , xn, x

′
n, where φ

′ is the constraint φ but with variables
x′1 . . . , x

′
n and φxi is the encoding of the abstract value μ(xi) into a constraint

over the pair (xi, x
′
i) according to our abstract interpretation of real value pairs.

As a result, we obtained, with variable domains {1, . . . , 1000}, solutions for all
proposed strategies, providing that none of them denotes a false abstract solu-
tion.

370 M. John, M. Nebut, and J. Niehren

Although this supports the validness of our proposition, in practice the test on
false solutions can in general only be considered a side note. We expect the rel-
evance of proposed modification strategies to be more significantly impacted by
the validity of models which needs to be continuously improved and should even-
tually lead to the integration of further available biological information, such as
gene expression or flux data [34] (see also Section 9). Currently, the combination
of the green and the brown strategy is tested in wet-lab experiments.

8 Related Work

Most existing approaches to solve reaction knockout problems formulate two-
level optimization problems [5,27,28,26,36,23]. Thereby, the first level of opti-
mization bases on the idea of flux balance analysis [39,29,3,9]. It captures only
the equations stating that for any species the sum of the rates of the producing
and the consuming reactions equal (Figure 2, rule (spec)). The constraints on
reaction rates (variables rateS,r) as introduced by rule (ratest) are omitted.
Since the resulting sets of equations are hopelessly underconstraint, determining
the values of variables rateS,r is considered to be an optimization problem with
different kinds of optimization goals, e.g. biomass production (optimal growth)
[38,5] or ATP production (optimal energy) [30].

The intuition behind this first level of optimization is that, considering the
background of evolution, organisms are assumed to be trimmed in a way, such
that they always regulate their metabolism for optimal chances of survival. The
second level of optimization is then concerned with finding the gene knockout
strategy that yields the highest rate for the given target reaction, as determined
by the first optimization level. Such two-level optimization problems are then
solved by using e.g. integer linear programming approaches [5,23] or evolutionary
algorithms [26].

Predicting knockout strategies by two-level optimization is appealing, since it
projets the problem to a well-founded mathematical domain. However, we see
several drawbacks of this approach. On one hand, by dropping the constraints
on reaction rates the relations between concentrations and reaction rates are
lost. For example, the increase in the rate of a reaction is usually caused by the
increase in the concentration of some reactant. If this reactant takes also part
in other reactions then it is likely to cause changes in their rates, too. When
not considering rate constraints such side effects will not show. This is critical,
since in particular negative feed-back loops that are a common theme in reaction
networks cannot be taken into account.

On the other hand, whether the assumptions used to define optimization goals
are appropriate is controversial [35,31]. A major problem commonly listed is that
artificially created organisms did in fact not face evolutionary pressure, such
that they may control their metabolism in unexpected ways. To this end, on one
hand, a reasoning is presented in [31] that is based on the maximal and minimal
bounds of reaction rates. These are then obtained by a separate optimization
procedure for each reaction. On the other hand, in [35], it is proposed to use the

Knockout Prediction for Reaction Networks with Partial Kinetic Information 371

assumption of minimization of metabolic adjustment. This approach is similar to
ours in that it compares reaction rates values before and after modification. The
reaction rates before modifications are obtained by applying the optimal growth
assumption. The rate values resulting from modification are then optimized to
diverge as few as possible from their original value.

Finally, by using optimization approaches, it is not possible to apply a local
reasoning that considers parts of metabolic networks as in Section 7, where
only the production branched-chain amino acids (Leucine, Valine, Isoleucine)
is modeled. The reason is that optimization subjects apply to specific parts of
metabolisms that thus always need to be considered, such as the Glycolysis
pathway or the TCA cycle. This requires a reasoning on rather large models.
Different models that aim to capture the entire metabolism of micro-organisms
have been proposed so far [20,25,16]. However, with the size of models also their
uncertainty level increases which in general crucially hampers the application
of formal reasoning. Additionally, this approach may favour predictions which
apply to different parts of a metabolism and impact the reaction network in a
more global manner with unwanted side effects [15]. Furthermore, a more local
reasoning is favorable because resulting predictions are easier to explain (cf.
explanations given in Figure 8 by arrows in colored boxed that represent traces
of in-/decreases). Such kind of explanations are essential in order to communicate
prediction results to experts from the domain of biology and to convince them
of their validity.

With other methods in the field of analyzing chemical reaction networks based
on abstract interpretation [10,12,6], our approach has in common the abstraction
of value domains. This can be seen by lifting our abstraction to sets of solutions:
reconsider the knockout constraint semantics for reaction networks as provided
in Figure 6. Let ℘(A) be the power set of set A and let A → B be the set of all
functions from set A to set B. Given a constraint with variable set V , the set of
possible solutions of the corresponding knockout problem lies in ℘((V → R≥0)

2),
where ℘ denotes the power set. Based on this idea and the abstaction of real
value pairs to abstract values as given in Section 4, we can define the abstraction
function α : ℘((V → R≥0)

2) → ℘(V → Δ) and the concretization function
γ : ℘(V → Δ) → ℘((V → R≥0)

2). From α, γ, and the partial order given by set
inclusion ⊆, we can then build the usual Galois connection [7].

However, the major difference to other approaches denotes their focus on dy-
namics, i.e. the consideration of changes in molecule amounts over time [10,12,6].
The idea is that vectors of species concentrations provide states and occurences
of reactions represent state transitions. In [12,10], e.g., this state space is un-
derstood to provide a small step semantics which is then usually abstracted by
a collecting semantics. By contrast, we only consider a single state change (be-
tween two steady states) that is directly encoded into our abstract domain and
waive the idea of abstracting small step semantics.

372 M. John, M. Nebut, and J. Niehren

9 Conclusion and Future Work

We have introduced an approach for predicting knockout strategies in reaction
networks with partial kinetic information, based on abstract interpretation and
constraint solving. We showed that our approach is independent of any par-
ticular choice of kinetics functions, as long as these are continuous, strictly
monotonic and conjunctive. Our predictions remain candidates due to the over-
approximating nature of our abstraction.

A major subject for future work is to find ways to reduce the number of
false solutions. On one hand, we plan to integrate methods to simplify systems
of equation, linear and non-linear, as they result from our knockout semantics.
On the other hand, we would like to come up with less aggressive abstract
interpretations, so that one can predict weights of knockout effects. To this
end, sources for more detailed kinetic information shall be developed, e.g. gene
expression or flux data [34].

As a further subject, we also plan to integrate new optimization criteria for
solutions. For example, one could consider, instead of only one, sets of solutions
of the constraint satisfaction problem that correspond to the same knockout
strategy. As each solution possibly represents a pair of steady states that are
reached before and after a knockout is applied, it would make sense to favor, e.g.,
those knockout strategies that provide an optimal ratio between the numbers of
solutions that fulfill an objective and those that do not.

We hope that the provided methods will help us to obtain better knockout
results for wet-lab engineering. Concrete case studies are on the way. We also
hope that better prediction methods will increase the interest in improving the
quality of existing reactions networks in synthetic biology.

Acknowledgments. We would like to thank Jérôme Feret and the anony-
mous reviewers for their valuable comments. This work was partly fundeded by
the projects Iceberg ANR-IABI-3096 and BQR University of Lille 1 ”Biologie
Synthétique pour la Synthèse Dirigée de Peptides Microbiens Bioactifs”.

References

1. Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new
engineering rules for an emerging discipline.. Molecular Systems Biology 2(1),
msb4100073–E1–msb4100073–E14 (2006)

2. Benner, S.A., Michael Sismour, A.: Synthetic biology. Nature Reviews Genet-
ics 6(7), 533–543 (2005)

3. Bonarius, H.P.J., Schmid, G., Tramper, J.: Flux analysis of underdetermined
metabolic networks: the quest for the missing constraints. Trends in Biotechnol-
ogy 15(8), 308–314 (1997)

4. Brinsmade, S.R., Kleijn, R.J., Sauer, U., Sonenshein, A.L.: Regulation of CodY
Activity through Modulation of Intracellular Branched-Chain Amino Acid Pools.
J. Bacteriol. 192(24), 6357–6368 (2010)

Knockout Prediction for Reaction Networks with Partial Kinetic Information 373

5. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain optimiza-
tion. Biotechnology and Bioengineering 84(6), 647–657 (2003)

6. Camporesi, F., Feret, J.: Formal reduction for rule-based models. In: Mislove, M.,
Ouaknine, J. (eds.) The 27th Conference on the Mathematical Foundations of
Programming Semantics - MFPS 2011, Pittsburgh, États-Unis. Electronic Notes
in Theoretical Computer Science, vol. 276, pp. 29–59. Elsevier (September 2011)

7. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam (1999)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

9. Covert, M.W., Schilling, C.H., Palsson, B.: Regulation of gene expression in flux
balance models of metabolism. Journal of Theoretical Biology 213(1), 73–88 (2001)

10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: Exact and automated model reduction. In:
LICS, pp. 362–381. IEEE Computer Society (2010)

11. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403(6767), 335–338 (2000)

12. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology.
Theor. Comput. Sci. 403(1), 52–70 (2008)

13. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. In: Theoretical Computer Science (2012)

14. Ferrell, J.E.: Feedback regulation of opposing enzymes generates robust, all-or-none
bistable responses. Current biology: CB, 18(6) (March 2008)

15. Florez, L., Gunka, K., Polania, R., Tholen, S., Stulke, J.: SPABBATS: A pathway-
discovery method based on Boolean satisfiability that facilitates the characteriza-
tion of suppressor mutants. BMC Systems Biology 5(1), 5+ (2011)

16. Förster, J., Famili, I., Fu, P., Palsson, B.Ø., Nielsen, J.: Genome-scale reconstruc-
tion of the Saccharomyces cerevisiae metabolic network. Genome Research 13(2),
244–253 (2003)

17. Gillespie, C.S.: Moment-closure approximations for mass-action models. IET Sys-
tems Biology 3(1), 52–58 (2009)

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

19. Goelzer, A., Brikci, F.B., Verstraete, I.M., Noirot, P., Bessieres, P., Aymerich, S.,
Fromion, V.: Reconstruction and analysis of the genetic and metabolic regulatory
networks of the central metabolism of Bacillus subtilis. BMC Systems Biology,
2(1), 20+ (2008)

20. Henry, C.S., Zinner, J.F., Cohoon, M.P., Stevens, R.L.: iBsu1103: a new genome-
scale metabolic model of Bacillus subtilis based on SEED annotations. Genome
Biology 10(6), R69+ (2009)

21. Keasling, J.D.: Synthetic biology for synthetic chemistry. ACS Chemical Biol-
ogy 3(1), 64–76 (2008)

22. Kholodenko, B.N.: Cell-signalling dynamics in time and space. Nature Reviews
Molecular Cell Biology 7, 165–176 (2006)

23. Kim, J., Reed, J.: OptORF: Optimal metabolic and regulatory perturbations for
metabolic engineering of microbial strains. BMC Systems Biology 4(1), 53+ (2010)

24. Koide, T., Pang, W.L.L., Baliga, N.S.: The role of predictive modelling in ratio-
nally re-engineering biological systems. Nature Reviews. Microbiology 7(4), 297–
305 (2009)

374 M. John, M. Nebut, and J. Niehren

25. Oh, Y.-K., Palsson, B.O., Park, S.M., Schilling, C.H., Mahadevan, R.: Genome-
scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-
throughput Phenotyping and Gene Essentiality Data. Journal of Biological Chem-
istry 282(39), 28791–28799 (2007)

26. Patil, K.R.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a
platform for in silico metabolic engineering. BMC Bioinformatics 6(1), 308+ (2005)

27. Pharkya, P., Burgard, A.P., Maranas, C.D.: OptStrain: A computational frame-
work for redesign of microbial production systems. Genome Research 14(11), 2367–
2376 (2004)

28. Pharkya, P., Maranas, C.D.: An optimization framework for identifying reaction
activation/inhibition or elimination candidates for overproduction in microbial sys-
tems. Metabolic Engineering 8(1), 1–13 (2006)

29. Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nature Reviews. Microbiology 2(11),
886–897 (2004)

30. Ramakrishna, R., Edwards, J.S., McCulloch, A., Palsson, B.O.: Flux-balance anal-
ysis of mitochondrial energy metabolism: consequences of systemic stoichiometric
constraints. American Journal of Physiology. Regulatory, Integrative and Compar-
ative Physiology 280(3), R695–R704 (2001)

31. Ranganathan, S., Suthers, P.F., Maranas, C.D.: OptForce: An Optimization Pro-
cedure for Identifying All Genetic Manipulations Leading to Targeted Overproduc-
tions. PLoS Comput. Biol. 6(4), e1000744+ (April 2010)

32. Rodrigo, G., Carrera, J., Landrain, T.E., Jaramillo, A.: Perspectives on the au-
tomatic design of regulatory systems for synthetic biology. FEBS Letters 586(15),
2037–2042 (2012)

33. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
(2006)

34. Sauer, U.: Metabolic networks in motion: 13C-based flux analysis. Molecular Sys-
tems Biology, 2(1) (November 2006)

35. Segrè, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and
perturbed metabolic networks. Proceedings of the National Academy of Sci-
ences 99(23), 15112–15117 (2002)

36. Tepper, N., Shlomi, T.: Predicting metabolic engineering knockout strategies for
chemical production: accounting for competing pathways. Bioinformatics 26(4),
536–543 (2010)

37. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoret-
ical Biology 42(3), 563–585 (1973)

38. Varma, A., Palsson, B.O.: Metabolic Capabilities of Escherichia coli II. Optimal
Growth Patterns. Journal of Theoretical Biology 165(4), 503–522 (1993)

39. Varma, A., Palsson, B.O.: Metabolic Flux Balancing: Basic Concepts, Scientific
and Practical Use. Nature Biotechnology 12(10), 994–998 (1994)

40. Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.-H.H.: Modeling and simulation
of intracellular dynamics: choosing an appropriate framework. IEEE Transactions
on Nanobioscience 3(3), 200–207 (2004)

Reduced Product Combination

of Abstract Domains for Shapes�

Antoine Toubhans1, Bor-Yuh Evan Chang2, and Xavier Rival1

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

toubhans@di.ens.fr, bec@cs.colorado.edu, rival@di.ens.fr

Abstract. Real-world data structures are often enhanced with addi-
tional pointers capturing alternative paths through a basic inductive
skeleton (e.g., back pointers, head pointers). From the static analysis
point of view, we must obtain several interlocking shape invariants. At
the same time, it is well understood in abstract interpretation design
that supporting a separation of concerns is critically important to de-
signing powerful static analyses. Such a separation of concerns is often
obtained via a reduced product on a case-by-case basis. In this paper,
we lift this idea to abstract domains for shape analyses, introducing a
domain combination operator for memory abstractions. As an example,
we present simultaneous separating shape graphs, a product construction
that combines instances of separation logic-based shape domains. The
key enabler for this construction is a static analysis on inductive data
structure definitions to derive relations between the skeleton and the
alternative paths. From the engineering standpoint, this construction
allows each component to reason independently about different aspects
of the data structure invariant and then separately exchange informa-
tion via a reduction operator. From the usability standpoint, we enable
describing a data structure invariant in terms of several inductive defi-
nitions that hold simultaneously.

1 Introduction

Shape analyses aim at inferring precise and sound invariants about programs
manipulating complex data structures so as to prove safety and functional prop-
erties [20,10,2,5]. Such data structures typically mix several independent char-
acteristics, which makes abstraction hard. For instance, an extreme case would
be that of a binary tree with parent pointers, satisfying a balancing property
and sortedness of data fields, and the property that all nodes contain a pointer
to some shared record. Some shape analysis tools rely on a hard-coded ab-
straction [10,2], while others require some specialization of a generic abstract

� The research leading to these results has received funding from the European Re-
search Council under the FP7 grant agreement 278673, Project MemCAD and the
United States National Science Foundation under grant CCF-1055066.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 375–395, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

376 A. Toubhans, B.-Y.E. Chang, and X. Rival

typedef struct node {
struct node � l;
struct node � r;
struct node � p;
struct tree � h;

} � node;
typedef struct tree {

struct node � r;
int i;

} � tree;
typedef struct iterator {

struct tree � t;
struct node � c;

} � iter;

(a) Type defini-
tions

iter

1

tree

tree

0x0

. . .

tree

. . .

. . .

tree

. . .

.

tree

(b) A concrete instance

Fig. 1. A complex tree structure

domain, either via user-supplied instrumentation predicates or inductive defini-
tions [20,5]. In either case, when the data structures of interest feature many
independent characteristics as in the aforementioned example, the user-supplied
specifications or hard-coded abstractions should ideally reflect some level of sep-
aration of concerns, for example, between balancing properties, parent pointers,
and properties over keys.

Intuitively, a separation of concerns in a shape analysis means that it should
be possible for conceptually independent attributes of a data structure to be
understood and treated separately by both the tool and the tool user. As an
example, Fig. 1 shows an iterator over a binary tree with parent pointers. The
node data-type (Fig. 1(a)) features left (l), right (r), and parent (p) pointers,
as well as a special field h pointing to an enclosing record; the purpose of this
record is to keep track of the root node of the whole structure (field r) and
the number of active iterators (field i). Iterator iter encloses pointers to the
structure being iterated over (field t) and to the current position (field c). All
nodes satisfy two independent invariants: (1) p fields point to their parent and
(2) h fields point to the enclosing record tree.

Reduced product [8] of abstract domains [7] is a framework achieving a separa-
tion of concerns in a static analyzer by combining several abstractions �0, . . . ,�k

and expressing conjunctions of abstract properties of the form p0∧. . .∧pk, where
pi is an abstract element of abstract domain �i. This construction has been
abundantly used to combine numerical abstract domains into more expressive
ones without having to design a monolithic domain that would be overly complex
to set up and implement. For example, the Astrée analyzer [3] has been built
as such a combination of numeric and symbolic abstract domains [9]; reduced
product is implemented as a generic operation over abstract domains. While
shape analyses often decompose abstract properties using separating conjunc-
tion [10,2,5] introduced in [19], few analyses explicitly introduce non-separating

Reduced Product Combination of Abstract Domains for Shapes 377

conjunction, as this operation is viewed as more complex: for instance, updates
need be analyzed for all conjunction elements. Non-separating conjunctions tend
to be used in a local manner in order to capture co-existing views over small
blocks [18,14]. The work presented in [15] uses global conjunctions (in addition to
other refinements), yet does not turn it into a general abstract domain operation.

In this paper, we present the following contributions:

– We set up a framework for reduced product of memory abstractions in
Sect. 3.

– We instantiate our framework to separating shape graphs in Sect. 4.
– We extend this instantiation to cope with user-supplied inductive definitions

in Sect. 5; in that case, the reduction functions use information computed
by static analysis of the inductive definitions.

Moreover, the reduced product combinator was implemented in the MemCAD
analyzer (http://www.di.ens.fr/~rival/memcad.html), and experiments on
reduction strategies are reported in Sect. 6.

2 Analysis of an Iterator over a Tree with Parent Pointers

In this section, we overview the abstraction of the structure shown in Fig. 1
using conjunctions of simpler properties and how an iteration procedure, with
imperative update, can be analyzed. For simplicity in presentation, we assume
variables tree and iter have global scope. Variable tree points to the header
structure of type tree, while iter points to an iterator of type iterator. The
tree structure can be captured by an inductive definition that can be given as
a parameter to a parametric abstract domain such as that of Xisa [5,6]. For
instance, the inductive definition below captures both the tree structure, the
consistency of the parent pointers, and the fact that each node is separated, as
materialized by the separating conjunction operator applied between fields and
inductive calls:

α · ιp(β) ::= α = 0 ∧ emp∨
α �= 0 ∧

(
α · l �→ δl ∗ α · r �→ δr ∗ α · p �→ β ∗ α · h �→

∗ δl · ιp(α) ∗ δr · ιp(α)
)

The parameter β captures the address to which the p field of the α parameter
should point. However, field h is not constrained, and the property that all h
fields should point to enclosing tree record is not captured by this definition.
The inductive definition below captures the property that all h should point
to some given address represented by ε (whereas it ignores the parent pointer
constraint on p fields):

α · ιh(ε) ::= α = 0 ∧ emp∨
α �= 0 ∧

(
α · l �→ δl ∗ α · r �→ δr ∗ α · p �→ ∗ α · h �→ ε

∗ δl · ιh(ε) ∗ δr · ιh(ε)
)

We can express the fact that α represents the address of a pointer to a node of
the structure of Fig. 1 by α · ιp(β)∧α · ιh(ε) where β and ε represent the address

http://www.di.ens.fr/~rival/memcad.html

378 A. Toubhans, B.-Y.E. Chang, and X. Rival

void next(){
if (iter→ c has a child) {
iter→ c = left child

} else {
go up to the first node with
a not yet visited right child

iter→ c = that right child
}

}

void replace(node n) {
n→ l = iter→ c→ l;
n→ r = iter→ c→ r;
n→ p = iter→ c→ p;
n→ h = iter→ c→ h;
if (iter→ c has a parent){

update it to point n where iter→ c is
} else { iter→ t→ r = n; }

}
void main() {
node n = malloc(sizeof(struct node));
while (iter→ c 	= null&& . . .) { next(); }
if (iter→ t→ i == 1) { replace(n); }

}

Fig. 2. An iteration using an iterator followed by a node replacement

of the parent pointer and of the enclosing record, respectively. We shall express
such conjunctions as pairs of shape graphs, using a product [8] abstraction.

In the following, we consider the C program shown in Fig. 2. The code is
simplified by summarizing some parts with pseudo-code. Function main uses
the iterator to walk up to a randomly defined point of the structure, by making
a series of left, right, and up steps determined by the tree structure. When no
other iterator is active on iter → t, then the replacement can be performed
safely, by updating fields of the node being inserted in the structure, and also
fields in the parent/enclosing record depending on the position of the iterator.
Note that this code reads and updates both h and p fields.

An invariant at the exit of the loop in function main can be represented by a
conjunction of shape graphs as shown in the figure below:

iter

tree

t

c

r

i

ιp(null) ιp(β) ιp(β)

∧
iter

tree

t

c

r

i

ιh() ιh() ιh()

The left and right shape graphs can be expressed in the abstract domain of [5],
individually using only ιp and ιh as domain parameters, respectively. Edges
abstract pairwise disjoint memory regions. Points-to edges (marked as thin
edges) describe individual cells Thick edges inductively abstract (potentially
empty) summarized memory regions, which could be either full structures or
structure segments: for instance, the left shape graph expresses that field iter→
c points to a node of the tree pointed to by tree→ r.

While both components of that invariant can be expressed as a shape graph
in the abstract domain of [5], it is not possible to infer either without reasoning
about parent pointers, as function next may follow unbounded upward paths in
the tree. Similarly, the preservation of structural invariants in replace requires
reasoning about both p and h. However, ιp ignores information about h and
vice versa for ιh; thus, neither component can perform all those steps on its

Reduced Product Combination of Abstract Domains for Shapes 379

own. Therefore the product analysis must organize information exchange among
both components, which corresponds to a reduction operation. For instance, we
consider assignment iter→ c = iter→ c→ p in next. In the right component
(ιh), no information about p is known so the analysis of this operation would lose
all precision when it fails to materialize this field, whereas the left component (ιp)
will materialize p with no loss in precision. The left component will also come up
with the property that when iter→c has a parent, then either iter→c→p→l

or iter→ c → p → r is equal to iter→ c (i.e., the current node is a child of
its parent) that would allow a precise materialization in the right component.
Similar cases occur in the analysis of replace. To conclude, we need to set up
a language to express such simple constraints, to design operators to extract
them, and to constrain abstract values with them, and to identify when such
information exchange should be performed.

3 Interfaces for Memory Abstractions

In this section, we layout our framework for defining reduced products of mem-
ory abstractions. Our goal is to define a flexible abstract domain combination
operator, so we begin by defining a generic interface that we expect memory
abstractions to implement.

memories � 5 m ::= (e, h)
environments � 5 e : �⇀fin �

heaps � 5 h : �⇀fin �

variables x ∈ �

values v ∈ �

addresses a ∈ �

fields f, g, . . . ∈ �

Concrete memories. We use a direct model
of concrete memories m, which consist of
an environment and a heap (shown inset).
A concrete environment e is a finite map
from program variables to values. A con-
crete heap h is as a finite map from ad-
dresses to values. We assume that the set
of addresses is a subset of the set of values (i.e., � ⊆ �). Fields f, g, . . . are
treated as numerical offsets where we write a+f for the address that is an offset
f from base address a (i.e., (a+ f) ∈ �).

3.1 Memory Abstract Domains

memories m� ::= (e�, h�)
environments e� : �⇀fin �

�

heaps �s 5 h� ::= ⊥ | · · ·
concretization γs : �s → P(�× V)
valuations ν ∈ V
assignment assign : lvals× exprs × �s → �s

conditional guard : exprs× �s → �s

widening � : �s × �s → �s

An abstract memory state
m� describes a set of
concrete memory states
(shown inset). As such,
it should abstract both
heap addresses along with
stored values. To abstract
addresses and values, we
let �� = {α, β, . . .} be a set
of symbolic variables. An abstract environment e� ∈ �

� = � → �
� then maps

each variable into an abstraction of its address. To express the consistency

380 A. Toubhans, B.-Y.E. Chang, and X. Rival

h� ::= abstract heaps γs(h
�)

emp empty heap { ([], ν) }
| α · f �→ β single cell { ([ν(α) + f �→ ν(β)], ν) }

| h�
0 ∗ h�

1 disjoint regions { (h0 " h1, ν) | (h0, ν) ∈ γs(h
�
0) and (h1, ν) ∈ γs(h

�
1) }

| h� ∧ P with constraint { (h, ν) | (h, ν) ∈ γs(h
�) and ν |= P }

P ::= pure predicates ν |= P

α = 0 | α 	= 0 | P0 ∧ P1 | . . .

Fig. 3. A shape abstract domain based on exact separating shape graphs

h� ::= abstract heaps γs(h
�)

{α · f �⇒ β, . . . } set of may points-to { (h, ν) | a+ f �→ v ∈ h implies
α · f �⇒ β ∈ h� and
a ∈ ν(α) and v ∈ ν(β) }

Fig. 4. A shape abstract domain based on points-to graphs

between an abstract environment and a concrete environment, we need a val-
uation ν that relates an abstract address to a concrete one. An abstract heap
h� expresses pointer relationships between abstract addresses, so it abstracts a
set of concrete-heap–valuation pairs. A shape abstract domain is a set �s of
abstract heaps, together with a concretization function γs and sound abstract
operators. Among the abstract operators, we include operators to compute ab-
stract post-conditions, such as assign for assignments and guard for conditional
guards. We also include a widening operator � that joins abstract states while
enforcing termination of abstract iteration [7]. All of these operators are re-
quired to satisfy the usual soundness conditions—that is, they ensure that no
concrete behavior will be lost in the abstract interpretation. For example, the
widening operator � should soundly over-approximate unions of concrete states
(i.e., γs(h

�
0)∪γs(h

�
1) ⊆ γs(h

�
0�h

�
1) for all abstract heaps h

�
0 and h�1). We also let

⊥ denote the least element of the memory abstraction, which should have the
empty concretization (i.e., γs(⊥) = ∅).

Example 1 (Exact separating shape graphs). In Fig. 3, we describe exact sepa-
rating shape graphs, which is a memory abstraction with no summaries. We
consider separating shape graphs with inductive summaries in Sect. 5. An ab-
stract heap h� is a formula syntactically formed according to the given grammar.
We define the concretization of h� inductively on the formula structure in the
rightmost column. Intuitively, an abstract heap is simply a finite separating con-
junction [19] of must points-to predicates along with pure constraints over heap
values. The formula emp is the abstract heap corresponding to the concrete
empty heap []. Thus, notice γs(emp) is independent of the choice of valuation
ν. A must points-to α ·f �→ β corresponds to a singleton heap whose address and

Reduced Product Combination of Abstract Domains for Shapes 381

contents are given by the valuation ν. Here, we let valuations be functions from
symbolic variables to concrete values (i.e., ν : �� → �). As usual, the formula

h�0 ∗ h�1 joins disjoint abstract sub-heaps. In the concrete, we write h0 6 h1 to
join sub-heaps if their domains are disjoint (and undefined otherwise). Finally,
the formula h� ∧ P conjoins a pure constraint; we write ν |= P to say valuation
ν semantically entails pure predicate P .

Example 2 (May points-to graphs). As another example, we formalize a memory
abstraction based on points-to graphs as one obtains from Andersen’s analysis [1]
in our framework (Fig. 4). An abstract heap h� is a set of may points-to edges
of the form α · f �⇒ β. For this abstraction, an abstract location α corresponds
to a set of concrete addresses (thus, ν : �� → P(�)). A concrete heap h is in the
concretization of an abstract heap h� if and only if for all concrete cells a+f �→ v
in h, there exists a corresponding may points-to edge in the abstract heap h�

as given by the valuation ν. In the literature, there are usually some additional
constraints placed on abstract locations. These restrictions on abstract locations
can be reflected as constraints on valuations ν, such as non-empty corresponding
concrete addresses (i.e., |ν(α)| ≥ 1 for all α ∈ dom(ν)) and disjoint abstract
locations (i.e., ν(α) ∩ ν(β) = ∅ for all α, β ∈ dom(ν)). Sometimes, abstract
locations are also classified as non-summary versus summary. A non-summary
abstract location α means we restrict ν such that |ν(α)| = 1. In contrast to exact
separating shape graphs, may points-to graphs can never give precise information
about the presence of a cell. For example, observe that the empty concrete heap
[] is in the concretization of all may points-to graphs.

3.2 Products of Memory Abstractions

Shape domains implementing the interface described in Sect. 3.1 can be com-
bined into product abstractions in a straightforward manner. Let us assume two
shape abstract domains �0 and �1 are given. Then, �×

def
= �0 × �1 has a con-

cretization function γ× : �× → P(�� × V) defined by (h�, ν) ∈ γ×(h
�
0, h

�
1) ⇐⇒

(h�, ν) ∈ γ0(h
�
0) ∧ (h�, ν) ∈ γ1(h

�
1). This amounts to expressing non-separating

conjunctions of abstract predicates of �0 and �1.
A direct implementation of the abstract operators (assign, guard,�, . . .) can

be obtained by composing the underlying operators pair-wise. However, the
resulting analysis will not take advantage of the information available into one
abstract domain in order to refine the facts in the other domain.

To overcome that limitation, we now propose to extend the product abstract
domain with a reduction operation. A classical (and trivial) reduction operator

would map, for example, (⊥, h�1) into (⊥,⊥). In this paper, we describe much
more powerful reduction operators for memory abstractions that allow us to
transfer non-trivial information from one shape abstract domain to another (and
vice versa).

To extend domain �0×�1 into a reduced product domain ���
def
= �0 �� �1, we

need to augment it with a reduction operator π : ��� → ���, which satisfies the
following soundness condition: ∀h�0 ∈ �0, h

�
1 ∈ �1, γ×(h

�
0, h

�
1) ⊆ γ×(π(h

�
0, h

�
1)).

382 A. Toubhans, B.-Y.E. Chang, and X. Rival

constraints F ⊆ 	f

extract extract : �s → P(f)
constrain constrain : �s × P(f) → �s

To implement a reduction operator
π, we need be able to extract infor-
mation from one domain and forward
that information as a constraint into
the other. Thus, we need to set up a language of constraints 	f and to extend
the abstract domain interface with operators extract to extract constraints from
an abstract value and constrain to constrain an abstract value with a constraint.
The language 	f must be the same for every abstract shape domains. In prac-
tice, the user has to provide an implementation of those two operators in order
to be able to use our framework. Given such operators, a reduction from the
left domain into the right domain, for example, is defined as follows:

π0→1(h
�
0, h

�
1)

def
= (h�0, constrain1(h

�
1, extract0(h

�
0))) .

We subscript the operators to make explicit the domain to which they belong.
To specify the soundness requirements, we need a concretization relation for
constraints. We write h, ν |= F when the pair (h, ν) satisfies all the constraints
F (i.e., we interpret a set of constraints conjunctively). We can now specify
the soundness conditions for the domain operators extract and constrain: for all
h� ∈ �s and all F ∈ P(f),

∀(h, ν) ∈ γs(h
�), h, ν |= extract(h�) (1)

∀(h, ν) ∈ γs(h
�), h, ν |= F =⇒ (h, ν) ∈ γs(constrain(h

�,F)) (2)

Under these soundness conditions, the operator π0→1 defined above is sound
(and similarly for the analogous operator π0←1). In the above, we have focused
on the soundness requirements of these operators and set up a framework for
discussing them. While any sequence of extract and constrain satisfying these
properties would yield a sound result, we have not yet discussed how to do so
efficiently. And in practice, these operations must be carefully crafted to transfer
just the necessary information, and we must apply them parsimoniously or on-
demand to avoid making the analysis overly expensive and cluttering abstract
values with facts that are not actually useful for the analysis [9]. To do so
requires considering specific instantiations of this framework.

4 Instantiation to Separating Shape Graph Abstractions

In this section, we consider a first instantiation of our framework for defining
reduced products of memory abstract domains. We focus on a product of two
instances of �g. While this example may look overly simple at first, it illustrates
a large part of the issues brought up by the analysis discussed in Sect. 2. For
the moment, inductive predicates are fully unfolded and thus not present (issues
specific to inductive predicates are discussed in Sect. 5). Let us consider the
abstract conjunction shown in Fig. 5. While expression x→l→p→h→i cannot
be evaluated in either component of such an abstract state, all concrete memories
corresponding to their conjunction would allow that expression to evaluate, as

Reduced Product Combination of Abstract Domains for Shapes 383

&x α
l

p

h h i ∧

&x α δ
l

p

h h

i

Fig. 5. A simple reduction example

p ::= paths
| ∅ empty path
| f (∈ �) single field
| p · p concatenation

a ::= formulas (a ∈ �f)
| α · p � β path equality
| α · p � null path to null

(a) Syntax

h, ν |= α · ∅ � null ⇐⇒ ν(α) = 0
h, ν |= α · ∅ � β ⇐⇒ ν(α) = ν(β)
h, ν |= α · f � null ⇐⇒ h(ν(α) + f) = 0
h, ν |= α · f � β ⇐⇒ h(ν(α) + f) = ν(β)

h, ν |= α · p0 · p1 � β̄ (where β̄ ∈ {null} ∪ ��)

⇐⇒ ∃δ ∈ ��,

{
h, ν |= α · p0 � δ

∧ h, ν |= δ · p1 � β̄

(b) Semantics

Fig. 6. Language of path constraints for reducing between separating shape graphs

all such concrete memories would let α and δ represent the same address. In
this section, we show how reduction allows us to perform such reasoning and to
strengthen the abstract heaps of Fig. 5.

4.1 A Language of Constraints Based on Path Predicates

First of all, we notice that if (h, ν0) belongs to the concretization of the left
component, then h(h(ν0(α)+l)+p) = ν0(α), or equivalently, that dereferencing
l and then p from address α gets us back to α. In the right component, the
same sequence of dereferences yields δ: if (h, ν1) belongs to the concretization
of the right component, then h(h(ν1(α) + l) + p) = ν1(δ). This suggests that
enforcing a simple path reachability equation computed in the left component
into the right component will allow us to conclude the equality of α and δ, that
is, that they represent the same concrete values and can be merged.

Therefore, we include in the language of constraints to be used for reduction
a way to express path predicates of the form α · f0 · . . . · fn ≡ β (which we write
down as α · f0 · . . . · fn � β). A path p is defined by a possibly empty sequence
of fields, denoting field dereferences from a node, as shown in Fig. 6(a). A path
formula a expresses that a series of dereferences described by a path will lead
to read either the value denoted by some node β (α · p � β) or the null value
(α·p�null). Thus, we obtain the set 	f defined in Fig. 6(a). Their concretization
is defined in Fig. 6(b).

α β
l r r h

As an example, path formula α · l · r · r ·
h � β expresses that β can be reached from α
after dereferencing fields l, r, r, and h in that
order, as shown in the inset figure (not all fields are represented). Intuitively

384 A. Toubhans, B.-Y.E. Chang, and X. Rival

path formulas of the form α · p � β allow us to express reachability properties, as
commonly used in, for example, TVLA [20].

4.2 Reduction Operators for Shape Graphs

At this stage, we need to set up operators extract and constrain for the shape
graph abstract domain mentioned in Sect. 3.1 using the path language of Sect. 4.1.

Triggering of the reduction process. As discussed earlier, reduction should be per-
formed only when needed [9]. In the case of the product of shape abstract domains,
information may need to be sent from one domain to another when a memory cell
update or read cannot be analyzed due to a lack of pointer information:

– to read l-value α · f, we need to find an edge of the form α · f �→ β in at
least one of the components of the product; then this domain ensures the
existence of the cell (even if the others fail to materialize such an edge);

– to update l-value α·f, we need to find such a points-to edge in all components
of the product; indeed, if it was not possible to do so in �i, then, conservative
analysis of the update would require dropping all the information available
in �i since any cell may be modified from �i’s point of view; this would be
an unacceptable loss in precision.

Therefore, a on-demand reduction strategy is to trigger when either one of the
components fails to materialize an edge for an update or when all components
fail to materialize an edge for a read (in the same way as for unfolding in [6]).
While this is the basis of aminimal reduction strategy, more aggressive strategies
can be used such as:

– an on-read strategy which attempts to reduce path constraints about any
node involved in a read operation;

– a maximal strategy which attempts to reduce all available path constraints
about all nodes, at all times.

An empirical evaluation of these strategies will be presented in Sect. 6.

Computation of path information. Operator extract : �s −→ P(f) should ex-
tract sound sets of constraints, satisfying soundness property (1). In the case of
abstract domain �g, extract(h

�) could simply collect all predicates of the form
α · f � β where predicate α · f �→ β appears in h�:

extract(α0 · f0 �→ β0 ∗ . . . ∗ αq · fq �→ βq) = {αi · fi � βi | 0 ≤ i ≤ q}

Collecting all such constraints would be almost certainly too costly, as it leads
to exporting all information available in h�. Since our reduction reduction is
triggered by a materialization operation, we only care about finding some field
from some node α in either component of the product. Only constraints locally
around this node are relevant, which restricts what needs to be exported. Thus,
in practice, extract and constrain are computed locally. In the example of Fig. 5,
constraint α · l · p � α can be extracted from the left conjunct.

Reduced Product Combination of Abstract Domains for Shapes 385

h�
ι := h� (Fig. 3) points-to, emp

| h�
ι ∗ h�

ι separating conj.
| α · ι(β) inductive predicate
| α · ι(β) ∗= α′ · ι(β′) segment predicate

(a) Abstract heaps in �〈ι〉

• if h� ∈ �g, γ〈ι〉(h
�) = γg(h

�)

• if (h, ν) ∈ γ〈ι〉(h
�
u)

and h� � h�
u

then (h, ν) ∈ γ〈ι〉(h
�)

(b) Concretization γ〈ι〉

Fig. 7. A shape abstract domain based on separating shape graphs

Enforcing path information. If α · p � β and α · p � γ, then β and γ denote the
same concrete value, hence these two nodes can be merged. This rule (R�≡)
forms the basis of an operator constrain satisfying soundness property (2). In
the example of Fig. 5, this operator allows us to merge nodes α and δ in the
right component, thanks to constraint α · l · p � α inferred by extract in the left
component, as shown in the previous paragraph. This reduction allows us to
materialize x→ l→ p→ h→ i.

5 Instantiation to Separating Shape Graphs with
Inductive Summaries

In this section, we consider a more powerful memory abstract domain, with
inductive summaries for unbounded memory regions [5,6].

5.1 A Memory Abstraction with Inductive Summaries

As noticed in Sect. 2, unbounded heap regions can be summarized using induc-
tive predicates. Given an inductive definition ι, inductive predicate α · ι(β) [6],
expresses that α points to a heap region containing an inductive data structure
expressed by ι. Similarly, α · ι(β) ∗= α′ · ι(β′) [6] abstracts segments of such
data-structures, that is, heap regions containing a data structure with a hole.
Inductive and segment predicates can be unfolded using a syntactic unfolding
relation �, which basically unrolls inductive definitions. Therefore, assuming
ι is an inductive definition, the abstract values of domain �〈ι〉 are defined as
a superset of those of �g, shown in Fig. 7(a). Concretization γ〈ι〉 also extends
γg, and relies on the unfolding relation to unfold arbitrarily many times all in-
ductive predicates into an element with no inductive predicates, which can be
concretized using γg.

5.2 An Extended Language of Constraints

In the following, we consider the abstract state shown in Fig. 8, which can be
observed at the beginning of the replace function of Sect. 2. We let y (resp., x)
be a shortcut for iter→ c (resp., tree→ r). At this point, the analysis should
update field y→p→l, so this field should be materialized in all elements of the

386 A. Toubhans, B.-Y.E. Chang, and X. Rival

&x &y

η α

β

i

ιp(null) ιp(β)

ιp(α)

ιp(α)

l

r

p
h

∧

&x &y

ζ

δ

ξ

i

ιh(δ) ιh(δ)

ιh(δ)

ιh(δ)

l

r

p

h

(a) Initial abstract state

&x

&y

η β

α

γ

i

ιp(null) ιp(γ)

ιp(β)

ιp(α)

ιp(α)l

r

p
h

l

r

p
h

∧

&x

&y

π

ζ

δ

ξ

i

ιh(δ) ιh(δ)

ιh(δ)

ιh(δ)

ιh(δ)l

r

p

h

l

r

p

h

(b) Abstract state after backward unfolding

Fig. 8. Reduction example

product. Fig. 8(a) shows the abstract state before the analysis of this operation.
At this stage, we notice that field y→p is materialized as a points-to predicate in
both sides of the conjunction, but y→p→l is materialized in neither. To obtain
this materialization, the analysis first needs to unfold the segment backwards
(i.e., at its destination node’s site) from the node corresponding to the value
of y. The triggering of this unfolding in �〈ιp〉 relies on the typing of inductive
parameters proposed in [6] (left conjunct in Fig. 8). That unfolding actually
generates three cases: either the segment is empty, or node α is the left child
of its parent, or α is the right child of its parent. As the empty segment case
is trivial (it would entail that α and η are equal so that both x and y hold
the same value), and the two latter cases are similar, we focus on the second
one (that of a left parent). This unfolding, however, cannot be triggered in
�〈ιh〉, as this domain does not capture the back-pointer tree invariant; thus the
�〈ιh〉 components needs some guidance from �〈ιp〉 before it can proceed with the
unfolding. Intuitively, �〈ιp〉 carries the information that any node χ in the tree
that has a left child is such that χ · l · p ≡ χ. Applying this principle to node π
shows that the following steps should be carried out, in the right conjunct:

– the segment of the right conjunct that ends in ζ also needs to be unfolded
since ζ · p � ξ (as shown in the right conjunct in Fig. 8);

– after unfolding, π · l · p � ξ, thus node ξ is actually equal to node π.

This example shows that the language of constraints introduced in Sect. 4.1 needs
to be extended with universally quantified predicates over summarized regions.
As such predicates may be expressed over unbounded paths, we use general
regular expressions over the set of fields (Fig. 9(a)) instead of only sequences

Reduced Product Combination of Abstract Domains for Shapes 387

p ::= paths
| ∅ empty path
| f (∈ �) single field
| p · p concatenation
| p+ p disjunction
| p� sequences

a ::= . . .
| a ∨ a disjunction
| S∀[p, a[X]](α, S) quantification

(a) Extended syntax

h, ν |= α · p0 + p1 � β
⇐⇒ h, ν |= α · p0 � β ∨ h, ν |= α · p1 � β

h, ν |= α · p� � β
⇐⇒ ∃n ∈ �, h, ν |= α · pn � β

h, ν |= a0 ∨ a1

⇐⇒ h, ν |= a0 or h, ν |= a1

h, ν |= S∀[p, a[X]](α, S)

⇐⇒ ∀δ ∈ ��,

{
α · p � δ ⇒ a[δ]

∨ ∃β ∈ S, β · p � δ

(b) Extended semantics

Fig. 9. Extended language of path constraints

of offsets. Moreover, the quantification may also need be done on segments.
Therefore, we augment 	f with the S∀·, · predicates shown in Fig. 9(a):
intuitively, S∀[p, a[X]](α, S) means that a[χ] holds for any node χ that can be
reached from α following path expression p (i.e., α · p � δ holds) but cannot be
reached from any node β ∈ S following path expression p (i.e. β · p � δ does
not hold). The variable X is a bound variable whose scope is the disjunctive
path formula a. Thus, such predicates allow us to express not only properties
about inductively-summarized structures but also about segments of such struc-
tures [5,6]. The semantics of that construction is shown in Fig. 9(b), extending
the definition of Fig. 6(b).

α

β

δ

l

r
l

r l

r

h
h

h h

For instance, the path quantification for-
mula S∀[(l+r)�, X ·h� δ](α, {β}) holds true
for the element of �g below and expresses
that any node in the tree stored at address
α and that is not in the sub-tree of address
β for some β ∈ S has an h field pointing to
address δ, as shown in the inset figure.

5.3 Extraction of Path Predicates from Inductive Definitions

We now need to extend operators extract and constrain so as to allow communica-
tion from and to �〈ι〉. Compared to �g, the main issue is that path information
now has to be computed about inductive summaries; thus this computation
logically requires inductive reasoning.

For instance, the property that any node α of a tree with parent pointers
that has a left child is such that α · l · p ≡ α needs be computed by induction
over the ιp inductive predicate describing that tree. This inductive reasoning
can actually be done once and for all about inductive ιp so that it can then
be applied to any of its occurrences. Therefore, operator extract should rely on
the results of a pre-analysis of inductive definition ιp that is computed before the

388 A. Toubhans, B.-Y.E. Chang, and X. Rival

static analysis of the program (i.e., it may be performed only once per inductive
definition used in the analyzer). Moreover, we remark that such properties can
be derived by induction over the inductive definition, which suggests a fixed-
point computation, that is, an abstract interpretation based static analysis of
ιp—a parameter to the abstract domain used to static analyze the program.

In the following, we label inductive predicates with a bound on the induction
depth so as to express the soundness of the inductive definition analysis. For
instance, the inductive definition ιp becomes the following:

α · ι0p(β) � α = 0 ∧ emp
α · ιi+1

p (β) � α = 0 ∧ emp∨
α �= 0 ∧

(
α · l �→ δl ∗ α · r �→ δr ∗ α · p �→ β ∗ α · h �→

∗ δl · ιip(α) ∗ δr · ιip(α)
)

Then, the analysis should compute a sequence of sets of path predicates (Ai)i∈�
such that at any rank i, if (h, ν) ∈ γs(α · ιip(β)), then h, ν |= Ai.

Analysis algorithm. It proceeds by a classical abstract interpretation over the
inductive structure of ι, using an abstract domain of path predicates. More pre-
cisely, given Ai, the computation of Ai+1 involves the following steps:

– Base rules (with no inductive call) can be handled using the extract function
shown in Sect. 4.2. For instance, considering ι we get A0 = {α · ∅ � null}.

– Inductive rule α · ιi+1(β) � M ∗ π1 · ιi(ρ1) ∗ . . . ∗ πk · ιi(ρk) (where M
contains no inductive predicate) requires the following steps to be performed:
1. by instantiation of Ai and application of extract to M , the analysis generates

extract(M) ∪Ai[π1, ρ1/π, ρ] ∪ . . . ∪ Ai[πr, ρr/π, ρ];
2. then, the analysis introduces quantified path predicates using the following

principle: if α · f1 � β1, . . . , α · fp � βp and a[X/α] holds, then so does

S∀[(f1 + . . .+ fp)
�, a[X]](α, {β1, . . . , βp});

3. last, the analysis eliminates intermediate variables (π1, . . . , πp, β1, . . . , βp)
after applying transitivity principles to the set of path predicates:

α · p � β ∧ β · q � δ =⇒ α · p · q � δ
S∀[p, a](β, S) ∧ S∀[p, a](α, S

′) =⇒ S∀[p, a](β, (S \ {α}) ∪ S′) if α ∈ S.

The resulting set of path predicates Bi+1 collects sound path constraints over
induction depths 1, . . . , i+ 1.

– Over-approximation of the resulting path predicates and of those in the
previous iterate Ai, using an abstract join over sets of path predicates, defined
using a rewrite relation which maps pairs of path formulas into weaker path

formulas, that is, such that ∀j ∈ {0, 1}, a0, a1 ��→ a� ∧ h, ν |= aj =⇒ h, ν |= a�.
This property is guaranteed using rules such as:

α · p � β, α · q � β ��→ α · p+ q � β

S∀[p, a](α, S), α · ∅ � β ��→ S∀[p, a](α, S) if β ∈ S

S∀[p, a](α, S), S∀[p, a
′](α, S′)

��→ S∀[p, b](α, S ∪ S′) if a, a′
��→ b

Reduced Product Combination of Abstract Domains for Shapes 389

Then, Ai+1 is defined as {a | ∃(ai, ai+1) ∈ Ai × Bi+1, ai, ai+1
��→ a}.

Furthermore, at each step, regular expressions may be simplified. Termination

is ensured by the definition of a
��→ operator that avoids generating too large

formulas and hence is a widening. The inductive definitions analysis returns a
sound result, as all steps are sound, that is, they preserve the aforementioned
invariant property:

Theorem 1 (soundness). This analysis algorithm is sound:
– For all i ∈
 and for all (h, ν) ∈ γs(α · ιi(β)), h, ν |= Ai holds.
– Thus, after convergence to A∞, we have: ∀(h, ν) ∈ γs(α · ι(β)), h, ν |= A∞.

Path predicates derived from segments predicates. Segment predicates may be
considered inductive predicates with a slightly different set of base rules for the
end-point [6]. Therefore, the same inductive analysis applies to segments as well.

In particular, if we consider segment π·ιp(ρ) ∗= η·ιp(ε), the analysis computes
the iterates below:

iteration i iterate Ai

0 {π · ∅ � η, ρ · ∅ � ε}

1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π · (l + r)� � η , ε · p� � ρ
π · ∅ � η ∨ π · p � ρ , ε · ∅ � ρ ∨ ε · (l+ r) � η

S∀[(l+ r)�, X · l · p � X ∨X · l � 0 ∨X · l � η](π, {η, 0})
S∀[(l+ r)�, X · r · p � X ∨X · r � 0 ∨X · r � η](π, {η, 0})

S∀[p
�, X · p · (l + r) � X ∨X · p � ρ](ε, {ρ})
S∀[p

�, X · (l+ r) � η](ε, {ρ}) ...

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π · (l + r)� � η , ε · p� � ρ
π · ∅ � η ∨ π · p � ρ , ε · ∅ � ρ ∨ ε · (l+ r) � η

S∀[(l+ r)�, X · l · p � X ∨X · l � 0 ∨X · l � η](π, {η, 0})
S∀[(l+ r)�, X · r · p � X ∨X · r � 0 ∨X · r � η](π, {η, 0})

S∀[p
�, X · p · (l + r) � X ∨X · p � ρ](ε, {ρ})

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
3 A2 fixpoint reached

5.4 Reduction Operators in the Presence of Inductive Predicates

First, we note that the triggering and computation of reduction based on rule
(R�≡) given in Sect. 4.2 still apply, with one minor caveat: when α · p � β and
α · p � γ, then β and γ can be merged only if path p is rigid, that is, involves no
disjunction or .� unbounded sequence. A supplementary rule (RS∀) is needed
to treat universally quantified path predicates.

Triggering of the reduction process. The triggering condition for such a reduction
is actually similar to before: when a field fails to be materialized at node α in the
right conjunct, the reduced product searches for universal properties of the nodes
of the structure to which α belongs. Thus it searches for universally quantified
path properties from nodes corresponding to “ancestors” of α. In the example
of Fig. 8, we notice that we need information about node ξ, which is part of the

390 A. Toubhans, B.-Y.E. Chang, and X. Rival

structure pointed to by ε; as ε and η both correspond to the value stored in x,
thus denote equal values, information should be read in �〈ιp〉 from η.

Computation of universally quantified path information. Operator extract should
simply instantiate the results of the pre-analysis of inductive definitions shown
in Section 5.3. In the case of the example shown in Fig. 8, node η satisfies:

S∀[(l+ r)�, X · l · p � X ∨X · l � null](η, {null})

Enforcing universally quantified path information. Reduction rule (RS∀) boils
down to the following principle: if α · p � δ and S∀[p, a[X]](α, S), then either
a[δ] holds or there exists β ∈ S such that β · p � δ. Besides, when S = {null},
we directly derive a[δ]. In the right conjunct of the example of Fig. 8, as π is
reachable from ε following a path of the form (l+r)�, we derive π·l·p�π∨π·l�null
from the above S∀., . constraint. Clearly the left child of π is not null, so
π · l · p � π. However, π · l · p � ξ also holds. Thus, (R�≡) now applies and
ξ = π. This allows us to materialize field y → p → l in �〈ιh〉. as well as in
�〈ιh〉. The reduction allows the analysis to continue while retaining a high level
of precision (note that we needed to materialize that field in both conjuncts
to analyze the update precisely). Note that cases where node α would be the
left child in one conjunct and the right one in the other conjunct are ruled out.
Indeed, as soon as the parent nodes are identified as equal during the reduction
process, the constrain operator will deduce that its left and right children are
equal, which would violate the separation property. A reduction in the opposite
direction would need be performed for the analysis of an assignment to y→h→i.
More generally, sequences of accesses to p and h fields will generate cascades of
reductions. This example shows that the reduced product analysis decomposes
reasoning over p and h fields in both domains and organizes the exchange of
information to help materialize points-to predicates across the product.

6 Implementation

We have implemented the memory reduced product combinator into the Mem-
CAD analyzer (Memory Compositional Abstract Domain) as an ML functor tak-
ing two memory abstract domains as arguments and returning a new one and the
inductive definition pre-analysis described in Sect. 5.3. Reduction strategy can
be selected among those presented in Sect. 4.2 (on-read comes as default whereas
minimal and maximal can be activated as options). The analysis is fully auto-
matic and takes as input C code and inductive definitions such as those shown
in Sect. 2. It computes a finite disjunction of abstract states for each program
point. It was run on a set of over 30 micro-benchmarks, as well as medium-
sized ones such as the iterator described in Sect. 2. Fig 10 presents selected
analysis results (timings were measured on a 2.2 Ghz Intel Core i7 with 8 GB
of RAM) that highlight the impact of the reduced product and the reduction
strategies. In particular, multiple other list and trees algorithms gave similar

Reduced Product Combination of Abstract Domains for Shapes 391

Filename & Reduction Time Avg. Speed
Description LOCs mode (s) (a) (b) (c) (d) disjs down

structure: doubly linked list with shared record
insert list.c 35 no r.p. 0.018 - - - - 1.33 1

on read 0.042 2 40 1 1 2.07 2.33
maximal 0.056 26 417 8 4 1.96 3.11

structure: tree with parent pointers and pointers to static record
read tree.c 42 no r.p. 0.028 - - - - 1.43 1

(random traversal minimal 0.120 4 118 0 0 3.07 4.28
then read data field) on read 0.086 9 391 8 0 1.87 3.07

maximal 0.095 32 919 18 4 1.73 3.39
insert tree.c 47 no r.p. 0.031 - - - - 1.56 1

(random traversal minimal Fails
then insert element) on read 0.080 9 379 8 0 1.86 2.58

maximal 0.090 43 1089 18 4 1.73 2.90
rotate tree.c 47 no r.p. 0.031 - - - - 1.56 1

(random traversal on read 0.086 8 350 8 0 2.03 2.77
then rotate) maximal 0.098 44 1201 22 4 1.92 3.16

structure: tree with parent pointers and pointers to static record, and iterator
iter 00.c 171 no r.p. 0.278 - - - - 8.74 1

(random traversal) minimal Fails
on read 0.701 64 2578 30 28 10.22 2.52
on r & u 0.689 66 2635 28 30 9.68 2.47
maximal 1.807 854 19714 28 30 10.06 6.5

iter 01.c 181 no r.p. 0.353 - - - - 7.27 1
(random traversal) on read 0.907 70 2902 34 32 7.99 2.56

on r & u 0.871 80 3287 46 34 7.53 2.46
maximal 2.263 978 24865 41 34 7.81 6.41

Fig. 10. Implementation Results

results and are not presented here. For each analysis, the table shows the num-
ber of LOCs, the mode (analysis with no reduced product —no r.p.—, using a
monolithic domain, with a single inductive definition, or with a reduced product
and minimal, on-read or maximal reduction mode), analysis time in seconds,
number of calls to reduction operations in col. (a), number of path predicates
computed by reduction rules (R�≡) and (RS∀) in col. (b) (comprising all steps
to perform reduction operations), number of node merges performed as part of
reductions in col. (c), number of reduction proving a disjunct has an empty
concretization (hence, can be pruned) in col. (d), average number of disjuncts
per program point, and timing ratio compared with the analysis time with no
reduction product. Reduction may prove abstract elements have an empty con-
cretization, for example, when it infers that both α · f � β and α · ∅ � null hold,
or when it discovers equalities that would violate separation.

The comparison with monolithic analyses involving a single, more complex
inductive definition shows those are faster than analyses with a product domain,
which is not surprising, as the product analyses induces an overhead of duplicate
domain operations and reduction operations. However, as regards the analysis
with the “on-read” and “on r & u” strategies, the timing difference does not
seem so dramatic (between 2.33X and 3.07X) and interestingly tends to reduce

392 A. Toubhans, B.-Y.E. Chang, and X. Rival

on larger examples). Besides, applying the product analysis only to the part of
the heap where the composite structure lies, using a separating product domain
combinator would cut that cost down further (though, is not part of the scope
of this work).

The key part of our empirical evaluation is to assess strategies. While an overly
aggressive strategy is likely to slow down the analysis by performing useless
reductions, a too passive strategy may cause a loss in precision. This is why,
in some cases, the minimal reduction strategy does not allow the analysis to
succeed, as it tends to perform reduction too late, at a point where a stronger
constrain operator would be needed to fully exploit predicates brought up by
extract (this occurs for insert tree.c, rotate tree.c and both analyses with
the iterator structure). More eager strategies such as on-read and maximal
do not suffer from this issue. The on-read strategy analyzes all tests precisely.
Moreover, while the slow down of maximal over on-read is low for small programs,
it tends to increase more than linearly in the analysis time and reach 6.5X on
the larger examples (while the on-read strategy is around 2.5X slower), which
suggests it is not likely to scale. This suggests the on-read strategy is a good
balance.

Curiously, we also noticed that more aggressive strategies reduce the num-
ber of average disjuncts. Upon review, we discovered that this is due to some
disjuncts being pruned by reduction earlier in the analysis and often right after
unfolding points. Following this practical observation, we extended the on-read
strategy so as to also perform reduction right after unfolding. The results ob-
tained with this new strategy, called “on r & u” in the table, validate this
hypothesis, as it reduces numbers of disjuncts and analysis time compared to
the on-read strategy. It overall appears to be an efficient strategy.

