
A Calculus for Quality

Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo

DTU Informatics, Technical University of Denmark, Denmark
{riis,nielson,rvig}@imm.dtu.dk

Abstract. A main challenge of programming component-based software
is to ensure that the components continue to behave in a reasonable man-
ner even when communication becomes unreliable. We propose a process
calculus, the Quality Calculus, for programming software components
where it becomes natural to plan for default behaviour in case the ideal
behaviour fails due to unreliable communication and thereby to increase
the quality of service offered by the systems. The development is facili-
tated by a SAT-based robustness analysis to determine whether or not
the code is vulnerable to unreliable communication. This is illustrated
on the design of a fragment of a wireless sensor network.

Keywords: Distributed systems, availability of data, robustness,
SAT-solving.

1 Introduction

One of the main challenges of component-based software development is to en-
sure that the distributed components continue to behave in a reasonable manner
even when communication becomes unreliable. This is especially important for
safety-critical software components in embedded systems and control software
components that control part of our physical environment. With the advent of
cyber-physical systems, in which software components are distributed through-
out a physical system, the challenges will continue to grow in importance.

Considerable focus has been placed on how to ensure the integrity, confiden-
tiality and authenticity of data communicated between components. In embed-
ded systems this is easiest when communication takes place over cables shielded
from other applications and used only for this purpose. However, increasingly
cables are shared between many applications, including for example the infotain-
ment system on cars, and often wireless communication needs to be employed as
well, as when the control system needs to communicate with the pressure meter
installed in the tyres. In health care applications there also is a trend to use
wireless communication for interconnecting measuring apparatus with patient
monitoring systems and with systems that dispense oxygen, saline or morphine.
Solutions generally include the proper use of cryptographic communication pro-
tocols that can be proved secure using state-of-the-art analysis tools.

Less focus has been placed on how to ensure that the expected communication
actually takes place. This is hardly surprising given the much more challenging

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 188–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Calculus for Quality 189

nature of this problem. One dimension of the problem is to ensure that other
control components continue to operate and for this it often suffices to use model
checking techniques for proving the absence of deadlock and livelock in software
components. Another dimension is to ensure that messages sent are in fact re-
ceived and this is much harder. Over the internet the possibility of denial of
service attacks is well-known — simply flooding the internet with messages be-
yond the capacity of the recipient thereby masking the proper messages. Wireless
communication is open to the same attacks as well as interference with the fre-
quency band and physically shielding the antennas of sender and receiver as they
are distributed throughout a cyber-physical system. Indeed, it might seem that
this problem cannot be solved by merely using computer science techniques.

What is feasible using computer science techniques is to ensure that software
systems are hardened against the unreliability of communication. This calls for
programming software components of distributed systems in such a way that one
has programmed a default behaviour to be enacted when the ideal behaviour is
denied due to the absence of expected communication. To this end we propose

– a process calculus, the Quality Calculus, for programming software compo-
nents and their interaction, and

– a SAT-based analysis to determine the vulnerability of the processes against
unreliable communication.

The Quality Calculus is developed in Section 2 and clearly inherits from calculi
such as CCS [9] and the π-calculus [10]. Its main novelty is a binder specifying the
inputs to be performed before continuing. In the simplest case it is an input guard
t?x describing that some value should be received over the channel t and should
be bound to the variable x. Increasing in complexity we may have binders of
the form &q(t1?x1, · · · , tn?xn) indicating that several inputs are simultaneously
active and a quality predicate q that determines when sufficient inputs have been
received to continue. As a consequence, when continuing with the process after
the binder some variables might not have obtained proper values as the corre-
sponding inputs have not been performed. To model this we distinguish between
data and optional data, much like the use of option data types in programming
languages like Standard ML. The construct case e of some(y) : P1 else P2 will
evaluate the expression e; if it evaluates to some(c) we will execute P1 with y
bound to c; if it evaluates to none we will execute P2. The expressiveness of the
Quality Calculus is considered in Section 3 and an example in the context of a
wireless sensor network is presented in Section 4.

The SAT-based [8] robustness analysis is developed in Section 5. It is based on
the view that processes must be coded in such a way that error configurations
are not reached due to unreliable communication; rather, default data should
be substituted for expected data in order to provide meaningful behaviour in
all circumstances. Of course, this is not a panacea — default data is not as
useful as the correct data, but often better quality of service may be obtained
when basing decisions on default or old data, rather than simply stopping in an
error state. As an example, if a braking system does not get information about
the spinning of the wheels from the ABS system, it should not simply stop

190 H.R. Nielson, F. Nielson, and R. Vigo

Table 1. The syntax of the Quality Calculus

P ::= (νc)P | P1 |P2 | 0 | b.P | t1!t2.P | A(e)
| case e of some(y) : P1 else P2

b ::= t?x | &q(b1, · · · , bn)
t ::= y | c | g(t1, · · · , tn)
e ::= x | some(t) | none | f(e1, · · · , en)

| case e of some(y) : e1 else e2

braking, rather it should continue to brake — perhaps at reduced effect to avoid
blocking the wheels. The analysis attaches propositional formulae to all points
of interest in the processes; they characterise the combinations of optional data
that could be missing. This is useful for showing that certain error configurations
cannot be reached; indeed, if the propositional formula is unsatisfiable then the
corresponding program point cannot be reached. The availability of extremely
efficient SAT-solvers makes this a very precise analysis method with excellent
scalability.

