
A Categorical Approach to Structuring

and Promoting Z Specifications

Pablo F. Castro1,3, Nazareno Aguirre1,3,
Carlos Gustavo López Pombo2,3, and Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,naguirre}@dc.exa.unrc.edu.ar
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,

Buenos Aires, Argentina
clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada
tom@maibaum.org

Abstract. In this paper, we study a formalisation of specification
structuring mechanisms used in Z. These mechanisms are traditionally
understood as syntactic transformations. In contrast, we present a char-
acterisation of Z structuring mechanisms which takes into account the
semantic counterpart of their typical syntactic descriptions, based on cat-
egory theory. Our formal foundation for Z employs well established ab-
stract notions of logical systems. This setting has a degree of abstraction
that enables us to understand what is the precise semantic relationship
between schemas obtained from a schema operator and the schemas it is
applied to, in particular with respect to property preservation.

Our formalisation is a powerful setting for capturing structuring mech-
anisms, even enabling us to formalise promotion. Also, its abstract nature
provides the rigour and flexibility needed to characterise extensions of Z
and related languages, in particular the heterogeneous ones.

1 Introduction

The intrinsic preciseness of formal specification languages usually lead to very
detailed, large descriptions of software systems. Therefore, appropriate mecha-
nisms for structuring specifications are essential in contributing to the scalability
of formal specification, and the usefulness of a formal method. This has been ac-
knowledged by formal method developers, and many formal notations, e.g. B, Z
and related languages, put a strong emphasis in structuring [1,25]. In the case of
Z, there exist several mechanisms for structuring specifications, called schema
operations, since they operate on schemas, the basic modularisation units of a Z
specification. Traditionally, structuring mechanisms in Z are captured syntacti-
cally, i.e., their semantics are understood as syntactic transformations over the

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 73–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 P.F. Castro et al.

composed specifications [25]. This approach, although sound, makes it difficult
to understand the precise relationship between the composite specifications and
their components. Indeed, understanding how the properties of a specification
are involved in properties of another specification including it, is an issue that
generally needs to be analysed in an ad-hoc way in every concrete structuring sit-
uation, due to the syntactic semantics of the structuring mechanisms employed.
This is particularly the case with promotion, a Z specification structuring tech-
nique. Promotion is typically used in order to compose specifications, and in
particular to incorporate multiple instances of a component into a global system
state. Since the use of promotion usually involves mapping a “local state” into
a “global state” where multiple local states are subsumed, understanding the
relationship between the local and global states is particularly difficult.

In this work, we study a formalisation of Z structuring mechanisms, including
promotion, which in contrast to the syntactic approach to structuring mechanisms
semantics, provides strong ties to the semantic counterpart of these mechanisms’
syntactic description. This formalisation is based on category theory, and consists
of a mathematical foundation for Z and its usual schema operators, making use
of institutions and institution representations. This setting has a degree of ab-
straction that enables us to understand what is the precise semantic relationship
between schemas obtained from a schema operator and the schemas it is applied
to (in the case of promotion, between basic and promoted schemas), in particular
with respect to property preservation. Our formalisation is targeted to Z. A main
reason for this is that Z is a mature and widely known formal notation, used in
many industrial projects, and supported by analysis tools. Moreover, Z has been
used as the basis for other formalisms, such as B, Z++ and Object-Z. In these
languages, structuring mechanisms based on or inspired by promotion are also
present, and also syntactically captured (in particular, the mechanisms for char-
acterising the notion of class in the object oriented extensions of Z). By basing our
formalisation on Z, we make our results also relevant to these other languages.

Our formal foundation for structuring in Z has practical advantages. It leads
to explicit semantic relationships between component schemas and the com-
posite schemas they are part of, which can be exploited to promote reasoning.
Furthermore, if a schema is restricted to a particular “simpler” logic (e.g., a de-
cidable fragment of the Z notation), then one can reason in this simpler setting
(perhaps via some automated tool) and then promote the obtained properties to
the larger, composite specification in which the schema is involved, and where
more expressive constructs may be used. Also, our foundations for promotion
require dealing with schemas as types; our semantics of this facility, interpreted
as a manipulation of the logical theories that schemas represent, makes it non
dependent on higher order logic (as opposed to schema types as treated in [17]),
constituting a potential benefit for automated reasoning. Finally, the abstract
nature of our characterisation, at a level of abstraction that allows for a view of
logical systems as building blocks, provides the rigour and flexibility needed to
characterise not only Z but also its related languages and extensions, in particu-
lar the heterogeneous ones. It then provides the formal foundations for correctly

A Categorical Approach to Structuring and Promoting Z Specifications 75

composing Z with other formalisms, and a setting where one is able to formallly
reason about the resulting heterogeneous specifications.

