
Assume-Guarantee Reasoning

for Safe Component Behaviours

Chris Chilton1, Bengt Jonsson2, and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We formulate a sound and complete assume-guarantee frame-
work for reasoning compositionally about safety properties of component
behaviours. The specification of a component, which constrains the tem-
poral ordering of input and output interactions with the environment,
is expressed in terms of two prefix-closed sets of traces: an assumption
and guarantee. The framework supports dynamic reasoning about com-
ponents and specifications, and includes rules for parallel composition,
logical conjunction corresponding to independent development, and quo-
tient for incremental synthesis. Practical applicability of the framework
is demonstrated by considering a simple printing example.

Keywords: assume-guarantee, specification theory, components, com-
positionality, parallel, conjunction, quotient.

1 Introduction

Component-based design methodologies enable both design- and run-time as-
sembly of software systems from heterogeneous components, thus facilitating
component reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, specification the-
ories have been proposed that permit the mixing of specifications and imple-
mentations, and allow for the construction of new components from existing
ones by means of compositional operators [1,2,3]. A specification should make
explicit the assumptions that a component can make about the environment,
and the corresponding guarantees that it will provide about its own behaviour.
This allows for the use of compositional assume-guarantee (AG) reasoning, in
order to combat issues of complexity and state space explosion during system
development and verification.

In earlier work [4], we introduced a component-based specification theory, in
which components communicate by synchronisation of I/O actions, with the un-
derstanding that inputs are controlled by the environment, while outputs (which
are non-blocking) are under the control of the component. The component-model
is conceptually similar to the interface automata of de Alfaro and Henzinger [5],
except that our refinement is based on classical sets of traces, as opposed to alter-
nating simulation, and that we allow explicit specification of inconsistent traces,
which can model underspecification and errors, etc. With both trace-based and

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 92–109, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Assume-Guarantee Reasoning for Safe Component Behaviours 93

operational representations for components, a distinguishing feature of our the-
ory is the inclusion of conjunction and quotient operators (which generalise those
of [2,6]) for supporting independent and incremental development, respectively.
Logical disjunction and hiding can also be added. The theory enjoys strong al-
gebraic properties with all the operators being compositional under refinement,
and we prove full abstraction with respect to a simple testing framework.

In [4] and [5], the assumptions and guarantees of components are merged
into one behavioural representation. In many cases, this avoids duplication of
common information, although there are situations in which it is desirable to
manipulate the assumptions and guarantees separately. For instance, we may
want to express a simple guarantee (such as “no failure will occur”) without
having to weave it into a complex assumption. Another advantage of separation
is specification reuse, in that the same guarantees (or assumptions) can be used
for several related interfaces, each representing different versions of a component.

Contributions. In this paper, we present a complete specification theory for rea-
soning about AG specifications of components (as modelled in [4]). Assumptions
and guarantees are prefix-closed sets of traces, meaning our framework facilitates
reasoning about safety behaviours, and differs from (arguably) more complex
approaches based on modal specifications and alternating simulation. Building
upon the theory in [4], we define the operators of parallel, conjunction and quo-
tient directly on AG specifications (the last being the first such definition), and
prove their compositionality. By treating AG specifications as first-class citizens,
the theory supports flexible development and verification of component-based
systems using AG principles. A component can be characterised by its weakest
AG specification, and, in the opposite direction, we can infer the least refined
component satisfying a given specification. From this, a notion of refinement
corresponding to implementation containment is defined. In relating implemen-
tations with AG specifications by means of satisfaction, we formulate a collection
of sound and complete AG reasoning rules for the preservation of safety prop-
erties under the operations and refinement preorder of the specification theory.
These rules are inspired by the Compositionality Principle of [7,8] for parallel
composition, which we generalise to the operations of conjunction and quotient.
The rules allow us to infer properties of compositions for both AG specifications
and components, thus enabling designers to deduce whether it is safe to sub-
stitute a component, for example one synthesised at run-time by means of the
quotient operator, with another.

Related Work. Compositional AG reasoning has been extensively studied in
the literature, where traditionally the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal log-
ics [9,10,11]. A variety of rule formats have been proposed, although Maier
demonstrates through a set-theoretic setting in [12] that compositional circular
AG rules for parallel composition (corresponding to intersection) cannot both
be sound and complete. This seems to contradict the work of Namjoshi and

94 C. Chilton, B. Jonsson, and M. Kwiatkowska

Trefler [13], although the discrepancy is attributed to the fact that the sound
and complete circular rule presented in [13] is non-compositional.

Compositional reasoning about AG specifications in the form of AG pairs, sim-
ilar to what we consider in this paper, is discussed in [7] for the generic setting
of state-based processes. The authors formulate a Compositionality Principle for
parallel composition, and observe that this is sound for safety properties. A logi-
cal formulation for specifications is then discussed in [8], where intuitionistic and
linear logic approaches are put forward. The main difference with our approach
is that we consider an action-based component model and have a richer set of
composition operators, including conjunction and quotient. We also prove com-
pleteness, by relying on the convention that an output is controlled by at most
one component, which can be used to break circularity.