7 Related Works

Reduced product construction has been widely studied as a mathematical lattice
operator [8,11] as well as a way to combine abstract domains so as to improve
the precision of static analyses [8,3,9,13,4]. However, it is notoriously hard to
design a general notion of reduced product: first, optimal reduction is either
not computable or too costly to compute in general (so that all reduced product
implementations should instead try to achieve a compromise between the cost
of reduction and precision); second, exchanging information between domains
requires them to support reduction primitives using a common language that
may be hard to choose depending on the application domain. We believe this is
the reason why no general form of such construction has been set up for memory
abstractions thus far.

The most closely related work to ours is that of [15]. In that work, the
authors consider a hybrid data-structure which contains a list structure laid over
a tree structure. To abstract such memory states, the authors use non-separating
conjunctions over zones. Our construction presents some similarities to theirs:
we also use non-separating conjunction. Their technique and ours are quite

Reduced Product Combination of Abstract Domains for Shapes 393

complementary. Whereas our product construction focuses on the situations
where precise path information must be transferred between components, theirs
looks at the case where the only needed information is that two structures share
the same nodes. In terms of an implementation strategy, their reduction relies on
an instrumentation of the program to analyze, using ghost statements, whereas
our implementation uses a semantic triggering of reduction, when one component
fails.

Some analyses inferring properties of memory states utilize non-separating
conjunctions in a local manner [18,14] in order to account for co-existing views
on contiguous blocks corresponding to values of union types, or in order to
handle casts of pointers to structures. Those analyses exploit conjunctions in a
very local way and are unable to propagate global shape properties across the
conjunctions.

Other authors have proposed to do a product of shape abstraction with a
numerical domain [6,12,17]. These works are very different in that they do not
combine two views of memory properties. Instead, they usually use numerical
abstract values to characterize the contents of memory cells the structure of
which is accounted for in the shape abstraction: thus, those are usually asym-
metric constructions, using a form of a co-fibered domain [21], that is, where the
shape abstraction “controls” the memory abstraction. Other works have exam-
ined decomposing analyses of programs with numerical and memory properties
into a sequence of analyses [16]. Compared to the above works, this approach
does not allow information flow between analyses into both directions.

Last, we remark that the language of constraints used for the reduction con-
veys reachability information, which are at the foundation of TVLA shape anal-
yses [20]. We found it interesting to note that such predicates are effective at
providing a low level view of memory properties, that is, a kind of assembly
language used between shape abstractions.

8 Conclusion

In this paper, we have proposed a reduced product combinator for memory ab-
stract domains, with a general interface, allowing a modular abstract domain
design. We have shown that this product can be used with existing shape ab-
stractions based on separation logic and inductive definitions. Moreover, we have
implemented the resulting framework inside the MemCAD analyzer and shown
the impact of reduction strategies on analysis results and efficiency.

A first direction for future work consists of integrating other memory abstrac-
tions into our framework, so as to benefit from the reduced product combinator
with expressive abstractions, such as, a domain based on three-valued logic [20].
A second direction for future work is to design and implement a combinator for
memory abstraction based on separating conjunction, which would enable one to
apply entirely different abstractions to cope with data structures stored in differ-
ent memory regions, while keeping the interactions between those abstractions
minimal. Together with our reduced product combinator, this combinator would

394 A. Toubhans, B.-Y.E. Chang, and X. Rival

enable one to derive analyses such as that of [15] as instances of our framework,
among others, while retaining the advantages of a modular abstract domain.

References

1. Andersen, L.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis (1994)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape Analysis for Composite Data Structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. CAV, pp. 178–192. Springer, Heidelberg (2007)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI,
pp. 196–207 (2003)

4. Chang, B.-Y.E., Leino, K.R.M.: Abstract Interpretation with Alien Expressions
and Heap Structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp.
147–163. Springer, Heidelberg (2005)

5. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape Analysis with Structural Invari-
ant Checkers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634,
pp. 384–401. Springer, Heidelberg (2007)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp.
247–260 (2008)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of Abstractions in the ASTRÉE Static Analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg
(2008)

10. Distefano, D., O’Hearn, P.W., Yang, H.: A Local Shape Analysis Based on Sepa-
ration Logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

11. Giacobazzi, R., Mastroeni, I.: Domain Compression for Complete Abstractions.
In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 146–160. Springer, Heidelberg (2002)

12. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL, pp. 239–251 (2009)

13. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: PLDI, pp. 376–386
(2006)

14. Laviron, V., Chang, B.-Y.E., Rival, X.: Separating Shape Graphs. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 387–406. Springer, Heidelberg (2010)

15. Lee, O., Yang, H., Petersen, R.: Program Analysis for Overlaid Data Structures.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608.
Springer, Heidelberg (2011)

16. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic Strengthening for Shape
Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
419–436. Springer, Heidelberg (2007)

Reduced Product Combination of Abstract Domains for Shapes 395

17. McCloskey, B., Reps, T., Sagiv, M.: Statically Inferring Complex Heap, Array, and
Numeric Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

18. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: LCTES, pp. 54–63 (2006)

19. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

20. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL, pp. 105–118 (1999)

21. Venet, A.: Abstract Cofibered Domains: Application to the Alias Analysis of Un-
typed Programs. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145,
pp. 366–382. Springer, Heidelberg (1996)

Abstraction of Syntax

Vijay D’Silva� and Daniel Kroening

Department of Computer Science,
Oxford University

firstname.surname@comlab.ox.ac.uk

Abstract. The theory of abstract interpretation is a conceptual frame-
work for reasoning about approximation of semantics. We ask if the
creative process of designing an approximation can be studied mathemati-
cally. Semantic approximations, whether studied in a purelymathematical
setting, or implemented in a static analyser, must have a representation.
We apply abstract interpretation to syntactic representations and study
abstraction of syntax. We show that semantic abstractions and syntac-
tic abstractions are different, and identify criteria for deriving semantic
abstractions by purely syntactic means. As a case study, we show that de-
scriptions of numeric abstract domains can be derived by abstraction of
syntax.

1 Where Do Abstractions Come from?

An important aspect of reasoning about the behaviour of dynamic systems such
as programs, transition systems or process calculi is to focus on a few properties
of interest and ignore irrelevant details. Abstract interpretation crystallises this
intuition into a mathematical framework [4,5]. The first step is to characterise
the behaviour of a system by fixed point in a lattice of semantic objects. The
second step is to approximate this fixed point using a lattice and transformers,
together called an abstract domain. The third step is to compute this fixed point
approximation using iteration algorithms and operators to ensure termination
and improve precision. The literature contains numerous domain-agnostic tech-
niques for designing and computing fixed point approximations. The process of
designing of an abstract domain has not been formalised in mathematical terms.

One component of designing an abstract interpreter is designing an abstract
domain. The designer of an abstract domain usually has to answer three ques-
tions. What are the elements of the domain? How are abstract transformers
implemented? Does analysis with the domain produce information for solving
the problem? The first is a specification question, the second, an algorithmic
question, and the third, an empirical evaluation question. Algorithmic details
depend on the properties in the lattice, and the evaluation depends on the pro-
grams considered, so we expect that finding a generic, formal framework for
answering the second and third questions will be difficult.

� Supported by Microsoft Research’s European PhD Scholarship Programme.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 396–413, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Abstraction of Syntax 397

Z

Z \ −1· · · Z \ 0 Z \ 1 · · ·

−1· · · 0 1 · · ·

∅

(P(Z),⊆,∩,∪)

true

x 	= −1· · · x 	= 0 x 	= 1 · · ·

x = −1· · · x = 0 x = 1 · · ·

false

(ConstEq , =⇒ ,
∧
,
∨
)

true

x ≤ 0 x ≥ 0

x = −1 x = 0 x = 1

false

(InEq , =⇒ ,
∧
,�)

�

[−∞, 0] [0,∞]

[−1,−1] [0, 0] [1, 1]

⊥

(Intv ,�,&,�)

�

−1· · · 0 1 · · ·

⊥

(Const ,�,&,�)

true

x = −1· · · x = 0 x = 1 · · ·

false

(ConstEq , =⇒ ,
∧
,�)

Fig. 1. The left column shows the powerset lattice of integers P(Z), the lattice of integer
intervals Intv , and the lattice of integer constants Const . The right column contains
logical representations of these domains. Each domain is a set of formulae ordered by
implication. All sets of formulae are closed under infinitary conjunction, but not all are
closed under disjunction.

We consider the problem of discovering syntactic specifications of abstract
domains. We show that thinking of domains as logics enables a uniform approach
to deriving specifications of several abstract domains used in practice. Our work
applies to domains for numeric data [20], functional programs [16], and temporal
logics [19]. We do not claim to formalise the process by which static analysis
experts design abstractions. Instead, our work presents an alternative approach
to deriving abstractions that are typically discovered manually. We believe this
alternative can eventually be automated.

For an illustration of the ideas in this paper, imagine a program with a single
variable x that ranges over the mathematical integers Z. The concrete domain
containing possible values of x is the lattice P(Z) shown in Figure 1. Operating
on this lattice is intractable, so analysis tools use abstract domains such intervals.
In the figure, each element on the left (a semantic object) is represented by a

398 V. D’Silva and D. Kroening

formula on the right (a syntactic object). For instance, x ≤ 1 represents the
interval [−∞, 1]. The lattice of intervals can be viewed as a logic containing
formulae of the form x ≤ k and x ≥ k, and closed under conjunction but not
under disjunction. Implication defines the lattice order. The logics in the right-
hand column of Figure 1 can be viewed as specifications of abstract domains. We
study the problem of systematically discovering logical descriptions of abstract
domains given a logical description of a concrete domain.

There is a loose connection between the approach we take and proof theory.
Proof theory provides a mathematical basis for studying the structure and prop-
erties of formal proofs, and procedures for deriving proofs. Though proof theory
does not formalise, or even automate, the exact process by which mathemati-
cians construct proofs, it has led to new insights about the structure of proofs,
and to automated deduction techniques. Analogously, this paper is a first step
towards a mathematical description of how abstract domains can be derived.

One may ask if the syntactic, logical approach we take has advantages over
the semantic approach usually adopted in the literature. In the Galois inser-
tion setting, a result of Cousot and Cousot [5] shows that the space of do-
mains is a complete lattice. Domains in this lattice can be combined using
reduced sum, reduced product, reduced power, and various other operations
on domains [5,12,13]. This lattice of domains is a rich mathematical object that
cannot be manually searched.

In contrast, the syntax of a logic representing an abstract domain can usually
be described by a short bnf grammar. Committing to a syntactic representation
may restrict the kinds of domains that can be expressed, but also makes it eas-
ier to enumerate syntactic descriptions of domains. There are many parameters
such as the number of operators, variables and nesting depth, that can be ma-
nipulated to generate logics from a grammar. We show later that a wide range
domain specifications can be derived with our approach, and that the syntactic
descriptions are succinct.

Contribution. This paper addresses the problem of deriving syntactic specifi-
cations of abstract domains. We present a rigorous, grammar-based solution to
this problem. The main idea is to exploit a non-trivial connection between ab-
stract domains and logical theories and reduce the problem of specifying domains
to that of underapproximating a grammar. We make the following contributions.

– A characterisation of bnf grammars in terms of a domain of syntax trees
and syntax transformers. By underapproximating the fixed point defined by
a grammar, we systematically derive sub-languages.

– The derivation of overapproximating semantic domains by underapproximat-
ing the semantics of grammars.

– A case study showing that several existing domains can be derived using the
framework developed in this paper.

By decoupling the problem of domain specification from that of algorithm design
and evaluation, we believe intellectual effort can be directed towards the parts
of the problem that are difficult to systematise. To revisit the analogy to proof

Abstraction of Syntax 399

theory, we believe that a syntactic approach to abstract domain design, may
lead to new automated procedures for domain construction.

The paper is organised as follows. We introduce meta-syntax, a variant of
bnf in Section 2, and present a collecting semantics for meta-syntax grammars.
We apply standard abstract interpretation to underapproximate the collecting
semantics of meta-syntax grammars in Section 3. A sub-language is an under-
approximation of a language. A sub-language derived by abstract interpretation
is an inductively defined sub-language of an inductively defined language. We
present our case study in Section 4 and review related work in Section 5.

2 Meta-syntax

In this section, we introduce a variant of bnf called meta-syntax, and define the
interpretation of meta-syntax grammars using domains and transformers. The
difference between bnf and meta-syntax is clarified below.

Example 1. Let Prop be a set of propositions and p range over Prop. bnf defi-
nitions for propositional logic and a sub-logic is given below.

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ Propositional logic

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ Monotone propositional logic

The first line above can be read as follows: a propositional formula ϕ is a propo-
sition, or is the composition of formulae using the Boolean connectives ∧, ∨ and
¬. The grammars above are similar, but not identical. The meta-syntax grammar
below specifies a language containing constants and operators.

f ::= prop | op(f̂) Gram

The two logics above can be obtained by instantiating the macros prop and op
as shown below.

inst1 =̂ {prop �→ Prop, op �→ {¬,∨,∧}} inst2 =̂ {prop �→ Prop, op �→ {∨,∧}}

We prefer to use meta-syntax over bnf because we can instantiate the same
grammar in different ways to derive different logics. More precisely, a grammar
is a structure analogous to a program. The instantiations above can be viewed
as specifying two different abstract transformers for the same syntactic macros.
We show later that meta-syntax allows us to describe the syntactic relationship
between the formulae in monotone propositional logic and propositional logic
using abstract interpretation. �
The meta-syntax system below syntactically resembles bnf, but is based on
Istrail’s [15] fixed point characterisation of recursively enumerable languages.
Though meta-syntax is less general than Cousot and Cousot’s bi-inductive se-
mantics [10], we have chosen to work with meta-syntax because it suffices for
this paper, and because it is similar to bnf.

400 V. D’Silva and D. Kroening

Definition 1. Let Var be a set of meta-variables and Sym, a set of meta-symbols.
A syntax term is one of the following.

1. A meta-variable x or a meta-symbol s.
2. The composition s(t0, . . . , tn) of a meta-symbol with terms.
3. The uniform composition s(t̂) of a meta-symbol s with a term t.
4. The substitution t1[x/t2] of a meta-symbol x in a term t1 with a term t2.

A grammar rule is of the form x ::= t0 | · · · | tn, where ti is a syntax term.
A grammar is a finite set of grammar rules.

A meta-variable is free in a grammar if it does not occur on the left hand side of
a grammar rule. Uniform composition, not present in bnf, is required to collate
symbols like ∧ and ¬ independent of their arity.

The language of a grammar is analogous to the semantics of a program. The
operational semantics of a program statement is given by state transitions, the
collecting semantics is defined using state transformers, and properties of pro-
grams are characterised by fixed points. Similarly, the meaning of a meta-syntax
term is given by a set of syntax trees, the collecting semantics is defined us-
ing syntax transformers on a powerset lattice of syntax trees, and languages
are defined by fixed points. A formalisation of this idea follows. An alternative
formalisation is to use partial-expressions instead of syntax trees.

Signatures, Syntax Trees and Languages. A signature (Sig , ar) is a set of
symbols Sig with an arity function ar : Sig → O, associating an ordinal with each
symbol. The arity function is left implicit. Ordinals are required for infinitary
conjunction and disjunction. A nullary symbol has arity 0. Fix a signature Sig .

A syntax tree τ = (V,E, sym) is a finite-height, ordered tree (V,E) with a
function sym : V → Sig labelling vertices with symbols. The children of a vertex
form a possibly infinite sequence v̄ = v0, v1, The root of a tree is root(τ).
The set of syntax trees over Sig is Syn(Sig), written Syn if Sig is clear. A well
formed tree satisfies that every vertex v has ar (sym(v)) children. If we assume
the symbol ∧ to have arity 2, the tree on the left is not well-formed but the tree
on the right is. An expression is a well-formed syntax tree and a language is a
set of expressions.

∧

p

∧

p q

An instantiation In = (Syn, inst) is a set of syntax trees Syn with an instan-
tiation function inst : Sym → P(Syn) satisfying that, for each s in Sym, inst(s)
contains single vertex trees. (Strictly speaking, vertices are not symbols because
operations on symbols and trees differ.) A syntax environment (or just environ-
ment) env : Var → P(Syn) maps meta-variables to sets of syntax trees.

Abstraction of Syntax 401

The meaning of a term t given an instantiation In = (Syn, inst) and environ-
ment env, is denoted ‖t‖In,env and is defined below. We abbreviate the symbol
for the arity of the root symbol of a tree τ to ars(τ).

‖x‖In,env =̂ env(x)

‖s(t0, . . . , tn−1)‖In,env =̂ {τ | root(τ) is in inst(s), ars(τ) = n

and child τi of root(τ) is in ‖ti‖In,env}
‖s(t̂)‖In,env =̂ {τ | root(τ) is in inst(s) and for i < ars(τ)

τ has children τi ∈ ‖t‖In,env}
‖t1[x/t2]‖In,env =̂ {τ | τ is in ‖t1‖In,env′ , where

env′ maps x to ‖t2‖In,env, and y �= x to ‖y‖In,env}
‖t1 | t2‖In,env =̂ ‖t1‖In,env ∪ ‖t2‖In,env

The terms above may contain free variables. The language of a grammar x1 ::=
t1, . . . , xn ::= tn, with no free variables is an environment env, satisfying that
env(xi) equals ‖ti‖In,env, for every i.

Domains and Transformers. We now define the semantics of a grammar in
terms of domains and transformers. The domain of syntax trees is the powerset
lattice (P(Syn),⊆,∩,∪) containing sets of syntax trees ordered by inclusion, and
closed under union, intersection and set complement. The domain of instantia-
tion functions is (Sym → P(Syn),+,�,�), where the order is defined pointwise:

inst1 + inst2 if inst1(s) ⊆ inst2(s) holds for every meta-symbol s.

The pointwise meet inst1 � inst2 of two instantiation functions maps each meta-
symbol s to inst1(s)∩inst2(s). The pointwise join is similarly defined. The domain
of syntax-environments is (Env,+,�,�), where Env is Var → P(Syn) and the
operations are defined pointwise. All these domains are complete lattices. The
least element of Env, denoted env∅, maps all meta-variables to the emptyset.

Fix an instantiation In. We define the transformers for each entity in meta-
syntax. The definitions below can be read like the definitions of transformers for
statements in a programming language.

A syntax transformer synt : Env → P(Syn) for a term t maps an environment
env to the set of syntax trees ‖t‖In,env. For brevity, we do not enumerate the
definition of sync, synf(ĉ), and synt1 [x/t2], but we emphasise that synt is induc-
tively defined. Note that the transformer defined by the separator | is union,
so | the equivalent of a join point in a flow graph. A grammar rule x ::= r
defines a transformer synx::=r : Env → Env that maps an environment env to
env[x/ synr (env)]. To define the transformer for a grammar rule, we require a
function null to filter out nullary symbols.

null(s) =̂ {τ ∈ inst(s) | ars(τ) = 0} null(x) =̂ ∅
null(s(t̂)) =̂ null(s) null(t1 | t2) =̂ null(t1) ∪ null(t1)

402 V. D’Silva and D. Kroening

A rule xi ::= ri generates an equation

xi = null(ri) � synri (env)

and a grammar generates a system of equations. Recall that the reachable states
of a transition system are the fixed point of an equation X = Init ∪ post(X),
where Init is a set of initial states and post is the successor transformer. Observe
that the equations above have the same form. The language of a grammar is the
environment representing the least solution to these equations.

Example 2. Let us derive a fixed point for the grammar and instantiation inst1
in Example 1. Iterating through the grammar produces the environments below.

env0 = {f �→ ∅} env1 = {f �→ Prop} · · · envn = {f �→ Tn}

The initial environment is empty. After one iteration, we have the set of propo-
sitions. After n iterations, Tn contains expressions with at most n− 1 operators.
The fixed point of this sequence maps f to all propositional formulae. �

Proposition 1. The language of a grammar with respect to an instantiation is
the least fixed point of the system of equations the grammar generates.

Semantic Structures. Grammars specify syntax. The semantics associated
with the syntax is usually given by an interpretation function, which can be
viewed as the operational semantics of the language. The collecting semantics
is often derived by lifting the operational semantics to a powerset lattice. We
directly assign a “collecting interpretation” to a language. For example, the
standard interpretation of + is a binary function in N × N → N. The lattice
interpretation of + is interpreted as a unary function P(N× N) → P(N) that
maps every pair (m,n) in a set X to m+ n.

A semantic structure S = (A,F) for a signature Sig is a family of lattices A
called domains and a family of functions F called interpretations. Each symbol
f is interpreted as a function fS : Af,i → Af,o with input and output domains
Af,i and Af,o. If all the domains are identical, we write A for A.

A structure (Gram, In,S) consists of a grammar, an instantiation, and a se-
mantic structure. The meaning of an expression in S is partially defined below.

�c�S =̂ cS where c, is a symbol with arity 0

�f(ā)�S =̂ fS(�a0�S , . . . , �an−1�S), where f(ā) ∈ ‖s(t0, . . . , tn−1)‖In,env
�f(ā)�S =̂ fS(�a0�S , . . . , �ai�S , . . .), where f(ā) ∈ ‖s(t̂)‖In,env

The definitions above suffice because every syntax tree arises from a meta-syntax
term. The definition is partial because the arguments of a function symbol must
have the same domain as their sub-expressions. It is routine to make this notion
precise using types.

Abstraction of Syntax 403

3 Abstraction of Syntax

This section contains two ideas. First, we use abstract interpretation to derive un-
derapproximations of the fixed point of a grammar and obtain sub-languages. A
grammar defines a language, and every subset of the language is a sub-language.
An arbitrary subset may, however, not have an inductive definition related to the
grammar. By applying abstract interpretation, we can underapproximate fixed
points by fixed points, thereby deriving inductively defined sub-languages of an
inductively defined language.

The second idea is to underapproximate syntax to derive overapproximations
of semantics. The idea is straightforward, but relies on non-trivial conditions
relating abstract domains and logics.

Abstract Interpretation. Let (L,+) and (M,) be posets. Two functions
α : L →M and γ : M → L form a Galois connection if,

for all x ∈ L and y ∈M , α(x) y if and only if x + γ(y).

If L is a powerset lattice, abstractions with respect to ⊆ are overapproximating
and those with respect to ⊇ are underapproximating. Several abstract elements
may have the same concretisation. For instance, all intervals [a, b] with a greater
than b concretise to the empty set. Such redundancies do not occur in a Galois
insertion. A Galois insertion is a Galois connection in which γ is injective.

Example 3. This example shows that the standard task of defining a sub-
language, such as the negation-free fragment of propositional logic, can be com-
pletely formalised and understood as deriving and applying best abstract trans-
formers in abstract interpretation. Recall the grammar and instantiation inst
from Example 2. The signature of propositional logic is given by Sig1 below and
of the negation-free fragment by Sig2 below.

Sig1 = Prop ∪ {∧,∨,¬} Sig2 = Prop ∪ {∧,∨}

These signatures define domains which form an underapproximating Galois con-
nection with abstraction and concretisation given below.

P(Syn(Sig1)) −−−→←−−−
α

γ
P(Syn(Sig2)) α(T) = T ∩ Syn(Sig2) γ(S) = S

The abstraction function maps a set of syntax trees to the subset that is negation-
free, and the concretisation function is the identity function. The Galois connec-
tion lifts pointwise to the instantiation and environment domains.

If we have an instantiation function inst as shown below, we can derive the
abstract instantiation function α ◦ inst ◦ γ also shown below.

inst = {prop �→ Prop, op �→ {∧,∨,¬}}
α ◦ inst ◦ γ = {prop �→ Prop, op �→ {∧,∨}}

404 V. D’Silva and D. Kroening

The abstract instantiation function is the best abstract transformer approximat-
ing inst. The fixed point of the grammar for propositional logic with the abstract
instantiation defines the set of negation-free formulae. �

Example 4. This example illustrates a more complex abstract domain. Let ATree
be the set of syntax trees (not necessarily well-formed) with at most one nega-
tion symbol. Observe that ATree cannot be of the form Syn(Sig), because Sig
would contain negation and the resulting trees, multiple negations. Nonetheless,
P(ATree) is a subset of P(Syn(Sig1)) from Example 3. Intuitively, the abstract
syntax transformers operate on the lattice Var → P(ATree), and the fixed point
of the grammar contains formulae with at most one negation. �

Sub-languages by Abstract Interpretation. A sub-signature is a subset of
a signature. A sub-language is a subset of a language. Every underapproximation
of the fixed point of a grammar is trivially a sub-language. We are interested
in inductively defined sub-languages, because they finitely represent infinitely
many formulae. We derive such languages using abstract interpretation to find
underapproximations that are also fixed points.

Definition 2. An instantiation AIn = (ATree, ainst) is a syntactic abstraction of

In = (Syn, inst) if there is an underapproximating Galois connection P(Syn) −−−→←−−−
α

γ

P(ATree) and the inclusion γ(ainst(s)) ⊆ inst(s) holds for all symbols s.

Fix a syntactic abstraction AIn = (ATree, ainst). We call AIn a signature abstrac-
tion if ATree contains all trees over a signature. The set ATree in Example 4 does
not contain all trees over a signature.

The set of abstract environments is AEnv = Var → P(ATree). The abstract
syntactic transformer asynt : AEnv → P(ATree) for a term t is α◦ synt ◦γ, where
α and γ are defined by pointwise lifting. The abstract transformer for a grammar
rule is similarly defined, and the abstract equations are obtained by replacing
syntax transformers by their abstract counterparts. The abstract language de-
fined by a grammar is the least abstract environment that represents a solution
to the abstract equations. From standard abstract interpretation theory, we have
that the abstract language underapproximates the language of a grammar.

Proposition 2. The abstract language of a grammar underapproximates the
language of a grammar.

Languages to Domains. We now relate sub-languages to abstract domains
over lattices representing semantic objects. A semantic abstraction (A,F) of a
semantic structure (C,G) satisfies two conditions for every f in Sig .

1. There is Galois connection (Cf,i, αf,i, γf,i, Af,i), and a similar one for f, o.
2. The interpretations satisfy the soundness condition αf,o ◦ fC + fA ◦ αf,i.

Fix a structure (Gram, In,S) defining a language Lang. Since we interpret lan-
guages over lattices, sub-languages define posets. The structure defined by Lang,

Abstraction of Syntax 405

denoted struct(Lang), is the family of posets that together contain the elements
{�e�S ∈ | e ∈ Lang}, and are ordered as before. The next example illustrates
sub-languages struct(Lang) and how they define lattices.

Example 5. All languages in this example can be derived by abstraction of syn-
tax, but are presented informally to save space. Let Lang1 be propositional logic
over two variables p and q. The semantic domain is the set of truth assignments
P(Prop → B). The lattice struct(Lang1) is shown on the left below.

Consider a language Lang2 closed under conjunction, with negation only of
propositions. The lattice struct(Lang2) is on the right. There is a Galois insertion
from struct(Lang1) to struct(Lang2).

p ∨ q p ∨ ¬q ¬p ∨ q ¬p ∨ ¬q

p p ⇔ ¬q q ¬q p ⇔ q ¬p

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q

true

false

p q ¬q ¬p

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q

true

false

A third language Lang3 contains propositions, negation of propositions, and
is closed under disjunction. The elements of struct(Lang3) are shaded in the
left-lattice. There is no Galois connection from struct(Lang1) to struct(Lang3)
because struct(Lang3) contains p and q, but not p ∧ q. However, Lang3 is a sub-
language of Lang1 and can be derived by abstraction of syntax. �
The poset defined by Lang3 above does not admit a Galois connection because
p∧q do not have a unique, minimal overapproximation. We resolve this problem
with the following result from lattice theory. Consult the textbook [11, Theo-
rem 7.3] or Cousot and Cousot’s result on Moore families [5] for details.

Theorem 1. An abstract domain A is in a Galois insertion with C exactly if
A is a subset of C closed under meets.

This characterisation allows us to relate languages with abstract domains in the
setting of Galois insertions. A language that defines a structure closed under
arbitrary meets also defines an abstract domain. Let Lang be a language in-
terpreted over a semantic structure S = (A,F). For simplicity, assume that A
is a single domain. The general case is similar to what follows but notation-
ally cumbersome. The language Lang is completely conjunctive if for every set
of expressions E ⊆ Lang, there exists an expression CE in Lang satisfying the
equality

�
{�e�S | e ∈ E} = �CE�S . The theorem below is new, and states that

completely conjunctive languages define abstract domains.

406 V. D’Silva and D. Kroening

Theorem 2. Let Lang be a language interpreted over a domain (C,+,�,�). If
Lang is completely conjunctive, the poset struct(Lang) is a complete lattice that
is in a Galois insertion with C.

The theorem can be proved by showing that for a completely conjunctive Lang,
struct(Lang) is meet-closed, and then by invoking Theorem 1.

Discussion. We have considered the Galois insertion and complete lattice setting
of abstract interpretation for two reasons. We require concretisation functions
to be injective because every element of the abstract domain will have only
one representation. Abstract domains used in practice may contain redundant
representations of the same semantic element. Such domains are not definable
in the approach we give above. We consider complete lattices because when
arbitrary meet operations are defined, every concrete element has a unique over-
approximation. Our completeness assumption excludes important domains such
as polyhedra, or regular languages, which do not form complete lattices.

The framework in this paper can be extended to logics whose interpretation
defines posets, by interpreting formulae in the logic and using the implication
order. In this weaker setting, abstraction functions have to be manually defined,
so the abstract element that overapproximates arbitrary concrete elements will
not be defined by the framework. Extend this framework to derive abstract do-
mains in which the concretisation function is not injective requires significantly
more effort. This is because we map expressions to their meaning, and to ob-
tain redundant representations, we must weaken the meaning function �·�S to
distinguish between semantically equivalent formulae.

4 Syntactic Derivation of Semantic Domains

We now follow the approach below to generate specifications of abstract domains.

1. Define a structure (Gram, In,S), for a logic expressing properties of a program
and it’s datatypes, and let S be the semantic structure for this logic.

2. Choose parameters defining subsets of syntax trees.
3. Fix the parameters and compute the sub-language to obtain a sub-logic L.
4. If L is closed under infinitary conjunction, struct(L) is an abstract domain.

In this section, we apply this flow to a specific logic and derive many abstract
domains existing in practice.

A Logic of Program Properties. The logic we consider is an extension of
Presburger arithmetic with infinitary conjunction and disjunction, and with the
next-state modality. This logic can encode properties (such as reachability or
termination) of programs written in Turing complete languages. The grammar
below defines a language with terms and formulae.

t ::= var | fun(t̂), f ::= pred(t̂) | bool(f̂) | mod(f̂)

Abstraction of Syntax 407

The signature Sig contains variables Var and the sets below (k is a positive
integer). The binary predicate ≡k denotes congruence modulo k. Other symbols
have their standard arity.

Fun =̂ {+} ∪ N Pred =̂ {<,≤,=, >,≥,≡k} Bool =̂
{∨

,
∧
,∧,∨,¬

}
The instantiation of meta-symbols is below.

var �→ Var fun �→ Fun pred �→ Pred bool �→ Bool mod �→ {EX}

An example formula is EX(x = y + y), stating that there is a successor state in
which x equals 2y. Familiar modalities can be recovered using infinitary opera-
tors: AXϕ is the formula ¬EX¬ϕ, which is satisfied by a state if all its successors
satisfy ϕ. Let AXiϕ denote the formula AX · · ·AXϕ, in which AX occurs i-times
in sequence. The formula AGϕ, defined as

∧
i AX

iϕ, asserts that ϕ is true on
every path. Infinitary operators can also be used to express multiplication.

We interpret this logic over transition systems. Let Val be a set of values and
Env =̂ Var → Val be the set of states (program environments). A transition
system M = (Env , E) contains a relation E ⊆ Env×Env . Recall that E defines
a predecessor transformer pre : P(Env) → P(Env) as below.

pre(X) =̂ {s ∈ Env | there exists t in X and (s, t) is in E}

The semantic structure we need contains the lattices P(N) and P(Env). The
semantics of a term t is a set of values �t�S : P(Env) → P(N), and of a formula
ϕ is a set of environments �ϕ�S : P(Env) → P(Env), both defined below.

�x�S =̂ X �→ {ε(x) | ε ∈ X}
�t1 + t2�S =̂ X �→ {m+ n | m ∈ �t1�S , n ∈ �t2�S}

�EXϕ�S =̂ pre(�ϕ�S) �P (t̄)�S =̂ {ε ∈ Env | ε satisfies P (t̄)}
�ϕ ∧ ψ�S =̂ �ϕ�S ∩ �ψ�S �ϕ ∨ ψ�S =̂ �ϕ�S ∪ �ψ�S

Negation is interpreted as set-complement and infinitary conjunction and dis-
junction are arbitrary union and intersection, respectively. We now derive ab-
stractions of P(Env) using abstraction of syntax.

Sub-language Parameters. In the previous section, we showed how one can
generate a sub-language by starting with a set of syntax trees. We use a notion
of parameters to generate syntax trees.

A k-variable predicate P (t̄) is one that contains at most k variables. A syntax
parameter is a tuple (S, k) consisting of a signature S ⊆ Sig and a value k from
N ∪ {∞}. A syntax parameter (S, k) defines a set of syntax trees ATree over the
symbols S ∪ Var ∪ {

∧
,∧} and containing only k-variable predicates. Note that

we always include variables, finite and infinitary conjunction in every syntax
abstraction. Define an order (Q,m) + (S, n) that holds if Q ⊆ S and m ≤ n

408 V. D’Silva and D. Kroening

both hold. The parameter order implies subset inclusion of the syntax trees they
represent.

The results of the previous section imply that evaluating the grammar Gram
over ATree defines a sub-language Lang for every parameter value, and that
struct(Lang) defines an abstract domain over P(Env). Let struct(P) denote the
substructure for the language generated by a parameter P . We will illustrate
the passage from parameters, via sub-languages to abstract domains. To reduce
clutter, we write the parameter ({≤,≡2} , 3) as (≤,≡2; 3) in figures.

Example 6. Consider the transition systemM , on the left below. States represent
the values of a variable x. A standard method of abstraction is to partition states
using predicates. The result N of partitioning states of M using the predicates
x > 0 and x = 0 is on the right below.

−2 −1 0 1 2 x < 0 x = 0 x > 0

We will see how this abstraction, and others, can be derived syntactically. Three
parameters are given below and satisfy the order P3 + P2 + P1.

P1 =̂ ({= 0, > 0,∨,¬,EX} , 1)
P2 =̂ ({= 0, > 0,∨,EX} , 1)
P3 =̂ ({= 0, > 0,EX} , 1)

The language generated by P1 contains one place predicates for equality with 0
and being strictly greater than 0, is closed under Boolean operations, and has
predicates with at most one variable. The predicate x < 0 is expressible in this
language but x < y is not. The language generated by P2 is only closed under
conjunction and disjunction but not negation, while the language generated by
P3 is only closed under conjunction. All the languages are also closed under the
modal operator EX.

The structures struct(Pi) for each parameter contain a lattice representing
the semantics of predicates and a transformer for the semantics of EX. These
substructures are shown in Figure 2. We only present the calculation of formulae
in struct(P3). The elements generated by formulae in P1 and P2 can be derived
by Boolean combinations of elements in struct(P3). We show a formula on the
left and its interpretation in Figure 2 on the right. Assume that formulae are
interpreted over the transition systemM , with EX interpreted as the predecessor
operator.

�x = 0� = (x = 0) �x > 0� = (x > 0) �¬x > 0� = (x ≤ 0)

�EX x = 0� = (x ≤ 0) �EX x > 0� = (x ≤ 0) �¬x = 0� = (x �= 0)

Every predicate in the first lattice represents a set of states of N above and pre
is the predecessor function for N . Note that this abstraction was not derived

Abstraction of Syntax 409

�

x ≤ 0 x 	= 0 x ≥ 0

x < 0 x = 0 x > 0

⊥

pre x < 0 �→ ⊥
x = 0 �→ x ≤ 0
x > 0 �→ x ≤ 0

�

x ≤ 0 x ≥ 0

x = 0 x > 0

⊥

pre x < 0 �→ ⊥
x = 0 �→ x ≤ 0
x > 0 �→ x ≤ 0

�

x ≤ 0

x = 0 x > 0

⊥

pre x ≤ 0 �→ ⊥
x = 0 �→ x ≤ 0
x > 0 �→ x ≤ 0

Fig. 2. Abstract domains generated signature abstraction

from N but by evaluating formulae. The other two lattices are not closed under
Boolean operations, hence cannot be represented as transition systems. �
The set of syntax parameters with the order + forms a lattice, and each element
of this lattice defines an abstract domain. The lattice of syntax parameters can
be viewed as a lattice of abstract domains in which (Q,m) + (S, n) implies that
the abstract domain defined by (S, n) refines the domain defined by (Q,m). In
fact, the lattice of syntax parameters is an abstraction of the lattice of abstract
domains [5].

Generating Abstract Domains. We now show that appropriate parameters
generate abstract domains that are used in practice. We emphasise again that
this approach does not solve all the issues that arise in designing an abstraction.
Nonetheless, it provides an alternative, syntax-based approach, which we believe
is more amenable to automation. We now show that a small range of parameter
values generates the specifications of many abstract domains used in practice.

Relational and Non-relational Abstractions. A standard form of abstraction is
to decouple the relationship between variables. Non-relational domains cannot
express facts like x = y, while relational abstractions can. The terms weakly-
relational refers to domains that express a limited amount of relational informa-
tion. The octagon domain is weakly relational because it can express x+ y ≤ c,
but not x + y + z ≤ c, because at most two variables can occur in a con-
straint. A parameter satisfying (S,m) + (Sig , 1) contains at most one variable
per predicate and cannot express relational information. A parameter satisfying
(S,m) + (Sig , n) for a finite, positive integer n generates a weakly relational
domain, because some, but not all relational information can be expressed. A
parameter (S,∞) contains predicates with no bound on the number of variables.
Such parameters generate domains encoding relational information.

Temporal Abstractions. We use the term temporal abstractions for those based
in bisimulation, simulation and similar preorders defined on transition systems.

410 V. D’Silva and D. Kroening

The facts we use about such equivalences are summarised in [2]. Recall that a
relation R ⊆ Env × Env is a simulation if whenever (s, t) is in R and (s, s′) is a
transition, there must be a transition (t, t′) such that (s′, t′) is in R. It is known
that bisimulation can be characterised by a logic that is closed under Boolean
operations, infinitary conjunction, and EX, and that simulation is characterised
by a logic closed under infinitary conjunction, disjunction and EX. We can use
these results to specify abstract domains based on bisimulation and simulation.

Every parameter greater than ({
∨
,¬,EX} , 0) represents a bisimulation quo-

tient with respect to a given set of predicates. The first abstraction in Figure 2
represents the bisimulation quotient of M using the predicates x < 0, x = 0 and
x > 0. Every parameter greater than ({

∨
,EX} , 0), containing infinitary disjunc-

tion but not necessarily negation, represents a simulation preserving domain.
Such domains are studied in [19].

Numeric Abstractions. We now discuss parameter settings that generate stan-
dard abstract domains. For complete rigour, each claim that follows should be
accompanied with a proof that the generated domain represents the claimed,
existing domain.

– Affine Equalities ({+,N,=} ,∞). This abstraction contains conjunctions of
constraints of the form a1x1 + · · · anxn = k.

– Affine Congruences ({+,N,≡k} ,∞). This abstraction contains conjunctions
of constraints of the form a1x1 + · · · anxn ≡k m, stating that the constraint
on the left is congruent to m, modulo k.

– Intervals ({N,≤} , 1). If at most one variable per predicate is allowed when
using inequalities, we have constraints of the form 0 ≤ x ∧ x ≤ 3, which
encode that x is in the interval [0, 3].

– Constants ({N,=} , 1). If at most one variable per predicate is allowed when
using equalities, we have constraints of the form x = 3. Since no two dis-
tinct equalities are satisfiable, all conjunctions of formulae become false. This
domain is used in constant propagation.

– Parity ({0, 1,≡2} , 1). If the domain is non-relational and the only predicate
is ≡2, we obtain the parity domain.

– Signs ({0, <,=, >} , 1). A non-relational domain in which every variable can
only be compared with 0 is the signs domain. The parameter above only
generates the 5 element signs domain containing the predicates x < 0, x = 0
and x > 0. If extended with disjunction, we obtain the 8 element signs
domain closed under Boolean operations.

We emphasise that a signature can contain infinitely many symbols, and the
resulting domain, infinitely many elements. Several numeric domains mentioned
above have infinitely many elements. Note also that the domains of constants,
affine equalities and congruences, all contain infinitely many inequalities but have
finite height. Logically, such domains correspond to logics in which there are no
infinite sequences of strict implications. For these reasons, generating domains by
abstraction of syntax is difficult to automate. Predicate abstraction [1] applies
only to finite sets of predicates, but is automatic. The parameters for some
domains we discussed are shown in Figure 3.

Abstraction of Syntax 411

{x, 0,≤, >,=
∧
,
∨
}

Disjunctive Signs

{x, 0,≤,≤, >,=,
∧
,EX}

Conjunctive Temporal

{x, 0,≤, >,=,
∧
,
∨
,¬}

Boolean Signs

{x, 0,≤, >,=,
∧
,
∨
,EX}

Simulation with Signs

{x, 0,≤, >,=
∧
}

Cartesian Signs

{
∧
}

Top

{x, 0,≤, >,=,
∧
,
∨
,¬,EX}

Bisimulation with Signs

Fig. 3. A lattice of signatures that generates the abstract domains shown

5 Related Work

The ideas that domains can be viewed as logics, and manipulation of grammars
can be understood as underapproximation is folklore in the abstract interpreta-
tion community. This paper has attempted to formalise this view, and to combine
two folklore ideas to obtain a new approach to deriving abstract domains.

The technical background for this paper was drawn from language theory,
abstract interpretation, and lattice theory. The language-theoretic basis of our
work is the Chomsky-Schützenberger theorem, which characterises context free
languages as fixed points. Ginsburg and Rice [14] extended this characterisa-
tion to recursively enumerable languages. Istrail [15] showed that concatenation,
union, intersection and substitution on languages suffice for the fixed point char-
acterisation. It follows that the language of a bnf grammar has a fixed point
characterisation. See Cousot and Cousot [6,7] or Paulson [18], for related discus-
sions of inductive definitions.

We use abstract interpretation to approximate the fixed point defined by
a bnf grammar. Cousot and Cousot’s bi-inductive semantics [10] has similar
motivations with important differences. If we only consider the languages that
can be derived, bi-inductive semantics uses posets and possibly non-monotone
functions, hence is a strictly more general framework than ours. However, we use
bnf grammars, which is how logics are specified in practice. There is much work
on grammar abstractions [3,8,17,22], with a focus on program analysis. Our focus
is language generation from bnf, akin to invariant generation from a program,
while the cited methods above are similar to analysis of a transition system.

412 V. D’Silva and D. Kroening

Abstract interpretation has also been combined with parsing algorithms [9,21].
Parsing is a language recognition, not language generation task.

6 Conclusion

Approximation of semantics, as formalised by abstract interpretation, is funda-
mental to tractable reasoning about programs. Abstract reasoning depends on
manually defined artefacts such as abstract domains. We have studied the prob-
lem of developing a systematic approach to the narrow task of specifying the
syntax of an abstract domain. The solution proposed in this paper was to use
meta-syntax, a variant of bnf-style grammars to specify abstract domains. Our
contribution is to show that abstraction of grammars provides a formal frame-
work for generating specifications of abstract domains. We demonstrated this
framework with a simple case study that covered a broad range of abstractions.

The method in this paper is a first step to deriving a systematic framework
for thinking about and manipulating abstract domains. We have presented no
algorithms for generically deriving implementations of abstract domains. Most
numeric abstractions we discussed are sub-logics of Presburger arithmetic, which
is decidable. One question is whether implementations of infinite domains over
sub-logics of Presburger arithmetic can be derived automatically. Specifically,
given a decision procedure for Presburger arithmetic, and a syntactic restriction
of formulae can we automatically synthesise abstract transformers for domains
such as intervals or constants.

Another problem in dire need of a rigorous framework is that of designing
operators to ensure convergence of fixed point iterations. There are results show-
ing that convergence operators cannot be monotone in general. We have shown
that abstraction of syntax, in certain situations yields overapproximating ab-
stractions. Another interpretation of this result, is that there are situations in
which a syntactically defined subset of a lattice only admits a non-monotone
abstraction function. A question arising from our work is whether abstraction
of syntax can be used to define convergence acceleration operations. We observe
that several standard interval widening operators can be defined in this manner.
Investigating such questions further is future work.

Acknowledgements. We thank the reviewers for their careful reading and
positive feedback.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

Abstraction of Syntax 413

3. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252. ACM Press (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages, pp. 269–282. ACM Press (1979)

6. Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpreta-
tions. In: Principles of Programming Languages, pp. 83–94. ACM Press (1992)

7. Cousot, P., Cousot, R.: Compositional and Inductive Semantic Definitions in Fix-
point, Equational, Constraint, Closure-condition, Rule-based and Game-Theoretic
Form. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 293–308. Springer, Hei-
delberg (1995)

8. Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based pro-
gram analysis by abstract interpretation. In: Functional Programming Languages
and Computer Architecture, June 25–28, pp. 170–181. ACM Press (1995)

9. Cousot, P., Cousot, R.: Grammar Analysis and Parsing by Abstract Interpretation.
In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp.
175–200. Springer, Heidelberg (2007)

10. Cousot, P., Cousot, R.: Bi-inductive structural semantics. Information and Com-
putation 207, 258–283 (2009)

11. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge Uni-
versity Press, Cambridge (1990)

12. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design.
ACM Computing Surveys 28(2), 333–336 (1996)

13. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. Journal of the ACM 47(2), 361–416 (2000)

14. Ginsburg, S., Rice, H.G.: Two families of languages related to Algol. Journal of
the ACM 9, 350–371 (1962)

15. Istrail, S.: Generalization of the Ginsburg-Rice Schützenberger fixed-point theorem
for context-sensitive and recursive-enumerable languages. Theoretical Computer
Science 18, 333–341 (1982)

16. Jensen, T.P.: Strictness Analysis in Logical Form. In: Hughes, J. (ed.) FPCA 1991.
LNCS, vol. 523, pp. 352–366. Springer, Heidelberg (1991)

17. Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction.
Theoretical Computer Science 411, 2559–2571 (2010)

18. Paulson, L.C.: A Fixedpoint Approach to Implementing (Co)Inductive Definitions.
In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 148–161. Springer, Heidelberg
(1994)

19. Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpreta-
tion. J. of Logic and Computation 17(1), 157–197 (2007)

20. Schmidt, D.A.: Internal and External Logics of Abstract Interpretations. In: Lo-
gozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 263–
278. Springer, Heidelberg (2008)

21. Schmitz, S.: Approximating Context-Free Grammars for Parsing and Verification.
Thèse de doctorat, Université de Nice-Sophia Antipolis, France (2007)

22. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically
generated queries in database applications. ACM Transactions on Software Engi-
neering Methodology 16(4), 14 (2007)

Logico-Numerical Max-Strategy Iteration�

Peter Schrammel1 and Pavle Subotic2,3

1
Inria Grenoble – Rhône-Alpes, France

peter.schrammel@inria.fr
2 Uppsala University, Sweden

3 University of Sydney, Australia
pavle.subotic@it.uu.se

Abstract. Strategy iteration methods are used for solving fixed point
equations. It has been shown that they improve precision in static anal-
ysis based on abstract interpretation and template abstract domains,
e.g. intervals, octagons or template polyhedra. However, they are limited
to numerical programs. In this paper, we propose a method for apply-
ing max-strategy iteration to logico-numerical programs, i.e. programs
with numerical and Boolean variables, without explicitly enumerating
the Boolean state space. The method is optimal in the sense that it com-
putes the least fixed point w.r.t. the abstract domain; in particular, it
does not resort to widening. Moreover, we give experimental evidence
about the efficiency and precision of the approach.

Keywords: Verification, Static Analysis, Abstract Interpretation, Strat-
egy Iteration.

1 Introduction

This paper deals with the verification of safety properties about logico-numerical
programs, i.e., programs manipulating Boolean and numerical variables. Verifi-
cation of such properties amounts to checking whether the reachable state space
is contained in the invariant specified by the property.

Classical applications are safety-critical controllers as found in modern trans-
port systems. In such systems the properties to be proved depend on the rela-
tionships between the numerical variables of the system. The Boolean state space
can be large, especially when analyzing programs written in data-flow languages
like Lustre [1] and Scade

1 where the control structure is encoded in Boolean
(or finite-type) variables.

Abstract Interpretation. The reachability problem is undecidable for this
class of programs, so analysis methods are not complete. Abstract interpreta-
tion [2] is a classical method with guaranteed termination for the price of an
approximate analysis result. The key idea is to over-approximate sets of states

� This work was partly supported by the Inria large-scale initiative Synchronics.
1 www.esterel-technologies.com

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 414–433, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Logico-Numerical Max-Strategy Iteration 415

S by elements S� of an abstract domain. A classical abstract domain for nu-
merical invariants in ℘(Rn) is the domain of convex polyhedra Pol(Rn) [3]. An
approximation S� of the reachable set S is then computed by iteratively solving
the fixed point equation S = S0 ∪ post(S) in the abstract domain. To ensure
termination when the abstract domain contains infinitely ascending chains, one
applies an extrapolation operator called widening, which induces additional ap-
proximations.

Strategy Iteration. Strategy (or policy) iteration methods [4–9] are a way to
solve the above fixed point equation without the need for a widening operator.
The main idea of these methods is to iteratively approximate the least fixed point
of S = F (S) by fixed points of “simpler”, more efficiently computable semantic
equations S = F (i)(S), induced by so-called strategies, such that a fixed point
of F is guaranteed to be found after a finite number of iterations. Depending on
whether the least fixed point is approached from above or below, the methods
are called min- or max-strategy iteration respectively.

These techniques are applied to template domains, i.e., abstract domains with
a priori fixed constraints for which constant bounds are determined during the
analysis. Linear templates generate so-called template polyhedra [10], which sub-
sume classical domains like intervals [11], zones [12] and octagons [13]. However,
these methods are restricted to numerical programs.

Handling Boolean Variables. The difficulty in dealing with logico-numerical
programs is that Boolean and numerical variables tightly interact in their
evolution.

The classical method to handle Boolean variables in an abstract-
interpretation-based analysis is to explicitly unfold the Boolean control structure
by enumerating the Boolean state space and to analyze the numerical variables
on the obtained control flow graph using a numerical abstract domain: how-
ever, this raises the problem that the analysis becomes intractable already for
small to medium-sized programs because the number of control locations grows
exponentially with the number of Boolean variables.

Therefore we have to consider an implicit, i.e. symbolic, treatment of
Booleans:
– A naive approach is to encode Booleans as integers ∈ {0, 1}. The advantage

is that max-strategy iteration can be used “as is” by adding template con-
straints for those Booleans. Though, such an analysis will yield very rough
approximations because commonly used abstract domains can only describe
convex sets, whereas Boolean state sets are usually highly non-convex.

– Logico-numerical abstract domains aim at abstracting state sets of the form
℘(Bp ×Rn). One way of representing such sets stems from composite model
checking [14] which combines Bdds and Presburger formulas. Domains com-
bining Bdds and numerical abstract domains like polyhedra have been pro-
posed for example by Jeannet et al [15] and Blanchet et al [16].

– Other (not abstract-interpretation-based) approaches rely on SAT-modulo-
theory solvers, for example the k-induction-based verification tool Kind [17].

In this paper we follow the approach of using logico-numerical abstract domains.

416 P. Schrammel and P. Subotic

Contributions. Our contributions can be summarized as follows:
1. We describe a novel method for computing the set of reachable states of

a logico-numerical program based on max-strategy iteration that avoids the
enumeration of the Boolean state space. The technique interleaves truncated
Kleene iterations in a logico-numerical abstract domain and numerical max-
strategy iterations. The method is optimal, i.e. it computes the least fixed
point w.r.t. the abstract semantics.

2. We give the results of an experimental evaluation: We show that our logico-
numerical max-strategy iteration gains one order of magnitude in terms of
efficiency in comparison to the purely numerical approach while being almost
as precise. Moreover, these are the first experimental results of applying max-
strategy iteration to larger programs.

Organisation of the Article. §2 gives an introduction to abstract interpre-
tation with template domains and max-strategy iteration. §3 describes the main
contribution, the logico-numerical max-strategy iteration algorithm. §4 presents
experimental results, and finally §5 concludes.

2 Preliminaries

Program Model. We consider programs modeled as symbolic control flow
graphs over a state space Σ:

Definition 1. A symbolic control flow graph (CFG) is a directed graph 〈L,R, �0〉
where

– L is a finite set of locations, �0 ∈ L is the initial location, and
– (�, R, �′) ∈ R define a finite number of arcs from locations � ∈ L to �′ ∈ L

with transition relations R ⊆ Σ2.

An execution of a CFG is a possibly infinite sequence

(�0, s0) →R (�1, s1) → . . .

where ∀k≥0
– �k ∈ L, sk ∈ Σ
– (�k, sk) →R (�k+1, sk+1) if R(sk, sk+1)

In the case of affine programs, Σ = Rn and the relations R(x,x′) are conjunc-
tions of linear inequalities. Fig. 1 in §2.2 shows the CFG of an affine program.

The methods presented in this paper will focus on logico-numerical programs

with Σ = Bp ×Rn with state vectors s =

(
b
x

)
∈ Σ and relations R(s, s′) with

affine, numerical subrelations.

Example 1. An example for such a logico-numerical program is the following C
program:

Logico-Numerical Max-Strategy Iteration 417

b1=true; b2=true; x=0;

while(true)

{

while(x<=19) { x = b1 ? x+1 : x-1; }

while(x<=99) { x = b2 ? x+1 : x; b2 = !b2; }

if (x>=100) { b1 = (x<=100); x = x-100; }

}

Fig. 4 in §3.2 shows a CFG corresponding to this program. Note that we allow
numerical constraints in assignments to Boolean variables.

A program property we want to prove is for instance the invariant 0≤x≤100.

2.1 Abstract Interpretation with Template Polyhedra

Template polyhedra [10] are polyhedra the shape of which is fixed by a so-called
template. The domain operations can be performed efficiently with the help of
linear programming (LP) solvers.

We will use the following notations: R = R ∪ {−∞,∞}; the operators min,
sup, ≤, etc are point-wisely lifted to vectors.

Template Polyhedra Abstract Domain. A template polyhedron is gener-
ated by a template constraint matrix, or short template, T ∈ Rm×n of which
each row contains at least one non-zero entry.

For example,

(
1
−1

)
is a template constraint matrix of intervals for a sys-

tem with a single variable x. It represents the constraints x ≤ d1 ∧ −x ≤ d2,
i.e. x ∈ [−d2, d1].

The set of template polyhedra PT generated by T is {Xd | d ∈ R
m} with

Xd = {x | x ∈ Rn,Tx ≤ d}.
An abstract value is represented by the vector of bounds d. The analysis

tries to find the smallest values of d representing a fixed point of the semantic
equations. " and ⊥ are naturally represented by the bound vectors ∞ and −∞
respectively.

We state the definitions of the domain operations2:

– Concretization: γxT(d) = {x | x ∈ Rn,Tx ≤ d}, d ∈ R
m

– Abstraction: αx
T(X) = min{d ∈ R

m | γxT(d) ⊇ X}, X ⊆ Rn

– Join: d �x
T d′ =

(
max(d1, d

′
1), . . . ,max(dm, d

′
m)
)

– Image: The templates may vary from location to location: let us denote T�

the template in location � and d� the corresponding vector of bounds. Then
the post-image by a transition relation R of transition (�, R, �′) in a CFG is
defined as follows:

2 The superscript x is used to distinguish the (numerical) template polyhedra oper-
ations from the logico-numerical domain operations that we are going to define in
§3.1.

418 P. Schrammel and P. Subotic

�R��(d�) = sup{T�′x
′ | T�x ≤ d� ∧ R(x,x′)}

i.e., given the bounds d� corresponding to the template T� it returns the
bounds corresponding to T�′ .

Reachability Analysis. Let Rj
�,�′ denote a transition relation in the set of

transitions from � to �′. We will view d alternatively as the concatenated vector
of the bound vectors of all locations and the map L→ R

m
which assigns a vector

of bounds d� to each location �: d(�) = d�. d
0 = λ�.

{
∞ for �=�0

−∞ for � �=�0
denotes

the initial values of the bounds. The set of abstract reachable states represented
by the bounds d is computed by:

lfp λd.
(
d0 �x λ�′.

⊔
Rj

�,�′∈R

�Rj
�,�′��(d�)

)

2.2 Max-Strategy Iteration

Max-strategy iteration [7, 8, 18–20] is a method for computing the least solution
of a system of equations M of the form δ = F (δ), where δ are the template
bounds, and Fi, 0≤ i≤n is a finite maximum of monotonic and concave operators
Rn → R; in our case they are affine functions. The max-strategy improvement
algorithm for affine programs is guaranteed to compute the least fixed point of
F , and it has to perform at most exponentially many improvement steps, each
of which takes polynomial time.

Semantic Equations. The equation system M is constructed from the ab-
stract semantics of the program’s transitions:

for each �′ ∈ L : δ�′ =max
(
{d0

�′} ∪ {�R��(δ�) | (�, R, �′) ∈ R}
)

with d0 and �R��(d�) as defined above in §2.1.
Note that we use δ for denoting the vector of bound variables appearing in

syntactic expressions, and d for the vector carrying the actual bounds. δ�,i is the
bound variable corresponding to the ith line of the template in location �.

Example 2 (Semantic equations). Using the template constraints(
1
−1

)
x ≤

(
d�,1
d�,2

)
in locations �, the equation system for location �1 of the

example in Fig. 1 consists of one equation for each template bound variable of
which the arguments of the max operator are the initial value −∞ and one ex-
pression �R�� for each of the three incoming arcs:

Logico-Numerical Max-Strategy Iteration 419

�0 �1 �2
x′=5

x≤9 ∧ (x′=x+1)

x≥10 ∧ (x′=x)

x≤0∧ (x′=x)

x≥1 ∧ (x′=x−1)

Fig. 1. CFG of an affine program

δ1,1 = max

⎧⎪⎪⎨⎪⎪⎩
−∞,
sup{ x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 },
sup{ x′ | x ≤ δ1,1 ∧ −x ≤ δ1,2 ∧ x≤9 ∧ x′=x+1 },
sup{ x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x≤0 ∧ x′=x }

⎫⎪⎪⎬⎪⎪⎭
δ1,2 = max

⎧⎪⎪⎨⎪⎪⎩
−∞,
sup{ −x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 },
sup{ −x′ | x ≤ δ1,1 ∧ −x ≤ δ1,2 ∧ x≤9 ∧ x′=x+1 },
sup{ −x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x≤0 ∧ x′=x }

⎫⎪⎪⎬⎪⎪⎭
Strategies. A strategy μ induces a “subsystem” δ = F̂ (δ) of M in the sense

that exactly one argument F̂i of the max operator on the right-hand side of
each equation δi = max(. . . , F̂i(δ), . . .) is chosen. Intuitively, this means that
a strategy selects exactly one “incoming transition” for each template bound
variable in each location �′.

