
Component Interfaces with Contracts on Ports�

Sebastian Bauer1, Rolf Hennicker1, and Axel Legay2

1 Ludwig-Maximilians-Universität München, Germany
2 INRIA/IRISA Rennes, France

Abstract. We show how the abstract concept of a (labeled) interface
theory can be canonically extended to an abstract framework for compo-
nent interfaces with ports. The resulting component framework satisfies
itself the general laws of an interface theory (concerning the composition,
refinement, and environment correctness notions). The ports of a com-
ponent interface represent the interaction points of a component. Each
port is equipped with a contract specifying the assumptions on and the
guarantees for the environment of a component. As a particular instance
we consider modal component interfaces such that component behav-
iors and the assume and guarantee behaviors of ports are given in terms
of modal I/O-transition systems with weak modal refinement and with
a weak modal environment correctness notion. The modal approach is
particularly useful to specify loose environment assumptions.

1 Introduction

The development of large, reliable component systems relies heavily on the use of
interfaces. Hence, rigorous development methods are mandatory which support
interface composition, stepwise refinement and the consideration of compatibility
issues when a component is put in an environment. These requirements together
with concise rules how the different dimensions of system development should
work together are formulated in an abstract way in the seminal work of De Alfaro
and Henzinger [10]. There the notion of an interface theory has been introduced
which consists of an interface algebra together with a component algebra thus
distinguishing interface specifications and component implementations.

In this paper we follow the idea of De Alfaro and Henzinger to study abstract
concepts and rules that later on can be instantiated by concrete frameworks. But
we will focus more specifically on the domain of reactive component systems such
that interfaces should be equipped with additional structure that makes more ex-
plicit their possible connections. For that purpose we rely on ports as interaction
points of a component as it is quite standard in many design languages.

Independently, a number of contract theories, based on assume-guarantee
(AG) reasoning have been developed, with a similar aim of approaching com-
positional design. Contract theories differ from interface theories in that they
strictly follow the principle of separation of concerns. They separate the specifi-
cation of assumptions from specification of guarantees, a choice largely inspired

� This work has been partially sponsored by the EU project ASCENS, 257414.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 19–35, 2013.
� Springer-Verlag Berlin Heidelberg 2013

20 S. Bauer, R. Hennicker, and A. Legay

by early ideas on manual proof methods of Misra, Chandy [25] and Jones [18],
along with the wide acceptance to pre-/post-condition style of specification in
programming [24,30], and more general semantical rules independent from lan-
guage representation [8].

In [4], we have shown how a theory of contracts can be built on top of a given
abstract specification theory. Contracts are just pairs (A,G) of an assumption
and a guarantee specification. We have shown in [4] how the contract theory can
be instantiated by using modal transitions systems [29] with strong modal re-
finement. This approach, however, did only work for specification theories which
admit a “quotient” construction as specification building primitive and there-
fore could not be applied to instances that support weak refinement abstracting
away silent τ -transitions [5] which is much more powerful. Compatibility issues
concerning the communication between modal transition systems have not been
integrated in [4]. On the other hand, the entities of our contract theory were just
pairs (A,G) disallowing any structural splitting which is necessary if we want to
deal with components with more than one port.

In the current paper we first introduce the notion of a labeled interface theory
in Sect. 2, which resembles an interface theory in the sense of De Alfaro and
Henzinger with the additional provision that a set of labels is assigned to any
interface (which intuitively represents an action alphabet). Moreover, in addi-
tion to interface refinement, we introduce an environment correctness relation
S → E to express when an environment E satisfies the interaction requirements
of an interface S. We show, in Sect. 3, how a theory of component interfaces can
be defined on top of any framework satisfying our abstract rules of an interface
theory. A distinguished feature of component interfaces is that they have a set
of ports such that each port P is equipped with a port contract (AP , GP) speci-
fying the assumptions on the environment that is going to be connected on this
particular port, and the guarantees of the component on that port. Hence our
approach deviates from approaches that use single port protocols not allowing
to extract distinguished assumptions and guarantees. All notions of an interface
theory, i.e. composition, refinement and environment correctness, are propagated
to the level of component interfaces which themselves are shown to satisfy the
requirements of an interface theory. We also discuss reliability of component in-
terfaces which means that the component frame, intended to specify the overall
visible behavior of a component, supports the guarantees shown on the ports.
We prove that reliability is compositional.

As a proof of concept, we instantiate in Sect. 4 our generic constructions
and build a modal theory of component interfaces on top of a labeled interface
theory with modal I/O-transitions systems and weak modal refinement as a
basis [21],[5]. In particular, we consider a small case study in Sect. 4.2.

Related Work. As observed above, our work extends classical interface theo-
ries [10,12,7] with an explicit treatment of assumptions-guarantees. Other works
on interface automata, e.g. [14], exploit the concept of assumption and guaran-
tee to improve the efficiency of compatibility checking. However, they are not

Component Interfaces with Contracts on Ports 21

comparable to our approach as they exploit assumption and guarantee at the
operational level, but not at the design one. An intermediary step between those
approaches is the work of Parizek and Plasil [26] that proposes a compositional
methodology to reduce the verification of a composite component to the one of a
series of smaller verifications on single components. Recently, a similar approach
to the one of [26] was followed in the BIP toolset developed by Sifakis et al. [3].

