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Abstract. Web datacenters and clusters can be larger than the world’s
largest supercomputers, and run workloads that are at least as heteroge-
neous and complex as their high-performance computing counterparts.
And yet little is known about the unique job scheduling challenges of
these environments. This article aims to ameliorate this situation. It dis-
cusses the challenges of running web infrastructure and describes several
techniques to address them. It also presents some of the problems that
remain open in the field.

1 Introduction

Datacenters have fundamentally changed the way we compute today. Almost
anything we do with a computer nowadays—networking and communicating;
modeling and scientific computation; data analysis; searching; creating and con-
suming media; shopping; gaming—increasingly relies on remote servers for its
execution. The computation and storage tasks of these applications have largely
shifted from personal computers to datacenters of service providers, such as
Amazon, Facebook, Google, Microsoft, and many others. These providers can
thus offer higher-quality and larger-scale services, such as the ability to search
virtually the entire Internet in a fraction of a second.

This transition to very large scale datacenters presents an exciting new re-
search frontier in many areas of computer science, including parallel and dis-
tributed computing. The scales of compute, memory, and I/O resources involved
can be enormous, far larger than those of typical high-performance computing
(HPC) centers [12]. In particular, running these services efficiently and econom-
ically is crucial to their viability. Resource management is therefore a first-class
problem that receives ample attention in the industry. Unfortunately, little is
understood about these unique problems outside of the companies that oper-
ate these large-scale datacenters. That is the gap we hope to address here, by
discussing in detail some of the key differentiators of job scheduling at Web scale.

Web datacenters differ from traditional HPC installations in two major areas:
workload and operational constraints. Few of the HPC workloads provide inter-
active services to human users. This is in stark contrast with datacenters that
serve Web companies, where user-facing services are their raison d’etre. More-
over, a sizable part of the HPC workload consists of tightly coupled parallel jobs
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[15] that make progress in unison (e.g., data-parallel MPI 1.0 applications). Web
workloads, on the other hand, are less tightly coupled, as different tasks of a job
typically serve different requests.

This difference in the amount of coupling of the applications affects the guar-
antees that the resource manager must deliver in each environment. Web ap-
plications typically do not require all nodes to be available simultaneously as a
data-parallel MPI job does. In this sense, they are much closer to HPC high-
throughput applications [7] and can better tolerate node unavailability. Unlike
high-throughput applications, however, they do not finish when the input is
processed. They run forever as their input is provided on-line by users.

Of course, not all workloads in Web clusters are user-facing. There are also
batch jobs to enable the user-facing applications. Google web search, for exam-
ple, can be thought of as three different jobs. The first crawls the web, the second
indexes it, and the third serves the query (i.e., searches for it in the index). These
jobs need different levels of Quality-of-Service (QoS) guarantees to run reliably,
with the user-facing query-serving job having more stringent requirements. Iden-
tifying the QoS levels that different applications demand is key in the process
of managing Web datacenters, as providing different Service Level Agreements
(SLAs) allows for better utilization and gives flexibility to cluster management.

Moreover, the fact that a key fraction of the Web workload is user-facing
has even greater significance than the QoS level: it also changes the operational
requirements for the datacenter. As HPC jobs essentially run in batch mode,
it is feasible for datacenter administrators to shut it down as needed, either
entirely or partially. Jobs get delayed, but since maintenance is infrequent and
scheduled, this is acceptable. Web companies, in contrast, never intentionally
take down their services entirely. Consequently, a datacenter-wide maintenance
of either hardware or software is out of question.

This paper discusses these differences in detail in Sections 2 (workload and
SLAs) and 3 (operational requirements). Section 4 provides a case study of how
these issues affect cluster management. It describes in detail a technique called
backup tasks that is used by Google to assure a higher QoS for its user-facing
application, running in a cluster shared with batch load. Section 5 discusses
other issues in Web cluster management that, while not the focus of this paper,
are relevant and important. Section 6 concludes the paper.