2 A Brief Overview of Z

Z is a formal notation based on mathematical logic and set theory. It is often
regarded as being model based, since specifications in the language describe sys-
tems behaviour via models, typically involving data domains and operations on
these domains [25]. Such models are expressed in terms of well defined types,
including a rich set of built-in types such as the typical numerical domains, sets,
sequences, tuples, relations and functions, etc. Z specifications are structured
around the notion of schema [25]. Essentially, a schema defines a set of typed
variables, whose values might be constrained. A schema has a declaration sec-
tion, and a constraint (or predicate) section. This extremely simple notion is
powerful and convenient for defining data domains and operations on these, as
formal models of systems. As a first example, suppose that we need to specify a
game similar to Risk, consisting of players whose goal is to conquer territories in
a map. For simplicity, let us suppose that territories are labelled by natural num-
bers, identifying each territory. We might start by defining players, indicating
the territories they own. In Z, this is achieved by the following schema:

Player
owns : PN

This is a very simple schema, that has an empty predicate part (no special
constraints on the variables). Basic operations for a player are settling in a
territory, and leaving an occupied territory. In Z, operations are also captured by
schemas; schemas characterising the settle and leave operations are the following:

Settle
ΔPlayer
t : N

t /∈ owns
owns ′ = owns ∪ {t}

Leave
ΔPlayer
t : N

t ∈ owns
owns ′ = owns \ {t}

In these schemas, ΔPlayer indicates that two copies of the schema Player are
incorporated into Settle and Leave, one exact copy of Player and the other with
its variables renamed by priming. This is done in order to capture the effect
of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling
on (resp. leaving from) a territory. Additional variables, in this case representing
parameters of the operations, are incorporated and constrained in the predicate
part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for
instance, constraints from Player and Player’ (coming fromΔPlayer) are part of

76 P.F. Castro et al.

the Settle schema (although in this case no actual constraints are incorporated,
because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values
in the corresponding types for the variables in the schema, and satisfies the
predicate part of the schema [21]. That is, a model provides actual values for
the variables in a schema. Notice for instance that, for the case of Player, all
possible models of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable
one to define schemas based on other existing schemas. A rather simple one
is schema composition. Suppose that we would like to define an operation to
capture the situation in which a player exchanges one territory for another one,
i.e., it leaves a territory and settles in another one. Such an operation can be
defined using schemas Leave and Settle, via a simple composition:

Exchange =̂ Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the
composition to distinguish the t variables in the two schemas) captures the
state change produced by applying the second operation to the state resulting
of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote
definitions given in terms of “local states”, to definitions of a “global state”, often
composed of various instances of the local state [25]. As an example, suppose
that we define the game state, using our previously defined Player schema:

Game
ps : PPlayer
ts : PN

ts �= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

This schema explicitly indicates who are the players of the game (ps), and
the territories composing the map (ts); it also constrains the valid states of
the game to nonempty sets of territories, and prevents players from sharing the
occupation of a territory. We have already defined game related operations Settle
and Leave, but we have done so for Player. We would like to be able to promote
these “local” operations to the “global” state characterised by Game, instead of
having to redevelop them as operations on Game. In order to do so, one needs
to define a promotion schema, i.e., a schema relating the local and global states:

PromotePlayer
ΔGame
ΔPlayer
p : Player

p = θPlayer ∧ p ∈ ps
ts = ts ′

ps ′ = ps \ {p} ∪ {θPlayer ′}

A Categorical Approach to Structuring and Promoting Z Specifications 77

Notice that this schema indicates how a state change of a single player is embed-
ded into a state change for the global state of the game. Now, one can promote
the Settle operation to the system level, as follows:

GameSettle =̂ ∃ΔPlayer • Settle ∧ PromotePlayer

The existential quantification in this definition has the purpose of hiding the
“local state”, which by the restrictions in the PromotePlayer schema is already
embedded into the state of the game. This makes GameSettle an operation ex-
clusively on the state of the game.

3 A Categorical View of Z

Let us recall some basic definitions of category theory. A category is a mathemat-
ical structure composed of two collections: the collection of objects: a, b, c, . . .
and the collection of arrows (or morphisms): f , g, h, . . . between them. An arrow
has a domain and a codomain, and we write f : a → b to indicate that a (resp.
b) is the domain (resp. codomain) of f . We have two basic operations involving
arrows: the identity, that given an object a produces an arrow ida : a → a,
and the composition, which given arrows f : a → b and g : b → c, returns an
arrow f ; g : a → c. Identity arrows satisfy: f ; idb = f and ida ; f = f , for every
f : a → b. The composition of arrows is associative. A functor is essentially a
homomorphism between categories. The most natural example of a category is
Set, made up of the collection of sets and the collection of functions between
sets. We refer the interested reader to [2], for an introduction to category theory.
We will assume throughout the paper that the reader has some basic knowledge
of category theory.

As we already discussed, a schema defines a set of typed variables, and pro-
vides constraints on these variables. Formally, a schema corresponds to a tuple
〈N ,T , Σ, Φ〉 composed of a name N , a set of given types T , a signature Σ (the
set of typed variables declared in the schema) and a set Φ of formulas, con-
straining these variables [22]. For the sake of simplicity, we omit the name and
the set T of types when no confusion is possible. The formulas of the predi-
cate part Φ of a schema are higher-order formulas (since Z includes recursive
datatypes, lambda expressions, quantification over relations and other elements
that go beyond first-order logic’s expressiveness) defined over the variables in
the declaration part of the schema.

In order to study Z structuring, we need to look at the way schemas relate to
each other. Amorphism between two schema signatures τ : Σ → Σ′ is a mapping
between symbols that preserves types. Examples of signature morphisms are
symbol substitutions (renaming variables in a signature), and embeddings of a
signature into another one. Signatures and signature morphisms constitute a
category.

Theorem 1. The structure Zign = 〈S ,M 〉, where S is the set of Z signatures
and M is the set of signature morphisms, is a category.