Independently, a number of contract theories, based on explicit assume-
guarantee reasoning have been developed, with a similar aim of approaching
the compositional design. Among them, one finds the work of Meyer [24], that
is based on pre and post conditions as state predicates and invariants for the
system itself. This approach, which builds on seminal ideas proposed by Dijkstra
and Lamport [13,19], is similar to ours in the sense that pre and post conditions
shall be viewed as assumption and guarantee, respectively.

Some works [2] introduced contracts in the refinement calculus. In this for-
malism, processes are described with guarded command operating on shared
variables. This formalism is best suited to reason on untimed system, while our
approach is general and could be instantiated on other types of data. Addi-
tionally, each of the above mentioned work suffers from the absence of multiple
treatment of assumptions/guarantees and rely on a unique language while our
abstract language can work with arbitrary interface theories.

More recently, Benveniste et al.[6] proposed a contract theory in where as-
sumption and guarantees are represented by trace structures. While this work is
of clear interest, it suffers from the absence of effective representation for the em-
bedded interface theory. Extensions such as the one proposed in [28,15] leverage
this problem but ignore the multiple treatment of assumptions and guarantees.

2 Labeled Interface Theories

The idea of an interface theory is to capture basic requirements that should be
satisfied by any formal framework supporting behavior specifications of compo-
nents. We assume given a set S of interface specifications such that any interface
is equipped with a finite set of labels (representing the alphabet of actions an
interface may perform). An interface theory includes a composition operator ⊗
to combine interfaces to larger ones. The composition operator is, in general,
partial since it is not always syntactically meaningful to compose interfaces, due
to syntactic constraints. Additionally, an interface theory must offer a refinement
relation ≤ to relate “concrete” and “abstract” specifications, i.e. S ≤ T means
that S is a correct refinement of T . Intuitively, the refinement relation expresses
that the implementation requirements of the (abstract) interface T are respected
by the refinement S. Refinement must be compositional in the sense that it must
be preserved by the composition operator expressed by requirement (A1) below.
An interface theory must also address the relationship between components and
their environment. For this purpose we introduce an environment correctness
relation → such that S → E means that E is a correct environment for S. In-
tuitively, this relation expresses that the communication requirements of S are

22 S. Bauer, R. Hennicker, and A. Legay

satisfied by the environment E (which is itself just another interface); we may
say that S “feels well” in the environment E. Hence, the environment correct-
ness relation is unidirectional and it is orthogonal to the refinement relation;
the former concerns the “horizontal” dimension while the latter concerns the
“vertical” dimension of system development. Both relations must be compatible
in the sense that environment correctness must be preserved by refinement as
stated in requirement (A2) below. This means that interface specifications and
correct environments can be replaced by specialized versions without disrupting
the correctness of the environment. Requirement (A3) concerns the relation be-
tween interface composition and environment correctness. Intuitively, it states
that correct environments can be composed to a larger correct environment.
More precisely, if S in the context of E feels well in E′ and if S in the context
of E′ feels well in E, then S feels well in the larger environment E ⊗ E′.

Definition 1 (Labeled Interface Theory). A labeled interface theory is a
quadruple (S,L, �,⊗,≤,→) consisting of

– a set S of interface specifications,
– a set L of labels,
– a function � : S → ℘fin(L) assigning a finite set of labels to each interface,
– a partial, commutative1 composition operator ⊗ : S × S → S; we call S

and E composable, if S ⊗ E is defined and require the following rules for
composable interfaces:
C1. If S ⊗ E is defined, then �(S ⊗ E) = (�(S) ∪ �(E)) \ (�(S) ∩ �(E)).
C2. If �(S) ∩ �(E) = ∅, then S ⊗ E is defined.
C3. Pseudo-associativity: If S,E and E′ are pairwise composable and �(S)∩

�(E) ∩ �(E′) = ∅, then (S ⊗ E) ⊗ E′ and S ⊗ (E ⊗ E′) are defined and
(S ⊗ E)⊗ E′ = S ⊗ (E ⊗ E′).

– a reflexive and transitive refinement relation ≤ ⊆ S × S such that S ≤ T
implies �(S) = �(T),

– an environment correctness relation →⊆ S × S such that, if S → E then
S ⊗ E is defined; we write S � E and call S and E compatible, if S → E
and E → S.

For all interfaces S, S′, E,E′ ∈ S the following properties must hold:

A1. Compositional Refinement:
If S ⊗E is defined, S′ ≤ S and E′ ≤ E, then S′ ⊗E′ is defined and
S′ ⊗ E′ ≤ S ⊗ E.

A2. Preservation of Environment Correctness:
If S → E and S′ ≤ S, E′ ≤ E, then S′ → E′.

A3. Environment Composition:

If S ⊗ E → E′ and S ⊗ E′ → E and �(E) ∩ �(E′) = ∅, then S →
E ⊗ E′.2

1 Commutativity means that for all S,E ∈ S, if S⊗E is defined then E⊗S is defined
and S ⊗ E = E ⊗ S; “=”means set-theoretic equality of elements.