Example 3 (Strategy). A strategy in the example in Fig. 1 corresponds for in-
stance the following system of equations:

δ0,1 = ∞
δ0,2 = ∞
δ1,1 = sup{ x′ | x≤δ1,1 ∧ −x≤δ1,2 ∧ x≤9 ∧ x′=x+1 }
δ1,2 = sup{ −x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 }
δ2,1 = −∞
δ2,2 = −∞

We see that for δ1,1 we have chosen the third and for δ1,2 the second argument
of the max operators in the equations of Example 2.

One has to compute the least solution lfp�M� of the system M, where �M� is
defined as �M�(d) = max

μ in M
�μ�(d)

and with �μ�(d) = �δ = F̂ (δ)�(d) = F̂ (d).

Max-Strategy Improvement. lfp�M� is computed with the help of the max-
strategy improvement algorithm (see Fig. 2) which iteratively improves strate-
gies μ until the least fixed point lfp�μ� of a strategy equals lfp�M�.

420 P. Schrammel and P. Subotic

initial strategy: μ := {δ
0 =∞, δ
=−∞ for all � 	=�0}

initial bounds: d := λ�.δ
 →
{∞ for �=�0
−∞ for � 	=�0

while not d is a solution of M do
μ := max improveM(μ,d)
d := lfp�μ�

done
return d

Fig. 2. Max-strategy iteration algorithm

The least fixed point lfp�μ� of a strategy μ can be computed by solving the
LP problem with the constraint system

for each
(
δ�′ =�R��(δ�)

)
in μ : d�′ ≤ T�′x

′ ∧ T�x ≤ d� ∧ R(x,x′)

(where x and x′ are auxiliary variables) and the objective function max
∑

i di,
i.e. the sum of all bounds d.

μ′ is called an improvement of μ w.r.t. d, i.e. μ′ = max improveM(μ,d) iff

1. μ′ is “at least as good” as μ: �μ′�(d)≥�μ�(d), and
2. μ′ is “strictly better for the changed equations”: if (δi = F̂i(δ)) in μ and

(δi≥ F̂ ′
i (δ)) in μ′ and F̂i �= F̂ ′

i , then F̂ ′(d) > F̂ (d).

Example 4 (Max-strategy iteration). We illustrate some steps of the analysis of
the example in Fig. 1. Assume the current strategy is:

μ1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ0,1 = ∞
δ0,2 = ∞
δ1,1 = sup{ x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 }
δ1,2 = sup{ −x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 }
δ2,1 = −∞
δ2,2 = −∞

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and the current template bounds are:

d1 =

⎧⎨⎩
δ0,1 → ∞ δ0,2 → ∞
δ1,1 → 5 δ1,2 → −5
δ2,1 → −∞ δ2,2 → −∞

⎫⎬⎭
The strategy can only be improved w.r.t. δ1,1:

μ2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ0,1 = ∞
δ0,2 = ∞
δ1,1 = sup{ x′ | x≤δ1,1 ∧ −x≤δ1,2 ∧ x≤9 ∧ x′=x+1 }
δ1,2 = sup{ −x′ | x ≤ δ0,1 ∧ −x ≤ δ0,2 ∧ x′=5 }
δ2,1 = −∞
δ2,2 = −∞

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
We compute the new fixed point w.r.t. μ2:

Logico-Numerical Max-Strategy Iteration 421

d2 = lfp�μ2� =
⎧⎨⎩
δ0,1 → ∞ δ0,2 → ∞
δ1,1 → 10 δ1,2 → −5
δ2,1 → −∞ δ2,2 → −∞

⎫⎬⎭
In the next step we can improve the strategy w.r.t. δ2,1 and δ2,2, a.s.o.

An improving strategy is selected by testing for each equation whether an argu-
ment of its max-operator leads to a greater bound. Since the arguments of the
max-operator are required to be monotonic, the bounds are always monotoni-
cally increasing and, thus, arguments that have already been selected in previous
strategies need not be considered again.

3 Logico-Numerical Max-Strategy Iteration

We will present an algorithm which enables the use of max-strategy iteration in
a logico-numerical context, i.e. programs with a state space Bp × Rn.

3.1 Abstract Domain

We consider the logico-numerical abstract domain A = ℘(Bp) × R
m

which
combines Boolean formulas with template polyhedra. An abstract value (B,d)
consists of the cartesian product of valuations of the Boolean variables B (rep-
resented as Boolean formulas using Bdds for example) and the template bounds
d. We define the domain operations:

– Abstraction: αT(S) =

(
{b | ∃x : (b,x) ∈ S}

min{d | (b, γxT(d)) ∈ S}

)
– Concretization: γT(S

�) = B ∧ γxT(d)

– Join:

(
B
d

)
�T

(
B′

d′

)
=

(
B ∨B′

d �x
T d′

)
– Image: �R�,�′��

(
B
d

)
=

(
{b′ | T�x≤d ∧ b ∈ B ∧R(b, b′,x,x′)}

sup {T�′x
′ | T�x≤d ∧ b ∈ B ∧R(b, b′,x,x′)}

)
" and ⊥ are defined as

(
tt
∞

)
and

(
ff

−∞

)
respectively.

Since we are analyzing a CFG with locations L, we have the overall abstract
domain Σ� = L → A. An abstract value S� = λ�.(B�,d�) ∈ Σ� assigns to each
location a value of the above logico-numerical domain. Note that the dimension
m of d� may depend on � if the templates differ from location to location.

3.2 Algorithm

Our analysis is based on alternating (1) a truncated Kleene iteration over the
logico-numerical abstract domain and (2) numerical max-strategy iteration, see
Fig. 3.

422 P. Schrammel and P. Subotic

1 S := S0

2 S′ = post(S)
3 while ¬stable(S, S′) do
4 while ¬p stable(S, S′) do

S := S′

S′ = post(S)
done

⎫⎪⎪⎬
⎪⎪⎭ phase (1): truncated logico-numerical Kleene iteration

5
6
7
8 S := S′

9 M = generate(S)
10 μ := (δ = d)
11 μ′ = max improveM(μ,d)
12 while μ′ 	= μ do

μ := μ′

d := lfp�μ�
μ′ = max improveM(μ,d)

done

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

phase (2): numerical max-strategy iteration
13
14
15
16
17 S′ = post(S)
18 done
19 return S

Fig. 3. Logico-numerical max-strategy iteration algorithm

The truncated Kleene iteration (propagation) explores the system until a cer-
tain criterion is satisfied; we say that the system preliminarily stable. We use
the following criterion: we stop Kleene iteration if for all locations the set of
reachable Boolean states does not change whatever transition we take. The un-
derlying idea is to discover a subsystem, in which Boolean variables are stable
during a presumably larger number of iterations. In such a subsystem numer-
ical variables evolve, while Boolean transitions switch only within the system,
i.e. they do not “discover” new Boolean states, until numerical conditions are
satisfied that make Boolean variables leave the subsystem.

We use max-strategy iteration (phase (2)) to compute the fixed point for
the numerical variables for such a subsystem. Then Kleene iteration (phase (1))
continues exploring the next preliminary stable subsystem. The algorithm ter-
minates in a finite number of steps as soon as the Kleene iteration of phase (1)
has reached a fixed point.

Formal Description. See Fig. 3. Since we only manipulate abstract quantities,
we will omit the superscript � in the sequel in order to improve readability.

For phase (1) we use the definitions:

– Initial abstract value: S0 = λ�.

{
" for �=�0
⊥ for � �=�0

– Post-condition: post(S) = λ�′.S(�′) �
⊔

��R�,�′�(S(�))
– Condition for preliminary stability: p stable(S, S′) = (∀� : B�=B′

�)

Logico-Numerical Max-Strategy Iteration 423

�0 �1

�2

b′1 ∧ b′2 ∧ x′=0
(b′1=b1) ∧ (b′2=b2) ∧ x≤19 ∧ x′=

{
x+1 if b1
x−1 if ¬b1

(b′1=b1) ∧ (b′2=b2) ∧ x≥20 ∧ (x′=x)
(b′1=(x≤100))∧ (b′2=b2)
∧ x≥100 ∧ (x′=x−100) ⎧⎨

⎩
(b′1=b1) ∧ (b′2=¬b2) ∧ x≤99∧

x′=
{
x+1 if b2
x if ¬b2

Fig. 4. CFG of the program in Example 1

– Condition for stability (global convergence): stable(S, S′) = (S=S′)

For phase (2) we define the following:
– The max-strategy improvement operatormax improveM is defined as described
in §2.

– The operator generate dynamically derives the system of equations for the
current preliminary stable subsystem: this means that we restrict the system
to those transitions which stay within the subsystem defined by the current
Boolean states λ�.B�. For this purpose we conjoin the term b ∈ B� ∧ b′ ∈ B�′

to the transition relation in the definition below. Strategies may only contain
convex constraints: thus, we transform the relation into disjunctive normal
form and generate one strategy per disjunct:

generate(S) =
⋃
�′,�

decomp convex(∃b, b′ : R�,�′(b,x, b
′,x′) ∧ b ∈ B� ∧ b′ ∈ B�′)

where decomp convex(R�,�′) =
⋃

j

(
δ�′ =�Rj

�,�′�(δ�)
)
with R�,�′ =

∨
j R

j
�,�′ and

Rj
�,�′ convex.

Remark 1. Since the bounds d are monotonically increasing, we use the constant
strategy δ=d (where d are the previously obtained bounds) as initial strategy
for phase (2) (see line 10 in Fig. 3). This prevents the numerical max-strategy
improvement from restarting with δ=−∞ each time.

We illustrate this algorithm by applying it to the CFG in Fig. 4:

Example 5. We use the template constraint matrix

(
1
−1

)
which corresponds

to an interval analysis. In order to make the presentation more concise, we will

write states (� →
(
B
d

)
) ∈ Σ as � →

(
ϕ(b1, b2)

[− δ�,2, δ�,1]

)
where ϕ is a Boolean

formula.

The initial state in �0 is

(
tt

[−∞,∞]

)
. We start exploring the system by tak-

ing transition (�0, R, �1): �1 →
(
b1 ∧ b2
[0, 0]

)
. We continue propagating through

424 P. Schrammel and P. Subotic

(�1, R, �1): �1 →
(
b1 ∧ b2
[0, 1]

)
. Now, we have reached preliminary stability because

none of the transitions makes us discover new Boolean states in the next iteration
((�0, R, �1) and (�1, R, �1) yield nothing new w.r.t. Boolean states and the other
transitions are infeasible, i.e., they give ⊥). Hence, we go ahead to phase (2) and
extract the numerical equation system for each (�, R, �′). E.g. for (�1, R, �1), we
compute:

∃b, b′ : R ∧ b1 ∧ b2 ∧ b′1 ∧ b′2 = (x′=x+1 ∧ x≤19)

which gives us the partial equations:

δ1,1=sup{ x′ | x ≤ δ1,1 ∧ −x ≤ δ1,2 ∧ x′=x+1 ∧ x≤19 }
δ1,2=sup{ −x′ | x ≤ δ1,1 ∧ −x ≤ δ1,2 ∧ x′=x+1 ∧ x≤19 }

which have to be completed by the other incoming arcs of �1. We start the
max-strategy iteration with the strategy corresponding to the values obtained
in phase (1):

μ = {δ0=∞, δ1,1=1, δ1,2=0, δ2=−∞}

We observe that we can improve this strategy w.r.t. δ1,1:

μ′ =

⎧⎨⎩δ1=∞
δ1,1=sup{x′ | x ≤ δ1,1 ∧ −x ≤ δ1,2 ∧ x′=x+1 ∧ x≤19}, δ1,2=0
δ2=−∞

⎫⎬⎭
The max-strategy iteration terminates with: �1 →

(
b1 ∧ b2
[0, 20]

)
.

We continue propagating (phase (1)): By (�1, R, �2) we get �2 →
(
b1 ∧ b2
[20, 20]

)
;

then (�2, R, �2) results in

(
b1 ∧ ¬b2
[21, 21]

)
; by joining these values we get �2 →(

b1
[20, 21]

)
. Taking (�2, R, �2) a second time does not change the Boolean state:

�2 →
(

b1
[20, 22]

)
. Taking any other transition does not discover new Boolean

states either, thus, we move on to phase (2) and compute the numerical equation
system w.r.t. the current Boolean state: For example for (�2, R, �2), we compute

(∃b, b′ : R ∧ b1 ∧ b′1) =
(
(x′=x+1 ∨ x′=x) ∧ x≤99

)
which results in the partial equations

δ2,1=max

{
sup{ x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x′=x+1 ∧ x≤99 },
sup{ x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x′=x ∧ x≤99 }

}
δ2,2=max

{
sup{ −x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x′=x+1 ∧ x≤99 },
sup{ −x′ | x ≤ δ2,1 ∧ −x ≤ δ2,2 ∧ x′=x ∧ x≤99 }

}

Logico-Numerical Max-Strategy Iteration 425

which have to be completed by the other incoming arcs of �2. The only possible
improvement w.r.t to the current state is w.r.t. δ2,1; phase (2) results in �2 →(

b1
[20, 100]

)
.

We continue with phase (1), which filters the above value through (�2, R, �1)

augmenting the abstract value in �1 to

(
b1

[0, 20]

)
. Then, none of the transitions

makes the reachable state sets increase (neither Boolean nor numerical), hence
we have reached the global fixed point:

�0 → ", �1 →
(

b1
[0, 20]

)
, �2 →

(
b1

[20, 100]

)
Note that a logico-numerical analysis in the same domain with widening and
descending iterations yields no information about this example: S = λ�.".

3.3 Properties

Theorem 1 (Termination). The logico-numerical max-strategy algorithm ter-
minates after a finite number of iterations.

Proof. Termination follows from these observations:
(a) Phase (1) only propagates as long as new Boolean states are discovered; the

number of Boolean states is finite.
(b) Max-strategy iteration is called at most once for each subset of Boolean

states. The number of subsets of Boolean states is finite.
(c) There is a unique system of numerical equations (built by generate) for each

subset of Boolean states.
(d) Max-strategy iteration terminates after a finite number of improvement

steps, because there is a finite number of strategies and each strategy is
visited at most once [8].

(e) Max-strategy iteration returns the unique least fixed point w.r.t. the given
system of equations [8].

Thus, as soon as all reachable Boolean states have been discovered and the
associated numerical fixed point has been computed, the overall fixed point has
been reached and the algorithm terminates.

Theorem 2 (Soundness). The logico-numerical max-strategy algorithm com-
putes a fixed point of λS.S0 � �R��(S).
Proof. Let us denote
• F = λS.S0 � �R��(S).
• λS.(lfpB F)(S) the truncated Kleene iteration phase (1)
(lines 4 to 7 in Fig. 3),
i.e. λS.

(
while B �=B′ do S := S′;S′ = F (S) end; return S′).

426 P. Schrammel and P. Subotic

• λ(B,d).(B, (lfpX FX)(d)) the max-strategy iteration in phase (2)
(lines 9 to 16 in Fig. 3),
i.e. λS.

(
M = generate(S);μ := (δ = d);μ′ = max improveM(μ,d);
while μ′ �= μ do μ := μ′;d := lfp�μ�;μ′ = max improveM(μ,d) done;
return S

)
.

Then, we can write the whole algorithm as lfp((idB , lfpX FX) ◦ (lfpB F) ◦ F).
Since lfpB F and (idB, lfpX FX) are both extensive, we can under-approximate

them by id = λS.S. Hence, we conclude from

lfp F + lfp(id︸︷︷︸
id�(idB ,lfpXFX)

◦ id︸︷︷︸
id�(lfpBF)

◦ F)

that our algorithm computes an over-approximation of the least fixed point,
i.e. it is sound.

Theorem 3 (Optimality). The logico-numerical max-strategy algorithm com-
putes the least fixed point of λS.S0 � �R��(S).
Proof. Additionally to Thm. 2, we have to show that

lfp((idB, lfpX FX) ◦ (lfpB F) ◦ F) + lfp F .
(a) Phase (1) computes a certain number of iterations F k(⊥) = (lfpB F)◦F (⊥)

taking into account the whole transition system. We trivially have F k(⊥) +
lfp F (⊥).

(b) Phase (2) (idB, lfpX FX) iterates over the transitions of a subsystem. It is
known [8] that it computes the least fixed point w.r.t. this subsystem. Hence,
the result of phase (2) cannot go beyond the fixed point of the whole system:
(idB , lfpX FX) ◦ F k(⊥) + lfp F .

(c) We can repeat arguments (a) and (b) for the outer loop:
. . . ◦ (idB, lfpX FX) ◦ F k2 ◦ (idB, lfpX FX) ◦ F k1(⊥) + lfp F
where kn is the number of iterations of the nth phase (1).
Thus, we have ((idB , lfpX FX) ◦ F kn)n(⊥) + lfp F for n≥0.

Hence, we conclude from lfp((idB, lfpX FX) ◦ (lfpB F) ◦F) + lfp F and Thm. 2
that our algorithm computes the least fixed point, i.e. it is optimal.

3.4 Application to Data-Flow Programs

For our experiments in §4, we used Lustre programs, i.e. synchronous data-flow
programs. For this reason we will briefly explain how to apply our algorithm to
such programs.

Lustre programs can be reduced to a symbolic transition system{I(s)
A(s, i) → s′ = f(s, i)

where s =

(
b
x

)
and i =

(
β
ξ

)
are the vectors of

(Boolean and numerical) state and input variables, I(s) is the initial condition,
A(s, i) is an assertion constraining input variables depending on state variables,
and f is the vector of transition functions.

State space partitioning is used to obtain a CFG in which each equivalence
class of the partition corresponds to a location.

Logico-Numerical Max-Strategy Iteration 427

The transition relations are constructed by

R�,�′ = ∃β :

{
x′ = fx(b,x,β, ξ)

b′ = f b(b,x,β, ξ)

}
∧ ψ�(x, b) ∧ ψ�′(x

′, b′) ∧ A(b,x,β, ξ)

where fx
i =

{
· · ·
aij(x, ξ) if φij(b,x,β, ξ)
. . .

, and ψ� are the definitions of the parti-

tions (locations).
Boolean input variables are quantified existentially. Numerical inputs

appear as auxiliary variables (i.e., variables without associated bounds) in the
max-strategy iteration, hence, they are treated without modification of the
algorithms.

3.5 Discussion

An important observation is that, since the overall abstract domain is of the form
L → ℘(Bp) × R

m
, the choice of the CFG has two effects on the performance:

first, it determines the set of representable abstract properties, and second, it
influences the approximations made in the generation of the numerical equa-
tion system for the max-strategy iteration phase (2), because there is only one
template polyhedron per location.

Generalization. The structure of the algorithm we presented is quite general.
In particular, it does not depend on the method used to compute the numerical
least fixed point in phase (2). We conjecture that the algorithm makes every
method, that is able to compute the least fixed point of a numerical system by
ascending iterations, compute the least fixed point of a logico-numerical system.

For example, we suppose that our algorithm can be used without any modi-
fication with the variant of max-strategy iteration for quadratic programs and
quadratic templates proposed in [19].

If a method computes the fixed point by descending iterations, as for example
min-strategy iteration [4, 5], our algorithm can still be used, but requires a small
adaptation because the abstract value computed in phase (1), which is an under-
approximation of the least fixed point, cannot be used to initialize phase (2),
which requires an over-approximation: hence, line 10 in Fig. 3 must be replaced
by guessing appropriate initial bounds and an initial strategy for phase (2). This
makes the algorithm less elegant and the analysis, probably, less efficient.

Logico-Numerical Max-Strategy Iteration Using a Power Domain.
The algorithm is also rather generic w.r.t. the kind of logico-numerical ab-
stract domain we use. For example, we could consider the logico-numerical
power domain Bp → ℘(Rn) where ℘(Rn) is abstracted by any domain that
is supported by strategy iteration. Then the overall domain for our method is
L → Bp → R

m
. This domain implicitly dynamically partitions each location

into sub-locations corresponding to Boolean valuations sharing a common nu-
merical abstract value3. The construction of the equation system (generate in
our algorithm, Fig. 3) must take into account these partitions.

3 This sharing can be implemented with the help of MtBdds where the numerical
abstract values are stored in the leaves [21].

428 P. Schrammel and P. Subotic

This domain is more precise than the product domain described in §3, how-
ever, the drawback is that the number of partitions might explode if only few
Boolean valuations share a common numerical abstract value.

Comparison with Logico-Numerical Min-Strategy Iteration. The power
domain Bp → R

m
is also used by Sotin et al [22] who propose an approach to an-

alyzing logico-numerical programs using min-strategies. In accordance with the
form of the abstract domain, they consider logico-numerical strategies Bp → Π
(where Π is the set of min-strategies), which dynamically associates the numer-
ical min-strategies to the reachable Boolean states during analysis. They start
with an initial logico-numerical strategy P (0) = λb.π(0) with a chosen numerical
min-strategy π(0) and compute a fixed point using logico-numerical Kleene it-
eration with widening and descending iterations. Then they iteratively improve
the min-strategies in P (i) and recompute the fixed point.

This approach does not integrate well with mathematical programming be-
cause the only known method for computing the fixed point of a logico-numerical
strategy is logico-numerical Kleene iteration (with widening). Hence, in contrast
to our approach, there is no guarantee to compute the least fixed point.

Comparison with Abstract Acceleration. Numerous methods have been
developed to alleviate the problem of bad extrapolations due to widening, e.g. ab-
stract acceleration [23–25], a method for computing the transitive closure of nu-
merical loops. These methods are able to accelerate some cases of self-loops and
cycles with certain types of affine transformations, and they rely on widening in
the general case. However, due to the use of general convex polyhedra, they are
able to “discover” complex invariant constraints.

In contrast, max-strategy iteration is able to “accelerate” globally the whole
transition system regardless of the graph structure or type of affine transfor-
mation, and it effectively computes the least fixed point. However, this is only
possible on the simpler domain of template polyhedra.

Although the use of template polyhedra is a restriction, this kind of (static)
approximation is much more predictable than the (dynamic) approximations
made by widening.

Remark 2. Guided static analysis [26] is a framework for analyzing monoton-
ically increasing subsystems, which makes it possible to reduce the impact of
widening by applying descending iterations “in the middle” of an analysis. Our
algorithm proceeds in a similar fashion – although for different technical reasons
– by applying max-strategy iteration on monotonically increasing subsystems.

4 Experimental Evaluation

We implemented the algorithm in our reactive system verification toolReaVer
4,

which is based on the logico-numerical abstract domain library BddApron [21]
and an improved version of the max-strategy iteration solver of Gawlitza et al

4 http://pop-art.inrialpes.fr/people/schramme/reaver/

http://pop-art.inrialpes.fr/people/schramme/reaver/

Logico-Numerical Max-Strategy Iteration 429

Fig. 5. Scalability of logico-numerical max-strategy iteration in comparison with nu-
merical max-strategy iteration on the enumerated CFG, using octagonal constraints.
The timeout was set to 3600 seconds. Note the logarithmic scales.

[27]. Since template polyhedra are not yet implemented in the Apron library
[28], we emulated template polyhedra operations in phase (1) with the help of
general polyhedra, which certainly impaired the performance – nonetheless we
obtained encouraging results.

Benchmarks. We took 18 benchmarks5 used in [25]. These are high-level simu-
lation models (programmed in Lustre) of manufacturing systems which consist
of building blocks like sources, buffers, machines and routers that synchronize
via handshakes (for this reason there are many Boolean variables). The proper-
ties to be verified like maximal throughput time depend on numerical variables.
These programs have up to a few hundred lines of code, 27 Boolean and 7 nu-
merical variables, which produce enumerated CFGs of up to 650 locations and
5000 transitions after simplification by Boolean reachability. The focus of the
experiments was on comparing the precision of the inferred invariants rather
than proving properties.

Results. We performed experiments with octagonal constraints (±xi, xi ± xj)
in order to evaluate efficiency and precision. We compared max-strategy iteration
on the enumerated CFGs (MSI) with logico-numerical max-strategy iteration
(LNMSI) on CFGs obtained by the static partitioning method by Boolean states
implying the same numerical transitions (“numerical modes”) from [25]. The
resulting CFGs are on average five times smaller than the enumerated CFGs for
the medium-sized benchmarks.

– LNMSI scales clearly better than MSI (see Fig. 5): our method was on average
9 times faster – for those benchmarks where both methods terminated before

5 The benchmarks can be downloaded from:
http://pop-art.inrialpes.fr/people/schramme/maxstrat/

http://pop-art.inrialpes.fr/people/schramme/maxstrat/

430 P. Schrammel and P. Subotic

the timeout: MSI hit the timeout in 8 out of 18 cases (versus 3 for our method).
The gain in efficiency grows with increasing benchmark sizes.

– The precision is almost preserved: only 0.38% (!) of the bounds were worse
but still finite, and 0.16% were lost. This precision loss did not impact the
number of proved properties. Due to the better scalability we were even able
to prove 3 more benchmarks (10 as opposed to 7).

– We compared the precision of LNMSI with octagonal constraints with a logico-
numerical analysis with octagons using the standard approach with widening
(N=2) and 2 descending iterations on the same CFG. On average 18% of the
bounds of our invariants were strictly better than those computed using the
standard analysis. In 2 cases these improvements made the difference to prove
the property. However, the standard analysis was 19 times faster on average.

Furthermore, we experimented with different templates and CFG sizes:

– The average gain in speed increases with the template size: 3.3 for interval
analysis (±xi), 5 for zones (±xi, xi−xj) and 9 for octagons (for those bench-
marks which did not run into timeouts).

– The precision of LNMSI depends on the CFG size: the general trend is “the
bigger the more precise”, but the results are less clear: CFGs of the same
size seem to have very different quality w.r.t. precision. Partitioning methods
which find good partitions matter!

– A smaller CFG does not automatically mean faster analysis: the fact that a
smaller graph means more complicated logico-numerical transition functions
and more numerical strategies per location outweighs the advantage of dealing
with less locations.

– It is interesting that LNMSI scales also better on the enumerated CFG: it
seems to be advantageous to start with a small system with few strategies,
iteratively increase the system, and finally, when computing the numerical
fixed point of the full system, most of the strategies are already known not to
improve the bounds, and thus max-strategy iteration converges faster.

We also experimented with LNMSI using the logico-numerical power domain
discussed in §3.5, which performed on our CFGs still 6 to 7 times faster on
average and with a 100% preservation of bounds compared to MSI.

5 Conclusions

We presented logico-numerical max-strategy iteration, a solution to the intricate
problem of combining numerical max-strategy iteration with techniques that
are able to deal with Boolean variables implicitly and therefore allow to trade
precision for efficiency.

In contrast to the previous attempt of Sotin et al [22] of extending strategy
iteration to logico-numerical programs, which relies on widening operators to
converge, our method enables the use of mathematical programming and hence,
it indeed computes the best logico-numerical invariant w.r.t. the chosen abstract
domain.

Logico-Numerical Max-Strategy Iteration 431

The effectiveness of our method depends on two factors:
(1) The choice of the templates: in our experiments we used mainly octagonal

constraints, but we could have used methods (e.g. [10]) for inferring template
constraints.

(2) The considered CFG (either of the imperative program, or the one obtained
by partitioning in the case of data-flow programs) which determines the ab-
stract domain: the partitioning method by “numerical modes” turned out to
be surprisingly effective: compared to the solution based on an enumeration
of the reachable Boolean states, the obtained CFGs were 5 times smaller
on average, still the precision loss was negligible, i.e. almost zero, and we
gained at least one order of magnitude w.r.t. efficiency.

Furthermore, this paper delivers the first experimental results of applying nu-
merical max-strategy iteration to larger programs: on the one hand max-strategy
iteration is guaranteed to compute more precise invariants than standard tech-
niques in the same domain, on the other hand our implementation is not (yet)
able to compete with standard techniques w.r.t. efficiency.

Perspectives. Our algorithm is quite generic w.r.t. the numerical analysis
method and logico-numerical abstract domain. Though, in order to tackle effi-
ciency issues evoked above, it would be interesting to design a more integrated
logico-numerical max-strategy solver. This would enable to share more infor-
mation between subsequent calls to the max-strategy iteration, e.g. to avoid
retesting of strategies that will definitely not lead to an improvement. Beyond
that, we could more extensively use SMT-solvers. For instance, checking whether
a strategy is an improvement is currently done after having constructed the nu-
merical equation system; it would be beneficial to find the improving strategies
already on the logico-numerical level.

Moreover, we plan to apply our method to the analysis of logico-numerical
hybrid automata [29] by extending the hybrid max-strategy iteration method of
Dang and Gawlitza [27, 30].

Acknowledgements. We thank Thomas M. Gawlitza, Bertrand Jeannet,
Philipp Rümmer and the anonymous reviewers for their valuable remarks on
the draft of this paper.

References

1. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: Principles of Programming Languages, pp. 178–188.
ACM (1987)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252 (1977)

3. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages, pp. 84–97. ACM (1978)

432 P. Schrammel and P. Subotic

4. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A Policy Iteration
Algorithm for Computing Fixed Points in Static Analysis of Programs. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

5. Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static Analysis by Policy Iteration
on Relational Domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
237–252. Springer, Heidelberg (2007)

6. Adjé, A., Gaubert, S., Goubault, E.: Coupling Policy Iteration with Semi-definite
Relaxation to Compute Accurate Numerical Invariants in Static Analysis. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg
(2010)

7. Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Itera-
tion. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer,
Heidelberg (2007)

8. Gawlitza, T., Seidl, H.: Precise Relational Invariants Through Strategy Iteration.
In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40.
Springer, Heidelberg (2007)

9. Gawlitza, T., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpreta-
tion meets convex optimization. Journal of Symbolic Computation 47, 1416–1446
(2012)

10. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Dunod,
pp. 106–130 (1976)

12. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

13. Miné, A.: The octagon abstract domain. In: Working Conference on Reverse En-
gineering, pp. 310–319. IEEE (2001)

14. Bultan, T., Gerber, R., Pugh, W.: Symbolic Model Checking of Infinite State
Systems Using Presburger Arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 400–411. Springer, Heidelberg (1997)

15. Jeannet, B., Halbwachs, N., Raymond, P.: Dynamic Partitioning in Analyses of
Numerical Properties. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 39–50. Springer, Heidelberg (1999)

16. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation, pp. 196–207. ACM (2003)

17. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with
smt-based techniques. In: Formal Methods in Computer-Aided Design, pp. 1–9.
IEEE (2008)

18. Gawlitza, T., Seidl, H.: Precise Interval Analysis vs. Parity Games. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 342–357. Springer, Heidelberg
(2008)

19. Gawlitza, T.M., Seidl, H.: Computing Relaxed Abstract Semantics w.r.t. Quadratic
Zones Precisely. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
271–286. Springer, Heidelberg (2010)

20. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. Transactions on Programming Languages and Systems 33, 11 (2011)

Logico-Numerical Max-Strategy Iteration 433

21. Jeannet, B.: BDDAPRON: A logico-numerical abstract domain library (2009),
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

22. Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy Iteration within Logico-
Numerical Abstract Domains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 290–305. Springer, Heidelberg (2011)

23. Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Re-
lation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

24. Schrammel, P., Jeannet, B.: Applying abstract acceleration to (co-)reachability
analysis of reactive programs. Journal of Symbolic Computation 47, 1512–1532
(2012)

25. Schrammel, P., Jeannet, B.: Logico-Numerical Abstract Acceleration and Applica-
tion to the Verification of Data-Flow Programs. In: Yahav, E. (ed.) Static Analysis.
LNCS, vol. 6887, pp. 233–248. Springer, Heidelberg (2011)

26. Gopan, D., Reps, T.W.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

27. Dang, T., Gawlitza, T.M.: Discretizing Affine Hybrid Automata with Uncertainty.
In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 473–481.
Springer, Heidelberg (2011)

28. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for
Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

29. Schrammel, P., Jeannet, B.: From hybrid data-flow languages to hybrid automata:
A complete translation. In: Hybrid Systems: Computation and Control, pp. 167–
176. ACM (2012)

30. Dang, T., Gawlitza, T.M.: Template-Based Unbounded Time Verification of Affine
Hybrid Automata. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 34–49.
Springer, Heidelberg (2011)

http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

A Constraint Solver Based on Abstract Domains

Marie Pelleau1, Antoine Miné2, Charlotte Truchet1, and Frédéric Benhamou1

1 Université de Nantes, 2 rue de la Houssinière, Nantes
{firstName.lastName}@univ-nantes.fr

2 École normale supérieure
45, rue d’Ulm, Paris
Antoine.Mine@ens.fr

Abstract. In this article, we apply techniques from Abstract Interpreta-
tion (a general theory of semantic abstractions) to Constraint Program-
ming (which aims at solving hard combinatorial problems with a generic
framework based on first-order logics). We highlight some links and differ-
ences between these fields: both compute fixpoints by iteration but employ
different extrapolation and refinement strategies; moreover, consistencies
in Constraint Programming can be mapped to non-relational abstract do-
mains. We then use these correspondences to build an abstract constraint
solver that leverages abstract interpretation techniques (such as relational
domains) to go beyond classic solvers. We present encouraging experimen-
tal results obtained with our prototype implementation.

1 Introduction

Abstract Interpretation is a method to design approximate semantics of pro-
grams and provide sound answers to questions about their run-time behaviors
[8,7]. Constraint Programming aims at solving, with reusable techniques, hard
combinatorial problems expressed declaratively. This article studies the applica-
tion of Abstract Interpretation techniques to Constraint Programming.

State of the Art. First introduced by Montanari [19], Constraint Programming
(CP) relies on the idea that many problems can be expressed as conjunctions
of first-order logic formulas, called constraints, each one representing a specific
combinatorial feature of the problem [21]. Each constraint comes with ad hoc
operators exploiting its internal structure to reduce the combinatorics. The con-
straints are then combined into generic solving algorithms. Much of the research
effort in CP is focused on defining and improving constraints1 and fine-tuning
solving algorithms. CP now offers powerful techniques for combinatorial opti-
mization, with many practical applications to scheduling, packing, layout design,
frequency allocation, etc. Yet, solvers suffer from limitations. They are limited
to non-relational domains, such as boxes or Cartesian products of integer sets.
Moreover, two clearly separate family of solving algorithms exist: one handles

1 See http://www.emn.fr/z-info/sdemasse/gccat for a catalog of existing global
constraints.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 434–454, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.emn.fr/z-info/sdemasse/gccat

A Constraint Solver Based on Abstract Domains 435

discrete variables and the other continuous variables. Several methods have been
proposed to handle mixed problems, such as discretizing continuous variables and
handling them in a discrete solver (as in Choco [23]). Unfortunately, the solver
remains a purely discrete one and does not benefit from heuristics developed
for continuous ones. Alternatively, one can add specific mixed constraints [6] or
generic integrity constraints [4] to a continuous solver, with similar drawbacks.

In another research area, Abstract Interpretation (AI) is used to design static
program analyzers that are sound and always terminate (such as Astrée [5]) by
developing computable approximations of essentially undecidable problems. The
(uncomputable) concrete collecting semantics expresses in fixpoint form the set
of observable behaviors of the program. It is approximated in an abstract domain
that restricts the expressiveness to a set of properties of interest, provides data-
structure representations, efficient algorithms to compute abstract versions of
concrete operators, and acceleration operators to approximate fixpoints in finite
time. Soundness guarantees that the analyzer observes a super-set of the program
behaviors. Numeric domains, focusing on numeric variables and properties, are
particularly well developed; major ones include intervals [7] and polyhedra [9],
and recent years have seen the development of new domains, such as octagons
[18], and libraries, such as Apron [15]. They can handle all kinds of numeric
variables, including mathematical integers, rationals, and reals, machine integers
and floating-point numbers, and even express relationships between variables
of different types [17,5]. Each domain corresponds to some trade-off between
cost and precision. Finally, domains can be modified and combined by generic
operators, such as disjunctive completions and reduced products.

Contribution. In this paper we seek to use AI techniques to build an abstract,
generic CP solver. Our contributions are as follows: we show the links between
AI and CP and recast the later as a fixpoint computation similar to local itera-
tions in a disjunctive completion of non-relational domains; we design a generic
abstract solver parametrized by abstract domains and prove its termination; we
show that, by using relational and mixed integer-real abstract domains, we can
go beyond some limitations of existing solvers. We do not study in this paper the
dual problem, i.e., exploiting CP techniques in AI; it is one of the perspectives
of this work.

The paper is organized as follows. Section 2 provides background information
on AI and CP, and some elements of comparison. Section 3 recasts CP as AI
and presents our abstract solver. Our prototype implementation and preliminary
experimental results are presented in Sec. 4. Section 5 concludes.

Related Works. Some interactions between CP and verification techniques
have been explored in previous works. For instance, CP has been used to au-
tomatically generate test configurations [13], or to verify CP models [16]. In
another direction, several recent works, such as [10,24], establish connections
between AI and SAT solving algorithms, holding promise for cross-pollination
between these fields. Our aim is similar, but linking AI to CP. While related,
CP and SAT differ significantly enough in the chosen models (numeric versus

436 M. Pelleau et al.

boolean) and solving algorithms that previous results do not apply. Our work is
in the continuity of [25] that extends CP solving methods to use richer domain
representations, such as octagons. However, embedding a new domain required
ad hoc techniques to express its operations in the native language of the solver:
boxes. In this paper, we reverse that process: we redesign from the ground up
the solver in an abstract way so that it is not tied to boxes but can reuse as-is
existing abstract operators and domains from AI.

2 Preliminaries

In this section we present some notions of Abstract Interpretation and Constraint
Programming that will be needed later.

2.1 Bases of Abstract Interpretation

We first present some elements of Abstract Interpretation that will prove useful
in the design of our solver (see [8,7] for a more detailed presentation).

Fix-Point Abstractions. The concrete semantics of a program is given as
the least fixpoint lfp⊥ F of an operator F : D → D in some partially ordered
structure (D,+,⊥,�), such as a complete partial order or a lattice. With suitable
hypotheses [8] on F and D, the fixpoint can be expressed as the limit of a
(possibly transfinite) increasing iteration lfp⊥ F =

⊔
i∈Ord F

i(⊥) on ordinals.

Similarly, we denote by (D�,+�,⊥�,��) the abstract domain. A monotonic
concretization γ : D� → D associates a concrete meaning to each abstract el-
ement. An abstract operator F � : D� → D� is a sound abstraction of F if
F ◦ γ + γ ◦ F �. Sometimes, but not always, there exists an abstraction function
α : D → D� such that (α, γ) forms a Galois connection, which ensures that each
concrete element X has a best abstraction α(X), and the optimal abstract op-
erator F � can be uniquely defined as F � = α ◦ F ◦ γ. In all cases, lfp⊥ F can be

approximated as
⊔�

i∈Ord F
�i(⊥�). This limit may not be computable, even if F �

is, or may require many iterations. It is thus often replaced with the limit of an
increasing sequence: X�

0 = ⊥�, X�
i+1 = X�

i �F �(X�
i) using a widening operator �

to accelerate convergence. The widening is designed to over-approximate � and
converge in finite time δ to a post-fixpoint X�

δ of F �. Then, γ(X�
δ) , lfp⊥ F . The

limit is often refined by a decreasing iteration: Y �
0 = X�

δ , Y
�
i+1 = Y �

i � F �(Y �
i),

using a narrowing operator � designed to stay above any fixpoint of F and con-
verge in finite time. As all the Y �

i are abstractions of lfp⊥ F , we can stop the
iteration at any time.

Local Iterations. In addition to refining the results of least fixpoint computa-
tions, decreasing iterations have been used by Granger [11] locally, i.e., within
the computation of F �. Granger observes that the concrete operator F often
involves lower closure operators, i.e., operators ρ that are monotonic, idempo-
tent (ρ ◦ ρ = ρ) and reductive (ρ(X) + X). Given any sound abstraction ρ� of

A Constraint Solver Based on Abstract Domains 437

ρ, the limit Y �
δ of the sequence Y �

0 = X�, Y �
i+1 = Y �

i � ρ�(Y �
i) is an abstrac-

tion of ρ(γ(X�)). Whenever ρ� is not an optimal abstraction of ρ, Y �
δ may be

significantly more precise than ρ�(X�). A relevant application is the analysis of
complex test conjunctions C1 ∧ · · · ∧ Cp where each atomic test Ci is modeled

in the abstract as ρ�i . Generally, ρ� = ρ�1 ◦ · · · ◦ ρ�p is not optimal, even when

each ρ�i is. A complementary application is the analysis of a single test Ci using
a sequence of relaxed, non-optimal test abstractions. For instance, non-linear
expression parts may be replaced with intervals computed based on variable
bounds [17]. As applying the relaxed test refines these bounds, the relaxation is
not idempotent and benefits from local iterations. The link between local itera-
tions and least fixpoint refinements lies in the observation that ρ(X) computes a
trivial fixpoint: the greatest fixpoint of ρ smaller than X : gfpX ρ. In both cases, a
decreasing iteration starts from an abstraction of a fixpoint (lfp⊥ F in one case,
gfpX ρ in the other) and computes a smaller abstraction of that fixpoint.

On Narrowings. While a lot of work has been devoted to designing smart
widenings, narrowings have gathered far less attention. Some major domains,
such as polyhedra [9], do not feature any. This may be explained by three facts:
firstly, narrowings (unlike widenings) are not necessary to achieve soundness;
secondly, performing a bounded number of decreasing iterations without nar-
rowing is sometimes sufficient to recover enough precision after widening [5];
thirdly, when this simple technique is not sufficient, narrowings do not actually
help further in practice and solutions beyond decreasing iterations must be con-
sidered [12]. In the following, we argue that Constraint Programming can be
seen as a form of decreasing iteration, but uses different techniques that are,
in some respects, more advanced than the corresponding ones used in Abstract
Interpretation.

2.2 Constraint Programming

We now present the basic definitions of Constraint Programming (see [21] for
a more detailed presentation). In this section, we employ CP terminology, and
take special care to point out terms with a different meaning in AI and CP.

Problems are modeled in a specific format, called Constraint Satisfaction Prob-
lem (CSP), and defined as follows:

Definition 1 (Constraint Satisfaction Problem). A CSP is defined by a
set of variables (v1, . . . , vn) taking their value in domains (D̂1, . . . , D̂n) and a
set of constraints (C1, . . . , Cp) that are relations on the variables.

A domain Di in CP denotes the set of possible values for a variable vi and
D = D1× · · ·×Dn is called the search space. As the search space evolves during
the solving process, we distinguish the initial search space of the CSP and note
it D̂ = D̂1 × · · · × D̂n as in Def. 1. Problems may be discrete (D̂ ⊆ Zn) or
continuous (D̂ ⊆ Rn). Domains are, however, always bounded.

438 M. Pelleau et al.

Given a constraint C on variables v1, . . . , vn in domains D1, . . . , Dn, and
given values xi ∈ Di, we denote by C(x1, . . . , xn) the fact that the constraint
is satified when each variable vi takes the value xi. The set of solutions is
S = {(s1, . . . , sn) ∈ D̂ | ∀i ∈ �1, p�, Ci(s1, . . . , sn)}, with p the number of con-
straints and where �a, b� = {x ∈ Z | a ≤ x ≤ b} denotes the interval of integers
between a and b.

For discrete problems, two domain representations are traditionally used: sub-
sets and intervals.

Definition 2 (Integer Cartesian Product). Let v1, . . . , vn be variables over
finite discrete domains D̂1, . . . , D̂n. We call integer Cartesian product any Carte-
sian product of integer sets in D̂. Integer Cartesian products form a finite lattice:

S� = {
∏
i

Xi | ∀i, Xi ⊆ D̂i }

Definition 3 (Integer Box). Let v1, . . . , vn be variables over finite discrete
domains D̂1, . . . , D̂n. We call integer box a Cartesian product of integer intervals
in D̂. Integer boxes form a finite lattice:

I� = {
∏
i

�ai, bi� | ∀i, �ai, bi� ⊆ D̂i, ai ≤ bi } ∪ {∅}

For continuous problems, domains are represented as intervals with floating-point
bounds. Let F be the set of floating-point machine numbers. Given a, b ∈ F, we
note [a, b] = {x ∈ R | a ≤ x ≤ b} the interval of reals bounded by a and b, and
I = {[a, b] | a, b ∈ F} the set of such intervals.

Definition 4 (Box). Let v1, . . . , vn be variables over bounded continuous do-
mains D̂1, . . . , D̂n ∈ I. A box is a Cartesian product of intervals in D̂. Boxes
form a finite lattice:

B� = {
∏
i

Ii | ∀i, Ii ∈ I, Ii ⊆ D̂i} ∪ {∅}

Solving a CSP means computing exactly or approximating its solution set S.

Definition 5 (Approximation). A complete (resp. sound) approximation of
the solution S is a collection A of domain sequences such that ∀(D1, . . . , Dn) ∈
A, ∀i, Di ⊆ D̂i and S ⊆

⋃
(D1,...,Dn)∈A D1×· · ·×Dn (resp.

⋃
(D1,...,Dn)∈A D1×

· · · ×Dn ⊆ S).

Soundness guarantees that we find only solutions, while completeness guarantees
that no solution is lost. On discrete domains, constraint solvers are expected to be
sound and complete, i.e., compute the exact set of solutions. This is generally
impossible on continuous domains, and we usually withdraw either soundness

A Constraint Solver Based on Abstract Domains 439

(most of the time) or completeness. Note that the terms sound and complete
have opposing definitions in AI and CP so, to avoid confusion, we will use the
term over-approximations (resp. under-approximations) to denote CP-complete
AI-sound (resp. CP-sound AI-complete) approximations.

In this article, we consider solving methods that over-approximate the solu-
tions of continuous problems and compute the exact solutions of discrete ones.
These methods alternate two steps: propagation and search.

Propagation. The goal of a propagation algorithm is to use the constraints
to reduce the domains. Intuitively, we remove inconsistent values from domains,
i.e., values that cannot appear in any solution. Several definitions of consistency
have been proposed in the literature. We present the most common ones.

Definition 6 (Generalized Arc-Consistency). Given variables v1, . . . , vn
over finite discrete domains D1, . . . , Dn, Di ⊆ D̂i, the domains are said gen-
eralized arc-consistent (GAC) for a constraint C iff ∀i ∈ �1, n�, ∀xi ∈ Di, ∀j �=
i, ∃xj ∈ Dj such that C(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) holds.

Definition 7 (Bound-Consistency). Given variables v1, . . . , vn over finite
discrete domains D1, . . . , Dn, Di ⊆ D̂i, the domains are said bound-consistent
(BC) for a constraint C iff ∀i ∈ �1, n�, Di is an integer interval �ai, bi�, and
the condition of Def. 6 holds for xi = ai and xi = bi (but not necessarily other
values of xi in �ai, bi�).
Definition 8 (Hull-Consistency). Given variables v1, . . . , vn over continuous
interval domains D1, . . . , Dn ∈ I, Di ⊆ D̂i, the domains are said Hull-consistent
for a constraint C iff D1 × · · · ×Dn is the smallest floating-point box containing
all the solutions for C in D1 × · · · ×Dn.

Each constraint kind and consistency comes with an algorithm, called propaga-
tor, that tries to achieve consistency. When considering several constraints, a
propagation loop iterates the constraint propagators until a fixpoint is reached.
As shown in [2], the order of propagator applications does not matter, as the set
of domains lives in a finite lattice (B�, I� or S�) and the consistent fixpoint is its
unique least element. When consistency is too costly to achieve, the propagators
and propagator loops settle instead for an over-approximation (e.g., removing
only some inconsistent values). In addition to providing a tighter search space,
the propagation is sometimes able to discover that it contains no solution at all,
or that all its points are solutions.

Search. Generally, propagation alone cannot compute the exact solution (in the
discrete case) or a precise enough over-approximation (in the continuous case).
Thus, in a second step, a search engine is employed to try various assumptions
on variable values. In the discrete case, a chosen variable is instantiated to each
value in its domain. In the continuous case, its domain is split into two smaller
subdomains. The solving algorithm continues by selecting a new search space and

440 M. Pelleau et al.

list of boxes sols ← ∅ /*stores the solutions*/
queue of boxes toExplore ← ∅ /*stores the boxes to explore*/
push D̂ in toExplore /*initialization with CSP search space*/

while toExplore 	= ∅ do
b ← pop(toExplore)
b ← Hull-consistency(b)
if b 	= ∅ then

if b contains only solutions or b is small enough then
sols ← sols ∪ b

else
split b into b1 and b2 by cutting in half along the largest box dimension
push b1 and b2 in toExplore

Fig. 1. A classic continuous solver

applying a propagation step (as it may no longer be consistent), and possibly
making further choices. This interleaving of propagations and choices terminates
when the search space can be proved to contain no solution, only solutions
or, in the continuous case, when its size is below a user-specified threshold. In
the discrete case, at worst, all the variables are instantiated. After exploring a
branch, in case of failure or if all the solutions should be computed, the algorithm
returns to a choice point (instantiation or split) by backtracking and tries another
assumption.

We illustrate the search algorithm by an example solver in Fig. 1 correspond-
ing to a continuous solver based on Hull-Consistency (Def. 8) computing an
over-approximation of all the solutions. As explained above, a discrete solver
would differ significantly. Existing solutions to embed discrete variables in con-
tinuous solvers consist in adding constraints expressing integerness and their
propagators [6,4], while keeping a search engine based on continuous domains.

2.3 Comparing Abstract Interpretation and Constraint
Programming

We now present informally some connections between Abstract Interpretation
and Constraint Programming. The next section will make these connections
formal by expression CP in the AI framework.

Both techniques are grounded in the theory of fixpoints in lattices. They
pursue similar goals and means: computing or over-approximating solutions to
complex equations by manipulating abstracted views of potential solution sets,
such as boxes (called domains in CP, and abstract domain elements in AI). Their
goals, however, do not coincide. Solvers aim at completeness and thus always al-
low refinement up to an arbitrary precision. On the contrary, the precision of
abstract interpreters is fixed by their choice of abstract domains; they can seldom

A Constraint Solver Based on Abstract Domains 441

represent arbitrary precise over-approximations. AI embraces incompleteness.
The choice of abstract domains sets the cost and precision of an interpreter,
while the choice of domains sets the cost of a solver to reach a given precision.

Although they aim at completeness, solvers nevertheless employ simple, non-
relational domains. They rely on collections of simple domains (similar to disjunc-
tive completions) to reach the desired precision. The domains are homogeneous
and cannot mix variables of different type. On the contrary, AI enjoys a rich col-
lection of abstract domains, including relational and heterogeneous ones.

On the algorithmic side, AI and CP share common ideas. Iterated propagations
in CP are similar to local iterations in AI. In fact, approximating consistency in
CP is similar to approximating the effect of a complex test in AI. However, search
engines in CP use features, such as choice points and backtracking, that have no
equivalent in AI. Dually, the widening from AI has no equivalent in CP, as CP
does not employ increasing iterations but only decreasing ones.

Finally, while abstract interpreters are usually defined in a very generic way
and parametrized by arbitrary abstract domains, solvers are far less flexible and
embed choices of abstractions (such as domains and consistencies) as well as
concrete semantics (the type of variables) in their design. In the following, we
will design an abstract solver that avoids these pitfalls and can benefit from the
large library of abstract domains designed for AI.

3 An Abstract Constraint Solver

We now present our main contribution: expressing constraint solving as an ab-
stract interpreter, which involves defining concrete and abstract domains, ab-
stract operators for split and consistency, and an iteration scheme.

3.1 Concrete Solving

A CSP is similar to the analysis of a conjunction of tests and can be formalized
in terms of local iterations. We consider as concrete domain D the subsets of
the CSP search space D̂ = D̂1 × · · · × D̂n (Def. 1), i.e., (P(D̂),⊆, ∅,∪). Each
constraint Ci corresponds to a concrete lower closure operator ρi : P(D̂) →
P(D̂), such that ρi(X) keeps only the points in X satisfying Ci. The concrete
solution of the problem is simply S = ρ(D̂), where ρ = ρ1◦· · ·◦ρp. It is expressed
in fixpoint form as gfpD̂ ρ.

3.2 Abstract Domains

Solvers do not manipulate individual points in D̂, but rather collections of points
of certain forms, such as boxes, called domains in CP. We now show that CP-
domains are elements of an abstract domain (D�,+�,⊥�,��) in AI, which depends
on the chosen consistency. In addition to standard AI operators, we require a
monotonic size function τ : D� → R+ that we will use later as a termination
criterion (Def. 10).

442 M. Pelleau et al.

Example 1. Generalized arc-consistency (Def. 6) corresponds to the abstract do-
main of integer Cartesian products S� (Def. 2), ordered by element-wise set in-
clusion. It is linked with the concrete domain D by the standard Cartesian Galois
connection:

D −−−→←−−−
αa

γa S�

γa(S1, . . . , Sn) = S1 × · · · × Sn

αa(X) = λi.{x | ∃(x1, . . . , xn) ∈ X, xi = x}

The size function τa uses the size of the largest component, minus one, so that
singletons have size 0:

τa(S1, . . . , Sn) = maxi(|Si| − 1)

Example 2. Bound consistency (Def. 7) corresponds to the domain of integer
boxes I� (Def. 3), ordered by element-wise interval inclusion. We have a Galois
connection, and use as size function the length of the largest dimension:

D −−−→←−−−
αb

γb I�

γb(�a1, b1�, . . . , �an, bn�) = �a1, b1� × · · · × �an, bn�
αb(X) = λi.�min {x ∈ Z | ∃(x1, . . . , xn) ∈ X, xi = x},

max {x ∈ Z | ∃(x1, . . . , xn) ∈ X, xi = x}�
τb(�a1, b1�, . . . , �an, bn�) = maxi(bi − ai)

Example 3. Hull consistency (Def. 8) corresponds to the domain of boxes with
floating-point bounds B� (Def. 4). We use the following Galois connection and
size function:

D −−−→←−−−
αh

γh B�

γh([a1, b1], . . . , [an, bn]) = [a1, b1]× · · · × [an, bn]
αh(X) = λi.[max {x ∈ F | ∀(x1, . . . , xn) ∈ X, xi ≥ x},

min {x ∈ F | ∀(x1, . . . , xn) ∈ X, xi ≤ x}]
τh([a1, b1], . . . , [an, bn]) = maxi(bi − ai)

We observe that to each choice corresponds a classic non-relational abstract do-
main, which is an homogeneous Cartesian product of identical single-variable
domains. However, this needs not be the case: new solvers can be designed be-
yond the ones considered in traditional CP by varying the abstract domains fur-
ther. A first idea is to apply different consistencies to different variables which
permits, in particular, mixing variables with discrete domains and variables with
continuous domains. A second idea is to parametrize the solver with other ab-
stract domains from the AI literature, in particular relational domains, which
we illustrate below.

A Constraint Solver Based on Abstract Domains 443

Example 4. The octagon domain O� [18] assigns a (floating-point) upper bound
to each binary unit expression ±vi ± vj on the variables v1, . . . , vn. It enjoys a
Galois connection, and we use the size function from [20]:

D −−−→←−−−
αo

γo O�

O� = {αvi + βvj | i, j ∈ �1, n�, α, β ∈ {−1, 1} } → F

γo(X
�) = {(x1, . . . , xn) ∈ Rn | ∀i, j, α, β, αxi + βxj ≤ X�(αvi + βvj)}

αo(X) = λ(αvi + βvj).min {x ∈ F | ∀(x1, . . . , xn) ∈ X, αxi + βxj ≤ x}
τo(X

�) = min(maxi,j,β (X
�(vi + βvj) +X�(−vi − βvj)),

maxi (X
�(vi + vi) +X�(−vi − vi))/2)

Example 5. The polyhedron domain P� [9] abstract sets as convex, closed poly-
hedra. Modern implementations [15] generally follow the “double description
approach” and maintain two dual representations for each polyhedron: a set of
linear constraints and a set of generators (vertices and rays, although our poly-
hedra never feature rays as they are bounded). There is no abstraction function
α for polyhedra, and so, no Galois connection. Operators are generally easier on
one representation. In particular, we define the size function on generators as
the maximal Euclidian distance between pairs of vertices:

τp(X
�) = max

gi,gj∈X�
||gi − gj ||

3.3 Constraints and Consistency

We now assume that an abstract domain D� underlying the solver is fixed. Given
the concrete semantics of the constraints ρ = ρ1 ◦ · · · ◦ ρp, and if D� enjoys a

Galois connection D −−−→←−−−
α

γ
D�, then the semantics of the perfect propagator

achieving the consistency for all the constraints is simply: α ◦ ρ ◦ γ. Solvers
achieve this algorithmically by applying the propagator for each constraint in
turn until a fixpoint is reached or, when this process is deemed too costly, return
before a fixpoint is reached. By observing that each propagator corresponds to an
abstract test transfer function ρ�i in D�, we retrieve the local iterations proposed
by Granger to analyze conjunctions of tests [11]. A trivial narrowing is used here:
stop refining after an iteration limit is reached.

Additionally, each ρ�i can be internally implemented by local iterations [11], a
technique which is used in both the AI and CP communities. A striking connec-
tion is the analysis in non-relation domains using forward-backward iterations
on expression trees [17, §2.4.4], which is extremely similar to the HC4-revise
algorithm [3] developed independently for CP.

When there is no Galois connections (as for polyhedra), there is no equivalent
to consistency. Nevertheless, we can still use local iterations on approximate test
transfer functions ρ�i, which serve the same purpose: to remove some points that
do not satisfy the constraints.

444 M. Pelleau et al.

3.4 Disjunctive Completion and Split

In order to approximate the solution to an arbitrary precision, solvers use a
coverage of finitely many abstract elements from D�. This corresponds in AI
to the notion of disjunctive completion. We now consider the abstract domain
E� = Pfinite(D�), and equip it with the Smyth order +�

E , a classic order for
disjunctive completions defined as:

X� +�
E Y

� ⇐⇒ ∀B� ∈ X�, ∃C� ∈ Y �, B� +� C�

The creation of new disjunctions is achieved by a split operation ⊕, that splits
an abstract element into two or more elements:

Definition 9 (Split Operator). A split operator ⊕ : D� → E� satisfies:

1. ∀e ∈ D�, | ⊕ (e)| is finite,
2. ∀e ∈ D�, ∀ei ∈ ⊕(e), ei +� e, and
3. ∀e ∈ D�, γ(e) =

⋃
{γ(ei) | ei ∈ ⊕(e)}.

Condition 2 implies ⊕(e) +�
E {e}. Condition 3 implies that ⊕ is an abstraction of

the identity; thus, ⊕ can be freely applied at any place during the solving process
without altering the AI-soundness (over-approximation). We now present a few
example splits.

Example 6 (Split in S�). The instantiation of a variable vi in a discrete domain
X� = (S1, . . . , Sn) ∈ S� is a split operator:

⊕a(X
�) = {(S1, . . . , Si−1, {x}, Si+1, . . . , Sn) |x ∈ Si}

Example 7 (Split in B�). Cutting a box in two along a variable vi in a continuous
domain X� = (I1, . . . , In) ∈ B� is a split operator:

⊕h(X
�) = {(I1, . . . , Ii−1, [a, h], Ii+1, . . . , In), (I1, . . . , Ii−1, [h, b], Ii+1, . . . , In)}

where Ii = [a, b] and h = (a+ b)/2 rounded in F in any direction.

Example 8 (Split in O�). Given a binary unit expression αvi + βvj , we define
the split on an octagon X� ∈ O� along this expression as:

⊕o(X
�) = {X�[(αvi + βvj) �→ h], X�[(−αvi − βvj) �→ −h]}

where h = (X�(αvi + βvj)−X�(−αvi − βvj))/2, rounded in F in any direction.

