

Lecture Notes in Computer Science 7684
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Corina S. Păsăreanu Gwen Salaün (Eds.)

Formal Aspects of
Component Software
9th International Symposium, FACS 2012
Mountain View, CA, USA, September 12-14, 2012
Revised Selected Papers

13

Volume Editors

Corina S. Păsăreanu
NASA Ames Research Center
Mail Stop 269-2
Moffett Field, CA 94035, USA
E-mail: corina.s.pasareanu@nasa.gov

Gwen Salaün
INRIA Grenoble - Rhône-Alpes/CONVECS
655, avenue de l’Europe
38330 Montbonnot Saint-Martin, France
E-mail: gwen.salaun@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35860-9 e-ISBN 978-3-642-35861-6
DOI 10.1007/978-3-642-35861-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954531

CR Subject Classification (1998): D.2.4, D.2, F.4, F.3, H.3.5, D.3, D.1, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at FACS 2012, the 9th International
Symposium on Formal Aspects of Component Software held during September
12–14, 2012, in Mountain View, California. This was the first international FACS
Symposium held outside Europe. The symposium featured a strong technical
program consisting of peer-reviewed presentations, two invited talks, and a panel.
The event was organized by Carnegie Mellon University, Silicon Valley, and was
held on the grounds of the NASA Ames Research Park.

The component-based software development approach has emerged as a
promising paradigm to cope with the complexity of present-day software sys-
tems by bringing sound engineering principles into software engineering. The
FACS Symposium is concerned with how formal methods can be used to make
component-based software development succeed. The symposium targets chal-
lenging issues such as mathematical models for components, composition and
adaptation, and rigorous approaches to verification, deployment, testing, and
certification for component software. FACS 2012 addressed the applications of
formal methods in all aspects of software components and services.

The first invited talk was titled “Analyzing Interactions of Asynchronously
Communicating Software Components” and was given by Tevfik Bultan from
the University of California at Santa Barbara. The second invited talk was titled
“Safe Programming of Asynchronous Interaction: Can We Do It for Real?” and
was given by Shaz Qadeer from Microsoft Research.

The panel was led by Natarajan Shankar, from the Stanford Research In-
stitute, and it addressed the impact of emerging technologies, such as cloud
computing, cyber-physical, biological and distributed systems, on component
software. The panel participants were Dimitra Giannakopoulou (from NASA
Ames Research Center), Shaz Qadeer, Natarajan Shankar, and the two Pro-
gram Chairs. There were 40 submissions. Each submission was reviewed by at
least three Program Committee members. The committee decided to accept 16
papers. The submission and reviewing of the papers was done via EasyChair.

We would like to thank Javier Camara, for his work as publicity chair, and
Guy Power, Hector Rastrullo and Jose Miguel Rojas Siles for their help with the
local organization.

September 2012 Corina S. Păsăreanu
Gwen Salaün

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Farhad Arbab CWI and Leiden University, The Netherlands
Christian Attiogbe University of Nantes, France
Christel Baier Technical University of Dresden, Germany
Luis Barbosa Universidade do Minho, Portugal
Roberto Bruni Università di Pisa, Italy
Carlos Canal University of Málaga, Spain
Frank De Boer CWI, The Netherlands
José Luiz Fiadeiro University of Leicester, UK
Carlo Ghezzi Politecnico di Milano, Italy
Rolf Hennicker Ludwig-Maximilians-Universität München, Germany
Zhiming Liu United Nations University - International Institute

for Software Technology, Macao
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine INRIA, France
John Mullins Ecole Polytechnique de Montreal, Canada
Peter Olveczky University of Oslo, Norway
Corina Pasareanu CMU/NASA Ames Research Center, USA
Frantisek Plasil Charles University, Prague, Czech Republic
Pascal Poizat Université d’Evry Val d’Essonne and CNRS, France
Shaz Qadeer Microsoft, USA
John Rushby SRI International, USA
Gwen Salaun Grenoble INP - INRIA - LIG, France
Bernhard Schatz TU München, Germany
Nishant Sinha NEC Labs, USA
Marjan Sirjani Reykjavik University, Iceland
Volker Stolz University of Oslo, Norway
Meng Sun Peking University, China
Carolyn Talcott SRI International, USA
Oksana Tkachuk Fujitsu Laboratories of America
Sebastian Uchitel University of Buenos Aires and Imperial College

London, Argentina and UK
Gianluigi Zavattaro University of Bologna, Italy

VIII Organization

Additional Reviewers

Andre, Pascal
Blech, Jan Olaf
Cengarle, Maŕıa Victoria
Chesani, Federico
Corzilius, Florian
Dan, Li
Faber, Johannes
Filieri, Antonio
Gerostathopoulos, Ilias
Greenyer, Joel
Izadi, Mohammad
Izadi, Mohammad-Javad
Jaghoori, Mohammad Mahdi
Jancik, Pavel
Jansen, Nils
Khamespanah, Ehsan
Klueppelholz, Sascha
Knapp, Alexander
Kofron, Jan
Koss, Dagmar
Krause, Christian

Kupke, Clemens
Lanoix, Arnaud
Lascu, Tudor
Lauer, Michaël
Loup, Ulrich
Malkis, Alexander
Malohlava, Michal
Mayer, Philip
Melgratti, Hernan
Meriem, Ouederni
Nellen, Johanna
Proenca, Jose
Qamar, Nafees
Rensink, Arend
Rot, Jurriaan
Salvaneschi, Guido
Savu, Alexandra
Schorp, Konstantin
Srba, Jiri
Stahl, Christian
Tuosto, Emilio

Table of Contents

Formal Patterns for Multi-rate Distributed Real-Time Systems 1
Kyungmin Bae, José Meseguer, and Peter Csaba Ölveczky

Component Interfaces with Contracts on Ports . 19
Sebastian Bauer, Rolf Hennicker, and Axel Legay

Avoiding Diamonds in Desynchronization . 36
Harsh Beohar and Pieter J.L. Cuijpers

The Tale of SOLOIST: A Specification Language for Service
Compositions Interactions . 55

Domenico Bianculli, Carlo Ghezzi, and Pierluigi San Pietro

A Categorical Approach to Structuring and Promoting
Z Specifications . 73

Pablo F. Castro, Nazareno Aguirre,
Carlos Gustavo López Pombo, and Tom Maibaum

Assume-Guarantee Reasoning for Safe Component Behaviours 92
Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska

A Petri Net Based Analysis of Deadlocks for Active Objects and
Futures . 110

Frank S. de Boer, Mario Bravetti, Immo Grabe, Matias Lee,
Martin Steffen, and Gianluigi Zavattaro

Run-Time Verification of Black-Box Components Using Behavioral
Specifications: An Experience Report on Tool Development 128

Frank S. de Boer and Stijn de Gouw

Symbolic Counterexample Generation for Discrete-Time Markov
Chains . 134

Nils Jansen, Erika Ábrahám, Barna Zajzon, Ralf Wimmer,
Johann Schuster, Joost-Pieter Katoen, and Bernd Becker

Xcd – Modular, Realizable Software Architectures 152
Christos Kloukinas and Mert Ozkaya

LOVER: Light-Weight fOrmal Verification of adaptivE Systems at Run
Time . 170

Amir Molzam Sharifloo and Paola Spoletini

X Table of Contents

A Calculus for Quality . 188
Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo

Model Checking of Qualitative Sensitivity Preferences to Minimize
Credential Disclosure . 205

Zachary J. Oster, Ganesh Ram Santhanam, Samik Basu, and
Vasant Honavar

IBOS: A Correct-By-Construction Modular Browser 224
Ralf Sasse, Samuel T. King, José Meseguer, and Shuo Tang

Guided Search for Deadlocks in Actor-Based Models 242
Steinar Hugi Sigurdarson, Marjan Sirjani, Yngvi Björnsson, and
Arni Hermann Reynisson

Assumption Generation for Asynchronous Systems by Abstraction
Refinement . 260

Qiusong Yang, Edmund M. Clarke, Anvesh Komuravelli, and
Mingshu Li

Author Index . 277

Formal Patterns for Multi-rate Distributed

Real-Time Systems�

Kyungmin Bae1, José Meseguer1, and Peter Csaba Ölveczky2

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Distributed real-time systems (DRTSs), such as avionics and
automotive systems, are very hard to design and verify. Besides the dif-
ficulties of asynchrony, clock skews, and network delays, an additional
source of complexity comes from the multirate nature of many such sys-
tems, which must implement several levels of hierarchical control at dif-
ferent rates. In this work we present several simple model transformations
and a multirate extension of the PALS pattern which can be combined
to reduce the design and verification of a virtually synchronous multi-
rate DRTS to the much simpler task of specifying and verifying a single
synchronous system. We illustrate the ideas with a multirate hierarchical
control system where a central controller orchestrates control systems in
the ailerons and tail of an airplane to perform turning maneuvers.

1 Introduction

Many cyber-physical systems such as cars, airplanes, and networked medical
devices are virtually synchronous distributed real-time systems (DRTSs), where
many components interact asynchronously through a network, yet must obey
hard real-time synchronization constraints which are essential to their correct-
ness. As these systems grow in complexity before our eyes, their safety-critical
nature and associated certification requirements make their development increas-
ingly challenging, to the point where verification efforts can easily dominate the
cost of system development. The complexities of concurrency, network communi-
cation, clock skews, hard real-time constraints, and synchronization constraints
make verification a daunting task. To make things worse, formal verification by
automatic methods such as model checking is all but impossible even for small
systems, due to the state space explosion caused by asynchrony. For these rea-
sons, a component-based, modular approach to DRTS design based on reusable
complexity-reducing formal patterns that can drastically reduce the effort and
cost involved in DRTS design, implementation, and verification is sorely needed.

Several such formal patterns have been proposed. They offer impressive reduc-
tions in system complexity and make automatic verification possible where it was
impossible before. For DRTSs that must obey virtual synchrony, both the PALS

� This work was partially supported by Boeing Corporation Grant C8088 and NSF
Grant CCF 09-05584.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 K. Bae, J. Meseguer, and P.C. Ölveczky

(“Physically Asynchronous Logically Synchronous”) pattern developed with our
colleagues at UIUC and Rockwell-Collins [11,10], and the TTA patterns proposed
in [8,15] can greatly reduce system complexity and make verification much eas-
ier. For example, for an avionics case study considered in [10], the number of
system states in the simplest possible distributed version with perfect clocks and
no network delays was 3,047,832, but the PALS pattern reduced the number of
states to be analyzed to a mere 185. This is certainly helpful; but the problem
still remains that patterns such as PALS and TTA assume a single period for the
virtually synchronous system. This excludes many DRTSs, in fact the majority,
which are multirate. It is a fact of life that different sensors and effectors need
to operate at different rates; and that this necessitates using slower rates in the
distributed control hierarchies that orchestrate and synchronize their actions in,
say, a car or an airplane.

The goal of the present work is to propose Multirate PALS as a formalized
mathematical model providing a formal pattern that can drastically reduce the
complexity of designing, verifying, and implementing multirate DRTSs. In par-
ticular, we prove that the entire DRTS design as a concurrent system of asyn-
chronous components communication on a network is bisimilar to an enormously
simpler synchronous multirate ensemble of state machines. This bisimilarity pro-
vides a very drastic reduction on the number of states, making model checking
verification possible in many cases where it is unfeasible for the original DRTS.
As we explain in more detail in Section 6, our work shares the same complexity-
reducing goals as those of our colleagues in [1], who have made a similar, but
substantially different, proposal of a multirate PALS architecture expressed in
terms of the AADL modeling language. We differ from [1] not only on the model
of Multirate PALS that is actually proposed, but more importantly in provid-
ing mathematical foundations for the Multirate PALS model, its asynchronous
counterpart, and the bisimulation relation between both not available in [1].

Our approach, formalized in the Real-Time Maude specification language [13],
is highly modular and consists of expressing Multirate PALS itself as the com-
position of several simple formal patterns, including a modified version of PALS.
Based on those patterns, we give a formal specification of Multirate PALS as a
model transformation (E, T, Γ) �→ MA(E, T, Γ), which maps a multirate ensem-
ble E, where E is a mathematical model of a collection of interconnected state
machines running at different rates, yet synchronously in terms of their hyperpe-
riod T , and performance parameters Γ , to a semantically equivalent specification
of distributed components MA(E, T, Γ).

In summary, the new contributions of this work are:

1. The mathematical definitions of a number of simple formal patterns, and of
a multirate ensemble E and its synchronous composition MRSC (E) .

2. The mathematical definition of Multirate PALS as a transformation (E, T, Γ)
�→ MA(E, T, Γ), and a bisimulation theorem, proving that the state ma-
chine MRSC (E) and the real-time system Stable(MA(E, T, Γ)) associated
to MA(E, T, Γ) are bisimilar and satisfy the same CTL∗ formulas.

Formal Patterns for Multi-rate Distributed Real-Time Systems 3

3. An aeronautics case study showing the power of Multirate PALS in reduc-
ing the (in fact unfeasible) model checking of a hierarchical control system
involved in the turning maneuvers of an airplane to the much simpler and fea-
sible task of model checking a synchronous machine of the form MRSC (E).

2 Preliminaries: Single-Rate PALS and Real-Time Maude

Single-Rate PALS. Single-rate PALS was introduced in [9,11] to reduce the
design and verification of a distributed real-time system that should behave
as if it were virtually synchronous to the much simpler task of designing and
verifying its synchronous version, assuming that the network infrastructure can
guarantee bounds on the messaging delays and the skews of the local clocks. For
a (single-rate) synchronous design SD, network bounds Γ , and period T of the
asynchronous system, PALS defines the asynchronous system PALS(SD, T, Γ)1.
In [10] we formalize the synchronous models as the synchronous composition of
an ensemble of typed machines, and the asynchronous models as object-oriented
rewrite theories in Real-Time Maude, and prove that the synchronous design
SD and the asynchronous distributed model PALS(SD, T, Γ) satisfy the same
temporal logic properties as explained below.

Synchronous Models. The synchronous model is the synchronous composition
of a collection of typed machines, an environment, and a wiring diagram that
connects the machines. A typed machine M is a tuple (Di, S,Do, δM), where
Di = Di1 × · · ·×Din is M ’s input set, S is a set of states, Do = Do1 × · · ·×Dom

is M ’s output set, and δM ⊆ (Di ×S)× (S×Do) is M ’s transition relation. That
is, a machine has n input ports and m output ports; an input to port k is an
element of Dik , and an output from port j is an element of Doj .

M1

M3

M2

Fig. 1. A machine ensemble

Typed machines can be “wired together” into machine ensembles, as shown in
Fig. 1. A single-rate machine ensemble is a tuple E = (J ∪{e}, {Mj}j∈J , E, src),
where: J is a finite set of indices, and e �∈ J is the environment index ; {Mj}j∈J

1 PALS can also compute the optimal (shortest) period T for a given Γ .

4 K. Bae, J. Meseguer, and P.C. Ölveczky

is a family of typed machines; the environment is a pair E = (De
i , D

e
o), with De

i

the environment’s input set and De
o its output set ; and src is a function that

assigns to each input port (j, n) (input port n of machine j) its “source.”
An ensemble E has a synchronous semantics : the transitions of all machines

are performed simultaneously, and if a machine has a feedback wire to itself
and/or to another machine, then the output becomes an input at the next in-
stant. The synchronous composition of an ensemble E is therefore equivalent to
a single machine ME = (De

o, S
E , De

i , δE), where: S
E = (Πj∈JSj) × (Πj∈JD

j
OF),

where Dj
OF stores the “feedback outputs” of machine Mj ; and the transition

relation δE ⊆ (DE
i × SE) × (SE × DE

o) “combines” the transitions of the single
machines into a synchronous step as explained in [10]. The synchronous compo-
sition of the ensemble in Fig. 1 is the machine given by the outer box.

The transition system ts(E) = (SE × De
o, −→) defining the behaviors of E

is defined by ((s,ofb), i) −→ ((s′,o′
fb), i

′) iff an ensemble in state (s,ofb)
with input i from the environment has a transition to state (s′,o′

fb), and the

environment can generate output i′ in the next step. If L : SE ×De
o → P(AP) is

a labeling function that assigns to each state the atomic propositions that hold
in the state, then (ts(E), L) is a Kripke structure associated to (E , L).

Asynchronous Models. The asynchronous model A(E , T, Γ) adds a “wrapper”
around each machine in E . This wrapper has an input buffer, an output buffer,
a local clock that deviates by less than ε from a global “perfect clock,” and some
timers. All components have the same period (the “PALS period” T) and the
behavior of such an asynchronous component can be summarized as follows:

– Received messages are stored in the input buffer.
– When a new round begins (according to the local clock), the component:

1. Reads input from the input buffer, performs a transition, and produces
output which is put into the output buffer.

2. Sets its output backoff timer to a value b (see below).

– When the output backoff timer expires or the transition has finished (which-
ever comes last), the messages in the output buffer are sent into the network.

We prove in [10] that all messages are read in a “round-consistent” way if b ≥
2ε monus μmin and T ≥ μmax + 2ε + max(b, αmax), where μmin and μmax

are the minimum and maximum network delays, and αmax is maximum time it
takes a machine to read input, perform a transition, and produce output.

Relating the Synchronous and Asynchronous Systems. The stable states of the
asynchronous model are the states where all components have full input buffers
and empty output buffers. The idea is to consider “big step” transitions t −→st

t′ between such stable states t and t′. The Kripke structures (ts(E), L) and
(Stable(A(E , T, Γ)),−→st, sync;L) satisfy the same CTL∗ formulas for related
initial states, where syncmaps each stable asynchronous state to the correspond-
ing synchronous state. We have also proved that (ts(E), L) satisfies a CTL∗

formula φ if and only if (A(E , T, Γ), sync;L) satisfies the CTL∗ formula φstable.

Formal Patterns for Multi-rate Distributed Real-Time Systems 5

Real-Time Maude. A Real-Time Maude [13] theory consists of:

– A membership equational logic [6] theory (Σ,E) with Σ a signature2 and E
a set of confluent and terminating conditional equations. (Σ,E) specifies the
system’s states as an algebraic data type.

– A set IR of (possibly conditional) labeled instantaneous rewrite rules speci-
fying the system’s instantaneous (i.e., zero-time) local transitions.

– A set TR of tick rewrite rules of the form crl [l] : {u} => {v} in time

τ if cond. Such a rule specifies a transition with duration τ and label l
from an instance of the term u to the corresponding instance of the term v.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class C
with attributes att1 to attn of sorts s1 to sn. An object of class C is represented
as a term <O : C | att1 : val1, ..., attn : valn > where O is the object’s identifier,
and where val1 to valn are the current values of the attributes att1 to attn. The
global state has the form {t}, where t is a term of sort Configuration that has
the structure of a multiset of objects and messages, with multiset union denoted
by a juxtaposition operator that is declared associative and commutative. The
dynamic behavior of concurrent object systems is axiomatized by specifying each
of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a parametrized family of transitions in which a message m, with param-
eters O and w, is read and consumed by an object O of class C. The transitions
change the attribute a1 of the object O and send a new message m’(O’) with
delay x. “Irrelevant” attributes (such as a3) need not be mentioned in a rule.

3 Multirate Machine Ensembles

This section formally defines multirate synchronous systems as a multirate ma-
chine ensemble of typed machines, and defines their semantics.

Virtually synchronized cyber-physical systems are typically networked
real-time systems consisting of distributed devices controlled by a hierarchy of
distributed controllers. The devices may operate at different rates, and, further-
more, in a perfectly synchronized distributed system, the synchronous changes
of the local control applications can happen only at the hyperperiod bound-
ary [1]. We therefore consider hierarchical multirate systems in which a set of
controllers with the same rate may communicate with each other and with a
number of faster components, so that the period of the higher-level controllers
is a multiple of the period of each fast component, as illustrated in Figure 2.

There are in essence two ways of composing machines with different peri-
ods into a synchronous system in which all components operate in lock-step:
One can “speed up” the slower components, or one can “slow down” the faster

2 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.

6 K. Bae, J. Meseguer, and P.C. Ölveczky

12 12

6 4 3 3env6 env3

env12

Fig. 2. A multirate system, with each machine/environment annotated by its period

components so that all components run at the slow rate. We follow the latter
approach, since we find it more natural to consider the system at the rate of
the “higher-level” components. An additional benefit of this choice is that there
are fewer reachable states to consider in model checking analyses, since multiple
“fast” transitions are combined into a single (slow) transition.

When a fast machine is composed with a slower machine, and the resulting
composition runs at the slower rate, the fast machine has to be slowed. A fast
machine that is slowed, or decelerated, by a factor k performs k internal tran-
sitions in one synchronous step. Since the fast machine consumes an input and
produces an output in each of these internal steps, the decelerated machine con-
sumes and produces k-tuples of inputs and outputs in each synchronous step. A
k-tuple output from the fast machine must therefore be adapted so that it can
be read by the slow component. That is, the k-tuple must be transformed to a
single value (e.g., the average of the k values, the last value, or any other function
of the k values); this transformation is formalized as an input adaptor. Likewise,
since the fast component expects a k-tuple of input values in each input port, the
single output from a slow component must be transformed to a k-tuple of inputs
to the fast machine; this is also done by input adaptors which may, for example,
transform an input d to a k-tuple (d,⊥, . . . ,⊥) for some “don’t care” value ⊥.
Since what the fast machine does when receiving ⊥ is application-dependent, we
assume that this is defined in the transition relation δM of the fast machine M .

We define a multirate machine ensemble to be a network of typed machines
with different rates, satisfying the above constraints, and with given input adap-
tors. To define the synchronous composition of such a multirate ensemble, we
make use of several auxiliary formal patterns. Specifically, we:

1. Define the “k-step machine” pattern, which transforms a “fast” machine into
a slow machine that performs k “internal transitions” in one transition step.

2. Define input adaptors and the input adaptor pattern, specifying how a ma-
chine with input adaptors can be transformed to an ordinary typed machine.

3. Using the input adaptors and the k-step machines, we formally define a
multirate ensemble together with an associated multirate synchronous com-
position pattern, by which it can be composed into a single typed machine.

We start by defining the input adaptor pattern:

Definition 1. An input adaptor α for a typed machine M = (Di, S,Do, δM)
with Di = Di1×· · ·×Din is a family of functions α = {αk : D′

k → Dik}k∈{1,...,n}.
If d = (d1, . . . , dn) ∈ D′

1×· · ·×D′
n, we also write α(d) for (α1(d1), . . . , αn(dn)).

A machine with an input adaptor can be regarded as another typed machine:

Formal Patterns for Multi-rate Distributed Real-Time Systems 7

Definition 2. The adaptor closure of a typed machine M = (Di, S,Do, δM)
with an adaptor α = {αk : D′

k → Dik}k∈{1,...,n} is a typed machine Mα =
((D′

1 × · · · × D′
n), S,Do, δMα) where

((di, s), (s
′,do)) ∈ δMα ⇐⇒ ((α(di), s), (s

′,do)) ∈ δM .

We next define the k-step machine pattern by which we can “slow down,” or
decelerate, a fast machine by a factor k. As already mentioned, the machine
reads k inputs (in each port), performs a transition which corresponds to k
“internal transition steps” and outputs k-tuples of values:

Definition 3. The k-step deceleration of a typed machine M = (Di, S,Do, δM),
with Di = Di1 × · · · × Din and Do = Do1 × · · · × Dom , for k ∈ N+ is a typed
machine M×k = ((Di1)

k × · · ·× (Din)
k, S, (Do1)

k × · · ·× (Dom)k, δM×k) where

((((di11 , . . . , di1k), . . . , (din1
, . . . , dink

)), s),

(s′, ((do11 , . . . , do1k), . . . , (dom1
, . . . , domk

)))) ∈ δM×k

iff there exists s1, . . . , sk−1 ∈ S such that

(((di11 , . . . , din1
), s), (s1, (do11 , . . . , dom1

))) ∈ δM

(((di12 , . . . , din2
), s1), (s2, (do12 , . . . , dom2

))) ∈ δM

...
...

(((di1k , . . . , dink
), sk−1), (s

′, (do1k , . . . , domk
))) ∈ δM .

The “local” fast environments should be dealt with by the corresponding fast
machine, and we therefore assume that fast local environments are already in-
tegrated with their corresponding fast machines.3 That is, the environment at
the (slow) global level is only the environment of the high-level controllers. Fi-
nally, we make the definition more abstract by considering only the relative rates
instead of the concrete periods. For example, the multirate “system” in Fig. 2
corresponds to the multirate ensemble in Fig. 3.

12 12

6 + env6 4 3 3 + env3

env12

rate=2 rate=3 rate=4 rate=4

Fig. 3. A simple multirate ensemble (input adaptors not shown)

We now formally define multirate ensembles and the associated multirate syn-
chronous composition pattern.

3 An environment can be viewed as a nondeterministic typed machine [10]. Therefore,
a faster machine’s environment and the fast machine itself form a simple 2-machine
ensemble, whose ensemble composition has now only wires from/to slow machines.

8 K. Bae, J. Meseguer, and P.C. Ölveczky

Definition 4. A multirate ensemble is a tuple

E = (JS ∪ JF ∪ {e}, {Ml}l∈JS∪JF , E, src, rate, adaptor)

where:

– JS is a nonempty set of (“controller component” or “slow machine”) indices
and JF is a set of (“fast machine”) indices with JS ∩ JF = ∅;

– each Ml, with l ∈ JS ∪ JF , is a typed machine;
– rate is a function rate : JF → N − {0, 1}, assigning to each fast machine

a value denoting how many times faster the machine runs compared to the
slow machines; and

– src is a wiring diagram such that there is no connections between controlled
components, or between the environment and a controlled component; i.e., if
src(l, q) = (k, p) then l ∈ JS ∨ k ∈ JS; and

– adaptor is a function that assigns an input adaptor to each l ∈ JF ∪ JS

such that

Esr = (JS ∪ JF ∪ {e}, {(Mj)adaptor(j)}j∈JS ∪ {(M×rate(j)
j)adaptor(j)}j∈JF , E, src)

is an ordinary (single-rate) typed machine ensemble.

By definition, the multirate synchronous composition pattern applied to E is the
transformation E �→ MRSC (E) assigning to a multirate ensemble E the typed
machineMRSC (E) = MEsr . Note that when JF is empty and the input adaptors
are identity functions, a multirate ensemble E becomes an ordinary single-rate
ensemble, and MRSC (E) = ME. Therefore, MRSC generalizes the single-rate
synchronous composition pattern.

Furthermore, as for the single-rate synchronous composition pattern, the
pattern MRSC can be recursively applied. That is, the synchronous multirate
composition MRSC (E) is itself a typed machine MEsr which can appear as a
component in another multirate ensemble, so that we can easily define hierarchi-
cal multirate systems. Such an architecture in common in, e.g., avionics, where,
for redundancy purposes, there are multiple surface controllers for each aileron,
the rudder, the elevator, etc. The controllers for a given device operate between
themselves and the device at a fast rate, which might be different for different
devices. These groups of surface controllers are again controlled by the main
supervisory controllers, which operate at the slow rate and give commands so
that the ailerons and rudder operate in lock-step to, e.g., turn the aircraft.

4 Multirate PALS

This section presentsMultirate PALS, a formal pattern (E, T, Γ) �→ MA(E, T, Γ)
that transforms a multirate ensemble E, together with its (global) period T and
performance bounds Γ on clock skews, execution times, and network delays, into
a formal specification MA(E, T, Γ) of a distributed real-time system where each

Formal Patterns for Multi-rate Distributed Real-Time Systems 9

machine performs at its own rate. We prove in Section 4.2 that the synchronous
composition and the distributed asynchronous real-time model of a multirate en-
semble satisfy the same properties. Since the MRSC pattern can be recursively
applied, the Multirate PALS pattern can likewise be recursively applied. Due
to space limitations, in this paper we apply Multirate PALS to non-hierarchical
ensembles where fast machines do not have their own environments.

Since multirate PALS is based on a number of patterns, we could for modu-
larity purposes use multiple “wrappers” to define the asynchronous model. The
outermost wrapper would be the standard “PALS wrapper,” which would enclose
an input adaptor wrapper, which would enclose either a (slow) typed machine or
a k-machine wrapper, which in turn would enclose an ordinary typed machine.
However, in this paper we present a simpler “flat” model of the components in
the asynchronous system where these wrappers have been combined.

Our definition of MA(E, T, Γ) is in essence a reduction to PALS and roughly
corresponds to A(Esr , T, Γ). There is, however, an important difference between
the single-rate system A(Esr , T, Γ) and the multirate system MA(E, T, Γ): in
the former, fast machine with rate k performs all k transitions “in one shot,”
whereas in MA(E, T, Γ) the fast machine operates according to its own fast
period T/k and performs one transition at the beginning of each such fast period.
Figure 4 presents a high-level view of the timeline of one round of a system with a
fast (with k = 4) and a slow component, where diagonal arrows denote message
transmission and short horizontal lines denote the execution of a transition.
The fast component may not be able to finish all of its internal transitions
before the messages must be sent to the slow component to ensure that they
arrive before the beginning of the next round (dashed diagonal arrow), even if
T satisfies the constraints of the PALS period. The fast period T/k must satisfy
T/k ≥ 2ε+μmax+max(2ε−μmin, αmaxf

), where αmaxf
is the maximal transition

execution time for the fast component, to ensure that the sending of messages
can be delayed until all fast transitions in a slow round have been performed.

Using adaptors the above, quite stringent, constraint on fast machines can
be avoided as follows. If there is not enough time for a fast machine to execute
all of its k transitions before the messages must be sent to the slow component,
but can only send k′ < k inputs, then the slow component should only consider

fast component

slow component

i · T (i+ 1) · T

Fig. 4. Timeline for multirate asynchronous PALS system with k = 4

10 K. Bae, J. Meseguer, and P.C. Ölveczky

these k′ values. The number of transitions a fast component can perform in a
global round before its output must be sent is given by

k′ = � (T monus (2ε+ μmax + αmaxf
)) · k

T
�.

That is, if the source of the ith input port of a slow machine Mj is a fast machine
whose k′ is less than its rate k, then the adaptor function adaptor (j)i must satisfy
adaptor (j)i (v1, . . . , vk′ , vk′+1, . . . , vk) = adaptor (j)i (v1, . . . , vk′ , v′k′+1, . . . , v

′
k)

for all values vl and v′l of appropriate types. Finally, we assume that a null value
⊥ has been added to each type.

4.1 Formalizing the Asynchronous System in Real-Time Maude

This section presents the Real-Time Maude specification of the asynchronous
real-time system MA(E, T, Γ) satisfying the above requirements. The model of
slow components is essentially that of single-rate PALS [10], with the difference
that the adaptor function should be applied to the input tuples to get a single
input value for each input port. It can also be seen as the case k = 1 of the
behavior of a fast component with rate k, which can be summarized as follows:

– At the beginning of each global round, the fast machine:
• reads the received messages from its PALS input buffer;
• uses its input adaptor to extract the “first” data value from each received
message, performs a local transition, and places the resulting output in
the PALS output buffer;

• moves the received messages to another buffer, since the PALS input
buffer is needed for the messages that arrive during the current round;

• sets its output backoff timer to T − 2ε − μmax, which is the latest local
time (relative to the start of the slow round) that the messages can be
sent out into the network while ensuring that they will be received by
the beginning of the next global period.

– When the fast machine performs a local transition that does not take place
at the beginning of a global round, it applies its input adaptor to the inputs
stored in the additional input buffer, performs a transition, and adds the
produced output to the output buffer.

– When the output backoff timer expires, the generated (tuples of) output
are sent into the network, regardless of whether or not the fast machine has
finished all of its local transitions in the current global period.

We model the asynchronous system in an object-oriented style, where a fast
machine Mj is transformed into an object instance of a subclass FCj of the
following class FastMachine:

class FastMachine | state : DlyState, clock : Time,

inBuffer : MsgConfiguration, prevInput : DataTuple,

outBuffer : DataTupleList, outputBackoffTimer : TimeInf,

fastPeriodTimer : Time, fastPeriodCounter : NzNat,

rate : NzNat, localWiring : LocalWiring .

class FC1 class FCq . subclass FC1 ... FCq < FastMachine .

Formal Patterns for Multi-rate Distributed Real-Time Systems 11

The inBuffer attribute denotes the main input buffer that stores incoming
messages; prevInput is the additional local input buffer; the output generated
during the round is stored in outBuffer until it is sent into the network when
the outputBackoffTimer expires; fastPeriodTimer expires whenever a local
transition must be taken; the fastPeriodCounter attribute denotes which local
transition this is during a global round (and has value 1 when a global round
begins); and clock is the local clock. All timers advance at the rate of the
imperfect local clock, as formalized in [10]. We do not show the definition of the
various data types, many of which are explained in detail in [10], but note that,
e.g., we assume that we have a supersort Data of all the data sorts.

The following rewrite rule models the reception of a message during a round;
the received message is just added to the main input buffer:

vars j j′ : Oid . var p : Nat . var d : Data . var B : MsgConfiguration .

rl [receiveMsg] :

(to j from j′ (p, d))
< j : FastMachine | inBuffer : B >

=>

< j : FastMachine | inBuffer : B (to j from j′ (p, d)) > .

The following rewrite rule models the beginning of a new global period
(fastPeriodTimer has expired (i.e., is 0) and fastPeriodCounter is 1). The
first single transition is performed, the output backoff timer is set to expire at
the latest possible time, received input is stored in an internal buffer, and so on:

var X-DLY : Time . vars S NEXT-STATE : State . var W : LocalWiring .

var dj1 : Dj
o1 var djmj

: Dj
omj

. var RATE : NzNat .

crl [applyTrans] :

< j : FCj | inBuffer : B, fastPeriodTimer : 0, fastPeriodCounter : 1,

rate : RATE, state : S >

=>

< j : FCj | inBuffer : none, fastPeriodTimer : T/RATE,
fastPeriodCounter : if RATE == 1 then 1 else 2 fi,

prevInput : vect(B), state : [NEXT-STATE, X-DLY],

outputBackoffTimer : T − 2 · ε − μmax,

outBuffer : [(dj1 , . . . , djmj
), X-DLY] >

if X-DLY >= αmin and X-DLY <= αmax

/\ (π1(adaptor (j)(vect(B))), S), (NEXT-STATE, (dj1 , . . . , djmj
))) ∈ δMj

.

The function vect maps a set B of messages of the form

(to j from j′1 (1, d1)) ... (to j from j′nj
(nj, dnj)) (†)

to the vector of inputs (d1, . . . , dnj), and πi maps the tuple ((d11 , . . . , d1k), . . . ,
(dnj1

, . . . , dnjk
)) to the tuple (d1i , . . . , dnji

). Notice that any possible previous
content in the output buffer is replaced by the generated output.

The following rule models the Ith transition (2 ≤ I ≤ RATE) of a fast machine,
where _::_ denotes list concatenation for lists of data tuples, and [d, dly] and
[s, dly] denote “delayed” output/state that will be “undelayed” after time dly:

12 K. Bae, J. Meseguer, and P.C. Ölveczky

var I : NzNat . var DT : DataTuple . var DTL : DataTupleList .

crl [applyInternalTransition] :

< j : FCj | prevInput : DT, fastPeriodTimer : 0, fastPeriodCounter : I,

rate : RATE, state : S, outBuffer : DTL >

=>

< j : FCj | fastPeriodTimer : T/RATE,
fastPeriodCounter : if I == RATE then 1 else I + 1 fi,

state : [NEXT-STATE, X-DLY],

outBuffer : DTL :: [(dj1 , . . . , djmj
), X-DLY] >

if X-DLY >= αmin and X-DLY <= αmax

/\ (πI(adaptor (j)(DT)), S), (NEXT-STATE, (dj1 , . . . , djmj
))) ∈ δMj

.

The last rule for fast machines takes the tuples in the output buffers, generates
the corresponding messages and sends the messages into the network when the
output backoff timer expires. “Delayed” output, indicating that the transition
generating that output is not yet finished, should of course not be sent:

crl [outputMsg] :

< j : FastMachine | outBuffer : DTL, outputBackoffTimer : 0, rate : RATE,

localWiring : W >

=>

< j : FastMachine | outBuffer : nil, outputBackoffTimer : INF >

dly(makeMsgs(j, W, DTL, RATE), μmin, μmax) .

where makeMsgs takes a list of outputs (ignoring the last vector if it is still
“delayed” and adding ⊥ elements if there is less than RATE tuples to transmit)
and the wiring diagram and generates the corresponding outgoing messages, and
dly assigns the given network delay interval to each message [12].