We conclude and present our outlook on future work in Section 6.

2 Syntax and Semantics

Process calculi are useful for delineating a programming abstraction that focuses
on specific challenges in the development of distributed systems. Calculi such as
CCS [9] and the π-calculus [10] have provided profound insights into the nature
of concurrent computation.

There are a least two approaches to the use of process calculi. One focuses
on the universality of calculi such as the π-calculus and would explain the com-
putational paradigms of interest by their encoding into the π-calculus (which is
known to be Turing complete). The other focuses on explaining the computa-
tional paradigms of interest as primitives in a suitable process calculus in order
to avoid modelling artifacts, analysis artifacts, or other intricacies due to the en-
coding. The latter approach has lead to recent calculi such as COWS [7], SOCK
[6], SCC [2] and CaSPiS [3] for understanding service-oriented computation and
have suggested several novel paradigms for how to deal with services and the
increasingly important notion of quality of service. We follow the latter approach
in developing a process calculus, the Quality Calculus, that enforces robustness
considerations on software systems that execute in an open environment that
does not always live up to expectations — possibly because anticipated commu-
nications do not take place (due to faults or denial of service attacks).

A Calculus for Quality 191

Syntax. A system consists of a number of process definitions and a main process:

define A1(x1) � P1

...

An(xn) � Pn

in P∗

Here Ai is the name of a process, xi is its formal parameter, Pi is its body and
P∗ is the main process. The syntax of processes is given in Table 1. A process
can have the form (νc)P introducing a new constant c and its scope P , it can be
a parallel composition P1 |P2 of two processes P1 and P2 and it can be an empty
process denoted 0. An input process is written b.P where b is a binder specifying
the inputs to be performed before continuing with P . An output process has
the form t1!t2.P specifying that the value t2 should be communicated over the
channel t1. A process can also be a call A(e) to one of the defined processes
with e being the actual parameter. Finally, a process can be a case construct
whose explanation we defer to later. We shall feel free to dispense with trailing
occurrences of the process 0.

The main novelty of the calculus is the binder b specifying the inputs to be
performed before continuing. In the simplest case it is an input guard t?x de-
scribing that some value should be received over the channel t and it will be
bound to the variable x. Increasing in complexity we may have binders of the
form &q(t1?x1, · · · , tn?xn) indicating that n inputs are simultaneously active
and a quality predicate q determines when sufficient inputs have been received
to continue. As an example, q can be ∃ meaning that one input is required, or it
can be ∀ meaning that all inputs are required; these and other examples are sum-
marised in Table 4. Even more complex cases arise when binders are nested, as
in &∀(t0?x0,&∃(t1?x1, t2?x2)) that describes that input must be received over t0
as well as one of t1 or t2. If we assume that our quality predicates can express all
combinations of arguments then nested binders can always be unnested without
changing the overall semantics; as an example &∀(t0?x0,&∃(t1?x1, t2?x2)) has
the same effect as &q(t0?x0, t1?x1, t2?x2) if q(r0, r1, r2) amounts to r0∧ (r1∨r2).

As a consequence, when continuing with the process P in b.P some variables
might not have obtained proper values as the corresponding inputs have not
been performed. To model this we distinguish between data and optional data,
much like the use of option data types in programming languages like Standard
ML. In the syntax we use terms t to denote data and expressions e to denote
optional data; in particular, the expression some(t) signals the presence of some
data t and none the absence of data. Returning to the processes, the construct
case e of some(y) : P1 else P2 will test whether e evaluates to some data and if
so, bind it to y and continue with P1 and otherwise continue with P2.

Clearly more elaborate choices of syntax for expressions and terms are possible
including the possibility of distinguishing between them using type systems.
However, for simplicity we have opted for two syntactic categories and therefore
we also distinguish between functions g returning data values and functions f

192 H.R. Nielson, F. Nielson, and R. Vigo

Table 2. The structural congruence of the Quality Calculus

P ≡ P P1 ≡ P2 ⇒ P2 ≡ P1 P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3

P |0 ≡ P P1 |P2 ≡ P2 |P1 P1 |(P2 |P3) ≡ (P1 |P2) |P3

(νc)P ≡ P
if c /∈ fc(P)

(νc1) (νc2)P ≡ (νc2) (νc1)P
(νc) (P1 | P2) ≡ ((νc)P1) | P2

if c /∈ fc(P2)

A(e) ≡ P [e/x]

if A(x) � P
P1 ≡ P2 ⇒ C[P1] ≡ C[P2]

returning optional data values. For expressions we additionally support a case
construct much as for processes.

