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Preface

This volume contains the papers presented at the 16th workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP) that was held in Shanghai, China,
on May 25, 2012, in conjunction with the IEEE International Parallel Processing
Symposium 2012.

This year 24 papers were submitted to the workshop. All submitted papers
went through a complete review process, with the full version being read and
evaluated by an average of four reviewers. We would like to especially thank
the Program Committee members and additional referees for their willingness
to participate in this effort and their detailed, constructive reviews.

This workship saw the crystallization of a trend in the parallel scheduling
landscape. In addition to papers discussing traditional JSSPP topics like parallel
batch scheduling, workload analysis and modeling, and resource management
system software studies, Web scheduling emerged as a new topic this year. This
volume includes a paper summarizing Walfredo Cirne’s keynote on Web-scale
scheduling at Google. This paper provides a high-level overview of Web-scale
scheduling workloads, as well as an approach that Google uses to meet service
availability SLAs. The paper represents an early example of a broad class of
scheduling problems impacting so-called “web scale” service providers.

In addition to this topic, scheduling issues were discussed in a broader con-
text in more established areas, from hardware scheduling, to scheduling within
budget constraints, scheduling for performance, and analysis of scheduling tasks
within resource management software. Adopting a broader basis for scheduling
discussions was an explicit goal this year for the workshop, and will be continued
in future workshops.

A major goal of the JSSPP workshop is to explore new applications of
scheduling approaches to novel scenarios. Many of papers presented this year
attacked new schedule fitness metrics. In presenting their DEMB system, Lee et
al. developed approaches to partition query parameter spaces in order to improve
query locality in a distributed pool of servers. Wu et al. presented the Critical
Path-base Priority Scheduling (CPPS) algorithm that improves end-to-end per-
formance for DAG scheduling. Tian et al. demonstrated a series of algorithms
that improve makespan of jobs on chip multiprocessors (CMPs).

In a more traditional parallel job scheduling vein, Klusáček et al. offered a
detailed analysis of the fairness impact of a variety of popular scheduling algo-
rithms. On the basis of this assessment, they have built an extension to con-
servative backfilling, using Tabu search, that performs explicit optimization for
fairness as a part of the backfilling process. This approach represents an interest-
ing addition of optimization into an often rigid phase of the scheduling process.
Krakov et al. performed a high-resolution analysis of workload data, including
the use of not only job workloads, but also the actual schedule on the system
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as well. This comparison shows several discrepancies between these schedules
and the results of simulation with commonly used scheduling algorithms. This
finding suggests that simulation results may not be quite as comparable to real
system performance as previously assumed. Zhang et al. analyzed 12 months of
workload data from the Kraken petascale system. Niu et al. tackled the prob-
lem of inaccurate runtime estimates through the application of checkpointing to
aggressive backfilling. This approach results in greatly improved system perfor-
mance with low checkpointing overhead. Zakay et al. comprehensively discuss
several alternative approaches to determine user session boundaries in workload
data. This problem is particularly important to supercomputing centers because
user sessions signal modal shifts in user expectations for scheduling.

Two papers analyzed the performance of production-grade resources that
managers often used on extreme scale systems. Georgiou et al. analyzed the per-
formance of the SLURM resource manager using a variant of NERSC’s ESP
toolkit for load testing. This work highlighted the difficulties in conducting
benchmarking at large scales, and presented several techniques to project per-
formance using combinations of full-scale testing and emulation. Bresford et al.
discussed improvements to the LoadLeveller resource manager needed to ac-
comodate the Blue Waters system. In order to scale to a system of this size,
resource allocation was reworked to be a hybrid distributed process where node
local resources are allocated at the node level. This approach trades scalabil-
ity for increased communication. This paper also provides a detailed case study
of improving the scalability of a production resource manager, detailing several
performance bottlenecks and respective mitigation strategies.

Over the last few years, it has become clear there is a profound shift oc-
curing in the scheduling landscape. While supercomputer workloads remain a
substantial consumer of scheduling technology, and are driving the field in terms
of scheduling heterogenous resources and optimizing end-to-end behavior, it has
become clear that these use cases are not the only ones in need of sophisticated
scheduling approaches. Cloud schedulers that support interactive Web applica-
tions and services now manage larger quantities of resources in aggregate than
traditional supercomputing centers and smaller HPC systems. As scheduling
needs have expanded to include both interactive and hybrid workloads, new
challenges have emerged. Therefore, we strongly believe that research in the
field of this workshop will remain interesting and challenging for years to come.

The proceedings of previous workshops are available from Springer as LNCS
volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834, 4376,
4942, 5798, and 6253. Since 1995 these volumes have also been available online.

September 2012 Walfredo Cirne
Narayan Desai

Eitan Frachtenberg
Uwe Schwiegelshohn
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Web-Scale Job Scheduling

Walfredo Cirne1 and Eitan Frachtenberg2

1 Google
walfredo@google.com

2 Facebook
etc@fb.com

Abstract. Web datacenters and clusters can be larger than the world’s
largest supercomputers, and run workloads that are at least as heteroge-
neous and complex as their high-performance computing counterparts.
And yet little is known about the unique job scheduling challenges of
these environments. This article aims to ameliorate this situation. It dis-
cusses the challenges of running web infrastructure and describes several
techniques to address them. It also presents some of the problems that
remain open in the field.

1 Introduction

Datacenters have fundamentally changed the way we compute today. Almost
anything we do with a computer nowadays—networking and communicating;
modeling and scientific computation; data analysis; searching; creating and con-
suming media; shopping; gaming—increasingly relies on remote servers for its
execution. The computation and storage tasks of these applications have largely
shifted from personal computers to datacenters of service providers, such as
Amazon, Facebook, Google, Microsoft, and many others. These providers can
thus offer higher-quality and larger-scale services, such as the ability to search
virtually the entire Internet in a fraction of a second.

This transition to very large scale datacenters presents an exciting new re-
search frontier in many areas of computer science, including parallel and dis-
tributed computing. The scales of compute, memory, and I/O resources involved
can be enormous, far larger than those of typical high-performance computing
(HPC) centers [12]. In particular, running these services efficiently and econom-
ically is crucial to their viability. Resource management is therefore a first-class
problem that receives ample attention in the industry. Unfortunately, little is
understood about these unique problems outside of the companies that oper-
ate these large-scale datacenters. That is the gap we hope to address here, by
discussing in detail some of the key differentiators of job scheduling at Web scale.

Web datacenters differ from traditional HPC installations in two major areas:
workload and operational constraints. Few of the HPC workloads provide inter-
active services to human users. This is in stark contrast with datacenters that
serve Web companies, where user-facing services are their raison d’etre. More-
over, a sizable part of the HPC workload consists of tightly coupled parallel jobs

W. Cirne et al. (Eds.): JSSPP 2012, LNCS 7698, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 W. Cirne and E. Frachtenberg

[15] that make progress in unison (e.g., data-parallel MPI 1.0 applications). Web
workloads, on the other hand, are less tightly coupled, as different tasks of a job
typically serve different requests.

This difference in the amount of coupling of the applications affects the guar-
antees that the resource manager must deliver in each environment. Web ap-
plications typically do not require all nodes to be available simultaneously as a
data-parallel MPI job does. In this sense, they are much closer to HPC high-
throughput applications [7] and can better tolerate node unavailability. Unlike
high-throughput applications, however, they do not finish when the input is
processed. They run forever as their input is provided on-line by users.

Of course, not all workloads in Web clusters are user-facing. There are also
batch jobs to enable the user-facing applications. Google web search, for exam-
ple, can be thought of as three different jobs. The first crawls the web, the second
indexes it, and the third serves the query (i.e., searches for it in the index). These
jobs need different levels of Quality-of-Service (QoS) guarantees to run reliably,
with the user-facing query-serving job having more stringent requirements. Iden-
tifying the QoS levels that different applications demand is key in the process
of managing Web datacenters, as providing different Service Level Agreements
(SLAs) allows for better utilization and gives flexibility to cluster management.

Moreover, the fact that a key fraction of the Web workload is user-facing
has even greater significance than the QoS level: it also changes the operational
requirements for the datacenter. As HPC jobs essentially run in batch mode,
it is feasible for datacenter administrators to shut it down as needed, either
entirely or partially. Jobs get delayed, but since maintenance is infrequent and
scheduled, this is acceptable. Web companies, in contrast, never intentionally
take down their services entirely. Consequently, a datacenter-wide maintenance
of either hardware or software is out of question.

This paper discusses these differences in detail in Sections 2 (workload and
SLAs) and 3 (operational requirements). Section 4 provides a case study of how
these issues affect cluster management. It describes in detail a technique called
backup tasks that is used by Google to assure a higher QoS for its user-facing
application, running in a cluster shared with batch load. Section 5 discusses
other issues in Web cluster management that, while not the focus of this paper,
are relevant and important. Section 6 concludes the paper.

2 A Spectrum of SLAs

Traditional supercomputers, grids, and HPC centers can have a relatively rigid
set of SLAs. Consider, for example, job reservation systems such as queue-based
space-sharing schedulers [10]. Some of these schedulers can have varying and
complex degrees of job priorities (e.g., Maui [14]). But the basic SLA remains
the same: the system offers a firm commitment that all resource needed by a
job will be available during its execution, usually ignoring the inevitable possi-
bility of system failures and downtime. Ignoring the possibility of failure may
be reasonable for some smaller clusters of commodity servers, or for some high-
availability, high-end servers in supercomputers. But usually, more than by a
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hardware promise, it is driven by a software requirement: Many HPC jobs rely
on the MPI-1 protocol for their communication (and other similar protocols)
which assume that all tasks in a job remain available through the completion
of a job. A failure typically means that the entire job has to restart (preferably
from a checkpoint).

Schedulers for Web Clusters cannot make this assumption. The sheer scale
of datacenter clusters, coupled with commoditized or mass-produced hardware,
make failures a statistical certainty. But the applications are also designed for
weaker guarantees. Instead of the tightly synchronous communication of parallel
jobs, most Web jobs are distributed in nature, designed for fault-tolerance, and
sometimes even completely stateless, so that the replacement of one faulty node
with an identical node is virtually transparent to software. This leads to a pri-
mary distinction between traditional SLAs and Web SLAs: Accounting for non-
deterministic availability of resources means that the resource manager makes
probabilistic guarantees, as opposed to the absolute (albeit unrealistic) guaran-
tees of supercomputers. An example of such a probabilistic guarantee can be:
"this job will have a 99.99% probability of always receiving 1,000 nodes within
a minute of requesting them."

This distinction, combined with the modal characteristics of Web work-
loads [12,21], can also mean that Web jobs can be much more varied when
it comes to QoS requirements, representing an entire spectrum of responsiveness
(Fig. 1). The following breakdown enumerates some common types of SLA re-
quirements for distributed Web jobs. Note that these are examples only, and not
all workloads consist of all categories, or with the same prioritization.

Fig. 1. Spectrum of SLA requirements at Web clusters

– Monitoring Jobs. There are a small number of jobs whose sole purpose is
to monitor the health of the cluster and the jobs running on it. These jobs de-
mand very good SLAs, as their unavailability leaves systems administrators
“flying in the dark”.

– User-Facing Services. These so-called “front-end” services are what the user
interacts with and represent the organization’s highest priority, and therefore
highest required QoS. Examples of front-ends are the search page for Google,
the news feed for Facebook, and the store front for Amazon. The speed of in-
teraction directly affects both user experience and revenue; so a high emphasis
is placed on avoiding delays caused by lack of resources. Guarantees for this
QoS level may include a certain minimum number of dedicated machines, or a
priority to override any other services when sharing resources.
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– High Priority Noninteractive Services. An example of such a service
may be to sum up the number of clicks on an advertisement. Although not
user-facing, this is a short, high-priority job, and may require guarantees
such as the sum value in the database must be accurate to within the past
few minutes of data. Managing these jobs, for example, may be done by
servicing them on the same user-facing nodes that create these tasks, but
deferring their processing past the point that the page has been presented
to the user.

– Noninteractive User Facing Services. These are services that affect the
user experience, but are either too slow to designate as interactive (in the
order of many seconds to minutes) or not important enough to require im-
mediate, overriding resources. One example of such a service builds the list
of people recommendations on a social network ("People You May Know").
Whenever a user decides to add or remove a connection to their network,
their list of recommended connections may require updates, which may take
several seconds to compute. Although the list must be updated by the next
time the user logs in, there is no need to require the user to wait for this
update. Tasks for such jobs can be either scheduled on the same user-facing
nodes at a lower local priority (“nice” value) [27], or on a different tier of
dedicated servers, with separate queues for different SLAs.

– Batch Jobs. Long jobs that do not directly affect the user experience, but
are important for the business. These include MapReduce and Hadoop jobs,
index building, various analytics services, research and experimentation, and
business intelligence. Like batch jobs on traditional supercomputers, these
jobs can vary in SLA from strong guarantees to no guarantees whatsoever.
A special class of jobs may have recurring computation with hard comple-
tion deadline (but otherwise no set priority). An analogue for such jobs in
traditional HPC is the daily weather forecasts at ECMWF [13].

– Housekeeping Tasks. These can be various low-impact logging services,
file-system cleanup, diagnostic metric collection, cron jobs, etc. These may
be run with different variations on all active nodes in the system, at the
lowest possible priority or at scheduled local downtimes. However, we must
ensure they do not starve.

While the enumeration above does imply different levels of priority or SLA, the
different categories overlap. For example, if disk is filling up very quickly, file-
system cleanup will rise in priority and potentially take precedence over batch
jobs or even user facing activities. In general, a given job is evaluated by its
importance to the business and the minimal guarantees it needs, and an SLA-
level is chosen.

Compute Node Sharing

Resource utilization is a very important economical and environmental concern,
especially for large Web companies, due to the unprecedented scale of their
clusters [12]. Maximizing utilization, in job scheduling, however, can be at odds
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with responsiveness and fairness [9,11,25]. In particular, Web schedulers have the
choice of collocating jobs from different SLA tiers on the same compute nodes,
or of allocating dedicated nodes for each desired tier.

Collocating different services on a single machine, even within virtual ma-
chines, can create hard-to-predict performance interactions that degrade QoS [19].
It can also complicate diagnosing performance and reliability issues, since there
are more interacting processes and nondeterministic workload mixes. It cannot
completely solve the performance problems of internal fragmentation either [12].
However, it allows for reclaiming unused resources that are allocated to guaran-
tee we can deal with peak load, but that go unused most of the time.

Note that sharing compute nodes derives most of its appeal from the fact
that different SLA tiers have varying requiremetns on resource availability. If
a machine only runs high-SLA user-facing services, one cannot reclaim unused
resources because they will only be needed at peak load. The existance of load
that can be preempted (when user-facing services go through peak load) provides
a way to use resources that would otherwise be wasted (when user-facing services
are not at peak load).

Accounting

Another economic consideration for Web scheduling is accurate accounting and
charging for resources while providing the agreed-upon SLAs [29]. This may not
be an issue when all the services are internal to the same company with a single
economic interest (such as Facebook and Google), but it is a critical issue for
shared server farms, such as Amazon’s EC2 cloud [1]. Part of the issue is the
need to guarantee SLAs in the cloud in the presence of resource sharing and
different VMs, as discussed in the previous paragraph. Trust is another aspect
of the problem: How can the consumer verify if the resources delivered indeed
have the correct SLA, if it is running within the provider datacenter (and thus
in principle vulnerable to the provider’s manipulation).

3 Operational Requirements

Cluster operation and job scheduling are two inseparable concepts for Web ser-
vices. Whereas supercomputers can have scheduled full- or partial-downtime for
maintenance (or even unscheduled interruptions), and then merely resume exe-
cution of the job queue from the last checkpoint, Web services strive to remain
fully online at all times. Site-wide maintenance is not an option. And yet failing
hardware must be repaired and software upgraded. To minimize service disrup-
tion, this process must be carefully planned as part of overall job scheduling.

One approach for scheduled upgrades is to handle the upgrade task the same
way as a computational task. The downtime is estimated and treated as a job
requirement, to be scheduled concurrently with existing jobs while preserving
their SLAs. To protect against software failures, many maintenance tasks require
a method of gradually changing the deployed service while maintaining the SLAs
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of currently running jobs. For example, Facebook pushes a new version of its
main front-end server—a 1.5GB binary—to many thousands of servers every
day [23]. The push is carried out in stages, starting from a few servers and, if
no problems are detected, exponentially grows to all servers. In fact, the first
stage deployment to internal servers is accessible only to employees. This is used
for a final round of testing by the engineers who have contributed code to this
push. The second stage of the push is to a few thousand machines, which serve
a small fraction of the real users. If the new code does not cause any problems
either in resource usage or in functionality, it is pushed to the last stage, which
is full deployment on all the servers. Note that Facebook’s service as a whole is
not taken down while the code is updated, but each server in turn switches to
the new version. The push is staggered, using a small amount of excess capacity
to allow for a small number of machines to be down for the duration of the
binary replacement. The files are propagated to all the servers using BitTorrent,
configured to minimize global traffic and network interruptions by exploiting
cluster and rack affinity. The time needed to propagate to all the servers is
about 20 minutes.

Some applications accumulate a lot of state (such as large in-memory key-
value stores) and require further coordination with the resource manager for
graceful upgrades. For example, the application could be notified of an impending
software upgrade, save all of its state and meta-data to shared memory (shmem),
shut down, and reconnect with the data after the upgrade, assuming the version
is backwards compatible.

Another operational requirement that affects scheduling is the need to add
and remove server nodes dynamically without interrupting running services [12].
The implication here is that both applications and the scheduler that controls
them can dynamically adjust to a varying number of servers, possibly of different
hardware specifications. This heterogeneity poses an extra challenge to resource
planning and management, compared to the typical homogeneous HPC cluster.

Yet another scheduling consideration that can affect both SLAs and resource
utilization, especially in the cloud, is security isolation [24]. Often, jobs that
are security sensitive, e.g., data with Personally Identifiable Information (PII)
or financial information (credit card data, etc.) must be segregated from other
jobs. Like SLAs, this is another dimension that is easier to manage with static
resource allocation, as opposed to dynamically allocating entire machines to
different jobs (due to issues of vulnerability explotation by previous jobs).

As mentioned in Sec. 2, one of the main philosophical differences between Web
clusters and HPC clusters and supercomputers, is that Web schedulers always
assume and prepare for the possibility of node failures [12]. In practice, this
means that schedulers must keep track of job progress against available nodes,
and automatically compensate for resources dropping off. One famous example of
a fault-tolerant resource management system for Web services is Map-Reduce [8]
and its open-source counterpart, Hadoop [28]. With these systems, tasks on failed
machines are automatically respawned, and users have a strong expectation that
their job will complete even in the face of failures, without their intervention.
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An overriding principle in the operation of Web clusters and job scheduling is
that it is almost always better not to start a new service than to bring down an
existing one. In particular, if one wants to update a service and the new version
is going to take a greater resource footprint than the current one, one must be
able to answer in advance the question: is the update going to succeed? If not,
admission control should reject the update.

The case study presented in the next section illustrates these points by describ-
ing one way in which resources can be scheduled dynamically for new services
without interrupting existing SLAs.

4 Case Study: Guarantees for User-Facing Jobs

In the mix of jobs that run in the cloud, user-facing applications require the
highest level of service. They require guarantees both at the machine level as
well as the cluster level. Machine-level guarantees ensure how fast an application
has access to resources in a machine it is already running, whereas cluster-level
guarantees establish how fast an application has access to a new machine in case
of need (e.g. raising load, or an existing machine failed).

Machine-level guarantees are needed because low latency adds business value.
These applications must respond to user requests very quickly, typically within a
fraction of a second. Therefore, they must have access to the CPU in very short
order when they become ready to run. Likewise, we need to ensure appropriate
performance isolation from other applications [19]. The easiest way to provide
these guarantees is dedicating machines to user-facing jobs. Alas, this comes at
the expense of lower utilization. There is therefore an incentive for finding ways to
share machines between user-facing and less-stringent load while keeping strong
QoS for user-facing jobs.

But machine-level guarantees are not enough per se. We must also ensure that
these applications have enough resources available in spite of hardware failures
and maintenance disruptions. As with machine-level guarantees, the easiest way
to accomplish this is to dedicate a set of machines to the application at hand,
over-provisioning to accommodate failures and disruptions. Keep in mind, how-
ever, that failures can be correlated (switch and power element nodes bring down
a set of machines) and even with the dedicated assignment of machines, this is
not a trivial problem.

Cluster-Level Guarantees at Google

Google cluster management does share machines between user-facing and back-
ground jobs to promote utilization. A jobs is composes by a set of tasks. The
cluster-level guarantee we provide is that we will (within a probabilistic thresh-
old) restart a task if its machine (or other hardware element) fails. In order to
do so, we need to ensure we have enough spare resources to withstand hardware
failures. This is accomplished by doing admission control based on backup tasks.
The basic idea is that we only admit a user-facing job that we are confident we
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have enough spare resources to keep it running in face of failures and disruptions.
It is better not to start a new service, as it by definition has no users to affect,
than to disrupt an existing service.

To provide the guarantee that we have enough resources we need to allocate
spare (backup) resources that cannot be allocated to another service job. Explicit
allocation of the spare resources is needed to prevent incoming jobs (which may
schedule fine) compromising the backup resources that are providing guarantees
to existing jobs. Background jobs can use the backup resources, but they will be
preempted if the user-facing jobs need them.

Therefore, the issue becomes how to allocate (the minimum amount of) re-
sources to ensure we can withstand a given failure/disruption rate. We do so by
scheduling backup tasks. A backup task is just a placeholder. It does not exe-
cute any code. It just reserves resources to ensure we have a place to restart real
tasks in case of failure. A key feature of a backup task is that it reserves enough
resources for any real task it is protecting. For example, if a backup task B is
protecting real tasks X (requiring RAM = 1GB, CPU = 1.0) and Y (requiring
RAM = 100MB, CPU = 2.0), B must at least reserve RAM = 1GB, CPU =
2.0. Likewise, any constraint required by a protected real task (e.g., the machine
needs a public IP) must also apply to its backup tasks.

We define a task bag as the basic abstraction to reason about which real tasks
are being protected by which backup tasks. A task bag is a set of tasks with the
following properties:

1. All backup tasks in the bag are identical.
2. All real tasks in the bag can be protected by any backup task in the bag

(i.e., their requirements are no bigger than the backup tasks’).

Note that task bag is an internal concept of the cluster management system, be-
ing completely invisible to the user. The user aggregates tasks into jobs to make
it convenient to reason about and manage the tasks. The cluster management
system aggregates tasks into bags to reason about failure/disruption protection.
Fig. 2 illustrates the concept with an example.

As the backup tasks in a bag have enough resources to replace any real task
in the bag, as long as we do not lose more tasks than the number of backups,
we will always have resources for the real tasks in the bag. That’s basically the
observation we rely on when doing admission control. A job is admitted if we
can place its tasks in existing bags (or create new ones) and the probability of
any bag losing more than its number of backups is below a threshold T . That
is, a bag containing r real tasks and b backup tasks is said to be T -safe if the
probability os losing more than b tasks (real or backup) is below T .

When Is a Task Bag Safe?

We determine if a bag is T -safe by computing the discrete probability distribu-
tion function of task failure in the bag. Such a computation takes into account
correlated failures, as long as the failure domains nest into a tree. If failures
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Fig. 2. Four jobs (in different colors) protected in three bags (backup tasks are in
white). Note that bags are formed for the convenience of the cluster management
system, which can divide tasks in any way it deems useful.

domains overlap, we approximate the actual failure graph by a tree. To the best
of our knowledge, computing the pdf of task failure with overlapping failure
domains is an open problem.

For the sake of explanation, we are going to assume that failures happen to
machines and racks (which group a set of machines under a network switch).
The generalization to more failure domains is straightforward, as we shall see.
The input for our computation is the failure probabilities of each component
that makes up the cluster, i.e., machine and racks in this explanation:

– P (r) = the probability that rack r fails
– P (m|¬r) = the probability the machine m fails but the rack r that holds m

has not

Let’s start with the case that all tasks in the bag are in the same rack r and that
there is at most one task per machine. Say there are R tasks in the bag (i.e.,
the bag uses R distinct machines in rack r). We seek the probability distribution
function Pr(f = x), where f is the number of tasks to fail, given P (r), P (m|¬r),
and R. Fortunately, this computation is straightforward:

– Pr(f > R) = 0, as we cannot lose more tasks than we have.
– Pr(f = R) = P (r) + P (¬r)× PIr(f = R), i.e. we either lose the entire rack

or individually lose all machines we are using.
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– Pr(f = x < R) = P (¬r) × PIr(f = x), as if we lose less than R machines
we could not have lost the rack.

– PIr(f = x) = Binomial(x,R, P (m|¬r)), where PIr(f = x) is the probabil-
ity we independently lose x machines.

Note that the computation described above gives us a discrete pdf. Therefore,
to cope with multiple racks, we compute Pr(f = x) for each rack r the bag uses
and use convolution to add them together to obtain P (f = x) over the entire
cluster. This is possible because we assume racks fail independently. Likewise,
as long as greater failure domains nest nicely (e.g., racks are grouped in power
nodes), we can separately compute their failure pdf and add them together.

Dealing with more than one task per machine uses the same approach. We
devide each rack into in the set of machines with i = 1, 2, 3, ... tasks. We then
compute PIri(f = x) for each “sub-rack” ri to obtain the machine failure pdf.
As each machine runs i tasks, we multiply it by i to obtain the task failure pdf.
Adding these pdfs together produces the task failure pdf for the rack. Fig. 3
exemplifies the process by showing a rack in which 2 machines run 1 task of the
bag (i = 1), 5 machines run 2 tasks each (i = 2), and 1 machine runs 3 tasks (i
= 3). Note that the number of task failures is multiplied by i as there are i per
machine (e.g. PIr3(f = 0) and PIr3(f = 3) for i = 3).

As an illustration of the failure pdf, Fig. 4 shows the task failure pdf for a real
bag containing 1986 tasks. One may be curious about the saw-shaped pattern in
the pdf. This was caused by 664 machines that had an even number of tasks (2

Fig. 3. A rack in which 2 machines run 1 task of the bag, 5 machines run 2 tasks each,
and 1 machine runs 3 tasks
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or 4 tasks per machine) whereas only 80 machines had an odd number of tasks
(1 or 3 tasks per machine). This highlights another feature of the failure pdf: it
is strongly influenced by where the tasks are placed.

The Bagging Process

Determining if a bag is T -safe runs in polynomial time. However, deciding how
to group tasks into bags in an optimal way is NP-hard (optimality is defined as
the grouping that minimizes the resources reserved by backup tasks.) In fact,
this problem is akin the set cover problem [16]. We use an eager heuristic during
the “bagging” process, used in admission control:

submission(job J):
break J into a set of identical sub-jobs, each with identical tasks
for each sub-job Ji:

bag(Ji)
if all bags are T-safe:

commit the bagging of J
accept J

else:
undo the bagging of J
deny J

bag(Ji):
for each existing bag B:

Fig. 4. The task failure pdf of a real 1986-task bag
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if it is possible to find enough backups for B + Ji:
original_cost = BackupCost(B)
add Ji to B (possibly creating new backup tasks and/or

increasing the resources reserved by the backup tasks)
new_cost = BackupCost(B)
cost[B] = new_cost - original_cost
restore B to its original form

if it is possible to find enough backups for Ji to be in a new bag:
cost[ALONE] = Kpenalty * BackupCost(Ji)

if at least one solution was found:
select the choice that gives the smallest cost

BackupCost() is a multidimensional quantity over all resources we allocate (CPU,
memory, disk capacity, etc). As different dimensions have different scales, we
compare two costs is done by multiplying together all dimensions. That is,
c1 < c2 iff c1[cpu] × c1[memory] × ... < c2[cpu] × c2[memory] × ...

Kpenalty is a penalty factor for us to create a new bag. It was introduced
because having fewer, larger bags in principle reduces the resource consumption
of backup tasks. Larger bags tend to achieve T -safety with a smaller fraction of
backups because we cannot allocate a fractional backup task. For a simplistic
example, assume that racks do not fail, machines fail with 1% probability, and
there is always one task per machine. In this scenario, both a 1-task and an
100-task bag require 1 backup.

The bagging algorithm considers the topology of the failure domains when
placing a backup task. In order to get the best failure pdf with a new backup
task, we prefer to select a machine in a rack that is not yet used by the bag.
If there is no such rack, we prefer a machine that is not yet used by the bag.
Finally, when there is no such machine, we collocate the new backup task with
other tasks already in the bag.

5 Other Issues

This exposition is by no means exhaustive of the challenges of scheduling at Web
scale. Besides SLA diversity and strict operational requirements, there are many
other dimensions in which Web-scale Job Scheduling poses unique challenges.

One of the most important open problems in resource management in gen-
eral, but especially at Web scale, is how to increase power efficiency through
job scheduling [12]. The load at large Web services varies considerably with
diurnal and other patterns [4], but capacity is typically provisioned for peak
load. Hosts that remain idle during non-peak hours can spend disproportionate
amounts of energy [5]. What is the best use for these idle or nearly-idle machines?
Should they be put to sleep? This may not be possible if they are also storage
servers. Should they run low-priority batch jobs? But then what about the per-
formance interference on the high-priority load? Should they not be acquired in
the first place? But then how do we deal with peak load? Each possible solu-
tion has its own business tradeoffs. There is significant research work in progress
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in industry and academia to address this problem, but many challenges still
remain [3,18,20,26].

Another interesting topic is the mixing of computational and storage resources
in Web clusters. Supercomputers typically have their own storage infrastructure,
often in the form of dedicated storage nodes with specialized hardware. The
picture is less clear-cut for Web clusters that tend to use commodity hardware
and often consume extremely large amounts of storage, in the order of many
petabytes. For some services, such as Facebook’s front-end Web servers, compute
nodes are basically stateless, and all the persistent storage they require is served
by specialized database and caching nodes. In other cases, such as Hadoop, the
storage is collocated with the computation in the same nodes. The implications
for scheduling are, how to assign jobs to nodes that would minimize storage-
related bottlenecks [6,17]. Scheduling matters even for servers without persistent
storage, if they use distributed in-memory storage or caching [2].

In addition to performance considerations, storage considerations also com-
plicate other scheduling issues, such as operations (Sec. 3). Collocating storage
with computation reduces the latitude for scheduling and other cluster manage-
ment operations (e.g., they cannot just be powered down if other servers depend
on their storage).

Finally, it is interesting to note that there is also cross pollination of ideas
back from Web scheduling to HPC scheduling. One such idea is the provision of
probabilistic SLAs, as suggested in the work on probabilistic backfilling [22].

6 Conclusion

It is hard to escape the realization that computer science evolves in cycles.
Centralized mainframes were the common computing platform for the 1960s and
1970s. We later saw great decentralization of computation in the 1980s and 1990s
with powerful personal computers. Now, owing to the sheer size of the problems
we tackle and the increased scaling in management, we are again centralizing
much of our computing infrastructure, this time in very large datacenters.

As in previous shifts in computer architecture organization, this trend opens
a score of new problems and research opportunities. It appears, however, that
much of this activity lies behind closed doors, in the R&D facilities of large Web
companies. This paper hopes to shed some light on this activity, by exposing
some problems and challenges, as well as describing some working novel solutions
that have not been openly discussed yet.

The key aspects discussed were (1) the need and opportunities created by
multiple SLA tiers, and (2) the stringent operational requirements of modern
Web-scale datacenters. The backup task technology described in section 4 com-
plements the overall discussion by illustrating how the technologies designed
to tackle these challenges differ from those of the better studied HPC
datacenters.
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Abstract. Leveraging data in distributed caches for large scale query process-
ing applications is becoming more important, given current trends toward build-
ing large scalable distributed systems by connecting multiple heterogeneous less
powerful machines rather than purchasing expensive homogeneous and very pow-
erful machines. As more servers are added to such clusters, more memory is
available for caching data objects across the distributed machines. However the
cached objects are dispersed and traditional query scheduling policies that take
into account only load balancing do not effectively utilize the increased cache
space. We propose a new multi-dimensional range query scheduling policy for
distributed query processing frameworks, called DEMB, that employs a probabil-
ity distribution estimation derived from recent queries. DEMB accounts for both
load balancing and the availability of distributed cached objects to both improve
the cache hit rate for queries and thereby decrease query turnaround time and
throughput. We experimentally demonstrate that DEMB produces better query
plans and lower query response times than other query scheduling policies.
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1 Introduction

As requirements for computing power increases and high-speed networks become more
widespread, cluster computing is rapidly and widely accepted in various disciplines. For
high performance data intensive computing applications, a large number of distributed
and parallel query processing middleware systems have been developed and employed
to solve large, complex scientific problems [14,8,15].

In distributed and parallel query processing systems, load balancing plays an im-
portant role to maximize overall system throughput by spreading the workload evenly
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across multiple servers. Besides load balancing, cache hit rate is another critical per-
formance factor that must be accounted for to improve system throughput. However,
prior distributed query scheduling policies do not take into consideration load balanc-
ing and cache hit rate at the same time. As more servers are added to the distributed
query processing system, the amount of cache space available in the distributed servers
increases linearly. But traditional scheduling policies such as round-robin or load-based
scheduling policies do not consider cached objects that may be available in the dis-
tributed cache infrastructure, so get little benefit from the larger cache space. Hence we
need more intelligent query scheduling policies in order to leverage the availability of a
large number of cached objects in a distributed environment.

It is not an easy task to obtain both good load balancing and a high cache hit rate
in modern heterogeneous cluster systems, especially if query patterns are also hetero-
geneous. Our earlier work [12] has shown that either a high cache hit rate with poor
load balancing or good load balancing with low cache hit rate fails to maximize sys-
tem throughput. Another difficult challenge in designing a distributed query scheduling
policy is how to make a query scheduler know or predict the availability of cached ob-
jects in remote servers. Note that the query scheduling decisions are usually made in a
remote front-end server, and that cached objects are evicted dynamically from remote
servers, potentially at a high rate (as fast as new data objects are produced). Obviously it
is not easy to keep track of cached objects in remote caches. Even if a query scheduler
can keep track of them, the amount of information needed in the scheduler will be-
come substantial as the number of servers increases, potentially making the scheduler a
performance bottleneck. In order to make the scheduler scalable, the query scheduling
policy must be designed to be lightweight.

In our previous work [12] we have proposed a statistical prediction-based query
scheduling policy, called DEMA (Distributed Exponential Moving Average) that clus-
ters queries on the fly to increase cache hit rate as well as to balance the query load across
servers. The DEMA scheduling policy partitions a set of user queries and evenly dis-
tributes them across parallel servers to achieve load balance. DEMA has been shown to
produce high cache hit rates since it preserves query locality by grouping similar queries
and assigning them to the same server. If the distribution of queries through the query
space is static, or slowly changes over time, the DEMA scheduling policy achieves good
load balance, however if the query distribution changes rapidly or is extremely skewed,
DEMA may suffer from load imbalance as we will discuss further in Section 3.1.

In this paper, we propose an alternative scheduling policy - DEMB (Distributed Ex-
ponential Moving Boundary) that overcomes the drawbacks of the DEMA scheduling
policy by equally partitioning recent queries using a probability density estimation.
Our experimental results show that the new scheduling policy outperforms prior query
scheduling policies by a large amount and that it improves upon the DEMA scheduling
policy, decreasing response time by up to 50%.

The rest of the paper is organized as follows. In Section 2 we discuss other research
related to distributed query scheduling policies. In Section 3 we review the DEMA
scheduling algorithm and its drawbacks. In Section 4 we introduce our new query
scheduling algorithm, and discuss experimental results from simulations in Section 5.
In Section 6 we conclude and discuss future work.
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2 Related Work

Load-balancing problems have been extensively investigated in many different fields.
Godfrey et al. [5] proposed an algorithm for load balancing in heterogeneous and dy-
namic peer-to-peer systems. Catalyurek et al. [3] investigated how to dynamically re-
store balance in parallel scientific computing applications where the computational
structure of the applications change over time. Vydyanathan et al. [17] proposed
scheduling algorithms that determine what tasks should be run concurrently and how
many processors should be allocated to each task. Zhang et al. [20] and Wolf et al. [18]
proposed scheduling policies that dynamically distribute incoming requests for clus-
tered web servers. WRR (Weighted Round Robin) [7] is a commonly used, simple
but enhanced load balancing scheduling policy which assigns a weight to each queue
(server) according to the current status of its load, and serves each queue in proportion
to the weights. However, none of these scheduling policies were designed to take into
account a distributed cache infrastructure, but only consider the heterogeneity of user
requests and the dynamic system load.

LARD (Locality-Aware Request Distribution) [1,13] is a locality-aware scheduling
policy designed to serve web server clusters, and considers the cache contents of back-
end servers. The LARD scheduling policy causes identical user requests to be handled
by the same server unless that server is heavily loaded. If a server is too heavily loaded,
subsequent user requests will be serviced by another idle server in order to improve
load balance. The underlying idea is to improve overall system throughput by process-
ing queries directly rather than waiting in a busy server for long time even if that server
has a cached response. LARD shares the goal of improving both load balance and cache
hit ratio with our scheduling policies, DEMA and DEMB, but LARD transfers work-
load only when a specific server is too heavily loaded while our scheduling policies
actively predict future workload balance and take actions beforehand to achieve better
load balancing.

In relational database systems and high performance scientific data processing mid-
dleware systems, exploiting similarity of concurrent queries has been studied exten-
sively. That work has shown that heuristic approaches can help to reuse previously
computed results from cache and generate good scheduling plans, resulting in improved
system throughput as well as reducing query response times [8,12]. Zhang et al. [19]
evaluated the benefits of reusing cached results in a distributed cache framework in a
Grid computing environment. In that simulation study, it was shown that high cache hit
rates do not always yield high system throughput due to load imbalance problems. We
solve the problem with scheduling policies that consider both cache hit rates and load
balancing.

In order to support data-intensive scientific applications, a large number of dis-
tributed query processing middleware systems have been developed including MOCHA
[14], DataCutter [8], Polar* [15], ADR [8], and Active Proxy-G [8]. Active Proxy-G is
a component-based distributed query processing grid middleware that employs user-
defined operators that application developers can implement. Active Proxy-G employs
meta-data directory services that monitor performance of back-end application servers
and a distributed cache indexes. Using the collected performance metrics and the dis-
tributed cache indexes, the front-end scheduler determines where to assign incoming
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queries considering how to maximize reuse of cached objects [12]. The index-based
scheduling policies cause higher communication overhead on the front-end scheduler,
and the cache index may not predict contents of the cache accurately if there are a large
number of queries waiting to execute in the back-end application servers.

3 Distributed Query Processing Scheduling Algorithms

Figure 1 shows the architecture of Active Proxy-G, a distributed and parallel query
processing middleware for scientific data analysis applications. The front-end server
runs a query scheduler that determines which back-end application server will process
a given query. The homogeneous back-end servers retrieve raw datasets from networked
storage systems and process incoming queries on cluster nodes. If the back-end servers
are heterogeneous, the scheduling algorithms can be modified with appropriate weight
factors.
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Fig. 1. Distributed Query Processing Framework with Distributed Semantic Caches

3.1 DEMA Scheduling Policy

Exponential moving average (EMA) is a well-known statistical method to obtain long-
term trends and smooth out short-term fluctuations, which is commonly used to predict
stock prices and trading volumes [4]. In general, EMA computes a weighted average of
all observed data by assigning exponentially more weight to recent data. The formula
that calculates the EMA at time t is given by

EMAt = α · datat + (1− α) · EMAt−1 (1)

where α is the weight factor, which determines the degree of weight decrease over time.
The Distributed Exponential Moving Average (DEMA) scheduling policy [12] esti-

mates the cache contents of each back-end server using an exponential moving average
(EMA) of past queries executed at that server. In the context of a multidimensional
range query scheduling policy, we use the multidimensional center point of the query
as datat in Equation 1.
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Given that application servers replace old cache entries and the DEMA scheduling
policy gives less weight to older query entries, the smoothing factor α ∈ (0, 1) must be
chosen so that it reflects the degree of staleness used to expunge old data. This implies
that α should be adjusted based on the size of the cache space. For example, α should
be 1 if a cache can contain only a single query result and α should be close to 0 if the
size of the cache is large enough to store all the past query results. However, the number
of cached objects in a server can be hard to predict when the sizes of cached objects can
vary widely.

E2 E3

E4

E1

E5

E1 E0

E5
E6

Fig. 2. The DEMA scheduler calculates the Euclidean distance between EMA points and an in-
coming query, and assigns the query to the server (0) whose EMA point is closest

If we can keep track of both the number of current cache entries in each back-end
server (k) and the last k · N query center points in the front-end scheduling server
(where N is the number of back-end application servers), we can alternatively employ
a simple moving average (SMA) instead of EMA, which takes the average of the past k
query center points. SMA eliminates the weight-sum error and correctly represent the
cache contents of remote back-end application servers. However, SMA does not quickly
reflect the moving trend of arriving queries. Furthermore, it causes some overhead in
the front-end server to keep track of the last k ·N query center points.

In the DEMA query scheduling policy the front-end query scheduler server has one
multi-dimensional EMA point for each back-end application server. For the 2 dimen-
sional image, each query specifies ranges in the x and y dimensions, as shown in Fig-
ure 2. For an incoming query, the front-end server calculates the Euclidean distance
between the center of the multidimensional range query and the EMA points of the
N application servers, and chooses an application server whose current EMA point is
the closest to that of the incoming query. Clustering similar range queries increases
the probability of overlap between multi-dimensional range queries, and increases the
cache hit rate at each back-end server. In Figure 2, the given 2 dimensional range query
will be forwarded to server 0 since the EMA point of server 0 is closer to the query than
any other EMA point. This strategy is called the Voronoi assignment model, where ev-
ery multidimensional point is assigned to the nearest cell point. The query assignment
regions induced from the DEMA query assignment form a Voronoi diagram [2].
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After the query Q is assigned to the selected application server, the EMA point for
that application server is updated as EMAs∗ = αQ + (1 − α)EMAs∗ (EMAs rep-
resents the EMA point of the sth server). For every incoming query, one EMA point
moves in the direction of that query, but we do not need to calculate the changing bi-
sectors of the EMA points since DEMA scheduling algorithm compares the Euclidean
distance between EMA points and a given query. The complexity of the DEMA schedul-
ing algorithm is O(N) where N is the number of back-end application servers. So the
DEMA scheduling policy is very light-weight.

3.2 Load Balancing

The DEMA scheduling algorithm clusters similar queries together so that it can take
advantage of cache hits. In addition to a high cache hit rate, the DEMA scheduling
algorithm balances query workload across multiple back-end application servers by
moving EMA points to hot spots.

EMA2 EMA3EMA1
Boundary1 Boundary2

(a) DEMA Load Imbalance Problem

Boundary1 Boundary2

(b) DEMB moves all the boundaries according to new query distribution

Fig. 3. DEMA Load Imbalance Problem

Ideally, we want to assign the same number of queries to back-end application servers
with a uniform distribution. In DEMA, the probability of assigning a new query to a
specific server depends on the query probability distribution and the size of the Voronoi
hyper-rectangular cell (e.g., a range in a 1-dimensional line or area for a 2D space).

DEMA balances the server loads by trying to keep the region size inversely pro-
portional to the probability that queries fall inside their region. For the 2D uniform
distribution case, as shown in Figure 2, queries that fall inside the Voronoi region of
server B’s EMA (V or(B)) are assigned to server B. We denote the Voronoi cell of
server A’s EMA as V or(A). The probability that a query arrives in a specific Voronoi
cell V or(A) is proportional to the size of the V or(A). Thus, more queries are likely to
land in larger cells than smaller cells for a uniform query distribution.

One important property of the DEMA scheduling policy is that an EMA point tends
to move to the center of its Voronoi cell if queries arrive with a uniform distribution.
In Figure 2, EMA point E0 is located in the lower right corner of V or(A). Since more
queries will arrive in the larger part of the cell (i.e. the upper left part of V or(A)),
Equation 1 is likely to move the EMA point E0 to the upper left part of V or(A) with
higher probability than to the lower right part, which will tend to move the E0 toward
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the center of the cell. That will result in moving the bisectors of E2 and E0 and the
bisector of E0 and E5 to the left as well. Eventually, this property makes the size of
V or(E2) decrease and the size of V or(E5) increase. As the size of large Voronoi cells
becomes smaller and the size of small Voronoi cells becomes larger, the sizes of the
Voronoi cells are likely to converge and effectively the number of queries processed by
each back-end application servers will be similar. A similar argument can be made for
higher dimensional query spaces.

A normal distribution is another commonly occurring family of statistical probabil-
ity distributions. It is known that the sum of normally distributed random variables is
also normally distributed [6]. If we assume that each historical query point datat is an
individual random variable, the weighted sum EMAt also should have a normal dis-
tribution. Hence the DEMA scheduling policy approximately balances the number of
processed queries across multiple back-end application servers even when the queries
arrive with a normal distribution.

However the DEMA scheduling policy may suffer from temporary load imbalance if
the query distribution changes quickly, with query hot spots moving through the query
space randomly. Let us look at an extreme case. Suppose queries have arrived with
a uniform distribution, and suddenly all the subsequent queries land in a very small
region that is covered by a single Voronoi cell, as illustrated in Figure 3. In such an
extreme case, only one corresponding EMA point will move around the new hot spot
and the single server will have to process all the queries without any help from other
servers. Although this may not commonly occur, we have observed that the DEMA
scheduling policy suffers from failing to adjust its EMA points promptly. If a new query
distribution spans multiple Voronoi cells, the EMA points slowly adjust their boundaries
based on the new query distribution. However the time to adjust depends on the standard
deviation of the query distribution. In the next section, we propose an alternative query
scheduling policy that solves this load imbalance problem.

4 DEMB: Distributed Exponential Moving Boundary

To overcome the described weakness of the DEMA scheduling policy, we have devised
a new scheduling policy called Distributed Exponential Moving Boundary (DEMB) that
estimates the query probability density function using histograms from recent queries.
Using the query probability density function, the DEMB scheduling policy chooses
the boundaries for each server so that each has equal cumulative distribution value.
The DEMB scheduling policy adjusts the boundaries of all the servers together, unlike
DEMA, so that it can provide good load balancing even for dynamically changing and
skewed query distributions.

In the DEMB scheduling policy, the front-end scheduler manages a queue that stores
a predefined number (window size, WS) of recent queries, periodically enumerates
those queries, and finds the boundaries for each server by assigning an equal number of
queries to each back-end application server.

One challenge in the DEMB scheduling policy is to enumerate the recent multi-
dimensional queries and partition them into sub-spaces that have equal probability. In
order to map the multi-dimensional problem space onto a one dimensional line, we
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(a) Mapping cache contents on
Hilbert curve

(b) Calculating Boundaries using CDF

Fig. 4. Calculating DEMB boundaries on Hilbert curve

employ a Hilbert space filling curve [11]. A Hilbert curve is a continuous fractal space-
filling curve, which is known to maintain good mapping locality (clustering), i.e. it
converts nearby multi-dimensional points to close one-dimensional values.

Using the transformed one dimensional queries, we estimate the cumulative prob-
ability density function in the one-dimensional space and partition the space into N
sub-ranges so that each one has the same probability as other sub-ranges. The front-
end scheduler uses the sub-ranges for scheduling subsequent queries. When a query is
submitted, the front-end scheduler converts the center of the query to its corresponding
one-dimensional point on the Hilbert curve, determines which sub-range includes the
point, and assigns the query to the back-end server that owns the sub-range.

Assigning nearby queries in one-dimensional sub-ranges takes advantage of the
Hilbert curve properties. As shown in Figure 4(a), the one dimensional boundaries on
the Hilbert curve cluster two dimensional queries so that they have good spatial locality.
The DEMB scheduling policy achieves good load balance as well as a high cache hit
rate since the scheduler assigns similar numbers of nearby queries on the Hilbert curve
to each back-end server.

The DEMB scheduling policy is presented in Algorithm 1. When a new query is
submitted to the scheduler, it is inserted into the queue and the oldest query in the queue
is evicted, which can change the query probability density function. However if we
update the boundaries of each server for every incoming query, that may cause too much
overhead in the front-end scheduler. Instead, we employ a sliding window approach,
where the scheduler waits for a predefined number of queries (update interval, UI)
to arrive before updating the boundaries. Note that the update interval does not have to
be equal to the window size. As the update interval is increased, the window size also
has to be increased. Otherwise some queries may not be counted when calculating the
query probability distribution.

In the DEMB scheduling policy, the window size WS is an important performance
factor to estimate the current query probability density. As the window size becomes
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larger, the recent probability density function can be better estimated. However, if the
query distribution changes dynamically, a large window size causes the scheduler to
use a large number of old queries to estimate the query probability density function.
As a result, the scheduler will not adapt to rapid changes in the query distribution in a
timely manner. On the other hand, a small window size can cause a large error in the
current query probability distribution estimate due to an insufficient number of sample
queries. Moreover, if the window size is smaller than the size of the distributed caches,
the query probability density estimation may not correctly reflect all the cached objects
in the back-end servers, in addition to the moving trend of query distribution. Therefore
choosing an optimal window size under various conditions is one of the most important
factors when applying the DEMB scheduling policy to the distributed query processing
framework.

In most systems the size of the distributed caches will be much larger than the front-
end server’s queue size WS. Instead of increasing the window size in order to reduce
the error in the probability distribution estimate, we can calculate the moving average
of the past query probability distributions, as for the DEMA scheduling policy.

After updating the query probability distribution, we choose the sub-range of each
server so that each has equal probability. In Figure 4(b), the problem space is divided
into 5 sub-ranges where 20% of the queries are expected for each one. However it is
not practical to estimate the real probability distribution function because that requires
a large amount of memory to store the histograms. Instead, we assume the query proba-
bility density function is a continuous smooth curve. Then we can make the probability
density estimation process simpler. The scheduler will determine the boundaries of each
server using the WS most recent queries, and apply the following equation to calculate
the moving average for each boundary.

BOUNDARY [i]t = α · CUR BOUND[i]t + (1 − α) ·BOUNDARY [i]t−1

The weight factor α is another important performance parameter in the DEMB schedul-
ing policy, as for DEMA. As described in Section 3.1, alpha determines how earlier
boundaries for each server will be considered for the current query probability distribu-
tion. However unlike the DEMA scheduling policy, the DEMB scheduling policy has
two parameters to control how fast the old queries decay. One is α, and the other is the
window size (WS). A large window size (WS) can be used to give more weight to the
old queries instead of a low α value.

Now we show an example to see how the DEMB scheduling policy works. Suppose
there are 10 back-end servers (N = 10), the window size is 500 queries (WS = 500),
and the boundary update interval is 100 queries (UI = 100). The front-end sched-
uler will replace the oldest query in the queue with the newest incoming query every
time a new query arrives. The incoming queries will be forwarded to one of the back-
end servers using the boundaries of each server (BOUNDARY [i]). When the 100th
query arrives, the scheduler recalculates the boundary for each server using the past
500 queries. Since there are 10 back-end servers, each server should process 50 queries
to achieve perfect load balance. Hence, the new boundary between the 1st server and
the 2nd server should be the middle point of the 50th query and the 51st query in the
Hilbert curve ordering. Likewise, the new boundary (CUR BOUND[i]) between the
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Algorithm 1. DEMB Algorithm
procedure
ScheduleDEMB(Queryq)

1. INPUT: a client query Q
2. MinDistance←MaxNum
3. distance← HilbertDistance(query)
4. for s = 0→ N − 1 do
5. if BOUNDARY[s] is not initialized then
6. forward query Q to server s.
7. BOUNDARY [s]← HilbertDistance(Q)
8. return
9. else

10. if s = 0
∧

distance ≤ BOUNDARY [0] then
11. selectedServer← 0
12. else if BOUNDARY [s − 1] < distance

∧
distance ≤ BOUNDARY [s] then

13. selectedServer← s
14. end if
15. end if
16. end for
17. forward query Q to SelectedServer.
18. if QueryQueue.size() < WindowSize then
19. QueryQueue.enqueue(Q)
20. if QueryQueue.size()%N = 0 then
21. UPDATE(QueryQueue)
22. end if
23. else
24. QueryQueue.dequeue()
25. QueryQueue.enqueue(Q)
26. if intervalCount = UpdateInerval then
27. UPDATE(QueryQueue)
28. intervalCount← 0
29. end if
30. end if
31. intervalCount← intervalCount + 1

end procedure

procedure
UPDATE(Queue QueryQueue)

1. INPUT: a queue that stores recent queries QueryQueue
2. LOAD ← QueryQueue.getSize()/N
3. for i = 1→ N − 1 do
4. CUR BOUND[i]← (HilbertDistance(LOAD× i)+HilbertDistance(LOAD×

i+ 1))/2
5. end for
6. for i = 1→ N − 1 do
7. BOUNDARY [i]← alpha ∗ CUR BOUND[i] + (1− alpha) ∗ BOUNDARY [i]
8. end for

end procedure
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ith server and the i + 1th server should be the middle point of the 50 ∗ ith query and
the 50 · i + 1th query. After calculating the new boundaries (CUR BOUND[i]) for
the back-end servers, we compute the moving average for each boundary. If the query
distribution has changed, BOUNDARY [i] would move to CUR BOUND[i]. In this
way, the DEMB scheduling policy makes the boundaries move according to the new
query distribution.

The cost of the DEMB scheduling policy is determined by the number of servers and
the level of recursion for the Hilbert curve, i.e. O(N ·HilbertLevel). The complexity
of the Hilbert curve is determined by the level of recursion in the Hilbert curve, which
is usually a very small number. With a higher level of recursion, a Hilbert space filling
curve can map a larger number of points onto it. For example, for a level 15 Hilbert
curve about 1 billion (415) points can be mapped to distinct one-dimensional values. In
our experiments, we set the level of the Hilbert curve to 15, and employed at most 50
servers. The cost of DEMB scheduling is very low, but is somewhat higher than that of
DEMA, which is O(N).

5 Experiments

5.1 Experimental Setup

The primary objective of the simulation study is to measure the query response time
and system load balance of the DEMB scheduling policy with various query distribu-
tions. To measure the performance of query scheduling policies, we generated synthetic
query workloads using a spatial data generator, which is available at [16]. It can gen-
erate spatial datasets with normal, uniform, or Zipf distributions. We have generated
a set of queries with various distributions with different average points, and combined
them so that the distribution and hot spots of queries move to different location unpre-
dictably. We will refer to the randomly mixed distribution as the dynamic distribution.
We also employed a Customer Behavior Model Graph (CBMG) to generate realistic
query workloads [10]. CBMG query workloads have a set of hot spots. CBMG chooses
one of the hot spots as its first query, and subsequent queries are modeled using spatial
movements, resolution changes, and jumps to other hot spots. The query’s transitions
are characterized by a probability matrix. In the following experiments, we used the
synthetic dynamic query distribution and a CBMG generated query distribution, with
each of them containing 40,000 queries, and a cache miss penalty of 400 ms. This
penalty is the time to compute a query result from scratch on a back-end server. We
are currently implementing a terabyte scale bio-medical image viewer application on
top of our distributed query scheduling framework. In this framework, a large image is
partitioned into small equal-sized chunks and they are stored across distributed servers.
Obviously the cache miss penalty is dependent on the size of the image chunks. When a
cache miss occurs, the back-end server must read raw image file data from disk storage
and generate an intermediate compressed image file at the requested resolution. The
400 ms cache miss penalty is set based on this scenario. We also evaluated the schedul-
ing policies with smaller cache miss penalties, but the results were similar to the results
described below.
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5.2 Experimental Results - DEMB

Using various experimental parameters, we measured (1) the query response time, the
elapsed time from the moment a query is submitted to the system until it completes, (2)
the cache hit rate, which shows how well the assigned queries are clustered, and (3) the
standard deviation of the number of processed queries across the back-end servers, to
measure load balancing, i.e. lower standard deviation indicates better load balancing. In
the following set of experimental studies, we focused on the performance impact of 3
parameters - window size (WS), EMA weight factor (α), and update interval (UI).

Weight Factor. The weight factor α is one of the three parameters that we can control
to determine how fast the query scheduler loses information about past queries. The
other two parameters are the update interval UI and window size WS. WS is the
number of recent queries that front-end scheduler keeps track of. The update intervalUI
determines how frequently new boundaries should be calculated in the scheduler with
weight factor α. As the weight factor α becomes larger, the scheduler will determine
the boundaries using more recent queries. As UI becomes shorter, α will be applied
to boundary calculations more frequently. Hence older queries will have less impact
on the calculation of boundaries. Also, if WS is small, only a few of the most recent
queries will be used to calculate the boundaries.

For the experiments shown in Figure 5 and 6, we employed 50 servers, and fixed
the window size to a small number (200), i.e. only 4 recent queries are used to calculate
the boundaries of each back-end server. Since the window size is small, we updated the
boundaries of each server whenever 10 new queries arrive. These numbers are chosen
to minimize the effects of the weight factor α on query response time.

With smaller α, the boundaries move more slowly. If α is 0, the boundaries will
not move at all. For both the dynamic query distribution shown in Figure 5(a) and the
CBMG distribution shown in Figure 5(b), load balancing (STDDEV) becomes worse as
we decrease α because the boundaries of the back-end application servers fail to adjust
to the changes in the query distribution.

However the cache hit rate slightly increases from 16.9% to 20.4% as we decrease α
for the CBMG query distribution because the CBMG query pattern is rather stationary
and a small α value, close to 0, makes the boundaries fixed, which increases the proba-
bility of reusing cached objects. However for the dynamic query distribution stationary
boundaries decrease the probability of cache reuse, hence the cache hit rate decreases
from 12.2% to 8.1% as we decrease α. Figure 6 shows the average query response time
determined by the cache hit rate and load balancing. As we decrease α, the query re-
sponse time increases exponentially since it hurts overall system load balance greatly
although it improves the cache hit rate slightly.

Both leveraging cached results and achieving good load balance are equally im-
portant in maximizing overall system throughput. However we note that a very small
improvement in cache hit rate might be more effective in improving average query re-
sponse time than a large standard deviation improvement in certain cases. In Figure 5(a),
the load balancing standard deviation is approximately 3 times higher when the weight
factor is 0.1 than it is 0.3. But the average query response times shown in Figure 6(a)
are similar because the cache hit rate is slightly higher when the weight factor is 0.1.
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Fig. 5. Cache Hit Rate and Load Balancing with Varying Weight Factor
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Fig. 6. Query Response Time with Varying Weight Factor

Update Interval. How frequently the scheduler updates the new boundaries is another
critical performance factor in the DEMB scheduling policy, since frequent updates will
make the boundaries of servers more quickly respond to recent changes in the query dis-
tribution. However frequent updates may cause large overheads in the front-end sched-
uler, and may not be necessary if the query distribution is stationary. Hence the update
interval should be chosen considering the trade-off between reducing scheduler over-
head and making the scheduling policy responsive to changes in the query distribution.

In the experiments shown in Figures 7 and 8, we measured the performance of the
DEMB scheduling policy varying the update interval. In this set of experiments, the α
and WS were fixed to 0.3 and 200, respectively. As we decrease the update interval,
the boundaries are updated more frequently and they reflect the recent query distribution
well. As a result, the DEMB scheduling policy takes good advantage of clustering and
load balancing for the dynamic query distribution, as shown in Figure 7(a). As the
update interval increases, the boundaries move more slowly and DEMB suffers from
poor load balancing and cache misses.

With the stationary CBMG queries shown in Figure 7(b), the cache hit rate does not
seem to be affected by the update interval, but the standard deviation increases slightly,
although not as much as for the dynamic query distribution. This results indicate that
we should update the boundaries frequently as long as that does not cause significant
overhead in the scheduler.
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Fig. 7. Cache Hit Rate and Load Balancing with Varying Update Interval
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Fig. 8. Query Response Time with Varying Update Interval

Window Size. The front-end scheduler needs to store the recent queries in a queue so
that they can be used to construct query distribution and determine the boundaries of
back-end servers. With a larger window size (more queries), the front-end scheduler
can estimate query distribution more accurately. Also, a larger WS allows a query to
stay in the queue longer, i.e. the same queries will be used more often to construct
query histograms and boundaries. On the other hand, a small WS makes the front-end
scheduler uses a smaller number of recent queries to determine the boundaries, and the
query distribution estimate is more likely to have large errors. In the experiments shown
in Figures 9 and 10, we measured performance with various window sizes. The weight
factor α and the update interval UI were both fixed to 1, in order to analyze the effects
of only WS.

For the dynamic query distribution, the cache hit rate increases from 5.4% to 20%
and the standard deviation decreases slowly as the window size increases up to 1000.
That is because the scheduler estimates query distribution more accurately with a larger
number of queries. However, if the window size becomes larger than 1000, both the
cache hit rate and load balancing suffer from inflexible boundaries. Note that WS also
determines how quickly the boundaries change as the query distribution changes. A
large window size makes the scheduler consider a large number of old queries so will
make the boundaries between servers change slowly. If the query distribution changes
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Fig. 9. Cache Hit Rate and Load Balancing with Varying Window Size
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Fig. 10. Query Response Time with Varying Window Size

rapidly, a smaller window size allows the scheduler to quickly adjust the boundaries. For
the CBMG query distribution, both the cache hit rate and load balancing improves as
the window size increases. This is because the CBMG queries are relatively stationary
over time. Hence a longer record of past queries helps the scheduler to determine better
boundaries for future incoming queries.

These window size experimental results show that we need to set window size as
large as possible unless it hurts the flexibility of the scheduler. Note that the window size
should be orders of magnitude larger than the number of back-end servers. Otherwise,
the boundaries set from a small number of queries would have very large estimation
errors. For example, if the window size is equal to the number of back-end servers, the
boundaries will be simply the middle point of the sorted queries, which would make the
boundaries jump around the problem space. However a large window size has a large
memory footprint in the scheduler, so can cause higher computational overhead in the
scheduler, and the same is true for the update interval. In order to reduce the overhead
from large window sizes, but to prevent estimation errors from making the boundaries
move around too much, the scheduler can decrease the weight factor α instead, which
will give higher weight to older past boundaries and smooth out short term estimation
errors.
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5.3 Comparative Study

In order to show that the DEMB scheduling policy performs well compared to other
scheduling policies, we compared it with three other scheduling policies - round-robin,
Fixed, and DEMA. For this set of experiments, we employed 50 back-end application
servers and a single front-end server. In order to measure how the other scheduling
policies behave under different conditions, we used both the dynamic and CBMG query
distributions. The parameters for the DEMB scheduling were set to good values from
the previous experiments - the weight factor α is 0.2, the update interval is 500, and
the window size is 1000. These numbers are not the best parameter values we obtained
from the previous experiments, but we will show that the DEMB scheduling policy
shows good performance even without the optimal parameter values. Figures 11, 12,
and 13 show the cache hit rate, load balance, and query response time for the different
scheduling policies.