The treatment of time (including updating the timers and delays) and of the
environment is done in the same way as in [10] and is not shown.

4.2 Correctness of the Multirate PALS Transformation

This section formalizes the relationship between the synchronous composition
MRSC (E) and the asynchronous multirate real-time system MA(E, T, Γ), where
the input adaptors in E do not distinguish between inputs that cannot be gener-
ated early enough. We also assume, in addition to the single-rate PALS require-
ments in Section 2, that for a fast machine f with rate k, αmaxf

< T/k − 2ε,
which implies that the machine can finish one local transition before having to
start the next one. Because of space limitations, we only give a brief overview of
our correctness proof.

Our proof exploits that for single-rate ensembles E , the transition system ts(E)
and the “big step” transition system (Stable(A(E , T, Γ)),−→st) are bisimilar.
Since Esr is a single-rate ensemble, the transition system ts(Esr) of MRSC (E)
(which equals MEsr) and (Stable(A(Esr, T, Γ)),−→st) are bisimilar. The part
remaining is to define the stable states in MA(E, T, Γ) and show that its big-
step transition system Stable(MA(E, T, Γ),−→st) is bisimilar and satisfies the
same properties as Stable(A(Esr, T, Γ)). We start by defining the stable states
in MA(E, T, Γ) and its associated transition system.

Formal Patterns for Multi-rate Distributed Real-Time Systems 13

Definition 5. A state t in MA(E, T, Γ) is stable iff (i) it is reachable from a
legitimate initial state of the system; (ii) all its input buffers are full; (iii) there
are no messages in transit; (iv) there is nothing in the output buffers of the
slow components; and (v) the fastRateCounter attribute of each fast component
equals 1 and its state is “undelayed.”

A stable state corresponds to a state (s,ofb) in MRSC (E), where the values of
the objects’ state attributes give s and the content in the input buffers give
the content ofb in the feedback wires. A “big step” stable transition t −→st t′

between two stable states t and t′ is a sequence of rewrite steps

t = t0 −→ t1 −→ · · · −→ ti −→ · · · −→ ti′ = t′

in MA(E, T, Γ), for some i ≥ 0 such that each step tl −→ tl+1, for l < i, is a tick
step between stable states, the states ti+1, . . . , ti′−1 are not stable, and there is at
least one application of an instantaneous rewrite rule in the sequence. Intuitively,
a stable transition consists of (possibly) some applications of the tick rule to
advance time in stable states, and then a sequence of both instantaneous and tick
steps leading to a stable state corresponding to the beginning of the next round.
We denote by Stable(MA(E, T, Γ)) the set of stable states of MA(E, T, Γ).

There is in general no straight-forward correspondence between the stable
states in MA(E, T, Γ) and the states in MEsr (and hence Stable(A(Esr, T, Γ)))
since in both MEsr and A(Esr , T, Γ), the fast machines perform all k transi-
tions in one step. Since a fast machine in MA(E, T, Γ) may not finish all k
transitions before its output must be sent into the network, some of its out-
puts will be ‘⊥’ where MEsr and A(Esr , T, Γ) output “real” values. Since the
content of the “feedback wires” is part of a state of MEsr , the states in MEsr

and Stable(MA(E, T, Γ)) will not be the “same.” However, since input adaptors
cannot distinguish between the two outputs in these cases, the outputs are equiv-
alent for all practical purposes. We therefore define an equivalence ≡A (“adaptor
equivalence”) on SEsr × De

o such that ((s,ofb), i) ≡A ((s,o′
fb), i) if no input

adaptor in E can distinguish between ofb and o′
fb and state our main result:

Theorem 1. Let L : SEsr×De
o → P(AP) bea function such that ((s,ofb), i) ≡A

((s,o′
fb), i) implies L((s,ofb), i) = L((s,o′

fb), i). For any CTL∗ formula φ over
AP and initial state t0 we have (Stable(MA(E, T, Γ)),−→st), sr; sync;L, t0 |=
φ if and only if ts(Esr), L, sync(sr(t0)) |= φ, where sr maps a stable state in
MA(E, T, Γ) to the corresponding stable state in A(Esr , T, Γ).

The proof “lifts” ≡A to A(Esr , T, Γ), proves that sr ; ≡A is a bisimulation be-
tween (Stable(MA(E, T, Γ)),−→st) and (Stable(A(Esr, T, Γ)),−→st), and that
≡A-equivalent states in Stable(A(Esr, T, Γ) satisfy the same atomic propositions
w.r.t. the labeling function sync;L.

5 An Aeronautics Case Study

We illustrate Multirate PALS with a simple model of a control system to turn
an aircraft. This case study is explained in detail in [4]. When an aircraft makes

14 K. Bae, J. Meseguer, and P.C. Ölveczky

a turn, it rolls towards the direction of the turn, so that the lift force caused by
the two wings acts as the centripetal force and the aircraft moves in a circular
motion. If the direction of the aircraft is given by an angle ψ, the turning rate
can be given by dψ = (g/v) ∗ tanφ, where φ is the roll angle, g is the gravity
constant, and v is the velocity of the aircraft [2]. The ailerons4 are used to control
the rolling angle of the aircraft by generating different amount of lift force in
the left and the right wings. However, the roll of the aircraft causes a difference
in the drag on the left and the right wings, which causes adverse yaw. This is
countered by using the rudder5, which generates the side lift force on the vertical
tail that opposes the adverse yaw. To turn an aircraft, its roll angle should be
increased towards the desired direction while its yaw angle stays at 0. The roll
angle φ and the yaw angle β can be modeled by the following equations [2]:

dφ2 = (Lift Right − Lift Left)/(Weight ∗ Length of Wing)

dβ2 = Drag Ratio ∗ (Lift Right − Lift Left)/(Weight ∗ Length of Wing)

+ Lift Vertical/(Weight ∗ Length of Aircraft)

The lift from the left, the right, or the vertical wing is given by the equation

Lift = Lift constant ∗ Angle with respect to free stream

where the lift constant depends on the geometry of the corresponding wing, and
the drag ratio is given by the size and the shape of the entire aircraft.

We model the airplane turning control system as the multirate ensemble of
4 typed machines: the main controller, the left wing controller, the right wing
controller, and the rudder controller. Each subcontroller moves the surface of
the wing towards the goal angle specified by the main controller, which sends
the desired angles to the subcontrollers to make a coordinated turn whose goal
direction is given by a pilot (the environment). The main controller also models
sensors that measure the roll, the yaw, and the direction, by the formulas above.
We assume that the main controller has period 60 ms, the left and the right
wing controllers have period 15 ms, and the rudder controller has period 20 ms.

In [4] we present a modeling framework for multirate ensembles in Maude.
Each machine is modeled as an object instance of a subclass of Component, whose
attribute ports contains the component’s ports. We support the definition of
hierarchical ensembles by letting an ensemble be a Component containing also
the wiring diagram (connections) and the machines in the ensemble:

class Component | ports : Configuration, rate : NzNat .

class Ensemble | machines : Configuration, connections : Set{Connection} .

subclass Ensemble < Component .

For each machine, the user must define its subclass, the function delta defining
the transition function, and the adaptor function for each input port:

4 A flap attached to the end of the left or the right wing in the aircraft.
5 A flap attached to the vertical tail of the aircraft.

Formal Patterns for Multi-rate Distributed Real-Time Systems 15

Main Controller

Left wing
Controller

Rudder
Controller

Right wing
Controller

env env

rate = 4 rate = 3 rate = 4

Fig. 5. The architecture of the airplane turning control system

op delta : Object ~> Object [frozen] .

op adaptor : ComponentId PortId NeList{Data} ~> NeList{Data} .

Given these definitions, our framework then provides an executable Maude model
of the synchronous composition of the ensemble as explained in [4].

In our case study, the subcontrollers for the ailerons and the rudder are mod-
eled as object instances of the following class SubController:

class SubController | curr-angle : Float, goal-angle : Float, diff-angle : Float .

subclass SubController < Component .

diff-angle indicates the maximal angle of the wing that can be changed during
each fast period. The transition function is defined by the following equation.

ceq delta(< C : SubController | ports : < input : InPort | content : D LI >

< output : OutPort | content : LO >,

curr-angle : CA, goal-angle : GA, diff-angle : DA >)

= < C : SubController | ports : < input : InPort | content : LI >

< output : OutPort | content : LO d(CA’) >,

curr-angle : CA’, goal-angle : GA’ >

if CA’ := adjAngle(moveAngle(CA,GA,DA))

/\ GA’ := adjAngle(if D == ⊥ then GA else float(D) fi) .

moveAngle(CA,GA,DA) increases or decreases the current angle CA by up to the
maximum angle difference DA towards the goal angle GA. adjAngle keeps the
angle value between −180 and 180. delta updates the goal angle according to
input from the main controller, and keeps the previous goal if it receives ⊥.

We refer to [4] for the specification of the main controller. The airplane turning
control system is represented as an ensemble as follows:

< system : Ensemble | rate : 1, ports : ...

machines : < left : SubController | rate : 4, ... >

< right : SubController | rate : 4, ... >

< rudder : SubController | rate : 3, ... >

< main : MainController | rate : 1, ... >,

connections : (input --> main . input) ; (main . output --> output) ;

(left . output --> main . inLW) ; ... > .

The input adaptors for the subcontrollers generate a vector with extra ⊥’s and
the adaptor for the main controller selects the last value of the input vector:

16 K. Bae, J. Meseguer, and P.C. Ölveczky

eq adaptor(left, input, D) = D ⊥ ⊥ ⊥ . eq adaptor(right, input, D) = D ⊥ ⊥ ⊥.

eq adaptor(rudder, input, D) = D ⊥ ⊥ . eq adaptor(main, PI, LI D) = D .

Our system should satisfy the requirement that the airplane reaches the desired
direction while keeping the yaw angle close to 0. This requirement is formalized as
the LTL formula safeYaw U reach(60.0), where safeYaw holds iff the absolute
value of the yaw is less than 2, and reach(F) holds iff the difference between
the current and the goal directions is less than 0.5 and the absolute value of the
roll is less than 0.1. The initial state init(60.0) defines a model where the goal
direction of the main controller is 60, and where the environment always outputs
⊥, since the goal never changes. The following model checking command shows
that the property holds:

Maude> (red modelCheck(init(60.0), safeYaw U reach(60.0)) .)

result Bool : true

6 Related Work

The most closely related work is a paper on the same topic [1] by colleagues
with whom we developed the original PALS pattern. Both our paper and theirs
share a common goal, namely, drastically simplifying the complexity of multi-
rate distributed real-time systems; but they address this topic in quite different
ways. By using AADL to describe their version of multirate PALS, the authors
of [1] achieve a useful engineering description of the pattern that can be directly
used in model-based software engineering. What is not attempted in [1] is to give
mathematical models of either synchronous multirate systems or their multirate
PALS transformation as distributed real-time systems, or to justify why the syn-
chronous multirate system and its multirate PALS counterpart satisfy the same
temporal logic properties; in fact, AADL is totally unsuited for such tasks. This
is exactly what we do in this paper, and why both papers are complementary. It
is also important to remark that our model of multirate PALS and theirs have
some important differences, including the following: (i) their model lacks a sys-
tematic notion of input adaptor, and therefore the issue of what to do with the
multiple outputs of a faster component is left somewhat open; (ii) their model
assumes that if a component runs k times faster than the common period, then
the last output from that component will be the one provided before the end of
the common period to other components; we think that for k fast enough this
may easily become impossible due of communication delays; our model is more
flexible and can easily handle arbitrarily faster rates; and (iii) their model al-
lows “sideways” communication between different fast components with different
rates; but it is unclear how these different components will behave at different
rates at times when they lack the needed inputs from other components; instead,
our communication is hierarchical and avoids this problem.

More generally, the PALS pattern can be seen as part of a body of work on
so-called synchronizers, which relate (single-rate) synchronous and asynchronous
systems. Very general synchronizers such as those in [3] place no a priori bounds

Formal Patterns for Multi-rate Distributed Real-Time Systems 17

on message delays, so that physical time in the original synchronous system is
simulated by logical time in its asynchronous counterpart. More recent work has
developed synchronizers for the Asynchronous Bounded Delay (ABD) network
model [16], in which a bound can be given for the delay of message transmissions.
PALS also assumes the ABD model (plus clock synchronization) but provides
hard real-time guarantees needed for embedded systems, whereas in the synchro-
nizers in [16], two nodes could be in completely different (local) rounds at the
same physical time. Work by Tripakis et al. [17] relates a synchronous Mealy
machine model to a loosely timed triggered architecture with local clocks that
can advance at different rates with no clock synchronization. The main differ-
ence with PALS is that it does not seem possible to give hard real time bounds
for the behavior of the asynchronous system realization. In the Globally Syn-
chronous Locally Asynchronous (GALS) Architecture [7,14], systems may be
widely distributed and it may not be possible to assume that all message com-
munication delays are bounded, although such delays may be bounded within
a synchronous subdomain. Consequently, no hard real-time guarantees can be
given for a GALS implementation. Single-rate PALS is also closely related to
the time-triggered systems of Kopetz and Rushby [8,15], where the goal is also
to reduce an asynchronous real-time system to a simpler, synchronous one. One
important difference is that the smallest period of the asynchronous system of
Kopetz and Rushby may be significantly larger than the optimal PALS period.

7 Conclusions

We have argued that the design, verification, and implementation of a DRTS is
a big challenge that requires new methods to tame the enormous complexities
involved. We have poposed Multirate PALS as an answer to this challenge in the
case of a multirate DRTS where virtual synchrony must be ensured between its
components. To achieve this in a rigorous way we have defined the mathematical
semantics of synchronous multirate ensembles of machines and of several key
component transformations that together allow us to give a precise mathematical
definition of Multirate PALS and prove its bisimilarity with the synchronous
composition of the original multirate ensemble. Multirate PALS is supported by
Maude and Real-Time Maude for specification and model checking purposes.
We have illustrated its power as a complexity-reducing pattern by showing how
it can be used to verify properties about the turning maneuvers of an airplane.

One obvious next step is to make the formal verification capabilities associ-
ated to Multirate PALS available to DRTS engineers using the AADL modeling
system in the same way as we did for PALS through the SynchAADL2Maude
system [5]. This will require further extending the AADL synchronous annex
with multirate capabilities, and making Maude-based model checking available
at the level of AADL models of synchronous multirate ensembles.

18 K. Bae, J. Meseguer, and P.C. Ölveczky

References

1. Al-Nayeem, A., Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition and
analysis of virtually synchronized real-time distributed systems. In: Proc. Cyber-
Physical Systems (IEEE/ACM ICCPS 2012) (2012)

2. Anderson, J.: Introduction to flight. McGraw-Hill (2005)
3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823

(1985)
4. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: PALS-based analysis of an

airplane multirate control system in Real-Time Maude. In: Proc. FTSCS 2012
(2012); To appear in Electronic Proceedings in Theoretical Computer Science

5. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
Its Formal Analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

7. Girault, A., Ménier, C.: Automatic Production of Globally Asynchronous Locally
Synchronous Systems. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, pp. 266–281. Springer, Heidelberg (2002)

8. Kopetz, H., Grünsteidl, G.: TTP - a protocol for fault-tolerant real-time systems.
IEEE Computer 27(1), 14–23 (1994)

9. Meseguer, J., Ölveczky, P.C.: Formalization and Correctness of the PALS Archi-
tectural Pattern for Distributed Real-Time Systems. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 303–320. Springer, Heidelberg (2010)

10. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comp. Sci. 451, 1–37
(2012)

11. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing
logical synchrony in integrated modular avionics. In: Proc. DASC 2009. IEEE
(2009)

12. Ölveczky, P.C.: Towards formal modeling and analysis of networks of embedded
medical devices in Real-Time Maude. In: Proc. SNPD 2008. IEEE (2008)

13. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

14. Potop-Butucaru, D., Caillaud, B.: Correct-by-construction asynchronous imple-
mentation of modular synchronous specifications. Fundam. Inform. 78(1), 131–159
(2007)

15. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Trans. Software Eng. 25(5), 651–660 (1999)

16. Tel, G., Korach, E., Zaks, S.: Synchronizing ABD networks. IEEE Trans. Network-
ing 2(1), 66–69 (1994)

17. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincentelli, A., Caspi, P.,
DiNatale, M.: Implementing synchronous models on loosely time triggered archi-
tectures. IEEE Trans. on Computers 1 (2008)

Component Interfaces with Contracts on Ports�

Sebastian Bauer1, Rolf Hennicker1, and Axel Legay2

1 Ludwig-Maximilians-Universität München, Germany
2 INRIA/IRISA Rennes, France

Abstract. We show how the abstract concept of a (labeled) interface
theory can be canonically extended to an abstract framework for compo-
nent interfaces with ports. The resulting component framework satisfies
itself the general laws of an interface theory (concerning the composition,
refinement, and environment correctness notions). The ports of a com-
ponent interface represent the interaction points of a component. Each
port is equipped with a contract specifying the assumptions on and the
guarantees for the environment of a component. As a particular instance
we consider modal component interfaces such that component behav-
iors and the assume and guarantee behaviors of ports are given in terms
of modal I/O-transition systems with weak modal refinement and with
a weak modal environment correctness notion. The modal approach is
particularly useful to specify loose environment assumptions.

1 Introduction

The development of large, reliable component systems relies heavily on the use of
interfaces. Hence, rigorous development methods are mandatory which support
interface composition, stepwise refinement and the consideration of compatibility
issues when a component is put in an environment. These requirements together
with concise rules how the different dimensions of system development should
work together are formulated in an abstract way in the seminal work of De Alfaro
and Henzinger [10]. There the notion of an interface theory has been introduced
which consists of an interface algebra together with a component algebra thus
distinguishing interface specifications and component implementations.

In this paper we follow the idea of De Alfaro and Henzinger to study abstract
concepts and rules that later on can be instantiated by concrete frameworks. But
we will focus more specifically on the domain of reactive component systems such
that interfaces should be equipped with additional structure that makes more ex-
plicit their possible connections. For that purpose we rely on ports as interaction
points of a component as it is quite standard in many design languages.

Independently, a number of contract theories, based on assume-guarantee
(AG) reasoning have been developed, with a similar aim of approaching com-
positional design. Contract theories differ from interface theories in that they
strictly follow the principle of separation of concerns. They separate the specifi-
cation of assumptions from specification of guarantees, a choice largely inspired

� This work has been partially sponsored by the EU project ASCENS, 257414.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 19–35, 2013.
� Springer-Verlag Berlin Heidelberg 2013

20 S. Bauer, R. Hennicker, and A. Legay

by early ideas on manual proof methods of Misra, Chandy [25] and Jones [18],
along with the wide acceptance to pre-/post-condition style of specification in
programming [24,30], and more general semantical rules independent from lan-
guage representation [8].

In [4], we have shown how a theory of contracts can be built on top of a given
abstract specification theory. Contracts are just pairs (A,G) of an assumption
and a guarantee specification. We have shown in [4] how the contract theory can
be instantiated by using modal transitions systems [29] with strong modal re-
finement. This approach, however, did only work for specification theories which
admit a “quotient” construction as specification building primitive and there-
fore could not be applied to instances that support weak refinement abstracting
away silent τ -transitions [5] which is much more powerful. Compatibility issues
concerning the communication between modal transition systems have not been
integrated in [4]. On the other hand, the entities of our contract theory were just
pairs (A,G) disallowing any structural splitting which is necessary if we want to
deal with components with more than one port.

In the current paper we first introduce the notion of a labeled interface theory
in Sect. 2, which resembles an interface theory in the sense of De Alfaro and
Henzinger with the additional provision that a set of labels is assigned to any
interface (which intuitively represents an action alphabet). Moreover, in addi-
tion to interface refinement, we introduce an environment correctness relation
S → E to express when an environment E satisfies the interaction requirements
of an interface S. We show, in Sect. 3, how a theory of component interfaces can
be defined on top of any framework satisfying our abstract rules of an interface
theory. A distinguished feature of component interfaces is that they have a set
of ports such that each port P is equipped with a port contract (AP , GP) speci-
fying the assumptions on the environment that is going to be connected on this
particular port, and the guarantees of the component on that port. Hence our
approach deviates from approaches that use single port protocols not allowing
to extract distinguished assumptions and guarantees. All notions of an interface
theory, i.e. composition, refinement and environment correctness, are propagated
to the level of component interfaces which themselves are shown to satisfy the
requirements of an interface theory. We also discuss reliability of component in-
terfaces which means that the component frame, intended to specify the overall
visible behavior of a component, supports the guarantees shown on the ports.
We prove that reliability is compositional.

As a proof of concept, we instantiate in Sect. 4 our generic constructions
and build a modal theory of component interfaces on top of a labeled interface
theory with modal I/O-transitions systems and weak modal refinement as a
basis [21],[5]. In particular, we consider a small case study in Sect. 4.2.

Related Work. As observed above, our work extends classical interface theo-
ries [10,12,7] with an explicit treatment of assumptions-guarantees. Other works
on interface automata, e.g. [14], exploit the concept of assumption and guaran-
tee to improve the efficiency of compatibility checking. However, they are not

Component Interfaces with Contracts on Ports 21

comparable to our approach as they exploit assumption and guarantee at the
operational level, but not at the design one. An intermediary step between those
approaches is the work of Parizek and Plasil [26] that proposes a compositional
methodology to reduce the verification of a composite component to the one of a
series of smaller verifications on single components. Recently, a similar approach
to the one of [26] was followed in the BIP toolset developed by Sifakis et al. [3].

Independently, a number of contract theories, based on explicit assume-
guarantee reasoning have been developed, with a similar aim of approaching
the compositional design. Among them, one finds the work of Meyer [24], that
is based on pre and post conditions as state predicates and invariants for the
system itself. This approach, which builds on seminal ideas proposed by Dijkstra
and Lamport [13,19], is similar to ours in the sense that pre and post conditions
shall be viewed as assumption and guarantee, respectively.

Some works [2] introduced contracts in the refinement calculus. In this for-
malism, processes are described with guarded command operating on shared
variables. This formalism is best suited to reason on untimed system, while our
approach is general and could be instantiated on other types of data. Addi-
tionally, each of the above mentioned work suffers from the absence of multiple
treatment of assumptions/guarantees and rely on a unique language while our
abstract language can work with arbitrary interface theories.

More recently, Benveniste et al.[6] proposed a contract theory in where as-
sumption and guarantees are represented by trace structures. While this work is
of clear interest, it suffers from the absence of effective representation for the em-
bedded interface theory. Extensions such as the one proposed in [28,15] leverage
this problem but ignore the multiple treatment of assumptions and guarantees.

2 Labeled Interface Theories

The idea of an interface theory is to capture basic requirements that should be
satisfied by any formal framework supporting behavior specifications of compo-
nents. We assume given a set S of interface specifications such that any interface
is equipped with a finite set of labels (representing the alphabet of actions an
interface may perform). An interface theory includes a composition operator ⊗
to combine interfaces to larger ones. The composition operator is, in general,
partial since it is not always syntactically meaningful to compose interfaces, due
to syntactic constraints. Additionally, an interface theory must offer a refinement
relation ≤ to relate “concrete” and “abstract” specifications, i.e. S ≤ T means
that S is a correct refinement of T . Intuitively, the refinement relation expresses
that the implementation requirements of the (abstract) interface T are respected
by the refinement S. Refinement must be compositional in the sense that it must
be preserved by the composition operator expressed by requirement (A1) below.
An interface theory must also address the relationship between components and
their environment. For this purpose we introduce an environment correctness
relation → such that S → E means that E is a correct environment for S. In-
tuitively, this relation expresses that the communication requirements of S are

22 S. Bauer, R. Hennicker, and A. Legay

satisfied by the environment E (which is itself just another interface); we may
say that S “feels well” in the environment E. Hence, the environment correct-
ness relation is unidirectional and it is orthogonal to the refinement relation;
the former concerns the “horizontal” dimension while the latter concerns the
“vertical” dimension of system development. Both relations must be compatible
in the sense that environment correctness must be preserved by refinement as
stated in requirement (A2) below. This means that interface specifications and
correct environments can be replaced by specialized versions without disrupting
the correctness of the environment. Requirement (A3) concerns the relation be-
tween interface composition and environment correctness. Intuitively, it states
that correct environments can be composed to a larger correct environment.
More precisely, if S in the context of E feels well in E′ and if S in the context
of E′ feels well in E, then S feels well in the larger environment E ⊗ E′.

Definition 1 (Labeled Interface Theory). A labeled interface theory is a
quadruple (S,L, ,⊗,≤,→) consisting of

– a set S of interface specifications,
– a set L of labels,
– a function : S → ℘fin(L) assigning a finite set of labels to each interface,
– a partial, commutative1 composition operator ⊗ : S × S → S; we call S

and E composable, if S ⊗ E is defined and require the following rules for
composable interfaces:
C1. If S ⊗ E is defined, then (S ⊗ E) = ((S) ∪ (E)) \ ((S) ∩ (E)).
C2. If (S) ∩ (E) = ∅, then S ⊗ E is defined.
C3. Pseudo-associativity: If S,E and E′ are pairwise composable and (S)∩

(E) ∩ (E′) = ∅, then (S ⊗ E) ⊗ E′ and S ⊗ (E ⊗ E′) are defined and
(S ⊗ E)⊗ E′ = S ⊗ (E ⊗ E′).

– a reflexive and transitive refinement relation ≤ ⊆ S × S such that S ≤ T
implies (S) = (T),

– an environment correctness relation →⊆ S × S such that, if S → E then
S ⊗ E is defined; we write S � E and call S and E compatible, if S → E
and E → S.

For all interfaces S, S′, E,E′ ∈ S the following properties must hold:

A1. Compositional Refinement:
If S ⊗E is defined, S′ ≤ S and E′ ≤ E, then S′ ⊗E′ is defined and
S′ ⊗ E′ ≤ S ⊗ E.

A2. Preservation of Environment Correctness:
If S → E and S′ ≤ S, E′ ≤ E, then S′ → E′.

A3. Environment Composition:

If S ⊗ E → E′ and S ⊗ E′ → E and (E) ∩ (E′) = ∅, then S →
E ⊗ E′.2

1 Commutativity means that for all S,E ∈ S, if S⊗E is defined then E⊗S is defined
and S ⊗ E = E ⊗ S; “=”means set-theoretic equality of elements.

2 In particular, S ⊗ (E ⊗E′) must be defined.

Component Interfaces with Contracts on Ports 23

A formal notion of an interface theory was, to our knowledge, first proposed
by de Alfaro and Henzinger in [10]. In their work, an interface theory consists
of an interface algebra together with a component algebra thus distinguishing
between interface specifications and component implementations. Later, in [11],
the authors introduced the term interface language which simplifies the approach
by considering just interfaces with the requirements that independent imple-
mentability and incremental design are supported. Our notion of an interface
theory is close to an interface language in the sense of [11]. The differences are
the following: (1) We associate a set of labels to each interface. (2) We require
that interface composition is commutative and pseudo-associative. (3) Instead
of using a binary compatibility predicate to express that two interfaces can work
properly together, we introduce a unidirectional environment correctness rela-
tion. If it is applied in both directions we obtain compatibility. (4) We require
compositional refinement for any composable interfaces and not only for compat-
ible ones. (5) Our notion of environmental composition is a variant of incremental
design in [11]. For any finite index set I we consider I-sorted sets (Si)i∈I (i.e.
finite families) of interfaces. We call (Si)i∈I composable, if the single interfaces
Si are pairwise composable and if labels of each Si are shared with at most one
other interface Sj (j �= i) of the family. Obviously, any subset of a composable
set of interfaces is composable.

For non-empty index sets I we extend the binary notion of interface composi-
tion to I-sorted sets of composable interfaces by the following inductive definition
along the size |I| of I:
– If |I| = 1, then ⊗(Si)i∈I = Si where I = {i}.
– If |I| > 1 and (Si)i∈I is composable, then ⊗(Si)i∈I � ⊗(Si)i∈I′ ⊗ Sj for

some subset I ′ ⊆ I with |I ′| = |I| − 1 and for Sj with I \ I ′ = {j}.
⊗(Si)i∈I is well-defined, since by commutativity and pseudo-associativity of the
binary composition the definition is independent of the choice of I ′.

3 A Theory of Component Interfaces with Port Contracts

In this section we show how a theory of component interfaces can be constructed
on top of any arbitrary labeled interface theory. Our goal is not to define yet
another language for component-based design but to focus on fundamental, ab-
stract properties of component interfaces which refines the concept of an interface
theory of Sect. 2 by introducing more structure. In addition to pure interfaces, we
require that component interfaces define access points in terms of distinguished
ports which are used for the composition of component interfaces. In the re-
mainder of this section we assume given an arbitrary labeled interface theory
(S,L, ,⊗,≤,→).

3.1 Port Contracts and Component Interfaces

We follow the idea that a port is an interaction point of a component. To specify
the legal interactions on a port often port protocols are used, e.g. [1,16]. The dis-
advantage of using such port protocols is that they usually mix up assumptions

24 S. Bauer, R. Hennicker, and A. Legay

and guarantees. Mostly it is rather difficult or even not feasible to figure out what
are the guarantees of a component at a port and what is assumed from the envi-
ronment for communication on that port. To overcome this deficiency we propose
to use explicit distinguished guarantee and assumption behavior specifications
for each port of a component following the principles of assume/guarantee rea-
soning; cf. e.g. [18]. Hence we consider contracts on ports where assumptions
and guarantees are both provided by an interface specification of our underlying
interface theory.

Definition 2 (Port Contract). A port contract is a pair (A,G) with A,G ∈ S
such that (A) = (G) and G → A, i.e. A is a correct environment for G.3 We
write (P) for (A) (= (G)) and call (P) the port labels of P .

The condition G → A is motivated by the intuition that any port contract should
specify the assumptions on the environment in such a way that the guaranteed
behavior (shown at this port) works fine in any such environment. Port contracts
can be refined following the co/contravariant approach where assumptions can
be relaxed in the refinement while guarantees may be strengthened.

Definition 3 (Port Contract Refinement). A port contract P ′ = (A′, G′)
refines a port contract P = (A,G), written P ′ � P , if G′ ≤ G and A ≤ A′.4

A component interface consists of two parts. First, any component interface has
a finite set of ports with associated contracts. Formally, the ports are given by a
finitely indexed set of port contracts. Secondly, following the terminology in [27],
there is a frame specification describing the possible visible behaviors of the full
component. The idea is that the frame shows the dependencies of actions on
the single ports. We assume that the label sets of the ports are pairwise disjoint
and that the label set of the component frame is the disjoint union of the port
labels. Moreover, the set of assumed behaviors on each port together with the
frame must be composable. This is necessary to guarantee that whenever the
assumptions on the ports are met by the environment one can indeed construct
the composition of the frame with the environment.

Definition 4 (Component Interface). A component interface C is a pair
C = ((Pi)i∈I , F) such that (Pi)i∈I is a finitely indexed set of port contracts
Pi = (Ai, Gi) and F ∈ S is an interface, called component frame, such that the
following conditions are satisfied:

1. For all i, j ∈ I with i �= j, (Pi) ∩ (Pj) = ∅.
2. (F) =

⋃
i∈I (Pi).

3. (Ai)i∈I ∪ {F} is a composable set of interfaces.

The set of labels of the component interface C is given by (C) = (F).

3 In particular, A and G are composable.
4 Note that P ′ � P implies �(P ′) = �(P).

Component Interfaces with Contracts on Ports 25

3.2 Composition of Component Interfaces

In this section we describe the composition of component interfaces merely based
on syntactic considerations. In particular, we do not require yet that guarantees
of one component port must satisfy the assumptions of the connected port of
the other component.5 Semantic requirements like this are studied in Sects. 3.4
and 3.5. The composition of two component interfaces C and D is only possible
if ports of C can be connected to ports of D in a syntactically meaningful way.
The simplest solution would be to require that there is exactly one port of C
which can be syntactically matched with exactly one port of D. In that way
we would, however, not be able to construct cyclic architectures. Therefore we
consider the case in which several binary port connections can be established
between two component interfaces (even none). For a binary port connection
between two ports, say PC of C and PD of D, we assume that PC and PD

have the same set of labels and that the guarantee interfaces of the two ports
are composable.6 Then C and D can be composed if there is a set of binary
connections between ports of the two components such that the non-connected
ports of C and D have pairwise disjoint labels and if the two component frames
are composable. The non-connected ports become the ports of the composition.

Definition 5 (Component Interface Composition).
Let C = ((PC

i)i∈I , F
C) and D = ((PD

j)j∈J , F
D) be component interfaces. C and

D are composable if there exist subsets I0 ⊆ I, J0 ⊆ J and a bijective connector
function κ : I0 → J0 such that

1. for all i ∈ I0, PC
i = (AC

i , GC
i) and PD

κ(i) = (AD
κ(i), G

D
κ(i)), the pair GC

i , GD
κ(i)

is composable and (PC
i) = (PD

κ(i)),

2. (C) ∩ (D) =
⋃

i∈I0
(Pi),

3. FC and FD are composable.

Then the composition of C and D is defined by

C �D = ((PC
i)i∈(I\I0) ∪ (PD

j)j∈(J\J0), F
C ⊗ FD).

Obviously, � is commutative since the underlying composition operator ⊗ and
the set-theoretic union of (non-connected) ports is commutative. It is also straight-
forward to prove that the rules (C1) - (C3) of Def. 1 are satisfied for the compo-
sition of component interfaces. Moreover, it is easy to see that whenever C and
D are composable component interfaces, then C �D is a component interface.

3.3 Refinement of Component Interfaces

Our definition of component interface refinement relies on refinement of ports,
see Def. 3, which has been inspired by assume/guarantee reasoning and the

5 Similarly to interface specifications which may be syntactically composable without
being semantically compatible.

6 Since �(PC) = �(PD) one could equivalently require (taking into account the
properties of a port contract) that the assumption interfaces are composable.

26 S. Bauer, R. Hennicker, and A. Legay

notions of behavioral subtyping, see e.g. [23]. A component interface C refines
another one D if, first, both have the same number of ports which are pairwise
refined and, secondly, the frame of C refines the frame of D in accordance with
the refinement relation of the underlying interface theory. Hence component
behaviors and guarantees are specialized in the refinement while assumptions
are relaxed.

Definition 6 (Component Interface Refinement). Let C = ((PC
i)i∈I , F

C)
and D = ((PD

j)j∈J , F
D) be two component interfaces. C refines D, written

C � D, if there exists a bijection ρ : I → J such that

1. PC
i � PD

ρ(i) for all i ∈ I, and

2. FC ≤ FD.

Note that C � D implies (C) = (D) and that reflexivity and transitivity of �
is inherited from the underlying refinement relation ≤ for interfaces.

Next, we show that the property of compositional refinement required by
condition (A1) of an interface theory is also valid for the refinement relation
between component interfaces.

Theorem 1 (Compositional Refinement for Component Interfaces).
Let C,C′, D, and D′ be component interfaces such that C and D are composable
and C′ � C as well as D′ � D holds. Then C′ and D′ are composable and
C′ �D′ � C �D.

3.4 Correct Component Environments

Finally, in order to obtain an interface theory for component specifications, we
need to define a suitable environment correctness relation. The idea is that the
communication requirements of a component interface C are satisfied by another
component interface D, playing the role of the environment for C, if (1) C and
D are composable, and (2) all port connections that can be established between
C and D have the property, that each (environment) assumption, say AC

i of a
connected port of C is satisfied by the guarantee GD

κ(i) of the corresponding port

of D; i.e. GD
κ(i) ≤ AC

i .

Definition 7. Let C = ((PC
i)i∈I , F

C) and D = ((PD
j)j∈J , F

D) be two compo-
nent interfaces which are composable according to a bijective connector function
κ : I0 → J0 for subsets I0 ⊆ I and J0 ⊆ J . D is a correct environment for C,
denoted by C � D, if for all i ∈ I0, G

D
κ(i) ≤ AC

i .

Theorem 2 (Preservation of Environment Correctness). Let C, C′, D,
and D′ be component interfaces such that C′ � C and D′ � D. If C � D, then
also C′ � D′.

