
Avoiding Diamonds in Desynchronization

Harsh Beohar and Pieter J.L. Cuijpers

Department of Mathematics and Computer science
Eindhoven University of Technology, Eindhoven, The Netherlands

{H.Beohar,P.J.L.Cuijpers}@tue.nl

Abstract. The design of concurrent systems often assumes synchronous
communication between different parts of a system. When system com-
ponents are physically apart, this assumption becomes inappropriate.
Desynchronization is a technique that aims to implement a synchronous
design in an asynchronous manner by placing buffers between the com-
ponents of the synchronous design. When queues are used as buffers, the
so-called ‘diamond property’ (among others) ensures correct operation of
the desynchronized design. However, this property is difficult to establish
in practice. In this paper, we formally prove that the conditions for desyn-
chronizability can be relaxed, and in particular the diamond property is
no longer needed, when half-duplex queues are used as a communication
buffer. Furthermore, we discuss how the half-duplex condition can be
further relaxed when the diamond property can be partially guaranteed.

1 Introduction

Message passing [14] is a programming paradigm in which software compo-
nents send and receive messages either synchronously or asynchronously. In
synchronous communication components must be physically coupled, making
it possible to execute corresponding send and receive messages simultaneously.
Asynchronous communication is used when components are placed physically
apart. The corresponding send and receive messages are then decoupled and the
messages travel via a buffer from a sender to its recipient.

A problem with asynchronous communication is that the presence of buffers
makes ensuring the correctness of a system a non-trivial task. In general, if
the buffers are modeled to have infinite capacity, analyzing correctness of such
systems is undecidable [8]. But also, if the buffers are modeled to have finite
capacity, we may still face the state-space explosion problem.

It helps to separate concerns by first designing a correct synchronous system
and then desynchronizing it. The challenge is then to design the synchronous
system in such a way that the addition of communication buffers does not alter
its behavior (in any relevant way) [10]. A synchronous system that is not altered
by the addition of communication buffers is called desynchronizable.

In the context of web-services [4,5], the focus is on effective analysis (like dead-
lock freedom, choreography analysis) of an asynchronous system by developing

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 36–54, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Avoiding Diamonds in Desynchronization 37

synchronizability techniques. The idea is to make an asynchronous system syn-
chronous, which is in contrast to desynchronizability, where a synchronous sys-
tem is made asynchronous. Thus, synchrononizability techniques are applicable
when the components of a system are designed under asynchronous communica-
tion from the start (for instance, in web-services), whereas desynchronizatbility
techniques are applicable when the components of a system are designed under
synchronous communication from the start (for instance, in supervisory con-
trol). Despite these differences both approaches aim to establish an equivalence
between a synchronous system and its asynchronous version. In [4], the authors
showed that weak bisimulation between a deterministic synchronous system and
its asynchronous system with one place queues is sufficient and necessary for
synchronizability modulo weak bisimulation. In this respect, our work differs
from [4] by finding conditions solely on a given synchronous system.

In this paper, we show that the conditions well-posedness, independence of
external actions, input determinism, and diamond property on a synchronous
system are necessary and sufficient for desynchronizability. Intuitively,

– two communicating processes in a synchronous system are well-posed if both
the processes are able to receive each other requests.

– the external actions (i.e., actions that are not involved in synchronization)
are independent in a synchronous system if a receiver can always delay the
execution of its own external action in favour of receiving a sequence of
messages, without any consequence on its future behavior of the system.

– input determinism states that the communicating processes should not make
nondeterministic choices upon the reception of messages.

– the essence of the diamond property is that when two components both
wish to communicate a message, say α and β, then communication of α will
not block communication of β, and vice versa. Furthermore, the order of
communication will not influence the future behavior of the system.

In previous research [3,7,10,21], well-posedness and the diamond property were
already present in the sufficient condition for desynchronizability, while the other
two properties are new with respect to these references.

As it turns out, the diamond property is difficult to establish in practice,
while in particular well-posedness and input determinism can be easily obtained
by construction, at least for supervisory control synthesis [18].

As an example why this leads to practical problems, consider a simplified
model of a controlled drive-motor [11]. The drive-motor can move in a forward
direction ‘fwmove’ or in a backward direction ‘bwmove’, and it has a signal chdir
indicating when it is safe to change this direction. A controller communicates
with the drive-motor to ensure that the event ‘chdir’ always executes before
altering the direction of the motor. The models of the drive motor, the controller,
and the synchronous system are shown in Fig. 1, where !a (?a) denotes that an
action a is sent (received) and a denotes the synchronization of !a and ?a.

Observe in the synchronous system of drive-motor that the execution of the
event chdir from state 1 to state 2 disables the execution of the event fwmove;
thus, violating the commutativity of the traces chdir.fwmove and fwmove.chdir.

38 H. Beohar and P.J.L. Cuijpers

Drive motor

Controller

1 2

Synchronous system

!chdir
?fwmove
?bwmove

?chdir

?chdir

!fwmove !bwmove

chdir

chdir

fwmove bwmove

Fig. 1. An illustration showing the impossibility of establishing the diamond property
in certain synchronous systems

Similarly, the commutativity of the traces chdir.bwmove and bwmove.chdir is
prohibited in this synchronous system. As a result, the synchronous system in
Fig. 1 does not satisfy the diamond property. In fact, the control requirement
implicitly requires the diamond property to be broken. Therefore, it is impossible
to desynchronize this system unless we adapt the model of plant or supervisor,
or we adapt the way in which the desynchronization is performed.

Studying the origin of the diamond property, we notice that it is caused by the
type of buffer that is used for communication. The authors of [3,10,21] follow [8]
in taking two unidirectional FIFO queues as a means of communication. In [10]
a separate unidirectional FIFO queue is used for each type of message, which
effectively leads to a bag-type of buffering (cf. [7]). Both types of buffer are
useful abstractions of a physical communication layer with a protocol layer on
top. For example, queues nicely represent the use of the TCP/IP protocol, while
bags represent a UDP-like protocol [20]. Note that both approaches require the
diamond property, essentially because both approaches allow the messages α and
β to be present in the buffer at the same time and arrive in arbitrary order.

Our research hypothesis is that it may be possible to find better desynchroniz-
ability conditions by changing the properties of the communication protocol. So
far, research has focussed on the properties that the communicating components
should have in order to ensure desynchronizability. The buffer is usually taken to
be a queue or, incidentally, a bag. In this paper, we reconsider these properties,
and alter them by changing the communication protocol if desired.