The Fixed scheduling policy partitions the problem space into several sub-spaces
using the query probability distribution of the initial N queries, similar to the DEMB
scheduling policy (where N is the number of servers), and each server processes subse-
quent queries that lie in its sub-space. But the sub-spaces are not adjusted as queries are
processed, unlike DEMB. When the query distribution is stable, Fixed scheduling has a
higher cache hit rate than round-robin since it takes advantage of spatial locality in the
queries while round-robin does not. Since the Fixed scheduling policy does not change
the boundaries of sub-spaces once they are initialized, it obtains a higher cache hit rate
than the DEMA or DEMB scheduling policies for certain experimental parameter set-
tings, as shown in Figure 11(b). For the CBMG query distribution, there are 200 fixed
hot spots and the servers that own those hot spots and have large cache spaces obtain
very high cache hit rates. However, when the query distribution changes dynamically
the cache hit rate for the Fixed scheduling policy drops significantly, and is much lower
than that of the DEMA and DEMB scheduling policy.

Although the Fixed scheduling policy outperforms DEMA and DEMB as measured
by cache hit rate when the query distribution is stable, the Fixed policy suffers from
serious load imbalance. Some servers process many fewer queries than others, if their
sub-spaces do not contain hot spots. Therefore the standard deviation of the Fixed
scheduling is the worst of all the scheduling policies, as shown in Figure 12, and the
load imbalance problem becomes more especially bad for small numbers of servers.
Due to its poor load balancing, the average query response time for the Fixed schedul-
ing is higher than for the other scheduling policies, as shown in Figure 13. Note that the
query response time is shown on a log scale.

For the dynamic query distribution, the DEMB scheduling policy is superior to the
other scheduling policies for all the number of servers in terms of the query response
time. DEMB’s cache hit rate is about twice that of DEMA - the second best scheduling
policy. The DEMA scheduling policy has a lower cache hit rate than DEMB because
DEMA slowly responds to rapid changes in the incoming query distribution, as we de-
scribed in Section 3.1. Note that the DEMA scheduling policy adjusts only a single
EMA point per query, while DEMB adjusts all the servers’ boundaries at every update
interval.
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Fig. 11. Cache Hit Rate
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Fig. 13. Query Response Time

However, for the CBMG query distribution, the quick response to the changed query
distribution seems to lower the cache hit rate of DEMB somewhat. As we mentioned
earlier, the DEMB scheduling policy is designed to overcome the drawback of the
DEMA scheduling policy, which is seen most when the query distribution changes dy-
namically. In CBMG distribution the query distribution pattern is stable, and both the
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DEMA and the DEMB scheduling policies perform equally well. In Figure 11(b), the
cache hit rate for DEMB is lower than for the DEMA scheduling policy because the
boundaries determined by DEMB are likely to move rapidly, since some spatial locality
for the queries is lost. When the boundaries are adjusted rapidly based on short term
changes from a small number of recent queries, that may improve load balance but it
will decrease the cache hit rate when the long term query distribution is stable. Due
to the DEMB scheduling policy’s fast response time, its load balancing performance is
similar to that of the round-robin scheduling policy. The DEMA scheduling policy also
balances server load reasonably well for the CBMG query distribution, but for the dy-
namic query distribution DEMA suffers from load imbalance due to its slow adjustment
of EMA points.

Figure 13 shows that the average query response time improves as we add more
servers to the system. The DEMB scheduling policy outperforms all the other schedul-
ing policies for the dynamic query distribution. For the CBMG query distribution, the
DEMB query response time is the lowest in most cases. For 50 servers, DEMB shows
the best performance although its cache hit rate is not the highest. This result shows that
load balancing plays an important role in large scale systems. However load balancing
itself is not the only factor in overall system performance because round-robin does not
show good performance.

5.4 Automated Parameter (WS) Adjustment

In the DEMB scheduling policy, the three parameters (weight factor, update interval,
and window size) determine how fast the boundaries of each server adjust to the new
query distribution. As seen in Figure 8, the update interval (UI) should be set close
to 1 to be more responsive, i.e. the boundaries of servers must be updated for every
incoming query. The weight factor (α) also determines how much weight is given to
recent queries so that the boundaries adjust to the new distribution. However, when
the window size (WS) is large enough, the current query distribution already captures
recent changes in query distribution and the weight factor (α) does not affect query
response time significantly. If the window size is not much greater than the number of
backend servers (within a factor of 2 or 3), the query response time is not as resilient
to changes in the weight factor when α is larger than 0.1, as shown in Figure 6. This is
because the large window size (WS) and the small update interval (UI) makes a single
query counted for multiple (WS) times (such as in a sliding window) to determine
the boundaries for each server. Hence, the most effective performance parameter that
system administrators can tune for the DEMB scheduling policy is the window size
(WS) .

As shown in Figure 10, a larger window size yields lower query response times
when the query distribution is stable. But if the query distribution changes rapidly, the
window size must be chosen carefully to reduce the query response time. In order to
automate selecting a good window size based on changes in the query distribution, we
make the scheduler compare the current query distribution histogram with a moving
average of the past query distribution histogram using Kullback-Leibler divergence,
which is a measure of the difference between two probability distributions [9]. If the
two distributions differ significantly the scheduler decreases the window size so that
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updates to boundaries happen more quickly. When the two distributions are similar, the
scheduler gradually makes the window size bigger (but no bigger than a given maximum
size), which makes the boundaries more stable over time to achieve a higher cache
hit rate. In experiments not shown due to page limitation, we have observed that this
automated approach improves query response time significantly.

6 Conclusion and Future Work

In this paper we have described and compared distributed query scheduling policies
that take into consideration the dynamic contents of a distributed caching infrastructure
with very little overhead (O(N ×HilbertLevel).

In distributed query processing systems where the caching infrastructure scales with
the number of servers, both leveraging cached results and achieving good load balance
are equally important in maximizing overall system throughput. In order to achieve load
balancing as well as to exploit cached query results, such a system must employ more
intelligent query scheduling policies than the traditional round-robin or load-monitoring
scheduling policies.

In this context, we proposed the DEMB scheduling policy that clusters similar queries
to increase the cache hit rate and assigns approximately equal numbers of queries to all
servers to achieve good load balancing. We experimentally demonstrate that DEMB
produces better query plans that provide much lower query response times than tradi-
tional query scheduling policies.
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Abstract. The FCFS-based backfill algorithm is widely used in schedul-
ing high-performance computer systems. The algorithm relies on runtime
estimate of jobs which is provided by users. However, statistics show the
accuracy of user-provided estimate is poor. Users are very likely to pro-
vide a much longer runtime estimate than its real execution time.

In this paper, we propose an aggressive backfilling approach with
checkpoint based preemption to address the inaccuracy in user-provided
runtime estimate. The approach is evaluated with real workload traces.
The results show that compared with the FCFS-based backfill algorithm,
our scheme improves the job scheduling performance in waiting time,
slowdown and mean queue length by up to 40%. Meanwhile, only 4% of
the jobs need to perform checkpoints.

Keywords: job scheduling, backfill algorithm, runtime estimate, check-
point/restart.

1 Introduction

Supercomputers and clusters today are usually managed by batch job schedul-
ing systems, which partition the available set of compute nodes according to
resource requests submitted through job scripts, and allocate such node parti-
tions to parallel jobs. A parallel job will occupy the allocated node partition till
1) the job completes or crashes, or 2) the job runs out of the maximum wall
execution time specified in its job script. Jobs that cannot immediately get their
requested resources will have to wait in a job queue. The goal for parallel job
schedulers is to reduce the average queue waiting time, and maximize the system
throughput/utilization, while maintaining fairness to all jobs [1].

Parallel job scheduling technology has matured over the past decades. Though
many strategies and algorithms have been proposed, such as dynamic parti-
tioning [2] and gang scheduling [3], they are not widely used due to practical
limitations. Instead, FCFS (First Come First Served) based algorithms with
backfilling are currently adopted by most major batch schedulers running on
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supercomputers and clusters alike. It was first developed for the IBM SP1 par-
allel supercomputer installed at Argonne National Laboratory, as part of EASY
(the Extensible Argonne Scheduling sYstem) [4]. Several variants of FCFS-based
backfilling (referred to as backfilling in the rest of this paper) serve as the default
setting in today’s prominent job schedulers, such as LSF [5], Moab [6], Maui [7],
PBS/Torque [8], and LoadLeveler [9].

Fig. 1. Queue length vs. system utilization level based on job traces on four parallel
systems

The backfilling algorithm is able to make use of idle “holes” left caused by
advance reservation for jobs that arrived earlier but unable to run due to in-
sufficient resources, by filling in small jobs that are guaranteed to finish before
the reservation starts (more details of the algorithm will be given later). How-
ever, systems using such mechanism still suffer from resource under-utilization.
Figure 1 illustrates such problem based on the workload traces from four produc-
tion systems (available online at the Parallel Workloads Archive [10]): Intrepid
at Argonne National Laboratory (ANL), Blue Horizon at the San Diego Super-
computing Center (SDSC), IBM SP2 at the Cornell Theory Center (CTC) and
Linux cluster at High Performance Computing Center North, Sweden (HPC2N).
The parallel job schedulers used at these systems Cobalt, Catalina, EASY, and
Maui, respectively, most of which use FCFS+backfilling algorithms.1 For each
system, Figure 1 plots the average system utilization level (x axis) and the av-
erage job queue length (y axis), calculated for each day from the traces. The
results show that on all four systems, it is common for a significant amount of
system resource (20% to 80% of nodes) to be idle while there are (many) jobs
waiting in the queue. In Peta- and the upcoming Exa-FLOP era, such system
under-utilization translates into more severe waste of both compute resources
and energy.

1 Cobalt uses a WFP-based backfill algorithm.
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Fig. 2. Distribution of the ratio between the actual and the user-estimated job execu-
tion time. Note that supercomputers scheduling policies often allow a “grace period”,
such as 30 minutes, before terminating jobs that exceed their specified maximum wall
time. This, plus extra storage and cleanup operations involved in job termination,
explains the existence of ratios larger than 1.

One key factor leading to this defect is that the backfilling effectiveness de-
pends on the job execution wall time estimate submitted by the user, which has
been found in multiple studies to be highly inaccurate [11, 12]. By comparing
the user-estimated and the actual job execution times from the aforementioned
traces, we calculate the probability density function of the wall time estimate
accuracy, as trun/treq, where trun is the actual runtime and treq is the user-
provided estimate.

Figure 2 suggests that a large portion (∼40%) of jobs actually terminated
within 20% of the estimated time. The distribution of the actual/estimated ex-
ecution time ratio spread quite uniformly over the rest of the spectrum, except
a noticeable burst around 1. Overall, only 17% of jobs completed within the
0.9-1.1 range of the estimated time, across the four systems. As to be discussed
in more detail in the next section, such dramatic job wall time estimate error
leads to significant problems in backfilling effectiveness.

To improve scheduling performance, many previous studies have targeted im-
proving the accuracy of job execution time estimate [13–15], with only limited
success. In fact, there are several factors leading to inaccurate estimates, mostly
overestimates. Firstly, users may not have enough knowledge on the expected
execution time of their jobs (especially with short testing jobs and jobs with
new input/parameters/algorithms), and choose to err on the safe side. Secondly,
in many cases the large estimated-to-actual execution time ratio is caused by
unexpected (early) crash of the job. Thirdly, users tend to use a round value
(such as 30 min or 1 hour) as the estimated wall time, causing large “rounding
error” for short jobs. All the above factors help making job wall time overesti-
mation a perpetual phenomenon in batch systems. Actually, a study by Cyn-
thia et al. revealed that such behavior is quite stubborn, with little estimate
accuracy improvement even when the threat of over-time jobs being killed is
removed [16].
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In this paper, we propose a new scheduling algorithm that couples advance
reservation, backfilling, and job preemption. Our approach is motivated by the
observation that on today’s ever-larger systems, checkpointing has become a
standard fault tolerance practice, in answer to the shortening MTBF (mean time
between failures). With portable, optimized tools such as BLCR [17], parallel
file systems designed with checkpointing as a major workload or even specifically
for the checkpointing purpose (such as PLFS [18]), emerging high-performance
hardware such as aggregated SSD storage, and a large amount of recent/ongoing
research on checkpointing [19–21], the efficiency and scalability of job check-
pointing has been improving significantly. Such growing checkpoint capability
on large-scale systems enables us to relax the backfill conditions, by allowing
jobs to be aggressively backfilled, and suspended for later execution if resources
are due for advance reservation.

This approach manages to make use of idle nodes without wasting resources by
aborting opportunistically backfilled jobs. By limiting the per-job checkpointing
occurrences and adjusting the backfill aggressiveness, our algorithm is able to
achieve a balance between improving resource utilization, controlling the extra
checkpointing and restarting overhead, and maintaining scheduling fairness.

We consider our major contributions as follows:

1. A checkpoint-based scheduling algorithm. To our knowledge, this is the first
paper that discusses how to leverage checkpointing techniques to optimize
the backfilling scheduling algorithm. Although some previous works pro-
posed preemption based backfill, no works discussed how to use checkpoint
technique to improving backfilling scheduling. We analyzed the limitations
of an existing FCFS-based backfilling algorithm and improved it by enabling
aggressive backfilling with estimated wall time adjustment and checkpoint-
based job preemption.

2. Comprehensive evaluation with trace-driven simulation. We conducted ex-
periments using job traces collected from four production systems, including
Intrepid, currently ranked 15th on the Top500 list. Our results indicate that
compared with the classical FCFS-based backfill algorithm, the checkpoint-
based approach is capable of producing significant improvements (by up to
40%) to key scheduling performance metrics, such as job average wait time,
slowdown, and the mean queue length.

In our evaluation, we also estimated the overhead incurred by checkpoint/
restart operations, based on system information from the Intrepid system.
Different I/O bandwidths are considered, simulation results suggest that
extra checkpoint/restart operations hardly cause any impact on the key
scheduling performance metrics.

The remainder of this paper is organized as follows. Section 2 reviews the tra-
ditional FCFS-based backfilling algorithm. Section 3 presents our checkpoint-
based scheduling approach and gives detailed algorithms. Section 4 reports our
simulation results on job scheduling performance, while Section 5 analyzes the
introduced checkpoint overhead. Section 6 discusses related work, and finally,
Section 7 suggests potential future work and concludes the paper.
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2 Classical Backfilling Algorithm Overview

In this section, we review the classical backfilling algorithm to set a stage for
presenting our checkpoint-based approach.

Most modern parallel job schedulers give static allocations to jobs with spatial
partitioning, i.e., a job is allocated the number of nodes it requested in its job
script and uses this partition in a dedicated manner throughout its execution.
The widely used FCFS-based backfill algorithm does the following:

– maintain jobs in the order of their arrival in the job queue and schedule them
in order if possible,

– upon a job’s completion or arrival, dispatch jobs from the queue front and
reserve resources for the first job in the queue that cannot be run due to
insufficient resource available,

– based on the user estimated wall times of the running jobs, calculate the
backfill time window, and

– traverse the job queue and schedule jobs that can fit into the backfill window,
whose execution will not interfere with the advance reservation. Such jobs
should either complete before the reserved “queue head job” start time or
occupy only nodes that the advance reservation does not need to use.

A simplified version of such strategy, used in the popular Maui scheduler [7], is
shown as Algorithm 1, which is also used as the classical backfilling algorithm
in our trace-driven simulation experiments. Other popular schedulers such as
EASY and LoadLeveler also use similar frameworks.

As can be seen from the algorithm, user-provided estimated runtime is crucial
to the overall scheduling performance. Overestimation will not only postpone the
reservation time, but also affect the chance for a job to be backfilled. We will
see later that increased estimate inaccuracy can significantly impact the classical
algorithm’s scheduling performance, particularly in the “job slowdown” category.

3 Checkpoint-Based Backfilling

In this section, we explain our scheduling approach and the proposed algorithm
in details. Our algorithm overcomes the limitation in the classical backfilling
algorithm by weakening the impact of the user job run time estimation accuracy
on the system performance. With our approach, both the wait time and the
chance of backfill can be significantly improved.

3.1 Assumptions

First, we list several major assumptions made in this work:

1. Rigid jobs: Our design assumes that the jobs are rigid jobs, running on a
fixed number of processors (nodes) during its end-to-end execution. This
resource requirement is specified in the job script.
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Algorithm 1. FCFS-based backfilling algorithm

Require: Job queue Q is not empty, Resource manager RM
1: /* Schedule runnable jobs */
2: for each job ∈ Q do
3: if job.size > RM.free size then
4: break
5: end if
6: job.predictEndtime← job.estimateRuntime+ now()
7: run(job)
8: RM.free size− = job.size
9: end for
10: if Q.isEmpty() then
11: exit
12: end if
13: /* Make Reservation */
14: reserve job ← Q.top()
15: future available size← RM.free size
16: running jobs list← Sort running jobs in order of their predicted termination time

17: for each job ∈ running jobs list do
18: future available size += job.size
19: if future available size ≥ reserve job.size then
20: reserve time← job.predictEndtime
21: break
22: end if
23: end for
24: backfill window ← reserve time− now()
25: extra size← future available size - reserve job.size
26: /* Backfilling */
27: for each job ∈ Q do
28: if job.size > RM.free size then
29: continue
30: end if
31: predictRuntime←job.estimateRuntime
32: if predictRuntime ≤ backfill window or job.size ≤ extra size then
33: job.predictEndtime← predictRuntime+ now()
34: backfill(job)
35: RM.free size− = job.size
36: if predictRuntime > backfill window then
37: extra size− = job.size
38: end if
39: end if
40: end for

2. Jobs not bound to specific nodes: Each job can execute on any set of nodes
that meets the processor number requirement.

3. Checkpoint/Restart abilities: The applications or the supercomputing center
has checkpoint/restart (C/R) abilities, which can be initiated any time by
the scheduler.



42 S. Niu et al.

Note that the first two assumptions apply to most of classical backfilling algo-
rithms too, allowing each job to be scheduled once and assigned an arbitrary
subset of all the available nodes. In the context of our checkpoint-based back-
filling scheduling, however, they allow an interrupted and checkpointed job to
resume its execution with the same number of nodes without any placement
constraints.

3.2 Methodology Overview

The main idea behind our checkpoint-based scheduling is to allow the queued
jobs to be backfilled more aggressively, but reserve the right to suspend such jobs
when they are considered to delay the execution of a higher-priority job. The
flow of our algorithm works similarly as the classical one. The major difference
lies in that at the time a high priority waiting job with advance reservation is
expected to run, if any backfilled jobs are still running, we checkpoint rather
than kill them. This allows us to cope with the highly overestimated run time
and perform aggressive backfilling. In selecting backfill candidates, rather than
directly using the user provided run time estimate, our scheduler predicts a job’s
actual execution time by intentionally scale down the estimated run time. Ac-
cording to Figure 2, most of the overestimated jobs can safely complete before
the reserved deadline. For those jobs that such prediction actually underesti-
mates their execution time, checkpointing avoids wasting the amount of work
already performed, yet maintains the high priority of the job holding advance
reservation.

Figure 3 illustrates the working of the checkpoint-based scheduling scheme
with a set of sample jobs. Each job is portrayed as a rectangle, with the horizontal
and vertical dimensions representing the 2D resource requirement: estimated wall
time and processor/node number requested. The gray area within each waiting
job’s rectangle indicates its actual execution time. At a certain time point, jobs
A and B are running, and jobs C, D and E are waiting in the queue, as shown
in Figure 3(a). Upon A’s completion, there are not sufficient resources for the
queue head job C. The scheduler performs advance reservation for C, based on
the estimated wall time of B. The moment that B terminates is the reserve time
for C. The time from A’s to B’s termination forms the backfill window.

With the classical backfilling algorithm (Figure 3(b)), because D’s and E’s
runtime estimates exceed the backfill window, D and E will not be backfilled,
although D’s actual runtime can fit in the window. D and E will run after C
terminates, wasting resources within the backfill window.

With the checkpoint-based backfilling algorithm (Figure 3(c)), instead, both
D and E will be backfilled. D will terminate before the reserved time. E, on
the other hand, will be preempted at the reserved time and broken into two
segments: E1 and E2. When C terminates, E will be restarted to resume its
execution.

This example illustrates several advantages of the checkpoint-based scheduling
approach. First, overestimated jobs benefit from eager backfilling, producing
both shorter wait time and higher system utilization. Second, the checkpointed
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Fig. 3. With checkpoint-based backfill algorithm, job D which is overestimated benefits
from the backfilling, job E also reduces the response time. Meanwhile, the top queue
job is not affected.

Algorithm 2. Job.predictRuntime()

Require: job runtime estimate threshold tthr, the split factor p
1: if job.estimateRuntime < tthr then
2: return job.estimateRuntime
3: else
4: if job.isCheckPointJob() then
5: return job.estimateRuntime− job.hasRunT ime
6: else
7: return job.estimateRuntime ∗ p
8: end if
9: end if

jobs also observe a reduced response time. Finally, the priority of the job holding
advance reservation is preserved.

3.3 The Checkpoint-Based Scheduling Algorithm

Next, we givemore detailed description of our proposed checkpoint-based schedul-
ing algorithm and discuss important parameters.

The main checkpoint-based scheduling framework is same with classical back-
filling (Algorithm 1). It is executed repeatedly whenever a new job arrives or
when a running job terminates. The major different is in Line 31 (highlighted in
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Algorithm 3. Preempt algorithm

Require: the reserve time arrives
1: if RM.free size < reserve job.size then
2: preempting jobs list← RM.getPreemptingJobsList(reserve job)
3: for each job ∈ preempting jobs list do
4: checkpoint (job)
5: kill (job)
6: RM.free size+ = job.size
7: Q.push(job)
8: end for
9: end if
10: run (reserve job)
11: RM.free size− = reserve job.size

the algorithm with underlined subroutine calls). When checking backfill eligibil-
ity and calculating the predicted end time, it according to the scheduler-predicted
run time instead of the user-provided runtime estimate.

The calculating predicate runtime algorithm is the core algorithm, which is
shown in Algorithm 2. It describes how the checkpoint-based scheduler per-
forms job execution time prediction. As mentioned earlier, it scales down the
user-estimated job wall time treq by a factor of p, 0 < p <= 1. However, such
adjustment is only applied to jobs that are over a certain threshold tthr. This
is due to several considerations. First, short jobs are fairly easy to be backfilled
even without such scale-down. Second, checkpointing and restart will turn out
as more expensive to short jobs. Third, short jobs are often meant for testing
and debugging, where a split execution might cause more degradation in user
experience. Both p and tthr are tunable parameters, controlling the aggressive-
ness of backfilling. In our experiments, we find that such simple schemes seem to
work well and system administrators can select a proper parameter values based
on empirical results collected from their actual workloads.

Finally, Algorithm 3 specifies the preempt scheme. It is executed whenever
the reserved time arrives but there are no sufficient resources to allocate for the
top priority job. In this algorithm, the backfilled jobs are checkpointed and ter-
minated, until the top queue job gets its requested resources. The checkpointed
jobs are put on the head of the queue. Also, in selecting checkpoint candidates,
we start from jobs that are using more nodes, to reduce the number of pre-
emption and checkpointing. Note that each backfilled jobs use fewer nodes than
requested by the high-priority job holding advance reservation. Otherwise the
latter could be scheduled at an earlier time point. Therefore, our checkpoint
candidate identification is essentially performing a “best-fit” selection.

4 Evaluation Results

In this section we present our evaluation results obtained from trace-driven simu-
lation experiments. We first analyze the performance of our proposed checkpoint-
based backfill approach using real job traces, and compare it with that of the
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classical FCFS-based backfilling algorithm. Second, we evaluate the impact of
the accuracy of user-provided estimate runtime on the performance of scheduling
algorithms.

Simulator. We designed and implemented a trace-driven simulator to evaluate
the performance of various of scheduling algorithms, which simulate events and
states related to batch job scheduling, such as node allocation, job scheduling, job
queue status, etc. The input of the simulator includes a job submission trace and
a scheduling algorithm. The output of the simulator includes key performance
metrics for scheduling systems, which are to be discussed in more details below.

Workload Traces. In our evaluation, we analyze four real workload traces col-
lected from production systems from the Parallel Workload Archive [10]. Variants
of backfilling is used as the default scheduling strategy in these systems. Each
trace entry contain job description information items such as user-provided run
time estimate, job submission time, actual execution time, and job size (number
of processors requested). Below we briefly describe these traces:

– ANL: This trace contains entries for 68,936 jobs that were executed on a
40,960-node IBM Blue Gene/P system at Argonne National Laboratory
called Intrepid. It was collected during the first 8 months of 2009 from the
40-rack production Intrepid.

– SDSC : This trace contains entries for 250,440 jobs that were executed on
the 144-node IBM SP2 called Blue Horizon at the San Diego Supercomputer
Center from April 2000 to January 2003.

– CTC : This trace contains entries for 79,302 jobs that were executed on a
512-node IBM SP2 at the Cornell Theory Center from July 1996 through
May 1997.

– HPC2N : This trace contains entries for 527,371 jobs that were executed on a
120-node Linux cluster from the High-Performance Computing Center North
(HPC2N) in Sweden from July 2002 to January 2006.

Metrics.We evaluate our proposed approach with four commonly used schedul-
ing performance metrics, as defined below.

– Wait Time (wait): the average per-job wait time in the job queue.
– Bounded Slowdown (slowdown): the ratio of a job’s response time to its

actual execution time. In this work, we use bounded slowdown to reduce the
impact of very short jobs on the average value, calculated as shown in the
formula below. The bound value of 10 seconds is used in all our experiments.

WaitT ime+Max(RunT ime,BoundT ime)

Max(RunT ime,BoundT ime)

– Queue Length (qLength): the number of average waiting jobs in the job queue
at a given time.

– Backfill Ratio (bRatio): the ratio of the number of backfilled jobs to the total
number of jobs.



46 S. Niu et al.

0

20

40

60

80

100

120

140

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

ANL

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

SDSC

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

CTC

0

20

40

60

80

100

120

140

160

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

HPC2N

Classical,Actual
Checkpoint(p=0.1)
Checkpoint(p=0.2)
Checkpoint(p=0.3)

Checkpoint(p=0.4)
Checkpoint(p=0.5)
Checkpoint(p=0.6)
Checkpoint(p=0.7)

Classical,Actual
Checkpoint(p=0.1)
Checkpoint(p=0.2)
Checkpoint(p=0.3)

Checkpoint(p=0.4)
Checkpoint(p=0.5)
Checkpoint(p=0.6)
Checkpoint(p=0.7)

Fig. 4. Performance of checkpoint-based algorithm with different p values, normalized
against the performance of the classical backfilling algorithm, which is marked by
the dotted “100%” reference line. The “Classical, Actual” bar shows the performance
with the classical algorithm, but supplied with the actual wall time (i.e., without any
estimation error).

As will be shown later, with the checkpoint-based backfilling algorithm, most
of the jobs still wait only once in the queue. Thus its wait time is the difference
between its execution and submission. However, for jobs that do go through
checkpointing, the wait time includes all segments of waiting the job spends in
the queue.

Note that our trace-driven simulation is asynchronous, in the sense that we
replay each job’s submission according to the submission time specified in the
trace. Therefore, even if an algorithm can improve system utilization, it will not
be able to shorten the makespan for all jobs. In this context, it can be proved that
the average wait time and the average queue length are equivalent. Therefore,
in our results discussion, we only report the job wait time.

4.1 Performance of Checkpoint-Based Backfill Algorithm

Recall that in the checkpoint-based backfill algorithm, there are two key param-
eters:

– tthr: The estimated wall time threshold, to mask jobs with wall time esti-
mate smaller than this given threshold from being scaled down with p when
calculating the predicted execution time. If tthr is set too low, many short
jobs will be checkpointed, causing increased overhead. In this paper, we fixed
this parameter at 1800 seconds.

– p: The scale-down factor used to predict the actual job run time. The process
of tuning p needs to consider the tradeoff between system utilization and
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Fig. 5. Scheduling performance of different backfilling algorithms, averaged over subset
of days where the system utilization level falls into certain intervals

cost. If p is set too low, many of the backfilled jobs might not finish by
the reserved time for higher-priority jobs, and have to be checkpointed. In
contrast, a very high value of p can reduce the backfill ratio and work quite
similar to the classical algorithm. So we suggest that system administrators
utilize their systems’ historical job statistics in selecting a proper p.

Figure 4 shows the simulation results and compares the checkpoint-based algo-
rithm with two variants of the classical one (with the user supplied run time
estimate and with the actual job run time as a “ideal” estimate).

From the result, our algorithm performs better than both the base and ideal
cases of classical algorithm in wait time (equivalent to queue length) and the
backfill ratio. This is expected because of our relaxed condition. At the point of
p = 0.1 or p = 0.2, our algorithm performs better than other selection of p.

One thing to note is the slowdown factor. Except for trace HPC2N, the slow-
down in our algorithm can be larger than the ideal case of classical algorithm
(but still far better than that of the base classical algorithm). The dominant
reason for this is that the accurate estimation of small jobs can significantly
improve the slowdown factor. However, it’s impossible for the users to know ex-
actly how long their jobs can run. In fact, our algorithm still performs better
than classical algorithm if we directly use the runtime estimate in the collected
trace. In trace set CTC and HPC2N, the slowdown decreases more than 50%.

So from these experiments, we have verified that our algorithm is more ad-
vanced than the classical algorithm in improving scheduling performance. Across
the traces we obtained, it appears that a p value of 0.1 or 0.2 delivers the best
overall performance. It matches the observation from Figure 2: more than 40%
jobs have at least a 5-time overestimation in specifying their expected wall time.

Figure 5 further compares the three algorithms by partitioning days recorded
in the trace into multiple buckets according to the daily average system utilization
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Fig. 6. Evaluation of the impact of estimate accuracy on scheduling algorithms. The
left side uses classical algorithm, and right side uses the checkpoint-based algorithm
with p = 0.2. The higher α is, the more inaccurate runtime estimate will be. When
α = 0, it is scheduled with actual runtime. When α = 1, it is scheduled with user-
provided runtime estimate.

level, and depicting average queue length over jobs in each bucket. It demonstrates
that our proposed checkpoint-based algorithm significantly reduces the average
queue length on most of the four platforms, especially when the system is busy.

4.2 The Impact of Estimate Accuracy on Scheduling Algorithms

To understand the impact of overestimation on algorithms’ behavior, we evaluate
how the two algorithms perform under different degrees of overestimation. As
in the Figure 6, the result indicates checkpoint-based algorithm is more stable
regarding the degree of inaccuracy changing, especially slowdown metric.

The degree of overestimation is defined as a job’s actual run time dividing
the runtime estimate. To do quantitative analysis, we introduce a parameter α,
where tsch = trun + α × (treq − trun). Here treq is the job’s user requested run
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time in real world trace. We use the tsch as the job’s user estimated runtime
to submit to the simulator. In this manner, we can obtain workload traces with
different overestimation degrees by tuning the α. When α = 0, tsch = trun and
when α = 1, tsch = treq. The larger α is, the more inaccurate estimate time will
be.

In Figure 6, we simulate the cases when α is 0, 0.5 and 1. The left side uses
classical algorithm, and right side uses the checkpoint-based algorithm. It’s quite
clear left results vary in much larger extent when the runtime estimate tends to
be more inaccurate. For example, the slowdown factor, which grows even more
than twice when α changes from 0 to 1 in trace sets CTC and HPC2N.

These results indicate that classical algorithm might work well when the user
estimation is accurate enough, and it’s sensitive to the inaccurate factor. How-
ever, in Figure 2 we have shown it is usually unrealistic to have accurate estimate
in real world system: a large portion of users tend to highly overestimate the
actual run time by more than 5 times. Moreover, even in optimal case (α = 0),
classical algorithm can archive only comparable performance as checkpoint-based
algorithm, which is also consistent with our results in previous section.

5 Analyzing Checkpoint/Restart Overhead

In the previous section, we don’t consider the overhead of the checkpoint/restart
operations. Actually the software state and temporary data are saved to the
storage in checkpoint process, and are restored in restart process. In this section,
we evaluate the overhead introduced by checkpoint/restart via simulation.

5.1 Checkpoint Overhead Analysis

We select the trace of Argonne Intrepid to evaluate. Intrepid is a 557 TF, 40-rack
Blue Gene/P system deployed at Argonne National Laboratory. This system was
ranked No. 15 in the list released in June 2011 [22]. It has 40,960 compute nodes
and 640 I/O nodes, which is configured with a single I/O node managing 64
compute nodes. These I/O nodes connect to the file servers with 10 Gb Ethernet
network. The peak bandwidth between the I/O node and the network is limited
to 6.8 Gb/s. All the 640 I/O nodes can theoretically deliver up to 4.25 Tbps [23].

The entire Intrepid system consists of 128 dual-core file servers. The file servers
connect to DataDirect 9900 SAN storage arrays through the Infiniband DDR
ports, each with a theoretical unidirectional bandwidth of 16 Gbps. All the 128
file servers can theoretically deliver up to 2 Tbps [23].

Generally, the bandwidth bottleneck for the maximum data throughput lies
more towards the file servers than the I/O nodes when the system is running in
its full capacity. However, only partial running jobs are involved in checkpoint in
the checkpoint based backfilling scheduler. The bottleneck depends on the I/O
nodes bandwidth, which is limited to 0.85 GB/s per I/O node [23].

At the reserve time, it’s not allowed to run the reserved job until all preempted
job have done checkpoint. The delay of the reserved job depends on the maximal
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Fig. 7. Evaluation the impact of checkpoint overhead using ANL trace. Different check-
point overhead are simulated. The simulate results that using classical backfill algo-
rithm with runtime estimate are the baseline.

checkpoint duration of all preempted jobs. The restart process also consumes the
resources, which extends the actual runtime. There is no memory requirement
information in the workload trace of ANL. So we prepare for the worst, and
simply assume the required memory is the total memory of the compute nodes.
We assume that 70% of the bandwidth is available. Therefore, the delay time
and extended runtime can be calculated as following.

Tdelay = Tchkpnt = 2G× 64/(0.85GB/s× 70%) = 215s.

Textend = Tchkpnt + Trestart ≤ 2× Tchkpnt = 430s.

Algorithm 2 should be modified to reflect the runtime extending. In the algo-
rithm, the predicted runtime of checkpointed jobs need to add the Textend.

5.2 Evaluation Results with Overhead

Our algorithm with checkpoint overhead is evaluated in Figure 7. It’s compared
against the same algorithm without adding overhead. To reflect the impact of
the checkpoint overhead, we simulated with different Textend values such as 120,
430, 1200 and 3600 seconds.
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In addition to the original metrics, we also import three metrics to depict the
overhead:

– Preempt Ratio (pRatio): The ratio of the preempted jobs to all jobs.
– Checkpoint number per node in a day (cNum): The average checkpoint num-

ber for a compute node in a day.
– Waste Resource Ratio (wRatio): The ratio of the waste computing resources

by preempt to all computing resources.

From the result, even adding the overhead, our algorithm still outperforms the
baseline a lot when p is 0.2. The waiting time and queue length are improved
by up to 40%. The slowdown is improved about 20%. In fact, Figure 7 indicates
that the chances we have to do checkpoint are rare. When p = 0.2, the average
number of checkpoint on each node is about 0.4 times per day and only 4% of
the jobs need to do checkpoint. The waste resource is not more than 1.5%.

One thing to note is the intercepted point in slowdown curve in Figure 7. In
fact, the runtime extending enlarges the backfill window and lets more shorter
jobs to be backfilled. Thus, the backfill ratio increases, and the slowdown becomes
better in some cases.

In summary, the overhead in checkpoint does not hurt the algorithm a lot,
since the number of checkpoint we need to do is not quite large in our set-
tings. Thus we stand on solid ground to conclude that the overhead is tolerable
compared with the benefits gained.

6 Related Work

6.1 Job Scheduling Algorithms

Job scheduling systems take an important part in improving the efficiency of high
performance computing (HPC) centers. Although a lot of scheduling algorithms
have been proposed by industry and academia [2, 3], FCFS-based backfilling
algorithm is regarded as the most efficient algorithm for modern HPC centers.
Several variants of FCFS-based backfilling algorithms serve as the default setting
in a lot of famous job scheduling systems, such as LSF [5], Moab [6], Maui [7],
PBS/Torque [8] and LoadLeveler [9].

User estimated runtime is a key factor affecting performance of backfilling
algorithms. The first study to identify the inaccuracy of user runtime estimates
was Feitelson and Mu’alem Weil [24]. There are a lot of studies trying to improve
the accuracy of user estimated runtime. Chiang et al. suggested a test run before
running to acquire more accurate estimated runtime [13]. Zhai et al. developed
a performance prediction tool to assist an accurate estimated time [14]. Tang
et al. got usable information from historical information [15]. In order to improve
the estimate accuracy, Cynthia Bailey Lee et al. gave a detailed survey. However,
performance prediction is a very difficult problem for HPC users. Most of user
estimated runtime provided to scheduling systems is not accurate enough [16].
This results in very poor efficiency for scheduling systems.
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Lots works suggested relaxing the backfilling conditions. These methods al-
lowed jobs to be backfilled even that the estimated runtime are longer than the
backfilling window. If the backfilled jobs can’t finish in the specified period, un-
completed backfilled jobs are allowed to continue [15, 25, 26]. This strategy will
postpone top-queue jobs.

Several works suggested preemption based backfill. Snell et al. studied ag-
gressive backfill with kill-based preemption and discussed strategies that were
used to select candidate preempted jobs [27]. Maui support PREEMPT backfill
policy. It allows the scheduler to start backfill jobs even if required walltime is
not available. If the job runs too long and interferes with another job which was
guaranteed a particular timeslot, the backfill job is preempted and the priority
job is allowed to run [28]. Perkovic et al. proposed “speculative backfilling” after
regular backfilling [29]. If a speculatively run jobs runs longer than its specu-
lated time, it will be killed. Most of these works focused on kill-based preemption.
However, checkpoint-based preemption has different features than kill-based pre-
emption. The latter hopes that preempted jobs have a short running time to
reduce waste resources. It is more suitable for improving the short-run failure
jobs. Our work uses checkpoint-based preemption, and it hopes that preempted
jobs have a long running time to improve effect-cost ratio. It is more suitable for
solving inaccurate user-provided runtime estimate.

Morris Jette et al. developed a preemption-based gang scheduler at Lawrence
Livermore National Laboratory (LLNL) for the Cray T3D. The Gang Scheduler
combines a checkpoint-based preemptive processor scheduler with the ability to
relocate jobs within the pool of available processors. That approach can sus-
tain machine utilization and provide interactive workload with a lower response
time [30, 31]. Different, our work is focused on traditional backfilling algorithm.

6.2 Checkpoint/Restart Techniques

As the size of HPC systems increases, reliability is becoming more and more
important for HPC users. Checkpoint/Restart technique has become a standard
configuration for real systems.

A lot of system-level and application-level checkpoint techniques have been pro-
posed. Berkeley Lab’s Checkpoint/Restart (BLCR) is a system-level checkpoint
technique, which is the Linux kernel-based coordinated checkpoint technique [17].
BLCR is integrated with LAM/MPI and OpenMPI to provide checkpoint and
restart for parallel applications. IBM proposed a special application-level check-
point library [32] for BlueGene/P applications. This library provides support for
user initiated checkpoint. Users can insert checkpoint invocation manually in the
application arbitrarily. Xue et al. propose a user-level file system which can guar-
antee the consistency between the application and its files during checkpoint and
restart [33].

A lot of work tried to reduce the overhead of checkpoint. Liu et al. used ex-
ponential distributions to model the system failure, and proposed a reliability-
aware checkpoint/restart method [34]. Shastry et al. found that the optimal
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checkpoint interval was approximately directly proportional to the checkpoint
cost while inversely proportional to shape parameter [21].

7 Conclusion

In this paper, we propose a checkpoint-based backfill algorithm, and evaluate
it using real workload traces. Our analysis indicates that the checkpoint-based
backfill algorithm can effectively improve the job scheduling in waiting time,
slowdown and mean queue length by up to 40%. The checkpoint/restart overhead
is also analyzed based on the real trace from Argonne Intrepid system. The
results show that only 4% of the jobs need to be checkpointed due to preemption.
This demonstrates that our checkpoint-based algorithm is able to improve overall
system utilization considerably without spending significant amount of system
resources on checkpoint/restart operations.

We plan to extend our work in several directions. We will develop an aging
algorithm to adaptively tune the parameter p so as to achieve approximating op-
timal performance. Moreover, we will study other split policies, such as splitting
the running process into three segments.We will also apply the checkpoint-ability
to other job scheduling algorithms.
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Abstract. A formalization of the processor-set selection problem for parallel
job-schedulers is presented and proven to be NP-hard in the strong sense. Nonethe-
less, a simple and straightforward algorithm for the problem is presented, and is
seen to perform well in practice when used in combination with more realistic,
less uniform, cost-structures.
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1 Introduction

The problem of determining when and where to run a parallel program on a parallel
computer is usually referred to as job scheduling, and is but one incarnation of schedul-
ing and resource allocation problems which recur at a variety of levels and scales in the
context of parallel processing.

Parallel programs running on parallel computers are susceptible to run-time delays
due to communications congestion, and it therefore benefits each program (and other
simultaneously running programs) if its communicating subtasks are mapped to pro-
cessors that are located close together in the communication topology of the computer
system being used. For reasons of efficiency/performance, a parallel program’s subtasks
should thus be mapped to processors such that intensively inter-communicating pairs of
subtasks are as closely located as possible and vice versa, and a variety of methods to
do so have been developed over the last 25 years [3–8, 36].

Unfortunately, current parallel job-schedulers tend to assign programs to run on
more-or-less randomly assembled collections of processors [26, 34], and in such cases
a carefully determined mapping of program subtasks to logical processors is essentially
worthless. Making parallel job-schedulers select processor collections that are closely
located (i.e., ‘compact’) in the communication topologies of parallel computer systems
is not only an efficiency/performance issue, however. For sites where single jobs never
(or very very rarely) use an entire system, efficient and reliable selection of compact
processor collections by the job-scheduler would enable hardware configurations with
lower bisection bandwidths to remain competitive for the workloads in question, and
could thereby strongly influence system procurement costs.
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In this paper we present a flexible formalization of the processor-set selection prob-
lem for parallel job-schedulers. We show that the resulting optimization problem is NP-
hard, and present results suggesting that the use of more realistic system models, with
less homogenous cost-structures, may improve the quality of processor-set selections
obtained for practically occurring problem instances.

2 Related Work

Parallel job scheduling and topology aware task mapping are well known problems that
have been extensively studied since the early 1990s and early 1980s, respectively. Each
field has an extensive collection of litterature associated with it, and the coverage in
subsections below is necessarily very brief.

2.1 Parallel Job Scheduling

The dominant scheme for scheduling parallel jobs on parallel computers is known as
variable partitioning [14], the meaning of which is that when scheduled to run, each job
is assigned a set of processors (i.e., a partition) of the requested size that it keeps and
uses throughout its lifetime. In early parallel job schedulers partitions were allocated
strictly in a first-come first-served (FCFS) manner to submitted jobs, with the result that
system utilization most typically was below 60 % [18]. A widely used refinement of the
scheme just described is to also apply a technique known as backfilling [23], whereby
jobs that are not first in line to be started are nonetheless started, when doing so is
possible without affecting the expected starting-time of the job that is currently first in
line to be started. Through backfilling and other improvements, such as ordering jobs by
priority rather than strictly FCFS, it has become entirely realistic to achieve utilization
figures above 80 % [18, 25, 30].

All currently used parallel job schedulers (e.g., PBS, LSF, LoadLeveler, SLURM,
Sun/Oracle GE) use variable partitioning schemes with backfilling and order waiting
jobs by priority. Additional features such as fair-share scheduling, consumable re-
sources, and job preemption are also supported in many cases. Strategies for choosing
the actual subsets of nodes to use for each job, are however essentially limited to select-
ing the least loaded nodes, selecting available nodes in some constant sequential order,
or selecting nodes such that the number of consecutive sets of nodes is minimized.
However, due to fragmentation and boundary effects, these strategies tend not to yield
particularly encouraging results for recent generations of parallel computer systems.

2.2 Topology Aware Task Mapping

Substantial theoretical and practical research on interconnect topologies and topology-
aware mapping of tasks to processors was performed from the early 1980s to the mid
1990s. Heuristic techniques such as pairwise exchange were initially suggested [6, 21],
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but subsequently found not to scale well. Instead, methods were developed based on
recursive partitioning [13] and graph contraction [3]. Yet other methods were developed
based on techniques such as simulated annealing [7] and genetic algorithms [8]. The
mapping problems considered were not always constrained to having predefined tasks.
Mapping of recurrence relations [29] and loop iterations [11] onto regularly connected
grids were other aspects of mapping being studied.

Due to the deployment in the mid 1990s and onwards of virtual cut-through and
wormhole routing [19, 27] and the emergence of faster interconnects, message laten-
cies became relatively unimportant and research in topology aware mapping of compu-
tations died down. However, with the reemergence of three-dimensional torus networks
in recent top-of-the-line supercomputers [1, 10, 17], and due to other reasons as well,
message latencies are again gaining in significance and interest in topology aware task
mapping is increasing [4, 5, 26, 36].

Processor-set selection by job-schedulers is an area that has been investigated pre-
viously [2, 33, 34], but to our knowledge only for mesh and torus topologies, whereas
hierarchical topologies have received very little attention.

3 Problem Formulation and Notation

There exists a vast variety of communication network topologies for parallel computing,
but because of the dominance of flat and hierarchically structured network topologies
(e.g., Clos networks [9] and fat-trees [22]) in current and recent Top500 rankings,1 we
only consider such network topologies in the present paper. For a fat-tree network with
256 compute nodes, overall performance differences of 200–400% due to bad processor
selections have been reported [26], and our interest in flat and hierarchical topologies is
thus not misplaced.

3.1 A Concrete Sample-System

Current high-performance computer systems are typically composed of several hun-
dred or thousand compute-nodes, connected to one another by communication networks
of various kinds, as well as power-distribution networks, cooling networks (for water-
cooled systems), etc.

Figure 1 shows a fairly typical 256-node/2048-core system with nodes arranged in
10 racks with 25 nodes in each rack, and with the six nodes thereby not accounted
for located in the center-rack (together with login-nodes, management-nodes, and a
288-port Infiniband switch). The limit of 25 nodes per rack is to prevent excessive floor
loading, and as expected nodes 1–25 (counted from the bottom and upwards) are located
in rack 1, nodes 26–50 in rack 2, and so on.

The system’s job-scheduler communicates with the nodes over a dedicated con-
trol/monitoring network (plain ethernet) in which a separate switch is responsible for

1 November 2011: 41.8 % InfiniBand, 44.8 % Gigabit Ethernet,
November 2010: 45.2 % InfiniBand, 42.8 % Gigabit Ethernet.
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v

Fig. 1. A 256-node system, with its power- (red) and control- (yellow boxes) networks

the nodes in consecutive pairs of racks. A yellow rectangle has been placed behind each
group of nodes managed by a common switch in Fig. 1. The power distribution network
is shown in red in Fig. 1. The red boxes shown below the compute node racks represent
fuse-blocks, and as can be seen in the figure, nodes 1, 4, 5, 8, 9, 12, 13 of each rack are
connected to one power-line, while nodes 2, 3, 6, 7, 10, 11 of the same rack are connected
to a different power-line, and in quite a few cases also to a different fuse-block.

The communication between compute-nodes is performed over InfiniBand. Inter-
nally, the 288-port InfiniBand switch used has a Clos topology [9, 32], and has 12 com-
pute nodes connected to each line-card (local routing of messages is performed by each
line card). Compute nodes are connected in-order to line-cards, so that nodes 1–12 are
connected to line-card 1, nodes 13–24 to line-card 2, nodes 25–36 to line card 3 etc.

With all the different networks that are involved and their differing structures, it
is clear that no single hierarchy (such as can be defined when using SLURM [35] or
PBS Pro job schedulers) will suffice to simultaneously take the various networks of the
system into account. To make matters concrete, it is desirable that a job makes use of
as few InfiniBand line-cards as possible (for communication efficiency reasons), but at
the same time it should ideally also make use of as few power-lines as possible (so that
each given job is affected by fewer blown fuses), and it should be assigned to nodes
below as few different control-network switches as possible (so that each given job can
be harmed by as few failed switches as possible).

Finally, the system in Fig. 1 is air-cooled, with cold air being provided from below
on the system’s font-side. For this reason the use of physically lower positioned nodes
is preferrable over the use of physically higher positioned nodes, and because of flow
of hot air around the sides of the system from rear to front, it is more desirable to use
centrally positioned nodes than to use nodes nearer to the sides.

With all things considered, it is clear that the limitations and constraints of the vari-
ous networks present in a cluster system can interact in non-trivial ways with respect to
processor set selection, and that when cooling and energy consumption issues are con-
sidered, no two compute-nodes are truly identical unless they also occupy exactly the
same physical location. These properties stand in noticeable contrast to most idealized
scheduling and selection problems, in which sets of indentical resources and/or objects
tend to be assumed.
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IB1: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IB2: IIIIIIIIIIIII · · ·
..
.

PL1: IIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII
PL2: IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII
...

CN1: IIIIIIII
CN2: IIIIIIII
CN3: IIIIIIII
CN4: IIIIIIII
.
..

Fig. 2. Typical processor-set definitions, shown as bit-vectors

3.2 Problem Formalization

To address the processor-set selection (PSS) problem such that the different types of
constraints mentioned above can be accounted for, we define a set of processor num-
bers corresponding to each practical constraint that involves that particular collection
of processors. For example, since compute nodes 1–12 are attached to line-card 1 on
the InfiniBand switch and compute nodes 13–24 are attached to line-card 2, etc., we de-
fine sets: IB1 = {1, . . . , 96}, IB2 = {97, . . . , 192}, etc. Similarly, we define sets PL1 =
{1, . . . , 8, 25, . . . , 40, 57, . . . , 72, 89, . . . , 104}, PL2 = {9, . . . , 24, 41, . . . , 56, 73, . . . , 88},
etc., for processors connected to a common power-line, and continue in the same man-
ner with processor-sets for control-network switches, as well as for each group of pro-
cessors on the same compute-node (CN1, CN2, etc.). For the processor-set definitions
given above it is assumed that each compute-node has eight processors, and an in-
complete but nonetheless illustrative rendering of such processor-sets is given in Fig. 2
(above). A complete example of processor-set definitions is also presented in the ap-
pendix.

Now, let U = {1, . . . , m} for some m ∈ IN be the set of all processors that are under
the job-scheduler’s control. For each processor-set Pi ⊆ U , i ∈ {1, . . . , n}, defined
as described above (i.e., P1 = IB1, P2 = IB2, etc.), an associated �-element cost-vector
ci ∈ IN� is defined. Given the collection of defined processor sets and their associated
cost-vectors, we view the total cost of a processor-set selection S ⊆ U as being given
by the vector-sum (denoted by ⊕) of those cost-vectors ci for which the corresponding
processor-set Pi has at least one element in common with S. That is, the cost of a
processor selection S can be defined as:2

cost(S) =
n⊕

i=1

ci

[
(Pi ∩ Si) �= ∅̂

]
, (1)

from which it follows that the cost of a selection is itself also a cost-vector.

2 Using the notation introduced in [16, page 24] whereby a pair of brackets enclosing a boolean
expression evaluates to 1 when the enclosed expression evaluates to true and evaluates to 0
when the enclosed expression evaluates to false.
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Cost-vectors are compared lexicographically, which means that we consider the cost
ci ∈ IN� as being lower than c j ∈ IN� when ci ≺ c j , with the definition of the latter
notation given by:

ci ≺ c j ≡ (ci )1 < (c j )1 ∨ (
(ci )1 = (c j )1 ∧̂ (ci )2 < (c j )2

) ∨ · · ·
· · · ∨ (

(ci )1 = (c j )1 ∧̂ · · · ∧̂ (ci )�−1 = (c j )�−1 ∧ (ci )� < (c j )�
)
,

wherein the notation (ci )k is used to indicate the kth element of ci ∈ IN�.
Given a set Pa ⊆ U , of currently available processors and a number of required

processors r ∈ IN, the processor-set selection problem is to find a solution, X , to the
following optimization problem:

min≺
X⊆Pa

{
cost(X̂)

⏐⏐⏐ |X | ≥ r
}
, (2)

or determine that no such solution X exists.

3.3 Motivations

Compared to plain scalar values, lexicographically ordered cost-vectors have the advan-
tages that different concerns (e.g., communication costs, electrical reliability, energy
consumption, etc.) are easy to keep separate and differently prioritized, and that cost-
constraints to decide the acceptability of selections can be defined in terms of individual
cost-vector components. When the cost of each processor-set is limited to being a single
scalar value, such tasks become more difficult and thus error-prone.

As described above, a processor-set is defined for a group G of processors to indicate
that it is desirable (with respect to some criterion) to let the processors of G be selected
for jobs of size ≤ |G|. That is, selecting processors from two different processor-sets
P1 and P2, with cost-vectors c1 and c2, when any one of P1 or P2 alone would suffice,
leads to a total selection cost of c1⊕c2 instead of min≺(c1, c2). In many real cases, how-
ever, the cost implied by a processor-set definition only arises when the processor-set
is straddled by a processor selection and not when the requested number of proces-
sors can all be selected within the processor-set, suggesting that common and essential
problem-features are not captured by the model.

The idea behind the processor-set/cost-vector model for processor selection, how-
ever, is that the surplus costs incurred by undesirable processor selections will cause
minimization procedures to find more suitable selections whenever such exist,3 and
that it therefore should be irrelevant whether the base (i.e., minimum) total cost of each
particular processor selection is zero or some other value. In the case of P1 and P2 just
above, for example, it is not important that the minimum selection cost is min≺(c1, c2)

instead of 0, but what is important is that any attempt at selecting processors from both
sets will lead to a total selection cost that lies as much above this minimum selection
cost as is given by the (lexicographically) larger value of c1 and c2.

3 In this context we consider such minimization procedures to be exact, despite the results in
Section 4 and Section 6.
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4 Complexity of the Processor-Set Selection Problem

The theorem below establishes that PSS is NP-hard in the strong sense, which in turn
implies that an algorithm that efficiently delivers exact answers for all conceivable prob-
lem instances is unlikely to exist.

Theorem 1. The PSS problem is NP-hard in the strong sense.

Proof: The proof is by reduction from the set-union knapsack problem (SUKP). The
SUKP is defined as follows:

There is a universe of m elements, denoted by 1, . . . , m, and n items,
with the set of elements constituting item i denoted by Pi , and such that
the union of all items is the set of all elements,

⋃n
i=1 Pi = {1, . . . , m}.

The value of item i is denoted by vi and the weight of element j is de-
noted by s j . The capacity of the knapsack is b. For any K ⊆{1, . . . , n},
we define PK as PK = ⋃

i∈K Pi . The objective of the SUKP is to find a
solution (K ) to the following mathematical program:

max

⎧
⎨
⎩

∑

i∈K

vi

⏐⏐⏐⏐⏐⏐

∑

j∈PK

s j ≤ b, K ⊆ {1, . . . , n}
⎫
⎬
⎭ , (3)

or less formally expressed; to find a collection of items of maximum
total value such that the weight of their constituent elements does not
exceed the knapsack capacity b.

In [15], Goldschmidt et al. show that SUKP is NP-hard in the strong sense, even in the
case when |Pi | = 2, s j = 1 and vi = 1, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Given b ≥ m, the problem in Eq. (3) is trivial. The solution K is simply chosen to
contain all items Pi , i = 1, . . . , n. Given b < m, one or more elements (and the items
containing these elements) must be removed from the solution for b ≥ m. The elements
to remove in order to satisfy Eq. (3) are those for which the items that are consequen-
tially removed contribute the least to the overall value of the knapsack. With R denoting
the set of elements to remove, and assuming that s j = 1 for all j ∈ {1, . . . , m}, this can
be expressed as:

min
R⊆U

{
n∑

i=1

vi

[
(R ∩ Pi ) �= ∅̂

] ⏐⏐⏐⏐⏐ |R| ≥ m − b

}
, (4)

where U = {1, . . . , m}. Assuming single-element cost-vectors, and that Pa = U , the
minimization problem in Eq.(4) is identical to that in Eqs.(1–2), and the proof is thereby
complete.
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5 A Simple Processor-Set Selection Algorithm

As should be expected from the results arrived at in Section 4, the simple algorithm
presented below is by no means guaranteed to find optimal solutions.

The main idea behind the algorithm SELECTPROCESSORSET (in Fig. 3) is to start
with the set of all currently available processors Pa being the set of selected processors,
and then successively remove subsets of Pa that correspond to defined processor sets
(i.e., Pi , i ∈ {1, . . . , n}), until removing any further such subsets would leave less than
the required number, r , of processors selected.

The way in which processor-sets Pi are removed from the set of selected processors
has some similarities to the concept of reaching as used in dynamic programming [12],
in which case solutions to subproblems are computed before it is known whether these
solutions will be of use in obtaining the final solution.

The algorithm begins by populating the array remove such that remove[k] holds the
defined processor set (i.e., one of Pi , i ∈ {1, . . . , n}) of size k with the lexicograph-
ically largest associated cost-vector (among processor-sets of size k). The algorithm
then proceeds to its main phase, in which remove[k] is processed in sequence (for
k = 1, . . . , |Pa| − r − 1), by forming the union of remove[k] with each element of Cp
(i.e., the defined processor-sets). The size of each processor-set, s′, so obtained is deter-
mined, and when the total cost of s′ is lexicographically greater than that of the current
value of remove[|s′|], the value of s′ will replace the current value of remove[|s′|].

When remove[|Pa| − r − 1] has been processed in the manner just described, the
algorithm’s suggestion for the best set of processors to remove from Pa such that q pro-
cessors remain (where q ≥ r ) is stored in remove[|Pa|− q], and consequently, the value
given by Pa \ (remove[|Pa|−r ]) is returned as the result of the SELECTPROCESSORSET

algorithm.
Note that actual implementations (vide infra) of the algorithm in Fig. 3 compute cost-

vectors for processor-sets when forming the unions s ∪ (pk ∩ Pa), or shortly thereafter,
and do not as in Fig. 3 repeatedly redo this calculation (in MAXCOSTSET). This is done
in Fig. 3 for the purpose of simplifying the presentation.

6 Algorithm Implementation and Evaluation

The algorithm in Fig. 3 and a worst-case exponential-time algorithm for the set-union
knapsack problem4 described by Goldschmidt et al. [15] were first implemented in
Common Lisp [31], along with a simple framework to perform processor-set selection
driven by the workload trace described below.

Having observed that the Lisp implementation of the algorithm in Fig. 3 behaved
and performed reasonably, it was reimplemented in ANSI C [20] and interfaced to the
parallel environment queue selection (PQS) API of the Sun Grid Engine (SGE) job-
scheduler, and evaluated as described in Section 6.3 below.

4 Similarly to how the algorithm in Fig. 3 operates internally, the set-union knapsack algorithm
was used to determine which processors not to select.
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Algorithm SELECTPROCESSORSET( r , Pa, Cp, Cv )
Inputs: r ∈ IN\{0}: the number of processors requested,

Pa ∈ IP(IN) : the set of currently available processors,
Cp = 〈p1, . . . , pn〉 : a sequence of processor-sets,
Cv = 〈v1, . . . ,vn〉 : a sequence of corresponding cost-vectors.

Output: S: a set of processors (∅ if selection impossible).
begin

if r ≤ |Pa| then
for k ← 1 to n do

q ← pk ∩ Pa;
remove[|q|] ← MAXCOSTSET( q, remove[|q|], Cp, Cv );

od
for j ← 1 to |Pa| − r − 1 do

if remove[ j ] 	= ∅ then
s ← remove[ j ];
for k ← 1 to n do

s′ ← s ∪ (pk ∩ Pa);
if |s′| > |s| then

remove[|s′|] ← MAXCOSTSET( s′, remove[|s′|] , Cp, Cv );
fi

od
fi

od
S ← Pa \ remove[|Pa| − r ];

else
S ← ∅;

fi
end
-
proc MAXCOSTSET( s1, s2, 〈p1, . . . , pn〉, 〈v1, . . . ,vn〉 ) : IP(IN) ≡

c1 ← 0;
c2 ← 0;
for k ← 1 to n do

c1 ← c1 ⊕
[
(pk ∩̂s1) 	= ∅

]
vk ;

c2 ← c2 ⊕
[
(pk ∩̂s2) 	= ∅

]
vk ;

od
if c1 ≺ c2 then

return s2;
elif c2 ≺ c1 then

return s1;
else

return (if rectrand(0.0, 1.0) < 0.5 then s1 else s2 fi);
fi

end

.

Fig. 3. The simple processor-set selection algorithm
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6.1 Workload Details

The workload used for evaluation is a trace of submitted and executed jobs correspond-
ing to one week (24×7 hours) of wall-clock time on the system described in Section 3.1
(and depicted in Fig. 1). The trace begins at a time directly following a restart of the
entire system, and jobs started prior to the window of observation need therefore not be
considered.

Looked upon in further detail, the workload used can be seen to have the following
characteristics:

21902 jobs in total with a mean job-size of 44.6 ± 27.4 processors (5.57 ± 3.43 nodes),
and with 6692 jobs using 8 or fewer processors (i.e., using at most one node). For
jobs using 8 processors or less, the mean run-time is 243 ± 390 sec. The mean
run-time of jobs using more than 8 processors is 848 ± 3170 sec., and the mean
run-time of jobs using more than 8 processors and more than 900 sec. of run-time
is 8375 ± 6445 sec. (i.e., 2.3 ± 1.8 hours).

In all cases, above mentioned run-times refer to wall-clock times and have thus not been
scaled by the number of participating processors. Note that unlike the corresponding
situation for more conventional scheduling algorithms, when evaluating processor-set
selection algorithms it is important that the workload exhibits substantial variation in
the number of unused processors. This criterion is satisfied by the described workload.

On the system in question, the (wall-clock) run-time is limited to 8 hours for all
parallel jobs. For this reason it is common practice to use rather long job-chains (i.e.,
the last action of a running job is usually to submit a new instance of itself). In order
to avoid obtaining misleading results, the use of job-chains must be properly accounted
for when replaying the job-submission traces.

6.2 Prototype Evaluation

For the evaluation of Lisp algorithm implementations, the workload described above
was simplified by considering each compute-node to have only one processor (instead
of eight), and dividing the processor counts of all requests by eight.

The processor-set/cost-vector configuration comprised a total of 334 processor-set
definitions and associated (5-element) cost vectors, corresponding to InfiniBand line-
cards(22), control-network switches (7), power-lines (41), fuse-blocks (8) and compute-
nodes (256). The Figure-3-algorithm was run with two different sets of cost-vectors for
the mentioned processor-set definitions. In the first such set of cost-vectors, the cost
of compute-node processor-sets has been set to reflect the relative desirability of using
some compute nodes over others from an energy- and cooling-perspective, as described
in Section 3.1. In the second set of such cost-vectors, all compute-node processor-sets
have been assigned identical cost-vectors.