2 A Spectrum of SLAs

Traditional supercomputers, grids, and HPC centers can have a relatively rigid
set of SLAs. Consider, for example, job reservation systems such as queue-based
space-sharing schedulers [10]. Some of these schedulers can have varying and
complex degrees of job priorities (e.g., Maui [14]). But the basic SLA remains
the same: the system offers a firm commitment that all resource needed by a
job will be available during its execution, usually ignoring the inevitable possi-
bility of system failures and downtime. Ignoring the possibility of failure may
be reasonable for some smaller clusters of commodity servers, or for some high-
availability, high-end servers in supercomputers. But usually, more than by a
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hardware promise, it is driven by a software requirement: Many HPC jobs rely
on the MPI-1 protocol for their communication (and other similar protocols)
which assume that all tasks in a job remain available through the completion
of a job. A failure typically means that the entire job has to restart (preferably
from a checkpoint).

Schedulers for Web Clusters cannot make this assumption. The sheer scale
of datacenter clusters, coupled with commoditized or mass-produced hardware,
make failures a statistical certainty. But the applications are also designed for
weaker guarantees. Instead of the tightly synchronous communication of parallel
jobs, most Web jobs are distributed in nature, designed for fault-tolerance, and
sometimes even completely stateless, so that the replacement of one faulty node
with an identical node is virtually transparent to software. This leads to a pri-
mary distinction between traditional SLAs and Web SLAs: Accounting for non-
deterministic availability of resources means that the resource manager makes
probabilistic guarantees, as opposed to the absolute (albeit unrealistic) guaran-
tees of supercomputers. An example of such a probabilistic guarantee can be:
"this job will have a 99.99% probability of always receiving 1,000 nodes within
a minute of requesting them."

This distinction, combined with the modal characteristics of Web work-
loads [12,21], can also mean that Web jobs can be much more varied when
it comes to QoS requirements, representing an entire spectrum of responsiveness
(Fig. 1). The following breakdown enumerates some common types of SLA re-
quirements for distributed Web jobs. Note that these are examples only, and not
all workloads consist of all categories, or with the same prioritization.

Fig. 1. Spectrum of SLA requirements at Web clusters

– Monitoring Jobs. There are a small number of jobs whose sole purpose is
to monitor the health of the cluster and the jobs running on it. These jobs de-
mand very good SLAs, as their unavailability leaves systems administrators
“flying in the dark”.

– User-Facing Services. These so-called “front-end” services are what the user
interacts with and represent the organization’s highest priority, and therefore
highest required QoS. Examples of front-ends are the search page for Google,
the news feed for Facebook, and the store front for Amazon. The speed of in-
teraction directly affects both user experience and revenue; so a high emphasis
is placed on avoiding delays caused by lack of resources. Guarantees for this
QoS level may include a certain minimum number of dedicated machines, or a
priority to override any other services when sharing resources.
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– High Priority Noninteractive Services. An example of such a service
may be to sum up the number of clicks on an advertisement. Although not
user-facing, this is a short, high-priority job, and may require guarantees
such as the sum value in the database must be accurate to within the past
few minutes of data. Managing these jobs, for example, may be done by
servicing them on the same user-facing nodes that create these tasks, but
deferring their processing past the point that the page has been presented
to the user.

– Noninteractive User Facing Services. These are services that affect the
user experience, but are either too slow to designate as interactive (in the
order of many seconds to minutes) or not important enough to require im-
mediate, overriding resources. One example of such a service builds the list
of people recommendations on a social network ("People You May Know").
Whenever a user decides to add or remove a connection to their network,
their list of recommended connections may require updates, which may take
several seconds to compute. Although the list must be updated by the next
time the user logs in, there is no need to require the user to wait for this
update. Tasks for such jobs can be either scheduled on the same user-facing
nodes at a lower local priority (“nice” value) [27], or on a different tier of
dedicated servers, with separate queues for different SLAs.