We need to impose a few well-formedness constraints on systems. For this we
write fc(P) to denote the set of free constants in P , fx(P) to denote the set of free
variables ranging over expressions, and fy(P) to denote the set of free variables
ranging over terms. For a system of the form displayed above we require that
fx(Pi) ⊆ {xi}, fy(Pi) = ∅, fx(P∗) = ∅, fy(P∗) = ∅, and put no restrictions on
fc(Pi) and fc(P∗).

Semantics. The semantics consists of a structural congruence and a transition
relation [10]. The structural congruence P1 ≡ P2 is defined in Table 2 and ex-
presses when two processes, P1 and P2, are congruent to each other. It enforces
that processes constitute a monoid with respect to parallel composition and the
empty process and it takes care of the unfolding of calls of named processes and
scopes for constants. Finally, it allows replacement in contexts C given by:

C ::= [] | (νc)C | C |P | P |C

As usual, we apply α-conversion whenever needed in order to avoid accidental
capture of names during substitution. The transition relation

P −→ P ′

describes when a process P evaluates into another process P ′. It is parameterised
on a relation t � c describing when a term t evaluates to a constant c and a
similar relation describing when an expression e evaluates to a constant that
either has the form some(c) or is none; the definitions of these relations are
straightforward and hence omitted. Furthermore, we make use of two auxiliary
relations

c1!c2
 b → b′

for specifying the effect on the binder b of matching the output c1!c2, and

b ::v θ

A Calculus for Quality 193

Table 3. The transition rules of the Quality Calculus

t1 � c1 t2 � c2 c1!c2 � b → b′ b′ ::ff θ

t1!t2.P1 | b.P2 −→ P1 | b′.P2

t1 � c1 t2 � c2 c1!c2 � b → b′ b′ ::tt θ

t1!t2.P1 | b.P2 −→ P1 | P2θ

e � some(c)

case e of some(y) : P1 else P2 −→ P1[c/y]

e � none

case e of some(y) : P1 else P2 −→ P2

P1 ≡ P2 P2 −→ P3 P3 ≡ P4

P1 −→ P4

P1 −→ P2

C[P1] −→ C[P2]

t1 � c1

c1!c2 � t1?x2 → [some(c2)/x2]

c1!c2 � bi → b′i
c1!c2 � &q(b1, · · · , bi, · · · , bn) → &q(b1, · · · , b′i, · · · , bn)
t?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn

&q(b1, · · · , bn) ::v θn · · · θ1
where v = [{q}](v1, · · · , vn)

for recording (in v ∈ {tt,ff}) whether or not all required inputs of b have
been performed as well as information about the substitution (θ) that has
been constructed. To formalise this we extend the syntax of binders to include
substitutions

b ::= · · · | [some(c)/x]

where [some(c)/x] is the substitution that maps x to some(c) and leaves all other
variables unchanged. We write id for the identity substitution and θ2θ1 for the
composition of two substitutions, so (θ2θ1)(x) = θ2(θ1(x)) for all x.

The first part of Table 3 defines the transition relation P −→ P ′. The first
clause expresses that the original binder is replaced by a new binder recording
the output just performed; this transition is only possible when b ::ff θ holds,
meaning that more inputs are required before proceeding with the continuation
P2. The second clause considers the case where no further inputs are required;
this is expressed by the premise b ::tt θ. In this case the binding is performed
by applying the substitution θ to the continuation process. The next clauses
are straightforward; they define the semantics of the case construct, how the
structural congruence is embedded in the transition relation and how transitions
take place in contexts.

The next group of clauses in Table 3 defines the auxiliary relation c1!c2
 b →
b′. We have one clause for each of the two syntactic forms of b and the idea is
simply to record the binding of the value received in the appropriate position.

194 H.R. Nielson, F. Nielson, and R. Vigo

Table 4. Quality predicates and their semantics

[{∀}](r1, · · · , rn) = (|{i | ri = tt}| = n) = r1 ∧ · · · ∧ rn
[{∃}](r1, · · · , rn) = (|{i | ri = tt}| ≥ 1) = r1 ∨ · · · ∨ rn
[{∃!}](r1, · · · , rn) = (|{i | ri = tt}| = 1)

[{m/n}](r1, · · · , rn) = (|{i | ri = tt}| ≥ m)

The auxiliary relation b ::v θ is defined in the final group of clauses in Table 3.
Here we perform a pass over the syntax of (the extended syntax of) the binder
b evaluating whether or not a sufficient number of inputs has been performed
(recorded in v) and computing the associated substitution θ. Table 4 gives exam-
ples of quality predicates to be used in the sequel together with their semantics;
here we write |X | for the cardinality of the set X .