Runs with the described workload-trace were performed with the simple algorithm
using both sets of cost-vectors for all processor-selection requests, whereas the exact
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Fig. 4. Mean execution-times of the Lisp implementations of the simple and the exact processor-
set selection algorithms, as a function of |Pa|−r , for each request. All measurements were made
using compiled Lisp code with CMUCL [24] (release 19d) running on an Intel Core2 Duo T1700
1.8 GHz processor with 2Gb physical memory.

algorithm was run only when the problem size was small enough (|Pa| − r ≤ 12) that
its execution-time was still reasonable (see Fig. 4). The selection decisions made by the
simple algorithm using the more realistic (i.e., non-uniform) cost-vectors were the ones
actually used to change the selected-state of nodes maintained by the simulation, and
thus influencing the starting conditions for subsequent processor selections.

For the limited subset of selection problems that could be handled by the exact algo-
rithm, the simple algorithm using the more realistic cost-vectors arrived at a different
selection than the exact algorithm (also using realistic cost-vectors) for only 23 out of
4272 multi-node jobs/requests. When comparing results obtained for the two different
sets of cost-vectors and using the uniform cost-vectors to judge selection quality, se-
lections of equal cost were obtained with both sets of cost-vectors for 15155 out of
15210 multi-node jobs. For the remaining 55 jobs, better processor selections were ob-
tained using realistic cost-vectors than using uniform cost-vectors for 41 jobs ( ∼75 %),
even though solution quality was judged according to the uniform cost-vectors. Corre-
spondingly for the 4272 requests that could be handled by the exact algorithm, the exact
algorithm (now using uniform cost-vectors) arrived at better processor selections than
the simple algorithm using realistic cost-vectors for 4 jobs, and the simple algorithm
using realistic cost-vectors in turn arrived at better processor selections than the same
algorithm using uniform cost vectors for 4 jobs and worse for only 1 job, with solution
quality again judged according to the uniform cost-vectors. We view this as indications
that artificially introduced non-uniformness in cost-structure definitions may contribute
to improved processor-set selection quality.
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Prototyping the algorithms in Lisp allowed us to focus efforts on key issues, and post-
pone less immediately relevant matters such as file-formats for describing processor-
sets and cost-vectors, implementations of bit-vectors, and dynamic memory manage-
ment, that need to be addressed when using a language such as C. However, as can
be inferred from Fig. 4, showing mean execution-times (without error-bars, since these
would have completely cluttered the diagram), the execution-times fluctuate noticeably,
and one of the main reasons for this variability is that bit-vectors have been implemented
as bignums [31], the sizes of which vary in correspondance with the most significant
bit that is set.

6.3 SGE-Implementation Evaluation

The evaluation of the SGE-interfaced algorithm implementation used the workload de-
scribed in Section 6.1 without modification (i.e., assuming 2048 processors in total and
8 processors per node). Compared to the description in Section 6.2, processor-set defini-
tions were expanded as is implied by having 8 processors per node instead of only 1, and
cost-vectors were expanded by adding a new first element, through which the selection
of processors on as few different nodes as possible was made the primary objective.

A distinct SGE-master was set up on one of the management hosts of the system
described in Section 3.1, and its 256 compute nodes were cloned and subsequently sim-
ulated through Xen hypervisors and virtual machines on 16 compute nodes of the same
system (i.e., with 16 virtual compute nodes on each real compute node). Since the wall-
clock execution-time of each job is known from the workload-trace, each job simply
sleeps an amount of time corresponding to its execution-time,5 and therefore no sub-
stantial load arises on the virtual machines. This method of replaying the workload-
trace enabled us to observe the described algorithm and its implementation under very
authentic conditions, with a very modest impact on the physical system.

The mean recorded execution times of the SGE-interfaced processor-set selection al-
gorithm as a function of the number of processors not to select for each corresponding
job (i.e., |Pa| − r ) is shown in Fig. 5 (a). We find the observed running-times of the algo-
rithm to clearly be within acceptable limits, particularly in view of the fact that systems
of the kind in question should preferably be sufficiently heavily used that the number of
idle processors only rarely can be counted in the hundreds or thousands, and that in the
common case that parallel jobs are always given complete nodes for themselves, problem
sizes can be reduced as was done in Section 6.2. Finally, Fig. 5 (a) does indicate some
execution-time irregularities, but the exact sources of these are currently not clear to us.

As explicitly stated and as implied, respectively, in the previous discussion, the al-
gorithm was run with a processor-set and cost-vector configuration such that the pri-
mary objective was to select processors on as few different nodes as possible and the
secondary objective was to select processors connected to as few different InfiniBand
line-cards as possible. The third-, fourth-, fifth-, and sixth-level objectives were to min-
imize the use of control-network switches, power-lines, fuse-blocks, and compute-node

5 In order to ensure proper treatment by the SGE job-accounting machinery, the sleep oper-
ations were performed by letting an mpiexec-command in each job-script invoke sleep
commands (in parallel) that slept for the appropriate length of time.
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Fig. 5. (a) Mean execution-times of the SGE-interfaced processor-set selection algorithm as a
function of |Pa| − r , measured on a Sun Fire X4100 with 2.4 GHz AMD Athlon processors
and 4 Gb physical memory. (b) Average number of different InfiniBand line-cards used by jobs
of various sizes for three different processor-set selection methods (error-bars indicate standard
deviations).

energy/cooling costs, respectively. The primary objective was achieved for all jobs (in
part because all jobs in the workload request a multiple of 8 processors). Fig. 5 (b)
presents the outcome with respect to the secondary objective, compared to the two
processor selection strategies that the SGE has built-in (i.e., sequentially by increasing
node numbers, and least loaded nodes). With respect to communication locality, as can
be seen in Fig. 5 (b), the processor-set selection method described in this paper repre-
sents a clear improvement over both of the strategies provided in the SGE, and which
are widely used in practice (also by other job-schedulers).

7 Summary and Conclusions

We have presented a model for processor selection by parallel job-schedulers that
is conceptually simple, easy to understand, and flexible with respect to the kinds of
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constraints that can be accounted for. The model is also easily extended such that dif-
ferent processor-set and cost-vector definitions can be given for different ranges of job
sizes.6 In this way, jobs of different sizes can be steered towards different regions of
a system, constraints only affecting jobs of specific sizes can be accounted for, and
processor-set/cost-vector definitions can be kept shorter.

The resulting minimization problem for optimal processor selection was proven to
be NP-hard in the strong sense. A simple (approximative) algorithm is nonetheless pre-
sented and shown to run sufficently fast to be practically useful and to yield processor
selections of acceptable quality and that represent a clear improvement over processor
selection strategies that are currently in widespread practical use. The quality of so-
lutions obtained by the algorithm appears to also benefit slightly from less uniformly
defined processor-set costs, suggesting that more realistic cost models can bring both
direct and indirect advantages.

Concerning job-scheduler based processor-set selection in general, it has been ob-
served on multiple occasions that imposing topology-related constraints on processor
selection usually leads to longer waiting times and reduced overall system utilization
(e.g., see [2, 28]), suggesting that such mechanisms bring little benefit. On the other
hand, by successfully imposing topology-related constraints on processor selection, it
may be possible to purchase a larger number of processors (because of a less expensive
communications network), in which case a higher total throughput may be delivered
despite reduced system utilization.

Acknowledgements. The author would like to thank Dipl. Ing. Frank Rambo for ex-
plaining the electrical wiring of the 256-node/2048-core cluster shown in Fig. 1, Dipl.
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energy consumption, cooling, and air-flow in the machine-rooms.

References

1. Adiga, N.R., et al.: Blue Gene/ L torus interconnection network. IBM J. Res. De-
velop. 49(2/3), 265–276 (2005)

2. Aridor, Y., et al.: Resource allocation and utilization in the Blue Gene/ L supercomputer.
IBM J. Res. Develop. 49(2/3), 425–436 (2005)

3. Berman, F., Snyder, L.: On mapping parallel algorithms onto parallel architectures. J. Parall.
Distr. Comput. 4(5), 439–458 (1987)

4. Bhanot, G., et al.: Optimizing task layout on the Blue Gene/L supercomputer. IBM J. Res.
Develop. 49(2/3), 489–500 (2005)
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Appendix: Configuration File Format

The decisions made by the presented algorithm for processor set selection are gov-
erned by a configuration file, that specifies the collection of available queues, the collec-
tions of processor sets, the corresponding cost-vectors, and the cost criteria any actual
processor-set selection must satisfy in order to be seen as being acceptably good.

A concrete example of such a configuration file is provided in Fig. 6. The hypotheti-
cal target system is assumed to be deployed analogously to that shown in Fig. 1, but in
order to keep the configuration file within the allotted page-limits, it comprises only 6
racks with 7 nodes in each rack, for a total of 42 nodes, with a relative positioning as
follows, when looking at the system’s front side:

n07 n14 n21 n28 n35 n42
n06 n13 n20 n27 n34 n41
n05 n12 n19 n26 n33 n40
n04 n11 n18 n25 n32 n39
n03 n10 n17 n24 n31 n38
n02 n09 n16 n23 n30 n37
n01 n08 n15 n22 n29 n36

As seen in Fig. 6, a configuration file consists of five separate parts, each beginning
with a distinct keyword. The first part (line 1 in Fig. 6), simply names the queues in
which jobs may run for which processor-sets are to be selected. The second part (lines
3–11) specifies how many processors that are available on each host and for which
queues. More complicated cases than what is shown on lines 3–11 can also be handled.
For example, by writing

[cluster@k007=1,3,5|standby@k007=2,4,6]

it is specified that processors 1, 3 and 5 are available through the queue cluster and
processors 2, 4 and 6 through the queue standby, on the node k007.
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Processor-Set Definitions

The processor-sets (such as described in Section 3.2 above) that are to be used are
specified following the keyword groups. Distinct processor-sets for the processors of
each indivdual compute node are defined on lines 13–21 in Fig. 6. The 42 nodes of
our hypothetical target system are assumed to be connected to 7 different 6-port line-
cards. Processor-sets corresponding to the processors whose nodes are directly attached
to each line-card are defined on lines 21–27 of Fig. 6. For example, through

ib1={n01,n02,n03,n04,n05,n06},

a processor-set named ib1 is defined, that comprises all processors on nodes n01
through n06, and this in turn corresponds exactly to the set of processors attached to
line-card 1 on the switch.

Analogously, the remaining processor-set definitions on lines 28–40 in Fig. 6, corre-
spond to other factors such that it may be desirable that they influence the processor-set
selection for jobs, and as discussed in Section 3.

Processor-Set Cost Definitions

As shown in Fig. 6, the definitions of cost-vectors associated with processor sets can
depend on the size of the requesting job. This can be used for a variety of purposes, such
as imposing stricter communication locality requirements for small jobs and selecting
processor-sets for differently sized jobs starting from different physical regions of a
machine, etc.

In Fig. 6, processor-set costs for 1–4 processor jobs are defined separately from those
for jobs of all other sizes. Although this has been done mainly to make it clear that doing
so is possible, it also provides an opportunity to discuss the costs choosen for the node
processor sets. Even though the system is composed of logically identical nodes, they
are obviously not physically in exactly the same location, and each node thereby has
a slightly different physical environment. The different physical environments of the
nodes can induce an ordering according to which the use of some nodes is preferable
over the use of other nodes, in the absence of other constraints, and assuming the system
is not currently operating under full load (i.e., that some nodes need not be used).

In the present case, with cooling by cold air provided from below at the front-side
of the system, the use of lower placed nodes is preferable to the use of higher placed
nodes, and because of flow hot air around the sides of the system from rear to front it
is more desirable to use centrally positioned nodes than nodes nearer to the sides. The
cost-vector definitions on lines 44–64 in Fig. 6 are intended to express precisely the
cooling related preferences w.r.t. processor-set selection that have just been described.

Constraint Definitions

Finally, the fifth and final part of a configuration file, contains definitions of cost con-
straints that must be satisfied by processor-set selections. As shown on lines 103–107
in Fig. 6, each constraint is simply a boolean-valued expression, and when this expres-
sion does not evaluate to true for a proposed processor-set selection, the job scheduler
is informed that the job in question should not be allowed to start.
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Just as for cost-definitions, constraints can be differently defined for jobs of different
sizes. In combination with job-size and queue differentiated processor-set costs this en-
ables a rather precise control over when a potential processor-set selection is considered
to be of sufficiently high quality to be used.

Minor Implementation Details

Due to the size and complexity of configuration files, they are not read as such by the
processor-set selection machinery. Instead, configuration files are parsed and validated
by a separate program, that for valid configuration files create corresponding (machine
independent) binary configuration files, and these in turn are read by the processor-set
selection machinery.

At regular time-intervals (every 5 min. currently), the processor-set selector checks
the last modification time of its binary configuration file, and reloads it if it has changed.
It is thereby easily arranged to make use of different processor-set selection strategies at
different times of day or during weekends vs. workdays, etc. The separately performed
configuration-file validation (and conversion into binary form), prevents simple mis-
takes (e.g., syntactic errors) made when preparing and/or modifying configuration files
from influencing processor-set selection behaviour and decisions.

1 queues: cluster,standby
2

3 slots: [n01=1..4],[n02=1..4],[n03=1..4],[n04=1..4],[n05=1..4],
4 [n06=1..4],[n07=1..4],[n08=1..4],[n09=1..4],[n10=1..4],
..
.

..

.
..
.

..

.
..
.

..

.
10 [n36=1..4],[n37=1..4],[n38=1..4],[n39=1..4],[n40=1..4],
11 [n41=1..4],[n42=1..4]
12

13 groups: h01={n01},h02={n02},h03={n03},h04={n04},h05={n05},
14 h06={n06},h07={n07},h08={n08},h09={n09},h10={n10},
...

...
...

...
...

...
20 h36={n36},h37={n37},h38={n38},h39={n39},h40={n40},
21 h41={n41},h42={n42},ib1={n01,n02,n03,n04,n05,n06},
22 ib2={n07,n08,n09,n10,n11,n12},
...

...
...

27 ib7={n37,n38,n39,n40,n41,n42},
28 en1={n01,n02,n03,n04, . . .,n11,n12,n13,n14},
29 en2={n15,n16,n17,n18, . . .,n25,n26,n27,n28},
30 en3={n29,n30,n31,n32, . . .,n39,n40,n41,n42},
31 ps1a={n07,n06,n03,n02},ps1b={n05,n04,n01},
32 ps2a={n14,n13,n10,n09},ps2b={n12,n11,n08},
33 ps3a={n21,n20,n17,n16},ps3b={n19,n18,n15},
34 ps4a={n28,n27,n24,n23},ps4b={n26,n25,n22},
35 ps5a={n35,n34,n31,n30},ps5b={n33,n32,n29},
36 ps6a={n42,n41,n38,n37},ps6b={n40,n39,n36},
37 pwr1={n01,n02,n03,n04,n05,n06,n07,n09,n10,n13,n14},

Fig. 6. Configuration file for processor-set selection
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38 pwr2={n08,n11,n12,n15,n16,n17,n18,n19,n20,n21},
39 pwr3={n22,n23,n24,n25,n26,n27,n28,n30,n31,n34,n35},
40 pwr4={n29,n32,n33,n36,n37,n38,n39,n20,n41,n42}
41

42 costs:
43 when PEs in [1,4]:
44 cluster@h01=[0,0,0,0,129],cluster@h02=[0,0,0,0,135],
45 cluster@h03=[0,0,0,0,141],cluster@h04=[0,0,0,0,147],
46 cluster@h05=[0,0,0,0,153],cluster@h06=[0,0,0,0,159],
47 cluster@h07=[0,0,0,0,165],cluster@h08=[0,0,0,0,115],
48 cluster@h09=[0,0,0,0,121],cluster@h10=[0,0,0,0,127],
49 cluster@h11=[0,0,0,0,133],cluster@h12=[0,0,0,0,139],
50 cluster@h13=[0,0,0,0,145],cluster@h14=[0,0,0,0,151],
51 cluster@h15=[0,0,0,0,101],cluster@h16=[0,0,0,0,107],
52 cluster@h17=[0,0,0,0,113],cluster@h18=[0,0,0,0,119],
53 cluster@h19=[0,0,0,0,125],cluster@h20=[0,0,0,0,131],
54 cluster@h21=[0,0,0,0,137],cluster@h22=[0,0,0,0,102],
55 cluster@h23=[0,0,0,0,108],cluster@h24=[0,0,0,0,114],
56 cluster@h25=[0,0,0,0,120],cluster@h26=[0,0,0,0,126],
57 cluster@h27=[0,0,0,0,132],cluster@h28=[0,0,0,0,138],
58 cluster@h29=[0,0,0,0,116],cluster@h30=[0,0,0,0,122],
59 cluster@h31=[0,0,0,0,128],cluster@h32=[0,0,0,0,134],
60 cluster@h33=[0,0,0,0,140],cluster@h34=[0,0,0,0,146],
61 cluster@h35=[0,0,0,0,136],cluster@h36=[0,0,0,0,130],
62 cluster@h37=[0,0,0,0,136],cluster@h38=[0,0,0,0,142],
63 cluster@h39=[0,0,0,0,148],cluster@h40=[0,0,0,0,154],
64 cluster@h41=[0,0,0,0,160],cluster@h42=[0,0,0,0,166]
65 otherwise:
66 cluster@h01=[0,0,0,0,129],cluster@h02=[0,0,0,0,135],
..
.

..

.
..
.

86 cluster@h41=[0,0,0,0,160],cluster@h42=[0,0,0,0,166],
87 cluster@ib1=[4,0,0,0,0],cluster@ib2=[4,0,0,0,0],
88 cluster@ib3=[4,0,0,0,0],cluster@ib4=[4,0,0,0,0],
89 cluster@ib5=[4,0,0,0,0],cluster@ib6=[4,0,0,0,0],
90 cluster@ib7=[4,0,0,0,0},cluster@en1=[0,1,0,0,0],
91 cluster@en2=[0,1,0,0,0],cluster@en3=[0,1,0,0,0],
92 cluster@ps1a=[0,0,2,0,0],cluster@ps1b=[0,0,2,0,0],
93 cluster@ps2a=[0,0,2,0,0],cluster@ps2b=[0,0,2,0,0],
94 cluster@ps3a=[0,0,2,0,0],cluster@ps3b=[0,0,2,0,0],
95 cluster@ps4a=[0,0,2,0,0],cluster@ps4b=[0,0,2,0,0],
96 cluster@ps5a=[0,0,2,0,0],cluster@ps5b=[0,0,2,0,0],
97 cluster@ps6a=[0,0,2,0,0],cluster@ps6b=[0,0,2,0,0],
98 cluster@pwr1=[0,0,0,4,0],cluster@pwr2=[0,0,0,4,0],
99 cluster@pwr3=[0,0,0,4,0],cluster@pwr4=[0,0,0,4,0]

100 end-costs

Fig. 6. (Continued)



Multi-objective Processor-Set Selection 75

101

102 constraints:
103 when PEs in [1,4] : cost <= [0,0,0,0,166],
104 when PEs in [5,16] : cost <= [8,1,6,8,628],
105 when PEs in [17,32] : cost <= MINCOST(32) + [0,0,0,0,64],
106 when PEs in [33,64] : cost <= MINCOST(64) + [4,1,2,0,38],
107 otherwise : cost <= ceil(1.2*MINCOST(PEs)) + [4,0,2,0,28]

Fig. 6. (Continued)
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Abstract. Next-generation computational sciences feature large-scale workflows
of many computing modules that must be deployed and executed in distributed
network environments. With limited computing resources, it is often unavoid-
able to map multiple workflow modules to the same computer node with possi-
ble concurrent module execution, whose scheduling may significantly affect the
workflow’s end-to-end performance in the network. We formulate this on-node
workflow scheduling problem as an optimization problem and prove it to be NP-
complete. We then conduct a deep investigation into workflow execution dynam-
ics and propose a Critical Path-based Priority Scheduling (CPPS) algorithm to
achieve Minimum End-to-end Delay (MED) under a given workflow mapping
scheme. The performance superiority of the proposed CPPS algorithm is illus-
trated by extensive simulation results in comparison with a traditional fair-share
(FS) scheduling policy and is further verified by proof-of-concept experiments
based on a real-life scientific workflow for climate modeling deployed and exe-
cuted in a testbed network.

Keywords: Scientific workflows, task scheduling, end-to-end delay.

1 Introduction

Next-generation computational sciences typically involve complex modeling, large-
scale simulations, and sophisticated experiments in studying physical phenomena, chem-
ical reactions, biological processes, and climatic changes [13, 25]. The processing and
analysis of simulation or experimental datasets generated in these scientific applications
require the construction and execution of domain-specific workflows consisting of many
interdependent computing modules1 in distributed network environments such as Grids

1 Workflow modules are also referred to as tasks/subtasks, activities, stages, jobs, or transforma-
tions in different contexts.
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or clouds for collaborative research and discovery. The network performance of such
scientific workflows plays a critical role in the success of targeted science missions.

The computing workflows of scientific applications are often modeled as Directed
Acyclic Graphs (DAGs) where vertices represent computing modules and edges rep-
resent execution precedence and data flow between adjacent modules, and could be
managed and executed by either special- or general-purpose workflow engines such
as Condor/DAGMan [1], Kepler [23], Pegasus [12], Triana [11], and Sedna [31]. In
practice, workflow systems employ a static or dynamic mapping scheme to select an
appropriate set of computer nodes in the network to run workflow modules to meet a
certain performance requirement. No matter which type of mapping scheme is applied,
it is often unavoidable to map multiple modules to the same node (i.e. node reuse) for
better utilization of limited computing resources, leading to possible concurrent mod-
ule execution. For example, in unitary processing applications that perform one-time
data processing, workflow modules may run concurrently if they are independent of
each other2; while in streaming applications with serial input data, even modules with
dependency may run concurrently to process different instances of the data. Of course,
concurrent modules on the same node may not always share resources if their execution
times do not overlap completely due to their misaligned start or end times. The same is
also true for concurrent data transfers.

Module 0

Module 2
CR = 50 units

Module 1
CR = 50 units

Module 3
CR = 50 units

Module 4

Node 1
PP = 10 units / sec

Node 2
PP = 10 units / sec

CR: Module’s Computing Requirement
PP: Node’s Processing Power

Node 0 Node 3

Fig. 1. A simple numerical example illustrating the effect of
scheduling

Generally, in the case
of concurrent module ex-
ecution, the node’s com-
puting resources are allo-
cated by kernel-level CPU
scheduling policies such as
the round-robin algorithm
to ensure fine-grained fair
share (FS). Similarly, a net-
work link’s bandwidth is also
fairly shared by multiple in-
dependent data transfers that
take place concurrently over
the same link through the use of the widely deployed TCP or TCP-friendly transport
methods. Such system-inherent fair-share scheduling mechanisms could reduce the de-
velopment efforts of workflow systems, but may not always yield the best workflow
performance, especially in distributed environments. We shall use an extremely simpli-
fied numerical example to illustrate the effect of on-node workflow scheduling.

As shown in Fig. 1, a workflow consisting of five modules is mapped to a network
consisting of four nodes. For simplicity, we only consider the execution time of Modules
1, 2, and 3. With a fair-share scheduler, the workflow takes 15 seconds to complete
along the critical path (i.e. the longest path of execution time) consisting of Modules 0,
1, 3, and 4. However, if we let Module 1 execute exclusively ahead of Module 2, the
completion time of the entire workflow is cut down to 10 seconds. This example reveals

2 Two modules in a workflow are independent of each other if there does not exist any depen-
dency path between them.
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that the workflow performance could be significantly improved if concurrent modules
on the same node are carefully scheduled.

The work in this paper is focused on task scheduling for Minimum End-to-end Delay
(MED) in unitary processing applications under a given workflow mapping scheme. We
formulate this on-node workflow scheduling problem as an optimization problem and
prove it to be NP-complete. Based on the exact End-to-end Delay (ED) calculation algo-
rithm, extED [17], we conduct a deep investigation into workflow execution dynamics
and propose a Critical Path-based Priority Scheduling (CPPS) algorithm that allocates
the node’s computing resources to multiple concurrent modules assigned by the given
mapping scheme to the same node to minimize the ED of a distributed workflow. We
also provide an analytical upper bound of the ED performance improvement when the
critical path remains fixed during workflow scheduling. The proposed CPPS algorithm
is implemented and tested in both simulated and experimental network environments.
The performance superiority of CPPS is illustrated by extensive simulation results in
comparison with a traditional fair-share scheduling policy, and is further verified by
proof-of-concept experiments based on a real-life scientific workflow for climate mod-
eling deployed and executed in a testbed network.

The rest of the paper is organized as follows. In Section 2, we conduct a survey of
related work on both workflow mapping and scheduling. In Section 3, we provide a
formal definition of the workflow scheduling problem under study. In Section 4, we
design the CPPS algorithm. In Section 5, we implement the proposed algorithm and
present both simulation and experimental results. We conclude our work in Section 6.

2 Related Work

In this section, we provide a brief survey of related work on workflow optimization.
There are two aspects of optimizing distributed tasks to improve the performance of
scientific workflows: i) assigning the component modules in a workflow to suitable
resources, referred to as workflow mapping3, and ii) deciding the execution order and
resource sharing policy among concurrent modules on computer nodes or processors,
referred to as workflow/task scheduling. Both problems have been extensively studied in
various contexts due to their theoretical significance and practical importance [7,28,30].

When network resources were still scarce in early years, workflow modules were
often mapped to homogeneous systems such as multiprocessors [6, 22]. As distributed
computing platforms such as Grids and clouds are rapidly developed and deployed,
research efforts have shifted to workflow mapping in heterogeneous environments to
utilize distributed resources at different geographical locations across wide-area net-
works [8, 9, 28]. However, several of these studies assume that computer networks are
fully connected [30] or only consider independent tasks in the workflow [10]. These as-
sumptions are reasonable under certain circumstances, but may not sufficiently model
the complexity of real-life applications in wide-area networks. In real workflow sys-
tems, a greedy or similar type of approach is often employed for workflow mapping.

3 The workflow mapping problem is occasionally referred to as a scheduling problem in the
literature. In this paper, we designate it specifically as a mapping problem to differentiate it
from the workflow/task scheduling problem under study.
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For instance, Condor implements a matchmaking algorithm that utilizes classified ad-
vertisements (ClassAds) mechanism for mapping user’s applications to suitable server
machines [27]. Most existing mapping algorithms are centralized, but decentralized
methods are desired for higher scalability. More recently, Rahman et al. proposed an
approach to workflow mapping in a dynamic and distributed Grid environment using a
Distributed Hash Table (DHT) based d-dimensional logical index space [26].

Considering the limit in the scope and amount of networked resources, a reasonable
workflow mapping algorithm inevitably results in a mapping scheme where multiple
modules are mapped to the same node, which necessitates the scheduling of concur-
rent modules. On-node processor scheduling has been a traditional research subject for
several decades, and many algorithms have been proposed ranging from proportional,
priority-based, to fair share [18, 19], to solve scheduling problems under different con-
straints with different objectives. Most traditional processor scheduling algorithms con-
sider multiple independent processes running on a single CPU with a goal to optimize
the waiting time, response time, and turnaround time of individual processes, or the
throughput of the system. The multi-processor and multi-core scheduling on modern
machines has attracted an increasing amount of attention in recent years [21, 24].

Our work is focused on a particular scheduling problem to achieve MED of a DAG-
structured workflow in distributed environments under a given mapping scheme. A
similar DAG-structured project planning problem dated back to late 1950’s and was
tackled using Program/Project Evaluation Review Technique and Critical Path Method
(PERT/CPM) [14, 20]. PERM is a method to analyze the involved tasks in completing
a given project and identify the minimum time needed to complete the total project.
CPM calculates the longest path of planned activities to the end of the project, and
the earliest and latest that each activity can start and finish without making the project
longer. The workflow scheduling problem differs from the project planning problem in
that the computing resources are shared among concurrent modules and the execution
time of each individual module is unknown until a particular task scheduling scheme is
determined. This type of scheduling problems are generally NP-complete. Garey et al.
compiled a great collection of similar or related multi-processor scheduling problems
in [15], which were tackled by various heuristics such as list scheduling and simple
level algorithm [16].

In practical system implementations, concurrent tasks are always assigned the same
running priority since the fair share of CPU cycles is well supported by modern operat-
ing systems that employ a round-robin type of scheduling algorithms. However, in this
paper, we go beyond the system-inherent fair-share scheduling to further improve the
end-to-end performance of scientific workflows through the use of an on-node schedul-
ing strategy taking into account the global workflow structure and resource sharing
dynamics in distributed environments.

3 Workflow Scheduling Problem

In this section, we construct analytical cost models and formulate the workflow schedul-
ing problem, which is proved to be NP-complete.
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3.1 Cost Models

We model a workflow as a Directed Acyclic Graph (DAG) Gw = (Vw,Ew), |Vw| = m,
where vertices represent computing modules starting from the start module w0 to the
end module wm−1. A directed edge ei, j ∈ Ew represents the dependency between a pair
of adjacent modules wi and wj. Module w receives a data input of size z from each of
its preceding modules and performs a predefined computing routine, whose computing
requirement (CR) or workload is modeled as a function of the aggregate input data sizes.
Module w sends a data output to each of its succeeding modules after it completes its
execution. In this workflow model, we consider a module as the minimal execution unit,
and ignore the inter-module communication cost on the same node. For a workflow with
multiple start/end modules, we can always convert it to this model by adding a virtual
start/end module with CR = 0 and connected to all the original start/end modules with
data transfer size z = 0.

We model an overlay computer network as an arbitrary weighted graph Gc =(Vc,Ec),
consisting of |Vc|= n nodes interconnected by |Ec| overlay links. A normalized variable
PPi is used to represent the overall processing power of node vi without specifying its
detailed system resources. Link li, j from vi to v j is associated with a certain bandwidth
bi, j. It is assumed that the start module w0 serves as a data source on the source node vs

without any computation to supply all initial data needed by the application and the end
module wm−1 performs a terminal task on the destination node vd without any further
data transfer.

Based on the above models, we can use an existing mapping algorithm to compute
a mapping scheme under the following constraints on workflow mapping and execu-
tion/transfer precedence [17]:

– Each module/edge is required to be mapped to only one node/link.
– A computing module cannot start execution until all its required input data arrive.
– A dependency edge cannot start data transfer until its preceding module finished

execution.

A mapping scheme M : Gw → Gc is mathematically defined as follows:

M : Gw → Gc =

⎧⎨
⎩

w → c,∀w ∈Vw,∃c ∈Vc;

l(ci′ ,c j′) ∈ Ec,

{
if wi → ci′ ,wj → c j′ ,e(wi,wj) ∈ Ew,
0 ≤ i, j ≤ |Vw|− 1,0 ≤ i′, j′ ≤ |Vc|− 1.

(1)

Once a mapping scheme is obtained, we can further convert the above workflow and
network models to virtual graphs as follows: each dependency edge in the workflow
is replaced with a virtual module whose computational workload is equal to the corre-
sponding data size, and each mapped network link is replaced by a virtual node whose
processing power is equal to the corresponding bandwidth. This conversion facilitates
workflow scheduling as we only need to focus on the module execution time. We use ts

w

and t f
w to denote the execution start and finish time of module w. For convenience, we

tabulate the notations used in the cost models in Table 1, some of which will be used in
the algorithm design.
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Table 1. Parameters in the cost models and algorithm design

Parameters Definitions
Gw = (Vw,Ew) a computing workflow

m the number of modules in the workflow
wi the i-th computing module
w0 the start computing module

wm−1 the end computing module
ei, j the dependency edge from module wi to w j

z the data size of dependency edge e
CRi the computing requirement of module wi

Gc = (Vc,Ec) a computer network
n the number of nodes in the network
vi the i-th network of computer node
vs the source node
vd the destination node
PPi the processing power of node vi

li, j the network link from node vi to v j

bi, j the bandwidth of link li, j

3.2 Problem Definition

Since the start time of a module in the workflow depends on the end time of its preceding
module(s), even independent modules assigned to the same node may not always run
in parallel. Therefore, task scheduling is only applicable to concurrent modules that run
simultaneously at least for a certain period of time. We formally define the On-Node
Workflow Scheduling (ONWS) problem as follows:

Definition 1. (ONWS) Given a DAG-structured computing workflow Gw = (Vw,Ew),
a heterogeneous overlay computer network Gc = (Vc,Ec) and a mapping scheme M :
Gw → Gc, we wish to find a job scheduling policy on every computer node with concur-
rent modules such that the mapped workflow achieves:

MED = min
all possible job scheduling policies

(TED) . (2)

3.3 NP-Completeness Proof

We first transform the original ONWS problem to its decision version, referred to as
ONWS-Decision, with a set of notations commonly adopted in the definitions of tradi-
tional multi-processor scheduling problems in the literature.

Definition 2. (ONWS-Decision) Given a set T of tasks t, each having a length(t) and
executed by a specific processor p(t), a number m ∈ Z+ of processors, partial order ≺
on T, and an overall deadline D ∈ Z+, is there an m-processor preemptive schedule for
T that obeys the precedence constraints and meets the overall deadline?
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Note that in Definition 2, the workflow in the original ONWS problem is expressed as a
set of tasks with a partial-order relation and the given mapping scheme is expressed as
a set of node assignments or requirements for all tasks. Also, we consider preemptive
scheduling in our problem. The difficulty of ONWS-Decision is given by Theorem 1,
which is proved by showing that the m-processor bound unit execution time (MBUET)
system scheduling problem in [16], an existing NP-complete problem as defined in
Definition 3, is a special case of ONWS-Decision.

Definition 3. (MBUET) Given a set T of tasks, each having length(t) = 1 (unit exe-
cution time) and executed by a specific processor p(t), an arbitrary number m ∈ Z+ of
processors, partial order ≺ of a forest on T, and an overall deadline D ∈ Z+, is there an
m-processor schedule for T that obeys the precedence constraints and meets the overall
deadline?

Theorem 1. The ONWS-Decision problem is NP-complete.

Proof. Obviously, the MBUET scheduling problem is a special type of ONWS-Decision
problem with length(t) restricted to be 1 for all tasks t ∈ T and partial order ≺ restricted
to be a forest. For preemptive scheduling as considered in ONWS-Decision, a task is
not required to finish completely without any interruption once it starts execution. How-
ever, if we restrict the length of all tasks to be 1 (the smallest unit of time) in the input
of ONWS-Decision, each task would finish in its entirety once it is assigned to the des-
ignated processor for execution. Moreover, the partial order ≺ of a forest is a special
DAG structure of workflow topology. Therefore, the MBUET problem polynomially
transforms to the preemptive ONWS-Decision scheduling problem. Since MBUET is
NP-complete [16], the general ONWS-Decision problem is also NP-complete. The va-
lidity of the NP-completeness proof by restriction is established in [15], where “restric-
tion” constrains the given, not the question of a problem.

4 Algorithm Design

4.1 Analysis of Resource Sharing Dynamics in Workflows

Since the end-to-end delay (ED) of a workflow is determined by its critical path, i.e.
the path of the longest execution time, a general strategy for workflow scheduling is
to reduce the execution time of critical modules (i.e. modules on the critical path) by
allocating to them more resources than those non-critical modules that are running con-
currently. Ideally, the MED would be achieved if all possible execution paths from the
start module to the end module have the same length of execution time.

We first present a theorem on the resource sharing dynamics among the concurrent
modules assigned to the same node, which will be used in the design of our scheduling
algorithm.

Theorem 2. The finish time of the last completed module among k concurrent modules
executed on the same node with a single fully-utilized processor of processing power

PP is a constant, ∑k
i=1 CRi

PP .



On Workflow Scheduling for End-to-End Performance Optimization 83

Proof. Since the total workload of all k modules is fixed, i.e. ∑k
i=1 CRi, and the processor

is fully operating, no matter how the modules are scheduled, the total execution time
remains unchanged and is bounded by the finish time of the last completed module.

To understand the significance of workflow scheduling, we investigate a particular
scheduling scenario shown in Fig. 2 where the best performance improvement could
be achieved over a fair-share scheduling policy with the following conditions:

– There are k modules running concurrently on the same node v1 during their entire
execution time period;

– Among k modules, one is a critical module and k−1 are non-critical modules, and
all of them are of the same computing requirement (CR);

– Each non-critical module is the only module on its execution path (except for the
start and end modules).

1mw

sv 2v dv1v

0w

1w

kw

2w

Critical Path

Fig. 2. A scheduling scenario that achieves the upper bound performance

Based on the scheduling scenario depicted in Fig. 2, we have the following theorem:

Theorem 3. The workflow’s MED performance improvement of any on-node task
scheduling policy with a fixed critical path over fair share is upper bounded by 50%.

Proof. We first justify that the conditions in Fig. 2 are necessary for achieving the upper
bound of the workflow’s MED improvement.

Let x be the original execution time of the critical module on v1 using the fair-share
scheduling policy. If there were any non-critical modules on v1 that finished before x,
even if we let the critical module w1 run exclusively first, it would take longer than x

k
to complete. Thus, we would not be able to reduce the execution time of the critical
module to the minimum time possible, i.e. x

k . On the other hand, if there were any non-
critical modules on v1 that finished after x, from Theorem 2, we know that the total
execution time on this node would be greater than x, and hence we would not be able to
reduce the length of the critical path to x.

The above discussion concludes that all k modules on node v1 must share resources
during their entire execution time and finish at the same time x to achieve the maximum
possible reduction on the length of the critical path. Since we consider fair share as the
comparison base in Theorem 2, the CRs of all k modules must also be identical. In this
scheduling scenario, if we let the critical module w1 execute exclusively first, its finish
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time t f
w1 would be reduced from x to x

k , which is the best improvement possible with k
concurrent modules on the same node.

We use y to denote the sum of the execution time for the rest of the modules on the
critical path (excluding w1). From Theorem 2, we have max(t f

wi) = x, i = 2,3, . . . ,k,
which means that the latest finish time of the last completed non-critical module would
be still x. Since the new length of the critical path (i.e. MED) becomes x

k + y, the upper
bound MED improvement is achieved if this new length is equal to the latest finish time
of any non-critical module, i.e. x

k +y = x. It follows that y = k−1
k x. Therefore, the MED

improvement over fair share is Δ = (x+y)−x
x+y = k−1

2k−1 , which is 1/2 or 50% as k → ∞.

4.2 Critical Path-Based Priority Scheduling (CPPS) Algorithm

We propose a Critical Path-based Priority Scheduling (CPPS) algorithm to solve the
ONWS problem. The CPPS algorithm produces a set of processor scheduling schemes
for all mapping nodes that collectively cut down the execution length of the critical path
in the entire workflow to achieve MED.

The pseudocode of the proposed CPPS algorithm is provided in Alg. 1, which first
calculates the critical path based on the fair-share (FS) scheduling, and then uses Algs. 2
and 3 to compute the new task schedule of concurrent modules on each mapping node.
In most cases, the new schedule outperforms the FS schedule. However, if the new
schedule does not improve the MED performance, the CPPS algorithm simply rolls
back to the FS schedule.

In Alg. 2, we calculate the independent set of each module in line 8 and find the set
set0 of modules with the earliest start time in line 12. If there is only one module in
set0, this module is executed immediately; otherwise, a scheduling strategy needs to be
decided. In line 18, we recalculate the percent of processing power that is allocated to
those modules in set0. In lines 18-32, a new scheduling policy is generated and applied
to all concurrent modules.

Alg. 3 performs the actual on-node scheduling, where only two cases need to be con-
sidered: 1) when per(wcp) is 100% and other per(wnon cp) is 0%, 2) when all per(w)

Algorithm 1. CPPS(Gw
′, Gc

′, f )
Input: A converted workflow graph Gw

′ =(Vw
′,Ew

′), a converted network graph Gc
′ =(Vc

′,Ec
′),

a given mapping scheme f : Gw
′ → Gc

′.
Output: the scheduling policies on all the mapping nodes.

1: Calculate the execution time TFS for all the modules in Gw
′ using a fair-share scheme;

2: Calculate the critical path CPFS and its length T (CPFS) based on TFS;
3: Calculate the execution time TCPPS for all the modules in Gw

′ using Alg. 2, which in turn
uses Alg. 3 to decide the priorities for all the modules;

4: Calculate the new CPCPPS and its length T (CPCPPS) based on TCPPS;
5: if T (CPCPPS)≥ T (CPFS) then
6: return the fair-share schedule and T (CPFS).
7: else
8: return the new CPPS schedule and the ED T (CPCPPS) of the mapped workflow.



On Workflow Scheduling for End-to-End Performance Optimization 85

Algorithm 2. extEDOnNode(Gw
′, Gc

′, f , TFS, CPFS)
Input: A converted workflow graph Gw

′ =(Vw
′,Ew

′), a converted network graph Gc
′ =(Vc

′,Ec
′),

a mapping scheme f : Gw
′ → Gc

′, the execution time TFS of each module under the fair-share
scheme, and the critical path CPFS based on TFS.
Output: the new execution time TCPPS of all modules and the ED T (CPCPPS) of the mapped
workflow.

1: ts(set): the set of start times of all the modules in a set;
2: t f (set): the set of finish times of all the modules in a set;
3: ids(w): the independent set of module w on the same node (excluding w);
4: est(set) = {w| w ∈ set and ts

w = min(ts(set))}, i.e. the set of modules with the earliest start
time in a set;

5: ready(set) = {w| w ∈ set and w is “ready” to execute};
6: T BF(w): the partial workload of module w to be finished;
7: for all module wi ∈Vw

′ do
8: Find ids(wi);
9: Set wi as “un f inished”;

10: Set w0 as “ready”;
11: while exist “un f inished” modules ∈Vw

′ do
12: Find set0 = est(ready(Vw

′));
13: for all module wi ∈ set0 do
14: if |ids(wi)|== 0 then
15: Execute wi, calculate TCPPS(wi) and set wi as “ f inished”;
16: else
17: Find set1 = {w|w is “ready” and w ∈ est(ids(wi)∪wi)};
18: OnNodeSchedule(Gw

′, Gc
′, f , TFS, TCPPS, wi ∪ ids(wi), CPFS);

19: Estimate t f (set1);
20: Find set2 = {w | w ∈ ids(wi) & w /∈ set1, ts(w) < min(t f (set1)), and w is “ready”

and “un f inished”};
21: if |set2|> 0 then
22: for all module w j ∈ set1 do
23: From ts(w|w ∈ set1) to min(ts(set2)): 1) finish part of T BF(w j) with the new

scheduling policy determined in line 18; 2) calculate the partial amount of
TCPPS;

24: Update the new ts
w j

= min(ts(set2));
25: else
26: for all module w j ∈ set1 do

27: if t f
w j == min(t f (set1)) then

28: Execute w j, calculate TCPPS(w j), and set w j as “ f inished”;
29: else
30: From ts(w|w ∈ set1) to min(t f (set1)): 1) finish part of T BF(w j) with the

new scheduling policy determined in line 18; 2) calculate the partial amount
of TCPPS;

31: Update the new ts
w j

= min(t f (set1));
32: Mark all ready modules as “ready”;
33: Compute the CP based on the time components TCPPS(wi) for all wi ∈Vw

′;
34: return the ED T (CPCPPS) of the mapped workflow.
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Algorithm 3. OnNodeSchedule(Gw
′, Gc

′, f , TFS, wi ∪ ids(wi), CPFS)
Input: A converted workflow graph Gw

′ =(Vw
′,Ew

′), a converted network graph Gc
′ =(Vc

′,Ec
′),

a given mapping scheme f : Gw
′ → Gc

′, and a module set wi ∪ ids(wi) that combines wi and its
independent set ids(wi).
Output: the percentage per(w) of resource allocation for all modules in wi ∪ ids(wi).

1: wcp: module of the critical path cp (i.e. critical module);
2: wnon cp: module that is not on the critical path (i.e. non-critical module);
3: per(w): percentage of processing power allocated to module w;
4: tOnNode: the estimated execution time of a module under the new scheduling strategy;
5: CP(w): the critical path (CP) consisting of module w;
6: CPL(w): the left CP segment from the start module to module w (i.e. the CP of the left-side

partial workflow ending at w);
7: CPR(w): the right CP segement from module w to the end module (i.e. the CP of the right-side

partial workflow starting at w);
8: LFT (ni): the latest possible finish time of concurrent modules assigned to node ni;
9: Texclusive(wi): execution time of wi when running exclusively on its mapping node map(wi);

10: T BF(w): the partial workload of module w to be finished;
11: map(w): the node to which module w is mapped;
12: for all modules wi in wi ∪ ids(wi) do
13: Calculate CP(wi) = CPL(wi)+CPR(wi) based on TFS and TCPPS;
14: Find wcp = {w|CP(w) = max{CP(w)|w ∈ ids(wi)∪wi}};
15: Estimate execution time Texclusive(wcp);
16: Calculate the latest possible finish time LFT (map(wi)) of modules mapped to map(wi);
17: bool flag = false;
18: for all modules wi ∈ wi ∪ ids(wi) do
19: Estimate the amount of time Ttb f needed to finish T BF(wi);
20: if wi is wnon cp then
21: Δ t1 = min{LFT (map(wi))−Ttb f ,Texclusive(wcp)};
22: β = |{wk ∈CP(wi) and wk ∈ ∪{CP(w j)|w j ∈ ids(wi)}}|;
23: if T (CP(wi))+βΔ t1 ≥ T (CPFS) then
24: f lag = true;
25: Δ t2 = T (CPFS)−T (CP(wi));
26: tOnNode = Ttb f +Δ t2;
27: Calculate per(wi) according to tOnNode;
28: mark wi;
29: if flag == true then
30: for all modules wi ∈ wi ∪ ids(wi) do
31: if wi is not marked in line 28 then
32: per(wi) =

(
1−∑wi marked

wi∈wi∪ids(wi)
per(wi)

)/(∣∣{wi ∪ ids(wi)}
∣∣− ∣∣{wi|wi marked}∣∣);

33: else
34: for all modules wi ∈ wi ∪ ids(wi) do
35: if wi is wcp then
36: per(wi) = 1.0;
37: else
38: per(wi) = 0.0;
39: return the ID of wi.
40: return per(wi) for all modules wi ∈ wi ∪ ids(wi).
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are between 0 and 100%. Whenever possible, we wish to run the critical module exclu-
sively first to cut down the length of the globe CP as much as possible. Accordingly,
Alg. 2 considers the following two possible scenarios for all modules wi ∈ wi ∪ ids(wi)
depending on the output of Alg. 3:

1) When per(wcp) = 100% and per(wnon cp) = 0: since Alg. 3 returns the ID of
wcp, we execute the critical module wcp from the time point ts(w|w ∈ set1) to
min(ts(set2)) exclusively; while for other modules, we suspend them to wait for
wcp to finish. During this period of time, wcp may be entirely or partially com-
pleted. We then execute all unfinished modules (their unfinished part T BF(wi))
that are mapped to node map(wcp) in a fair-share manner until the number of con-
current modules assigned to this node changes again.

2) When all per(w) are between 0 and 100%: we execute each module with its own
percent per(wi) of resource allocation until the number of concurrent modules
changes.

CR=40

CR=60
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2w
4w
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sv dv
1( 10)v PP
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2 ( 10)v PP

3w

CR=0
0w
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Fig. 3. A simple numerical example used for illustrating the scheduling algorithms

We shall use a simple numerical example to illustrate the CPPS scheduling process.
As shown in Fig. 3, a computing workflow consisting of nine modules w0,w1, . . . , and
w8 is mapped to a computer network consisting of 5 nodes vs,v1,v2,v3 and vd . The mod-
ules’ computing requirements (CR) and the nodes’ processing powers (PP) are marked
accordingly except for the start/end modules mapped to the source/destination nodes,
whose execution time is not considered (i.e. CR = 0).

As shown in Fig. 4, we first compute the execution start and end time TFS : ts
w|t f

w of
each module under the fair-share (FS) scheduling policy. In this scheduling scenario,
the workflow takes 20 seconds to complete along the critical path (CP) consisting of
modules w0,w2,w4,w5,w7, and w8.

Now we describe the CPPS scheduling process. Fig. 5 illustrates the scheduling sta-
tus when modules w3 and w4 are being scheduled in the CPPS algorithm. At this point
of time, the left shadowed part has been scheduled by CPPS while the right shadowed
part is still estimated based on FS. Note that the module start time ts

w is always counted
from the point when the module is ready to execute, not from the point when it actually
starts execution. Right after w1 finishes execution, both w3 and w4 are ready to exe-
cute with possible resource sharing. To decide the scheduling between them, we need
to compute the longest (critical) path that traverses each of them by concatenating the
left and right segments of its critical path. For w3, the length of its left CP segment
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Fig. 4. The execution start time ts
w and finish time t f

w of each module calculated under the FS

scheduling policy, listed in the form of TFS(w) : ts
w|t f

w
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Fig. 5. The scheduling status when modules w3 and w4 are being scheduled in the CPPS algo-
rithm. The left shadowed part has been scheduled by CPPS while the right shadowed part is
estimated based on FS.

(w0, w1, and w3), denoted as CPL(w3), is 5 under CPPS, while the length of its right
CP segment (w3, w7, and w8), denoted as CPR(w3), is 8 (including its own execution
time), which is estimated using the FS-based measurements in Fig. 4. Similarly, for w4,
the lengths of its left and right CP segments are 5 under CPPS and 13 based on FS
as shown in Fig. 4, respectively. Since CP(w4) = CPL(w4)+CPR(w4) = 18 is longer
than CP(w3) = CPL(w3)+CPR(w3) = 13, w4 is to be executed exclusively first. It is
estimated that the length of CP(w3) would not exceed the length of the original global
CPFS based on FS, which is 20, even if we let w4 run to its completion with exclusive
CPU utilization, so in this case, we assign the entire CPU to w4 until it finishes; oth-
erwise, w4 would execute exclusively until a certain point and then share with w3 in a
fair manner such that the length of CP(w3) does not exceed the length of the original
global CPFS based on FS. The new execution time of w3 and w4 is updated in Fig. 5.
This scheduling process is repeated on every mapping node until all the modules are
properly scheduled.

5 Performance Evaluation

We evaluate the performance of the proposed CPPS algorithm in both simulated and ex-
perimental network environments in comparison with the fair-share scheduling policy,
which is commonly adopted in real systems.
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5.1 Simulation-Based Performance Comparison

Simulation Settings. In the simulation, we implement the CPPS algorithm in C++ and
run it on a Windows 7 desktop PC equipped with Intel(R) Core(TM)2 Duo CPU E7500
of 2.93GHz and 4.00GB memory.

We develop a separate program to generate test cases by randomly varying the prob-
lem size denoted as a three-tuple (m, |Ew|,n), i.e. m modules and |Ew| edges in the
workflow, and n mapping nodes in the network. For a given problem size, we randomly
vary the module complexity and data size within a suitably selected range of values,
and create the DAG topology of a workflow as follows: 1) Lay out all the modules se-
quentially; 2) For each module, create an input edge from a randomly chosen preceding
module and create an output edge to a randomly chosen succeeding module (note that
the start module has no input and the end module has no output); 3) Repeatedly pick up
a pair of modules on a random basis and add a directed edge from left to right between
them until we reach the given number of edges.

Given the workflow structure and the number of mapping nodes with randomly gen-
erated processing power, we randomly generate the mapping scheme but with some
specific topological constraints. In observation of the topological structures of real net-
works such as ESnet [2] and Internet2 [3], we first topologically sort all modules and
then map the modules from each layer of the workflow to the nodes that are within the
proximity of the corresponding layer in the network. In the same layer with multiple
modules/nodes, a greedy approach is adopted for node assignment.

Note that in the network, we do not need to specify the number of links as a param-
eter because there must exist a link between two mapping nodes where two adjacent
modules are mapped to ensure the feasibility of the given mapping scheme. A random
bandwidth is then selected from a suitable range of values and assigned to each link.
Since other links without any dependency edges mapped to will not affect the simula-
tion results, they are simply ignored.

Simulation Results. To evaluate the performance of the proposed CPPS algorithm, we
randomly generate 4 groups of test cases with 4 different numbers of nodes, i.e. n =
5,10,15, and 20. For each number of nodes (i.e. each group), we generate 20 problem
sizes, indexed from 1 to 20, by varying the number of modules from 5 to 100 at an
interval of 5 with a random number of edges.

For each problem size (m, |Ew|,n), we generate 10 random problem instances for
workflow scheduling with different module complexities, data sizes, node processing
powers, link bandwidths, and mapping schemes, and then calculate the average of the
performance measurements under both fair-share (FS) and CPPS scheduling. The MED
performance improvement or speedup of CPPS over FS, defined as TFS−TCPPS

TFS
× 100%,

is tabulated in Table 2. Note that for the problem size indexed by 1 with m = 5, when
n > m (i.e. n = 10,15, and 20), the mapping scheme maps each module one-to-one to
a different node without any resource sharing, and hence the scheduling is not appli-
cable (marked by “–” in the table); so are the cases for the problem size indexed by
2 with m = 10 and n = 15 and 20, and the problem size indexed by 3 with m = 15
and n = 20. The average performance improvement measurements together with their
corresponding standard deviations are plotted in Fig. 6.
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Table 2. MED improvement percentage of CPPS over FS

Prb Num of Mods MED Improvement Percentage (%)
Idx m n=5 n=10 n=15 n=20
1 5 0.4023 – – –
2 10 9.3800 0.0834 – –
3 15 12.2844 4.1384 1.5431 –
4 20 12.3537 6.9193 9.2536 5.2417
5 25 12.8543 7.9172 11.3095 5.3134
6 30 13.6095 11.3572 11.7418 5.7544
7 35 14.0034 11.7431 13.4203 7.8624
8 40 15.4378 12.8595 13.5076 8.9894
9 45 15.3575 13.0498 13.8334 11.4692

10 50 18.8860 14.2790 11.1567 12.6608
11 55 17.8824 12.8271 13.1352 14.1371
12 60 14.6911 14.6843 14.1821 12.6241
13 65 17.3636 20.5909 16.7078 13.6390
14 70 17.1467 17.5231 17.9146 15.1107
15 75 15.9394 19.3904 16.6014 13.4181
16 80 21.3327 18.2815 18.5939 13.8302
17 85 17.8155 22.2571 18.8757 17.4691
18 90 19.0516 19.2820 17.6146 17.1279
19 95 18.7070 19.0163 17.6803 16.8793
20 100 20.2888 19.0798 18.4336 19.3523
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Fig. 6. MED improvement of CPPS over FS
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The space for performance improvement largely depends on the given mapping
scheme. In small problem sizes, or when the number of modules is comparable to the
number of nodes, the modules are likely to be mapped to the nodes in a uniform manner,
resulting in a low level of resource sharing, unless there exist some nodes whose pro-
cessing power are significantly higher than the others in the network. Hence, in these
cases, the MED improvement of CPPS over FS is not very obvious. However, as the
problem size increases, more modules might be mapped to the same node with more re-
source sharing, hence leading to a higher performance improvement. This overall trend
of performance improvement is clearly reflected in Fig 6.

5.2 Proof-of-Concept Experimental Results Using Climate Modeling Workflow

Weather Research and Forecasting (WRF). The Weather Research and Forecast-
ing (WRF) model [29] has been widely used for regional to continental scale weather
forecast. It is also one of the most widely used limited-area model for dynamical down-
scaling of climate projection by global climate models to provide regional details. The
workflow for typical applications of WRF model takes multiple steps, including data
preparation and preprocessing, actual model simulation, and postprocessing. Each step
could be computationally intensive and/or involve a large amount of data transfer and
processing. For a specific climate research project, such procedures have to be per-
formed repeatedly, in the context of either routine short-term weather forecast, or pe-
riodic re-initialization of model in dynamical downscaling over the length of a climate
projection. Moreover, because of the chaotic nature of the atmospheric system and un-
avoidable errors in the input data and the imperfection of the model, ensemble ap-
proaches have to be adopted with a sufficiently large number of simulations, with slight
perturbations to initial conditions or physical parameters, to enhance the robustness of
the prediction, or to provide probabilistic forecast for problems of interest. Each sin-
gle simulation may require a full or partial set of preprocessing and postprocessing,
in addition to the model simulation. Collectively, a project in this nature may involve
the execution of an overwhelmingly large number of individual programs. A workflow-
based management and execution is hence extremely useful to automate the procedure
and efficiently allocate the resources to carry out the required computational tasks.

Climate Modeling Workflow Structure. The WRF model [4] is able to generate two
large classes of simulations either with an ideal initialization or utilizing real data. In
our workflow experiments, the simulations are generated from real data, which usually
require preprocessing from the WPS package [5] to provide each atmospheric and static
field with fidelity appropriate to the chosen grid resolution for the model.

As shown in Fig. 7, the WPS consists of three independent programs: geogrid.exe,
ungrib.exe, and metgrid.exe. The geogrid program defines the simulation domains and
interpolates various terrestrial datasets to the model grids. The user can specify infor-
mation in the namelist file of WPS to define simulation domains. The ungrib program
“degrib” the data and writes them in a simple intermediate format. The metgrid program
horizontally interpolates the intermediate-format meteorological data that are extracted
by the ungrib program onto the simulation domains defined by the geogrid program.
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The interpolated metgrid output can then be ingested by the WRF package, which con-
tains an initialization program real.exe for real data and a numerical integration program
wrf.exe. The postprocessing model consists of ARWpost and GrADs. ARWpost reads-
in WRF-ARW model data and creates output files for display by GrADS.

WPS WRF

External Data

Post processing

Static
Geographic

Data

Gridded Data ungrib.exe

metgrid.exe real.exe wrf.exe

geogrid.exe

namelist.wps ARWpost.exe GrADs.exe

Fig. 7. The WPS-WRF workflow structure for climate modeling
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Fig. 8. The workflow mapping scheme for job scheduling experiments

Experimental Settings and Results. As shown in Fig. 8, in our experiments, we du-
plicate the entire WPS-WRF workflow to generate three parallel pipelines processing
three different instances of input data of sizes 106.03 MBytes, 106.03 MBytes, and
740.89 MBytes, respectively. The testbed network consists of five Linux PC worksta-
tions equipped with multi-core processors of speed ranging from 1.0 GHz to 3.2 GHz.
The computing requirement (CR) of each module and the processing power (PP) of
each computer are measured or estimated using the methods proposed in [32]. In view
of the computational complexity of each program, the scheduling experiments consider
a subset of the programs in the original workflow, i.e. ungrib.exe, metgrid.exe, real.exe
and wrf.exe, which serve as the main data processing routines. In the WPS part of each
pipeline, we bundle ungrib.exe and metgrid.exe into one module denoted as w1, w3, and
w5, respectively; while in the WRF part of each pipeline, we bundle real.exe and wrf.exe
into one module denoted as w2, w4, and w6, respectively. We map modules w1, w3, and
w5 to dragon.cs.memphis.edu, modules w2 and w4 to mouse.cs.memphis.edu, and mod-
ules w6 to cow.cs.memphis.edu. The virtual start and end modules are mapped to the
other two machines. The preprocessing program geogrid and postprocessing program
ARWpost are executed as part of the piplines, but are not considered for scheduling.
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We conduct two sets of scheduling experiments on the above mapped workflow using
fair-share (FS) and CPPS, respectively. In FS, each module is assigned by the system the
default running priority, while in CPPS, we simply use the Linux command “nice” to
adjust the level of priority to achieve coarse-grained control of execution. The module
execution time and Minimum End-to-end Delay (MED) along the critical path using
FS and CPPS are tabulated in Table 3. We observed that the MED performance im-
provement in this particular case is about 10.67%. The scheduling results in other cases
with different workflow structures and mapping schemes are qualitatively similar. We
would particularly like to point out that these small-scale workflow experiments with
application-level coarse-grained control are conducted mainly for proof of concept. It
is predictable that the performance superiority of CPPS over FS would be manifested
much more significantly as the scale of computing workflows and the scope of dis-
tributed network environments continue to grow in real-life scientific applications.

Table 3. Performance measurements using FS and CPPS

FS CPPS
Module Exec Time (sec) Module Exec Time (sec)

w1 31.506 w1 55.077
w2 79.893 w2 79.537
w3 31.821 w3 55.051
w4 79.728 w4 78.296
w5 43.397 w5 26.34
w6 125.551 w6 124.579

Critical Path 168.948 Critical Path 150.919

6 Conclusion and Future Work

In this paper, we formulated an NP-complete workflow scheduling problem and pro-
posed a Critical Path-based Priority Scheduling (CPPS) algorithm. Extensive simula-
tion results show that CPPS outperforms the traditional fair-share scheduling policy
commonly adopted in real systems. We also conducted proof-of-concept experiments
based on real-life scientific workflows deployed and executed in a testbed network.

However, finding a good on-node scheduling policy and finding a good mapping
scheme are not totally independent. CPPS is able to improve the workflow performance
over a fair-share algorithm for any given mapping scheme. We recognized that a better
performance might be achieved if the interaction between the mapping and the schedul-
ing is considered in the optimization, which will be explored in our future work.

We also plan to further refine the cost models by taking into consideration user and
system dynamics and decentralize the proposed scheduling algorithm to adapt it to time-
varying network environments. It is of our interest to investigate different ways to im-
plement the scheduling algorithm (at either the application or kernel level) and compare
their performances and overheads. We would also like to explore the possibilities to in-
tegrate this scheduling algorithm into existing workflow management systems and test
it in wide-area networks with a high level of resource sharing dynamics.
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Abstract. With their high computation throughput and outstanding
performance-per-watt figures, the graphics processing units (GPU) are
becoming increasingly important for high-performance computing (HPC)
systems. Existing GPU execution environment restricts the GPU usage
to local host node. This is suitable for standalone computer nodes, but
becomes inefficient for HPC systems that consist of a large number of
GPU-assisted nodes. In this paper, a novel framework is proposed to
support dynamic GPU kernel/device mapping strategies for HPC sys-
tems. Adaptive mapping policies are designed to mitigate the impact of
network transfer overhead. The performance of the framework is stud-
ied through extensive simulations. The results show that compared with
existing local-only static mapping method, the proposed framework is
capable of improving the system-wide GPU utilization rate and com-
putation throughput, especially when the concurrent workloads exhibit
different GPU usage intensities.

1 Introduction

The last two decades witnessed the evolution of graphics processing units (GPUs)
from the graphics accelerators to the coprocessors that are becoming increas-
ingly important for high-performance computing (HPC) systems. Thanks to the
rapid advancement in GPU programming frameworks such as CUDA[11] and
OpenCL[7], GPU computing has been successfully deployed for a wide range of
applications in both desktop and HPC settings [12,10]. These applications cover
a wide distribution of GPU usage intensities.