A first step in that direction is shown in this paper. We prove that the trou-
blesome diamond property can be avoided by changing the type of buffer used
for desynchronization to so-called half-duplex communication (also used in [9]
for model-checking asynchronous systems). In the context of two communicating
processes, half-duplex communication means that a component is only allowed
to send a message when its input buffer is empty. As a result, the buffering be-
tween the two processes alternates in each direction, having to become empty
before alternating. We show that in this case a synchronous composition is desyn-
chronizable if and only if it is well-posed, independent of external actions, and
input deterministic. These properties are generally weaker than the properties
in [3,7,10,21], and we are able to give a general method to adapt systems that
are synthesized using supervisory control theory to satisfy these properties. It is

Avoiding Diamonds in Desynchronization 39

our hope that this paper will initiate discussion on the separation of concerns re-
garding desynchronization. Our use of a half-duplex buffering strategy indicates
that the communication protocol is essential in this separation.

Admittedly, the choice for half-duplex communication is an odd one from the
perspective of efficiency. The half-duplex protocol essentially makes components
wait for each other, which makes communication slow. In Section 5, we sketch a
first step to remedy this by recognizing when actions are independent of each-
other. Independent messages satisfy the diamond property and can therefore be
processed in a full-duplex way. However, more research is needed to complete
this claim and to find out when the half-duplex condition is in fact necessary for
desynchronizability, and when it can be dropped for the sake of efficiency.

The methods we use for studying desynchronizability in this paper stem from
process algebra and concurrency theory (see e.g. [2]). We do not fix a set of
desirable properties a priori, but rather aim for desynchronizability modulo a
behavioral equivalence that preserves a large set of possibly desirable properties.
The desynchronizability question is therefore posed as: given two processes p and
s, under which conditions are the synchronous composition and the asynchronous
composition of p and s behaviorally equivalent? To be as general as possible, we
take branching bisimulation as our behavioral equivalence of choice, which is the
strongest equivalence used in concurrency theory [12].

Organisation of the Paper. In Section 2, we describe the mathematical notations
and formal definitions required to define desynchronizability using two unidirec-
tional FIFO buffers. Section 3 discusses necessary and sufficient conditions for
desynchronizability, including the unwanted diamond property. In Section 4, we
show how the diamond property can be eliminated by using half-duplex buffers
for desynchronization. Lastly, Section 5 discusses ways to relax this half-duplex
condition and apply desynchronization in the context of supervisory control.

2 Basic Definitions

In this paper, we model the world as a single transition system in which all
behaviors of interest are represented. Components of a system as well as their
compositions are called processes and are represented by pointing out an initial
state q ∈ P in the labelled transition system. A process q is then formed by all
reachable states from the initial state q ∈ P.

Definition 1. A labelled transition system is a tuple (P, A,→,�), where
– P is a set of states.
– A is a set of actions.
– →⊆ P×A× P is a transition relation.
– � ⊆ P is the empty-buffer predicate and its purpose is to observe the states

of an asynchronous system that consists of empty buffer contents.

The notation q
α−→ q′ denotes an element (q, α, q′) ∈→, the notation q� denotes

that state q satisfies the empty-buffer predicate. For a given initial state q ∈ P,
the set of reachable states R(q) is defined as the smallest set such that:

40 H. Beohar and P.J.L. Cuijpers

– q ∈ R(q), and

– ∀q1,q2∈P∀α∈A.
[(

q1 ∈ R(q) ∧ q1
α−→ q2

)
⇒ q2 ∈ R(q)

]
.

In what follows, the letter q and its decorations like q′, q1, q2, · · · are used to
reason about the arbitrary processes, whereas the letters p, s and their corre-
sponding decorations are reserved for special purposes (see the next paragraph).

Considering a synchronous system as depicted in Fig. 2, we identify two ba-
sic components p, s, which we assume to be processes in our labeled transition
system. These processes are composed into a synchronous process p ‖ s. The
process p ‖ s can perform four kinds of events; namely, the external actions of p
and s that belong to the sets Ep and Es, respectively, and messages from p and
s that belong to the sets Mp and Ms, respectively.

p s

Mp

Ep

Ms

Es

Fig. 2. A synchronous system

p s

Buffer

Buffer

!Mp ?Mp

!Ms?Ms

EsEp

Fig. 3. An asynchronous system

When the system is desynchronized we obtain an asynchronous system as
depicted in Fig. 3, consisting of the same processes p, s, which are now composed
into an asynchronous process p |[ε, ε]| s (with ε indicating initially empty buffer
contents). In the asynchronous process, the external actions of p and s remain
the same, but we now make a distinction between the sending of a message
(modeled for p by the set !Mp = {!m | m ∈ Mp}) and the receiving of that
message (modeled for p by the set ?Mp = {?m | m ∈ Mp}). We assume that
the so obtained sets of actions are all part of our alphabet and are all pairwise
disjoint: Ep
Es
Mp
!Mp
?Mp
Ms
!Ms
?Ms ⊆ A.

Assuming that the processes p and s are already part of our labeled transition
system, where p makes use of the actions !Mp
?Mp
 Ep and s makes use of
the actions !Ms
?Ms
 Es, we can define the synchronous and asynchronous
composition of p and s through structural operational semantic rules (SOS) on
the states of the transition system [17]. The premise of each rule states the
assumption on the states of the composed processes, and the conclusion gives
the resulting transition for the composed state.

In Table 1, we give the SOS rules for synchronous composition and asyn-
chronous composition using two unidirectional lossless FIFO queues. The no-
tation p |[μ, ν]| s denotes the asynchronous composition of states p and s with
sequences of messages ν ∈ M∗

p and μ ∈ M∗
s in the respective queues. Note how

the empty-buffer predicate is always true for synchronous compositions, while it
is only true for asynchronous compositions if both queues are empty.

As explained in the introduction, a composition p ‖ s is desynchronizable
if it is equivalent to its asynchronous composition p |[ε, ε]| s. One problem with
defining equivalence between the two is that asynchronous composition needs
two actions for the communication of a message while synchronous composition

Avoiding Diamonds in Desynchronization 41

Table 1. SOS rules for synchronous and asynchronous parallel composition

p1
!m−−→ p2, s1

?m−−→ s2, m ∈ Mp

p1 ‖ s1
m−→ p2 ‖ s2

p1
?n−→ p2, s1

!n−→ s2, n ∈ Ms

p1 ‖ s1
n−→ p2 ‖ s2

p1
e−→ p2, e ∈ Ep

p1 ‖ s1
e−→ p2 ‖ s1

s1
e−→ s2, e ∈ Es

p1 ‖ s1
e−→ p1 ‖ s2 (p ‖ s)�

p
!m−−→ p′, m ∈ Mp

(p |[μ, ν]| s) !m−−→ (
p′ |[μ, ν.m]| s)

s
!n−→ s′, n ∈ Ms

(p |[μ, ν]| s) !n−→ (
p |[μ.n, ν]| s′)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]| s) ?n−→ (
p′ |[μ′, ν]| s)

s
?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]| s) ?m−−→ (
p |[μ, ν′]| s′)

p
e−→ p′, e ∈ Ep

(p |[μ, ν]| s) e−→ (
p′ |[μ, ν]| s)

s
e−→ s′, e ∈ Es

(p |[μ, ν]| s) e−→ (
p |[μ, ν]| s′) (p |[ε, ε]| s)�

only needs one. The usual process algebraic way to solve this issue is by defining
an abstraction scheme, translating certain actions from the asynchronous system
to actions from the synchronous system while hiding others.