Corollary 1. Component interfaces together with their composition, refinement
and environment correctness relation form a labeled specification theory with
labels L over any labeled interface theory (S,L, ,⊗,≤,→).

Component Interfaces with Contracts on Ports 27

3.5 Reliability of Component Interfaces

Up to know, we have not studied the relation between the frame of a component
and the guarantees at the ports of the component. Thus it could be possible
that a component C states a guarantee on a port, which is not really supported
by the component frame. In such a case the component interface would not be
reliable on that port. Indeed the actual behavior of a component is specified
by its frame and a user who wants to connect to a certain port is trusting the
guarantee on that port which should be established by any component imple-
mentation that is a refinement of the component frame. In general, we can still
relax this consideration, since we can assume that the component is put into a
context where the assumptions on all other ports are met. Consider, for instance,
a component interface C and the port P1 = (A1, G1) of C. Then G1 shows the
guarantee of C on port P1 whenever the component is put in the environment
A2 ⊗ . . . ⊗ An for the other ports. In other words, the frame F , which specifies
the dependencies between the ports, should produce in the context of the envi-
ronment A2 ⊗ . . . ⊗ An a behavior that satisfies the guarantee G1 on the first
port. Formally, this can be expressed by requiring that A2 ⊗ . . . ⊗ An ⊗ F is a
refinement of G1. Hence A1 is not used as an assumption for G1 but only as an
assumption for the other guarantees Gj with j > 1.7

Definition 8 (Reliable Component Interface). Let C = ((Pi)i∈I , F) be a
component interface with port contracts Pi = (Ai, Gi) for all i ∈ I. C is reliable
on a port Pj (j ∈ I), if ⊗(Ai)i∈I\{j} ⊗ F ≤ Gj. C is reliable if C is reliable on
all ports Pi for all i ∈ I.

The next proposition shows that reliable components can themselves rely on
all environments which satisfy the assumptions on each port of the component;
i.e. the component frame (as well as all refinements F ′ of F) “feel well” in each
environment made up by the composition of single environments that satisfy the
assumptions on each port.

Proposition 1. Let C = ((Pi)i∈I , F) be a reliable component interface with port
contracts Pi = (Ai, Gi) for all i ∈ I. For all i ∈ I, let Ei be interfaces such that
Ei ≤ Ai. Then F → ⊗(Ei)i∈I .

An important issue is, of course, to study to what extent reliability of compo-
nent interfaces is preserved by composition. We can show that this is indeed
the case if reliable components are correct environments for each other and if
the composition relies on the connection of two ports. If there are more port
connections used for the composition, then the ports of each single component
(used for the connections) must be independent to achieve this result. Intuitively
this means, that the frame allows arbitrary interleaving between the behaviors of
those ports. Formally we require that under the assumptions of the other ports

7 It would be desirable to use all assumptions A1⊗ . . .⊗An for each guarantee Gj . But
this can raise serious problems if there are cyclic dependencies between assumptions
and guarantees on connected ports.

28 S. Bauer, R. Hennicker, and A. Legay

the frame is a refinement of the product of the behaviors (i.e. guarantees) of the
ports under consideration.

Definition 9. Let C = ((Pi)i∈I , F) be a component interface with port contracts
Pi = (Ai, Gi) for all i ∈ I and let I0 ⊆ I. The ports (Pi)i∈I0 are independent
w.r.t. F , if

1. ⊗(Ai)i∈I\I0 ⊗ F ≤ ⊗(Gj)j∈I0 , and
2. ⊗(Gj)j∈I0 → ⊗(Aj)j∈I0 .

Of course, any single port is independent and a set of ports is independent if
and only if it could be collapsed into a single port.

Theorem 3 (Contract Composition Preserves Reliability). Let C and
D be two reliable and composable component interfaces such that the connected
ports on each side are independent (which is trivially satisfied if only two ports
are connected). Then C �� D implies that C �D is reliable.

We can further prove that whenever C �� D then the composition of FC with any
environments of non-connected ports of C is compatible with the composition
of FD with any environments of non-connected ports of D.

Lemma 1. Let C = ((PC
i)1≤i≤m, FC) and D = ((PD

i)1≤i≤n, F
D) be reliable

component specifications which are composable according to a bijective connector
function κ : I0 → J0 for subsets I0 ⊆ I and J0 ⊆ J . Assume that the ports
(PC

i)i∈I0 and (PD
j)j∈J0 are independent w.r.t. FC and FD, respectively. If C ��

D then it holds that(⊗(AC
i)i∈(I\I0) ⊗ FC

)
�
(
FD ⊗ (⊗(AD

j)j∈(J\J0))
)
.

4 Component Interfaces with MIOs

As a concrete instance of our approach we will use modal I/O-transition systems
(MIOs) for the representation of component frames and for the specification
of assumptions and guarantees on ports. Modal transition systems have been
introduced in [22] and later extended to MIOs in [21]. We have chosen MIOs
as our basic formalism since they allow us to distinguish between transitions
which are optional (may) or mandatory (must) and thus support well loose
specifications and refinements. In particular the ability for may-transitions is
very useful to specify contracts with loose assumptions. In Sect. 4.1 we construct
a labeled modal interface theory on the basis of [5], which will then be used, in
Sect. 4.2, to build modal component interfaces along the lines of our abstract
framework in Sect. 3.

4.1 Labeled Modal Interface Theory

We assume a global set of (observable) action labels Lact and a distinguished
(non-observable) action τ /∈ Lact . Each MIO is based on an I/O-labeling L =

Component Interfaces with Contracts on Ports 29

(IL, OL) consisting of disjoint sets of input labels IL ⊆ Lact and output labels
OL ⊆ Lact . A modal I/O-transition system M = (LM , SM , s0,M , M , M)
consists of an I/O-labeling LM = (IM , OM), a finite set of states SM , an initial
state s0,M ∈ SM , a may-transition relation M ⊆ SM × (

⋃
LM ∪ {τ}) × SM ,

and a must-transition relation M ⊆ M , i.e. any must-transition is also a
may-transition. The set of the reachable states of M is denoted by R(M) with
s ∈ R(M) if, and only if there is a finite sequence of may-transitions from s0,M
to s in M .

All facts and definitions that we provide for particular MIOs are indepen-
dent of the names of the states of the MIO. In fact we will use MIOs as
representatives of their isomorphism classes w.r.t. bijections on states and the
set of those isomorphism classes is denoted by SMIO . The labeling function
act : SMIO → ℘fin(Lact) is defined by act(M) = IL ∪OL for each MIO M with
I/O-labeling L = (IL, OL).

Figure 1 shows the pictorial representation of MIOs used in the following.
The I/O-labeling of a MIO is shown on its frame. Input and output labels are
indicated by the names on the incoming and outgoing arrows. On the transitions,
input labels are suffixed with “?” and output labels are suffixed with “!”. May-
transitions are drawn with a dashed arrow; must-transitions with a solid arrow.

a?

τ

τ

b!
a binput label output label

silent action

may transition

must transition

Fig. 1. Modal I/O-transition system

Composable MIOs and Their Synchronous Composition. Two MIOs can
be composed if their labels overlap only on complementary types. This means
that whenever a label is shared, then the label is either an output label of the
first MIO and an input label of the second one or an input label of the first
MIO and an output label of the second one. Formally, for two I/O-labelings
K = (IK , OK) and L = (IL, OL), their intersection is denoted by K �� L =
(IK∪OK)∩(IL∪OL). K and L are composable if K �� L = (IK∩OL)∪(IL∩OK).
Two MIOs M and N are composable if their I/O-labelings are composable. A
finitely indexed set (Mi)i∈I of MIOs is composable, if the single interfaces Mi

are pairwise composable. Then labels of each Mi can only be shared with at
most one other MIO Mj (j �= i) of the family.

Synchronous composition means that single transitions of two MIOs with
shared actions are performed simultaneously. After composition the shared la-
bels become invisible modeled by τ . Formally, the synchronous composition

30 S. Bauer, R. Hennicker, and A. Legay

of two composable I/O-labelings K and L removes shared labels from inputs
and outputs, i.e., it yields the I/O-labeling K ⊗sy L = ((IK ∪ IL) \ (K ��
L), (OK ∪ OL) \ (K �� L)).

The synchronous composition is defined for composable MIOs M and N and
denoted (also) by M ⊗sy N . It is defined as the usual product of automata
with synchronization on shared labels, which become τ in the product; a syn-
chronization transition in M ⊗sy N is a must-transition if both synchronizing
transitions are must-transitions. If one of the single synchronizing transitions
is a proper may-transition, then the synchronization transition is also a proper
may-transition. An example for synchronous composition of MIOs will be given
in Sect. 4.2 when the frames of the interfaces of a Broker and a Client component
are composed. The synchronous composition of MIOs is commutative (since we
consider MIOs up to bijections between the sets of states). Also the rules (C1)
to (C3) required for a labeled interface theory are true for MIOs.

Weak Modal Refinement. The basic idea ofmodal refinement is that required
(must) transitions of an abstract specification must also occur in the concrete
specification. Conversely, allowed (may) transitions of the concrete specification
must be allowed by the abstract specification. We will use the weak form of
modal refinement introduced by Hüttel and Larsen [17] which supports observa-
tional abstraction, i.e., τ -transitions can be dropped and inserted as long as the
modalities and the simulation relation are preserved.

M is a weak modal refinement of N , written M ≤∗
m N , if there exists a weak

modal refinement relation R between M and N such that (s0,M , s0,N) ∈ R. Two
MIOs M and N are equivalent, written M ≈∗

m N , if M co-simulates N , i.e.
M ≤∗

m N and N ≤∗
m M . Weak modal refinement ≤∗

m is reflexive and transitive.
If all transitions of the abstract MIO are must-transitions it coincides with weak
bisimulation. An example of weak modal refinement is given later in Fig. 4. As
a crucial fact, weak modal refinement is preserved by synchronous composition.

Theorem 4 (Compositional Refinement (A1)). For i = 1, 2, let Mi, Ni be
MIOs such that Mi ≤∗

m Ni and let M1 and M2 be composable. Then M1 and M2

are composable and M1 ⊗sy M2 ≤∗
m N1 ⊗sy N2.

Modal Environment Correctness Relation. To discuss correctness of envi-
ronments we follow the implicit assumption, taken from interface automata [9,11],
that outputs are autonomous and must be accepted by a communication partner
while inputs are subject to external choice and need not to be served. Hence,
output transitions of a MIO express requirements on its environment. For the
formal definition, we use one direction of the weak compatibility relation of [5]:

A MIO E is a modally correct environment for a MIO M , written M →∗
m E,

if M and E are composable and if for each reachable state (s, t) ∈ R(M ⊗sy E),
if M may send out in state s a message a shared with E, i.e. if there exists
s a

M s′ with a ∈ OM ∩IE , then E must be able to receive the message possibly
after a series of internal must-transitions have been performed by E starting
from state t, i.e. there exists t τ̂

E t′′ a
E t′. The notation t τ̂

E t′′ expresses
arbitrary many (must) τ -transitions.

Component Interfaces with Contracts on Ports 31

Examples of weak modal refinement are given below in Sect. 4.2. Both re-
quirements (A2) and (A3) of labeled interface theories are satisfied by MIOs
with weak modal refinement and modal environment correctness.

Theorem 5 (Preservation of Environment Correctness (A2), Environ-
mental Composition (A3)). Let M,M ′, E,E′ ∈ SMIO .

1. If M →∗
m E and M ′ ≤∗

m M , E′ ≤∗
m E, then M ′ →∗

m E′.
2. If M ⊗sy E →∗

m E′ and M ⊗sy E′ →∗
m E and E,E′ are composable, then

M →∗
m E ⊗sy E′.

As a consequence of the definitions and results from above, the MIO framework
satisfies the requirements of a labeled interface theory according to Def. 1.

Corollary 2. (SMIO ,Lact , act ,⊗sy,≤∗
m,→∗

m) is a labeled interface theory.

4.2 Modal Component Interfaces

On top of the modal interface theory defined in the last section we construct,
along the lines of Sect. 3, a theory of modal component interfaces, cf. Cor. 1,
represented by (CMIO ,Lact , act ,�sy,�m,�∗

m).
As an illustration we consider a simple message transmission system which

consists of two components: a broker component delivers received messages to
a client component. A standard message is immediately delivered while a con-
fidential message is only delivered after successful authentication of the client.
The static structure of this component system is shown in Fig. 2. The meaning
of the input and output actions is summarized in Table 1.

Broker ClientPB
1 PB

2 PC

m

cM

s

req

rcv

Fig. 2. The static structure of the message transmission system

Component Interface of the Broker Component. We first discuss the
component interface of the broker component shown in Figure 3. It has a frame
specification FB and two port contracts PB

1 = (AB
1 , GB

1) and PB
2 = (AB

2 , GB
2).

Frame FB. The frame specification FB specifies the reaction to the reception
of messages on port PB

1 . If a standard message is received (m?), the message
is delivered immediately to the client (s!) via port PB

2 and the broker is again
ready to receive new messages. If a confidential message is received (cM?), the
client is first asked for authentication (req!), and only after the reception of the
valid authentication information (rcv?), the message is delivered (s!).

32 S. Bauer, R. Hennicker, and A. Legay

Table 1. Intuitive meaning of actions

Broker B Client C
m? receive a message
cM? receive a confidential message
s! deliver the message to the client s? receive the message
req! send out an authentication request req? receive an authentication request
rcv? receive the (valid) authentication information rcv! send the authentication information

Port Contracts PB
1 , PB

2 . The assumption AB
1 of the port contract PB

1 allows the
environment to generate new messages of any type at any time and the guarantee
GB

1 ensures that the broker must always accept standard as well as confidential
messages. Obviously, GB

1 →∗
m AB

1 since GB
1 does not have any outputs.

The second port contract PB
2 specifies the interaction with the client envi-

ronment. The assumption AB
2 requires that the client must accept messages and

is obliged to answer any authentication request. The guarantee GB
2 expresses

that the broker may directly send a message to the client but the broker may
also ask the client for authentication before, and then it guarantees to take the
authentication response. The port contract PB

2 is valid since GB
2 →∗

m AB
2 : every

possible output of GB
2 must be accepted by any environment satisfying AB

2 .

Component Interface. The interface of the broker component is given by B =
({PB

1 , PB
2 }, FB). Obviously it is well-formed, since the syntactic conditions of

Def. 4 are satisfied. In particular, {AB
1 , AB

2 , FB} is a composable set of modal
interfaces: every action label occurs in at most two interfaces in this set, with
complementary action types (input vs. output). The broker interface is also
reliable. According to Def. 8 the proof obligations are AB

1 ⊗sy FB ≤∗
m GB

2 and
AB

2 ⊗sy FB ≤∗
m GB

1 . They are detailed in Fig. 4 and the weak modal refinement
relations can be discharged, for instance, with the MIO Workbench [5].

m?

s!

cM?

req!

rcv?

m?
cM?

GB
1

m!
cM!

AB
1

mcM

s!

req!

rcv?

s!

GB
2

s?

req? rcv!

AB
2

re
q

s
rc
v

FB

s?

req? rcv!

FC

s!

req! rcv?

AC

s?

req? rcv!

GC

re
q

s
rc
v

Fig. 3. Component interfaces of the broker and client component

Component Interfaces with Contracts on Ports 33

τ

s!

τ

req!

rcv?

AB
1 ⊗sy FB

req

s

rcv
≤∗

m

s!

req!

rcv?

s!

GB
2 req

s

rcv

(a) Proof obligation (I)

m?

τ

cM?

τ

τ

AB
2 ⊗sy FB

req

s

rcv
≤∗

m
m?
cM?

GB
1

req

s

rcv

(b) Proof obligation (II)

Fig. 4. Proof obligations for reliability of the component interface CB

Component Interface of the Client Component. The interface C of the
client component is much simpler; cf. Fig. 3. There is only one port such that
the guarantee of the port coincides with the frame which immediately implies
reliability The specifications are self-explanatory. Just note, that the assumptions
AC require that the environment must receive any answer to an authentication
request; hence GC →∗

m AC .

Composing Broker and Client Interfaces. Clearly, the two component in-
terfaces B and C are (syntactically) composable by connecting the ports PB

2

and PC
1 , which both have the same labels and composable guarantees (and as-

sumptions). The component interface B �sy C resulting from the composition
is shown in Fig. 5. Due to Thm. 3 the interface B �sy C is reliable since the
single interfaces are reliable and since they are correct environments for each
other, i.e. B ��∗

m C. For the latter the proof obligations are GC ≤∗
m AB

2 (which
is trivially valid) and GB

2 ≤∗
m AC which can be discharged, for instance, with

the MIO Workbench.

m?

τ

cM?

τ

τ

m?
cM?

GB
1m!

cM!
AB

1

m

cM

FB ⊗ FC

Fig. 5. Composition of broker and client component interfaces

5 Conclusion

We have presented an abstract framework how to construct a theory of com-
ponent interfaces with port contracts on top of a given interface theory and we
have instantiated this approach to obtain modal component interfaces on the
basis of modal I/O-transition systems whose modalities are particularly useful
for describing loose assumptions. In future work we plan to study other instan-
tiations of our abstract component theory, on the one hand on the basis of other

34 S. Bauer, R. Hennicker, and A. Legay

formalisms for interface specifications like language-based ones or Petri nets, on
the other hand by playing with other environment correctness notions and inte-
grating data states with invariants and pre/postconditions on transitions. Also
the MIO Workbench [5], which can actually be used to verify weak modal re-
finement and environment correctness, should be extended to explicitly support
components with contracts on ports. Another issue concerns the applicability of
our approach to well established design-languages like Wright [1] or UML which
also rely on port-based communication but which include further structure like
explicit connectors as in Wright or ports consisting of provided and required
interfaces as in UML.

Acknowledgement. We would like to thank the reviewers of the submitted
version of this paper for their useful hints and remarks.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

2. Back, R.-J., von Wright, J.: Refinement calculus - a systematic introduction. Un-
dergraduate texts in computer science. Springer (1999)

3. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the bip framework. IEEE Soft-
ware 28(3), 41–48 (2011)

4. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., W ↪a-
sowski, A.: Moving from Specifications to Contracts in Component-Based Design.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer,
Heidelberg (2012)

5. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Compati-
bility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

6. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

7. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

8. Cau, A., Collette, P.: Parallel composition of assumption-commitment specifica-
tions: A unifying approach for shared variable and distributed message passing
concurrency. Acta Inf. 33(2), 153–176 (1996)

9. de Alfaro, L., Henzinger, T.A.: Interface automata. Software Engineering Notes,
109–120 (2001)

10. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

11. de Alfaro, L., Henzinger, T.A.: Interface-based Design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems.
NATO Science Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104.
Springer (2005)

Component Interfaces with Contracts on Ports 35

12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed Interfaces. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 108–122. Springer, Heidelberg (2002)

13. Dijkstra, E.W.: Guarded Commands, Non-determinancy and A Calculus for the
Derivation of Programs. In: Bauer, F.L., Samelson, K. (eds.) Language Hierarchies
and Interfaces. LNCS, vol. 46, pp. 111–124. Springer, Heidelberg (1976)

14. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008)

15. Goessler, G., Raclet, J.-B.: Modal contracts for component-based design. In: SEFM,
pp. 295–303. IEEE Computer Society (2009)

16. Hennicker, R., Janisch, S., Knapp, A.: On the observable behaviour of composite
components. Electr. Notes Theor. Comput. Sci. 260, 125–153 (2010)

17. Hüttel, H., Larsen, K.G.: The Use of Static Constructs in A Modal Process Logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989)

18. Jones, C.B.: Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University Computing Laboratory (1981)

19. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Trans.
Program. Lang. Syst. 12(3), 396–428 (1990)

20. Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

21. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

22. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: 3rd Annual Symp. Logic
in Computer Science, LICS 1988, pp. 203–210. IEEE Computer Society (1988)

23. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

24. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
25. Misra, J., Mani Chandy, K.: Proofs of networks of processes. IEEE Trans. Software

Eng. 7(4), 417–426 (1981)
26. Parizek, P., Plasil, F.: Modeling environment for component model checking from

hierarchical architecture. Electr. Notes Theor. Comput. Sci. 182, 139–153 (2007)
27. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.

Software Eng. 28(11), 1056–1076 (2002)
28. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of com-

ponents. In: SEFM, pp. 377–381. IEEE Computer Society (2008)
29. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:

A modal interface theory for component-based design. Fundam. Inform. 108(1-2),
119–149 (2011)

30. Xu, Q., Cau, A., Collette, P.: On Unifying Assumption-commitment Style Proof
Rules for Concurrency. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS,
vol. 836, pp. 267–282. Springer, Heidelberg (1994)

Avoiding Diamonds in Desynchronization

Harsh Beohar and Pieter J.L. Cuijpers

Department of Mathematics and Computer science
Eindhoven University of Technology, Eindhoven, The Netherlands

{H.Beohar,P.J.L.Cuijpers}@tue.nl

Abstract. The design of concurrent systems often assumes synchronous
communication between different parts of a system. When system com-
ponents are physically apart, this assumption becomes inappropriate.
Desynchronization is a technique that aims to implement a synchronous
design in an asynchronous manner by placing buffers between the com-
ponents of the synchronous design. When queues are used as buffers, the
so-called ‘diamond property’ (among others) ensures correct operation of
the desynchronized design. However, this property is difficult to establish
in practice. In this paper, we formally prove that the conditions for desyn-
chronizability can be relaxed, and in particular the diamond property is
no longer needed, when half-duplex queues are used as a communication
buffer. Furthermore, we discuss how the half-duplex condition can be
further relaxed when the diamond property can be partially guaranteed.

1 Introduction

Message passing [14] is a programming paradigm in which software compo-
nents send and receive messages either synchronously or asynchronously. In
synchronous communication components must be physically coupled, making
it possible to execute corresponding send and receive messages simultaneously.
Asynchronous communication is used when components are placed physically
apart. The corresponding send and receive messages are then decoupled and the
messages travel via a buffer from a sender to its recipient.

A problem with asynchronous communication is that the presence of buffers
makes ensuring the correctness of a system a non-trivial task. In general, if
the buffers are modeled to have infinite capacity, analyzing correctness of such
systems is undecidable [8]. But also, if the buffers are modeled to have finite
capacity, we may still face the state-space explosion problem.

It helps to separate concerns by first designing a correct synchronous system
and then desynchronizing it. The challenge is then to design the synchronous
system in such a way that the addition of communication buffers does not alter
its behavior (in any relevant way) [10]. A synchronous system that is not altered
by the addition of communication buffers is called desynchronizable.

In the context of web-services [4,5], the focus is on effective analysis (like dead-
lock freedom, choreography analysis) of an asynchronous system by developing

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 36–54, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Avoiding Diamonds in Desynchronization 37

synchronizability techniques. The idea is to make an asynchronous system syn-
chronous, which is in contrast to desynchronizability, where a synchronous sys-
tem is made asynchronous. Thus, synchrononizability techniques are applicable
when the components of a system are designed under asynchronous communica-
tion from the start (for instance, in web-services), whereas desynchronizatbility
techniques are applicable when the components of a system are designed under
synchronous communication from the start (for instance, in supervisory con-
trol). Despite these differences both approaches aim to establish an equivalence
between a synchronous system and its asynchronous version. In [4], the authors
showed that weak bisimulation between a deterministic synchronous system and
its asynchronous system with one place queues is sufficient and necessary for
synchronizability modulo weak bisimulation. In this respect, our work differs
from [4] by finding conditions solely on a given synchronous system.

In this paper, we show that the conditions well-posedness, independence of
external actions, input determinism, and diamond property on a synchronous
system are necessary and sufficient for desynchronizability. Intuitively,

– two communicating processes in a synchronous system are well-posed if both
the processes are able to receive each other requests.

– the external actions (i.e., actions that are not involved in synchronization)
are independent in a synchronous system if a receiver can always delay the
execution of its own external action in favour of receiving a sequence of
messages, without any consequence on its future behavior of the system.

– input determinism states that the communicating processes should not make
nondeterministic choices upon the reception of messages.

– the essence of the diamond property is that when two components both
wish to communicate a message, say α and β, then communication of α will
not block communication of β, and vice versa. Furthermore, the order of
communication will not influence the future behavior of the system.

In previous research [3,7,10,21], well-posedness and the diamond property were
already present in the sufficient condition for desynchronizability, while the other
two properties are new with respect to these references.

As it turns out, the diamond property is difficult to establish in practice,
while in particular well-posedness and input determinism can be easily obtained
by construction, at least for supervisory control synthesis [18].

As an example why this leads to practical problems, consider a simplified
model of a controlled drive-motor [11]. The drive-motor can move in a forward
direction ‘fwmove’ or in a backward direction ‘bwmove’, and it has a signal chdir
indicating when it is safe to change this direction. A controller communicates
with the drive-motor to ensure that the event ‘chdir’ always executes before
altering the direction of the motor. The models of the drive motor, the controller,
and the synchronous system are shown in Fig. 1, where !a (?a) denotes that an
action a is sent (received) and a denotes the synchronization of !a and ?a.

Observe in the synchronous system of drive-motor that the execution of the
event chdir from state 1 to state 2 disables the execution of the event fwmove;
thus, violating the commutativity of the traces chdir.fwmove and fwmove.chdir.

38 H. Beohar and P.J.L. Cuijpers

Drive motor

Controller

1 2

Synchronous system

!chdir
?fwmove
?bwmove

?chdir

?chdir

!fwmove !bwmove

chdir

chdir

fwmove bwmove

Fig. 1. An illustration showing the impossibility of establishing the diamond property
in certain synchronous systems

Similarly, the commutativity of the traces chdir.bwmove and bwmove.chdir is
prohibited in this synchronous system. As a result, the synchronous system in
Fig. 1 does not satisfy the diamond property. In fact, the control requirement
implicitly requires the diamond property to be broken. Therefore, it is impossible
to desynchronize this system unless we adapt the model of plant or supervisor,
or we adapt the way in which the desynchronization is performed.

Studying the origin of the diamond property, we notice that it is caused by the
type of buffer that is used for communication. The authors of [3,10,21] follow [8]
in taking two unidirectional FIFO queues as a means of communication. In [10]
a separate unidirectional FIFO queue is used for each type of message, which
effectively leads to a bag-type of buffering (cf. [7]). Both types of buffer are
useful abstractions of a physical communication layer with a protocol layer on
top. For example, queues nicely represent the use of the TCP/IP protocol, while
bags represent a UDP-like protocol [20]. Note that both approaches require the
diamond property, essentially because both approaches allow the messages α and
β to be present in the buffer at the same time and arrive in arbitrary order.

Our research hypothesis is that it may be possible to find better desynchroniz-
ability conditions by changing the properties of the communication protocol. So
far, research has focussed on the properties that the communicating components
should have in order to ensure desynchronizability. The buffer is usually taken to
be a queue or, incidentally, a bag. In this paper, we reconsider these properties,
and alter them by changing the communication protocol if desired.

A first step in that direction is shown in this paper. We prove that the trou-
blesome diamond property can be avoided by changing the type of buffer used
for desynchronization to so-called half-duplex communication (also used in [9]
for model-checking asynchronous systems). In the context of two communicating
processes, half-duplex communication means that a component is only allowed
to send a message when its input buffer is empty. As a result, the buffering be-
tween the two processes alternates in each direction, having to become empty
before alternating. We show that in this case a synchronous composition is desyn-
chronizable if and only if it is well-posed, independent of external actions, and
input deterministic. These properties are generally weaker than the properties
in [3,7,10,21], and we are able to give a general method to adapt systems that
are synthesized using supervisory control theory to satisfy these properties. It is

Avoiding Diamonds in Desynchronization 39

our hope that this paper will initiate discussion on the separation of concerns re-
garding desynchronization. Our use of a half-duplex buffering strategy indicates
that the communication protocol is essential in this separation.

Admittedly, the choice for half-duplex communication is an odd one from the
perspective of efficiency. The half-duplex protocol essentially makes components
wait for each other, which makes communication slow. In Section 5, we sketch a
first step to remedy this by recognizing when actions are independent of each-
other. Independent messages satisfy the diamond property and can therefore be
processed in a full-duplex way. However, more research is needed to complete
this claim and to find out when the half-duplex condition is in fact necessary for
desynchronizability, and when it can be dropped for the sake of efficiency.

The methods we use for studying desynchronizability in this paper stem from
process algebra and concurrency theory (see e.g. [2]). We do not fix a set of
desirable properties a priori, but rather aim for desynchronizability modulo a
behavioral equivalence that preserves a large set of possibly desirable properties.
The desynchronizability question is therefore posed as: given two processes p and
s, under which conditions are the synchronous composition and the asynchronous
composition of p and s behaviorally equivalent? To be as general as possible, we
take branching bisimulation as our behavioral equivalence of choice, which is the
strongest equivalence used in concurrency theory [12].

Organisation of the Paper. In Section 2, we describe the mathematical notations
and formal definitions required to define desynchronizability using two unidirec-
tional FIFO buffers. Section 3 discusses necessary and sufficient conditions for
desynchronizability, including the unwanted diamond property. In Section 4, we
show how the diamond property can be eliminated by using half-duplex buffers
for desynchronization. Lastly, Section 5 discusses ways to relax this half-duplex
condition and apply desynchronization in the context of supervisory control.

2 Basic Definitions

In this paper, we model the world as a single transition system in which all
behaviors of interest are represented. Components of a system as well as their
compositions are called processes and are represented by pointing out an initial
state q ∈ P in the labelled transition system. A process q is then formed by all
reachable states from the initial state q ∈ P.

Definition 1. A labelled transition system is a tuple (P, A,→,�), where
– P is a set of states.
– A is a set of actions.
– →⊆ P× A × P is a transition relation.
– � ⊆ P is the empty-buffer predicate and its purpose is to observe the states

of an asynchronous system that consists of empty buffer contents.

The notation q
α−→ q′ denotes an element (q, α, q′) ∈→, the notation q� denotes

that state q satisfies the empty-buffer predicate. For a given initial state q ∈ P,
the set of reachable states R(q) is defined as the smallest set such that:

40 H. Beohar and P.J.L. Cuijpers

– q ∈ R(q), and

– ∀q1,q2∈P∀α∈A.
[(

q1 ∈ R(q) ∧ q1
α−→ q2

)
⇒ q2 ∈ R(q)

]
.

In what follows, the letter q and its decorations like q′, q1, q2, · · · are used to
reason about the arbitrary processes, whereas the letters p, s and their corre-
sponding decorations are reserved for special purposes (see the next paragraph).

Considering a synchronous system as depicted in Fig. 2, we identify two ba-
sic components p, s, which we assume to be processes in our labeled transition
system. These processes are composed into a synchronous process p ‖ s. The
process p ‖ s can perform four kinds of events; namely, the external actions of p
and s that belong to the sets Ep and Es, respectively, and messages from p and
s that belong to the sets Mp and Ms, respectively.

p s

Mp

Ep

Ms

Es

Fig. 2. A synchronous system

p s

Buffer

Buffer

!Mp ?Mp

!Ms?Ms

EsEp

Fig. 3. An asynchronous system

When the system is desynchronized we obtain an asynchronous system as
depicted in Fig. 3, consisting of the same processes p, s, which are now composed
into an asynchronous process p |[ε, ε]| s (with ε indicating initially empty buffer
contents). In the asynchronous process, the external actions of p and s remain
the same, but we now make a distinction between the sending of a message
(modeled for p by the set !Mp = {!m | m ∈ Mp}) and the receiving of that
message (modeled for p by the set ?Mp = {?m | m ∈ Mp}). We assume that
the so obtained sets of actions are all part of our alphabet and are all pairwise
disjoint: Ep � Es � Mp�!Mp�?Mp � Ms�!Ms�?Ms ⊆ A.

Assuming that the processes p and s are already part of our labeled transition
system, where p makes use of the actions !Mp�?Mp � Ep and s makes use of
the actions !Ms�?Ms � Es, we can define the synchronous and asynchronous
composition of p and s through structural operational semantic rules (SOS) on
the states of the transition system [17]. The premise of each rule states the
assumption on the states of the composed processes, and the conclusion gives
the resulting transition for the composed state.

In Table 1, we give the SOS rules for synchronous composition and asyn-
chronous composition using two unidirectional lossless FIFO queues. The no-
tation p |[μ, ν]| s denotes the asynchronous composition of states p and s with
sequences of messages ν ∈ M∗

p and μ ∈ M∗
s in the respective queues. Note how

the empty-buffer predicate is always true for synchronous compositions, while it
is only true for asynchronous compositions if both queues are empty.

As explained in the introduction, a composition p ‖ s is desynchronizable
if it is equivalent to its asynchronous composition p |[ε, ε]| s. One problem with
defining equivalence between the two is that asynchronous composition needs
two actions for the communication of a message while synchronous composition

Avoiding Diamonds in Desynchronization 41

Table 1. SOS rules for synchronous and asynchronous parallel composition

p1
!m−−→ p2, s1

?m−−→ s2, m ∈ Mp

p1 ‖ s1
m−→ p2 ‖ s2

p1
?n−→ p2, s1

!n−→ s2, n ∈ Ms

p1 ‖ s1
n−→ p2 ‖ s2

p1
e−→ p2, e ∈ Ep

p1 ‖ s1
e−→ p2 ‖ s1

s1
e−→ s2, e ∈ Es

p1 ‖ s1
e−→ p1 ‖ s2 (p ‖ s)�

p
!m−−→ p′, m ∈ Mp

(p |[μ, ν]| s) !m−−→ (
p′ |[μ, ν.m]| s)

s
!n−→ s′, n ∈ Ms

(p |[μ, ν]| s) !n−→ (
p |[μ.n, ν]| s′)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]| s) ?n−→ (
p′ |[μ′, ν]| s)

s
?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]| s) ?m−−→ (
p |[μ, ν′]| s′)

p
e−→ p′, e ∈ Ep

(p |[μ, ν]| s) e−→ (
p′ |[μ, ν]| s)

s
e−→ s′, e ∈ Es

(p |[μ, ν]| s) e−→ (
p |[μ, ν]| s′) (p |[ε, ε]| s)�

only needs one. The usual process algebraic way to solve this issue is by defining
an abstraction scheme, translating certain actions from the asynchronous system
to actions from the synchronous system while hiding others.

In Table 2, we define the abstraction operator Δ() that maps all the send-
messages of the asynchronous system to communicated messages in the syn-
chronous system, while the receive-messages are mapped to a so-called internal
action, denoted by τ . Subsequently, we define branching bisimulation (see [2,12])
as an equivalence between processes that abstracts from internal actions.

Table 2. SOS rules for the abstraction operator Δ()

x1
!m−−→ x2, m ∈ Mp ∪Ms

Δ(x1)
m−→ Δ(x2)

x1
e−→ x2, e ∈ Ep ∪Es

Δ(x1)
e−→ Δ(x2)

x1
?m−−→ x2, m ∈ Mp ∪Ms

Δ(x1)
τ−→ Δ(x2)

x�
Δ(x)�

Definition 2. The reachability relation −−�⊆ P × A∗ × P is derived from the
transition relation → as the smallest relation satisfying:

q1
ε−−−� q1 ,

q1
w−−−� q′, q′

τ−→ q2

q1
w−−−� q2

,
q1

w−−−� q′, q′
α−→ q2, α �= τ

q1
w.α−−−−� q2

.

42 H. Beohar and P.J.L. Cuijpers

Definition 3. A binary relation B ⊆ P×P on the states of the transition system
is a branching bisimulation relation iff the following conditions are satisfied.

• ∀q,q1,q′,α.
[(

(q, q′) ∈ B ∧ q
α−→ q1

)
⇒ (α = τ ∧ (q1, q

′) ∈ B) ∨

∃q′1,q
′
2
.
[
q′

ε−−−� q′1
α−→ q′2 ∧ (q, q′1) ∈ B ∧ (q1, q

′
2) ∈ B]];

• ∀q,q′ .
[(

(q, q′) ∈ B ∧ q �
)

⇒ ∃q′′ .
[
q′

ε−−−� q′′ ∧ q′′ � ∧(q, q′′) ∈ B
]]

;

• ∀q,q′,q′1,α.
[(

(q, q′) ∈ B ∧ q′
α−→ q′1

)
⇒ (α = τ ∧ (q, q′1) ∈ B) ∨

∃q1,q2 .
[
q

ε−−−� q1
α−→ q2 ∧ (q1, q

′) ∈ B ∧ (q2, q
′
1) ∈ B]];

• ∀q,q′ .
[(

(q, q′) ∈ B ∧ q′ �
)

⇒ ∃q′′ .
[
q

ε−−−� q′′ ∧ q′′ � ∧(q′′, q′) ∈ B
]]

.