Example 9 (Split in P�). Given a polyhedron X� ∈ P� represented as a set of
linear constraints, and a linear expression

∑
i βivi, we define the split:

⊕p(X
�) = {X� ∪ {

∑
i βivi ≤ h}, X� ∪ {

∑
i βivi ≥ h}}

where h = (minγ(X�)

∑
i βivi + maxγ(X�)

∑
i βivi)/2 can be computed by the

Simplex algorithm.

A Constraint Solver Based on Abstract Domains 445

These splits are parametrized by the choice of a direction of cut (some variable
or expression). For non-relational domains we can use two classic strategies from
CP: split each variable in turn, or split along a variable with maximal size (i.e.,
|Si| or bi − ai). These strategies lift naturally to octagons by replacing the set
of variables with the (finite) set of unit binary expressions (see also [20]). For
polyhedra, one can bisect the segment between two vertices that are the farthest
apart, in order to minimize τp. However, even for relational domains, we can use
a faster and simpler non-relational split, e.g., cut along the variable with the
largest range.

To ensure the termination of the solver, we impose that any series of reduc-
tions, splits, and choices eventually outputs a small enough element for τ :

Definition 10. The operators τ : D� → R+ and ⊕ : D� → E� are compatible if,
for any reductive operator ρ� : D� → D� (i.e., ∀X� ∈ D�, ρ�(X�) +� X�) and any
family of choice operators πi : E� → D� (i.e., ∀Y � ∈ E�, πi(Y

�) ∈ Y �), we have:

∀e ∈ D�, ∀r ∈ R>0, ∃K s.t. ∀j ≥ K, (τ ◦ πj ◦ ⊕ ◦ ρ ◦ · · · ◦ π1 ◦ ⊕ ◦ ρ)(e) ≤ r

Each of the split function we presented above, ⊕a, ⊕h, ⊕o, and ⊕p, is compat-
ible with the size function τa, τh, τo, and τp we proposed on the corresponding
domain.

The search procedure can be represented as a search tree where each node
corresponds to a search space and the children of a node are constructed by
applying the split operator on the parent and then applying a reduction. With
this representation, the set of nodes at a given depth corresponds to a disjunction
over-approximating the solution. Moreover, a series of reduction (ρ), selection
(π), and split (⊕) operators corresponds to a tree branch. Definition 10 states
that each branch of the search tree is finite.

3.5 Abstract Solving

We are now ready to present our solving algorithm, in Fig. 2. It maintains in
toExplore and sols two disjunctions in E�, and iterates the following steps: choose
an abstract element e from toExplore (pop), apply the consistency (ρ�), and
either discard the result, add it to the set of solutions sols, or split it (⊕). The
solver starts with the maximal element "� of D�, which represents γ("�) = D̂.

Correctness. At each step,
⋃
{γ(x) |x ∈ toExplore∪sols} is an over-approxima-

tion of the set of solutions, because the consistency ρ� is an abstraction of the
concrete semantics ρ of the constraints and the split ⊕ is an abstraction of the
identity. We note that abstract elements in sols are consistent and either contain
only solutions or are smaller than r. The algorithm terminates when toExplore is
empty, at which point sols over-approximates the set of solutions with consistent
elements that contain only solutions or are smaller than r. To compute the exact
set of solutions in the discrete case, it is sufficient to choose r < 1.

446 M. Pelleau et al.

list of abstract domains sols ← ∅ /*stores the abstract solutions*/
queue of abstract domains toExplore← ∅ /*stores the abstract elements to explore*/
push �� in toExplore /*initialization with the abstract search space: γ(��) = D̂*/

while toExplore 	= ∅ do
e ← pop(toExplore)
e ← ρ�(e)
if e 	= ∅ then

if τ (e) ≤ r or isSol(e) /*isSol(e) returns true if e contains only solutions*/
then

sols ← sols ∪ e
else

push ⊕(e) in toExplore

Fig. 2. Our generic abstract solver

The termination is ensured by the following proposition:

Proposition 1. If τ and ⊕ are compatible, the algorithm in Fig. 2 terminates.

Proof. The search tree is finite. Otherwise, as its width is finite by Def. 9, there
would exist an infinite branch (König’s lemma), which would contradict Def. 10.

The solver in Fig. 2 uses a queue data-structure, and splits the oldest abstract
element first. More clever choosing strategies are possible (e.g., split the largest
element for τ). The algorithm remains correct and terminates for any strategy.

Comparison with Abstract Interpretation. Similarly to local iterations in
AI, our solver performs decreasing abstract iterations. Indeed, toExplore∪ sols is
decreasing for +�

E in the disjunctive completion domain E� at each iteration of the

loop (indeed, ⊕(e) +�
E {e} and we can assume that ρ� is reductive in D� without

loss of generality). However, it differs from classic AI in two ways. Firstly, there
is no split operator in AI: new components in a disjunctive completion are gen-
erally added only at control-flow joins (by delaying the abstract join �� in D�).
Secondly, the solving iteration strategy is far more elaborated than in AI. The use
of a narrowing is replaced with a data-structure that maintains an ordered list of
abstract elements and a splitting strategy that performs a refinement process and
ensures its termination. Actually, more complex strategies than the simple one
we presented here exist in the CP literature. One example is the AC-5 algorithm
[26] where, each time the domain of a variable changes, the variable decides which
constraints need to be propagated. The design of efficient propagation algorithms
is an active research area [22].

4 Experiments

We have implemented a prototype solver to demonstrate the feasibility of our
approach. We describe its main features and present experimental results.

A Constraint Solver Based on Abstract Domains 447

4.1 Implementation

Our prototype solver, called Absolute, is implemented in OCaml. It uses Apron,
a library of numeric abstract domains intended primarily for static analysis [15].
We benefit from Apron domains (intervals, octagons, and polyhedra), its ability
to hide their internal algorithms under a uniform API, and its handling of integer
and real variables and of non-linear constraints.

Consistency. Apron provides a language of constraints sufficient to express
many CSPs: equalities and inequalities over numeric expressions (including op-
erators such as +, −, ×, /,

√
, power, modulo, and rounding to integers). The

test transfer function naturally provides propagators for these constraints. In-
ternally, each domain implements its own algorithm to handle tests, including
sophisticated methods to handle non-linear constraints (such as HC4 and lin-
earization [17]). Our solver then performs local iterations until either a fixpoint
or a maximum number of iterations is reached (which is set to 3 to ensure a
fast solving). In CP solvers, only the constraints containing at least one vari-
able that has been modified during the previous step are propagated. However,
for simplicity, our solver propagates all the constraints at each step of the local
iteration.

Split. Currently, our solver only splits along a single variable at a time, cutting
its range in two, even for relational domains and integer variables. It chooses the
variable with the largest range. It uses a queue to maintain the set of abstract
elements to explore (as in Fig. 2). Compared to most CP solvers, this splitting
strategy is very basic. It will be improved in the future by integrating more clever
strategies from the CP literature.

4.2 Exemple of AI-Solving with Absolute

In order to make the abstract solving process clear, we detail here an example
with a very simple problem. Consider a CSP on two continuous variables v1 and
v2 taking their values in D1 = D2 = [−5, 5], and the constraints C1 : x2+y2 ≤ 4
and C2 : (x− 2)2 + (y + 1)2 ≤ 1.

Figure 3 shows the first iterations of the AI-solving method for this CSP.
The root corresponds to the initial search space after applying the reduction
based on HC4 as explained above (D1 = [1, 2], D2 = [−1.73, 0]). Its successor
nodes correspond to the search spaces obtained after splitting the domain D2 in
half and applying the reduction to the new states. These two steps (split and
reduction) are repeatedly applied until all the solutions have been found, but
Figure 3 only shows the first three steps.

At a given depth in the search tree, the current approximation of the solution
space is made of the disjunction of the abstract elements currently investigated.
Figure 4 shows these disjunctions for the search tree depicted in Fig. 3.

448 M. Pelleau et al.

Fig. 3. First iterations of the AI-solving method

(a) (b) (c) (d)

Fig. 4. Disjunctions of the first iterations of the AI-solving method search tree given
in Fig. 3

A Constraint Solver Based on Abstract Domains 449

Table 1. CPU time in seconds to find the first solution with Ibex and Absolute

B� O�

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 0.009 0.018 0.053 0.048

nbody5.1 6 = 32.85 708.47 0.027 ≥ 1h

ipp 8 = 0.66 9.64 19.28 1.46

brent-10 10 = 7.96 4.57 0.617 ≥ 1h

KinematicPair 2 ≤ 0.013 0.018 0.016 0.011

biggsc4 4 ≤ 0.011 0.022 0.096 0.029

o32 5 ≤ 0.045 0.156 0.021 0.263

Table 2. CPU time in seconds to find all solutions with Ibex and Absolute

B� O�

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 0.02 0.10 0.26 0.14

nbody5.1 6 = 95.99 1538.25 27.08 ≥ 1h

ipp 8 = 38.83 39.24 279.36 817.86

brent-10 10 = 21.58 263.86 330.73 ≥ 1h

KinematicPair 2 ≤ 59.04 23.14 60.78 31.11

biggsc4 4 ≤ 800.91 414.94 1772.52 688.56

o32 5 ≤ 27.36 22.66 40.74 33.17

4.3 Experimental Results

We have run Absolute on two classes of problems: firstly, on continuous problems
to compare its efficiency with state-of-the-art CP solvers; secondly, on mixed
problems, that these CP solvers cannot handle while our abstract solver can.

Continuous Solving. We use problems from the COCONUT benchmark2, a
standard CP benchmark with only real variables. We compare Absolute with
the standard (interval-based) Ibex CP continuous solver3. Notice that the CO-
CONUT problems have a relatively small number of variables, compared for
instance to the number of variables that can be analyzed for a single program
in AI. The difficulty of the benchmark is here due to both the expressions of the
constraints (non linear with multiple variable occurences) and the high precision
that is required.

Additionally, we compare Absolute to our extension of Ibex to octagons from
previous work [20], which allows comparing the choice of domain (intervals versus
octagons) independently from the choice of solver algorithm (classic CP solver
versus our AI-based solver). Tables 1 and 2 show the run time in seconds to find

2 Available at http://www.mat.univie.ac.at/~neum/glopt/coconut/
3 Available at http://www.emn.fr/z-info/ibex/

http://www.mat.univie.ac.at/~neum/glopt/coconut/
http://www.emn. fr/z-info/ibex/

450 M. Pelleau et al.

Table 3. Number of nodes created to find the first solution with Ibex and Absolute

B� O�

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 145 28 45 207

nbody5.1 6 = 262 659 2 765 630 105 -

ipp 8 = 4 039 25 389 899 3 421

brent-10 10 = 101 701 12 744 2 113 -

KinematicPair 2 ≤ 43 55 39 55

biggsc4 4 ≤ 98 96 94 84

o32 5 ≤ 87 344 85 942

Table 4. Number of nodes created to find all solutions with Ibex and Absolute

B� O�

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 551 577 147 1057

nbody5.1 6 = 598 521 5 536 283 7 925 -

ipp 8 = 237 445 99 179 39 135 2 884 925

brent-10 10 = 211 885 926 587 5 527 -

KinematicPair 2 ≤ 847 643 215 465 520 847 215 465

biggsc4 4 ≤ 3 824 249 6 038 844 2 411 741 6 037 260

o32 5 ≤ 161 549 120 842 84 549 111 194

all the solutions or only the first solution of each problem. Tables 3 and 4 show
the number of nodes created to find all the solutions or only the first solution of
each problem.

On average, Absolute is competitive with the traditional CP approach. More
precisely, it is globally slower on problems with equalities, and faster on problems
with inequalities. This difference of performance seems to be related to the fol-
lowing ratio: the number of constraints in which a variable appears over the total
number of constraints. As said previously, at each iteration, all the constraints
are propagated even those for which none of their variables have changed. This
increases the computation time at each step and thus increases the overall time.
For instance, in the problem brent-10, there are ten variables, ten constraints,
and each variable appears in at most three constraints. If only one variable
has been modified, we will nevertheless propagate all ten constraints, instead of
three at most. This may explain the timeouts observed on problems brent-10
and nbody5.1 with Absolute.

Moreover, in our solver, the consistency loop is stopped after three itera-
tions while, in the classic CP approach, the fixpoint is reached. The consistency
in Absolute may be less precise than the one used in Ibex, which reduces the
time spent during the propagation step but may increase the search phase. This
probably explains why in tables 3 and 4 the number of nodes created during the

A Constraint Solver Based on Abstract Domains 451

Table 5. CPU time, in seconds, to solve mixed problems with Absolute

First Solution All solutions

name
vars

ctr type B� O� P� B� O� P�

int real

gear4 4 2 = 0.016 0.036 0.296 0.017 0.048 0.415

st miqp5 2 5 ≤ 0.672 1.152 ≥ 1h 2.636 3.636 ≥ 1h

ex1263 72 20 = ≤ 8.747 ≥ 1h ≥ 1h 473.933 ≥ 1h ≥ 1h

antennes 4 3 6 2 ≤ 3.297 22.545 ≥ 1h 520.766 1562.335 ≥ 1h

Table 6. Number of nodes created to solve mixed problems with Absolute

First Solution All solutions

name
vars

ctr type B� O� P� B� O� P�

int real

gear4 4 2 = 43 226 226 67 501 501

st miqp5 2 5 ≤ 2 247 2 247 - 7 621 7 621 -

ex1263 72 20 = ≤ 8544 - - 493 417 - -

antennes 4 3 6 2 ≤ 17 625 40 861 - 2 959 255 6 657 237 -

solving process with Absolute is most of the times larger than the one with Ibex.
Less reductions are performed thus more splitting operations are needed, hence
more nodes are created during the solving process.

These experimentations show that our prototype, which only features quite
näıve CP strategies, behaves reasonably well on a classic benchmark. Further
studies will include a deeper analysis of the performances and improvements of
Absolute on its identified weaknesses (splitting strategy, propagation loop).

Mixed Discrete-Continuous Solving. As CP solvers seldom handle mixed
problems, no standard benchmark exists. We thus gathered problems from Min-
LPLib,4 a library of mixed optimisation problems from the Operational Research
community. These problems are not satisfaction CSPs, but optimization prob-
lems, with constraints to satisfy and a function to minimize. We thus needed to
turn them info satisfaction CSPs. Following the approach in [4], we replaced each
optimization criterion min f(x) with a constraint |f(x)−best known value| ≤ ε.
We compared Absolute to the mixed solving scheme from [4], using the same ε
and benchmarks, and found that they have similar run times (we do not pro-
vide a more detailed comparison as it would be meaningless due to the machine
differences).

More interestingly, we observe that Absolute can solve mixed problems in
reasonable time and behaves better with intervals than with relational domains.
A possible reason is that current propagations and heuristics are not able to
fully use relational information available in octagons or polyhedra. Previous

4 Available at http://www.gamsworld.org/minlp/minlplib.htm

http://www.gamsworld.org/minlp/minlplib.htm

452 M. Pelleau et al.

works [20] suggest that a carefully designed split is key to efficient octagons;
future work will incorporate ideas from [20] into our solver and develop them
further. Already, Absolute is able to naturally cope with mixed CP problems
in a reasonable time, opening the way to new CP applications such as robotic
localization [14] or geometric problems [1].

5 Conclusion

In this paper, we have exposed some links between AI and CP, and used them to
design a CP solving scheme built entirely on abstract domains. The preliminary
results obtained with our prototype are encouraging and open the way to the
development of hybrid CP–AI solvers able to naturally handle mixed constraint
problems. In future work, we wish to improve our solver by adapting and in-
tegrating advanced methods from the CP literature. The areas of improvement
include: split operators for abstract domains, specialized propagators (such as
octagonal consistency or global constraints), and improvements to the propaga-
tion loop. We built our solver on abstractions in a modular way, so that existing
and new methods can be combined together, as is the case for reduced products
in AI. Ultimately, each problem should be automatically solved in the abstract
domains which best fit it, as it is the case in AI. A natural future work is thus
the development of new abstract domains adapted to specific constraint kinds.
Another exciting development would be to use some methods form CP in an
AI-based static analyzer. Areas of interest include: decreasing iteration meth-
ods, which are more advanced in CP than in AI, the use of a split operator
in disjunctive completion domains, and the ability of CP to refine an abstract
element to achieve completeness. Finally, it also remains to understand how fix-
point extrapolation operators, such as widenings, which are very popular in AI,
can be exploited in CP solvers.

References

1. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A Generic Geomet-
rical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional
Objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer,
Heidelberg (2007)

2. Benhamou, F.: Heterogeneous Constraint Solvings. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 62–76. Springer, Heidelberg
(1996)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revisiting hull and box
consistency. In: Proc. of the 16th Int. Conf. on Logic Programming, pp. 230–244
(1999)

4. Berger, N., Granvilliers, L.: Some interval approximation techniques for MINLP.
In: SARA (2009)

5. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: AIAA Infotech@Aerospace 2010. AIAA (2010)

A Constraint Solver Based on Abstract Domains 453

6. Chabert, G., Jaulin, L., Lorca, X.: A Constraint on the Number of Distinct Vectors
with Application to Localization. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 196–210. Springer, Heidelberg (2009)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conf. Rec.
of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 238–252. ACM Press (1977)

8. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Proc. of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96 (1978)

10. D’Silva, V., Haller, L., Kroening, D.: Satisfiability Solvers Are Static Analysers. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 317–333. Springer,
Heidelberg (2012)

11. Granger, P.: Improving the Results of Static Analyses of Programs by Local De-
creasing Iterations. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652,
pp. 68–79. Springer, Heidelberg (1992)

12. Halbwachs, N., Henry, J.: When the Decreasing Sequence Fails. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 198–213. Springer, Heidelberg
(2012)

13. Hervieu, A., Baudry, B., Gotlieb, A.: Pacogen: Automatic generation of pairwise
test configurations from feature models. In: Proc. of the 22nd Int. Symposium on
Software Reliability Engineering, pp. 120–129 (2011)

14. Jaulin, L., Bazeille, S.: Image shape extraction using interval methods. In: Proc.
of the 15th IFAC Symposium on System Identification (2009)

15. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for
Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

16. Lazaar, N., Gotlieb, A., Lebbah, Y.: A CP framework for testing CP. Con-
straints 17(2), 123–147 (2012)

17. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique, Palaiseau, France (December 2004)

18. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

19. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Science 7(2), 95–132 (1974)

20. Pelleau, M., Truchet, C., Benhamou, F.: Octagonal Domains for Continuous Con-
straints. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 706–720. Springer,
Heidelberg (2011)

21. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier (2006)

22. Schulte, C., Tack, G.: Implementing efficient propagation control. In: Proc. of the
3rd Workshop on Techniques for Implementing Constraint Programming Systems
(2001)

23. Choco Team. Choco: an open source Java constraint programming library. Research
report 10-02-INFO, École des Mines de Nantes (2010)

454 M. Pelleau et al.

24. Thakur, A., Reps, T.: A Generalization of St̊almarck’s Method. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 334–351. Springer, Heidelberg
(2012)

25. Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint program-
ming, with the example of octagons. In: Int. Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 72–79 (2010)

26. van Hentenryck, P., Deville, Y., Teng, C.: A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57 (1992)

An Abstract Interpretation of DPLL(T)�

Martin Brain1, Vijay D’Silva1, Leopold Haller1,
Alberto Griggio2,��, and Daniel Kroening1

1 Computer Science Department, University of Oxford, Oxford, UK
first.last@cs.ox.ac.uk

2 Fondazione Bruno Kessler, Trento, Italy
griggio@fbk.eu

Abstract. dpll(t) is a central algorithm for Satisfiability Modulo The-
ories (smt) solvers. The algorithm combines results of reasoning about
the Boolean structure of a formula with reasoning about conjunctions
of theory facts to decide satisfiability. This architecture enables modern
solvers to combine the performance benefits of propositional satisfiabil-
ity solvers and conjunctive theory solvers. We characterise dpll(t) as
an abstract interpretation algorithm that computes a product of two ab-
stractions. Our characterisation allows a new understanding of dpll(t)
as an instance of an abstract procedure to combine reasoning engines
beyond propositional solvers and conjunctive theory solvers. In addition,
we show theoretically that the split into Boolean and theory reasoning
is sometimes unnecessary and demonstrate empirically that it can be
detrimental to performance.

1 Introduction

The previous decade has witnessed the development of efficient solvers for decid-
ing satisfiability of formulae in a wide range of logical theories. The development
of these Satisfiability Modulo Theory (smt) solvers can be understood as a conse-
quence of three advances. Two advances are improvements in the performance of
solvers for Boolean satisfiability, and for the conjunctive fragments of first-order
theories such as equality with uninterpreted functions [12], difference logic [20],
or linear rational arithmetic [10]. The third advance is dpll(t), an algorithm
that efficiently combines the strengths of propositional sat solvers and conjunc-
tive theory solvers to decide satisfiability of a theory formula [12].

We explain the principles of dpll(t) with an example. A satisfiability checker
for the formula ϕ below has to reason about Boolean combinations of equality
constraints.

ϕ =̂(x = y ∨ y �= z) ∧ x = z ∧ y = z BoolSkel(ϕ) =̂(p ∨ ¬q) ∧ r ∧ q

� Supported by the Toyota Motor Corporation, ERC project 280053, EPSRC
project EP/J012564/1, and the FP7 STREP PINCETTE.

�� Supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-
226070 “progetto Trentino”, project ADAPTATION.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 455–475, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

456 M. Brain et al.

A dpll(t) solver first constructs a Boolean skeleton of ϕ, given as BoolSkel(ϕ)
above. The Boolean skeleton has the same structure as ϕ, but does not include in-
formation about the theory. If BoolSkel(ϕ) is unsatisfiable, so is ϕ. If BoolSkel(ϕ)
is satisfiable, each satisfying assignment defines a conjunction of equality con-
straints. A solver for the conjunctive fragment of the theory can be then used
to determine if the conjunction is satisfiable. If the conjunction defined by a
specific satisfying assignment π to BoolSkel(ϕ) is not satisfiable, the solver can
learn ¬π and iterate the process above with BoolSkel(ϕ)∧¬π. Propositional and
theory reasoning alternate in this manner until a first-order structure satisfying
the theory formula is found, or until the formula is shown to be unsatisfiable.

The primary aim of this paper is to explain and analyse dpll(t) in the
abstract interpretation framework. We show that reasoning about the Boolean
structure and about conjunctions of theory facts is, in a strict, mathematical
sense, an abstract interpretation of the semantics of a formula. Extensions of
dpll(t) such as theory propagation, early pruning, theory explanations, conflict
set generation and generation of multiple reasons for a single conflict have natural
characterisations in the language of abstract interpretation.

We emphasise that the purpose of this work is not to trivialise dpll(t) by
claiming it is “just abstract interpretation”. Instead we aim to illuminate the
link between SMT solvers and abstract interpretation to allow the transfer of
results and intuition. Though some of our results are intuitively clear and known
to the satisfiability community, our formalisation is not obvious. Our work shows
that dpll(t) is an instance of a generic, greatest fixed point computation that
overapproximates the reduced product of two abstract domains. This result al-
lows the static analysis community to better place dpll(t) in the rich landscape
of results concerning fixed point computations and domain combinations.

The secondary aim of this paper is to show that the product construction
involved in dpll(t) is sometimes unnecessary. We empirically compare splitting-
on-demand [2], an extension of classic dpll(t), with acdcl [14,8], an algebraic
generalisation of cdcl that does not operate over a product.1

Contributions. This paper makes the following contributions.
1. A new understanding of dpll(t) within the abstract interpretation frame-

work. We show that dpll(t) is an instance of a product construction over
a Boolean abstraction and a conjunctive theory abstraction.

2. A view of dpll(t) as an instance of a more abstract procedure which permits
combination of reasoning engines beyond the classic Boolean-theory split.

3. A empirical demonstration that, under some circumstances, the construction
of products in dpll(t) is unnecessary and detrimental to performance.

Related Work. A number of recent publications have given abstract interpre-
tation accounts of decision procedures: [7] gives an account of propositional sat
procedures such as dpll and cdcl using the same framework as this paper which

1 Our benchmarks and an extended version of this paper with proofs can be found at
http://www.cprover.org/papers/vmcai2013/

http://www.cprover.org/papers/vmcai2013/

An Abstract Interpretation of DPLL(T) 457

is the basis for the generalisation of cdcl in [8]. Independently of the above,
[23] gives an abstract-interpretation account and generalisation of St̊almarck’s
method. In [6], Nelson-Oppen theory combination is characterised as a product
construction over abstract domains.

A number of practical approaches have been derived directly from this point of
view. These include extensions of the cdcl algorithm to the interval abstraction
to decide floating-point logic [14] and reachability queries [9], and the synthesis of
abstract transformers using the generalisation of St̊almarck’s method mentioned
above [22]. Before these, [15] proposed combining propositional sat solvers and
abstract interpreters in a dpll(t)-style architecture.

A popular operational formalisation of dpll(t) is given in [21]. Our work
is closely related to research efforts to develop alternatives to dpll(t). These
approaches, called natural-domain smt [4], lift the cdcl algorithm to operate
directly on theory formulae. Notable examples have been presented for equal-
ity logic with uninterpreted functions [1], linear real arithmetic and difference
logic [19,4], linear integer arithmetic [17], non-linear arithmetic [11,18], and
floating-point arithmetic [14].

2 Abstract Satisfaction

This section provides a concise review of smt [3], abstract interpretation [5], and
the application of abstract interpretation to logic [7].

2.1 Satisfiability Modulo Theories

A signature Σ is a set of function symbols and predicate symbols, each associated
with a non-negative arity. Predicate and function symbols with arity zero are
called, respectively, propositions and constants. Ground terms are constants or
function applications f(t1, . . . , tn) where f is an n-ary function and the ti are
ground terms. All formulae we consider are quantifier-free and have no first-order
variables. For convenience, we omit these qualifiers in the rest of the paper. As is
common in the smt literature, we refer to uninterpreted constants as variables.

An atomic formula is a proposition, an n-ary predicate p(t1, . . . , tn) applied
to terms t1, . . . , tn, or a truth value in B = {t, f}. A literal is an atomic formula
or its negation. A literal is in positive phase if it is an atomic formula and in
negative phase otherwise. For a literal l, we denote by neg(l) its opposite-phase
counterpart. For a set of formulae Ψ we denote by ¬Ψ the set {¬ψ | ψ ∈ Ψ}.
A clause is a disjunction of literals, and a formula is in Conjunctive Normal
Form (cnf) if it is a conjunction of clauses. We follow standard convention and
denote clauses and cnf formulae as sets of literals, resp., sets of clauses where
convenient. Unless otherwise specified, we assume all formulae to be in cnf. We
denote by A(ϕ) the set of atomic subformulae of ϕ, by L(ϕ) the set of literals
A(ϕ)∪¬A(ϕ) and by H(ϕ) the set of terms occurring in ϕ. We denote by V(ϕ)
the set of variables (uninterpreted constants) in ϕ.

458 M. Brain et al.

Semantics. Formulae are interpreted over first-order structures. A structure for
a signature Σ is a pair (U, ε) consisting of a non-empty set U called the universe
and an interpretation function ε which maps every element of the signature to
an appropriate object over U , e.g. constants are mapped to elements of U , n-ary
functions to n-ary functions over U , etc. We denote (U, ε) simply by ε when U is
clear from context or irrelevant. The semantic entailment relation |= is defined
as usual. Given a structure σ and formula ϕ, if σ |= ϕ holds, then σ satisfies ϕ,
and it is a model of ϕ. Otherwise, it is a countermodel.

Theories. We define a (Σ-)theory TΣ as a set of first-order structures over
a signature Σ (as is common in the smt literature, e.g. [3]). We call a model
σ ∈ TΣ of ϕ a TΣ-model and a formula ϕ TΣ-satisfiable if it has a TΣ-model. The
satisfiability problem modulo a theory TΣ , for a quantifier-free ground formula
ϕ, is to decide whether ϕ has a TΣ-model.

Let P be a fixed set of propositions. A propositional formula is a P -formula,
and a propositional structure or propositional assignment is an element of the
set PAP =̂P → B. When discussing theories TΣ in the context of propositional
logic, we assume that P is disjoint from the signature Σ.

2.2 Abstract Interpretation

We briefly review some concepts in abstract interpretation. For convenience, we

work in the Galois connection framework. We write (C,�) −−−→←−−−
α

γ
(A,+) for a Ga-

lois connection between the complete lattices C and A. An underapproximation

is defined by a Galois connection (C,8) −−−→←−−−
α

γ
(A,,). In this paper, we assume

all Galois connections we consider to satisfy γ(⊥) = ⊥ and γ(") = ". A trans-
former is a monotone function on a lattice. A transformer f on a complete lattice
has a greatest fixed point, denoted gfp f or gfp X. f(X) and a least fixed point
lfp f or lfp X. f(X). The gfp closure f∗ of a transformer f is the transformer
a �→ gfp X. f(X) � a. The best approximation of f : C → C is g =̂α ◦ f ◦ γ.

A reduction operator is a transformer ρ in an abstract domain A that is
(i) reductive, i.e., for all a ∈ A it holds that ρ(a) + a and (ii) sound, i.e.,
γ ◦ ρ = γ. Reductions refine the representation of an abstract object without
changing its meaning. A dual reduction operator generalises the representation
without changing the meaning of an object.

Let (A,+) be an overapproximation of a powerset domain (℘(S),⊆) with

℘(S) −−−→←−−−
α

γ
A. The downset completion of A is the lattice D(A) =̂(ds(A),⊆)

where ds(A) is the set of all Q ∈ ℘(A) s.t. Q is downwards closed, i.e. ∀a ∈
Q, a′ ∈ A. a′ + a =⇒ a′ ∈ Q. When possible, we represent a set in ds(A) as
the set of its maximal elements. It underapproximates the concrete domain ℘(S)
with αD : ℘(S) → D(A), αD(Q) =̂{a ∈ A | γ(a) ⊆ Q} and γD : D(A) → ℘(S),
γD(D) =̂

⋃
d∈D γ(d).

Let (A,+A), (B,+B) be abstract domains over the concrete domain (C,⊆),
with Galois connections (αA, γA) and (αB, γB), respectively. The Cartesian prod-
uct A × B is defined the abstract domain over the lattice (A × B,+) with

An Abstract Interpretation of DPLL(T) 459

(a, b) + (a′, b′) exactly if a + a′ and b + b′. There is a Galois connection to the
concrete given by αA×B(c) = (αA(c), αB(c)) and γA×B(a, b) = γA(a) ∩ γB(b).

2.3 Interpreting Logics over Theories

We can use the formal machinery of abstract interpretation to approximate the
meaning of logical formulae. Let TΣ be a Σ-theory. The concrete theory domain
of TΣ is the powerset lattice (℘(TΣ),⊆) together with the model transformer
and universal countermodel transformer for each Σ-formula ϕ, given below.

modsTΣ
ϕ (S) =̂{σ ∈ TΣ | σ ∈ S ∧ σ |= ϕ}

ucmodsTΣ
ϕ (S) =̂{σ ∈ TΣ | σ ∈ S ∨ σ �|= ϕ}

Abstractions of these operators are implemented in existing abstract domains
for program analysis for the following reason. The function modsTΣ

ϕ is equiva-

lent to the strongest post-condition of an assume(ϕ) statement, while ucmodsTΣ
ϕ

is equivalent to the weakest liberal pre-condition. In logical inference terms,
modsTΣ

ϕ implements deduction, since it maps a set of structures S to the strongest

consequence of S w.r.t. ϕ, expressed as a set. Similarly, ucmodsTΣ
ϕ implements

abduction, because it maps an element R to the weakest explanation for R.
Abstract domains and transformers can be used to perform sound but in-

complete satisfiability checks. We refer to an abstraction of the concrete theory
domain as an abstract theory domain.

Theorem 1 (Abstract Satisfaction). Let amods be an overapproximation of
modsTΣ

ϕ and aucmods be an underapproximation of ucmodsTΣ
ϕ . The formula ϕ

is not TΣ-satisfiable (i) gfp amods = ⊥ or (ii) lfp aucmods = ".

Refutational Completeness in Abstract Interpretation. Let f be a con-
crete transformer and g be a sound approximation of f in a lattice A, and a be
an element of A. Then g is γ-complete at a if γ ◦ g(a) = f ◦ γ(a) holds.

We now introduce new notions of completeness to express adequate precision.
The transformer g is γ⊥-complete at a ∈ A if γ◦g(a) = ⊥ exactly if f ◦γ(a) = ⊥,
and it is ⊥-complete at a ∈ A if g(a) = ⊥ whenever f ◦γ(a) = ⊥. If a transformer
is ⊥-complete at every element we simply say it is ⊥-complete. The same holds
for γ- and γ⊥-completeness. A reduction operator is ⊥-complete (respectively γ-
or γ⊥-complete) if it is complete w.r.t. the concrete identity function.

3 Boolean Reasoning as Abstract Interpretation

This section shows that the Boolean reasoning employed by the dpll(t) algo-
rithm is an instance of abstract interpretation. More precisely, we show that
computing propositional solutions over the Boolean skeleton of a formula is an
abstract interpretation of the formula’s theory semantics.

Fix ϕ to be a Σ-formula and P ⊆ Props to be a fresh set of propositions
disjoint from Σ. We assume a bijective function pmap : A(ϕ) → P that relates
the atoms in ϕ to the propositions in P .

460 M. Brain et al.

Definition 1. The Boolean skeleton BoolSkel(ϕ) is the propositional formula
obtained by replacing each atomic formula ψA occurring in ϕ with pmap(ψA).

Reasoning about Boolean structure can be understood as an abstraction of the
semantics of a formula. From this perspective, the introduction of propositions
for subformulae, and consequently the construction of an independent, proposi-
tional formula can be considered an implementation detail.

Definition 2. For a set of Σ-formulae F we define the Boolean abstraction
BoolF as the abstract lattice (℘(F → B),⊆) with the Galois connection below.

(℘(TΣ),⊆) −−−→←−−−
αB

γB

(BoolF ,⊆)

αB(S) =̂{β ∈ F → B | ∃σ ∈ S ∀ψ ∈ F. σ |= ψ ⇐⇒ β(ψ) = t}
γB(B) =̂{σ ∈ TΣ | ∃β ∈ B ∀ψ ∈ F. σ |= ψ ⇐⇒ β(ψ) = t}

dpll(t) applied to a formula ϕ employs the Boolean abstraction BoolA(ϕ). A
set of propositional assignments from PAP represents an element of BoolA(ϕ).
We can move between these views by lifting pmap to map a set S ⊆ A(ϕ) → B

bijectively to a subset of PAP by mapping each assignment from subformulae to
truth values to its corresponding assignment from propositions to truth values.
Formally, we define pmap(S) =̂{λa.β(pmap(a)) | β ∈ S}.

Relating Boolean Abstractions and the Skeleton. The set of propositional
models can be computed by implementing an abstract transformer on BoolA(ϕ).

Proposition 1. Let ψ = BoolSkel(ϕ), then the skeleton transformer

BSkelModels =̂ pmap−1 ◦modsPAP

ψ ◦ pmap

is a sound overapproximation of the model transformer modsTΣ
ϕ .

The object amodsϕ defined above is not the best overapproximation of the model
transformer, since it only captures Boolean, but not theory reasoning. It is still
precise when considered in the concrete.

Proposition 2. BSkelModels is γ⊥-complete w.r.t. modsTΣ
ϕ .

In other words, even though the resulting element may not be the best abstract
representation of the set of models of ϕ, its concretisation is precise. The remain-
ing question is how one can determine whether the set of models it represents is
empty. In dpll(t), this is performed using a satisfiability check.

Definition 3. The function BoolCheck : BoolF → BoolF , defined below, elimi-
nates assignments not consistent in the theory.

BoolCheck(B) =̂
{
β ∈ B |

∧
{ϕ | β(ϕ) = t} ∪ {¬ϕ | β(ϕ) = f} is TΣ-SAT

}
Proposition 3. BoolCheck is a ⊥-complete reduction operator over BoolF .

An Abstract Interpretation of DPLL(T) 461

Example 1. Consider the first-order formula below.

ϕ =̂ (x = y) ∧ (¬(y = z) ∨ ¬(x = z))

We fix the theory T to give equality its natural interpretation. We denote by
v1v2v3 the assignment {(x = y) �→ v1, (y = z) �→ v2, (x = z) �→ v3} in A(ϕ) → B.
For the mapping pmap =̂{(x = y) �→ p, (y = z) �→ q, (x = z) �→ r} we obtain the
Boolean skeleton below, which yields a skeleton transformer.

BoolSkel(ϕ) =̂ p ∧ (¬q ∨ ¬r) BSkelModels(") = {ttf, tft, tff}

BSkelModels(") contains the assignment ttf which represents the empty set,
since no structure in the theory satisfies x = y, y = z but not x = z. The same
holds for tft. Since both represent the empty set, this does not affect the preci-
sion of the transformer in the concrete, i.e., the transformer is γ-complete at "
since γB(BSkelModels(")) is equal to modsTϕ("). Calling BoolCheck({ttf, tft, tff})
refines the representation to {tff}.
Satisfiability via Deduction and Reduction. We reformulate the initial
step of dpll(t) using abstract interpretation. Let amodsϕ be a γ⊥-complete

approximation of modsTΣ
ϕ and let ρ be a ⊥-complete reduction operator.

Step 1. Compute a = amodsϕ (e.g. with amodsϕ = BSkelModels)
Step 2. Return SAT if ρ(a) �= ⊥ (e.g. with ρ = BoolCheck)

We can sketch dpll(t) as depth-first variant of the above framework. Proposi-
tional models are enumerated on-the-fly by a sat solver rather than computed
in a single step; the reduction to ⊥ is computed and checked by a theory solver.
The following summarises the soundness and completeness argument.

Proposition 4. If amodsϕ is γ⊥-complete w.r.t. modsTΣ
ϕ and ρ is a ⊥-complete

reduction, then ρ(amodsϕ(")) �= ⊥ exactly if ϕ is TΣ-satisfiable.

3.1 Efficient Disjunction via the Cartesian Abstraction

The transformer BSkelModels generates the set of models of a propositional for-
mula and is hence expensive to compute. Therefore, dpll(t) instead uses a
guided search process to enumerate models.

Partial Assignments and the Cartesian Abstraction. The main data
structure for the guided search in a dpll(t) solver is a partial assignment,
a map from propositions to t, f, an unknown value " or a value ⊥ representing
a conflict. Partial assignments are refined using deduction and search. A partial
assignment f : P → {t, f,",⊥} represents a set of propositional literals Q such
that f(p) = t, f(p) = f, f(p) = " and f(p) = ⊥ represent, respectively, that
p ∈ Q, ¬p ∈ Q, p,¬p �∈ Q and p,¬p ∈ Q. Since we view the Boolean skeleton as
an implementation detail, the description below directly uses atomic formulae.

Definition 4. For a set of Σ-formulae F we define the Cartesian abstraction
CartF as the abstract lattice (℘(F ∪ ¬F),+) with +=⊇,

�
=
⋃

and
⊔

=
⋂
.

CartF abstracts BoolF (and, as a consequence, the concrete theory domain). The
Galois connections are as below.

462 M. Brain et al.

(℘(TΣ),⊆)
−−−→←−−−

αB

γB

(BoolF ,⊆) −−−−→←−−−−
αBC

γBC

−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
αC =̂ αBC◦αB

γC =̂ γBC◦γB
(CartF ,+)

αBC(B) =̂{ψ | ∀β ∈ B. β(ψ) = t} � {¬ψ | ∀β ∈ B. β(ψ) = f}
γBC(Θ) =̂{β | ∀ψ ∈ F. (β(ψ) = t ⇒ ¬ψ �∈ θ) ∧ (β(ψ) = f ⇒ ψ �∈ θ)}

The use of propositional partial assignments in existing dpll(t) solvers can be
viewed as a way of representing CartA(ϕ).

Unit Rule and BCP. dpll(t) solvers perform Boolean reasoning over par-
tial assignments using the unit rule, which states that if all but one literal in
a propositional clause are contradicted by the current partial assignment, the
remaining literal must be true. Below, we give the corresponding transformer
over CartF .

Definition 5. For a Σ-clause C and set of formulae F with A(C) ⊆ F , the
unit rule over CartF is the function unitFC : CartF → CartF defined as:

unitFC(Θ) =̂

⎧⎪⎨⎪⎩
⊥ if ψ,¬ψ ∈ Θ or for all l ∈ C, neg(l) ∈ Θ

Θ � {l} else if C = C′ ∪ {l} s.t. for all l′ ∈ C′, neg(l′) ∈ Θ

Θ otherwise

For a set of propositions P and propositional clause C, the propositional unit
rule is the rule unitPC : CartP → CartP .

Example 2. Consider the formula from before, ϕ =̂(x = y)∧C where C = (¬(y =

z) ∨ ¬(x = z)). We can apply unitA(ϕ)
x=y (") to obtain the element Θ = {x = y}.

Applying unit
A(ϕ)
C (Θ) gives no new information but simply returns Θ. We can

refine the element with an unsound assumption by computing Θ′ = Θ � {y =

z} = {x = y, y = z}. Now, applying unit
A(ϕ)
C (Θ′) yields Θ′ � {¬(x = z)}.

Unit rule applications soundly approximate the model transformer, regardless of
the underlying theory.

Proposition 5. Let C be a clause such that A(C) ⊆ F . For any theory TΣ, the
transformer unitFC is a sound approximation of modsTΣ

C .

dpll(t) solvers use a process called Boolean Constraint Propagation (bcp) in
which the unit rule is applied exhaustively to deduce new theory facts. This
process computes a greatest fixed point with the function defined earlier.

Definition 6. For a Σ-formula ϕ and a set of Σ-formulae F ⊇ A(ϕ), the bcp

transformer bcpϕ : CartF → CartF is the following function.

bcpϕ(Θ) =̂ gfp X.
�
C∈ϕ

unitFC(X �Θ)

An Abstract Interpretation of DPLL(T) 463

During the run of dpll(t), the propositional formula changes in a process called
learning. Here, we take the point of view that the use of a propositional formula
is an implementation detail. Changing the propositional formula then amounts
to refining the model transformer over the Cartesian abstraction.

3.2 Satisfiability via Abstract Splitting

In lazy dpll(t), theory consistency is checked once a partial assignment that
satisfies every clause is found. The following operator is used for the check.

Definition 7. We define CartCheck : CartF → CartF as

CartCheck(Θ) =̂

{
⊥ if

∧
θ is not TΣ-satisfiable

Θ otherwise

Proposition 6. CartCheck is a ⊥-complete reduction operator.

The previous section showed that bcpϕ soundly approximates the model trans-
former and CartA(ϕ) is a ⊥-complete reduction. Proposition 4 cannot be applied
though, since bcpϕ lacks the necessary completeness requirement and solely per-
forming deduction and reduction does not give a complete procedure. In the
absence of this global completeness, dpll(t) searches for points at which the
model transformer is locally complete. The proposition below shows that a com-
mon stopping criterion in dpll(t) is a local completeness check.

Proposition 7. Let ϕ be a Σ-formula in cnf, and let Θ ∈ CartA(ϕ) such that
for every clause C ∈ ϕ there is a literal l ∈ C such that l ∈ Θ. Then bcpϕ is
γ-complete at Θ.

The search proceeds as follows. After the bcp step, classic dpll chooses a vari-
able in a partial assignment that is assigned to " and explores separately the
cases where it is t and f. In terms of abstract interpretation this amounts to
decomposing a partial assignment a into two more precise assignments a1, a2
that, taken together, have the same meaning as the original assignment, i.e.,
γ(a1) ∪ γ(a2) = a. Let amodsϕ : A → A be a sound approximation of modsTΣ

ϕ

and let ρ : A → A be a ⊥-complete reduction, then we can state the abstract
algorithm as follows.

(Init). Let ainit = ".
Step 1. Compute the greatest fixed point a = gfp X.amodsϕ(X � ainit).
Step 2. If a = ⊥ then return.
Step 3. If amodsϕ is γ⊥-complete at a and ρ(a) �= ⊥ then return SAT.
Step 4. Split a into two smaller elements a1, a2 s.t. a1 � a, a2 � a and γ(a1)∪

γ(a2) = γ(a), and call the algorithm recursively.
(a) If a call with ainit = a1 returns SAT then return SAT
(b) If a call with ainit = a2 returns SAT then return SAT

464 M. Brain et al.

a = b

b = c

f(a) = a

a = b

b = c

f(a) = a

f(c) = b

f(c)
ab

c f(a)

f(c)

a
b

c
f(a)

B2T

T2B

Congr � ⊇

(a) euf with congruence closure

x− y ≤ 1

y − z ≤ 2

z − x ≤ −4

⊥

s

y

x

z

1

2

−4 7

77

s

y

xz

12

−4

−∞

−∞

−∞

B2T

T2B ◦ ρ

Relax∗ �
⊇

(b) dl with Bellman-Ford

Fig. 1. Examples of theory solvers as abstract domains

Example 3. Consider again the formula ϕ =̂x = y ∧ C where C is the clause
(¬(y = z) ∨ ¬(x = z)) We fix the theory T to give equality its natural interpre-
tation. Computing bcpϕ(") yields the result a = {x = y}. This is not γ-complete
reasoning, since it abstracts structures where x = y = z, which are not models.
We split Θ into the smaller elements a1 = a�{y = z} and a2 = a�{¬(y = z)}. In
the first recursive call, we obtain a′ = {x = y, y = z,¬(x = z)} from bcpϕ(a1).
The transformer bcpϕ is γ-complete at a′, therefore we know that a′ is a set
of models. It remains to check whether a′ is an empty set of models, by call-
ing CartCheck(a′), which returns ⊥. In the second recursive call, bcp yields no
further refinement. But bcpϕ is already γ-complete at a2, therefore we check
the conjunction (x = y) ∧ ¬(y = z) with CartCheck(a2). The check returns a2,
indicating that a2 represents a non-empty set and we return SAT.

Depending on details of the logic and abstract domain used the above algorithm
may not be complete, i.e., it may not return SAT exactly if ϕ is satisfiable. We
will discuss conditions for completeness in a bit more detail later. Whenever the
algorithm returns SAT, then the formula is satisfiable.

Proposition 8. Let amodsϕ : A → A be an overapproximation of modsTΣ
ϕ and

ρ be a ⊥-complete reduction operator. If for some element a ∈ A, amodsϕ is
γ⊥-complete at a and ρ(amodsϕ(a)) �= ⊥, then ϕ is satisfiable.

4 Theory Solvers as Abstract Domains

In this section, we show that theory solvers for equality with uninterpreted func-
tions, and for difference logic can be viewed as reduction operators. These serve
as examples of the general approach as it is not feasible to cover all theory solvers
in one paper.

An Abstract Interpretation of DPLL(T) 465

4.1 Equality with Uninterpreted Functions

An equality formula contains the predicate = and function symbols. We use
t �= t′ as a shorthand to denote ¬(t = t′). We define the theory of Equality with
Uninterpreted Functions (euf) as the set Teuf containing all structures (Z, ε)
where ε interprets = as the standard equality relation over Z. The congruence
closure algorithm decides satisfiability of conjunctions of equality literals. The
algorithm constructs congruence classes containing terms from H(ϕ) (often im-
plemented using union-find data structures) and a set of pairs in H(ϕ) that are
known to be unequal. The data structure used by congruence closure forms a
lattice. A partition of a set X is a collection of disjoint, non-empty subsets of X
whose union is X . Part(X) denotes the partitions of a set X .

Definition 8. For an euf ϕ, the euf abstraction, EUFϕ is (TS,+) where:

TS =̂Part(H(ϕ)) × ℘(H(ϕ) ×H(ϕ))

and (P,D) + (P ′, D′) exactly if ∀p′ ∈ P ′.∃p ∈ P s.t. p ⊇ p′ and D ⊇ D′.
Note that EUFϕ abstracts the concrete and refines CartA(ϕ). As both domains
are lattices, αTS and B2T are uniquely defined from γTS and T2B.

(℘(TΣ),⊆) −−−−→←−−−−
αTS

γTS

(TS,+) −−−−→←−−−−
T2B

B2T
(CartA(ϕ),⊇)

γTS(P,D) =̂{σ | ∀(t1, t2) ∈ D. σ |= t1 �= t2 ∧ ∀p ∈ P ∀t1, t2 ∈ p. σ |= t1 = t2}
T2B(P,D) =̂L(ϕ) ∩ ({t1 = t2 | ∃p ∈ P. t1, t2 ∈ p} ∪ {t1 �= t2 | (t1, t2) ∈ D})

We define the steps of the algorithm as transformers over the abstraction. A con-
gruence operator Congr : EUFϕ → EUFϕ merges the congruence classes of two
terms if all their subterms s, t are pairwise congruent in the current element P ,
i.e., if they are in the same congruence class. If in (P,D) ∈ EUFϕ terms are
found to both equal and unequal, i.e., for some p ∈ P and (t1, t2) ∈ D it
holds that t1, t2 ∈ p, then ⊥ is returned. Otherwise, we define for a partition
P = {p1, . . . , pk}:

Congr(P,D) =̂

⎧⎪⎨
⎪⎩
(P \ {p, p′} ∪ {p ∪ p′}, D) for some disjoint p, p′ ∈ P s.t.

f(s1, . . . , sk) ∈ p, f(t1, . . . , tk) ∈ p′ s.t. all si, ti are congr. in P

(P,D) if no such p, p′ exist

The congruence operator is reductive (it gains in precision in each step), and re-
fines the representation of a set of structures without changing the set itself. Figure
1(a) illustrates Congr along with the Galois connection between the euf and the
Cartesian abstractions. The set of formulae in the top right can be concretised to
the pair of congruence classes in the top left. These are then merged by Congr as
a = c implies f(a) = f(c) and finally can be abstracted to give the set of formulae
in the bottom right; simulating inference in the Cartesian domain.

Proposition 9. Congr is a reduction operator.

466 M. Brain et al.

The congruence closure algorithm then computes the greatest fixed point
gfp Congr over EUFϕ by iterating Congr until no new information can be de-
duced. It is a refutationally complete procedure, i.e., if a conjunction of equality
literals is empty, then the fixed point will be ⊥.

Proposition 10. The gfp closure Congr∗ is ⊥-complete.

4.2 Difference Logic

Formulae in difference logic (dl) contain the binary function symbol − and the
binary predicate ≤, and have atoms of the form x− y ≤ c. The theory of integer
difference logic (Tidl) is the set of structures of the form (Z, ε) where ε maps the
symbols ≤ and − to their natural interpretations over the integers.

A conjunct of difference logic atoms can be modelled by a weighted directed
graph in which the set of nodes N corresponds to the set of variables in the
conjunct. An atom x − y ≤ c is denoted as an edge (x, y) with weight c. The
conjunct is satisfiable if and only if the graph contains no negative cycles.

Negative cycles can be detected using the Bellman-Ford algorithm (bf). The
main data structure of bf associates a weight in Z∞ =̂Z ∪ {−∞,∞} with each
node n. The weight is an upper bound on the shortest path from the source to n.
The weight −∞ indicates a negative cycle. For handling dl, we choose the source
to be s, a fresh node, and assume that s is connected to all variables with weight
Mϕ, which is an integer constant larger than the longest possible path.

2 The initial
node weights are also Mϕ. Node weights are reduced in each round if there is a
neighbouring node that gives a shorter, negative cost path. After |N |−1 iterations,
the path lengths will have converged if and only if there are no negative cycles. If
a final iteration changes the scores, the graph contains a negative cycle.

We make two observations which allow us to simplify presentation: (i) since
edge weights represent upper bounds on the minimal distance between two vari-
ables, node weights can simply be viewed as special edges (s, n), (ii) bf can then
be viewed to operate solely over edge weights (missing edges are given weight∞).
For a formula ϕ, we define the edge set Eϕ as the set ({s}∪V(ϕ))×V(ϕ), where
s is the fresh source node.

Definition 9. For a dl-formula ϕ, the bf abstraction BFϕ is (TS,+) where:

TS =̂{f : Eϕ → Z∞ | ∀x ∈ V(ϕ). f(s, x) ≤ Mϕ}
f + g iff ∀e ∈ Eϕ. f(e) ≤ g(e)

BFϕ abstracts the concrete and refines CartA(ϕ) and again, only half of each
Galois connection is explicitly defined.

(℘(TΣ),⊆) −−−−→←−−−−
αTS

γTS

(TS,+) −−−−→←−−−−
T2B

B2T
(CartA(ϕ),⊇)

γTS(f) =̂{σ | ∀(x, y) ∈ V(ϕ)× V(ϕ). σ |= x− y ≤ f(x, y)}
B2T(Θ) =̂λ(x, y). min({k | x− y ≤ k ∈ Θ} ∪ {"BF(x, y)})

2 E.g., Mϕ can be the sum of the absolute values of all the integer constants in ϕ.

An Abstract Interpretation of DPLL(T) 467

As in the case of EUF, the steps of the algorithm are reduction operators. In the
case of bf, there are two reductions; the relax step and the cycle check.

Proposition 11. Relax : BFϕ → BFϕ and NegC : BFϕ → BFϕ are reductions:

Relax(f)(x, y) =̂

{
f(x, y) x �= s

min({f(x, y)} ∪ {f(x, z) + f(z, y) | z ∈ V(ϕ)}) x = s

NegC(f) =̂

{
⊥ if Relax|V(ϕ)| �= Relax|V(ϕ)|−1

Relax|V(ϕ)| otherwise

In addition to the above function, consider a simple canonicity reduction ρ s.t.
ρ(f) = ⊥ if f maps some edge to −∞ and ρ(f) = f otherwise. Relax, ρ and the
Galois connections to the Cartesian domain are shown in Figure 1(b). Similarly
to Figure 1(a), the Cartesian domain is on the right and by mapping to the
concrete (bf on the left) and performing reduction, it is possible to find the in-
consistency. The function NegC can then be viewed as a fixed point computation
(not based on Kleene iteration) over the relaxation function.

Proposition 12. NegC computes the fixed point (ρ◦Relax)∗ and is ⊥-complete.

5 DPLL(T) as a Product Construction

We have given separate accounts of the Boolean and theory reasoning compo-
nents of dpll(t) as abstract interpretation. We now show that dpll(t) can be
viewed to compute a fixed points over a product between the Cartesian abstrac-
tion over the formula atoms CartA(ϕ) and an abstract theory domain TS.

Definition 10. We define a dpll(t) theory domain to be an abstract lattice
(TS,+) such that the following conditions hold.
(i) TS abstracts the concrete with Galois connection (αTS, γTS),
(ii) CartA(ϕ) abstracts TS with Galois connection (T2B,B2T),
(iii) γC = γTS ◦ B2T and αC = αTS ◦ T2B.

(℘(TΣ),⊆)
−−−−→←−−−−

αTS

γTS

(TS,+) −−−−→←−−−−
T2B

B2T

−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
αC =̂ T2B◦αTS

γC =̂ γTS◦B2T (CartA(ϕ),+)

The first condition ensures that datastructure of the theory solver represent sets
of TΣ structures. The other conditions require some motivation: The second
condition ensures that conjunctions of literals in A(ϕ) can be expressed in TS
without loss of precision. This corresponds to the requirement that the logic
fragment handled by the theory solver includes conjunctions over A(ϕ)∪¬A(ϕ),
i.e., that satisfiability queries generated by CartCheck can be expressed. For
convenience, we use a Galois connection to model this relation, even though
in practice a weaker relation between the two might suffice. We assume that
T2B and B2T can be computed. The third condition ensures that the Galois
connections are compatible. We can now formally define dpll(t) abstractions.

468 M. Brain et al.

Definition 11. For a TΣ-formula ϕ and a dpll(t) theory domain TS, the
dpll(t) abstract domain DPLL(TS) is the product domain CartA(ϕ) × TS.

Example 4. We consider equality formulae ϕ. EUFϕ is a dpll(t) theory domain,
since it abstracts the concrete, and it refines the Cartesian abstraction.

We illustrate operations described in this section over DPLL(EUFϕ). For conve-
nience, we denote for three terms x, f(x), z the partition {{x}, {f(x), z}} either
by [x][f(x), z] or simply by [f(x), z], omitting singleton partitions.

BCP with Theory Propagation. The classic dpll(t) architecture only uses
theory reasoning to check satisfiability of candidates. Theory propagation is a
common refinement of this basic architecture. There, an element Θ ∈ CartA(ϕ) is
refined with information deduced in the theory solver. One propagation step in a
dpll(t) solver with theory propagation can be broken down into these substeps:

(i) Boolean deduction: Perform Boolean reasoning.
(ii) Theory instantiation: Communicate Boolean facts to theory.
(iii) Theory deduction: Perform theory reasoning.
(iv) Theory propagation: Find implied Boolean consequences.

Definition 12. We define the theory instantiation and theory propagation
transformers over dpll(t) below.

tinst(Θ, te) =̂(Θ, te � B2T(Θ)) tprop(Θ, te) =̂(Θ � T2B(te), te)

Example 5. We assume that A(ϕ) = {x = y, y = z}. Consider the element
(Θ, te) =̂({x = y}, ([x][y][z], {y, z}) of DPLL(EUFϕ). Applying tinst(Θ, te) yields
(Θ, ([x, y][z], {y, z})). Applying tprop(Θ, te) yields ({x = y,¬(y = z)}, te). Nei-
ther operator changes the semantics of the tuple.

Proposition 13. The transformers tinst and tprop are reductions overDPLL(TS).

We note that early pruning [3] is just a special case of theory propagation in the
lattice theoretic setting, i.e., it is the case where theory propagation finds ⊥.

Deduction over CartA(ϕ) is performed using the unit rule, while deduction
inside the theory solver is handled by some reduction operator.

Definition 13. The Boolean deduction transformer bdedϕ is a sound overap-

proximation of modsTΣ
ϕ over CartA(ϕ).

In practice, bdedϕ = bcpϕ, but in principle other sound abstract transformers
could be used.

Definition 14. A theory deduction transformer tded is a reduction over TS.

We extend the functions bdedϕ and tded to DPLL(TS) as follows.

bded×ϕ (Θ, te) =̂(bdedϕ(Θ), te) tded×(Θ, te) =̂(Θ, tded(te))

We can now describe bcp with theory deduction as the following function, which
executes the steps listed in the beginning of this section.

An Abstract Interpretation of DPLL(T) 469

Definition 15. We define deduceϕ : DPLL(TS) → DPLL(TS) as follows.

deduceϕ =̂ tprop ◦ tded× ◦ tinst ◦ bded×ϕ

Proposition 14. deduceϕ is a sound overapproximation of modsTΣ
ϕ .

Example 6. Consider the formula ϕ given as f(x) = y∧x = z∧(f(z) �= y∨y = z).
We compute deduceϕ, starting from (","). Applying bded×ϕ (",") refines the
left-hand side to {f(x) = y, x = z}. Applying tinst communicates the deduction
to the theory and obtains ([f(x), y][x, z], ∅) on the right. Theory deduction tded
refines this to ([f(x), y, f(z)][x, z], ∅) using congruence. Finally, theory propaga-
tion tprop obtains {f(x) = y, x = z, f(z) = y} on the left.