More recent proposals focus on compositional verification for interface theo-
ries [14,15], namely interface and I/O automata, which are closest to our work.
In [14], Emmi et al. extend a learning-based compositional AG method to inter-
face automata. They only consider the much more limited asymmetric rules for
safety properties, which are shown to be both sound and complete. The rules are
supplied for the original subset of operators and relations defined in [5], namely
compatibility, parallel composition and refinement based on alternating simula-
tion. Thus, no consideration is given to conjunction or quotient. Other notable
work concerning compositional reasoning for interface theories is the AG frame-
work defined by Larsen et al. in [15] for I/O automata, where assumptions and
guarantees are themselves specified as I/O automata. The authors consider a par-
allel composition operator on AG specifications that is the weakest specification
for composed components respecting independent implementability, for which
they present a sound and complete rule. Our work allows a more general compo-
nent model that does not require input-enabledness, and allows for specifications
to have non-identical interfaces to their implementations. We go beyond [15] by
defining conjunction and quotient operations directly on AG specifications, thus
providing a significantly richer basis for AG based reasoning and development,
and we do not require input-enabledness of guarantees.

A compositional specification theory based on modal specifications has been
developed in [3], which includes all the operations we consider in this paper,
but for systems without I/O distinction. Larsen et al. consider a cross between
modal specifications and interface automata [1], where refinement is given in
terms of alternating simulation/modal refinement (which is stronger than our
trace containment), and no operations for conjunction and quotient are given.
Surveying [16], Bauer et al. provide a generic construction for obtaining a con-
tract framework based on AG pairs from a component-based specification theory.
The abstract ideas share similarity with our framework, and it is interesting to
note how parallel composition of contracts is defined in terms of the conjunction
and quotient operators of the specification theory. Our work differs in that we
define both of these operators directly on contracts. A definition of conjunction
on contracts is provided in [17], but this is for a simplified contract framework,
as witnessed by the definition of parallel composition on contracts.

Assume-Guarantee Reasoning for Safe Component Behaviours 95

Outline. In Section 2 we summarise the compositional specification theory of [4],
which serves as a basis for our AG reasoning framework. Section 3 introduces
the main definitions of the AG framework, and presents a number of sound
and complete compositional rules for the operators of the specification theory.
An application of our framework is illustrated in Section 4, while Section 5
concludes our work and suggests possible extensions. Proofs of our results are
made available as the technical report [18].

2 Compositional Specification Theory

In this section, we briefly survey the essential features of our compositional
specification theory presented in [4]. In that paper, we present two notations for
modelling components: a trace-based formalism and an operational representa-
tion. Here we focus on the trace-based models, since operational models can be
mapped to semantically equivalent trace-based ones.

A component comes equipped with an interface, together with a set of be-
haviours over the interface. The interface is represented by a set of input actions
and a set of output actions, which are necessarily disjoint, while the behaviour
is characterised by sets of traces.

Definition 1 (Components). A component P is a tuple 〈AI
P ,AO

P , TP , FP〉 in
which AI

P and AO
P are disjoint sets referred to as inputs and outputs respectively

(the union of which is denoted by AP), TP ⊆ A∗
P is a non-empty set of permis-

sible traces, and FP ⊆ A∗
P is a set of inconsistent traces. The trace sets must

satisfy the constraints:

1. FP ⊆ TP
2. If t ∈ TP and i ∈ AI

P , then ti ∈ TP
3. TP is prefix closed
4. If t ∈ FP and t′ ∈ A∗

P , then tt′ ∈ FP .

The permissible traces contain all possible interaction sequences between the
component and the environment; they are thus receptive to all inputs, as these
are under the control of the environment. If on some interaction sequence an
error arises in the component, or the environment issues a non-enabled input,
the trace is said to be inconsistent. We adopt the convention that any inconsistent
trace is suffix closed, meaning that, once the component becomes inconsistent,
it behaves similarly to the process CHAOS in CSP.

From hereon let P ,Q andR be components with signatures 〈AI
P ,AO

P , TP , FP〉,
〈AI

Q,AO
Q, TQ, FQ〉 and 〈AI

R,AO
R, TR, FR〉 respectively.

Notation. Let A, B and C be sets of actions. For a trace t, write t � A for the
projection of t onto A. Now for T ⊆ A∗, write T � B for {t � B : t ∈ T }, T ⇑ B
for {t ∈ B∗ : t � A ∈ T }, T � B for ε+(T ⇑ B)(ε+AI), T ↑ B for T (B)(A∪B)∗,
T ↑ε B for T ∪ (T ↑ B), T for A∗ \ T , and pre(T) for the largest prefix-closed set
contained in T .

96 C. Chilton, B. Jonsson, and M. Kwiatkowska

Refinement. In the specification theory, refinement corresponds to safe-
substitutivity. This means that Q is a refinement of P if Q can be used safely
in any environment that is safe for P . An environment is safe for a component
if any interaction between the two cannot be extended by a sequence of output
actions under the control of the component such that the resulting trace is in-
consistent. We will thus need to consider the safe representation of a component,
obtained by propagating inconsistencies backwards over outputs.

Definition 2 (Safe component). Let P be a component. The most general
safe representation for P is a component E(P) = 〈AI

P ,AO
P , TE(P), FE(P)〉, where

TE(P) = TP∪FE(P) and FE(P) = {tt′ ∈ A∗
P : t ∈ TP and ∃t′′ ∈ (AO

P)
∗ ·tt′′ ∈ FP}.

We can now give the formal definition of refinement. Intuitively, Q must be
willing to accept any input that P can accept, but it must produce no more
outputs than P , otherwise we could not be certain how the environment would
respond to these additional outputs.