– Batch Jobs. Long jobs that do not directly affect the user experience, but
are important for the business. These include MapReduce and Hadoop jobs,
index building, various analytics services, research and experimentation, and
business intelligence. Like batch jobs on traditional supercomputers, these
jobs can vary in SLA from strong guarantees to no guarantees whatsoever.
A special class of jobs may have recurring computation with hard comple-
tion deadline (but otherwise no set priority). An analogue for such jobs in
traditional HPC is the daily weather forecasts at ECMWF [13].

– Housekeeping Tasks. These can be various low-impact logging services,
file-system cleanup, diagnostic metric collection, cron jobs, etc. These may
be run with different variations on all active nodes in the system, at the
lowest possible priority or at scheduled local downtimes. However, we must
ensure they do not starve.

While the enumeration above does imply different levels of priority or SLA, the
different categories overlap. For example, if disk is filling up very quickly, file-
system cleanup will rise in priority and potentially take precedence over batch
jobs or even user facing activities. In general, a given job is evaluated by its
importance to the business and the minimal guarantees it needs, and an SLA-
level is chosen.

Compute Node Sharing

Resource utilization is a very important economical and environmental concern,
especially for large Web companies, due to the unprecedented scale of their
clusters [12]. Maximizing utilization, in job scheduling, however, can be at odds
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with responsiveness and fairness [9,11,25]. In particular, Web schedulers have the
choice of collocating jobs from different SLA tiers on the same compute nodes,
or of allocating dedicated nodes for each desired tier.

Collocating different services on a single machine, even within virtual ma-
chines, can create hard-to-predict performance interactions that degrade QoS [19].
It can also complicate diagnosing performance and reliability issues, since there
are more interacting processes and nondeterministic workload mixes. It cannot
completely solve the performance problems of internal fragmentation either [12].
However, it allows for reclaiming unused resources that are allocated to guaran-
tee we can deal with peak load, but that go unused most of the time.

Note that sharing compute nodes derives most of its appeal from the fact
that different SLA tiers have varying requiremetns on resource availability. If
a machine only runs high-SLA user-facing services, one cannot reclaim unused
resources because they will only be needed at peak load. The existance of load
that can be preempted (when user-facing services go through peak load) provides
a way to use resources that would otherwise be wasted (when user-facing services
are not at peak load).

Accounting

Another economic consideration for Web scheduling is accurate accounting and
charging for resources while providing the agreed-upon SLAs [29]. This may not
be an issue when all the services are internal to the same company with a single
economic interest (such as Facebook and Google), but it is a critical issue for
shared server farms, such as Amazon’s EC2 cloud [1]. Part of the issue is the
need to guarantee SLAs in the cloud in the presence of resource sharing and
different VMs, as discussed in the previous paragraph. Trust is another aspect
of the problem: How can the consumer verify if the resources delivered indeed
have the correct SLA, if it is running within the provider datacenter (and thus
in principle vulnerable to the provider’s manipulation).

3 Operational Requirements

Cluster operation and job scheduling are two inseparable concepts for Web ser-
vices. Whereas supercomputers can have scheduled full- or partial-downtime for
maintenance (or even unscheduled interruptions), and then merely resume exe-
cution of the job queue from the last checkpoint, Web services strive to remain
fully online at all times. Site-wide maintenance is not an option. And yet failing
hardware must be repaired and software upgraded. To minimize service disrup-
tion, this process must be carefully planned as part of overall job scheduling.