78 P.F. Castro et al.

Signature morphisms can be straightforwardly extended to schema morphisms:

Definition 1. A schema morphism τ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature mor-
phism σ : Σ → Σ′ that satisfies the following condition:

∀φ ∈ Φ • Φ′ � σ∗(φ)

where σ∗ is the inductive extension of σ to formulas, obtained by preserving
logical symbols, and Φ � φ expresses that φ can be proven from Φ using the
deductive machinery of Z.

Essentially, a schema morphism is a mapping between logical theories [11]. Using
schemas and schema morphisms, a category can be defined:

Theorem 2. The structure Zchem = 〈Sch,Tr〉, where Sch is the set of Z
schemas and Tr is the set of schema morphisms, is a category.

The category Zchem enables us to capture the way in which Z schemas relate
to each other, and in particular how these are connected in the definition of a
structured specification.

In order to clarify the above view of signatures and schemas as objects in
a category, consider the diagram in Figure 1. This diagram involves two sim-
ple schemas, one of them being our previous Game schema, and the other be-
ing a simple schema defining a nonempty set of natural numbers. The schema
morphism in this diagram shows that the simpler schema is embedded, after
translation, into the schema Game. Notice that, for this morphism to be correct,
one must be able to prove that the translation of #ns > 0 (i.e., #ts > 0) is a
consequence of the constraints in the Game schema, which is trivial. After this
simple example, the reader familiar with Z may notice that schema morphisms
subsume the notion of schema strengthening. Models complement the picture
of schemas and schema morphisms. An interpretation for a given signature is
a valuation of its variables (a function which maps variables to values). For in-
stance, an interpretation for the signature of Numbers is simply a nonempty
set of natural numbers. Now, given a signature, a model of it is a nonempty
collection of interpretations for its variables. In some sense, this enables a loose
semantics for schemas: each schema denotes a collection of interpretations, in
contrast to the more usual tight semantics, where a schema denotes only one
interpretation. This semantics will be in particular useful for formalising pro-
motion (see section 4). An example of a model for Numbers is shown below it
in Fig. 1, using a notation borrowed from [25]. This model maps ns to the sets
{0, 1} and {2, 3}. Given a schema morphism τ : S1 → S2, this morphism induces
a mapping ()|τ : Mod(Σ′) → Mod(Σ) between models of S2 and models of S1

[15]. This mapping builds reducts [10], i.e., given a model of the “larger” schema,
it removes from the model all the parts that are unnecessary to interpret sym-
bols originating in S1, obtaining a model of the smaller schema. An example of
a reduct, obtained from a model of the schema Game, is also shown in Figure 1.
Given an interpretation I , we say I � φ if I satisfies the property φ; and given
a model M and a collection of formulas Φ, we say M � Φ, if for every I ∈ M

A Categorical Approach to Structuring and Promoting Z Specifications 79

Numbers

ns : PN

#ns > 0
σ

� �

Game

ps : PPlayer

ts : PN

ts �= ∅
∀ p : ps • p.owns ⊆ ts

∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

ns �→ ts

{〈ns � {0, 1},
〈ns � {2, 3}〉〉}

{〈ts � {0, 1}, ps � {〈owns � {0}〉}〉,
〈ts � {2, 3}, ps � {〈owns � {2}〉}〉}|σ

Fig. 1. An example involving schemas, schema models, a schema morphism and the
corresponding model reduct

and φ ∈ Φ, we have I � φ. Models of schemas are those satisfying the predicate
part of the schema. As usual, we will use the notation M � Σ (resp. M � S) to
express that M is a model of a signature Σ (resp. of a schema S). It is worth re-
marking the following property, which relates signature morphisms with models
and formulas:

M|σ � φ⇔ M � σ∗(φ),

where σ : Σ1 → Σ2 is a signature morphism, M is a model of Σ2 and M|σ is the
reduct of M to the syntax of Σ1. This property expresses that syntactic changes
of formulas via signature morphisms do not affect the notion of truth. This is
a main characteristic of an Institution [15]. Indeed, regarding Z, we have the
following theorem.

Theorem 3. The structure Z composed of: (i) the category Zign, (ii) the func-
tor sen : Zign→ Sen, that sends each signature to its set of formulas, (iii) the
functor Mod : Zignop → Cat, that sends each signature to the category of its
models1, and (iv) the collection of relations �Σ (satisfaction relations relating
models of a signature to formulas of the signature), is an Institution.

Let us continue with our categorical characterisation of Z concepts. The main
mechanism for putting two Z schemas together is schema conjunction. In a cate-
gorical setting, the corresponding way of combining two schemas is captured by
a categorical operation called pushout. The diagram in Figure 2 depicts what a
pushout is, and how it captures schema conjunction. In this diagram, W is the
common part of S and T , i and j are identity arrows, and S ∧T is obtained by
putting S and T together, keeping only once the common part (exactly what
schema conjunction does [25]). The pushout is minimal, in the sense that for any
other schema U such that we have arrows from S ,T to it, we can obtain a unique
arrow from S ∧T to U such that the diagram shown in Figure 2 commutes.

Another useful operation over schemas is symbol renaming, in particular re-
naming by priming. Categorically, this schema operation corresponds to an end-
ofunctor (−)′ : Zchem→ Zchem, the straightforward extension to schemas of
the endofunctor (−)′ : Zign→ Zign which maps every symbol in a signature to
its primed version.

1 Zignop denotes the dual category of Zign, obtained by reversing arrows. This is
needed since reducts and morphisms go in different directions.