Discussion. The semantics of Table 3 is a rigid semantics: The first time the
top-level quality predicate holds the remaining inputs are no longer of interest
and the computation can proceed. An alternative would be to use a flexible
semantics and replace the two topmost rules of Table 3 with

t1 � c1 t2 � c2 c1!c2
 b → b′

t1!t2.P1 | b.P2 −→ P1 | b′.P2

b ::tt θ

b.P −→ Pθ

The first clause expresses that we may continue accepting inputs even when
b ::tt θ holds, that is, after the top-level quality condition is met the first time.
The second clause ensures that at any point where the quality condition is met
we can decide to proceed with the continuation process. Thus there is a non-
deterministic choice as to how many inputs are accepted beyond the minimum
number. This becomes a bit tricky when using quality predicates that do not
satisfy a monotonicity requirement, meaning that the quality condition may go
from true to false once more inputs have been accepted; this is for example the
case for ∃! in Table 4. On top of this important difference between the rigid
and the flexible semantics, they also differ in their “speed”; as an example, in
the rigid semantics a single step is needed to perform the binding of a single
input whereas two steps are needed in the flexible semantics. Clearly the flexible
semantics admits all the behaviours of the rigid semantics as well as sometimes
additional ones.

3 Expressiveness of Binders

The binding operator &q(b1, · · · , bn) is surprisingly powerful and in this section
we show how the primitives of the Quality Calculus can be used to define a
number of other constructs known from process calculi. In the other direction
the Quality Calculus can be encoded into the π-calculus but it would seem that
some binding operators would require an exponential expansion; as an example,
&n/2n(b1, · · · , b2n) indicating that half of the 2n arguments are needed would
seem to require that the π-calculus encoding would need to enumerate subsets
of {1, · · · , 2n} with at most n elements.

A Calculus for Quality 195

Guarded sum. Let us consider the guarded sum Σn
i=1ti?xi.Pi of processes that

each wants to perform an input before proceeding with their continuation. It
can easily be encoded in our calculus using the binding construct:

Σn
i=1ti?xi.Pi � &∃(t1?x1, · · · , tn?xn).

(case x1 of some(y1) : P1 else 0 |
...

| case xn of some(yn) : Pn else 0)

Here the quality predicate ∃ expresses that only 1 of the n inputs is required
and we assume that no xi occurs free in Pj when i �= j.

To illustrate this in more detail let us consider the binary case c1?x1.P1 +
c2?x2.P2 where the encoding amounts to:

c1?x1.P1 + c2?x2.P2 � &∃(c1?x1, c2?x2).
(case x1 of some(y1) : P1 else 0
| case x2 of some(y2) : P2 else 0)

Let us assume that this process is in parallel with the process c1!c.Q. Using Table
3 we have

c1!c
 &∃(c1?x1, c2?x2) → &∃([some(c)/x1], c2?x2)

and
&∃([some(c)/x1], c2?x2) ::tt [some(c)/x1][none/x2]

so we get

c1!c.Q | (c1?x1.P1 + c2?x2.P2) −→ Q | P1[some(c)/x1][none/x2]

We have assumed that x2 does not occur free in P1 and hence we have the result
we would expect.

Generalised input binder. We now introduce a version of the binding operator
that even though it does not need all inputs in order to proceed still will honour
them – and thereby ensure that other processes will not become stuck for that
reason. The new binding operator is written &?

q(t1?x1, · · · , tn?xn) and is defined
by

&?
q(t1?x1, · · · , tn?xn).P � &q(t1?x1, · · · , tn?xn).

(P | case x1 of some(y1) : 0 else t1?x1

...
| case xn of some(yn) : 0 else tn?xn)

Thus the idea is to spawn processes in parallel to the continuation P taking care
of the inputs that were not necessary according to the quality predicate.

To illustrate this let us consider the binary case &?
∃(c1?x1, c2?x2) where the

encoding amounts to:

&?
∃(c1?x1, c2?x2).P � &∃(c1?x1, c2?x2).

(P | case x1 of some(y1) : 0 else c1?x1

| case x2 of some(y2) : 0 else c2?x2)

196 H.R. Nielson, F. Nielson, and R. Vigo

Assume that this process is in parallel with the process c1!c.Q1. Then we get

c1!c.Q1 | &?
∃(c1?x1, c2?x2).P

−→∗ Q1 | P [some(c)/x1][none/x2] | c2?x2

Thus the process c2?x2 is ready to take care of a late arrival of the input; so we
will for example have

c2!c
′.Q2 | Q1 | P [some(c)/x1][none/x2] | c2?x2

−→ Q2 | Q1 | P [some(c)/x1][none/x2]

showing that the unsuccessful process c2!c
′.Q2 will not be stuck even though its

output is neglected.