Definition 3 (Refinement). For components P and Q, Q is said to be a re-
finement of P, written Q
imp P, iff:

1. AI
P ⊆ AI

Q
2. AO

Q ⊆ AO
P

3. TE(Q) ⊆ TE(P) ∪ TE(P) ↑ (AI
Q \ AI

P)
4. FE(Q) ⊆ FE(P) ∪ TE(P) ↑ (AI

Q \ AI
P).

The set TE(P) ↑ (AI
Q \ AI

P) represents the extension of P ’s interface to include
all inputs in AI

Q \ AI
P . As these inputs are not ordinarily accepted by P , they

are treated as bad inputs, hence the suffix closure with arbitrary behaviour.

Parallel Composition. The parallel composition of two components is obtained as
the cross-product by synchronising on common actions and interleaving on inde-
pendent actions. To support broadcasting, we make the assumption that inputs
and outputs synchronise to produce outputs. Communication mismatches aris-
ing through non-input enabledness automatically appear as inconsistent traces
in the product, on account of our component formulation. As the outputs of
a component are controlled locally, we assume that the output actions of the
components to be composed are disjoint.

Definition 4 (Parallel composition). Let P and Q be components such that
AO

P∩AO
Q = ∅. Then P || Q is the component 〈AI

P||Q,AO
P||Q, TP||Q, FP||Q〉, where:

– AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO
P||Q = AO

P ∪ AO
Q

– TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q
– FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)]A∗

P||Q ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)]A∗

P||Q.

Assume-Guarantee Reasoning for Safe Component Behaviours 97

Informally, a trace is permissible in P || Q if its projection onto AP is a trace
of P and its projection onto AQ is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

Conjunction. The conjunction of components P andQ is the coarsest component
that will work safely in any environment that P orQ can work safely in. It can be
thought of as finding a common implementation for a number of specifications.
Thus, conjunction is essentially the meet operator on the refinement preorder.
Consequently, the conjunction of two components is only defined when the union
of their inputs is disjoint from the union of their outputs.

Definition 5 (Conjunction). Let P and Q be components such that AI
P ∪AI

Q
and AO

P ∪ AO
Q are disjoint. Then P ∧ Q is the component 〈AI

P∧Q,AO
P∧Q, TP∧Q,

FP∧Q〉, where:

– AI
P∧Q = AI

P ∪ AI
Q

– AO
P∧Q = AO

P ∩ AO
Q

– TP∧Q = [(TP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (TQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩A∗
P∧Q

– FP∧Q = [(FP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (FQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩ A∗
P∧Q.

Intuitively, after any trace of P ∧ Q, the conjunction must accept any input
offered by either P or Q, but can only issue an output if both P and Q are
willing to offer it. Once P becomes inconsistent, or an input is seen that is not
an input of P , the conjunction behaves like Q (and vice-versa).

Quotient. In [4], we introduced a quotient operator acting on components. Given
a component R, together with a component P implementing part of R, the
quotient R/P yields the coarsest component for the remaining part of R to be
implemented. Thus, the quotient satisfies the property: there exists Q such that
P || Q
imp R iff P || (R/P)
imp R and Q
imp (R/P). Whether the quotient
exists depends on the extent to which P is a sub-component of R.

For the development in this paper, we will not use quotient on components,
and refer to [4]. Instead, we will define a quotient operator that acts on AG spec-
ifications. Thus, the quotient of two AG specifications yields an AG specification
characterising a set of component implementations.

3 Assume-Guarantee Framework for Safety Properties

To support reasoning about components, we introduce the concept of an AG
specification, which consists of two prefix-closed sets of traces referred to as the
assumption and guarantee. The assumption specifies the environment’s allowable
interaction sequences, while the guarantee is a constraint on the component’s

98 C. Chilton, B. Jonsson, and M. Kwiatkowska

behaviour. As assumptions and guarantees are prefix-closed, our theory ensures
that components preserve (not necessarily regular) safety properties1.

Definition 6 (AG specification). An AG specification S is a tuple 〈AI
S ,AO

S ,
RS ,GS〉, in which AI

S and AO
S are disjoint sets, referred to as the inputs and

outputs respectively, and RS and GS are prefix closed subsets of (AI
S ∪ AO

S)
∗,

referred to as the assumption and guarantee respectively, such that t ∈ RS and
t′ ∈ (AO

S)
∗ implies tt′ ∈ RS .

Since outputs are under the control of a component, we insist that assumptions
are closed under output-extensions. On the other hand, we need not insist that
the guarantee is closed under input-extensions, since the assumption can select
inputs under which the guarantee is given.

Given an AG specification S, we want to be able to say whether a component
P satisfies S. Informally, P satisfies S if for any interaction between P and the
environment characterised by a trace t, if t ∈ RS , then t ∈ GS and t cannot
become inconsistent in P without further stimulation from the environment.
Components can thus be thought of as implementations of AG specifications.

Before defining satisfaction, we need to introduce a notion of compatibility
between AG specifications and components, meaning that they do not disagree
on what are inputs or outputs.

Definition 7 (Compatibility). Let P be a component, and let S and T be
AG-specifications. Then P is compatible with S, written P ∼ S, iff AI

P ∩ AO
S =

∅ = AO
P ∩AI

S . Similarly, S is compatible with T , written S ∼ T , iff AI
S ∩AO

T =
∅ = AO

S ∩ AI
T .

We can now give the formal definition for satisfaction of an AG specification by
a component.

Definition 8 (AG satisfaction). A component P satisfies the AG specification
S, written P |= S, iff:

S1. P ∼ S
S2. AI

S ⊆ AI
P

S3. AO
P ⊆ AO

S
S4. RS ∩ TP ⊆ GS ∩ FP .