In Table 2, we define the abstraction operator Δ() that maps all the send-
messages of the asynchronous system to communicated messages in the syn-
chronous system, while the receive-messages are mapped to a so-called internal
action, denoted by τ . Subsequently, we define branching bisimulation (see [2,12])
as an equivalence between processes that abstracts from internal actions.

Table 2. SOS rules for the abstraction operator Δ()

x1
!m−−→ x2, m ∈ Mp ∪Ms

Δ(x1)
m−→ Δ(x2)

x1
e−→ x2, e ∈ Ep ∪Es

Δ(x1)
e−→ Δ(x2)

x1
?m−−→ x2, m ∈ Mp ∪Ms

Δ(x1)
τ−→ Δ(x2)

x�
Δ(x)�

Definition 2. The reachability relation −−�⊆ P × A∗ × P is derived from the
transition relation → as the smallest relation satisfying:

q1
ε−−−� q1 ,

q1
w−−−� q′, q′ τ−→ q2

q1
w−−−� q2

,
q1

w−−−� q′, q′ α−→ q2, α �= τ

q1
w.α−−−−� q2

.

42 H. Beohar and P.J.L. Cuijpers

Definition 3. A binary relation B ⊆ P×P on the states of the transition system
is a branching bisimulation relation iff the following conditions are satisfied.

• ∀q,q1,q′,α.
[(

(q, q′) ∈ B ∧ q
α−→ q1

)
⇒ (α = τ ∧ (q1, q

′) ∈ B) ∨

∃q′1,q′2 .
[
q′

ε−−−� q′1
α−→ q′2 ∧ (q, q′1) ∈ B ∧ (q1, q

′
2) ∈ B]

]
;

• ∀q,q′ .
[(

(q, q′) ∈ B ∧ q �
)
⇒ ∃q′′ .

[
q′

ε−−−� q′′ ∧ q′′ � ∧(q, q′′) ∈ B
]]

;

• ∀q,q′,q′1,α.
[(

(q, q′) ∈ B ∧ q′ α−→ q′1
)
⇒ (α = τ ∧ (q, q′1) ∈ B) ∨

∃q1,q2 .
[
q

ε−−−� q1
α−→ q2 ∧ (q1, q

′) ∈ B ∧ (q2, q
′
1) ∈ B]

]
;

• ∀q,q′ .
[(

(q, q′) ∈ B ∧ q′ �
)
⇒ ∃q′′ .

[
q

ε−−−� q′′ ∧ q′′ � ∧(q′′, q′) ∈ B
]]

.

Two processes q and q′ are said to be branching bisimilar, denoted q ↔b q′, if
there exists a branching bisimulation relation B such that (q, q′) ∈ B.
Now we have all the preliminaries that are necessary to define what desychro-
nization formally means.

Definition 4. A synchronous system p ‖ s is desynchronizable if

p ‖ s ↔b Δ(p |[ε, ε]| s).

3 Properties of Desynchronizable Systems

In this section, we prove a number of properties of desynchronizable systems
modulo branching bisimulation. A new result (cf. [3,7,10,21]) is that the obser-
vation of the empty-buffer predicate makes that these properties are necessary
as well as sufficient for desynchronizability. A technical assumption used to show
necessity in this case, is that the desynchronized systems p and s are concrete,
meaning they do not have internal behavior themselves.

Definition 5. A process q ∈ P is concrete if �q′,q′′ .
[
q′ ∈ R(q) ∧ q′ τ−→ q′′

]
. A

transition q1
τ−→ q2 is inert modulo ↔b iff q1 ↔b q2.

Lemma 1. Let p ‖ s be a concrete and desynchronizable system. Then, all the
τ-transitions in Δ(p |[ε, ε]| s) are inert modulo branching bisimulation.

Proof. Since p ‖ s is a concrete process, none of the τ -transitions in the asyn-
chronous system can be matched by any related state in the synchronous system.
Thus, all τ -transitions in the asynchronous system have to be inert [2]. ��
A key step in understanding the necessary conditions for desynchronizability,
is to see that any reachable state p′ ‖ s′ ∈ R(p ‖ s) of some desynchronizable
system p ‖ s is desynchronizable itself. This property seems both desirable and

Avoiding Diamonds in Desynchronization 43

trivial, but its proof turned out to be more involved than expected. In particular,
the proof turns out to rely on the chosen abstraction scheme, the fact that p and
s are concrete processes, disjointness of the message sets, and the fact that we
observe the empty-buffer predicate.

Theorem 1. Let p ‖ s be concrete and desynchronizable, then any p′ ‖ s′ ∈
R(p ‖ s) is desynchronizable.

Proof. As a base case, the initial state of p ‖ s is desynchronizable by assumption.
By induction, assume that we have a reachable desynchronizable state p′ ‖ s′ ∈
R(p ‖ s) and consider any p′′ and s′′ with p′ ‖ s′ α−→ p′′ ‖ s′′. Following the SOS
rules, one of the following transitions must exist in the asynchronous process:

1. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′′ |[ε, α]| s′) with α ∈ Mp, and a hidden

transition Δ(p′′ |[ε, α]| s′) τ−→ Δ(p′′ |[ε, ε]| s′′) that is inert because p ‖ s is
concrete, i.e. Δ(p′′ |[ε, α]| s′) ↔b Δ(p′′ |[ε, ε]| s′′);

2. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′ |[α, ε]| s′′) with α ∈ Ms, and a hidden

transition Δ(p′ |[α, ε]| s′′) τ−→ Δ(p′′ |[ε, ε]| s′′) that is inert because p ‖ s is
concrete, i.e. Δ(p′ |[α, ε]| s′) ↔b Δ(p′′ |[ε, ε]| s′′);

3. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′′ |[ε, ε]| s′′) with α ∈ Ep (α ∈ Es), in which
case we find that s′ = s′′ (p′ = p′′).