2 In particular, S ⊗ (E ⊗E′) must be defined.

Component Interfaces with Contracts on Ports 23

A formal notion of an interface theory was, to our knowledge, first proposed
by de Alfaro and Henzinger in [10]. In their work, an interface theory consists
of an interface algebra together with a component algebra thus distinguishing
between interface specifications and component implementations. Later, in [11],
the authors introduced the term interface language which simplifies the approach
by considering just interfaces with the requirements that independent imple-
mentability and incremental design are supported. Our notion of an interface
theory is close to an interface language in the sense of [11]. The differences are
the following: (1) We associate a set of labels to each interface. (2) We require
that interface composition is commutative and pseudo-associative. (3) Instead
of using a binary compatibility predicate to express that two interfaces can work
properly together, we introduce a unidirectional environment correctness rela-
tion. If it is applied in both directions we obtain compatibility. (4) We require
compositional refinement for any composable interfaces and not only for compat-
ible ones. (5) Our notion of environmental composition is a variant of incremental
design in [11]. For any finite index set I we consider I-sorted sets (Si)i∈I (i.e.
finite families) of interfaces. We call (Si)i∈I composable, if the single interfaces
Si are pairwise composable and if labels of each Si are shared with at most one
other interface Sj (j
= i) of the family. Obviously, any subset of a composable
set of interfaces is composable.

For non-empty index sets I we extend the binary notion of interface composi-
tion to I-sorted sets of composable interfaces by the following inductive definition
along the size |I| of I:
– If |I| = 1, then ⊗(Si)i∈I = Si where I = {i}.
– If |I| > 1 and (Si)i∈I is composable, then ⊗(Si)i∈I � ⊗(Si)i∈I′ ⊗ Sj for

some subset I ′ ⊆ I with |I ′| = |I| − 1 and for Sj with I \ I ′ = {j}.
⊗(Si)i∈I is well-defined, since by commutativity and pseudo-associativity of the
binary composition the definition is independent of the choice of I ′.

3 A Theory of Component Interfaces with Port Contracts

In this section we show how a theory of component interfaces can be constructed
on top of any arbitrary labeled interface theory. Our goal is not to define yet
another language for component-based design but to focus on fundamental, ab-
stract properties of component interfaces which refines the concept of an interface
theory of Sect. 2 by introducing more structure. In addition to pure interfaces, we
require that component interfaces define access points in terms of distinguished
ports which are used for the composition of component interfaces. In the re-
mainder of this section we assume given an arbitrary labeled interface theory
(S,L, �,⊗,≤,→).

3.1 Port Contracts and Component Interfaces

We follow the idea that a port is an interaction point of a component. To specify
the legal interactions on a port often port protocols are used, e.g. [1,16]. The dis-
advantage of using such port protocols is that they usually mix up assumptions

24 S. Bauer, R. Hennicker, and A. Legay

and guarantees. Mostly it is rather difficult or even not feasible to figure out what
are the guarantees of a component at a port and what is assumed from the envi-
ronment for communication on that port. To overcome this deficiency we propose
to use explicit distinguished guarantee and assumption behavior specifications
for each port of a component following the principles of assume/guarantee rea-
soning; cf. e.g. [18]. Hence we consider contracts on ports where assumptions
and guarantees are both provided by an interface specification of our underlying
interface theory.

Definition 2 (Port Contract). A port contract is a pair (A,G) with A,G ∈ S
such that �(A) = �(G) and G → A, i.e. A is a correct environment for G.3 We
write �(P) for �(A) (= �(G)) and call �(P) the port labels of P .

The condition G → A is motivated by the intuition that any port contract should
specify the assumptions on the environment in such a way that the guaranteed
behavior (shown at this port) works fine in any such environment. Port contracts
can be refined following the co/contravariant approach where assumptions can
be relaxed in the refinement while guarantees may be strengthened.

Definition 3 (Port Contract Refinement). A port contract P ′ = (A′, G′)
refines a port contract P = (A,G), written P ′ � P , if G′ ≤ G and A ≤ A′.4

A component interface consists of two parts. First, any component interface has
a finite set of ports with associated contracts. Formally, the ports are given by a
finitely indexed set of port contracts. Secondly, following the terminology in [27],
there is a frame specification describing the possible visible behaviors of the full
component. The idea is that the frame shows the dependencies of actions on
the single ports. We assume that the label sets of the ports are pairwise disjoint
and that the label set of the component frame is the disjoint union of the port
labels. Moreover, the set of assumed behaviors on each port together with the
frame must be composable. This is necessary to guarantee that whenever the
assumptions on the ports are met by the environment one can indeed construct
the composition of the frame with the environment.

Definition 4 (Component Interface). A component interface C is a pair
C = ((Pi)i∈I , F) such that (Pi)i∈I is a finitely indexed set of port contracts
Pi = (Ai, Gi) and F ∈ S is an interface, called component frame, such that the
following conditions are satisfied:

1. For all i, j ∈ I with i
= j, �(Pi) ∩ �(Pj) = ∅.
2. �(F) =

⋃
i∈I �(Pi).

3. (Ai)i∈I ∪ {F} is a composable set of interfaces.

The set of labels of the component interface C is given by �(C) = �(F).