Existing GPU-assisted HPC systems often have a cluster structure where mul-
tiple GPU-assisted compute nodes are interconnected with high speed networks
such as the InfiniBand. For such emerging GPU clusters, their resource manage-
ment systems often adopt existing scheduling systems such as PBS [13]. These
scheduling systems were originally designed for CPU-only systems, and are aug-
mented to treat GPUs as one more type of resource on the compute nodes. When
these job scheduling systems allocate user processes to the compute nodes, the
execution of each process is controlled by the GPU execution environment of its
host node. The user process is subsequently restricted to utilize the local GPU
devices on the host node.
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The per-node static kernel/device mapping method, while working well for
standalone computer nodes, has significant shortcomings in HPC settings. Inef-
ficiency would arise when the physical node configuration mismatches the work-
load pattern of the user processes:

1. GPU underutilization would be observed as GPU cards may be idle between
kernels, especially when GPUs are used sporadically. Additionally, algorith-
mic requirements may restrict a host process to utilize only a subset of the
locally available GPUs, thus wasting other GPUs. For example, an HPC
application may be designed to use 2 GPUs on each node but is wastefully
deployed to a 4-GPU-per-node system.

2. GPU oversubscription would be observed as the user processes of compu-
tation intensive applications may launch kernels faster than what the local
GPUs can process. This is especially the case when the application consists of
a large number GPU intensive tasks. With the static kernel/device mapping,
the host processes may be starving for GPUs to process the tasks.

The overall system performance may therefore suffer from great performance
degradation if applications with different GPU utilization run concurrently in
the system, which will cause some GPUs to be underutilized while others over-
subscribed.

Such static mapping method also affects programmability. With the existing
method, a GPU-accelerated application may be (painfully) hand-optimized for
a particular HPC deployment. But such optimization relies on the static ker-
nel/device mapping and is therefore customized to the hardware configuration
of that HPC system. When porting to a new/upgraded system with different
configurations, those optimizations will become impaired and the code will un-
derperform in the new system.

In this paper, we argue that these flaws of the current GPU-assisted HPC
clusters can be alleviated and that the overall system performance and utiliza-
tion can be improved when running unbalanced mixed workloads if a dynamic
mapping strategies could be established between the GPU devices and the GPU
kernels of the user applications. We present a novel idea of GPU resource man-
agement module (GREMM) that incorporates with existing remote GPU kernel
execution technique and allows dynamic GPU kernel/device mapping. In partic-
ular, our study focuses on the dynamic kernel/device mapping policies that can
proactively assign GPU kernels to remote GPUs that would otherwise be under-
utilized if the communication overhead is lower than the local waiting time. The
main objective of the dynamic mapping framework is to refine the granularity of
resource management and to explore both CPUs and GPUs to bridge the mis-
match between the fixed physical node configurations and the varied workload
requirement.

We demonstrate the efficiency of the proposed strategies by comparing against
native systems (with static local kernel/device mapping). The results show that
the dynamic kernel/device mapping outperforms the existing static execution
environment in terms of the GPU utilization ratio and the computation
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throughput, especially for unbalanced mixed workloads. We expect the proposed
framework to improve the efficiency of GPU-assisted HPC systems.

The rest of the paper is organized as follows. In Section 2, we provide the
background information on our work and survey the related works. In Section 3,
we introduce the dynamic kernel/device mapping framework and categorize its
overheads, which lays down the foundation for our design of mapping strategies.
In Section 4, we present the design of three mapping policies. In Section 5, we
develop discrete event simulation to evaluate the performance. Some concluding
remarks and future work are given in Section 6.

2 Background and Related Works

Existing GPU execution environments such as the Nvidia CUDA framework [11]
assume the user processes to be bound to the local GPUs. A GPU kernel request
is handled by the local GPU driver, which then loads the kernel on a local GPU
device, executes it, and returns the results to the requesting process. As a way
to resolve the scarcity of GPUs in many computer systems, GPU sharing has
attracted intensive research attention. The existing techniques employed in GPU
sharing is briefly summarized as follows.

PBS[13] and Slurm[14] are two widely adopted resource management systems
for HPC systems. They were originally designed for CPU-based systems and
have been upgraded to support GPU-assisted nodes. PBS and Slurm track user
requests and system status, and map user processes to the compute nodes. In
current PBS and Slurm systems, the process/kernel mapping is static, and the
execution of the processes, once mapped, is governed by the compute nodes. For
GPU-accelerated applications, the execution of each process is therefore subject
to existing GPU execution environment on the compute nodes, which restricts
user processes to utilize local GPU devices.

rCUDA [4] is proposed to enable the compute nodes not equipped with local
GPUs to access the remote GPUs hosted on remote compute nodes. It employs
API remoting technique to reroute the GPU calls to a remote GPU-assisted
compute node. With rCUDA, the remote GPUs are statically specified in a con-
figuration file on the requesting node. rCUDA works between a pair of designated
nodes, and is particularly useful in a cluster environment where only a few nodes
are equipped with GPUs. In such settings, rCUDA allows other non-GPU nodes
to execute their GPU kernels on the GPU-assisted nodes, but the kernels in
rCUDA-based system remains statically bound to devices, since the users have
to hard-code the remote rCUDA server IP into their application. rCUDA is not
designed to manage GPUs in an GPU-assisted HPC system.

GViM[6] is an API level solution to virtualize GPU systems. GViM is not de-
signed to access remote GPUs since it can only virtualize GPUs on a standalone
computer. Shadowfax[9] is proposed to address the access limit and to support
unmodified applications in multiple virtual machines in order to share both local
and remote GPUs. Similar to the static designation of remote GPUs in rCUDA,
all virtual GPUs in Shadowfax need to be manually mapped to a physical GPU,
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Fig. 1. Illustration of GPU kernel/device mapping models

which is unsuitable for managing GPUs in HPC systems where user application
requests are not known as a priori.

The capability of remote GPU kernel execution is also explored in several
other projects such as SnuCL[8], MGP[1], and gVirtuS [5]. Both SnuCL and
MGP target to improve the programmability of GPU-assisted applications on a
GPU cluster by providing a single system image. gVirtus focuses on providing
a virtualization service which supports the remote GPU sharing. However, to
the best of our knowledge, little research has been done on how to efficiently
schedule the remote GPU device accesses in HPC systems.

3 Dynamic Kernel-Device Mapping

A novel HPC system framework is presented to facilitate dynamic kernel/device
mapping strategies, and thereby improving the system-wide GPU resource uti-
lization. The framework is essentially a combination of the existing remote kernel
execution infrastructure and the decision maker of the kernel/device mapping.

3.1 The Framework

As we noted before, the prevailing GPU invocation method is restricted to access
the GPUs on the board of the local compute node only - the kernel calls are
routinely directed to the binding local GPUs as illustrated in Figure 1(A). With
the development of the middleware such as rCUDA[4] and gVirtus[5], the scope
of invocable GPUs is expanded to all the GPUs across the cluster system, as
is illustrated in Figure 1(B). In these existing remote execution infrastructures,
the mapping between the GPU kernel and device is still statically bound. But
the restriction can be removed by extending such existing infrastructures.

While our work mainly focuses on the dynamic kernel-device mapping policy,
it is informative to have an idea on how the framework would be constructed. To
put it into perspective, such a framework can be decomposed into three compo-
nents: (1) the front-end library of user API, (2) the GPU Resource Management
Module (GREMM), and (3) the GPU execution proxy.



100 J. Wu, W. Shi, and B. Hong

1. The front-end API library should provide equivalent interface as existing
GPU programming environment such as CUDA or OpenCL, and implement
functionalities that communicate to GREMM. By linking to this library, pro-
grammers can write conventional GPU codes for their applications without
considering how the GPU calls are handled. Once the executable is linked
with this library instead of the stock one, GPU related functions will be
automatically wrapped into task messages and dynamically forwarded to
proper proxy based on GREMM’s decision.

2. The GPU resource management module is the middle layer of our framework
that connects GPU API calls and the execution proxies. As the heart of the
system, the GREMM is responsible for making the kernel mapping decisions.
A variety of policies can be included in our design. Based on a specific policy,
the modules will work either independently or cooperatively to assign GPU
kernels.

3. The GPU execution proxy is the bottom layer of the dynamic mapping
framework responsible for the host/device memory copying, kernel launch-
ing, and other device control functions. Each proxy controls one local GPU
device and communicates with the local and remote API callers. Guided
by the GREMM, every GPU task message will eventually be served at a
execution proxy.

The described framework constitutes a direct and easy extension of the existing
remote kernel execution infrastructure. More importantly, among all the design
choices, we contend that the decision maker can be put into a separate module,
referred to as GREMM and also illustrated in Figure 1(C), so that not too much
change would be made on the side of remote kernel execution infrastructure to
install various mapping policies.

3.2 Categorization of Overheads

Applications running on existing GPU-assisted HPC systems are subjected to
the overhead of queuing for the statically mapped GPU devices. At the system
level, this overhead is expected to be lowered through balanced allocation of
GPU devices in dynamic mapping framework.

However, remote kernel execution does introduce a new type of overhead:
the network overhead. Network overhead will not incur for the traditional ker-
nel/device mapping method since it only uses local GPUs, but will incur when
the GPU kernel needs to be executed on a remote node. The amount of this
overhead is directly related to the volume of transfered data and network per-
formance. Data intensive workloads will lead to negative performance gains.
But the performance degradation could be avoided if an appropriate policy is
available to track workload data/computation ratio and decide when to activate
remote execution and when to fall back to the local-only method.

We will study the impact of network overhead and also the benefits of reduced
queuing overhead in the following sections.
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4 Dynamic Kernel/Device Mapping Policies

In this section, an abstraction of GPU-assisted HPC clusters is presented, fol-
lowed by the design and evaluation of three mapping policies for the dynamic
kernel/device mapping framework.

4.1 System Abstraction

We consider the following abstraction of GPU-assisted HPC clusters. There are
N homogeneous compute nodes in the system, each configured with M processor
cores per node and K GPU devices per node. And we assume M ≥ K. A user
application consists of multiple processes. Processes from all the applications
are mapped to the compute nodes by a job scheduling system that employs the
following rules: (1) a compute node will not be split among multiple applications,
(2) processes do not migrate once mapped, (3) each compute node receives less
than M processes, and (4) compute nodes receive balanced workload for each
application. Such a job scheduling policy represents the typical practice of many
popular scheduling systems (e.g. PBS).

We assume that each process executes a program code consisting of multiple
iterations, where each iteration consists of a CPU code segment followed by a
GPU code segment – the GPU kernel.

We further assume that the programmer will explicitly copy back any useful
data from GPU after a kernel is finished, so the GPU context associated with
certain process becomes volatile when its new kernel is not launched on the same
GPU device as before. Discussions on this limitation will be presented in the final
section.

4.2 Global Reservation Policy

In Global Reservation (GR) Policy, a FIFO queue is set up for the GPU cluster.
GPU tasks launched by any process will be registered in this queue, which will
later be served by a total number of N × K GPU devices. The actual data
transfer occurs directly between the requesting process and the serving GPU,
and is not transferred via the queue. Theoretically, if an infinite fast network
interconnection is given, the global reservation policy is expected to achieve the
best system-wide GPU utilization.

However, because the GPU device needs to be reserved while data/kernel is
being transferred from a remote node, the efficiency of this policy is highly sensi-
tive to the network overhead. For the proposed dynamic kernel/device mapping
to perform well under environments of varied workload, adaptive policies are
then explored.

4.3 Adaptive Greedy Policy

Adaptive Greedy (AG) Policy aims to map the kernel call to the GPU device
that requires the least total waiting time every time a new kernel call is initiated.
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Denote all the GPUs in the system be G, the set of local GPUs be L. The
number of all GPUs in the system is |G| = NK.

AG examines every GPU device g in the system, estimates the total waiting
time τg if the kernel call is mapped to that GPU. The total waiting time τg is
composed of the queueing delay τqg and the data transfer delay τdg .

τg = τqg + τdg (1)

The queueing delay τqg is estimated by the number of queued kernel calls on that
GPU device Ng and the average execution time of last k kernel calls on that
GPU device τkg .

τqg = Ng · τkg (2)

The data transfer delay τdg is zero if g is a local GPU device and is estimated
by the amount of data transferred from the host node to the remote node Dout,
the amount of data transferred back from the remote node to the host node Din

and the outbound (resp. inbound) bandwidth Bout
g (resp. Bin

g ) if g is a remote
device.

τdg =

⎧⎨
⎩

0 if g ∈ L (3)

Dout

Bout
g

+
Din

Bin
g

if g 
∈ L (4)

Bout
g is estimated by the nominated inter-node bandwidth BW and the number

of out-bound kernel calls on the host node, namely Ol and the number of in-
bound kernel calls on g, namely Ig when the kernel call is to be assigned.

Bout
g =

BW

maxg∈G−l(Ol, Ig) + 1
(5)

Bin
g is estimated by the nominated inter-node bandwidth BW and the system-

wide average number of queued kernel calls per node. Notice that Bin
g is different

from Bout
g as the bandwidth may change with the progress of the kernel execu-

tion.

Bin
g =

BW∑
g∈G−l max(Og , Il)/|G| (6)

AG chooses the node g∗ with the least total waiting time as the candidate node
that the kernel call is to be assigned. The computational complexity of AG is
O(|G|) = O(NK).

g∗ = argmin
g∈G

τg (7)

4.4 Adaptive Random Policy

Adaptive Random (AR) Policy is a randomized policy. It tries to construct and
maintain a table which records the probability that a particular GPU device
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should be chosen to serve the kernel call. It assigns the kernel call based on the
probabilities in the maintained table. It resorts to the GPU driver to handle the
contention for the GPU device on a particular node if there is any.

The probability of being chosen is calculated based on a weight table that
is associated with the system-wide GPU availability. In this table, each GPU
device is assigned a weight indicating the relative probability of being chosen.

Denote the nominated inter-node bandwidth be B, the weight of a remote
idle (resp. busy) GPU device be wri (resp. wrb), the weight of a local idle (resp.
busy) GPU device be wli (resp. wlb).

Assume that the inertia towards choosing the busy GPU devices over the
idle ones is characterized by a ‘penalty’ factor α(< 1), and that the preference
towards choosing the local GPU devices over the remote ones is characterized
by a ‘bonus’ factor β(> 1). Hence we have

α =
wlb

wli
=

wrb

wri
, (8)

β =
wlb

wrb
=

wli

wri
. (9)

Without loss of generality, if we set the wri = 1, then wli = β, wrb = α, wlb = αβ.
The ‘penalty’ factor α can be quantified by the average execution time of

received kernel calls τkg and the node configuration of the host node.

α =
M

K
· 1

τkg
(10)

The design philosophy of α is that the relative probability ratio of choosing a
busy node over choosing a idle node should be proportional to the relative ratio
of the time ticks that a node is idle, and that the larger the ratio of the number
of GPUs versus the number of CPUs on a host node, the less chance the kernel
calls should be assigned to remote nodes.

The ‘bonus’ factor β can be quantified by the amount of transferred data
D, the average execution time of received kernel calls τkg and the number of
nodes in the system N . The design philosophy of β is that the higher the ratio
of the communication time to the computation time, or the higher the data
consumption rate, or the more nodes in the system, the more chance the local
nodes are favored over the remote nodes.

β =

(
D/B

τkg

)
·
(
D

τkg

)
·N =

(
D

τkg

)2

· N
B

(11)

The computational complexity of AR is also O(|G|) = O(NK) while the infor-
mation it needs to keep is less than AG. When a GPU task arrives, GREMM
makes the randomized assignment decisions based on the weights in this table.

More sophisticated mapping policies can be designed, for example, to explore
execution history of the system and to accept users’ hint about the pattern of
their jobs. We leave the exploration of the advanced mapping policies for our fu-
ture work. In this paper, we focus on the benefits of dynamic GPU kernel/device
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mapping and its effectiveness under different workload and system conditions.
Greater performance improvement is expected when more advanced mapping
policies are adopted.

5 Performance Evaluation

In this section we develop a discrete event simulator to simulate the runtime
behavior of large-scale GPU-assisted clusters. The performance of dynamic ker-
nel/device mapping strategies is then verified through extensive simulations.

It is desirable to evaluate the dynamic kernel/device mapping framework in a
large-scale production GPU-assisted HPC using real benchmark workloads. But
because GPU-based HPC computing is an emerging field, there does not exist
well-established workload traces for this type of systems. Available GPU bench-
marks (e.g. RODINIA[2] and SHOC[3]) are designed to stress micro-architectural
features of GPUs, which are unsuitable to describe multiple concurrent work-
loads at the system level for our study. To address this issue, we synthesized our
workload traces, which are designed to be representative of GPU-HPC work-
loads.

5.1 Experimental Setup

The four GPU mapping policies tested are: 1) ST, the static kernel/device map-
ping policy; 2) GR, the global reservation policy; 3) AR, the adaptive random
mapping policy with k = 10; and 4) AG, the adaptive greedy mapping policy
with k = 10. The ST policy, as our baseline, is the conventional policy in GPU
execution environment which shows the GPU utilization of the native system
without remote execution or dynamic mapping. GR, AR, and AG are dynamic
kernel/device mapping policies.

The two major performance metrics evaluated are GPU Utilization Rate and
Mean Waiting Time. GPU Utilization Rate is the ratio of the GPU busy time to
the total GPU time available. This rate directly reflects the utilization efficiency
of the entire GPU cluster. The Mean Waiting Time measures the average time
that a GPU task spends on data transfer and queuing for GPU devices. It reflects
the average overhead for each kernel execution.

5.2 GPU-Assisted Cluster Simulator

The simulated cluster consists of N computing nodes. Each node consists of M
CPU cores,K GPU devices, and a full-duplex network interface card (NIC) with
max bandwidth B. The CPU cores are characterized by the processing capabil-
ities. GPU devices are also characterized by their processing capabilities. The
latency of remote execution API functions is modeled based-on data observed
in previous researches[4,6,9].

The NIC on each node has two independent ports: the inbound port and the
outbound port. A max bandwidth B is enforced on each port. Once any data
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is to be transmitted from one node to another, a connection will be established
from the outbound NIC port of the source to the inbound NIC port of the
sink. Concurrent connections on a single port share the port’s bandwidth evenly.
However, the effective bandwidth of a connection is limited by the busier one
of the two participating ports. So, if any one of the concurrent connections
fails to fully utilize its share, the remaining bandwidth will be utilized by other
concurrent connections. According to this scheme, the system-wide bandwidth
allocation changes when a new connection is established or a current connection
is completed. We adopt this simplified network model as our focus is on the
impact of network transfer overhead, rather than on how the overheads are
generated. Therefore, the detail characteristics of a typical network such as the
topology and the routing are not taken into account in this work.

Unless explicitly noted later, the cluster in following simulations is configured
as N = 24, M = 12, K = 3. The bandwidth is set to B = 100KB/ms for GbE
and B = 1000KB/ms for IB. The simulated time span is 10, 000s.

5.3 Generation of Workload Traces

The input to the simulator is the workload trace, which is organized as groups
of consecutive tasks. Each group is associated with one software process. We
characterize a CPU task by the amount of time Tc delayed on the CPU core,
and a GPU task by three parameters: the amount of data Du uploaded to the
GPU device; the amount of execution time Tg on GPU device; and the amount
of data Dd downloaded from the GPU device to host process.

The workload used for the evaluation of the dynamic mapping framework is
generated based on following assumptions:

– Each process executes CPU and GPU tasks alternatively.

– The execution time of CPU and GPU task is random variable of exponential
distribution with parameter λ = 1/Tc, μ = 1/Tg respectively.

– The size of the input and output data sets of a GPU kernel is proportional
to the kernel execution time.

For example, a process P generated with parameters Tg = 2250ms,Du = 10×Tg,
Dd = 0.5 × Du, and Tc = 750ms will have the following characteristics: the
average length of GPU kernel is 2250ms; the average data uploaded to GPU
each time is 22500KB; the average data downloaded from GPU each time is
11250KB; and the average time spent on CPU before next GPU kernel launch
is 750ms.

Since the policies are designed to address unbalanced GPU utilizations of
concurrent GPU workloads in an HPC system. The traces we used are mixed
combinations of a heavy-GPU application and a light-GPU application. We as-
sume that the system runs these two applications with full capacity: there are ni

(assuming ni is a multiple of M
K ) processes in Workload i, and n1 +n2 = N ·M .

In such case, the GPUs in the system are subject to the different computation
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Fig. 2. Impact of workload mix

intensity. The benefit of routing a kernel from a stressed node to an idle re-
mote node can potentially overweigh the extra overhead of network transfer.
Our analysis can be extended to scenarios with more applications.

5.4 Workload Mix

Our first set of experiments examines a set of mixed workloads. Traces W1 to
W5 are synthesized from two client applications submitted to the cluster. Client
H’s application consists of tasks with heavy GPU usage (with Tc = 750ms,
Tg = 2250ms, Du = 10× Tg, Dd = 0.5×Du) and client L’s application consists
of tasks with light GPU usage (with Tc = 2250ms, Tg = 750ms, Du = 10× Tg,
Dd = 0.5 × Du). The five traces are synthesized to represent the mix of two
workloads with different GPU demands. The process population ratio of H/L is
24/0 in W1, 18/6 in W2, 12/12 in W3, 6/18 in W4, and 0/24 in W5.

The system is simulated with the network bandwidth set to 100KB/ms
(GbE). As shown in the left subplot of Figure 2, the system-wide GPU utilization
rate can be improved by dynamic mapping policies in most of the cases. Since
there are underutilized GPU devices on the nodes, transferring GPU tasks from
heavily occupied local devices to remote idle devices is beneficial. It is worth not-
ing that significant improvement can be observed for the adaptive policies even
for such low bandwidth network. This indicates that the dynamic kernel/device
mapping is particularly useful for mixed workloads that have different GPU de-
mands. Meanwhile, the mean waiting time is also improved as is shown in the
right subplot of Figure 2.

Figure 3 shows the number of completed GPU kernels under different policies
on Traces W1 to W5. Taking W3 as an example, in the simulated time span,
the conventional ST policy finishes about 12K kernels for client H and about
28K kernels for client L. When the dynamic policies are applied, the overall
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Fig. 3. Number of completed GPU kernels with different policies

Fig. 4. Detailed GPU Utilization of the Cluster with static and dynamic policies

system-wide GPU utilization rate is improved. It is also interesting to note that
client L is affected by the other policies, i.e. client L completes less kernels if
remote GPU mapping is allowed. This is because the GPUs previously dedi-
cated to client L are now executing client H’s kernels too. This set of experiment
suggests that if certain client’s application is mission-critical, it is desirable to
exclude other applications from utilizing its GPU devices, even though this will
reduce the GPU utilization rate of the system. We plan to investigate the prior-
itized policy in our future study.

5.5 Load Balance

Figure 4 lists the detailed GPU utilization of the cluster with different policies
on the mixed workload trace W4, since W4 is a very good example to demon-
strate the performance improvement of the dynamic kernel/device mapping. The
bandwidth is set to 100KB/ms in this and the following experiments as well.
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Fig. 5. Impact of GPU utilization intensity

It shows that the utilization with ST is negatively affected by the unbalanced
node utilizations. The GR policy is capable of balancing GPU utilization. The
AR and AG policy outperforms the other policies for this set of experiments.

As mentioned in the background section, techniques such as rCUDA allow a
process to send all its GPU kernels to a statically designated remote node, but
they do not support run-time kernel/device mapping. For fair comparison, we
tested three static schedulers for rCUDA on workload W4: 1/4, 1/2, and 3/4 of
the client H’s GPU kernels were directed to client L’s GPUs. The results show
that when 1/2 of client H’s processes can use rCUDA, the system achieves GPU
utilization rate of 92.5%, which is still worse than the performance of the dynamic
mapping policies. Nevertheless, the results also demonstrate the difficulty in
optimizing the performance by the static scheduler of rCUDA: ratios 1/4 and
3/4 are less efficient, finding the better ratio of 1/2 is non-trivial. Furthermore,
since the rCUDA mapping decision needs to be made before launching user
applications, it is infeasible to use rCUDA for actual HPC applications since
there does not exist a single static mapping policy that will be suitable for all
kinds of workloads.

5.6 Workload Intensity

The impact on the GPU utilization intensity is demonstrated in Figure 5. Two
new groups of workloads (W6-W10 and W11-W15) are used in the experiment.
The generating parameters of these workloads are the same as that of W1 to
W5, except that the (Tc, Tg) of light workload is set to (2625, 325) in W6-W10

and (1815, 1125) in W11-W15. As the results show, the dynamic policies are
significantly effective only if enough underutilized GPUs exist. In the lighter
group (W6-W10), up to 26% improvement can be observed, but in the heavier
group (W11-W15) the improvement is limited by the existence of over-utilized
GPUs.
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Fig. 6. Impact of network bandwidth

5.7 Network Overhead and Efficacy of Adaptation

In this experiment, we examine the sensitivity of the policies to the network
bandwidth and the data/computation ratio of the GPU kernels, which are two
key factors that affect the network transfer overheads introduced by the remote
execution of GPU kernels.

Figure 6 shows the system-wide GPU utilization of different policies and the
underlying interconnect with varied Du/Tg (data/computation ratio). Here Du

of the workload W4 is sampled exponentially from Du = 1 × Tg to Du =
10000 × Tg. As Du/Tg increases, the overhead of remote-execution increases,
which negatively affects the performance of the dynamic mapping policies (and
especially of the GR policy). This indicates that the amount of transferred data
or the network bandwidth plays an important role in making dynamic mapping
policies effective and efficient. However, thanks to the adaptation mechanism,
the performance of AR and AG can still be as good as ST when the ratio is
extremely high.

The benefit of the adaptation mechanism can be clearly demonstrated with
Figure 7. In this experiment, we explicitly assign several fixed values to α and β,
and compare these fixed-weight random policies to AR. The result reveals that
the fixed-weight may favor either the low data/computation ratio workload or
the high data/computation workload. Only the adaptive-weight in AR can track
the best performance over the entire range of data/computation ratio.

5.8 Scalability

The scalability of the dynamic mapping policies is evaluated in the following two
experiments: scalability with respect to the number of GPUs per node, and with
respect to the number of nodes. Trace W4 is used for the first set of experiments.
For the second set of experiments, the four tested traces are half-sized, normal-
sized, double-sized, and quadruple-sized versions of W4. The network bandwidth
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Fig. 7. Benefit of the adaptation mechanism

Fig. 8. Scalability of dynamic mapping policies over static mapping

is set to 100KB/ms. The GR policy is excluded in this experiment due to its
poor performance over lower-bandwidth network.

In the experiments, we observe higher possibility of underutilization by static
mapping when more GPUs are installed in the cluster. In such cases, the necessity
of an efficient GPU resource management policy becomes more significant.

The values reported in Figure 8 are the GPU utilization rate margin of the dy-
namic mapping policies over the ST policy. According to the results, both AR and
AG exhibit good scalability over the number of GPUs per node. TheARpolicy also
exhibits good scalability over the number of nodes. However, the AGpolicy doesn’t
scale well with the number of nodes. The key reason is that estimating the delay
times in a larger-scale systembecomes harder and less accurate.The larger amount
of collaborative communication incurred duringAG’s decisionmaking process also
impairs its scalability over the number of nodes.
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Fig. 9. The impact of false positive and false negative ratio on AR

Since both AG and AR rely on certain amount of global information to make
scheduling decisions, their performance could be significantly compromised if the
system scales up to thousands of nodes. To accommodate such large systems,
one effective way is to group the nodes into subsets and schedule remote GPU
accesses within each subset. In future research, an alternative policy relying on
distributed information and local estimation will be studied.

5.9 Design Choices for the AR Policy

This set of experiments evaluates the performance of AR policy over certain
design choices. As demonstrated in the previous experiments, AR is a balanced
policy with several distinct advantages. One important choice in the implementa-
tion of this policy is how to maintain the distributed table about the GPU status.
Real-time update is less desirable since it may incur extra network overhead. On
the other hand, if the table is updated less frequently, outdated information may
be used for GPU kernel/device mapping. We define a case to be false positive if
an idle GPU is identified as busy, and false negative if a busy GPU is identified
as idle. We used traces W1 to W5 to evaluate the performance of AR policy over
different false positive ratio/false negative ratio. The values reported in Figure 9
are the GPU utilization rate margin of AR over ST. As shown in the figure, the
performance is more sensitive to the false negative ratio than the false positive
ratio. This implies that the status should be updated as soon as possible when a
certain GPU becomes busy and the update is less urgent when a GPU becomes
idle if the performance of the AR policy is valued.

6 Conclusion and Future Work

To address the performance degradation of GPU-assisted HPC system due to
the mismatch between the physical node configuration and the GPU utilization
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of mixed workloads, we present the idea of dynamic kernel/device mapping,
which relaxes the static binding between GPU kernels and local GPUs as in
existing systems, and provide a sample design with the functionalities of remote
kernel execution and GPU resource management, based on which the dynamic
GPU allocation policies are further designed to balance the utilization of GPUs.
The benefit and efficiency of the strategies is demonstrated through simulation-
based studies, which show that the dynamic mapping strategies outperforms the
existing static kernel/device binding in terms of the GPU utilization and the
mean waiting time for processes to acquire GPUs.

As we noted, communication intensive workload does pose challenges for the
dynamic kernel/device mapping. However, if an advisable adaptive policy is
adopted such as the proposed AR and AG policies, the dynamic mapping strate-
gies will outperform existing methods for suitable workloads, and (effectively)
fall back to the existing method for unsuitable workloads (e.g. communication
intensive or very short kernels, both of which are untypical for GPU-assisted
HPC applications). The dynamic mapping strategies provide the mechanism to
improve GPU utilization for HPC systems when possible.

Additionally, existing GPU supports the concept of context where all the
kernels launched from a user process are able to reuse the data that reside
in GPU’s global memory. Consequently, utilizing the same device for multiple
kernels can save considerable amount of time for data movement. We plan to
explore such context-based locality and design policies to re-utilize a remote GPU
device for consecutive kernel calls from a process in order to reduce the cost of
network transfer. We also plan to study the impact of process synchronization
(e.g. MPI barriers) on the dynamic mapping kernel/device policy.

Acknowledgment. This work is supported by the US National Science Foun-
dation under award number CNS-0845583.
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Abstract. On-chip resource sharing among sibling cores causes resource con-
tention on Chip Multiprocessors (CMP), considerably degrading program
performance and system fairness. Job co-scheduling attempts to alleviate the
problem by assigning jobs to cores intelligently. Despite many heuristics-based
empirical explorations, studies on optimal co-scheduling and its inherent
complexity start only recently, and all have concentrated on the minimization of
total performance degradations. There is another important criterion for schedul-
ing, makespan, which determines the finish time of a job set. Its importance for
job co-scheduling on CMP is increasingly recognized, especially with the rise
of CMP-based compute cloud, data centers, and server farms. However, optimal
co-scheduling for makespan minimization still remains unexplored.

This work compares makespan minimization problem with previously stud-
ied cost minimization (or degradation minimization) problem, revealing these
connections as well as significant differences. It uncovers the computational com-
plexity of the makespan minimization problem, and proposes a series of algo-
rithms to either compute or approximate the optimal schedules. It proves that the
problem is NP-complete in a general setting, but for a special case (dual-core
without job migrations), the problem is solvable in O(n2.5 · log n) time (n is the
number of jobs). In addition, this paper presents a series of algorithms to compute
or approximate the optimal schedules in the general setting. Experiments on both
real and synthetic problems verify the optimality of the optimal co-scheduling
algorithms, and demonstrate the reasonable accuracy and scalability of the ap-
proximation algorithms. The findings may advance the current understanding of
optimal co-scheduling, facilitate the evaluation of real co-scheduling systems,
and provide insights for the development of practical co-scheduling algorithms.

Keywords: Multicore Co-Scheduling, Optimal Co-Scheduling, Makespan Min-
imization, A-star algorithm, Migration.

1 Introduction

In a Chip Multiprocessors (CMP) system, multicores typically share certain resource
(e.g., last-level cache) on a chip. The sharing, although shortening the communication
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among cores, causes resource contention among co-running jobs. Many studies have
reported considerable, and sometimes significant, effects of the contention on program
performance and system fairness [4, 7, 9, 14, 22]. The urgency for alleviating the con-
tention keeps growing as the processor-level parallelism increases continuously.

Recent years have seen many interests in using job co-scheduling to alleviate the
contention [7, 10, 19]. The basic strategy of job co-scheduling is to assign jobs to cores
in a way that the overall influence from resource contention is reduced.

The prior explorations fall into two categories. The first includes the research
that aims at constructing practical on-line job scheduling systems. It concentrates on
heuristics-based lightweight scheduling techniques. A typical example is the symbiotic
co-scheduling by Snavely and Tullsen [19]. The co-scheduler in the system samples
the performance of different schedules during runtime and selects a good one. Other
examples include the fair-miss-rate-based co-scheduling by Fedorova et al. [7], thread
clustering by Tam et al. [23], and so on.

The second category includes the studies on optimal co-scheduling. The goal is to un-
cover the complexity in finding optimal co-schedules and develop algorithms to either
compute or approximate optimal co-schedules. Optimal co-scheduling typically hap-
pens offline, requiring considerable computation, certain knowledge obtained through
profiling runs of jobs, and other conditions. It is not for direct uses in on-line job
scheduling systems, but for exposing the limit to facilitate the evaluation of practical
schedulers. Without knowing optimal schedules (or a reasonable approximation), it is
hard to precisely determine how good a scheduling algorithm is—how far a solution
given by the scheduling algorithm is from the optimal solution and whether further im-
provement will enhance performance significantly, both of which are important for the
design and deployment of practical co-scheduling systems.

Research in optimal co-scheduling is still in a preliminary stage. Although some
studies are relevant to optimal co-scheduling (e.g., co-run cache performance predic-
tion [2, 4] may simplify the profiling requirement), direct attacks to the problem start
only recently [10,11,24]. The objectives of the previous explorations are all on the min-
imization of co-run cost (i.e., the sum of each job’s co-run performance degradation).

But besides cost, there is another important criterion in job scheduling, makespan.
Makespan refers to the time between the start of a job set and the finishing of the last
job in the set. Minimizing makespan is important in situations where a simultaneously
received batch of jobs is required to be completed as soon as possible. For example,
a multi-item order submitted by a single customer needs to be delivered in the min-
imal time. This kind of situation is especially common in server farms, data centers,
and compute cloud (e.g., the Amazon Elastic Compute Cloud). With the rapid rise of
these modern computing forms and their wide adoption of CMP, a good understanding
to makespan minimization in multicore job co-scheduling becomes increasingly impor-
tant. But to the best of our knowledge, this problem has remained unexplored.

Makespan minimization differs from cost minimization. The optimal schedules for
the two criteria are typically different. In traditional job scheduling literature, the two
criteria have led to drastically different algorithms and complexity analyses [12]. As
to be shown in this paper, for multicore job co-scheduling, the implication of their
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difference is pronounced as well, ranging from complexity analysis to algorithm designs
to the ultimate scheduling results (summarized in Section 7).

Motivated by the contrast of the increasing importance and the preliminary under-
standing of makespan minimization in multicore job co-scheduling, we initiate explo-
rations on four aspects.

– First, we prove that makespan minimization in job co-scheduling is NP-complete
on systems with more than 2 cores per chip. The proof is based on a reduction from
the problem of Exact Cover by 3-Sets. We are not aware of any previous analysis
of the computational complexity.

– Second, by offering an O(n2.5 ·logn) algorithm (n is the number of jobs), we prove
that on dual-core systems with no job migrations, the problem is polynomial-time
solvable. To the best of our knowledge, this algorithm is the first polynomial-time
solution for this optimal co-scheduling problem.

– Third, we present a set of A*-search–based algorithms and a greedy algorithm to
tackle optimal co-scheduling for makespan minimization in the general setting—
with two or more cores per chip and with or without job migrations. A*-search
has been applied for job co-scheduling [24], but not for makespan minimization.
Our description focuses on the issues specific to makespan minimization, including
the formulation of the search process, the design of the heuristic function, and the
empirical exploration of the tradeoff between the scheduling overhead and quality.

– Finally, we evaluate the algorithms on both real and synthetic problems, verifying
the optimality of the co-scheduling algorithms (under certain conditions), mean-
while showing that the algorithms may save orders of magnitude overhead over
the brute-force search. Results of the approximation algorithms demonstrate their
capability to achieve near optimal solutions with reasonable scalability.

The analysis and algorithms contributed in this paper help reveal (or approximate) the
lower bound of makespan in multicore job co-scheduling, essential for the assessment
of practical scheduling systems. The algorithms may shed insights to the development
of effective lightweight co-scheduling systems as well.

We organize the rest of this paper as follows. Section 2 describes the problem setting
and assumptions. Section 3 proves the NP-completeness of the optimal co-scheduling
problem, and presents the polynomial-time algorithm and a set of A*-search algorithms
as optimal solutions. Section 4 describes a set of approximation algorithms. Section 5
reports evaluation results. Section 6 discusses the limitations of this work and future
extensions. After reviewing some related work in Section 7, we conclude the paper
with a short summary in Section 8.

2 Problem Definition

Roughly speaking, the optimal job co-scheduling tackled in this work is to decide the
placement of a set of jobs on a number of cores so that the makespan of the schedule is
minimized.
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Finding optimal co-schedules in a general setting is extremely difficult: A program’s
fine-grained behaviors may change constantly, a program may migrate to any cores, and
programs may start, terminate, or go through context switch at any time. It is necessary
to define the problem settings first.

2.1 Problem Settings

To make the problem tractable and meanwhile keep the analysis useful, we specify the
following settings. Some of these settings may differ from certain practical scenarios.
However, as we will show (after presenting the settings), they do not prevent the use of
the computed co-schedules from serving for its main goal: facilitating the evaluation of
practical co-schedulers.

Machines. The computing system assumed in this exploration contains m uniform
chips, and each chip has u uniform cores1. There is a certain amount of cache on each
chip that is shared by the u cores on the chip. Only one job can run on a core at each
time point. The execution speed of a job running on a chip depends on what jobs are
placed on the same chip, but has negligible dependence on how the rest of the job set
are placed on other chips. The architecture is a generalized form of CMP architectures
on the market, such as IBM Power5 and the Intel Core2 family.

Jobs. The number and starting time of jobs are set to be as follows. The number of jobs
(denoted as n) is equal to the number of cores, n = m ∗ u. This setting is to help focus
on the placement of jobs on cores. When n < m∗u, the problem can be converted to the
defined setting if we consider that there are (m∗u−n) extra dummy jobs that consume
no resources. If n > m ∗ u, the problem is more complex, requiring the consideration
of temporal complexity (e.g. context switch) besides the spatial placement of jobs. The
temporal complexity is out of the scope of this paper. But we note that this work will
be still useful for that setting, as spatial placement still exists as a sub-problem in it.

All the jobs must start at the same time. This is a typical assumption in both tradi-
tional job scheduling [12] and recent job co-scheduling [10]. This setting may differ
from the scenarios in real-time scheduling. However, recall that the main targeted sce-
nario of makespan minimization is batch job processing, in which, all jobs typically
arrive at the system at the same time.

Job Migrations. A job can migrate from one core to another, but the migration only
happens when any of the jobs terminates. This setting comes from the following reason.
As well known, keeping a process on a processor is good for locality. As a result, in
practical systems like Linux, occurrences of job migrations are mostly triggered by
load imbalance [1]. In our setting, as the number of jobs equals the total number of
cores, load changes only when some job finishes. Therefore, allowing job migration
only at those times does not cause large departure from real scenarios.

This work focuses on job co-scheduling inside a multicore machine, which is the pri-
mary component of the scheduling in any large multicore-based systems. So it assumes

1 We use the term “cores” for simplicity of discussion. As shown in Section 5, the techniques
can also be applied to thread scheduling in SMT systems.
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that all processor chips are in the same machine and the migrations of a job among dif-
ferent chips have similar overhead. (With certain extensions, the developed algorithms
may be applicable to clusters consisting of multiple nodes. The extensions are mainly
on the consideration of the different overhead of migration within and across cluster
nodes.)

Performance Data. As assumed in previous work [10], the following performance in-
formation is given: the time for a job to finish if it runs alone (i.e., no other jobs running
on the chip), and the performance degradation (defined as the rate between the co-run
time and the single-run time of the job) of the job when it co-runs with k (0 < k < u)
other jobs in the job set. These performance data can be obtained through offline pro-
filing runs or predictive models [2, 4]. The overhead in gathering the data is not an is-
sue for optimal co-scheduling: Finding optimal co-schedules is not for direct real-time
scheduling, but for providing a reference for the evaluation of practical co-schedulers.
For a given u, the overhead to gather the single run and co-run times is polynomial in
the number of jobs. It is typically negligible compared to the overhead in brute-force
search for optimal co-schedules, which is exponential in the number of jobs.

Because a program execution may vary constantly, the performance degradation of
a program in a co-run may vary across intervals. In our setting, we use the average
degradation through the entire co-run. A future enhancement is to combine with pro-
gram phase analysis [17,18]. As previous studies do [10,19], we currently ignore phase
changes to concentrate on co-scheduling itself.

In our setting, jobs may relate with one another, but all degradations are greater than
1. As co-runs are typically slower than single-runs because of cache and bus contention,
this setting holds in most cases.

Short Discussion. The settings described in this section do not prevent the use of the op-
timal co-scheduling for evaluating practical schedulers. For example, the evaluation of
a scheduler S on a machine with m chips and u cores per chip can proceed as follows.
The developers first find m ∗ u applications that are typical for the target system. They
start the applications at the same time on the machine with the scheduler S running to
get the makespan, T . They then run the applications a number of times to obtain the
single-run times and co-run degradations of those applications. After that, all the infor-
mation needed by the problem setting is ready. By applying the optimal co-scheduling
algorithms (to be described), they will get the minimum makespan, T̂ . The comparison
between T and T̂ will indicate the room for improvement of the scheduler S.

2.2 Problem Definition and Terminology

With the problem settings defined, the definition of the optimal co-scheduling problem
to be tackled in this work is straightforward. It is to find a schedule that maps each job
to a core under the settings defined in the previous subsection, so that the makespan of
the schedule is minimized.

For the sake of clarity, we define several terms. The allowance of job migration sug-
gests the opportunities for rescheduling the remaining jobs when some job finishes. In
the following description, we call each scheduling or rescheduling point as a schedul-
ing stage. So, if no job migrations are allowed, there is only one scheduling stage; when
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migrations are permitted, there are up to n scheduling stages. We use an assignment to
refer to a group of u jobs that are to run on the same chip. A sub-schedule is a set
of assignments that cover all the unfinished jobs and do not overlap with one another.
A schedule is a set of all sub-schedules that are used from the start to the end of the
executions of all jobs.

3 Complexities and Solutions of Makespan Minimization

In this section, we analyze the inherent complexity of the makespan minimization in
job co-scheduling. We classify the problem instances into four cases: u ≥ 3 with or
without job migration allowed, or u = 2 with or without job migration allowed. Here,
u is the number of cores per chip. We prove that the first two cases are NP-complete
problems, but the fourth is polynomial solvable by a perfect-matching-based algorithm.
The complexity of the third case is to be studied in the future. In addition, we present
heuristic algorithms for all the four cases.

3.1 Complexity Analysis (u ≥ 3, With or Without Job Migration)

When more than two cores share a cache on a chip (u ≥ 3), the makespan minimization
is an NP-complete problem. We prove this result by reducing a known NP-complete
problem, Exact Cover by 3-Sets (X3C) [8], to our problem.

First, we formulate our co-scheduling problem as a decision problem. Given a system
with m chips, each with u ≥ 3 cores, there is a set J containing n = m · u jobs, which
are to be scheduled on the cores. Consider all possible subsets of J with cardinality
u, denoted by J1, · · · , J(nu). For each Ji, which represents a group of u jobs that may

be co-scheduled on the same chip, let wi be the maximum co-run time of all the u
jobs in Ji. The question in the decision problem is whether there are m disjoint subsets
Jp1 , · · · , Jpm , where p1, · · · , pm ∈ {1, · · · , (nu)}, to form a partition of J such that
maxmi=1{wpi} ≤ B for any given bound B.

Note that the partition of J into m subsets of cardinality u is actually the construction
of a schedule of n jobs on m ·u cores and that maxmi=1{wpi} is in fact the makespan of
the schedule.

The problem is clearly in NP. We prove that it is NP-complete via a reduction from
X3C, in which given a set X with |X | = 3m and a set C = {Ci|Ci ⊆ X and |Ci| =
3}, the question to ask is whether C contains an exact cover for X , i.e., m disjoint
members of C, say Cp1 , · · · , Cpm , that makes a partition of C.

The reduction from X3C to our co-scheduling problem is straightforward. Given any
instance of X3C, namely X and C, we define an instance for co-scheduling, where (1)
J = X with n = 3m and u = 3, (2) for any Ji ⊆ J with |Ji| = 3, if Ji ∈ C then let
wi = 1, and if Ji 
∈ C then let wi = 2, and (3) B = 1.

The construction of the instance for co-scheduling can be done in O(n3) time. Fur-
thermore, it is easy to show that C contains an exact cover for X if and only if there is
a schedule of jobs in J to the 3m cores with a makespan no more than 1. Therefore, the
co-scheduling problem with u = 3 is NP-complete.
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The above proof holds regardless of whether job migration is allowed or not. This is
because in both settings, finding a schedule with makespan no more than 1 is equivalent
to finding an exact cover.

3.2 Polynomial-Time Solution (u = 2, No Job Migration)

We prove that, when u = 2 and no job migrations are allowed, the optimal co-schedules
can be found in polynomial time. We describe an O(n2.5 · logn) algorithm as follows.

The algorithm uses a fully-connected graph, namely a co-run makespan graph, to
model the optimal co-scheduling problem. Each vertex represents a job; the weight on
an edge is the longer running time of the two jobs (represented by the two vertices
connected by the edge) when they co-run together.

Before describing the algorithm, we introduce the concept of a perfect matching. A
perfect matching in a graph is a subset of edges that cover all vertices of the graph, but
no two edges share a common vertex. We define the bound of a perfect matching as
the largest weight of all the edges it covers. It is easy to see that the perfect matching
of a co-run makespan graph with the minimum bound corresponds to a solution to the
makespan minimization problem: Each edge corresponds to an assignment (i.e., co-run
group) and the makespan equals to the bound of the perfect matching.

There are some algorithms for finding the minimum-weight perfect matching on a
weighted graph [6,8]. However, they cannot apply to our problem directly because their
objective functions are typically the sum of edge weights, rather than the maximum of
edge weights in our problem.

We develop an algorithm to determine a minimum-bound perfect matching as shown
in Figure 1. We first construct a sorted list containing all the edges of a co-run makespan
graph in an ascending order of their weights; the edge with the smallest weight resides
on the top of the list. We then use a binary search to determine the smallest top portion
of the sorted edge list that contains a perfect matching (regardless of weights) covering
all vertices. The binary search starts with the top half of the edge list and checks whether
a perfect matching can be found in those edges. A negative answer would suggest that
more edges are needed, so the algorithm would try the top three quarters of the edge
list. A positive answer would suggest that a smaller portion of the list may be enough to
contain a perfect matching, so the algorithm would try the top quarter of the edge list.
This binary search continues until it finds the smallest top portion of the edge list that
contains a perfect matching.

We claim that the resulted perfect matching is an optimal perfect matching on the
original co-run makespan graph—that is, no perfect matchings on the original co-run
makespan graph have bounds smaller than the bound of the resulted perfect matching.
The proof is as follows.

Let M be the perfect matching produced by the algorithm, T be the makespan of the
corresponding schedule, and S be the smallest top portion of the edge list that contains
M . According to the algorithm, S is the smallest among all top portions that contains a
perfect matching.

Assume that there is a perfect matching M ′ whose makespan T ′ is smaller than T .
Let E′ be the set of edges included in M ′. Let S′ be a set containing all the edges in the
sorted edge list from the top to the heaviest edge in E′. Because the edge list is sorted
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in the ascending order of edge weights, E′ ⊆ S′. So, S′ contains a perfect matching.
Because T ′ < T , the weights of all the edges in E′ and thus in S′ must be smaller
than T . While T is the weight of some edge in S, hence S′ ⊂ S. This contradicts with
the assumption that S is the smallest top portion of the edge list that contains a perfect
matching, thus the proof completes.

The time complexity of the perfect matching detection subroutine, findPerfMatch(G),
is O(

√
n · m) [8], where n and m are the numbers of vertices and edges in the graph.

In the algorithm, the binary search process contains O(log n) invocations of perfect
matching detection. The value of m can be no greater than n2. The time complexity of
the algorithm is O(n2.5 · logn).

/∗ V : vertex set; E : edge set ∗/
/∗ S : generated perfect matching ∗/
L ← sortEdges(E);
lbound ← 1; ubound ← |L|;
G.vertices ← V ; S ← ∅;
while (1) {

curPos ← 	 (ubound+lbound)/2 
;
if (curPos == ubound) return S;
G.edges ← L[1:curPos];
S ← findPerfMatch(G);
if (S �= NULL)
ubound ← curPos;

else
lbound ← curPos;}

Fig. 1. Algorithm for minimum-bound perfect matching

3.3 Search-Based Optimal Co-Scheduling

The polynomial-time algorithm described in the previous section works only for dual-
core systems without job migrations. This section presents a search-based approach,
which is applicable to larger systems and supports job migrations.

Background on A*-Search. A*-search, stemming from artificial intelligence, is de-
signed for fast graph search. It is optimally efficient for any given heuristic function—
that is, no other search-tree-based optimal algorithm is guaranteed to expand fewer
nodes than A* search, for a given heuristic function [15]. Its completeness, optimality,
and optimal efficiency lead to the adoption for the search of optimal schedules.

For a tree search, where the goal is to find a path from the root to an arbitrary leaf with
the total cost minimized, A* search defines a function f(v) to estimate the lowest cost
of all the paths passing through the node v. A* search maintains a priority list, initially
containing only the root node. At each step, A* search removes the top element—that
is, the node with the highest priority—from the priority list, and expands that node.
After the expansion, it computes the f(v) values of all the newly generated nodes, and
put them into the priority list. The priority is proportional to 1/f(v). This expansion
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process continues until the top of the list is a leaf node, indicating that no other nodes in
the list need to be expanded any more as their lowest cost exceeds the cost of the path
that is already discovered.

The definition of function f(v) is the key for the solution’s optimality and the algo-
rithm’s efficiency. There are two properties related to f(v):

– A* search is optimal if f(v) never overestimates the cost.
– The closer f(v) is from the real lowest cost, the more effective A*-search is in

pruning the search space.

Application to Minimize Makespan for Job Co-Scheduling. Although A*-search
has been used for cost minimization problems [24], some substantial changes are nec-
essary for applying it to makespan minimization. Specifically, we need redefine the
structure of the search tree and the cost estimation function f(v). This section presents
our respective definitions for the scenarios with and without job migrations.

No Job Migrations. When no job migrations are allowed, the scheduling problem is
essentially to partition jobs into a number of co-run groups. Figure 2 illustrates our
definition of the search tree. Each non-root tree node (say v) corresponds to a set, S(v),
that contains u distinct jobs. The nodes in the tree are arranged as follows. Let R(v)
represent the set of jobs that have never been covered by any node on the path from
root to v. Suppose w is a child node of v. All jobs in S(w) must belong to R(v) (i.e.,
S(w) ⊆ R(v)) and S(w) must contain the job whose index2 is the smallest in R(v).
With such an organization, each path from the root to a leaf offers a schedule. All the
paths in the tree together constitute the schedule space.

{1,2,3,4,5,6}

(1,3)(1,2) (1,4) (1,5) (1,6)

(3,4) (3,5) (3,6) (2,3) (2,4) (2,5)

(5,6) (4,6) (4,5) (4,5) (3,5) (3,4)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2. An example of the search tree for the cases with no job migrations. There are 6 jobs to be
scheduled to 3 dual-core chips. Each non-root tree node corresponds to a set of u (here u = 2)
distinct jobs; the set must contain the job whose index is the smallest among all the jobs that
are not covered from the root to this node. Each path from the root to a leaf therefore offers a
schedule.

We define the cost estimation function f(v) as follows. Let A represent the set of all
n jobs, and P ′ be the path from the root to the node v. It is easy to see that the minimum
makespan of any schedule (or path) passing node v must be either the makespan of the
jobs A − R(v) (i.e., the jobs covered by the path from the root to the node v) or the

2 We assume that each job has a unique index number.
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minimum makespan of the remaining jobs, R(v). The former can be computed from
the assignments represented by P ′. The latter can be no smaller than the maximum of
the minimal co-run times of the jobs in R(v), which can be computed from the given
co-run degradations. We then define f(v) as the maximum of the two values.

. . .
. . . . . . . . .

. . . . . .. . .. . .

...

stage 1:   co-sched. n  jobs

stage 2:   co-sched. n-1  jobs

stage n :  co-sched. 1 job

...

start

Fig. 3. Search tree for the cases with rescheduling allowed at the end of a job. Each level corre-
sponds to a scheduling stage. Each node, except the root, represents a sub-schedule of the jobs
that have not finished yet.

With Job Migrations. Similar to the previous work [11], we use a search tree to model
the co-scheduling problem when job migrations are allowed, as illustrated by Figure 3.
It differs from Figure 2 in that each non-root node represents a sub-schedule (i.e., a set
of assignments that cover all the unfinished jobs and have no overlap with each other)
rather than a group of co-running jobs.

For n jobs, there are at most n scheduling stages; each corresponds to a time point
when one job finishes since the previous stage. The nodes at a stage, say stage i, cor-
respond to all possible sub-schedules for the n− i + 1 remaining jobs. There is a cost
associated with each edge. Consider an edge from node a to node b. The number of
unfinished jobs in b is typically one less than in a. The weight on the edge is the time
for that job to finish since the scheduling stage of a.

The makespan minimization becomes to find a path from the root to any leaf node
so that the sum of the weights on the path is the minimum. We define f(v) as the sum
of two quantities. One is the total weights from the root to the node v, the other is the
longest single-run time of the remaining jobs.

Given the NP-completeness of the problem, it is not surprising that A*-search is sub-
ject to scalability issues. Our explorations aim at revealing the extent of its scalability,
and shedding insights for the design of approximation algorithms.

4 Approximation Algorithms

To achieve good scalability, we develop three approximation algorithms based on the
enlightenment from the optimal co-scheduling algorithms presented in the previous sec-
tion. The first two algorithms are applicable generally, while the third one applies only
to dual-core cases.

4.1 Combination with Clustering

The combination of A*-search and clustering may provide further flexibility for strik-
ing a tradeoff between overhead and quality of co-scheduling. We call such combined
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algorithms “A*-cluster” algorithms. We first describe its application to the cases with
job migrations, and then outline its uses when migrations are not allowed.

At each (re)scheduling time, the unfinished jobs are clustered based on the length
of their remaining portions. The algorithm controls the number of rescheduling stages
by rescheduling only when a cluster of jobs finish. It also avoids the generation of sub-
schedules that are similar to one another.

We say that a sub-schedule is substantially different from another one if they are not
equivalent when we regard all jobs in a cluster as the same. For example, four jobs fall
into two clusters as {{1 2}, {3 4}}. We regard the sub-schedule (1 3) (2 4) equivalent
to (1 4) (2 3), but different from (1 2) (3 4). (Each pair of parentheses contains a co-run
group.)

Among various clustering techniques, we use a simple distance-based clustering ap-
proach as the data are one dimensional. Given a sequence of data to be clustered, we
first sort them in an ascending order. Then, we compute the differences between every
two adjacent data items in the sorted sequence. Large differences are considered as in-
dication of cluster boundaries. A difference is regarded as large if its value is greater
than d + δ, where d is the mean value of the differences in the sequence and δ is the
standard deviation of the differences.

The A*-cluster algorithm reduces both the height and the width of the search tree.
The number of children of a node is reduced from factorial,

∏ r
u−1
i=0

(
r−i∗u−1

u−1

)
, to poly-

nomial, O(rγ), where C is the number of clusters and r is the number of unfinished
jobs, and (γ = C + (Cu − C)/u!).

For the cases without job migrations, the jobs are clustered based on their single-run
time. The algorithm prunes the width of the search tree by removing the nodes that are
not significantly different from their siblings, similar to the pruning in the case with
migrations. The tree height remains unchanged.

4.2 Greedy Algorithm

The greedy algorithm is simpler than the A*-cluster algorithm. At each (re)scheduling
stage, the algorithm iteratively determines the assignments for the remaining jobs. In
each iteration, it finds the best co-run group for the job whose remaining part has the
longest single-run time among all the unfinished jobs. Its intuition is that the longest
jobs typically determine the makespan of a schedule.

4.3 Local Perfect-Matching Algorithm

This approximation algorithm is a generalized version of the perfect-matching-based al-
gorithm proposed in Section 3.2. The extension makes it applicable to dual-core cases
with job migrations. At each (re)scheduling point, it applies the perfect-matching-based
algorithm to the unfinished jobs to obtain a locally optimal sub-schedule. As the perfect-
matching-based algorithm assumes that the number of remaining jobs equals the num-
ber of cores in the computing system, we treat the jobs that have finished as pseudo-jobs,
which exist but consume no computing resource. This strategy may introduce certain
amount of redundant work, but it offers an easy way to generalize the perfect-matching-
based algorithm. The time complexity of this algorithm is O(n3.5 · logn).
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There is a side note on the scheduling algorithms that allow migrations. A migration
of different programs may have different overhead. However, because in our setting,
migrations happen only when some job finishes, the total number of job migrations is
small (less than the number of jobs); the total overhead covers only a negligible por-
tion of the makespan (confirmed in Section 6). In our experiments, we use the average
overhead measured on the experimental platform as the overhead of a migration when
comparing the makespan of different schedules.

Table 1. Benchmarks

Benchmark single-run co-run degrad rate
time (s) min % max % mean %

fmm∗ 5.63 0.77 11.28 3.67
ocean∗ 13.52 2.13 58.81 19.73
ammp 21.10 1.66 30.24 12.62
art 2.22 2.31 75.42 27.78
bzip 10.90 0.00 38.95 3.31
crafty 6.75 0.07 12.33 4.95
equake 11.05 6.42 78.00 26.46
gap 2.90 2.09 34.34 11.02
gzip 14.10 0.00 13.06 2.19
mcf 7.86 8.23 125.36 42.37
mesa 15.33 0.65 15.15 5.18
parser 3.74 1.74 37.75 13.51
twolf 5.42 0.00 15.73 5.21
vpr 4.58 3.31 42.52 18.30

∗ : from SPLASH-2. Others from SPEC CPU2000.

5 Evaluation

We evaluate the co-scheduling algorithms on two kinds of architecture. For CMP co-
scheduling, the machines are equipped with quad-core Intel Xeon 5150 processors run-
ning at 2.66 GHz. Each chip has two 4MB L2 cache, each shared by two cores. Every
core has a 32KB dedicated L1 data cache. For Simultaneous Multithreading (SMT)
co-scheduling, the machines contain Intel Xeon 5080 processors (two 2MB L2 cache
per chip) clocked at 3.73 GHz with Hyper-Threading enabled (two hyperthreads per
computing unit.)

The job suite includes 14 programs: 2 parallel programs from SPLASH-2 [21] and 12
sequential programs randomly selected from SPEC CPU2000. Each of the two parallel
program has two threads; so, we have 16 jobs in total. We do not use the programs from
the entire benchmark suites because the large problem size would make it infeasible to
compare the scheduling algorithms, especially with the brute-force search algorithm.
We use the two parallel programs to examine the applicability of the co-scheduling
algorithms for parallel (in addition to sequential) applications. Table 1 lists the programs
with the ranges of their co-run degradations on the Intel Xeon 5150 processors. The big
ranges suggest the potential for co-scheduling.
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In addition, we generate some sets of jobs whose single-run time and co-run degra-
dations are set randomly. The use of these synthetic problems helps overcome the limi-
tations imposed by the particular benchmark set.

For each set of jobs, we test the scheduling in cases both with and without job mi-
grations (denoted as “no rescheduling” and “rescheduling” respectively.) The difference
reflects the benefits of rescheduling.

5.1 Comparison to the Optimal

This section concentrates on the verification of the optimality of the A*-search and
perfect-matching-based algorithms. We stress that the optimality is under the settings
defined in Section 2. We compare the results of those scheduling algorithms with the
best schedules found through brute-force search.

Because of the scalability issue of the brute-force search, we use 8 jobs for the com-
parison. We use the top 6 programs (8 jobs considering the parallel threads) in Table 1,
along with a number of synthetic job sets. Table 2 reports the results. For each synthetic
setting, we generate 3 problems in that setting, referred to as the 3 trials in the table.

The data surrounded by boxes are from the optimal co-scheduling algorithms (the
rest are from the approximation algorithms.) The two halves of the “matching” row
correspond to the precise algorithm in Section 3.2 and the approximation algorithm in
Section 4.3, respectively. Both algorithms are applicable only to 2-core cases.

Optimality. The data in Table 2 show that the optimal algorithms generate schedules
with the same makespans as the schedules found by the brute-force search. For the 8
real jobs on Xeon 5150 (2-cmp), for instance, the optimal schedule found by the 3 algo-
rithms are all as follows: (fmm-1,ocean-1), (ammp,cafty), (art,bzip), (fmm-2,ocean-2),
where fmm-n and ocean-n are their nth threads, and each pair of parentheses include a
co-running group. The makespan is 0.5% larger than the makespan when the programs
run in isolation.

The bottom 3 rows in Table 2 reveal the minimum, median, and maximum of the
makespans of 100 randomly generated schedules, corresponding to the scheduling in
many existing systems, which work in a cache-sharing-oblivious manner. The minimum
makespans are close to the optimal in the “no rescheduling” cases, but are mostly over
10% larger than the optimal in the “rescheduling” cases. The median and maximum are
significantly larger than the optimal. For the 8 real jobs, although random scheduling is
likely to produce near optimal makespan in the Xeon 5150 system, it causes over 20%
makespan increase on the SMT systems. These results indicate the risks of neglecting
cache sharing in job scheduling.

The comparison between the “no rescheduling” and “rescheduling” results shows
that when the “no rescheduling” algorithms cause non-negligible makespan increase,
rescheduling is usually able to reduce the makespan considerably.

Overhead. Table 3 reports the numbers of search-tree nodes visited and the millisec-
onds spent by different co-scheduling algorithms on 8 jobs on Intel Xeon 5080. In
the “rescheduling” case, relative to the brute-force search, both of the two optimal co-
scheduling algorithms save the search time by several orders of magnitude.