Because p′ ‖ s′ ↔b Δ(p′ |[ε, ε]| s′), the properties of branching bisimulation
(applied to concrete processes) dictate that we can relate those asynchronous
transitions to synchronous transitions. I.e. there exist p′′′ and s′′′ such that p′ ‖
s′ α−→ p′′′ ‖ s′′′ and p′′′ ‖ s′′′ ↔ Δ(p′′ |[ε, ε]| s′′). Finally, to prove that this implies
that p′′ ‖ s′′ is desynchronizable, we study the relation:

S =
{
(p1 ‖ s1, p2 ‖ s2) | p1 ‖ s1 ∈ R(p′′ ‖ s′′) ∧

Δ(p2 |[ε, ε]| s2) ∈ R(Δ(p′′ |[ε, ε]| s′′)) ∧ p1 ‖ s1 ↔b Δ(p2 |[ε, ε]| s2)
}

It remains to show that this is a witnessing branching bisimulation relation for
p′′′ ‖ s′′′ ↔b p′′ ‖ s′′. For this, consider the following cases.

1. Let p1 ‖ s1
m−→ p3 ‖ s3, (p1 ‖ s1, p2 ‖ s2) ∈ S, and m ∈ Mp (the case

when m ∈ Ms is symmetric). By construction of S we have p1 ‖ s1 ↔b

Δ(p2 |[ε, ε]| s2). By applying concreteness and disjointness of Mp and Ms and

the transfer condition of branching bisimulation we get Δ(p2 |[ε, ε]| s2) m−→
Δ(p4 |[ε,m]| s2) and p3 ‖ s3 ↔b Δ(p4 |[ε,m]| s2) for some p4 ∈ P. Since

p3 ‖ s3�, branching bisimulation gives us Δ(p4 |[ε,m]| s2) τ−→ Δ(p4 |[ε, ε]| s4)
and p3 ‖ s3 ↔b Δ(p4 |[ε, ε]| s4), for some s4 ∈ P. Thus, we derive p2

!m−−→ p4

and s2
?m−−→ s4; hence, p2 ‖ s2

m−→ p4 ‖ s4 and (p3 ‖ s3, p4 ‖ s4) ∈ S.
2. Let p1 ‖ s1

e−→ p3 ‖ s1, (p1 ‖ s1, p2 ‖ s2) ∈ S, and e ∈ Ep (the case when e ∈
Es is symmetric). By construction of S we have p1 ‖ s1 ↔b Δ(p2 |[ε, ε]| s2).
By concreteness and disjointness of Ep and Es and the transfer condition

of branching bisimulation we get Δ(p2 |[ε, ε]| s2) e−→ Δ(p4 |[ε, ε]| s2) and p3 ‖
s1 ↔b Δ(p4 |[ε, ε]| s2). Thus, p2 ‖ s2

e−→ p4 ‖ s2 and (p3 ‖ s1, p4 ‖ s2) ∈ S.

44 H. Beohar and P.J.L. Cuijpers

3. The cases where the transitions originates from p2 ‖ s2 when (p1 ‖ s1, p2 ‖
s2) ∈ S can be proved along the above lines.

Finally, by transitivity and symmetry, we get p′′ ‖ s′′ ↔b Δ(p′′ |[ε, ε]| s′′). ��
Corollary 1. If p, s, p′, s′ are concrete processes and p ‖ s ↔b Δ(p′ |[ε, ε]| s′)
then p ‖ s ↔b p′ ‖ s′.

3.1 Well-Posedness

The first actual implication of desynchronizability that we would like to discuss,
is that a desynchronizable system is always well-posed. This was already ob-
served in [10] for desynchronizability modulo failure equivalence. Well-posedness
means that whenever a process p would like to send a message, s should be
willing to receive it and vice versa. In a synchronous composition such messages
may be blocked, but in an asynchronous composition they lead to orphans, i.e.,
messages that remain forever in the buffer. In turn, orphans lead to deadlocking
communication (except in a few pathological cases).

Definition 6. A binary relation W ⊆ P× P is called a well-posedness relation
iff the following conditions are satisfied.

1. ∀p,s,p′,m.
[
p

!m→ p′ ∧ (p, s) ∈ W ⇒ ∃s′ .
[
s

?m→ s′
] ∧ ∀s′ .

[
s

?m→ s′ ⇒ (p′, s′) ∈ W]]
,

2. ∀p,s,p′,e∈Ep .
[
p

e−→ p′ ∧ (p, s) ∈ W ⇒ (p′, s) ∈ W
]
,

3. Respectively Conditions 1 and 2 with the role of p and s interchanged.

A composition p ‖ s is well-posed if there exists a well-posedness relation W
such that (p, s) ∈ W.

Theorem 2. If p ‖ s is concrete and desynchronizable then it is well-posed.

Proof. Define a relation W = {(p1, s1) | Δ(p1 |[ε, ε]| s1) ∈ R(Δ(p |[ε, ε]| s))}. To
show that W is a well-posedness relation, let p1

α−→ p2 and (p1, s1) ∈ W .

1. Let α ∈!Mp. Then, by the construction of W we have Δ(p1 |[ε, ε]| s1) ∈
R(Δ(p |[ε, ε]| s)) and using p1

α−→ p2 we getΔ(p1 |[ε, ε]| s1) m−→ Δ(p2 |[ε,m]| s1).
Since p ‖ s is desynchronizable, we know that there exists q ∈ R(p ‖ s) such
that q ↔b Δ(p2 |[ε,m]| s1). Clearly, we have q�. Furthermore by the trans-
fer property of branching bisimulation and under the assumption of concrete

processes we get ∃s2.
[
Δ(p2 |[ε,m]| s1) τ−→ Δ(p2 |[ε, ε]| s2) ∧Δ(p2 |[ε, ε]| s2)�

]
.

Thus, s1
?m−−→ s2. Next, we need to show that for every s′2, whenever s1

?m−−→ s′2
then (p2, s

′
2) ∈ W . So let s1

?m−−→ s′2, thus Δ(p2 |[ε,m]| s1) τ−→ Δ(p2 |[ε, ε]| s′2).
Hence, by the construction of W it is clear that (p2, s

′
2) ∈ W .

2. Let α ∈ Ep. Then, by the construction of W we have Δ(p1 |[ε, ε]| s1) ∈
R(Δ(p |[ε, ε]| s)) and using the above transition we get Δ(p1 |[ε, ε]| s1) e−→
Δ(p2 |[ε, ε]| s1). Clearly, (p2, s1) ∈ W .

Likewise, the symmetric case can be proved for the process s1. ��

Avoiding Diamonds in Desynchronization 45

3.2 Independence of External Actions

The second implication of desynchronizability that we would like to discuss is
independence of external actions. Intuitively, it means that a receiver can always
delay the execution of its own external action in favor of receiving a sequence of
messages from the other process, without any consequence on its future behavior
modulo ↔b. The reception of messages becomes independent of the external
behavior in this way.