3 In particular, A and G are composable.
4 Note that P ′ � P implies �(P ′) = �(P).

Component Interfaces with Contracts on Ports 25

3.2 Composition of Component Interfaces

In this section we describe the composition of component interfaces merely based
on syntactic considerations. In particular, we do not require yet that guarantees
of one component port must satisfy the assumptions of the connected port of
the other component.5 Semantic requirements like this are studied in Sects. 3.4
and 3.5. The composition of two component interfaces C and D is only possible
if ports of C can be connected to ports of D in a syntactically meaningful way.
The simplest solution would be to require that there is exactly one port of C
which can be syntactically matched with exactly one port of D. In that way
we would, however, not be able to construct cyclic architectures. Therefore we
consider the case in which several binary port connections can be established
between two component interfaces (even none). For a binary port connection
between two ports, say PC of C and PD of D, we assume that PC and PD

have the same set of labels and that the guarantee interfaces of the two ports
are composable.6 Then C and D can be composed if there is a set of binary
connections between ports of the two components such that the non-connected
ports of C and D have pairwise disjoint labels and if the two component frames
are composable. The non-connected ports become the ports of the composition.

Definition 5 (Component Interface Composition).
Let C = ((PC

i)i∈I , F
C) and D = ((PD

j)j∈J , F
D) be component interfaces. C and

D are composable if there exist subsets I0 ⊆ I, J0 ⊆ J and a bijective connector
function κ : I0 → J0 such that

1. for all i ∈ I0, P
C
i = (AC

i , G
C
i) and PD

κ(i) = (AD
κ(i), G

D
κ(i)), the pair GC

i , G
D
κ(i)

is composable and �(PC
i) = �(PD

κ(i)),

2. �(C) ∩ �(D) =
⋃

i∈I0
�(Pi),

3. FC and FD are composable.

Then the composition of C and D is defined by

C �D = ((PC
i)i∈(I\I0) ∪ (PD

j)j∈(J\J0), F
C ⊗ FD).

Obviously, � is commutative since the underlying composition operator ⊗ and
the set-theoretic union of (non-connected) ports is commutative. It is also straight-
forward to prove that the rules (C1) - (C3) of Def. 1 are satisfied for the compo-
sition of component interfaces. Moreover, it is easy to see that whenever C and
D are composable component interfaces, then C �D is a component interface.

3.3 Refinement of Component Interfaces

Our definition of component interface refinement relies on refinement of ports,
see Def. 3, which has been inspired by assume/guarantee reasoning and the

5 Similarly to interface specifications which may be syntactically composable without
being semantically compatible.

6 Since �(PC) = �(PD) one could equivalently require (taking into account the
properties of a port contract) that the assumption interfaces are composable.

26 S. Bauer, R. Hennicker, and A. Legay

notions of behavioral subtyping, see e.g. [23]. A component interface C refines
another one D if, first, both have the same number of ports which are pairwise
refined and, secondly, the frame of C refines the frame of D in accordance with
the refinement relation of the underlying interface theory. Hence component
behaviors and guarantees are specialized in the refinement while assumptions
are relaxed.

Definition 6 (Component Interface Refinement). Let C = ((PC
i)i∈I , F

C)
and D = ((PD

j)j∈J , F
D) be two component interfaces. C refines D, written

C � D, if there exists a bijection ρ : I → J such that

1. PC
i � PD

ρ(i) for all i ∈ I, and

2. FC ≤ FD.

Note that C � D implies �(C) = �(D) and that reflexivity and transitivity of �
is inherited from the underlying refinement relation ≤ for interfaces.

Next, we show that the property of compositional refinement required by
condition (A1) of an interface theory is also valid for the refinement relation
between component interfaces.

Theorem 1 (Compositional Refinement for Component Interfaces).
Let C,C′, D, and D′ be component interfaces such that C and D are composable
and C′ � C as well as D′ � D holds. Then C′ and D′ are composable and
C′ �D′ � C �D.

3.4 Correct Component Environments

Finally, in order to obtain an interface theory for component specifications, we
need to define a suitable environment correctness relation. The idea is that the
communication requirements of a component interface C are satisfied by another
component interface D, playing the role of the environment for C, if (1) C and
D are composable, and (2) all port connections that can be established between
C and D have the property, that each (environment) assumption, say AC

i of a
connected port of C is satisfied by the guarantee GD

κ(i) of the corresponding port

of D; i.e. GD
κ(i) ≤ AC

i .

Definition 7. Let C = ((PC
i)i∈I , F

C) and D = ((PD
j)j∈J , F

D) be two compo-
nent interfaces which are composable according to a bijective connector function
κ : I0 → J0 for subsets I0 ⊆ I and J0 ⊆ J . D is a correct environment for C,
denoted by C � D, if for all i ∈ I0, G

D
κ(i) ≤ AC

i .

Theorem 2 (Preservation of Environment Correctness). Let C, C′, D,
and D′ be component interfaces such that C′ � C and D′ � D. If C � D, then
also C′ � D′.

Corollary 1. Component interfaces together with their composition, refinement
and environment correctness relation form a labeled specification theory with
labels L over any labeled interface theory (S,L, �,⊗,≤,→).