The deduction step in dpll(t) computes a greatest fixed point over deduceϕ. A
decision over an element Θ constructs an assignmentΘ∪l, where l is a literal that
occurs in neither positive nor negative phase in Θ. In abstract-interpretation ter-
minology, this corresponds to a jump down the lattice which underapproximates
the greatest fixed point and can be viewed as a dual widening operator [7].

Conflict Analysis with Theory Explanations. dpll(t) solvers are based
on propositional clause learning algorithms. The power of these algorithms rests
significantly in the conflict analysis step, which extracts general, sufficient con-
ditions for unsatisfiability from specific contradictory cases. We describe con-
flict analysis abstractly (see [14,8] for a lifting of conflict analysis algorithms to
abstract domains). Conflict analysis computes a least fixed point over sets of
elements over the underlying domain [7]: In general, there may be incomparable
reasons a and b for a given deduction c, the most general conflict analysis will
therefore return the set {a, b}. Indeed, conflict analyses that collect more than
one conflict do exist [16].

In order to integrate theory solvers meaningfully into the analysis, they need to
be able to supply explanations for deduced facts whenever theory propagation
was applied. A step during conflict analysis with theory explanations can be
broken down into the following substeps.

(i) Boolean abduction: Find Boolean conflict explanations.
(ii) Theory justification: Delegate explanations to the theory solver.
(iii) Theory abduction: Find theory explanations.
(iv) Theory explanation: Translate theory explanation into Boolean facts.

Recall that deduction corresponds to overapproximation of modsTΣ
ϕ . Conversely,

finding explanations for deductions corresponds to underapproximation of the
ucmodsTΣ

ϕ transformer.

Definition 16. A Boolean abduction transformer babdϕ is an underapproxi-

mation of ucmodsTΣ
ϕ over the downset completion D(CartA(ϕ)).

Example 7. Consider ϕ =̂ϕ′ ∧ (x �= y ∨ r = z) ∧ (x = y ∨ r �= z). Assume that
the element Θ =̂{x = y, r = z} leads to a contradiction. A sound abduction may

470 M. Brain et al.

obtain babdϕ({Θ}) = {{x = y}, {r = z}}, indicating that x = y and r = z are
both explanations for Θ, since one element in Θ suffices to deduce the other.

Theory solvers have no access to the original formula ϕ, but only to their inter-
nal state. Essentially, they correspond to abduction with respect to the truth-
constant t.

Definition 17. A theory abduction transformer tabd is a dual reduction over
the downset completion D(TS).

Example 8. Consider te = ([x, y, z], {(x, y), (y, z)}), which represents a conflict.
A sound abduction may return tabd({te}) = {([x, y], {(x, y)}) , ([y, z], {(y, z)})},
highlighting two separate reasons for the conflict.

We extend the functions babdϕ and tabd to sets in D(DPLL(TS)) as follows.

babd×ϕ (Γ) =̂{(Θ, te) | ∃(Θ′, te) ∈ Γ. Θ ∈ babdϕ({Θ′})}
tabd×(Γ) =̂{(Θ, te) | ∃(Θ, te′) ∈ Γ. te ∈ tabd({te′})}

The above transformers find reasons in their respective domains. The transform-
ers we define next explain facts by crossing domain boundaries. When crossing
from the theory abstraction to the less precise Cartesian abstraction the is-
sue of expressibility arises, since some abstract theory facts may not have pre-
cise counterparts in the Cartesian domain. For an element te ∈ TS, we write
expressible(te) to denote the condition that te is precisely expressible in CartA(ϕ),
i.e. γTS(te) = γC ◦ T2B(te).

Definition 18. We define the theory justification and theory explanation trans-
former over D(DPLL(TS)) below.

tjustify(Γ) =̂{(Θ,B2T(Θ′) � te) | (Θ �Θ′, te) ∈ Γ}
texpl(Γ) =̂{(Θ � T2B(te), te′) | (Θ, te � te′) ∈ Γ s.t. expressible(te)}

Example 9. Consider a set of atoms A(ϕ) = {x = y, y = z}, and an element
(θ, te) with θ = {x = y} and te = ([x][y][z], {(y, z)}). Then tjustify({(θ, te)})
contains the justification (", ([x, y][z], {(y, z)}), and texpl({(θ, te)}) contains the
explanation ({x = y, ¬(y = z)},").

The transformer tjustify explains information from the Cartesian domain in terms
of the theory domain. The transformer texpl does the opposite, but can only do
so if a given theory domain fact can be precisely expressed in CartA(ϕ). In both
cases, the formula ϕ is not taken into consideration.

Proposition 15. tjustify and texpl are dual reductions.

We note that conflict set generation [3] is a combination of theory abduction
tabd of the ⊥ element, followed by theory explanation.

A step of conflict analysis with theory justification can then be modelled as
a function that executes the steps outlined in the beginning of this section.

An Abstract Interpretation of DPLL(T) 471

BS × TSTS

B2T

T2B

bded tdedbabd tabd

γ⊥-complete deduction ⊥-complete reduction

Base domain Theory domain

Model Search

Domain BS× TS s.t. TS −−−−→←−−−−
T2B

B2T
BS

Req. Transfomers bded : BS → BS, tded : TS → TS overapprox. of modsTΣ
ϕ

Theory Instantiation tinst(be, te) =̂ (be, te & γTS(be))
Theory Propagation tprop(be, te) =̂ (be & αTS(te), te)

Deduction deduceϕ =̂ tprop ◦ tded× ◦ tinst ◦ bded×
Model Search gfp over deduceϕ with dual widening over BS

Conflict Analysis

Domain Downset completion D(BS× TS)

Req. Transfomers babd over D(BS), tabd over D(TS) u.-approx. of ucmodsTΣ
ϕ

Theory Justification tinst(Γ) =̂ {(Θ, γTS(Θ
′) & te) | (Θ &Θ′, te) ∈ Γ}

Theory Explanation texpl(Γ) =̂ {(Θ & T2B(te), te′) | (Θ, te & te′) ∈ Γ
s.t. expressible(te)}

Abduction abduceϕ(Γ) =̂ texpl ◦ tabd× ◦ tjustify ◦ babd×
Conflict Analysis lfp over abduceϕ with dual narrowing

Fig. 2. DPLL(T) as Abstraction

Definition 19. We define the transformer abduceϕ over D(DPLL(TS)) as:

abduceϕ =̂ texpl ◦ tabd× ◦ tjustify ◦ babd×ϕ

Proposition 16. abduceϕ is a sound underapproximation of ucmodsTΣ
ϕ .

Conflict analysis can then be viewed to compute a least fixed point over abduceϕ,
starting from a propositional conflict {(⊥, te)} or theory conflict {(Θ,⊥)}. In
practice, solvers do not keep track of sets of explanations for a conflict, but will
instead consider only one. Choosing specific explanations can be viewed as a
dual narrowing, since it underapproximates a least fixed point [7].

6 Algebraic Extensions of DPLL(T)

In this section, we first generalise the product construction of dpll(t) and then
show empirically that the communication restrictions induced by products are
sometimes unnecessary and disadvantageous.

An Abstract View of DPLL(T). The overall architecture, domains and
required transformers for dpll(t) are depicted in Figure 2. We view the product
construction DPLL(TS), as a special instance of a more general construction in
which the Cartesian abstraction is a parameter. Due to space constraints, we
only cover splitting-based dpll(t) formally.

472 M. Brain et al.

Definition 20. An abstract dpll(t) domain for a base domain BS and theory
domain TS is the domain ADPLL(BS,TS) =̂BS × TS with Galois connections,
and transformers specified as in Figure 2.

In order to extract the algebraic essence of dpll(t), one can view the algorithm
in terms of two synergistic strategies: (i) dpll(t) uses γ-complete deduction to
obtain a precise representation of models, and then uses ⊥-complete reduction
to check emptiness; (ii) dpll(t) uses case splits (and learning) to resolve im-
precision. It is important to see that these two strategies are independent. To
illustrate, consider computing the γ-complete transformer BSkelModels explic-
itly, e.g., using bdds instead of a case split procedure.

Theorem 2. For an abstract dpll(t) domain ADPLL(BS,TS) where bded∗ is
γ⊥-complete and tded∗ is a ⊥-complete reduction, it holds that ϕ is satisfiable
exactly if gfp deduceϕ �= ⊥.

This property may be hard to achieve in practice unless an expensive abstraction
is chosen for BS. In this case, case analysis with splitting (or other techniques
such as clause learning) can be employed. We model these algorithms abstractly
as procedures that provide decompositions of elements into precise cases. For a
more detailed account, consider [7,14,8].

Definition 21. A γ⊥-precise decomposition is a function dc : BS → ℘(BS)
s.t. for all elements be ∈ BS it holds that (i) dc(be) is finite, (ii) γBS(be) ⊆⋃
{γ(be′) | be′ ∈ dc(be)} and (iii) for any bded′ ∈ dc(bded) the transformer

bded∗ is γ⊥-complete at bded′.

Splitting or learning-based algorithms can be viewed to generate this decomposi-
tion on demand. For an element be′ ∈ BS, we denote by deduceϕ,be′ the function
λ(be, te). deduceϕ(be

′ � be, te).

Theorem 3. For an abstract dpll(t) domain ADPLL(BS,TS) with γ⊥-precise
decomposition function dc and ⊥-complete reduction tded, it holds that ϕ is
satisfiable exactly if there exists a be ∈ dc(") such that gfp deduceϕ,be �= ⊥.

Unifying Base and Theory Reasoning. An interesting consequence of the
algebraic view of dpll(t) is that we can consider architectures of the form
ADPLL(TS,TS), which perform all steps of the algorithm directly over TS. We
refer to this strategy as Abstract Conflict Driven Clause Learning (acdcl), it is
developed in detail in [8]. We present experiments in this section, based on the
fp-acdcl solver [14], an smt solver for floating-point logic.

In dpll(t), the vocabulary of the primary solver is limited by the structure
of the formula. This can cause suboptimal performance, which is the reason
why refinements of dpll(t) introduce fresh propositions at certain points when
needed. We will consider splitting on demand [2], which allows the introduction
of new propositions during case splits, to model the effect of decision making
directly in the theory.

An Abstract Interpretation of DPLL(T) 473

 5

 10

 15

 20

 25

 30

 0.1 1 10 100 1000

nu
m

be
r

of
 in

st
an

ce
s

total time

FP-ACDCL
Basic DPLL(T)
DPLL(T)+hints

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 0.01 0.1 1 10 100 1000 10000

nu
m

be
r

of
 in

st
an

ce
s

total time

FP-ACDCL
DPLL(T)+splitting on-demand

(b)

Fig. 3. Experimental results

Comparing ACDCL and DPLL(T). We present two experiments: (i) A com-
parison of classic dpll(t) and acdcl on set of hand-crafted formulae, in which
the vocabulary restrictions of dpll(t) cause enumeration behaviour. (ii) A com-
parison of dpll(t) with splitting on demand and acdcl on a set conjunctive
formulae that require splitting within the theory for completeness. It is important
to note that the benchmarks are specifically chosen to illustrate some limitations
of dpll(t), which can be overcome in the algebraic framework advocated in this
paper. To compare against classic dpll(t), we have integrated fp-acdcl as a
black-box theory solver in the mathsat5 smt solver [13].

An example of a formula (parametrised by N) used in experiment (i) is below.

((x = 1) ∨ . . . ∨ (x = N)) ∧ ((y = 1) ∨ . . . ∨ (y = N)) ∧ ((x+ y < 0) ∨ (x+ y > 2N))

Classic dpll(t) generates lemmas only in terms of the propositions in the
Boolean skeleton. In fp-acdcl, lemmas are directly inferred over disjunctions
of interval constraints, independent of whether they occur in the formula or not.

The results of the comparison are given in Figure 3 (a), which plots the number
of solved instances against total execution time for fp-acdcl and dpll(t). To
boost the power of classic dpll(t) we experimented with a variant in which
fp-acdcl provides hints to the sat solver: At every theory conflict, we introduce
a set of propositions corresponding to the theory deductions leading up to the
conflict. Although this variant is a significant improvement over default dpll(t),
it still performs much worse than fp-acdcl.

For the second set of experiments, we have used the benchmark problems from
[14]. The formulae in this set are simple conjunctions of atoms, but they require a
significant amount of case splits in the interval domain. The plot in Figure 3 (b)
compares fp-acdcl and splitting-on-demand. The results show that performing
case splits directly in the interval domain is more effective than splitting-on-
demand. When generating lemmas during conflict analysis, fp-acdcl can use
conflict generalisation [14] to improve the strength of learnt lemmas. We at-
tribute the faster runtime of fp-acdcl to the better quality of the resulting
learnt lemmas.

474 M. Brain et al.

References

1. Badban, B., van de Pol, J., Tveretina, O., Zantema, H.: Generalizing DPLL and
satisfiability for equalities. Inf. Comput. 205(8) (2007)

2. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in
SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability. IOS Press (2009)

4. Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL (1979)

6. Cousot, P., Cousot, R., Mauborgne, L.: The Reduced Product of Abstract Domains
and the Combination of Decision Procedures. In: Hofmann, M. (ed.) FOSSACS
2011. LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011)

7. D’Silva, V., Haller, L., Kroening, D.: Satisfiability Solvers Are Static Analysers. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 317–333. Springer,
Heidelberg (2012)

8. D’Silva, V., Haller, L., Kroening, D.: Abstract Conflict Driven Clause Learning.
In: POPL (to apppear, 2013)

9. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric Bounds Analysis
with Conflict-Driven Learning. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

11. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
JSAT 1(3-4) (2007)

12. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

13. Griggio, A.: A Practical Approach to Satisfiability Modulo Linear Integer Arith-
metic. JSAT 8 (2012)

14. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD (2012)

15. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: POPL (2010)

16. Jin, H., Somenzi, F.: Strong conflict analysis for propositional satisfiability. In:
DATE (2006)

17. Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arith-
metic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 338–353. Springer, Heidelberg (2011)

18. Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

19. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Log-
ics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476.
Springer, Heidelberg (2009)

An Abstract Interpretation of DPLL(T) 475

20. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and
Its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
JACM 53 (2006)

22. Thakur, A., Reps, T.: A Method for Symbolic Computation of Abstract Opera-
tions. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
174–192. Springer, Heidelberg (2012)

23. Thakur, A., Reps, T.: A Generalization of St̊almarck’s Method. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 334–351. Springer, Heidelberg
(2012)

All for the Price of Few
(Parameterized Verification through View Abstraction)

Parosh Aziz Abdulla1, Frédéric Haziza1, and Lukáš Holı́k1,2

1 Uppsala University, Sweden
2 Brno University of Technology, Czech Republic

Abstract. We present a simple and efficient framework for automatic verifica-
tion of systems with a parameteric number of communicating processes. The
processes may be organized in various topologies such as words, multisets, rings,
or trees. Our method needs to inspect only a small number of processes in order
to show correctness of the whole system. It relies on an abstraction function that
views the system from the perspective of a fixed number of processes. The ab-
straction is used during the verification procedure in order to dynamically detect
cut-off points beyond which the search of the state space need not continue. We
show that the method is complete for a large class of well quasi-ordered systems
including Petri nets. Our experimentation on a variety of benchmarks demon-
strate that the method is highly efficient and that it works well even for classes of
systems with undecidable verification problems.

1 Introduction

We address verification of safety properties for parameterized systems that consist of
arbitrary numbers of components (processes) organized according to a regular pattern.
The task is to perform parameterized verification, i.e., to verify correctness regard-
less of the number of processes. This amounts to the verification of an infinite family;
namely one for each possible size of the system. The term parameterized refers to the
fact that the size of the system is (implicitly) a parameter of the verification problem.
Parameterized systems arise naturally in the modeling of mutual exclusion algorithms,
bus protocols, distributed algorithms, telecommunication protocols, and cache coher-
ence protocols. For instance, the specification of a mutual exclusion protocol may be
parameterized by the number of processes that participate in a given session of the pro-
tocol. In such a case, it is interesting to verify correctness regardless of the number of
participants in a particular session. As usual, the verification of safety properties can be
reduced to the problem of checking the reachability of a set of bad configurations (the
set of configurations that violate the safety property).

Existing approaches. An important approach to parameterized verification has been
regular model checking [25,5,9] in which regular languages are used as symbolic repre-
sentations of infinite sets of system configurations, and automata-based techniques are
employed to implement the verification procedure. The main problem with such tech-
niques is that they are heavy since they usually rely on several layers of computation-
ally expensive automata-theoretic constructions, in many cases leading to a state space

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 476–495, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

All for the Price of Few 477

explosion that severely limits their applicability. Another class of methods analyze ap-
proximated system behavior through the use of abstraction techniques. Such methods
include counter abstraction [22,30], invisible invariant generation [6,31], environment
abstraction [11], and monotonic abstraction [3] (see Section 7).

In a similar manner to [24], this work is inspired by a strong empirical evidence that
parameterized systems often enjoy a small model property. More precisely, analyzing
only a small number of processes (rather than the whole family) is sufficient to capture
the reachability of bad configurations. On the one hand, bad configurations can often be
characterized by minimal conditions that are possible to specify through a fixed number
of witness processes. For instance, in a mutual exclusion protocol, a bad configuration
contains two processes in their critical sections; and in a cache coherence protocol,
a bad configuration contains two cache lines in their exclusive states. In both cases,
having the two witnesses is sufficient to make the configuration bad (regardless of the
actual size of the configuration). On the other hand, it is usually the case that such bad
patterns (if existing) appear already in small instances of the system, as observed in our
experimental section.

Our approach. We introduce a method that exploits the small model property, and per-
forms parameterized verification by only inspecting a small set of fixed instances of
the system. Furthermore, the instances that need to be considered are often small in
size (typically three or four processes) which allows for a very efficient verification
procedure. The framework can be applied uniformly to generate fully automatic verifi-
cation algorithms for wide classes of parameterized systems including ones that operate
on linear, ring, or tree-like topologies, or systems that contain unbounded collections
of anonymous processes (the latter class is henceforth referred to as having a multi-
set topology).

At the heart of the method is an operation that allows to detect cut-off points beyond
which the verification procedure need not continue. Intuitively, reaching a cut-off point
means that we need not inspect larger instances of the system: the information collected
so far during the exploration of the state space allows us to conclude safely that no
bad configurations will occur in the larger instances. The cut-off analysis is executed
dynamically in the sense that it is performed on-the-fly during the verification procedure
itself. It is based on an abstraction function, called view abstraction, parameterized
by a constant k, and it approximates a configuration by the set of all its projections
containing at most k processes. We call the sub-configurations views. For instance, when
a configuration is a word of process states (represented as an array of processes), its
abstraction is the set of all its subwords of length at most k. Furthermore, for a given
set of views X , its concretization, denoted as γk(X), is the set of configurations (of any
size) for which all their views belong to X .

The verification method performs two search procedures in parallel. The first per-
forms a standard (explicit-state) forward reachability analysis trying to find a bad con-
figuration among system configurations of size k (for some natural number k). If a bad
configuration is encountered then the system is not safe. The second procedure per-
forms a symbolic forward reachability analysis in the abstract domain of sets of views
of size at most k. When the computation terminates, it will have collected an over-
approximation of all views of size up to k of all reachable configurations (of all sizes).

478 P.A. Abdulla, F. Haziza, and L. Holı́k

If there is no bad configuration in the concretization of this set, then a cut-off point has
been found and the system can be claimed safe. If neither of the parallel procedures
reaches a conclusion during iteration k, the value of k is increased by one (thus increas-
ing the precision of the abstraction). Notice that the abstract search requires computing
the abstract post-image of a set X of views of size at most k, which is the set X ′ of views
(of size at most k) of successors of γk(X). Obviously, this cannot be performed straight-
forwardly since the set of configurations γk(X) is infinite. A crucial contribution of the
paper is to show that, for all the classes of parameterized systems that we consider, it is
sufficient to only compute successors of configurations from γk(X) that are of the size
at most k+ �, where � is a small constant, typically 1. Intuitively, the reason is that the
precondition for firing a transition is the presence of a bounded number of processes in
certain states. The views need only to encompass these processes in order to determine
the successor view. This property is satisfied by a wide class of concurrent systems in-
cluding the ones we consider in this paper. For instance, in rendez-vous communication
between a pair of processes, the transition is conditioned by the states of two processes;
in broadcast communication, one process initiates the transition (while the other pro-
cesses may be in any state); in existential global transitions (see below), we need two
processes, namely the witness and the process performing the transition; in Petri nets,
the number of required processes is bounded by the in-degree of the transitions (which
is fixed for a given Petri net), etc. We will show formally that this property is satisfied
by all the types of transitions we consider.

Applications. We have instantiated the method to obtain automatic verification proce-
dures for four classes of parameterized systems, namely systems where the processes
are organized as arrays, rings, trees, or multisets. Each instantiation is straightforward
and is achieved by defining the manner in which we define the views of a configura-
tion. More precisely, these views are (naturally) defined as subwords, cyclic subwords,
subtrees, resp. subsets for the above four classes. Once the views are fixed we obtain a
fully automatic procedure for all parameterized systems in the class. In the systems we
consider, we allow a rich set of features, in which processes may perform local transi-
tions, rendez-vous, broadcasts, and universally or existentially guarded transitions. In a
universally guarded transition, the process checks whether the states of all other pro-
cesses inside the system satisfy a given constraint before it performs the transition. In
an existentially quantified transition, the processes checks that there is at least one other
process satisfying the condition. Furthermore, we allow dynamic behaviors such as the
creation and deletion of processes during the execution of the system.

In the basic variant of our method, we assume that existential and universal global
conditions of transitions are checked atomically. The same assumption is made in many
landmark works on parameterized systems (e.g. [11,31,10,5,6,29,3]). However, actual
implementations of global checks are usually not atomic. They are typically imple-
mented as for-loops ranging over indices of processes. Iterations of such a loop may be
interleaved with transitions of other processes, therefore modeling the loop as an atomic
transition means under-approximating the behavior of the system. Verification of sys-
tems with non-atomic global checks is significantly harder. It requires to distinguish
intermediate states of a for-loop performed by a process. Their number is proportional
to the number of processes in the system. Moreover, any number of processes may be

All for the Price of Few 479

performing a for-loop at the same time. As we will show, our method can be easily
adapted to this setting, while retaining its simplicity and efficiency.

Implementation. We have implemented a prototype based on the method and run it
on a wide class of benchmarks, including mutual exclusion protocols on arrays (e.g.,
Burns’, Szymanski’s, and Dijkstra’s protocols), cache coherent protocols (e.g., MOSI
and German’s protocol), different protocols on tree-like architectures (e.g. percolate,
arbiter, and leader election), ring protocols (token passing), and different Petri nets.

The class of systems we consider have undecidable reachability properties, and hence
our method is necessarily incomplete (the verification procedure is not guaranteed to
terminate in case the safety property is satisfied). However, as shown by our experi-
mentation, the tool terminates efficiently on all the tested benchmarks.

Completeness. Although the method is not complete in general, we show that is com-
plete for a large class of systems, namely those that induce well quasi-ordered transition
systems [2,1] and satisfy certain additional technical requirements. This implies that our
method is complete for e.g., Petri nets. Notice that, as evident from our experiments,
the method can in practice handle even systems that are outside the class.

Outline. To simplify the presentation, we instantiate our framework in a step-wise man-
ner. In Section 2, we introduce our model for parameterized systems operating on linear
topologies and describe our verification method in Section 3. In Section 4, we describe
how the framework can be extended to incorporate other kinds of transitions such as
broadcast, rendez-vous, dynamic process deletion/creation, and non-atomic checks of
global conditions; and to cover other classes of topologies such as ring, multiset, and
tree-like structures. The completeness of our method for well quasi-ordered systems is
shown in Section 5. We report on our experimental results in Section 6, and describe
related work in Section 7. Finally, we give some conclusions and directions for future
research in Section 8.

2 Parameterized Systems

We introduce a standard notion of a parameterized system operating on a linear topol-
ogy, where processes may perform local transitions or universally/existentially guarded
transitions (this is the standard model used e.g. in [31,11,3,29]).

A parameterized system is a pair P = (Q,Δ) where Q is a finite set of local states
of a process and Δ is a set of transition rules over Q. A transition rule is either local or
global. A local rule is of the form s → s′, where the process changes its local state from
s to s′ independently of the local states of the other processes. A global rule is of the
form ifQ j ◦ i : S then s → s′, where Q ∈ {∃,∀}, ◦ ∈ {<,>, �=} and S ⊆ Q. Here, the ith
process checks also the local states of the other processes when it makes the move. For
instance, the condition ∀ j < i : S means that “for every j such that j < i, the jth process
should be in a local state that belongs to the set S”; the condition ∀ j �= i : S means that
“all processes except the ith one should be in local states that belong to the set S”; etc.

A parameterized system P = (Q,Δ) induces a transition system (TS) T = (C,→)
where C = Q∗ is the set of its configurations and →⊆C×C is the transition relation.

480 P.A. Abdulla, F. Haziza, and L. Holı́k

We use c[i] to denote the state of the ith process within the configuration c. The transition
relation → contains a transition c → c′ with c[i] = s, c′[i] = s′, c[j] = c′[j] for all j : j �= i
iff either (i) Δ contains a local rule s → s′, or (ii) Δ contains a global rule ifQ j ◦ i :
S then s → s′, and one of the following conditions is satisfied:

– Q= ∀ and for all j : 1 ≤ j ≤ |c| such that j ◦ i, it holds that c[j] ∈ S.
– Q= ∃ and there exists j : 1 ≤ j ≤ |c| such that j ◦ i and c[j] ∈ S.

An instance of the reachability problem is defined by a parameterized system P =
(Q,Δ), a regular set I ⊆ Q+ of initial configurations, and a set Bad ⊆ Q+ of bad con-
figurations. Let + be the usual subword relation, i.e., u + s1 . . . sn iff u = si1 . . .sik ,1 ≤
i1. . .ik ≤ n and i j < i j+1 for all j : 1 ≤ j < k. We assume that Bad is the upward closure
{c | ∃b ∈ B : b + c} of a given finite set B ⊆ Q+ of minimal bad configurations. This
is a common way of specifying bad configurations which often appears in practice, see
e.g. the running example of Burn’s mutual exclusion protocol below. We say that c ∈C
is reachable iff there are c0, . . . ,cl ∈ C such that c0 ∈ I, cl = c, and ci → ci+1 for all
0 ≤ i < l. We use R to denote the set of all reachable configurations. We say that the
system P is safe w.r.t. I and Bad if no bad configuration is reachable, i.e. R ∩Bad = /0.

We define the post-image of a set X ⊆C to be the set post(X) := {c′ | c→ c′ ∧c∈ X}.
For n∈N and a set of configurations S⊆C, we use Sn to denote its subset {c∈ S | |c|≤n}
of configurations of size up to n.

Running example. We illustrate the notion of a parameterized systems with the exam-
ple of Burns’ mutual exclusion protocol [26]. The protocol ensures exclusive access to
a shared resource in a system consisting of an unbounded number of processes orga-
nized in an array. The pseudocode of the process at the ith position of the array and
the transition rules of the parameterized system are given in Figure 1. A state of the ith
process consists of a program location and a value of the local variable flag[i]. Since the
value of flag[i] is invariant at each location, states correspond to locations.

A configuration of the induced transition system is a word over the alphabet {1, . . . ,6}
of local process states. The task is to check that the protocol guarantees exclusive access
to the shared resource (line 6) regardless of the number of processes. A configuration is
considered to be bad if it contains two occurrences of state 6 , i.e., the set of minimal
bad configurations B is { 6 6 }. Initially, all processes are in state 1 , i.e. I = 1

+.

Burns(i)

1 flag[i] := 0;
2 if ∃ j < i : flag[i] = 1 then goto 1;
3 flag[i] := 1;
4 if ∃ j < i : flag[i] = 1 then goto 1;
5 await ∀ j > i : flag[j] �= 1;

6 flag[i] := 0; goto 1 CS

1 2 3

456

∃ j < i : {4,5,6}

∀ j < i : {1,2,3}

∀ j < i : {1,2,3}

∃ j < i : {4,5,6}

∀ j > i : {1,2,3}

Fig. 1. Pseudocode and transition rules of Burns’ protocol

All for the Price of Few 481

3 Verification Method

In this section, we describe our verification method instantiated to the case of parame-
terized systems described in Section 2. First, we describe the abstraction we use, then
we present the procedure.

3.1 View Abstraction

We abstract a configuration c by a set of views each of which is a subword of c. The
abstraction function αk : C → 2Ck maps a configuration c into the set αk(c) = {v ∈Ck |
v + c} of all its views (subwords) of size up to k. We lift αk to sets of configurations as
usual. For every k ∈ N, the concretization function γk : 2Ck → 2C inputs a set of views
V ⊆ Ck, and returns the set of configurations that can be reconstructed from the views
in V . In other words, γk(V) = {c ∈C | αk(c)⊆V}.

Abstract post-image. As usual, the abstract post-image of a set of views V ⊆Ck is de-
fined as Apostk(V) = αk(post(γk(V))). Computing Apostk(V) is a central component of
our verification procedure. It cannot be computed straightforwardly since the set γk(V)
is typically infinite. As a main contribution of the paper, we show that it is sufficient
to consider only those configurations in γk(V) whose sizes are up to k+ 1. There are
finitely many such configurations, and hence their post-image can be computed. For-
mally, for � ≥ 0, we define γ�k(V) := γk(V)∩C� and show the following small model
lemma for the class of systems of Section 2. We will show similar lemmas for the other
classes of systems that we present in the later sections.

Lemma 1. For any k ∈N and X ⊆Ck, αk(post(γk(X))) ∪ X = αk(post(γk+1
k (X))) ∪ X .

The property of the transition relation which allows us to prove the lemma is that,
loosely speaking, the transitions have small preconditions. That is, there is a transition
that can be fired from a configuration c and generate a view v ∈ Ck only if c contains a
certain view v′ of some limited size, here up to k+ 1.

Running Example. Consider for instance the set V = {1,2,3,4,6,12,16,32,34,42}⊆
C2 of views of Burns’ protocol. We will illustrate that we need to reason only about
configurations of γ2(V), which are of size at most 3, to decide which views belong to
Apost2(V).

Take the existentially guarded transition 2 → 1. It can be fired only from configura-
tions that contain 2 together with a witness from {4,5,6} on the left. Apost2(V) contains
the view 31 since γ2+1

2 (V) contains 342 from where the existential transition 2 → 1 can
be fired. (342 belongs to γ2(V) because all its views 2, 3, 4, 32, 34, and 42 are in V). It
does not contain the view 22 since 12 cannot be completed by the needed witness (12
cannot be extended by, e.g., 6 since V does not contain 26 and 62).

Consider now the universally guarded transition 2 → 3. The transition can be fired
only from configurations that contain 2. Since 2 → 3 can be fired on 32 ∈ γ2(V),
Apost2(V) contains 33. But it does not contain the view 43 since the universal guard
prevents firing 2 → 3 on configurations containing 42.

482 P.A. Abdulla, F. Haziza, and L. Holı́k

Proof. We present the part of the proof of Lemma 1 which deals with existentially
guarded transitions. The parts dealing with local and universally guarded transitions are
simpler and are moved to the appendix. We will show that for any configuration c ∈
γk(V) of size m > k+1 such that there is a transition c → c′ induced by an existentially
guarded rule r ∈ Δ with v′ ∈ αk(c′), the following holds: Either v′ ∈ V or there is a
configuration d ∈ γk(V) of size at most k+1 with a transition d → d′ induced by r with
v′ ∈ αk(d′).

A subset of positions p = {i1, . . . , il} ⊆ {1, . . . ,n}, l ≤ k, with i1 < .. . < il of a
configuration c = s1 . . . sn defines the view view(c, p) = si1 . . . sil of c. By definition,
v′ equals view(c′, p) for some p ⊆ {1, . . . ,m}. Let v be view(c, p). Notice that since
c ∈ γk(V), any view of c of size at least k belongs to γk(V). Therefore also v ∈ γk(V).
Let 1 ≤ i ≤ m be the index of the position in which c′ differs from c. If i �∈ p, then
v = view(c, p) = view(c′, p) = v′. In this case, we trivially have v′ ∈ V . We can take
d = v and d′ = v′.

Assume now that i ∈ p. Let r be the rule if∃ j ◦ i : S then s → t where ◦ ∈ {<,>, �=}.
There are two cases: 1) there is a witness w from S at some position j ∈ p enabling the
transition c → c′. Then v still contains the witness on an appropriate position needed to
fire r. Therefore v → v′ is a transition of the system induced by r, and we can take d = v
and d′ = v′. 2) no witness enabling the transition c → c′ is at a position j ∈ p. Then there
is no guarantee that v → v′ is a transition of the system. However, the witness enabling
the transition c → c′ is at some position j ∈ {1, . . . ,m}. We will create a configuration
of size at most k+1 by including this position j to v, as illustrated in the figure. Let p′ =
p∪{ j}. Then view(c, p′)→ view(c′, p′) is a transition of the system induced by r since
view(c, p′) contains both s and a witness from S at an appropriate position. We clearly
have that v′ ∈ αk(view(c′, p′)). We also have that view(c, p′) ∈ γk(V) since view(c, p′)+
c and c ∈ γk(V). We may therefore take d = view(c, p′) and d′ = view(c′, p′). ��

ws

t

∃ w

i jv

v′

3.2 Procedure

Our verification procedure for solving an instance of the verification problem defined
in Section 2 is described in Algorithm 1. It performs two search procedures in parallel.
Specifically, it searches for a bad configuration reachable from initial configurations of
size k; and it searches for a cut-off point k where it derives a set of views V ⊆Ck such
that

(i) V is an invariant for the instances of the system (that is, R ⊆ γk(V) and
Apostk(V)⊆V), and

(ii) which is sufficient to prove R safe (that is, γk(V)∩Bad = /0).

All for the Price of Few 483

Algorithm 1. Verification Procedure

1 for k := 1 to ∞ do
2 if Rk ∩Bad �= /0 then return Unsafe
3 V := µX .αk(I)∪Apostk(X)
4 if γk(V)∩Bad = /0 then return Safe

For a given k, an invariant V is computed on line 3. Notice that V is well-defined
since γk,post,αk and hence also Apostk are monotonic functions for all k ∈N (w.r.t. ⊆).
Lemma 2 guarantees that V is indeed an invariant:

Lemma 2. For any i ∈ N and X ⊆Ci, αi(I)⊆ X ∧ Aposti(X)⊆ X =⇒ αi(R)⊆ X.

If the system is unsafe, the search on line 2 will eventually discovers a bad configura-
tion. The cut-off condition is tested on line 4. If the test does not pass, then we do not
know whether the system is indeed unsafe or whether the analysis has hit a spurious
counterexample (due to a too liberal abstraction). Therefore, the algorithm increases
precision of the abstraction by increasing k and reiterating the loop. An effective imple-
mentation of the procedure requires carrying out the following steps:

1. Computing the abstraction αk(I) of initial configurations. This step is usually easy.
For instance, in the case of Burns’ protocol, all processes are initially in state 1,
hence αk(I) contains only the words 1l, l ≤ k. Generally, I is a (very simple) regular
set, and αk(I) is computed using a straightforward automata construction.

2. Computing the abstract post-image. Thanks to Lemma 1, the abstract post-image
can be computed by applying γk+1

k (which yields a finite set), post, and αk (in that
order).

3. Evaluating the test γk(V)∩Bad = /0. Since Bad is the upward closure of a finite set
B, the test can be carried out by testing whether there is b ∈ B such that αk(b)⊆V .

4. Exact reachability analysis. Line 2 requires the computation of Rk. Since Rk is
finite, this can be done using any procedure for exact state space exploration.

Since the problem is generally undecidable, existence of k for which the test on line 4
succeeds for a safe system cannot be guaranteed and the algorithm may not terminate.
However, as discussed in Section 5, such a guarantee can be given under the addi-
tional requirement of monotonicity of transition relation w.r.t. a well-quasi ordering.
The method terminates otherwise for all our examples discussed in Section 6, many of
which are not well quasi-ordered.

Running example. When run on Burns’ protocol, Algorithm 1 starts by computing R1 =
{1, . . . ,6}. Because R1 does not contain any bad configurations, the algorithm moves
onto computing the fixpoint V1 of line 3. The iteration starts with X = α1(I) = {1} and
continues until X = V1 = {1, . . . ,6}. The test on line 4 subsequently fails since γ1(V1)
contains 66. Since both tests fail, the first iteration does not allow us to conclude whether
the protocol is safe or not, so the algorithm increases the precision of the abstraction by
increasing k.

484 P.A. Abdulla, F. Haziza, and L. Holı́k

In the second iteration with k = 2, R2 is still safe. The fixpoint computation starts
with X = α2(I) = {1,11}. When Apost2 is applied on {1,11}, we first construct the
set γ2+1

2 ({1,11}) which contains the extension 111 of 11, 11 and 1. Their successors
are 2,12,21, and 112,121,211, which are abstracted into {1,2,11,12,21}. The fix-
point computation continues with X = {1,2,11,12,21} and constructs the concretiza-
tion γ3

2(X) = X ∪{112,121,211}. Their successors are 2,3,12,21,22,31,13, and 122,
212, 221, 113, 131, 311 which are abstracted into the views 1,2,3,11,12,21,22,31,13.
The next iteration will start with X = {1,2,3,11,12,21,22,13,31}. The computation
reaches, after 8 further iterations, the fixpoint X = V2 which contains all words from
{1, . . . ,6}∪{1, . . . ,6}2 except 65 and 66. This set satisfies the assumptions of Lemma 2,
and hence it is guaranteed to contain all views (of size at most 2) of all reachable con-
figurations of the system. Since the view 66 is not present (recall α2(Bad) = {6,66}),
no reachable configuration of the system is bad. The algorithm reached the cut-off point
k = 2 of Burns’ protocol, and the system is proved safe.

4 Extensions

In this section, we describe how to extend the class of parameterized systems that we
presented in Section 2. The extensions are obtained 1) by extending the types of tran-
sition rules that we allow, 2) by replacing transitions with atomically checked global
conditions by more realistic for-loops, and 3) by considering topologies other than the
linear ones. As we shall see below, the extensions can be handled by our method with
straightforward extensions of the method of Section 3.

4.1 More Communication Mechanisms

Broadcast. In a broadcast transition, an arbitrary number of processes change states
simultaneously. A broadcast rule is a pair (s → s′,{r1 → r′1, . . . ,rm → r′m}). It is deter-
ministic in the sense that ri �= r j for i �= j. The broadcast is initiated by a process, called
the initiator, which triggers the transition rule s → s′. Together with the initiator, an
arbitrary number of processes, called the receptors, change state simultaneously. More
precisely, if the local state of a process is ri, then the process changes its local state to
r′i. Processes whose local states are different from s,r1, . . . rm remain passive during the
broadcast. Formally, the broadcast rule induces transitions c → c′ of T where for some
i : 1 ≤ i ≤ |c|, c[i] = s, c′[i] = s′, and for each j : 1 ≤ j �= i ≤ |c|, if c[j] = rk (for some
k) then c′[j] = r′k, otherwise c[j] = c′[j].

In a similar manner to globally guarded transitions, broadcast transitions have small
preconditions. Namely, to fire a transition, it is enough that an initiator is present in the
transition. More precisely, for parameterized systems with local, global, and broadcast
transitions, Lemma 1 still holds (in the proof of Lemma 1, the initiator is treated analo-
gously to a witness of an existential transition). Therefore, the verification method from
Section 3 can be used without any change.

Rendez-vous. In rendez-vous, multiple processes change their states simultaneously.
A simple rendez-vous transition rule is a tuple of local rules δ = (r1 → r′1, . . . ,rm →

All for the Price of Few 485

r′m),m > 1. Multiple occurrences of local rules with the same source state r in the tuple
does not mean non-determinism, but that the rendez-vous requires multiple occurrences
of r in the configuration to be triggered. Formally, the rule induces transitions c → c′ of
T such that there are i1, . . . , im with i j �= ik for all j �= k, such that c[i1] · · ·c[im] = r1 · · ·rm,
c′[i1] · · ·c′[im] = r′1 · · · r′m, and c′[�] = c[�] if � �∈ {i1, . . . , im}.

Additionally, we define a generalized rendez-vous (or just rendez-vous) transition
rules in order to model creation and deletion of processes and also Petri net transitions
that change the number of tokens in the net. A generalized rendez-vous rule δ is as
a simple rendez-vous rule, but it can in addition to the local rules contain two types
of special rules: of the form • → r,• �∈ Q (acting as a placeholder), which are used to
model creation of processes, and of the form r → •, which are used to model deletion
of processes. When a generalized rendez-vous rule is fired, the starting configuration
is first enriched with • symbols in order to facilitate creation of processes by the rule
• → r, then the rule is applied as if it was a simple rendez-vous rule, treating • as a
normal state (states of the processes that are to be deleted are rewritten to • by the rules
r → •). Finally, all occurrences of • are removed. Formally, a generalized rendez-vous
rule induces a transition c → c′ if there is c• ∈ {•}∗c[1]{•}∗ · · · {•}∗c[|c|]{•}∗ such that
c• → c′• is a transition of the system with states Q∪ {•} induced by δ (treated as a
simple rendez-vous rule), and c′ arises from c′• by erasing all occurrences of •.

Rendez-vous transitions have small preconditions, but unlike existentially quantified
transitions, firing a transition may require presence of more than two (but still a fixed
number) processes in certain states (the number is the arity of the transition). It es-
sentially corresponds to requiring the presence of more than one witness. This is why
Lemma 1 holds here only in the weaker variant:

Lemma 3. Let Δ contain rules of any previously described type (i.e., local, global,
broadcast, rendez-vous), and let m+ 1 is the largest arity of a rendez-vous rule in Δ.
Then, for any k and V ⊆Ck, αk(post(γk(V))) ∪ V = αk(post(γk+m

k (V))) ∪ V.

Global variables. Communication via shared variables is modeled using a special pro-
cess, called controller. Its local state records the state of all shared variables in the sys-
tem. A configuration of a system with global variables is then a word s1 . . .snc where
s1, . . . ,sn are the states of individual processes and c is the state of the controller. An
individual process can read and update a shared variable. A read is modeled by a rendez-
vous rule of the form (s→ s′,c→ c) where c is a state of the controller and s,s′ are states
of the process. An update is modeled using a rendez-vous rule (s → s′,c → c′).

To verify systems with shared variables of finite domains, we use a variant of the
abstraction function which always keeps the state of the controller in the view. Formally,
for a configuration wc where w ⊆ Q+ and c is the state of the controller, αk returns the
set of words vc where v is a subword of w of length at most k. The concretization and
abstract-post image are then defined analogously as before, based on αk, Lemma 1 and
Lemma 2 still hold. The method of Section 3 can be thus used in the same way as
before.

Another type of global variable is a process pointer, i.e., a variable ranging over
process indices. This is used, e.g., in Dijkstra’s mutual exclusion protocol. A process
pointer is modeled by a local Boolean flag p for each process state. The value of p is

486 P.A. Abdulla, F. Haziza, and L. Holı́k

true iff the pointer points to the process (it is true for precisely one process in every
configuration). An update of the pointer is modeled by a rendez-vous transition rule
which sets to false the flag of the process currently pointed to by the pointer and sets to
true the flag of the process which is to become the target of the pointer.

4.2 Transitions That Do not Preserve Size

We now discuss the case when the transition relation does not preserve size of con-
figurations, which happens in the case of generalised rendez-vous. Rk then cannot be
computed straightforwardly since computations reaching configurations of the size up
to k may traverse configurations of larger sizes. Therefore, similarly as in [21], we only
consider runs of the system visiting configurations of the size up to k. That is, on line 2
of Algorithm 1, instead of computing Rk = µX . Ik ∪ post(X), we compute its under-
approximation µX .(I ∪ post(X))∩Ck. The computation terminates provided that Ck is
finite. The algorithm is still guaranteed to return Unsafe if a configuration in Bad is
reachable, since then there is k ∈ N such that the bad configuration is reachable by a
finite path traversing configurations of the size at most k.

4.3 Non-atomic Global Conditions

We extend our method to handle systems where global conditions are not checked atom-
ically. We replace both existentially and universally guarded transition rules by a simple
variant of a for-loop rule:

if foreach j ◦ i : S then q → r else q → s

where q,r,s ∈ Q is resp. a source state, a target state, and an escape state, ◦ ∈ {<,>, �=},
and S ⊆ Q is a condition. For instance, line 2 of Burns’ protocol would be replaced by
if foreach j < i : {1,2,3} then 2 → 3 else 2 → 1.

The semantics of a system with for-loop rules is defined as an extension of the tran-
sition system from Section 2. Configurations are extended with a binary relation over
their positions, that is, a configuration is now a pair (c,�) where c is a word over Q and
� is a binary relation over its positions {1, . . . , |c|}. The relation � is used to encode
intermediate states of for-loops. Intuitively, a process at position i performing a for-loop
puts (i, j) into � to mark that it has processed the position j.

Formally, a parameterized system P = (Q,Δ) which includes for-loop rules induces
a transition system T =(C,→) whereC ⊆Q+×(N×N). For technical convenience, we
assume that a source of a for-loop rule in Δ is not a source of any other rule in Δ.1Then
every for-loop rule if foreach j ◦ i : S then q → r else q → s induces transitions t =
(w,�)→ (w′,�′) with w[i] = q for some i : 1 ≤ i ≤ |w| which may be of the following
three forms: (illustrated using the aforementioned example rule from Burn’s protocol).

1 Without this restriction, the state of a process would have to contain additional information
recording which for-loop is the process currently performing. Note that the restriction does
not limit the modeling power of the formalism. Any potential branching may be moved to
predecessors of the sources of the for-loop.

All for the Price of Few 487

Iteration: The ith process checks that the state of a next
unchecked process in the range is in S and marks it. That
is, there is j : 1 ≤ j ≤ |w| with j ◦ i, (i, j) �∈�, w[j] ∈ S, and
the resulting configuration has w′ = w and �′ =�∪{(i, j)}.

2

→
2

Iteration

Escape: If the state of some process in the range which is still
to be checked violates the loop condition, then the ith process
may escape to the state s. That is, there is j : 1 ≤ j ≤ |w|
with j◦ i, (i, j) �∈�, and w[j] �∈ S. The resulting configuration
has w′[k] = w[k] for all k �= i and w[i] = s. The execution of
the for-loop ends and the marks of process i are reset, i.e.,
�′ =�\ {(i,k) | k ∈ N}.

24

→

14

Escape

Terminal: When the states of all processes from the range
have been successfully checked, the for-loop ends and the ith
process moves to the terminal state r. That is, if there is no
j : 1 ≤ j ≤ |w| with j ◦ i and (i, j) �∈�, then w′[k] = w[k] for
all k �= i, w′[i] = r, and �′ =�\ {(i,k) | k ∈N}.

2

→

3

Terminal

Other rules behave as before on the w part of configurations and they do not influence
the � part. That is, a local, broadcast, or rendez-vous rule induces transitions (w,�)→
(w′,�) where w → w′ is a transition induced by the rule as described in Section 2.

Verification. To verify systems with for-loop rules using our method, we define an
abstraction αk. Intuitively, we view a configuration c = (w,�) as a graph with vertices
being the positions of w and edges being defined by (i) the ordering of the positions and
(ii) the relation �. The vertices are labeled by the states of processes at the positions.
αk(c) then returns the set of subgraphs of c where every subgraph contains a subset of
at most k vertices of c (positions of w) and the maximal subset of edges of c adjacent
with the chosen vertices.

Formally, given a configuration c = (w,�), αk(c) is the set of views v = (w′,�′) ∈C
of size at most k (i.e., |w′| = l ≤ k) such that there exists an injection ρ : {1, . . . l} →
{1, . . . , |w|}, l ≤ k where for all i, j : 1 ≤ i, j ≤ l:

– i < j iff ρ(i)< ρ(j),
– w′[i] = w[ρ(i)] (i.e., w′ + w), and
– (i, j) ∈�′ iff (ρ(i),ρ(j)) ∈�.

The notions of concretization and abstract post-image are defined in the same manner as
in Section 3 based on based on α. Lemma 1 holds here in the same wording (as shown
in the appendix). Thus the verification method for systems with for-loops is analogous
to the method of Section 3.

4.4 Tree Topology

We extend our method to systems where configurations are trees. For simplicity, we
restrict ourselves to complete binary trees.

488 P.A. Abdulla, F. Haziza, and L. Holı́k

Trees. Let N be a prefix closed set of words over the alphabet {0,1} called nodes and
let Q be a finite set. A (binary) tree over Q is a mapping t : N → Q. The node ε is
called the root, nodes that are not prefixes of other nodes are called leaves. For a node
v = v′i, i ∈ {0,1}, v′ is the parent of v, the node v0 is the left child of v and v1 is its
right child. Every node v′ = vw,w ∈ {0,1}+ is a descendant of v. The depth of the tree
is the length of the longest leaf. A tree is complete if all its leaves have the same length
and every non-leaf node has both children. A tree t ′ : N′ → Q is a subtree of t, denoted
t ′ � t, iff there exists a injective map e : N′ → N which respects the descendant relation
and labeling. That is, t ′(v) = t(e(v)) and v is a descendant of v′ iff e(v) is a descendant
of e(v′).

Parameterized systems with tree topology. The definitions for parameterized systems
with a tree topology are analogous to the definitions for systems with a linear topology
(Section 2). A parameterized system P =(Q,Δ) induces a transition system T =(C,→)
where C is the set of complete trees over Q. The set Δ of transition rules is a set of local
and tree transition rules. The transitions of → are obtained from rules of Δ as follows.
A local rule is of the form s → s′ and it locally changes the label of a node from s to s′.
A tree rule is a triple s(s0,s1) → s′(s′0,s

′
1). The rule can be applied to a node v and its

left and right children v0, v1 with labels s, s0, and s1, respectively, and it changes their
labels to s′, s′0, and s′1, respectively.

The reachability problem is defined in a similar manner to the case of linear systems.
The set B of minimal bad configurations is a finite set of trees over Q, I is a regular
tree-language, and Bad is the upward closure of B w.r.t. the subtree relation �. In the
notation Cn and Rn, n refers to the depth of trees rather than to the length of words.

Verification. The verification method of Section 3 is easily extended to the tree topol-
ogy. The text of Section 3 can be taken almost verbatim with the difference that instead
of words, we manipulate complete trees, subword relation is replaced by subtree re-
lation, and k now refers to the depth of trees rather than the length of words. That is,
a view of size k is a tree of depth k and the abstraction αk(t) returns all complete sub-
trees of depth at most k of the tree t. Concretization and abstract post-image are defined
analogously as in Section 3, based on αk. The set I may be given in the form of a tree
automaton. The computation of αk(I) may be then done over the structure of the tree
automaton. We can compute the abstract post-image since Lemma 1 holds here in the
same wording as in Section 3. The test γk(V)∩Bad = /0 is carried out in the same way
as in Section 3 since Bad is an upward closure of a set B w.r.t. �. The points 1-4 of
Section 3 are thus satisfied and Algorithm 1 can be used as a verification procedure for
systems with tree topology.

4.5 Ring Topology

The method can be extended also to systems with a ring topology. In a parameterized
system with ring topology, processes are organized in a circular array and they syn-
chronize by near-neighbor communication. We model system with a ring topology as
systems with linear topology of Section 2, where a configuration c ∈ Q+ is interpreted
as a circular word. The set Δ may contain local and near-neighbor transition rules.

All for the Price of Few 489

A near-neighbor rule is a pair (s1 → s′1,s2 → s′2). It induces the transition c → c′ of →
if either c = cL s1s2 cR and c′ = cL s′1s′2 cR (i.e. the 2 processes are adjacent in the config-
uration c) or c = s2 c̄ s1 and c′ = s′2 c̄ s′1 (i.e. the 2 processes are positioned at the end of
the configuration c). The latter case covers the communication between the extremities
since configurations encode circular words.

Verification. A word u is a circular subword of a word v, denoted u � v, iff there are
v1,v2 such that v = v1v2 and u + v2 v1. The only difference compared to the method
for the systems with a linear topology is that the standard subword relation is in all
definitions replaced by the circular subword relation �. An equivalent of Lemma 1
holds here in unchanged wording, points 1-4 are satisfied, and Algorithm 1 is thus
a verification procedure for systems with ring topology.

4.6 Multiset Topology

Systems which we refer to as systems with multiset topology are a special case of the
systems with a linear topology of Section 2. Typical representatives of these systems are
Petri nets, which correspond precisely to systems of Section 4 with only (generalized)
rendez-vous transitions. Systems with multiset topology may contain all types of tran-
sitions including local, global, broadcast, and rendez-vous, with the exception of global
transitions with the scope of indices j > i and j < i (i.e., only j �= i is permitted). Since
the processes have no way of distinguishing their respective positions within a configu-
ration, the notion of ordering of positions within a configuration is not meaningful and
configurations can be represented as multisets.

5 Completeness for Well Quasi-Ordered Systems

In this section, will show that the scheme desribed by Algorithm 1 is complete for a
wide class of well-quasi ordered systems. To state the result in general terms, we will
first give some definitions from the theory of well quasi-ordered systems (c.f. [1]).

A well quasi-ordering (WQO) is a preorder� over a set S such that for every infinite
sequence s1,s2, . . . of elements of S, there exists i and j such that i < j and si � s j. The
upward-closure ↑T of a set T ⊆ S w.r.t. � is the set {s ∈ S | ∃t ∈ T : t � s} and its
downward-closure is the set ↓T = {s ∈ S | ∃t ∈ T : s � t}. A set is upward-closed if it
equals its upward-closure and it is downward-closed if it equals its downward-closure.
If T is upward closed, its complement S \T is downward closed and, conversely, if T
is downward closed, its complement is upward closed. For every upward closed set T ,
there exists a minimal (w.r.t ⊆) set Gen such that ↑Gen = T , called generator of T ,
which is finite. If moreover � is a partial order, then Gen is unique.

A relation R ⊆ S× S is monotonic w.r.t. � if whenever (s1,s2) ∈ R and s1 � s′1, then
there is s′2 with (s′1,s

′
2) ∈ R and s2 � s′2. Given a relation f ⊆ S× S monotonic w.r.t. �

and a set T ⊆ S, it holds that if f (T) ⊆ T , then f (↓T) ⊆ ↓T , where f (T) is the image
of T defined as {t ′ | ∃t ∈ T : (t, t ′) ∈ f}.

The reasoning in Section 3 is based on the natural notion of a size of a configuration.
Its generalization is the notion of a discrete measure over a set S, a function |.| : S → N

490 P.A. Abdulla, F. Haziza, and L. Holı́k

which fulfills the property that for every k ∈N, {s∈ S | |s|= k} is finite. A discrete mea-
sure is necessary to obtain the completeness result as it allows enumerating elements
of S of the same size. In particular, this property guarantees termination of the fixpoint
computation on Line 3 of Algorithm 1. We note that the existence of a discrete measure
is implied by a stronger restriction of [8] to the so called discrete transition systems.

We say that a transition system T = (C,→) is well-quasi ordered by a WQO � ⊆
C ×C if → is monotonic w.r.t. �. Given a well-quasi ordered transition system and
a measure |.| : C → N, we define an abstraction function αk,k ∈ N such that αk(c) =
{c′ ∈ C | c′ � c}. The corresponding concretization γk and abstract post-image Apostk
are then defined based on αk and |.| as in Section 3.1.

Lemma 2 holds here in the same wording as in Section 3. The main component of
the completeness result is the following theorem.

Theorem 1. Let T = (C,→) be a well-quasi ordered transition system with a measure
|.|. Let I be any subset of C and let Bad be upward-closed w.r.t. �. Then, if T is safe w.r.t.
I and Bad, then there is k ∈N such that for V = µX .αk(I)∪Apostk(X), Bad∩γk(V) = /0.

Proof. Recall first that γk,post,Apostk,αk are monotonic functions w.r.t.⊆ for all k ∈N.
Let Gen be the minimal generator of the upward closed set C \ ↓R . We will prove that
k can be chosen as k = max{|c| | c ∈ Gen}. Such k exists because Gen is finite.

We first show an auxiliary claim that γk(αk(↓R))⊆↓R . Let s ∈ γk(αk(↓R)). For the
sake of contradiction, suppose that s �∈ ↓R . We have that s ∈C \ ↓R = ↑Gen and there
is a generator t ∈ Gen with t � s. By the definition of k, |t| ≤ k. Since t ∈ Gen, t �∈ ↓R
and hence t �∈ αk(↓R). But due to this and since t � s, we have that s �∈ γk(αk(↓R)) (by
the definition of γk) which contradicts the initial assumption and the claim is proven.

Next, we argue that αk(↓R) is stable under abstract post, that is, Apostk(αk(↓R))⊆
αk(↓R). Since R is stable under post and post is monotonic w.r.t. �, we know that ↓R
is stable under post (that is, post(↓R) ⊆ ↓R). Then, by the definition of Apostk, and
by monotonicity of αk w.r.t. ⊆, we have Apostk(αk(↓R)) = αk(post(γk(αk(↓R)))) ⊆
αk(post(↓R))⊆ αk(↓R).

Since ↓R contains I, αk(I) ⊆ αk(↓R). αk(↓R) is thus a fixpoint of λX .αk(I)∪
Apostk(X). Because V is the least fixpoint of λX .αk(I)∪Apostk(X), V ⊆αk(↓R). From,
R ∩Bad = /0 and since Bad is upward closed, we know that ↓R ∩Bad = /0. Because
γk(V)⊆ γk(αk(↓R))⊆ ↓R and ↓R ∩Bad = /0, γk(V)∩Bad = /0. ��

Theorem 1 guarantees that for a safe well quasi-ordered system, there exists k for which
the test on line 4 of Algorithm 1 succeeds. Conversely, Lemma 2, which, as mentioned
above, still holds for the general class of well-quasi ordered systems, then assures than
if the test on line 2 succeeds, the system is indeed safe.

Complete algorithm. The schema described by Algorithm 1 (or its variant from Sec-
tion 4.2 if the transition relation is not size-preserving) gives a complete verification
procedure for a well quasi-ordered system provided that all the four steps of its for-loop
can be effectively evaluated. This is guaranteed by the following requirements:

i. αk(I) can be computed,
ii. the measure |.| is discrete,

All for the Price of Few 491

iii. for a configuration c, post(c) and αk(c) can be computed,
iv. for a finite set of views V , γk+1

k (V) can be computed, and
v. a variant of Lemma 1 holds.

Point (i) is point 1 of Section 3. Points (ii)-(v) guarantee that we can compute abstract
post-image (point 2 of Section 3). We can test γk(V)∩Bad = /0 (point 3 of Section 3)
since due to (ii), V is always finite. Exact reachability analysis of configurations of a
bounded size (point 4 of Section 3) can be carried out since we can iterate post due to
(iii) and the iteration terminates after a finite number of steps due to (ii). Point (ii) also
assures termination of the computation of the fixpoint on line 3 (V is always finite).

Overall, Algorithm 1 is a complete verification procedure for parameterized systems
of Section 2 with local and existential transitions rules, broadcast and rendez-vous. The
induced transition relation is indeed monotonic w.r.t. the preorder + which is a WQO
and the length of a configuration is a discrete measure. An important subclass of such
systems are Petri nets, which, as mentioned in Section 4, correspond to systems with
multiset topology and generalized rendez-vous transition rules. Systems of Section 2
with universally guarded transition rules do not satisfy the assumptions: the induced
transition relation is not monotonic.