By output-extension closure of assumptions, condition S4 is equivalent to check-
ing RS ∩ TP ⊆ GS ∩ FE(P), which involves the most general safe representation
E(P) of P (see Definition 2). The following lemma shows that this definition of
satisfaction is preserved under the component-based refinement corresponding
to safe-substitutivity, subject to compatibility.

Lemma 1. Let P and Q be components, and let S be an AG specification. If
P |= S, Q
imp P and Q ∼ S, then Q |= S.
1 Model-checking components against AG specifications would force us to restrict the
properties we can encode and check. In this setting, we would naturally restrict to
the regular safety properties, which can be encoded by finite-state automata.

Assume-Guarantee Reasoning for Safe Component Behaviours 99

3.1 Refinement

There is a natural hierarchy on AG specifications respecting the satisfaction
rule defined in Definition 8. From this we can define a refinement relation on
AG specifications that corresponds to implementation containment. But first,
we introduce the shorthand: violations(X) � {t ∈ A∗

X : t(AI
X)∗ ∈ RX ∩ GX}A∗

X .

Definition 9 (AG refinement). Let S and T be AG specifications. S is said
to be a refinement of T , written S
 T , iff:

R1. S ∼ T
R2. AI

T ⊆ AI
S

R3. AO
S ⊆ AO

T
R4. violations(T) ∩ A∗

S ⊆ violations(S)
R5. RT ∩ A∗

S ⊆ RS ∪ violations(S).

It is our intention that S
 T iff the implementations of S are contained within
the implementations of T (subject to compatibility). Conditions R1-R3 are the
bare minimum to uphold this principle. For condition R4, any component having
a trace t ∈ violations(T)∩A∗

S cannot be an implementation of T , so it should not
be an implementation of S. For this to be the case, the component must violate
the guarantee on S, i.e., t ∈ violations(S). Condition R5 deals with inconsistent
traces. If a component has an inconsistent trace t ∈ RT ∩ A∗

S , then this cannot
be an implementation of T . Consequently, the component must not be an imple-
mentation of S, so either t must violate the guarantee of S, i.e., t ∈ violations(S),
or t must be in RS , so that the component cannot satisfy S.
Lemma 2. Refinement respects implementation containment:

S
 T ⇐⇒ {P : P |= S and P ∼ T } ⊆ {P : P |= T }.

In [15], Larsen et al. give a sound and complete characterisation of their refine-
ment relation (which corresponds to implementation containment, as for us) by
means of conformance tests. The definition assumes equality of interfaces, so
does not need to deal with issues of compatibility or the complexities of both
covariant and contravariant inclusion of inputs and outputs respectively (i.e.,
conditions R1-R3). Thus, their definition largely corresponds to condition R4.
Condition R5 is not necessary in that setting, as implementation models are
required to be input-enabled.

Refinement can be shown to be a preorder, provided that we add the minor
technical condition that compatibility of components is maintained, as the next
lemma shows.

Lemma 3 (Weak transitivity). For AG specifications S, T and U , if S
 T ,
T
 U and S ∼ U , then S
 U .
As an aside, component-based refinement
imp is a preorder because, in refining
a component P to a componentQ, it is possible to transform some of P ’s outputs
into inputs of Q, as this preserves safe-substitutivity. However, this transforma-
tion of action types does not make sense with AG specifications, which talk
explicitly about the behaviour of the environment.

100 C. Chilton, B. Jonsson, and M. Kwiatkowska

3.2 Inferring Components from AG Specifications

Given a specification for a component, we require a way for developers to con-
struct an actual component that satisfies the requirements of the specification.
In the following definition, we show how to infer the least refined component
that satisfies a given specification.

Definition 10 (Inferred component). Let S be an AG specification. Then the
least refined implementation of S is the component I(S) = 〈AI

S ,AO
S , TI(S), FI(S)〉,

defined only when ε ∈ TI(S), where:

– TI(S) = pre({t ∈ RS ∩ GS : ∀t′ ∈ (AI
S)

∗ · tt′ ∈ RS ∪ GS}) ∪ FI(S)

– FI(S) = {tit′ : t ∈ RS ∩ GS , i ∈ AI
S and ti �∈ RS} ∪ {t ∈ A∗

S : ε �∈ RS}.

The following lemma shows that the obtained component model really is least
refined with respect to the refinement preorder
imp on implementations.

Lemma 4. Let S be an AG specification, and let P be a component. Then:

– ε �∈ TI(S) implies S is non-implementable;
– ε ∈ TI(S) implies I(S) |= S; and
– P |= S iff P
imp I(S).

3.3 Characteristic AG Specification of a Component

One may be interested in the most general AG specification that satisfies a com-
ponent, which we refer to as the characteristic AG specification of the component.
This can be found by examining the component’s safe traces.

Definition 11 (Characteristic AG specification). The characteristic AG
specification for the component P is an AG specification AG(P) = 〈AI

P ,AO
P ,

RAG(P),GAG(P)〉, where RAG(P) = A∗
P \ FE(P) and GAG(P) = TP \ FE(P).

The largest assumption safe for component P is the set of all non-inconsistent
traces, while the guarantee is the set of traces of E(P) that are non-inconsistent.
As the following lemma demonstrates, the characteristic AG specification satis-
fies the desired properties.

Lemma 5. Let P be a component and let S be an AG specification. Then:

– P |= AG(P); and
– P |= S iff AG(P)
 S.