Two processes q and q′ are said to be branching bisimilar, denoted q ↔b q′, if
there exists a branching bisimulation relation B such that (q, q′) ∈ B.
Now we have all the preliminaries that are necessary to define what desychro-
nization formally means.

Definition 4. A synchronous system p ‖ s is desynchronizable if

p ‖ s ↔b Δ(p |[ε, ε]| s).

3 Properties of Desynchronizable Systems

In this section, we prove a number of properties of desynchronizable systems
modulo branching bisimulation. A new result (cf. [3,7,10,21]) is that the obser-
vation of the empty-buffer predicate makes that these properties are necessary
as well as sufficient for desynchronizability. A technical assumption used to show
necessity in this case, is that the desynchronized systems p and s are concrete,
meaning they do not have internal behavior themselves.

Definition 5. A process q ∈ P is concrete if �q′,q′′ .
[
q′ ∈ R(q) ∧ q′

τ−→ q′′
]
. A

transition q1
τ−→ q2 is inert modulo ↔b iff q1 ↔b q2.

Lemma 1. Let p ‖ s be a concrete and desynchronizable system. Then, all the
τ-transitions in Δ(p |[ε, ε]| s) are inert modulo branching bisimulation.

Proof. Since p ‖ s is a concrete process, none of the τ -transitions in the asyn-
chronous system can be matched by any related state in the synchronous system.
Thus, all τ -transitions in the asynchronous system have to be inert [2]. ��
A key step in understanding the necessary conditions for desynchronizability,
is to see that any reachable state p′ ‖ s′ ∈ R(p ‖ s) of some desynchronizable
system p ‖ s is desynchronizable itself. This property seems both desirable and

Avoiding Diamonds in Desynchronization 43

trivial, but its proof turned out to be more involved than expected. In particular,
the proof turns out to rely on the chosen abstraction scheme, the fact that p and
s are concrete processes, disjointness of the message sets, and the fact that we
observe the empty-buffer predicate.

Theorem 1. Let p ‖ s be concrete and desynchronizable, then any p′ ‖ s′ ∈
R(p ‖ s) is desynchronizable.

Proof. As a base case, the initial state of p ‖ s is desynchronizable by assumption.
By induction, assume that we have a reachable desynchronizable state p′ ‖ s′ ∈
R(p ‖ s) and consider any p′′ and s′′ with p′ ‖ s′

α−→ p′′ ‖ s′′. Following the SOS
rules, one of the following transitions must exist in the asynchronous process:

1. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′′ |[ε, α]| s′) with α ∈ Mp, and a hidden

transition Δ(p′′ |[ε, α]| s′) τ−→ Δ(p′′ |[ε, ε]| s′′) that is inert because p ‖ s is
concrete, i.e. Δ(p′′ |[ε, α]| s′) ↔b Δ(p′′ |[ε, ε]| s′′);

2. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′ |[α, ε]| s′′) with α ∈ Ms, and a hidden

transition Δ(p′ |[α, ε]| s′′) τ−→ Δ(p′′ |[ε, ε]| s′′) that is inert because p ‖ s is
concrete, i.e. Δ(p′ |[α, ε]| s′) ↔b Δ(p′′ |[ε, ε]| s′′);

3. a transition Δ(p′ |[ε, ε]| s′) α−→ Δ(p′′ |[ε, ε]| s′′) with α ∈ Ep (α ∈ Es), in which
case we find that s′ = s′′ (p′ = p′′).

Because p′ ‖ s′ ↔b Δ(p′ |[ε, ε]| s′), the properties of branching bisimulation
(applied to concrete processes) dictate that we can relate those asynchronous
transitions to synchronous transitions. I.e. there exist p′′′ and s′′′ such that p′ ‖
s′

α−→ p′′′ ‖ s′′′ and p′′′ ‖ s′′′ ↔ Δ(p′′ |[ε, ε]| s′′). Finally, to prove that this implies
that p′′ ‖ s′′ is desynchronizable, we study the relation:

S =
{
(p1 ‖ s1, p2 ‖ s2) | p1 ‖ s1 ∈ R(p′′ ‖ s′′) ∧

Δ(p2 |[ε, ε]| s2) ∈ R(Δ(p′′ |[ε, ε]| s′′)) ∧ p1 ‖ s1 ↔b Δ(p2 |[ε, ε]| s2)
}

It remains to show that this is a witnessing branching bisimulation relation for
p′′′ ‖ s′′′ ↔b p′′ ‖ s′′. For this, consider the following cases.

1. Let p1 ‖ s1
m−→ p3 ‖ s3, (p1 ‖ s1, p2 ‖ s2) ∈ S, and m ∈ Mp (the case

when m ∈ Ms is symmetric). By construction of S we have p1 ‖ s1 ↔b

Δ(p2 |[ε, ε]| s2). By applying concreteness and disjointness of Mp and Ms and

the transfer condition of branching bisimulation we get Δ(p2 |[ε, ε]| s2) m−→
Δ(p4 |[ε,m]| s2) and p3 ‖ s3 ↔b Δ(p4 |[ε,m]| s2) for some p4 ∈ P. Since

p3 ‖ s3�, branching bisimulation gives us Δ(p4 |[ε,m]| s2) τ−→ Δ(p4 |[ε, ε]| s4)
and p3 ‖ s3 ↔b Δ(p4 |[ε, ε]| s4), for some s4 ∈ P. Thus, we derive p2

!m−−→ p4

and s2
?m−−→ s4; hence, p2 ‖ s2

m−→ p4 ‖ s4 and (p3 ‖ s3, p4 ‖ s4) ∈ S.
2. Let p1 ‖ s1

e−→ p3 ‖ s1, (p1 ‖ s1, p2 ‖ s2) ∈ S, and e ∈ Ep (the case when e ∈
Es is symmetric). By construction of S we have p1 ‖ s1 ↔b Δ(p2 |[ε, ε]| s2).
By concreteness and disjointness of Ep and Es and the transfer condition

of branching bisimulation we get Δ(p2 |[ε, ε]| s2) e−→ Δ(p4 |[ε, ε]| s2) and p3 ‖
s1 ↔b Δ(p4 |[ε, ε]| s2). Thus, p2 ‖ s2

e−→ p4 ‖ s2 and (p3 ‖ s1, p4 ‖ s2) ∈ S.

44 H. Beohar and P.J.L. Cuijpers

3. The cases where the transitions originates from p2 ‖ s2 when (p1 ‖ s1, p2 ‖
s2) ∈ S can be proved along the above lines.

Finally, by transitivity and symmetry, we get p′′ ‖ s′′ ↔b Δ(p′′ |[ε, ε]| s′′). ��
Corollary 1. If p, s, p′, s′ are concrete processes and p ‖ s ↔b Δ(p′ |[ε, ε]| s′)
then p ‖ s ↔b p′ ‖ s′.

3.1 Well-Posedness

The first actual implication of desynchronizability that we would like to discuss,
is that a desynchronizable system is always well-posed. This was already ob-
served in [10] for desynchronizability modulo failure equivalence. Well-posedness
means that whenever a process p would like to send a message, s should be
willing to receive it and vice versa. In a synchronous composition such messages
may be blocked, but in an asynchronous composition they lead to orphans, i.e.,
messages that remain forever in the buffer. In turn, orphans lead to deadlocking
communication (except in a few pathological cases).

Definition 6. A binary relation W ⊆ P × P is called a well-posedness relation
iff the following conditions are satisfied.

1. ∀p,s,p′,m.
[
p

!m→ p′ ∧ (p, s) ∈ W ⇒ ∃s′ .
[
s

?m→ s′
] ∧ ∀s′ .

[
s

?m→ s′ ⇒ (p′, s′) ∈ W]],
2. ∀p,s,p′,e∈Ep .

[
p

e−→ p′ ∧ (p, s) ∈ W ⇒ (p′, s) ∈ W
]
,

3. Respectively Conditions 1 and 2 with the role of p and s interchanged.

A composition p ‖ s is well-posed if there exists a well-posedness relation W
such that (p, s) ∈ W.

Theorem 2. If p ‖ s is concrete and desynchronizable then it is well-posed.

Proof. Define a relation W = {(p1, s1) | Δ(p1 |[ε, ε]| s1) ∈ R(Δ(p |[ε, ε]| s))}. To
show that W is a well-posedness relation, let p1

α−→ p2 and (p1, s1) ∈ W .

1. Let α ∈!Mp. Then, by the construction of W we have Δ(p1 |[ε, ε]| s1) ∈
R(Δ(p |[ε, ε]| s)) and using p1

α−→ p2 we getΔ(p1 |[ε, ε]| s1) m−→ Δ(p2 |[ε,m]| s1).
Since p ‖ s is desynchronizable, we know that there exists q ∈ R(p ‖ s) such
that q ↔b Δ(p2 |[ε,m]| s1). Clearly, we have q�. Furthermore by the trans-
fer property of branching bisimulation and under the assumption of concrete

processes we get ∃s2.
[
Δ(p2 |[ε,m]| s1) τ−→ Δ(p2 |[ε, ε]| s2) ∧ Δ(p2 |[ε, ε]| s2)�

]
.

Thus, s1
?m−−→ s2. Next, we need to show that for every s′2, whenever s1

?m−−→ s′2
then (p2, s

′
2) ∈ W . So let s1

?m−−→ s′2, thus Δ(p2 |[ε,m]| s1) τ−→ Δ(p2 |[ε, ε]| s′2).
Hence, by the construction of W it is clear that (p2, s

′
2) ∈ W .

2. Let α ∈ Ep. Then, by the construction of W we have Δ(p1 |[ε, ε]| s1) ∈
R(Δ(p |[ε, ε]| s)) and using the above transition we get Δ(p1 |[ε, ε]| s1) e−→
Δ(p2 |[ε, ε]| s1). Clearly, (p2, s1) ∈ W .

Likewise, the symmetric case can be proved for the process s1. ��

Avoiding Diamonds in Desynchronization 45

3.2 Independence of External Actions

The second implication of desynchronizability that we would like to discuss is
independence of external actions. Intuitively, it means that a receiver can always
delay the execution of its own external action in favor of receiving a sequence of
messages from the other process, without any consequence on its future behavior
modulo ↔b. The reception of messages becomes independent of the external
behavior in this way.

In the following, we define independence on the composition p ‖ s rather
than on the separate processes p and s because we aim for necessary conditions.
The pathological case in which a process p is not independent in a part of its
state-space that becomes unreachable when interacting with s has no effects on
desynchronizability. Of course, independence of external actions of the separate
processes would be a natural part of a sufficient condition for desynchronizability.

Definition 7. A synchronous system p ‖ s is independent of external actions
modulo ↔b if the following conditions holds for every p1 ‖ s1 ∈ R(p ‖ s).

1. ∀p2,p′
2,s2,u,e

.
[
e ∈ Ep ∧ u ∈ (Ms ∪ Es)

∗ ∧ p1 ‖ s1
e−→ p2 ‖ s1

u−−−� p′2 ‖ s2 ⇒

∃p3,p′
3
.
[
p1 ‖ s1

u−−−� p3 ‖ s2
e−→ p′3 ‖ s2 ∧ p3 ‖ s2 ↔b p′3 ‖ s2

]]
.

2. ∀p2,s2,s′2,v,e.
[
e ∈ Es ∧ v ∈ (Mp ∪ Ep)

∗ ∧ p1 ‖ s1
e−→ p1 ‖ s2

v−−−� p2 ‖ s′2 ⇒

∃s3,s′3 .
[
p1 ‖ s1

v−−−� p2 ‖ s3
e−→ p2 ‖ s′3 ∧ p2 ‖ s′2 ↔b p2 ‖ s′3

]]
.

Theorem 3. If p ‖ s is concrete and desynchronizable then it is independent of
external actions modulo ↔b.

Proof. Let x = xp � xs, yM = yMp � yMs, x ∈ {M,E}, and y ∈ {!, ?}. By
abuse of notations, define two renaming functions ! : (M ∪ E)

∗ → (!M ∪ E)
∗
,

? : (M ∪ E)∗ → ?M∗ and a projection function¯: (M ∪ E)∗ → M∗:

1. ?ε = ε, ?(e.w) = w, ?(m.w) =?m.?w, where e ∈ E and w ∈ (M ∪ E)
∗
.

2. !ε = ε, !(e.w) = e.!w, !(m.w) =!m.!w, where e ∈ E and w ∈ (M ∪ E)
∗
.

3. ε̄ = ε, e.w = w̄, and m.w = m.w̄, where e ∈ E and w ∈ (M ∪ E)∗.

Now, assume we have a reachable (Theorem 1) desynchronizable state p1 ‖ s1 ∈
R(p ‖ s) with solid transitions as in Fig. 4, where e ∈ Ep and u ∈ (Ms ∪ Es)

∗
.

Using the above renaming functions and the semantics, we derive p1
e−→ p2,

s1
!u−−−� s2, and p2

?u−−−−� p′2. As well-posedness is necessary for desynchro-

nizability, we may use it to obtain p1
?u−−−−� p3 (for some p3). Thus, we get

p1 ‖ s1
u−−−� p3 ‖ s2 (dashed in Fig. 4). From these transitions we then derive

the solid transitions in the asynchronous system depicted in Fig. 4, where μ = ū.
Since τ -transitions are inert we haveΔ(p1 |[μ, ε]| s2) ↔b Δ(p3 |[ε, ε]| s2). Branch-

ing bisimulation, under the assumption of concrete processes and disjointness
of the sets Ep, Es, gives us the existence of p′3 such that Δ(p3 |[ε, ε]| s2) e−→

46 H. Beohar and P.J.L. Cuijpers

p1 ‖ s1

p2 ‖ s1

p′2 ‖ s2

p3 ‖ s2

p′3 ‖ s2↔b

Δ(p1 |[ε, ε]| s1)

Δ(p1 |[μ, ε]| s2)Δ(p2 |[ε, ε]| s1)

Δ(p2 |[μ, ε]| s2)

Δ(p′2 |[ε, ε]| s2)

Δ(p3 |[ε, ε]| s2)

Δ(p′3 |[ε, ε]| s2)

e

u

u

e

u
e

u
e

ε

ε

e

↔b

Fig. 4. The role of independence of external actions

Δ(p′3 |[ε, ε]| s2) and Δ(p′3 |[ε, ε]| s2) ↔b Δ(p2 |[μ, ε]| s2). Thus, by the SOS-rules

we get p3 ‖ s2
e−→ p′3 ‖ s2. Next, we need to show that p′2 ‖ s2 ↔b p′3 ‖ s2.

From above we have Δ(p′3 |[ε, ε]| s2) ↔b Δ(p2 |[μ, ε]| s2) and since τ -transition
are inert we get Δ(p2 |[μ, ε]| s2) ↔b Δ(p′2 |[ε, ε]| s2). Thus, by transitivity we
get Δ(p′3 |[ε, ε]| s2) ↔b Δ(p′2 |[ε, ε]| s2). By Theorem 1 we get p′3 ‖ s2 ↔b

Δ(p′3 |[ε, ε]| s2), p′2 ‖ s2 ↔b Δ(p′2 |[ε, ε]| s2), from which we ultimately conclude
p′2 ‖ s2 ↔b p′3 ‖ s2. Likewise, Condition 2 of Definition 7 can be proved. ��

3.3 Input Determinism

The next implication of desynchronizability, is that desynchronizable systems
should be input deterministic. In other words, the synchronous system p ‖
s should not make non-deterministic choices upon the reception of messages.
It may perform non-deterministic external behavior, and it may also be non-
deterministic when sending messages. The reason for this, is that desynchro-
nization delays any non-deterministic choice on the input.

Like in the case of independence of external actions, we define the condition
input-determinism on the synchronous process p ‖ s rather than on the individ-
ual processes p and s (cf. [1]) because we are aiming for necessary conditions. As
before, input-determinism of the individual processes would be a natural part of
a sufficient condition for input-determinism of the composition.

Definition 8. A synchronous system p ‖ s is input deterministic modulo ↔b

if every reachable state p1 ‖ s1 ∈ R(p ‖ s) satisfies the following conditions.

1. for all p2, s2, p3, whenever p1 ‖ s1
u−−−� p2 ‖ s2 and p1 ‖ s1

u−−−� p3 ‖ s2 for
some u ∈ (Ms ∪ Es)

∗, then p2 ‖ s2 ↔b p3 ‖ s2.

2. for all p2, s2, s3, whenever p1 ‖ s1
v−−−� p2 ‖ s2 and p1 ‖ s1

v−−−� p2 ‖ s3 for
some v ∈ (Mp ∪ Ep)

∗, then p2 ‖ s2 ↔b p2 ‖ s3.

Theorem 4. Let p ‖ s be concrete and desynchronizable, then it is input deter-
ministic modulo ↔b.

Avoiding Diamonds in Desynchronization 47

Proof. Pick a reachable state p1 ‖ s1 ∈ R(p ‖ s) (see Fig. 5) such that p1 ‖
s1

u−−−� p2 ‖ s2 and p1 ‖ s1
u−−−� p3 ‖ s2, for some u ∈ (Ms ∪ Es)

∗
, p2, p3, s2 ∈

P. By Theorem 1 we have p1 ‖ s1 ↔b Δ(p1 |[ε, ε]| s1). Using the renaming

functions from Theorem 3 we have s1
!u−−−� s2 and p1

?u−−−−� p2 and p1
?u−−−−� p3.

For the asynchronous system we then find the transitions as shown in Fig. 5,
where μ = ū. As p ‖ s is concrete, all τ -transitions in the asynchronous system are
inert, so we get Δ(p1 |[μ, ε]| s2) ↔b Δ(p2 |[ε, ε]| s2) ↔b Δ(p3 |[ε, ε]| s2). Finally,

p1 ‖ s1

p2 ‖ s2 p3 ‖ s2↔b

Δ(p1 |[ε, ε]| s1)

Δ(p1 |[μ, ε]| s2)

Δ(p2 |[ε, ε]| s2) Δ(p3 |[ε, ε]| s2)↔b

u u

u

ε ε

Fig. 5. The role of input-determinism

using Theorem 1 twice we ultimately get p2 ‖ s2 ↔b p3 ‖ s2. Likewise Condition
2 of Definition 8 can be proved. ��

3.4 The Diamond Property

The final implication of desynchronizability that we would like is the diamond
property. Intuitively, the diamond property says that sending a message from one
component does not disable the sending of message from the other component.
Moreover, any order of execution leads to behaviorally equivalent states.

Definition 9. A synchronous system p ‖ s has the diamond property modulo

↔b if for every reachable state p1 ‖ s1 and transitions p1 ‖ s1
m−→ p2 ‖ s2

and p1 ‖ s1
n−→ p3 ‖ s3 with m ∈ Mp and n ∈ Ms there exist transitions

p2 ‖ s2
n−→ p4 ‖ s4 and p3 ‖ s3

m−→ p5 ‖ s5 with p4 ‖ s4 ↔b p5 ‖ s5.

Theorem 5. Let p ‖ s be concrete and desynchronizable, then p ‖ s has the
diamond property modulo ↔b.

Proof. Assume a state p1 ‖ s1 ∈ R(p ‖ s), p1 ‖ s1
m−→ p2 ‖ s2 (m ∈ Mp)

and p1 ‖ s1
n−→ p3 ‖ s3 (n ∈ Ms), as depicted in Fig. 6. From Theorem 1 we

know that pi ‖ si ↔b pi |[ε, ε]| si, for i ∈ {1, 2, 3}. From the SOS rules we get

p1
!m−−→ p2, s1

?m−−→ s2, p1
?n−→ p3, and s1

!n−→ s3. Using these transitions we find
the transitions at the state Δ(p1 |[ε, ε]| s1) as shown in Fig. 6.

Since τ -transitions are inert we get Δ(p2 |[ε,m]| s1) ↔b Δ(p3 |[ε, ε]| s3). And
from Theorem 1 we get p2 ‖ s2 ↔b Δ(p2 |[ε, ε]| s2). Thus, by transitivity we
have p2 ‖ s2 ↔b p2 |[ε,m]| s1. And, the transfer conditions of branching bisim-
ulation gives the dashed transition labeled n shown in Fig. 6 with p4 ‖ s4 ↔b

Δ(p2 |[n,m]| s2). Likewise we derive the dashed transition labeled m in Fig. 6
with p5 ‖ s5 ↔b p2 |[n,m]| s3. Finally, by transitivity p4 ‖ s4 ↔b p5 ‖ s5. ��

48 H. Beohar and P.J.L. Cuijpers

p1 ‖ s1

p2 ‖ s2 p3 ‖ s3

p4 ‖ s4 p5 ‖ s5↔b

Δ(p1 |[ε, ε]| s1)

Δ(p2 |[ε,m]| s1) Δ(p1 |[n, ε]| s3)

Δ(p2 |[n,m]| s3) Δ(p3 |[ε, ε]| s3)Δ(p2 |[ε, ε]| s2)

nm

n m
τ τ

m
n

n m

Fig. 6. The role of the diamond property

3.5 Sufficient Conditions for Desynchronizability

Conversely, the four necessary conditions that we discussed in the previous sub-
sections, together form a sufficient condition for desynchronizability.

Theorem 6. Let p ‖ s be concrete, well-posed, independent of external actions,
input deterministic, and have the diamond property, then p ‖ s ↔b Δ(p |[ε, ε]| s).
Proof. See [6]. ��

4 Half-Duplex Communication Eliminates the Diamonds

In the previous section, we showed that the diamond property is a necessary
condition for desynchronizability, while we expressed a desire in the introduction
to desynchronize systems that do not possess this property as well. This leads
us to rethink our model of desynchronization.

Changing the notion of equivalence or the observation of the predicate is not
likely to help. Previous research [3,10] has been performed on weaker notions of
equivalence, and although the diamond property was not identified as a necessary
condition there, it did come up as a natural sufficient condition that the authors
could not work around. This is why we decided to experiment with the properties
of the buffer instead.

Inspired by the observation that the problem occurs when both communicat-
ing parties would like to send a message at the same time, we decided to see if
half-duplex communication, in which only one party can communicate at a time,
would give a solution. We model half-duplex communication between processes
p and s as a process p |[ε, ε]|h s, of which the structured operational semantics
are given in Table 3. Observe that the rules are similar to those we used before,
except that either the left or the right queue remains empty at all times.

Definition 10. A synchronous system p ‖ s is half-duplex desynchronizable if
p ‖ s ↔b Δ(p |[ε, ε]|h s).

Next, we find that the diamond property can be dropped from the necessary and
sufficient conditions.

Theorem 7. Let p ‖ s be concrete and half-duplex desynchronizable, then it is
well-posed, independent of external actions, and input deterministic.

Avoiding Diamonds in Desynchronization 49

Table 3. SOS rules for asynchronous systems with half-duplex queues

p
!m−−→ p′

(p |[ε, ν]|h s) !m−−→ (
p′ |[ε, ν.m]|h s

)
s

!n−→ s′

(p |[μ, ε]|h s) !n−→ (
p |[μ.n, ε]|h s′

)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]|h s) ?n−→ (
p′ |[μ′, ν]|h s

)
s

?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]|h s) ?m−−→ (
p |[μ, ν′]|h s′

)

p
e−→ p′, e ∈ Ep

(p |[μ, ν]|h s) e−→ (
p′ |[μ, ν]|h s

) s
e−→ s′, e ∈ Es

(p |[μ, ν]|h s) e−→ (
p |[μ, ν]|h s′

)
(p |[ε, ε]|h s)�

.

Proof. Along the same lines as the proofs in the previous section. ��
Theorem 8. Suppose a concrete process p ‖ s is well-posed, independent of
external actions, and input deterministic, then it is half-duplex desynchronizable.

Proof. See [6]. ��

5 Discussion

5.1 Relaxing the Half-Duplex Condition

As already mentioned, the half-duplex mechanism leads to an inefficient design of
an asynchronous system because a sender is prohibited to send messages while its
input queue is non-empty. Moreover, we required half-duplex communication be-
cause we could not guarantee the diamond property for our synchronous system.
In essence, the half-duplex property ensures a certain level of synchronization
over the communication buffer. Half-duplex communication, namely, can only be
implemented if some kind of semaphore is in place on top of the physical layer.

Table 4. SOS rules for semi-duplex communication over a set I

p
!m−−→ p′, m ∈ Mp, (μ ∈ I∗ ∨m ∈ I)

(p |[μ, ν]| s) !m−−→ (
p′ |[μ, ν.m]|I s

)
s

!n−→ s′, n ∈ Ms, (ν ∈ I∗ ∨ n ∈ I)

(p |[μ, ν]| s) !n−→ (
p |[μ.n, ν]|I s′

)

p
?n−→ p′, μ = n.μ′, n ∈ Ms

(p |[μ, ν]| s) ?n−→ (
p′ |[μ′, ν]|I s

)
s

?m−−→ s′, ν = m.ν′, m ∈ Mp

(p |[μ, ν]| s) ?m−−→ (
p |[μ, ν′]|I s′

)

p
α−→ p′, α ∈ Ep

(p |[μ, ν]| s) α−→ (
p′ |[μ, ν]|I s

) s
α−→ s′, α ∈ Es

(p |[μ, ν]| s) α−→ (
p |[μ, ν]|I s′

)
(p |[ε, ε]|I s)�

50 H. Beohar and P.J.L. Cuijpers

Now, suppose that we do have the diamond property for certain pairs of
actions in the synchronous system. In such a case, a specialized semaphore could
be put in place that verifies whether there are actions in the incoming buffer that
conflict with a specific outgoing action. For example, suppose we can identify a
subset I ⊆ Mp ∪ Ms of actions that satisfy the diamond property with respect
to all other messages in Mp∪Ms. As long as there are only actions from I in the
buffer, it is safe to send any message, and at any time it is safe to send actions
from I. Such a type of communication is captured in the SOS rules of Table 4.

We conjecture that the necessary and sufficient conditions for desynchroniza-
tion using such a buffer are well-posedness, independence of external actions,
input determinism, and the diamond property for pairs of messages modeled by
the set I. We actually expect the proof to be along the same lines of Theorem 6.

However, before going into detailed proofs of such theorems, we would like
to point out that the selection of a semi-duplex buffering strategy does not
only depend on the particular diamonds that can be proven, but also on the
particular kinds of semaphores / semi-duplex buffering strategies that are im-
plementable. If we want to distinguish different classes of messages that share
the diamond property, we also need to use different semaphores to ensure the
associated semi-duplex buffer (reminiscent of [16]). Which semaphores are actu-
ally implementable is highly dependent on the application domain, so we would
like to concentrate future research on finding out which possibilities we have in
practice (in our case, in practical cases of supervisory control) to put semaphores
on a communication buffer.

5.2 Desynchronization in Supervisory Control

Regarding supervisory control theory, we should still check whether the condi-
tions we have gotten so far are reasonable. That is the topic of this subsection.

Supervisory control theory [18] aims at controlling the behavior of a plant p to
fit a requirement r by synthesizing a supervisor s such that p ‖ s ↔b r. For this
purpose, a plant and its supervisor perform two kinds of actions: controllable and
uncontrollable actions. We model uncontrollable actions as the send messages
from a plant to its supervisor, while the controllable actions are modeled as the
send messages from the supervisor to the plant.

To make supervisory control synthesis feasible, it is usually assumed that p is
deterministic. The result of the synthesis is then also a deterministic s.

In order to synthesize a supervisor that is well-posed, consider the procedure
of taking the process p ‖ s and renaming all communication actions to send-
actions if they originated from s and to receive actions if they originated from
p. In other words, define a function γ : P → P such that

γ(m) =

⎧⎨
⎩

!m ; if m ∈ Ms

?m ; if m ∈ Mp

m ; otherwise

and consider the process γ(p ‖ s) defined using the SOS rules of Table 5.

Avoiding Diamonds in Desynchronization 51

Table 5. SOS rules for renaming using a function γ

p
m−→ p′

γ(p)
γ(m)−−−→ γ(p′)

p�
γp�

We obtain the following theorem, which gives us a well-posed and input-
deterministic supervisor for p.

Theorem 9. If p and s are deterministic, then p and γ(p ‖ s) are well-posed,
p ‖ γ(p ‖ s) is input-deterministic, and p ‖ s ↔b p ‖ γ(p ‖ s) ↔b r.

Proof. It is easy, but tedious, to verify that well-posedness of p ‖ γ(p ‖ s) follows
from the witnessing relation W = {(p1, γ(p1 ‖ s1)) | p1 ‖ s1 ∈ R(p ‖ s)}, while
the fact that we have constructed a valid supervisor is witnessed by the branching
bisimulation relation B = {(p1 ‖ s1, p1 ‖ γ(p1 ‖ s1)) | p1 ‖ s1 ∈ R(p ‖ s)}. Both
witnesses rely on determinism of p and s, but we have to leave out the details
for reasons of space. Obviously, if p and s are deterministic so is γ(p ‖ s) (using
disjointness of the message sets), hence it is input-deterministic. ��
The issue of ensuring independence of external actions is more involved. Intu-
itively, independence of external actions says that an external action can always
be delayed in favor of an internal communication. Of course, since the role of
a supervisor is just to limit the behavior of the plant, it has no direct need for
external actions. However, if the plant’s communication is dependent on the ex-
ternal behavior – for example, external behavior is processed with higher priority
than internal communication – desynchronizability is still at risk.

5.3 Desynchronization of Non-Concrete Synchronous Systems

In this subsection, we focus on the desynchronization of synchronous systems
that allow τ -transitions in their definitions.

The introduction of τ -transitions in a synchronous system makes it impossible
to know from the semantics whether the process p or1 s performed a τ -transition,
whenever the synchronous system p ‖ s executes the τ -transition. Such an in-
formation is vital in the definition of witnessing branching bisimulation relation
between a synchronous system, and its asynchronous version.

One way to circumvent this problem is by renaming the label τ of every
τ -transitions present in the processes p and s by the labels τp and τs, respec-
tively. Furthermore, by assuming that the labels τp, τs are present in the external
actions of the processes p, s, respectively, the conditions of Theorem 6 (Theo-
rem 8) can still be used to assert whether a non-concrete synchronous system
is desynchronizable (half-duplex desynchronizable) or not. However, despite this

1 The word ‘or’ is used in the exclusive sense.

52 H. Beohar and P.J.L. Cuijpers

soundness result, more research is required in order to examine to what extent
are these conditions necessary in the absence of concreteness assumption.

5.4 Conclusions

In this paper, we studied necessary and sufficient conditions for desynchroniz-
ability modulo branching bisimulation, and we showed that reverting to half-
duplex communication, or variants of it, can help in avoiding a troublesome
condition known as the diamond property. To the best of our knowledge, this is
the first characterization of desynchronizability modulo branching bisimulation;
moreover, the previous works (cf. [3,7,10,21]) on weaker equivalences focused on
giving sufficient conditions for desynchronizability.

Our results indicate that the study of desynchronizability should no longer
focus on the properties one needs to retain equivalence of behavior in a certain
communication context, but rather should focus on changing the communica-
tion context in such a way that these properties actually become attainable.
Furthermore, we have shown that reasonable desynchronizability results can be
obtained even for the finest equivalence in the van Glabbeek spectrum. Perhaps
some of the necessary conditions can be relaxed by weakening this equivalence.
For example, we know that we can eliminate the need for input determinism
by studying desynchronizability modulo contra-simulation [12]. But so far the
properties obtained using weaker equivalences are very similar to the ones we
found, which indicates that there is not much to be gained there.

Another observation we made is that the choice of abstraction scheme is cru-
cial in obtaining useful results. On the one hand, if we had chosen to abstract
from outputs rather than from inputs in our definition of the operator Δ(), there
would have been an additional necessary condition saying that at any reachable
state of p ‖ s only one send-transition is allowed (the details of this are outside
the scope of this paper, see [6]). On the other hand, we obtained interesting
results in [7] using an abstraction scheme that abstracted from send- and re-
ceive actions from the plant using bags as a communication buffer, but that
abstraction scheme did not work out for queues.

For deterministic supervisory control, we showed that it is possible to synthe-
size a controller that satisfies the well-posedness property by construction. For
other systems, however, this may not be so easy. Therefore, it would be beneficial
if tools for model checking asynchronous systems, like mCRL2 [13] and CADP
[15], could be optimized to check for well-posedness as well.

Finally, we observe a similarity between our work and the work on chore-
ographies and contracts, which turns out to be useful in model checking of asyn-
chronous systems [4,5,19]. Basically, such choreographies serve to restrict the oc-
currence of diamonds in an asynchronous system, which means that it becomes
synchronizable [5]. Perhaps it is also possible to use this idea in the other direc-
tion, i.e., to desynchronize a system using a choreography on the communication
buffer. It would be interesting to see if, for example, the proposed semi-duplex
buffer discussed in Section 5 can be implemented using a choreography.

Avoiding Diamonds in Desynchronization 53

Acknowledgements. The authors thank the anonymous reviewers for their
feedbacks on an earlier draft of this paper. The authors also thank Jos Baeten,
Koos Rooda, Bert van Beek, and Damian Nadales, for various discussions re-
garding this work and for putting us on the track of this problem.

This work has been performed as part of the “Integrated Multi-formalism
Tool Support for the Design of Networked Embedded Control Systems” (MUL-
TIFORM) project, supported by the Seventh Research Framework Programme
of the European Commission (Grant agreement number: INFSO-ICT-224249).

References

1. Alfaro, L., Henzinger, T.: Interface-Based Design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series, vol. 195, pp. 83–104. Springer Netherlands (2005)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of
Communicating Processes, 1st edn. Cambridge University Press, New York (2009)

3. Balemi, S.: Control of Discrete Event Systems: Theory And Application. Ph.D.
thesis, Swiss Federal Institute of Technology, Automatic Control Laboratory, ETH
Zurich (May 1992)

4. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 2011,
pp. 795–804. ACM, New York (2011)

5. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for Verification of Asyn-
chronously Communicating Systems. In: Kuncak, V., Rybalchenko, A. (eds.) VM-
CAI 2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012)

6. Beohar, H.: Refinement of communication and states in models of embedded sys-
tems. Ph.D. thesis, Eindhoven university of technology (in preparation)

7. Beohar, H., Cuijpers, P.J.L.: Desynchronizability of (partial) synchronous closed
loop systems. Scientific Annals of Computer Science 21, 5–38 (2011)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30,
323–342 (1983)

9. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202, 166–190 (2005)

10. Fischer, C., Janssen, W.: Synchronous Development of Asynchronous Systems. In:
Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 735–750.
Springer, Heidelberg (1996)

11. Forschelen, S.T.J.: Supervisory control of theme park vehicles. Master’s thesis,
Eindhoven University of Technology, System Engineering Group, Dept. of Me-
chanical Engineering (2010)

12. van Glabbeek, R.J.: The Linear Time - branching Time Spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

13. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal specification language mCRL2. In: MMOSS 2006 (2006)

14. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

15. Mateescu, R.: Specification and Analysis of Asynchronous Systems using CADP,
pp. 141–169. ISTE (2010), http://dx.doi.org/10.1002/9780470611012.ch5

http://dx.doi.org/10.1002/9780470611012.ch5

54 H. Beohar and P.J.L. Cuijpers

16. Peters, K., Schicke, J.-W., Nestmann, U.: Synchrony vs causality in asynchronous
pi-calculus. In: Luttik, B., Valencia, F. (eds.) 18th International Workshop on
Expressiveness in Concurrency, EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)

17. Plotkin, G.D.: A Structural Approach to Operational Semantics. Tech. Rep. DAIMI
FN-19, University of Aarhus (1981)

18. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

19. Salaün, G., Bultan, T.: Realizability of Choreographies Using Process Algebra
Encodings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

20. Tanenbaum, A.: Computer Networks, 4th edn. Prentice Hall Professional Technical
Reference (2002)

21. Udding, J.: Classification and Composition of Delay-Insensitive Circuits. Ph.D.
thesis, Eindhoven University of Technology, Eindhoven (1984)

The Tale of SOLOIST: A Specification Language
for Service Compositions Interactions

Domenico Bianculli1, Carlo Ghezzi2, and Pierluigi San Pietro2

1 University of Luxembourg - SnT Centre, Luxembourg
domenico.bianculli@uni.lu

2 Politecnico di Milano - DEI - DEEP-SE Group, Italy
{carlo.ghezzi,pierluigi.sanpietro}@polimi.it

Abstract. Service-based applications are a new class of software sys-
tems that provide the basis for enterprises to build their information sys-
tems by following the principles of service-oriented architectures. These
software systems are often realized by orchestrating remote, third-party
services, to provide added-values applications that are called service
compositions. The distributed ownership and the evolving nature of the
services involved in a service composition make verification activities
crucial. On a par with verification is also the problem of formally spec-
ifying the interactions—with third-party services—of service composi-
tions, with the related issue of balancing expressiveness and support for
automated verification.