In the following, we define independence on the composition p ‖ s rather
than on the separate processes p and s because we aim for necessary conditions.
The pathological case in which a process p is not independent in a part of its
state-space that becomes unreachable when interacting with s has no effects on
desynchronizability. Of course, independence of external actions of the separate
processes would be a natural part of a sufficient condition for desynchronizability.

Definition 7. A synchronous system p ‖ s is independent of external actions
modulo ↔b if the following conditions holds for every p1 ‖ s1 ∈ R(p ‖ s).

1. ∀p2,p′
2,s2,u,e

.
[
e ∈ Ep ∧ u ∈ (Ms ∪ Es)

∗ ∧ p1 ‖ s1
e−→ p2 ‖ s1

u−−−� p′2 ‖ s2 ⇒

∃p3,p′
3
.
[
p1 ‖ s1

u−−−� p3 ‖ s2
e−→ p′3 ‖ s2 ∧ p3 ‖ s2 ↔b p′3 ‖ s2

]]
.

2. ∀p2,s2,s′2,v,e.
[
e ∈ Es ∧ v ∈ (Mp ∪ Ep)

∗ ∧ p1 ‖ s1
e−→ p1 ‖ s2

v−−−� p2 ‖ s′2 ⇒

∃s3,s′3 .
[
p1 ‖ s1

v−−−� p2 ‖ s3
e−→ p2 ‖ s′3 ∧ p2 ‖ s′2 ↔b p2 ‖ s′3

]]
.

Theorem 3. If p ‖ s is concrete and desynchronizable then it is independent of
external actions modulo ↔b.

Proof. Let x = xp
 xs, yM = yMp
 yMs, x ∈ {M,E}, and y ∈ {!, ?}. By
abuse of notations, define two renaming functions ! : (M ∪ E)

∗ → (!M ∪ E)
∗
,

? : (M ∪E)∗ → ?M∗ and a projection function¯: (M ∪ E)∗ → M∗:

1. ?ε = ε, ?(e.w) = w, ?(m.w) =?m.?w, where e ∈ E and w ∈ (M ∪ E)
∗
.

2. !ε = ε, !(e.w) = e.!w, !(m.w) =!m.!w, where e ∈ E and w ∈ (M ∪ E)
∗
.

3. ε̄ = ε, e.w = w̄, and m.w = m.w̄, where e ∈ E and w ∈ (M ∪ E)∗.

Now, assume we have a reachable (Theorem 1) desynchronizable state p1 ‖ s1 ∈
R(p ‖ s) with solid transitions as in Fig. 4, where e ∈ Ep and u ∈ (Ms ∪Es)

∗
.

Using the above renaming functions and the semantics, we derive p1
e−→ p2,

s1
!u−−−� s2, and p2

?u−−−−� p′2. As well-posedness is necessary for desynchro-

nizability, we may use it to obtain p1
?u−−−−� p3 (for some p3). Thus, we get

p1 ‖ s1
u−−−� p3 ‖ s2 (dashed in Fig. 4). From these transitions we then derive

the solid transitions in the asynchronous system depicted in Fig. 4, where μ = ū.
Since τ -transitions are inert we haveΔ(p1 |[μ, ε]| s2) ↔b Δ(p3 |[ε, ε]| s2). Branch-

ing bisimulation, under the assumption of concrete processes and disjointness
of the sets Ep, Es, gives us the existence of p′3 such that Δ(p3 |[ε, ε]| s2) e−→

46 H. Beohar and P.J.L. Cuijpers

p1 ‖ s1

p2 ‖ s1

p′2 ‖ s2

p3 ‖ s2

p′3 ‖ s2↔b

Δ(p1 |[ε, ε]| s1)

Δ(p1 |[μ, ε]| s2)Δ(p2 |[ε, ε]| s1)

Δ(p2 |[μ, ε]| s2)

Δ(p′2 |[ε, ε]| s2)

Δ(p3 |[ε, ε]| s2)

Δ(p′3 |[ε, ε]| s2)

e

u

u

e

u
e

u
e

ε

ε

e

↔b

Fig. 4. The role of independence of external actions

Δ(p′3 |[ε, ε]| s2) and Δ(p′3 |[ε, ε]| s2) ↔b Δ(p2 |[μ, ε]| s2). Thus, by the SOS-rules

we get p3 ‖ s2
e−→ p′3 ‖ s2. Next, we need to show that p′2 ‖ s2 ↔b p′3 ‖ s2.

From above we have Δ(p′3 |[ε, ε]| s2) ↔b Δ(p2 |[μ, ε]| s2) and since τ -transition
are inert we get Δ(p2 |[μ, ε]| s2) ↔b Δ(p′2 |[ε, ε]| s2). Thus, by transitivity we
get Δ(p′3 |[ε, ε]| s2) ↔b Δ(p′2 |[ε, ε]| s2). By Theorem 1 we get p′3 ‖ s2 ↔b

Δ(p′3 |[ε, ε]| s2), p′2 ‖ s2 ↔b Δ(p′2 |[ε, ε]| s2), from which we ultimately conclude
p′2 ‖ s2 ↔b p′3 ‖ s2. Likewise, Condition 2 of Definition 7 can be proved. ��

3.3 Input Determinism

The next implication of desynchronizability, is that desynchronizable systems
should be input deterministic. In other words, the synchronous system p ‖
s should not make non-deterministic choices upon the reception of messages.
It may perform non-deterministic external behavior, and it may also be non-
deterministic when sending messages. The reason for this, is that desynchro-
nization delays any non-deterministic choice on the input.

Like in the case of independence of external actions, we define the condition
input-determinism on the synchronous process p ‖ s rather than on the individ-
ual processes p and s (cf. [1]) because we are aiming for necessary conditions. As
before, input-determinism of the individual processes would be a natural part of
a sufficient condition for input-determinism of the composition.

Definition 8. A synchronous system p ‖ s is input deterministic modulo ↔b

if every reachable state p1 ‖ s1 ∈ R(p ‖ s) satisfies the following conditions.

1. for all p2, s2, p3, whenever p1 ‖ s1
u−−−� p2 ‖ s2 and p1 ‖ s1

u−−−� p3 ‖ s2 for
some u ∈ (Ms ∪ Es)

∗, then p2 ‖ s2 ↔b p3 ‖ s2.

2. for all p2, s2, s3, whenever p1 ‖ s1
v−−−� p2 ‖ s2 and p1 ‖ s1

v−−−� p2 ‖ s3 for
some v ∈ (Mp ∪Ep)

∗, then p2 ‖ s2 ↔b p2 ‖ s3.

Theorem 4. Let p ‖ s be concrete and desynchronizable, then it is input deter-
ministic modulo ↔b.