The final point in the previous lemma shows that satisfaction of a specifica-
tion by a component is equivalent to checking whether the characteristic AG
specification of the component is a refinement of the specification. This means
that implementability of specifications built up compositionally follows immedi-
ately from compositionality results on AG specifications, as we will see in the
subsequent sections.

We are now in a position to present sound and complete AG rules for inferring
properties of composite systems from the properties of their sub-components.

Assume-Guarantee Reasoning for Safe Component Behaviours 101

3.4 Parallel Composition

The AG rule for parallel composition is based on the well-established theorem
of Abadi and Lamport [7], which has appeared in several forms [19,20,21]. In-
tuitively, the guarantee of any component must not be allowed to violate the
assumptions of the other components. Such reasoning seems circular, but the
circularity can be broken up in our setting as a safety property cannot be simul-
taneously violated by two or more components. This is due to an output being
under the control of at most one component.

Notation. To assist in our definition, we introduce the following shorthands:

– R(SP ,SQ) � (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

– G(SP ,SQ) � (GSP ⇑ ASP ||SQ) ∩ (GSQ ⇑ ASP ||SQ)

– G+(SP ,SQ) � (GSP � ASP ||SQ) ∩ (GSQ � ASP ||SQ).

Definition 12. Let SP and SQ be AG specifications such that AO
SP ∩AO

SQ = ∅.
If SP and SQ are both implementable, then SP || SQ is an AG specification
〈AI

SP ||SQ ,A
O
SP ||SQ ,RSP ||SQ ,GSP ||SQ〉 defined by:

– AI
SP ||SQ = (AI

SP ∪AI
SQ) \ (A

O
SP ∪AO

SQ)

– AO
SP ||SQ = AO

SP ∪ AO
SQ

– RSP ||SQ ⊆ A∗
SP ||SQ is the largest prefix closed set satisfying

RSP ||SQ(AO
SP ||SQ)

∗ ∩ G+(SP ,SQ) ⊆ R(SP ,SQ)

– GSP ||SQ = RSP ||SQ ∩ G(SP ,SQ).

If at least one of SP or SQ is non-implementable, then SP || SQ = 〈AI
SP ||SQ ,

AO
SP ||SQ ,A

∗
SP ||SQ , ∅〉

SP || SQ yields the strongest specification satisfiable by the parallel composition
of any two components that satisfy SP and SQ. The specification only guarantees
what can be assured by both SP and SQ, thus it is the strongest composition.
The assumption is the largest collection of environmental behaviours that can-
not violate either of the guarantees GSP or GSQ , and moreover does not permit a
component implementing one of the specifications to violate the other specifica-
tion’s assumption. Ignoring differences in alphabets, this can loosely be phrased
as RSP ||SQ ∩GSP ⊆ RSQ and RSP ||SQ ∩GSQ ⊆ RSP , which is akin to the presen-
tation in [7]. However, as implementations are not required to be input-enabled,
this must be reformulated as RSP ||SQ ∩ G+(SP ,SQ) ⊆ R(SP ,SQ).

The set G+(SP ,SQ) extends G(SP ,SQ) by a single input on each of GSP and
GSQ , and also includes ε. This has the effect of ensuring that, if t ∈ G+(SP ,SQ)∩
R(SP ,SQ) and ta �∈ G+(SP ,SQ), then whatever the action type of a, wlog
t � ASP ∈ RSP ∩ GSP or ta � ASP ∈ RSP ∩ GSP . Thus, any implementation
of SP must have suppressed an output at some stage along the trace ta � ASP ,
implying the parallel composition of any two implementations of SP and SQ will
suppress an output along ta. Thus, RSP ||SQ contains only traces within GSP ||SQ
and traces not reachable by any pair of implementations of SP and SQ.

102 C. Chilton, B. Jonsson, and M. Kwiatkowska

Subject to suitable constraints on the alphabets of AG specifications, it can be
shown that the parallel composition operator on AG specifications is composi-
tional under the AG refinement relation, as the following theorem demonstrates.

Theorem 1. Let SP , S ′
P , SQ and S ′

Q be AG specifications such that AO
SP ∩

AO
SQ = ∅, S ′

P || S ′
Q ∼ SP || SQ, AI

S′
P
∩ AO

S′
Q

⊆ AI
SP ∩ AO

SQ , AO
S′
P
∩ AI

S′
Q

⊆
AO

SP ∩AI
SQ and AI

S′
P
∩AI

S′
Q
∩AI

SP ||SQ ⊆ AI
SP ∩AI

SQ . If S
′
P
 SP and S ′

Q
 SQ,

then S ′
P || S ′

Q
 SP || SQ.

The condition AO
SP ∩ AO

SQ = ∅ ensures that the parallel composition of the AG
specifications is defined, while S ′

P || S ′
Q ∼ SP || SQ means S ′

P || S ′
Q and SP || SQ

are comparable under refinement. The remaining three conditions are standard
for compositionality of parallel composition. From this compositionality result,
it is easy to give a sound and complete AG rule.

Theorem 2. Let P and Q be components, and let SP , SQ and S be AG speci-
fications such that P || Q ∼ S, AI

P ∩AO
Q ⊆ AI

SP ∩AO
SQ , A

O
P ∩AI

Q ⊆ AO
SP ∩AI

SQ
and AI

P ∩AI
Q∩AI

SP ||SQ ⊆ AI
SP ∩AI

SQ . Then the following AG rule is both sound
and complete:

Parallel
P |= SP Q |= SQ SP || SQ
 S

P || Q |= S
.