6 Experimental Results

Based on our method, we have implemented a prototype in OCaml to check safety prop-
erties for a number of parameterized systems with different topologies. The examples
cover cache coherence protocols, communication protocols through trees and rings and
mutual exclusion protocols.

Table 1. Experimental Results

Protocol Time k |V | γk+�
k (V)

Array

Demo (toy example) 0.01s 2 17 53
Burns 0.01s 2 34 186
Dijkstra 0.07s 2 93 695
Szymanski 0.02s 2 48 264

Multiset
MOSI Coherency 0.01s 1 10 23
German’s Coherency 15.3s 6 1890 15567

Petri Net

German (simplified) 0.03s 2 43 96
BH250 2.85s 2 503 503
MOESI Coherency 0.01s 1 13 20
Critical Section 0.01s 5 27 46
Kanban ? ≥ 20 ? ?

Tree
Percolate 0.05s 2 34 933
Tree Arbiter 0.7s 2 88 7680
Leader Election 0.1s 2 74 362

Ring Token Passing 0.01s 2 2 2

492 P.A. Abdulla, F. Haziza, and L. Holı́k

We report the results in Table 1, running on a 2.4 GHz laptop with 4GB memory.
We have categorized the experiments per topology. We display the running times (in
seconds), the value of k and the final number of views generated (|V |). In most cases,
the method terminates almost immediately illustrating the small model property: all
patterns occur for small instances of the system. Observe that the sizes of the views are
small as well, confirming the intuition that interactions between processes are of limited
scope.

The bulk of the algorithm lies in the computation of the set γk+�
k (V) and also the set

Rk. An example on which the algorithm fails is the Kanban system from [24]. This is
a typical case where the cut-off condition is satisfied at high values of k. [24] refers
to the computation of, at least, the set R20. R20 is large and so is the concretization of
its views.

7 Related Work

An extensive amount of work has been devoted to regular model checking, e.g. [25,12];
and in particular augmenting regular model checking with techniques such as widen-
ing [9,32], abstraction [10], and acceleration [5]. All these works rely on computing the
transitive closure of transducers or on iterating them on regular languages. Our method
is significantly simpler and more efficient.

A technique of particular interest for parameterized systems is that of counter ab-
straction. The idea is to keep track of the number of processes which satisfy a certain
property [22,17,13,14,30]. In general, counter abstraction is designed for systems with
unstructured or clique architectures. As mentioned, our method can cope with these
kinds of systems but also with more general classes of topologies. Several works re-
duce parameterized verification to the verification of finite-state models. Among these,
the invisible invariants method [6,31] and the work of [29] exploit cut-off properties to
check invariants for mutual exclusion protocols. The success of the method depends on
the heuristic used in the generation of the candidate invariant. This method sometimes
(e.g. for German’s protocol) requires insertion of auxiliary program variables for com-
pleting the proof. The nature of invariants generated by our method is similar to that
of the aforementioned works, since our invariant sets of views of size at most k can be
seen as universally quantified assertions over reachable k-tuples of processes.

In [7], finite-state abstractions for verification of systems specified in WS1S are com-
puted on-the-fly by using the weakest precondition operator. The method requires the
user to provide a set of predicates on which to compute the abstract model.

The idea of refining the view abstraction by increasing k is similar in spirit to the
work of [28] which discusses increasing precision of thread modular verification (Carte-
sian abstraction) by remembering some relationships between states of processes. Their
refinement mechanism is more local, targeting the source of undesirable imprecision;
however, it is not directly applicable to parameterized verification.

Environment abstraction [11] combines predicate abstraction with the counter ab-
straction. The technique is applied to Szymanski’s algorithm. The model of [11] con-
tains a more restricted form of global conditions than ours, and also does not include

All for the Price of Few 493

features such as broadcast communication, rendez-vous communication, and dynamic
creation and deletion of processes.

Recently, we have introduced the method of monotonic abstraction [3] that com-
bines regular model checking with abstraction in order to produce systems that have
monotonic behaviors w.r.t. a well quasi-ordering on the state space. In contrast to the
method of this paper, the abstract system still needs to be analyzed using full sym-
bolic reachability analysis on an infinite-state system. The only work we are aware of
which attempts to automatically verify systems with non-atomic global transitions is [4]
which applies monotonic abstraction. The abstraction in this case amounts to a verifi-
cation procedure that operates on unbounded graphs, and thus is a non-trivial extension
of the existing framework. As we saw, our method is easily extended to the case of
non-atomic transitions.

The method of [21,20] and its reformulated, generic version of [19] are in princi-
ple similar to ours. They come with a complete method for well-quasi ordered systems
which is an alternative to backward reachability analysis based on a forward explo-
ration. Unlike our method, they target well-quasi ordered systems only and have not
been instantiated for topologies other than multisets and lossy channel systems.

Constant-size cut-offs have been defined for ring networks in [16] where commu-
nication is only allowed through token passing. More general communication mecha-
nisms such as guards over local and shared variables are described in [15]. However,
the cut-offs are linear in the number of states of the components, which makes the ver-
ification task intractable on most of our examples.

The closest work to ours is the one in [24] that also relies on dynamic detection of
cut-off points. The class of systems considered in [24] corresponds essentially to Petri
nets. In particular, it cannot deal with systems with linear or tree-like topologies. The
method relies on the ability to perform backward reachability analysis on the underlying
transition system. This means that the algorithm of [24] cannot be applied on systems
with undecidable reachability problems (such as the ones we consider in this paper).
The method of [24] is yet complete.

8 Conclusion and Future Work

We have presented a uniform framework for automatic verification of different classes
of parameterized systems with topologies such as words, trees, rings, or multisets, with
an extension to handle non-atomic global conditions. The framework allows to per-
form parameterized verification by only considering a small set of instances of the sys-
tem. We have proved that the presented algorithm is complete for a wide class of well
quasi-ordered systems. Based on the method, we have implemented a prototype which
performs efficiently on a wide range of benchmarks.

We are currently working on extending the framework to the case of multi-threaded
programs operating on dynamic heap structures. These systems have notoriously com-
plicated behaviors. Showing that verification can be carried out through the analysis of
only a small number of threads would allow for more efficient algorithms for these sys-
tems. Furthermore, our algorithm relies on a very simple abstraction function, where a
configuration of the system is approximated by its sub-structures (subwords, subtrees,

494 P.A. Abdulla, F. Haziza, and L. Holı́k

etc.). We believe that our approach can be lifted to more general classes of abstractions.
This would allow for abstraction schemes that are more precise than existing ones, e.g.,
thread-modular abstraction [18] and Cartesian abstraction [27].

Obviously, the bottleneck in the application of the method is when the cut-off condi-
tion is only satisfied at high values of k (see e.g., the Kanban example in Section 6). We
plan therefore to integrate the method with advanced tools that can perform efficient
forward reachability analysis, like SPIN [23], and to use efficient symbolic encodings
for compact representations for the set of views.

Acknowledgements. This work was supported by the Uppsala Programming for Mul-
ticore Architectures Research Center (UpMarc) and the Czech Science Foundation
(project P103/10/0306).

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bulletin of Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS 1996, pp. 313–321 (1996)

3. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular Model Checking Without
Transducers (On Efficient Verification of Parameterized Systems). In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

4. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling Parameterized Systems
with Non-atomic Global Conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

5. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular Model Checking Made Simple
and Efficient. In: Brim, L., Jančar, P., Křetı́nský, M., Kučera, A. (eds.) CONCUR 2002.
LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)

6. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with Automati-
cally Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

7. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized Verification of a Cache Coherence Proto-
col: Safety and Liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 317–330.
Springer, Heidelberg (2002)

8. Bingham, J.D., Hu, A.J.: Empirically Efficient Verification for a Class of Infinite-State Sys-
tems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 77–92.
Springer, Heidelberg (2005)

9. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

11. Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameterized Verification.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2006)

12. Dams, D., Lakhnech, Y., Steffen, M.: Iterating Transducers. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg (2001)

13. Delzanno, G.: Automatic Verification of Cache Coherence Protocols. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)

All for the Price of Few 495

14. Delzanno, G.: Verification of consistency protocols via infinite-state symbolic model check-
ing. In: FORTE 2000. IFIP Conference Proceedings, vol. 183, pp. 171–186. Kluwer (2000)

15. Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few. In:
McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg
(2000)

16. Emerson, E.A., Namjoshi, K.: Reasoning about rings. In: POPL 1995, pp. 85–94 (1995)
17. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999.

IEEE Computer Society (1999)
18. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K.

(eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)
19. Ganty, P., Raskin, J.-F., Van Begin, L.: A Complete Abstract Interpretation Framework for

Coverability Properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2006)

20. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, Enlarge and Check.. Made Efficient. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 394–407. Springer,
Heidelberg (2005)

21. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, Enlarge and Check: New algorithms for the
coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

22. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675–735 (1992)

23. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–295 (1997)
24. Kaiser, A., Kroening, D., Wahl, T.: Dynamic Cutoff Detection in Parameterized Concur-

rent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 645–659. Springer, Heidelberg (2010)

25. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theor. Comput. Sci. 256, 93–112 (2001)

26. Lynch, N.A., Shamir, B.P.: Distributed algorithms, lecture notes for 6.852, fall 1992. Tech.
Rep. MIT/LCS/RSS-20, MIT (1993)

27. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-Modular Verification Is Cartesian Ab-
stract Interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

28. Malkis, A., Podelski, A., Rybalchenko, A.: Precise Thread-Modular Verification. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer, Heidelberg
(2007)

29. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer,
Heidelberg (2007)

30. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1,∞)-Counter Abstraction. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)

31. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidel-
berg (2001)

32. Touili, T.: Regular Model Checking using Widening Techniques. Electronic Notes in Theo-
retical Computer Science 50(4) (2001); Proc. of VEPAS 2001

Uncovering Symmetries

in Irregular Process Networks

Kedar S. Namjoshi1 and Richard J. Trefler2,�

1 Bell Laboratories, Alcatel-Lucent
kedar@research.bell-labs.com

2 University of Waterloo
trefler@cs.uwaterloo.ca

Abstract. In this work, we consider distributed protocols that operate
on arbitrary networks. The analysis of such protocols is challenging, as
an arbitrarily chosen network may have limited global symmetry. We
describe a methodology that uncovers significant local symmetries by
appropriately abstracting node neighborhoods in a network. The local
symmetries give rise to uniform compositional proofs of correctness. As
an illustration of these ideas, we show how to obtain a uniform composi-
tional invariance proof for a Dining Philosophers protocol operating on a
fixed-size, arbitrary network. An interesting and somewhat unexpected
consequence is that this proof generalizes easily to a parametric proof,
which holds on any network regardless of size or structure.

1 Introduction

A distributed protocol may be viewed as a collection of processes communicating
over an underlying interconnection network. In many protocols, the processes are
similar, while the network may be arbitrary. Examples are networking protocols
such as TCP/IP and BGP, application-level protocols such as termination de-
tection and global snapshot, and protocols for sensor and ad-hoc networks. The
verification questions are (1) the analysis of arbitrary, fixed-size instances and
(2) showing correctness in the parameterized sense; i.e., over an unbounded set
of network instances.

These analysis questions are challenging, in large part because standard sym-
metry arguments do not apply to networks with irregular structure. On the other
hand, proofs carried out by hand (e.g., those in [3]) make few distinctions be-
tween nodes; the typical inductive invariant has the uniform shape “for every
node m, ...”. This observation motivates our work. We conjecture that many dis-
tributed protocols can be analyzed uniformly, even if the underlying networks
are irregular. Furthermore, we also conjecture that, once discovered, the unifor-
mity can guide the construction of a parameterized proof. The parameterized
model checking question is undecidable in general [2].

� Supported in part by grants from the Natural Sciences and Engineering Research
Council of Canada.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 496–514, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Uncovering Symmetries in Irregular Process Networks 497

To make progress on this conjecture, we look to a combination of abstraction
and compositional reasoning. The components of our analysis are as follows.

1. Uncover local similarities in a network by abstracting node neighborhoods.
2. Perform a compositional analysis on the abstracted network to fully exploit

the newly uncovered local symmetries; the result is an inductive invariant.
3. Check whether the reductions due to local symmetries are powerful enough

for the invariant to be parametric.

Compositional analysis, by its nature, is less sensitive to global irregularities
in network structure. This is because the analysis is carried out for each node
individually, taking into account interference only from neighboring nodes. In
recent work [19], we showed that the limited sensitivity makes it possible for
compositional methods to take advantage of local symmetries in a network. As
an example, consider a ring network of N nodes. The global symmetry group
of the ring has size O(N). Hence, standard symmetry reduction methods have
limited effect: a state space of size potentially exponential in N can be reduced
only by a linear factor. On the other hand, any two nodes are locally similar,
as their immediate neighborhoods are identical. Using this local symmetry, a
compositional invariant can be computed on a single representative node. This
reduction also enables a parametric proof, as the representative may be chosen
to be the same for all ring networks.

These earlier results, however, find their best application to networks with a
regular structure, such as star, ring, mesh, and complete networks. In an irregular
network, two obstacles arise. The first is that nodes may have different numbers
of neighbors; this suffices to make them locally dissimilar. Even if all nodes have
the same degree, irregular connectivity may limit the degree of recursive local
similarity, called “balance”, which is needed for the most effective symmetry
reduction. To obtain a uniform analysis for irregular networks, it is necessary,
therefore, to redefine local symmetry in a more general form. We do so in this
work, which makes the following contributions.

– We formulate a notion of local symmetry up to abstraction. This generalizes
the structural definition of local symmetry from [19] to a semantic one.

– We show that nodes that are “balanced” (i.e., recursively locally similar)
have similar components in the strongest compositional invariant.

– Hence, an compositional invariant can be calculated using only a single rep-
resentative from each equivalence class of balanced nodes.

– We show completeness: for any compositional invariant, it is always possible
to derive it through a network abstraction based on a small set of local
predicates, one that creates a highly locally-symmetric abstract network.

– We illustrate these ideas by showing how local symmetries may be used to
calculate a parametric invariant for a Dining Philosophers protocol.

498 K.S. Namjoshi and R.J. Trefler

2 Abstraction Uncovers Symmetry

It is well understood that standard symmetry reduction [4,12] is a form of ab-
straction: symmetric states are bisimular, and the reduction abstracts a state
to its bisimulation equivalence class. This work illustrates a converse principle:
that abstraction may help uncover hidden symmetries. We demonstrate this with
an example based on global symmetries. The subsequent sections work out this
principle for local symmetries.

Fig. 1. A client-server network

The example is a client-server protocol with N identical clients. A 6-client
instance is shown in Figure 1. The server controls access to a shared resource.
Each client may request access to the resource, in which case it waits for a grant
and eventually returns the resource to the server. To ensure fairness, the server
cycles through its adjacent edges in clockwise order: if the last grant was given to
the client on edge number c and the resource is available, the next grant is given
to the first requesting client encountered when examining edges in clockwise
order – i.e., in the sequence c+ 1, c+ 2, ..., c+N , where addition is modulo N .

This system has an exponential reachable state space, of size at least 2N ,
as the subset of clients that have an outstanding request could be arbitrary.
Although the picture suggests that any pair of clients can be interchanged, the
operation of the server restricts the group of isomorphisms of the system to that
of a ring. Hence, the degree of reduction that is possible is only O(N).

An important safety property is mutual exclusion: at any time, at most one
client should have a grant. This can be established with a simpler server pro-
cess: if the resource is available, the server chooses a requesting client non-
deterministically and grants its request. Formally, the abstract server simulates
the original; hence, the abstract system as a whole simulates the original system.
Moreover, the abstract system satisfies mutual exclusion. The abstract system
has an exponential number of states as well. However, its automorphism group
is the full symmetry group on the clients, so its state space can be reduced by
an exponential factor.

Uncovering Symmetries in Irregular Process Networks 499

3 Background: System Model, Compositional Invariants

This section introduces the system model, compositional invariants, and the
fixpoint computation which produces the strongest such invariant. The material
is largely a summary of [18,7,19].

System Model. A network is given as a graph. The graph has nodes and
edges as objects, which are each given a color. Every node is connected to a
set of edges; this set is ordered at the node according to an arbitrarily defined
numbering. With respect to a node, a connected edge is either an input edge,
an output edge, or both an input and an output edge. The network shown in
Figure 1 has this form; edges are represented by rectangles and the numbering
of edges on the server side is shown. Each edge is both an input and an output
edge for its adjacent client and server node.

An assignment maps a set of processes to a network. The assignment also
defines a state type for each node and each edge; types correspond to the coloring
of the nodes and edges. The process assigned to a node m is denoted Pm. The
internal state of this process is given by a value of the node state type. A local
state of this process is given by a tuple of the form (i, v1, v2, . . . , vk), where i is an
internal state, and v1, v2, . . . , vk is a valuation to the states of its adjacent edges,
ordered by the numbering assigned to the edges at node m. For convenience, we
associate symbolic variable names to all nodes and edges. The set of all node
and edge variables is denoted V . The set of variables for process Pm is denoted
Vm; these variables represent its internal state and the state of its adjacent
edges. Hence, a local state is a valuation to Vm. The transition relation for Pm

is denoted Tm. It relates local states of m with the constraint that if (s, t) is in
Tm then the values for non-output edges of node m must be identical in s and t.

A global state is a valuation to all variables. Equivalently, a global state can be
viewed as a set of local states where the local states for any two nodes agree on
the value assigned to any common edge. The set of global initial states is denoted
I. The projection of I on m, the set of local initial states for Pm, is denoted by
Im. Symbolically, Im may be written as (∃V \Vm : I). The quantification over all
variables not in Vm projects I onto Vm. The global transition graph is induced
by interleaving transitions from individual processes, starting from an initial
state. There is a transition by process m from global state s to global state t if
Tm(s[Vm], t[Vm]) holds (s[Vm] is the local state of m in s) and for every variable
x not in Vm, s[x] = t[x].

Inductive and Compositional Invariants. An inductive invariant for a tran-
sition system is a set of global states which (a) includes all initial states and (b)
is closed under all transitions. Formally, for an invariant ξ, condition (a) is de-
noted as [I ⇒ ξ] and condition (b) as [SP(Ti, ξ) ⇒ ξ], for all i. SP is the
strongest post-condition operator (also known as the successor function, or as
post).

A compositional invariant (called a “split” invariant in [18]) is an inductive
invariant of a special shape: it is formed from the conjunction of a number of

500 K.S. Namjoshi and R.J. Trefler

local invariants, one for each process. Hence, it can be represented as a vector,
θ = (θ1, θ2, . . . , θN), where each θi is defined over Vi and is itself an inductive
invariant for process Pi. Equivalently, the constraints defining a compositional
invariant are as follows.

– (Initiality) θi includes all initial states of Pi; formally, [Ii ⇒ θi]
– (Step) θi is closed under transitions of Pi; formally, [SP i(Ti, θi) ⇒ θi], and
– (Non-interference) θi is closed under actions of neighboring processes. For-

mally, [SP i(intf
θ
ki, θi) ⇒ θi], for any process k which points to i.

The predicate transformer SP i is the strongest post-condition operator for node
i. Node k points to node i if an output edge of k is adjacent to i. A transition
of k may modify a local state of node i only if k points to i.

The term intf θki (read as “interference by k on i”) is a transition condition.
It describes how the local state of m may be changed due to moves by process
k from states in its local invariant. Formally, intf θki is the projection of Tk,
under θk, on to variables shared with m. This can be written symbolically as
intf θki = (∃V \Vi, V ′\V ′

i : Tk ∧ θk), where the primed variables denote next-state
values.

The Strongest Compositional Invariant as a Least Fixpoint. Grouping
together the initiality, step, and non-interference constraints gives a set of simul-
taneous implications of the shape [Fi(θ) ⇒ θi]. Here, Fi(θ) is the disjunction
of the terms appearing on the left-hand side of the constraints for θi: namely,
Ii, SP i(Ti, θi), and SP i(intf

θ
ki, θi) for all k pointing to i. As Fi is monotonic in

θ for all i (vectors are ordered by point-wise implication), the set of constraints
has a least vector solution by the Knaster-Tarski theorem. The least solution,
denoted by θ∗, forms the strongest solution to the constraints, and is therefore
the strongest compositional invariant.

The least fixpoint is calculated in the standard manner by a process of suc-
cessive approximation. The initial approximation, θ0i , is the empty set for all

i. The approximation θ
(K+1)
i for stage (K + 1) is defined as Fi(θ

K). Standard
methods, such as widening, may be used to ensure convergence for infinite-state
systems. This is a synchronized computation. However, by the chaotic iteration
theorem of [9], the simultaneous least fixpoint may be computed in an asyn-
chronous manner, following any “fair” schedule (one in which each component
is eventually given a turn). In Figure 2 we show one possible implementation of
the computation.

var θ, θ′: vector
initially, for all i: θi = ∅, θ′i = Ii
while (θ 	= θ′) do

forall i: θi := θ′i
forall i: θ′i := θi ∨ SP i(Ti, θi) ∨ (∨ k : k points-to i : SP i(intf

θ
ki, θi))

done

Fig. 2. Computing the Compositional Fixpoint

Uncovering Symmetries in Irregular Process Networks 501

4 Informal Analysis of a Dining Philosophers Protocol

In this section, we describe a protocol for the Dining Philosophers problem and
outline an analysis which performs local abstraction to extract symmetry. This
is done in an informal manner; the justification for the soundness of these steps
is laid out in the following sections.

The Protocol. We model a Dining Philosophers protocol (abbreviated by DP)
as follows. The protocol consists of a number of similar processes operating on
an arbitrary network. Every edge on the network models a shared “fork”; the
variable for the edge between nodes i and j is called fij . Its domain is {i, j,⊥}.
Node i is said to own the fork fij if fij = i; node j owns this fork if fij = j; and
the fork is available if fij = ⊥.

The process at node i goes through the following internal states: T (thinking);
H (hungry); E (eating); and R (release). Each state s is really a “super-state”
with a sub-state sX for every subset X of adjacent forks, but we omit this detail
for simplicity. Let nbr be the neighbor relation between processes. The state
transitions for a process are as follows.

– A transition from T to H is always enabled.
– In state H , the process acquires forks, but may also choose to release them

• (acquire fork) if nbr(i, j) and fij = ⊥, set fij := i,
• (release fork) if nbr(i, j) and fij = i, set fij := ⊥, and
• (to-eat) if (∀j : nbr(i, j) : fij = i) holds, change state to E.

– A transition from E to R is always enabled.
– In state R, the process releases its owned forks.

• (release fork) if nbr(i, j) and fij = i, set fij := ⊥
• (to-think) if (∀j : nbr(i, j) : fij �= i), change state to T

The initial state of the system is one where all processes are in internal state T∅
and all forks are available (i.e., have value ⊥).

Correctness Properties. The desired safety property is that there is no reach-
able global state where two neighboring processes are in the eating state (E).
The protocol given above is safe. It is also free of deadlock, as a process may
always release a fork to its neighbor. It is, however, not free of livelock. Our focus
is on a proof of the safety property of mutual exclusion between neighbors.

Abstract DP Model. The simplest abstraction is to have just the four abstract
states: T,H,E,R, corresponding to the four super-states. The abstract transi-
tions derived from standard existential abstraction are T → H,H → H,H →
E,E → R,R → R,R → T . However, this is too coarse an abstraction for com-
positional analysis. By the Step rule (Section 3) all four states, being reachable
from the initial abstract state T , must belong to the final invariant, θ∗i , for ev-
ery process i. This abstract compositional invariant contains a global state where

502 K.S. Namjoshi and R.J. Trefler

neighbors i, j are in state E, which violates the desired property of mutual
exclusion between neighbors.

To tighten up the abstraction, we define a predicate A that is true for a
node i if it “owns all adjacent forks” (i.e., if for every j adjacent to i, the fork
variable on the edge (i, j) has value i). Note that this predicate occurs in the
protocol, guarding the transition from stateH to state E. The reachable abstract
transitions at a node with at least one adjacent edge are shown in Figure 3(a). For
an isolated node A is vacuously true as it has no adjacent forks; the transitions
for such a node are shown in Figure 3(b).

The standard existential abstraction is used to compute these transitions. The
concrete domain for node m is the set of local states of m, Lm. The abstract
domain is the set {T,H,E,R}×{A,−A}. The abstraction function, αm, maps a
local state s to an abstract state based on the super-state in s and the value of
A in s. This induces a Galois connection (αm, γm) connecting the two domains.
There is an abstract transition from (abstract) state a to (abstract) state b if
there exist local states x, y of node m such that x ∈ γm(a), y ∈ γm(b), and
Tm(x, y) holds.

Abstract Interference Transitions. Figure 3 shows the abstract states reach-
able through step transitions. For the compositional analysis, we also have to
consider how interference by nodes adjacent to node m affects the abstract states
of node m. The concrete interference due to node k was defined in Section 3.
Expanding the definition of intf θkm, one gets that (u, v) is an interference transi-
tion for node m caused by node k, under a vector of assertions θ, if the following
holds.

Fig. 3. Abstract State Transitions (a) for non-isolated nodes and (b) for an isolated
node. The notation “−A” indicates the negation of A. Green/dark states are initial.

Uncovering Symmetries in Irregular Process Networks 503

(∃s, t : u = s[Vm] ∧ v = t[Vm] ∧ Tk(s, t) ∧ θk(s[Vk])) (1)

Here, states s, t are joint states of nodes m and k, representing an assignment
of values to the variables in Vm ∪ Vk.

By analogy, the interference of node k on the abstract state of m is defined
as follows. An abstract transition (a, b) for node m is the result of interference
by process Pk under a vector of abstract assertions ξ if the following holds.

(∃s, t : a = αm(s[Vm]) ∧ b = αm(t[Vm]) ∧ Tk(s, t) ∧ ξk(αk(s[Vk]))) (2)

Informally, this expression says that every abstract interference transition is
witnessed by a concrete interference transition.

Computing Interference. Surprisingly, there is no non-trivial interference in
the abstract DP protocol ! Informally, this is due to the following reason. The
predicate Am refers to the set of forks owned by m. In the concrete protocol, an
adjacent node cannot take away ownership of forks from nodem, nor can it grant
ownership of forks to m. Hence, the value of Am is unchanged by transitions at
neighboring nodes. Those transitions cannot change the value of the internal
state of node m, either. Formally, the maximum interference from k on to m,
obtained by setting ξk to true in the defining expression (2), shows that the
abstract state of m is unchanged by transitions of k.

Abstract Compositional Invariants. We have just established that in the
abstract domain, all interference is trivial. Hence, the compositional invariance
calculation produces, for each process, only the set of states reachable via ab-
stract step transitions. This is just the set of states shown in Figure 3. From it,
one can read off the following invariant: for all nodes m, if Em is true, then Am

is true. The corresponding concrete invariant is that for all nodes m, if Em is
true, then γm(Am) is true. There cannot be a global state meeting this invariant
where adjacent nodes m and n are each in state E. Otherwise, γm(Am) and
γn(An) will be true simultaneously, which is impossible – recall that Am states
that m owns all adjacent forks. Hence, the invariant suffices to show exclusion
between neighbors.

Symmetry Reduction. The abstract transition graphs are identical for all
non-isolated nodes, and identical for all isolated nodes. It suffices, therefore, to
have a single representative node for each class. Hence, the analysis of an arbi-
trary network, however irregular, can be reduced to the analysis (under abstrac-
tion) of two representative nodes. As this holds for all networks, the (abstract)
compositional invariant calculated for a small representative network, one with
each kind of node, defines a parameterized proof of safety.

Next Steps. In the following sections, we build up the foundations required to
show the soundness of this informal analysis. We give a definition of abstract

504 K.S. Namjoshi and R.J. Trefler

symmetry, specialize it to the case of predicate abstraction, and show the conse-
quences for symmetry reduction. We also show a completeness result generalizing
the observation made for DP that its abstract transition graph is interference-
free. We show that there is always an abstraction for which this is true if there
exists a parameterized conjunctive invariant for the protocol.

A similar analysis to the one carried out here applies also to another Dining
Philosophers protocol where there is always a distinguished node. In the case of
a ring network, the process at the distinguished node, say P0, chooses its forks
in an order that is the reverse of that taken by other processes, for instance, in
the order left;right instead of right;left. (This ensures the absence of deadlock.)
The irregularity introduced by the distinguished process implies that the only
structural balance relation for this ring is the trivial identity relation. However,in
the semantic balance relation after abstraction, any two nodes are equivalent.

5 Local Similarity Up to Abstraction

In this section, we develop the theory combining local abstraction and symmetry.
In [19], we introduced the notion of a local similarity between nodes of a network.
We refer to that as structural similarity here, to distinguish it from the semantic
similarity notion to follow.

5.1 Structural Similarity and Balance

Two nodes in a network are structurally similar if they have the same color and
there is a bijection between their neighborhoods. The neighborhood of a node
is the set of its adjacent edges. The bijection should respect the edge color and
the type of the node-edge connection. I.e., input edges should be mapped to
input edges and output edges to output edges. The similarity between nodes is
represented by a triple, (m,β, n), where m,n are nodes and β is the witnessing
bijection. The set of all similarity triples forms a groupoid, a group-like structure
with a partial composition operation.

A structural balance relation is a subset of this groupoid that induces a re-
cursive similarity. The definition has a co-inductive form, rather like that of a
bisimulation. If (m,β, n) is in the balance relation, then for every node k that
points to m, there is a node l that points to n and a map δ, such that (k, δ, l)
is in the balance relation, and β and δ agree on the edges common to m and k.
We have the following theorem.

Theorem 1 ([19]). Consider a structural balance relation B. For any program
that is a valid assignment relative to B, the strongest compositional invariant θ∗

is such that for any (m,β, n) in B, [θ∗n ≡ β(θ∗m)].

A program is a valid assignment relative to B if the assignment respects the
symmetries in B: if (m,β, n) is in B, the transition relations and initial conditions
for Pm and Pn must be related by β. The conclusion of the theorem says that for
any state x in θ∗m, the state y obtained from x by permuting edges according to β

Uncovering Symmetries in Irregular Process Networks 505

belongs to θ∗n. The permutation is given by setting y(β(e)) = x(e) for every edge
variable e. Informally, this theorem says that the strongest local invariants for
any pair of structurally similar nodes are themselves similar. Hence, it suffices
to compute θ∗ for a representative from each class of balance-equivalent nodes,
as shown in [19].

5.2 Semantic Similarity and Balance

Structural balance is defined solely on the network structure. This can be lim-
iting, as irregular networks have only trivial structural balance relations. The
semantic notion of balance mixes together program and network structure. It re-
quires balanced nodes to have similar transition relations and similar interference
from other nodes.

The analysis in Section 4 relies on abstracting the local state of each node.
After this is done one cannot, in general, define interference between nodes in
terms of shared state. Therefore, it is necessary to abstract the definition of
interference. It is convenient to think of “interference” as a primitive notion: for
node k that points to m, there is a postulated interference relation intf Xkm that is
a transition relation on the states of m, parameterized by a set X of states of k.
This relation is used as usual in the fixpoint computation (Figure 2). We require
that intf Xkm is monotonic in X to ensure that the least fixpoint is defined.

A semantic balance relation consists of triples (m,β, n) where m and n are
nodes and β is a relation on the local state sets Lm and Ln. (Recall that in a
structural balance relation, β is a bijection on edges.) As with structural bal-
ance, there is a clause that propagates local symmetry between m and n to
corresponding neighbors. In the following, we use the notation 〈β〉Y for the set
{x | (∃y : (x, y) ∈ β ∧ y ∈ Y)} of predecessors of Y according to β.

Definition 1. (Semantic One-sided Balance) A one-sided balance relation
is a set of triples such that for every (m,β, n) in the balance relation

1. (initial-similarity) initial states are related by β: formally, [Im ⇒ 〈β〉In]
2. (step-similarity) β is a safety-simulation from Tm to Tn
3. (interference-similarity) For every k that points to m, there is l that points

to n and δ for which
(a) (successive-balance) (k, δ, l) is in the balance relation, and
(b) (agreement) For state sets X,Y such that [X ⇒ 〈δ〉Y], β is a safety-

simulation from intf Xkm to intf Yln.

A safety simulation (cf. [21]) R from T1 to T2 is defined as follows. For any
(s, t) ∈ R and any transition (s, s′) ∈ T1, there must be state t′ such that
(t, t′) ∈ T ∗

2 and (s′, t′) ∈ R. It is a form of simulation, weakened by the use of
the reflexive transitive closure T ∗

2 .

Definition 2. (Two-sided Balance) A two-sided balance relation is a one-
sided balance relation that is closed under inverse; i.e., if (m,β, n) is in the
relation, so is (n, β−1,m).

506 K.S. Namjoshi and R.J. Trefler

Theorem 2. Every structural balance relation together with a valid assignment
induces a two-sided balance relation.

5.3 Symmetry Reduction

We consider the compositional fixpoint computation to be carried out in stages.
The set of local states computed for node m at stage S is denoted θSm. At
the initial stage (S = 0), θSm = Im. In a “step” stage, step transitions are
applied for all nodes until no new states are generated. In an “interference”
stage, interference transitions are applied for all nodes until no new states are
generated. The main symmetry theorem below shows that for a balance triple
(m,β, n), at every stage, the local states generated at m are related through β
to the local states generated by n.

Theorem 3. (Main Symmetry Theorem) Given a semantic balance relation,
at every fixpoint stage S in the compositional invariance calculation, for all
(m,β, n) in the balance relation, [θSm ⇒ 〈β〉θSn] holds.

Proof. The proof is by induction on stages.
Consider the initial stage. Here, the θ-values are the initial state sets for each

process. The claim follows from the initial-similarity condition.
Suppose, inductively, that the claim holds for stage S for all triples in the

balance relation. Consider stage S+1 and the triple (m,β, n). For node m, let s
be a state generated at stage S+1 that is an immediate successor of a state u in
θSm. From the induction hypothesis applied to u, there is a state v in θSn related
by β to u. There are two cases, based on the type of stage S + 1.

(1) Suppose that S + 1 is a step stage, so that s is a successor by Tm. By
step-similarity, there is a state t reachable by a sequence of Tn moves from v that
is β-related to s. As the stage (S+1) calculation closes-off under step successors,
t belongs to θS+1

n .
(2) Suppose, instead, that S + 1 is an interference stage, and that s arises

from an interference transition by node k that points to m. By balance, there is
l that points to n and δ such that (k, δ, l) is in the balance relation.

Let X = θSk and Y = θSl . By the inductive claim applied to k and l, [X ⇒
〈δ〉Y]. From the agreement condition, β is a safety-simulation between intf Xkm
and intf Yln. Thus, for the transition from u to s, which is in intf Xkm, there is a
matching sequence of intf Yln-transitions from v to a state t that is related by β
to s. As the stage (S + 1) calculation closes-off under interference successors, t
belongs to θS+1

n .
We have considered only the important case, where s is an immediate successor

of a state in the previous stage. The case of a non-immediate successor within
the same stage may be shown by induction within a stage based on the length
of its derivation path within that stage. ��

Uncovering Symmetries in Irregular Process Networks 507

Corollary 1. Consider a two-sided semantic balance relation where every triple
is based on a one-to-one relation. For any (m,β, n) in the balance relation and
every fixpoint stage S, [θSm ≡ 〈β〉θSn].

Proof. The direction from left-to-right follows from Theorem 3. As the balance
relation is two-sided, it includes the triple (n, β−1,m). By Theorem 3 for this
triple, [θSn ⇒ 〈β−1〉θSm]. Hence, [〈β〉θSn ⇒ 〈β〉〈β−1〉θSm]. As β is one-to-one,
this implies that [〈β〉θSn ⇒ θSm]. ��

Based on Theorem 3 and Corollary 1, one may symmetry-reduce the fixpoint
calculation as follows, using a procedure defined in [19]. Consider a balance
relation that is closed under inverse and composition. This defines a symmetry
groupoid. The orbit of the groupoid, i.e., the set of pairs (m,n) such that there is
a β for which (m,β, n) is in the balance relation, is an equivalence relation. For
each balance-equivalence class, one chooses a representative node. The fixpoint
calculation is carried out only for the representative nodes. The value of θSi for
a non-representative node i, which may be needed to calculate interference, can
be computed by Corollary 1 as 〈β〉θSr), where r is the representative for node i
and (i, β, r) is a triple linking i to r.

6 Local Predicate Abstraction and Symmetry Reduction

This section connects the general concepts from Section 5 with the predicate
abstractions used in the informal treatment in Section 4.

6.1 Local Domain Abstraction

We consider the effect of a general domain abstraction before specializing to
predicate abstraction. The effect of a domain abstraction at each node is to
construct an abstract network, which has the same structure as the original
one, but with a different state space at each node. We refer to the abstract
network for network N as N and refer to the abstract counterpart of node m as
m. In the following, we show how to connect the two networks using a balance
relation. This relation induces a connection between the compositional invariants
computed on the concrete and abstract networks.

A local abstraction is given by specifying, for each nodem an abstract domain,
Dm, and a total abstraction function, αm : Lm → Dm. This induces a Galois
connection on subsets, which we also refer to as (αm, γm): αm(X) = {αm(x) | x ∈
X}, and γm(A) = {x | αm(x) ∈ A}.

The abstract set of initial states, Im is given by αm(Im). (For a simpler no-
tation, we denote this set as Im rather than Im.) The abstract step transition,
Tm, is obtained by existential abstraction: there is a transition from (abstract)
state a to (abstract) state b if there exist x, y in Lm such that αm(x) = a,
αm(y) = b, and Tm(x, y) holds. An abstract transition (a, b) is the result of

508 K.S. Namjoshi and R.J. Trefler

interference by node k from state set Y , that is, (a, b) ∈ intf
Y

km, if the following
holds.

(∃s, t : αm(s[m]) = a ∧ αm(t[m]) = b ∧ Tk(s, t) ∧ αk(s[k]) ∈ Y) (3)

Theorem 4. The set of triples of the form (m,αm,m) is a one-sided semantic
balance relation connecting the concrete network N to the abstract network N .

Proof. We have to check the conditions for one-sided balance. Initial-similarity
follows by the definition of Im. Step-similarity holds as the abstract transition
relation is the standard existential abstraction. For a node k that points to m,
we use k as its corresponding node, which points to m, and let δ = αk. Then,
(k, δ, k) is also in the balance relation. The agreement condition follows from the
analogy between the concrete and abstract interference conditions. Specifically,
if (x, y) is a transition in intf Xkm, there exist joint (concrete) states s, t such
that s[k] ∈ X , s[m] = x, t[m] = y and Tk(s, t) all hold. Thus, we get that
αk(s[k]) ∈ αk(X), αm(s[m]) = αm(x), αm(t[m]) = αm(y) and Tk(s, t) all hold.
Let Y be such that [X ⇒ 〈αk〉Y]. Then we get that αk(s[k]) ∈ Y . Hence, from

definition (3) above, the pair (αm(x), αm(y)) is in intf
Y

km, which establishes the
agreement condition. ��

As a consequence, from Theorem 3, we obtain the following corollary. This corol-
lary shows that the strongest compositional invariant obtained on N can be con-
cretized to a compositional invariant for the network N . Abstraction may lose
some precision, but this comes at the potential gain of local symmetry.

Corollary 2. Let θ∗ and ξ∗ be the strongest compositional invariants for the
concrete and abstract networks, respectively. Then (1) for every m, [θ∗m ⇒
γm(ξ∗m)] and (2) the vector (m : γm(ξ∗m)) is a compositional invariant for the
concrete network.

Proof (sketch). The first conclusion follows from Theorem 3 applied to the (dis-
joint) union of N and N , and the Galois connection between αm and γm.

The second conclusion follows by reasoning with the conditions of composi-
tional invariance and the Galois connection. For simplicity, we suppose that the
abstract domain is flat (i.e., ordering is equality), so that the condition x ∈ γk(Y)
is equivalent to αk(x) ∈ Y . (Non-flat domains may be handled by taking down-
ward closures in the computation of ξ∗, a complication we omit here.)

Define Zm = γm(ξ∗m) for all m. We show that Zm satisfies the compositional
invariance conditions for nodem by considering them in turn. For x ∈ Im, αm(x)
is in Im. By initiality, αm(x) is in ξ∗m, so that x ∈ Zm. For x ∈ SPm(Tm, Zm),
there is y ∈ Zm such that Tm(x, y). Hence, (αm(x), αm(y)) belongs to Tm and
αm(y) is in ξ∗m. The step condition for Tm ensures that αm(x) is in ξ∗m; hence,
x ∈ Zm. Similar reasoning proves the case for interference transitions. ��

Uncovering Symmetries in Irregular Process Networks 509

6.2 Local Predicate Abstraction

Local predicate abstraction maps the local state of a node to the valuation of a
set of predicates on the local state. For simplicity, we fix a set of predicates, P ,
which can be interpreted over all nodes.

There is a natural Galois connection, denoted (αm, γm), established by P over
a node m. For a local state s of node m, the abstraction function αm(s) maps s
to a set of literals giving the valuation of the predicates in P on s. This is the set
{(p ≡ p(s)) | p ∈ P}. The abstraction is extended naturally to sets of concrete
states. The concretization function, γm, maps a set X of of sets of literals to the
set of local states given by {s | αm(s) ∈ X}. Given this abstraction, the abstract
forms of the transition relation and interference are as defined in Section 6.1.

Corollary 2 establishes that the compositional invariant calculated using the
abstract initial states, abstract step and abstract interference transitions de-
fined over P is, as interpreted through the γm functions, a valid compositional
invariant for the concrete system.

We now show that, with the right choice of predicates, the induced abstract
network is (a) fully locally symmetric, (b) free of interference, and (c) adequate.
This result is similar in spirit to a completeness theorem of Kesten and Pnueli [17]
for abstraction over the global state space. The key difference in the following
theorem is in its treatment of compositionality and symmetry, which are not
covered by the Kesten-Pnueli result.

Theorem 5. For a fixed-size process network, any inductive invariant of the
form (∀i : θi), where each θi is local to process Pi, can be established by compo-
sitional reasoning over a uniform abstract Boolean network.

Proof (sketch). By a result in [18], the strongest compositional invariant, θ∗, is
such that [θ∗i ⇒ θi], for all i.

The single predicate symbol is B. (A helpful mnemonic is to read B as “black”
and (¬B) as “white”.) The abstraction function αi maps a local state x of Li to
B, if θ∗i (x) holds, and to (¬B) otherwise. Let ξ∗ be the strongest compositional
invariant computed for the abstract network. By Corollary 2, [θ∗i ⇒ γi(ξ

∗
i)].

This implies that the abstract state (B = true) is in ξ∗i for all i.
We show that the implication is, in fact, an equality; i.e., that the other

abstract state, (B = false), does not belong to ξ∗i for any i. As [Im ⇒ θ∗m], it
follows that [αm(Im) ⇒ αm(θ∗m)], i.e., that [Im ⇒ B]. Hence, initially, only
the state B is in ξ∗m. Suppose, inductively, that this is the case at the S’th stage.
Consider an abstract step transition that introduces the state (¬B). This must
have a concrete step transition Tm(x, y) as a witness where θ∗m(x) holds but
θ∗m(y) does not. This is impossible by the step constraint for θ∗. Similarly, one
can establish the impossibility of an abstract interference transition of this kind,
so that the only interference is the trivial (B,B) transition. Hence, ξ∗m = {B}
for all m, so that the concrete invariant induced by ξ∗ is just θ∗. This establishes
adequacy: any property implied by the original invariant can be shown with the
concretized abstract invariant.

510 K.S. Namjoshi and R.J. Trefler

We now show that, in the abstract network, any two isolated nodes and any
two non-isolated nodes are balanced. The balance relation consists of triples
(m,β, n) where β is the partial bijection B �→ B. Initial-similarity holds as the
only initial state is B. Step similarity holds as, by the reasoning above, the only
abstract reachable step transition is (B,B). The reasoning so far is sufficient to
show that any two isolated nodes are balanced; the rest of the proof applies to
the case where m and n are not isolated nodes. For a node k that points to m,
choose its corresponding node l arbitrarily from the nodes pointing to n – there
is at least one such node as n is not isolated. Then k and l are non-isolated
and (k, δ, l) is in the balance relation with the bijection δ which maps B to B.
Consider X,Y as in the agreement condition. It suffices to consider Y = δ(X),
by the monotonicity of interference relations. As δ is defined for all elements of
X it cannot include (¬B); therefore,X must be either ∅ or {B}. Thus, Y = δ(X)
is correspondingly ∅ or {B}. Expanding the definition of abstract interference,
it follows from the non-interference condition for θ∗ that β is a safety simulation
between intf Xkm and intf Yln. ��

A consequence of Corollary 2 is that if all members of a parameterized family
of networks can be reduced to a finite set of abstract networks (over a fixed set
of predicates), the compositional invariants computed for the abstract networks
concretize to a parametric compositional invariant for the entire family. The
following theorem shows that there is always a “right” choice of predicate for
which this is true.

Theorem 6. For a parameterized family of process networks, any compositional
invariant of the form (∀i : θi), where each θi is local to process Pi, can be
established by compositional reasoning over a small uniform abstract Boolean
network.

Proof (sketch). The difference between the statement of this theorem and The-
orem 5 is that the assumed invariant is compositional. This implies that the
compositionality conditions hold for the given θi for every instance. Hence, the
predicate symbol B in the proof of Theorem 5 has an interpretation that is
uniform across all instances.

The proof of Theorem 5 shows that in the abstract network, there are at most
two classes of nodes: those that are isolated and those that are not. Hence, there
is a cutoff instance N whose abstract network N (over B) exhibits all the classes
of nodes that can arise. By Theorem 3, the concretized form of the compositional
abstract invariant for N is a compositional invariant for every larger instance of
the family. ��

6.3 Reviewing the Dining Philosophers Analysis

We can now review the informal analysis of Section 4 in terms of these theorems.
The per-node abstraction with predicate A is an instance of the local predicate
abstraction discussed in Section 6.2. From Corollary 2, the abstract composi-
tional invariant, when concretized, is a compositional invariant for the concrete

Uncovering Symmetries in Irregular Process Networks 511

system. This establishes the correctness of (∀m : Em ⇒ γm(Am)) as a concrete
invariant.

For the abstract network, the candidate balance relation is {(m, id , n)} where
id is the identity relation, and m,n are both isolated nodes or both non-isolated
nodes. Using the definitions of abstract transitions and interference, one can
check that this meets the conditions for a two-sided balance relation (Defini-
tions 1 and 2). The orbit of this balance relation has just two classes so, from
Corollary 1, it suffices to consider two representative nodes for the analysis. Since
the calculation for the representative node is identical across networks, we may
conclude that the computed invariant applies to all networks.

The completeness theorems show that the phenomenon observed in the infor-
mal analysis of the Dining Philosophers protocol (Section 4) is not an isolated
case. Any compositional invariant of a parameterized family can be obtained
through a local predicate abstraction that induces complete local symmetry and
only trivial interference in the abstract network.

7 Summary and Related Work

The seminal work on symmetry reduction in model checking [12,4,16] and its
many refinements base the theory on the global symmetries of a Kripke struc-
ture, expressed as a group of automorphisms. For a distributed program, these
symmetries (as shown in [12]) are lower-bounded by the symmetries of the pro-
cess interconnection network. In fact, for most interesting protocols, the symme-
tries are also upper-bounded by the group of symmetries of the process network.
This implies that symmetry reduction works well for networks with a complete
interconnection or a star shape. (This is typically a client-server structure, al-
though, as the example in Section 2 shows, not all client-server protocols fit the
assumptions made in [12].) For other networks, most notably ring, mesh and
torus networks, the global automorphism group has size at most linear in the
number of nodes of the network; hence, the available symmetry reduction is also
at most a linear factor. This is not particularly helpful if, as is often the case,
the Kripke structure is exponential in the size of the network.

Motivated by this problem, we introduced in [19] the notion of local symme-
tries. Regular networks, such as the complete, star, ring, mesh and torus net-
works have a high degree of local similarity: intuitively, the network “looks the
same” from nearly every node. We show that this results in symmetry reduction
for compositional methods. Although the compositional invariance calculation
is polynomial, requiring time O(N3) for a network of N nodes, local symmetry
does have a significant effect, in two ways. First, for many regular networks,
the calculation time becomes independent of N after symmetry reduction. Sec-
ond, it is possible to derive parametric invariants if local symmetry reduces each
member of a family of networks to a fixed set of representatives.

As discussed in the introduction, this symmetry notion is, however, not ap-
plicable to irregular networks. In this work, we show that it is possible in many
cases to overlay a local similarity structure on an irregular network, by using an

512 K.S. Namjoshi and R.J. Trefler

appropriate abstraction over node neighborhoods. The theoretical drawback is
that using abstraction generally results in weaker invariants. On the other hand,
we show that for the Dining Philosophers protocol, the invariant calculated by
abstraction suffices to prove mutual exclusion. Moreover, the completeness re-
sult ensures that, for any compositional invariant, there is always an appropriate
predicate abstraction. Hence, we conjecture that abstraction will suffice for most
practical analysis problems.

Other compositional reasoning methods, such as those based on alternative
assume-guarantee rules [15] or on automaton learning [14,6] should also benefit
from local symmetry reduction; working out those connections is a subject for
future work. It should be noted that there are other techniques (e.g., [13]) which
enhance global symmetry in certain cases where the original protocol is only
minimally globally symmetric. In the current work, we have instead applied local,
rather than global, symmetry reduction techniques; local symmetries appear to
be more widely applicable. A particularly intriguing outcome of the analysis of
the Dining Philosophers protocol is that one can show a parametric invariant,
one which holds for all networks. Parameterized safety analysis is undecidable in
general [2]. There is a large variety of analysis methods, such as those based on
well-quasi-orders (e.g., [1]) or on iterating transducers (e.g., [10]), each of which
works well on a class of problems.

We discuss two methods which are the closest to the point of view taken here.
The first is the “network grammar” method from [20]. A family of networks
is described by a context-free network grammar. A choice of abstract process
is made for each non-terminal in the grammar. This results in a set of model-
checking constraints, which, if solvable, give a parametric proof of correctness.
This technique is applicable to regular networks (rings, trees) that have a com-
pact grammar description. The second method is that of environment abstraction
[5]. This method chooses the point of view of a single process, abstracting the
rest of the network. There is a certain similarity between the generic process
used for environment abstraction and the single representative process used in
our work. However, there is a difference in how the network abstraction is defined
(non-compositionally for environment abstraction) and the method has not been
applied to irregular networks.

The connections made in [19] between local symmetry, compositionality and
parametric verification are extended in here to irregular networks. The crucial
observation is that local abstraction can make an irregular network appear reg-
ular, facilitating symmetry reduction. The application to versions of the Dining
Philosophers protocol and the completeness results suggest that these connec-
tions are worth further study. In ongoing work, we are examining how well
abstraction works for other protocols. An interesting question is whether appro-
priate abstraction predicates, such as the predicate A from Section 4, can be
discovered automatically. It is possible that automatic methods that discover
auxiliary predicates to address incompleteness (e.g., [7,8]) can be adapted to
discover predicates for abstraction. A particularly interesting question for future
work is to investigate parametric proofs of protocols on dynamic networks, i.e.,

Uncovering Symmetries in Irregular Process Networks 513

networks where links and nodes can fail or appear, a domain that is interesting
because of its connections to fault tolerance and ad-hoc networking (cf. [11]).

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE Computer Society (1996)

2. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

4. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal Logic Model
Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462.
Springer, Heidelberg (1993)

5. Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameter-
ized Verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2006)

6. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

7. Cohen, A., Namjoshi, K.S.: Local Proofs for Global Safety Properties. In:Damm,W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidelberg
(2007)

8. Cohen, A., Namjoshi, K.S.: Local Proofs for Linear-Time Properties of Concurrent
Programs. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 149–161.
Springer, Heidelberg (2008)

9. Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: math-
ematical foundations. In: ACM Symposium on Artificial Intelligence & Program-
ming Languages, Rochester, NY (August 1977); ACM SIGPLAN Not. 12(8), 1–12

10. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. J. Log. Algebr. Pro-
gram 52-53, 109–127 (2002)

11. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of Ad Hoc Networks with
Node and Communication Failures. In: Giese, H., Rosu, G. (eds.) FORTE 2012
and FMOODS 2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012)

12. Emerson, E.A., Sistla, A.P.: Symmetry and Model Checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

13. Emerson, E.A., Havlicek, J., Trefler, R.J.: Virtual symmetry reduction. In: LICS,
pp. 121–131. IEEE Computer Society (2000)

14. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: ASE, pp. 3–12. IEEE Computer Society (2002)

15. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL, pp. 331–344. ACM (2011)

16. Ip, C., Dill, D.: Better verification through symmetry. Formal Methods in System
Design 9(1/2), 41–75 (1996)

17. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Information
and Computation 163(1), 203–243 (2000)

18. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized
Systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp.
299–313. Springer, Heidelberg (2007)

514 K.S. Namjoshi and R.J. Trefler

19. Namjoshi, K.S., Trefler, R.J.: Local Symmetry and Compositional Verification. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 348–362.
Springer, Heidelberg (2012)

20. Shtadler, Z., Grumberg, O.: Network Grammars, Communication Behaviors and
Automatic Verification. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 151–165.
Springer, Heidelberg (1990)

21. Trefler, R.J., Wahl, T.: Extending Symmetry Reduction by Exploiting System Ar-
chitecture. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,
pp. 320–334. Springer, Heidelberg (2009)

State Space Reduction for Sensor Networks
Using Two-Level Partial Order Reduction�

Manchun Zheng1, David Sanán2, Jun Sun1, Yang Liu3, Jin Song Dong4, and Yu Gu1

1 Singapore University of Technology and Design
{zmanchun,sunjun,jasongu}@sutd.edu.sg

2 School of Computer and Statistics, Trinity College Dublin
David.Sanan@cs.tcd.ie

3 School of Computer Engineering, Nanyang Technological University
yangliu@ntu.edu.sg

4 School of Computing, National University of Singapore
dongjs@comp.nus.edu.sg

Abstract. Wireless sensor networks may be used to conduct critical tasks like
fire detection or surveillance monitoring. It is thus important to guarantee the
correctness of such systems by systematically analyzing their behaviors. Formal
verification of wireless sensor networks is an extremely challenging task as the
state space of sensor networks is huge, e.g., due to interleaving of sensors and
intra-sensor interrupts. In this work, we develop a method to reduce the state
space significantly so that state space exploration methods can be applied to a
much smaller state space without missing a counterexample. Our method ex-
plores the nature of networked NesC programs and uses a novel two-level partial
order reduction approach to reduce interleaving among sensors and intra-sensor
interrupts. We define systematic rules for identifying dependence at sensor and
network levels so that partial order reduction can be applied effectively. We have
proved the soundness of the proposed reduction technique, and present experi-
mental results to demonstrate the effectiveness of our approach.

1 Introduction

Sensor networks (SNs) are built based on small sensing devices (i.e., sensors) and de-
ployed in outdoor or indoor environments to conduct different tasks. Recently, SNs have
been applied in more areas like military surveillance, environment monitoring, theft de-
tection, and so on [2]. Many of them are carrying out critical tasks, failures or errors
of which might cause catastrophic loss of money, equipments and even human lives.
Therefore, it is highly desirable that the implementation of SN systems is reliable and
correct.

In order to develop reliable and correct SNs, a variety of approaches and tools have
been proposed. Static analysis of SNs (e.g., [3]) is difficult, given their dynamic nature.
Therefore, most of the existing approaches rely on state space exploration, e.g., through
simulation [15], random walk [17], or model checking [13,19,20,23,4,5,17]. Although

� This research is partially supported by project IDG31100105/IDD11100102 from Singapore
University of Technology and Design.

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 515–535, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

516 M. Zheng et al.

some of the tools were able to detect and reveal bugs, all of them face the same chal-
lenge: the huge state space of SNs. In practice, a typical sensor program might consist
of hundreds/thousands of lines of code (LOC), which introduces a state space of tens
of thousands, considering only concurrency among internal interrupts. As a result, ex-
isting tools usually cover only a fraction of the state space and/or take a long time.
For instance, the work in [4,5] is limited to a single sensor, whereas the approaches
in [13,19,17,25] work only for small networks. We refer the readers to Section 6 for a
detailed discussion of related works.

In this work, we develop a method to significantly reduce the state space of SNs while
preserving important properties so that state space exploration methods (like model
checking or systematic testing) become more efficient. Our targets are SNs developed
in TinyOS/NesC, since TinyOS/NesC is widely used for developing SNs. TinyOS [7]
provides an interrupt-driven execution model for SNs, and NesC (Network-Embedded-
System C) [10] is the programming language of TinyOS applications.

Our method is a novel two-level partial order reduction (POR) which takes ad-
vantage of the unique features of SNs as well as NesC/TinyOS. Existing POR meth-
ods [11,6,9,24,12] reduce the state space of concurrent systems by avoiding unnecessary
interleaving of independent actions. In SNs, there are two sources of “concurrency”.
One is the interleaving of different sensors, which would benefit from traditional POR.
The other is introduced by the internal interrupts of sensors. An interrupt can occur
anytime and multiple interrupts may occur in any sequence, producing numerous states.
Applying POR for interrupts is highly nontrivial because all interrupts would modify
the task queue and lead to different orders of scheduled tasks at run time. Our method
extends and combines two different POR methods (one for intra-sensor interrupts and
one for inter-sensor interleaving) in order to achieve better reduction. We remark that
applying two different POR methods in this setting is complicated, due to the interplay
between inter-sensor message passing and interrupts within a sensor (e.g., a message
arrival would generate interrupts).

Our method preserves both safety properties and liveness properties in the form of
linear temporal logic (LTL) so that state space exploration methods can be applied to
a much-smaller state space without missing a counterexample. Our method works as
follows. First, static analysis is performed to automatically identify independent action-
s/interrupts at both inter-sensor and intra-sensor levels. Second, we extend the Cartesian
semantics [12] to reduce network-level interleaving. The original Cartesian POR algo-
rithm treats each process (in our case, sensor) as a simple sequential program. How-
ever, in our work, we have to handle the internal concurrency among interrupts for each
sensor and thus the Cartesian semantics of SNs is developed. The interleaving among
interrupts is then minimized by the persistent set technique [6].

We formally prove that our method is sound and complete, i.e., preserving LTL-
X properties [6]. The proposed method has been implemented in the model checker
NesC@PAT [25] and experiment results show that our method reduces the state space
significantly, e.g., the reduced state space is orders of magnitudes smaller. We also
approximated the reduction ratio obtained by a related tool T-Check [17] under POR
setting and the data show that our two-level POR achieves much better reduction ratio
than T-Check’s POR algorithm, as elaborated in Section 5.

State Space Reduction for Sensor Networks 517

2 Preliminaries

In this section, we present the interrupt-driven feature of TinyOS/NesC and the formal
definitions of SNs. For details on how to generate a model from NesC programs, readers
are referred to [25], which defines small step operational semantics for NesC.