Avoiding Diamonds in Desynchronization 47

Proof. Pick a reachable state p1 ‖ s1 ∈ R(p ‖ s) (see Fig. 5) such that p1 ‖
s1

u−−−� p2 ‖ s2 and p1 ‖ s1
u−−−� p3 ‖ s2, for some u ∈ (Ms ∪ Es)

∗
, p2, p3, s2 ∈

P. By Theorem 1 we have p1 ‖ s1 ↔b Δ(p1 |[ε, ε]| s1). Using the renaming

functions from Theorem 3 we have s1
!u−−−� s2 and p1

?u−−−−� p2 and p1
?u−−−−� p3.

For the asynchronous system we then find the transitions as shown in Fig. 5,
where μ = ū. As p ‖ s is concrete, all τ -transitions in the asynchronous system are
inert, so we get Δ(p1 |[μ, ε]| s2) ↔b Δ(p2 |[ε, ε]| s2) ↔b Δ(p3 |[ε, ε]| s2). Finally,

p1 ‖ s1

p2 ‖ s2 p3 ‖ s2↔b

Δ(p1 |[ε, ε]| s1)

Δ(p1 |[μ, ε]| s2)

Δ(p2 |[ε, ε]| s2) Δ(p3 |[ε, ε]| s2)↔b

u u

u

ε ε

Fig. 5. The role of input-determinism

using Theorem 1 twice we ultimately get p2 ‖ s2 ↔b p3 ‖ s2. Likewise Condition
2 of Definition 8 can be proved. ��

3.4 The Diamond Property

The final implication of desynchronizability that we would like is the diamond
property. Intuitively, the diamond property says that sending a message from one
component does not disable the sending of message from the other component.
Moreover, any order of execution leads to behaviorally equivalent states.

Definition 9. A synchronous system p ‖ s has the diamond property modulo

↔b if for every reachable state p1 ‖ s1 and transitions p1 ‖ s1
m−→ p2 ‖ s2

and p1 ‖ s1
n−→ p3 ‖ s3 with m ∈ Mp and n ∈ Ms there exist transitions

p2 ‖ s2
n−→ p4 ‖ s4 and p3 ‖ s3

m−→ p5 ‖ s5 with p4 ‖ s4 ↔b p5 ‖ s5.

Theorem 5. Let p ‖ s be concrete and desynchronizable, then p ‖ s has the
diamond property modulo ↔b.

Proof. Assume a state p1 ‖ s1 ∈ R(p ‖ s), p1 ‖ s1
m−→ p2 ‖ s2 (m ∈ Mp)

and p1 ‖ s1
n−→ p3 ‖ s3 (n ∈ Ms), as depicted in Fig. 6. From Theorem 1 we

know that pi ‖ si ↔b pi |[ε, ε]| si, for i ∈ {1, 2, 3}. From the SOS rules we get

p1
!m−−→ p2, s1

?m−−→ s2, p1
?n−→ p3, and s1

!n−→ s3. Using these transitions we find
the transitions at the state Δ(p1 |[ε, ε]| s1) as shown in Fig. 6.

Since τ -transitions are inert we get Δ(p2 |[ε,m]| s1) ↔b Δ(p3 |[ε, ε]| s3). And
from Theorem 1 we get p2 ‖ s2 ↔b Δ(p2 |[ε, ε]| s2). Thus, by transitivity we
have p2 ‖ s2 ↔b p2 |[ε,m]| s1. And, the transfer conditions of branching bisim-
ulation gives the dashed transition labeled n shown in Fig. 6 with p4 ‖ s4 ↔b

Δ(p2 |[n,m]| s2). Likewise we derive the dashed transition labeled m in Fig. 6
with p5 ‖ s5 ↔b p2 |[n,m]| s3. Finally, by transitivity p4 ‖ s4 ↔b p5 ‖ s5. ��

48 H. Beohar and P.J.L. Cuijpers

p1 ‖ s1

p2 ‖ s2 p3 ‖ s3

p4 ‖ s4 p5 ‖ s5↔b

Δ(p1 |[ε, ε]| s1)

Δ(p2 |[ε,m]| s1) Δ(p1 |[n, ε]| s3)

Δ(p2 |[n,m]| s3) Δ(p3 |[ε, ε]| s3)Δ(p2 |[ε, ε]| s2)

nm

n m
τ τ

m
n

n m

Fig. 6. The role of the diamond property

3.5 Sufficient Conditions for Desynchronizability

Conversely, the four necessary conditions that we discussed in the previous sub-
sections, together form a sufficient condition for desynchronizability.

Theorem 6. Let p ‖ s be concrete, well-posed, independent of external actions,
input deterministic, and have the diamond property, then p ‖ s ↔b Δ(p |[ε, ε]| s).
Proof. See [6]. ��

4 Half-Duplex Communication Eliminates the Diamonds

In the previous section, we showed that the diamond property is a necessary
condition for desynchronizability, while we expressed a desire in the introduction
to desynchronize systems that do not possess this property as well. This leads
us to rethink our model of desynchronization.

Changing the notion of equivalence or the observation of the predicate is not
likely to help. Previous research [3,10] has been performed on weaker notions of
equivalence, and although the diamond property was not identified as a necessary
condition there, it did come up as a natural sufficient condition that the authors
could not work around. This is why we decided to experiment with the properties
of the buffer instead.

Inspired by the observation that the problem occurs when both communicat-
ing parties would like to send a message at the same time, we decided to see if
half-duplex communication, in which only one party can communicate at a time,
would give a solution. We model half-duplex communication between processes
p and s as a process p |[ε, ε]|h s, of which the structured operational semantics
are given in Table 3. Observe that the rules are similar to those we used before,
except that either the left or the right queue remains empty at all times.

Definition 10. A synchronous system p ‖ s is half-duplex desynchronizable if
p ‖ s ↔b Δ(p |[ε, ε]|h s).
Next, we find that the diamond property can be dropped from the necessary and
sufficient conditions.

Theorem 7. Let p ‖ s be concrete and half-duplex desynchronizable, then it is
well-posed, independent of external actions, and input deterministic.

Avoiding Diamonds in Desynchronization 49

Table 3. SOS rules for asynchronous systems with half-duplex queues

p
!m−−→ p′

(p |[ε, ν]|h s) !m−−→ (
p′ |[ε, ν.m]|h s

)
s

!n−→ s′

(p |[μ, ε]|h s) !n−→ (
p |[μ.n, ε]|h s′

)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]|h s) ?n−→ (
p′ |[μ′, ν]|h s

)
s

?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]|h s) ?m−−→ (
p |[μ, ν′]|h s′

)

p
e−→ p′, e ∈ Ep

(p |[μ, ν]|h s) e−→ (
p′ |[μ, ν]|h s

)
s

e−→ s′, e ∈ Es

(p |[μ, ν]|h s) e−→ (
p |[μ, ν]|h s′

)
(p |[ε, ε]|h s)�

.