Component Interfaces with Contracts on Ports 27

3.5 Reliability of Component Interfaces

Up to know, we have not studied the relation between the frame of a component
and the guarantees at the ports of the component. Thus it could be possible
that a component C states a guarantee on a port, which is not really supported
by the component frame. In such a case the component interface would not be
reliable on that port. Indeed the actual behavior of a component is specified
by its frame and a user who wants to connect to a certain port is trusting the
guarantee on that port which should be established by any component imple-
mentation that is a refinement of the component frame. In general, we can still
relax this consideration, since we can assume that the component is put into a
context where the assumptions on all other ports are met. Consider, for instance,
a component interface C and the port P1 = (A1, G1) of C. Then G1 shows the
guarantee of C on port P1 whenever the component is put in the environment
A2 ⊗ . . .⊗ An for the other ports. In other words, the frame F , which specifies
the dependencies between the ports, should produce in the context of the envi-
ronment A2 ⊗ . . . ⊗ An a behavior that satisfies the guarantee G1 on the first
port. Formally, this can be expressed by requiring that A2 ⊗ . . . ⊗ An ⊗ F is a
refinement of G1. Hence A1 is not used as an assumption for G1 but only as an
assumption for the other guarantees Gj with j > 1.7

Definition 8 (Reliable Component Interface). Let C = ((Pi)i∈I , F) be a
component interface with port contracts Pi = (Ai, Gi) for all i ∈ I. C is reliable
on a port Pj (j ∈ I), if ⊗(Ai)i∈I\{j} ⊗ F ≤ Gj. C is reliable if C is reliable on
all ports Pi for all i ∈ I.

The next proposition shows that reliable components can themselves rely on
all environments which satisfy the assumptions on each port of the component;
i.e. the component frame (as well as all refinements F ′ of F) “feel well” in each
environment made up by the composition of single environments that satisfy the
assumptions on each port.

Proposition 1. Let C = ((Pi)i∈I , F) be a reliable component interface with port
contracts Pi = (Ai, Gi) for all i ∈ I. For all i ∈ I, let Ei be interfaces such that
Ei ≤ Ai. Then F → ⊗(Ei)i∈I .

An important issue is, of course, to study to what extent reliability of compo-
nent interfaces is preserved by composition. We can show that this is indeed
the case if reliable components are correct environments for each other and if
the composition relies on the connection of two ports. If there are more port
connections used for the composition, then the ports of each single component
(used for the connections) must be independent to achieve this result. Intuitively
this means, that the frame allows arbitrary interleaving between the behaviors of
those ports. Formally we require that under the assumptions of the other ports

7 It would be desirable to use all assumptions A1⊗ . . .⊗An for each guarantee Gj . But
this can raise serious problems if there are cyclic dependencies between assumptions
and guarantees on connected ports.

28 S. Bauer, R. Hennicker, and A. Legay

the frame is a refinement of the product of the behaviors (i.e. guarantees) of the
ports under consideration.

Definition 9. Let C = ((Pi)i∈I , F) be a component interface with port contracts
Pi = (Ai, Gi) for all i ∈ I and let I0 ⊆ I. The ports (Pi)i∈I0 are independent
w.r.t. F , if

1. ⊗(Ai)i∈I\I0 ⊗ F ≤ ⊗(Gj)j∈I0 , and
2. ⊗(Gj)j∈I0 → ⊗(Aj)j∈I0 .

Of course, any single port is independent and a set of ports is independent if
and only if it could be collapsed into a single port.

Theorem 3 (Contract Composition Preserves Reliability). Let C and
D be two reliable and composable component interfaces such that the connected
ports on each side are independent (which is trivially satisfied if only two ports
are connected). Then C �� D implies that C �D is reliable.

We can further prove that whenever C �� D then the composition of FC with any
environments of non-connected ports of C is compatible with the composition
of FD with any environments of non-connected ports of D.

Lemma 1. Let C = ((PC
i)1≤i≤m, FC) and D = ((PD

i)1≤i≤n, F
D) be reliable

component specifications which are composable according to a bijective connector
function κ : I0 → J0 for subsets I0 ⊆ I and J0 ⊆ J . Assume that the ports
(PC

i)i∈I0 and (PD
j)j∈J0 are independent w.r.t. FC and FD, respectively. If C ��

D then it holds that

(⊗(AC
i)i∈(I\I0) ⊗ FC

)
�

(
FD ⊗ (⊗(AD

j)j∈(J\J0))
)
.

4 Component Interfaces with MIOs

As a concrete instance of our approach we will use modal I/O-transition systems
(MIOs) for the representation of component frames and for the specification
of assumptions and guarantees on ports. Modal transition systems have been
introduced in [22] and later extended to MIOs in [21]. We have chosen MIOs
as our basic formalism since they allow us to distinguish between transitions
which are optional (may) or mandatory (must) and thus support well loose
specifications and refinements. In particular the ability for may-transitions is
very useful to specify contracts with loose assumptions. In Sect. 4.1 we construct
a labeled modal interface theory on the basis of [5], which will then be used, in
Sect. 4.2, to build modal component interfaces along the lines of our abstract
framework in Sect. 3.

4.1 Labeled Modal Interface Theory

We assume a global set of (observable) action labels Lact and a distinguished
(non-observable) action τ /∈ Lact . Each MIO is based on an I/O-labeling L =

Component Interfaces with Contracts on Ports 29

(IL, OL) consisting of disjoint sets of input labels IL ⊆ Lact and output labels
OL ⊆ Lact . A modal I/O-transition system M = (LM , SM , s0,M , M , M)
consists of an I/O-labeling LM = (IM , OM), a finite set of states SM , an initial
state s0,M ∈ SM , a may-transition relation M ⊆ SM × (

⋃
LM ∪ {τ}) × SM ,

and a must-transition relation M ⊆ M , i.e. any must-transition is also a
may-transition. The set of the reachable states of M is denoted by R(M) with
s ∈ R(M) if, and only if there is a finite sequence of may-transitions from s0,M
to s in M .