3.5 Conjunction

In this section we define a conjunctive operator on AG specifications for combin-
ing independently developed requirements. From this we show that the operator
is both compositional and corresponds to the meet operation on the refinement
relation. This allows us to formulate a sound and complete AG rule.

The conjunction of AG specifications SP and SQ is only defined when AI
SP ∪

AI
SQ is disjoint fromAO

SP ∪A
O
SQ , in which case we say SP and SQ are composable.

The composability constraint is necessary, as otherwise it is not possible to find
an interface that can refine both SP and SQ.

Definition 13. Let SP and SQ be AG specifications composable for conjunc-
tion. Then SP ∧SQ is an AG specification 〈AI

SP∧SQ ,A
O
SP∧SQ ,RSP∧SQ ,GSP∧SQ〉

defined by:

– AI
SP∧SQ = AI

SP ∪AI
SQ

– AO
SP∧SQ = AO

SP ∩AO
SQ

– RSP∧SQ = (RSP ∪RSQ) ∩ A∗
SP∧SQ

– GSP∧SQ is the intersection of the following sets:

• RSP∧SQ ∩ (GSP ∪ GSQ)
• pre(RSP ∪ GSP) ↑ε (AI

SQ \ AI
SP)

• pre(RSQ ∪ GSQ) ↑ε (AI
SP \ AI

SQ).

Assume-Guarantee Reasoning for Safe Component Behaviours 103

The assumptionRSP∧SQ is constrained to be within at least one of RSP or RSQ .
On the other hand, the guarantee GSP∧SQ must be within at least one of GSP
or GSQ , and must ensure that, if the assumption for one of the specifications is
satisfied, then the corresponding guarantee cannot have been violated.

The next two theorems show that our definition of conjunction corresponds to
the meet operator on the refinement relation, and is compositional under refine-
ment. Consequently, the set of implementations for SP ∧ SQ is the intersection
of the implementation sets for SP and SQ.

Theorem 3. Let SP and SQ be AG specifications such that SP and SQ are
composable for conjunction. Then:

– SP ∧ SQ
 SP
– SP ∧ SQ
 SQ
– SR
 SP and SR
 SQ implies SR
 SP ∧ SQ.

Theorem 4. Let SP , SQ, S ′
P and S ′

Q be AG specifications such that S ′
P and

S ′
Q are composable for conjunction, S ′

P ∼ SQ and S ′
Q ∼ SP . If S ′

P
 SP and
S ′
Q
 SQ, then S ′

P ∧ S ′
Q
 SP ∧ SQ.

From these strong algebraic properties, we can formulate an AG rule for con-
junction that is both sound and complete.

Theorem 5. Let P and Q be components composable for conjunction, and let
SP and SQ be AG specifications such that P ∼ SQ, Q ∼ SP and P ∧ Q ∼ S.
Then the following AG rule is both sound and complete:

Conjunction
P |= SP Q |= SQ SP ∧ SQ
 S

P ∧ Q |= S
.

3.6 Quotient

The AG rule for parallel composition in Theorem 2 makes use of the composition
SP || SQ. To support incremental development, we need a way of decomposing
the composition to find SQ given SP . We can do this using a quotient operator.

Definition 14. Let SP and SW be AG specifications. Then the quotient SW/SP
is an AG specification 〈AI

SW/SP ,A
O
SW/SP ,RSW/SP ,GSW/SP 〉, defined only when

AO
SP ⊆ AO

SW , where AI
SW/SP = AI

SW \ AI
SP , A

O
SW/SP = AO

SW \ AO
SP and:

– If SP is implementable, and ε ∈ RSW implies ε ∈ RSP , then:
• RSW/SP = [RSW ∩ (GSP � ASW)(AO

SW)∗] � ASW/SP
• GSW/SP = RSW/SP ∩ (X � ASW/SP), where X is the largest prefix closed

set satisfying X(AI
SP)

∗ ∩RSW ⊆ pre(GSW ∪ GSP ⇑ ASW)∩
pre((RSP ⇑ ASW) ∪ GSP � ASW).

– If SP is implementable and ε ∈ RSW ∩ RSP , then RSW/SP = A∗
SW/SP and

GSW/SP = ∅.
– If SP is non-implementable, then RSW/SP = GSW/SP = ∅.

104 C. Chilton, B. Jonsson, and M. Kwiatkowska

Although not immediately obvious, the assumption in the previous definition is
closed under output-extensions. Before explaining the definition, we introduce
the following theorem, which shows that the quotient operator on AG specifica-
tions yields the weakest decomposition of the parallel composition.

Theorem 6. Let SP and SW be AG specifications. Then there exists an AG
specification SQ such that SP || SQ
 SW iff the following properties hold:

– The quotient SW/SP is defined
– SP || (SW/SP)
 SW
– SQ
 SW/SP .

To make sense of the definition for quotient (in the difficult case of SP being
implementable and ε ∈ RSW implies ε ∈ RSP), it is necessary to consider the
final two results in Theorem 6. For these, we need to show that: (i) RSW ⊆
RSP ||(SW/SP); and (ii) RSW ∩ GSW ⊆ violations(SP || (SW/SP)). Clause (i)
amounts to showingRSW∩G+(SP ,SW/SP) ⊆ R(SP ,SW/SP), i.e., the condition
for parallel composition. Thus, the assumption RSW/SP is the smallest output-
closed set such that t ∈ RSW and t ∈ GSP � ASW implies t ∈ RSW/SP ⇑ ASW .
The cases of t �∈ RSP ⇑ ASW or t �∈ GSW/SP � ASW are handled by GSW/SP .