Proof. Along the same lines as the proofs in the previous section. ��
Theorem 8. Suppose a concrete process p ‖ s is well-posed, independent of
external actions, and input deterministic, then it is half-duplex desynchronizable.

Proof. See [6]. ��

5 Discussion

5.1 Relaxing the Half-Duplex Condition

As already mentioned, the half-duplex mechanism leads to an inefficient design of
an asynchronous system because a sender is prohibited to send messages while its
input queue is non-empty. Moreover, we required half-duplex communication be-
cause we could not guarantee the diamond property for our synchronous system.
In essence, the half-duplex property ensures a certain level of synchronization
over the communication buffer. Half-duplex communication, namely, can only be
implemented if some kind of semaphore is in place on top of the physical layer.

Table 4. SOS rules for semi-duplex communication over a set I

p
!m−−→ p′, m ∈ Mp, (μ ∈ I∗ ∨m ∈ I)

(p |[μ, ν]| s) !m−−→ (
p′ |[μ, ν.m]|I s

)
s

!n−→ s′, n ∈ Ms, (ν ∈ I∗ ∨ n ∈ I)

(p |[μ, ν]| s) !n−→ (
p |[μ.n, ν]|I s′

)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]| s) ?n−→ (
p′ |[μ′, ν]|I s

)
s

?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]| s) ?m−−→ (
p |[μ, ν′]|I s′

)

p
α−→ p′, α ∈ Ep

(p |[μ, ν]| s) α−→ (
p′ |[μ, ν]|I s

)
s

α−→ s′, α ∈ Es

(p |[μ, ν]| s) α−→ (
p |[μ, ν]|I s′

)
(p |[ε, ε]|I s)�

50 H. Beohar and P.J.L. Cuijpers

Now, suppose that we do have the diamond property for certain pairs of
actions in the synchronous system. In such a case, a specialized semaphore could
be put in place that verifies whether there are actions in the incoming buffer that
conflict with a specific outgoing action. For example, suppose we can identify a
subset I ⊆ Mp ∪Ms of actions that satisfy the diamond property with respect
to all other messages in Mp∪Ms. As long as there are only actions from I in the
buffer, it is safe to send any message, and at any time it is safe to send actions
from I. Such a type of communication is captured in the SOS rules of Table 4.

We conjecture that the necessary and sufficient conditions for desynchroniza-
tion using such a buffer are well-posedness, independence of external actions,
input determinism, and the diamond property for pairs of messages modeled by
the set I. We actually expect the proof to be along the same lines of Theorem 6.

However, before going into detailed proofs of such theorems, we would like
to point out that the selection of a semi-duplex buffering strategy does not
only depend on the particular diamonds that can be proven, but also on the
particular kinds of semaphores / semi-duplex buffering strategies that are im-
plementable. If we want to distinguish different classes of messages that share
the diamond property, we also need to use different semaphores to ensure the
associated semi-duplex buffer (reminiscent of [16]). Which semaphores are actu-
ally implementable is highly dependent on the application domain, so we would
like to concentrate future research on finding out which possibilities we have in
practice (in our case, in practical cases of supervisory control) to put semaphores
on a communication buffer.

5.2 Desynchronization in Supervisory Control

Regarding supervisory control theory, we should still check whether the condi-
tions we have gotten so far are reasonable. That is the topic of this subsection.

Supervisory control theory [18] aims at controlling the behavior of a plant p to
fit a requirement r by synthesizing a supervisor s such that p ‖ s ↔b r. For this
purpose, a plant and its supervisor perform two kinds of actions: controllable and
uncontrollable actions. We model uncontrollable actions as the send messages
from a plant to its supervisor, while the controllable actions are modeled as the
send messages from the supervisor to the plant.

To make supervisory control synthesis feasible, it is usually assumed that p is
deterministic. The result of the synthesis is then also a deterministic s.

In order to synthesize a supervisor that is well-posed, consider the procedure
of taking the process p ‖ s and renaming all communication actions to send-
actions if they originated from s and to receive actions if they originated from
p. In other words, define a function γ : P → P such that

γ(m) =

⎧⎨
⎩

!m ; if m ∈ Ms

?m ; if m ∈ Mp

m ; otherwise

and consider the process γ(p ‖ s) defined using the SOS rules of Table 5.

Avoiding Diamonds in Desynchronization 51

Table 5. SOS rules for renaming using a function γ

p
m−→ p′

γ(p)
γ(m)−−−→ γ(p′)

p�
γp�

We obtain the following theorem, which gives us a well-posed and input-
deterministic supervisor for p.

Theorem 9. If p and s are deterministic, then p and γ(p ‖ s) are well-posed,
p ‖ γ(p ‖ s) is input-deterministic, and p ‖ s ↔b p ‖ γ(p ‖ s) ↔b r.

Proof. It is easy, but tedious, to verify that well-posedness of p ‖ γ(p ‖ s) follows
from the witnessing relation W = {(p1, γ(p1 ‖ s1)) | p1 ‖ s1 ∈ R(p ‖ s)}, while
the fact that we have constructed a valid supervisor is witnessed by the branching
bisimulation relation B = {(p1 ‖ s1, p1 ‖ γ(p1 ‖ s1)) | p1 ‖ s1 ∈ R(p ‖ s)}. Both
witnesses rely on determinism of p and s, but we have to leave out the details
for reasons of space. Obviously, if p and s are deterministic so is γ(p ‖ s) (using
disjointness of the message sets), hence it is input-deterministic. ��
The issue of ensuring independence of external actions is more involved. Intu-
itively, independence of external actions says that an external action can always
be delayed in favor of an internal communication. Of course, since the role of
a supervisor is just to limit the behavior of the plant, it has no direct need for
external actions. However, if the plant’s communication is dependent on the ex-
ternal behavior – for example, external behavior is processed with higher priority
than internal communication – desynchronizability is still at risk.

5.3 Desynchronization of Non-Concrete Synchronous Systems

In this subsection, we focus on the desynchronization of synchronous systems
that allow τ -transitions in their definitions.

The introduction of τ -transitions in a synchronous system makes it impossible
to know from the semantics whether the process p or1 s performed a τ -transition,
whenever the synchronous system p ‖ s executes the τ -transition. Such an in-
formation is vital in the definition of witnessing branching bisimulation relation
between a synchronous system, and its asynchronous version.