Optimal Co-Scheduling to Minimize Makespan on Chip Multiprocessors 127

Table 2. Co-schedule makespan on 8 real jobs and a series of synthetic scheduling problems (each
has 8 jobs). The numbers in the table are the makespan achieved with the respective schedule,
relative to the makespan when each job runs in isolation. The real jobs run on two architectures:
Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-smt). The synthetic scheduling problems use
both dual-core (2-core) and quad-core (4-core) systems.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp 2-smt 2-core 4-core 2-cmp 2-smt 2-core 4-core
trial 1 2 3 1 2 3 1 2 3 1 2 3

brute-fc 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65 1.002 1.013 1.33 1.21 1.19 1.99 1.93 1.56
A* 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65 1.002 1.013 1.33 1.21 1.19 1.99 1.93 1.56
matching 1.005 1.023 1.49 1.49 1.58 - - - 1.002 1.023 1.37 1.43 1.52 - - -
A*-clstr 1.005 1.167 1.55 1.75 1.58 2.38 2.30 1.65 1.012 1.023 1.55 1.48 1.29 2.19 2.12 1.63
greedy 1.005 1.170 1.49 1.90 1.80 2.77 2.34 1.85 1.005 1.170 1.43 1.90 1.80 2.32 2.08 1.87
rand-min 1.005 1.023 1.55 1.49 1.69 2.24 2.16 1.65 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65
rand-med 1.016 1.255 1.81 2.70 2.22 2.55 2.34 1.88 1.016 1.196 1.81 2.70 1.92 2.54 2.33 1.87
rand-max 1.161 1.329 2.72 3.30 2.66 3.13 2.91 2.68 1.161 1.329 2.72 3.30 2.66 3.13 2.91 2.68

Table 3. The numbers of nodes visited and the time spent by different co-scheduling algorithms
on 8 jobs on Intel Xeon 5080

no resch. resch.
nodes time (ms) nodes time (ms)

brute-fc 210 41 16643446 419332
matching 1 47 4 179
A* 37 23 4405 718
A*-clstr 8 5 32 35
greedy 1 2 4 6
random - 1 - 1

cost minimization:
schedule: (fmm-1, crafty), (fmm-2, ocean-1), (occean-2, art), (ammp, bzip)
cost (ie., total degradation): 12.13
makespan: 58.02 sec

makespan minimization:
schedule: (fmm-1, bzip), (fmm-2, art), (ocean-1, ammp), (ocean-2, crafty)
cost (ie., total degradation): 12.88
makespan: 43.56 sec

Fig. 4. Optimal schedules for cost minimization and makespan minimization on Xeon 5080 (2-
smt) with no rescheduling
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Comparison with Cost Minimization. As mentioned earlier in this paper, the two
scheduling criteria, makespan and total cost, typically lead to different results. It is con-
firmed by the experimental results. For example, Figure 4 shows the optimal schedules
(without rescheduling) for both criteria on the Xeon 5080 (2-smt) machine. The schedule
with minimum total cost turns out to have 33% larger makespan than the schedule from
the makespan minimization algorithms. On the other hand, the schedule with minimum
makespan causes extra cost as well. This difference confirms the need for studies on each
of the criteria and the application of the corresponding algorithms in different scenarios.

Table 4. Co-schedule makespan on 16 real jobs and a series of synthetic scheduling problems
(each has 16 jobs). The numbers in the table are the makespan achieved with the respective
schedule, relative to the makespan when each job runs in isolation. The real jobs run on two
architectures: Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-smt). The synthetic scheduling
problems use both dual-core (2-core) and quad-core (4-core) systems.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp 2-smt 2-core 4-core 2-cmp 2-smt 2-core 4-core
trial 1 2 3 1 2 3 1 2 3 1 2 3
matching 1.005 1.033 1.26 1.14 1.2 - - - 1.002 1.033 1.2 1.07 1.11 - - -
A*-clstr 1.005 1.059 1.42 1.22 1.21 1.97 1.87 1.93 1.005 1.107 1.37 1.20 1.22 1.99 1.86 1.91
greedy 1.005 1.158 1.92 1.32 1.37 2.35 2.97 2.42 1.005 1.158 1.92 1.32 1.35 2.00 1.95 1.95
rand-min 1.005 1.062 1.70 1.48 1.38 2.11 1.92 2.05 1.005 1.056 1.58 1.32 1.38 2.08 1.95 2.00
rand-med 1.029 1.197 2.19 2.03 2.17 2.46 2.49 2.42 1.016 1.197 2.19 1.96 2.17 2.45 2.39 2.37
rand-max 1.161 1.468 3.48 2.92 2.75 3.10 3.23 2.99 1.161 1.468 3.48 2.92 2.75 3.03 3.46 2.86

5.2 Approximation Algorithms

Besides reporting the optimal co-scheduling results, Table 2 also lists the performance
of the approximated schedules (outside the boxes.) On real jobs, the matching-based
approximation produces near optimal results, the A*-cluster algorithm works simi-
larly well except in the case of “no rescheduling” on “2-smt” architecture where the
makespan is about 14% larger than the minimum. Because of the imprecision caused
by clustering, both approximation algorithms significantly outperform the greedy and
random scheduling in most real and synthetic cases. On the other hand, their distances
from the optimal reflect the room for improvement.

Table 4 presents the results on 16 jobs. It does not include the brute-force and A* re-
sults because the former takes too much time (up to years with job migrations) to finish
and the latter requires too much memory to run. The results of the approximation al-
gorithms are consistent with the 8-job results. Although the minimum makespans from
the random schedules occasionally get close to the results of the approximation algo-
rithms, most random scheduling results are significantly worse than the matching-based
and A*-cluster-based approximations. The greedy algorithm, although performing not
as well as the other two approximation algorithms, outperforms the median results from
random scheduling considerably.

Tables 3 and 5 report that the approximation algorithms take less than one second, in
contrast to the up to years of time the brute-force search needs.
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Table 5. The numbers of nodes visited and the time spent by different co-scheduling algorithms
on 16 jobs on Intel Xeon 5080

no resch. resch.
nodes time (ms) nodes time (ms)

matching 1 86 8 889
A*-clstr 76 39 122 94
greedy 1 3 8 9
random - 1 - 2

Scalability. Figure 5 shows the scheduling overhead of the three approximation algo-
rithms on a spectrum of problem sizes (with migrations and u = 2.) The greedy algo-
rithm shows the best efficiency for its simplicity; the local matching-based algorithm
shows less scheduling time than the A*-cluster algorithm.

Short Summary
We summarize the experimental results as follows:

1. The experiments empirically verify the optimality of the scheduling results of the
perfect matching and the A*-search algorithm. The two algorithms are orders of
magnitude more efficient than the brute-force search. They are applicable when the
size of the problem is not large.

2. The local matching-based approximation algorithm is preferable when u = 2 (with
or without job migrations) for its high scheduling quality and little scheduling time.

3. When u > 2, the A*-cluster algorithm offers a reasonable solution that produces
good schedules in a moderate amount of time.

4. When scheduling overhead is the main concern, the greedy algorithm may be favor-
able, which uses slightly more time than random scheduling but offers consistently
better results.
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Fig. 5. Scalability of approximation algorithms
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6 Discussion

This section discusses some limitations of this work and the influence on practical uses.
The requirement of all co-run degradations may seem to be an obstacle preventing

the direct uses of the proposed algorithms in practical co-scheduling systems. However,
that requirement does not impair the main goals of this work.

This work is a limit study. The primary goal is to offer feasible ways to uncover the
optimal solutions in job co-scheduling, rather than to develop another heuristics-based
runtime co-scheduler. Besides offering theoretical insights into co-scheduling, this work
enables better evaluation of co-scheduling systems than before, offering the facility for
efficiently revealing the potential of a practical co-scheduler in a general setting, which
has been infeasible in the past for even small problems.

Furthermore, the algorithms proposed in this work may provide the insights for the
development of more effective online scheduling algorithms both in operating systems
and during the runtime of parallel applications. There has been some advancement in
predicting co-run performance from program single runs (e.g., [2, 4]). The research
in locality analysis has continuously enhanced the efficiency and accuracy in locality
characterization [3, 16]. These studies make it possible to obtain co-run performance
through lightweight prediction, hence offering the opportunity for the integration of the
proposed scheduling algorithms in runtime scheduling systems.

In our experiments, we conduct a measurement of the migration overhead in the
experimental machines by leveraging the system call, “sched setaffinity”. The system
call binds processes to cores. By invoking the call at some random locations in an
application with different parameters, we can migrate the process among chips in a
machine. (Migrations among machines are typically too expensive to support.) The
results show that a migration may cause 0.1–1.1% changes to the execution times of the
benchmarks used in our experiments, depending on the length of the original execution.
Recall that in our experiments, we use the average value of migration overhead as the
cost of a migration. The introduced inaccuracy is hence less than 1.1% of the computed
minimum makespan.

7 Related Work

To the best of our knowledge, this work is the first systematic study on finding the
optimal schedules that minimize the makespan of jobs running on CMP systems.

7.1 Comparison with Cost Minimization

As mentioned earlier, there have been some studies in optimal co-scheduling for mini-
mum cost [10,11,24]. We have mentioned the connections and differences between that
co-scheduling problem and our makespan minimization problem throughout this paper.
We here give a summary.

Connections. The two problems do have some connections, mainly in two aspects.
First, they have similar dimensions to explore: dual-core or more than two cores per
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chip, migration allowed or not. Second, they both model the dual-core problems with
a fully connected graph, and model the general cases as a search problem and derive
solutions based on A*-search.

Differences. However, these two problems are fundamentally different. Their different
co-scheduling goals determine that important differences exist in almost every aspect
of the explorations to the two problems.

– Complexity Analysis. Despite that the two problems are both proved to be NP-
complete in a general setting, their proofs are substantially different. The previous
work [10, 11] analyzes the computation complexity of cost minimization by for-
mulating the problem as an Multidimensional Assignment problem (MAP). But for
makespan minimization, the MAP formulation cannot be applied because of the
mismatch of the objectives. We have to analyze and formulate the problem in a dif-
ferent way, proving the NP-Completeness through the reduction from the problem
of Exact Cover by 3-Sets.

– Algorithms on Dual-Core Systems without Migrations. For algorithm design, the
classic Blossom [6] algorithm can be directly used for finding the optimal sched-
ule for dual-core cases for cost minimization [10, 11]. But it cannot be applied to
makespan minimization because the algorithm aims to minimizing the total weights
of a perfect matching on a graph, rather than the largest weight as what makespan
minimization requires. The solution introduced in this work (Section 3.2) turns
out to be even more efficient than the Blossom algorithm, with complexity of
O(n2.5 · logn) versus O(n4).

– Algorithms in Other Settings. A* is a classical search algorithm widely used in
many areas. We do not claim the use of it for job co-scheduling in the general set-
tings as a contribution of this work. In fact, previous work [24] has used it for ap-
proximating optimal schedules for cost minimization. However, the key in applying
A* is in the formulation of the search problem and the design of the approximation
functions f(v) used in every search-tree node. Both are specific to the problem to
be addressed. They are where the extensions are made by the approximation algo-
rithms in this work. In addition, the empirical exploration of the tradeoff between
the approximation efficiency and the quality of resulting schedules is also specific
to the makespan minimization problem.

– Scheduling Results. As Section 5.1 shows, the optimal schedules for the two prob-
lems typically differ from each other, confirming the need for studies on each of
them.

Overall, the previous work on cost minimization [10,11,24] has given some insights to
this work. But because of the different goals of the two problems, this systematic explo-
ration is imperative for achieving a good understanding of the makespan minimization
problem.

7.2 Comparisons with Other Scheduling Work

Scheduling is a topic with a large body of relevant work. As summarized in the Hand-
book of Scheduling [12], previous studies on optimal job scheduling have covered 4
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types of machine environments: dedicated, identical parallel, uniform parallel, and un-
related parallel machines. On all of them, the running time of a job is fixed on a ma-
chine, independent on how other jobs are assigned, a clear contrast to the performance
interplay in the co-scheduling problem tackled in this current work.

Traditional Symmetric Multiprocessing (SMP) systems or NUMA platforms have
certain off-chip resource sharing (e.g., on the main memory), but the influence of the
sharing on program performance has been inconsiderable for scheduling and has not
been the primary concern in previous scheduling studies. Some scheduling work [12]
has considered dependences among jobs. But the dependences differ from the perfor-
mance interplay in co-scheduling in that the dependences constrains the order rather
than performance of the execution of the jobs.

The hierarchical scheduling algorithm [5] in traditional job scheduling also uses a
tree-like hierarchy for job scheduling. However, it is about how to move tasks among
queues along a path to feed an idle processor, considering no performance influence
caused by co-running jobs.

7.3 Other Work on Shared Cache Management

Due to the importance of shared cache, recent years have seen a large number of
relevant studies. Some of them try to construct practical on-line job scheduling sys-
tems. They employ different program features, including estimated cache miss ratios,
hardware performance counters, and so on [7, 19, 20]. Architecture designs for allevi-
ating cache contention have focused on cache partitioning [13], cache quota manage-
ment [14], and so forth. But none of them has focused on the optimal co-scheduling to
minimize makespan. In addition, some studies [2, 4] have proposed statistical models
for the prediction of co-run performance. The models may ease the process for getting
the data needed for optimal scheduling.

8 Conclusion

As the processor-level parallelism increases, the urgency for alleviating the resource
contention among co-running jobs is continuously growing. This work concentrates on
the theoretical analysis and the design of optimal co-scheduling algorithms for min-
imizing the makespan of co-running jobs. It proves the computational complexity of
the problem, proposes an O(n2.5 · logn) algorithm and A*-search-based algorithms
to solve the makespan minimization problem, and empirically verifies the optimality
of the algorithms and examines the effectiveness and scalability of several approxima-
tion algorithms. The analysis and algorithms contributed in this paper may complement
previous explorations by both revealing the lower bound for evaluation, and offering
insights in the development of lightweight co-scheduling systems.
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Abstract. The Resource and Job Management System (RJMS) is the middle-
ware in charge of delivering computing power to applications in HPC systems.
The increasing number of computational resources in modern supercomputers
brings new levels of parallelism and complexity. To maximize the global through-
put while ensuring good efficiency of applications, RJMS must deal with issues
like manageability, scalability and network topology awareness. This paper is
focused on the evaluation of the so-called RJMS SLURM regarding these is-
sues. It presents studies performed in order to evaluate, adapt and prepare the
configuration of the RJMS to efficiently manage two Bull petaflop supercomput-
ers installed at CEA, Tera-100 and Curie. The studies evaluate the capability of
SLURM to manage large numbers of compute resources and jobs as well as to
provide an optimal placement of jobs on clusters using a tree interconnect topol-
ogy. Experiments presented in this paper are conducted using both real-scale and
emulated supercomputers using synthetic workloads. The synthetic workloads
are derived from the ESP benchmark and adapted to the evaluation of the RJMS
internals. Emulations of larger supercomputers are performed to assess the scala-
bility and the direct eligibility of SLURM to manage larger systems.

1 Introduction

The advent of multicore architectures and the evolution of multi-level/multi-topology
interconnect networks has introduced new complexities in the architecture as well as
extra levels of hierarchies. The continuous growth of cluster’s sizes and computing
power still follows Moore’s law and we witness the deployment of larger petascale su-
percomputing clusters [1]. Furthermore, the continuous increasing needs for computing
power by applications along with their parallel intensive nature (MPI, OpenMP, hy-
brid,...) made them more sensitive to communication efficiency, demanding an optimal
placement upon the network and certain quality of services.

The work of a Resource and Job Management System (RJMS) is to distribute com-
puting power to user jobs within a parallel computing infrastructure. Its goal is to satisfy
users demands for computation and achieve a good performance in overall system’s uti-
lization by efficiently assigning jobs to resources. This assignment involves three prin-
cipal abstraction layers: the declaration of a job where the demand of resources and
job characteristics take place, the scheduling of the jobs upon the resources given their

W. Cirne et al. (Eds.): JSSPP 2012, LNCS 7698, pp. 134–156, 2013.
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organization and the launching of job instances upon the computation resources along
with the job’s control of execution.

The efficient assignment of large number of resources to an evenly large number
of users jobs arises issues like job launchers and scheduling scalability. The increase
of network diameter and the network contention problem that can be observed in such
large network sharing scenarios demand a certain consideration so as to favor the place-
ment of jobs upon groups of nodes which could provide optimal communication
characteristics. Since the RJMS has a constant knowledge of both workloads and com-
putational resources, it is responsible to provide techniques for the efficient placement
of jobs upon the network.

BULL and CEA-DAM have been collaborating for the design, construction or in-
stallation of 2 petascale cluster systems deployed in Europe. The first one, “Tera100”1,
with a theoretical computing power of 1.25 petaflops, is in production since Novem-
ber 2010 and represents Europe’s most powerful system and 9Th more powerful in the
world, according to November’s 2011 top500 list [1]. The second, the French PRACE
Tier0 system, “Curie” 2, with a theoretical computing power of 1.6 petaflops is currently
under deployment and planned to be in production on March 2012. The Resource and
Job Management System installed on both systems is SLURM [2] which is an open-
source RJMS specifically designed for the scalability requirements of state-of-the-art
supercomputers.

The goal of this paper is to evaluate SLURM’s scalability and jobs placement effi-
ciency in terms of network topology upon large HPC clusters. This study was initially
motivated by the need to confirm that SLURM could guarantee the efficient assignment
of resources upon user jobs, under various realistic scenarios, before the real deploy-
ment of the above petascale systems. We wanted to reveal possible weaknesses of the
software before we come up with them into real life. Once the desired performance
goals were attained, the studies continued beyond the existing scales to foresee the effi-
ciency of SLURM on even larger clusters.

Inevitably the research on those systems implicate various procedures and internal
mechanisms making their behavior complicated and difficult to model and study. Every
different mechanism depends on a large number of parameters that may present inter-
dependencies. Thus, it is important to be able to study the system as a whole under real
life conditions. Even if simulation can provide important initial insights, the need for
real-scale experimentation seems necessary for the study and evaluation of all internal
functions as one complete system. On the other hand, real production systems are con-
tinuously overbooked for scientific applications execution and are not easily available
for this type of experiments in full scale. Hence, emulation seems to be the best solution
for large-scale experimentations.

In this paper we present a real-scale and emulated scale experimental methodology
based upon controlled submission of synthetic workloads. The synthetic workloads are
derived from the ESP model [3,4] which is a known benchmark used for the evaluation

1 http://www.hpcwire.com/hpcwire/2010-05-27/
tera 100 europes most powerful supercomputer powers up.html

2 http://www.prace-ri.eu/
CURIE-Grand-Opening-on-March-1st-2012?lang=en

http://www.hpcwire.com/hpcwire/2010-05-27/tera_100_europes_most_powerful_supercomputer_powers_up.html
http://www.hpcwire.com/hpcwire/2010-05-27/tera_100_europes_most_powerful_supercomputer_powers_up.html
http://www.prace-ri.eu/CURIE-Grand-Opening-on-March-1st-2012?lang=en
http://www.prace-ri.eu/CURIE-Grand-Opening-on-March-1st-2012?lang=en
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of launching and scheduling parameters of Resource and Job Management Systems. In
this study the default ESP workload was modified in order to adapt to the characteristics
of real large cluster usage. Hence, the experimental methodology makes use of two
derived variations of ESP which are introduced in this paper: the Light-ESP and the
Parallel Light-ESP. The experiments took place upon a subset of Tera-100 cluster during
maintenance periods and upon an internal BULL cluster dedicated for research and
development.

The remainder of this article is presented as follows: The next section provides the
Background and Related Work upon RJMS and performance evaluation for these type
of systems. Section 3 describes the experimental methodology that has been adopted
and used for the evaluation of the RJMS. Section 4 provides the main part of this study
where we present and discuss our evaluation results upon the scalability and efficiency
of SLURM RJMS. Finally the last section presents the conclusions along with current
work and perspectives.

2 Background and Related Work

Since the beginning of the first Resource and Job Management Systems back in the
80s, different software packages have been proposed in the area to serve the needs of
the first HPC Clusters. Nowadays, various software exist either as evolutions of some
older software (like PBSPro or LSF) or with new designs (like OAR and SLURM).
Commercial systems like LSF [5], LoadLeveler [6], PBSPro [7] and Moab [8] generally
support a large number of architecture platforms and operating systems, provide highly
developed graphic interface for visualization, monitoring and transparency of usage
along with a good support for interfacing standards like parallel libraries, Grids and
Clouds. On the other hand their open-source alternatives like Condor [9], OAR [10],
SLURM [2], GridEngine [11], Torque [12] and Maui [13] provide more innovation and
a certain flexibility when compared to the commercial solutions.

2.1 Evaluating the Internals of Resource and Job Management Systems

Numerous studies have been made to evaluate and compare different Resource and Job
Management Systems [14], [15].

One of the first studies of performance evaluations for RJMS was presented in [16].
In this study Tarek et al. have constructed a suite of tests consisted by a set of 36
benchmarks belonging to known classes of benchmarks (NSA HPC, NAS Parallel,
UPC and Cryptographic). They have divided the benchmarks into four sets comprising
short/medium/long and I/O job lists and have measured average throughput, average
turn-around time, average response time and utilization for 4 known Resource and Job
Management Systems: LSF, Codine, PBS and Condor.

Another empirical study [10] measured throughput with submission of large number
of jobs and efficiency of the launcher and scheduler by using a specific ESP benchmark.
The study compared the performance of 4 known RJMS: OAR, Torque, Torque+Maui
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and SGE. ESP benchmark has similarities with the previously described suite of tests
[16]. However one of its advantages is that it can result in a specific metric that reflects
the performance of the RJMS under the specific workload and the selected scheduling
parameters. The approach used in this work is an extension of the methodology used for
the performance evaluation in [10], since we propose a similar method using variations
of the ESP benchmark workload model.

Performance evaluation is effectuated by having the system’s scheduler schedule
a sequence of jobs. This sequence is the actual workload that will be injected to the
system. Different researches [17], [18], [19], [20] has been effectuated upon workload
characterization and modeling of parallel computing systems. In order to model and log
a workload of a parallel system, Chapin et al. [19] have defined the standard workload
format (swf) which provides a standardized format for describing an execution of a
sequence of jobs. In the internals of our experimentation methodology we are based on
the swf format for the workload collection mechanisms and make use of particularly
developed tools for swf workload treatment and graphic representations.

Based on previous work [20], [21] it seems that to give precise, complete and valu-
able results the studies should include the replay of both modeled and real workload
traces. In our studies we have considered only the usage of synthetic workloads for the
moment but once the deployment of “Curie” platform has been made we will collect the
real workload traces of the petaflop system and either replay directly parts of them or try
to extract the most interesting information out of them to construct new models which
will be closer to the real usage of this system. Nevertheless, we believe that in those
cases the reproduction of experiments and the variations of different factors results into
reliable observations.

2.2 Network Topology Aware Placement

Depending on the communication pattern of the application, and the way processes are
mapped onto the network, severe delays may appear due to network contention, delays
that result in longer execution times. Nodes that are connected upon the same switch
will result in better parallel computing performance than nodes that are connected on
different switches. Mapping of tasks in a parallel application to the physical processors
on a machine, based on the communication topology can lead to performance improve-
ments [22]. Different solutions exist to deal with those issues on the resource manage-
ment level.

We are especially interested on fat-tree network topologies which are structures with
processing nodes at the leaves and switches at the intermediate nodes [23]. As we go up
the tree from the leaves, the available bandwidth on the links increases, making the links
”fatter”. Network topology characteristics can be taken into account by the scheduler
[24] so as to favor the choice of group of nodes that are placed on the same network
level, connected under the same network switch or even placed close to each other so
as to avoid long distance communications.

This kind of feature becomes indispensable in the case of platforms which are con-
structed upon pruned fat-tree networks [25] where no direct communication exist
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between all the nodes. This reduces the number of fast communication group of nodes
to only those connected under the same switch. Hence, the efficient network placement
is an important capability of a Resource and Job Management System that may improve
the application performance, decrease their execution time which may eventually result
into smaller waiting times for the other jobs in the queue and an overall amelioration of
the system utilization. SLURM provides topology aware placement techniques, treated
as an extra scheduling parameter and based upon best-fit algorithms of resources se-
lection. As far as our knowledge, even if other RJMS provide techniques for topology
aware placement, SLURM is the only RJMS that proposes best-fit selection of resources
according to the network design. In this study we make an in-depth performance evalu-
ation of the topology aware scheduling efficiency of SLURM.

2.3 Scalability

Scalability is one of the major challenges of large HPC systems. It is related with dif-
ferent issues on various levels of the software stack. In the context of Resource and Job
Management Systems we are mainly interested into scalability in terms of job launch-
ing, scheduling and system responsiveness and efficiency when increasing the number
of submitted jobs and the systems scale. Previous related work in the field [26,27] have
produced a flexible, lightweight Resource Management called STORM which provided
very good scalability in terms of job launching and process scheduling and produced
experiments showed very good results in comparison with SLURM or other RJMS.
However, on the one hand the particular software was more a research tool and not a
production RJMS and it did not provide any backfilling or more elaborate scheduling
techniques like network topology consideration.

Another scalable lightweight software used for fast deployment of jobs is Falkon
[28]. This system is used as a meta-scheduler by connecting directly upon the RJMS
and taking control over the resources by simplifying the procedure of jobs deployment.
Hence again in this case the focus is centered just on the fast deployment of jobs without
any concern about optimized task placement or prioritization between jobs. A group of
computer scientists in CERN have performed scalability experiments of LSF scheduler3

where they experiment with large scale deployment of LSF scheduler (up to 16000
nodes) using virtual machines. They resulted into good scaling performance of the LSF
scheduler but there was no reported analysis of the experiments in order to be able to
reproduce them.

In our context of large scale HPC systems we are interested into scalability but also
keeping the elaborate scheduling capabilities of the RJMS in order to guarantee a certain
quality of service to the users. Hence in this study we are trying to explore the scalability
of SLURM by keeping into consideration that efficiency and user quality of services
should not be disregarded while we increase in larger scales. As far as our knowledge no
other studies have been found in the literature that evaluate the scalability and topology
aware scheduling efficiency of Resource and Job Management Systems upon large HPC
clusters.

3 http://indico.cern.ch/contributionDisplay.py?
contribId=7&sessionId=7&confId=92498

http://indico.cern.ch/contributionDisplay.py?contribId=7&sessionId=7&confId=92498
http://indico.cern.ch/contributionDisplay.py?contribId=7&sessionId=7&confId=92498


Evaluating Scalability and Efficiency of the RJMS on Large HPC Clusters 139

3 Experimentation Methodology for RJMS Scalability and
Efficiency

3.1 Evaluation Based Upon Synthetic Workloads

To evaluate the scheduling performance of Resource and Job Management Systems, we
have adopted the Effective System Performance (ESP) model [3,4]. The initial version
of this benchmark not only provides a synthetic workload but proposes a specific type
of parallel application that can be executed to occupy resources as simply as possible.
In our case we just make use of the ESP synthetic workload model and execute simple
sleep jobs in place of the proposed parallel application. Indeed, in the context of our
experiments which is to evaluate the efficiency of the scheduler and not the behavior of
the clusters’ runtime environment, the choice of simple sleep jobs is enough.

The ESP [4] test was designed to provide a quantitative evaluation of launching and
scheduling parameters of a Resource and Job Management System. It is a composite
measure that can evaluate the system via a single metric, which is the smallest elapsed
execution time of a representative workload. In ESP, there are 230 jobs derived from a
list of 14 job types, as shown in detail in table 1, which can be adjusted in a different
proportional job mix . The test is stabilized to the number of cores by scaling the size
of each job with the entire system size. Table 1 shows the fraction of each class’s job
size along with the the number of jobs and the respective duration.

Table 1. Synthetic workload characteristics of ESP benchmark [3,4] and its two variations Light
ESP and Parallel Light ESP x10

Benchmarks Normal-ESP Light-ESP Parallel Light-ESP

Job Type Fraction of job size relative to system size
(job size for cluster of 80640 cores)

Number of Jobs / Run Time (sec)

A 0.03125 (2520) / 75 / 267s 0.03125 (2520) / 75 / 22s 0.003125 (252) / 750 / 22s
B 0.06250 (5040) / 9 / 322s 0.06250 (5040) / 9 / 27s 0.00625 (504) / 90 / 27s
C 0.50000 (40320) / 3 / 534s 0.50000 (40320) / 3 / 45s 0.05000 (4032) / 30 / 45s
D 0.25000 (20160) / 3 / 616s 0.25000 (20160) / 3 / 51s 0.02500 (2016) / 30 / 51s
E 0.50000 (40320) / 3 / 315s 0.50000 (40320) / 3 / 26s 0.05000 (4032) / 30 / 26s
F 0.06250 (5040) / 9 / 1846s 0.06250 (5040) / 9 / 154s 0.00625 (504) / 90 / 154s
G 0.12500 (10080) / 6 / 1334s 0.12500 (10080) / 6 / 111s 0.01250 (1008) / 60 / 111s
H 0.15820 (12757) / 6 / 1067s 0.15820 (12757) / 6 / 89s 0.01582 (1276) / 60 / 89s
I 0.03125 (2520) / 24 / 1432s 0.03125 (2520) / 24 / 119s 0.003125 (252) / 240 / 119s
J 0.06250 (5040) / 24 / 725s 0.06250 (5040) / 24 / 60s 0.00625 (504) / 240 / 60s
K 0.09570 (7717) / 15 / 487s 0.09570 (7717) / 15 / 41s 0.00957 (772) / 150 / 41s
L 0.12500 (10080) / 36 / 366s 0.12500 (10080) / 36 / 30s 0.01250 (1008)/ 360 / 30s
M 0.25000 (20160) / 15 / 187s 0.25000 (20160) / 15 / 15s 0.02500 (2016) / 150 / 15s
Z 1.00000 (80640) / 2 / 100s 1.00000 (80640) / 2 / 20s 1.00000 (80640) 2 / 20s

Total Jobs /
Theoretic Run Time 230 / 10773s 230 / 935s 2282 / 935s

The typical turnaround time of normal ESP benchmark is about 3 hours, but in case
of real production systems, experiments may take place only during maintenance pe-
riods and the duration of them are limited. Hence this typical problem, enabled us to
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define a variation of ESP called Light-ESP, where we propose a diminution of the ex-
ecution time of each different class with a scope of decreasing the total execution time
from 3 hours to about 15 minutes.

Table 1 provides the various jobs characteristics of ESP and Light-ESP. Each job
class has the same number of jobs and the same fraction of job size as ESP but has a
decreased execution time which results in a decrease of the total execution time. The
execution time of each class was decreased by a factor of 0.08 except class Z which was
decreased by a factor of 0.5 so that it can give a reasonable duration. The diminution
of the total execution time allowed us to perform multiple repetitions of our measure-
ments, during a relatively small duration, in order to increase our certitude about our
observations.

In the case of a large cluster size like Curie (80640 cores), Light-ESP will have the
230 jobs adapted to the large system size as we can see in table 1. In order to cover
different cases of workloads for the usage of such large clusters, another variation of
Light-ESP seemed to be needed with a bigger number of jobs. Hence, a new variation,
named Parallel Light-ESP is defined by increasing the number of all the job classes
(except the Z) with a factor of 10. However, since we still want to have the same total
execution time of the whole benchmark like in Light-ESP, the fraction of job size rela-
tive to system size is devided by the same factor 10. This will also allow the system to
have a more adapted system utilization and probably similar fragmentation like in ESP
and Light-ESP cases. Another particularity of Parallel Light-ESP is that each job class
is launched by a different host allowing a simultaneous parallel submission of all type
of jobs in contrast with the sequential submission of the Light-ESP. This characteristic
allow us to be more closer to reality where the jobs do not arrive sequentially from one
host but in parallel from multiple hosts.

The jobs in all the ESP cases are submitted to the RJMS in a pseudo-random or-
der following a Gaussian model of submission which may be also parametrized. The
tuning of the various parameters impact the inter-arrival times of the workload so vari-
ous experiments allowed us to select the best fitted parameters in order to have a fully
occupied system as soon as possible. In more detail, Light-ESP variation launches 50
jobs in a row (22% of total jobs) and the rest 180 jobs are launched with inter-arrival
times chosen randomly between 1 and 3 seconds. In Parallel Light-ESP case each class
of jobs is launched independently with similarly adapted parameters like in Light-ESP
case.

Even if better alternatives than the Gaussian model of submission exist in the litter-
ature [29,20], we decided to keep the basis of ESP benchmark intact in this first phase
of experiments. Nevertheless, our goal is to continue our studies and explore the real
workload traces of “Curie” platform (when those become available). Detailed analysis
of the real workload traces of the production site will allow us to perform more adapted
parametrization of our proposed workloads, so that they can be as closer to reality as
possible.

3.2 Experiment by Combining Real-Scale and Emulation Techniques

In order to measure the various internal mechanisms of the RJMS as one complete sys-
tem we are based on real-scale experiment upon a production supercomputer and an
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emulation technique to validate, reproduce and extend our measurements as performed
upon the real machine. Hence, at the one side we have been using subsets of “Tera-100”
system during its maintenance phase to perform scalability and efficiency experiments
using the described workloads; and in the same time we have been studying, analyz-
ing and reproducing the different observations using emulation upon a much smaller
fraction of physical machines.

Emulation is the experiment methodology composed by a tool or technique capa-
ble for executing the actual software of the distributed system, in its whole complexity,
using only a model of the environment. The challenge here is to build a model of a sys-
tem, realistic enough to minimize abstraction, but simple enough to be easily managed.
Various tools currently exist for network [30] or system [31] emulation but in our case
we are using simply a SLURM internal emulation technique called multiple-slurmd.
The normal function of SLURM consists of a central controller/server daemon (slurm-
ctld) executed upon one machine, where all the scheduling, launching and resource and
management decisions take place and a compute daemon (slurmd), executed upon each
computing node of the cluster. The multiple-slurmd technique bypasses this typical
functioning model and allows the execution of multiple compute daemons slurmd upon
the same physical machine (same IP address) but on different communication ports.

Hence, the number of different deployed daemon on different port will actually deter-
mine the number of nodes of the emulated cluster. Therefore the central controller will
indeed have to deal with different daemons slurmd and as far as the controller’s internal
functions concern this emulation technique allows to experiment with them in various
scales regardless the real number of physical machines. Nevertheless, this technique has
various drawbacks such us the fact that we cannot evaluate most of the functions related
to the computational daemon since there may be system limitations due to the multiple
number of them upon the same physical host. Furthermore, the number of internal com-
puting resources (sockets, cores, etc) may be also emulated through the configuration
files which means that task placement and binding upon the resources will not have the
same performances as upon the real system and there may be limitations depending on
the physical machines and file systems characteristics. In addition, we may not execute
any kind of parallel application, which forces us to be limited on simple sleep jobs in
order to provide the necessary time and space illusion to the controller that a real job
is actually under execution. In some cases particular simple commands execution with
some print into file are used in the end of the sleep period in order to be sure that the
job has indeed been executed.

In order to use this type of emulation with big number of multiple-slurmd daemons
upon each host some particular tuning was needed upon the physical machines espe-
cially concerning the various limits, like increasing the maximum number of user pro-
cesses and the open files, using the ulimit command.

Finally, an important issue that had to be verified is the similarities of the experi-
ment results between real and emulation as long as the dependence of the results into
the scale of emulation (in terms of number of emulated hosts per physical machine).
Theoretically speaking, concerning the RJMS scalability in terms of job launching and
scheduling efficiency, these functions take place as internal algorithms of the controller
daemon (slurmctld). Hence the differences between real and emulated results were
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System scale 2012 nodes (32 cpus/node)
Experiment method Real NO Emulation Emulation upon 30 nodes
Total ESP Execution time (sec) 1197 1201

System scale 4096 nodes (16 cpus/node)
Experiment method Emulation upon 200 nodes Emulation upon 400 nodes
Total ESP Execution time (sec) 1283 1259

Fig. 1. Real-scale and Emulation Measurements comparisons

expected to be trivial. Figure 1 shows the results obtained when executing Light-ESP
benchmark upon real and emulated platforms of various nodes. In these experiments
we obtained similar Total execution times for the same workloads which confirmed our
assumptions. In addition multiple experiment repetitions made us more confident about
the validity of these results.

Our experiments have been deployed upon different systems: a BULL testing cluster
for internal usage and a subset of “Tera-100” system during its maintenance periods.
The systems have the following hardware characteristics:

– Cuzco Cluster (BULL internal) in Clayes/France site Intel Xeon bi-CPU/quad-
CORE with 20 GB memory and network structured by 1Gigabit Ethernet + In-
finiband 20G.

– Subset of CEA-DAM “Tera 100” Cluster in Bruyeres-le-Chatel/France with Intel
Xeon series 7500 processors (quad-CPU/octo-CORE) with 32GB of Memory and
Ethernet + Infiniband networks.

4 Performance Evaluation Results

In this section we present and analyze the results of the conducted experiments in three
different subsections. The results concerning the scalability of the RJMS in term of
jobs number are presented first. Then, the results and feedback of the topology aware
scheduling experiments are detailed. The last subsection explains the results and the ex-
periments realized to evaluate the scalability of SLURM in term of compute resources.

All the experiments are conducted with the consumable resources algorithm of
SLURM. This algorithm enables to allocate resources at the core level and thus to share
nodes among multiple jobs as long as no more than one job use a same core at the same
time.

4.1 Scalability in Terms of Number of Submitted Jobs

The goal of the experiments presented in this section is to evaluate the effect of a large
number of jobs on SLURM’s behavior. Having a good knowledge of the system behav-
ior in that scenario is necessary to properly configure the related limits and protect the
system in its day-to-day usage.
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The first set of experiments aims to stress the launch mechanism of SLURM. It en-
ables to define the maximum submission throughput that characterizes the ability to
perform a sustained rate of requests. The second set of experiments stresses the cancel-
lation mechanism of SLURM and evaluate the level of control that can be kept on the
system in borderline situations when a large amount of events has to be managed by the
RJMS. The simulation of a sudden termination of the production is the exercise used
for that purpose.

The experiments of the first set are realized using submission bursts of small batch
jobs with a global utilization that fit in the available resources. The experiments are con-
ducted at real-scale (no emulation) with a subset of 2020 Tera-100 nodes. The scheduler
allocates resources to the jobs and starts them while receiving new requests. According
to the documentation, a SLURM parameter called defer can be used to improve the
management of this kind of workloads. The impact of this parameter is thus compared
to the default behavior.

The execution time of each submitted job has to be set to a value large enough to
prevent the termination of jobs before the end of the submission stage. The value used
in the experiments is 500 seconds.

The results are presented in Figure 2.
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Fig. 2. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in submission
upon a real cluster of 2020 nodes (32 cpus/node) with and without the usage of defer scheduling
parameter

We see that the average submission throughput is greatly improved using the defer
parameter. This parameter ensures that resources allocations are processed in batch by
the scheduler and not sequentially at submission time. We observe an average through-
put of 100 jobs per second in the standard configuration and more than 200 jobs per
second when defer mode is activated.

We witness a gain of about 50sec for the complete submission of all the 10,000 jobs
between the two cases. The main drawback of the defer mode is that individual jobs
are slightly delayed to start. Clusters that do not have high submission bursts into their
real-life workloads should not activate this parameter to provide better responsiveness.

When increasing the size of the jobs involved in these experiments, we discovered
a unexpected impact on the submission throughput. As available resources were not
enough to execute all the submitted jobs, the submitted jobs were put in queue in a pend-
ing state resulting in a slower pace of submission. During the slowdown, the scheduler
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was overloaded by the processing of the incoming submission requests. A modification
of the SLURM controller was performed in order to eliminate a call to the scheduler
logic while processing in parallel the incoming requests in defer mode.

The result of Figure 3 presents the instant throughput with and without this modifi-
cation. In both cases, the defer parameter is used.
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Fig. 3. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in submission
in Waiting State upon a real cluster of 2020nodes (32 cpus/node) with and without an important
optimization in the algorithm of defer scheduling parameter

We see that the modification helps to reach a constant throughput. It guarantees that
only one instance of the scheduler is called regardless of the number of incoming re-
quests. The number of jobs is thus no longer a factor of the submission rate. It can be
noted that the results for waiting jobs are below the throughput of eligible jobs as eval-
uated above. This low limit has no link with the evaluated aspect and was corrected in
a version of SLURM superior to the one used during these tests.

The experiments concerning the termination of a large workload are then performed.
The initial goal is to guarantee that a large system is manageable even in the worst cases
scenarios. Stopping a large number of jobs on the 2020 nodes cluster outlines a total
loss of responsiveness of the system. Looking at the system during the slowdown, it is
noted that the induced load is located in the consumable resources selection algorithm
when dealing with the removal of previously allocated cores from the SLURM internal
map of used cores. The same observation was made by a SLURM community member
that proposed a patch to reduce the complexity of the algorithm used for that purpose.
This patch is now part of the core version of SLURM.

The results of the termination of 10,000 jobs on the real clusters with and without
this patch are presented in Figure 4.

As with the previous experiment, the patch helps to provide a constant termination
throughput, no longer dependent of the number of jobs nor resources involved at the
time of execution. The responsiveness of the system is now sufficient during the global
termination of all the jobs.

Increasing number of both resources and jobs exhibits the scalability thresholds of
the RJMS. The results of our experiments concerning scalability in term of jobs enable
to safely consider the execution of 10,000 jobs on a production cluster using SLURM.
It illustrates different issues that outline the interest of algorithms adapted to the man-
agement of high numbers of elements.
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Fig. 4. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in termination
upon a real cluster of 2020 nodes (32 cpus/node) before and after an important optimization upon
the algorithms of backfill scheduler

4.2 Scheduling Efficiency in Terms of Network Topology Aware Placement

The goal of the second series of experiments is to evaluate SLURM’s internal mech-
anism to deal with efficient placement of jobs regarding network topology character-
istics, and more specifically regarding a tree network topology. SLURM provides a
specific plugin to support tree topology awareness of jobs placement. The advantage of
this plugin is its best-fit approach. That means that the plugin not only favors the place-
ment of jobs upon the number of switches that are really required, it also considers a
best-fit approach to pack the jobs on the minimal number of switches maximizing the
amount of remaining free switches.

The experiments are focused on the evaluation of different tree topology configu-
rations in order to select the most appropriate for “Curie” before its availability for
production purposes.

The network topology used on “Curie” is a 3 levels fat-tree topology using QDR
Infiniband technology. Current Infiniband technology is based on a 36 ports ASIC that
made fat-tree topologies constructed around a pattern of 18 entities. The leaf level of
the corresponding Clos-Network is thus made of groups of 18 nodes, the intermediate
level is made of groups of 324 nodes (18*18) and the last level can aggregate up to
11664 nodes (18*18*36). The “Curie” machine is physically made of 280 Infiniband
leaves switches aggregated by 18 324 ports physical switches grouping the 5040 nodes
in 16 virtual intermediate switches.

The experiments are conducted using the emulation mode of SLURM on a few hun-
dreds of Tera-100 physical nodes. These nodes were used to host the 5,040 fat-tree
connected SLURM compute daemons of “Curie’. A topology description has to be pro-
vided to SLURM in order to inform the scheduler of the layout of the nodes in the
topology. In emulation mode, this description is exactly the same as the description of
the associated supercomputer. The real topology of the emulated cluster is different as
it corresponds to the physical nodes topology. However, as the goal is to evaluate the
behavior of SLURM scheduling and not the behavior of the workload execution, it is
not at all an issue.

Four different topology descriptions are compared in order to evaluate the impact
of the topology primitives of SLURM on the execution of a synthetic workload. The
default scheduler is thus compared to the tree topology scheduler with no topology
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information, a medium topology information, and a fine topology configuration. The
medium description only provides information down to the intermediate level of 324
ports virtual switches. The fine description provides information down to the leaf level
of ASIC of the Infiniband topology, including the intermediate level. The leaf level of
ASIC is also defined here by the term “lineboards”,

Global execution time as well as placement effectiveness are then compared. The
placement effectiveness is calculated based on a complete description of the fat-tree
topology (fine topology). This enables to measure the side effect of a non-optimal se-
lection logic to provide optimal results.

When evaluating placement results, a job, depending on its size, can have an op-
timal number of lineboards, an optimal number of intermediate switches or both. For
example, a job running on a single lineboard will automatically have an optimal num-
ber of lineboards and an optimal number of intermediate switches. A job running on
three different lineboards of the same intermediate switch could have an optimal num-
ber of intermediate switches but a sub-optimal number of lineboards if the requested
number of cores could be served by only two lineboards. A job requiring n lineboards
could have a sub-optimal number of intermediate switches if the allocated lineboards
are spread among the intermediate switches without minimizing the associated amount.

Fragmentation of the available resources over the time is one of the biggest issue of
topology placement and prevents from having the theoretical placement effectiveness
in practice.

The results of the topology experiments are presented in Table 2 and in Figure 5.

Table 2. Light-ESP benchmark results upon the emulated cluster of “Curie” with 5040 nodes (16
cpus/node), for different types of topology configuration

SLURM NB cores-TOPO Cons / Topo-ESP-Results Theoretic- Ideal values No Topo Basic Topo Medium Topo Fine Topo
Total Execution time(sec) 925 1369 1323 1370 1315
# Optimal Jobs switches 228 53 13 180 113

# Optimal Jobs on switches + lineboards 228 21 6 120 106
# Optimal Jobs on lineboards 228 64 31 120 209

Ten runs of each configuration are executed and show stable results. The global exe-
cution time of the different runs are similar, having even the most detailed flavor of the
tree topology strategy finishing a little bit sooner. CDF on execution times and submis-
sion times follow the same trend and show a little gain for fine topology and a little loss
for the medium topology. This first result is really interesting as it validates the stability
of the global throughput of the simulated clusters in regard to the different topology
configurations evaluated. No trade-off between global throughput and independent jobs
performances is thus required. Improvements in the jobs performances due to a better
placement should directly and positively impact the system utilization.

The difference in term of placement effectiveness between the experiments without
detailed topology information and the experiments with the details are huge.

In its standard behavior, the SLURM scheduler surprisingly acts better than a tree
topology having all the nodes at the same level with our synthetic workload. We expected
to have a same poor level of effectiveness but the best-fit logic of both schedulers treats
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Fig. 5. System Utilization and Cumulative Distribution Functions of jobs submission and waiting
times, for different cluster sizes and Light-ESPx10 with 2282 jobs

the row of nodes differently. The original consecutive nodes allocation of the default
SLURM scheduler may be at the origin of the difference.

The best placement results of the default scheduler are about 20% to 25% of right
placement when only considering one of the two levels of significant topology informa-
tion of the tree, and less than 10% with both simultaneously.

The medium topology configuration provides better results with about 80% of right
placement for its targeted medium level and about 50% for the lineboard level and both
simultaneously.

The fine topology configuration provides even better results for the lineboard level
with more than 90% of right placement. The results for optimal placement at the inter-
mediate level and for both levels simultaneously are below the previous configuration,
standing between 45% and 50%.

At first sight, the fine topology results are surprising as one could expect the fine
strategy to be a refined version of the medium configuration only increasing the chance
of having the right amount of lineboards when possible. Code inspection was necessary
to understand that difference. The tree topology logic of SLURM is a two steps logic.
First, it looks for the lowest level switch that satisfies the request. Then it identifies
the associated leaves and do a best-fit selection among them to allocate the requested
resources. Intermediate tree levels are thus only significant in the first step. The differ-
ences between the medium and the fine configuration are explained by to that logic.

When the system is fragmented and no single intermediate switch is available to run a
job, the top switch is the lowest level that satisfies the request. In medium configuration,
all the intermediate switches are seen as the leaves and the best-fit logic is applied
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against them. Chances to have the optimal number of intermediate switches are high.
In fine configuration, all the lineboards are seen as the leaves and the best-fit logic
is applied against them without any consideration of the way they are aggregated at
intermediate levels. Chances to have the optimal number of lineboards are high but
chances to have the optimal number of intermediate switches are quite low.

SLURM aims to satisfy the leaves affinity better than the intermediate levels affin-
ity when the system is fragmented. As a result, multiple level trees are subject to larger
fragmentation issues than standard 2-levels tree. Indeed, the leaves being equally treated
when fragmentation occurs, jobs are spread among the intermediate level switches with-
out any packing strategy to increase the chance of recreating idle intermediate switches.
Considering that fact, the choice between using a medium versus a fine topology con-
figuration is driven by both the hardware topology and the workload characteristics.

Pruned fat-tree topologies, like the one used in Tera-100, have smaller bandwidths
between switches located at the intermediate level. Using a fine configuration with these
topologies could result in the incapacity to provide enough bandwidth to jobs requiring
more than one switch because of too much fragmentation. A medium configuration,
only focusing on detailed information about the pruned level is certainly the best ap-
proach.

For systems where the workload characteristics let foresee idle periods or large job
executions, then the fine configuration is interesting. Indeed, it will favor the optimal
number of lineboards and even switches when the system is not highly fragmented. If
the workload characteristics let foresee jobs having the size of the intermediate switches
or if a high 24/24 and 7/7 usage would inevitably conduct to a large fragmentation, using
the medium configuration appears to be a better approach.

The results of the topology experiments are really interesting to help configuring
the most adapted topology configuration for tree based network topology. A same ap-
proach, using a synthetic workload tuned to reflect a site typical workload should be
used in addition to confirm the choice before production usage. It could also be used on
a regular basis to adapt the configuration to the evolution of jobs characteristics.

SLURM behavior with multiple-level trees needs to be studied deeper in order to
determine if a balanced solution between medium and fine configuration could bring
most of the benefits of each method and enable to have better effectiveness with a fine
description. A best-fit selection of intermediate switches in the first step of SLURM tree
topology algorithm will have to be evaluated for that purpose.

4.3 Scalability in Terms of Number of Resources

The light-ESP benchmark [32], described in section 3, is used in these experiments.
This synthetic workload of 230 jobs with different sizes and target run times is run on
different emulated clusters from 1,024 nodes to 16,384 nodes. In this benchmark, the
size of the jobs automatically grows with the size of the targeted cluster. As a result, a
job size always represent the same share of the targeted system.

To evaluate the job size effect on the proper execution of the workload, a modified
version of the Light-ESP benchmark having 10 times the number of 10x smaller jobs
is used. This benchmark results in the same amount of required resources and total
execution time as with the previous workload.
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In all cases, a single encapsulated SLURM client call is used in every job in order
to evaluate the responsiveness of the system. The more the central controller is loaded,
the more the execution time is increased by the delay of the associated reply reception.
The results gathered during the executions of the Light-ESP for different cluster sizes
are detailed in Figure 6.

We see an increase in jobs execution times as well as a stretching of CDF on sub-
mission time for clusters of 8k nodes and more. The results suggest a contention pro-
portional to the number of compute nodes in the central controller process. Looking
closer at the system during a slowdown, the central SLURM controller is overloaded by
a large amount of messages to process. The messages are mostly internal messages that
are transmitted by the compute nodes at the end of each job.

Current design in SLURM protocol (at least up to version 2.3.x) introduces the con-
cept of epilogue completion message. Epilogue completion messages are used on each
node involved in a job execution to notify that the previously allocated resources are no
longer used by a job and can be safely added to the pool of available resources.

This type of message is used in a direct compute node to controller node communi-
cation and result in the execution of the SLURM scheduler in order to evaluate if the
newly returned resources can be used to satisfy pending jobs. In order to avoid denial of
service at the end of large jobs, SLURM uses a dedicated strategy to smooth the mes-
sages throughput over a certain amount of time. The amount of time is capped by the
number of nodes involved in the job multiplied by a configuration variable defining the
estimated process time of a single message by the controller. This strategy induces la-
tencies at the end of the jobs before the global availability of all the associated resources
for new executions.

In SLURM vocabulary, these latencies correspond to the time the previously allo-
cated nodes remain in the completing state. The decreasing system utilization den-
sities of the workloads when cluster size increases, as displayed in Figure 6, outline
these latencies.

Each Light-ESP workload is finished when two jobs using all the resources are pro-
cessed. As a result, the end of each workload enables to have a direct picture of the effect
of the completing latency. While the number of nodes increases on the emulated clus-
ters, the idle time between the last two runs increases proportionally.EpilogMsgTime,
the parameter used to define the amount of time of a single epilogue complete message
processing, has a default value of 2ms. This result in a completing window of at least
32s when a 16,384 nodes job is finishing. Looking at the results of our experiments,
it sounds that the delay between the last two jobs is even greater than the expected
completing time. In order to understand that behavior, a new set of experiments are
conducted. The associated results are shown in Figure 7.

The idea was to first reduce the EpilogMsgTime in order to see if the completing time
would be proportionally reduced and in a second phase to reduce the epilogue message
processing complexity to see if the time to treat each message would be reduced too. For
the second target, a patch was added in order to remove the scheduling attempt when
processing an epilogue complete message on the controller. The epilogue message time
was kept smaller for this run too in order to have a better idea of the additional effect
of the two propositions. As shown by Figure 7, the two strategies enable to reduce the
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Fig. 7. Cumulative Distribution Functions of jobs submission and execution times, for different
termination strategies upon a 16384 nodes(16 cpus/node) cluster and Light-ESP with 230 jobs

global computation time consecutively and provide reduced execution time in compar-
ison with the standard run. However, the results are still no longer as effective as for
small clusters. The CDF on submission times on the same figure still shows the stretch-
ing of the curves that reflects delay of submissions of the ESP launcher. The CDF on
execution time shows an increase of execution times that suggests an unresponsive con-
troller during the jobs execution for large clusters. The epilogue completion mechanism
in SLURM, and more specifically its processing time and its peer-to-peer communica-
tion design appears to be the main bottlenecks at scale.

Further investigations must be done in order to evaluate the feasibility of a modi-
fication of this protocol in order to achieve better performances. Reversed-Tree com-
munications, like the one used for the aggregation of jobs statistics of each node right
before the epilogue stage could be a good candidate. This would result in spreading the
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overhead of messages aggregation to the compute nodes and let the central controller
only manage one single message informing of the completion of the epilogue at the end
of each job. Side effects, like compute nodes taking too much time in processing the
epilogue stage will have to be taken into account. This issue may be one of the origins
of the peer-to-peer design choice that is made for current version of SLURM. However,
the previous results outline the fact that large clusters require a new balance between
epilogue completion aggregation and quick return to service of previously allocated
nodes.

Large jobs induce long completing periods and a high load of the controller because
of large number of epilogue completion message to process. It is interesting to evaluate
the behavior of SLURM with the same different cluster sizes but with a larger workload
composed of smaller jobs to determine if this behavior is still observed. The results of
the experiments are presented in Figure 8.

For small clusters, up to about 4,096 nodes, the global throughput of such a workload
is really great and even close to the theoretical value of 935 seconds. An interesting re-
sult is that the responsiveness of the controller is also greater. Indeed, there is no longer
a large variation on the CDF on execution times for the different cluster sizes. This
has to be related to the smoothing of the job endings induced by the larger workload
of smaller jobs. However, large clusters, having the ability to run a larger numbers of
jobs simultaneously, are subject to the same kind of stretching of system utilization than
with the original Light-ESP workload. The effect is even worst as the system utilization
is not only stretched but collapses over the time.

Based on the feedback of the previous studies on large number of job submissions
and the effect of removing the scheduler call in the epilogue complete processing of the
controller, a potential candidate to explain the effect would be the impact of SLURM
internal scheduler when called at submission and completing time. Indeed, the CDF on
submission time shows that the submissions on the larger clusters are delayed during
the execution of the workloads on the large supercomputers. As the responsiveness
stays similar across the different sizes, the collapses should be due to the scheduling
complexity at submission time that decrease the submission rate.

Further experiments are required to identify the reasons of this issue. The usage of the
defer parameter, as well as the patches made to remove the various useless scheduler
call when this mode is activated, will have to be tested to validate this assumption.

To sum up, the results on the scalability in terms of number of resources show that
good efficiency and responsiveness can be obtained for clusters up to 4,096 nodes.
The scalability threshold is placed between 4,096 and 8,192 nodes in the evaluated
configuration with the consumable resources selection algorithm of SLURM. A first
way of enhancement has been identified and should help to provide better result in term
of scalability for small workload (in number of jobs). A second issue has been identified
and could prevent from extending the positive effect of the first one to larger workload
(in number of jobs).

Improvements and new experiments are required to prepare SLURM to manage
larger clusters. Current production clusters should not suffer of the outlined issues but
must be monitored.
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5 Conclusions and Future Works

In this paper we have presented an evaluation methodology for the Resource and Job
Management System SLURM based upon combined real-scale and emulation experi-
ments using synthetic workloads.

We have validated our methodology by observing similar results for identical work-
loads on both the real-scale and emulated systems. Using emulated clusters is a real
alternative to cost-effective real-scale experiments that are not only hard to be approved
but also suffers from the inherent hardware faults that make evaluating a system in its
complete availability a pretty hard task. The validation of this methodology enabled us
to conduct experiments on emulated clusters with a strong confidence on their correct-
ness in real situation.

The choice of using synthetic workloads was initially performed to ease the modifi-
cation of their characteristics and address a broader spectrum of scenarios. Furthermore,
the PRACE targeted machine, “Curie”, not being in production at the petaflop scale at
the time of the study, no real workload traces were available as an input for a similar
approach.

The conducted experiments helped to guarantee the capabilities and the efficiency of
the open source RJMS compared to the requirements of the targeted petaflop machines,
“Tera-100” and “Curie”. In a second time, experiments at larger scales were realized to
not only have a precise idea of the behavior of the product on current machines but also
evaluate the capability of SLURM to manage clusters up to 16,384 nodes.

The conclusions raised during the evaluations are significant for the day-to-day us-
age of the installed machines and let us have a better view of the work that will be
required in the following months and years to prepare a valid RJMS candidate for the
next generation of supercomputers. Our plans are now to extend our methodology with
real workload traces replay to confirm our first assumptions concerning the configura-
tion parameters to use on our system. In addition, we will work on the correction of the
identified topology awareness and scalability limitations in order to enhance SLURM
for the proper management of clusters up to 16,384 nodes.

The emulation experience acquired during this study let us consider that an emulated
cluster of up to 65,536 nodes, the theoretical limit of SLURM, could be correctly em-
ulated on the currently available petaflop machines. We will certainly face new issues
and thresholds associated to such a new scale of experiments.
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Abstract. Recent success in building extreme computing systems poses
new challenges in job scheduling design to support cluster sizes that can
execute million’s of concurrent tasks. We show that for these extreme
scale clusters the resource demand at a centralized scheduler can ex-
ceed the capacity or limit the ability of the scheduler to perform well.
This paper introduces partitioned scheduling, a hybrid centralized and
distributed approach in which compute nodes are assigned to the job
centrally, while task to local node resources assignments are performed
subsequently at the assigned job nodes. This reduces the memory and
processing growth at the central scheduler, and improves the scaling be-
havior of scheduling time by enabling operations to be done in parallel
at the job nodes. When local resource assignments must be distributed
to all other job nodes, the partitioned approach trades central processing
for increased network communications. Thus, we introduce features that
improve communications such as pipelining that leverage the presence
of the high speed cluster network. The new system is evaluated for jobs
with up to 50K tasks on clusters with 496 nodes and 128 tasks per node.
The partitioned scheduling approach is demonstrated to reduce processor
and memory usage at the central processor and improve job scheduling
and job dispatching times up to an order of magnitude.

1 Introduction

The primary goal of job scheduling for high performance computing (HPC) is
to assign parallel jobs to compute nodes, matching the resource requirements of
the job to available and capable nodes. Traditionally, job to node matching is
performed by a centralized scheduling architecture in which a resource manager
module monitors the state of the compute nodes in the cluster, sharing this
data with the collocated scheduling module. However, this centralized scheduling
model is stretched in meeting the demands of extreme scale HPC supercomputer
clusters.

For example, an exemplary supercomputer that is part of the IBM DARPA
HPCS [1] program, contains up to 16K nodes, 2 million tasks and targets sus-
tained performance in excess of a petaflop for applications such as computa-
tional biology and chemistry, fluid mechanics, and galaxies formation studies.
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Each compute node consists of a quad Power7 chip module with 8 cores per chip
for a total of 32 cores [21]. Each core supports simultaneous multi-threading
(SMT) up to 4, allowing up to 128 job tasks to execute on a compute node.
Compute nodes are packaged in modular groups of 32 termed super-nodes. In-
ternal to each super-node is a full point-to-point switched network with minimum
sustained bandwidth of 6 GB/s. The supercomputing system is constructed by
inter-connecting tens to hundreds of super nodes with multiple 10 GB/s links,
up to a total of 16K nodes and capable of running 2 million tasks.

While a centralized scheduler scales linearly in memory and processor demand
with the number of job nodes and tasks, it still may not deliver adequate schedul-
ing performance and can be overloaded in demand for memory. In fact, we have
found this to be the case while doing performance studies aimed at extreme scale
systems using the IBM TWS-LoadLeveler (LL) scheduler [20,4]. A root cause
of the problem is that centralized schedulers do not leverage the large number
of compute nodes assigned to the job that can assist in the scheduling process.
Increasing the parallelism allows a transition of large parts of the scheduling
and dispatching problem from linear scaling to more constant order, with sub-
stantially reduced resource demands at the central scheduler. This transition to
a distributed and parallel model is enabled by the higher speed and lower la-
tency networks that are now present on HPC clusters since distributed models
invariably require more communication than centralized ones.

To this end we introduce a hybrid approach to the scheduling architecture
which adopts key elements of both parallel and distributed system features that
we call partitioned scheduling. The main observation that leads to partitioned
scheduling is that by deferring the assignment of local compute node resources
to tasks - such as DMA windows and processor affinity - until after the node
selection process allows the compute nodes themselves to do scheduling of these
local resources. Of course, certain local scheduling decisions such as network
adapter assignments still have to be propagated to all other nodes in an all-
gather type of communication paradigm [17]. A further contribution to the work
is the many improvements in system communication developed to distribute the
local node scheduling decisions and improve dispatching.

Once local resource scheduling is moved out of the central scheduling com-
ponent, additional improvement to the linear aspects of global job to nodes
selection are possible by parallelization. Concurrently threads in node assign-
ment function are leveraged using multicores while avoiding slowdowns arising
from lock contention.

This paper presents the partitioned scheduling design and implementation,
and shows how it has led to significant speedups in job scheduling while simul-
taneously reducing the resource demand at the central manager. We show that
even in small clusters of 248 nodes this trade-off in costs is considerable, lead-
ing to order of magnitude improvements in many performance aspects of job
scheduling and dispatching. From an overall system evaluation perspective the
total gain does not quite reach a factor of 10, but exceeds a factor of five on
our smaller cluster. But the improvements provide a capacity and scaling safety
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margin that is also expected to be significant in absorbing more load as the
system scales up to 16K nodes.

The paper starts with a description of the centralized IBM LL architecture
that existed prior to this work. After an analysis of its scaling limitations, the
adoption of the partitioned scheduling and the numerous scalability enhance-
ments are described. Measurements on up to 496 nodes and 128 tasks per node
are used to illustrate the gains in of scalability that have been achieved.