Considering the guarantee GSW/SP , it is obvious that it need only be contained
within the assumption RSW/SP . Moreover, it is safe to have t ∈ GSW/SP � ASW
if t �∈ GSP � ASW or t ∈ RSP ⇑ASP ASW ; this is equivalent to requiring

t ∈ pre((RSP ⇑ ASW)∪GSP � ASW). For requirement (ii), if t ∈ GSW/SP ⇑ ASW ,
then it must be the case that t �∈ GSW implies t �∈ GSP ⇑ ASW . This is equivalent
to requiring t ∈ pre(GSW ∪GSP ⇑ ASW). Piecing these conditions together yields
a definition of quotient that is correct by construction.

Theorem 7. Let SP and SW be AG specifications such that P ranges over com-
ponents having the same interface as SP , and Q is a component having the same
interface as SW/SP . If SW/SP is defined (i.e., AO

SP ⊆ AO
SW), then the following

AG rule is sound and complete:

Quotient
∀P · P |= SP implies P || Q |= SW

Q |= SW/SP
.

The restriction on P and SP having the same interface, and Q and SW/SP
having the same interface, is necessary, because the parallel operator is only
compositional under certain restrictions on the interfaces (cf Theorem 1).

3.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel compo-
sition so that it makes use of quotient on AG specifications when we know the
global specification S. This is useful for system development, as we will often
have the specification of a global system, rather than the specifications of the
systems to be composed.

Assume-Guarantee Reasoning for Safe Component Behaviours 105

Corollary 1. Let P and Q be components such that AI
P ∩AI

Q = ∅, and let SP ,
SQ and S be AG specifications. If AO

SP ∩ AO
SQ = ∅, P || Q ∼ S, AI

P ∩ AO
Q ⊆

AI
SP ∩ AO

SQ and AO
P ∩ AI

Q ⊆ AO
SP ∩ AI

SQ , then the following rule is both sound
and complete:

Parallel-Decompose
P |= SP Q |= SQ SQ
 S/SP

P || Q |= S .

This rule, based on Theorem 2, differs in having the premise SQ
 S/SP in place
of SP || SQ
 S. This substitution is permitted by the results of Theorem 6.
The condition AI

P ∩ AI
Q = ∅ is necessary in order to show that SP || SQ

SP || (S/SP), given the constraints on parallel compositionality, and the fact
that AI

SP and AI
S/SP are always disjoint.

4 A Printing Example

We illustrate our assume-guarantee framework on a simple example of component-
based design for a system concerned with printing a document. The system as
a whole is composed of a job scheduler, a printer controller and the physical
printer itself. Intuitively, the scheduler decides when a print job can start, and
expects to be informed when the job has finished. The controller, on the other
hand, waits for the start signal from the scheduler, after which it instructs the
printer to print the document, and awaits confirmation from the printer that the
document has printed. At this stage, the controller will signal to the scheduler
that the job has finished. The printer accepts a print command, after which it
will start to print the document, and will signify when the document is printed.

We iteratively derive a design by successively applying AG rules and construc-
tions. We start by making use of two specifications for the combined effect of
the scheduler and printer controller:

1. Spec1: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then the number of job starts must be equal to or
one greater than the number of requests sent to print.

2. Spec2: If the number of jobs sent to print is equal to or one greater than
the number of jobs printed, then the number of printed documents must be
equal to or one greater than the number of jobs finished.

Spec1 and Spec2 can be represented by the AG specifications 〈RSpec,GSpec1〉
and 〈RSpec,GSpec2〉 respectively, where the assumptions and guarantees are de-
picted in Figure 1. For simplicity, we represent sets of traces by means of finite
automata, and annotate states with an F to indicate that a trace becomes in-
consistent. The combined effect of Spec1 and Spec2 is given by the conjunctive
specification Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉, the guarantee of which is
presented in Figure 2.

106 C. Chilton, B. Jonsson, and M. Kwiatkowska

RSpec

print!

printed?

print!

start! start! start!
finish! finish! finish!

print!

error?

GSpec1

start!

print!
finish! finish!
printed? printed?

GSpec2

printed?

finish!
start! start!
print! print!

Fig. 1. Assumption and guarantees for Spec1 and Spec2

GSpec1∧Spec2

start! print! start! print!
start!

print!

print!
start!

print!

finish! finish!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

Fig. 2. The guarantee for Spec1 ∧ Spec2

F

start! print! start!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

printed?

printed?

start!
finish!

print!

printed?

printed?

printed?

Fig. 3. The most general implementation of Spec1 ∧ Spec2

Assume-Guarantee Reasoning for Safe Component Behaviours 107

RSched

start?

finish?

GSched

start?

finish?

Fig. 4. Specification of a scheduling constraint Sched

R(Spec1∧Spec2)/Sched

print!

printed?

print!
print!

error?

print!

printed?

print!
print!

error?

start! finish!

finish! finish! finish!

finish!

start!
print!

finish!

start!
print!

finish!

start!
print!

start! start! start!

start!
print!

finish!

start!
print!

finish!

start!
print!

finish!

G(Spec1∧Spec2)/Sched

start!

print!

printed?

finish!