One way to circumvent this problem is by renaming the label τ of every
τ -transitions present in the processes p and s by the labels τp and τs, respec-
tively. Furthermore, by assuming that the labels τp, τs are present in the external
actions of the processes p, s, respectively, the conditions of Theorem 6 (Theo-
rem 8) can still be used to assert whether a non-concrete synchronous system
is desynchronizable (half-duplex desynchronizable) or not. However, despite this

1 The word ‘or’ is used in the exclusive sense.

52 H. Beohar and P.J.L. Cuijpers

soundness result, more research is required in order to examine to what extent
are these conditions necessary in the absence of concreteness assumption.

5.4 Conclusions

In this paper, we studied necessary and sufficient conditions for desynchroniz-
ability modulo branching bisimulation, and we showed that reverting to half-
duplex communication, or variants of it, can help in avoiding a troublesome
condition known as the diamond property. To the best of our knowledge, this is
the first characterization of desynchronizability modulo branching bisimulation;
moreover, the previous works (cf. [3,7,10,21]) on weaker equivalences focused on
giving sufficient conditions for desynchronizability.

Our results indicate that the study of desynchronizability should no longer
focus on the properties one needs to retain equivalence of behavior in a certain
communication context, but rather should focus on changing the communica-
tion context in such a way that these properties actually become attainable.
Furthermore, we have shown that reasonable desynchronizability results can be
obtained even for the finest equivalence in the van Glabbeek spectrum. Perhaps
some of the necessary conditions can be relaxed by weakening this equivalence.
For example, we know that we can eliminate the need for input determinism
by studying desynchronizability modulo contra-simulation [12]. But so far the
properties obtained using weaker equivalences are very similar to the ones we
found, which indicates that there is not much to be gained there.

Another observation we made is that the choice of abstraction scheme is cru-
cial in obtaining useful results. On the one hand, if we had chosen to abstract
from outputs rather than from inputs in our definition of the operator Δ(), there
would have been an additional necessary condition saying that at any reachable
state of p ‖ s only one send-transition is allowed (the details of this are outside
the scope of this paper, see [6]). On the other hand, we obtained interesting
results in [7] using an abstraction scheme that abstracted from send- and re-
ceive actions from the plant using bags as a communication buffer, but that
abstraction scheme did not work out for queues.

For deterministic supervisory control, we showed that it is possible to synthe-
size a controller that satisfies the well-posedness property by construction. For
other systems, however, this may not be so easy. Therefore, it would be beneficial
if tools for model checking asynchronous systems, like mCRL2 [13] and CADP
[15], could be optimized to check for well-posedness as well.

Finally, we observe a similarity between our work and the work on chore-
ographies and contracts, which turns out to be useful in model checking of asyn-
chronous systems [4,5,19]. Basically, such choreographies serve to restrict the oc-
currence of diamonds in an asynchronous system, which means that it becomes
synchronizable [5]. Perhaps it is also possible to use this idea in the other direc-
tion, i.e., to desynchronize a system using a choreography on the communication
buffer. It would be interesting to see if, for example, the proposed semi-duplex
buffer discussed in Section 5 can be implemented using a choreography.

Avoiding Diamonds in Desynchronization 53

Acknowledgements. The authors thank the anonymous reviewers for their
feedbacks on an earlier draft of this paper. The authors also thank Jos Baeten,
Koos Rooda, Bert van Beek, and Damian Nadales, for various discussions re-
garding this work and for putting us on the track of this problem.

This work has been performed as part of the “Integrated Multi-formalism
Tool Support for the Design of Networked Embedded Control Systems” (MUL-
TIFORM) project, supported by the Seventh Research Framework Programme
of the European Commission (Grant agreement number: INFSO-ICT-224249).

References

1. Alfaro, L., Henzinger, T.: Interface-Based Design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series, vol. 195, pp. 83–104. Springer Netherlands (2005)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of
Communicating Processes, 1st edn. Cambridge University Press, New York (2009)

3. Balemi, S.: Control of Discrete Event Systems: Theory And Application. Ph.D.
thesis, Swiss Federal Institute of Technology, Automatic Control Laboratory, ETH
Zurich (May 1992)

4. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 2011,
pp. 795–804. ACM, New York (2011)

5. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for Verification of Asyn-
chronously Communicating Systems. In: Kuncak, V., Rybalchenko, A. (eds.) VM-
CAI 2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012)

6. Beohar, H.: Refinement of communication and states in models of embedded sys-
tems. Ph.D. thesis, Eindhoven university of technology (in preparation)

7. Beohar, H., Cuijpers, P.J.L.: Desynchronizability of (partial) synchronous closed
loop systems. Scientific Annals of Computer Science 21, 5–38 (2011)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30,
323–342 (1983)

9. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202, 166–190 (2005)

10. Fischer, C., Janssen, W.: Synchronous Development of Asynchronous Systems. In:
Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 735–750.
Springer, Heidelberg (1996)

11. Forschelen, S.T.J.: Supervisory control of theme park vehicles. Master’s thesis,
Eindhoven University of Technology, System Engineering Group, Dept. of Me-
chanical Engineering (2010)

12. van Glabbeek, R.J.: The Linear Time - branching Time Spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

13. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal specification language mCRL2. In: MMOSS 2006 (2006)

14. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

15. Mateescu, R.: Specification and Analysis of Asynchronous Systems using CADP,
pp. 141–169. ISTE (2010), http://dx.doi.org/10.1002/9780470611012.ch5

http://dx.doi.org/10.1002/9780470611012.ch5

54 H. Beohar and P.J.L. Cuijpers

16. Peters, K., Schicke, J.-W., Nestmann, U.: Synchrony vs causality in asynchronous
pi-calculus. In: Luttik, B., Valencia, F. (eds.) 18th International Workshop on
Expressiveness in Concurrency, EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)

17. Plotkin, G.D.: A Structural Approach to Operational Semantics. Tech. Rep. DAIMI
FN-19, University of Aarhus (1981)

18. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

19. Salaün, G., Bultan, T.: Realizability of Choreographies Using Process Algebra
Encodings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

20. Tanenbaum, A.: Computer Networks, 4th edn. Prentice Hall Professional Technical
Reference (2002)

21. Udding, J.: Classification and Composition of Delay-Insensitive Circuits. Ph.D.
thesis, Eindhoven University of Technology, Eindhoven (1984)

	Avoiding Diamonds in Desynchronization
	Introduction
	Basic Definitions
	Properties of Desynchronizable Systems
	Well-Posedness
	Independence of External Actions
	Input Determinism
	The Diamond Property
	Sufficient Conditions for Desynchronizability

	Half-Duplex Communication Eliminates the Diamonds
	Discussion
	Relaxing the Half-Duplex Condition
	Desynchronization in Supervisory Control
	Desynchronization of Non-Concrete Synchronous Systems
	Conclusions

	References