Internal nondeterministic choice. We now show how to encode a version of the
general sum

⊕n
i=1 Pi of processes modelling internal nondeterministic choice

between the alternatives. The idea is to introduce n fresh channels di over which
a fresh constant d is communicated and bound to fresh variables xi and yi and
then to select one of the summands:

⊕n
i=1 Pi � (νd1) · · · (νdn) (νd)

(d1!d | · · · | dn!d
| &∃(d1?x1, · · · , dn?xn).

(case x1 of some(y1) : P1 else d1?x1 |
...

| case xn of some(yn) : Pn else dn?xn))

The difference from the ordinary CCS sum is that the choices are not made
according to the availability of inputs but rather an internal nondeterministic
choice is performed as in CSP.

Again let us consider the binary case where the encoding amounts to:

P1 ⊕ P2 � (νd1) (νd2) (νd)
(d1!d | d2!d
| &∃(d1?x1, d2?x2).

(case x1 of some(y1) : P1 else d1?x1

| case x2 of some(y2) : P2 else d2?x2))

Let us assume that it is d1!d that is successful and as above we get

d1!d
 &∃(d1?x1, d2?x2) → &∃([some(d)/x1], d2?x2)

and
&∃([some(d)/x1], d2?x2) ::tt [some(d)/x1][none/x2]

and therefore we get

P1 ⊕ P2 −→∗ (νd2) (νd) (d2!d | P1[some(d)/x1][none/x2] | d2?x2)
−→ P1

Here we have used that neither x1, x2, y1 nor y2 occur free in P1 and that
d2!d | d2?x2 −→ 0.

A Calculus for Quality 197

Generalised output prefix. Finally we introduce an operator that allows a process
to learn which outputs have been delivered and then use a quality predicate to
determine when to proceed. The idea is to introduce new channels that can
be used for internal communication when the outputs have been accepted. The
new operator is denoted &!

q(t1!t
′
1, · · · , tn!t′n) and it is defined using the &?

q(· · ·)
binding operator introduced above:

&!
q(t1!t

′
1, · · · , tn!t′n).P � (νd1) · · · (νdn) (νd)

(t1!t
′
1.d1!d | · · · | tn!t′n.dn!d

| &?
q(d1?x1, · · · , dn?xn).P)

Here we assume that the new constants and variables do not occur in the terms
ti and t′i nor in the process P . This operator will ensure that the continuation
process P can start when some of the outputs have taken place (as determined
by the quality predicate q) and it will also ensure that remaining outputs are
still ready to be performed so that other processes do not get stuck because of
missing communication possibilities.

To illustrate this let us consider the binary case &!
∃(c1!c

′
1, c2!c

′
2) where the

encoding amounts to:

&!
∃(c1!c

′
1, c2!c

′
2).P � (νd1) (νd2) (νd)

(c1!c
′
1.d1!d | c2!c′2.d2!d

| &∃(d1?x1, d2?x2).
(P | case x1 of some(y1) : 0 else d1?x1

| case x2 of some(y2) : 0 else d2?x2))

Assuming that this process is in parallel with the process c1?z1.Q1 we get

c1?z1.Q1 | &!
∃(c1!c

′
1, c2!c

′
2).P

−→ Q1[c
′
1/z1] | (νd1) (νd2) (νd)

(d1!d | c2!c′2.d2!d
| &∃(d1?x1, d2?x2).

(P | case x1 of some(y1) : 0 else d1?x1

| case x2 of some(y2) : 0 else d2?x2))
−→∗ Q1[c

′
1/z1] | P | (νd2) (νd) (c2!c′2.d2!d | d2?x2)

where we have used that neither x1 nor x2 occurs free in P . The resulting process
is thus ready to handle the late communication over c2; indeed we have

c2?z2.Q2 | Q1[c
′
1/z1] | P | (νd2) (νd) (c2!c′2.d2!d | d2?x2)

−→∗ Q2[c
′
2/z2] | Q1[c

′
1/z1] | P

showing that the additional machinery introduced ensures that all three pro-
cesses can continue.

4 Motivating Example

We now consider a scenario inspired by [1] where a base station BS will com-
municate with a sensor node SN to obtain the value of a physical parameter,

198 H.R. Nielson, F. Nielson, and R. Vigo

which has to be communicated to a central aggregating unit. In order to ease
the presentation, we will take the liberty to use a polyadic version of the calculus.

The sensor node SN is defined by

SN � 0⊕ (sn?(xi, xp).
case xi of some(yi) :

case xp of some(yp) : yi!value(yp).SN else 0
else 0)

A basic node is equipped with a sensor able to measure one or more physical
parameters (e.g. temperature, radioactivity) and a transceiver. As a node is
typically powered by batteries, at some point in time it will die: this behaviour
is captured by the possibility to non-deterministically evolve to 0 in the first line.
While the node is alive, it waits for a request from the base station on channel
sn, expecting the identity xi of the sender and the name xp of the parameter
to be measured. The subsequent case constructs are used to extract the actual
data, and then the measure is taken and communicated to the base station;
the two else branches are in fact not reachable. The function value (which takes
data as input and returns data) produces the result of measuring the intended
parameter.