80 P.F. Castro et al.

S ∧ T

S

i
��������

T

j
��������

W

��������
��������

U

S ∧ T

u

���
�

S

i
��������

��

�
�
	

T

j
��������

��

�

�

�
�

W

��������
��������

Fig. 2. Schema conjunction as a pushout

As we explained in the previous section, in a Z specification one usually defines
operations via particular schemas, relating other schemas describing domains. In
our categorical view of Z, operations correspond to a particular class of diagrams,
of the form shown in Figure 3 (a), where A and B are the related “domain”
schemas, and C is the operation schema. Such a diagram is indeed a categorical
diagram in the category Zchem, called a cospan. In particular, an operation for
a system S (captured as a schema) is typically specified as a schema over ΔS ,
i.e., over the conjunction of S and S ′, where S ′ represents the “post” state of S ,
i.e., the state after the operation has been executed. Such an operation is also a
cospan, and has the form shown in Figure 3 (b).

Let us more precisely formalise the concept of operations.

Definition 2. An operation is a cospan in Zchem of the following form:

S → Op ← S ′

We use the notation Op : S ⇒ S ′ to express the above diagram.

Operations modifying the state S of a system (captured as a schema) are usually
defined over ΔS . ΔS can also be captured categorically:

Definition 3. Given a schema S, we denote by ΔS the coproduct of S and S ′,
where S ′ is the result of applying the priming functor to schema S.

The coproduct is a pushout of two schemas S1 and S2 with no common part (i.e.,
in the figure above we set W = 〈∅, ∅〉); that is, for any other schema combining
S1 and S2 (meaning that we have schema morphisms from S1 and S2 to the
combined schema), there exists a unique schema morphism u from the coproduct
to this combined schema that makes the diagram involving these schemas and the

(a) C

A

�������
B

�������

(b) Op

S

i
������� (−)′ 		����� S ′

j

�����

Fig. 3. Cospans, and Z operations as cospans

A Categorical Approach to Structuring and Promoting Z Specifications 81

ΔS

S

��

S ′

�����

Op

ΔS

u

���
�

S

��

��

�
�
�

�

S ′

�����

��

�

�
�

�

Fig. 4. Categorical definition of ΔS as a coproduct

schema morphisms corresponding to the combinations commute. This situation
is described in Figure 4, for the case of ΔS , the coproduct of S and S ′.

We have used an arrow notation for cospans, in our characterisation of Z
operations. In fact, cospans can be thought of as arrows (or morphisms), which
are composed by applying pushouts [4]. This is the way schema composition is
categorically captured.

Definition 4. Given two operations Op1 : S ⇒ S ′ and Op2 : S ⇒ S ′ we define
the operation Op1 � Op2 as follows:

Op1 � Op2

Op1

�����
Op′

2

�������

S

��
S ′

��!!!!!
"""""

S ′′

�����

where the tip of the diagram is obtained by means of pushouts, and Op′
2 is built

up by applying the functor (−)′ to Op2.

Another useful construction in Z is the ΞS operation. This operator on schemas
denotes a skip operation. That is, it is a special case of ΔS , in which S and S ′

are identical. This schema operator can also be defined (up to isomorphism) in
a categorical way.

Definition 5. ΞS : S ⇒ S ′ is a schema that satisfies: ΞS �Op ∼= Op �ΞS ∼= Op,
for every operation Op, where S ∼= S ′ expresses that there is an isomorphism
between the corresponding schemas.

Given schemas S and S ′, we have a category OP(S , S ′) where the objects are
the operations between S and S ′ and the morphisms are the schema morphisms
between the corresponding cospans. This construction is called a bicategory [4].
An important point is that we can think of our category of schemas as having two
different kinds of arrows, one representing schema morphisms (schema embed-
dings after translation), and another one capturing Z operations (as cospans),
with � working as the composition for the latter.

Definition 6. Zpec is the bicategory of Z specifications, defined as the structure
composed of:

– The set of schemas as its set of objects.

82 P.F. Castro et al.

Player ′

owns ′ : PN

Player
owns : PN

Settle
ΔPlayer
t : N

t /∈ owns
owns ′ = owns ∪ {t}

owns �→ owns owns′ �→ owns′

ΔPlayer

Fig. 5. A Z specification as a categorical diagram in Zpec

– For each pair of schemas S , S ′, the category OP(S , S ′) of cospans between
S and S ′ (called 1-cells), and morphisms between cospans (called 2-cells).

– The composition between 2-cells is defined as usual by using the composition
(i.e., pushouts) of cospans (denoted by �).

Summarising, a Z specification is a collection of schemas S0, . . . ,Sn together with
a set of cospans Opi : Si ⇒ S ′

i , all “living” in the bicategory of Z specifications.
An example illustrating schemas and operations, and their relationships, is shown
in Figure 5, as a diagram in Zpec.

4 Schemas as Types and Promotion

Let us now concentrate on analysing promotion. A key feature of Z, that facili-
tates promotion, is the use of schemas as types. In order to do this, we need to
spice up our categorical framework with some additional machinery. Basically,
we introduce the concept of schema manager, which conveys the idea of schema
instances. Essentially, a manager of a component C is a component that intu-
itively provides the behaviour of various instances of C , and usually enables the
manipulation of these instances. We will deal with the possibility of interpreting
schemas as types in a way that differs from the established mechanism to do
so, presented in [25]. Our approach consists of building a manager specification.
Consider the schemas in Figure 6; the one on the left represents an arbitrary
schema, involving v0 : T0, . . . , vn : Tn as its typed variables. The schema on
the right represents the manager for the previous schema, where φP is obtained
from φ by adding the parameter s of type S to each variable. For the schema
on the right, S does not represent the schema on the left; instead, it is simply
a fresh given type, although for simplicity we maintain for this given type the
same name as for the schema it represents.