2 LoadLeveler Architecture

IBM LoadLeveler (LL) is a job management product for high performance com-
puting (HPC) clusters. LL focuses on batch job management for enterprise
systems with commercially pertinent features, such as detailed accounting for
charge-back, priority & work flow control, high availability with parallel check-
pointing, and job recovery. It supports a wide range of systems from small clus-
tered workstations to large IBM BlueGene [6] supercomputers.

The basic architecture of LL (Figure 1) consists of three key components:
a central manager (CM), one or more job managers (JM), and a cluster of
compute nodes. The JM provides a portal for job submission and is responsible
for job lifecycle management including: persisting job state to disk, launching
and coordinating the execution of the job on the nodes assigned by the scheduling
component, and recovering the job in case of a failure. The CM runs on a single
machine and includes the collocated resource manager (RM) and job scheduler
(aka Scheduler). The CM has a simple failover scheme based on a recovery model
that consists of standby CMs. In case of failure, job states are supplied by the
JMs and resource states reestablished by compute nodes via the RM.
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The RM is an in-memory repository of cluster information such as the state of
every node, including dynamic and static attributes. A daemon process (StartD)
on each of the compute nodes pushes the resource information to the RM. StartD
reports both the static and dynamic attributes of the node, the former at node
start-up and reconfigurations, and the latter at configurable sampling intervals or
job state changes. Static configuration data include hardware attributes, memory
size, types and numbers of network adapters, while examples of dynamic metrics
are CPU utilization and active job states.

The Scheduler allocates compute nodes and other resources to a job by match-
ing the requirements of the job to compute nodes using the state data provided
by the RM. In addition to number of nodes and number of tasks per node, the
job may specify computational processor power, memory space, system archi-
tecture type (e.g., Intel x86, IBM POWER), disk storage, high-speed network
resources, software environmental entities (e.g. OS, software license), etc. When
available and supported in a clustered systems, jobs can specify a number of
network windows that provide an efficient mechanism to exchange data between
job tasks via direct memory access (DMA).

It is useful to characterize the resource types considered by the Scheduler into
categories according to the job matching conditions:

1. Global or Floating Resources: A global resource is a cluster-wide con-
sumable of finite number N such as cluster-wide licenses for a particular
software. No more than N jobs requiring such a resource can run concur-
rently on the cluster.

2. Node Resources: A node resource has static or/and dynamic attributes
that are defined on a per node or per job basis, irrespective of the number
of tasks of job running on that node. For example, a job class may specify
for a compute node with a specific number of slots. Once a job assigned to
such a job class slot, the slot would not be available to other job until that
job releases the class slot.

3. Node Local Resources: Node local resource are a resources tied to a node.
They are typically consumed on a per-task basis and the association between
the task and the corresponding resource being consumed must be preserved
for the duration of the job. Two common examples here are task to core
mapping and task to network window mapping. In HPC, a particular task
often runs on a particular core for the duration of the job using the task
to core mapping. Similarly, in task to network window mapping, each task
will be assigned a particular network window for its use. Every other task
of this job must use this window to communicate with this task. For this,
every task must know the task to network window association of all tasks of
a job. This requires an all-to-all communication of this information.

The job-to-resourcematching complexity is different for each category of resources.
Global and node resources are matched on a per job basis while node local re-
sources are assigned to individual tasks of each job. The complexity of matching
leads to considerable processing, memory consumption, and a scalability
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Fig. 2. Hierarchical Job Object and Network Table Propagation

bottleneck at the Scheduler. The subsequent section expands on the limits of pro-
cessor and memory scalability at the CM machine.

When scheduling for a job is successfully, the CM returns to the JM the
resource assignments, including global, node and node local resources. As shown
in Figure 2, nodes A through G represent the assigned compute nodes. If network
window to task assignments are provided for a job by CM, as the task-network
usage information, then JM takes the per task network adapter information and
builds it into the Network Table (NTBL) which contains necessary information
to enable all-to-all inter task communication. JM then merges the job node
assignments with the NTBLs and wraps it into a single large job object (JO)
that is sent to the StartD on the compute nodes. JO dispatching is done using
the N-ary tree, where the structure of the tree is encoded into the JO itself. As
shown in the figure, the JO is first passed to the root node where data for that
node is extracted. The node then revised the JO contents and forwards the JO
to its children and the process continues to the leaf nodes.

Job execution at compute nodes is managed by the local StartD which forks
a Starter process – a job executing agent – to initiate and control the job
execution. Concurrent execution of tasks at a compute node is enabled by forking
multiple Starter processes. Changes of job status will be reported by StartD’s
back to the corresponding JM that manages the job’s lifecycle.

3 Scalability Issues in LL Architecture

The centralized nature of job scheduling and the demand in processing cycles and
memory is a scalability concern for extreme scale clusters. CPU bottlenecks are
examined first by looking at the scheduling stages, and identifying where they
consume cycles that can be moved to local compute nodes. Then we consider how
the memory footprint, which becomes unsustainable, in a central architecture,
is reduced by node level scheduling.
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LL uses a two stage scheduling process in which a set of nodes capable of
running the job (based on specific job attributes) is selected first, followed by a
priority based selection of a subset of these nodes according to dynamic capacity.
These steps are further described below:

– Stage 1: Designate capable nodes as having the static capabilities to match
the requirements of the job; capabilities include node architecture types and
features, job class definitions, and high-speed network adapter types and
counts.

– Stage 2: Select capable nodes from an ordered list of nodes that have the
dynamic capacities to assign to the job; exemplary capacities include unused
job class instances, unfilled multiprogramming level, and spare network win-
dows. The nodes are ordered based on an administrator defined priority such
as descending order of free CPU utilization.

Stage 1 is performed once for a job to produce a list of capable nodes in a cluster.
An update to the list is triggered only for the addition or removal of nodes from
the cluster, an infrequent event in HPC environments. Stage 2 is repeated at each
scheduling cycle, as existing jobs terminate and free up resources, until enough
nodes are available to the requesting job. The two stage scheduling process is an
optimization that is useful if typically incoming jobs being scheduled must wait
for termination of running jobs for resources.

The processing time to complete these stages is bi-linear in the number of job
nodes and node local resources that need to be assigned to the job. In fact, node
local resource scheduling time is proportional to the number of tasks because
local resources are assigned on a per task basis. A typical example is allocation
of network windows for DMA to each task on a node. Here the processing of
stage 2 is logically an outer loop on the N nodes with an inner loop assigning
network windows to T tasks. This CPU intensive work is quantified using the
observed scheduling time (upper curve of Figure 8(B) in Section 6) which shows
that scheduling a job of 248 nodes and 64 task per node takes 2.4 seconds on
the centralized Scheduler. Assuming at best a linear scaling in nodes and tasks,
this projects to at least 160 seconds on the 16K node cluster.

One could argue that, performed centrally, there is an opportunity to unwrap
the scheduling loop, for example by having each of a group of hardware threads
perform the local task scheduling for each node. However, a second major scaling
issue arises which is that memory usage is becoming unmanageable. According
to our data on a 496-node, 64 task job (upper curve of Figure 7 in Section 6),
memory consumption would scale out to over 4.6GB on the 16K node cluster. In
fact, as long as the cluster is fully occupied this much memory must be consumed
to keep track centrally of resource assignments of all currently running jobs. The
scalability issue with memory is not simply the size, but the fact that it is not
a monolithic allocation, but comprised of a very large number of smaller data
objects reflecting the scheduling details. These memory allocations and releases
add significant overhead to the CM.

The solution to the scalability problem is to leverage the compute nodes to
perform the scheduling of node local resources such as network windows. This
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reduces CPU utilization at the central manager by separating the scheduling into
two sequential steps. First, the Scheduler selects job nodes that have sufficient
free local resources for the number of tasks per node. This is done by maintaining
an aggregate counts of resources, for example, each node’s free network windows
at the CM. Once the job nodes are selected, nodes assign the windows to tasks
and report these assignments to peer nodes that require communication. More
detail of how this partitioned scheduling works in practice is described in the
next section. The main point is that a large amount of the required processing
of the Scheduler is now performed as a short serial process followed by a parallel
and distributed phase.

The distributed aspect of partitioned scheduling also solves the memory usage
problem, dividing the required allocation among a large number of nodes. It
improves other scale driven concerns which although less important, contribute
in a measurable way to the overall system performance. For example, in the basic
design of the prior section, the JO that is distributed to all nodes is very large
and each node must read it into memory and scan it to find the data specific
to that node. With a much smaller object optimizations in the processing and
distribution of the JO transmission and handling are possible as described in
Section 5.

Finally, we note that even the remaining sequential process of selecting the
nodes which remains on the CM can be parallelized to leverage the multi-core
hardware. The challenge in achieving a linear speedup in using a modest number
of threads is to avoid locking conflicts on the per node data. Section 4.2 describes
our multi-threading optimizations of these scheduling stages.

4 Partitioned Scheduling

The main observation that leads to a reduction in both processing and memory
consumption in the Scheduler is that the node local resource assignment to each
task can be performed in parallel by the compute nodes that are selected for the
job. In order for the Scheduler to know job tasks can be dispatched to a node
based on availability of sufficient node local resources, the RM only has to keep
a count of total and free local resources for each node.

This motivates several new architectural aspects of LL, enhancing the base
model of Section 2. The most significant is the partitioning of the scheduling
function of per task local node resources to individual nodes. While not as broad
in scope, the multi-threaded job scheduler improves scalability for large clusters
and jobs. Finally, introduction of pipelining (in Section 5) to the distribution of
JO and NTBLs has a significant impact on total schedule and dispatch timing.

4.1 Partitioned Scheduling of Local Resources

In the partitioned scheduling design, a scheduler agent (Schd Agent) is intro-
duced to StartD to perform the detailed assignment of node local resources to
tasks of job scheduled on the node, as shown in Figure 3. In the example of
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network window scheduling, only the static attributes of the network adapters
and the count of available network windows are reported by StartDs to the
RM. During the scheduling cycle, Scheduler matches only the available count of
windows and the type of network adapters to the job request.

The majority of the node local resource scheduling assignments made by the
Scheduler Agents are propagated to the JM to persist complete job information
for failure recovery. Also, to enable all-to-all inter-task communication using
network windows, these assignments need to be distributed to all other nodes.

In the new model the JO is first distributed to the centrally selected job
nodes using the hierarchical tree of Figure 4. Upon receiving the JO, each node
schedules local resources including network windows and starts the process of
building the entries for the NTBL (Figure 5). Here, LL uses a variant of the
well known all gather implementation in which the unique information (adapter
window) from each node is sent up the tree and consolidated at the root, after
which the full set of information is distributed to all nodes through the same
tree. This process starts from the leaf nodes where the assignments are passed
to the parent and merged with those of its siblings. This continues up the tree as
each node builds a partial NTBL from its own assignment and those of its child
subtrees and so on up the tree, as shown in Figure 5. One optimization is that
instead of passing all NTBL data to the root node, building a full NTBL and
then sending the full NTBL down the tree to all nodes, each parent (including
the root) sends the NTBL for each child subtree down the sibling subtrees. This
reduces by half the amount of data exchanged to build the NTBLS for a binary
tree.

The potential downside to the partitioning scheduling model is this necessity
to communicate the detailed local scheduling decisions such as NTBLs to the all
job task peers. If this distributed building of the NTBLs is significantly slower
than the centralized in memory creation at the JM and subsequent distribution,
then no net gain in scalability is achieved. In other words, based on network
latency and bandwidth and processor speed at the CM, there is a cluster size
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at which performance will be better in central scheduling as opposed to this
partitioning model. We have found with modern hardware that even a modest
cluster size of 248 nodes sees substantial gain from the changes, even as the
number of tasks per node approaches unity.

4.2 Multithreading in Resource Matching

Scheduling is typically compute intensive and it is performed in a single thread
of execution. Single threaded execution fails to exploit the multi-core design of
current generation nodes. Therefore, it is redesigned here to leverage multicore
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Fig. 6. Application of multi-threading to Scheduling
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and SMT capability using a master-worker design with multiple worker threads,
as shown in Figure 6. The master thread assigns units of work, such as perform
matching and selection from a block of nodes, and the workers pull the work
from a queue. As each worker operates on a subset of the node list, it generates
new data that must be reflected in global counters, for example, the number
of software licenses consumed or the number of nodes successfully scheduled.
These updates are handled by passing that data back to the master thread upon
thread completion. The master is also responsible for error recovery and re-
dispatching work from failed threads. This design ensures there are no potential
access conflicts between threads to avoid the overhead of lock contention and
lock recovery for failed threads.

The improvement of the multithreading design is borne out by the data show-
ing the total time spent in matching and in selection process reduced from 14
seconds to 4 seconds on a four core system for 10K nodes and 32 tasks per
node. All of the experiments reported in the evaluation Section 6 include this
optimization.

5 Pipelined Communication

Once a job is scheduled, the job specific resource information for all tasks is
encapsulated in the Job Object (JO) which is distributed to the assigned com-
pute nodes using the n-ary tree of Figure 4. Each job has a unique tree which
is dynamically constructed from a structured list of nodes contained in the JO
and organized by parents and children starting at the root. The tree is persistent
for the job life-cycle and used for all subsequent LL communication for that job,
both down and up the tree.

There are two modes of JO distribution down the tree: store-forward, and
pipelined. In store and forward, a message is completely received at a parent node
prior to forwarding to the children. The original design of the communication
tree attempts to minimize data sent down the tree and always uses store and
forward for messages with node dependence such as the JO. In this design the
JO is opened at each node and new JOs are constructed specific to the sub-tree
of each child, each trimmed JO being approximately half the size of its parent
for a binary tree. In between the store and forward operations, a starter process
is initiated to begin job launch on the node. Even though the starter is on its
own thread, it is executing during the store and forward and is therefore on the
critical path for messaging.

However, through performance analysis it is determined that the CPU time
required for message trimming dominates the network transmission times [12].
The trimming is complicated as JO are XDR [2] encoded messages to support
communication between heterogeneous systems. Encoding and decoding XDR is
compute intensive. This is true even for fast CPUs and slow networks (100Mb
Ethernet) and the gap between the processing bottleneck and network commu-
nication time widens with higher speed networks. Since processing time is the
bottleneck, it is preferable to send larger messages to other nodes as fast as
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possible so they can begin message processing in parallel. Thus, a second com-
munication mode, pipelining, is added. In pipelining, the JO message is logically
divided into ‘chunks’ and a node receiving data from its parent starts forwarding
to its children upon receipt of each chunk. The XDR processing is performed
concurrently with the pipelining by a separate thread on the parent node without
interference to the communication threads connected to the child nodes.

The immediate forwarding of partial message data in pipelining greatly re-
duces the latency, with leaf nodes beginning to receive the JO after approxi-
mately log2(N) chunks have been sent from the root to its immediate children.
Pipelining achieves almost O(constant) scaling for a large message, where store
and forward would be log2(N) times the total transmission time. This is al-
ready an order of magnitude improvement with a 1024 node job. Pipelining also
benefits NTBL distribution where it is used to send the partial NTBLs from
a tree root to leaf nodes. More details of the performance gain and its overall
contribution to the dispatching budget are given in Section 6.

6 Evaluation

In this section, we present our evaluation of the partitioned scheduling and opti-
mizations discussed in the previous sections. We discuss the experimental setup,
performance improvements in the memory growth at JM, scheduling time im-
provements at the CM, and the job dispatching time improvements.

We report on results from two versions of LoadLeveler: 1. a baseline version
before our enhancements (V3.5.1.0), and 2. a new version with our design for
partition scheduling and enhancements described in this paper (V4.1.0.1) [5]. We
refer to V3.x as “Old” and V4.x as “New” design in the description below. We
present the data from the old design to substantiate our motivations outlined in
the introduction section. We juxtapose this with the data from new design – not
so much to show the limitations of the previous design – but to highlight the
potential improvements and the trends associated with the performance of the
new design in job scheduling and dispatching operations on large scale systems.

6.1 Experimental Setup

The design and implementation work spanned over two years and in this time
we had access to multiple clusters with different hardware and operating system
configurations. We used different clusters for experimental validation of the dif-
ferent components of new design. In this paper, we report on the results from
two representative large scale Power6 clusters: one 497-node cluster and another
249-node cluster.

The 497-node Power6 cluster is connected with Infiniband interconnection
network. This cluster is used to obtain the experimental results for the memory
usage analysis at the Job Manager, and the partitioned scheduling design that
trades off some of the functionality from CM and JM to the compute nodes. Of
the 497 nodes, one node is used for CM and JM and the remaining 496 nodes
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for job execution (compute nodes). The node with CM and JM consists of 8
Power6 cores and 32 GB memory, which provides sufficient memory space to
study the memory usage with the old and new designs. Each of the 496 compute
nodes consists of 4 Power6 cores and 14 GB memory. So, the cluster consists of
1980 Power6 cores for job execution and 8 cores for LL operations. All 497 nodes
consist of a single network adapter per node. All of these nodes are configured
with AIX 6.1 and used exclusively for the performance evaluation.

The 249-node Power6 cluster also connected with InfiniBand interconnect is
used to study the job dispatching optimizations. In this cluster, the CM and JM
node consists of 8 cores and 32 GB memory and the remaining 248 compute
nodes consist of 4 cores and 14 GB memory each. All 249 nodes are configured
with SUSE Enterprise Linux Server (SLES) version 11.

6.2 Job Manager: Memory Consumption Data Capture and
Analysis

In this section, we study the JM memory consumption for jobs requiring 496
nodes with different number of tasks per node: from 1 task per node to 128
tasks per node. We study memory consumption with different number of tasks
per node because the amount of state information is directly proportional to the
number of tasks assigned to a node. Applications that exploit hybrid
MPI/OpenMP programming models tend to use different number of MPI tasks
per node depending on the MPI and OpenMP parallelization characteristic of
the application. The 128 tasks per node is interesting because it corresponds to
an extreme end execution model on Power7 node: typical Power7 compute nodes
consists of 32 cores and with SMT= 4, 128 hardware threads therefore a single
Power7 node could potentially execute 128 MPI tasks one per hardware thread.

As we discussed before, the memory growth occurs at the JM as well as at the
CM. At the CM, the memory is consumed not only for task scheduling but also
for other activities such as RM which processes incoming traffic of status and
utilization updates so measuring the memory consumption for task scheduling
cleanly at CM is a bit tricky. However, the memory consumption at the JM
is only due to task scheduling and there is no other memory consumption as
long as the task queue is kept constant. So, since both CM and JM consume
proportionate amounts of memory for a given job and since it is easier to isolate
and measure memory consumption per job for JM process compared to CM
process, we capture the data from JM process while scheduling jobs to the 496-
node cluster.

For each test case the JM is restarted and initial memory usage by the JM pro-
cess Minitial is recorded before any jobs are submitted to the cluster. Then a job
is submitted to JM, is sent to the CM for resource matching. After the resource
matching it will be returned to JM at which point, the JM will dispatches the job.
The memory usage at this point is recorded again for the JM process as Mfinal.
The difference between these two memory usages: Mjob = Mfinal − Minitial is
the memory consumption by the JM process associated with a single job. These
tests are repeated for LL old and new designs for comparison.
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Figure 7 shows the JM memory usage for a 496-node job with increasing
number of tasks per node from 1 to 128. For the old design, the data is captured
for up to 64 tasks per node. From the data, it is obvious to see that the new
design results in substantial memory saving at the JM node – in fact about 5.5x
lower memory usage in the new design compared to the old design. Recall that
this cluster had a single network adapter while HPC clusters can typically have
two or more adapters and the memory consumption in the old design increases
linearly with the number of adapters while it increases only by a constant with
the new design. The memory savings will be even more substantial for systems
with multiple network adapters.

Now, what would be the JM memory for original and new design for the
largest scale Power7 HPC system with 16K nodes? A linear projection of the
data from Figure 7 from 496 nodes, 64 tasks per node to 16K nodes give us
about 4.6 GB per job with old design and 0.83 GB per job with the new design.
Keep in mind that job scheduling not only depends the memory usage but also
on memory allocation/de-allocation time.

6.3 Central Manager: Job Scheduling Time Capture and Analysis

Job scheduling time is defined as the time between when a job request arrives at
the CM from JM and when it is ready to be sent back to the JM with the task
resource assignments. In this time, eligible resources are identified, allocated, and
the job object is created with the assigned resource information in the Scheduler.
The scheduling time does not include the job dispatching time, which is the time
between when the job arrived at JM and when the JM gets notification from all
compute nodes that they ready to execute the job. All evaluation measurements
from our experiments were taken after the clustered system initialized to the idle
state, i.e., they system is up and operational but it has no workload.

Figure 8(A) shows the scheduling time for jobs requiring different number
of nodes with 32 tasks per node. Significant improvement in scheduling time is
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Fig. 8. Partitioned scheduling performance evaluation. (A) Scheduler scheduling time
per job with different number of nodes. Each job requests resources for 32 tasks per
node. (B) Scheduler scheduling time for a 248-node job with different number of tasks.

noticed for jobs running under the LL new design. There are two contributing
factors to the improvement. First, the Scheduler is relieved from matching node
local resources to individual task of the job, as described in Section 4.1. Second,
the Scheduler is exploiting the multi-threading enhancements on Power6, as
described in Section 4.2.

Figure 8(B) shows the scheduling times for 248-node job with varying number
of tasks per node from 2 to 128. In the old design, because task specific resources
are allocated at the Scheduler, the scheduling time increases linearly with the
number of tasks per node. In the new design, this time becomes a constant be-
cause this task specific matching is offloaded from the Scheduler to the compute
nodes. The data here further confirms this advantage of relieving Scheduler from
matching node discrete resources to job tasks such that the scheduling time is
independent with respect to number of tasks per node in the LL new design, as
comparing to the increasing in scheduling time with increase number of tasks
per node in the original design.

Data in Figures 8(A) and 8(B) together shows that the centralized schedul-
ing performance can be improved significantly by carefully partitioning the re-
source matching between the Scheduler and the compute nodes. Thus partitioned
scheduling can achieve performance and scalability while avoiding scheduling
complexity and load balance issues associated with distributed scheduling.

6.4 Job Dispatching Time Analysis

Our partitioned scheduling moves the network table construction from JM to
compute nodes. Network tables are constructed among the compute nodes by
exchanging the node specific information as discussed in Section 4.1. Communi-
cating node specific information requires exchanges between job nodes to dissem-
inate the local adapter window assignments to all other nodes. In this section,
we will analyze the job dispatching time of the old and new designs.
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Fig. 9. A. Job Dispatch time as a function of number of nodes. B. Job Dispatch Time
as a function of number of tasks node of a 248 node job.

The job dispatching time for the new design includes: 1. the time to send
job object from JM to all compute nodes, 2. the time the for Scheduler Agents
allocating network resources to individual local tasks, 3. the time to building
partial Network Tables for local tasks, 4. the time to hierarchically build the
partial network tables and distribute them to all nodes, and 5. the time to start
the MPI master task.

Similarly the job dispatching time for the old design only includes steps 1 and
5 of the new design, i.e., the time to send job object including network tables
from JM to the compute nodes, and the time to start the master task.

Figure 9(A) shows the job dispatching time as a function of number of nodes
requested by the job for the old and new designs. In this example, the job requests
32 tasks per node. As shown in the figure, the dispatch time for the old design
grows approximately as a quadratic function whereas the scaling improves to
a linear function of the number of nodes in the new design. For a 248 node
job, job dispatching improves from over 10 seconds in the old design to under
2 seconds with the new design. Similarly, Figure 9(B) shows the scaling of job
dispatch time with the number of tasks/node for a 248 node job. Here, the job
dispatch time improves from 130 seconds to under 20 seconds at 128 tasks per
node. Although the data shows quadratic growth it is bounded as the number
of tasks per node used in practice is unlikely to exceed 128.

These substantial improvements in the new design – despite the extra steps
associated for the network table construction and dispatching – are attributed
to efficient exploitation of parallelism in allocating and distributing network
resources by the agent schedulers at the compute nodes.

7 Job Dispatch Optimization: Pipelining

Although the new design achieves a 5X speed-ups in job dispatching time and
fundamentally alters the quadratic scaling to linear, the dispatch time is still
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Fig. 10. A. Communication Performance for Network Tables. B. Pipeline tuning for
NTBL distribution, no data size scaling.

deemed excessive, especially as we project it to a 16K node system with 32
to 128 tasks per node. To further optimize the dispatch time we implemented
additional optimizations, some just restructuring the existing code and others
to more efficiently exploit system resources. We report on the performance of
the pipelining optimization in dispatching the job object and network tables. In
the figures below “new” refers to the partitioned scheduling design which uses
the store-forward method and “pipelined” refers to the optimized partitioned
scheduling with pipelining.

7.1 Impact of Pipelining on Network Table Dispatch

Figure 10(A) shows the start and completion of Network table (NTBL) construc-
tion on a per node basis for a binary tree. The horizontal axis is the node number
where the nodes are ordered by level in the tree with the leaf nodes first, then
the level above the leaf nodes, and so on. Since the tree has 248 nodes, nodes 1
thru 120 are leaf nodes, while the immediate children of the root are at the far
right, and the root is not shown. The vertical axis is the time that the NTBL is
received at that node. The new design data set is colored as black and in solid
line, while the old design data is in color red and in dotted line.

Since the partial tables are built on the way up the tree and the full NTBL
is sent down the tree, each data set contains two lines corresponding to the
direction of data flow: 1) A lower line for the time a non-leaf nodes receive the
partial tables from its children and 2) An upper line (later time) when that
node receives the combined network tables for the other sub-trees from the root
as they are passed back down the tree. Since leaf nodes don’t receive partial
NTBLs on the way up, they only have one value and do not appear on the lower
trace of each data set. The gap at the far right measures the time it takes for
the immediate children of the root to forward the NTBLs for their subtree to
the root, and for the root to turn around and start passing the NTBL for the
down complementary sibling’s subtree. Thus, time on the upper curve is when
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Fig. 11. A. JO distribution with depth of tree, B. JO distribution with number of
nodes

that node receives the complete NTBL and the latest time on this trace marks
completion of the distribution of NTBLs. This type of per node data chart is
used to analyze performance in addition to general trends to show variability in
the communication chain.

The pipelined communication causes NTBL distribution to complete about 5
times faster than the store and forward approach. The coefficient of variation in
the upper trace is also reduced indicating better predictability and stability in
the new system, an important consideration in scaling to 16K nodes.

Detailed performance data for pipelined distribution of NTBLs is provided in
Figure 10(B). It shows the time to complete NTBL construction and distribution
on the 248 node scale test cluster with different chunk sizes in the pipelining
process. There are 32 tasks per node so the NTBL size is of the order of 200KB.
The data series labeled 1KB and 16KB reflect the chunk size of the pipeline, i.e.,
the size of the message received at a node before starting to forward. The effect
of the chunk size is noticeable as the scaling is much better with 1KB chunk
size as expected by the design. Small chunk size benefits the pipelining design,
however, keep in mind that smaller chunks increase number of communication
steps so there is a trade off in the chunk size selection that must be considered
carefully depending on the job size in terms of the number of nodes and the
number tasks per node.

7.2 Impact of Pipeline on Job Object Distribution Performance

Figures 11(A) and 11(B) show the JO distribution using store-forward and
pipeline schemes. In Figure 11(A) the horizontal axis is the depth of the binary
tree used in the 248 node test cluster. The vertical axis is the time for the JO to
be received at that node. In the data series labeled old design the store-forward
communication mode is used. The inter-arrival time between each tree level
decreases, as depth increases because the JO is trimmed by half and takes less
time to process. Here the JO is about 200KB, and LL can drive the InfiniBand



174 D. Brelsford et al.

network at about 100MB/s to 200MB/s so the raw network time is around 1-2ms.
Figure 11(B) compares the two communication modes as a function of the size
of the parallel job. The new design curve uses pipelining and provides a nearly
linear result, showing a greatly improved scaling in comparison with the original
design of store-forward and achieving almost 7x improvement in JO dispatching.

8 Related Work

Decentralized or distributed scheduling has been proposed and evaluated for a
long time [15]. [16] used the hierarchical scheduling as a way to aggregated re-
sources from lower level to higher level in making scheduling decision. [14] pro-
vided a comprehensive taxonomy of distributed scheduling and touched upon
the cooperative peer schedulers. However, the concept of partitioned schedul-
ing and the way it is used in the paper has not been proposed to the best of
our knowledge. The partitioned scheduling is a cooperative scheduling of node
discrete resources after the centralized scheduling of node to a job is done.

Frachtenberg et al. [18] present Flexible Coscheduling that classifies processes
based on their communication and computation requirements to increase system
utilization by improving the job compaction in gang scheduled systems. It is a
hybrid scheduling algorithm in the sense that there is a global scheduler for
the system and a local scheduler per node. The local scheduler makes decisions
on when to run a local task beyond its allocated time slot. In contrast, the
LoadLeveler local scheduler schedules local resources for the task and alleviates
the burden from the global scheduler to improve scalability of the scheduling
system.

The terms partitioned scheduling [10] or semi-partitioned scheduling [7,19]
are used in real-time scheduling community, in contrast to global scheduling, for
scheduling job tasks in multiprocessing systems. More specifically, the author’s
partitioned scheduling refers to having job tasks assigned to specific processors
with a system, and then executed on those processors without migrations. The
use of partitioned scheduling in real-time discipline is similar in concept to dis-
tributed scheduling [9] as the parallel job community. Our use of partitioned
scheduling is different, and we refer to the scheduling assignments of node dis-
crete resources to job tasks.

The paper of Bobroff [12] presented a lightweight virtualization approach of
LoadLeveler and applied to study the scalability of job scheduling and dispatch-
ing in large scale parallel systems using a modest number of physical nodes.
The results provided insights on scalability issues and inspired the re-design of
LoadLeveler product.

Balaji et al. [11] and Butler et al. [13] describe API’s for scalable process
management of parallel jobs in large scale systems. A parallel job scheduler has
two primary roles: one to match parallel jobs with required resources and two
to manage the life cycle of the parallel jobs including launching of the tasks of
the job and providing for inter-task communication. The second part is broadly
called resource management. The API’s enable a unified resource management.
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However, to fully exploit systems with unique hardware features, these API’s
could result in limitations. IBM systems have proprietary resources and they
provide resource management software so jobs can exploit these resources. The
LoadLeveler process manager coordinates the fine grained resource scheduling
such as DMA allocations with the underlying IBM hardware platform resource
manager. Layers such as IBM Parallel Operating Environment [3] provide the
additional mechanisms for process boot strapping.

Although performance data of the old version of LoadLeveler showed signifi-
cant scalability problems, it is used on several large scale systems such IBM Blue-
Gene without these problems. Part of the reason for this is that the LoadLeveler
design on IBM BlueGene works differently from how it works on general pur-
pose large scale systems. For example, there are no LoadLeveler components
that actually run on every node of the BlueGene system, which means it does
not have to scale with the number of nodes of the system (see e.g., [8]). More
importantly, each node of the DARPA HPCS system consists of many more re-
sources compared to nodes of current generation HPC systems which cause the
increased complexity and result in scalability issues for LoadLeveler. Our solu-
tions in this paper address this complexity by carefully dividing the scheduling
responsibilities between the global and the local scheduler.

9 Concluding Remarks

This paper presents significant enhancements to IBM LoadLeveler to achieve
performance and scalability objectives in job scheduling for extreme scale com-
puting systems. A set of architectural changes are introduced that bring dis-
tributed scheduling concepts to LL while preserving the benefits of centralized
scheduling.

The most important of these is partitioned scheduling that performs task to
local node resource matching at the job nodes instead of the central scheduler.
This reduces the processing and memory footprint at the CM, leverages the
ability to use the job nodes in parallel to assist with scheduling, and changes the
scaling of scheduling time with tasks per node n from O(n) to approximately
O(constant). This outcome is demonstrated on a large system (50K tasks and
128 tasks per node) requiring local scheduling of adapter window assignments,
a particularly challenging case because the local scheduling results have to be
propagated to the other job tasks to enable all-to-all communication.

Closely related is the observation that trading off increased parallel processing
by using job nodes with additional network data transmission is often favorable
with modern high speed, low latency networks in large scale clusters. This trade-
off is leveraged in the dispatching phase by sending the full JO containing data
for all nodes to every job node so they can each concurrently extract their lo-
cally relevant data and begin processing in parallel. In looking to further reduce
network time and increase concurrent processing during the JO and NTBL dis-
tribution, the underlying LL communication algorithm was reexamined leading
to a change from store and forward to pipelining.
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Finally, the scheduling phase of the central manager is architected to take
advantage of the underlying multicore and multithreaded hardware by avoiding
lock contention in the algorithm. This contribution reduced the CM scheduling
time from 14 second to 4 second on a four core compared to single core system
achieving about the ideal 4X scaling for a job with 10 K nodes and 32 task per
node.

This paper presented data from relatively smaller clusters compared to our
target system. In addition to measurement we applied modeling and projections
to reason about the scalability at target system scale. Based on this, we expect
the efficiency gain in the new design would be even more significant than it is
shown in this paper. However, this will need validation with real data, and that
is a key part of our future work.
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Abstract. Conventional evaluations of parallel job schedulers are based
on simulating the outcome of using a new scheduler on an existing work-
load, as recorded in a log file. In order to check the scheduler’s perfor-
mance under diverse conditions, crude manipulations of the whole log
are used. We suggest instead to perform a high-resolution analysis of
the natural variability in conditions that occurs within each log. Specif-
ically, we use a heatmap of jobs in the log, where the X axis is the
load experienced by each job, and the Y axis is the job’s performance.
Such heatmaps show that the conventional reporting of average perfor-
mance vs. average load is highly oversimplified. Using the heatmaps, we
can see the joint distribution of performance and load, and use this to
characterize and understand the system performance as recorded in the
different logs. The same methodology can be applied to simulation re-
sults, enabling a better appreciation of different schedulers, and better
comparisons between them.

1 Introduction

The performance of a computer system obviously depends on the workload it
handles. Reliable performance evaluations therefore require the use of represen-
tative workloads. This means that the evaluation workload should not only have
the same marginal distributions as the workloads that the system will have to
handle in production use, but also the same correlations and internal structure.
As a result, logs of real workloads are often used to drive simulations of new
system designs, because such logs obviously contain all the structure found in
real workloads. But replaying a log in a simulation only provides a single data
point of performance for one workload.

The most common approach to obtaining data for different conditions is to
manipulate the log, and run multiple simulations using multiple manipulated
versions. As an alternative, we suggest to exploit the natural variability that is
inherent in real workloads. For example, if we are interested in performance as
a function of load, we can distinguish between high-load periods in the log and
low-load periods in the log.

In developing this idea, we first partition the jobs in each log into a small
number of classes, according to the load that they each experience. Following

W. Cirne et al. (Eds.): JSSPP 2012, LNCS 7698, pp. 178–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



High-Resolution Analysis of Parallel Job Workloads 179

the pioneering work of Rudolph and Smith [8], we find the number of jobs in each
class and their average performance, in order to create a “bubbles plot” describ-
ing the performance as a function of the load. We analyze the characteristics of
such plots, and suggest that a higher resolution may be desirable; in particular,
the distribution of performance often has a long tail, and thus the average is not
a good representative value. This leads to the idea of creating heatmaps that
show the full distribution of performance vs. load. Applying this idea to existing
logs reveals several phenomena that have not been known before. The heatmaps
can also be used to compare the performance of simulated schedulers, and reveal
interesting differences between the behavior of EASY and FCFS — and between
simulation results and the behavior of the production schedulers as recorded in
the original logs.

2 Evaluating Parallel Job Schedulers with Log-Based
Simulations

Log-based simulations have emerged as the leading methodology for evaluating
parallel job schedulers. The logs used are actually accounting logs, which contain
data about all the jobs that ran on some large-scale machine during a certain
period of time. Such logs are available from the Parallel Workloads Archive [7],
where they are converted into the Standard Workload Format (SWF) [1]. This
makes them easier to use, as the simulators needs to know how to parse only
this one format.

Given a log, the simulator simulates job arrivals according to the timestamps
in the log. As each job arrives, the simulated scheduler is notified of the number
of processors it requires, and possibly also of the user’s expectation regarding
the runtime. It then decides whether the job should run immediately (in the
simulated system), or be queued and run later. Job terminations are simulated
based on the scheduling decisions of the simulated scheduler, together with the
runtime data provided in the log. Finally some overall average performance met-
ric is computed over all the jobs in the simulation, such as the average response
time or the average slowdown. This can be associated with the average load
(utilization) of the log.

The main problem with the methodology described thus far is that it provides
a single data point: the average performance for the average load. But an im-
portant aspect of systems performance evaluation is often to check the system’s
performance under different load conditions, and in particular, how performance
degrades with increased load. Given a single log, crude manipulations are typi-
cally used in order to change the load. These are

– Multiplying all arrival times by a constant, thus causing jobs to arrive at
a faster rate and increasing the load, or causing them to arrive at a slower
rate and decreasing the load. However, this also changes the daily cycle,
potentially causing jobs that were supposed to terminate during the night to
extend into the next day, or causing the peak arrival rate to occur at night.
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An alternative approach that has essentially the same effect is to multiply
all runtimes by a constant. This doesn’t change the arrival pattern, but may
cause jobs that were previously independent to clash with each other. Worse,
it creates an artificial correlation between load and response time, which
essentially invalidates the use of response time as a performance metric.

– Multiplying all job sizes (here meaning the number of processors they use) by
a constant, and rounding to the nearest integer. This has three deficiencies.
First, many jobs and most machine sizes are powers of two. After multiplying
by some constant in order to change the load, they will not be powers of two,
which may have a strong effect on how they pack, and thus on the observed
fragmentation. This effect can be much stronger than the performance effects
we are trying to measure [6]. Second, small jobs cannot be changed with
suitable fidelity as the sizes must always be integers. Third, when large jobs
are multiplied by a constant larger than 1 in order to increase the load, they
may become larger than the full machine.

A variant on this method is to combine scaling with replication. This
allows larger jobs to be generated without losing smaller jobs, and has been
suggested as a method to adapt simulations to different machine sizes [2].

An alternative approach that has essentially the same effect is to modify
the simulated machine size. This avoids the problem presented by the small
jobs. However it may suffer from changing the inherent fragmentation when
packing jobs together. Also, when the machine size is reduced to increase
load, the largest jobs in the log may no longer fit.

A possible alternative is not to multiply job sizes by a constant but to
change the distribution of job sizes. Consider the CDF of the distribution
of job sizes. To increase the load we want more larger jobs. Multiplying job
sizes by a constant will cause the CDF to shift to the right, with all the ill-
effects noted above. The alternative is to shift the top-right part of the CDF
downwards. As a result, the relative proportion of large jobs is increased and
the total load increases too. However, the idea of changing the distribution
in this way has only received limited empirical support [12], and more work
is needed.

Another alternative is to use multiple logs that have different loads. The problem
then is that the workloads in the different logs may have completely different
characteristics, so comparing them to each other may not be meaningful. Also,
the number of available logs and the available load values may not suffice.

The most common approach used is to artificially change the load of a log by
multiplying arrival times by a constant as described above, despite this method’s
deficiencies. Our goal is to find an alternative to this approach.

3 Evaluations Based on the Variability in a Single Run

As an alternative to evaluating a parallel job scheduler using simulations with
a job log that has been subjected to various manipulations, we suggest to exploit
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the natural load fluctuations that occur in any log. In other words, by observing
periods of low load separately from periods of high load, we may try to uncover
the effects of load on performance. This has the following benefits:

– It is more realistic, because it is based on real load conditions that had
occurred in practice when the log was recorded, with no artificial manipula-
tions, and

– It is easier in the sense that a single simulation can be used instead of multiple
simulations.

However, it also has its drawbacks. For example, in a given log the range of load
conditions that have occurred may be limited. Nevertheless, we feel that this
approach is worthy of investigation.

Note that the suggested approach is different from the conventional approach
at a very basic level. In the conventional approach, the average performance is
found as a function of the average load. This is similar to the outcome of queueing
analyses, such as the well-known M/M/1 queue. The suggested approach does
not concern itself with different average load conditions. It is actually about
understanding the variability and dispersion of performance, and the possible
correlation between this dispersion and load — not about performance under
different average loads. We discuss this further in the conclusions.

The approach of analyzing a single log and dissecting it according to load
conditions was pioneered by Rudolph and Smith in the context of evaluating
large-scale systems in the ASCI project [8]. Their goal was to establish whether
these machines were being used efficiently. By analyzing workload logs, they
attempted to show that performance as a function of load exhibits a “knee” at
some load level, and beyond that point performance deteriorates markedly. Then
if most of the jobs execute under a load that is just below the knee, the machine
is being used efficiently.

The procedure employed by Rudolph and Smith to analyze the logs was some-
what involved. The analysis was performed at the level of individual jobs. For
each job, they first found the average system utilization experienced by that job
during its tenure in the system (this is explained in more detail below). The jobs
were then binned according to the load into deciles: those jobs that experienced
around 0 load, those that experienced around 10% load, those that experienced
around 20% load, and so on up to those that experienced 90% and 100% load.
Then a “bubble plot” was drawn. The X axis in these plots is the load, and
the Y axis is the performance metric, e.g. average slowdown. Each class of jobs
is represented by a disk. The coordinates of the center of the disk are at the
average load experienced by jobs in the class and the average slowdown of jobs
in the class. The size of the disk represents the number of jobs in the class.

The load experienced by a job was calculated as follows. The load (or uti-
lization) at each instant is simply the fraction of processors that are allocated
to running jobs (due to fragmentation, there are often some unused processors
even if additional jobs are waiting in the queue). This only changes when the
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scheduler decides to start running a job, or a running job terminates. Assume a
certain job arrives at time t and terminates at time t′. Consider the set of time
instants from t to t′ at which any job either starts to run or terminates, and
number them from 0 to n (such that t0 = t and tn = t′). Denote the utilization
during the interval ti to ti+1 by U(ti, ti+1). The load experienced by the job is
then

load =

n∑
i=1

ti − ti−1

tn − t0
U(ti−1, ti)

(Inexplicably, the instantaneous utilization calculation sometimes leads to values
greater than 1, which implies data quality problems in the logs. We discuss such
issues in a separate paper [4]; in the current context they are rare enough to be
largely meaningless.)

In the following we use the Rudolph-Smith bubble plots as our starting point,
and use them to further analyze parallel job logs. But the motivation is not
only to understand the performance as it was on specific machines in the past.
Rather, we contend that the same analysis can be applied to simulation results.
In other words, when running a simulation of a parallel job scheduler on a given
workload, a new log recording the performance of the simulated system can be
recorded. This (single) log can then be analyzed in the same way as real logs are
analyzed, to uncover the performance as a function of load.

4 Evaluating Parallel Job Logs with Bubble Plots

Example bubble plots are shown in Fig. 1. The plot for the CTC SP2 log looks
approximately as expected: the average slowdown tends to grow from around 10
to about 30 with increased load, and most of the jobs observed what appears to
be the maximum sustainable load, which is around 70% in this case. However,
the few jobs that enjoyed near zero load suffered a slowdown of around 50, and
those that suffered a load of 90-100% enjoyed a slowdown of less than 10. Also,
the plots for other logs are messier. For example, the KTH log exhibits a zig-zag
pattern, the SDSC Paragon shows marked decrease in slowdown with increased
load, and in SDSC Blue the jobs are evenly distributed across all loads.

Rudolph and Smith also observed some strange patterns like this. Part of their
solution was to filter some of the jobs in the log. In particular, they filtered jobs
that were shorter than 1 minute, and jobs that had a very high slowdown. We
also did so (the graphs in Fig. 1 are after such filtering, where the threshold for
“high slowdown” was 1000). However, while the strange behavior is reduced, it
is not eliminated.

The high slowdowns with low utilizations are somewhat of a mystery. The
phenomenon seems to happen because jobs are not scheduled to run while pro-
cessors are in fact available. Possible excuses are unrecorded down time, when the
processors were actually not available but we don’t know it, or special scheduler
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Fig. 1. Examples of bubble plots derived from different logs. Short jobs (< 1 minute)
and jobs with high slowdown (> 1000) were filtered out.

considerations, such as reserving processors for some other use. Another possible
explanation is that processors are not the only important resource, and perhaps
also not the most important one. Thus jobs may be delayed if sufficient memory
is not available, or if they need to use a floating software license that is being
used by another job. Such considerations do not affect the utilization metric.

The low slowdowns observed with high utilizations can be explained as fol-
lows. Consider a sequential job. When such a job arrives, it will be able to run
immediately if the utilization in less than 100%. Moreover, when the utilization is
high, only such jobs will be able to run immediately (because very few processors
if any are available). So many jobs that see a high utilization throughout their
lifetime can be expected to be serial jobs that run immediately, and therefore
have slowdown 1 — the lowest (and best) slowdown possible.

Conversely, consider a large job that requires many processors. Such a job will
most probably have to wait until the processors become available. Moreover, it
will block other jobs and cause processors to become idle while it waits. Therefore
it will see a lower average load during its lifetime, but suffer a high slowdown
due to the waiting.

Slowdown is sensitive to short jobs that may have very high slowdown values
[11,3]. This may explain the variability in the bubble plots: if in a certain group
of jobs one happened to have a very high slowdown, this could affect the aver-
age of all of them and cause the bubble to float upwards. Such effects could lead
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to the uneven behavior seen in Fig. 1. Additional support for this hypothesis
comes from looking at the median slowdown instead of the average. The plot of
medians and plot of averages turn out to be quite different from each other.

The conclusion is that bubbles may be too coarse, as they represent potentially
large groups of unrelated jobs. As an alternative, we suggest looking at all the
jobs at a much higher resolution.

5 Evaluating Parallel Job Logs with Heatmaps

The way to look at the performance vs. load data in more detail is to use
heatmaps. The axes remain the same: the X axis represents load, and the Y
axis represents performance (this can be slowdown, as used in the Rudolph-
Smith bubble plots, but also response time or wait time). But instead of using a
coarse classification of loads and lumping all the jobs that saw approximately the
same load together, we now use a relatively fine classification according to both
load and performance. The number of jobs that experienced approximately the
same load and same performance is then represented by the shading: a darker
shading corresponds to a higher numbers of jobs. The actual numbers differ ac-
cording to the log’s length, so contours are used to give an indication of the
number of jobs in the high-density areas.

Applying this to the different logs leads to the heatmaps shown in Figs. 2 to
9. For each log, heatmaps of slowdown, response time, and wait time vs. load are
shown. Note that the Y axis is logarithmic. Slowdowns of 1 are at the bottom
of the scale, adjacent to the X axis. As wait times can be 0 and this cannot be
shown on a logarithmic scale, we artificially change 0 values to 1, so they too
are shown at the bottom adjacent to the X axis. Bubble plots calculated from
the same data are superimposed on the heatmaps for comparison.

These graphs allow for several general insights and some specific ones. The
main general insights are as follows:

– The average values are unrepresentative. In each heatmap, the point of av-
erage load and average performance is marked with an ‘X’. This represents
the output of conventional analysis. But as we can clearly see, this often falls
in a relatively sparse area of the heatmap.

– Likewise, the bubbles, which are shown overlaid on the heatmap, are unrep-
resentative. (In these graphs the bubbles are based on all the jobs, with no
filtering).

– The performance distribution tends to be highly skewed. Many jobs have
very low wait times and a slowdown of 1. The higher averages are a re-
sult of combining this with relatively few jobs that suffer from much worse
performance.

– In many cases the load distribution is also highly skewed. In particular, many
jobs actually observe very high utilizations of near 100% as they run. The
lower average load is a result of the low-load and idle periods, which actually
affect only a small number of jobs.
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Fig. 2. Heatmaps for the CTC SP2 log Fig. 3. Heatmaps for the SDSC SP2 log
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Fig. 4. Heatmaps for the SDSC Blue log Fig. 5. Heatmaps for the SDSC DS log
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Fig. 6. Heatmaps for the KTH SP2 log Fig. 7. Heatmaps for the HPC2N log
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Fig. 8. Heatmaps for the SHARCNET
Whale log

Fig. 9. Heatmaps for the ANL Intrepid
log
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– There appears to be only a weak if any functional relationship between ex-
perienced load and performance. In other words, it is not generally true that
jobs that experience higher loads also suffer from worse performance. It is
true that we often see a concentration of jobs at the right of the heatmap
(high loads), and that this includes the top-right area (bad performance),
but it also typically includes the bottom-right area (good performance) to a
similar degree. To quantify the possible correlation of load and performance
we calculated the Spearman rank correlation coefficient between them for
different logs. The absolute values of the results are typically less than 0.2,
and often also less than 0.05, indicating very low correlation (Table 1).

Rudolph and Smith in their paper that introduced the bubble plots were look-
ing for the characteristic behavior of a queueing system: good performance at
low loads, that deteriorates asymptotically as the system load approaches sat-
uration. Their success varied; some of the bubble plots exhibited the expected
characteristics, while others were rather messy and hard to understand. These
results were replicated in our work above.

Using the heatmaps, we can take a more detailed look at performance as a
function of load. Focusing on slowdown to begin with, we find that for many logs
there is a strong concentration of jobs along the bottom and right boundaries of
the plot. The concentration along the bottom represents the jobs that enjoyed
the best possible performance, namely a slowdown of 1. This happened at all
loads, and dominates low loads. The concentration at the far right represents
jobs that suffered from congestion under a high load. in some logs, e.g. CTC,
this only happens at near 100% utilization. In SDSC SP2 there seem to be two
distinct concentrations, at 90% and at 100%. In SDSC Blue the concentration
is near 90%. In SDSC DS, it happens at around 80%.

Interestingly, there were also logs that did not display the expected pattern at
all. Examples are the KTH, HPC2N, and Intrepid logs. In these systems we see
a wide smear, with no concentration of jobs that experience high loads. Rather,
jobs seem to suffer approximately the same slowdowns regardless of load. An
optimistic interpretation of this result is that the scheduler is doing something
good, and manages to avoid bad performance under high load. As we show
below, however, a more realistic interpretation seems to be that the scheduler
is incapable (or unwilling) to exploit low load conditions in order to improve
performance.

Similar observations may be made for response time. Here we do not see a
concentration of low response times under low loads, because response times are
more varied due to run times being varied. However, in many logs we do see a
concentration of jobs at the right end of the plot, reflecting high loads. These
include CTC, SDSC SP2, SDSC Blue, and SDSC DS.

The concentration at low values (indicating good performance) is clearly evi-
dent when we look at wait times. Several logs actually have a distinct bimodal
distribution of wait times: very short wait times of up to about a minute, and
long wait times of many minutes to several hours (note that in all the plots the
Y axis is logarithmically scaled). Good examples are again CTC, SDSC SP2,
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SDSC Blue, and SDSC DS. The short wait times apparently reflect some min-
imal granularity of activating the scheduler, such that it only runs say once a
minute and therefore does not schedule newly arrived jobs immediately [4].

Potentially interesting patterns that probably deserve further study appear
in the heatmaps of specific logs. These include

– A distinct blob of jobs at the left side of the CTC heatmap. This is a concen-
tration of jobs that saw very low load, but nevertheless suffered non-trivial
slowdowns.

– Strange patterns in the SHARCNET Whale log. These seem to reflect sets
of jobs that suffered from some congestion conditions.

– A horizontal band in the Intrepid response time map, that probably reflects
many jobs with the same runtime.

6 Comparing Heatmaps of Logs with Heatmaps from
Simulations

We also ran straightforward simulations using the EASY [5] and FCFS sched-
ulers on the logs, and compared the resulting heatmaps to the heatmaps pro-
duced based on the original log data. Examples are shown in Figs. 10 to 12.
The leftmost column in these figures reproduces the data shown previously for
the original log. The middle column is the result of an EASY simulation, and
the rightmost one is FCFS. The comparison leads to two main observations.

Table 1. Spearman’s rank correlation coefficient of performance vs. load, showing
much higher values for simulation results than for the original logs

log metric data EASY FCFS

CTC SP2 slowdown 0.17 0.62 0.51
response time -0.03 0.13 0.20
wait time 0.08 0.56 0.43

KTH SP2 slowdown -0.01 0.55 -0.10
response time 0.15 0.07 -0.28
wait time 0.09 0.44 -0.26

SDSC SP2 slowdown 0.16 0.60 0.40
response time 0.02 0.26 0.28
wait time 0.11 0.55 0.37

HPC2N slowdown 0.08 0.72 0.68
response time 0.05 0.41 0.48
wait time 0.08 0.70 0.69

SDSC Blue slowdown 0.04 0.58 0.48
response time 0.02 0.32 0.39
wait time 0.00 0.57 0.47

ANL Intrepid slowdown -0.05 0.66 0.44
response time -0.07 0.32 0.32
wait time -0.05 0.63 0.41
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Fig. 10. Heatmaps produced by running EASY and FCFS on the CTC log

– The simulations tend to produce “nicer” results. Specifically,
∗ More jobs have a slowdown of 1,
∗ High slowdowns and wait times occur only when load is near 100%, and
∗ There are no strange patterns.

– The simulations do not reflect reality! It seems that the schedulers on the real
systems are often restricted in some way, and cannot achieve efficient packing
of the executed jobs. In addition, in the simulations there is a much stronger
correlation between experienced load and the resulting performance. With
EASY in particular, high slowdowns and wait times are seen exclusively for
jobs that suffered from high load conditions. With FCFS this happens to
a somewhat lesser extent. Spearman rank correlation coefficients for several
logs are shown in Table 1.

In more detail, consider the CTC workload shown in Fig. 10. From the heatmaps
it appears that the original CTC scheduler is closer to FCFS than to EASY. But
in fact it is even worse than FCFS. Looking at the scale, we find that for EASY
simulations the response times are evenly smeared from around 30 seconds to
around 80,000 seconds, with rather sharp boundaries. The top limit probably
reflects a runtime limit imposed by the system administrators. But in the original
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Fig. 11. Heatmaps produced by running EASY and FCFS on the KTH log

log we don’t see any such boundary, and response times may be as high as a
million seconds.

Looking at the KTH log we see a different picture (Fig. 11). Here it seems
that the heatmaps produced from the original log are somewhat more similar to
the heatmaps produced by EASY, implying that the original scheduler behaves
more like EASY than like FCFS. FCFS produces much higher response times
and wait times, and they are all concentrated at the same high values. Regarding
slowdowns, EASY produces much lower slowdowns except at the very highest
loads.

Another example comes from the HPC2N log, shown in Fig. 12. Here the
distribution of response times is approximately the same for both the original
scheduler and the simulated ones. However, with the simulated schedulers many
fewer jobs see low loads, and most jobs are concentrated at the extreme right,
indicating near 100% utilization. In the original log, in contradistinction, they
were scattered from about 30% to about 90%.
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Fig. 12. Heatmaps produced by running EASY and FCFS on the HPC2N log

7 Conclusions

We set out to devise a new way to use data from accounting logs for performance
evaluations. The idea was that the long-term load on a system exhibits natural
fluctuations, and these can be exploited in order to evaluate performance under
different load conditions. This idea can be applied directly to the available logs
in order to analyze the system in production use. It can also be applied to the
output of simulations, whether driven by real logs or by synthetic workloads.

To implement this idea we use heatmaps, where theX axis represents load and
the Y axis represents performance. The shading at each point reflects the number
of jobs that experienced this load level and enjoyed this level of performance.

This analysis led to two main outcomes. The first was the observation that
our heatmaps expose a wealth of information that has been glossed over till
now. In particular, the common practice of reporting average performance as a
function of average load seems ill-advised, as both load and performance have
skewed distributions. Thus the average values do not reflect system behavior.

The second was the observation that conventional simulations do not reflect
what is going on on real systems. Simulations using EASY, and sometimes also
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simulations using FCFS, produce behaviors that are markedly different and often
much better than those observed in the original logs. This seems to indicate that
real schedulers employ various considerations that limit their options, and lead
to sub-optimal packing of jobs. It is not clear at this point whether this reflects
deficiencies in production schedulers, or maybe deficiencies in simulations. It is
certainly possible that simulations like those we performed are over simplified,
and do not take all the real world considerations into account. For example,
real schedulers need to consider memory requirements, software licenses, and
heterogeneous configurations, and do not just count processors.

Analyzing the variability in real systems or single simulation runs as we sug-
gest represents a significant departure from current practice. This immediately
leads to the question of whether this can indeed be used to gauge performance
as a function of load, or maybe it is necessary to actually change the overall
average load on the system. In defense of our approach, we note the recent in-
terest in generative user-based workload models. In such models the simulation
includes not only the system, but also the processes by which users generate
the workload [9,10]. An important element in such models is the feedback from
the system to the users. In particular, when performance is bad users may elect
to leave the system. Such feedback leads to a self-regulating effect, and may
counteract attempts to increase the average load.

In any case, we suggest that evaluations of parallel job schedulers will do well
to utilize heatmaps like the ones we produced in order to better understand
the behavior of the systems under study. However, this is only the first step.
Additional research is needed in order to make better use of the heatmaps. In
particular, we suggest the following.

– In our work we interpret “load” as the average system utilization observed
by each job (as was done by Rudolph and Smith). This ignores the backlog
that may accumulate in the scheduler’s queue (except for the fact that a
large backlog may cause a job to be delayed in the queue, and therefore the
load calculation will cover a longer interval). But it can be argued that the
overload represented by this backlog is also an important component of the
system load. The question is how to incorporate this information explicitly
in the load calculation.

– Our heatmaps enable patterns to be observed for a specific log and sched-
uler. An important extension would be to find a good way to compare such
heatmaps to each other. In particular, is there a good metric for evaluating
whether one heatmap represents “better performance” than another?

– It may also be useful to consider subsets of jobs, and draw independent
heatmaps for them. For example, this can be done for jobs with a certain
range of degrees of parallelism, or jobs belonging to a certain user.

– Finally, the heatmaps may also be used to characterize and evaluate synthetic
workload models. By comparing a heatmap representing the behavior of a
given scheduler on a synthetic workload with a heatmap of that scheduler’s
behavior on a real log we can see whether the synthetic workload leads to
reasonable behavior.
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Abstract. Production parallel systems are space-shared and hence em-
ploy batch queues in which the jobs submitted to the systems are made
to wait before execution. Thus, jobs submitted to parallel batch systems
incur queue waiting times in addition to the execution times. Prediction
of these queue waiting times is important to provide overall estimates to
the users and can also help metaschedulers make scheduling decisions.
Analyses of the job traces of supercomputers reveal that about 56 to
99% of the jobs incur queue waiting times of less than an hour. Hence,
identifying these quick starters or jobs with short queue waiting times
is essential for overall improvement on queue waiting time predictions.
Existing strategies provide high overestimates of upper bounds of queue
waiting times rendering the bounds less useful for jobs with short queue
waiting times. In this work, we have developed an integrated framework
that uses the job characteristics, and states of the queue and processor
occupancy to identify and predict quick starters, and use the existing
strategies to predict jobs with long queue waiting times. Our experiments
with different production supercomputer job traces show that our pre-
diction strategies can lead to correct identification of up to 20 times more
quick starters and provide tighter bounds for these jobs, and thus result
in up to 64% higher overall prediction accuracy than existing methods.

Keywords: Queue Wait Times, High Performance Computing, Batch
Systems, Prediction, Scheduling.

1 Introduction

Production parallel systems in many supercomputing sites are batch systems
that provide space sharing of available processors among multiple parallel appli-
cations or jobs. Well known parallel job scheduling frameworks including IBM
Loadleveler [1], PBS [2], Platform LSF [3] and Maui scheduler [4] are used in
production supercomputers for management of jobs in the batch systems. These
frameworks employ batch queues in which the jobs submitted to the batch sys-
tems are queued before allocation by a batch scheduler to a set of available
processors for execution. Thus, in addition to the time taken for execution, a
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job submitted to a batch queue incurs time due to waiting in the queue before
allocation to a set of processors for execution.

Predicting queue waiting times of the jobs on the batch systems will be highly
beneficial for users. The predictions can be used by a user for various purposes in-
cluding planning management of his jobs and meeting deadlines, considering mi-
grating to other queues, systems or sites at his disposal for application execution
when informed of possible high queue waiting times on a queue, and investigat-
ing alternate job parameters including different requested number of processors
and estimated execution times. Such predictions can also be efficiently used by
a metascheduler to make automatic scheduling decisions for selecting the appro-
priate number of processors and queues for job execution to optimize certain cost
metrics, and help reduce the complexities associated with job submissions for the
users. The decisions by the user and metascheduler using the predictions can in
turn result in overall load balancing of jobs across multiple queues and systems.
Such predictions are also highly sought after in the production batch systems. For
example, predictions of queue waiting times are available in production systems of
TeraGrid [5]. These show the importance of accurate queue wait time prediction
mechanisms for the users submitting their jobs to batch systems.

Analyses of widely used job traces in supercomputer sites reveal the presence of
large number of jobs that incur short queue waiting times. Table 1 shows statistics
for eight different supercomputer job traces we use in this work.All the eight traces
were cleaned versions obtained from Feitelson’s workload archive [6]. The last col-
umn of the table shows the percentages of the number of jobs with queue waiting
times of less than or equal to 1 hour.We find that most of the jobs, particularly 56-
99% of the total number of jobs, submitted to a system incur queue waiting times
of less than or equal to 1 hour. We refer to these jobs as quick starters. Correct
identification and good predictions of these quick starters that form a majority
are hence essential for overall accuracy of the prediction system.

Table 1. Supercomputing Log Details

Trace Duration (in
months)

Total no of
jobs

% quick
starters

CTC SP2 11 77222 56

ANL Intrepid 8 68936 65

LANL CM5 24 122060 94

HPC2N 42 202876 57

SDSC Paragon 95 12 53970 88

SDSC Blue 32 243314 70

SDSC SP2 24 59725 66

DAS2 fs0 12 225710 99

It is important to note that these quick starters do not necessarily correspond
to testing/debugging jobs that are associated with short execution times, and
whose predictions are relatively less important. Many systems have separate
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debug queues for testing/debugging jobs. Our experiments were conducted on
general/production queues in which production runs are performed, and where
predictions of queue waiting times of the production jobs are required. A signif-
icant number of quick starters in these production queues have high execution
times. For example, in CTC and ANL production queues, about 30% of the quick
starters have runtimes greater than 1 hour and some of them have runtimes as
high as 120 hours. Prediction of queue waiting times is challenging due to vari-
ous factors including diverse scheduling algorithms followed by the job scheduling
frameworks, time-varying policies applied for a single queue, and priorities for
the jobs. High values of predictions will have more severe impact on the predic-
tions for quick starters than for jobs with long wait times. High overestimations
for quick starters can have detrimental effect even on the job submissions to
the system. For example, an upper bound of 8 hours for a job that executes for
15 minutes and whose actual waiting time will be 30 minutes can discourage
the user from submitting the job to the system that the user would have found
suitable for his job in the absence of such overestimation. Hence it is essential
to give tight upper bounds especially for these quick starters. In our work, we
fix this upper bound as 1 hour for all the quick starters. The assumption is that
even if a quick starter’s actual waiting time is 5 minutes, this upper bound of 1
hour will not severely discourage the user since the user typically expects waiting
times of at least few minutes to an hour in a multi-user system.