The base station will ask the sensor node to measure a physical parameter,
and in the interest of its robustness we extend it with a process representing
a local computer, able to estimate such a value. The local estimate will be
communicated to the central unit and used whenever the sensor node does not
respond. The local computer is defined by

LC � lc?xe.case xe of some(ye) : lc!guess(ye).LC else 0

and it uses the function guess (taking data and returning data) to estimate the
value of the intended parameter; again, the case construct is used to extract the
actual request and the else branch is not reachable.

The base station will put a limit on how long it will wait for a measure. In
order to model this behaviour we make use of a time counter defined by

Clock � set?xt.tick!�.Clock

where channel set is used to set a time-out, and the output of the constant �
signals that the prescribed amount of time has passed.

Finally, the base station is defined by the process

BS � (νid) (νp) (νt)&!
∃(lc!p, sn!(id, p)).set!t

&∀(tick?xt,&
?
∃(lc?xl, id?xr))

case xr of some(yr) :
1cu!yr.BS else

case xl of some(yl) :
2cu!yl.BS else 30

where we have added some labels for later reference. In the first line the base
station issues a request for a parameter p to the local computer and to the sensor
node, identifying itself as id. The timer is set to the constant t as soon as one

A Calculus for Quality 199

of the recipients has received the request. The second line waits for the deadline
and for at least one value among the local estimate and the real measure. This
behaviour is determined by the top-most quality predicate ∀, which requires that
both inputs are successful, and by the inner quality predicate ∃, which insists
that at least one of its two inputs is successful. As we are using the binding
operator &?

∃(. . .) the other input will be handled when (and if) it arrives. It is
important to note that it is also possible that both values arrive before the time
has passed. The third line tests whether or not the sensor node responded; if
this is the case the value is communicated to the central unit, otherwise the local
estimate is sent. Observe that in this formalisation the final else branch (labelled
3) is not reachable, as the requests built by the base station correctly match the
inputs of SN and LC, and the latter always responds.

Discussion. Let us conclude by discussing two alternative choices for the binding
construct in the second line of BS. One possibility is to use the binder

&2/3(tick?xt, lc?xl, id?xr)

and this would require that at least one entity among the sensor network and the
local computer has communicated a value before proceeding. Another possibility
is to use

&∃(tick?xt,&
?
∃(lc?xl, id?xr))

and in this case we might end up having no value at all.

5 Robustness Analysis

The Quality Calculus provides the means for expressing dure care in always
having default data availble in case the real data cannot be obtained — but it
does not enforce it.

Our enforcement mechanism will be a SAT-based [8] robustness analysis for
characterising whether or not variables over optional data do indeed contain
data. The analysis attaches propositional formulae to all points of interest in
the processes; the formulae characterise the combinations of optional data that
could be missing. At key places one would like to demand that such formulae
would always require default data to be available; this translates into demanding
that certain logical formulae are unsatisfiable as determined by a SAT-solver.

The formulae encode optional data as booleans as follows. A value of the form
some(·) is coded as tt and a value of the form none is coded as ff. We find it
helpful to let v denote the boolean encoding of the value v, i.e. some(·) = tt and
none = ff. As an example, the formula x1 ∨ (x2 ∧ x3) indicates that either x1 is
available or both of x2 and x3 are available, the variables ranging over booleans.

The judgements. The main judgement of our analysis takes the form

 ϕ@P

200 H.R. Nielson, F. Nielson, and R. Vigo

Table 5. Robustness Analysis of the Quality Calculus

� tt@P∗ � tt@P1 · · · � tt@Pn

� ϕ@(νc)P

� ϕ@P

� ϕ@(P1 | P2)

� ϕ@P1

� ϕ@(P1 | P2)

� ϕ@P2

� ϕ@(b.P) � b � ϕb

� (∃bv(b).ϕ) ∧ ϕb @P

� ϕ@(t1!t2.P)

� ϕ@P

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ϕe @P1

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ¬ϕe @P2

� ϕ@P

� (∃x.ϕ)@P
if x ∈ fv(ϕ) \ fv(P)

� ϕ@P

� ϕ′ @P
if ϕ ⇔ ϕ′

� t?x � x
� b1 � ϕ1 · · · � bn � ϕn

� &q(b1, · · · , bn) � [{q}](ϕ1, · · · , ϕn)

� x � x � some(t) � tt � none � ff

� e1 � ϕ1 · · · � en � ϕn

� f(e1, · · · , en) � [{f}](ϕ1 , · · · , ϕn)