In NesC programs, there are two execution contexts, interrupt handler and task
(a function), described as asynchronous and synchronous, respectively [10]. An inter-
rupt handler can always preempt a task if interrupts are enabled. In TinyOS execution
model [14], a task queue schedules tasks for execution in a certain order. In our work,
we model the task scheduler in the FIFO order, which is the default setting of TinyOS
and is widely used. As shown in Fig. 1(a), the execution of a task could be preempted
by interrupt handlers. An interrupt handler accesses low-level registers and enqueues a
task to invoke a certain function at a higher level of application code. In our approach,
we treat interrupt handlers as black boxes, as we assume that the low-level behaviors
of devices work properly. Variables are used to represent the status of a certain device
and thus low-level functions related to interrupt handlers are abstracted, as shown by
the pseudo code in Fig. 1(b). The execution of an interrupt handler is modeled as one
action. Different ordering of interrupt handler executions might lead to different orders
of tasks in the task queue, making the state space complex and large. In our model after
a task is completed, all pending interrupt handlers are executed before a new task is
loaded for execution. This approximation reduces concurrency between tasks and in-
terrupts and is yet reasonable since devices usually respond to requests within a small
amount of time like the executing period of a task.

The NesC language is an event-oriented extension of C that adds new concepts such
as call , signal , and post . The semantics of call (e.g., lines 2 and 10 in Fig. 1(c)) and
that of signal are similar to traditional function calls, invoking certain functions (either
commands or events). The keyword post (like lines 3 and 17 in Fig. 1(c)) is to enqueue
a given task. Thus the task queue could be modified during both synchronous and asyn-
chronous execution contexts. In other words, the task queue is shared by tasks and
interrupt handlers. Fig. 1(c) illustrates a fragment of a NesC program, which involves
messaging and sensing and is the running example of this paper. The command call
Read .read()/Send .send() invokes the corresponding command body that requests the
sensing device/messaging device to read data/to send a packet, which will later trigger
the completion interrupt rd /sd to post a task for signaling eventRead .rdDone/Send .se-
ndDone. We remark that rv is used to denote the interrupt of a packet arrival, and trd ,
tsd , and trv are the tasks posted by interrupt handlers of rd , sd and rv , respectively.
With the assumption that a packet arrival interrupt is possible at any time, the state
graph of event Boot .booted is shown in Fig. 1(d), where each transition is labeled with
the line number of the executed statement or the triggered interrupt, and each state is
numbered according to the task queue. The task queues of different state numbers are
illustrated in Fig. 1(d) as well. For example, after executing call Read .read() (line 2)
the task queue still remains empty, while after executing the interrupt handler rv which
enqueues its completion task trv and the task queue becomes 〈trv 〉 (i.e., state 6).

The formal definitions of SNs are given in [25]. They are summarized below only to
make the presentation self-contained.

518 M. Zheng et al.

Task 1

Task 2

Task 3

…

Task n Interrupt
Handler

Task
Execution

pr
ee

m
pt

re
su

m
e

post

Device

(a) TinyOS Execution Model

1 vo id handler dev (){
2
3 / / update s ta tus o f dev ;
4
5 . . .
6
7 / / schedule the
8
9 / / complet ion event

10
11 post dev compl task () ;
12
13 }
14
15
16
17 / / complet ion task
18
19 task vo id dev compl task (){
20
21 / / event implemented
22
23 / / by programmers
24
25 s igna l dev done event () ;
26
27 }

(b) Abstract Interrupt Handler

1 event vo id Boot . booted (){
2
3 c a l l Read . read () ;
4
5 post send task () ;
6
7 }
8
9 event vo id Read . rdDone (i n t v){

10
11 value += v ;
12
13 }
14
15 task vo id send task (){
16
17 busy = t rue ;
18
19 c a l l Send . send (count) ;
20
21 }
22
23 event vo id Send . sendDone (){
24
25 busy = f a l s e ;
26
27 }
28
29 event vo id Receive . rece ive (){
30
31 count ++;
32
33 post send task () ;
34
35 }

(c) Example Code

0

0

1 6

2 7

9 8

6

3

4

11

5 10

12 13

14

15

0: empty
1: tst
2: tst , trd
3: trd
4: tst , trv
5: trd , tst
6: trv
7: trv , tst
8: trv , tst , trd
9: tst , trd , trv
10: trd , trv
11: tst , trv , trd
12: trd , tst , trv
13: trd , trv , tst
14: trv , trd
15: trv , trd , tst

2

3

rv

2 rv rd

rd rv rv rd 3 3

rv rd rv 3 rd 3

(d) State Graph of Event Boot .booted

Fig. 1. Interrupt-driven Features

State Space Reduction for Sensor Networks 519

Definition 1 (Sensor Model). A sensor model S is a tuple S = (A,T ,R, init ,P)
where A is a finite set of variables; T is a queue which stores posted tasks in FIFO
order; R is a buffer that keeps incoming messages sent by other sensors; init is the
initial state of S; and P is a program composed by the running NesC program M and
interrupting devices H , i.e., P = M ; H .

Definition 1 formally describes a sensor which runs NesC programs. Let S be a sensor.
A state C of S is a tuple (V ,Q ,B ,P) where V is the current valuation of variables de-
clared by the NesC programs of S; Q is a sequence of tasks scheduled in the task queue;
B is the sequence of packets in the message buffer; and P is the running program. In
this work, we use V (C), Q(C), B(C) and P(C) to denote the variable valuation, task
queue, message buffer and running program of a state C , respectively.

A sensor transition t is defined as C
α→s C ′, where C (C ′) is the state before and

after executing the action α, represented as C ′ = ex (C , α). We define enable(C) to be
the set of all actions enabled at state C , i.e., enable(C) = {α | ∃C ′ ∈ C,C

α→ C ′}.
Further, ex (C , α) (whereα ∈ enable(C)) denotes the state after executingα at state C .∑

S (or simply
∑

if S is clear) denotes the set of actions of S. We define itrQ(S) ⊆
∑

as the set of hardware request actions and sd(S) as the set of actions involving packet
transmission. Tasks(S) (or simply Tasks if S is clear) denotes the set of all tasks
defined in S. For a given NesC program, we assume that

∑
and Tasks are finite.

Definition 2 (Sensor Network Model). A sensor network model N is defined as a
tuple (R, {S0, · · · ,Sn}) where R is the network topology, and {S0, · · · ,Sn} is a finite
ordered set of sensor models, with Si (0 � i � n) being the i th sensor model.

A state C of a sensor network is defined as an ordered set of states {C1, · · · ,Cn} where
Ci (1 � i � n) is the state of Si , denoted by C[i]. A sensor network transition T is

defined as C α
↪→ C′ where C (C′) is the state before (after) the transition, represented as

C′ = Ex (C, α). In the following of this paper, a state of a sensor is referred to as a local
state, whereas a state of a sensor network is called a global state or simply a state.

3 Two-Level Independence Analysis

Inside a sensor, the interleaving between an interrupt handler and a non-post action can
be reduced, since interrupt handlers only modify the task queue and non-post actions
never access the task queue. For example, in Fig. 1(d), the interleaving between line 2
and rv can be ignored. Moreover, for post statements and interrupt handlers, their inter-
leaving could be reduced if their corresponding tasks access no common variables. For
example, trd only accesses variable value which is never accessed by trv , so the inter-
leaving between interrupt handlers rd and rv at state 1 can be alleviated. In Fig. 1(d),
dashed arrows and shadow states stand for transitions and states that can be pruned.
Therefore, it is important to detect the independence among actions inside a sensor,
referred to as local independence.

Among a sensor network, each sensor only accesses its own and local resources,
unless it sends a message packet, modifying some other sensors’ message buffers. In-
tuitively, the interleaving of local actions of different sensors can be reduced without

520 M. Zheng et al.

0: empty
1: tst
2: tst , trd
3: trd
4: trd , tsd

2

rd

rd

3

rd

0.0

0.0

0.0

1.0

3.0 3.0

2.0

0.1 2.1

5.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

2

3

3

rd
9

2

3

rd

10 sd 6

2

4.0

rv

3

rv rd

rv

rd

rv rd

P11

P21

P12

P22

P13

P23

5: tsd
6: trv
7: trv , tst
8: trv , tst , trd
9: tst , trv , trd

Task Queue

2.0

Fig. 2. Pruned State Graph

missing critical states. This observation leads to the independence analysis at the net-
work level, referred to as global independence.

Consider a network with two sensors S1 and S2 implemented with the code shown
in Fig. 1(c). Applying partial order reduction at both network and sensor levels, we
are able to obtain a reduced state graph as shown in Fig. 2. States are numbered with
the task queues of both sensors. For example, state 2.1 shows that the task queue of
S1 is 〈tst , trd〉 and 〈tst 〉 for S2. In this example, interleaving between the two sensors
is only allowed when necessary, like at the shadow states labeled with 2.0 and 4.0.
The sub-graph within each dashed rectangle is established by executing actions from
only one sensor, either S1 or S2. In each sub-graph, local independence is applied to
avoid unnecessary interleaving among local actions. Dashed arrows indicate pruned
local actions. For example, rectangle P23 is constructed by removing all shadow states
and dashed transitions in Fig. 1(d). The corresponding complete state space of this graph
consists of around 200 states, whereas the reduced graph contains fewer than 20 states.

The shape of the reduced state graph might be different according to the property be-
ing checked. For example, if the property is affected by the value of the variables busy
and value of the example in Fig. 1(d), then the interleaving between rd and rv can
not be avoided. Therefore, we need to investigate local and global independence w.r.t. a
certain property, and in the following of this paper, the concepts of independence, equiv-
alence and so on are discussed w.r.t. a certain property ϕ. We present the definitions of
local independence and global independence in Section 3.1 and 3.2, respectively, both
with rules for identifying them.

3.1 Local Independence

In a sensor, an action may modify a variable or the task queue. Local independence is
defined by the effects on the variables and the task queue. In the following, the concepts
of actions, tasks, and task queues are w.r.t. a given sensor S.

State Space Reduction for Sensor Networks 521

Definition 3 (Local Independence). Given a local stateC , α1, α2 ∈
∑

, andα1, α2 ∈
enable(C). Actionsα1 andα2 are said to be local-independent, denoted byα1 ≡LI α2,
if the following conditions are satisfied:

1. ex (ex (C , α1), α2) =v ex (ex (C , α2), α1);
2. Q(ex (ex (C , α1), α2)) < Q(ex (ex (C , α2)), α1).

In the above definition,=v denotes that two local states share the same valuation of vari-
ables, message buffer, and the same running program. That is, if C1 = (V1,Q1,B1,P1),
C2 = (V2,Q2,B2,P2), then we have C1 =v C2 iff V1 = V2 ∧ B1 = B2 ∧ P1 = P2.
If only the first condition in Definition 3 is satisfied, α1 and α2 are said to be variable-
independent, denoted by α1 ≡VI α2. The relation < will be covered in Definition 6. Let
Wα and Rα be the set of variables written and only read by an action α, respectively.

Lemma 1. ∀α1, α2 ∈
∑
. Wα1 ∩ (Wα2 ∪ Rα2) = Wα2 ∩ (Wα1 ∪ Rα1) = ∅ ⇒

α1 ≡VI α2. �

Lemma 1 [1] shows that two actions are variable-independent if the variables modified
by one action are mutually exclusive with those accessed (either modified or read) by
the other. For example, αl6 ≡VI αl13, where αl6(αl13) refers to the action executing
the statement at line 6 (13) of Fig. 1(c). Furthermore, we can conclude that a non-post
action in the synchronous context is always local-independent with any action in the
asynchronous context [1]. This is shown in Lemma 2.

Lemma 2. ∀α ∈
∑syn

, α′ ∈
∑asyn

. α �∈
∑pt ⇒ α ≡LI α

′. �

Inside a sensor, interrupt handlers might run in parallel, which produces different orders
of tasks in the task queue. Given a task t , Ptask(t) denotes the set of tasks posted by a
post statement in t or an interrupt handler of a certain interrupt request in t . Formally,
Ptask(t) = {t ′ | ∃α ∈ t . α = post(t ′) ∨ (α ∈ itrQ(S) ∧ t ′ = tsk(ih(α)))},
where post(t) is a post statement to enqueue task t ; ih(αiq) denotes the corresponding
interrupt handler of a device request αiq , and tsk(αih) denotes the completion task of
αih . In the code in Fig. 1(c), Ptask(trv) = {tst}, due to the post statement in line 17.
As for tst (lines 8 to 11), it has a request for sending a message (line 10), the interrupt
handler of which will post the task tsd , and thus Ptask(tst) = {tsd}.

Since more tasks can be enqueued during the execution of a previously enqueued
task, we define Rtask(t) to represent all possible tasks enqueued by a given task t and
the tasks in its Ptask set in a recursive way. Formally, Rtask(t) = {t} ∪ Ptask(t) ∪
(∪t′∈Ptask(t)Rtask(t

′)). Since Tasks is finite, for every task t , Rtask(t) is also finite
and thus could be obtained statically at compile time. In Fig. 1(c), since Ptask(tsd) =
∅, we have Rtask(tsd) = {tsd}. Similarly, we can obtain that Rtask(tst) = {tst , tsd}
and Rtask(trv) = {trv , tst , tsd}. Let R(ϕ,S) be the set of variables of S accessed by
the property ϕ. Let Ŵ (t) be the set of variables modified by any task in Rtask(t). We
say that t is a ϕ-safe task, denoted by t ∈ safe(ϕ,S) iff (Ŵ (t) ∩ R(ϕ,S)) = ∅.

Definition 4 (Local Task Independence). Let ti(j) ∈ Tasks be two tasks. ti and tj
are said to be local-independent, denoted by ti ≡TI tj , iff (ti ∈ safe(ϕ,S) ∨ tj ∈
safe(ϕ,S)) ∧ ∀ t ′i ∈ Rtask(ti), t

′
j ∈ Rtask(tj). ∀αi ∈ t ′i , αj ∈ t ′j . αi ≡VI αj .

522 M. Zheng et al.

Though interrupt handlers and post statements might modify the task queue concur-
rently, we observe that task queues with different orders of tasks might be equivalent.
Based on Definition 4, we define the independence relation of two task sequences,
which is used to further define equivalent task sequences.

Definition 5 (Task Sequence Independence). Let Qi = 〈ti0, · · · , tim〉,Qj = 〈tj0, · · ·
, tjn〉(m, n � 0) be two task sequences, where tiu(0 ≤ u ≤ m), tjv (0 ≤ v ≤ n) ∈
Tasks . Qi and Qj are said to be sequence-independent, denoted by Qi ≡SI Qj , iff
∀ ti ∈ (∪m

k=0Rtask(tik)), tj ∈ (∪n
k=0Rtask(tjk)). ti ≡TI tj .

Let q1 � q2 be the concatenation of two sequences q1 and q2. A partition P of a task
sequence Q is a list of task sequences q0, q1, · · · , qm such that Q = q0

� q1
� · · · qm ,

and for all 0 � i � m, qi �= 〈〉 (qi is called a sub-sequence of Q). We use part(Q)
to denote the set of all possible partitions of Q . Given a partition P of Q such that
Q = q0

� q1
� · · ·� qn , Swap(Q , i) = q0

� · · · qi+1
� qi

� · · ·� qn denotes the task
sequence obtained by swapping two adjacent sub-sequences (i.e., qi and qi+1) of Q .

Definition 6 (Task Sequence Equivalence). Two task sequences Q and Q ′ are equiv-
alent (Q < Q ′) iff Q0 = Q ∧ ∃m � 0. Qm = Q ′ ∧ (∀ 0 ≤ k < m. (∃ ik . Qk+1 =
Swap(Qk , ik) ∧ qkik ≡SI qkik+1)) where qki is the i th sub-sequence of Qk .

The above definition indicates that if a task sequence Q ′ can be obtained by swapping
adjacent independent sub-sequences of Q , then Q < Q ′. Given two local states C and
C ′, we said that C is equivalent to C ′, denoted by C ∼= C ′, iff C =v C ′ ∧ Q(C) <
Q(C ′). Further, two local state sets C, C′ are said to be equivalent, denoted by C = C′,
iff ∀C ∈ C. ∃C ′ ∈ C′. C ∼= C ′ and vice versa. We explore the execution of task
sequences starting at a local state which is the completion point of a previous task,
i.e., a local state with the program as (� ; H) [25]. This is because that only after a
task terminates can a new task be loaded from the task queue for execution. The case
when B(C) �= 〈〉 is related to network communication, and is ignored here but will be
covered in global independence analysis in Section 3.2.

Lemma 3. Given C = (V ,Q , 〈〉,� ; H) and C ′ = (V ,Q ′, 〈〉,� ; H), let
exs(Qi ,Ci) be the set of final local states after executing all tasks of Qi starting at
local state Ci . Q < Q ′ ⇒ exs(Q ,C) = exs(Q ′,C ′). �

Lemma 3 shows that executing two equivalent task sequences from v -equal local states
will always lead to equivalent sets of final local states, as proved in [1]. Given an action
α, we use ptsk(α) to denote the set of tasks that could be enqueued by executing α.
With the above lemma, the rule for deciding local independence between actions can
be obtained by Lemma 4 [1].

Lemma 4. Given C , α1, α2 ∈ enable(C), (α1 ≡VI α2 ∧ ∀ t1 ∈ ptsk(α1), t2 ∈
ptsk(α2). t1 ≡TI t2) ⇒ α1 ≡LI α2. �

3.2 Global Independence

SNs are non-blocking, i.e., the execution of one sensor never blocks others. In addition,
a sensor accesses local resources most of the time, except when it broadcasts a message

State Space Reduction for Sensor Networks 523

to the network and fills in others’ message buffers. At the network level, we explore
the execution of each sensor individually, and only allow interleaving among sensors
when an action involving network communication is performed. Let N be a sensor
network with n sensors S1,S2 · · · Sn and C be a global state. We use EnableT (C) to
denote the set of enabled tasks at C. Given t ∈ Tasks(Si), t ∈ EnableT (C) ⇔ C[i] =
(V , 〈t , · · · 〉,B ,� ; H). Ex (C, t) represents the set of final states after executing task
t (and interrupt handlers caused by it) starting from C. For two global states C1 and
C2, we say that C1 and C2 are equivalent (C1 ∼= C2) iff ∀ 1 ≤ i ≤ n. C1[i] ∼= C2[i].
Similarly, we say that two sets of global states Γ and Γ ′ are equivalent (i.e., Γ = Γ ′)
iff ∀ C ∈ Γ. ∃ C′ ∈ Γ ′. C ∼= C′ and vice versa.

Definition 7 (Global Independence). Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj) such
that Si �= Sj . Tasks ti and tj are said to be global-independent, denoted by ti ≡GI tj ,
iff ∀ C ∈ Γ. ti , tj ∈ EnableT (C) ⇒ ∀Ci ∈ Ex (C, ti). ∃ Cj ∈ Ex (C, tj). Ex (Ci , tj) =
Ex (Cj , ti) and vice versa.

A data transmission would trigger a packet arrival interrupt at the receivers and thus is
possible to interact with local concurrency inside sensors. In the following, Sends(S)
denotes the set of tasks that contain data transmission requests, and Rcvs(S) denotes
the set of completion tasks of packet arrival interrupts.

Given t ∈ Tasks(S), t is considered as rcv-independent, denoted by t ⊂RI S, iff
∀ tr ∈ Rcvs(S), tp ∈ Posts(t). tr ≡TI tp . A rcv-independent task never posts a task
local-dependent with the completion task of any packet arrival interrupts. Thus, we can
ignore interleaving such tasks with other sensors even if there exists data transmission.
We say that t is a global-safe task of S, i.e., t ⊂GI S, iff t ⊂RI S. If t �⊂GI S, then
t is global-unsafe. The following theorem indicates that a global-safe task is always
global-independent with any task of other sensors [1].

Theorem 1. ∀ t1 ∈ Tasks(Si), t2 ∈ Tasks(Sj). Si �= Sj , t1 ⊂GI Si ⇒ t1 ≡GI t2. �

4 SN Cartesian Partial Order Reduction

In this section, we present our two-level POR, which extends the Cartesian vector ap-
proach [12] and combines it with a persistent set algorithm [11].

4.1 Sensor Network Cartesian Semantics

Cartesian POR was proposed by Gueta et. al. to reduce non-determinism in concurrent
systems, which delays unnecessary context switches among processes [12]. Given a
concurrent system with n processes and a state s , a Cartesian vector is composed by n
prefixes, where the i th (1 ≤ i ≤ n) prefix refers to a trace executing actions only from
the i th process starting from state s . For SNs, sensors could be considered as concurrent
processes and their message buffers could be considered as “global variables”.

It has been shown that Cartesian semantics is sound for local safety properties [12].
A global property that involves local variables of multiple processes (or sensors) is
converted into a local property by introducing a dummy process for observing involved

524 M. Zheng et al.

variables. In our case, we avoid this construction by considering global property in the
Cartesian semantics for SNs. Let Gprop(N), or simply Gprop since N is clear in this
section, be the set of global properties defined for N . Given an action α ∈ Tasks(S)
and a global property ϕ ∈ Gprop, α is said to be ϕ-safe, denoted by α ∈ safe(ϕ), iff
Wα ∩ R(ϕ) = ∅ where Wα is the set of variables modified by α and R(ϕ) is the set
of variables accessed by ϕ. If α �∈ safe(ϕ), then α is said to be ϕ-unsafe.

In order to allow sensor-level nondeterminism inside prefixes, we redefine Prefix as
a “trace tree” rather than a sequential trace. Let Prefix (S) be the set of all prefixes of
sensor S, Prefix (S, C) be the set of prefixes of S starting at C, and first(p) be the initial
state of a prefix p. A prefix is defined as follows.

Definition 8 (Prefix). A prefix p ∈ Prefix (S) is defined as a tuple (trunk , branch),
where trunk = 〈C0, α1, C1, · · · , αm−1, Cm〉 ∧ m ≥ 0 ∧ ∀ 1 ≤ i < m. αi ∈∑

S ∧ Ci
αi
↪→ Ci+1, and branch ⊆ Prefix (S, Cm), being a set of prefixes of S.

Let p ∈ Prefix (S) and p = (ptr , {pb1, pb2, · · · , pbm}). We define tr(p) to
denote the trunk of prefix p before branching prefixes (i.e., tr(p) = ptr), and br(p)
to denote the set of branching prefixes of p (i.e., br(p) = {pb1, pb2, · · · , pbm}). In
Fig. 2, the dashed rectangles p11, p12 and p13 are prefixes of S1, and p21, p22 and
p23 are prefixes of S2. More specifically, tr(p23) = 〈(4.0), α2, (4.0)〉 and br(p23) =
{〈(4.0), α3, (4.1), αrd , · · · 〉, 〈(4.0), αrv , (4.6), α3, · · · 〉}. Given a prefix p ∈ Prefix (S),
the following notations are defined:

• The set of states in p: states(p) = {C0, · · · , Cm} ∪ (∪sp∈br(p)states(sp)).
• The set of leaf prefixes of S: LeafPrefix (S) = {lp | ∀ lp ∈ Prefix (S). br(lp) =
∅}. Given lp ∈ LeafPrefix (S), l̂ast(lp) denote the last state of lp.

• The set of tree prefixes of S: TreePrefix (S) = Prefix (S)− LeafPrefix (S).
• The set of leaf prefixes of p: p ∈ LeafPrefix (S) ⇒ leaf (p) = p ∧ p ∈
TreePrefix (S) ⇒ leaf (p) = ∪bp∈br(p)leaf (bp).

• The set of final states of p: p ∈ LeafPrefix (S) ⇒ last(p) = {l̂ast(p)} ∧ p ∈
TreePrefix (S) ⇒ last(p) = ∪bp∈br(p)last(bp).

• Subsequent prefixes �: ∀ lp ∈ LeafPrefix (S). lp � p ≡ l̂ast(lp) = first(p).
• Concatenation of leaf prefixes ̂ : ∀ p1 = 〈C0, α0, · · · , Ck〉, p2 = 〈Ck , αk , Ck0 , αk0 ,

· · · , Ckm 〉.p1 ̂ p2 = 〈C0, α0, · · · , Ck , αk , Ck0 , · · · , Ckm 〉.

We also define tasks(p) (acts(p)) to denote the set of tasks (actions) executed in p.
Moreover, lastT (p) (lastAct(p)) denotes the set of last tasks (actions) executed in p.

Definition 9 (SN Cartesian Vector). Given a global property ϕ ∈ Gprop, a vector
(p1, · · · , pi , · · · , pn) ∈ Prefixn is a sensor network Cartesian vector for N w.r.t. ϕ
from a state C if the following conditions hold:

1. pi ∈ Prefix (Si , C);
2. ∀ t ∈ tasks(pi). t �⊂GI Si ⇒ t ∈ LastT (pi);
3. ∀α ∈ acts(pi). α �∈ safe(ϕ) ⇒ α ∈ lastAct(pi).

According to Definition 9, a vector (p0, p1, · · · , pn) from C is a valid sensor network
Cartesian vector (SNCV) if for every 0 ≤ i ≤ n , pi is a prefix of Si and each leaf prefix

State Space Reduction for Sensor Networks 525

Algorithm 1. State Space Generation
GetSuccessors(C, p, ϕ)
1: list ← ∅

2: if Next(p, C) 	= ∅ then
3: list ← Next(p, C)
4: else
5: scv ← GetNewCV (C, ϕ)

6: for all i ← 1 to n do
7: list ← list ∪ {Next(scv [i], C)}
8: end for
9: end if

10: return list

of pi ends with a ϕ-unsafe action or a global-unsafe task as defined in Section 3.2.
Furthermore, we define the corresponding inference rules of SNCVs [1]. In Fig. 2, if
value, busy �∈ R(ϕ), then (p11, p21) is a valid SNCV from the initial state.

4.2 Two-Level POR Algorithm

In this section, we present the two-level POR algorithm. The main idea is to explore the
state space by the sensor network Cartesian semantics and to perform reduction during
the generation of SNCVs. First, we present the top-level state exploration algorithm,
which could be invoked in existing verification algorithms directly without changing
the verification engine. Second, we show the algorithms for SNCV generation, as well
as algorithms for producing a sensor prefix.

• State Space Generation. Given a state C, a prefix p (C ∈ states(p)) and a global
property ϕ, the state space of N is explored via a corresponding SNCV, as shown
in Algorithm 1. In this algorithm, GetNewCV (C, ϕ) generates a new SNCV from
C, which will be explained later. The relation Next : Prefix (S) × Γ → P(Γ)
traverses a prefix to find a set of successors of C. Formally, Next(p, C) = {C′ |
∃α ∈ acts(p), C α

↪→ C′}. The function ConcatTree extends a leaf prefix with
another prefix as its branch, defined as ConcatTree(lp ∈ LeafPrefix (S), sp ∈
Prefix (S)). Formally, if lp � sp, after executing ConcatTree(lp, sp), we have
lp′ = (lp, {sp}). We remark that ConcatTree(lp, sp) has a side effect in lp by
updating it with the resultant prefix of the combination.

• SNCV Generation. Algorithm 2 is dedicated to SNCV generation, i.e., the method
GetNewCV . In this algorithm, visited is the set of final states of prefixes that
have been generated, and workingLeaf is the stack of leaf prefixes to be further
extended. Concurrency at network level is minimized by lines 7 and 18, where
the relation Extensible : Prefix (S) × {S1, · · · ,Sn} × Gprop → {True,False}
is defined as Extensible(p,S, ϕ) ≡ ∀ t ∈ lastT (p), α ∈ lastAct(p). t ⊂GI

S ∧ α ∈ safe(ϕ) ∧ α �∈ sd(S). In other words, a prefix is further extended
(lines 15 to 21) only if it has not executed a global-unsafe task, a ϕ-unsafe action
or a messaging action. The function GetPrefix (Si , C, ϕ) produces a prefix of Si by
executing actions and interrupt handlers of Si in parallel. At first, pi is initialized
by GetPrefix (Si , C, ϕ), and is then extended by recursively concatenating each of
its leaf prefixes with a new prefix obtained by GetPrefix (Si , C′, ϕ), as shown by
lines 12 to 22. If pi is inextensible, it is assigned to the i th element of the sensor
Cartesian vector scv (scv [i]) by line 23.

526 M. Zheng et al.

Algorithm 2. Sensor Network Cartesian Vector Generation
GetNewCV (C, ϕ)

1: scv ← (

n︷ ︸︸ ︷
〈〉, · · · , 〈〉)

2: for all Si ∈ N do
3: visited ← {C}
4: workingLeaf ← ∅

5: pi ← GetPrefix(Si , C, ϕ)
6: for all lp ∈ leaf (pi) do
7: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 	∈ visited then
8: workingLeaf .Push(lp)

9: visited = visited ∪ l̂ast(lp)
10: end if
11: end for
12: while workingLeaf 	= ∅ do

13: pk ← workingLeaf .Pop()

14: visited ← visited ∪ {l̂ast(pk)}
15: p′

k ← GetPrefix(Si , l̂ast(pk), ϕ)
16: ConcatTree(pk , p

′
k)

17: for all lp ∈ leaf (p′
k) do

18: if Extensible(lp,Si , ϕ) and
l̂ast(lp) 	∈ visited then

19: workingLeaf .Push(lp)
20: end if
21: end for
22: end while
23: scv [i] ← pi
24: end for
25: return scv

Algorithm 3. Prefix Generation
GetPrefix(S , C, ϕ)
1: p ← 〈C〉
2: t ← getCurrentTsk(C, S)
3: ExecuteTask(t , p, ϕ, {C},S)
4: if t is finished then
5: for all pi ∈ leaf (p) do
6: C′ ← l̂ast(pi)

7: irs ← GetItrs(C′,S)
8: p′

i ← RunItrs(C′, itrs)
9: ConcatTree(pi , p

′
i)

10: end for
11: end if
12: return p

• Sensor Prefix Generation. Algorithm 3 shows how a sensor S establishes a pre-
fix from C w.r.t. ϕ. Function ExecuteTask(t , p, ϕ, Cs ,S) extends the initial prefix
p by executing actions in task t , until a ϕ-unsafe action or a loop is encountered.
Interrupt handlers are delayed as long as the action being executed is a non-post
statement, which is reasonable due to Lemma 1 and Lemma 4. A persistent set
approach has been adopted in both ExecuteTask and RunItrs to constrain inter-
leaving to happen only between local-dependent actions.

• Task Execution. In Algorithm 4, the following notations are used.
◦ Set Cs : the set of states that has been visited.
◦ Method GetAction(t , C): returns the enabled action of task t at state C.
◦ Method setPfx (C, p): assigns prefix p as the prefix that state C belongs to.

Initially, the currently enabled action α will be executed (lines 5 to 16). At this
phase, two cases are considered. The first is when α is a post statement, and inter-
rupts dependent with α will be taken to run in parallel in order to preserve states
with different task queues. This is achieved by lines 5 to 9. The second case han-
dles all non-post actions, and the action will be executed immediately to obtain
the resultant prefix (lines 10 to 16). In this case, all interleaving between interrupts
and the action α is ignored, which is reasonable by Lemma 2. After the action α
completes its execution, the algorithm will return immediately if α is ϕ-unsafe or
t has no more actions to be executed. Otherwise, a new iteration of ExecuteTask

State Space Reduction for Sensor Networks 527

Algorithm 4. Task Execution
ExecuteTask(t , lp, ϕ, Cs,S)
1: {let α be the current action of t}
2: α← GetAction(t , C)
3: C ∈ l̂ast(lp)
4: {only post actions need to

interleave interrupts}
5: if α ← post(t ′) then
6: itrs ← GetItrs(S , C)
7: {interleave α and interrupts itrs}
8: p ← RunItrs(C, itrs ∪ {α},S)
9: lp ← (lp, {p})

10: else
11: {non-post actions run independently}
12: C′ ← ex(C, α)
13: tmp ← 〈C, α, C′〉
14: setPfx(C′, tmp)
15: lp ← (lp, {tmp})

16: end if
17: lps ← leaf (lp)
18: {stop executing t when t terminates or

a non-safe action is encountered}
19: if α 	∈ safe(ϕ) or terminate(t , α) then
20: return
21: end if
22: for all lp′ ∈ lps do
23: {extend lp only if there is no loop in it}
24: if l̂ast(lp′) 	∈ Cs then
25: Cs ′ ← Cs ∪ states(lp′)
26: {continue to execute t to extend lp′}
27: ExecuteTask(t , lp′, ϕ, Cs ′,S)
28: end if
29: end for

will be invoked at each final state of the prefix that has been currently established
(lines 22 to 29). Line 24 is to prevent the algorithm to be stuck by loops.

• Interleaving Interrupts. Algorithms 5 and 6 show how partial order reduction
could be applied at sensor level to alleviate interleaving caused by concurrency
among tasks and interrupts. The idea is motivated by the observation that the only
shared resource among interrupt handlers and normal actions is the task queue. By
Lemma 2, there are two kinds of concurrency to be considered, i.e. the concurrency
between a post statement, and the concurrency between any two interrupt handlers.
Algorithm 5 (RunItrs) establishes a prefix for the sensor S from a state C by in-
terleaving actions in the set itrs using a persistent set approach. Here, itrs would
be a set of interrupt handlers plus at most one post action. Algorithm 6 (Persistent
Set) establishes a persistent set from a given set of actions itrs . If itrs contains a
post action, then this post action will be chosen as the first action of the persistent
set to return; otherwise, an action will be chosen randomly to start generating the
persistent set (lines 2 to 10). After that, the persistent set will be extended by iter-
atively adding actions from itrs that are dependent with at least one action in the
persistent set.

4.3 Correctness

In the following, we show that the above POR algorithms work properly and are sound
for model checking global properties and LTL-X properties. Lemmas 5 and 6 assure the
correctness of the functions invoked in Algorithm 3, which are proved in [1].

Lemma 5. Given a state C where C[i] = (V ,Q ,B ,� ; H),RunItrs(C,Get -Itrs(C′,Si))
terminates and returns a valid prefix of Si . �

528 M. Zheng et al.

Algorithm 5. Interleaving Interrupts
RunItrs(C, itrs,S)
1: if itrs ← ∅ then
2: return 〈〉
3: end if
4: p ← 〈C〉
5: {pis is the persistent set of itrs}
6: pis ← GetPerSet(itrs, C,S)
7: {interleave dependent actions}
8: for all α ∈ pis do
9: C′ ← ex(C, α)

10: lp ← 〈C, α, C′〉
11: setPfx(C′, lp)

12: {only allow interleaving if α is not a
post}

13: if α ∈
∑iq then

14: s ← RunItrs(C′, pis − {α},S)
15: lp ← (lp, {s})
16: end if
17: {add lp as a new branch to p}
18: p ← (tr(p), br(p) ∪ {lp})
19: end for
20: return p

Algorithm 6. Persistent Set
GetPerSet(itrs, C,S)
1: {choose an α to start with}
2: if ∃α′ ∈ itrs. α 	∈

∑iq then
3: {there exists a post in itrs ,

then we should start from the post}
4: α ← α′

5: else
6: if α′ ∈ itrs then
7: {choose an α form itrs randomly}
8: α ← α′

9: end if
10: end if

11: pset ← {α}
12: work ← {α}
13: while work 	= ∅ do
14: α← work .Pop()
15: {find new dependent actions of α from

itrs}
16: αs ← DepActions(α, itrs − pset)
17: pset ← pset ∪ αs
18: work ← work ∪ αs
19: end while
20: return pset

Lemma 6. Given t ∈ Tasks(S), t ∈ EnableT (C) andϕ, ExecuteTask(t , 〈C〉, ϕ, {C})
extends 〈C〉 by executing actions in t and enabled interrupt handlers, until t terminates
or a ϕ-unsafe action or a loop is encountered. �

Based on Lemma 5 and 6, we can show the correctness of Algorithm 2 in generating a
prefix for a given state and a property, as shown in the following theorem.

Theorem 2. Given S, C and ϕ, Algorithm 3 terminates and returns a valid prefix of S
for some SNCV.
Proof By Lemma 6, after line 3 p is a valid prefix of S. If lines 5 to 10 are not executed,
then p is immediately returned. Suppose lines 5 to 10 are executed, and at the beginning
of the i th iteration of the “for” loop p is a valid prefix. Let p̂ be the updated prefix after
line 9, and then leaf (p̂) = (leaf (p) − pi) ∪ leaf (p′

i) since pi has been concatenated
with p′

i . By Lemma 5, p′
i is a valid prefix and thus p̂ is a valid prefix. Therefore, at the

beginning of the (i + 1)th iteration, p is a valid prefix. By Lemmas 6 and 5, both lines
3 and 8 terminate. Further, we assume that variables are finite-domain, and thus the size
of leaf (p) is finite assuring that the “for” loop terminates. �

Theorem 3. For every state C, Algorithm 2 terminates and returns a valid sensor net-
work Cartesian vector.

State Space Reduction for Sensor Networks 529

Proof. We prove that at the beginning of each iteration of the “while” loop (lines 12
to 22) in Algorithm 2 the following conditions hold for any i (1 ≤ i ≤ n):

1. pi ∈ Prefix (Si , C);
2. workingLeaf = {p ∈ leaf (pi) | Extensible(p,Si , ϕ) ∧ l̂ast(p) �∈ visited}.

By line 5, it is immediately true that first(pi) = C. Since ConcatTree never changes
the first state of a given prefix, first(pi) = C holds for all iterations. Since pi is extended
by GetPrefix (Si , l̂ast(pk), ϕ) (line 15), which only executes actions of Si , thus pi ∈
Prefix (Si) always holds. Intuitively, condition 1 holds for all iterations. Condition 2
can be proved by induction, as the following.

At the first iteration, by lines 6 to 11, we can immediately obtain that workingLeaf =

{lp ∈ leaf (pi) | Extensible(lp,Si , ϕ) ∧ l̂ast(lp) �∈ visited} and condition 2 holds.
Suppose that at the beginning of themth iteration, condition 2 holds with workingLeaf =
wm , pi = pm . After executing line 13, we can obtain that workingLeaf = wm −{pk}.
By lines 15 to 21, wokingPrefix = (wm−{pk})∪{lp ∈ leaf (p′

k) | Extensible(lp,Si , ϕ)

∧ l̂ast(lp) �∈ visited} (1). Let p̂k be the new value of pk after executing line 16, by
the definition of ConcatTree, we have p̂k = (pk , p

′
k) and thus leaf (p̂k) = leaf (p′

k)
(2). Consequently, we have leaf (pi) = (leaf (pm) − {pk}) ∪ leaf (p̂k), since the leaf
prefix pk has been extended to be a tree prefix p̂k . Since wm = {p ∈ leaf (pm) |
Extensible(p,Si , ϕ) ∧ l̂ast(p) �∈ visited}, with (1) and (2), we can obtain that
at the beginning of the (m + 1)th iteration condition 2 holds. By the definition of
Extensible, we can conclude that ∀ t ∈ tasks(pi), α ∈ acts(pi). t �⊂GI Si ⇒ t ∈
LastT (pi) ∧ (α �∈ safe(ϕ) ∨ α ∈ sd(Si)) ⇒ α ∈ lastAct(pi) holds when the while
loop terminates. Thus the Cartesian vector generated by Algorithm 2 is valid.

Further, by the definition of Extensible we can conclude that ∀ t ∈ tasks(pi), α ∈
acts(pi). t �⊂GI Si ⇒ t ∈ LastT (pi) ∧ (α �∈ safe(ϕ) ∨ α ∈

∑sd
) ⇒ α ∈

lastAct(pi) holds when the while loop terminates. Thus the Cartesian vector generated
by Algorithm 2 is valid. As for termination, we assume that all variables are finite-
domain and thus the state space is finite. On one hand, the function GetPrefix (S, C, ϕ)
always terminates and returns a valid prefix, which has been proved in Theorem 2. On
the other hand, Algorithm 2 uses visited to store states that have been used to generate
new prefixes, and by lines 7 and 18 a state is used at most once to generate a new prefix,
and termination guaranteed. �

Let ϕ be a property and ψ be the set of propositions belonging to ϕ. In the following,
we discuss the stuttering equivalent relation of different objects w.r.t.ψ and the notation
is simplified as stuttering equivalent when ψ is clear.

Let L(C) be the valuation of the truth values of ψ in state C. Given two traces
σ = C0, α0, C1, α1, · · · , Ci , αi , · · · and σ′ = C′

0, α
′
0, C′

1, α
′
1, · · · , C′

i , α
′
i , · · · , they are

referred to as stuttering equivalent, i.e., σ ≡stψ σ′, iff L(C0) = L(C′
0) and for ev-

ery integer set M = {m0,m1, · · · ,mi} (i ≥ 0), there exists another integer set
P = {p0, p1, · · · , pi}, such that m0 = p0 = 0 ∧ for all 0 ≤ k < i , there ex-
ists nk , qk > 0 such that mk+1 = mk + nk ∧ L(Cmk

) = L(Cmk+1) = · · · =
L(Cmk+(nk−1)) �= L(Cmk+1

) ∧ pk+1 = pk + qk ∧ L(Cmk
) = L(C′

pk
) = L(C′

pk+1) =
· · · = L(C′

pk+(qk−1)) ∧ L(C′
pk+1) = L(Cmk+1

), and vice versa.

530 M. Zheng et al.

Let exc(C,S) be the set of traces obtained by executing only actions from S follow-
ing the original semantics. Given a prefix p, we define traces(p) to be the set of traces
that could be obtained by p. Formally, traces(p) = p ∈ LeafPrefix ∧ traces(p) =
{tr(p)} ∨ {σ | ∃ bp ∈ br(p). σ′ ∈ traces(bp) ⇒ σ = tr(p) + σ′}, where “+” con-
catenates two traces. Lemma 7 illustrates that Algorithm 3 returns a prefix of traces
stuttering equivalent to those generated by the original semantics. It shows that for all
possible local interleaving from C for a certain sensor S, the sensor prefix obtained by
GetPrefix contains the same sequences of valuations for the set of propositions ψ of
the property ϕ. We refer interested readers to [1] for the proof of this lemma.

Lemma 7. Given a state C, let p = GetPrefix (S, C, ϕ) be the prefix obtained by Al-
gorithm 3. For all σ ∈ exc(C,S), there exists σ′ ∈ traces(p) such that σ ≡stψ σ′, and
vice versa. �

Two transition systems T and T ′ are said to be stuttering equivalent w.r.t. ϕ iff C0 = C′
0

where C0(C′
0) is the initial state of T (T ′), and for every trace σ in T there exists a

trace σ′ in T ′ such that σ ≡stψ σ′, and vice versa. In the following, we prove that the
transition system obtained by the two-level POR approach is stuttering equivalent with
the transition system obtained by the original sensor network semantics.

Theorem 4. Given a sensor network N = (R, {S0, · · · ,Sn}), let T be the transition
system of N by the original semantics and let T ′ be the transition system obtained
after applying the two-level partial order reduction w.r.t. ϕ over N . Then T ′ and T are
stuttering equivalent w.r.t. ϕ.

Proof. Let ψ be the set of propositions contained in ϕ, and let C0, C′
0 be the ini-

tial state of T , T ′, respectively. It is immediately true that C0 = C′
0 because both

T and T ′ are obtained from the initial state of N . We will prove that for any trace
σ = C0, α0, · · · , αm , Cm+1 from T , there exists a trace σ′ = C′

0, α
′
0, · · · , α′

m , C′
m+1 in

T ′ such that σ ≡stψ σ′. This will be proved by induction in the number of updating the
valuation of ψ in a certain trace σ.

Base Case: if the number of updating the valuation of ψ in σ is zero, then we have
L(C0) = · · · = L(Cm+1). Since C0 belongs to T ′, then let σ′ = C′

0 and σ′ ≡stψ σ.
Induction Step: suppose that when the number of updating the valuation of ψ in σ is

x , there exits σ′ = C0, α′
0 · · ·α′

n , Cm+1 such that σ ≡stψ σ′, and it also holds for the
case when there are (x + 1) changes in the valuation of ψ in σ.

Let αk1 , αk2 , · · · , αkx be the actions in σ such that αki �∈ safe(ϕ) for all 1 ≤ i ≤ x .
Suppose that there exist l1, · · · , lx such that for all 1 ≤ i ≤ x , 0 ≤ li ≤ n ∧ αki ∈∑

Sli
. Suppose that αki is the last extendable action from a task tki ∈ Tasks(Sli) such

that tki �⊂GI Sli (1) where each ki is ordered as follows. Given two last extendable
actions αka ∈

∑
Sla

, αkb ∈
∑

Slb
(la �= lb), if αka is a Send action and αkb ∈ t ,

t �⊂GI Slb then there exists α′
kb

which is a receive interrupt handler in Sla . If a < b′ < b
then kb < ka , otherwise ka > kb . The same reasoning is applied when αkb is Send
action and αka ∈ t , t �⊂GI Sαka

. If αka and αkb are both Send actions or they belong
to a task t �⊂GI Slb then ka > kb if a > b and vice verse.

By independence of global actions two consecutive actions αs−1 ∈ ΣSl
, αs �∈

ΣSl
can be permuted for all 0 ≤ s ≤ k0 and the trace 〈· · · , Cs−1, αs−1, Cs ,αs ,

State Space Reduction for Sensor Networks 531

Table 1. Experiment Results with NesC@PAT

App
(LOC / sensor) Property Size#State #Trans Time(s) OH(ms) #States

wo POR POR Ratio

Anti-theft
(3391)

Deadlock free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

�(theft⇒ �alert) 1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332) �AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Cs+1,· · · 〉 is equivalent to the trace 〈· · · ,C′
s−1,αs ,C′

s ,αs+1,C′
s+1,· · · 〉. It is possible to

get a trace σk0 = C0, α′
0, · · · , αk0 , C′

k0
such that for 0 ≤ j ≤ k0, αj ∈ ΣSl

. Let cv =
(p0, · · · pl , · · · , pn) = GetNewCV (C0). By Algorithm 2, Theorem 3 and Lemma 7,
there exits a trace σ′

k0
∈ traces(pl) such that σ′

k0
= C0, α′′

0 , · · · , C′′
k0

and σk0 ≡stϕ

σ′. Repeating this for all ki in (1) and by transitivity of stuttering [18] we get that
σkx = C0, · · · , αk0 , · · · , αkx , Ckx+1 ≡stϕ σ′

kx
= C0, · · · , α′

k0
, · · · , α′

kx
, Ckx+1. Per-

muting again · · · , Cs−1, αs−1, Cs , αs , Cs+1, · · · , for all kx ≤ s ≤ kx+1 and by Algo-
rithm 2, Theorem 3, and Lemma 7 σi = C0, · · · , αk1 , · · · , αkx+1 , Ckx+1+1 ≡stϕ σ′

i =
C0, · · · , α′

k1
, · · · , α′

kx+1
, C′

kx+1+1 and the number of changes in the valuations of ψ is
(x + 1). By I.H. and transitivity of stuttering σ ≡stψ σ′. �

It has been shown that if two structures T , T ′ are stuttering equivalent w.r.t. an LTL-X
property ϕ, then T ′ |= ϕ if and only if T |= ϕ [6]. Therefore, our method preserves
LTL-X properties.

5 Experiments and Discussion

We implemented our approach in NesC@PAT [25], a domain-specific model checker
for sensor networks implemented using NesC programs. Static analysis is conducted
at compile time to identify the global and local independence relations among actions
and tasks, and then Algorithm 1 is adopted for state space exploration. In this section,
we first evaluate the performance of the two-level POR method using a number of real-
world SN applications. Then a comparison between our POR and the POR implemented
in T-Check [17] is provided, since T-Check provides verification of TinyOS/NesC pro-
grams with a POR algorithm. All necessary materials for re-running the experiments
can be obtained from [1].

5.1 Enhancing NesC@PAT with Two-Level POR

First, we used NesC@PAT to model check an anti-theft application and the Trickle al-
gorithm [16]. The anti-theft application is taken from the TinyOS distribution, in which
each sensor runs a NesC program of over 3000 LOC. The Trickle algorithm is widely
used for code propagation in SNs, and we adopted a simplified implementation to show
the reduction effects. For the anti-theft application, we checked if a sensor turns on its
theft led whenever a theft is detected, i.e., �(theft ⇒ �alert). Deadlock checking was
also performed for anti-theft. As for the Trickle algorithm, we checked that eventually
all the nodes are updated with the latest data among the network, i.e., �AllUpdated .

532 M. Zheng et al.

Table 2. Comparison with T-Check

#Node
NesC@PAT T-Check

wt POR #State
wo POR Ratio #Bound wt POR #State

wo POR Ratio#State Exh Time(s) #State Exh Time(s)
2 3012 Y 2 52.3K 6× 10−2 20 4765 Y 1 106.2K ≈ 4× 10−2

3 120K Y 20 >11.8M < 1× 10−2 12 66.2K N 1 13.5M ≈ 5× 10−3

50 12.6M Y 283 NA NA

4 368K Y 58 >2.7G < 1× 10−4 10 56.7K N 1 41.8M ≈ 1× 10−3

50 420.7M Y 1291 NA NA

5 4.2M Y 638 >616G < 7× 10−6 8 85.2K N 1 17.4M ≈ 1× 10−3

50 NA N >12600 NA NA

Verification results are presented in Table 1. Column OH shows the computational
overhead for static analysis, which is dependent on LOC, network size and the property
to be checked. This overhead is negligible (within 1 second) even for a large application
like Anti-theft. The second last column estimates the complete state space size and we
calculate the reduction ratio as POR ratio (=#State wt POR

#State wo POR). For safety properties,

#State wo POR is estimated as S1×S2 · · ·×Sn , where Si is the state space of the i th

sensor; as for LTL properties, it is further multiplied by the size of the Büchi automaton
of the corresponding LTL property. Note that this estimation of #State wo POR is
an under approximation since the state space of a single sensor is calculated without
networked communication. Therefore, the POR Ratio (both in Table 1 and 2) is also
an under approximation. Therefore, our POR approach achieves a reduction of at least
102-106. Further, the larger a network is, the more reduction it will achieve.

5.2 Comparison with T-Check

In this section, we compared the performance of our POR approach and that of T-Check,
by checking the same safety property for the Trickle algorithm, on the same testbed with
Ubuntu 10.04 instead of Windows XP. The safety property is to guarantee that each
node never performs a wrong update operation. We focused on reachability analysis as
T-Check lacks support of LTL. We approximated the POR ratio obtained by T-Check
by the number of states explored, i.e., POR Ratio ≈ #State wt POR

#State wo POR, because T-Check
adopts stateless model checking. Moreover, there is no way to calculate the complete
state space of a single sensor and thus it is difficult to estimate the complete state space
like what we did for NesC@PAT. Thus, we had to set small bounded numbers (around
10) in order to obtain the number of states explored by T-Check without the POR setting.
The results indicate that for small networks with two or three nodes, both approaches
gain similar POR ratio, but for larger networks with over four nodes, our approach
outperforms T-Check significantly. We present the comparison of both approaches in
Table 2, where Exh indicates if all states are explored. The POR method of T-Check
treats all actions within the same sensor as dependent , i.e., it only reduces inter-sensor
concurrency. Thus, our two-level approach would be able to obtain better reduction
since intra-sensor concurrency is also minimized. Another observation is that T-Check
explores more states per second, which is reasonable since T-Check does not maintain
all explored states. However, our approach is more efficient in state space exploration,

State Space Reduction for Sensor Networks 533

taking shorter time (102-103). This is mainly because T-Check may explore the same
path multiple times due to its stateless model checking.

6 Related Work

This work is related to tools/methods on exploring state space of SNs.
Approaches like SLEDE [13] and the work by McInnes [19] translate NesC pro-

grams into formal description techniques (FDT) like Promela (supported by SPIN) or
CSPM (supported by FDR) and use existing model checkers to conduct verification
tasks. Anquiro [20] translates Conitiki C code into Bogor models and uses BOGOR
to perform the verification. Anquiro [20] is built based on the Bogor model checking
framework [21,22], for model checking WSN software written in C language for Con-
tiki OS [8]. Source codes are firstly abstracted and converted to Anquiro-specific mod-
els, i.e., Bogor models with domain-specific extensions. Then Bogor is used to model
check the models against user-specified properties. Anquiro provides three levels of ab-
straction to generate Anquiro-specific models and state hashing technique is adopted to
reduce state space, and thus Anquiro is able to verify a network with hundreds of nodes
within half an hour. However, since many low-level behaviors are abstracted away, An-
quiro might not be able to detect certain bugs. Moreover, translation-based approaches
could cause inaccurate results due to the semantic difference between NesC and FDTs.
Hence, approaches for direct verifying NesC programs have been developed.

Werner et. al. studied the ESAWN protocol by producing abstract behavior mod-
els from TinyOS applications, and used CBMC to verify the models [23]. The original
ESAWN consists of 21000 LOC, and the abstract behavior model contains 4400 LOC.
Our approach is comparable to this approach, since we support SNs with thousands of
LOC per sensor. Werner’s work is dedicated to checking the ESAWN protocol and it
abstracts away all platform-related behaviors. Tos2CProver [4,5] translates embedded
C code to standard C to be verified by CBMC, and a POR approach is integrated. Our
work differs from this work in that Tos2CProver only checks single-node TinyOS ap-
plications instead of the whole network. T-Check [17] is built on TOSSIM [15] and
checks the execution of SNs by DFS or random walk to find a violation of safety prop-
erties. T-Check adopts stateless and bounded model checking and is efficient to find
bugs, and it helped to reveal several unknown bugs. However, T-Check might consume
a large amount of time (days or weeks) to find a violation if a large bounded number
is required due to the (equivalently) complete state space exploration. T-Check applies
POR at network level to reduce the state space and our approach complements it with a
more effective POR which preserves LTL-X.

This work is also related to research on partial order reduction in general. Ap-
proaches that using static analysis to compute a sufficient subset of enabled actions
for exploration are proposed, such as persistent/sleep set [11] and ample set [6] ap-
proaches. There are also dynamic methods which compute persistent sets of transitions
on the fly [9,24]. A Cartesian POR [12] was presented to delay context switches be-
tween processes for concurrent programs.

534 M. Zheng et al.

7 Conclusions

In conclusion, we proposed a two-level POR to reduce the state space of SNs signifi-
cantly, based on the independence of actions. We extended the Cartesian semantics to
deal with concurrent systems with multiple levels of non-determinism such as SNs.
POR was then achieved by static analysis of independence and the sensor network
Cartesian semantics. We also showed that it preserves LTL-X properties. We imple-
mented this two-level POR approach in the NesC model checker NesC@PAT and it had
significantly improved the performance of verification, by allowing sensor networks
with thousands of LOC in each sensor to be model checked exhaustedly, with a reduc-
tion ratio sometimes more than 106. One of our future directions is to apply abstraction
techniques like [20] to obtain an abstracted model before applying POR to support large
networks with hundreds of nodes, and another is to adopt BDD techniques to implement
symbolic model checking.

References

1. Experiment Materials, http://www.comp.nus.edu.sg/˜pat/NesC/por
2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a Sur-

vey. Computer Networks 38(4), 393–422 (2002)
3. Archer, W., Levis, P., Regehr, J.: Interface contracts for TinyOS. In: IPSN, Massachusetts,

USA, pp. 158–165 (2007)
4. Bucur, D., Kwiatkowska, M.: Bug-Free Sensors: The Automatic Verification of Context-

Aware TinyOS Applications. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R.,
Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp.
101–105. Springer, Heidelberg (2009)

5. Bucur, D., Kwiatkowska, M.Z.: On software verification for sensor nodes. Journal of Systems
and Software 84(10), 1693–1707 (2011)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
7. Culler, D.E., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: A Network-Centric Approach

to Embedded Software for Tiny Devices. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT
2001. LNCS, vol. 2211, pp. 114–130. Springer, Heidelberg (2001)

8. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating System
for Tiny Networked Sensors. In: LCN, pp. 455–462 (2004)

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: POPL, pp. 110–121. ACM (2005)

10. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language: A
Holistic Approach to Networked Embedded Systems. In: PLDI, pp. 1–11 (2003)

11. Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. Formal Methods in System Design 2(2), 149–164 (1993)

12. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian Partial-Order Reduction. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112. Springer,
Heidelberg (2007)

13. Hanna, Y., Rajan, H., Zhang, W.: SLEDE: a domain-specific verification framework for sen-
sor network security protocol implementations. In: WISEC, pp. 109–118 (2008)

14. Levis, P., Gay, D.: TinyOS Programming, 1st edn. Cambridge University Press (2009)
15. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and Scalable Simulation of

Entire TinyOS Applications. In: SenSys, pp. 126–137 (2003)

http://www.comp.nus.edu.sg/~pat/NesC/por

State Space Reduction for Sensor Networks 535

16. Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In: NSDI, California, USA, pp.
15–28 (2004)

17. Li, P., Regehr, J.: T-Check: bug finding for sensor networks. In: IPSN, Stockholm, Sweden,
pp. 174–185 (2010)

18. Luttik, B., Trčka, N.: Stuttering Congruence for Chi. In: Godefroid, P. (ed.) SPIN 2005.
LNCS, vol. 3639, pp. 185–199. Springer, Heidelberg (2005)

19. McInnes, A.I.: Using CSP to Model and Analyze TinyOS Applications. In: ECBS, Califor-
nia, USA, pp. 79–88 (2009)

20. Mottola, L., Voigt, T., Osterlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro: Enabling
Efficient Static Verification of Sensor Network Software. In: SESENA, pp. 32–37 (2010)

21. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software model
checking framework. In: ESEC/SIGSOFT FSE, pp. 267–276 (2003)

22. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: A Flexible Framework for Creating Software Model
Checkers. In: TAIC PART, pp. 3–22 (2006)

23. Werner, F., Faragó, D.: Correctness of Sensor Network Applications by Software Bounded
Model Checking. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp.
115–131. Springer, Heidelberg (2010)

24. Yang, Y., Chen, X., Gopalakrishnan, G.C., Kirby, R.M.: Efficient Stateful Dynamic Partial
Order Reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp.
288–305. Springer, Heidelberg (2008)

25. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a Model Checker for NesC and
Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp.
372–387. Springer, Heidelberg (2011)

Compositional Sequentialization

of Periodic Programs

Sagar Chaki1, Arie Gurfinkel1, Soonho Kong1, and Ofer Strichman2

1 CMU, Pittsburgh, USA
2 Technion, Haifa, Israel

{chaki,arie}@cmu.edu, soonhok@cs.cmu.edu, ofers@ie.technion.ac.il

Abstract. We advance the state-of-the-art in verifying periodic pro-
grams – a commonly used form of real-time software that consists of
a set of asynchronous tasks running periodically and being scheduled
preemptively based on their priorities. We focus on an approach based
on sequentialization (generating an equivalent sequential program) of a
time-bounded periodic program. We present a new compositional form
of sequentialization that improves on earlier work in terms of both scal-
ability and completeness (i.e., false warnings) by leveraging temporal
separation between jobs in the same hyper-period and across multiple
hyper-periods. We also show how the new sequentialization can be fur-
ther improved in the case of harmonic systems to generate sequential
programs of asymptotically smaller size. Experiments indicate that our
new sequentialization improves verification time by orders of magnitude
compared to competing schemes.