An example of the use of managers is shown is Figure 10. In this figure,
NumbersP , the manager of Numbers , is used to provide semantics to the use of
schema Numbers as a type (to be explained later on).

We can define a similar transformation over operations. Consider the schemas
in Figure 7; the schema on the left is the definition of an operation, where

A Categorical Approach to Structuring and Promoting Z Specifications 83

S
v0 : T0

. . .
vn : Tn

φ

SP

v0 : S → T0

. . .
vn : S → Tn

∀ s ∈ S • φP

Fig. 6. A schema and its manager construction

Op
ΔS

φ

OpP

ΔSP

this : S

φ[v0(this)/v0, . . . vn(this)/vn , v
′
0(this)/v

′
0, . . . v

′
n(this)/v

′
n]

{this} −� v ′
0 = {this} −� v0

. . .
{this} −� v ′

n = {this} −� vn

(−)P

Fig. 7. Operation promotion using managers

v0, . . . , vn , v
′
0, . . . , v

′
n are the variables of S and S ′, respectively. We introduce

the schema on the right; that is, we add a parameter, in this case named this ,
representing the instance to which the operation is applied. This situation is
graphically depicted as a categorical diagram in Figure 8. Therein, the dashed
arrows denote the application of the transformation described above. The trans-
lation (−)P : Zpec → Zpec is a functor, which maps schemas to promoted
schemas, and operations to promoted operations. We can define it in three parts:

– A functor (−)P : Zign → Zign, which translates signatures in the way
described above.

– A functor (−)P : OP(S , S ′) → OP(SP , (SP)′), that translates operations
to promoted operations. (For the sake of simplicity we use (−)P for naming
these two functors.)

– The canonical extension of (−)P to formulas, as explained above.

The following theorem can be proven by resorting to the definition of (−)P .
Theorem 4. (−)P : Zpec→ Zpec is a lax functor.

Lax functors are morphisms between bicategories; this means that promotion
is coherent with respect to identities and composition of operations. Moreover,

OpP

Op

��#########
SP

��$$$$$
(SP)′

��������

S

�������

��######### S ′

�������

��%%%%%%%%%%

Fig. 8. Categorical diagram depicting operation promotion

84 P.F. Castro et al.

given a model M of ΣP we can define a corresponding model MD (a degraded
model), which forgets the new sort introduced. In Figure 9, a simple example
of a mapping between schemas and their models is shown, to illustrate these
ideas. These kinds of mappings are called institution representations [23], and

Numbers

ns : PN

#ns > 0
� �

(−)P

(−)U

NumbersP

ns : Numbers → PN

∀ x ∈ Number • ns(x) > 0

{〈ns � {0, 1}〉,
〈ns � {2, 3}〉}

{〈ns � {x0 �→ {0, 1}, x1 �→ {2, 3}}〉}

Fig. 9. Example of mappings between schemas and models

are mappings between logical systems. Intuitively, a collection of schemas and the
relations between them conform a logical system. An institution representation
allows us to move inside the same system but adding certain useful features,
while keeping the basic properties of these schemas.

The operation of using a schema as a type can be understood as a kind of
schema inclusion. Consider for instance the schema given in Figure 10 (a); it
defines the end state of a game where the player needs to conquer territories 0
to 6. Notice that the actual semantics of this schema can be defined using the
schema manager NumbersP introduced above, simply by including NumbersP in
the schema. This has a self evident categorical interpretation, and the existence
of an arrow between Numbers and EndGame relates them both syntactically and
semantically. This resulting diagram is shown in Figure 10 (b), where result .ns
is just syntactic sugar for ns(result).

This simple approach based on managers allows us to deal with schemas as
types. We just dealt with “single instances”, but the approach is also suitable for
dealing with indexed instances of a schema, as is usual when using promotion.
For instance, consider a game where we have various players, each player with
its own set of territories. A schema illustrating this situation, with a promoted
operation and showing the role of managers, is shown in Figure 11.

(a)

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6} (b)

NumbersP

ns : Numbers → PN

∀ x ∈ Number • ns(x) > 0

id

EndGame
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Fig. 10. Using managers as types

A Categorical Approach to Structuring and Promoting Z Specifications 85

id id

Play
ΔGame
AddNumberP

p? : Player

state(p?) = ns?
{p?} −� state ′ = {p?} −� state

Game
NumberP

state : Players → Numbers

Game ′

Number ′P

state ′ : Players → Numbers

Fig. 11. Using managers for promoting an operation

4.1 Promotion as an Institution Representation

Institution representations were introduced informally above, where we argued
about their need for capturing promotion. As institutions are an abstract char-
acterisation of logical systems, institution representations capture the notion of
embedding of a logical system into another one [23]. The logical machinery of Z
used for describing states and operations constitutes an institution, and the op-
eration of promoting schemas corresponds to an institution representation from
this institution to itself. The key elements involved in the promotion process are:

– The definition of a mapping (functor) (−)P : Zign → Zign, mapping a
signature to its promoted signature.

– The definition of a mapping (natural transformation) (−)D : Mod ; (−)P →
Mod , mapping models of promoted signatures to models of the original sig-
nature.