The objective for predictions of quick starters is two fold:

• Maximizing true positives, i.e., increasing the number of correct identifications
of quick starters
•Minimizing false positives, i.e., decreasing the number of incorrect identification
as quick starters of jobs with long queue waiting times.

The former objective is important for improving the overall accuracy of predic-
tions, while the latter is essential to avoid “misguiding” (or colloquially, “cheat-
ing”) the user into using the system with the promise of short queue waiting
times.

In this work, we have developed an integrated framework,PQStar (Predicting
Quick Starters), for identification and prediction of quick starters. An impor-
tant aspect of our prediction strategy for quick starters is that it considers the
processor occupancy state and the queue state at the time of the job submis-
sion in addition to the job characteristics including the requested number of
processors and the estimated runtime. The processor and queue states include
the current number of free nodes, number of jobs with large request sizes cur-
rently executing in the system, and relative difference between the current job
and other jobs in the queue in terms of request size and estimated run time.
These states are obtained by using a simulator that updates the states during
job arrivals and departures. For jobs identified as those with potential long queue
waiting times, our framework uses existing strategies [7, 8] for predictions. Our
experiments with different production supercomputer job traces given in Table
1 show that our prediction strategies can lead to correct identification of up to
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20 times more quick starters and provide tighter bounds for these jobs, and thus
result in up to 64% higher overall prediction accuracy than existing methods.
Our model was designed not to use dynamic and variable parameters including
scheduling algorithms and job priorities. In many cases, it is not practical to
obtain/infer job priorities and scheduling algorithms. Scheduling algorithms on
batch systems are usually not published, and are not easy to model. Our model
primarily uses the job traces, and the job submission states (queue and processor
occupancy states). This way, our system can be generic and can be applied to
different batch systems with different scheduling and priority policies.

Section 2 presents existing strategies for predictions of queue waiting times. In
Section 3, our prediction methodology is described in detail. Section 4 describes
the simulation experiments with the supercomputer job traces and presents re-
sults related to accuracy in identifying quick starters and overall predictions.
This section also compares the performance of our predictions with the existing
methods. Section 5 presents a summary of our work and plans for future work.

2 Related Work

There have been two primary efforts in prediction of queue waiting times. They
can be broadly classified into Non-Statistical and Statistical methods.

Non-statistical methods try to simulate the exact scheduling algorithm and
decisions which would be made by the scheduler in real time. However, in most
production systems, the scheduling algorithms are usually not published and are
also difficult to model.

In the works by Smith et al. [9] [10], runtime predictions are derived using
similar runs in the history, and these estimates are further used to simulate the
scheduling algorithms like FCFS, LWF (Least Work First) and Backfilling [11]
to obtain the queue wait times predictions. Another work by Li et al. [12] tries
to improve the runtime prediction and simulate the batch system for the Maui
scheduler [4]. These efforts consider specific scheduling algorithms for predic-
tions while our effort considers only job traces and hence can work with mul-
tiple scheduling algorithms. Moreover, their efforts use runtime estimates for
the prediction of queue wait times. The runtime estimates reported in these ef-
forts [9] [10] have high prediction errors from 33% to 74% in many cases, and
hence using these estimates to predict queue wait times will lead to large errors
in wait time predictions.

The statistical method by Downey [13] used the observation that the cumu-
lative distributions of the execution times of the jobs in the workload can be
modeled by using a logarithmic function. After the distribution functions are
calculated, two different methods are used to predict when a certain number of
nodes will become free and thus when the job waiting at the head of the queue
can start. This work considers FCFS Scheduling.

Some statistical methods use time series analysis of queue waiting times for
jobs in the history to predict waiting times for submitted jobs. QBETS [14–16]
is a system that predicts the bounds on the queue wait times with a quantita-
tive confidence level. QBETS uses a quantile-based approach in which a given
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quantile in the distribution of the queue waiting times of the jobs is used as an
upper bound for the target job’s queue waiting time. Since the distribution is not
known, a confidence level has to be provided. QBETS uses a predictor based on
non-parametric inference, an automated change-point detector, machine-learned,
model-based clustering of jobs having similar characteristics, and an automatic
downtime detector to identify systemic failures that affect job queuing delay.
Thus QBETS handles the effects of varying workloads and customized local
queuing discipline. However, QBETS gives conservative upper bound predic-
tions, which leads to large prediction errors especially for quick starters. Also
it does not consider the state of the system, and consider only the job char-
acteristics, which we show is insufficient for efficient predictions of queue wait
times.

The efforts by Li et al. [7, 8] consider the system states for the prediction
of queue waiting times. In their method known as Instance Based Learning
(IBL), they use weighted sum of Heterogeneous Euclidean-Overlap Distances
between different attributes of two jobs to find the similarities between the jobs.
They consider both job characteristics and system parameters for job attributes.
They then find such similarity values between the target job and all jobs in
the history and choose a subset of most similar jobs in the history, and use
their queue waiting times in methods like 1-NN (nearest neighbor) or the n-
WA (weighted average of n nearest neighbors) to predict the waiting time of
the target job. Their work assumes linear relationship between attribute values
and queue waiting times. They also assume fixed weights for predictions of all
target jobs. Our work explicitly considers quick starters for predictions. We show
that our method gives better predictions of quick starters. By providing tighter
estimated bounds for quick starters that form a majority of the jobs, our work
attempts to improve the overall accuracy of predictions.

3 Methodology

The basis of our method, PQStar, for identifying a quick starter job is to establish
boundaries in the history of prior job submissions, and to use the similar jobs
within the boundaries for prediction. Thus, the most relevant history is used for
predicting the target quick starter job. Specifically, PQStar splits the history for
a target job into near, mid and long term history based on processor occupancy
states. A processor occupancy state at a given instance denotes the allocation of
the processors to the jobs executing at that instance. It consists of the number
of processors used by each executing job.

3.1 Predictions Using Near-Term History

For finding the near-term history, PQStar traverses the jobs starting from the
target job in the reverse chronological order of job submission times as long as
the processor occupancy state at the time of submission of the job in the history
is similar to the processor occupancy state at the time of submission of the
target job. The earliest job in the history having similar processor occupancy
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state denotes the near-term boundary and the set of jobs between the target
job and the boundary forms the near-term history. For identifying if the target
job is a quick starter, PQStar finds jobs in the near-term history with similar
characteristics in terms of processor request sizes and estimated run time, and
which have started executions. It also checks if none of the jobs in the waiting
queue which have arrived after the near-term boundary and which have similar
characteristics to the target job, have waited for more than an hour in the queue.
If these two conditions are met, PQStar identifies the target job as a quick starter
and establishes an upper bound of 1 hour for the target job.

For the purpose of predictions using near-term history, two processor occu-
pancy states are considered similar if the number of jobs with large request sizes
that are executing in the two states are the same. We use the executing large jobs
to define processor occupancy similarity since jobs that can be backfilled in the
remaining processor space and thus incur small queue waiting times are candi-
date quick starters. Thus the basis of identifying quick starters using near-term
history is that by looking at jobs with similar characteristics in the near-term
history with similar processor occupancy states and checking if those jobs have
potentially been backfilled, it can be predicted if the target job can be backfilled
and hence marked as a quick starter. Note that by our definition, two processor
occupancy states are also considered similar if there are no large jobs in both
the states. For our work, we denote a job as a large job if the request size of the
job is at least the next power of two greater than or equal to the square root of
the total system size . We define job characteristics of two jobs as similar if their
processor request sizes are equal and if the difference between their estimated
run times are within an hour. As our experiments will show, this method of using
near-term history for predictions yields a large percentage of identifications of
quick starters.

3.2 Predictions Using Mid-term History

For those jobs for which near-term history cannot be used due to the above men-
tioned criteria not being met, PQStar traverses the jobs in the reverse chronolog-
ical order of job submissions from the near-term boundary until the processor
occupancy state becomes completely different in terms of executing jobs. In
other words, suppose A = {set of jobs in execution at the time of target job’s
submission} and B = {set of jobs in execution at the time of the history job’s
submission}, then we draw the mid term boundary at a point where (A∩B) = ∅.

PQStar marks the mid-term boundary after the job when the states become
completely different and denotes the set of jobs between the mid and near-
term boundaries as mid-term history. For identifying if the target job is a quick
starter, PQStar finds jobs in the mid-term history with similar characteristics in
terms of processor request sizes and estimated run time, and which have started
executions. It also checks if none of the jobs in the waiting queue which have
arrived after the mid-term boundary and which have similar characteristics to
the target job, have waited for more than an hour in the queue. However, unlike
for predictions with near-term history, these conditions alone are not sufficient
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for predictions with mid-term history since the processor states in mid-term are
less similar to target job than those in near-term. We found that jobs satisfying
the conditions had widely varying queue waiting times. Hence we introduce
three extra criteria for predictions with mid-term history: request size criterion,
estimated run time (ERT) criterion, and free nodes criterion.

Request Size Criterion. One useful criterion we found is to rank the target
job in terms of its request size among the jobs in the queue at the time of the job
submission. Specifically, we calculate the metric jobrankreqsize using the position
of the target job in the list of jobs in the queue at the time of its entry sorted
in increasing order of request sizes. jobrankreqsize is calculated by normalizing
this position with respect to the total number of jobs in the queue.

Most of the existing strategies group jobs only in terms of request sizes, and
find jobs with similar request sizes for predictions of queue waiting times. How-
ever, a single request size can correspond to widely varying queue waiting times
as shown in Figure 1(a) that shows statistics for 1000 sample jobs from the
CTC trace. For example, corresponding to the request size of 8 processors in the
figure, we find that queue waiting times can vary from 1 minute to 32 hours.
Hence, in addition to finding the similar jobs for a target job in terms of re-
quest sizes, we consider the rank of the job in the queue in terms of request
size, thereby implicitly considering both the request size and the queue state for
predictions. We consider target jobs with jobrankreqsize values less than a thresh-
old, thresholdreqsize, as candidate quick starters. For fixing thresholdreqsize, we
consider jobs in the near-term history, find two thresholds: thresholdreqsize1 as
the maximum of jobrankreqsize values of the jobs with queue waiting times less
than or equal to 1 hour, and thresholdreqsize2 as the minimum of jobrankreqsize
values of the jobs with queue waiting times greater than 1 hour, and use the
minimum of the two thresholds for thresholdreqsize. By using near-term history
to find thresholds, PQStar uses the most recent history and hence also takes into
consideration only those jobs having similar processor occupancy.

ERT Criterion. Similar to the request size criterion, we also use estimated
run time (ert) criterion for identification of the target job as a quick starter.
Specifically, PQStar finds a metric, jobrankert, using the list of jobs in the queue,
at the time of entry of the target job, sorted in the ascending order of estimated
run times, and finding the normalized position of the target job in the list with
respect to the total number of jobs in the queue. PQStar marks the target job as a
quick starter if its jobrankert is less than a threshold, thresholdert. thresholdert
is found similarly to thresholdreqsize by using the queue waiting times of jobs
in the near-term history. Figure 1(b) considers only the ERTs and their impact
on queue waiting times. Similar to considering only request sizes, we find that
a single ERT can correspond to wide variation of queue waiting times. Thus
the existing strategies that use only ERTs to find similar jobs for predictions
can give high upper bound values for predictions. By considering jobrankert,
PQStar defines similarity using both the job and the queue state characteristics.
The assumption behind the request size and the ERT criterion is that target
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(a) Wait Time Ranges for Different Request Sizes

(b) Wait time ranges for different ERTs

Fig. 1. Wait Time Ranges of Jobs for different Request Sizes and ERTs (CTC Trace)
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jobs with small request sizes or ERT relative to the other jobs in the queue have
higher chances of backfilling and hence can be quick starters.

Free Node Criterion. The final criterion we use for mid-term history is based
on the number of free nodes available to accommodate the target job. Thus this
criterion explicitly takes into account the processor occupancy state in addition
to the queue waiting state for identifying quick starters. Specifically, at the time
of submission of the target job, PQStar finds the difference between the total
number of free nodes available and the number of nodes requested by the jobs
in the queue that have smaller request sizes or smaller estimated run times than
the target job. If this difference is larger than the number of nodes requested by
the target job, PQStar marks the target job as a quick starter. The assumption
behind this criterion is that jobs in the queue with smaller request sizes or
estimated run times have higher chances of backfilling and hence start earlier
than the target job, thereby consuming some subset of free nodes.

For predictions with mid-term history, PQStar marks a target job as a quick
starter if it meets any one of the three criteria, namely, request size, ert, or free
node criteria.

3.3 Predictions Using Far-Term History

For those jobs for which mid-term history also cannot be used due to the above
mentioned criteria not being met, we use the far-term history, which is the rest
of the jobs in the history beyond the mid-term boundary. Among these far-term
history jobs, PQStar extracts a subset of jobs with similar characteristics in
terms of processor request sizes and estimated run time, and which have started
executions. If all the jobs in this subset have queue waiting times of less than
one hour, then it indicates that the target job will most likely have a wait time
of less than or equal to one hour. Hence PQStar marks the target job as a quick
starter.

3.4 Overall Predictions and Using IBL

In summary, PQStar tries to find similar jobs in the near, mid or far-term his-
tory, and uses a set of criteria to mark a job as a quick starter. In addition to
considering only the job characteristics of request sizes and estimated run times,
PQStar explicitly or implicitly considers the system states, namely processor oc-
cupancy and queue states, for defining similarity and for obtaining predictions.
In our evaluations we found that the near-term history typically consisted of
about 50 jobs spanning around 1-3 hours and the mid-term history typically
consisted of more than 500 jobs spanning around 10-25 hours. For target jobs
that are either not marked as quick starters or for which similar jobs cannot
be found in the near, mid or far-term history, PQStar uses an existing strategy
for predicting queue waiting times. We use the IBL method by Li et al. [7] for
these predictions, since we found in our experiments that IBL gives better pre-
dictions than QBETS [14]. IBL (Instance Based Learning) uses weighted sum of
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Heterogeneous Euclidean-Overlap Distances between job attributes to calculate
similarities of jobs, and use similar jobs in the history to give point predictions
for the target jobs based on 1-nearest neighbor or weighted average of k-nearest
neighbors methods.

The entire algorithm followed in PQStar is illustrated in the flowchart shown
in Figure 2.

Fig. 2. PQStar Methodology

4 Experiments and Results

4.1 Experimental Setup

The experiments were conducted using a discrete event simulator that we have
developed. It creates a simulated environment of the jobs waiting in the queue
and running on the system at different points of time. It is important to note
that the simulator will only be keeping track of the jobs submitted to the system,
and maintain their attributes including arrival times, wait times, actual runtimes
and request sizes. It will not be simulating the actual scheduling algorithm used,
thus avoiding assumptions about the underlying scheduling algorithm.
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The simulator can be operated in two modes. In the first mode, the user can in-
voke the simulator with a supercomputing job trace/log in the StandardWorkload
Format (SWF) [17] as input, and obtain predicted queue waiting time of a new job.
This mode is followed in the QBETS prediction system [14]. In this mode, the sim-
ulator creates the simulated environment of jobs in the system using the statistics
available in the log. In the secondmode, the simulator can be executed on the front
end node of a batch system for which predictions are required. It will then track
the arrivals, executions and exit of the real jobs submitted to the system, and will
create the simulated environment using these real jobs. In this second mode, the
job attributes maintained and used by the simulator can be obtained by queue
and job management commands. For example on PBS based batch systems, the
qstat command (with −f option) will give all of the job parameters required by
PQStar. Thus in the secondmode, the predictions are obtained “live” at real time.
The simulator is triggered by three primary events corresponding to job arrival,
job beginning to execute and job termination. Whenever a job arrives, it is added
to a waiting queue maintained by the simulator. As soon as a job’s wait time is
over and it starts executing, it is removed from the waiting queue and added to a
running list in the simulator. Also at this time, the free nodes available in the sys-
tem is decremented by the value equal to the job’s request size. Once a job which
is running completes its execution, it is removed from the running list and the free
nodes available in the system is incremented by the value equal to the job’s request
size. This process is repeated for each job and thus a simulated system state is cre-
ated using which we extract the processor state and the queue properties that are
needed for our algorithm.

For each supercomputing trace in our experiments, we performed predictions
for all the jobs starting from the 10001th job up to a maximum of 50000 jobs or
the end of the log. Each of the jobs in this set constitutes the evaluation data for
which predictions were made. For a given target job for which waiting time is
predicted, all the jobs submitted prior to it constitute the history. Out of these
history jobs, we use a subset of jobs and use their waiting times for predicting
for the target job. The subset is formed based on similarity to the target job and
using near, mid and far term boundaries as described earlier. Once the target
jobs start their execution and their wait times are known, they are added to the
set of history jobs. We compared the predictions of our PQStar method with
the results of IBL, QBETS and a parametric model, namely, using log-uniform
distribution of the waiting times for predictions. We used the log-uniform model
since it was found to give competitive results with QBETS in some cases [14].

4.2 Results

Predictions for Quick Starters. We first show the effectiveness of using
near-term history in PQStar for predicting quick starters. Table 2 shows the
percentage of quick starters identified using near-term history and also the av-
erage number of Jobs in the Near Boundary. The results show that predictions
based on near-term history contribute significantly to the identification of large
number of quick starters.
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Table 2. Percent of Quick starters marked using Near Boundaries in PQStar

Logs % Quick starters
marked using Near
Boundary

Average number of
Jobs in the Near
Boundary

CTC 53 53

ANL 17 48

LANL 39 39

HPC2N 62 54

SDSC Paragon 61 43

SDSC Blue 51 46

SDSC SP2 50 45

DAS 66 59

Table 3. % of the QuickStarters Successfully Marked

Logs Log-
Uniform

QBETS IBL PQStar

CTC 2 5 43 84

ANL 11 42 61 78

LANL 8 67 85 88

HPC2N 3 19 49 80

SDSC Paragon 6 48 81 89

SDSC Blue 8 45 63 89

SDSC SP2 1 4 49 79

DAS 71 95 96 98

Table 3 shows the percentage of the quick starters, that are successfully iden-
tified by log-uniform, QBETS, IBL and our method, PQStar. Successful iden-
tification corresponds to estimating the upper bound of the quick starters as
less than or equal to one hour. We can see that our method, PQStar, performs
better than the next best strategy, IBL, by successfully identifying up to 1.95
times more quick starters. It also successfully identifies up to 20 times more
quick starters than QBETS. Our method is also more consistent and identifies
more than about 80% of the quick starters irrespective of the log.

Misguiding Predictions. These results show that our PQstar prediction sys-
tem is highly successful in obtaining large number of true positives, i.e., iden-
tifying large number of quick starters. Our other objective is to minimize the
number of false positives, i.e., number of jobs with long queue waiting times
falsely identified as quick starters. We refer to these predictions as misguiding
predictions. Table 4 shows that for the supercomputing traces used in our exper-
iments, PQStar incurs such misguiding predictions for only 1-10% of the total
number of jobs. The last column of the table also shows that 32-72% of the
those misguided jobs have actual wait times of less than 4 hours. This indicates
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Table 4. Misguiding Predictions

Logs % of Total Jobs Corre-
sponding to Misguiding
Predictions

% of Misguiding Pre-
dictions with Actual
Wait Times of Less
than 4 Hours

CTC 9 59

ANL 4 72

LANL 1 61

HPC2N 10 46

SDSC Paragon 1 45

SDSC Blue 6 57

SDSC SP2 6 57

DAS 0.25 32

that for half of the misguiding predictions, the amount of misguidance is within
reasonable limits.

Overall Predictions. Since IBL was found to be a better strategy than QBETS
as shown in Table 3, our PQStar system uses IBL for predictions of non quick
starters. We illustrate the comparisons of predictions of QBETS, IBL and PQS-
tar in Figure 3, for 5000 jobs of CTC trace. Figure 3(a) shows the mean prediction
error (absolute difference in predicted and actual wait times) for the different
ranges of the actual wait times. From this, we can see that PQStar gives the
least prediction error for the quick starters, and gives the same prediction error
as IBL for the rest of the jobs, since PQStar uses IBL for jobs predicted as
non-quick starters. In order to further elaborate the advantage of PQStar over
IBL,we show a scatter plot of actual v/s predicted wait times for quick starters,
as shown in Figures 3(b) and 3(c). We can clearly see that PQStar provides
tight upper bounds, while IBL provides high upper bounds for a large number
of quick starters.

Figure 4 shows the distribution of predicted waiting times for different ranges
of actual waiting times for all the jobs in the ANL (Figure 4(a)) and CTC (Figure
4(b)) traces for QBETS, IBL and PQStar. The graphs show that for jobs with
actual waiting times of less than or equal to 1 hour, i.e., quick starters, PQStar is
able to identify most of them as quick starters. For the other quick starters, the
predictions by PQStar correspond to low ranges of queue waiting times. With
QBETS and IBL, high predicted ranges are provided for a large number of these
quick starters. For jobs with actual quick waiting times of 1 to 12 hours, PQStar
gives smaller ranges of predicted queue waiting time for more jobs than QBETS
and IBL.

The prediction time per job in our PQStar method is under a second and the
total time take for the simulation to run for entire datasets was almost similar
to that of both IBL and QBETS. Hence, there is minimal or no overhead added
in terms of prediction time by PQStar to the existing IBL method.
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(a) Prediction Error for Different Actual Queue Waiting Time
for QBETS, IBL and PQStar

(b) Actual Wait Time v/s Predicted Wait Time for IBL

(c) Actual Wait Time v/s Predicted Wait Time for PQStar

Fig. 3. Prediction Comparison for QBETS, IBL and PQStar using 5000 jobs of CTC
trace
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(a) ANL Trace

(b) CTC Trace

Fig. 4. Distributions of Predicted Queue Waiting Times for Different Actual Queue
Waiting Time for QBETS, IBL and PQStar using ANL and CTC Traces
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RMS Error and Response Time Predictions. In order to evaluate the
effect of the predictions of quick starters by PQStar on the overall accuracy of
predictions, we calculate the RMS (Root Mean Square) value between the actual
and predicted queue waiting times for all the jobs. We compute the percentage
decrease in RMS error for PQStar from the RMS errors of the other methods.
For example, for comparison of RMS errors of PQStar and QBETS we compute
rmserrorqbets−rmserrorpqstar

rmserrorqbets
.

We denote the percentage decrease as rmsdecfromlu, rmsdecfromqbets and
rmsdecfromibl, for comparisons with log-uniform, QBETS and IBL, respectively.
Positive values for the percentage decrease indicate better predictions by PQStar.
Table 5 shows the decrease in RMS error due to PQStar for all predictions.
We find that PQStar gives better prediction accuracy than the other methods.
Our method results in up to 90% average improvement in overall prediction
accuracy of all the jobs over log-uniform and up to 64% average improvement
over QBETS predictions. The average improvement due to PQStar is only about
2% when compared to IBL since PQStar uses IBL for predictions of non quick-
starters. The actual waiting times and the prediction errors for these non quick-
starters have large values, and these large prediction errors dominate the overall
RMS error considering all the jobs. Hence the difference in RMS error between
PQStar and IBL is small. The last column of the table shows nrmsdecfromibl,
the percentage decrease in normalized RMS error due to PQStar when compared
to IBL. The normalized RMS errors are calculated by normalizing the individual
prediction errors using the actual waiting times. As the results in this column
show, PQStar results in significant gain up to 42% in overall prediction accuracy
when compared to IBL.

Table 5. Prediction Accuracy: RMS Errors

Logs rmsdecfromlu rmsdecfromqbets rmsdecfromibl nrmsdecfromibl

CTC 80 58 2 42

ANL 75 61 2 22

LANL 90 57 1 5

HPC2N 84 59 2.25 42

SDSC
Paragon

79 64 1.5 6

SDSC Blue 77 58 2 33

SDSC SP2 71 56 1.75 38

DAS 19 7 0 0

We also compute the percentage difference in predicted and actual response
times for each job, where response time is the sum of queue waiting time and
execution time. For the execution time, we consider the predicted execution time
to be equal to the actual execution time. Hence the percentage predicted error

in response time is calculated as PPErt =
|predictedwaitingtime−actualwaitingtime|

actualresponsetime .
This metric determines the amount of impact of the prediction errors on jobs
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Table 6. Bins and the corresponding Intervals

Bins Intervals

less than or equal to 1 hour 15 min

1 hour to 3 hours 30 min

3 to 6 hours 1 hour

6 to 12 hours 3 hours

12 to 24 hours 6 hours

1 day to 2 days 12 hours

greater than 2 days 24 hours

of different lengths or execution times. A prediction in queue waiting time with
an error of 1 hour will have higher impact on a job whose execution time is 15
minutes than for a job whose execution time is 2 days.

Further, to define good predictions, we divide the waiting and run times into
different bins. Each bin represents a range of wait/run times and is associated
with an interval. The wait/run time of a job is rounded off to the nearest interval
values associated with the bin to which the wait/run time belongs. Table 6 refers
to the bins and interval size for each bin used for our experiments. For example,
if the wait time of a job is 37 minutes, the interval size that will be used is 15
minutes (first row). Hence the wait time is rounded off to 45 minutes, which is
the nearest next 15 minute interval. As can be seen, the idea of using bins is
to give different tolerance limits in prediction errors for different predicted and
actual wait times. Prediction error of 15 minutes is large for a job whose actual
waiting time is 20 minutes, while it is small for a job whose actual waiting time
is 2.5 days.

We consider a prediction for a job as a good prediction if the rounded values
of actual and predicted queue waiting times lie in the same bin or if its PPErt

value is within 10%. Tables 7 shows the average PPErt values and percentage
good predictions obtained by the various methods. The table shows that the
average PPErt is up to 35 times less and the number of good predictions is up
to 58% more with PQStar when compared to the other methods.

Thresholds for Quick Starters. For all the above results, we have used a
queue waiting time threshold of 1 hour for the definition of quick starters. Jobs
with actual queue waiting times less than this threshold are marked as quick
starters. This threshold is based on the assumption that waiting time of less
than one hour may be short and prediction errors up to that limit may be
acceptable for the user. We used the value of one hour as a threshold to target
jobs with queue waiting times less than this threshold to improve/tighten the
bounds of these jobs, since this class of jobs form a majority of the jobs as
we had shown in Table 1. However, there have been a series of works [18] [19]
which show that the response time of a job should be less than 20 minutes to
consider a job submission session as interactive. In this experiment, we analyse
the effect of the changing thresholds for the quick starters by using different
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Table 7. Prediction Accuracy: % difference in Predicted and Actual Response Times
of Different Prediction Methods

Log-Uniform QBETS IBL PQStar
Logs Average

PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

CTC 41.1 3 19.6 6 1.4 39 0.5 60

ANL 20.7 5 17.5 32 2.21 36 1.4 57

LANL 35.2 9 22.4 61 0.12 91 0.06 94

HPC2N 44.7 5 16.5 17 1.96 46 0.68 66

SDSC
Paragon

45.7 6 18.3 45 0.45 79 0.24 85

SDSC
Blue

31.7 8 13.1 35 2.01 53 0.75 70

SDSC
SP2

55.2 3 32.3 6 2.86 45 1.2 64

DAS 2.6 73 0.25 96 0.01 98 0.007 99

thresholds in PQStar for predicting quick starters. Table 8 shows the impact
of changing the thresholds for quick starters from 10 minutes to 1 hour on the
PQStar predictions of quick starters for the CTC trace. We find that PQStar
consistently identifies more than 80% quick starters for all the thresholds, and
the variation in threshold does not have an impact on the predictions of quick
starters.

Table 8. Impact of changing the thresholds for quick starters (CTC Trace)

Quick Starter Thresh-
old (in minutes)

% of Quick Starters
correctly identified

10 84.22

20 83.99

30 83.74

40 83.69

50 83.62

60 84.28

In summary, PQStar performs better than both IBL and QBETS, and it also
outperforms the parametric model, using log-uniform distribution, in all the
above shown aspects. From these results, we can clearly see that our method is
providing much more aggressive bounds for the quick starters compared to rest
of the methods, and also the under predictions is kept to limited amounts.
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5 Conclusions and Future Work

In this work, we had developed a prediction system called PQStar for identifica-
tion of quick starters or jobs whose actual queue waiting times are less than or
equal to 1 hour. These quick starters form a majority of the job submissions in
many supercomputer traces. In this work we consider both job characteristics,
namely, request size and estimated runtime time, and the state of the system,
namely the queue and processor occupancy states, for predictions. By means of
experiments with different supercomputer traces, we showed that that our pre-
diction strategies can lead to correct identification of up to 20 times more quick
starters and provide tighter bounds for these jobs, and thus result in up to 64%
higher overall prediction accuracy than existing methods.

We currently use the IBL method for predictions of jobs with potential long
queue waiting times. We plan to explore alternate strategies for predictions of
such jobs. We also plan to develop techniques for predictions of execution time
in order to predict total response times. Predicting execution times for jobs
submitted to batch systems is challenging due to limited history. We finally
plan to build scheduling and metascheduling strategies that use these stochastic
predictions to select the appropriate resources for job executions.
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Abstract. The stream of jobs submitted to a parallel supercomputer is
actually the interleaving of many streams from different users, each of
which is composed of sessions. Identifying and characterizing the sessions
is important in the context of workload modeling, especially if a user-
based workload model is considered. Traditionally, sessions have been
delimited by long think times, that is, by intervals of more than, say, 20
minutes from the termination of one job to the submittal of the next job.
We show that such a definition is problematic in this context, because
jobs may be extremely long. As a result of including each job’s execution
in the session, we may get unrealistically long sessions, and indeed, users
most probably do not always stay connected and wait for the termination
of long jobs. We therefore suggest that sessions be identified based on
proven user activity, namely the submittal of new jobs, regardless of how
long they run.

1 Introduction

There has recently been increased interest in user-based workload models for
parallel supercomputers [16, 11–13]. Such models are generative in nature. This
means that instead of modeling the statistical properties of the workload, as was
done for example by Jann et al. and Lublin and Feitelson [3, 5], they model the
process by which the workload is generated. As jobs are submitted by users, this
implies the need to model user behavior.

The motivation for using generative user-based workload models is that such
models enable us to include feedback effects in performance evaluations. The
stream of jobs submitted to a parallel supercomputer is the result of an inter-
action between the system and its users. If the system is responsive, users will
submit more jobs. If it performs poorly, users may depart in frustration and
refrain from submitting more jobs. When we evaluate the performance of a new
scheduler design, we need to include such feedback and its effect on user behavior
[11, 13].

An important characteristic of user behavior is its temporal pattern. Human
users may work for some time, but then they stop and do something else. The
periods of continuous work are called sessions. There are usually many more
user sessions during the day than during the night or weekend, leading to the
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creation of an overall daily and weekly cycle of activity. Understanding how such
patterns are generated is a basic component in defining a generative workload
model.

Data about user behavior is contained in accounting logs from existing parallel
machines, such as those that are available in the Parallel Workloads Archive [9].
Unfortunately, these logs only include data about individual jobs: when the
job was submitted, when it started to run and when it terminated, how many
processors it used, etc. Importantly, we usually also know the identity of the
user who submitted the job (or at least anonymized identity, in the interest of
preserving privacy). But we do not know when the user started or ended each
session. If we want to characterize this behavior, we need to glean this data based
on the pattern of job submissions.

The common approach to extracting session data is based on the assumption
that users typically wait to see the results of their jobs, and then submit addi-
tional jobs. Thus the user session extends from the submittal of some job till the
termination of that or some later job. Zilber et al. have suggested that breaks
of 20 minutes or more between successive jobs indicate a session break [16], and
others have followed this definition [12].

The problem with this definition is that parallel jobs may be very long. In
some logs we even observe jobs that run for multiple days. Obviously it is un-
reasonable to expect the user to remain active for such a long time waiting for
the job to terminate. And indeed we find that sessions defined according to the
above definition may be much longer than is reasonable. We therefore suggest
an alternative approach, whereby sessions are defined based on only explicit user
activity, namely the submittal of new jobs. The times at which the jobs terminate
are ignored.

A basic problem with this line of research is that ground truth is not available
for comparison. In other words, we do not really know when users started or
ended their sessions. We therefore need to make qualitative judgments. Our
main criterion is to look at the distribution of session lengths that is generated
by the analysis, and to reject methods that lead to distributions with obvious
deficiencies (such as sessions that extend over more than a week).

The next section describes the technical details of how sessions may be defined
according to different approaches. Section 3 discusses the selection of threshold
values used to identify session breaks. Section 4 shows how we can use the
distribution of generated sessions to select among two competing approaches for
how to apply the threshold. Section 5 identifies some problems that occur when
using inter-arrival times rather than think times. Finally, Section 6 introduces
the notion of using the generated session lengths as a criterion for accepting or
rejecting different approaches.

2 Definition of Sessions and Batches

Intuitively, a session is a period of continuous work by a user. This does not
mean that the user was active 100% of the session’s time. A user may run a job
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to completion, think about the result, and then run another job, all within the
same session.

The above description seems to imply sequential work, where jobs in a session
never overlap. Empirical evidence from parallel supercomputer job logs shows
that this is clearly not always the case, and jobs may overlap. Given such an
overlap, the later job cannot depend on the earlier one. Following Shmueli, we
call a set of such independent, overlapping jobs a batch [11]. Thus a session may
contain several batches in sequence, and each batch may contain a number of
jobs. The interval between batches is called the think-time, or TT.

Finding the batches and the sessions of the users is a basic requirement in order
to understand and analyze their behavior. However, activity logs do not contain
explicit information about neither the sessions nor the batches. Therefore, we
need to estimate them based on the data that the logs do contain. The most
relevant information is the job arrival times (also called submit times) and the
job end times. For job i, we will denote these as J [i].arr and J [i].end.

2.1 Definitions Based on Think Times

Assume we scan the jobs in a log one by one. As each job is considered, the
question is whether it belongs to the previous session or batch, or starts a new
session or batch. The simplest and most commonly used approach makes this
decision based on the think time, namely the interval from the termination of
one job to the submittal of the next1:

1. If the think time is negative, the job overlaps the current batch and therefore
belongs to this batch.

2. If the think time is positive but below the session threshold, the job starts a
new batch in the same session as the previous batch. (We discuss the value
of the session threshold in Section 3.)

3. Otherwise, the job starts a new batch in a new session.

Note, however, that we need to be precise regarding how we measure the think
time, and in particular, exactly what job end time do we use as a reference point.
There are two possibilities:

– The end time of the last job that was submitted. With this approach, the
think time of job i will be calculated as

TTLast = J [i].arr − J [i− 1].end

Hereafter we denote this approach by Last.
– The maximal end time among all previous jobs. In this case, the think time

is calculated as
TTMax = J [i].arr −max

j<i
J [j].end

This approach will be denoted by Max.

1 Recall that the conceptual model is that the user submits a job, waits for it to
terminate, and then thinks about the result before submitting the next job.
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To appreciate the difference, consider a sequence of 3 jobs. Job 1 is very long.
Job 2 is short and ends much before job 1 ends. Job 3 arrives after job 2 ended,
but still overlaps job 1. In this situation all 3 jobs will be in the same batch
based on Max, but job 3 will start a new batch based on Last. This is illustrated
in Figure 1.

  

   

Last

Max

Arrival Time

Time

Time

Time

Fig. 1. Batches according to the three approaches: Last, Max, and Arrival

2.2 Definition Based on Inter-arrival Times

Another approach to define sessions is according to the arrival times of the jobs,
or rather, the inter-arrivals (to be denoted by Arrival). In this approach, the
current job would belong to the same session as previous jobs if it arrives up
to the session threshold time after the arrival of the previous job in the session.
In other words, if the inter-arrival time is longer than the session threshold,
we decide that this represents a session break. Once the jobs are partitioned
into sessions using this approach, we partition each such session into batches
according to the Max approach.

An example showing the effect of this procedure is shown in Figure 1. The
four jobs in the middle all overlap, and are considered to be the same batch by
both Last and Max. But there is a relatively large gap between the arrival of the
first pair and the arrival of the second pair. If this gap is bigger than the session
threshold, the two pairs will be in different sessions according to Arrival, and as
a result also in different batches.
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The reason for using Max to partition a session into batches is as follows.
Consider how the end of a batch is defined. If batch A comes a certain TT after
batch B according to Max, then it will start only TT time after all the jobs in
B are finished. But according to Last, it will start TT time after the last job
in B has finished, while other jobs from B may still be running. Shmueli indeed
used the last job as the critical one [13]. However, this definition is problematic,
because it means that the future activity of the user depends only on the last
job in each batch, while the other jobs don’t effect the future activity at all. This
seems very unrealistic. A simple example of the problem is that it is very easy to
create a scheduler that reduces both the user’s wait-times and the overall system
utilization by running the last job of each user last, thereby causing the user to
wait a long time before submitting more jobs. Alternatively, one can construct a
scheduler that would increase both the wait-times and the utilization by handling
the last job of each user first. To avoid such problems, we prefer Max.

We note that Max creates a sequence of batches with no overlaps. In Last they
may overlap, but the dependencies between batches are still a linear sequence.
In Arrival a batch may depend on multiple earlier batches.

In the area of parallel supercomputer workloads, the common way to define
sessions uses the end time (meaning Last or Max). For example Zilber et al. and
Shmueli use Last [16, 12]. But in other areas, where job durations are extremely
short, it is more common to define sessions based on arrivals. An example is
interactive web use (surfing, searching, or e-commerce) [1, 2, 4, 7, 8, 10, 15].
Of course, due to the very short time it typically takes to process a request on
the web, requests never overlap. Therefore Last, Max, and Arrival are actually
equivalent in this case.

In the next sections we will discuss the session threshold for each approach and
the influence of the choice of this unique value. Additionally, we will present a
comparison between the Max and Last approaches. Later, we will investigate the
session lengths produced by the different approaches, and conclude that Arrival
is the best approach to use.

3 Selecting a Session Threshold Value

The dominant methodology to extract session data from activity logs is to pos-
tulate a certain threshold value, and assume that breaks in activity which are
longer than this threshold represent a division between separate sessions. Such
a threshold exists in all three approaches: Last, Max, and Arrival. The main dif-
ference between these definitions is the time interval that we compare to the
threshold. In Arrival this interval starts at the arrival of the last job, in Last at
the end of the last job, and in Max at the maximal end time among previous
jobs. The threshold value that is chosen may have a strong effect on the resulting
session properties [1]. In this section we will consider how to select the threshold
value for each approach, and consider its influence on the sessions.
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Fig. 2. The distribution of inter-arrival time in the SDSC-BLUE and SDSC-DS logs

As mentioned above, Last and Max are both popular approaches in this area.
Therefore, many previous works have considered the selection of the the thresh-
old value for them. The commonly used value is 20 minutes, because this seems
to capture the majority of think times. For example, Zilber et al. and Shmueli
[16, 12] used this threshold value.

As far as we know, there has been no previous work concerning the selection
of a threshold on inter-arrival times for parallel workloads. Several different
values have been used in the context of web workloads, including 30 minutes
[2, 7], an hour [14], and even two hours [8]. To find what value would make
a suitable threshold for our parallel workloads, we calculated the distribution
of inter-arrival times for different logs available from the Parallel Workloads
Archive [9]. Thus, for each user we found the difference between the arrival
times of each pair of successive jobs. We ignored values that were above a day
(1440 minutes), because such long intervals obviously defy the notion of a single
session. Examples of the resulting distributions are shown in Figure 2. CDFs2

2 The Cumulative Distribution Function (CDF) is the integral of the probability den-
sity function (pdf). For each value x, it gives the probability of observing values that
are smaller than or equal to x. In the case of empirical data, it is the fraction of
samples that are smaller than or equal to x.
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Fig. 3. CDFs of inter-arrival times in the SDSC-SP2 and KTH-SP2 logs
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Fig. 4. Zoom in on the CDFs of inter-arrival times for the SDSC-BLUE and SDSC-DS
logs

are shown in Figure 3 and Figure 4. In all these figures we added a vertical line
at 60 minutes (1 hour), which is the threshold we eventually chose.

Our goal was to find the point in the distribution where the derivative doesn’t
changed much any more. From Figure 2 it appears that any value between ap-
proximately 25 minutes and 200 minutes will be logical. However, for values
below 40 one can still observe an obvious drop in the distribution. This is even
clearer in the CDF (and especially in the figures with zoom in). In the range
of 100 to 200 minutes the slope is already very low, and therefore we would
prefer a lower value for the threshold. We concluded that the value ought to be
between 40 minutes to 100 minutes. We chose 60 minutes as it is in the middle of
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this range and is a round value (one hour). We do not claim this is necessar-
ily the best value, but it seems that there is no other value that is obviously
better.

Selecting a session threshold has a strong impact on the resulting analysis. If
we were to select a higher threshold, jobs with longer intervals will nevertheless
be grouped together. As a result the number of jobs in each session would grow
and the number of sessions would decrease. In the following sections we provide
an in-depth analysis of the implications of the selected session threshold values,
mainly in terms of the distribution of session lengths.

4 Comparing Last and Max Using the Think-Time
Distribution

As we mentioned above, the most common definition of sessions is based on think
times, using Last or Max. In this section we investigate which definition leads to
a more reasonable think time distribution. The problem is that we do not know
what the think time distribution should be. We circumvent this problem as fol-
lows. First, we identify the batches according to both approaches separately,
and calculate the think times. Then we create a list that contains the common
batches (batches that are exactly the same according to both approaches). Based
on this list, we extract the think times following these common batches. This
provides us with two lists of think times: CommonTTMax and CommonTT-
Last. Note that the common batch think times may be different because the
think times are defined differently in each approach. In Last, the think time is
measured from the end of the last job, whereas in Max it is the maximal end
time of all jobs. But we expect the distributions to be close, which indeed they
are.

Given the agreement on the common batches, and the similarity of their think
time distributions, we take this to represent the “real” distribution of think
times. The remaining think times, that we didn’t put in the common lists, rep-
resent the differences between think times of batches that were created according
to Last and Max. Therefore, we would prefer the approach for which the distri-
bution of unique think times is similar to the distribution of common think
times.

The resulting distributions are shown in Figure 5. The first obvious conclu-
sion from the graphs is that our expectation that the distributions for common
batches shared by Max and Last would be very close to one another was correct.
It is also quite clear that the distribution for unique batches as identified by
Last is much closer to the common distributions than the distribution for unique
batches as defined by Max. It is true that the distribution for Max is closer for
larger values, but in most of the range, Last is a lot closer. We concluded that
Last creates a more realistic distribution of think times. This supports the use
of Last by Zilber et al. [16], Shmueli [12], and others.
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Fig. 5. Comparison between distributions of think times in the SDSC-BLUE and
SDSC-DS logs

5 Artifacts in the Distribution of Session Lengths with
Arrival

According to the work of Mehrzadi, using the Arrival approach may lead to
artifacts in the distribution of session durations [6]. Specifically, he shows that
in web search data the distribution of session lengths exhibits a pronounced drop
exactly at the threshold value that was used to define the sessions. In order to
check this, we examined the distribution of session durations for each of the three
approaches. Due to the large number of very short sessions, we ignore sessions
of up to 2 minutes. The results are shown in Figure Figure 6 for Last, Figure 7
for Max, and 8 for Arrival.

Upon examination of the graphs, we found that Last andMax behave very sim-
ilarly, but Arrival is indeed different. According to the Max and Last approaches,
the distribution of session lengths is essentially the same for different threshold
values. The difference in heights is due to the fact that larger thresholds lead
to a smaller number of sessions, but the behavior of each graph is the same. In
addition, for all values, there are no obvious discontinuities.

In contrast, with the Arrival approach it is easy to notice a sharp drop in
the distribution at the threshold value, exactly as had occurred in Mehrzadi’s
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Fig. 6. Distribution of session lengths as created by Last, for the KTH-SP2 and SDSC-
SP2 logs
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Fig. 7. Distribution of session lengths as created by Max, for the KTH-SP2 and SDSC-
SP2 logs
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Fig. 8. Distribution of session lengths as created by Arrival, for the KTH-SP2 and
SDSC-SP2 logs. Arrows denote threshold values.

data. In particular, each specific threshold value changes the distribution of
session lengths in a different way (see arrows). However, this effect is reduced
when we increase the value of the threshold. This is more evident in Figure 9.
In this figure we ignored all session lengths below 9 minutes, and present the
histogram without any connecting lines for clarity. With a 10 minute threshold
the discontinuity is very significant. For 20 minutes the discontinuity is smaller
(but still noticeable). With 60 minutes the drop becomes a step. It is worth
mentioning that in some logs (although not in most) there is a clearer drop for
60 minutes, yet rather less dramatic than for 20.

In conclusion, we find that the Arrival approach is sensitive to the threshold
value, although with large values (like the one we chose) the effect is rather
small.

6 The Problem of Very Long Sessions

The graphs in Figures 6 and 7 show that with Last and Max most sessions
are short, and few sessions are very long, possibly unrealistically so. However,
it is impossible to see the details. In order to emphasize the long sessions we
calculated the survival function3, and present the results in Figure 10. This
shows that when using the Last approach, approximately 13.5% of the session

3 The survival function is the complement to the CDF: for each value x, it gives the
probability of observing values that are larger than x.
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Fig. 9. Detailed view of discontinuities in the histogram of session lengths, using the
Arrival approach, with thresholds of 10m (top), 20m (middle), and 60m (bottom), for
the KTH-SP2 log

lengths are longer than 103 minutes (16 hours) in the SDSC-BLUE log, and
17.7% are longer than this value in the SDSC-DS log. With the Max approach,
the percentages are a little higher: 15% in SDSC-BLUE and 19.5% in SDSC-
SP2. In addition, one may notice that the maximum session length is above 105

minutes (approximately 70 days) in both logs.
Recall that a session is supposed to represent the time period when the user is

active at the computer (the interval from when the user begins to work and until
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Fig. 10. The survival function of session lengths in the SDSC-BLUE and SDSC-SP2
logs, using log-log axes

he is done working). Therefore, session lengths above 104 minutes are impossible.
In addition, even sessions of 16 hours are not reasonable. It should be very rare
that a user would work this long continuously, yet still the results show that
more than 13% of the sessions are that long. This is very unlikely.

The reason both approaches create sessions that are far too long so many
times is that both are based on a wrong assumption. This is the assumption
that all work is interactive. With interactive work, it is reasonable to assume
that the users wait for the termination of each job, think for a while, and then
send the next jobs. But on parallel supercomputers at least some of the work is
not interactive. In particular, this is the case for very long jobs that run for many
hours or even days. Including these very long jobs within the session, as is done
by both Last and Max, then leads to unrealistically long sessions. For example,
if a user sends out a job that takes 5 days, and after 3 days sends another job
to the system, both approaches will put these two jobs into the same session,
although the user most probably wasn’t active in the system this whole time.
The same problem may also occur on a smaller scale of a hew hours. If there
are jobs that run during a break in the user’s activity in the middle of the day
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(for example, during meetings or lunch), these jobs may overlap new work done
after the user returns. Therefore, instead of a few short sessions of a couple of
hours scattered along the day, we would get one long session — from the first
job the user submits in the morning until after he goes home at night.

In order to avoid such problems, we suggest alternative versions of Last and
Max which we call Last+Cut and Max+Cut. In these versions we define a new
threshold value, called the Cut. Then, we use each job’s arrival time plus Cut as
its effective end time, instead of using the real end time, provided it is shorter.
This means that if a job ends within Cut time from its arrival, we measure the
think time from its end time without change. Otherwise, we use its arrival time
+ Cut as the start of the think time. Assuming a session threshold of T minutes
we then have:

– Last+Cut: A job will belong to the current batch if it arrives before the
arrival time of the last job + Cut + session-threshold (or the end time +
session-threshold):

J [i].arr ≤ min{ J [i− 1].end, J [i− 1].arr + Cut }+ T

– Max+Cut: A job will belong to the current batch if it arrives before the
maximum of the arrival times of all the jobs in the batch + Cut + session-
threshold (or with end times):

J [i].arr ≤ max
j<i

[ min{ J [j].end, J [j].arr + Cut } ] + T

The results of using these approaches are shown in Figure 11. We checked three
different values for Cut: 30 minutes, 1 hour, and 2 hours. (Last, Max, and Arrival
are also included for comparison.) As expected, in all 3 cases the problem of
overly long sessions is largely eliminated. Also, the difference between Max+Cut
and Last+Cut with the same threshold is very marginal. Therefore we will dis-
tinguish between the Cut approaches only according to the threshold. In the
SDSC-BLUE log, the fraction of sessions longer than 103 is a little more than
10−3 with a large Cut value of 2 hours, but with 1 hour or 30 minutes this frac-
tion is only a little higher than 10−4 (approximately 10−3.9). In the SDSC-SP2
log, this fraction is approximately 10−3.4 with a 2 hours Cut, 10−3.7 with 1 hour,
and 10−3.9 with 30 minutes. The value of the maximum session length is also
dramatically decreased in the Cut approaches: down to 2600 minutes (43 hours)
in the SDSC-BLUE log and less than 2000 minutes (33 hours) in the SDSC-SP2
log.

The conclusion is that the Cut approach creates more realistic session lengths.
The longest sessions still seem to be too long, lasting nearly 2 days, but still this
is much better than the sessions that last for more than 2 months we had before.
While unreasonable for humans, such long sessions may be due to a short script
or a number of people who might have replaced each other on the computer,
sending the jobs through the same user name. In addition, the percentage of
long sessions has dropped. Only a very small percentage of the sessions were
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Fig. 11. The survival function of session lengths according to all the different ap-
proaches, for the SDSC-BLUE log and the SDSC-SP2 log

more than 1000 minutes (16 hours) long, in comparison to 13% or more with
the original Last and Max.

However, although the length of the sessions in the Cut approaches are more
realistic, the effect of the Cut value on the distribution is enormous: There is a
very sharp drop in the graph at the point of the Cut value. In order to examine
this effect, we created histograms of the session lengths generated by Last+Cut
and Max+Cut. These are presented in Figure 12. It is easy to see that the Cut
values produce a very significant mode in the distributions. The reason for these
modes is as follows. For all the sessions with one job, if the job ends before the
Cut value, the length will be the end time minus the arrival time. This part of
the distribution will be continuous. But if the job ends after the Cut Value, the
length will be the equal to the Cut value. Therefore, many sessions will receive
the Cut value length.

The bottom line is that Last and Max remain problematic. In the original
version, they create sessions that are way too long. Introducing the Cut heuristic
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Fig. 12. Histograms of session lengths generated by Last+Cut (top) and Max+Cut
(bottom) using the SDSC-DS and KTH-SP2 logs (left and right)

leads to a strong artifact in the distributions of session lengths. Hence, the only
logical approach is to use the Arrival approach. It is equivalent to the Cut ap-
proach, where Cut=0, and with a larger session-threshold (60m instead of 20m).
(Note that if the Cut value is 0, then Max+Cut is equivalent to Last+Cut.)

The Arrival approach produces realistic session lengths similar to the Cut
approaches, But in addition, the distribution is smooth with no modes that de-
pend on parameter values. Therefore, it seems that this approach creates the
most sensible distribution of session lengths. We conclude that the Arrival ap-
proach, especially with a relatively long session threshold of 1 hour, is the most
promising approach to delimit sessions.

7 Results with the Arrival Approach

Due to the fact that it is innovative and uncommon to use the Arrival approach
to define sessions in parallel workloads, we present a few details and distributions
of sessions and batches.

First, we present the number of jobs, batches, and sessions in Table 1. In all
of the logs the ratios are very similar. On average, the number of jobs is a little

Table 1. Number of jobs, batches, and sessions in the main logs

Log Jobs Batches Sessions

SDSC-SP2 54,051 32,614 18,730
SDSC-DS 85,003 41,679 24,294
KTH-SP2 28,489 16,488 10,303
SDSC-BLUE 223,407 136,460 58,311
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Fig. 13. CDF of the number of batches in a session
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Fig. 14. CDF of the number of jobs in a batch
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Fig. 15. CDF of the number of jobs in a session

less than twice the number of batches, and the number of batches is a little less
than twice the number of sessions. Additional data on batches and sessions are
presented in Figure 13, Figure 14, and Figure 15. A very important observation
is that generally more than 50% of the sessions and 75% of the batches contain
only one job. This means that when users work with supercomputers, most of
the time they send out a single job and then stop their interaction with the
computer for a while. However, it is important to note that some sessions have
very many jobs, so the distribution is skewed, and most jobs do not constitute
single-job sessions.
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8 Conclusions

A summary of the methods that can be used to identify sessions when analyzing
parallel workloads is given in Table 2.

Table 2. Summary of approaches and their effect on the session length distribution

Approach Issues

Last
Max

}
excessively long sessions

Last+Cut
Max+Cut

}
strong peak at cut value

Arrival peak at threshold value
many zero-length sessions

The most common approach is to use the Last and Max approaches. These
approaches are based on setting a threshold on think times: if the think time is
long, this is assumed to be a break between sessions. However, these approaches
occasionally cause extremely long sessions, due to the fact that some of the jobs
running on such systems are extremely long.

A possible improvement is to use Last+Cut or Max+Cut. This eliminates the
very long sessions, at the price of producing a strong peak in the distribution of
session length at the value of the cut threshold being used. This is also undesirable.

The alternative is to use the Arrival approach, as in commonly done in other
domains, such as the analysis of web workloads. In this approach, inter-arrival
times are used. If the inter-arrival is longer than some threshold, a session break
is assumed. The main problem with this approach is that long sessions may not
be identified correctly, and again a peak in the distribution is created at the
value of the threshold being used. However, the size of this peak decreases with
increasing threshold values. We suggest to use a threshold of 1 hour. With such
a threshold the peak in the distribution of session lengths is very small.

The obvious deficiency with the above is that it is based on common sense,
not on data. A desirable avenue for future work is therefore to conduct a user
study in which the actual activity patterns of users are followed, and this is
correlated with their job submittal patterns.

Acknowledgments. Many thanks to all those who have made their workload
data available through the Parallel Workloads Archive.
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Abstract. In this work we analyze the performance of scheduling algo-
rithms with respect to fairness. Existing works frequently consider fair-
ness as a job related issue. In our work we analyze fairness with respect to
different users of the system as this is a very important real-life problem.
First, we discuss how fair are selected popular scheduling algorithms with
respect to different users of the system. Next, we present an extension to
the well known Conservative backfilling algorithm. Instead of “ad hoc”
decisions, the schedule is now created subject to evaluation and optimiza-
tion. Notably, the fairness is considered as an important metric, which
accompanies standard performance related metrics such as slowdown or
wait time. To achieve that, an inclusion of fairness as an optimization
criterion is proposed. The new extension improves the performance and
fairness of Conservative backfilling with respect to other classical tech-
niques such as FCFS, EASY backfilling or aggressive backfilling without
reservations.

Keywords: Scheduling, Fairness, Metaheuristic, Backfilling.

1 Introduction

This paper is inspired by the lessons learned over the past years when analyzing
the job scheduling problem in the Czech National Grid Infrastructure MetaCen-
trum [24]. During that time it became apparent that for satisfactory scheduling
several major principles should be met. First of all, the scheduler must guarantee
good performance regarding classical performance related metrics such as low
job wait times and slowdowns and high system utilization. At the same time,
fairness has shown to be one of the most important factors to keep users satisfied.
Therefore the users should be treated in a fair fashion, such that the available
computing power is fairly distributed among them [13]. Last but not least, the
predictability, i.e., planning functionality [10,25] was found to be very useful as
it allows users to better understand when and where their jobs will be executed.
In fact, even experienced users often do not understand the scheduling decisions
as delivered by existing scheduler that does not use planning functionality.

In order to deal with this situation we have proposed an optimization proce-
dure designed to improve the performance of well known Conservative backfilling
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algorithm [4,31,22]. The choice of Conservative backfilling is straightforward as
it allows predictability by establishing reservation for every waiting job. In Con-
servative backfilling, the plan of job reservations is created in an “ad hoc” fashion
as new jobs arrive. This approach may not guarantee good solutions as previ-
ously established scheduling decisions are fixed and do not change even when it
is obvious that better solution exists. At such situation it is often useful to “re-
consider” previous decisions. For this purpose we apply two core strategies: the
evaluation procedure and the optimization procedure. The evaluation is used to
identify inefficient scheduling decisions and it guides the optimization procedure
toward better schedules. Beside common performance related criteria it also fo-
cuses on the problem of maintaining fairness among different users of the system
as this is in fact one of the most important features that a production system
should guarantee. Together, the proposed extension improves the performance
and fairness of the original Conservative backfilling with respect to other classi-
cal techniques such as FCFS, EASY backfilling or aggressive backfilling without
reservations.

The paper is organized as follows. First, we define the studied problem and
discuss suitable optimization criteria that are lately applied in our study. Next
we discuss popular scheduling algorithms, closely describing their strengths and
weaknesses while emphasizing fairness related issues. Section 4 presents applied
optimization of the Conservative backfilling, i.e., the evaluation procedure and
the optimization metaheuristic. Following section presents experimental evalua-
tion where the proposed extension of Conservative backfilling is experimentally
compared with the original Conservative backfilling as well as with other popular
scheduling algorithms such as FCFS, EASY backfilling or aggressive backfilling
without reservations. Finally we conclude our paper with a short summary and
we discuss the future work.

2 Problem Description

Let us briefly define the considered job scheduling problem as well as the applied
optimization criteria that have been used to express the general requirements on
the proposed job scheduler.

2.1 System Description

We consider a classical scenario where the system is managed by one centralized
scheduler, which has complete control over all jobs and system resources.

Job represents a user’s application that may require one (sequential) or more
CPUs (parallel). Also the arrival time and the job processing time are specified.
There are no precedence constraints among jobs and we consider neither job
preemptions nor migrations from one machine to another. Each job has its owner.
When needed, the runtime estimates are precise (perfect) in this study.

The system is composed of one or more computer clusters and each cluster
is composed of several machines. So far, we expect that all machines within one
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cluster have the same parameters. Those are the number of CPUs per machine
and the CPU speed. All machines within a cluster use the Space Slicing processor
allocation policy [6], which allows the parallel execution of several jobs at the
cluster when the total amount of requested CPUs is less or equal to the number
of CPUs of the cluster. Therefore, several machines within the same cluster can
be co-allocated to process a parallel job. On the other hand, machines belonging
to different clusters cannot be co-allocated to execute the same parallel job.

As we already briefly mentioned in Introduction, the proposed scheduler
should guarantee both good performance and fairness. Therefore we now define
several criteria that were considered when designing the new scheduler and lately
used when evaluating its performance with respect to other existing scheduling
techniques.

2.2 Classical Performance Related Criteria

There are several popular metrics used to measure the efficiency of scheduling
algorithms. Frequently, makespan and machine usage are used as a general in-
dicator of algorithm’s suitability [40,39]. However, these criteria are not very
suitable for systems that are running for a long time. In fact, when the consid-
ered time period is long enough, then different algorithms generate similar values
of makespan and machine usage. This is not a surprising fact [8,20] because in
such case, the resulting makespan—which is then used to calculate the machine
usage— is not controllable by the scheduler since it can never be smaller than
the arrival time of the last job plus its processing time. Then, the utilization is
rather a function of user activity than of scheduler’s performance [8].

Therefore, we have decided to use classical performance related metrics: the
avg. response time [6], the avg. wait time [3] and the avg. bounded slowdown [6].
The avg. response time represents the average time a job spends in the system, i.e.,
the time from its submission to its termination. The avg. wait time is the mean
time that the jobs spend waiting before their execution starts. The avg. bounded
slowdown is the mean value of all jobs’ bounded slowdowns. Slowdown is the ra-
tio of the actual response time of the job to the response time if executed without
any waiting. If a job has a very small runtime it often means that the job ended
prematurely due to some error. As a result, its slowdown can be huge, which may
seriously skew the final mean value. Therefore, so called bounded slowdown is of-
ten applied [4,6], where the minimal job runtime is guaranteed to be greater than
some predefined time constant, sometimes called a “threshold of interactivity” [6].
However, there is no general agreement concerning the actual value of this thresh-
old. Sometimes it is equal to 10 seconds [4,6], while different authors use, e.g., 1
minute [37]. Since the resulting value is very sensitive to the applied threshold
value, we set the threshold equal to 1 second in this paper. It allows us to elimi-
nate problems related to extremely short jobs while keeping the resulting values
close (comparable) to the values of “normal” slowdown in most cases.

All three criteria are to be minimized. As pointed out by Feitelson et al. [6],
the use of response time places more weight on long jobs and basically ignores if
a short job waits few minutes, so it may not reflect users’ notion of responsiveness.
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Slowdown reflects this situation, measuring the responsiveness of the system with
respect to the job length, i.e., jobs are completed within the time proportional
to the job length. Wait time criterion supplies the slowdown and response time.
Short wait times prevent the users from feeling that the scheduler “forgot about
their jobs”.

2.3 Fairness Related Criteria

So far, all criteria focused either on the system or the job performance. Still,
good performance is not the only aspect that makes the scheduler acceptable.
The scheduler must be also fair, i.e., it must guarantee that the available com-
puting power will be fairly distributed among the users of the system. As far
as we know there is no widely accepted standardized metric to measure fairness
and different authors use different metrics [29,30,28,37,21,31]. A fair start time
(FST ) metric is used in [29,21]. It measures the influence of later arriving jobs
on the execution start time of currently waiting jobs. FST is calculated for each
job, by creating a schedule assuming no later jobs arrive. The resulting “unfair-
ness” is the difference between FST and the actual start time. Similar metric
is so called fair slowdown [31]. The fair slowdown is computed using FST and
can be used to quantify the fairness of a scheduler by looking at the percent-
age of jobs that have a higher slowdown than their fair slowdown [31]. Another
metric measures to what extent each job was able to receive its “share” of the
resources [30,28]. The basic idea is that each job “deserves” 1/nt of the resources,
where nt is the number of jobs present in the system at the given time t. The
“unfairness” is computed by comparing the resources consumed by a job with
the resources deserved by the job. An overview of existing techniques including
discussion of their suitability can be found in [26].

Fairness is usually understood and represented as a job related metric, mean-
ing that every job should be served in a fair fashion with respect to other
jobs [29,30,28,37,21,31]. Such requirements are already partially covered by the
common performance criteria like the slowdown and the wait time that were
both discussed earlier. Moreover, job fairness has been also reflected in the de-
sign of common scheduling algorithms (see Section 3) and the results concerning
selected job fairness indicators are well known [30,28,37,31]. In this work, we aim
to guarantee fair performance to different users of the system as well. Therefore,
we apply a well know fair-share principle [13] with respect to different users of
the system. Fair-share tries to minimize the differences among the normalized
mean wait times of all users. Let o be a given user (job owner) in the system and
JOBSo be the set containing jobs of user o. Let rj and Sj denote the arrival
time and start time of given job j respectively. Then the normalized user wait
time (NUWTo) for each user (job owner) o is calculated as shown by Formula 1.