This paper showcases SOLOIST, a specification language for formaliz-
ing the interactions of service compositions. SOLOIST has been designed
with the primary objective of expressing the most significant specification
patterns found in the specifications of service-based applications. The
language is based on a many-sorted first-order metric temporal logic, ex-
tended with new temporal modalities that support aggregate operators
for events occurring in a certain time window. We also show how, un-
der certain assumptions, the language can be reduced to linear temporal
logic, paving the way for using SOLOIST with established verification
techniques, both at design time and at run time.

1 Introduction

Modern-age software engineering has to deal with novel kinds of software sys-
tems, which exhibit new features that often demand for rethinking and extending
the traditional methodologies and the accompanying methods and techniques.
One class of new software systems is constituted by open-world software [5],
characterized by a dynamic and decentralized nature; service-based applica-
tions (SBAs) represent an example of this class of systems. SBAs are often de-
fined as service compositions, obtained by orchestrating—with languages such
as BPEL [2]—existing services, possibly offered by third-parties. This kind of
applications has seen a wide adoption in enterprises, which nowadays develop
their information systems using the principles of service orientation [20].

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 55–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

56 D. Bianculli, C. Ghezzi, and P. San Pietro

The development of SBAs is usually spread across multiple organizations or
multiple divisions within a single organization, and promotes a loose organiza-
tional coupling between service providers and service integrators. Moreover, in
open-world software, changes are frequent, unexpected, and welcome [29]. On one
hand, services are developed, deployed, operated, and evolved (e.g., by changing
the interface, the implementation, the business protocol, or the quality of service
guarantees) autonomously by service providers. On the other hand, service in-
tegrators may leverage dynamic binding as well as self-adaptation techniques to
change a composite service at run time. These factors lead to a distributed own-
ership and to an evolving nature of service compositions, which affect the notions
of correctness, dependability and in general all quality attributes of SBAs.

Guaranteeing quality attributes of SBAs poses new challenges to the defi-
nition of verification methodologies. This challenge has been taken on in the
last years by the research community, which has proposed several techniques for
the verification of SBAs, both at design time and at run time; see for exam-
ple [4,10,35]. Equal in importance to verification techniques are the specification
languages used to express the requirements of the service interactions that one
wants to check. In most of the cases, the specification language is some logical
language, such as the CTL and LTL temporal logics and the Event Calculus, or
a domain-specific language defined to represent some non-functional attributes
(e.g., response time).

Despite significant advances in research and in prototype implementation,
these approaches did not spread to the world of practitioners. One of the rea-
sons is that proposed specification languages do not meet the expressiveness
requirements of SBAs. In a previous work [8], some of the authors performed
an extensive analysis of requirements specifications of SBAs, written both in
research settings and in industrial settings, to characterize the use of property
specifications patterns in SBAs. The results of this study showed that: a) the
majority of requirements specifications stated in industrial settings refers to spe-
cific aspects of service provisioning, which can be characterized as a new class
of specification patterns; b) the specification patterns proposed in the research
literature are barely used in industrial settings.

The outcome of the study described in [8] drove the design of a new formal
specification language, with the primary objective to meet the most significant
expressiveness requirements emerged from the study1. This paper introduces
this new language, called SOLOIST (SpecificatiOn Language fOr servIce compo-
Sitions inTeractions). The language is based on a many-sorted first-order metric
temporal logic, which has been extended with new temporal modalities that sup-
port aggregate operators for events occurring in a certain time window. Expres-
siveness was not the sole requirement in designing this language. We also wanted
the language to express specifications that could lead to automatic formal ver-
ification. Indeed, we also show that SOLOIST, under certain assumptions, can

1 The language can be viewed as a profound revision of a previous attempt [3], driven
by the feedback from the field study reported in [8].

The Tale of SOLOIST 57

be translated into linear temporal logic, allowing for its use with established
techniques and tools, both for design-time and for run-time verification.

The rest of this paper is structured as follows. In Sect. 2 we describe the
requirements elicitation process for the language and discuss some of the issues
faced during its design. Section 3 describes some examples of properties, associ-
ated with a BPEL process, which can be expressed with the language. Section 4
introduces SOLOIST, its syntax, and its semantics (both informally and for-
mally); it also shows the use of the language to specify the properties presented
in Sect. 3. Section 5 illustrates the translation of SOLOIST to linear temporal
logic. Section 6 discusses related work and Sect. 7 concludes the paper, providing
some hints for future research.

2 Requirements Elicitation and Design of the Language

2.1 Eliciting Language Requirements from Usage of Specification
Patterns in SBAs

In [8] some of the authors presented a study on the use of specification patterns
in SBAs. The study analyzed the requirements specifications of two sets of case
studies. One set consisted of 104 cases extracted from research papers in the
area of specification, verification and validation of SBAs published in the last
ten years; the other included 100 service interfaces developed by an industrial
partner for its service-oriented information system in the last ten years. During
the study, each requirement specification was matched against a specification
pattern; in total, we analyzed and classified 290 + 625 requirements specifications
from research and industrial data, respectively.

The study classified the requirements specifications according to four classes
of property specification patterns. Three of them correspond to the systems of
specification patterns proposed by Dwyer et al. [12], by Konrad and Cheng [23],
and by Gruhn and Laue [16]; these patterns have been widely used for the spec-
ification and verification of concurrent and real-time systems. The fourth group
includes patterns that are specific to service provisioning, and have emerged
during the study; these new patterns are:

Average response time (S1) is a variant of the bounded response pattern
defined in [23] that uses the average operator to aggregate the response time
over a certain time window.

Counting the number of events (S2) is used to express common non-
functional requirements such as reliability (e.g., “number of errors in a given
time window”) and throughput (e.g., “number of requests that a client is al-
lowed to submit in a given time window”).

Average number of events (S3) is a variant of the previous pattern that
states the average number of events occurred in a certain time interval within
a certain time window, as in “the average number of client requests per hour
computed over the daily business hours”.

Maximum number of events (S4) is a variant of pattern S3 that aggre-
gates events using the maximum operator.

58 D. Bianculli, C. Ghezzi, and P. San Pietro

Absolute time (S5) indicates events that should occur at a time that sat-
isfies an absolute time constraint, as in “if the booking is done in the first week
of March, a discount is given”.

Unbounded elapsed time (S6) indicates the time elapsed since the last
occurrence of a certain event.

Data-awareness (S7) (inspired by [11,18]) is a pattern denoting properties
that refer to the actual data content of messages exchanged between services as
in “every ID present in a message cannot appear in any future message”.

Summarizing the results of the study, we report that:

– The majority of requirements specifications stated in industrial settings re-
ferred to non-functional properties expressed using aggregate operators (e.g.,
average, count, maximum); more specifically, the combined usage of patterns
S1-S3-S4 accounted for the 81.9% of the specifications, with S3 and S4 being
the two most used patterns. Similar requirements were found only rarely
in the research literature and when so, they were expressed using the non-
aggregated versions of the patterns.

– The two most used patterns in research settings were the “response” and the
“bounded response” patterns, defined respectively in [12] and [23].

– The usage of specification patterns from the first three groups in the SBAs
research literature were similar to existing data available in literature for
other domains.

– The specification patterns proposed in the research literature were barely
used in industrial settings.

– The usage of pattern S7 was the same in both set of case studies, ranking at
the third place.

2.2 Design Choices

The results reported above have deeply influenced the design of SOLOIST. Our
main goal has been to design a formal language that is both expressive—to meet
the requirements derived from our field study [8]—and suitable for use with
automated verification techniques and tools.

Our starting point has been a temporal logic with metrics: this allows us to
support the patterns defined in [12,23,16], i.e., the ones prescribing constraints on
the order and/or the occurrence of events, possibly with (real-)time information.
Note that this subset is enough to express common patterns such as “response”
or “bounded response”, defined respectively in [12] and [23]. The logic assumes a
discrete time domain, with each occurrence of an event denoted by a time-stamp.

As for supporting the service provisioning patterns, we made different deci-
sions. First, we decided not to support patterns referring to absolute or elapsed
time (patterns S5 and S6), since this would have notably impacted on the com-
plexity of the translation. Moreover, our field study [8] showed that both of them
are used in less than 1% of the specifications; given these data, we maintain this
decision does not critically affect the expressiveness of the language as well as
its reception by practitioners.

The Tale of SOLOIST 59

Pattern S7 is supported by adding a first-order quantification to the logic,
following the approach proposed in [18]. By making the simplifying assumption
that domains over which the quantification ranges are finite, the first-order quan-
tification is mere syntactic sugar, which does not impact on the decidability of
the language, but helps to improve its readability. The logic is also many-sorted,
to support the different types of the messages exchanged among services.

Regarding patterns S3 and S4, which define properties related to the aggre-
gation2 of events occurred in a certain time interval h within a certain time
window K as in “the average number of service invocations per hour over the
last 11.5 hours of operation”, we run into different possibilities to represent the
observation interval h (i.e., one hour in the example) within the time window K
(i.e., 11.5 hours in the example) considered to compute the aggregate value. It
could be defined either as a fixed window over adjacent, non-overlapping inter-
vals, or as a sliding window over overlapping intervals. The latter interpretation
would require also to define a minimal distance corresponding to the shift of the
sliding window, which could be either a fixed value, such as a system tick, or a
variable value, such as the time-stamp of each event occurrence (meaning that
the window slides variably, according to the occurrences of the events). Further-
more, in both interpretations, one has to make a decision on how to deal with
time windows whose length is not an exact multiple of the observation interval;
in other words, how to consider the tail of the window whose length is less than
the one of the observation interval. After consulting with our industrial partner
and evaluating its needs, we decided to support the interpretation with adja-
cent, non-overlapping observation intervals, where tail intervals whose length
is shorter then the observation interval are ignored to express pattern S3 but
considered to express pattern S4.

Modeling pattern S2 was straightforward, while for pattern S1 we considered
its specific use in the context of SBAs. It shall be used to specify the average
response time of invocations made to a certain service over a certain time win-
dow. Since a service may provide multiple operations, we decided to include the
possibility to specify which operations to consider when computing the aggre-
gate response time, as well as the calling points within the workflow of a service
composition from which the invocations originate. Moreover, every service invo-
cation in the scope of an instance of pattern S1 is assumed to be synchronous
and actually corresponding to a pair of events, the start and end one. These
events corresponds to the start (end) of an invocation in a precise location of
the workflow; a start (end) of an invocation to the same operation of a service
but from a different location in the workflow is considered a distinct event. Under
these premises, we assume that two subsequent occurrences of the same start or
end event may not happen.

2 Note that patterns S1–S4 express aggregate statistics, without assuming any under-
lying probabilistic model.

60 D. Bianculli, C. Ghezzi, and P. San Pietro

3 Service Compositions and Their Specifications at a
Glance

We consider service compositions defined in terms of the BPEL [2] orchestration
language. Very briefly, BPEL is a high-level XML-based language for the defi-
nition and execution of business processes, defined as workflows that compose
external partner services. The definition of a workflow contains a set of vari-
ables; the business logic is expressed as a composition of activities. The main
types of activities are primitives for communicating with other services (receive,
invoke, reply, pick) and for executing assignments (assign) to variables, as well
as control-flow structures like sequence, while, switch and parallel flows. Ad-
vanced control flow structures, like event, fault, and compensation handlers are
also available. We assume that each variable defined in a BPEL process is of an
XML simple type; variables that can hold a WSDL message or an XML schema
element can be represented by flattening their multi-part structure as a sequence
of XML simple type variables.

3.1 Examples of Properties of Service Compositions Interactions

Below we list some examples of properties expressed in natural language, which
can be used to specify the interactions of a BPEL process. We assume that the
process has an integer variable foo, an invoke activity named invA that takes
and returns an integer, an invoke activity named invB with no input or output
parameters, three receive activities named recvP, recvQ, and recvR and a reply
activity term that takes no parameters. The detailed workflow structure of the
process as well as the other variables are of no interest for the purpose of this
section and are omitted for clarity. All properties are under the scope of an
implicit universal temporal quantification as in “In every process run, . . . ”.

1. “At the end of the execution of the activity invA, the value of variable foo
should be equal to 42.”

2. “The execution of activity recvP should alternate with the execution of activ-
ity recvQ, though other activities different from recvQ (respectively, recvP)
can be executed in between.”

3. “The response time of activity invB should not exceed 4 time units.”
4. “If activity invB has been invoked 4 times in the past 16 units, than activity

recvR will be executed within 32 time units.”
5. “When activity term is executed, the average response time of all the invo-

cations of activity invB completed in the past 720 time units should be less
than 3 time units.”

6. “When activity term is executed, the average number of invocations, in an
interval of 60 time units, of activity invB during the past 720 time units
should be less than 4”.

7. “When activity term is executed, the maximum number of invocations, in
an interval of 60 time units, of activity invB during the past 720 time units
should be less than 5”.

The Tale of SOLOIST 61

4 SOLOIST

4.1 Preliminaries

A signature Σ is a tuple 〈S; F ; P 〉 where:
– S is a set of sort symbols, i.e., names representing various domains;
– F is a set of pairs f : s1 × . . . × sn → w where n ≥ 0, f is a function symbol,

s1 × . . . × sn → w is the type of f , and s1, . . . , sn, w ∈ S;
– P is a set of pairs p : s1 × . . . × sn where n ≥ 0, p is predicate symbol,

s1 × . . . × sn is the type of p, and s1, . . . , sn ∈ S.

The sets S, F, P of Σ are denoted by Sort(Σ), Func(Σ), Pred(Σ). Notice that
constants are modeled as nullary functions of the form c :→ w.

Let Σ be a signature. For each sort s ∈ Sort(Σ), we assume a set Vs of
variables of sort s disjoint from the constants in Func(Σ). Also, for each sort
s ∈ S, we define the set of terms of sort s by induction:

– a variable x ∈ Vs of sort s is a term of type s;
– if f : s1 × . . .× sn → w ∈ Func(Σ) and t1, . . . , tn are terms of type s1, . . . , sn

respectively, than f(t1, . . . , tn) is a term of type w.

An atom has the form p(t1, . . . , tn), with p(s1, . . . , sn) ∈ Pred(Σ) and terms
t1, . . . , tn of type s1, . . . , sn.

4.2 Syntax

A SOLOIST formula over Σ is defined inductively by:
– if t1, . . . , tn are terms of type s1, . . . , sn and p(s1, . . . , sn) ∈ Pred(Σ) is a

predicate symbol, then p(t1, . . . , tn) is a formula;
– if φ and ψ are formulae and x is a variable, then ¬φ, φ ∧ ψ, ∃x : φ are

formulae;
– if φ and ψ are formulae and I is a nonempty interval over N , then φUIψ

and φSIψ are formulae;
– if n, K ∈ N, �� ∈ {<, ≤, ≥, >, =}, φ is a formula of the form p(t1, . . . , tn),

with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then
CK

��n(φ) is a formula;
– if n, K, h ∈ N, �� ∈ {<, ≤, ≥, >, =}, φ is a formula of the form p(t1, . . . , tn),

with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then
VK,h

��n (φ) and MK,h
��n (φ) are formulae;

– if n, K ∈ N, �� ∈ {<, ≤, ≥, >, =}, φ1, . . . , φm, ψ1, . . . , ψm are formu-
lae of the form p(t1, . . . , tn)—with p(s1, . . . , sn) ∈ Pred(Σ) and terms
t1, . . . , tn of type s1, . . . , sn—where for all i, 1 ≤ i ≤ n, φi
= ψi, then
DK

��n{(φ1, ψ1), . . . , (φm, ψm)} is a formula.

Additional temporal modalities can be defined from the UI and SI modalities
using the usual conventions. Note that the arguments of modalities C, V, M, D
can only be atoms, i.e., positive literals; this reflects the fact that they represent
the occurrences of certain events, which are then aggregated as prescribed by
the modality.

62 D. Bianculli, C. Ghezzi, and P. San Pietro

4.3 SOLOIST at Work

In this section we show how SOLOIST can be used to specify properties related
to the interactions of a service composition described in BPEL.

Let A be the set of activities defined in a BPEL process3; A = Astart−inv ∪
Aend−inv ∪ Arecv ∪ Apick ∪ Areply ∪ Ahdlr ∪ Aother where:

– Astart−inv (Aend−inv) is the set of start (end) events of all invoke activities4;
– Arecv is the set of all receive activities;
– Apick is the set of all pick activities;
– Areply is the set of all reply activities;
– Ahdlr is the set of events associated with all kinds of handlers;
– Aother is the set of activities that are not an invoke, a receive, a pick, a reply,

or related to a handler (e.g., an assign, a control structure activity).

Let Amsg = A \ Aother be the set of activities that involve a data exchange, i.e.,
that have either an input message or an output message attached with them.
Each μ ∈ Amsg has an arity corresponding to the sum of the simple type variables
by which its input and output messages can be represented; each μ ∈ Aother is
nullary.

A signature Σ to specify the interactions of a BPEL process with partner
services by means of SOLOIST can be defined as follows:

– S is the set of XML simple types (e.g., integer, character, string);
– F is the set of functions defined by the scripting language used within the

process (e.g., XPath functions on integers and strings);
– P = A. A predicate may correspond to the execution of an activity; its

arity and type are then those of the corresponding activity. The usage of the
equality predicate between terms of the same XML type is also allowed.

Following the definitions in Sect. 4, the variables of a BPEL process are parti-
tioned into various domains Vs, with s ∈ Sort(Σ).

Below we list the translations into SOLOIST of the formulae presented in
Sect. 3, each one with the corresponding item number:

1. G(∀x, y : invAend(x, y) → foo = 42)
2. G((recvP → ¬recvPU(0,∞)recvQ) ∧ (recvQ → ¬recvQU(0,∞)recvP))
3. G(invBstart → F[0,4] invBend)
4. G(C16

=4invB → F[0,32]recvR)
5. G(termend → D720

≤3 (invBstart , invBend))
6. G(termend → V720,60

≤4 (invBstart))
7. G(termend → M720,60

≤5 (invBstart))

3 Activities of a BPEL process can be uniquely identified by means of an XPath
expression.

4 A synchronous invoke is characterized both by a start event and by an end event;
an asynchronous invoke is characterized only by a start event.

The Tale of SOLOIST 63

4.4 Informal Semantics

The informal semantics of SOLOIST is based on a sequence of time-stamped
predicates. A predicate corresponds to an event, which models the execution of
an activity defined within a service composition; its arguments are the parame-
ters possibly associated with the activity, such as the input message of a service
invocation.

The SI and UI modalities have the usual meaning in temporal logics (“Until”
and “Since”)5.

The CK
��n(φ) modality, evaluated in a certain time instant, states a bound on

the number of occurrences of an event φ, counted over a time window K; it
expresses pattern S2.

The VK,h
��n (φ) modality, evaluated at a certain time instant τi, is used to express

a bound on the average number (with respect to an observation interval h, open
to left and closed to the right) of occurrences of an event φ, occurred within a
time window K; this corresponds to pattern S3. As discussed in Sect. 2, since K
may not be an exact multiple of h, the actual time window over which occurrences
of event φ are counted is bounded by τi − K

h �h on the left and τi on the right;
similarly, the number of observation intervals taken into account to compute the
average is K

h �. Consider, for example, the sequence of events depicted in Fig. 1,
where black circles correspond to occurrences of the φ event. Assuming τi = 42,
K = 35, and h = 6 (values expressed as time units), K

h � = 35
6 � = 5. The

evaluation of the formula V35,6
��n (φ) at time instant 42 is then 2+1+2+4+1

5 �� n,
where the numerator of the fraction to the left of �� is the number of event
occurrences in the window bounded by τi and τi − 5h.

τi − K τi

τi − hτi − 2hτi − 3hτi − 4hτi − 5hτi − 6h

Fig. 1. Sequence of events over a time window K, with observation interval h (semantics
of the V and M modalities)

The MK,h
��n (φ) modality, evaluated in a certain time instant τi, is used to express

a bound on the maximum number (with respect to an observation interval h,
open to left and closed to the right) of occurrences of an event φ, occurred
within a time window K; this corresponds to pattern S4. Differently from the
V modality described above, this modality takes also into account the events
occurring in a tail interval, even if its length is shorter than the one of the
5 A strict semantics is assumed for the UI and SI modalities.

64 D. Bianculli, C. Ghezzi, and P. San Pietro

observation interval h. With reference to Fig. 1 and assuming the same values
as above for τi, K, and h, the tail interval bounded by τi − K on the left
and τi − K

h �h = τi − 5h on the right is also considered for computing the
aggregate value. This leads to a final evaluation for the formula equivalent to
max({1} ∪ {4} ∪ {2} ∪ {1} ∪ {2} ∪ {1}) �� n = 4 �� n, where the i-th singleton set
in the argument of the aggregate operator corresponds to the number of event
occurrences in the i-th observation interval within the time window.

The D modality, evaluated in a certain time window τi, expresses a bound
on the average time elapsed between pairs of specific adjacent events, occurred
within a time window K; it can be used to express pattern S1. Consider, for
example, the sequence of events depicted in Fig. 2, where capital letters in the
lower part of the timeline correspond to events, and numbers in the upper part
of the timeline indicate time-stamps; assume that the current time instant is
τi = 18 and that K = 12. To express a bound for the average distance between
each occurrence of an event A and the first subsequent occurrence of an event B,
as well as for the pair of events (C, D), for the previous 12 time units, one writes a
formula like D12

��n{(A, B), (C, D)}, for some �� and n. With respect to τi = 18, the
time window of length K = 12 includes the events (with their respective time-
stamp) (A, 7), (B, 8), (C, 10), (A, 12), (D, 14), (B, 16), (A, 17), enclosed in the
rectangle in Fig. 2. The average time distance is then computed by summing
the differences between the time-stamps of each (A, B) and (C, D) pair (each
pair of events is denoted by a different kind of arrow in Fig. 2), and dividing the
result for the number of the selected events pairs (3 in the example). Finally, the
D modality compares this result with value n, according to the relation defined
by ��; i.e., the evaluation of D12

��n{(A, B), (C, D)} is (8−7)+(16−12)+(14−10)
3 �� n.

Note that the event (A, 17) is ignored for computing the (average) distance,
since it is not matched by a corresponding B event within the selected time
window.

204 6 7 8 10 12 14 16 17

BA B A B C A D B A

18

𝜏i𝜏i-K

Fig. 2. Sequence of pairs of events over a time window K (semantics of the D modality)

The Tale of SOLOIST 65

4.5 Formal Semantics

A Σ-structure associates appropriate values to the elements of a signature Σ. A
Σ-structure D consists of:

– a non-empty set sD for each sort s ∈ Sort(Σ);
– a function fD : sD

1 ×. . .×sD
n → wD for each function symbol f : s1×. . .×sn →

w ∈ Func(Σ);
– a relation pD ⊆ sD

1 × . . . × sD
n for each predicate symbol p : s1 × . . . × sn ∈

Pred(Σ);

A temporal first-order structure over Σ is a pair (D̄, τ̄), where D̄ = D0, D1, . . . is
a sequence of Σ-structures and τ̄ = τ0, τ1, . . . is a sequence of natural numbers
(i.e., time-stamps), where:

– the sequence τ̄ is monotonically increasing (i.e., τi < τi+1, for all i ≥ 0);
– for each Di in D̄, with i ≥ 0, for each s ∈ Sort(Σ), sDi = sDi+1 ;
– for each Di in D̄, with i ≥ 0, for each function symbol f ∈ Func(Σ), fDi =

fDi+1 .

A variable assignment σ is a Sort(Σ)-indexed family of functions σs : Vs → sD

that maps every variable x ∈ Vs of sort s to an element σs(x) ∈ sD. Notation
σ[x/d] denotes the variable assignment that maps x to d and maps all other
variables as σ does.

The valuation function �t�D
σ of term t for a Σ-structure D is defined inductively

as follows:

– if t is a variable x ∈ Vs, then �t�D
σ = σs(x) ;

– if t is a term f(t1, . . . , tn) then �t�D
σ = fD(�t1�

D
σ , . . . , �tn�D

σ).

For the sake of readability, we drop the superscript D and the subscript σ from
the valuation function �·� when they are clear from the context.

Given a temporal structure (D̄, τ̄) over Σ, a variable assignment σ, sym-
bols i, n, K, h ∈ N, �� ∈ {<, ≤, ≥, >, =}, we define the satisfiability relation
(D̄, τ̄ , σ, i) |= φ for SOLOIST formulae as depicted in Fig. 3.

5 Translation to Linear Temporal Logic

In this section we show how SOLOIST can be translated into linear temporal
logic. This translation guarantees the decidability of SOLOIST based on well-
known results in temporal logic, allowing for its use with established verification
techniques and tools. The translation presented here has not been designed to
guarantee efficiency in verification but rather to be comprehensible.

SOLOIST is translated into a variant of linear temporal logic called MPLTL
(Metric Linear Temporal Logic with Past) [31], which is a syntactically-sugared
version of classical PLTL [21], defined over a mono-infinite discrete model of
time represented by ω-words. For simplicity, we assume that the logic underlying
SOLOIST is single-sorted; no expressiveness is lost, since it is well-known that

66 D. Bianculli, C. Ghezzi, and P. San Pietro

(D̄, τ̄ , σ, i) |= p(t1, . . . , tn) iff (�t1�, . . . , �tn�) ∈ pDi

(D̄, τ̄ , σ, i) |= ¬φ iff (D̄, τ̄ , σ, i) �|= φ

(D̄, τ̄ , σ, i) |= φ ∧ ψ iff (D̄, τ̄ , σ, i) |= φ ∧ (D̄, τ̄ , σ, i) |= ψ

(D̄, τ̄ , σ, i) |= ∃x : φ iff (D̄, τ̄ , σ[x/d], i) |= φ
for some d ∈ sD(with x of sort s)

(D̄, τ̄ , σ, i) |= φSIψ iff for some j < i, τi − τj ∈ I, (D̄, τ̄ , σ, j) |= ψ
and for all k, j < k < i, (D̄, τ̄ , σ, k) |= φ

(D̄, τ̄ , σ, i) |= φUIψ iff for some j > i, τj − τi ∈ I, (D̄, τ̄ , σ, j) |= ψ
and for all k, i < k < j, (D̄, τ̄ , σ, k) |= φ

(D̄, τ̄ , σ, i) |= CK
��n(φ) iff c(τi − K, τi, φ) �� n and τi ≥ K

(D̄, τ̄ , σ, i) |= VK,h
��n (φ) iff

c(τi − � K
h

�h, τi, φ)
� K

h
� �� n and τi ≥ K

(D̄, τ̄ , σ, i) |= MK,h
��n (φ) iff max

{⋃� K
h �

m=0 {c(lb(m), rb(m), φ)}
}

�� n

given lb(m) = max{τi − K, τi − (m + 1)h}
and rb(m) = τi − mh, with τi ≥ K

(D̄, τ̄ , σ, i) |= DK
��n{(φ1, ψ1), . . . , (φm, ψm)} iff

∑m

j=1
∑

(s,t)∈d(φj,ψj ,τi,K)(τt − τs)∑m

j=1 |d(φj , ψj , τi, K)| �� n

with τi ≥ K

where c(τa, τb, φ) = |
{

s | τa < τs ≤ τb and (D̄, τ̄ , σ, s) |= φ
}

|,
and d(φ, ψ, τi, K) ={

(s, t) | τi − K < τs ≤ τi and (D̄, τ̄ , σ, s) |= φ, t = min{u | τs < τu ≤ τi, (D̄, τ̄ , σ, u) |= ψ}
}

.

Fig. 3. Formal semantics of SOLOIST

many-sorted first-order logic (on which SOLOIST is based) can be reduced to
single-sorted first-order logic when the number of sorts is finite. Moreover, since
we assume that the domains corresponding to sorts are finite, we can drop the
first-order quantification and convert each quantifier into a conjunction or a
disjunction of atomic propositions. Similarly, n-ary predicate symbols (with n ≥
1) are converted into atomic propositions. For example, a formula of the form
∃x : P (x), with x ranging over the finite domain {1, 2, 3}, is translated into the
formula

∨
x∈{1,2,3} Px, where P1, P2, P3 are atomic propositions. We denote with

Π the finite set of atomic propositions used in formulae obtained as described
above.

These simplifications allow us to replace the temporal first-order structure
(D̄, τ̄) and the variable assignment σ used in the definition of the satisfiability
relation of SOLOIST with timed ω-words, i.e., ω-words over 2Π ×N. For a timed
ω-word z = z0, z1, . . . , every element zk = (σk, δk) contains the set σk of atomic
propositions that are true at the natural time-stamp denoted by τk =

∑k
i=0 δi

(with δi > 0 for all i > 0). The satisfiability relation for SOLOIST can then
be defined over timed ω-words, and it is denoted by z, i

τ|= φ, with z being a
timed ω-word and i ∈ N; we omit its definition since it can be derived with
straightforward transformations from the one illustrated in Fig. 3.

Furthermore, we introduce a normal form where negations may only occur
on atoms (see, for example, [31]). First, we extend the syntax of the language

The Tale of SOLOIST 67

by introducing a dual version for each operator in the original syntax, ex-
cept for the CK

��n, VK,h
��n , MK,h

��n , DK
��n modalities6: the dual of ∧ is ∨; the dual

of UI is “Release” RI : φRIψ ≡ ¬(¬φUI ¬ψ); the dual of SI is “Trigger” TI :
φTIψ ≡ ¬(¬φSI ¬ψ). For the sake of brevity, we do not explicitly report the
semantics of these dual operators; it can be derived straightforwardly from
the above definitions. A formula is in positive normal form if its alphabet is
{∧, ∨, UI , RI , SI , TI , CK

��n, VK,h
��n , MK,h

��n , DK
��n} ∪ Π ∪ Π̄, where Π̄ is the set of for-

mulae of the form ¬p for p ∈ Π . For the rest of this section, we assume that
SOLOIST formulae have been transformed into equivalent formulae in positive
normal form.

Under these assumptions, the translation of SOLOIST to MPLTL boils down
to expressing the temporal modalities RI , TI , UI , SI , CK

��n, VK,h
��n , MK,h

��n , DK
��n in

MPLTL, preserving their semantics.
First of all, we should remark that while in the semantics of SOLOIST the

temporal information is denoted by a natural time-stamp, in MPLTL the tem-
poral information is implicitly defined by the integer position in an ω-word.
However, the model based on timed ω-words and the one based on ω-words can
be transformed into each other. Given an ω-word w such that w, i |= φ (where
w, i |= φ denotes the satisfiability relation over ω-words), it is possible to define
a timed ω-word z = z0, z1, . . . , with z0 = (w0, 0) and zk = (wk, 1) for k > 0,
such that z, i

τ|= φ. Conversely, given a SOLOIST timed ω-word z, we need to
pinpoint in an MPLTL ω-word w the positions that correspond to time-stamps
in the z timed ω-word where an event occurred. We add to the set Π a special
propositional symbol e, which is true in each position corresponding to a “valid”
time-stamp in the z timed ω-word. In the MPLTL semantics, an ω-word w over
Π ∪ {e} is defined as follows: wk = σk ∪ {e} whenever τk is defined, and wk = ∅
otherwise. We then define a mapping ρ from SOLOIST dual normal form formu-
lae into MPLTL formulae, such that we can state that z, i

τ|= φ iff w, τi |= ρ(φ).
The mapping ρ is defined by induction as follows:

1. ρ(p(t1, . . . , tn)) = p(t1, . . . , tn).
2. ρ(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn).
3. If φ and ψ are formulae and x is a variable, then

ρ(φ ∧ ψ) = ρ(φ) ∧ ρ(ψ);
ρ(φ ∨ ψ) = ρ(φ) ∨ ρ(ψ);
ρ(∃x : φ) = ∃x : ρ(φ);
ρ(∀x : φ) = ∀x : ρ(φ).

4. If φ and ψ are formulae and I is a nonempty interval over N, then
ρ(φUIψ) = (¬e ∨ ρ(φ))UI (e ∧ ρ(ψ));
ρ(φSIψ) = (¬e ∨ ρ(φ))SI(e ∧ ρ(ψ));
ρ(φRIψ) = (e ∧ ρ(φ))RI(¬e ∨ ρ(ψ));
ρ(φTIψ) = (e ∧ ρ(φ))TI(¬e ∨ ρ(ψ)).

6 A negation in front of one of the CK
��n, VK,h

��n , MK,h
��n , DK

��n modalities becomes a nega-
tion of the relation denoted by the �� symbol, hence no dual version is needed for
them.

68 D. Bianculli, C. Ghezzi, and P. San Pietro

5. For CK
��n, we consider only the case CK

>n, since the other possible relations
used for �� can be modeled with the following equivalences: CK

≤n ≡ ¬CK
>n; CK

≥n ≡
CK

>n−1; CK
<n ≡ ¬CK

>n−1; CK
=n ≡ CK

>n−1 ∧ ¬CK
>n.

ρ(CK
>n(φ)) =

∨
0≤i1<...<in+1<K

(
Yi1 (e ∧ φ) ∧ . . . ∧ Yin+1 (e ∧ φ)

)

where the MPLTL modality Y (“yesterday”) is the past version of “next” and
refers to the previous time instant. Intuitively, the above MPLTL formula states
that in the previous K time instants there have been at least n + 1 occurrences
of the event corresponding to (e ∧ φ); such a situation satisfies the constraint
associated with the original formula defined in SOLOIST.

6. The mapping for the VK,h
��n modality is defined in terms of the C modality:

ρ(VK,h
��n φ) = ρ(C� K

h �·h
��n·� K

h �φ)

7. For the modality MK,h
��n , we include only the two cases MK,h

<n and MK,h
>n , as

the others can be derived by properly combining instances of these two:

ρ(MK,h
<n φ) =

⎛
⎝

� K
h �−1∧
m=0

Ym·h (
ρ

(
Ch

<nφ
))

⎞
⎠ ∧ (

Y� K
h �·h

(
ρ

(
C(K mod h)

<n φ
)))

ρ(MK,h
>n φ) =

⎛
⎝

� K
h �−1∨
m=0

Ym·h (
ρ

(
Ch

>nφ
))

⎞
⎠ ∨ (

Y� K
h �·h

(
ρ

(
C(K mod h)

>n φ
)))

The formulae above decompose the computation of the maximum number of
occurrences of the event (e∧φ) by suitably combining constraints on the number
of occurrences of the event in each observation interval within the time window.

8. For the DK
��n modality, ρ(DK

��n(φ, ψ)) is defined7 as follows:

∨
0<h≤� K

2 �

⎛
⎜⎜⎜⎜⎜⎝

∨
0≤i1<j1<...ih<jh<K

and(∑
h

m=1
jm−im

h

)
��n

⎛
⎜⎜⎜⎜⎜⎝

Yi1 (e ∧ φ) ∧ Yj1 (e ∧ ψ)∧
. . .

∧Yih (e ∧ φ) ∧ Yjh (e ∧ ψ)∧

¬

⎛
⎝∨

0≤s<t<K
s�∈{i1,...,ih}
t �∈{j1,...,jh}

(
Ys(e ∧ φ) ∧ Yt(e ∧ ψ)

)⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

The above formula considers all possible h occurrences (with h up to K
2 �, as

indicated in the outer “or”) of pairs of events corresponding to (e∧φ) and (e∧ψ).
The inner “or” considers a sequence of h pairs of time instants (i1, j1), . . . (ih, jh),
constrained by the bound represented by �� n. The top, right-hand part of the
formula imposes that every pair of time instants actually corresponds to the
7 For the sake of simplicity, we consider the case of only one pair of events (φ, ψ), but

the formula can be generalized to the case of multiple pairs (φi, ψi).