– The definition of a mapping (natural transformation) (−)P : Sen→ Sen ; (−)P
mapping formulas of the original signature to formulas of the promoted sig-
nature.

These mappings satisfy the property M � φP ⇔ MD � φ. That is, a model of
a promoted signature satisfies a promoted property if and only if the degraded
model satisfies the original property. A graphical representation of this situation
is shown in Figure 12. To clarify this diagram, suppose that we have a translation
from one schema signature to another schema signature (named σ). Notice that
reducts move in the opposite direction of translations (this explains the (−)op in
the definition of institutions). Then, if we take a reduct of a promoted schema,
and so we take the degraded model (the right path of the diagram), we obtain the
same model as if we take the degraded model first and then take the reduct (the
left path in the diagram). This ensures the coherence between the operations of
strengthening and promotion in Z, which is guaranteed by the following theorem.

Theorem 5. (−)P and (−)D are institution representations.

86 P.F. Castro et al.

Σ2

Σ1

σ

�� Mod(Σ2)

Mod(σ)

��

Mod(ΣP
2)

Mod(σP)

��

(−)D��

Mod(Σ1) Mod(ΣP
1)

(−)D

��

Fig. 12. Institution representations

5 Heterogeneous Z Specifications and Structuring

Following the recent trend in Software Engineering that favours a “multiple
views” approach to specification and design, the Z notation has been extended
in various ways, in combination with other notations. Some of these extensions
are Z-CSP [14] (Z plus the process algebra CSP), and Z plus statecharts [24].
These heterogeneous specifications pose new challenges, e.g., for defining appro-
priate formal semantics for the composite languages, and for providing effective
mechanisms to reason about their specifications.

A consequence of the abstract nature of our formalisation of Z, and its struc-
turing mechanisms, is that we can deal with these extensions in a systematic way.
Basically, individual formalisms for specifying software systems can be viewed
as institutions; indeed, first-order logics [15], temporal logics [15], modal logics
[15], Unity-like languages [13] and process algebras [19], all constitute institu-
tions. Our formalisation of Z in an institutional setting, and the wide toolset
available from the theory of Institutions, enables us to flexibly combine Z with
other formalisms, obtaining extensions of Z with appropriate, well structured
semantics2. In order to illustrate this nice characteristic of our formalisation, we
briefly describe in this section the combination of Z with CSP (structured CSP, as
introduced in [19]). The obtained combination is, in essence, similar to the frame-
work Z-CSP, with a well defined structured semantics, that makes the semantic
relationships between different (heterogeneous) components of a specification
explicit. We make use of the CSP (structured CSP) institution. The interested
reader can find the details of this formalism in [19]. Signatures in this institution
are pairs 〈A,P〉, where A is an alphabet (used for the communication of pro-
cesses), and P is a collection of process names. Elements of both A and P have
an associated list of typed parameters. A morphism 〈f , g〉 : 〈A,P〉 → 〈A′,P ′〉
between two CSP signatures consists of an injective function f : A→ A′, map-
ping members of A to members of A′ preserving parameters and their types3,
and a function g : P → P ′, mapping process names to process names, pre-
serving parameters and their types. The category of CSP signatures is called
CSPSig [19]. A CSP theory is a tuple 〈Σ, π〉, where Σ is a CSP signature,
and π is a set of processes in the CSP notation. A model of a theory is given
by a set of traces corresponding to the processes of the theory. For the sake of

2 The combination of institutions is well studied; see for instance [18].
3 The use of injective mappings introduces some subtle technical problems when com-
bining specifications. A way of avoiding these problems is described in [19].

A Categorical Approach to Structuring and Promoting Z Specifications 87

{〈〉, 〈coin〉,
〈coin, choc〉,
〈coin, choc, coin〉
. . . }

�
A = {coin, choc}
P = {VM }
π = {VM = coin → choc → VM }

Fig. 13. A theory in Structured CSP, and a model of it

simplicity, we employ a finite trace semantics (as introduced in [19]), although
also the failure-divergence semantics is supported in this institution. We have
a morphism between models M1 → M2 iff M2 � M1 (i.e., M2 is a refinement
of M1). A simple example of a vending machine is described as a CSP theory
in Fig. 13. Neither communication letters nor processes have parameters in this
example. A model of the theory accompanies the example as well.

A new institution CZP can be defined using the institutions CSP and Z.
Essentially, we want specifications to have a data part, given in Z with its cor-
responding operations, and a process part, with each atomic process being asso-
ciated with an operation as described in the Z part of the specification.

The category SignCZP of CZP signatures is composed of: (i) tuples Σ =
〈ΣCSP , ΣZ 〉 as signatures, where ΣCSP and ΣZ are CSP and Z signatures, re-
spectively; (ii) a morphism σ : Σ → Σ′ is a tuple of morphisms 〈f : ΣCSP →
Σ′

CSP , g : ΣZ → Σ′
Z 〉. The functor senCZP is defined as follows:

senCZP (〈ΣCSP , ΣZ 〉) = 〈senCSP (ΣCSP), senZ (ΣZ)〉.
The functor ModCZP is defined as follows: (i) Given Σ = 〈ΣCSP , ΣZ 〉, we define:
Mod(Σ) = {〈a1, . . . , an 〉, s〉 | ∃M ∈ Mod(ΣCSP) : 〈a1, . . . , an〉 ∈ M ∧ s ∈ Mod(ΣOp)},

where ΣOp is the signature of the operation event(a1) � · · · � event(an). That
is, models are execution traces, together with models of the corresponding op-
eration. (ii) Given a morphism σ : 〈A,N 〉 → 〈A′,N ′〉, the morphism Mod(σ)
is defined pointwise, using reducts of traces as defined in [19], and reducts of
schema valuations as defined in Section 3.