All facts and definitions that we provide for particular MIOs are indepen-
dent of the names of the states of the MIO. In fact we will use MIOs as
representatives of their isomorphism classes w.r.t. bijections on states and the
set of those isomorphism classes is denoted by SMIO . The labeling function
�act : SMIO → ℘fin(Lact) is defined by �act(M) = IL ∪OL for each MIO M with
I/O-labeling L = (IL, OL).

Figure 1 shows the pictorial representation of MIOs used in the following.
The I/O-labeling of a MIO is shown on its frame. Input and output labels are
indicated by the names on the incoming and outgoing arrows. On the transitions,
input labels are suffixed with “?” and output labels are suffixed with “!”. May-
transitions are drawn with a dashed arrow; must-transitions with a solid arrow.

a?

τ

τ

b!
a binput label output label

silent action

may transition

must transition

Fig. 1. Modal I/O-transition system

Composable MIOs and Their Synchronous Composition. Two MIOs can
be composed if their labels overlap only on complementary types. This means
that whenever a label is shared, then the label is either an output label of the
first MIO and an input label of the second one or an input label of the first
MIO and an output label of the second one. Formally, for two I/O-labelings
K = (IK , OK) and L = (IL, OL), their intersection is denoted by K �� L =
(IK∪OK)∩(IL∪OL). K and L are composable ifK �� L = (IK∩OL)∪(IL∩OK).
Two MIOs M and N are composable if their I/O-labelings are composable. A
finitely indexed set (Mi)i∈I of MIOs is composable, if the single interfaces Mi

are pairwise composable. Then labels of each Mi can only be shared with at
most one other MIO Mj (j
= i) of the family.

Synchronous composition means that single transitions of two MIOs with
shared actions are performed simultaneously. After composition the shared la-
bels become invisible modeled by τ . Formally, the synchronous composition

30 S. Bauer, R. Hennicker, and A. Legay

of two composable I/O-labelings K and L removes shared labels from inputs
and outputs, i.e., it yields the I/O-labeling K ⊗sy L = ((IK ∪ IL) \ (K ��
L), (OK ∪OL) \ (K �� L)).

The synchronous composition is defined for composable MIOs M and N and
denoted (also) by M ⊗sy N . It is defined as the usual product of automata
with synchronization on shared labels, which become τ in the product; a syn-
chronization transition in M ⊗sy N is a must-transition if both synchronizing
transitions are must-transitions. If one of the single synchronizing transitions
is a proper may-transition, then the synchronization transition is also a proper
may-transition. An example for synchronous composition of MIOs will be given
in Sect. 4.2 when the frames of the interfaces of a Broker and a Client component
are composed. The synchronous composition of MIOs is commutative (since we
consider MIOs up to bijections between the sets of states). Also the rules (C1)
to (C3) required for a labeled interface theory are true for MIOs.

Weak Modal Refinement. The basic idea ofmodal refinement is that required
(must) transitions of an abstract specification must also occur in the concrete
specification. Conversely, allowed (may) transitions of the concrete specification
must be allowed by the abstract specification. We will use the weak form of
modal refinement introduced by Hüttel and Larsen [17] which supports observa-
tional abstraction, i.e., τ -transitions can be dropped and inserted as long as the
modalities and the simulation relation are preserved.

M is a weak modal refinement of N , written M ≤∗
m N , if there exists a weak

modal refinement relation R between M and N such that (s0,M , s0,N) ∈ R. Two
MIOs M and N are equivalent, written M ≈∗

m N , if M co-simulates N , i.e.
M ≤∗

m N and N ≤∗
m M . Weak modal refinement ≤∗

m is reflexive and transitive.
If all transitions of the abstract MIO are must-transitions it coincides with weak
bisimulation. An example of weak modal refinement is given later in Fig. 4. As
a crucial fact, weak modal refinement is preserved by synchronous composition.

Theorem 4 (Compositional Refinement (A1)). For i = 1, 2, let Mi, Ni be
MIOs such that Mi ≤∗

m Ni and let M1 and M2 be composable. Then M1 and M2

are composable and M1 ⊗sy M2 ≤∗
m N1 ⊗sy N2.

Modal Environment Correctness Relation. To discuss correctness of envi-
ronments we follow the implicit assumption, taken from interface automata [9,11],
that outputs are autonomous and must be accepted by a communication partner
while inputs are subject to external choice and need not to be served. Hence,
output transitions of a MIO express requirements on its environment. For the
formal definition, we use one direction of the weak compatibility relation of [5]:

A MIO E is a modally correct environment for a MIO M , written M →∗
m E,

if M and E are composable and if for each reachable state (s, t) ∈ R(M ⊗sy E),
if M may send out in state s a message a shared with E, i.e. if there exists
s a

M s′ with a ∈ OM ∩IE , then E must be able to receive the message possibly
after a series of internal must-transitions have been performed by E starting
from state t, i.e. there exists t τ̂

E t′′ a
E t′. The notation t τ̂

E t′′ expresses
arbitrary many (must) τ -transitions.