� e0 � ϕ0 � e1 � ϕ1 � e2 � ϕ2

� case e0 of some(y) : e1 else e2 � (ϕ1 ∧ ϕ0) ∨ (ϕ2 ∧ ¬ϕ0)

and the idea is that the formula ϕ describes the program point immediately
before P . This is ambiguous in case there are multiple occurrences of the same
subprocess in the system and the traditional solution is to add labels to disam-
biguate such occurrences but we dispense with this in order not to complicate
the notation. The intended semantic interpretation of this judgement is that

if
 ϕ@P and P∗ →∗ C[Pθ] then θ |= ϕ

where θ is the mapping obtained by pointwise application of the encoding ·, and
θ |= ϕ denotes the truth of ϕ under the interpretation θ.

We will make use of two auxiliary judgements. One is for bindings

 b � ϕ

and the idea is that the formula ϕ describes the bindings of the variables that
correspond to successful passing the binder b. The intended semantic interpre-
tation of this judgement is that

if
 b � ϕ and b ::tt θ then θ |= ϕ

The other auxiliary judgement is for expressions; it takes the form

 e � ϕ

A Calculus for Quality 201

and the idea is that the formula ϕ describes the result of evaluating the expression
e. The intended semantic interpretation of this judgement is that

if
 e � ϕ and e � v then |= (ϕ = v)

As usual, we write ϕ1 = ϕ2 as a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).

The detailed definition. The formal definition of
 ϕ@P is given by the inference
system in the topmost part of Table 5. It operates in a top-down manner (as
opposed to a more conventional bottom-up manner) and gets started by an
axiom
 tt@P∗ for the main process saying that it is reachable. Also we have
an axiom for each of the defined processes; they have the form
 tt@Pi thereby
ensuring that the process definitions are analysed in all contexts.

The first inference rule expresses that if ϕ describes the program point just
before a process of the form (νc)P then it also describes the program point
just before P . Then we have two rules for parallel composition: if ϕ describes
the program point before P1 | P2 then it also describes the program point just
before each of the two processes. The rule for bindings in more interesting; here
we make use of the auxiliary analysis judgement
 b � ϕb explained below for
analysing the binding b. The information ϕ describing the program point before
b.P is transformed into (∃bv(b).ϕ) ∧ ϕb in order to describe the program point
before P ; the existential quantification captures that potential free occurrences
of the bound variables of b in ϕ are no longer in scope. The rule for output
should now be straightforward. The two rules for the case construct make use
of the auxiliary analysis judgement
 e � ϕe explained below for analysing the
expression; this gives rise to a formula describing the outcome of the test being
performed and this information is added to describe the program point just
before the selected branch.

Finally, we have two inference rules for manipulating the formulae describing
the program points. The first one allows us to existentially quantify over variables
not occurring free in the process being described. The second allows us to replace
a formula with a logically equivalent one.

In the case of binders the formula ϕ produced by the judgement
 b �
ϕ denotes that succesful passing of the binder gives rise to the formula ϕ for
characterising the availability of data as provided by the binder. In the detailed
definition of
 b � ϕ presented in the second part of Table 5 we rely on the
formula schemes [{q}](r1, · · · , rn) of Table 4 for encoding the effect of quality
predicates q.

The last part of Table 5 defines the judgement
 e � ϕ for expressions and as
already mentioned the idea is that the formula ϕ characterises the availability of
data used in e. Also here we rely on formula schemes of the form [{f}](r1, · · · , rn)
for encoding the effect of functions f and we assume that they satisfy the fol-
lowing soundness and completeness property:

[{f}](v1, · · · , vn) = v whenever f(v1, · · · , vn) � v

Implementation. We have implemented this analysis by writing a program in
Standard ML for computing the formulae at the program points of interest and

202 H.R. Nielson, F. Nielson, and R. Vigo

next use the SAT [8] and SMT [5] solver Z3 [4] to determine whether or not the
formulae are satisfiable. For the examples we have studied the answer is obtained
in less than a second on an ordinary laptop computer.

The motivating example. Let us return to the base station BS of Section 4 where
we now want to compute the analysis results for the program points identified
by the three labels. Starting with
 tt@BS we obtain the following formulae at
the labels:

1 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ xr

2 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ xl

3 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

where we used the same variable names used in the process in order to stress
the relationship between the formulae produced by the analysis and the pro-
gram points they describe, even if here the variables range over the boolean
encoding of optional data. Observe that (x1∨x2) refer to the generalised output
prefix &!