The relation �CZP is also defined resorting to �CSP and �Z as follows:

M � 〈π, φ〉 iff π1(M) � π and for every s ∈ π2(M) we have s � ϕ.

A theory in CZP is a tuple 〈ΣCSP , ΣZ , S ,Ops , events , π〉, where (i) ΣCSP =
〈A,N 〉 is a signature in CSP, (ii) ΣZ is a signature in Z, (iii) S is a schema
〈S , Φ〉, (iv) Ops = {op0 : S ⇒ S ′, . . . , opn : S ⇒ S ′} is a collection of operations
over the state S , (v) event : A→ Ops is a function mapping events to operations,
and (vi) π is a set of CSP processes. Morphisms between CZP theories are
straightforwardly defined pointwise.

The relation � is extended to theories: M � 〈ΣCSP , ΣZ , S ,Ops , event , π〉 iff
for every 〈〈a1, . . . , an〉, 〈si , . . . , sn〉〉 ∈ M we have that π1(M) � π, and π2(M) �
event(a1) � · · · � event(an). Figure 15 shows an example of a CZP theory.

Promotion can be easily extended to this new institution. We define functor
(−)P : CZPSign → CZPSign, mapping signatures to signatures, as follows.

88 P.F. Castro et al.

(skip)P
def
= skip

(stop)P
def
= stop

(a → Proc)P
def
= a?x : X → ProcP

(?y :T → Proc)P
def
=?x :X ?y :T → ProcP

(S�Q)P
def
= SP�SP

(S �Q)P
def
= SP � QP

(S ‖ Q)P
def
= SP ‖ QP

(P ||| Q)P
def
= SP ||| SP

MD
def
=

⋃

x∈S{σx | σ ∈ M }

where σx is obtained by deleting the
events in the trace where x is not
present, similarly for the corresponding
interpretation of schemas.

Fig. 14. Promoting basic CSP operators, and degrading traces

Buffer
s : Seq N

Out
ΔState
t ! : N

s �= 〈〉
t ! = heads
s ′ = tails

In
ΔState
t? : N

s ′ = s � 〈t?〉

main(b : Buffer) = in?(b : Buffer)?(x : N)→ main

�out?(b : Buffer)!(y : N)→ main

main = in?(x : N)→ main

�out!(y : N)→ main

BufferP

s : Buffer → Seq N

InP

ΔState
t? : N
b? : Buffer

b.s ′ = b.s � 〈t?〉
{b} −� s ′ = {b} −� s

OutP

ΔState
t ! : N
b? : buffer

b.s �= 〈〉
t ! = (head b.s)
b.s ′ = tail(b.s)
{b} −� s ′ = {b} −� s

� �

(−)P

(−)D {〈〈〈〉, 〈〉〉, 〈〈in.b0.1〉, 〈s � {}, b? � 0, t? � 1,

s′ � {b0 �→ {0 �→ 1}}〉〉, . . . }
{〈〈〈〉, 〈〉〉, 〈〈in.1〉, 〈s � {}, t? � 1,

s′ � {0 �→ 1}, 〉〉, . . . }

Fig. 15. Promoting CZP specifications

Given a signature 〈ΣCSP , ΣZ 〉, ΣZ is translated to ΣP
Z , and ΣCSP is mapped to

the following CSP signature:

– If a ∈ A, then aP = a?(x : S), being S the new type introduced in ΣP
Z ,

– If n ∈ N , then n(x1 : T1, . . . , xn : Tn)
P = n(x : S , x1 : T1, . . . , xn : Tn).

This functor is extended to sentences in CZP: the translation of a process is
defined inductively as in Fig. 14, and the translation of Z formulas is defined as
in Section 3. Furthermore, we define the mapping (−)D between models as in
Fig. 14. This extension of promotion is also an institution representation:

Theorem 6. Mappings (−)P and (−)D are institution representations.

Figure 15 shows, using a simple example, how promotion works in this new
setting. In this case, we have a standard specification of a buffer with its cor-
responding process specification. The schemas and the CSP process on the left
are promoted to the the corresponding on the right. Via promotion, we obtain
a specification with various buffers whose executions interleave.

6 Related Work and Conclusions

We proposed a mathematical foundation for Z and its structuring mechanisms,
which makes use of well established abstract notions of logical systems.