Component Interfaces with Contracts on Ports 31

Examples of weak modal refinement are given below in Sect. 4.2. Both re-
quirements (A2) and (A3) of labeled interface theories are satisfied by MIOs
with weak modal refinement and modal environment correctness.

Theorem 5 (Preservation of Environment Correctness (A2), Environ-
mental Composition (A3)). Let M,M ′, E,E′ ∈ SMIO .

1. If M →∗
m E and M ′ ≤∗

m M , E′ ≤∗
m E, then M ′ →∗

m E′.
2. If M ⊗sy E →∗

m E′ and M ⊗sy E′ →∗
m E and E,E′ are composable, then

M →∗
m E ⊗sy E′.

As a consequence of the definitions and results from above, the MIO framework
satisfies the requirements of a labeled interface theory according to Def. 1.

Corollary 2. (SMIO ,Lact , �act ,⊗sy,≤∗
m,→∗

m) is a labeled interface theory.

4.2 Modal Component Interfaces

On top of the modal interface theory defined in the last section we construct,
along the lines of Sect. 3, a theory of modal component interfaces, cf. Cor. 1,
represented by (CMIO ,Lact , �act ,�sy,�m,�∗

m).
As an illustration we consider a simple message transmission system which

consists of two components: a broker component delivers received messages to
a client component. A standard message is immediately delivered while a con-
fidential message is only delivered after successful authentication of the client.
The static structure of this component system is shown in Fig. 2. The meaning
of the input and output actions is summarized in Table 1.

Broker ClientPB
1 PB

2 PC

m

cM

s

req

rcv

Fig. 2. The static structure of the message transmission system

Component Interface of the Broker Component. We first discuss the
component interface of the broker component shown in Figure 3. It has a frame
specification FB and two port contracts PB

1 = (AB
1 , G

B
1) and PB

2 = (AB
2 , G

B
2).

Frame FB. The frame specification FB specifies the reaction to the reception
of messages on port PB

1 . If a standard message is received (m?), the message
is delivered immediately to the client (s!) via port PB

2 and the broker is again
ready to receive new messages. If a confidential message is received (cM?), the
client is first asked for authentication (req!), and only after the reception of the
valid authentication information (rcv?), the message is delivered (s!).

32 S. Bauer, R. Hennicker, and A. Legay

Table 1. Intuitive meaning of actions

Broker B Client C
m? receive a message
cM? receive a confidential message
s! deliver the message to the client s? receive the message
req! send out an authentication request req? receive an authentication request
rcv? receive the (valid) authentication information rcv! send the authentication information

Port Contracts PB
1 , PB

2 . The assumption AB
1 of the port contract PB

1 allows the
environment to generate new messages of any type at any time and the guarantee
GB

1 ensures that the broker must always accept standard as well as confidential
messages. Obviously, GB

1 →∗
m AB

1 since GB
1 does not have any outputs.

The second port contract PB
2 specifies the interaction with the client envi-

ronment. The assumption AB
2 requires that the client must accept messages and

is obliged to answer any authentication request. The guarantee GB
2 expresses

that the broker may directly send a message to the client but the broker may
also ask the client for authentication before, and then it guarantees to take the
authentication response. The port contract PB

2 is valid since GB
2 →∗

m AB
2 : every

possible output of GB
2 must be accepted by any environment satisfying AB

2 .

Component Interface. The interface of the broker component is given by B =
({PB

1 , PB
2 }, FB). Obviously it is well-formed, since the syntactic conditions of

Def. 4 are satisfied. In particular, {AB
1 , A

B
2 , F

B} is a composable set of modal
interfaces: every action label occurs in at most two interfaces in this set, with
complementary action types (input vs. output). The broker interface is also
reliable. According to Def. 8 the proof obligations are AB

1 ⊗sy FB ≤∗
m GB

2 and
AB

2 ⊗sy FB ≤∗
m GB

1 . They are detailed in Fig. 4 and the weak modal refinement
relations can be discharged, for instance, with the MIO Workbench [5].

m?

s!

cM?

req!

rcv?

m?
cM?

GB
1

m!
cM!

AB
1

mcM

s!

req!

rcv?

s!

GB
2

s?

req? rcv!

AB
2

re
q

s
rc
v

FB

s?

req? rcv!

FC

s!

req! rcv?

AC

s?

req? rcv!

GC

re
q

s
rc
v

Fig. 3. Component interfaces of the broker and client component

Component Interfaces with Contracts on Ports 33

τ

s!

τ

req!

rcv?

AB
1 ⊗sy FB

req

s

rcv
≤∗

m

s!

req!

rcv?

s!

GB
2 req

s

rcv

(a) Proof obligation (I)

m?

τ

cM?

τ

τ

AB
2 ⊗sy FB

req

s

rcv
≤∗

m
m?
cM?

GB
1

req

s

rcv

(b) Proof obligation (II)

Fig. 4. Proof obligations for reliability of the component interface CB

Component Interface of the Client Component. The interface C of the
client component is much simpler; cf. Fig. 3. There is only one port such that
the guarantee of the port coincides with the frame which immediately implies
reliability The specifications are self-explanatory. Just note, that the assumptions
AC require that the environment must receive any answer to an authentication
request; hence GC →∗

m AC .