1 Introduction

Real-Time Embedded Software (RTES) controls a wide range of safety-critical
systems – ranging from airplanes and cars to infusion pumps and microwaves
– that impact our daily lives. Clearly, verification of such systems is an im-
portant problem domain. A modern RTES is inherently asynchronous (since it
interacts with the real world), concurrent (to increase CPU utilization allowing
for smarter, smaller, and more efficient systems), and must adhere to timing
constraints. Developing such a RTES is therefore quite challenging.

A common way to address this challenge is to develop the RTES not as
an arbitrary concurrent system, but as a periodic program (PP). Indeed, PPs
are supported by many real-time OSs, including OSEK [1], vxWorks [3], and
RTEMS [2]. A PP C consists of a set of asynchronous tasks {τi}i, where each
task τi = (Ii, Ti, Pi, Ci, Ai) is given by a priority Ii (higher number means higher
priority), a loop-free body (i.e., code) Ti, a period Pi, a worst case execution time
(WCET) Ci and an arrival time Ai. Each execution of Ti is called a job. The
least common multiple of the periods of all the tasks is called a hyper-period.

The execution of C consists of a number of threads – one per task. A legal
execution of C is one in which for every i, Ti is executed by its corresponding
thread exactly once between time Ai + (k − 1) · Pi and Ai + k · Pi, for all

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 536–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Compositional Sequentialization of Periodic Programs 537

natural k > 0. A common method for achieving this goal in the real-time systems
literature is to assume a preemptive fixed priority-based scheduler, and assign
priorities according to the Rate Monotonic Scheduling (RMS) discipline. In RMS,
shorter period implies higher priority. This is why a priority Ii is an element in
the definition of τi. We assume that C is schedulable (i.e., it only produces legal
executions) under RMS.

An example of a PP is the nxt/OSEK-based [1] LEGO Mindstorms controller
(described further in Sec. 7) for a robot simulating a Turing machine. It has
four periodic tasks: a TapeMover, with a 250ms period, that moves the tape; a
Reader, with a 250ms period, that reads the current symbol; a Writer, with a
250ms period, that writes the current symbol; and a Controller, with a 500ms
period, that issues commands to the other three tasks. Another example is a
generic avionic mission system that was described in [18]. It includes 10 periodic
tasks, including weapon release (10 ms), radar tracking (40 ms), target tracking
(40 ms), aircraft flight data (50 ms), display (50 ms) and steering (80 ms).

The topic of this paper is verification of logical properties (i.e., user supplied
assertions, race conditions, deadlocks, API usage, etc.) of periodic programs.
Surprisingly, this verification problem has not received significant research atten-
tion. While a PP is a concurrent program with priorities and structured timing
constraints, most recent work on concurrent verification does not support prior-
ities or priority-locks used by such systems, which motivates a solution tailored
specifically to this domain.

In our previous work [7], we presented an approach for time-bounded verifica-
tion of PPs, that given a PP C with assertions and a time-bound W , determines
whether the assertions of C can be violated within the time bound W . The key
idea there is to useW to derive an upper bound on the number of jobs that each
task can execute within W , sequentialize the resulting job-bounded concurrent
program, and use an off-the-shelf sequential verifier such as CBMC [6]. We call
the sequentialization used in [7] monolithic (monoSeq).

Compositional Sequentialization. In this paper, we develop a new composi-
tional sequentialization (compSeq) that improves substantially over monoSeq
in terms of both scalability and completeness (i.e., less false warnings). The com-
positional nature of compSeq emerges from: (i) its use of information about
tasks to deduce that certain jobs are temporally separated, i.e., one cannot pre-
empt the other; and (ii) using this information to restrict legal thread interleav-
ings. In particular, compSeq leverages two types of temporal separation between
jobs: (i) among jobs in the same hyper-period (intra-HP); and (ii) between jobs
from different hyper-periods (inter-HP). We illustrate these concepts – and thus
the key difference between compSeq and monoSeq – with an example.

Intra-HP Temporal Separation. Consider a PP C = {τ0, τ1, τ2}, where

τ0 = (0, T0, 100, 50, 0) τ1 = (1, T1, 50, 1, 0) τ2 = (2, T2, 25, 1, 0) (1)

That is, task τ0 has the lowest priority (i.e., 0), body T0, period 100, WCET 50,
and arrival time of 0, and similar for the other tasks. During the time-bound

538 S. Chaki et al.

W = 100, there is one execution of T0, 2 of T1 and 4 of T2. Hence, monoSeq
constructs sequentialization of the following concurrent program:

T0 ‖ (T1 ;T1) ‖ (T2 ;T2 ;T2 ;T2) (2)

and adds additional constraints to remove interleavings that are infeasible due
to timing and priority considerations. monoSeq ignores the arrival time infor-
mation and assumes that the lowest priority task τ0 can be preempted by any
execution of any higher priority task. This leads to large number of interleav-
ings negatively affecting both scalability and completeness. In contrast, the new
approach compSeq, notes that τ2 arrives at the same time as τ1 and τ0 and is
therefore given the CPU first. Hence the first instance of τ2 does not interleave
with any other task. Similarly, it notes that because of the WCET, the last ex-
ecution of τ2 does not interleave with any other task either. Thus, it uses the
following concurrent program

T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ; T2 (3)

That is, the single repetition of the lowest priority task τ0 is interleaved only
with some of the executions of higher-priority tasks. In this example, it is easy to
see that both (2) and (3) over-approximate C, but (3) is more sequential, hence
it leads to a sequentialization that has fewer spurious interleavings and is easier
to analyze.

Inter-HP Temporal Separation. Next, suppose the time-boundW is increased to
200 (i.e., to two hyper-periods). In this case, the concurrent program constructed
by monoSeq becomes:

(T0 ;T0) ‖ (T1 ;T1 ;T1 ;T1) ‖ (T2 ;T2 ;T2 ;T2 ;T2 ;T2 ;T2 ;T2) (4)

However, note that 100 is the hyper-period of C. It is easy to see that if all
tasks initially arrive at time 0, then any execution that starts within a hyper-
period ends before the end of the hyper-period. Thus, instead of monolithically
encoding all execution in a given time bound, it is sufficient to encode repetitions
of a hyper-period. In particular, in this example, compSeq sequentializes the
following program:

T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ;T2)︸ ︷︷ ︸
Sequentialization of HP#1

; (T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ; T2)︸ ︷︷ ︸
Sequentialization of HP#2

(5)

Note that verifying the sequentialization of one of the two hyperperiods (HP#1
or HP#2) in isolation is not sound since they communicate via global variables.

Our experimental results show that the difference in the encoding has a dra-
matic effect on performance. We show that monoSeq does not scale at all on
a small (but realistic) robotics controller, but compSeq is able to solve many
verification problems in the order of minutes.

Compositional Sequentialization of Periodic Programs 539

Contributions. The paper makes the following contributions. First, we present
compSeq when the time bound is a single hyper-period of C, focusing on its use
of intra-HP separation. Interestingly, we show that assuming that all tasks start
together – a common assumption in schedulability analysis [17] – is unsound for
verification (see Theorem 2). That is, a program is schedulable iff it is schedulable
assuming that all tasks start at time 0. But, the program might be safe when all
tasks start together, but not safe if they start at different times.

Second, we improve compSeq for the case of harmonic PPs – a class of PPs
in which for every pair of tasks τ1 and τ2, lcm(P1, P2) = max(P1, P2), i.e., P1

is a multiple of P2. In practice, PPs are often designed to be harmonic, for
example, to achieve 100% CPU utilization [13] and more predictable battery us-
age [20]. The improved version, called harmonicSeq, uses intra-HP separation
just like compSeq, but generates sequential programs of asymptotically smaller
size (both theoretically and empirically).

Third, we extend compSeq (and harmonicSeq) to multiple hyper-periods
of C by applying it individually to each hyper-period and composing the results
sequentially, thereby leveraging inter-HP separation. We show that while this is
unsound in general (see the discussion after Theorem 3), i.e., a periodic program
is not always logically equivalent to repeating the sequentialization of its hyper-
period ad infinitum, it is sound under the specific restrictions on arrival times
already imposed by [7].

We have implemented our approach and validated it by verifying several RTES
for controlling two flavors of LEGO Mindstorms robots – one that self-balances,
avoids obstacles and responds to remote controls, and another that simulates a
Turing machine. We observe that verification with compSeq is much faster (in
one case by a factor of 480x) than that with monoSeq. The improvement is more
pronounced with increasing number of hyper-periods. In many cases, verification
with compSeq completes while monoSeq runs out of resources. Further details
are presented in Sec. 7.

The rest of this paper is organized as follows. Sec. 2 discusses preliminary
concepts. Sec. 3 and Sec. 4 present compSeq and harmonicSeq, respectively,
but for one hyper-period. Sec. 5 extends them to multiple hyper-periods. In
Sec. 6, we survey related work. Sec. 7 presents experimental results, and Sec. 8
concludes.

2 Preliminaries

A task τ is a tuple 〈I, T, P, C,A〉, where I is the priority, T – a bounded procedure
(i.e., no unbounded loops or recursion) called the task body, P – the period, C
– the worst case execution time (WCET) of T , and A, called the release time,
is the time at which the task is first enabled1. A periodic program (PP) is a
set of tasks. In this paper, we consider a N -task PP C = {τ0, . . . , τN−1}, where
τi = 〈Ii, Ti, Pi, Ci, Ai〉. We assume that: (i) for simplicity, Ii = i; (ii) execution

1 We assume that time is given in some fixed time unit (e.g., milliseconds).

540 S. Chaki et al.

Task Ci Pi

τ2 1 4
τ1 2 8
τ0 8 16

4 8 12 16

τ0

τ1

τ2

(a) (b)

Fig. 1. (a) Three tasks from Example 1; (b) A schedule of the three tasks

times are positive, i.e., Ci > 0; and (iii) priorities are rate-monotonic and distinct
– tasks with smaller period have higher priority.

Semantics. A PP is executed by running each task periodically, starting at the
release time. For k ≥ 0 the k-th job of τi becomes enabled at time Ak

i = Ai +
k × Pi. The execution is asynchronous, preemptive, and priority-sensitive – the
CPU is always given to the enabled task with the highest priority, preempting
the currently executing task if necessary. Formally, the semantics of C is the
asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(Wait(τi, ki)) (Ti ; ki := ki + 1) (6)

where ‖ is priority-sensitive interleaving, ki ∈ N is a counter and Wait(τi, ki)
returns false if the current time is greater than Aki

i , and otherwise blocks until

time Aki

i and then returns true.

Schedulability. An execution of each task body Ti in (6) is called a job. A job’s
arrival is the time when it becomes enabled (i.e.,Wait(τi, k) in (6) returns true);
start and finish are the times when its first and last instructions are executed,
respectively; response time is the difference between its finish and arrival times.
The response time of task τi, denoted by RTi, is the maximum response times
of all of its jobs over all possible executions. Since tasks have positive execution
times, their response times are also positive, i.e., RTi > 0.

Note thatWait in (6) returns true if a job has finished before its next period.
A periodic program is schedulable iff there is no run of (6) (legal with respect to
priorities) in which Wait returns false. That is, a program is schedulable iff in
every run every task starts and finishes within its period.

There are well-known techniques [17] to decide schedulability of periodic pro-
grams. In this paper, we are interested in logical properties of periodic programs,
assuming that they meet their timing constraints. Thus, we assume that C is a
schedulable periodic program.

Example 1. Consider the task set in Fig. 1(a). Suppose that RT2 = 1, RT1 = 3
and RT0 = 16. A schedule demonstrating these values is shown in Fig. 1(b).

Time-Bounded Verification. Initially, in Sec. 3 and 4, we assume that C exe-
cutes for one “hyper-period” H. The hyper-period [17] of C is the least common

Compositional Sequentialization of Periodic Programs 541

multiple of {P0, . . . , Pn−1}. Thus, we verify the time-bounded periodic program
CH that executes like C for time H and then terminates. Subsequently, in Sec. 5,
we show how to extend verification of CH to multiple hyper-periods.

Throughout the paper, we assume that the first job of each task finishes before
its period, i.e.,

∀0 ≤ i < N � Ai +RTi ≤ Pi . (7)

Under this restriction, the number of jobs of task τi that executes in CH is:

Ji =
H
Pi

. (8)

The semantics of CH is the asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(ki < Ji ∧Wait(τi, ki)) (Ti ; ki := ki + 1) . (9)

This is analogous to the semantics of C in (6) except that each task τi executes
Ji jobs. We write J(τ, k) to denote the k-th job (i.e., the job at the k-th position)
of task τ . Thus, the set of all jobs of CH is:

J =
⋃

0≤i<N

{J(τi, k) | 0 ≤ k < Ji} . (10)

3 Job-Bounded Verification

We use a two-step approach to verify an N -task periodic program C =
{τ0, . . . , τN−1} under a time bound H. The first step, sequentialization, outputs
a non-deterministic sequential program S with assume statements, as shown in
Algorithm 1. The second step is the verification of S with an off-the-shelf pro-
gram verifier. In the rest of this section, we present our first sequentialization
algorithm compSeq.

Sequentialization: Intuition. compSeq uses the idea that any execution π of CH
can be partitioned into scheduling rounds in the following way: (a) π begins in
round 0, and (b) a round ends and a new one begins every time a job ends (i.e.,
the last instruction of some task body is executed). For example, the bounded
execution shown in Fig. 1(b) is partitioned into 7 rounds as follows: round 0 is
the time interval [0, 1] – the end of the first job of τ2, round 1 is [1, 3] – the end
of the first job of τ1, round 2 is [3, 5] – the end of the second job of τ2 (note that
there is only one job of τ0 and it ends at time 16), round 3 is [5, 9], etc.

Observe that R = |J| jobs start and end in π, and thus π has R rounds.
Therefore, compSeq reduces the bounded concurrent execution of CH into a
sequential execution with R rounds. Initially, jobs are allocated (or scheduled)
to rounds. Then, each job is executed independently, in lexicographic order of
increasing priority and job position. That is, lower priority jobs are executed
first, and jobs of the same task are ordered by their position in the task.

542 S. Chaki et al.

In addition, compSeq leverages arrival time of each job in two important
ways. First, by observing that if in every execution a job j completes before an-
other job j′ arrives, then j can precede j′ in the sequentialization, independently
of the priorities of the jobs. Second, by only exploring job schedules that do not
violate arrival constraints. This has several benefits. First, compSeq is more
complete – it generates fewer false warnings. Second, it enables eager checking
for user-specified assertions incrementally.

We now present compSeq in detail. We first describe the job ordering used
by compSeq, and then the sequential program S that compSeq generates.

Job Ordering. Consider a job j = J(τ, k). Let A be the arrival time of the first job
of τ and P be the period of τ . Then, the arrival time of j is A(j) = A+ k × P .
Similarly, let RT be the response time of τ . Then the departure time of j is
D(j) = A(j) + RT . Since we assume that RT > 0, we know that A(j) < D(j).
Let π(j) denote the priority of its task τ . We first present three ordering relations
�, ↑ and � on jobs. Informally, j1 � j2 means that j1 always completes before
j2 begins, j1 ↑ j2 means that it is possible for j1 to be preempted by j2, and �
is the union of � and ↑.

Definition 1. The ordering relations �, ↑ and � are defined as follows:

j1 � j2 ⇐⇒ (π(j1) ≤ π(j2) ∧D(j1) ≤ A(j2)) ∨ (π(j1) > π(j2) ∧ A(j1) ≤ A(j2))

j1 ↑ j2 ⇐⇒ π(j1) < π(j2) ∧A(j1) < A(j2) < D(j1)

j1 � j2 ⇐⇒ A(j1) < A(j2) ∨ (A(j1) = A(j2) ∧ π(j1) > π(j2))

Lemma 1 relates � with � and ↑.

Lemma 1. For any two jobs j1 and j2, we have:

j1 � j2 ⇐⇒ j1 � j2 ∨ j1 ↑ j2 (11)

Note that j1 � j2 means that either j1 always completes before j2, or it is
possible for j1 to be preempted by j2. Also, � is a total strict ordering since it is
a lexicographic ordering by (arrival time, priority). Moreover, � is computable
in O(R · log(R)) time, where R is the total number of jobs.

Construction of S. The structure of S is given by the pseudo-code in Alg. 1. The
top-level function is main. It sets (line 4) the global variables at the beginning
of the first round to their initial values, and then calls hyperPeriod to execute
the sequential program corresponding to a time-bound of H.

hyperPeriod first calls scheduleJobs to create a legal job schedule – i.e.,
assign a starting round start[j] and an ending round end[j] to each job j. It then
executes, in the order induced by �, each job j by invoking runJob(j).

In scheduleJobs, line 12 ensures that start[j] and end[j] are sequential and
within legal bounds; lines 13–14 ensure that jobs are properly separated; line 15
ensures that jobs are well-nested – if j2 preempts j1, then it finishes before j1.

Compositional Sequentialization of Periodic Programs 543

Algorithm 1. The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘∗’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: ∀g ∈ G � var g[], vg[]

3: function main()
4: ∀g ∈ G � g[0] := ig
5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
∀g ∈ G � ∀r ∈ [1, R)�

vg [r] := ∗; g[r] := vg[r]
let the ordering of jobs by � be
j0 � j1 � . . . jR−1

9: runJob(j0); . . . ; runJob(jR−1)

10: function scheduleJobs()

11: ∀j ∈ J � start[j] = ∗; end[j] = ∗
// Jobs are sequential

12:
∀i ∈ [0, N) � ∀k ∈ [0, Ji) � assume
(0 ≤ start[J(i, k)] ≤ end[J(i, k)] < R)

// Jobs are well-separated
13: ∀j1 � j2 � assume(end[j1] < start[j2])
14: ∀j1 ↑ j2 � assume(start[j1] ≤ start[j2])

// Jobs are well-nested

15:
∀j1 ↑ j2 � assume(start[j2] ≤ end[j1]

=⇒ (start[j2] ≤ end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R − 1 then

22:
∀g ∈ G � assume

(g[rnd] = vg[rnd + 1])

23:
X := {j′ | (j′ = j ∨ j′ ↑ j) ∧
(∀j′′ 	= j � j′ ↑ j′′ ⇒ j′′ � j)}

24: ∀j′ ∈ X � assert(localAssert[j′])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g ← g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (∗) then return false

30: o := rnd ; rnd := ∗
31: assume(o < rnd ≤ end[j])

32:
∀j′ ∈ J � j ↑ j′ =⇒

assume(rnd ≤ start[j′]∨
rnd > end[j′])

33: return true

We assume, without loss of generality, that a job j contains at most one
assert, and use the variable localAssert[j] to represent the argument to this
assertion. runJob(j) first initializes localAssert[j] to 1. It then ensures that j
starts in round start[j] (line 18). Next, it executes the body of j (via T̂ (j)),
ensures that j terminates in round end[j], and ensures consistency of round
end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd
non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

544 S. Chaki et al.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order �; (2) the consistency of round end[j] is checked as soon as job j
completes, we call this eager-check-assumptions ; (3) assertions are also checked
as soon as all jobs that affect the outcome of an assertion has completed, we call
this eager-check-assertions. Theorem 1 states that despite these differences, the
soundness of monoSeq to carry over to compSeq.

Theorem 1. Ordering jobs by �, eager-check-assumptions, and eager-check-
assertions are sound.

The set of arrival times is called the phasing. A special case is zero-phasing, when
all tasks start together – i.e., ∀i ∈ [0, N) � Ai = 0. It depends on the OS whether
zero-phasing can be assumed or not. For example, OSEK enforces zero-phasing
while RTLinux does not.

Zero-phasing is a sufficient assumption for completeness of schedulability anal-
ysis, i.e., a system is schedulable for all phasings iff it is schedulable for the
zero-phasing [17]. However, assuming zero-phasing is unsound for verification,
as illustrated by Theorem 2. At the same time, assuming arbitrary phasing (as
in monoSeq) leads to many false positives (see Sec. 7). compSeq handles tasks
with a given phasing. This makes it sound, yet more complete than monoSeq.

Theorem 2. The safety of a periodic program under zero-phasing does not im-
ply its safety under all phasings.

Proof. Consider a periodic program C with two tasks: t1 and t2. The tasks com-
municate via a shared variable x, initially 0. Task t1: period 2ms, priority 1,
T1 is assert(x%2 = 1); task t2: period 1ms, priority 2, T2 is x = x + 1. The
WCET of both tasks is 0.1ms. Under zero phasing, there is no preemption, and
t1 always reads an odd value of x. Hence the assertion succeeds. However, if t1
arrives before t2, then the value of x read by t1 is 0, which fails the assertion.
Therefore, C is safe under zero-phasing, but not under all phasings. Since C is
harmonic, the theorem holds for harmonic periodic programs as well. ��

4 Verifying Harmonic Periodic Programs

In the worst case, the number of constraints in scheduleJobs() is quadratic
in the total number of jobs. This is essentially because relations � and ↑ col-
lectively can have O(R2) job pairs. In this section, we show that for a special
class of periodic programs, known as harmonic programs, we are able to imple-
ment scheduleJobs using O(R ·N) constraints only, where N is the number of
tasks. This leads to our sequentialization algorithm harmonicSeq. Since N is
typically exponentially smaller than R, harmonicSeq yields an asymptotically
smaller job scheduling function.

Compositional Sequentialization of Periodic Programs 545

Algorithm 2. Procedure to assign legal starting and ending rounds to jobs in
a harmonic program.

1: var min[], max[] //extra variables

2: function scheduleHarmonic()

3: ∀j ∈ J � start[j] = ∗; end[j] = ∗;min[j] = ∗;max[j] = ∗
// Correctness of min and max

4: ∀n ∈ T � isleaf (n) =⇒ assume(min[n] = start[n] ∧max[n] = end[n])
5: ∀n ∈ T � ¬isleaf (n) =⇒ assume(min[n] = MIN(start[n],min[first(n)]))
6: ∀n ∈ T � ¬isleaf (n) =⇒ assume(max[n] = MAX(end[n], max[last(n)]))

// Jobs are sequential
7: ∀n ∈ T � assume(low(n) ≤ start[n] ≤ end[n] ≤ high(n))

// Jobs are well-separated
8: ∀n ∈ T � hasNext(n) =⇒ assume(max[n] < min[next(n)])
9: ∀j1 ↑ j2 � assume(start[j1] ≤ start[j2])

// Jobs are well-nested
10: ∀j1 ↑ j2 � assume(start[j2] ≤ end[j1] =⇒ (start[j2] ≤ end[j2] < end[j1]))

T (n) = sub-tree of T rooted at n isleaf (n) = true iff n is a leaf node
level(n) = level of node n size(n) = number of nodes in T (n)
id(n) = position of n in the DFS hasNext(n) = true iff n is not the last

pre-ordering of T node at level level(n)
next(n) = node after n at level level(n) first(n) = first child of n
last(n) = last child of n maxid(n) = id(n) + size(n)− 1
low(n) = id(n)− level(n) high(n) = maxid(n)

Fig. 2. Functions on each node n of the job-graph

A periodic program C = {τ0, . . . , τN−1} is harmonic if ∀0 < i < N � Pi−1|Pi,
where x|y means that x is divisible by y. For 0 ≤ i < N − 1, let r(τi) = Pi/Pi+1.
Note that H = P0 and thus J0 = 1. Also, the taskset from Example 1 defines
a harmonic program. Harmonicity is a common restriction imposed by real-
time system designers, especially in the safety-critical domain. For example, it
is possible to achieve 100% CPU utilization [13] for a harmonic program with
rate monotonic scheduling.

We begin by defining the job-tree T . The nodes of T are the jobs of CH, and
there is an edge from j1 = J(τ1, p1) to j2 = J(τ2, p2) iff π(j2) = π(j1) + 1 ∧
p2/r(τ1) = p1. Thus, the job-tree is a balanced tree of depth N rooted at J(τ0, 0)
and for 0 ≤ i < N−1, each node at level i (the root is at level 0) has ri children.

Note that since C is harmonic, ↑ contains O(R ·N) job pairs. This is because
if j1 ↑ j2, then j1 must be an ancestor of j2 in T , and there are O(R ·N) such
pairs. Moreover, all elements of ↑ can be enumerated in O(R · N) by checking
for each node j2 of T , and each ancestor j1 of j2, whether j1 ↑ j2.

Let nodes at the same level of T be ordered by increasing arrival time. For
each node n ∈ T , we define size(n), first(n), last(n), id(n), maxid(n), level(n),
low(n) and high(n) as in Fig. 2. Note that these are statically computable from

546 S. Chaki et al.

T . Also, maxid(n) = MAXk∈T (n)id(n), low(n) is the earliest round in which
job n can start, and high(n) is the latest round in which job n can finish.

Since each job is a node of T , an assignment to start[] and end[] is equivalent
to two functions start and end from nodes of T to values in the range [0, R).
This, in turn, induces the following two additional functions from T to [0, R):

min(n) = MINk∈T (n)start(k) max(n) = MAXk∈T (n)end(k)

The difference between harmonicSeq and compSeq is that harmonicSeq
uses function scheduleHarmonic – shown in Algorithm 2 – instead of sched-
uleJobs. The key features of scheduleHarmonic are:

– It uses two additional arrays (defined at line 1) to represent functions min
and max. It adds constraints (lines 4–6) to ensure that these arrays contain
appropriate values. Note that these constraints are based on the following
recursive definition of min and max:

min(n) =

{
start(n) if isleaf(n)

MIN(start(n),min(first(n))) otherwise

max(n) =

{
end(n) if isleaf(n)

MAX(end(n),max(last(n))) otherwise

– It imposes stricter constraints (line 7) over start[] and end[], compared to
scheduleJobs. Specially, it ensures that low(n) ≤ start[n] ≤ end[n] ≤
high(h) instead of 0 ≤ start[n] ≤ end[n] < R.

– It uses min, max and ↑ (lines 8–9) to ensure separation. Function sched-

uleJobs uses � and ↑ instead for this purpose.
– The relation ↑ is used (line 10), as in scheduleJobs, to ensure that jobs

are well-nested.

Note that the number of constraints in scheduleHarmonic is O(R ·N). Specif-
ically, to ensure that jobs are sequential, we require O(R) constraints. Also, since
↑ contains O(R ·N) job pairs, specifying that jobs are well-separated and well-
nested requires O(R ·N) constraints each.

5 Verification Over Multiple Hyper-Periods

In this section, we present an approach to extend job-bounded verification to
the case where the time-bound is a multiple of its hyper-period. Let C be a
schedulable periodic program with hyper-period H and let the time-bound for
verification be (m × H). From (9), it follows that the semantics of C(m×H) is
given by the following asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(ki < m× Ji ∧Wait(τi, ki)) (Ti ; ki := ki + 1) . (12)

Let Cm
H be the program that invokes function multiHyper in Fig. 3(a) with

argument m. In other words, Cm
H executes CH sequentially m times. Since the

Compositional Sequentialization of Periodic Programs 547

1: var rnd, start[], end[]
2: var localAssert[]
3: ∀g ∈ G � var g[], vg[]

4: function multiHyper(k)
5: ∀g ∈ G � g[0] := ig
6: for i = 1 to k do
7: hyperPeriod()
8: ∀g ∈ G � g[0] := g[R− 1]

Task Ai Ci Pi

τ1 1.9 0.5 2
τ2 0 0.1 1

int x=0; int y=0;

void T1() {
int t=y; assert(x == t+2); y=x;

}
void T2() {x++;}

(a) (b)

Fig. 3. (a) Sequentialization for multiple hyper-periods; function hyperPeriod is
shown in Alg. 1; (b) A periodic program C such that C2H is not equivalent to C2

H

arrival-pattern of jobs repeats every hyper-period, it is tempting to conclude
that the semantics of C(m×H) is equivalent to Cm

H . We show that this is true
under our assumption (7) from Sec. 2 on job arrivals, but is not true in general.

Theorem 3. Let C be a schedulable periodic program with hyper-period H sat-
isfying assumption (7) from Sec. 2. Let C(m×H) and Cm

H be programs as defined
above. Then, C(m×H) and Cm

H are semantically equivalent with respect to safety
properties for any natural number m.

Proof. We show, by induction on m, that every execution of C(m×H) is matched
by an execution of Cm

H , and vice versa. The base case (m = 1) is trivial since, by
definition, CH = C1

H. For the inductive case, let m = k + 1 and assume that the
theorem holds for m = k. By assumption (7), every execution of CkH terminates
within time kH. Thus, every execution t of C(m×H) is of the form t1•t2 – where •
denotes concatenation – such that t1 is an execution of CkH and t2 is an execution
of CH. By induction, t1 is also an execution of Ck

H. Therefore, t is an execution
of Ck+1

H = Cm
H . The converse is proven analogously. ��

To see that assumption (7) is necessary for Theorem 3, consider the periodic
program C shown in Fig. 3(b). The tasks communicate via two shared variables
x and y. Let m = 2. Note that C2H violates the assertion, whereas C2

H does not.
In C2

H, x == y is an inductive loop invariant: it holds initially, and is maintained
since the single job of τ1 starts after both jobs of τ2. Therefore, the assertion is
never violated since x == y is always true at the beginning of each hyper-period,
and x is incremented twice by the jobs of τ2 before the job of τ1 begins.

However, consider the following execution in C2H: (i) the τ2 jobs from the first
hyper-period set x to 2; (ii) the τ1 job from the first hyper-period set t to 0; (iii)
the second hyper-period begins; (iv) the first job of τ2 in the second hyper-period
arrives, preempts the τ1 job and sets x to 3; (v) the τ1 jobs resumes and reads
the value 3 for x; since the value of t is 0, the assertion is violated. Therefore,
C2H and C2

H are not equivalent with respect to safety properties. Note that C is
harmonic, so this is true for harmonic periodic programs as well.

548 S. Chaki et al.

In summary, Theorem 3 captures the essence of inter-HP temporal separation
between jobs. It allows us to verify C(m×H) by verifying Cm

H instead. Since Cm
H is a

sequential non-deterministic program, it can be verified by any existing software
model checker. Experimental results (see Sec. 7) indicate that this new way of
verifying a periodic program over multiple hyper-periods is orders of magnitude
faster than the state-of-the-art.

6 Related Work

There is a large body of work in verification of logical properties of both sequen-
tial and concurrent programs (see [9] for a recent survey). However, these tech-
niques abstract away time completely, by assuming a non-deterministic scheduler
model. In contrast, we use a priority-sensitive scheduler model, and abstract time
partially via our job-bounded abstraction.

A number of projects [16,5] verify timed properties of systems using discrete-
time [15] or real-time [4] semantics. They abstract away data- and control-flow,
and verify models only. We focus on the verification of implementations of peri-
odic programs, and do not abstract data- and control-flow.

Recently, Kidd et al. [12] have applied sequentialization as well to verify pe-
riodic programs. Their key idea is to share a single stack between all tasks and
model preemptions by function calls. They do not report on an implementation.
In contrast, we use a sequentialization based on rounds, and present an efficient
implementation and empirical evaluation. They also use the idea that a periodic
program is equivalent to unbounded repetition of its hyper-period. However, we
show that this is unsound in general and provide sufficient conditions under
which this is sound.

In the context of concurrent software verification, several flavors of sequential-
ization have been proposed and evaluated (e.g., [14,21,11,10]). Our procedure is
closest to the LR [14] style. However, it differs from LR significantly, and provides
a crucial advantage over LR for periodic programs [7] because it only consid-
ers schedules that respect the priorities. The key difference are in the notion of
rounds, and the number of rounds required by the two techniques.

The sequentialization in this paper extends and advances the one presented in
our earlier work [7]. We already pointed out the syntactic differences in Sect. 3.
Semantically, compSeq is more complete than monoSeq. The reason is that
compSeq imposes stronger restrictions on possible preemptions between jobs.
Consider again our taskset from Example 1. compSeq ensures that J(τ1, 0) can-
not be preempted by either J(τ2, 2) or J(τ2, 3). However, monoSeq only ensures
that J(τ1, 0) is preempted by at most two jobs of τ2. It allows, for example, an
execution in which J(τ1, 0) is preempted by both J(τ2, 2) and J(τ2, 3). Indeed,
we encountered a false warning eliminated by compSeq during our experiments
(see Sec. 7). The ordering used by compSeq enables us to prune out infeasible
executions and check for assertions violations more eagerly than in monoSeq.
The early check of assertions leads to faster run-times, because CBMC creates
straight-line programs up to the assertion, which means that they are now shorter
in length.

Compositional Sequentialization of Periodic Programs 549

A further advancement over [7] is harmonicSeq – a specialized version of
sequentialization for harmonic programs, which extends naturally to multiple
hyper-periods, allowing the reuse of variables across different hyper-periods.

7 Experiments

We have developed a tool called RekH which implements harmonicSeq and
supports multiple hyper-periods. RekH is built on the same framework as Rek.
CIL [19] is used to parse and transform C programs and CBMC [8] is the
sequential verifier.RekH takes as input C programs annotated with entry points
of each task, their periods, worst case execution times, arrival times, and the
time bound W . The output is a sequential C program S that is then verified
by CBMC. Our implementation of harmonicSeq includes support for locks, in
exactly the same way as in monoSeq, as described in [7].

To compare between monoSeq and harmonicSeq, we have evaluated RekH

on a set of benchmarks from prior work, and have conducted an additional case
study by building and verifying a robotics controller simulating a Turing ma-
chine. In the rest of this section, we report on this experience. The tool, the
experiments, and additional information about the case study, including the
video of the robot and explanation of the properties verified, are available at:
http://www.andrew.cmu.edu/user/arieg/Rek. All experiments have been per-
formed on a AMD Opteron 2.3 GHz processor, 94 GB of main memory running
Linux.

NXTway-GS Controller. The NXTway-GS controller, nxt for short, runs on
nxtOSEK [1] – a real-time operating system ported to the LEGO Mindstorms
platform. nxtOSEK supports programs written in C with periodic tasks and
priority ceiling locks. It is the target for Embedded Coder Robot NXT – a
Model-Based Design environment for using Simulink models with LEGO robots.

The basic version of the controller has 3 periodic tasks: a balancer, with period
of 4ms, that keeps the robot upright and monitors the bluetooth link for user
commands, an obstacle, with a period of 48ms, that monitors a sonar sensor
for obstacles, and a 96ms background task that prints debug information on an
LCD screen. Note that this system is harmonic. (In [7], we used a non-harmonic
variant of the system). Arrival time of all tasks were set to 0 – to model the
semantics of the OSEK operating system.

We verified several versions of this controller. All of the properties (i.e., as-
sertions) verified were in the high-frequency balancer task. The balancer goes
through 3 modes of execution: INIT, CALIBRATE, and CONTROL. In INIT
mode all variables are initialized, and in CALIBRATE a gyroscope is calibrated.
After that, balancer goes to CONTROL mode in which it iteratively reads the
bluetooth link, reads the gyroscope, and sends commands to the two motors on
the robot’s wheels.

The results for analyzing a single hyper-period (96ms) are shown in the top
part of Table 1. Experiments nxt.ok1 (nxt.bug1) check that the balancer is in a

http://www.andrew.cmu.edu/user/arieg/Rek

550 S. Chaki et al.

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S , respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period

nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods

nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

correct (respectively, incorrect) mode at the end of the time bound. Experiment
nxt.ok2 checks that the balancer is always in one of its defined modes. Experi-
ment nxt.bug3 checks that whenever balancer detects an obstacle, the balancer
responds by moving the robot. We found that since the shared variables are not
protected by a lock there is a race condition that causes the balancer to miss a
change in the state of obstacle for one period. Experiment nxt.ok3 is the version
of the controller where the race condition has been resolved using locks. In all
cases, harmonicSeq dramatically outperforms monoSeq. Furthermore, har-
monicSeq declares the program safe for aso.bug3. Indeed, the program is safe
under zero-phasing of OSEK. Note that it was flagged unsafe by monoSeq, a
false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, while monoSeq times

Compositional Sequentialization of Periodic Programs 551

out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to
many industrial robots such as ones used for metal stamping. Physically, the
robot consists of a conveyer belt (the tape) and levers (for reading and writing
the tape). The tape is built out of 16 L-shaped black bricks. Each brick represents
a bit. A bit is flipped by the write lever. The light sensor, which is attached to
the read head, approaches the tape and determines the value of the current bit
by emitting green light and measuring the intensity of its reflection. Due to our
design of the TM, it is possible for the write lever and the read head to collide. It
is the controller’s responsibility to avoid this collision (i.e., read head and write
lever should never approach the tape together). The tape is placed on a rail and
is moved left and right by the tape motor.

The implementation has four periodic tasks – Controller, TapeMover, Reader,
and Writer in order of ascending priority. The Controller task has 500ms pe-
riod and 440ms WCET. The other three tasks each have 250ms period and
10ms WCET respectively. The Controller task looks up a transition table, de-
termines next operations to execute, and gives commands to the other tasks. The
TapeMover task moves the tape to the left (or right). The Reader task moves
the read head back and forth by rotating the read motor and reads the current
bit of the tape. The Writer task rotates the write lever to flip a bit.

We model the motors and the color sensor to abstract away unnecessary com-
plexity and verify properties of interest as follows:

– Motor. The speed of a motor is only accessed through the API functions.
Motor’s counter is modeled non-deterministically but respects the current
speed, i.e., if the speed is positive, consecutive samplings of the counter
increase monotonically. Effectively, we abstract away the acceleration.

– Color Sensor. The model of the color sensor returns a non-deterministic in-
tensity value. Additionally, it maintains two variables for the mode of the sen-
sor – one for the current mode and one for the requested one. This reflects the
actual API of the sensor. The API function set nxtcolorsensor() is used
to request to switch the mode. The actual transition takes relatively long
time (around 440ms) and is triggered by a call to bg nxtcolorsensor().

During the case study, we developed and verified the code together. We found
RekH to be scalable enough for the task and useful to find many subtle er-
rors in early development stages. Some of the more interesting properties are
summarized below:

– ctm.ok1: When a bit is read, all the motors are stopped to avoid mismea-
surement. We added assert(R speed==0 && W speed==0 && T speed==0)

in the Reader task to specify this property, where R speed, W speed, and
T speed represent the speed of read, write, and tape motor respectively.

552 S. Chaki et al.

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods,
OL and SL = # lines of code in the original C program and the generated sequen-
tialization S , respectively; GL = size of the GOTO program produced by CBMC; Var
and Clause = # variables and clauses in the SAT instance, respectively; S = verifica-
tion result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for timeout (85,000s); Time =
verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
H OL SL GL Var Clause (sec) SL GL Var Clause (sec)

ctm.ok1 4 613 13K 121K 2,737K 8,774K Y 44,781 7K 111K 1,063K 3,497K Y 93.39
ctm.ok2 4 610 13K 119K 2,728K 8,738K Y 21,804 7K 109K 1,055K 3,467K Y 87.60
ctm.bug2 4 611 13K 118K 2,707K 8,674K N 2,281 7K 108K 1,047K 3,441K N 86.18
ctm.ok3 6 612 20K 222K 6,276K 20,163K U — 7K 171K 1,667K 5,566K Y 243.76
ctm.bug3 6 612 20K 214K 5,914K 19,044K N 84,625 7K 165K 1,609K 5,383K N 248.65
ctm.ok4 8 613 29K 333K 10,390K 33,550K U — 7K 222K 2,178K 7,417K Y 534.38

– ctm.ok2: When a bit is read, the sensor is on green-light mode. We added
assert(get nxtcolorsensor mode(CSENSOR) == GREEN) in the Reader

task to specify this property. When we request to switch to green-light mode
in the Reader task, it sets a flag and waits until the Controller task runs
the background process to make the transition and clear the flag.

– ctm.bug2: In this case, we have the same property as ctm.ok2. In this imple-
mentation, however, the Reader task does not wait for the Controller task
to clear the flag. Since the Reader task has higher priority, the Controller

task is not able to preempt and run the background process.
– ctm.ok3: When the writer flips a bit, the tape motor is stopped and the

read head is at the safe position to avoid a collision with the read head. We
added assert(T speed==0 && get count(RMOTOR)<=0) in the Writer task
to express this property.

– ctm.bug3: We have assumed that the read head is stopped as soon as it ar-
rives at the safe position (get count(RMOTOR)<=0), expressed by
assert(T speed==0 && R speed==0). However, the property does not hold
of our implementation due to the sampling granularity.

– ctm.ok4: We verified that the writer and read motors are stopped when the
tape moves by checking assert(R speed == 0 && W speed == 0) in the
TapeMover task.

Table 2 shows the experimental results of the Turing machine. For each case,
the minimum hyper-period is selected for the analysis to reach the assertion in
the program. For instance, ctm.ok4 case requires at least 8 hyper-periods to
check the assertion. In all cases, compSeq dramatically outperforms monoSeq.
In one case - ctm.ok1 - the performance improves by a factor of 480x.

8 Conclusion

In this paper, we deal with the problem of verifying logical properties, such as
user specified assertions, race conditions, and API usage rules, of Real-Time

Compositional Sequentialization of Periodic Programs 553

Embedded Systems (RTESs). We present a technique for time-bounded verifica-
tion of RTES system implemented by a periodic program in C. The novelty of
the technique is in compositional sequentialization that takes into account inter-
and intra-hyper-period temporal separation between tasks. Tasks in different
hyper-periods are sequentialized separately, as well as tasks that can never in-
terleave due to their arrival and response times. This leads to a dramatic increase
in scalability of the sequentialization approach while making it more complete
(i.e., reducing false positives). We have implemented the approach and illustrate
it on a benchmark from [7] and on an additional case study of a robotics system.

Acknowledgment. This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.2.

References

1. nxtOSEK/JSP Open Source Platform for LEGO MINDSTORMS NXT,
http://lejos-osek.sf.net

2. RTEMS Operating System, http://www.rtems.com
3. VxWorks Programmer’s Guide
4. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science

(TCS) 126(2) (1994)
5. Braberman, V.A., Felder, M.: Verification of Real-Time Designs: Combining

Scheduling Theory with Automatic Formal Verification. In: Wang, J., Lemoine,
M. (eds.) ESEC/FSE 1999. LNCS, vol. 1687, pp. 494–510. Springer, Heidelberg
(1999)

6. CBMC website, http://www.cprover.org/cbmc
7. Chaki, S., Gurfinkel, A., Strichman, O.: Time-Bounded Analysis of Real-Time

Systems. In: Proc. of FMCAD (2011)
8. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:

Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

9. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques
for Formal Software Verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 27(7) (2008)

10. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-Bounded Scheduling. In: Proc. of
POPL (2011)

2 NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BA-
SIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. This material has
been approved for public release and unlimited distribution. (DM-0000076)

http://lejos-osek.sf.net
http://www.rtems.com
http://www.cprover.org/cbmc

554 S. Chaki et al.

11. Ghafari, N., Hu, A.J., Rakamarić, Z.: Context-Bounded Translations for Concur-
rent Software: An Empirical Evaluation. In: van de Pol, J., Weber, M. (eds.) SPIN
2010. LNCS, vol. 6349, pp. 227–244. Springer, Heidelberg (2010)

12. Kidd, N., Jagannathan, S., Vitek, J.: One Stack to Run Them All - Reducing
Concurrent Analysis to Sequential Analysis under Priority Scheduling. In: van de
Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer,
Heidelberg (2010)

13. Kuo, T.-W., Mok, A.K.: Load Adjustment in Adaptive Real-Time Systems. In:
Proceedings of the Real-Time Systems Symposium, RTSS 1991 (1991)

14. Lal, A., Reps, T.: Reducing Concurrent Analysis Under a Context Bound to Se-
quential Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
37–51. Springer, Heidelberg (2008)

15. Laroussinie, F., Markey, N., Schnoebelen, P.: Efficient timed model checking for
discrete-time systems. Theoretical Computer Science (TCS) 353(1-3) (2006)

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1-2) (1997)

17. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM (JACM) 20(1) (1973)

18. Locke, D.C., Vogel, D.R., Lucas, L., Goodenough, J.B.: Generic Avionics Software
Specification. Technical report CMU/SEI-90-TR-8-ESD-TR-90-209, Software En-
gineering Institute, Carnegie Mellon University (1990)

19. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

20. Rowe, A., Lakshmanan, K., Zhu, H., Rajkumar, R.: Rate-harmonized schedul-
ing and its applicability to energy management. IEEE Trans. Industrial Informat-
ics 6(3), 265–275 (2010)

21. La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concurrent
Reachability to Sequential Reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

Author Index

Abdulla, Parosh Aziz 476

Benhamou, Frédéric 434
Biondi, Fabrizio 68
Bloem, Roderick 108
Bouissou, Olivier 149
Brain, Martin 455

Chaki, Sagar 536
Chang, Bor-Yuh Evan 375
Chaudhuri, Swarat 229
Christ, Jürgen 189
Cousot, Patrick 128
Cousot, Radhia 128
Cruanes, Simon 275

D’Antoni, Loris 209
Dehnert, Christian 28
de Moura, Leonardo 1
Deshmukh, Jyotirmoy V. 229
Dong, Jin Song 515
D’Silva, Vijay 396, 455
Duggirala, Parasara Sridhar 48

Ermis, Evren 189

Fähndrich, Manuel 128

Griggio, Alberto 455
Gu, Yu 515
Gurfinkel, Arie 536

Haller, Leopold 455
Hamon, Gregoire 275
Haziza, Frédéric 476
Heule, Stefan 315
Hoĺık, Lukáš 476

Jacobs, Swen 88, 108
Jagannathan, Suresh 295
John, Mathias 355
Jovanović, Dejan 1

Katoen, Joost-Pieter 28
Khalimov, Ayrat 108

Kong, Soonho 536
Kroening, Daniel 396, 455
Kuncak, Viktor 88

Larraz, Daniel 169
Legay, Axel 68
Leino, K. Rustan M. 315
Leitner-Fischer, Florian 248
Leue, Stefan 248
Liu, Yang 515
Logozzo, Francesco 128

Malacaria, Pasquale 68
Miné, Antoine 434
Mitra, Sayan 48
Müller, Peter 315

Namjoshi, Kedar S. 496
Nebut, Mirabelle 355
Niehren, Joachim 355

Owre, Sam 275

Parker, David 28
Pearce, David J. 335
Pelleau, Marie 434
Podelski, Andreas 13
Prabhakar, Pavithra 48

Ranzato, Francesco 15
Rival, Xavier 375
Rodŕıguez-Carbonell, Enric 169
Rubio, Albert 169

Samanta, Roopsha 229
Sanán, David 515
Schäf, Martin 189
Schrammel, Peter 414
Seladji, Yassamine 149
Shankar, Natarajan 275
Slaby, Jiri 268
Strejček, Jan 268
Strichman, Ofer 536
Subotic, Pavle 414
Summers, Alexander J. 315
Sun, Jun 515
Suter, Philippe 88

556 Author Index

Toubhans, Antoine 375
Trefler, Richard J. 496
Trt́ık, Marek 268
Truchet, Charlotte 434

Veanes, Margus 209
Viswanathan, Mahesh 48

W ↪asowski, Andrzej 68
Wies, Thomas 189

Yahav, Eran 27

Zheng, Manchun 515
Zhu, He 295

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Model-Constructing Satisfiability Calculus
	Introduction
	A Model Based Abstract Procedure
	Clausal Rules
	Theory-Specific Rules
	Producing Explanations

	Conclusion
	References

	Automata as Proofs
	References

	Complete Abstractions Everywhere
	Introduction
	Complete and Exact Abstractions
	Completeness in Program Analysis
	Shells
	Signs
	Constant Propagation
	Intervals
	Octagons
	Polyhedra

	Completeness in Model Checking
	Strong Preservation
	Bisimulation
	Simulation
	Stuttering Bisimulation and Simulation
	Probabilistic Bisimulation and Simulation

	Conclusion
	References

	Abstraction-Guided Synthesis

	Session 1: Analysis of Systems with ContinuousBehavior
	SMT-Based Bisimulation Minimisationof Markov Models
	Introduction
	Preliminaries
	SMT-Based Bisimulation Minimisation
	Experiments
	Conclusion and Further Work
	References

	Hybrid Automata-Based CEGAR for Rectangular Hybrid Systems
	Introduction
	Preliminaries
	CEGAR Framework
	Abstraction
	Counter-Examples
	Validation
	Refinement
	Completeness, Semi-completeness and Composition

	CEGAR for Rectangular Hybrid Automata
	Strong Reset Abstraction Based CEGAR
	Control Abstraction Based CEGAR
	Flow Abstraction Based CEGAR
	Discussion

	Implementation and Experimental Results
	Experimental Results

	References

	Quantifying Information Leakage of Randomized Protocols
	Introduction
	Background
	Markovian Models
	Reward and Entropy of a Markov Chain
	Lattice of Information

	Information Leakage of Markov Chains
	Handling Randomized Imperative Programs
	Hiding Non-observable States
	Collapsing Non-discriminable States
	Computing Channel Capacity
	Onion Routing
	Case: Channel Capacity of Onion Routing
	Case: Channel Capacity of Discrete Time Onion Routing

	Related Work
	Conclusion
	References

	Session 2: Synthesis
	Reductions for Synthesis Procedures
	Introduction
	Synthesis Using Relation Transformations
	Theory-Independent Inference Rules

	Synthesis for Presburger Arithmetic
	Synthesis for Term Algebras
	Pure Term Algebras
	Reduction to an Interpreted Theory

	Synthesis for Arrays with Symbolic Bounds
	Preliminaries
	A Reduction-Based Synthesis Procedure for Arrays
	Complexity of Synthesis and Synthesized Code
	Example of Array Synthesis
	Example: Inverting Program Fragments

	Related Work
	Conclusions
	References

	Towards Efficient Parameterized Synthesis
	Introduction
	Preliminaries
	Parameterized Synthesis
	Reduction of Parameterized to Isomorphic Synthesis
	Bounded Isomorphic Synthesis

	Optimizations of the Encoding
	Extensions of Supported Language
	Network Decomposition for Token Rings
	Handling the `3́9`42`"̇613A``45`47`"603AX Operator

	General Optimizations
	Experiments
	Encoding Optimizations
	General Optimizations

	Conclusions
	References

	Session 3: Analysis Algorithms and Theorem ProvingTechniques for Program Analysis
	Automatic Inference of Necessary Preconditions
	Introduction
	Semantics
	Sufficient Preconditions
	Necessary Preconditions
	Intra-procedural Precondition Inference
	All-Paths Precondition Analysis (APPA)
	Conditional-Path Precondition Analysis (CPPA)
	Quantified Precondition Analysis (QPA)

	Scaling Up Thanks to Simplification
	Inter-procedural Precondition Inference
	Provenance

	Experience
	Benchmarks
	Inferred Necessary Preconditions
	Quality of the Inferred Preconditions

	Related Work
	Conclusions
	References

	Fixpoint Computation in the PolyhedraAbstract Domain Using Convex and Numerical Analysis Tools
	Introduction
	A Simple Example
	Backgrounds
	Polyhedra Abstract Domain
	Convex Analysis Tools
	Numerical Analysis Tools

	The Acceleration Process
	The Accelerated S-Convergence
	The Abstract S-Convergence
	The Accelerated Kleene Iteration Algorithm

	Performance
	Comparison with Template Abstract Domain
	Discussion on Direction Set
	Case of Affine Programs

	Experimentation
	Conclusion
	References

	SMT-Based Array Invariant Generation
	Introduction
	Preliminaries
	Transition Systems
	Constraint-Based Invariant Generation

	Array Invariants
	Invariant Generation for Programs with Arrays
	Encoding Phase 1
	Encoding Phase 2
	Encoding Phase 3

	Extensions
	Relaxations on Domains
	Sorted Arrays

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Flow-Sensitive Fault Localization
	Introduction
	Overview and Illustrative Example
	Preliminaries
	Flow-Sensitive Fault Localization
	Flow-Sensitive Trace Formulas
	Evaluation
	Conclusion
	References

	Session 4: Automata-Based Techniques
	Static Analysis of String Encodersand Decoders
	Introduction
	Extended Symbolic Finite Transducers
	Composition of ESFTs
	Symbolic Transducers with Registers

	Register Elimination
	Unicode Case Study
	Experiments and Evaluation
	Functional Correctness of Encoders and Decoders
	Use of Register Elimination
	Running Time Analysis with Register Elimination

	Related Work
	Conclusions
	References

	Robustness Analysis of Networked Systems
	Introduction
	Robust Networked Systems
	Synchronous Networked System
	Channel Perturbations and Robustness

	Distance Tracking Automata
	Review: Reversal-bounded Counter Machines ibarrareversal1978,ISDBK00
	Automaton for Tracking Levenshtein Distance
	Automaton for Tracking L1-norm

	Analyzing Robustness of a Networked System
	Robustness Analysis for the Levenshtein Distance Metric
	Robustness Analysis for the L1-norm Distance Metric

	Related Work
	Discussion
	References

	Causality Checking for Complex System Models
	Introduction
	Causality Reasoning in System Models
	System Model
	Causality Reasoning

	On-The-Fly Causality Checking
	Preliminaries
	Subset Graph Data-Structure
	Causality Checking

	Case Studies
	Railway Crossing
	Airbag Control Unit
	Discussion

	Related Work
	Conclusions
	References

	Session 5: Tools
	CLANUREDB: Classified Bug-Reports Database Tool for Developers of Program Analysis Tools
	Introduction
	Database Structure
	Current Contents of the Database
	Sources of Bug-Reports
	Linux Kernel Error Types
	Bug-Reports in the Database

	Intended Use of the Database
	Conclusion and Future Plans
	References

	Tool Integration with the Evidential Tool Bus
	Introduction
	Datalog as a Metalanguage
	An Example: Iterated k-Induction

	The Architecture of ETB
	The ETB Software Stack
	Query Processing in ETB
	Tool Wrappers
	The Client API

	ETB Examples
	A Simple Distributed Make
	AllSAT on Top of Yices

	Conclusions and Future Work
	References

	Session 6: Types and Proof Methodologies
	Compositional and Lightweight Dependent TypeInference for ML
	Introduction
	Overview and Preliminaries
	Example

	Language
	Dependent Type System

	Verification Procedure
	Dependent Type Checking
	Dependent Type Refinement
	Correctness
	Invariant Generation

	Implementation
	Case Study: Bit Vectors
	Experimental Results

	Related Work
	Conclusion
	References

	Abstract Read Permissions:Fractional Permissions without the Fractions
	Introduction
	Motivation
	Background
	Abstract Read Permissions
	Method Implementations
	Method Calls
	Asynchronous Method Calls
	Losing Permission

	Permission Expressions
	Encoding
	Soundness
	Monitors
	Related Work
	Conclusions
	References

	Sound and Complete Flow Typingwith Unions, Intersections and Negations
	Introduction
	Flow Typing
	Unions, Intersections and Negations
	Contributions

	A Flow-Typing Calculus — FT
	Types
	Syntax and Semantics
	Flow-Typing Rules
	Subtype Algorithm
	Problem Statement

	Preliminaries
	Atoms
	Disjunctive Normal Form (DNF)

	Subtyping Algorithm
	Overview
	Canonical Conjuncts
	Conjunct Construction
	Canonicalised Disjunctive Normal Form (DNF+)
	Putting It All Together

	Related Work
	Conclusion
	References

	Session 7: Abstract Domains
	Knockout Prediction for Reaction Networkswith Partial Kinetic Information
	Introduction
	Reaction Networks
	Reaction Knockouts
	Abstract Interpretation
	Abstract Kinetics Functions
	Constraint Solving
	Leucine Overproduction: A Case Study
	Related Work
	Conclusion and Future Work
	References

	Reduced Product Combinationof Abstract Domains for Shapes
	Introduction
	Analysis of an Iterator over a Tree with Parent Pointers
	Interfaces for Memory Abstractions
	Memory Abstract Domains
	Products of Memory Abstractions

	Instantiation to Separating Shape Graph Abstractions
	A Language of Constraints Based on Path Predicates
	Reduction Operators for Shape Graphs

	Instantiation to Separating Shape Graphs with Inductive Summaries
	A Memory Abstraction with Inductive Summaries
	An Extended Language of Constraints
	Extraction of Path Predicates from Inductive Definitions
	Reduction Operators in the Presence of Inductive Predicates

	Implementation
	Related Works
	Conclusion
	References

	Abstraction of Syntax
	Where Do Abstractions Come from?
	Meta-syntax
	Abstraction of Syntax
	Syntactic Derivation of Semantic Domains
	Related Work
	Conclusion
	References

	Session 8: Combining Boolean Solving and AbstractDomains for Theories
	Logico-Numerical Max-Strategy Iteration
	Introduction
	Preliminaries
	Abstract Interpretation with Template Polyhedra
	Max-Strategy Iteration

	Logico-Numerical Max-Strategy Iteration
	Abstract Domain
	Algorithm
	Properties
	Application to Data-Flow Programs
	Discussion

	Experimental Evaluation
	Conclusions
	References

	A Constraint Solver Based on Abstract Domains
	Introduction
	Preliminaries
	Bases of Abstract Interpretation
	Constraint Programming
	Comparing Abstract Interpretation and Constraint Programming

	An Abstract Constraint Solver
	Concrete Solving
	Abstract Domains
	Constraints and Consistency
	Disjunctive Completion and Split
	Abstract Solving

	Experiments
	Implementation
	Exemple of AI-Solving with Absolute
	Experimental Results

	Conclusion
	References

	An Abstract Interpretation of DPLL(T)
	Introduction
	Abstract Satisfaction
	Satisfiability Modulo Theories
	Abstract Interpretation
	Interpreting Logics over Theories

	Boolean Reasoning as Abstract Interpretation
	Efficient Disjunction via the Cartesian Abstraction
	Satisfiability via Abstract Splitting

	Theory Solvers as Abstract Domains
	Equality with Uninterpreted Functions
	Difference Logic

	DPLL(T) as a Product Construction
	Algebraic Extensions of DPLL(T)
	References

	Session 9: Distributed/Concurrent SystemVerification
	All for the Price of Few
	Introduction
	Parameterized Systems
	Verification Method
	View Abstraction
	Procedure

	Extensions
	More Communication Mechanisms
	Transitions That Do not Preserve Size
	Non-atomic Global Conditions
	Tree Topology
	Ring Topology
	Multiset Topology

	Completeness for Well Quasi-Ordered Systems
	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	Uncovering Symmetriesin Irregular Process Networks
	Introduction
	Abstraction Uncovers Symmetry
	Background: System Model, Compositional Invariants
	Informal Analysis of a Dining Philosophers Protocol
	Local Similarity Up to Abstraction
	Structural Similarity and Balance
	Semantic Similarity and Balance
	Symmetry Reduction

	Local Predicate Abstraction and Symmetry Reduction
	Local Domain Abstraction
	Local Predicate Abstraction
	Reviewing the Dining Philosophers Analysis

	Summary and Related Work
	References

	State Space Reduction for Sensor NetworksUsing Two-Level Partial Order Reduction
	Introduction
	Preliminaries
	Two-Level Independence Analysis
	Local Independence
	Global Independence

	SN Cartesian Partial Order Reduction
	Sensor Network Cartesian Semantics
	Two-Level POR Algorithm
	Correctness

	Experiments and Discussion
	Enhancing NesC@PAT with Two-Level POR
	Comparison with T-Check

	Related Work
	Conclusions
	References

	Compositional Sequentializationof Periodic Programs
	Introduction
	Preliminaries
	Job-Bounded Verification
	Verifying Harmonic Periodic Programs
	Verification Over Multiple Hyper-Periods
	Related Work
	Experiments
	Conclusion
	References

	Author Index