One approach for scheduled upgrades is to handle the upgrade task the same
way as a computational task. The downtime is estimated and treated as a job
requirement, to be scheduled concurrently with existing jobs while preserving
their SLAs. To protect against software failures, many maintenance tasks require
a method of gradually changing the deployed service while maintaining the SLAs
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of currently running jobs. For example, Facebook pushes a new version of its
main front-end server—a 1.5GB binary—to many thousands of servers every
day [23]. The push is carried out in stages, starting from a few servers and, if
no problems are detected, exponentially grows to all servers. In fact, the first
stage deployment to internal servers is accessible only to employees. This is used
for a final round of testing by the engineers who have contributed code to this
push. The second stage of the push is to a few thousand machines, which serve
a small fraction of the real users. If the new code does not cause any problems
either in resource usage or in functionality, it is pushed to the last stage, which
is full deployment on all the servers. Note that Facebook’s service as a whole is
not taken down while the code is updated, but each server in turn switches to
the new version. The push is staggered, using a small amount of excess capacity
to allow for a small number of machines to be down for the duration of the
binary replacement. The files are propagated to all the servers using BitTorrent,
configured to minimize global traffic and network interruptions by exploiting
cluster and rack affinity. The time needed to propagate to all the servers is
about 20 minutes.

Some applications accumulate a lot of state (such as large in-memory key-
value stores) and require further coordination with the resource manager for
graceful upgrades. For example, the application could be notified of an impending
software upgrade, save all of its state and meta-data to shared memory (shmem),
shut down, and reconnect with the data after the upgrade, assuming the version
is backwards compatible.

Another operational requirement that affects scheduling is the need to add
and remove server nodes dynamically without interrupting running services [12].
The implication here is that both applications and the scheduler that controls
them can dynamically adjust to a varying number of servers, possibly of different
hardware specifications. This heterogeneity poses an extra challenge to resource
planning and management, compared to the typical homogeneous HPC cluster.

Yet another scheduling consideration that can affect both SLAs and resource
utilization, especially in the cloud, is security isolation [24]. Often, jobs that
are security sensitive, e.g., data with Personally Identifiable Information (PII)
or financial information (credit card data, etc.) must be segregated from other
jobs. Like SLAs, this is another dimension that is easier to manage with static
resource allocation, as opposed to dynamically allocating entire machines to
different jobs (due to issues of vulnerability explotation by previous jobs).

As mentioned in Sec. 2, one of the main philosophical differences between Web
clusters and HPC clusters and supercomputers, is that Web schedulers always
assume and prepare for the possibility of node failures [12]. In practice, this
means that schedulers must keep track of job progress against available nodes,
and automatically compensate for resources dropping off. One famous example of
a fault-tolerant resource management system for Web services is Map-Reduce [8]
and its open-source counterpart, Hadoop [28]. With these systems, tasks on failed
machines are automatically respawned, and users have a strong expectation that
their job will complete even in the face of failures, without their intervention.
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An overriding principle in the operation of Web clusters and job scheduling is
that it is almost always better not to start a new service than to bring down an
existing one. In particular, if one wants to update a service and the new version
is going to take a greater resource footprint than the current one, one must be
able to answer in advance the question: is the update going to succeed? If not,
admission control should reject the update.

The case study presented in the next section illustrates these points by describ-
ing one way in which resources can be scheduled dynamically for new services
without interrupting existing SLAs.

4 Case Study: Guarantees for User-Facing Jobs

In the mix of jobs that run in the cloud, user-facing applications require the
highest level of service. They require guarantees both at the machine level as
well as the cluster level. Machine-level guarantees ensure how fast an application
has access to resources in a machine it is already running, whereas cluster-level
guarantees establish how fast an application has access to a new machine in case
of need (e.g. raising load, or an existing machine failed).

Machine-level guarantees are needed because low latency adds business value.
These applications must respond to user requests very quickly, typically within a
fraction of a second. Therefore, they must have access to the CPU in very short
order when they become ready to run. Likewise, we need to ensure appropriate
performance isolation from other applications [19]. The easiest way to provide
these guarantees is dedicating machines to user-facing jobs. Alas, this comes at
the expense of lower utilization. There is therefore an incentive for finding ways to
share machines between user-facing and less-stringent load while keeping strong
QoS for user-facing jobs.

But machine-level guarantees are not enough per se. We must also ensure that
these applications have enough resources available in spite of hardware failures
and maintenance disruptions. As with machine-level guarantees, the easiest way
to accomplish this is to dedicate a set of machines to the application at hand,
over-provisioning to accommodate failures and disruptions. Keep in mind, how-
ever, that failures can be correlated (switch and power element nodes bring down
a set of machines) and even with the dedicated assignment of machines, this is
not a trivial problem.