NUWTo =
TUWTo

TUSAo
(1)

TUWTo =
∑

j∈JOBSo

(Sj − rj) (2)
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TUSAo =
∑

j∈JOBSo

(pj · usagej) (3)

Normalized user wait time NUWTo is the total user wait time (see TUWTo in
Formula 2) divided (normalized) by the so called total user squashed area (see
TUSAo in Formula 3), which can be described as the sum of products of the job
runtime (pj) and the number of requested processors (usagej). This user-oriented
metric is based on more general total squashed area metric proposed in [3]. The
normalization is used to prioritize less active users over those who utilize the
system resources very frequently [13]. Such normalization is commonly used as
can be seen, e.g., in the Czech National Grid Infrastructure MetaCentrum [24]
where the normalization is used when monitoring and adjusting fairness in the
production TORQUE scheduling system [1] as well as it was used earlier in the
PBS Pro scheduling system [11]. Similar approach has been also adopted in the
ASCI Blue Mountain supercomputer cluster when establishing job priorities in
the fair-share mechanism [13].

The normalized user wait time (NUWTo) can be used “on the fly” by the
scheduling algorithm to dynamically prioritize the users. Also, it can be used
in the graphs with the experimental results (e.g., Fig. 2) to reflect the resulting
fairness of the applied scheduling algorithm. In this case, the interpretation is
following. The closer the resulting NUWTo values of all users are to each other,
the higher is the fairness. If the NUWTo value is less than 1.0, it means that
the user spent more time by computing than by waiting, which is advantageous.
Similarly, values greater than 1.0 indicate that the total user wait time is larger
than the computational time of his or hers jobs.

3 Fairness vs. Performance in Scheduling Algorithms

In this section we recapitulate several popular scheduling algorithms that are
widely used both in practice and in the literature. We will discuss their strengths
and weaknesses with respect to classical performance related metrics as well as
with respect to fairness related issues.

All production systems support trivial First Come First Served (FCFS)
scheduling policy [11,23]. FCFS always schedules the first job in the queue,
checking the availability of the resources required by such job. If all the resources
required by the first job in the queue are available, it is immediately scheduled
for the execution, otherwise FCFS waits until all required resources become
available. While the first job is waiting for the execution none of the remaining
jobs can be scheduled, even if the required resources are available. Despite its
simplicity, FCFS approach presents several advantages. It does not require an
estimated processing time of the job and it guarantees that the response time
of a job that arrived earlier does not depend on the execution times of jobs that
arrived later. As there is no “queue jumping” FCFS is in some sense a very fair
scheduler [25,31,30]. On the other hand, if parallel jobs are scheduled then this
fairness related property often implies a low utilization of the system resources,
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that cannot be used by some “less demanding” job(s) from the queue [29,23].
To solve this problem algorithms based on backfilling are frequently used [25].

Algorithms using backfilling are an optimization of the FCFS algorithm that
try to maximize the resource utilization [23]. There are several variants of back-
filling algorithms. The most popular one is the aggressive EASY backfilling [25].
It works as FCFS but when the first job in the queue cannot be scheduled imme-
diately EASY backfilling calculates the earliest possible starting time for the first
job using the processing time estimates of running jobs. Then, it makes a reserva-
tion to run the job at this pre-computed time. Next, it scans the queue of waiting
jobs and schedules immediately every job not interfering with the reservation of
the first job [23]. This helps to increase the resource utilization, since idle resources
are backfilled with suitable jobs, while decreasing the average job wait time.

EASY Backfilling takes an aggressive approach that allows short jobs to skip
ahead provided they do not delay the job at the head of the queue. The price for
improved utilization of EASY Backfilling is that execution guarantees cannot be
made because it is hard to predict the size of delays of jobs in the queue. Since
only the first job gets a reservation, the delays of other queued jobs may be,
in general, unbounded [25]1. Therefore, without further control, EASY does not
guarantee good fairness.

In order to prevent such situation, the number of reservations can be in-
creased. In case of slack-based [34] and selective backfilling [31] the number of
jobs with a reservation is related to their current wait time and slowdown re-
spectively. Conservative backfilling [4,31,22] makes reservation for every queued
job which cannot be executed at the given moment. It means that backfilling is
performed only when it does not delay any previous job in the queue. Clearly,
this reduce the core problem of EASY backfilling where jobs close to but not yet
at the head of the queue can be significantly delayed. The price paid is that the
number of jobs that can utilize existing gaps2 is reduced, implying that more
gaps are left unused in Conservative backfilling than in EASY backfilling [26].
Still, both approaches lead to significant performance improvements compared
to FCFS [26,7]. As the scheduling decisions are made upon job submittal, it can
be predicted when each job will run, giving the users execution guarantees. Users
can then plan ahead based on these guaranteed response times. Obviously, there
is no danger of starvation as a reservation is made for every job that cannot be
executed immediately. Apparently, such approach places a greater emphasis on
predictability [25,4] and it is a good compromise between “fair” but inefficient
FCFS and “unfair” but efficient EASY backfilling.

All previously mentioned variants of backfilling require that each job specifies
its estimated execution time. Therefore, existing systems also support backfilling
without reservations [19,11] where estimates are not needed at all. In order to

1 If a job is not the first in the queue, new jobs that arrive later may skip it in the
queue. While such jobs do not delay the first job in the queue, they may delay all
other jobs and the system cannot predict when a queued job will eventually run [25].

2 Some authors [26] call the unused CPU time slot a “hole” while others [25,36] prefer
the term “gap”.
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maintain fairness among users, the queue(s) can be ordered according to some
priority mechanism such as fair-share. For example, the TORQUE scheduler [1]
currently used in MetaCentrum [24] uses backfilling without reservations where
each queue is ordered according to priorities computed using the fair-share prin-
ciple. Here, the users of the system are prioritized according to the fair-share
mechanism that balances the amount of consumed CPU time among users. This
means that all jobs belonging to a given user get the priority that is equal to the
user’s priority3. Still, as in the case of EASY backfilling, such techniques can-
not guarantee starvation-free behavior and additional mechanisms are needed to
minimize the risk that the delays of queued jobs become very large.

In this section we tried to mention the most popular scheduling algorithms
and we tried to demonstrate their pros and cons. None of these algorithms suits
our needs perfectly. FCFS is somehow fair but inefficient. EASY backfilling im-
proves the performance significantly but at some situations may degrade the
performance for “unlucky” jobs. Similarly, backfilling without reservations do
not need estimates but it cannot guarantee starvation-free behavior.

From this point of view, Conservative backfilling is a good candidate for fur-
ther extension. First, as each job gets a reservation waiting jobs cannot be de-
layed by lately arriving jobs, which is fair, at least from the user’s point of view.
Second, job reservations, i.e., the plan of execution, are good for the users as
they can get some sort of guarantee and they “know what is happening”. Last
but not least, the prepared plan of execution can be easily evaluated with re-
spect to selected optimization criteria, covering both performance and fairness
related objectives. Therefore, possible inefficiencies that can appear in classical
Conservative backfilling can be identified and fixed. For this purpose some form
of metaheuristic algorithm seems to be a natural solution. In the next section
we describe such an extension of the Conservative backfilling.

4 Optimization of Conservative Backfilling

As we mentioned in previous text, we found Conservative backfilling to be a good
initial scheduling technique for our purposes, which included requests of good
performance, fair distribution of available computing power among users and
predictability. In this section we describe the two fundamental techniques used
to improve the overall performance of Conservative backfilling. Those techniques
are evaluation of existing solution and an optimization metaheuristic that im-
proves the quality of generated solution with respect to considered criteria. We
start with a description of the evaluation method.

4.1 Evaluation Procedure

The purpose of the evaluation procedure is to compare two different schedules
and decide, which one is better with respect to applied optimization criteria. As

3 The priority is computed using the Formula 1 that represents the normalized user
wait time NUWTo .
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we already discussed in Section 2, we focus both on the classical and the fair-
ness related criteria. We use the avg. wait time (WT ), the avg. response time
(RT ) and the avg. bounded slowdown (BSD) to measure the performance of
the scheduling algorithm. Each such metric can be easily used when deciding,
which solution is better—the one having smaller values of given metric. When
considering fairness with respect to different users the situation is more com-
plicated. The fairness related normalized user wait time (NUWTo) described
in Section 2.3 cannot be directly used as it is only a per user metric. For our
purpose we needed a function that for given schedule returns a single value.
Therefore, we have proposed a criterion called fairness (F ), which is computed
as shown by Formula 5.

UWT =
1

u

u∑
o=1

NUWTo (4)

F =
u∑

o=1

(UWT −NUWTo)
2 (5)

First, we calculate the mean user wait time (UWT ) using the values of NUWTo

as shown in Formula 4. Then the fairness F is calculated by the Formula 5.
The squares in F definition guarantee that only positive numbers are summed
and that higher deviations from the mean value are more penalized than the
small ones. This approach has been inspired by the widely used Least Squares
method [38] where similar formula of squared residuals is minimized when fitting
values provided by a model to observed values.

The fairness (F ) criterion is used during the evaluation of performed schedul-
ing decisions, i.e., “inside” the optimization procedure (see Section 4.2). When
two possible solutions are available, then the values of F are computed for both
of them. The one having smaller F value is considered as more fair. The squares
used during computation of F help to highlight unfair assignments, which is
very favorable when performing scheduling decisions. Sadly, the squares basi-
cally prevent us to reasonably interpret the resulting F values as it was possible
in case of the NUWTo criterion (see discussion in Section 2.3). This is the reason
why NUWTo is used in graphs to display how fair the solution has been with
respect to different users while F is used when evaluating two different schedules
“inside” the optimization algorithm.

Together, there are four criteria to be optimized simultaneously. Each crite-
rion produces one value characterizing the solution. The final decision on which
of the two solutions is better is implemented in separate function, called Select-
Better(scheduleA, scheduleB) which is shown in Algorithm 1. It is a form of
a weight function, which is often used when solving multi-criteria optimization
problems [39,18,17]. The SelectBetter function is an extended version of the
function that has been already successfully used in our previous works [17,18].
This extension includes the fairness criterion.

This function uses two inputs— the two solutions that will be compared. The
scheduleA may represent existing (previously accepted) solution while scheduleB
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Algorithm 1. SelectBetter(scheduleA, scheduleB)

1: compute BSDA, WTA, RTA, FA according to scheduleA;
2: compute BSDB , WTB, RTB , FB according to scheduleB ;

3: vBSD := (BSDA −BSDB)/BSDA;
4: vWT := (WTA −WTB)/WTA;
5: vRT := (RTA −RTB)/RTA;
6: vF := (FA − FB)/FA;
7: weight := vBSD + vWT + vRT + vF ;

8: if weight > 0 then
9: return scheduleB;
10: else
11: return scheduleA;
12: end if

represents the newly created candidate solution, a product of optimization. First,
the values of used objective functions are computed for both schedules (lines 1–
2). Using them, decision variables vBSD, . . . , vF are computed (see lines 3–
6). Their meaning is following: when the decision variable is positive it means
that the scheduleB is better than the scheduleA with respect to the applied
criterion. Strictly speaking, decision variable defines percentual improvement or
deterioration in the value of objective function of scheduleB with respect to the
scheduleA. Some trivial correction is needed when the denominator is equal to
zero, to prevent division by zero error. To keep the code clear we do not present
it here. It can easily happen, that for given scheduleB some variables are positive
while others are negative. In our implementation the final decision is taken upon
the value of the weight (line 7), which is computed as the (weighted) sum of
decision variables. If desirable, the “importance” of each decision variable can be
adjusted using a predefined weight constant. However, proper selection of these
weights is not an easy task. In this particular case, all decision variables are
considered as equally important and no additional weight constants are used.
When the resulting weight is positive the (candidate) scheduleB is returned as
a better schedule. Otherwise, the (existing) scheduleA is returned.

4.2 Optimization Algorithm

Newly arriving jobs are added into the schedule using classical Conservative
backfilling algorithm. It means that the earliest suitable time slot is found in
existing schedule. Such initial schedule (scheduleinitial) is periodically optimized
with an optimization algorithm. It is a simple metaheuristic that tries to optimize
the existing scheduleinitial. The algorithm includes an important feature that is
typical for the Tabu search-based algorithms [9,27]. It is a short term memory
called tabu list where few previously manipulated jobs are stored. If the algorithm
is trying to move some job then this change is not allowed in case that this job
is present in the tabu list. It has limited size and the oldest item is always
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removed when the list becomes full. Tabu list helps to protect the algorithm
against short cycles where the same few jobs are repeatedly selected as the move
candidates. The main structure of the algorithm is based on a procedure that has
been already successfully used in our previous work which focused on a different
problem involving minimizing the number of late jobs [17].

Algorithm 2. TabuSearch(scheduleinitial, iterations, time limit)

1: schedulenew := scheduleinitial; schedulebest := scheduleinitial; tabu list := ∅;
2: i := 0;

3: while (i < iterations and time limit not exceeded) do
4: i := i+ 1;
5: job := select random job from schedulenew such that job /∈ Tabu;
6: if job = null then
7: tabu list := ∅; (all jobs were tested, reset the tabu list)
8: continue;
9: end if
10: remove job from schedulenew;
11: compress schedulenew;
12: move job into earliest suitable gap in schedulenew ;
13: schedulebest := SelectBetter(schedulebest, schedulenew);
14: schedulenew := schedulebest; (update/reset candidate schedule)
15: if tabu list is full then
16: remove the oldest item;
17: end if
18: tabu list := tabu list ∪ job;
19: end while

20: return schedulebest;

TabuSearch(scheduleinitial, iterations, time limit) optimization algorithm
is described in Algorithm 2. It has three inputs— the schedule that will be
optimized, the maximal number of iterations and a time limit. In each iter-
ation, one random non-tabu job selected (line 5). Once the job is selected,
it is removed from its current position and the schedule is immediately com-
pressed. The compression is designed to shift reservations to earlier time slots
that could have appeared as a result of the job removal [14]. This procedure
is an analogy to the method used in Conservative backfilling when job termi-
nates earlier due to an overestimated runtime estimate [25]. During the com-
pression the relative ordering of job start times is kept [14]. Next, the removed
job is returned to the compressed schedule into the earliest suitable gap and this
new schedule is evaluated with respect to applied criteria in the SelectBet-
ter(schedulebest, schedulenew) function (see Algorithm 1). If this attempt is
successful SelectBetter returns schedulenew as the new schedulebest, other-
wise schedulebest is not changed (line 13). Next, the schedulenew is updated with
the schedulebest (line 14). Finally, the job is placed into the tabu list (line 18)—
so that it cannot be chosen in the next few iterations—and a new iteration
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of the Tabu search starts. If in some iteration all jobs are already in the tabu
list, then the list is emptied and another iteration starts (line 7)4. The cycle
continues until the predefined number of iterations or the given time limit is
reached (lines 3). Then, the schedulebest is returned as the newly found solution
(line 20).

When applied, TabuSearch is executed every 5 minutes of simulation time.
Here we were inspired by the actual setup of the scheduler [1] used in the Meta-
Centrum, which performs periodic priority updates of jobs waiting in the queues
with a similar frequency. The maximum number of iterations is equal to the
number of currently waiting jobs (schedule size) multiplied by 2. The time limit
variable was set to be 2 seconds, which is usually enough to try all iterations.
However, when some higher priority event such as new job arrival or job comple-
tion is detected during TabuSearch execution, the time limit is immediately
set to 0 and the TabuSearch terminates. Therefore, the optimization phase
cannot cause any significant delays concerning job processing and the potential
overhead of optimization is practically eliminated [17].

5 Experiments

This section presents the experimental evaluation where the proposed Tabu
Search optimization technique is experimentally compared with selected pop-
ular scheduling algorithms. Beside common performance related criteria also
the fairness related issues of considered scheduling algorithms are analyzed here.

5.1 Experimental Setup

All experiments have been computed on an Intel Xeon 3.0 GHz machine with
12 GB of RAM using the GridSim [33] based Alea simulator we have imple-
mented [15].

The proposed Tabu search-based optimization (TS) of Conservative backfilling
has been evaluated against several existing algorithms that have been all closely
discussed in Section 3. We have considered FCFS, aggressive backfilling without
reservations (BF), EASY backfilling (BF-EASY), Conservative backfilling (BF-
CONS) and the aggressive backfilling without reservations prioritized according
to fair-share (BF-FAIR).

Six different data sets from the Parallel Workloads Archive [5] have been used
in the simulation: MetaCentrum (806 CPUs, 103,656 jobs during 5 months),
SDSC BLUE (1,152 CPUs, 243,314 jobs during 34 months), CTC SP2 (338
CPUs, 77,222 jobs during 11 months), HPC2N (240 CPUs, 202,876 jobs dur-
ing 42 months), SDSC SP2 (128 CPUs, 59,725 jobs during 24 months) and
KTH SP2 (100 CPUs, 28,489 jobs during 11 months). If available, the recom-
mended “cleaned” versions of workload logs are always used. Detailed descrip-
tions of these logs are available in the Parallel Workloads Archive [5].

4 In the current implementation the tabu list has maximum size of 10 jobs. If all jobs
from the current schedule are in the tabu list, it means that there are at most 10
jobs in the whole schedule.
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In the experiments, the avg. response time, the avg. wait time and the avg.
bounded slowdown have been measured as the standard performance related
metrics. A bubble chart is used to display corresponding values of wait time
and slowdown simultaneously— the y-axis depicts the avg. wait time while the
size of the circle represents the avg. bounded slowdown. The actual bounded
slowdown value is shown as a label bellow each circle (see Fig. 1).

Concerning fairness, the resulting normalized user wait times NUWTo were
collected for all users. In the next step, we have removed all NUWTo values
that belonged to users who submitted only one job as this represents an extreme
situation. When such user submits the first (and only) job into the system, the
job gets some default priority, since the system cannot compute NUWTo that
is normally used to establish the job priority5. At the same time, other jobs in
the queue often have higher priority, therefore this single job may be delayed by
other high priority jobs. However, as the user do not submit any other job, there
is no way for the scheduler to “fix” this unfair assignment and the resulting
NUWTo may be quite high. Once the set of NUWTo values was reduced as
explained above, the NUWTo values were interpreted in two different ways.
The cumulative distribution function (CDF) of users’ normalized wait times
presents how different scheduling algorithms affect the resulting NUWTo values
for all users of the system. In this case, the CDF is a f(x)-like function showing
the probability that the NUWTo of given user o is less than or equal to x. In
another words, the CDF represents percentage of users having their NUWTo

less than or equal to x. The steeper is the resulting curve the closer (i.e., more
fair) were the NUWTo values of different users. As the resulting distributions
often have very long tails, the maximal NUWTo shown on the x-axis is bounded
by 10.0 for better visibility. The CDFs are accompanied with two additional
metrics which show the arithmetic mean of all normalized user wait times and
the corresponding standard deviation. The smaller the mean and the standard
deviation are the lower were the NUWTo values and the closer (i.e., more fair)
they were. When two or more algorithms have similar CDFs, these two metrics
helps to highlight the differences among algorithms as they can highlight the
influence of the distribution’s long tail.

5.2 Experimental Results and Discussion

Fig. 1 presents the avg. wait time, the avg. bounded slowdown (1st and 3rd row)
and the avg. response time (2nd and 4th row) for all six data sets. The fairness
related results for all data sets are shown in Fig. 2. As discussed in Section 5.1,
two different graphs are used to capture the resulting normalized user wait times
(NUWTo). The CDFs of NUWTo distributions are shown in the first and third
row in Fig. 2. The bar charts with the mean of all normalized user wait times
and the corresponding standard deviations are shown in the second and fourth
row in Fig. 2.

5 NUWTo cannot be computed because both TUWTo and TUSAo are not known
unless at least one job of given user o completes (see Formulas 1–3).
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Fig. 1. The avg. wait time and the avg. slowdown (1st and 3rd row), and the avg.
response time (2nd and 4th row) for all six data sets

Let us discuss the results of the experiments. In all experiments FCFS per-
formed very bad, which is not surprising as the applied workloads represent
reasonably utilized systems with parallel jobs where FCFS is known to be in-
efficient [12,23,25]. Therefore—with the exception made in case of CDFs—the
results of FCFS are not presented in the charts for better visibility, as in all cases
the results of FCFS were very bad and off-scale high.

Concerning the avg. wait time (1st and 3rd row in Fig. 1) and the avg. response
time (2nd and 4th row in Fig. 1), original Conservative backfilling (BF-CONS)
does not work very well with respect to other backfilling algorithms, as both
BF-EASY or BF produce better results in most cases. This is not surprising as
these issues have been already addressed in several works [31,32,26]. Basically,
the problem here is that establishing reservation for every job can be less efficient
than aggressive approaches as used in BF or BF-EASY. Reservations decrease
the opportunities for backfilling, due to the blocking effect of the reserved jobs
in the schedule [31,4]. On the other hand, the slowdown (see circle labels in
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the bubble charts in Fig. 1) is often slightly better for BF-CONS as no job can
be delayed. This is a normal behavior also observed in previous works [31,4].
BF-FAIR is also competitive, however in case of SDSC SP2 it does not perform
very well with respect to the avg. wait time. On the other hand, TS produces
the best wait times, response times and slowdowns in all six cases. Clearly, TS
significantly improves the otherwise relatively weak performance of Conservative
backfilling. These results indicate that the “ad hoc” manner used to establish
reservations in BF-CONS is not very efficient and can be easily improved using
the evaluation and optimization techniques.

In case of fairness related criteria (see Fig. 2), the results clearly demonstrate
that standard solutions such as FCFS, BF, BF-EASY or BF-CONS are not very
good to guarantee good fairness with respect to different users since they do not
involve any suitable mechanism for this purpose. Especially FCFS is truly unfair
for users as can be seen in the CDFs (1st and 3rd row in Fig. 2). In general,
BF, BF-EASY and BF-CONS produce worse results than BF-FAIR or TS in
most cases. While the differences in the CDFs are not huge, there are typically
several users with very high (unfair) NUWTo when BF, BF-EASY or BF-CONS
is used, respectively. This unfairness significantly increases the arithmetic mean
of all normalized user wait times and the corresponding standard deviation as
can be seen in the second and fourth row in Fig. 2.

From this point of view, a simple extension involving fair-share based priori-
ties as applied in BF-FAIR algorithm can significantly improve the fairness of the
solution with respect to different users. In most situations BF-FAIR generates
better, i.e., steeper CDFs of normalized user wait times (see 1st and 3rd row in
Fig. 2) as well as better, i.e., lower mean values and standard deviations (2nd
and 4th row in Fig. 2) than FCFS or other backfilling algorithms. Again, TS op-
timization procedure shows great potential when improving the fairness of the
original BF-CONS. TS can guarantee fairness on the same or even higher level
as BF-FAIR algorithm does, thanks to the applied extensions that involve sched-
ule evaluation and optimization. Clearly, good results in standard performance
metrics (see Fig. 1) are not achieved at the expenses of fairness (see Fig. 2).

As discussed in Section 2.1, if needed, the runtime estimates are precise (per-
fect) in this study. This setup has been used in order to provide “ideal” conditions
for all algorithms that somehow use reservation(s). This approach minimizes the
effect of inaccuracy that may sometimes produce “confusing” results [35,36].
One may suggest that the proposed extension of Conservative backfilling may
not work that well as soon as realistic, i.e., inaccurate estimates are used. How-
ever, as we observed in our recent studies [14,16], the inaccuracy can be handled
efficiently if proper “recovery” methods are applied. For example, the inefficiency
caused by early job completions can be minimized by applying schedule com-
pression as discussed in Section 4.2 or in [25,14]. Moreover, as the optimization
procedure follows a “gap filling” approach (see line 12 in Algorithm 2) it can be
flexibly used to further improve the schedule once the compression phase termi-
nates [14,16]. Similarly to, e.g., EASY backfilling, it is favorable when the users’
estimates are heterogeneous. When there are only few popular estimates (e.g.,
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Fig. 2. The CDFs of normalized user wait times (1st and 3rd row), and the mean of
normalized user wait times and the corresponding standard deviation (2nd and 4th
row) for all six data sets

3 popular estimates), the performance of the proposed technique is similar to
the performance of the backfilling solutions [14]. At such situation, the limited
diversity of runtime estimates prevents us from building efficient schedules, since
there is no good opportunity for successful optimization [14].
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6 Conclusion

This paper addressed a real life-based job scheduling problem. The goals were
to maintain the fairness among different users of the system while keeping good
performance regarding classical criteria such as slowdown or wait time. Sev-
eral existing algorithms have been analyzed with respect to these two goals.
Moreover, an extension of the well known Conservative backfilling has been pro-
posed in order to guarantee good fairness and performance. The extension uses
optimization procedure, which allows to improve the quality of the schedule.
Optimization is guided by the evaluation that is performed subject to applied
objective functions. Experimental evaluation demonstrates that the proposed
extension represents significant improvement by means of fairness and perfor-
mance over several existing algorithms including FCFS, Conservative and EASY
backfilling as well as aggressive backfilling without reservations.

Just like the original Conservative backfilling, the current solution still sup-
ports predictability as reservations are established for every job. However, the
optimization technique can delay particular jobs with respect to their initial
reservations if it improves the overall quality of the schedule. As this behavior
may be problematic in some cases, we plan to solve this issue in the future. Cur-
rently, we are working on a closely related scheduling approach involving evalua-
tion and optimization algorithms [2] within the production TORQUE scheduler
that is used in the Czech National Grid Infrastructure MetaCentrum.
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23. Lifka, D.A.: Lifka. The ANL/IBM SP Scheduling System. In: Feitelson, D.G.,
Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303.
Springer, Heidelberg (1995)

24. MetaCentrum (February 2012), http://www.metacentrum.cz/
25. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529–543 (2001)

26. Ngubiri, J.: Techniques and Evaluation of Processor Co-allocation in Multi-cluster
Systems. PhD thesis, Radboud University Nijmegen (2008)

27. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall (2002)
28. Sabin, G.: Unfairness in parallel job scheduling. PhD thesis, The Ohio State Uni-

versity (2006)
29. Sabin, G., Kochhar, G., Sadayappan, P.: Job fairness in non-preemptive job

scheduling. In: International Conference on Parallel Processing, ICPP 2004, pp.
186–194. IEEE Computer Society (2004)

30. Sabin, G., Sadayappan, P.: Unfairness Metrics for Space-Sharing Parallel Job
Schedulers. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 238–256. Springer, Heidelberg (2005)

31. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective Reser-
vation Strategies for Backfill Job Scheduling. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer,
Heidelberg (2002)

32. Srinivasan, S., Kettimuthu, R., Subrarnani, V., Sadayappan, P.: Characterization
of backfilling strategies for parallel job scheduling. In: Proceedings of 2002 Inter-
national Workshops on Parallel Processing, pp. 514–519. IEEE Computer Society
(2002)

33. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling
and simulating data Grids: an extension to GridSim. Concurrency and Computa-
tion: Practice & Experience 20(13), 1591–1609 (2008)

34. Talby, D., Feitelson, D.G.: Supporting priorities and improving utilization of the
IBM SP scheduler using slack-based backfilling. In: IPPS 1999/SPDP 1999: Pro-
ceedings of the 13th International Symposium on Parallel Processing and the 10th
Symposium on Parallel and Distributed Processing, pp. 513–517. IEEE Computer
Society (1999)

35. Tsafrir, D.: Using Inaccurate Estimates Accurately. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer,
Heidelberg (2010)

36. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: Solving the mystery of
why increased inaccuracy help. In: IEEE International Symposium on Workload
Characterization (IISWC), pp. 131–141. IEEE Computer Society (2006)

37. Vasupongayya, S., Chiang, S.-H.: On job fairness in non-preemptive parallel job
scheduling. In: Zheng, S.Q. (ed.) International Conference on Parallel and Dis-
tributed Computing Systems (PDCS 2005), pp. 100–105. IASTED/ACTA Press
(2005)

38. Wolberg, J.: Data Analysis Using the Method of Least Squares: Extracting the
Most Information from Experiments. Springer (2006)

39. Xhafa, F., Abraham, A.: Computational models and heuristic methods for Grid
scheduling problems. Future Generation Computer Systems 26(4), 608–621 (2010)

40. Xhafa, F., Carretero, J., Alba, E., Dorronsoro, B.: Design and evaluation of Tabu
search method for job scheduling in distributed environments. In: International Sym-
posium on Parallel and Distributed Processing (IPDPS 2008), pp. 1–8. IEEE (2008)

http://www.metacentrum.cz/


Comprehensive Workload Analysis

and Modeling of a Petascale Supercomputer

Haihang You1 and Hao Zhang2

1 National Institute for Computational Sciences,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN 37996, USA

{hyou,haozhang}@utk.edu

Abstract. The performance of supercomputer schedulers is greatly af-
fected by the characteristics of the workload it serves. A good under-
standing of workload characteristics is always important to develop and
evaluate different scheduling strategies for an HPC system. In this pa-
per, we present a comprehensive analysis of the workload characteristics
of Kraken, the world’s fastest academic supercomputer and 11th on the
latest Top500 list, with 112,896 compute cores and peak performance of
1.17 petaflops. In this study, we use twelve-month workload traces gath-
ered on the system, which include around 700 thousand jobs submitted
by more than one thousand users from 25 research areas. We investi-
gate three categories of the workload characteristics: 1) general charac-
teristics, including distribution of jobs over research fields and different
queues, distribution of job size for an individual user, job cancellation
rate, job termination rate, and walltime request accuracy; 2) tempo-
ral characteristics, including monthly machine utilization, job temporal
distributions for different time periods, job inter-arrival time between
temporally adjacent jobs and jobs submitted by the same user; 3) exe-
cution characteristics, including distributions of each job attribute, such
as job queuing time, job actual runtime, job size, and memory usage,
and the correlations between these job attributes. This work provides
a realistic basis for scheduler design and comparison by studying the
supercomputer’s workload with new approaches such as using Gaussian
mixture model, and new viewpoints such as from the perspective of user
community. To the best of our knowledge, it’s the first research to sys-
tematically investigate the workload characteristics of a petascale super-
computer that is dedicated to open scientific research.

Keywords: Workload Characterization and Modeling, Petascale Super-
computer, Academic Supercomputer, High Performance Computing.

1 Introduction

As high performance computing (HPC) is becoming highly accessible, more re-
searchers from a variety of research fields start to use supercomputers to solve
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large scientific problems. A supercomputer provides massive computational re-
sources to achieve extremely fast processing speed in order to accelerate slow
processes and generate outcomes with less time. The overall performance of a
supercomputer depends heavily on the quality of the scheduling system. As in-
dicated in [6], the performance of a supercomputer scheduler is greatly affected
by the workload to which the supercomputer is applied, and there is no single
scheduling algorithm working perfectly for all workloads. Therefore, workload
characterization of a supercomputer is an important step to develop and evaluate
scheduling strategies. Furthermore, a good understanding of workload charac-
teristics can guide an HPC center to make decisions for purchasing or allocating
specific hardware and software for the applications with different resource usage
patterns.

Over the past decades, a variety of studies were conducted on workload analy-
sis and modeling of parallel computers to evaluate scheduler performance [5] [11],
and to predict job performance [6] [20]. Using historical data of workload traces
that were recorded on real machines, statistical analysis of workloads was per-
formed to understand the characteristics, such as distributions of job runtime and
memory usage, of a single HPC system [3], a multi-cluster supercomputer [8], or
a Grid computing environment [2]. Statistical workload models were also widely
studied to generate abstract representation of job attributes, such as fitting dis-
tributions to job attributes [17] and modeling correlations between job attribute
pairs [7]. Another type of workload models were developed on the basis of usage
behavior classification. Wolter [21] experientially classified supercomputer users
into three groups, and analyzed the job characteristics in each group. Song [18]
used a mixed usage group model to classify jobs into predefined number of cate-
gories and investigated the workload traces in each category for job scheduling.
Temporal characteristics of workloads in parallel systems were also analyzed and
modeled. An infinite two-state Markov model was used to describe the charac-
teristics of job inter-arrival in [13], which was extended to a n-state Markov
modulated Poisson process to capture autocorrelations in [9]. Temporal locality
of parallel system workloads was investigated in [14] to improve runtime pre-
diction accuracy. However, the user community was relatively small in previous
publications compared to a top ranking petascale supercomputers with a large
user community and millions of job submissions. Previous researches failed to
provide a comprehensive analysis of the characteristics of the user community,
which greatly affects the patterns of the workload on a machine. For instance,
the geographical distribution of users determines the temporal distribution of
workload in a day.

In this paper, we present a comprehensive workload characterization of Kraken,
an petascale supercomputer, which now ranks as the eleventh fastest computer
in the world, and holds the title of world’s fastest academic supercomputer [19].
Different from other top ranking HPC systems, Kraken is dedicated to academia,
and it’s user community consists of researchers from universities, research cen-
ters, institutes and laboratories. By analyzing Kraken workload, we can under-
stand the patterns of how academia uses supercomputers to solve large scientific
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problems. Another distinguished characteristic of Kraken is the high utilization,
which has been a sustained rate of 94 percents by average for the past year, and
already contributed two billion CPU hours in total to open scientific research.
The workload dataset used in this work contains about 700 thousand job traces,
which were collected between November 2010 and October 2011 on Kraken.
The large size of the dataset ensures that we are able to analyze the workload
characteristics properly and come to solid conclusions. The job characteristics
investigated in this work include general characteristics (e.g., distribution of the
number of jobs submitted by a user), temporal characteristics (e.g., distribution
of job inter-arrival time), and execution characteristics (e.g., distribution of job
size).

The contributions of this paper are two fold. First, this paper analyzes a large
workload dataset that was collected from the world’s fastest petascale academic
supercomputer. This is the first work, to the best of our knowledge, to system-
atically investigate the workload characteristics on a petascale supercomputer
that is dedicated to open scientific research. Second, we provide new viewpoints
and approaches with statistical models to comprehensively investigate a variety
of the characteristics of Kraken workload. Besides investigating and modeling
most of the workload characteristics introduced in previous research, we also an-
alyze some characteristics which appear to be unique to Kraken, especially the
characteristics of the user community, such as the user distribution and the dis-
tribution of the compute resource allocated to each research field. We also apply
the Gaussian mixture models to fitting the distributions of some job attributes,
such as job queuing time and actual runtime, which exhibit different patterns on
a petascale supercomputer and cannot be modeled using a single distribution.
We believe that this work is valuable in helping HPC centers to better under-
stand the workload characteristics of a petascale supercomputer and the user
community in academia, which is a necessary and important step to improve the
overall performance of a supercomputer, and to prepare for the next generation
of exascale HPC systems.

The remainder of the paper is organized as follows. Section 2 introduces the
Kraken supercomputer and describes the workload dataset used in this study.
Section 3 discusses the general workload characteristics of Kraken, including
distribution of research fields, distribution of job size for an individual user, job
distribution over queues, job cancellation rate, job termination rate, and walltime
request accuracy. The temporal workload characteristics of Kraken are investi-
gated in Section 4, which are monthly utilization, job temporal distribution in
a year, a month, a week, and a day, and inter-arrival time between temporally
adjacent jobs and jobs submitted by the same user. Section 5 talks about the
execution characteristics, such as distributions of each job attribute, job queuing
time, job actual runtime, job size, memory usage, and the correlations between
these job attributes. Finally, Section 6 concludes the paper and reiterates the
important characteristics of a petascale academic supercomputer.
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2 Workload Traces of the Kraken Supercomputer

The historical workload traces of the Kraken supercomputer [15] was used in
this study. Kraken is managed by the National Institute for Computational Sci-
ences (NICS) at the Oak Ridge National Laboratory (ORNL) in the United
States, and is funded by the National Science Foundation (NSF). It provides
a petascale computing environment that is fully integrated with the Extreme
Science and Engineering Discovery Environment (XSEDE). The supercomputer
is a Cray XT5 system consists of 9,408 compute nodes with 112,896 compute
cores, 147 terabytes of memory, and 3.3 petabytes storage. Each compute node
contains 12 AMD 2.6 GHz Istanbul compute cores and 16 GB memory. The
peak performance of the Kraken supercomputer is now 1.17 petaflops. Access
to Kraken compute resources is managed by the Portable Batch System (PBS).
The Lustre file system is used to support I/O operations, with the peak perfor-
mance of 30GB/s. Moab is used to schedule jobs on Kraken, with preference to
large core count jobs. Backfilling is applied on Kraken to allow smaller, shorter
jobs to use remaining idle resources. The supercomputer is funded for the NSF
community, which enables the scientific discoveries of nationwide researchers. In
general, experienced researchers from academic or nonprofit organizations of the
United States are eligible to request allocations of compute time of Kraken.

Table 1. A typical historical usage data that records the workload traces of the Kraken
supercomputer. The exemplary workload dataset contains five instances. Each row
represents a job, and each column denotes a job attribute.

job id user name account nproc mem used submit time

0000001.nid00016 hao U1-INDEX001 12 7588 2011-01-27 08:10:13
0000002.nid00016 haihang U2-INDEX001 1 142664 2011-03-28 14:15:50
0000003.nid00016 hao U2-INDEX001 1032 16276 2011-04-16 01:28:41
0000004.nid00016 admin SUPPORT 288 11836 2011-05-31 09:43:51
0000005.nid00016 hao U1-INDEX002 98304 71812 2011-07-05 17:01:08

start time end time walltime req walltime cpu hours

2011-01-27 09:26:03 2011-01-27 09:36:14 00:30:00 00:10:11 3.22
2011-03-28 14:16:14 2011-03-28 14:35:01 05:30:00 00:18:47 0.0658
2011-04-16 11:51:30 2011-04-17 11:51:56 24:00:00 24:00:27 24775.74
2011-06-04 21:00:20 2011-06-05 21:00:57 23:59:59 24:00:37 6914.96
2011-07-07 11:11:13 2011-07-08 13:11:34 32:00:00 26:00:21 2556477.44

queue type software research area description

small batch —– Physics Simulation in Physics
hpss batch wrf Earth Sciences Simulation in Earth Science

medium batch mpcugles Physics Energy conserving eddy simulation
small interactive —– Benchmark Interactive benchmark

capability batch gadget Earth Sciences Large earth simulation
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Table 2. Classification of jobs that are submitted to Kraken, which is determined by
the number of compute nodes. Each job category is associated with a unique queue
that is managed by job scheduler.

Queue
Compute Cores WalltimeMax

Minimum Maximum Percentage (%) (hours)

Small 1 512 0–0.45 24.0
Medium 513 8,192 0.45–7.26 24.0
Large 8,193 49,536 7.26–43.88 24.0

Capability 49,537 98,352 43.88–87.12 48.0
Dedicated 98,353 112,896 87.12–100 48.0
HPSS N/A N/A N/A 24.0

The dataset of the Kraken workload traces were collected between November
2010 and October 2011. It contains 693,829 job traces submitted by more than
one thousand researchers from 25 research fields. This dataset was obtained by
tracking all jobs that were submitted to the Kraken supercomputer and doc-
umenting the information that was related to the jobs. Some instances of the
Kraken workload traces are listed in Table 1, each of which contains sixteen
attributes. The attributes job id, user name, and account are the unique identi-
fiers of a job, an user, and an account, respectively. The attributes submit time,
start time and end time record the times when a job is submitted, executed,
and finished, respectively. Jobs are automatically classified into several cate-
gories according to the number of requested compute nodes, denoted by nproc.
Each category is associated with a queue that indicates the priority. The defi-
nitions of the job categories and queue types are described in Table 2. Because
each compute node of Kraken contains twelve cores, the attribute nproc must
be a multiple of 12, except for the jobs in the queue for accessing the High Per-
formance Storage System (HPSS). These jobs are executed to transfer files to
a storage system using a batch file. No compute nodes on Kraken are allocated
to the jobs in HPSS queue. The attribute walltime req is the requested wall-
time of a job, which is required to be estimated and provided by a user before
submitting a job. The attributes walltime, mem used and cpu hours represent
actual runtime, consumed memory and CPU hours of a job, respectively. The
attribute type takes a boolean value (i.e., interactive or batch), which indicates
whether a user has interactive access to the compute resources. The attribute
software describes the name of the software or package, if any, used by a job. For
instance, the job 0000003.nid00016 used MPCUGLES, which is a software for
energy-conserving large eddy simulations. The attribute research area indicates
the research field of the target problem, or to which the user belongs. At last,
the attribute description explains the objective of the project.
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Fig. 1. Pie chart of the research fields sorted by the number of jobs submitted to
Kraken in each field

3 Job General Characteristics

We first analyze the general characteristics of jobs running on Kraken and its
user community. The objective of this analysis is to figure out how users from
different research fields utilizing the petascale supercomputer, and how well they
performed on using the supercomputer for open scientific research.

3.1 Distribution of Research Fields

There were 1,111 users from 473 different accounts submitted jobs to Kraken
during the year when the workload traces were collected. The users scattered in
25 different research fields from all over the United States. The proportion of each
research field sharing the supercomputer is illustrated in Figure 1. The top five
research fields using Kraken were Atmospheric Sciences, Molecular Biosciences,
Chemistry, Materials Research and Physics, which took over 75 percents of the
job submissions to Kraken. However, the number of Kraken users in a research
field was not necessarily proportional to the number of job submissions in the
research field. For example, the research field of Molecular Biosciences had the
most 205 Kraken users, but only 90 users came from Atmospheric Sciences who
submitted the most jobs. On the other hand, the number of job submissions and
the number of users in a research field were positively correlated, i.e., a larger
user group often resulted in more job submissions.

3.2 Distribution of Number of Jobs for a User

Typically, a supercomputer user only submits jobs to address similar problems
in the same discipline. On the other hand, it is very common that a user submits
multiple jobs at one time or across multiple times. The distribution of the number
of jobs submitted by a user is depicted in Figure 2 in a logarithm scale. On
Kraken, there were 693,829 job submissions recorded in a year, and an average
of 624 jobs were submitted by each user. However, it should be noted that the
number of jobs submitted by a user was not uniformly distributed. Oppositely,
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Fig. 2. Histogram (red rectangles) of the number of jobs submitted by a Kraken user,
with density estimate (blue curve) and statistical summary (gray boxplot)

Fig. 3. Distribution of jobs over queues in different research fields. The number in a
red rectangle indicates the probability that a job belongs to a queue.

the most active 10% users contributed 79.2% job submissions to the workload.
The statistical summary of the jobs submitted by a user is also plotted with a
boxplot in Figure 2, which indicates that 50% users had job submissions between
20 to 600 in a year. The number of jobs submitted by a user can be modeled using
the log-normal distribution, i.e., the logarithm of the number of job submissions
conforms to the Gaussian distribution. The parameters of the distribution can
be computed using the maximum-likelihood estimation (MLE). The probability
density function (PDF) is plotted with the blue curve in Figure 2.

3.3 Distribution of Jobs over Queues

The probability distribution of jobs over queues and the probability distribu-
tions of jobs over queues within different research fields are depicted in Figure
3. In general, the probability of the jobs belonging to a queue consistently de-
creased with the increase of the job size in the queues of Small, Medium, Large,
Capability, and Dedicated, as shown by the average distribution in Figure 3. The
probability that a job belongs to a queue is shown in a red rectangle in the figure.
On average, over 80% jobs belonged to the queue of type Small, and only 1%
jobs consumed significant compute resources, which belonged to the queues of
type Large, Capacity, or Dedicated. As for the distributions of jobs over queues
in each individual research field, although the distribution in Earth Science had
great difference from the average distribution, in which case the probability that
a job was in the queue of type Medium was greater than the probability that the
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Fig. 4. General characteristics of workload traces in different queues

job belonged to the queue of type Small, in general, most of the per-discipline
distributions were quite similar to the average distribution, such as Atmospheric
Sciences and Materials Research. Consequently, we can model the distribution
of jobs over queues with a single multinomial distribution for all research fields,
with each model parameter equal to the value of the corresponding average
probability of a job belonging to a queue.

3.4 Cancellation/Termination Rate and Walltime Request Accuracy

The general characteristics of the jobs in different queues are also investigated
in this study, which include job termination rate, job cancellation rate, and
average accuracy of walltime estimation. In most HPC systems, a job can be
canceled manually by a user before the job starts executing, in which case the
job actual runtime is zero. On the other hand, a job can be forcefully terminated
by the HPC system if the job runs out of the requested walltime, in which
case the job actual runtime is equal to the requested walltime. Moreover, a job
might fail and exit during its execution due to some runtime error, in which
case the job actual runtime is often significantly smaller than the requested
walltime. If a job neither completes correctly, nor provides meaningful results,
it is considered incorrect. Because the incorrect jobs are always misleading for
meaningful analysis, we evaluate the accuracy of the requested walltime with
correct jobs. A job is considered correct, if it belongs to the job set:

Jc = {j | (j.mem used 
= 0) ∧ (j.walltime > 30)

∧ (j.walltime < j.walltime req)} (1)

where “.” represents attribute relationship, and the unit of the attribute walltime
is second. The three literals in (1) remove the canceled jobs, terminated jobs, and
a part of jobs with runtime errors at the beginning of job execution, respectively.
The second literal also contributes to remove some “hello world” jobs, in which
case a user often does not care about job runtime. On the other hand, it should
be noted that this definition does not remove all incorrect jobs, such as jobs
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Fig. 5. Monthly utilization of the Kraken supercomputer over a year

with runtime errors at the end of their execution. These remaining incorrect
jobs are treated as noise in this work. To quantitatively measure the accuracy
of the requested job runtime, the walltime request accuracy (WRA) is applied.
For a correct job j in Jc, WRA is defined as:

WRA(j) =
j.walltime

j.walltime req
× 100% (2)

The rates of canceled jobs, terminated jobs and jobs with runtime less than 30
seconds, along with the WRA for each queue are illustrated in Figure 4. A most
obvious phenomenon is that the jobs requesting significant compute resources,
in the queues of type Capability and Dedicated, had the highest cancellation rate
of more than 60%, which might be resulted from the long queuing time. More-
over, the jobs in the queue Capability and Dedicated had the lowest termination
rate of less than 5%, and the lowest 30-second job quitting rate of less than 1%,
along with the lowest WRA. This phenomenon can be partially explained by
the fact that researchers submitted these jobs often had rich HPC experience
to reduce errors in the code, and they also tended to request longer walltime
to decreased the probability that their jobs were forcefully killed by the system.
Third, a high rate of the jobs quitting within 30 seconds in the queues of type
Small and HPSS, which at least doubled the same rate of other queues, indicates
that new users of Kraken were more probable to submit small jobs to figure out
how to access the compute and storage resources. Consequently, it is necessary
for the scheduling system of an HPC system to have backfilling policy, which
allows small jobs to be backfilled. The last important observation is that the
overall accuracy of the requested walltime was around 33%, which was typically
estimated and provided by a user. The low accuracy of the job runtime esti-
mate indicates that many users were lack of experience with the HPC system.
It is of great necessity for HPC centers to provide users with more supports,
such as a recommendation system to guide users to predict the runtime of their
jobs.
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(a) Histogram (red rectangles) and the kernel density estimate (blue curve) of the
number of jobs that were submitted to Kraken in the year between November 2010
and October 2011.

(b) Temporal distribution of the number of per-day jobs over a month.

(c) Temporal distribution of the number of per-day jobs over a week.

(d) Temporal distribution of the number of per-hour jobs over a day.

Fig. 6. Temporal distributions of the Kraken workload
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4 Job Temporal Characteristics

In this section, we investigate the temporal characteristics of the jobs submitted
to Kraken, which include 1) the monthly utilization of the supercomputer in a
year; 2) temporal distributions of jobs in a year, a month, a week, and a day; and
3) the inter-arrival time of job submissions. The goal is to unveil the workload
dynamics, i.e., the time-based patterns in the workload.

4.1 Supercomputer Utilization

The monthly utilization of Kraken over a year is depicted in Figure 5. The sys-
tem utilization for each month was very consistent on Kraken, which oscillated
between 90% and 97%, and an average monthly utilization of 94.6% was ob-
served. Kraken has been providing two thirds of cycles that are available to the
national research community funded by NSF in the United States. Projects are
selected by xRAC [22] through process which is designed to provide independent
merit-review of proposals for the XSEDE. At NICS, teams of operations, user
support, computational science and education, outreach and training provide
support at various levels. The combination of project selection, management,
support, and expertise provided on site at NICS result in such high utilization
rate for the petaflop supercomputer, which serves as a good example to increase
the overall utilization of an HPC system to open scientific research.

4.2 Temporal Distributions

The temporal distributions of the Kraken job submissions over a year, a month,
a week, and a day are illustrated in Figure 6a, 6b, 6c, and 6d, respectively. In
Figure 6a, the kernel density estimate [16] is computed to fit the dataset and to
provide a smooth representation. An important observation from this figure is
that the job submissions were not uniformly distributed over time, and the bursty
behavior of job arrivals can be observed, such as the burstiness of the job arrivals
in the middle of February and August, 2011. This phenomenon is possibly caused
by the training activities using the supercomputer at the beginning of spring
and fall semester. On the other hand, the low job arrival can be also observed,
which might be caused by system upgrade, system failure, or occupation by
capacity or dedicated jobs. An interesting observation is that the number of job
submissions was not necessarily correlated with the utilization. For instance,
running dedicated jobs might lead to very high system utilization with very low
job counts. At last, the workload of Kraken did not exhibit obvious patterns
over a year. The temporal distribution of the daily job arrivals over a month
is computed using the 12-month Kraken workload dataset, and the standard
deviations are also calculated to indicate the reliability of the estimates, which
are presented with the error bars in Figure 6b. The large errors for the daily job
arrival estimates indicate that the workload of the same day (e.g., the 8th day)
in a month was not stationary, which varied greatly from month to month.
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(a) Distribution of the inter-arrival time(second) between the temporally adjacent
jobs.

(b) Distribution of the inter-arrival time(second) of jobs from the same user.

Fig. 7. Comparisons between the inter-arrival time of the continuous job stream and
the inter-arrival time of the job sequence submitted by the same user

However, the workload exhibited obvious and stationary patterns in weekly
cycles. As illustrated in Figure 6c, the daily workload presented obvious cyclical
patterns in a week, which started at the maximum on Mondays, then constantly
decreased to its minimum on Saturdays, and bounced back on Sundays towards
the peak. Moreover, the small standard variations presented by the short error
bars in Figure 6c also indicate a high degree of consistency in the daily workload
over a week. In general, the workload at the end of a week was quite different
from the workload at the beginning of a week. The maximum daily workload on
Mondays was 1.8 times of the minimum daily workload on Saturdays. Similarly,
the hourly workload also showed stationary, obvious, but more complicated pat-
terns in daily cycles, which is illustrated in Figure 6d. The peak of the hourly
workload arrival appeared at around 3:00 PM in the afternoon. In general, the
hourly workload in the midnight was much lower than the hourly workload in the
afternoon. Another interesting phenomenon is that researchers tended to submit
more jobs before getting off work and going to sleep, which is well supported by
the local maximum at around 5:00 PM and 12:00 PM in Figure 6d, respectively.
However, it should be noted that the cyclical patterns of hourly workload over
a day on a supercomputer is significantly dependent on the spatial distribution
of its users.

4.3 Inter-arrival Time

We analyze the inter-arrival time of the jobs submitted in sequence to Kraken,
and compare the results with the inter-arrival time of the jobs submitted by
the same user. The inter-arrival time distributions are illustrated in Figure 7,
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in which the inter-arrival time is plotted in a log scale to reduce a wide range
to a manageable size. From Figure 7a, we can observe that the time intervals
between two temporally adjacent job submissions were very small. As indicated
by the statistical summary in the box plot, around 25% inter-arrival times were
less than three seconds, around 50% inter-arrival times less than six seconds,
and around 75% inter-arrival times less than 30 seconds. The large inter-arrival
time might be resulted from system upgrade or system failure, in which case,
users cannot access or submit jobs to the supercomputer. The inter-arrival time
distribution of the jobs submitted by the same user exhibited similar charac-
teristics to the distribution of the overall inter-arrival time, as shown in Figure
7b. This distribution indicates the temporal locality, or burstiness, of the jobs
submitted by an individual user, which is well supported by the observation
that 25% inter-arrival times were less than two seconds, and 50% inter-arrival
times were less than five seconds. The job burstiness was generally caused by the
fact that users usually repeated submitting the same jobs or jobs with similar
attributes in a short time span. Due to the similarity of these distributions, a
single statistical model can be applied to model the inter-arrival times of the
workload. In this work, we apply a Weibull distribution to model the logarithm
of the job inter-arrival times, with MLE to estimate the model parameters. The
results are shown with the blue curves in Figure 7.

5 Job Execution Characteristics

In this section, the job execution characteristics are investigated. First, we ana-
lyze the characteristics of each individual job attribute in the Kraken workload,
including actual job queuing time, actual job runtime, number of compute nodes
used by a job, and total memory consumed by a job. Then, the correlations
between these job attributes are studied. The results of the characteristics of
each job attribute and the correlations between job attributes are drawn with
scatter-plot matrices which is depicted in Figure 8. Each diagonal plot presents
the univariate histogram of the logarithm of one job attribute, along with the fit-
ted distribution. The plots above the diagonal, with different shapes and colors,
present the queue types to which each data point belongs, which also indicate the
geographical distributions of the jobs in the 2-dimensional attribute space. Al-
though plots below the diagonal contain the same data points as the plots above
the diagonal, a smooth curve is fitted to each plot using the locally weighted
scatter plot smoothing [4] to intuitively present the correlations between the job
attributes. It should be noted that, because incorrect jobs are always distracting
in investigating the underlying distributions of the job attributes, we intention-
ally remove the incorrect jobs, and only use the correct jobs in the set Jc, defined
in (1), for the following analysis. Moreover, the characteristics of the jobs in the
HPSS queue are not analyzed, because these jobs do not consume any compute
cores and memory, and users generally do not care about the performance of
such jobs.
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Fig. 8. Execution characteristics of actual queuing time, actual runtime, requested
compute nodes, and consumed memory in the Kraken workload. All quantities in the
figure are in a logarithmic scale based on 10.

5.1 Individual Attribute Characteristics

When analyzing the characteristics of each individual job attribute and plotting
the scatter-plot matrices, the job submissions belonging to the queues of type
Capacity and Dedicated are also intentionally removed, because these jobs only
take over 0.21% of the entire job traces in the Kraken workload, which are always
treated as outliers by the statistical models that are used to fit the individual
attribute distributions.

We first analyze the characteristics of the job attribute queuing time, denoted
as Tq, which is the actual waiting time of a job in a queue between job submission
and execution. Different from the conclusions in previous research that a single
distribution, such as the log-uniform distribution discussed in [10], can be used
to present the queuing time distribution in a small system, for the workload
of Kraken, a petascale supercomputer, any single distribution does not well fit
to the job queuing time. In this study, the Gaussian mixture model (GMM),
with two Gaussian component distributions, is applied to model the logarithm
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of the job queuing time, as illustrated in Figure 8-(1, 1). The parameters of the
GMM model are estimated using MLE. The data of the job queuing time are
well fitted by the GMM model with two components, which actually shows the
characteristics of the scheduling queues. The first Gaussian component with a
smaller mean is resulted from the backfilling policy of the scheduler, in which
case the jobs requesting a small portion of compute resources can be backfilled
and executed faster. The second Gaussian component represents the distribution
of the queuing time of the non-backfilled jobs. On average, a job needs to wait
in the queue for 34.5 minutes before starting execution.

Similarly, the distribution of the actual job runtime, denoted as Tr, cannot be
simply modeled with a single distribution as well, such as the log-uniform [10],
hypergamma [12], or Webull [1] distributions. In this study, we apply the GMM
model to present the distribution of the logarithm of the actual job runtime, as
shown in Figure 8-(2, 2). The GMM model contains three Gaussian components,
which well fits the distribution of the logarithm of the job runtime. A possible
explanation for the three Gaussian components is that the actual runtime of the
jobs in each queue conforms to a logarithm-normal distribution, in which case
the logarithm of the actual runtime of all jobs conforms to a mixture Gaussian
distribution. The average job actual runtime is 36.8 minutes.

The characteristics of job size, denoted as Nn in number of compute nodes,
for the Kraken workload are also investigated. On Kraken, there are 12 cores per
node, and it is not possible to allocate part of a node. After applying logarithm
on the number of nodes, the resulted distribution still has a short tail, as shown in
Figure 8-(3, 3). This tailed distribution indicates that there are a great number of
small jobs along with few large jobs are submitted to Kraken, which is consistent
with the results shown in Figure 3. In more detail, there are 80.1% jobs submitted
to the queue of type Small, and 26.5% jobs requesting only one node with twelve
compute cores for learning HPC or debugging code. Consequently, we argue
that, while the scheduler is collecting resources for larger jobs, backfilling policy
is important for a petascale supercomputer to make jobs with short wall-clock
limits and small core counts to start execution faster, in order to respond to the
users with small job submissions quickly.

Memory usage is defined as the maximum amount of physical memory that
is consumed by a job at some time point during its execution, which is recorded
by the PBS on Kraken. Kraken is a distributed-memory system, with 16 GB
memory for each compute node. The univariate histogram and the fitted dis-
tribution of the logarithm of the memory usage are depicted in Figure 8-(4, 4).
In this study, a single Gaussian distribution is applied to fit the memory usage
represented in a log scale. Although the Gaussian distribution fits most memory
usage data very well, it cannot well model the heavy tail, which actually indi-
cates that the entire workload is dominated by the computationally-intensive
jobs with few memory-intensive jobs. A possible solution to address this prob-
lem is first to cluster the jobs into computationally-intensive or memory-intensive
categories, then to model each job category separately. On Kraken, an average
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Table 3. Correlation coefficients between job attributes

Correlation Tq − Tr Tq −Nn Tq −Mu Tr −Nn Tr −Mu Nn −Mu

Pearson 0.2439 0.0061 0.0210 −0.0481 −0.0177 0.0620
Log-Pearson 0.3946 0.0768 0.0286 −0.2092 0.0070 0.2501
Spearman 0.3951 0.0593 0.0367 −0.2293 −0.0716 0.4893

memory usage for the computationally-intensive jobs is around 12.3 GB, and the
memory-intensive jobs usually consume over 80 GB memory.

5.2 Attribute Correlations

The correlations between job attributes are computed using all jobs in the queues
of type Small, Medium, Large, Capacity, and Dedicated in the job set Jc. Pearson
product-moment correlation coefficient is the most commonly used measure of
the strength of linear dependence between object attributes. Pearson correlation
works well in the cases that the values of the attributes are roughly normally
distributed. But Pearson correlation is very sensitive to the strong outliers, and
works poorly on modeling correlations between data sampled from heavily tailed
distributions. Thus, we also apply the Spearman’s rank correlation coefficient to
study the correlations between job attributes, which is a non-parametric corre-
lation measure that is less sensitive to strong outliers. The correlations between
job attributes are intuitively presented with the red smooth curves in the plots
below the diagonal in Figure 8. We also applied the Pearson measure on both the
raw job attributes and the logarithmic-scaled job attributes. Because Spearman
measure is invariant to the logarithm operation, the Spearman correlation coef-
ficients are only computed using the raw job attributes. The resulted coefficients
are quantitatively listed in Table 3.

A strong positive correlation between job queuing time Tq and actual runtime
Tr is observed from all three correlation measures, which can also be intuitively
observed from the curve with a large positive slope in Figure 8-(2, 1). Because
the Spearman correlation and Pearson correlation have similar values when the
data are roughly normally distributed with few outliers, the almost identical co-
efficients computed from the Log-Pearson measure and the Spearman measure
indicate that the GMM model is a good model for fitting logarithm-scaled job
queuing time and actual runtime. The second observation of job attribute cor-
relations is that the job size Nn is positively correlated, in a non-linear manner,
with the memory usage Mu, which can be observed from the curve with a pos-
itive slope in Figure 8-(4, 3). A possible explanation for this observation is that
Kraken is a distributed-memory system which always allocates 16 GB memory
with each compute node allocation. Because each core can only access to the
memory on the same node, the total allocated memory is always proportional
to the number of allocated nodes. In this sense, a user tends to use more mem-
ory, when more compute cores are allocated with a larger amount of memory
available. Third, there is a negative correlation between job size Nn and job



Workload Analysis and Modeling of a Petascale Supercomputer 269

actual runtime Tr, which can be easily observed from the curve with a nega-
tive slope in Figure 8-(3, 2). This phenomenon indicates that, in general, using
more compute resources reduces the wall-clock time of a job, which is actually
the initial reason to use a supercomputer. Fourth, job queuing time Tq can be
considered independent with job size and memory usage, as indicated by the
coefficients that are close to zero. Similarly, job actual runtime Tr is statistically
independent with job memory usage Mu. These independences indicate that job
queuing time and memory usage are more random than other job attributes,
which means it is harder to predict these two job attributes. The fitting curves
with slopes close to zero graphically indicate the independences between the job
attribute pairs, as shown in Figure 8-(3, 1), 8-(4, 1), and 8-(4, 2). Finally, for the
correlation measures, the Spearman measure generally performs better than the
Pearson measure in the sense of detecting the non-linear correlations between
job attribute pairs.

6 Conclusion

In this paper, the workload characteristics of a petascale academic supercom-
puter is comprehensively and systematically investigated, based on the twelve-
month workload dataset collected from the world’s most powerful academic su-
percomputer, with around 700 thousand jobs submitted by more than one thou-
sand users from 25 research fields. The general characteristics, temporal char-
acteristics, and execution characteristics of the workload traces are investigated
and well represented with statistical models, with the objective of providing a
realistic basis for scheduler design and comparison, as well as helping HPC cen-
ters to better understand the characteristics of workload and user community.
For the highly-utilized petascale academic Kraken supercomputer, the most im-
portant observations and conclusions are reiterated as follows, according to the
order they are discussed in the paper:

– Jobs are not uniformly distributed over research fields and users, and several
users from a few research fields usually dominate the job submissions.

– The distributions of jobs over queues are very similar in different research
fields. Thus, the same multinomial distribution can be applied, in all research
fields, to model how jobs distribute over queues.

– Users with large job submissions generally have more HPC knowledge than
users only with small job submissions. However, in general, the job runtime
estimate is shown to be highly inaccurate.

– The Kraken workload does not show stationary patterns over a month or a
year. But the workload exhibits obvious patterns in weekly or daily cycles.

– Due to the strong similarity between the patterns of overall job inter-arrival
time and inter-arrival time of the jobs submitted by a user, a single statistical
model is enough to represent the distributions of job inter-arrival time.

– Backfilling policy is important for a petascale supercomputer to enable small
jobs to run effectively, which take over 80% job submissions in Kraken.
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– The distributions of job queuing time and actual runtime on a multi-queue
petascale supercomputer cannot be modeled with a single distribution. Gaus-
sian mixture models perform well on modeling the log-scaled attributes.

– Job actual runtime is positively correlated with job queuing time, and neg-
atively correlated with job size. Job memory usage has positive correlation
with job size. Job queuing time can be considered independent with job size
and memory usage. Job actual runtime and memory usage are also statisti-
cally independent.
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