Fig. 5. Specification for (Spec1 ∧ Spec2)/Sched

To demonstrate compositional AG reasoning, by Definition 10 we can find im-
plementations I(Spec1) and I(Spec2) of Spec1 and Spec2 respectively, which by
Theorem 5 allows us to derive I(Spec1) ∧ I(Spec2) |= Spec1∧ Spec2. According
to Lemma 4, this means that I(Spec1) ∧ I(Spec2)
imp I(Spec1 ∧ Spec2). Now
by Theorem 3, we know Spec1 ∧ Spec2
 Spec1, so from Lemma 2 we obtain
I(Spec1 ∧ Spec2) |= Spec1, and from Lemma 4 we derive I(Spec1 ∧ Spec2)
imp

I(Spec1). By similar reasoning it can be shown that I(Spec1 ∧ Spec2)
imp

I(Spec2), hence by Theorem 2 of [4] we acquire I(Spec1 ∧ Spec2)
imp I(Spec1)∧
I(Spec2). Mutual refinement of components in our framework corresponds to
equality of models, so I(Spec1 ∧ Spec2) = I(Spec1) ∧ I(Spec2). Such an imple-
mentation is shown in Figure 3. Note how this component is unwilling to print
after encountering two start requests not separated by a job being printed. This
is because RSpec can issue an error after such an occurrence, but this is not

108 C. Chilton, B. Jonsson, and M. Kwiatkowska

accepted by GSpec1∧Spec2. Moreover, this implementation is able to start and
print an unbounded number of jobs without ever having to finish one of them.

We now propose an alternative derivation based on quotient, by making use of
a constraint specification Sched = 〈RSched,GSched〉 that requires start and finish
to alternate (shown in Figure 4). We wish to find an implementation for the
printer controller, let it be called Controller, such that Controller is an imple-
mentation of Spec1 ∧ Spec2 subject to the constraints imposed by Sched. This
is equivalent to requiring Controller |= (Spec1 ∧ Spec2)/Sched. The specification
(Spec1∧ Spec2)/Sched is exhibited in Figure 5, and the most general implemen-
tation is obtained from G(Spec1∧Spec2)/Sched by appending all non-enabled inputs
as inconsistent traces. In contrast to I(Spec1 ∧ Spec2), the constraints imposed
by Sched on Spec1 ∧ Spec2 means that any candidate implementation for Con-
troller will ensure that there can be at most one outstanding job that has not
finished.

5 Conclusion

We have presented a complete specification theory for reasoning about safety
properties of component behaviours with an explicit separation of assumptions
from guarantees. Our theory supports refinement based on traces, which relates
specifications by implementation containment. We define compositional oper-
ations of parallel composition, as well as – for the first time in this setting
– conjunction and quotient, directly on AG specifications. We give sound and
complete AG reasoning rules for the three operators, which preserve safety and
enable the reasoning about, e.g., safe substitutivity of components synthesised
at run-time. The theory can be extended with disjunction and hiding, as well
as liveness through the introduction of quiescence. The AG rules can also be
fully automated, as they are based on simple set-theoretic operations and do not
require the learning of assumptions. The refinement is linear-time, and hence
amenable to automata-theoretic approaches.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE.

References

1. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

2. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with com-
ponent reuse. In: Proc. 8th ACM International Conference on Embedded Software,
EMSOFT 2008, pp. 79–88. ACM (2008)

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. Inform. 108, 119–149
(2011)

Assume-Guarantee Reasoning for Safe Component Behaviours 109

4. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifi-
cation Theory for Component Behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 148–168. Springer, Heidelberg (2012)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26,
109–120 (2001)

6. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20, 205–224 (2008)

7. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Program-
ming Languages and Systems 15, 73–132 (1993)

8. Abadi, M., Plotkin, G.: A logical view of composition. Theoretical Computer Sci-
ence 114, 3–30 (1993)

9. Pnueli, A.: Logics and models of concurrent systems, pp. 123–144. Springer (1985)
10. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proc. 4th

Annual Symposium on Logic in Computer Science, pp. 353–362. IEEE Press (1989)
11. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems 16 (1991)
12. Maier, P.: A Set-Theoretic Framework for Assume-Guarantee Reasoning. In: Ore-

jas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 821–
834. Springer, Heidelberg (2001)

13. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning
methods. ACM Trans. Comput. Logic 11, 16:1–16:22 (2010)

14. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008)

15. Larsen, K.G., Nyman, U., W ↪asowski, A.: Interface Input/Output Automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

16. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., W ↪a-
sowski, A.: Moving from Specifications to Contracts in Component-Based Design.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer,
Heidelberg (2012)

17. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. FMSD 38, 1–32 (2011)

18. Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-Guarantee Reasoning for Safe
Component Behaviours. Technical Report CS-RR-12-07, Department of Computer
Science, University of Oxford (2012)

19. Collette, P.: Application of the Composition Principle to Unity-Like Specifications.
In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT
1993. LNCS, vol. 668, pp. 230–242. Springer, Heidelberg (1993)

20. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17, 507–534 (1995)

21. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time tem-
poral logic. Theoretical Computer Science 167, 47–72 (1996)

	Assume-Guarantee Reasoningfor Safe Component Behaviours
	Introduction
	Compositional Specification Theory
	Assume-Guarantee Framework for Safety Properties
	Refinement
	Inferring Components from AG Specifications
	Characteristic AG Specification of a Component
	Parallel Composition
	Conjunction
	Quotient
	Decomposing Parallel Composition

	A Printing Example
	Conclusion
	References