Cluster-Level Guarantees at Google

Google cluster management does share machines between user-facing and back-
ground jobs to promote utilization. A jobs is composes by a set of tasks. The
cluster-level guarantee we provide is that we will (within a probabilistic thresh-
old) restart a task if its machine (or other hardware element) fails. In order to
do so, we need to ensure we have enough spare resources to withstand hardware
failures. This is accomplished by doing admission control based on backup tasks.
The basic idea is that we only admit a user-facing job that we are confident we
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have enough spare resources to keep it running in face of failures and disruptions.
It is better not to start a new service, as it by definition has no users to affect,
than to disrupt an existing service.

To provide the guarantee that we have enough resources we need to allocate
spare (backup) resources that cannot be allocated to another service job. Explicit
allocation of the spare resources is needed to prevent incoming jobs (which may
schedule fine) compromising the backup resources that are providing guarantees
to existing jobs. Background jobs can use the backup resources, but they will be
preempted if the user-facing jobs need them.

Therefore, the issue becomes how to allocate (the minimum amount of) re-
sources to ensure we can withstand a given failure/disruption rate. We do so by
scheduling backup tasks. A backup task is just a placeholder. It does not exe-
cute any code. It just reserves resources to ensure we have a place to restart real
tasks in case of failure. A key feature of a backup task is that it reserves enough
resources for any real task it is protecting. For example, if a backup task B is
protecting real tasks X (requiring RAM = 1GB, CPU = 1.0) and Y (requiring
RAM = 100MB, CPU = 2.0), B must at least reserve RAM = 1GB, CPU =
2.0. Likewise, any constraint required by a protected real task (e.g., the machine
needs a public IP) must also apply to its backup tasks.

We define a task bag as the basic abstraction to reason about which real tasks
are being protected by which backup tasks. A task bag is a set of tasks with the
following properties:

1. All backup tasks in the bag are identical.
2. All real tasks in the bag can be protected by any backup task in the bag

(i.e., their requirements are no bigger than the backup tasks’).

Note that task bag is an internal concept of the cluster management system, be-
ing completely invisible to the user. The user aggregates tasks into jobs to make
it convenient to reason about and manage the tasks. The cluster management
system aggregates tasks into bags to reason about failure/disruption protection.
Fig. 2 illustrates the concept with an example.

As the backup tasks in a bag have enough resources to replace any real task
in the bag, as long as we do not lose more tasks than the number of backups,
we will always have resources for the real tasks in the bag. That’s basically the
observation we rely on when doing admission control. A job is admitted if we
can place its tasks in existing bags (or create new ones) and the probability of
any bag losing more than its number of backups is below a threshold T . That
is, a bag containing r real tasks and b backup tasks is said to be T -safe if the
probability os losing more than b tasks (real or backup) is below T .

When Is a Task Bag Safe?

We determine if a bag is T -safe by computing the discrete probability distribu-
tion function of task failure in the bag. Such a computation takes into account
correlated failures, as long as the failure domains nest into a tree. If failures
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Fig. 2. Four jobs (in different colors) protected in three bags (backup tasks are in
white). Note that bags are formed for the convenience of the cluster management
system, which can divide tasks in any way it deems useful.

domains overlap, we approximate the actual failure graph by a tree. To the best
of our knowledge, computing the pdf of task failure with overlapping failure
domains is an open problem.