Composing Broker and Client Interfaces. Clearly, the two component in-
terfaces B and C are (syntactically) composable by connecting the ports PB

2

and PC
1 , which both have the same labels and composable guarantees (and as-

sumptions). The component interface B �sy C resulting from the composition
is shown in Fig. 5. Due to Thm. 3 the interface B �sy C is reliable since the
single interfaces are reliable and since they are correct environments for each
other, i.e. B ��∗

m C. For the latter the proof obligations are GC ≤∗
m AB

2 (which
is trivially valid) and GB

2 ≤∗
m AC which can be discharged, for instance, with

the MIO Workbench.

m?

τ

cM?

τ

τ

m?
cM?

GB
1m!

cM!
AB

1

m

cM

FB ⊗ FC

Fig. 5. Composition of broker and client component interfaces

5 Conclusion

We have presented an abstract framework how to construct a theory of com-
ponent interfaces with port contracts on top of a given interface theory and we
have instantiated this approach to obtain modal component interfaces on the
basis of modal I/O-transition systems whose modalities are particularly useful
for describing loose assumptions. In future work we plan to study other instan-
tiations of our abstract component theory, on the one hand on the basis of other

34 S. Bauer, R. Hennicker, and A. Legay

formalisms for interface specifications like language-based ones or Petri nets, on
the other hand by playing with other environment correctness notions and inte-
grating data states with invariants and pre/postconditions on transitions. Also
the MIO Workbench [5], which can actually be used to verify weak modal re-
finement and environment correctness, should be extended to explicitly support
components with contracts on ports. Another issue concerns the applicability of
our approach to well established design-languages like Wright [1] or UML which
also rely on port-based communication but which include further structure like
explicit connectors as in Wright or ports consisting of provided and required
interfaces as in UML.

Acknowledgement. We would like to thank the reviewers of the submitted
version of this paper for their useful hints and remarks.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

2. Back, R.-J., von Wright, J.: Refinement calculus - a systematic introduction. Un-
dergraduate texts in computer science. Springer (1999)

3. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the bip framework. IEEE Soft-
ware 28(3), 41–48 (2011)

4. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., W ↪a-
sowski, A.: Moving from Specifications to Contracts in Component-Based Design.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer,
Heidelberg (2012)

5. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Compati-
bility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

6. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

7. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

8. Cau, A., Collette, P.: Parallel composition of assumption-commitment specifica-
tions: A unifying approach for shared variable and distributed message passing
concurrency. Acta Inf. 33(2), 153–176 (1996)

9. de Alfaro, L., Henzinger, T.A.: Interface automata. Software Engineering Notes,
109–120 (2001)

10. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

11. de Alfaro, L., Henzinger, T.A.: Interface-based Design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems.
NATO Science Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104.
Springer (2005)

Component Interfaces with Contracts on Ports 35

12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed Interfaces. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 108–122. Springer, Heidelberg (2002)

13. Dijkstra, E.W.: Guarded Commands, Non-determinancy and A Calculus for the
Derivation of Programs. In: Bauer, F.L., Samelson, K. (eds.) Language Hierarchies
and Interfaces. LNCS, vol. 46, pp. 111–124. Springer, Heidelberg (1976)

14. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008)

15. Goessler, G., Raclet, J.-B.: Modal contracts for component-based design. In: SEFM,
pp. 295–303. IEEE Computer Society (2009)

16. Hennicker, R., Janisch, S., Knapp, A.: On the observable behaviour of composite
components. Electr. Notes Theor. Comput. Sci. 260, 125–153 (2010)

17. Hüttel, H., Larsen, K.G.: The Use of Static Constructs in A Modal Process Logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989)

18. Jones, C.B.: Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University Computing Laboratory (1981)

19. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Trans.
Program. Lang. Syst. 12(3), 396–428 (1990)

20. Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

21. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

22. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: 3rd Annual Symp. Logic
in Computer Science, LICS 1988, pp. 203–210. IEEE Computer Society (1988)

23. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

24. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
25. Misra, J., Mani Chandy, K.: Proofs of networks of processes. IEEE Trans. Software

Eng. 7(4), 417–426 (1981)
26. Parizek, P., Plasil, F.: Modeling environment for component model checking from

hierarchical architecture. Electr. Notes Theor. Comput. Sci. 182, 139–153 (2007)
27. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.

Software Eng. 28(11), 1056–1076 (2002)
28. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of com-

ponents. In: SEFM, pp. 377–381. IEEE Computer Society (2008)
29. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:

A modal interface theory for component-based design. Fundam. Inform. 108(1-2),
119–149 (2011)

30. Xu, Q., Cau, A., Collette, P.: On Unifying Assumption-commitment Style Proof
Rules for Concurrency. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS,
vol. 836, pp. 267–282. Springer, Heidelberg (1994)

	Component Interfaces with Contracts on Ports
	Introduction
	Labeled Interface Theories
	A Theory of Component Interfaces with Port Contracts
	Port Contracts and Component Interfaces
	Composition of Component Interfaces
	Refinement of Component Interfaces
	Correct Component Environments
	Reliability of Component Interfaces

	Component Interfaces with MIOs
	Labeled Modal Interface Theory
	Modal Component Interfaces

	Conclusion
	References