∃(lc!p, sn!(id, p)) encoded as shown in Section 3, (xt ∧ (xl ∨ xr)) is the
condition for passing the quality binder in the second line, and the remainder
identifies the condition for reaching the given label. We can then ask whether or
not the process points decorated with labels are reachable, that is, whether or
not the related formulae are satisfiable. Using Z3 we obtain the following satis-
fying substitutions:

1 : [x2 �→ ff;x1 �→ tt;xl �→ tt;xr �→ tt;xt �→ tt]
2 : [x2 �→ ff;x1 �→ tt;xl �→ tt;xr �→ ff;xt �→ tt]
3 : not satisfiable

This shows that the 0 process of BS will never be executed.
Let us conclude by considering the variants of the base station discussed at

the end of Section 4. Using the binder &?
2/3(tick?xt, lc?xl, id?xr) we get slightly

different formulae but the satisfiability results are the same as above: the formula
for the process labelled 3 is unsatisfiable whereas the others have satisfying
assignments.

Using the binder &∃(tick?xt,&
?
∃(lc?xl, id?xr)) we get the following formula

for the process labelled 3:

3 : (x1 ∨ x2) ∧ (xt ∨ xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

which is satisfiable using the substitution:

3 : [x2 �→ ff;x1 �→ tt;xl �→ ff;xr �→ ff;xt �→ tt]

The 0 process labelled 3 might thus be reachable. The above substitution gives us
an indication of when this can happen: the binder &∃(tick?xt,&

?
∃(lc?xl, id?xr))

will be successful when xt = tt meaning that the time has passed but it does
not need to be the case that any of the schedules are available as reflected by
xl = ff and xg = ff. In this case the 0 process will in fact be reached and the BS
process will terminate.

A Calculus for Quality 203

Formal correctness. We have argued informally that the analysis is correct with
respect to the semantics and this is in line with how static analyses of pro-
gramming languages are often presented. The main obstacle in giving a formal
proof of correctness is that the semantics applies substitutions directly whereas
the correctness statements talk about explicit substitutions. This is a well-known
obstacle and at least two solutions are possible. One is to keep the semantics and
correctness statements and to emulate the technically complex approach of [11].
Another is to modify the semantics to use explicit substitutions and perform a
more direct proof of correctness leaving the technical complexities to proving the
equivalence of the original semantics to the modified semantics. However, this
technically complex development would provide little additional insight onto our
approach.

6 Conclusion

Many of the errors in current software are due to an overly optimistic program-
ming style. Programmers tend to think of benign application environments and
hence focus on getting the software to perform as many functions as possible.
To a much lesser extent they consider malign application environments and the
need to focus on avoiding errors that can be provoked by outside attackers.

This is confounded by the fact that key software components are often de-
veloped in one context and then ported to another. The Simple Mail Transfer
Protocol (SMTP) is a case in point. Originally developed in benign research or
development environments, where few would be motivated to misuse the proto-
col and could easily be reprimanded if doing so, it has become a key constituent
of the malign environment provided by the global internet where many users
find an interest in misusing the protocol, and where it is extremely difficult to
even identify offenders.

Future programming languages and programming environments need to sup-
port a more robust (pessimistic) programming style: What conceivably might
go wrong probably will go wrong. A major cause of disruption is due to the
communication between distributed sofware components. There is an abundant
literature on methods and techniques for how to prevent attackers from learning
secrets (confidentiality) or from telling lies (integrity, authenticity). Hence our
focus considers how to mitigate the consequences of attackers, nature or misfor-
tune preventing expected communication from taking place. This calls for a very
robust way of programming systems where there always are default data avail-
able for allowing the system to continue its operation as best as it can (rather
than simply terminate with an error or get stuck in an input operation).

We believe that the Quality Calculus presents the core ingredients of a process
calculus supporting such defensive (robust) programming. To assist in analysing
the extent to which robustness has been achieved we have developed a SAT-
based robustness analysis, that indicates the places where errors can still arise
in spite of robust programming, and where additional hardening of the code may
be called for.

204 H.R. Nielson, F. Nielson, and R. Vigo

Acknowledgement. The research has been supported by MT-LAB, a VKR
Centre of Excellence for the Modelling of Information Technology, and by
IDEA4CPS, supported by the Danish Foundation for Basic Research.

References

1. Anand, M., Ives, Z., Lee, I.: Quantifying eavesdropping vulnerability in sensor
networks. In: Proceedings of the 2nd International Workshop on Data Management
for Sensor Networks, DMSN 2005, pp. 3–9. ACM (2005)

2. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC:
A Service Centered Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

3. Bruni, R.: Calculi for Service-Oriented Computing. In: Bernardo, M., Padovani, L.,
Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg
(2009)

4. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

6. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

7. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

8. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM 52(8), 76–82 (2009)

9. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

10. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

11. Nielson, F., Nielson, H.R., Bauer, J., Nielsen, C.R., Pilegaard, H.: Relational Anal-
ysis for Delivery of Services. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS,
vol. 4912, pp. 73–89. Springer, Heidelberg (2008)

	A Calculus for Quality
	Introduction
	Syntax and Semantics
	Expressiveness of Binders
	Motivating Example
	Robustness Analysis
	Conclusion
	References