The Tale of SOLOIST 69

occurrence of a pair of events; the bottom, right-hand part excludes the case
that some pairs of events may occur at time instants which are not in the above
sequence.

The complexity of a formula resulting from the translation may be exponen-
tial in the size of the constants occurring in the aggregate operators. Without
aggregate operators, the translation is linear in the size of the original formula.
The only relevant cases for aggregate operators are CK

>n and DK
��n, since the

other modalities can easily be defined in terms of these two. The mapping for
CK

>nφ considers all subsets of n + 1 integers of the set {0, . . . , K − 1}. Hence,
it may require an MPLTL formula of size proportional to (n + 1)

(
K

n+1
)
, which

in the worst case, corresponding to n + 1 = K
2 , is O(K · 2K). The mapping of

DK
��n(φ, ψ) essentially requires, in the worst case, to select all possible subsets of

set {0, . . . , K − 1}, i.e., 2K subsets. Hence, again this may require an MPLTL
formula of size O(K · 2K). As remarked at the beginning of this section, the
translation presented above has been designed to show the possibility of reduc-
ing SOLOIST to a linear temporal logic; nevertheless, future work will address
efficiency in the verification of SOLOIST formulae.

6 Related Work

While performing the field study described in [8], we noticed that the three
main formal languages used by researchers in the field of SBAs to specify and
verify properties related to service interactions are LTL (Linear Temporal Logic),
CTL (Computational Tree Logic), and Event Calculus [24]. While the first two
are mainly used to describe untimed temporal relations between events, Event
Calculus has been the basis to develop more expressive languages, such as EC-
Assertion [27], which can express service guarantees terms such as those captured
by patterns S1 and S2. However, it requires to introduce additional constructs in
a formula, such as explicit variables to track response time or event counters, as
well additional support formulae, like the ones used to maintain a list of variables
which are used to compute an aggregate value.

In [8] we also noticed a recurring presence of extensions of temporal logics
with support for first-order quantification, namely LTL-FO, CTL-FO [11], LTL-
FO+ [17], and CTL-FO+ [18], which enrich the underlying logic to express
data-aware properties, captured by pattern S7.

In the realm of SBAs there have also been several proposals of languages for
specifying service level agreements, mainly targeting quality-of-service (QoS)
attributes such as response time and throughput; among them, we mention
WSLA [22] and a timeliness-related extension of WS-Agreement [28]. These lan-
guages usually do not have any formal or mathematical grounding, but in most
cases they define an XML schema containing the definition of the main QoS
attributes and their data types. One exception is SLAng, which—besides being
defined on the top of standard modeling languages like EMOF and OCL, to guar-
antee precision and understandability—has been mapped to timed automata, to
enable efficient run-time monitoring [34].

70 D. Bianculli, C. Ghezzi, and P. San Pietro

The fragment of SOLOIST corresponding to many-sorted metric first-order
temporal logic is very similar to the work defined in [6], where a similar frag-
ment is used to define system policies, which are then monitored; however, this
fragment, without the other temporal operators introduced in SOLOIST, would
have been inadeguate to express the service provisioning patterns.

In the field of (temporal) logics, there have been several proposals to express
properties related or similar to the one captured by the service provisioning pat-
terns identified in [8]. For example, references [26] and [25] propose, respectively,
Counting CTL and Counting LTL, which extend the temporal modalities of the
underlying (non-metric) logic with the ability to constrain the number of states
satisfying certain sub-formulae along paths. In [7], a first-order policy specifica-
tion language is introduced; the language, based on past time linear temporal
logic with first-order quantifier, includes also a counting quantifier, used to ex-
press that a policy depends on the number of times another policy was satisfied
in the past. Rabinovich [33] presents TLC, the metric temporal logic with count-
ing modalities over continuous time, where a counting modality Ck(X) states
that X is true at least at k points in the unit interval ahead.

Aggregate operators have been studied in the context of mathematical logic,
for database query languages [19] and logic programming [30]. More recently,
they have also been considered in temporal logics, to express quantitative atomic
assertions related to accumulative values of variables along a computation [9].
de Alfaro [1] introduces an operator to express bounds on the average time be-
tween events (conceptually similar to the D operator of SOLOIST) in the context
of probabilistic temporal logic, to specify and verify performance and reliabil-
ity properties of discrete-time probabilistic systems. Extensions of specification
formalism with statistical operators have also been proposed in the context of
run-time verification. In [13], LTL is extended with operators that evaluate ag-
gregate statistics over an execution trace. Reference [14] presents the Larva
verification tool, based on Dynamic Automata with Timers and Events, which is
able to evaluate statistical measures over dynamic intervals, like the ones iden-
tified with the C, V, M, D modalities of SOLOIST; however, the report does not
provide enough details on the language used to specify the properties to monitor.

7 Conclusion and Future Work

Service-based applications demand rethinking the way software is designed, spec-
ified and verified. In this paper we focus on the specification aspect and, in
particular, we propose a new language, called SOLOIST, that can be used to
specify properties of service compositions interactions. The language has been
designed from scratch, after capturing and reasoning on the most common prop-
erty specification patterns used by practitioners in the field of SBAs. Based on a
many-sorted first-order metric temporal logic, SOLOIST includes new temporal
modalities that have been tailored to express properties that refer to aggregate
operations for events occurring in a certain time window. We also show how
SOLOIST can be translated into linear temporal logic, allowing for its use with
established techniques and tools for both design-time and run-time verification.

The Tale of SOLOIST 71

Indeed, our next steps with SOLOIST will focus on its efficient verification
based on the Zot toolkit [32], developed8 within our group, by defining an ef-
ficient SMT-based encoding of the language. Although Zot has been used so
far for design-time verification, we also want to experiment to embed it and its
SOLOIST plug-in within a Web service monitoring architecture (such as Dy-
namo [15]), to enable support also for run-time verification.

Acknowledgments. This work has been partially supported by the European
Community under the the IDEAS-ERC grant agreement no. 227977-SMScom; by
the Swiss NSF under the grant agreement no. 135051-CLAVOS; by the National
Research Fund, Luxembourg (FNR/P10/03). The authors wish to thank Udi
Boker, Srđan Krstić, and Franco Raimondi for their feedback on earlier drafts
of this paper.

References

1. de Alfaro, L.: Temporal Logics for the Specification of Performance and Reliability.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176.
Springer, Heidelberg (1997)

2. Andrews, T., et al.: Business Process Execution Language for Web Services, Version
1.1 (2003)

3. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6), 219–232 (2007)

4. Baresi, L., Di Nitto, E. (eds.): Test and Analysis of Web Services. Springer (2007)
5. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-

lenges. IEEE Computer 39(10), 36–43 (2006)
6. Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal

Logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
1–18. Springer, Heidelberg (2010)

7. Bauer, A., Goré, R., Tiu, A.: A First-Order Policy Language for History-Based
Transaction Monitoring. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS,
vol. 5684, pp. 96–111. Springer, Heidelberg (2009)

8. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from re-
search to industry: a case study in service-based applications. In: Proc. of ICSE
2012, pp. 968–976. IEEE Computer Society (2012)

9. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications
with accumulative values. In: Proc. of LICS 2011, pp. 43–52. IEEE Computer
Society (2011)

10. Canfora, G., Di Penta, M.: Service-Oriented Architectures Testing: A Survey. In:
De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 78–105.
Springer, Heidelberg (2009)

11. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web
applications. J. Comput. Syst. Sci. 73(3), 442–474 (2007)

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proc. of FMSP 1998, pp. 7–15. ACM (1998)

13. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Methods in System Design 27, 253–274 (2005)

8 http://code.google.com/p/zot/

http://code.google.com/p/zot/

72 D. Bianculli, C. Ghezzi, and P. San Pietro

14. Gauci, A., Pace, G.J., Colombo, C.: Statistics and runtime verification. Tech. rep.,
University of Malta (2010)

15. Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In:
Baresi, Di Nitto [4] pp. 237–264

16. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci. 153(2), 117–133 (2006)

17. Hallé, S., Villemaire, R.: Runtime monitoring of message-based workflows with
data. In: Proc. of EDOC 2008, pp. 63–72. IEEE Computer Society (2008)

18. Hallé, S., Villemaire, R., Cherkaoui, O.: Specifying and validating data-aware tem-
poral web service properties. IEEE Trans. Softw. Eng. 35(5), 669–683 (2009)

19. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.
ACM 48, 880–907 (2001)

20. Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc. (2007)

21. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University
of California at Los Angeles, USA (1968)

22. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreement for web services. J. Netw. Syst. Manage. 11(1) (2003)

23. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proc. of ICSE
2005, pp. 372–381. ACM (2005)

24. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4,
67–95 (1986)

25. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: Proc. of TIME 2010,
pp. 51–58. IEEE (2010)

26. Laroussinie, F., Meyer, A., Petonnet, E.: Counting CTL. In: Ong, L. (ed.) FOSSACS
2010. LNCS, vol. 6014, pp. 206–220. Springer, Heidelberg (2010)

27. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An event calculus-
based approach. In: Baresi, Di Nitto [4], pp. 265–306

28. Müller, C., Martín-Díaz, O., Ruiz-Cortés, A., Resinas, M., Fernández, P.: Im-
proving Temporal-Awareness of WS-Agreement. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 193–206. Springer, Hei-
delberg (2007)

29. Papazoglou, M.P.: The Challenges of Service Evolution. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)

30. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7(3),
301–353 (2007)

31. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of
the future: bi-infinite time in the verification of temporal properties. In: Proc. of
ESEC-FSE 2007, pp. 312–320. ACM (2007)

32. Pradella, M., Morzenti, A., San Pietro, P.: A Metric Encoding for Bounded Model
Checking. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
741–756. Springer, Heidelberg (2009)

33. Rabinovich, A.: Complexity of Metric Temporal Logics with Counting and the
Pnueli Modalities. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 93–108. Springer, Heidelberg (2008)

34. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
slas. In: Proc. of SIGSOFT 2008/FSE-16, pp. 170–180. ACM, New York (2008)

35. Salaün, G.: Analysis and verification of service interaction protocols - a brief survey.
In: Proc. of TAV-WEB 2010. EPTCS, vol. 35, pp. 75–86 (2010)

A Categorical Approach to Structuring

and Promoting Z Specifications

Pablo F. Castro1,3, Nazareno Aguirre1,3,
Carlos Gustavo López Pombo2,3, and Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,naguirre}@dc.exa.unrc.edu.ar
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,

Buenos Aires, Argentina
clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada
tom@maibaum.org

Abstract. In this paper, we study a formalisation of specification
structuring mechanisms used in Z. These mechanisms are traditionally
understood as syntactic transformations. In contrast, we present a char-
acterisation of Z structuring mechanisms which takes into account the
semantic counterpart of their typical syntactic descriptions, based on cat-
egory theory. Our formal foundation for Z employs well established ab-
stract notions of logical systems. This setting has a degree of abstraction
that enables us to understand what is the precise semantic relationship
between schemas obtained from a schema operator and the schemas it is
applied to, in particular with respect to property preservation.

Our formalisation is a powerful setting for capturing structuring mech-
anisms, even enabling us to formalise promotion. Also, its abstract nature
provides the rigour and flexibility needed to characterise extensions of Z
and related languages, in particular the heterogeneous ones.

1 Introduction

The intrinsic preciseness of formal specification languages usually lead to very
detailed, large descriptions of software systems. Therefore, appropriate mecha-
nisms for structuring specifications are essential in contributing to the scalability
of formal specification, and the usefulness of a formal method. This has been ac-
knowledged by formal method developers, and many formal notations, e.g. B, Z
and related languages, put a strong emphasis in structuring [1,25]. In the case of
Z, there exist several mechanisms for structuring specifications, called schema
operations, since they operate on schemas, the basic modularisation units of a Z
specification. Traditionally, structuring mechanisms in Z are captured syntacti-
cally, i.e., their semantics are understood as syntactic transformations over the

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 73–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 P.F. Castro et al.

composed specifications [25]. This approach, although sound, makes it difficult
to understand the precise relationship between the composite specifications and
their components. Indeed, understanding how the properties of a specification
are involved in properties of another specification including it, is an issue that
generally needs to be analysed in an ad-hoc way in every concrete structuring sit-
uation, due to the syntactic semantics of the structuring mechanisms employed.
This is particularly the case with promotion, a Z specification structuring tech-
nique. Promotion is typically used in order to compose specifications, and in
particular to incorporate multiple instances of a component into a global system
state. Since the use of promotion usually involves mapping a “local state” into
a “global state” where multiple local states are subsumed, understanding the
relationship between the local and global states is particularly difficult.

In this work, we study a formalisation of Z structuring mechanisms, including
promotion, which in contrast to the syntactic approach to structuring mechanisms
semantics, provides strong ties to the semantic counterpart of these mechanisms’
syntactic description. This formalisation is based on category theory, and consists
of a mathematical foundation for Z and its usual schema operators, making use
of institutions and institution representations. This setting has a degree of ab-
straction that enables us to understand what is the precise semantic relationship
between schemas obtained from a schema operator and the schemas it is applied
to (in the case of promotion, between basic and promoted schemas), in particular
with respect to property preservation. Our formalisation is targeted to Z. A main
reason for this is that Z is a mature and widely known formal notation, used in
many industrial projects, and supported by analysis tools. Moreover, Z has been
used as the basis for other formalisms, such as B, Z++ and Object-Z. In these
languages, structuring mechanisms based on or inspired by promotion are also
present, and also syntactically captured (in particular, the mechanisms for char-
acterising the notion of class in the object oriented extensions of Z). By basing our
formalisation on Z, we make our results also relevant to these other languages.

Our formal foundation for structuring in Z has practical advantages. It leads
to explicit semantic relationships between component schemas and the com-
posite schemas they are part of, which can be exploited to promote reasoning.
Furthermore, if a schema is restricted to a particular “simpler” logic (e.g., a de-
cidable fragment of the Z notation), then one can reason in this simpler setting
(perhaps via some automated tool) and then promote the obtained properties to
the larger, composite specification in which the schema is involved, and where
more expressive constructs may be used. Also, our foundations for promotion
require dealing with schemas as types; our semantics of this facility, interpreted
as a manipulation of the logical theories that schemas represent, makes it non
dependent on higher order logic (as opposed to schema types as treated in [17]),
constituting a potential benefit for automated reasoning. Finally, the abstract
nature of our characterisation, at a level of abstraction that allows for a view of
logical systems as building blocks, provides the rigour and flexibility needed to
characterise not only Z but also its related languages and extensions, in particu-
lar the heterogeneous ones. It then provides the formal foundations for correctly

A Categorical Approach to Structuring and Promoting Z Specifications 75

composing Z with other formalisms, and a setting where one is able to formallly
reason about the resulting heterogeneous specifications.

2 A Brief Overview of Z

Z is a formal notation based on mathematical logic and set theory. It is often
regarded as being model based, since specifications in the language describe sys-
tems behaviour via models, typically involving data domains and operations on
these domains [25]. Such models are expressed in terms of well defined types,
including a rich set of built-in types such as the typical numerical domains, sets,
sequences, tuples, relations and functions, etc. Z specifications are structured
around the notion of schema [25]. Essentially, a schema defines a set of typed
variables, whose values might be constrained. A schema has a declaration sec-
tion, and a constraint (or predicate) section. This extremely simple notion is
powerful and convenient for defining data domains and operations on these, as
formal models of systems. As a first example, suppose that we need to specify a
game similar to Risk, consisting of players whose goal is to conquer territories in
a map. For simplicity, let us suppose that territories are labelled by natural num-
bers, identifying each territory. We might start by defining players, indicating
the territories they own. In Z, this is achieved by the following schema:

Player
owns : PN

This is a very simple schema, that has an empty predicate part (no special
constraints on the variables). Basic operations for a player are settling in a
territory, and leaving an occupied territory. In Z, operations are also captured by
schemas; schemas characterising the settle and leave operations are the following:

Settle
ΔPlayer
t : N

t /∈ owns
owns ′ = owns ∪ {t}

Leave
ΔPlayer
t : N

t ∈ owns
owns ′ = owns \ {t}

In these schemas, ΔPlayer indicates that two copies of the schema Player are
incorporated into Settle and Leave, one exact copy of Player and the other with
its variables renamed by priming. This is done in order to capture the effect
of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling
on (resp. leaving from) a territory. Additional variables, in this case representing
parameters of the operations, are incorporated and constrained in the predicate
part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for
instance, constraints from Player and Player’ (coming from ΔPlayer) are part of

76 P.F. Castro et al.

the Settle schema (although in this case no actual constraints are incorporated,
because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values
in the corresponding types for the variables in the schema, and satisfies the
predicate part of the schema [21]. That is, a model provides actual values for
the variables in a schema. Notice for instance that, for the case of Player, all
possible models of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable
one to define schemas based on other existing schemas. A rather simple one
is schema composition. Suppose that we would like to define an operation to
capture the situation in which a player exchanges one territory for another one,
i.e., it leaves a territory and settles in another one. Such an operation can be
defined using schemas Leave and Settle, via a simple composition:

Exchange =̂ Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the
composition to distinguish the t variables in the two schemas) captures the
state change produced by applying the second operation to the state resulting
of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote
definitions given in terms of “local states”, to definitions of a “global state”, often
composed of various instances of the local state [25]. As an example, suppose
that we define the game state, using our previously defined Player schema:

Game
ps : PPlayer
ts : PN

ts �= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

This schema explicitly indicates who are the players of the game (ps), and
the territories composing the map (ts); it also constrains the valid states of
the game to nonempty sets of territories, and prevents players from sharing the
occupation of a territory. We have already defined game related operations Settle
and Leave, but we have done so for Player. We would like to be able to promote
these “local” operations to the “global” state characterised by Game, instead of
having to redevelop them as operations on Game. In order to do so, one needs
to define a promotion schema, i.e., a schema relating the local and global states:

PromotePlayer
ΔGame
ΔPlayer
p : Player

p = θPlayer ∧ p ∈ ps
ts = ts ′

ps ′ = ps \ {p} ∪ {θPlayer ′}

A Categorical Approach to Structuring and Promoting Z Specifications 77

Notice that this schema indicates how a state change of a single player is embed-
ded into a state change for the global state of the game. Now, one can promote
the Settle operation to the system level, as follows:

GameSettle =̂ ∃ΔPlayer • Settle ∧ PromotePlayer

The existential quantification in this definition has the purpose of hiding the
“local state”, which by the restrictions in the PromotePlayer schema is already
embedded into the state of the game. This makes GameSettle an operation ex-
clusively on the state of the game.

3 A Categorical View of Z

Let us recall some basic definitions of category theory. A category is a mathemat-
ical structure composed of two collections: the collection of objects: a, b, c, . . .
and the collection of arrows (or morphisms): f , g, h, . . . between them. An arrow
has a domain and a codomain, and we write f : a → b to indicate that a (resp.
b) is the domain (resp. codomain) of f . We have two basic operations involving
arrows: the identity, that given an object a produces an arrow ida : a → a,
and the composition, which given arrows f : a → b and g : b → c, returns an
arrow f ; g : a → c. Identity arrows satisfy: f ; idb = f and ida ; f = f , for every
f : a → b. The composition of arrows is associative. A functor is essentially a
homomorphism between categories. The most natural example of a category is
Set, made up of the collection of sets and the collection of functions between
sets. We refer the interested reader to [2], for an introduction to category theory.
We will assume throughout the paper that the reader has some basic knowledge
of category theory.

As we already discussed, a schema defines a set of typed variables, and pro-
vides constraints on these variables. Formally, a schema corresponds to a tuple
〈N ,T , Σ, Φ〉 composed of a name N , a set of given types T , a signature Σ (the
set of typed variables declared in the schema) and a set Φ of formulas, con-
straining these variables [22]. For the sake of simplicity, we omit the name and
the set T of types when no confusion is possible. The formulas of the predi-
cate part Φ of a schema are higher-order formulas (since Z includes recursive
datatypes, lambda expressions, quantification over relations and other elements
that go beyond first-order logic’s expressiveness) defined over the variables in
the declaration part of the schema.

In order to study Z structuring, we need to look at the way schemas relate to
each other. Amorphism between two schema signatures τ : Σ → Σ′ is a mapping
between symbols that preserves types. Examples of signature morphisms are
symbol substitutions (renaming variables in a signature), and embeddings of a
signature into another one. Signatures and signature morphisms constitute a
category.

Theorem 1. The structure Zign = 〈S ,M 〉, where S is the set of Z signatures
and M is the set of signature morphisms, is a category.

78 P.F. Castro et al.

Signature morphisms can be straightforwardly extended to schema morphisms:

Definition 1. A schema morphism τ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature mor-
phism σ : Σ → Σ′ that satisfies the following condition:

∀φ ∈ Φ • Φ′ ! σ∗(φ)

where σ∗ is the inductive extension of σ to formulas, obtained by preserving
logical symbols, and Φ ! φ expresses that φ can be proven from Φ using the
deductive machinery of Z.

Essentially, a schema morphism is a mapping between logical theories [11]. Using
schemas and schema morphisms, a category can be defined:

Theorem 2. The structure Zchem = 〈Sch,Tr〉, where Sch is the set of Z
schemas and Tr is the set of schema morphisms, is a category.

The category Zchem enables us to capture the way in which Z schemas relate
to each other, and in particular how these are connected in the definition of a
structured specification.

In order to clarify the above view of signatures and schemas as objects in
a category, consider the diagram in Figure 1. This diagram involves two sim-
ple schemas, one of them being our previous Game schema, and the other be-
ing a simple schema defining a nonempty set of natural numbers. The schema
morphism in this diagram shows that the simpler schema is embedded, after
translation, into the schema Game. Notice that, for this morphism to be correct,
one must be able to prove that the translation of #ns > 0 (i.e., #ts > 0) is a
consequence of the constraints in the Game schema, which is trivial. After this
simple example, the reader familiar with Z may notice that schema morphisms
subsume the notion of schema strengthening. Models complement the picture
of schemas and schema morphisms. An interpretation for a given signature is
a valuation of its variables (a function which maps variables to values). For in-
stance, an interpretation for the signature of Numbers is simply a nonempty
set of natural numbers. Now, given a signature, a model of it is a nonempty
collection of interpretations for its variables. In some sense, this enables a loose
semantics for schemas: each schema denotes a collection of interpretations, in
contrast to the more usual tight semantics, where a schema denotes only one
interpretation. This semantics will be in particular useful for formalising pro-
motion (see section 4). An example of a model for Numbers is shown below it
in Fig. 1, using a notation borrowed from [25]. This model maps ns to the sets
{0, 1} and {2, 3}. Given a schema morphism τ : S1 → S2, this morphism induces
a mapping ()|τ : Mod(Σ′) → Mod(Σ) between models of S2 and models of S1

[15]. This mapping builds reducts [10], i.e., given a model of the “larger” schema,
it removes from the model all the parts that are unnecessary to interpret sym-
bols originating in S1, obtaining a model of the smaller schema. An example of
a reduct, obtained from a model of the schema Game, is also shown in Figure 1.
Given an interpretation I , we say I � φ if I satisfies the property φ; and given
a model M and a collection of formulas Φ, we say M � Φ, if for every I ∈ M

A Categorical Approach to Structuring and Promoting Z Specifications 79

Numbers

ns : PN

#ns > 0
σ

� �

Game

ps : PPlayer

ts : PN

ts �= ∅
∀ p : ps • p.owns ⊆ ts

∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

ns �→ ts

{〈ns � {0, 1},
〈ns � {2, 3}〉〉}

{〈ts � {0, 1}, ps � {〈owns � {0}〉}〉,
〈ts � {2, 3}, ps � {〈owns � {2}〉}〉}|σ

Fig. 1. An example involving schemas, schema models, a schema morphism and the
corresponding model reduct

and φ ∈ Φ, we have I � φ. Models of schemas are those satisfying the predicate
part of the schema. As usual, we will use the notation M � Σ (resp. M � S) to
express that M is a model of a signature Σ (resp. of a schema S). It is worth re-
marking the following property, which relates signature morphisms with models
and formulas:

M|σ � φ ⇔ M � σ∗(φ),

where σ : Σ1 → Σ2 is a signature morphism, M is a model of Σ2 and M|σ is the
reduct of M to the syntax of Σ1. This property expresses that syntactic changes
of formulas via signature morphisms do not affect the notion of truth. This is
a main characteristic of an Institution [15]. Indeed, regarding Z, we have the
following theorem.

Theorem 3. The structure Z composed of: (i) the category Zign, (ii) the func-
tor sen : Zign → Sen, that sends each signature to its set of formulas, (iii) the
functor Mod : Zignop → Cat, that sends each signature to the category of its
models1, and (iv) the collection of relations �Σ (satisfaction relations relating
models of a signature to formulas of the signature), is an Institution.

Let us continue with our categorical characterisation of Z concepts. The main
mechanism for putting two Z schemas together is schema conjunction. In a cate-
gorical setting, the corresponding way of combining two schemas is captured by
a categorical operation called pushout. The diagram in Figure 2 depicts what a
pushout is, and how it captures schema conjunction. In this diagram, W is the
common part of S and T , i and j are identity arrows, and S ∧T is obtained by
putting S and T together, keeping only once the common part (exactly what
schema conjunction does [25]). The pushout is minimal, in the sense that for any
other schema U such that we have arrows from S ,T to it, we can obtain a unique
arrow from S ∧T to U such that the diagram shown in Figure 2 commutes.

Another useful operation over schemas is symbol renaming, in particular re-
naming by priming. Categorically, this schema operation corresponds to an end-
ofunctor (−)′ : Zchem → Zchem, the straightforward extension to schemas of
the endofunctor (−)′ : Zign → Zign which maps every symbol in a signature to
its primed version.

1 Zignop denotes the dual category of Zign, obtained by reversing arrows. This is
needed since reducts and morphisms go in different directions.

80 P.F. Castro et al.

S ∧ T

S

i
��������

T

j
��������

W

��������
��������

U

S ∧ T

u

���
�

S

i
��������

��

�
�
	

T

j
��������

��

�

�

�
�

W

��������
��������

Fig. 2. Schema conjunction as a pushout

As we explained in the previous section, in a Z specification one usually defines
operations via particular schemas, relating other schemas describing domains. In
our categorical view of Z, operations correspond to a particular class of diagrams,
of the form shown in Figure 3 (a), where A and B are the related “domain”
schemas, and C is the operation schema. Such a diagram is indeed a categorical
diagram in the category Zchem, called a cospan. In particular, an operation for
a system S (captured as a schema) is typically specified as a schema over ΔS ,
i.e., over the conjunction of S and S ′, where S ′ represents the “post” state of S ,
i.e., the state after the operation has been executed. Such an operation is also a
cospan, and has the form shown in Figure 3 (b).

Let us more precisely formalise the concept of operations.

Definition 2. An operation is a cospan in Zchem of the following form:

S → Op ← S ′

We use the notation Op : S ⇒ S ′ to express the above diagram.

Operations modifying the state S of a system (captured as a schema) are usually
defined over ΔS . ΔS can also be captured categorically:

Definition 3. Given a schema S, we denote by ΔS the coproduct of S and S ′,
where S ′ is the result of applying the priming functor to schema S.

The coproduct is a pushout of two schemas S1 and S2 with no common part (i.e.,
in the figure above we set W = 〈∅, ∅〉); that is, for any other schema combining
S1 and S2 (meaning that we have schema morphisms from S1 and S2 to the
combined schema), there exists a unique schema morphism u from the coproduct
to this combined schema that makes the diagram involving these schemas and the

(a) C

A

�������
B

�������

(b) Op

S

i
������� (−)′ 		����� S ′

j

�����

Fig. 3. Cospans, and Z operations as cospans

A Categorical Approach to Structuring and Promoting Z Specifications 81

ΔS

S

��

S ′

�����

Op

ΔS

u

���
�

S

��

��

�
�
�

�

S ′

�����

��

�

�
�

�

Fig. 4. Categorical definition of ΔS as a coproduct

schema morphisms corresponding to the combinations commute. This situation
is described in Figure 4, for the case of ΔS , the coproduct of S and S ′.

We have used an arrow notation for cospans, in our characterisation of Z
operations. In fact, cospans can be thought of as arrows (or morphisms), which
are composed by applying pushouts [4]. This is the way schema composition is
categorically captured.

Definition 4. Given two operations Op1 : S ⇒ S ′ and Op2 : S ⇒ S ′ we define
the operation Op1 � Op2 as follows:

Op1 � Op2

Op1

�����
Op′

2

�������

S

��
S ′

��!!!!!
"""""

S ′′

�����

where the tip of the diagram is obtained by means of pushouts, and Op′
2 is built

up by applying the functor (−)′ to Op2.

Another useful construction in Z is the ΞS operation. This operator on schemas
denotes a skip operation. That is, it is a special case of ΔS , in which S and S ′

are identical. This schema operator can also be defined (up to isomorphism) in
a categorical way.

Definition 5. ΞS : S ⇒ S ′ is a schema that satisfies: ΞS �Op ∼= Op �ΞS ∼= Op,
for every operation Op, where S ∼= S ′ expresses that there is an isomorphism
between the corresponding schemas.

Given schemas S and S ′, we have a category OP(S , S ′) where the objects are
the operations between S and S ′ and the morphisms are the schema morphisms
between the corresponding cospans. This construction is called a bicategory [4].
An important point is that we can think of our category of schemas as having two
different kinds of arrows, one representing schema morphisms (schema embed-
dings after translation), and another one capturing Z operations (as cospans),
with � working as the composition for the latter.

Definition 6. Zpec is the bicategory of Z specifications, defined as the structure
composed of:

– The set of schemas as its set of objects.

82 P.F. Castro et al.

Player ′

owns ′ : PN
Player
owns : PN

Settle
ΔPlayer
t : N

t /∈ owns
owns ′ = owns ∪ {t}

owns �→ owns owns′ �→ owns′

ΔPlayer

Fig. 5. A Z specification as a categorical diagram in Zpec

– For each pair of schemas S , S ′, the category OP(S , S ′) of cospans between
S and S ′ (called 1-cells), and morphisms between cospans (called 2-cells).

– The composition between 2-cells is defined as usual by using the composition
(i.e., pushouts) of cospans (denoted by �).

Summarising, a Z specification is a collection of schemas S0, . . . ,Sn together with
a set of cospans Opi : Si ⇒ S ′

i , all “living” in the bicategory of Z specifications.
An example illustrating schemas and operations, and their relationships, is shown
in Figure 5, as a diagram in Zpec.

4 Schemas as Types and Promotion

Let us now concentrate on analysing promotion. A key feature of Z, that facili-
tates promotion, is the use of schemas as types. In order to do this, we need to
spice up our categorical framework with some additional machinery. Basically,
we introduce the concept of schema manager, which conveys the idea of schema
instances. Essentially, a manager of a component C is a component that intu-
itively provides the behaviour of various instances of C , and usually enables the
manipulation of these instances. We will deal with the possibility of interpreting
schemas as types in a way that differs from the established mechanism to do
so, presented in [25]. Our approach consists of building a manager specification.
Consider the schemas in Figure 6; the one on the left represents an arbitrary
schema, involving v0 : T0, . . . , vn : Tn as its typed variables. The schema on
the right represents the manager for the previous schema, where φP is obtained
from φ by adding the parameter s of type S to each variable. For the schema
on the right, S does not represent the schema on the left; instead, it is simply
a fresh given type, although for simplicity we maintain for this given type the
same name as for the schema it represents.

An example of the use of managers is shown is Figure 10. In this figure,
NumbersP , the manager of Numbers , is used to provide semantics to the use of
schema Numbers as a type (to be explained later on).

We can define a similar transformation over operations. Consider the schemas
in Figure 7; the schema on the left is the definition of an operation, where

A Categorical Approach to Structuring and Promoting Z Specifications 83

S
v0 : T0

. . .
vn : Tn

φ

SP

v0 : S → T0

. . .
vn : S → Tn

∀ s ∈ S • φP

Fig. 6. A schema and its manager construction

Op
ΔS

φ

OpP

ΔSP

this : S

φ[v0(this)/v0, . . . vn(this)/vn , v
′
0(this)/v

′
0, . . . v

′
n(this)/v

′
n]

{this} −	 v ′
0 = {this} −	 v0

. . .
{this} −	 v ′

n = {this} −	 vn

(−)P

Fig. 7. Operation promotion using managers

v0, . . . , vn , v
′
0, . . . , v

′
n are the variables of S and S ′, respectively. We introduce

the schema on the right; that is, we add a parameter, in this case named this ,
representing the instance to which the operation is applied. This situation is
graphically depicted as a categorical diagram in Figure 8. Therein, the dashed
arrows denote the application of the transformation described above. The trans-
lation (−)P : Zpec → Zpec is a functor, which maps schemas to promoted
schemas, and operations to promoted operations. We can define it in three parts:

– A functor (−)P : Zign → Zign, which translates signatures in the way
described above.

– A functor (−)P : OP(S , S ′) → OP(SP , (SP)′), that translates operations
to promoted operations. (For the sake of simplicity we use (−)P for naming
these two functors.)

– The canonical extension of (−)P to formulas, as explained above.

The following theorem can be proven by resorting to the definition of (−)P .

Theorem 4. (−)P : Zpec → Zpec is a lax functor.

Lax functors are morphisms between bicategories; this means that promotion
is coherent with respect to identities and composition of operations. Moreover,

OpP

Op

��#########
SP

��$$$$$
(SP)′

��������

S

�������

��######### S ′

�������

��%%%%%%%%%%

Fig. 8. Categorical diagram depicting operation promotion

84 P.F. Castro et al.

given a model M of ΣP we can define a corresponding model MD (a degraded
model), which forgets the new sort introduced. In Figure 9, a simple example
of a mapping between schemas and their models is shown, to illustrate these
ideas. These kinds of mappings are called institution representations [23], and

Numbers

ns : PN

#ns > 0
� �

(−)P

(−)U

NumbersP

ns : Numbers → PN

∀ x ∈ Number • ns(x) > 0

{〈ns � {0, 1}〉,
〈ns � {2, 3}〉}

{〈ns � {x0 �→ {0, 1}, x1 �→ {2, 3}}〉}

Fig. 9. Example of mappings between schemas and models

are mappings between logical systems. Intuitively, a collection of schemas and the
relations between them conform a logical system. An institution representation
allows us to move inside the same system but adding certain useful features,
while keeping the basic properties of these schemas.

The operation of using a schema as a type can be understood as a kind of
schema inclusion. Consider for instance the schema given in Figure 10 (a); it
defines the end state of a game where the player needs to conquer territories 0
to 6. Notice that the actual semantics of this schema can be defined using the
schema manager NumbersP introduced above, simply by including NumbersP in
the schema. This has a self evident categorical interpretation, and the existence
of an arrow between Numbers and EndGame relates them both syntactically and
semantically. This resulting diagram is shown in Figure 10 (b), where result .ns
is just syntactic sugar for ns(result).

This simple approach based on managers allows us to deal with schemas as
types. We just dealt with “single instances”, but the approach is also suitable for
dealing with indexed instances of a schema, as is usual when using promotion.
For instance, consider a game where we have various players, each player with
its own set of territories. A schema illustrating this situation, with a promoted
operation and showing the role of managers, is shown in Figure 11.

(a)

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6} (b)

NumbersP

ns : Numbers → PN

∀ x ∈ Number • ns(x) > 0

id

EndGame
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Fig. 10. Using managers as types

A Categorical Approach to Structuring and Promoting Z Specifications 85

id id

Play
ΔGame
AddNumberP

p? : Player

state(p?) = ns?
{p?} −	 state ′ = {p?} −	 state

Game
NumberP

state : Players → Numbers

Game ′

Number ′P

state ′ : Players → Numbers

Fig. 11. Using managers for promoting an operation

4.1 Promotion as an Institution Representation

Institution representations were introduced informally above, where we argued
about their need for capturing promotion. As institutions are an abstract char-
acterisation of logical systems, institution representations capture the notion of
embedding of a logical system into another one [23]. The logical machinery of Z
used for describing states and operations constitutes an institution, and the op-
eration of promoting schemas corresponds to an institution representation from
this institution to itself. The key elements involved in the promotion process are:

– The definition of a mapping (functor) (−)P : Zign → Zign, mapping a
signature to its promoted signature.