For the sake of explanation, we are going to assume that failures happen to
machines and racks (which group a set of machines under a network switch).
The generalization to more failure domains is straightforward, as we shall see.
The input for our computation is the failure probabilities of each component
that makes up the cluster, i.e., machine and racks in this explanation:

– P (r) = the probability that rack r fails
– P (m|¬r) = the probability the machine m fails but the rack r that holds m

has not

Let’s start with the case that all tasks in the bag are in the same rack r and that
there is at most one task per machine. Say there are R tasks in the bag (i.e.,
the bag uses R distinct machines in rack r). We seek the probability distribution
function Pr(f = x), where f is the number of tasks to fail, given P (r), P (m|¬r),
and R. Fortunately, this computation is straightforward:

– Pr(f > R) = 0, as we cannot lose more tasks than we have.
– Pr(f = R) = P (r) + P (¬r)× PIr(f = R), i.e. we either lose the entire rack

or individually lose all machines we are using.
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– Pr(f = x < R) = P (¬r) × PIr(f = x), as if we lose less than R machines
we could not have lost the rack.

– PIr(f = x) = Binomial(x,R, P (m|¬r)), where PIr(f = x) is the probabil-
ity we independently lose x machines.

Note that the computation described above gives us a discrete pdf. Therefore,
to cope with multiple racks, we compute Pr(f = x) for each rack r the bag uses
and use convolution to add them together to obtain P (f = x) over the entire
cluster. This is possible because we assume racks fail independently. Likewise,
as long as greater failure domains nest nicely (e.g., racks are grouped in power
nodes), we can separately compute their failure pdf and add them together.

Dealing with more than one task per machine uses the same approach. We
devide each rack into in the set of machines with i = 1, 2, 3, ... tasks. We then
compute PIri(f = x) for each “sub-rack” ri to obtain the machine failure pdf.
As each machine runs i tasks, we multiply it by i to obtain the task failure pdf.
Adding these pdfs together produces the task failure pdf for the rack. Fig. 3
exemplifies the process by showing a rack in which 2 machines run 1 task of the
bag (i = 1), 5 machines run 2 tasks each (i = 2), and 1 machine runs 3 tasks (i
= 3). Note that the number of task failures is multiplied by i as there are i per
machine (e.g. PIr3(f = 0) and PIr3(f = 3) for i = 3).

As an illustration of the failure pdf, Fig. 4 shows the task failure pdf for a real
bag containing 1986 tasks. One may be curious about the saw-shaped pattern in
the pdf. This was caused by 664 machines that had an even number of tasks (2

Fig. 3. A rack in which 2 machines run 1 task of the bag, 5 machines run 2 tasks each,
and 1 machine runs 3 tasks
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or 4 tasks per machine) whereas only 80 machines had an odd number of tasks
(1 or 3 tasks per machine). This highlights another feature of the failure pdf: it
is strongly influenced by where the tasks are placed.

The Bagging Process

Determining if a bag is T -safe runs in polynomial time. However, deciding how
to group tasks into bags in an optimal way is NP-hard (optimality is defined as
the grouping that minimizes the resources reserved by backup tasks.) In fact,
this problem is akin the set cover problem [16]. We use an eager heuristic during
the “bagging” process, used in admission control:

submission(job J):
break J into a set of identical sub-jobs, each with identical tasks
for each sub-job Ji:

bag(Ji)
if all bags are T-safe:

commit the bagging of J
accept J

else:
undo the bagging of J
deny J

bag(Ji):
for each existing bag B:

Fig. 4. The task failure pdf of a real 1986-task bag
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if it is possible to find enough backups for B + Ji:
original_cost = BackupCost(B)
add Ji to B (possibly creating new backup tasks and/or

increasing the resources reserved by the backup tasks)
new_cost = BackupCost(B)
cost[B] = new_cost - original_cost
restore B to its original form

if it is possible to find enough backups for Ji to be in a new bag:
cost[ALONE] = Kpenalty * BackupCost(Ji)

if at least one solution was found:
select the choice that gives the smallest cost

BackupCost() is a multidimensional quantity over all resources we allocate (CPU,
memory, disk capacity, etc). As different dimensions have different scales, we
compare two costs is done by multiplying together all dimensions. That is,
c1 < c2 iff c1[cpu] × c1[memory] × ... < c2[cpu] × c2[memory] × ...