A Categorical Approach to Structuring and Promoting Z Specifications 89

Indeed, the notions that we used in this formalisation have been employed to
structure concurrent system specification languages, algebraic specification lan-
guages, and other formalisms [13,12]. Several alternative approaches to provide
a formal semantics to Z can be found in the literature. One of these is the one
presented in [21], where schemas are interpreted as axiomatic theories (signa-
tures plus predicates), and the semantics of these axiomatic theories is given by
means of varieties; in that work, no semantics is proposed for promotion and
the use of schemas as types. In [3], institutions are used for providing semantics
to Z specifications; in that work, schemas are captured as logical sentences in
an institution, and therefore a Z specification is viewed as an unstructured set
of expressions. In contrast, our approach makes use of theories and morphisms
between them in formalising Z designs, thus leading to a well structured cat-
egorical semantics of designs. In [7], category theory is used in the definition
of a relational semantic framework to interpret Z as well as other specification
languages. As in our case, the approach allows for heterogeneous specification;
however, the work uses Z simply as an example of a language based on the “state
& operations” viewpoint, but it does not show how to deal with Z’s structuring
mechanisms. In [6], the authors propose a set of rules to manipulate Z schemas;
as opposed to our work, these rules are motivated as a means for refactoring
specifications. In [16], the authors propose to interpret schemas as types; they
build a logical machinery in order to deal with these types. These ideas were
adopted in the international ISO standard of Z [17]. Some issues are, in our
opinion, not dealt with adequately in that approach; for instance, schema prim-
ing is difficult to explain in this context, since a schema and its primed version
correspond to different unrelated types. We believe that our approach fits better
with the original motivations for Z’s schema operators, where priming denotes a
purely syntactical operation, an operation also extensively used in other logics for
program specification (e.g., in TLA). The interpretation of priming (and related
operators) as categorical operations over logical theories provides a simple un-
derstanding of Z constructions, with a good separation of concerns between the
interpretation of schemas and schema operators, dealing even with promotion, a
sophisticated, and widely used, specification structuring mechanism. Moreover,
our approach maintains the structure of specifications when providing semantics
to them, leading to explicit semantic relationships between component schemas
and the composite schemas they are part of, which can be exploited to promote
reasoning, and with potential benefits for automated reasoning. Finally, our for-
malisation is at a level of abstraction that allows for a view of logical systems as
building blocks. This provides the rigour and flexibility needed to characterise
not only Z but also its related languages and extensions, in particular the het-
erogeneous ones. We have illustrated this point via a formal, well structured,
combination of Z with CSP, resulting in a formalism in essence equivalent to
the Z-CSP formal method, and “inheriting” the structuring of the composed
languages, in particular promotion.

90 P.F. Castro et al.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. This work was partially supported by the Argentinian
Agency for Scientific and Technological Promotion (ANPCyT), through grants
PICT PAE 2007 No. 2772, PICT 2010 No. 1690 and PICT 2010 No. 2611, and
by the MEALS project (EU FP7 programme, grant agreement No. 295261).

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Barr, M., Wells, C.: Category Theory for Computer Science, Centre de Recherches
Mathématiques, Université de Montréal (1999)

3. Baumeister, H.: Relating Abstract Datatypes and Z-Schemata. In: Bert, D.,
Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 366–382.
Springer, Heidelberg (2000)

4. Bérnabou, J.: Introduction to bicategories. In: Complementary Definitions of Pro-
gramming Language Semantics. LNM, vol. 42. Springer (1967)

5. Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory.
Enc. of Mathematics and its Applications. Cambridge University Press (1994)

6. Brien, S.M., Martin, A.P.: A Calculus for Schemas in Z. Journal of Symbolic Com-
putation 30(1) (2000)

7. Bujorianu, M.C.: Integration of Specification Languages Using Viewpoints. In:
Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 421–
440. Springer, Heidelberg (2004)

8. Burstall, R., Goguen, J.: Putting Theories together to make Specifications. In:
Proc. of Intl. Joint Conference on Artificial Intelligence (1977)

9. Castro, P.F., Aguirre, N.M., López Pombo, C.G., Maibaum, T.S.E.: Towards Man-
aging Dynamic Reconfiguration of Software Systems in a Categorical Setting. In:
Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 306–321. Springer, Heidelberg (2010)

10. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland (1990)
11. Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press

(2001)
12. Fiadeiro, J.: Categories for Software Engineering. Springer (2004)
13. Fiadeiro, J., Maibaum, T.: Temporal Theories as Modularisation Units for Con-

current System Specification. Formal Aspects of Computing 4(3) (1992)
14. Fischer, C.: Combining CSP and Z, Technical Report, University of Oldenburg

(1997)
15. Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and

Programming. Journal of the ACM, 39(1) (1992)
16. Henson, M., Reeves, S.: Revising Z: Part I - Logic and Semantics. Formal Aspects

of Computing 11(4) (1999)
17. Nicholls, J.: Z Notation: Version 1.2, Z Standards Panel (1995)
18. Mossakowski, T., Tarlecki, A., Pawlowski, W.: Combining and Representing Logical

Systems. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 177–
196. Springer, Heidelberg (1997)

19. Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an In-
stitution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007)

A Categorical Approach to Structuring and Promoting Z Specifications 91

20. Smith, G.: The Object Z Specification Language. Advances in Formal Methods
Series. Kluwer Academic Publishers (2000)

21. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics.
Cambridge Tracts in Theoretical Computer Science (1988)

22. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
23. Tarlecki, A.: Moving Between Logical Systems. In: Haveraaen, M., Dahl, O.-J.,

Owe, O. (eds.) ADT 1995 & COMPASS 1995. LNCS, vol. 1130, pp. 478–502.
Springer, Heidelberg (1996)

24. Webber, M.: Combining Statecharts and Z for the Design of Safety-Critical Control
Systems. In: Gaudel, M.-C., Wing, J.M. (eds.) FME 1996. LNCS, vol. 1051, pp.
307–326. Springer, Heidelberg (1996)

25. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall (1996)

	A Categorical Approach to Structuringand Promoting Z Specifications
	Introduction
	A Brief Overview of Z
	A Categorical View of Z
	Schemas as Types and Promotion
	Promotion as an Institution Representation

	Heterogeneous Z Specifications and Structuring
	Related Work and Conclusions
	References