– The definition of a mapping (natural transformation) (−)D : Mod ; (−)P →
Mod , mapping models of promoted signatures to models of the original sig-
nature.

– The definition of a mapping (natural transformation) (−)P : Sen → Sen ; (−)P

mapping formulas of the original signature to formulas of the promoted sig-
nature.

These mappings satisfy the property M � φP ⇔ MD � φ. That is, a model of
a promoted signature satisfies a promoted property if and only if the degraded
model satisfies the original property. A graphical representation of this situation
is shown in Figure 12. To clarify this diagram, suppose that we have a translation
from one schema signature to another schema signature (named σ). Notice that
reducts move in the opposite direction of translations (this explains the (−)op in
the definition of institutions). Then, if we take a reduct of a promoted schema,
and so we take the degraded model (the right path of the diagram), we obtain the
same model as if we take the degraded model first and then take the reduct (the
left path in the diagram). This ensures the coherence between the operations of
strengthening and promotion in Z, which is guaranteed by the following theorem.

Theorem 5. (−)P and (−)D are institution representations.

86 P.F. Castro et al.

Σ2

Σ1

σ

�� Mod(Σ2)

Mod(σ)

��

Mod(ΣP
2)

Mod(σP)

��

(−)D��

Mod(Σ1) Mod(ΣP
1)

(−)D

��

Fig. 12. Institution representations

5 Heterogeneous Z Specifications and Structuring

Following the recent trend in Software Engineering that favours a “multiple
views” approach to specification and design, the Z notation has been extended
in various ways, in combination with other notations. Some of these extensions
are Z-CSP [14] (Z plus the process algebra CSP), and Z plus statecharts [24].
These heterogeneous specifications pose new challenges, e.g., for defining appro-
priate formal semantics for the composite languages, and for providing effective
mechanisms to reason about their specifications.

A consequence of the abstract nature of our formalisation of Z, and its struc-
turing mechanisms, is that we can deal with these extensions in a systematic way.
Basically, individual formalisms for specifying software systems can be viewed
as institutions; indeed, first-order logics [15], temporal logics [15], modal logics
[15], Unity-like languages [13] and process algebras [19], all constitute institu-
tions. Our formalisation of Z in an institutional setting, and the wide toolset
available from the theory of Institutions, enables us to flexibly combine Z with
other formalisms, obtaining extensions of Z with appropriate, well structured
semantics2. In order to illustrate this nice characteristic of our formalisation, we
briefly describe in this section the combination of Z with CSP (structured CSP, as
introduced in [19]). The obtained combination is, in essence, similar to the frame-
work Z-CSP, with a well defined structured semantics, that makes the semantic
relationships between different (heterogeneous) components of a specification
explicit. We make use of the CSP (structured CSP) institution. The interested
reader can find the details of this formalism in [19]. Signatures in this institution
are pairs 〈A,P〉, where A is an alphabet (used for the communication of pro-
cesses), and P is a collection of process names. Elements of both A and P have
an associated list of typed parameters. A morphism 〈f , g〉 : 〈A,P〉 → 〈A′,P ′〉
between two CSP signatures consists of an injective function f : A → A′, map-
ping members of A to members of A′ preserving parameters and their types3,
and a function g : P → P ′, mapping process names to process names, pre-
serving parameters and their types. The category of CSP signatures is called
CSPSig [19]. A CSP theory is a tuple 〈Σ, π〉, where Σ is a CSP signature,
and π is a set of processes in the CSP notation. A model of a theory is given
by a set of traces corresponding to the processes of the theory. For the sake of

2 The combination of institutions is well studied; see for instance [18].
3 The use of injective mappings introduces some subtle technical problems when com-
bining specifications. A way of avoiding these problems is described in [19].

A Categorical Approach to Structuring and Promoting Z Specifications 87

{〈〉, 〈coin〉,
〈coin, choc〉,
〈coin, choc, coin〉
. . . }

�
A = {coin, choc}
P = {VM }
π = {VM = coin → choc → VM }

Fig. 13. A theory in Structured CSP, and a model of it

simplicity, we employ a finite trace semantics (as introduced in [19]), although
also the failure-divergence semantics is supported in this institution. We have
a morphism between models M1 → M2 iff M2 � M1 (i.e., M2 is a refinement
of M1). A simple example of a vending machine is described as a CSP theory
in Fig. 13. Neither communication letters nor processes have parameters in this
example. A model of the theory accompanies the example as well.

A new institution CZP can be defined using the institutions CSP and Z.
Essentially, we want specifications to have a data part, given in Z with its cor-
responding operations, and a process part, with each atomic process being asso-
ciated with an operation as described in the Z part of the specification.

The category SignCZP of CZP signatures is composed of: (i) tuples Σ =
〈ΣCSP , ΣZ 〉 as signatures, where ΣCSP and ΣZ are CSP and Z signatures, re-
spectively; (ii) a morphism σ : Σ → Σ′ is a tuple of morphisms 〈f : ΣCSP →
Σ′

CSP , g : ΣZ → Σ′
Z 〉. The functor senCZP is defined as follows:

senCZP (〈ΣCSP , ΣZ 〉) = 〈senCSP (ΣCSP), senZ (ΣZ)〉.
The functor ModCZP is defined as follows: (i) Given Σ = 〈ΣCSP , ΣZ 〉, we define:
Mod(Σ) = {〈a1, . . . , an 〉, s〉 | ∃M ∈ Mod(ΣCSP) : 〈a1, . . . , an〉 ∈ M ∧ s ∈ Mod(ΣOp)},

where ΣOp is the signature of the operation event(a1) � · · · � event(an). That
is, models are execution traces, together with models of the corresponding op-
eration. (ii) Given a morphism σ : 〈A,N 〉 → 〈A′,N ′〉, the morphism Mod(σ)
is defined pointwise, using reducts of traces as defined in [19], and reducts of
schema valuations as defined in Section 3.

The relation �CZP is also defined resorting to �CSP and �Z as follows:

M � 〈π, φ〉 iff π1(M) � π and for every s ∈ π2(M) we have s � ϕ.

A theory in CZP is a tuple 〈ΣCSP , ΣZ , S ,Ops , events , π〉, where (i) ΣCSP =
〈A,N 〉 is a signature in CSP, (ii) ΣZ is a signature in Z, (iii) S is a schema
〈S , Φ〉, (iv) Ops = {op0 : S ⇒ S ′, . . . , opn : S ⇒ S ′} is a collection of operations
over the state S , (v) event : A → Ops is a function mapping events to operations,
and (vi) π is a set of CSP processes. Morphisms between CZP theories are
straightforwardly defined pointwise.

The relation � is extended to theories: M � 〈ΣCSP , ΣZ , S ,Ops , event , π〉 iff
for every 〈〈a1, . . . , an〉, 〈si , . . . , sn〉〉 ∈ M we have that π1(M) � π, and π2(M) �
event(a1) � · · · � event(an). Figure 15 shows an example of a CZP theory.

Promotion can be easily extended to this new institution. We define functor
(−)P : CZPSign → CZPSign, mapping signatures to signatures, as follows.

88 P.F. Castro et al.

(skip)P
def
= skip

(stop)P
def
= stop

(a → Proc)P
def
= a?x : X → ProcP

(?y :T → Proc)P
def
=?x :X ?y :T → ProcP

(S�Q)P
def
= SP�SP

(S �Q)P
def
= SP � QP

(S ‖ Q)P
def
= SP ‖ QP

(P ||| Q)P
def
= SP ||| SP

MD
def
=

⋃
x∈S{σx | σ ∈ M }

where σx is obtained by deleting the
events in the trace where x is not
present, similarly for the corresponding
interpretation of schemas.

Fig. 14. Promoting basic CSP operators, and degrading traces

Buffer
s : Seq N

Out
ΔState
t ! : N

s �= 〈〉
t ! = heads
s ′ = tails

In
ΔState
t? : N

s ′ = s
 〈t?〉

main(b : Buffer) = in?(b : Buffer)?(x : N)→ main

�out?(b : Buffer)!(y : N)→ main

main = in?(x : N)→ main

�out!(y : N)→ main

BufferP

s : Buffer → Seq N

InP

ΔState
t? : N
b? : Buffer

b.s ′ = b.s
 〈t?〉
{b} −	 s ′ = {b} −	 s

OutP

ΔState
t ! : N
b? : buffer

b.s �= 〈〉
t ! = (head b.s)
b.s ′ = tail(b.s)
{b} −	 s ′ = {b} −	 s

� �

(−)P

(−)D {〈〈〈〉, 〈〉〉, 〈〈in.b0.1〉, 〈s � {}, b? � 0, t? � 1,

s′ � {b0 �→ {0 �→ 1}}〉〉, . . . }
{〈〈〈〉, 〈〉〉, 〈〈in.1〉, 〈s � {}, t? � 1,

s′ � {0 �→ 1}, 〉〉, . . . }

Fig. 15. Promoting CZP specifications

Given a signature 〈ΣCSP , ΣZ 〉, ΣZ is translated to ΣP
Z , and ΣCSP is mapped to

the following CSP signature:

– If a ∈ A, then aP = a?(x : S), being S the new type introduced in ΣP
Z ,

– If n ∈ N , then n(x1 : T1, . . . , xn : Tn)
P = n(x : S , x1 : T1, . . . , xn : Tn).

This functor is extended to sentences in CZP: the translation of a process is
defined inductively as in Fig. 14, and the translation of Z formulas is defined as
in Section 3. Furthermore, we define the mapping (−)D between models as in
Fig. 14. This extension of promotion is also an institution representation:

Theorem 6. Mappings (−)P and (−)D are institution representations.

Figure 15 shows, using a simple example, how promotion works in this new
setting. In this case, we have a standard specification of a buffer with its cor-
responding process specification. The schemas and the CSP process on the left
are promoted to the the corresponding on the right. Via promotion, we obtain
a specification with various buffers whose executions interleave.

6 Related Work and Conclusions

We proposed a mathematical foundation for Z and its structuring mechanisms,
which makes use of well established abstract notions of logical systems.

A Categorical Approach to Structuring and Promoting Z Specifications 89

Indeed, the notions that we used in this formalisation have been employed to
structure concurrent system specification languages, algebraic specification lan-
guages, and other formalisms [13,12]. Several alternative approaches to provide
a formal semantics to Z can be found in the literature. One of these is the one
presented in [21], where schemas are interpreted as axiomatic theories (signa-
tures plus predicates), and the semantics of these axiomatic theories is given by
means of varieties; in that work, no semantics is proposed for promotion and
the use of schemas as types. In [3], institutions are used for providing semantics
to Z specifications; in that work, schemas are captured as logical sentences in
an institution, and therefore a Z specification is viewed as an unstructured set
of expressions. In contrast, our approach makes use of theories and morphisms
between them in formalising Z designs, thus leading to a well structured cat-
egorical semantics of designs. In [7], category theory is used in the definition
of a relational semantic framework to interpret Z as well as other specification
languages. As in our case, the approach allows for heterogeneous specification;
however, the work uses Z simply as an example of a language based on the “state
& operations” viewpoint, but it does not show how to deal with Z’s structuring
mechanisms. In [6], the authors propose a set of rules to manipulate Z schemas;
as opposed to our work, these rules are motivated as a means for refactoring
specifications. In [16], the authors propose to interpret schemas as types; they
build a logical machinery in order to deal with these types. These ideas were
adopted in the international ISO standard of Z [17]. Some issues are, in our
opinion, not dealt with adequately in that approach; for instance, schema prim-
ing is difficult to explain in this context, since a schema and its primed version
correspond to different unrelated types. We believe that our approach fits better
with the original motivations for Z’s schema operators, where priming denotes a
purely syntactical operation, an operation also extensively used in other logics for
program specification (e.g., in TLA). The interpretation of priming (and related
operators) as categorical operations over logical theories provides a simple un-
derstanding of Z constructions, with a good separation of concerns between the
interpretation of schemas and schema operators, dealing even with promotion, a
sophisticated, and widely used, specification structuring mechanism. Moreover,
our approach maintains the structure of specifications when providing semantics
to them, leading to explicit semantic relationships between component schemas
and the composite schemas they are part of, which can be exploited to promote
reasoning, and with potential benefits for automated reasoning. Finally, our for-
malisation is at a level of abstraction that allows for a view of logical systems as
building blocks. This provides the rigour and flexibility needed to characterise
not only Z but also its related languages and extensions, in particular the het-
erogeneous ones. We have illustrated this point via a formal, well structured,
combination of Z with CSP, resulting in a formalism in essence equivalent to
the Z-CSP formal method, and “inheriting” the structuring of the composed
languages, in particular promotion.

90 P.F. Castro et al.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. This work was partially supported by the Argentinian
Agency for Scientific and Technological Promotion (ANPCyT), through grants
PICT PAE 2007 No. 2772, PICT 2010 No. 1690 and PICT 2010 No. 2611, and
by the MEALS project (EU FP7 programme, grant agreement No. 295261).

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Barr, M., Wells, C.: Category Theory for Computer Science, Centre de Recherches
Mathématiques, Université de Montréal (1999)

3. Baumeister, H.: Relating Abstract Datatypes and Z-Schemata. In: Bert, D.,
Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 366–382.
Springer, Heidelberg (2000)

4. Bérnabou, J.: Introduction to bicategories. In: Complementary Definitions of Pro-
gramming Language Semantics. LNM, vol. 42. Springer (1967)

5. Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory.
Enc. of Mathematics and its Applications. Cambridge University Press (1994)

6. Brien, S.M., Martin, A.P.: A Calculus for Schemas in Z. Journal of Symbolic Com-
putation 30(1) (2000)

7. Bujorianu, M.C.: Integration of Specification Languages Using Viewpoints. In:
Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 421–
440. Springer, Heidelberg (2004)

8. Burstall, R., Goguen, J.: Putting Theories together to make Specifications. In:
Proc. of Intl. Joint Conference on Artificial Intelligence (1977)

9. Castro, P.F., Aguirre, N.M., López Pombo, C.G., Maibaum, T.S.E.: Towards Man-
aging Dynamic Reconfiguration of Software Systems in a Categorical Setting. In:
Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 306–321. Springer, Heidelberg (2010)

10. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland (1990)
11. Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press

(2001)
12. Fiadeiro, J.: Categories for Software Engineering. Springer (2004)
13. Fiadeiro, J., Maibaum, T.: Temporal Theories as Modularisation Units for Con-

current System Specification. Formal Aspects of Computing 4(3) (1992)
14. Fischer, C.: Combining CSP and Z, Technical Report, University of Oldenburg

(1997)
15. Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and

Programming. Journal of the ACM, 39(1) (1992)
16. Henson, M., Reeves, S.: Revising Z: Part I - Logic and Semantics. Formal Aspects

of Computing 11(4) (1999)
17. Nicholls, J.: Z Notation: Version 1.2, Z Standards Panel (1995)
18. Mossakowski, T., Tarlecki, A., Pawlowski, W.: Combining and Representing Logical

Systems. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 177–
196. Springer, Heidelberg (1997)

19. Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an In-
stitution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007)

A Categorical Approach to Structuring and Promoting Z Specifications 91

20. Smith, G.: The Object Z Specification Language. Advances in Formal Methods
Series. Kluwer Academic Publishers (2000)

21. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics.
Cambridge Tracts in Theoretical Computer Science (1988)

22. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
23. Tarlecki, A.: Moving Between Logical Systems. In: Haveraaen, M., Dahl, O.-J.,

Owe, O. (eds.) ADT 1995 & COMPASS 1995. LNCS, vol. 1130, pp. 478–502.
Springer, Heidelberg (1996)

24. Webber, M.: Combining Statecharts and Z for the Design of Safety-Critical Control
Systems. In: Gaudel, M.-C., Wing, J.M. (eds.) FME 1996. LNCS, vol. 1051, pp.
307–326. Springer, Heidelberg (1996)

25. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall (1996)

Assume-Guarantee Reasoning

for Safe Component Behaviours

Chris Chilton1, Bengt Jonsson2, and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We formulate a sound and complete assume-guarantee frame-
work for reasoning compositionally about safety properties of component
behaviours. The specification of a component, which constrains the tem-
poral ordering of input and output interactions with the environment,
is expressed in terms of two prefix-closed sets of traces: an assumption
and guarantee. The framework supports dynamic reasoning about com-
ponents and specifications, and includes rules for parallel composition,
logical conjunction corresponding to independent development, and quo-
tient for incremental synthesis. Practical applicability of the framework
is demonstrated by considering a simple printing example.

Keywords: assume-guarantee, specification theory, components, com-
positionality, parallel, conjunction, quotient.

1 Introduction

Component-based design methodologies enable both design- and run-time as-
sembly of software systems from heterogeneous components, thus facilitating
component reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, specification the-
ories have been proposed that permit the mixing of specifications and imple-
mentations, and allow for the construction of new components from existing
ones by means of compositional operators [1,2,3]. A specification should make
explicit the assumptions that a component can make about the environment,
and the corresponding guarantees that it will provide about its own behaviour.
This allows for the use of compositional assume-guarantee (AG) reasoning, in
order to combat issues of complexity and state space explosion during system
development and verification.

In earlier work [4], we introduced a component-based specification theory, in
which components communicate by synchronisation of I/O actions, with the un-
derstanding that inputs are controlled by the environment, while outputs (which
are non-blocking) are under the control of the component. The component-model
is conceptually similar to the interface automata of de Alfaro and Henzinger [5],
except that our refinement is based on classical sets of traces, as opposed to alter-
nating simulation, and that we allow explicit specification of inconsistent traces,
which can model underspecification and errors, etc. With both trace-based and

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 92–109, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Assume-Guarantee Reasoning for Safe Component Behaviours 93

operational representations for components, a distinguishing feature of our the-
ory is the inclusion of conjunction and quotient operators (which generalise those
of [2,6]) for supporting independent and incremental development, respectively.
Logical disjunction and hiding can also be added. The theory enjoys strong al-
gebraic properties with all the operators being compositional under refinement,
and we prove full abstraction with respect to a simple testing framework.

In [4] and [5], the assumptions and guarantees of components are merged
into one behavioural representation. In many cases, this avoids duplication of
common information, although there are situations in which it is desirable to
manipulate the assumptions and guarantees separately. For instance, we may
want to express a simple guarantee (such as “no failure will occur”) without
having to weave it into a complex assumption. Another advantage of separation
is specification reuse, in that the same guarantees (or assumptions) can be used
for several related interfaces, each representing different versions of a component.

Contributions. In this paper, we present a complete specification theory for rea-
soning about AG specifications of components (as modelled in [4]). Assumptions
and guarantees are prefix-closed sets of traces, meaning our framework facilitates
reasoning about safety behaviours, and differs from (arguably) more complex
approaches based on modal specifications and alternating simulation. Building
upon the theory in [4], we define the operators of parallel, conjunction and quo-
tient directly on AG specifications (the last being the first such definition), and
prove their compositionality. By treating AG specifications as first-class citizens,
the theory supports flexible development and verification of component-based
systems using AG principles. A component can be characterised by its weakest
AG specification, and, in the opposite direction, we can infer the least refined
component satisfying a given specification. From this, a notion of refinement
corresponding to implementation containment is defined. In relating implemen-
tations with AG specifications by means of satisfaction, we formulate a collection
of sound and complete AG reasoning rules for the preservation of safety prop-
erties under the operations and refinement preorder of the specification theory.
These rules are inspired by the Compositionality Principle of [7,8] for parallel
composition, which we generalise to the operations of conjunction and quotient.
The rules allow us to infer properties of compositions for both AG specifications
and components, thus enabling designers to deduce whether it is safe to sub-
stitute a component, for example one synthesised at run-time by means of the
quotient operator, with another.

Related Work. Compositional AG reasoning has been extensively studied in
the literature, where traditionally the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal log-
ics [9,10,11]. A variety of rule formats have been proposed, although Maier
demonstrates through a set-theoretic setting in [12] that compositional circular
AG rules for parallel composition (corresponding to intersection) cannot both
be sound and complete. This seems to contradict the work of Namjoshi and

94 C. Chilton, B. Jonsson, and M. Kwiatkowska

Trefler [13], although the discrepancy is attributed to the fact that the sound
and complete circular rule presented in [13] is non-compositional.

Compositional reasoning about AG specifications in the form of AG pairs, sim-
ilar to what we consider in this paper, is discussed in [7] for the generic setting
of state-based processes. The authors formulate a Compositionality Principle for
parallel composition, and observe that this is sound for safety properties. A logi-
cal formulation for specifications is then discussed in [8], where intuitionistic and
linear logic approaches are put forward. The main difference with our approach
is that we consider an action-based component model and have a richer set of
composition operators, including conjunction and quotient. We also prove com-
pleteness, by relying on the convention that an output is controlled by at most
one component, which can be used to break circularity.

More recent proposals focus on compositional verification for interface theo-
ries [14,15], namely interface and I/O automata, which are closest to our work.
In [14], Emmi et al. extend a learning-based compositional AG method to inter-
face automata. They only consider the much more limited asymmetric rules for
safety properties, which are shown to be both sound and complete. The rules are
supplied for the original subset of operators and relations defined in [5], namely
compatibility, parallel composition and refinement based on alternating simula-
tion. Thus, no consideration is given to conjunction or quotient. Other notable
work concerning compositional reasoning for interface theories is the AG frame-
work defined by Larsen et al. in [15] for I/O automata, where assumptions and
guarantees are themselves specified as I/O automata. The authors consider a par-
allel composition operator on AG specifications that is the weakest specification
for composed components respecting independent implementability, for which
they present a sound and complete rule. Our work allows a more general compo-
nent model that does not require input-enabledness, and allows for specifications
to have non-identical interfaces to their implementations. We go beyond [15] by
defining conjunction and quotient operations directly on AG specifications, thus
providing a significantly richer basis for AG based reasoning and development,
and we do not require input-enabledness of guarantees.

A compositional specification theory based on modal specifications has been
developed in [3], which includes all the operations we consider in this paper,
but for systems without I/O distinction. Larsen et al. consider a cross between
modal specifications and interface automata [1], where refinement is given in
terms of alternating simulation/modal refinement (which is stronger than our
trace containment), and no operations for conjunction and quotient are given.
Surveying [16], Bauer et al. provide a generic construction for obtaining a con-
tract framework based on AG pairs from a component-based specification theory.
The abstract ideas share similarity with our framework, and it is interesting to
note how parallel composition of contracts is defined in terms of the conjunction
and quotient operators of the specification theory. Our work differs in that we
define both of these operators directly on contracts. A definition of conjunction
on contracts is provided in [17], but this is for a simplified contract framework,
as witnessed by the definition of parallel composition on contracts.

Assume-Guarantee Reasoning for Safe Component Behaviours 95

Outline. In Section 2 we summarise the compositional specification theory of [4],
which serves as a basis for our AG reasoning framework. Section 3 introduces
the main definitions of the AG framework, and presents a number of sound
and complete compositional rules for the operators of the specification theory.
An application of our framework is illustrated in Section 4, while Section 5
concludes our work and suggests possible extensions. Proofs of our results are
made available as the technical report [18].

2 Compositional Specification Theory

In this section, we briefly survey the essential features of our compositional
specification theory presented in [4]. In that paper, we present two notations for
modelling components: a trace-based formalism and an operational representa-
tion. Here we focus on the trace-based models, since operational models can be
mapped to semantically equivalent trace-based ones.

A component comes equipped with an interface, together with a set of be-
haviours over the interface. The interface is represented by a set of input actions
and a set of output actions, which are necessarily disjoint, while the behaviour
is characterised by sets of traces.

Definition 1 (Components). A component P is a tuple 〈AI
P ,AO

P , TP , FP〉 in
which AI

P and AO
P are disjoint sets referred to as inputs and outputs respectively

(the union of which is denoted by AP), TP ⊆ A∗
P is a non-empty set of permis-

sible traces, and FP ⊆ A∗
P is a set of inconsistent traces. The trace sets must

satisfy the constraints:

1. FP ⊆ TP
2. If t ∈ TP and i ∈ AI

P , then ti ∈ TP
3. TP is prefix closed
4. If t ∈ FP and t′ ∈ A∗

P , then tt′ ∈ FP .

The permissible traces contain all possible interaction sequences between the
component and the environment; they are thus receptive to all inputs, as these
are under the control of the environment. If on some interaction sequence an
error arises in the component, or the environment issues a non-enabled input,
the trace is said to be inconsistent. We adopt the convention that any inconsistent
trace is suffix closed, meaning that, once the component becomes inconsistent,
it behaves similarly to the process CHAOS in CSP.

From hereon let P ,Q andR be components with signatures 〈AI
P ,AO

P , TP , FP〉,
〈AI

Q,AO
Q, TQ, FQ〉 and 〈AI

R,AO
R, TR, FR〉 respectively.

Notation. Let A, B and C be sets of actions. For a trace t, write t � A for the
projection of t onto A. Now for T ⊆ A∗, write T � B for {t � B : t ∈ T }, T ⇑ B
for {t ∈ B∗ : t � A ∈ T }, T B for ε+(T ⇑ B)(ε+AI), T ↑ B for T (B)(A∪B)∗,
T ↑ε B for T ∪ (T ↑ B), T for A∗ \ T , and pre(T) for the largest prefix-closed set
contained in T .

96 C. Chilton, B. Jonsson, and M. Kwiatkowska

Refinement. In the specification theory, refinement corresponds to safe-
substitutivity. This means that Q is a refinement of P if Q can be used safely
in any environment that is safe for P . An environment is safe for a component
if any interaction between the two cannot be extended by a sequence of output
actions under the control of the component such that the resulting trace is in-
consistent. We will thus need to consider the safe representation of a component,
obtained by propagating inconsistencies backwards over outputs.

Definition 2 (Safe component). Let P be a component. The most general
safe representation for P is a component E(P) = 〈AI

P ,AO
P , TE(P), FE(P)〉, where

TE(P) = TP∪FE(P) and FE(P) = {tt′ ∈ A∗
P : t ∈ TP and ∃t′′ ∈ (AO

P)
∗ ·tt′′ ∈ FP}.

We can now give the formal definition of refinement. Intuitively, Q must be
willing to accept any input that P can accept, but it must produce no more
outputs than P , otherwise we could not be certain how the environment would
respond to these additional outputs.

Definition 3 (Refinement). For components P and Q, Q is said to be a re-
finement of P, written Q imp P, iff:

1. AI
P ⊆ AI

Q
2. AO

Q ⊆ AO
P

3. TE(Q) ⊆ TE(P) ∪ TE(P) ↑ (AI
Q \ AI

P)
4. FE(Q) ⊆ FE(P) ∪ TE(P) ↑ (AI

Q \ AI
P).

The set TE(P) ↑ (AI
Q \ AI

P) represents the extension of P ’s interface to include
all inputs in AI

Q \ AI
P . As these inputs are not ordinarily accepted by P , they

are treated as bad inputs, hence the suffix closure with arbitrary behaviour.

Parallel Composition. The parallel composition of two components is obtained as
the cross-product by synchronising on common actions and interleaving on inde-
pendent actions. To support broadcasting, we make the assumption that inputs
and outputs synchronise to produce outputs. Communication mismatches aris-
ing through non-input enabledness automatically appear as inconsistent traces
in the product, on account of our component formulation. As the outputs of
a component are controlled locally, we assume that the output actions of the
components to be composed are disjoint.

Definition 4 (Parallel composition). Let P and Q be components such that
AO

P∩AO
Q = ∅. Then P || Q is the component 〈AI

P||Q,AO
P||Q, TP||Q, FP||Q〉, where:

– AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO
P||Q = AO

P ∪ AO
Q

– TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q
– FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)]A∗

P||Q ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)]A∗

P||Q.

Assume-Guarantee Reasoning for Safe Component Behaviours 97

Informally, a trace is permissible in P || Q if its projection onto AP is a trace
of P and its projection onto AQ is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

Conjunction. The conjunction of components P andQ is the coarsest component
that will work safely in any environment that P orQ can work safely in. It can be
thought of as finding a common implementation for a number of specifications.
Thus, conjunction is essentially the meet operator on the refinement preorder.
Consequently, the conjunction of two components is only defined when the union
of their inputs is disjoint from the union of their outputs.

Definition 5 (Conjunction). Let P and Q be components such that AI
P ∪AI

Q
and AO

P ∪ AO
Q are disjoint. Then P ∧ Q is the component 〈AI

P∧Q,AO
P∧Q, TP∧Q,

FP∧Q〉, where:

– AI
P∧Q = AI

P ∪ AI
Q

– AO
P∧Q = AO

P ∩ AO
Q

– TP∧Q = [(TP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (TQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩A∗
P∧Q

– FP∧Q = [(FP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (FQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩ A∗
P∧Q.

Intuitively, after any trace of P ∧ Q, the conjunction must accept any input
offered by either P or Q, but can only issue an output if both P and Q are
willing to offer it. Once P becomes inconsistent, or an input is seen that is not
an input of P , the conjunction behaves like Q (and vice-versa).

Quotient. In [4], we introduced a quotient operator acting on components. Given
a component R, together with a component P implementing part of R, the
quotient R/P yields the coarsest component for the remaining part of R to be
implemented. Thus, the quotient satisfies the property: there exists Q such that
P || Q imp R iff P || (R/P) imp R and Q imp (R/P). Whether the quotient
exists depends on the extent to which P is a sub-component of R.

For the development in this paper, we will not use quotient on components,
and refer to [4]. Instead, we will define a quotient operator that acts on AG spec-
ifications. Thus, the quotient of two AG specifications yields an AG specification
characterising a set of component implementations.

3 Assume-Guarantee Framework for Safety Properties

To support reasoning about components, we introduce the concept of an AG
specification, which consists of two prefix-closed sets of traces referred to as the
assumption and guarantee. The assumption specifies the environment’s allowable
interaction sequences, while the guarantee is a constraint on the component’s

98 C. Chilton, B. Jonsson, and M. Kwiatkowska

behaviour. As assumptions and guarantees are prefix-closed, our theory ensures
that components preserve (not necessarily regular) safety properties1.

Definition 6 (AG specification). An AG specification S is a tuple 〈AI
S ,AO

S ,
RS ,GS〉, in which AI

S and AO
S are disjoint sets, referred to as the inputs and

outputs respectively, and RS and GS are prefix closed subsets of (AI
S ∪ AO

S)
∗,

referred to as the assumption and guarantee respectively, such that t ∈ RS and
t′ ∈ (AO

S)
∗ implies tt′ ∈ RS .

Since outputs are under the control of a component, we insist that assumptions
are closed under output-extensions. On the other hand, we need not insist that
the guarantee is closed under input-extensions, since the assumption can select
inputs under which the guarantee is given.

Given an AG specification S, we want to be able to say whether a component
P satisfies S. Informally, P satisfies S if for any interaction between P and the
environment characterised by a trace t, if t ∈ RS , then t ∈ GS and t cannot
become inconsistent in P without further stimulation from the environment.
Components can thus be thought of as implementations of AG specifications.

Before defining satisfaction, we need to introduce a notion of compatibility
between AG specifications and components, meaning that they do not disagree
on what are inputs or outputs.

Definition 7 (Compatibility). Let P be a component, and let S and T be
AG-specifications. Then P is compatible with S, written P ∼ S, iff AI

P ∩ AO
S =

∅ = AO
P ∩AI

S . Similarly, S is compatible with T , written S ∼ T , iff AI
S ∩AO

T =
∅ = AO

S ∩ AI
T .

We can now give the formal definition for satisfaction of an AG specification by
a component.

Definition 8 (AG satisfaction). A component P satisfies the AG specification
S, written P |= S, iff:
S1. P ∼ S
S2. AI

S ⊆ AI
P

S3. AO
P ⊆ AO

S
S4. RS ∩ TP ⊆ GS ∩ FP .

By output-extension closure of assumptions, condition S4 is equivalent to check-
ing RS ∩ TP ⊆ GS ∩ FE(P), which involves the most general safe representation
E(P) of P (see Definition 2). The following lemma shows that this definition of
satisfaction is preserved under the component-based refinement corresponding
to safe-substitutivity, subject to compatibility.

Lemma 1. Let P and Q be components, and let S be an AG specification. If
P |= S, Q imp P and Q ∼ S, then Q |= S.
1 Model-checking components against AG specifications would force us to restrict the
properties we can encode and check. In this setting, we would naturally restrict to
the regular safety properties, which can be encoded by finite-state automata.

Assume-Guarantee Reasoning for Safe Component Behaviours 99

3.1 Refinement

There is a natural hierarchy on AG specifications respecting the satisfaction
rule defined in Definition 8. From this we can define a refinement relation on
AG specifications that corresponds to implementation containment. But first,
we introduce the shorthand: violations(X) � {t ∈ A∗

X : t(AI
X)∗ ∈ RX ∩ GX}A∗

X .

Definition 9 (AG refinement). Let S and T be AG specifications. S is said
to be a refinement of T , written S T , iff:
R1. S ∼ T
R2. AI

T ⊆ AI
S

R3. AO
S ⊆ AO

T
R4. violations(T) ∩ A∗

S ⊆ violations(S)
R5. RT ∩ A∗

S ⊆ RS ∪ violations(S).
It is our intention that S T iff the implementations of S are contained within
the implementations of T (subject to compatibility). Conditions R1-R3 are the
bare minimum to uphold this principle. For condition R4, any component having
a trace t ∈ violations(T)∩A∗

S cannot be an implementation of T , so it should not
be an implementation of S. For this to be the case, the component must violate
the guarantee on S, i.e., t ∈ violations(S). Condition R5 deals with inconsistent
traces. If a component has an inconsistent trace t ∈ RT ∩ A∗

S , then this cannot
be an implementation of T . Consequently, the component must not be an imple-
mentation of S, so either t must violate the guarantee of S, i.e., t ∈ violations(S),
or t must be in RS , so that the component cannot satisfy S.
Lemma 2. Refinement respects implementation containment:

S T ⇐⇒ {P : P |= S and P ∼ T } ⊆ {P : P |= T }.
In [15], Larsen et al. give a sound and complete characterisation of their refine-
ment relation (which corresponds to implementation containment, as for us) by
means of conformance tests. The definition assumes equality of interfaces, so
does not need to deal with issues of compatibility or the complexities of both
covariant and contravariant inclusion of inputs and outputs respectively (i.e.,
conditions R1-R3). Thus, their definition largely corresponds to condition R4.
Condition R5 is not necessary in that setting, as implementation models are
required to be input-enabled.

Refinement can be shown to be a preorder, provided that we add the minor
technical condition that compatibility of components is maintained, as the next
lemma shows.

Lemma 3 (Weak transitivity). For AG specifications S, T and U , if S T ,
T U and S ∼ U , then S U .
As an aside, component-based refinement imp is a preorder because, in refining
a component P to a componentQ, it is possible to transform some of P ’s outputs
into inputs of Q, as this preserves safe-substitutivity. However, this transforma-
tion of action types does not make sense with AG specifications, which talk
explicitly about the behaviour of the environment.

100 C. Chilton, B. Jonsson, and M. Kwiatkowska

3.2 Inferring Components from AG Specifications

Given a specification for a component, we require a way for developers to con-
struct an actual component that satisfies the requirements of the specification.
In the following definition, we show how to infer the least refined component
that satisfies a given specification.

Definition 10 (Inferred component). Let S be an AG specification. Then the
least refined implementation of S is the component I(S) = 〈AI

S ,AO
S , TI(S), FI(S)〉,

defined only when ε ∈ TI(S), where:

– TI(S) = pre({t ∈ RS ∩ GS : ∀t′ ∈ (AI
S)

∗ · tt′ ∈ RS ∪ GS}) ∪ FI(S)

– FI(S) = {tit′ : t ∈ RS ∩ GS , i ∈ AI
S and ti �∈ RS} ∪ {t ∈ A∗

S : ε �∈ RS}.
The following lemma shows that the obtained component model really is least
refined with respect to the refinement preorder imp on implementations.

Lemma 4. Let S be an AG specification, and let P be a component. Then:

– ε �∈ TI(S) implies S is non-implementable;
– ε ∈ TI(S) implies I(S) |= S; and
– P |= S iff P imp I(S).

3.3 Characteristic AG Specification of a Component

One may be interested in the most general AG specification that satisfies a com-
ponent, which we refer to as the characteristic AG specification of the component.
This can be found by examining the component’s safe traces.