Kpenalty is a penalty factor for us to create a new bag. It was introduced
because having fewer, larger bags in principle reduces the resource consumption
of backup tasks. Larger bags tend to achieve T -safety with a smaller fraction of
backups because we cannot allocate a fractional backup task. For a simplistic
example, assume that racks do not fail, machines fail with 1% probability, and
there is always one task per machine. In this scenario, both a 1-task and an
100-task bag require 1 backup.

The bagging algorithm considers the topology of the failure domains when
placing a backup task. In order to get the best failure pdf with a new backup
task, we prefer to select a machine in a rack that is not yet used by the bag.
If there is no such rack, we prefer a machine that is not yet used by the bag.
Finally, when there is no such machine, we collocate the new backup task with
other tasks already in the bag.

5 Other Issues

This exposition is by no means exhaustive of the challenges of scheduling at Web
scale. Besides SLA diversity and strict operational requirements, there are many
other dimensions in which Web-scale Job Scheduling poses unique challenges.

One of the most important open problems in resource management in gen-
eral, but especially at Web scale, is how to increase power efficiency through
job scheduling [12]. The load at large Web services varies considerably with
diurnal and other patterns [4], but capacity is typically provisioned for peak
load. Hosts that remain idle during non-peak hours can spend disproportionate
amounts of energy [5]. What is the best use for these idle or nearly-idle machines?
Should they be put to sleep? This may not be possible if they are also storage
servers. Should they run low-priority batch jobs? But then what about the per-
formance interference on the high-priority load? Should they not be acquired in
the first place? But then how do we deal with peak load? Each possible solu-
tion has its own business tradeoffs. There is significant research work in progress



Web-Scale Job Scheduling 13

in industry and academia to address this problem, but many challenges still
remain [3,18,20,26].

Another interesting topic is the mixing of computational and storage resources
in Web clusters. Supercomputers typically have their own storage infrastructure,
often in the form of dedicated storage nodes with specialized hardware. The
picture is less clear-cut for Web clusters that tend to use commodity hardware
and often consume extremely large amounts of storage, in the order of many
petabytes. For some services, such as Facebook’s front-end Web servers, compute
nodes are basically stateless, and all the persistent storage they require is served
by specialized database and caching nodes. In other cases, such as Hadoop, the
storage is collocated with the computation in the same nodes. The implications
for scheduling are, how to assign jobs to nodes that would minimize storage-
related bottlenecks [6,17]. Scheduling matters even for servers without persistent
storage, if they use distributed in-memory storage or caching [2].

In addition to performance considerations, storage considerations also com-
plicate other scheduling issues, such as operations (Sec. 3). Collocating storage
with computation reduces the latitude for scheduling and other cluster manage-
ment operations (e.g., they cannot just be powered down if other servers depend
on their storage).

Finally, it is interesting to note that there is also cross pollination of ideas
back from Web scheduling to HPC scheduling. One such idea is the provision of
probabilistic SLAs, as suggested in the work on probabilistic backfilling [22].

6 Conclusion

It is hard to escape the realization that computer science evolves in cycles.
Centralized mainframes were the common computing platform for the 1960s and
1970s. We later saw great decentralization of computation in the 1980s and 1990s
with powerful personal computers. Now, owing to the sheer size of the problems
we tackle and the increased scaling in management, we are again centralizing
much of our computing infrastructure, this time in very large datacenters.

As in previous shifts in computer architecture organization, this trend opens
a score of new problems and research opportunities. It appears, however, that
much of this activity lies behind closed doors, in the R&D facilities of large Web
companies. This paper hopes to shed some light on this activity, by exposing
some problems and challenges, as well as describing some working novel solutions
that have not been openly discussed yet.

The key aspects discussed were (1) the need and opportunities created by
multiple SLA tiers, and (2) the stringent operational requirements of modern
Web-scale datacenters. The backup task technology described in section 4 com-
plements the overall discussion by illustrating how the technologies designed
to tackle these challenges differ from those of the better studied HPC
datacenters.
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