Definition 11 (Characteristic AG specification). The characteristic AG
specification for the component P is an AG specification AG(P) = 〈AI

P ,AO
P ,

RAG(P),GAG(P)〉, where RAG(P) = A∗
P \ FE(P) and GAG(P) = TP \ FE(P).

The largest assumption safe for component P is the set of all non-inconsistent
traces, while the guarantee is the set of traces of E(P) that are non-inconsistent.
As the following lemma demonstrates, the characteristic AG specification satis-
fies the desired properties.

Lemma 5. Let P be a component and let S be an AG specification. Then:

– P |= AG(P); and
– P |= S iff AG(P) S.

The final point in the previous lemma shows that satisfaction of a specifica-
tion by a component is equivalent to checking whether the characteristic AG
specification of the component is a refinement of the specification. This means
that implementability of specifications built up compositionally follows immedi-
ately from compositionality results on AG specifications, as we will see in the
subsequent sections.

We are now in a position to present sound and complete AG rules for inferring
properties of composite systems from the properties of their sub-components.

Assume-Guarantee Reasoning for Safe Component Behaviours 101

3.4 Parallel Composition

The AG rule for parallel composition is based on the well-established theorem
of Abadi and Lamport [7], which has appeared in several forms [19,20,21]. In-
tuitively, the guarantee of any component must not be allowed to violate the
assumptions of the other components. Such reasoning seems circular, but the
circularity can be broken up in our setting as a safety property cannot be simul-
taneously violated by two or more components. This is due to an output being
under the control of at most one component.

Notation. To assist in our definition, we introduce the following shorthands:

– R(SP ,SQ) � (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

– G(SP ,SQ) � (GSP ⇑ ASP ||SQ) ∩ (GSQ ⇑ ASP ||SQ)

– G+(SP ,SQ) � (GSP ASP ||SQ) ∩ (GSQ ASP ||SQ).

Definition 12. Let SP and SQ be AG specifications such that AO
SP ∩AO

SQ = ∅.
If SP and SQ are both implementable, then SP || SQ is an AG specification
〈AI

SP ||SQ ,AO
SP ||SQ ,RSP ||SQ ,GSP ||SQ〉 defined by:

– AI
SP ||SQ = (AI

SP ∪AI
SQ) \ (AO

SP ∪AO
SQ)

– AO
SP ||SQ = AO

SP ∪ AO
SQ

– RSP ||SQ ⊆ A∗
SP ||SQ is the largest prefix closed set satisfying

RSP ||SQ(AO
SP ||SQ)

∗ ∩ G+(SP ,SQ) ⊆ R(SP ,SQ)
– GSP ||SQ = RSP ||SQ ∩ G(SP ,SQ).

If at least one of SP or SQ is non-implementable, then SP || SQ = 〈AI
SP ||SQ ,

AO
SP ||SQ ,A∗

SP ||SQ , ∅〉
SP || SQ yields the strongest specification satisfiable by the parallel composition
of any two components that satisfy SP and SQ. The specification only guarantees
what can be assured by both SP and SQ, thus it is the strongest composition.
The assumption is the largest collection of environmental behaviours that can-
not violate either of the guarantees GSP or GSQ , and moreover does not permit a
component implementing one of the specifications to violate the other specifica-
tion’s assumption. Ignoring differences in alphabets, this can loosely be phrased
as RSP ||SQ∩GSP ⊆ RSQ and RSP ||SQ ∩GSQ ⊆ RSP , which is akin to the presen-
tation in [7]. However, as implementations are not required to be input-enabled,
this must be reformulated as RSP ||SQ ∩ G+(SP ,SQ) ⊆ R(SP ,SQ).

The set G+(SP ,SQ) extends G(SP ,SQ) by a single input on each of GSP and
GSQ , and also includes ε. This has the effect of ensuring that, if t ∈ G+(SP ,SQ)∩
R(SP ,SQ) and ta �∈ G+(SP ,SQ), then whatever the action type of a, wlog
t � ASP ∈ RSP ∩ GSP or ta � ASP ∈ RSP ∩ GSP . Thus, any implementation
of SP must have suppressed an output at some stage along the trace ta � ASP ,
implying the parallel composition of any two implementations of SP and SQ will
suppress an output along ta. Thus, RSP ||SQ contains only traces within GSP ||SQ
and traces not reachable by any pair of implementations of SP and SQ.

102 C. Chilton, B. Jonsson, and M. Kwiatkowska

Subject to suitable constraints on the alphabets of AG specifications, it can be
shown that the parallel composition operator on AG specifications is composi-
tional under the AG refinement relation, as the following theorem demonstrates.

Theorem 1. Let SP , S ′P , SQ and S ′Q be AG specifications such that AO
SP ∩

AO
SQ = ∅, S ′P || S ′Q ∼ SP || SQ, AI

S′
P
∩ AO

S′
Q
⊆ AI

SP ∩ AO
SQ , AO

S′
P
∩ AI

S′
Q
⊆

AO
SP ∩AI

SQ and AI
S′
P
∩AI

S′
Q
∩AI

SP ||SQ ⊆ AI
SP ∩AI

SQ . If S ′P SP and S ′Q SQ,
then S ′P || S ′Q SP || SQ.

The condition AO
SP ∩ AO

SQ = ∅ ensures that the parallel composition of the AG
specifications is defined, while S ′P || S ′Q ∼ SP || SQ means S ′P || S ′Q and SP || SQ
are comparable under refinement. The remaining three conditions are standard
for compositionality of parallel composition. From this compositionality result,
it is easy to give a sound and complete AG rule.

Theorem 2. Let P and Q be components, and let SP , SQ and S be AG speci-
fications such that P || Q ∼ S, AI

P ∩AO
Q ⊆ AI

SP ∩AO
SQ , AO

P ∩AI
Q ⊆ AO

SP ∩AI
SQ

and AI
P ∩AI

Q∩AI
SP ||SQ ⊆ AI

SP ∩AI
SQ . Then the following AG rule is both sound

and complete:

Parallel
P |= SP Q |= SQ SP || SQ S

P || Q |= S .

3.5 Conjunction

In this section we define a conjunctive operator on AG specifications for combin-
ing independently developed requirements. From this we show that the operator
is both compositional and corresponds to the meet operation on the refinement
relation. This allows us to formulate a sound and complete AG rule.

The conjunction of AG specifications SP and SQ is only defined when AI
SP ∪

AI
SQ is disjoint fromAO

SP∪AO
SQ , in which case we say SP and SQ are composable.

The composability constraint is necessary, as otherwise it is not possible to find
an interface that can refine both SP and SQ.

Definition 13. Let SP and SQ be AG specifications composable for conjunc-
tion. Then SP ∧SQ is an AG specification 〈AI

SP∧SQ ,AO
SP∧SQ ,RSP∧SQ ,GSP∧SQ〉

defined by:

– AI
SP∧SQ = AI

SP ∪AI
SQ

– AO
SP∧SQ = AO

SP ∩AO
SQ

– RSP∧SQ = (RSP ∪RSQ) ∩ A∗
SP∧SQ

– GSP∧SQ is the intersection of the following sets:

• RSP∧SQ ∩ (GSP ∪ GSQ)
• pre(RSP ∪ GSP) ↑ε (AI

SQ \ AI
SP)

• pre(RSQ ∪ GSQ) ↑ε (AI
SP \ AI

SQ).

Assume-Guarantee Reasoning for Safe Component Behaviours 103

The assumptionRSP∧SQ is constrained to be within at least one of RSP or RSQ .
On the other hand, the guarantee GSP∧SQ must be within at least one of GSP
or GSQ , and must ensure that, if the assumption for one of the specifications is
satisfied, then the corresponding guarantee cannot have been violated.

The next two theorems show that our definition of conjunction corresponds to
the meet operator on the refinement relation, and is compositional under refine-
ment. Consequently, the set of implementations for SP ∧ SQ is the intersection
of the implementation sets for SP and SQ.
Theorem 3. Let SP and SQ be AG specifications such that SP and SQ are
composable for conjunction. Then:

– SP ∧ SQ SP
– SP ∧ SQ SQ
– SR SP and SR SQ implies SR SP ∧ SQ.

Theorem 4. Let SP , SQ, S ′P and S ′Q be AG specifications such that S ′P and
S ′Q are composable for conjunction, S ′P ∼ SQ and S ′Q ∼ SP . If S ′P SP and
S ′Q SQ, then S ′P ∧ S ′Q SP ∧ SQ.
From these strong algebraic properties, we can formulate an AG rule for con-
junction that is both sound and complete.

Theorem 5. Let P and Q be components composable for conjunction, and let
SP and SQ be AG specifications such that P ∼ SQ, Q ∼ SP and P ∧ Q ∼ S.
Then the following AG rule is both sound and complete:

Conjunction
P |= SP Q |= SQ SP ∧ SQ S

P ∧ Q |= S .

3.6 Quotient

The AG rule for parallel composition in Theorem 2 makes use of the composition
SP || SQ. To support incremental development, we need a way of decomposing
the composition to find SQ given SP . We can do this using a quotient operator.

Definition 14. Let SP and SW be AG specifications. Then the quotient SW/SP
is an AG specification 〈AI

SW/SP ,AO
SW/SP ,RSW/SP ,GSW/SP 〉, defined only when

AO
SP ⊆ AO

SW , where AI
SW/SP = AI

SW \ AI
SP , AO

SW/SP = AO
SW \ AO

SP and:

– If SP is implementable, and ε ∈ RSW implies ε ∈ RSP , then:
• RSW/SP = [RSW ∩ (GSP ASW)(AO

SW)∗] � ASW/SP
• GSW/SP = RSW/SP ∩ (X � ASW/SP), where X is the largest prefix closed

set satisfying X(AI
SP)

∗ ∩RSW ⊆ pre(GSW ∪ GSP ⇑ ASW)∩
pre((RSP ⇑ ASW) ∪ GSP ASW).

– If SP is implementable and ε ∈ RSW ∩ RSP , then RSW/SP = A∗
SW/SP and

GSW/SP = ∅.
– If SP is non-implementable, then RSW/SP = GSW/SP = ∅.

104 C. Chilton, B. Jonsson, and M. Kwiatkowska

Although not immediately obvious, the assumption in the previous definition is
closed under output-extensions. Before explaining the definition, we introduce
the following theorem, which shows that the quotient operator on AG specifica-
tions yields the weakest decomposition of the parallel composition.

Theorem 6. Let SP and SW be AG specifications. Then there exists an AG
specification SQ such that SP || SQ SW iff the following properties hold:

– The quotient SW/SP is defined
– SP || (SW/SP) SW
– SQ SW/SP .

To make sense of the definition for quotient (in the difficult case of SP being
implementable and ε ∈ RSW implies ε ∈ RSP), it is necessary to consider the
final two results in Theorem 6. For these, we need to show that: (i) RSW ⊆
RSP ||(SW/SP); and (ii) RSW ∩ GSW ⊆ violations(SP || (SW/SP)). Clause (i)
amounts to showingRSW∩G+(SP ,SW/SP) ⊆ R(SP ,SW/SP), i.e., the condition
for parallel composition. Thus, the assumption RSW/SP is the smallest output-
closed set such that t ∈ RSW and t ∈ GSP ASW implies t ∈ RSW/SP ⇑ ASW .
The cases of t �∈ RSP ⇑ ASW or t �∈ GSW/SP ASW are handled by GSW/SP .

Considering the guarantee GSW/SP , it is obvious that it need only be contained
within the assumption RSW/SP . Moreover, it is safe to have t ∈ GSW/SP ASW
if t �∈ GSP ASW or t ∈ RSP ⇑ASP ASW ; this is equivalent to requiring

t ∈ pre((RSP ⇑ ASW)∪GSP ASW). For requirement (ii), if t ∈ GSW/SP ⇑ ASW ,
then it must be the case that t �∈ GSW implies t �∈ GSP ⇑ ASW . This is equivalent
to requiring t ∈ pre(GSW ∪GSP ⇑ ASW). Piecing these conditions together yields
a definition of quotient that is correct by construction.

Theorem 7. Let SP and SW be AG specifications such that P ranges over com-
ponents having the same interface as SP , and Q is a component having the same
interface as SW/SP . If SW/SP is defined (i.e., AO

SP ⊆ AO
SW), then the following

AG rule is sound and complete:

Quotient
∀P · P |= SP implies P || Q |= SW

Q |= SW/SP .

The restriction on P and SP having the same interface, and Q and SW/SP
having the same interface, is necessary, because the parallel operator is only
compositional under certain restrictions on the interfaces (cf Theorem 1).

3.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel compo-
sition so that it makes use of quotient on AG specifications when we know the
global specification S. This is useful for system development, as we will often
have the specification of a global system, rather than the specifications of the
systems to be composed.

Assume-Guarantee Reasoning for Safe Component Behaviours 105

Corollary 1. Let P and Q be components such that AI
P ∩AI

Q = ∅, and let SP ,
SQ and S be AG specifications. If AO

SP ∩ AO
SQ = ∅, P || Q ∼ S, AI

P ∩ AO
Q ⊆

AI
SP ∩ AO

SQ and AO
P ∩ AI

Q ⊆ AO
SP ∩ AI

SQ , then the following rule is both sound
and complete:

Parallel-Decompose
P |= SP Q |= SQ SQ S/SP

P || Q |= S .

This rule, based on Theorem 2, differs in having the premise SQ S/SP in place
of SP || SQ S. This substitution is permitted by the results of Theorem 6.
The condition AI

P ∩ AI
Q = ∅ is necessary in order to show that SP || SQ

SP || (S/SP), given the constraints on parallel compositionality, and the fact
that AI

SP and AI
S/SP are always disjoint.

4 A Printing Example

We illustrate our assume-guarantee framework on a simple example of component-
based design for a system concerned with printing a document. The system as
a whole is composed of a job scheduler, a printer controller and the physical
printer itself. Intuitively, the scheduler decides when a print job can start, and
expects to be informed when the job has finished. The controller, on the other
hand, waits for the start signal from the scheduler, after which it instructs the
printer to print the document, and awaits confirmation from the printer that the
document has printed. At this stage, the controller will signal to the scheduler
that the job has finished. The printer accepts a print command, after which it
will start to print the document, and will signify when the document is printed.

We iteratively derive a design by successively applying AG rules and construc-
tions. We start by making use of two specifications for the combined effect of
the scheduler and printer controller:

1. Spec1: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then the number of job starts must be equal to or
one greater than the number of requests sent to print.

2. Spec2: If the number of jobs sent to print is equal to or one greater than
the number of jobs printed, then the number of printed documents must be
equal to or one greater than the number of jobs finished.

Spec1 and Spec2 can be represented by the AG specifications 〈RSpec,GSpec1〉
and 〈RSpec,GSpec2〉 respectively, where the assumptions and guarantees are de-
picted in Figure 1. For simplicity, we represent sets of traces by means of finite
automata, and annotate states with an F to indicate that a trace becomes in-
consistent. The combined effect of Spec1 and Spec2 is given by the conjunctive
specification Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉, the guarantee of which is
presented in Figure 2.

106 C. Chilton, B. Jonsson, and M. Kwiatkowska

RSpec

print!

printed?

print!

start! start! start!
finish! finish! finish!

print!

error?

GSpec1

start!

print!
finish! finish!
printed? printed?

GSpec2

printed?

finish!
start! start!
print! print!

Fig. 1. Assumption and guarantees for Spec1 and Spec2

GSpec1∧Spec2

start! print! start! print!
start!

print!

print!
start!

print!

finish! finish!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

Fig. 2. The guarantee for Spec1 ∧ Spec2

F

start! print! start!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

printed?

printed?

start!
finish!

print!

printed?

printed?

printed?

Fig. 3. The most general implementation of Spec1 ∧ Spec2

Assume-Guarantee Reasoning for Safe Component Behaviours 107

RSched

start?

finish?

GSched

start?

finish?

Fig. 4. Specification of a scheduling constraint Sched

R(Spec1∧Spec2)/Sched

print!

printed?

print!
print!

error?

print!

printed?

print!
print!

error?

start! finish!

finish! finish! finish!

finish!

start!
print!

finish!

start!
print!

finish!

start!
print!

start! start! start!

start!
print!

finish!

start!
print!

finish!

start!
print!

finish!

G(Spec1∧Spec2)/Sched

start!

print!

printed?

finish!

Fig. 5. Specification for (Spec1 ∧ Spec2)/Sched

To demonstrate compositional AG reasoning, by Definition 10 we can find im-
plementations I(Spec1) and I(Spec2) of Spec1 and Spec2 respectively, which by
Theorem 5 allows us to derive I(Spec1) ∧ I(Spec2) |= Spec1∧ Spec2. According
to Lemma 4, this means that I(Spec1) ∧ I(Spec2) imp I(Spec1 ∧ Spec2). Now
by Theorem 3, we know Spec1 ∧ Spec2 Spec1, so from Lemma 2 we obtain
I(Spec1 ∧ Spec2) |= Spec1, and from Lemma 4 we derive I(Spec1 ∧ Spec2) imp

I(Spec1). By similar reasoning it can be shown that I(Spec1 ∧ Spec2) imp

I(Spec2), hence by Theorem 2 of [4] we acquire I(Spec1 ∧ Spec2) imp I(Spec1)∧
I(Spec2). Mutual refinement of components in our framework corresponds to
equality of models, so I(Spec1 ∧ Spec2) = I(Spec1) ∧ I(Spec2). Such an imple-
mentation is shown in Figure 3. Note how this component is unwilling to print
after encountering two start requests not separated by a job being printed. This
is because RSpec can issue an error after such an occurrence, but this is not

108 C. Chilton, B. Jonsson, and M. Kwiatkowska

accepted by GSpec1∧Spec2. Moreover, this implementation is able to start and
print an unbounded number of jobs without ever having to finish one of them.

We now propose an alternative derivation based on quotient, by making use of
a constraint specification Sched = 〈RSched,GSched〉 that requires start and finish
to alternate (shown in Figure 4). We wish to find an implementation for the
printer controller, let it be called Controller, such that Controller is an imple-
mentation of Spec1 ∧ Spec2 subject to the constraints imposed by Sched. This
is equivalent to requiring Controller |= (Spec1 ∧ Spec2)/Sched. The specification
(Spec1∧ Spec2)/Sched is exhibited in Figure 5, and the most general implemen-
tation is obtained from G(Spec1∧Spec2)/Sched by appending all non-enabled inputs
as inconsistent traces. In contrast to I(Spec1 ∧ Spec2), the constraints imposed
by Sched on Spec1 ∧ Spec2 means that any candidate implementation for Con-
troller will ensure that there can be at most one outstanding job that has not
finished.

5 Conclusion

We have presented a complete specification theory for reasoning about safety
properties of component behaviours with an explicit separation of assumptions
from guarantees. Our theory supports refinement based on traces, which relates
specifications by implementation containment. We define compositional oper-
ations of parallel composition, as well as – for the first time in this setting
– conjunction and quotient, directly on AG specifications. We give sound and
complete AG reasoning rules for the three operators, which preserve safety and
enable the reasoning about, e.g., safe substitutivity of components synthesised
at run-time. The theory can be extended with disjunction and hiding, as well
as liveness through the introduction of quiescence. The AG rules can also be
fully automated, as they are based on simple set-theoretic operations and do not
require the learning of assumptions. The refinement is linear-time, and hence
amenable to automata-theoretic approaches.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE.

References

1. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

2. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with com-
ponent reuse. In: Proc. 8th ACM International Conference on Embedded Software,
EMSOFT 2008, pp. 79–88. ACM (2008)

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. Inform. 108, 119–149
(2011)

Assume-Guarantee Reasoning for Safe Component Behaviours 109

4. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifi-
cation Theory for Component Behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 148–168. Springer, Heidelberg (2012)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26,
109–120 (2001)

6. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20, 205–224 (2008)

7. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Program-
ming Languages and Systems 15, 73–132 (1993)

8. Abadi, M., Plotkin, G.: A logical view of composition. Theoretical Computer Sci-
ence 114, 3–30 (1993)

9. Pnueli, A.: Logics and models of concurrent systems, pp. 123–144. Springer (1985)
10. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proc. 4th

Annual Symposium on Logic in Computer Science, pp. 353–362. IEEE Press (1989)
11. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems 16 (1991)
12. Maier, P.: A Set-Theoretic Framework for Assume-Guarantee Reasoning. In: Ore-

jas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 821–
834. Springer, Heidelberg (2001)

13. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning
methods. ACM Trans. Comput. Logic 11, 16:1–16:22 (2010)

14. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008)

15. Larsen, K.G., Nyman, U., W ↪asowski, A.: Interface Input/Output Automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

16. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., W ↪a-
sowski, A.: Moving from Specifications to Contracts in Component-Based Design.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer,
Heidelberg (2012)

17. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. FMSD 38, 1–32 (2011)

18. Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-Guarantee Reasoning for Safe
Component Behaviours. Technical Report CS-RR-12-07, Department of Computer
Science, University of Oxford (2012)

19. Collette, P.: Application of the Composition Principle to Unity-Like Specifications.
In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT
1993. LNCS, vol. 668, pp. 230–242. Springer, Heidelberg (1993)

20. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17, 507–534 (1995)

21. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time tem-
poral logic. Theoretical Computer Science 167, 47–72 (1996)

A Petri Net Based Analysis of Deadlocks

for Active Objects and Futures�

Frank S. de Boer1, Mario Bravetti2, Immo Grabe1,
Matias Lee3, Martin Steffen4, and Gianluigi Zavattaro3

1 CWI, Amsterdam, The Netherlands
2 University of Bologna, Focus Team INRIA, Italy

3 University of Córdoba, Argentina
4 University of Oslo, Norway

Abstract. We give two different notions of deadlock for systems based
on active objects and futures. One is based on blocked objects and con-
forms with the classical definition of deadlock by Coffman, Jr. et al. The
other one is an extended notion of deadlock based on blocked processes
which is more general than the classical one. We introduce a technique to
prove deadlock freedom of systems of active objects. To check deadlock
freedom an abstract version of the program is translated into Petri nets.
Extended deadlocks, and then also classical deadlock, can be detected
via checking reachability of a distinct marking. Absence of deadlocks in
the Petri net constitutes deadlock freedom of the concrete system.

1 Introduction

The increasing importance of distributed systems demands flexible communi-
cation between distributed components. In programming languages like Erlang
[3] and Scala [13] asynchronous method calls by active objects have successfully
been introduced to better combine object-orientation with distributed program-
ming, with a looser coupling between a caller and a callee than in the tightly
synchronized (remote) method invocation model. In [5] so-called futures are used
to manage return values from asynchronous calls. Futures can be accessed by
means of either a get or a claim primitive: the first one blocks the object until
the return value is available, while the second one is not blocking as the control
is released. The combination of blocking and non-blocking mechanisms to access
to futures may give rise to complex deadlock situations which require a rigorous
formal analysis. In this paper we give two different notions of deadlock for sys-
tems based on active objects and futures. One is based on blocked objects and
conforms with the classical definition of deadlock by Coffman, Jr. et al [8]. The
other one is an extended notion of deadlock based on blocked processes which is

� Part of this work has been supported by the EU-project FP7-231620 HATS (Highly
Adaptable and Trustworthy Software using Formal Methods), Eramus Mundus Ac-
tion 2 Lot 13A EU Mobility Programme 2010-2401/001-001-EMA2 and EU 7FP
grant agreement 295261 (MEALS).

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 110–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cse.chalmers.se/research/hats/

A Petri Net Based Analysis of Deadlocks 111

more general than the classical one. We introduce a technique to prove deadlock
freedom of models of active objects by a translation of an abstraction of the
model into Petri nets. Extended deadlocks, and then also classical deadlock, can
be detected via checking reachability of a distinct marking. Absence of deadlocks
in the Petri net constitutes deadlock freedom of the concrete system.

The formally defined language that we consider is Creol [15] (Concurrent Re-
flective Object-oriented Language). It is an object oriented modeling language
designed for specifying distributed systems. A Creol object provides a high-level
abstraction of a dedicated processor and thus encapsulates an execution thread.
Different objects communicate only by asynchronous method calls, i.e., similar
to message passing in Actor models [12]; however in Creol, the caller can poll or
wait for return values which are stored in future variables. An initial configura-
tion is started by executing a run method (which is not associated to any class).
The active objects in the systems communicate by means of method calls. When
receiving a method call a new process is created to execute the method. Methods
can have processor release points which define interleaving points explicitly.When
a process is executing, it is not interrupted until it finishes or reaches a release
point. Release points can be conditional: if the guard at a release point evaluates
to true, the process keeps the control, otherwise, it releases the processor and be-
comes disabled as long as the guard is not true. Whenever the processor is free,
an enabled process is nondeterministically selected for execution, i.e., scheduling
is left unspecified in Creol in favor of more abstract modeling.

In order to define an appropriate notion of deadlock for Creol, we start by
considering the most popular definition of deadlock that goes back to an example
titled deadly embrace given by Dijkstra [7] and the formalization and general-
ization of this example given by Coffman Jr. et al.[8]. Their characterization
describes a deadlock as a situation in a program execution where different pro-
cesses block each other by denial of resources while at the same time requesting
resources. Such a deadlock can not be resolved by the program itself and keeps
the involved processes from making any progress.

A more general characterization by Holt [14] focuses on the processes and not
on the resources. According to Hold a process is deadlocked if it is blocked for-
ever. This characterization subsumes Coffman Jr.’s definition. A process waiting
for a resource held by another process in the circle will be blocked forever. In
addition to these deadlocks Holt’s definition also covers deadlocks due to infinite
waiting for messages that do not arrive or conditions, e.g. on the state of an
object, that are never fulfilled.

We now explain our notions of deadlock by means of an example. Consider
two objects o1 and o2 belonging to classes c1 and c2, respectively, with c1 defining
methods m1 and m3 and c2 defining method m2. Such methods, plus the method
run, are defined as follows:

– run() ::= o1.m1()

– m1() ::= letx1 = o2.m2() in get@(x1, self); ret

– m2() ::= letx2 = o1.m3() in get@(x2, self); ret

– m3() ::= ret

112 F.S. de Boer et al.

The variables x1 and x2 are futures, accessed (in this case) with the blocking
get statement. This program clearly originates a deadlock because the execution
of m1 blocks the object o1 and the execution of m2 blocks the object o2. In
particular, the call to m3 cannot proceed because the object o1 is being blocked
by m1 waiting on its get. We call classical deadlocks these cases in which there
are groups of objects such that each object in the group is blocked by a get on
a future related to a call to another object in the group.

Consider now the case in which the method m2 is defined as follows:

– m2() ::= letx2 = o1.m3() in claim@(x2, self); ret

In this case, object o2 is not blocked because m2 releases the control by perform-
ing a claim instead of a get. Nevertheless, the process executing m2 will remain
blocked forever. We call extended deadlock this case of deadlock at the level of
processes.

After formalization of the notions of classical and extended deadlock, we prove
that the latter includes the former. Moreover, as our main technical contribution,
we show a way for proving extended deadlock freedom. The idea is to consider an
abstract semantics of Creol expressed in terms of Petri nets. In order to reduce to
Petri nets, we abstract away several details of Creol, in particular, we represent
futures as quadruples composed of the invoking object, the invoking method,
the invoked object, and the invoked method. For instance, the above future x1

is abstractly represented by o1.m1@o2.m2.
Due to this abstraction, in the abstract semantics a process could access a

wrong future simply because it has the same abstract name. Consider, for in-
stance, the following example:

– run() ::= o1.m1()
– m1() ::= letx1 = o2.m2(1) in

letx2 = o2.m2(2) in
get@(x2, self); claim@(x1, self); ret

– m2(x1) ::= if x1 = 1 then ret else letx2 = o1.m3() in claim@(x2, self); ret
– m3() ::= ret

Both the futures x1 and x2 will be represented by the same abstract name
o1.m1@o2.m2. For this reason, even if this program originates a deadlock when
get is performed on x2, according to the abstract semantics the system could
not deadlock. In fact, the return value of the first call could unblock the get as
the two futures have the same name in the abstract semantics. To overcome this
limitation, we add in the abstract semantics marked versions of the methods:
when a method m is invoked, the abstract semantics nondeterministically selects
either the standard version of m or its marked version denoted with m?. Both
method versions have the same behavior, but the return value will be stored in
two futures with two distinct abstract names. For instance, in the example above,
if we consider that the first call to m2 actually activates the standard version
m2 while the second one activates the marked version m2?, there will be no
confusion between the two futures as their abstract names will be o1.m1@o2.m2

A Petri Net Based Analysis of Deadlocks 113

and o1.m1@o2.m2?, respectively. In this case, the system will deadlock also under
the abstract semantics.

To apply this technique internal choice is an obstacle. We explain this with
more details in Section 4. To overcome this problem we move all internal choices
up front. During the transformation we make a data abstraction, remove super-
fluous internal steps and duplicated choices from the program to reduce the size
of the Petri net. This transformation can add spurious deadlock but it cannot
remove them because the new abstract model is an overapproximation of the
original system.

The Petri net based abstract semantics allow us to obtain a decidable way for
proving extended deadlock freedom. In fact, reachability problems are decidable
in Petri nets, and we show how to reduce extended deadlock to a reachability
problem in the abstract Petri net semantics.

Outline. In Section 2 we report the definition of Creol. We present the two
notions of deadlock in Section 3. In Section 4 we present the translation into
Petri nets. In Section 5 we present the main result of the paper: if in the Petri
net associated to a program a particular marking cannot be reached then the
program is deadlock free, and we show that such reachability problem is decidable
for Petri nets. Section 6 concludes the paper.

Extended version of the paper. Due the lack of space, neither the translation to
Petri net nor the complete proof of our main result, Theorem 1, is presented in
detail in this paper. These ones can be found in [6]

2 A Calculus for Active Objects

In this section we present a calculus with active objects communicating via
futures, based on Creol. The calculus is a slight simplification of the object
calculus as given in e.g. [2], and can be seen as an active-object variant of the
concurrent object calculus from [11]. Specific to the variant of the language here
and the problem of deadlock detection are the following key ingredients of the
communication model:

Futures. Futures are a well-known mechanism to hold a “forthcoming” result,
calculated in a separate thread. In Creol, the communication model is based
on futures for the results of method calls which results in a communication
model based of asynchronously communicating active object. In this paper
we do not allow references to futures to be passed around, i.e. the futures in
this paper are not first-class constructs. This restriction is enforced (easily)
by the type system.

Obtaining the Results and Cooperative Scheduling. Method calls are
done asynchronously and the caller obtains the result back when needed,
querying the future reference. The model here support two variants of that
querying operation: the non-blocking claim-statement, which allows resched-
ule of the querying code in case the result of not yet there, and the blocking

114 F.S. de Boer et al.

Table 1. Abstract syntax

C ::= 0 | C ‖ C | n[(O)] | n[n, F, L] | n〈t〉 component

O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= v field
t ::= v | stop | let x:T = e in t thread
e ::= t | if e then e else e | n.l(�v) | v.l | v.l := v expr.

| claim@(n, n) | get@(n, n) | get@n

| suspend(n) | grab(n) | release(n)
v ::= x | n values
L ::= ⊥ | � lock status

get-statement, which insist on getting the result without a re-scheduling
point. In [2], we did not consider the latter as part of the user syntax.

Statically Fixed Number of Objects. In this paper we omit object creation
to facilitate the translation to Petri nets.

The type system and properties of the calculus, e.g. subject reduction and ab-
sence of (certain) run-time errors, presented in [2] still apply. For brevity we
only present explanation for language constructs relevant to the development of
deadlocks. Missing details with respect to other language constructs, formaliza-
tions and proofs of the mentioned (and further) properties of the calculus can
be found in [2].

2.1 Syntax

The abstract syntax is given in Table 1, distinguishing between user syntax and
run-time syntax, the latter underlined. The user syntax contains the phrases in
which programs are written; the run-time syntax contains syntactic constituents
additionally needed to express the behavior of the executing program in the
operational semantics.

The basic syntactic category of names n, represents references to classes, to
objects, and to futures/thread identifiers. To facilitate reading, we write o and
its syntactic variants for names referring to objects, c for classes, and n for
threads/futures, resp. when being unspecific. Technically, the disambiguation
between the different roles of the names is done by the type system. x stands for
variables, i.e., local variables and formal parameters, but not instance variables.
Besides names and variables x, we assume standard data types (such as booleans,
integers, etc) and their values without showing them in the syntax of the core
calculus. They are unproblematic for the deadlock analysis, which, using data
abstraction, concentrates on the analysis of the communication behavior.

A Petri Net Based Analysis of Deadlocks 115

A configuration C is a collection of classes, objects, and (named) threads, with
0 representing the empty configuration. The sub-entities of a configuration are
composed using the parallel-construct ‖ (which is commutative and associative,
as usual). The entities executing in parallel are the named threads n〈t〉, where t
is the code being executed and n the name of the thread. Threads are identified
with futures, and their name is the reference under which the future result value
of t will be available. A class c[(O)] carries a name c and defines its methods and
fields in O. An object o[c, F, L] with identity o keeps a reference to the class c
it instantiates, stores the current value F of its fields, and maintains a binary
lock L. The symbols �, resp., ⊥, indicate that the lock is taken, resp., free. The
initial configuration consists of a number of classes, one initial thread, and a
number of objects (with their locks free); under our restriction that we do not
allow object instantiation, and we assume that their identities are known to the
initial thread. By convention, the initial thread is assumed to be the body of a
(unique) method named run.

Besides configurations, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which are
basically sequences of expressions, written using the let-construct. The stop-
construct denotes termination, so the evaluation of a thread terminates by eval-
uating to a value or terminating with stop. A method ς(s:T).λ(�x:�T).t provides
the method body t abstracted over the ς-bound “self” parameter s the formal
parameters �x —the ς-binder is borrowed from the well-known object-calculus of
Abadi and Cardelli [1]. Note that the methods are stored in the classes but the
fields are kept in the objects.

Methods are called asynchronously, i.e., executing o.l(�v) creates a new thread
to execute the method body with the formal parameters appropriately replaced
by the actual ones; the corresponding thread identity at the same time plays
the role of a future reference, used by the caller to obtain, upon need, the even-
tual result of the method. The further expressions claim, get, suspend, grab, and
release deal with communication and synchronization. As mentioned, objects
come equipped with binary locks which assures mutual exclusion. The oper-
ations for lock acquisition and release (grab and release) are run-time syntax
and inserted before and at the end of each method body code when invoking a
method. Besides that, lock-handling is involved also when futures are claimed,
using claim or get. The get@(n, o) operation is easier: it blocks object o (it exe-
cutes in) if the result of future n is not (yet) available, i.e., if the thread n is not
of the form of n〈v〉. The claim@(n, o), is a more “cooperative” version of get: if
the value is not yet available, it releases the lock of the object o (it executes in)
to try again later, meanwhile giving other threads the chance to execute in that
object. By convention, user-syntax commands only refer to the self-parameter
self , (i.e., the ς-bound variable) in their object-argument, i.e., they are writ-
ten claim@(n, self), get@(n, self), and suspend(self). We also include a variant
get@n of the get-operation as part of the run-time syntax, for consumption of
the return value also when a lock is not held (it is needed to define the seman-
tics of claim). As usual we use sequential composition t1; t2 as syntactic sugar

116 F.S. de Boer et al.

for letx:T = t1 in t2, when x does not occur free in t2. We refer to [2] for fur-
ther details on the language constructs, a type system for the language and a
comparison with the multi-threading model of Java.

2.2 Operational Semantics

Relevant reduction steps of the operational semantics are shown in Table 2,
distinguishing between confluent steps � and other transitions

τ−→. The �-steps,
on the one hand, do not access the instance state of the objects. The

τ−→-steps,
on the other hand, access the instance state, either by reading or by writing
it, and may thus lead to race conditions. When not differentiating between the
two kinds of transitions, then we replace both symbol by −→. An execution is
a sequence of configurations, C0, . . . , Cn such that Ci+1 is obtained from Ci by
applying a reduction step. We denote this execution by C0 −→ . . . −→ Cn.

We omit reduction rules dealing with the basic constructs like substitution,
sequential composition (let), conditionals, field access, and lock handling. These
rules are straightforward (cf. [2]). For deadlock detection later, most of these
constructs will be subject to data abstraction.

Table 2. Operational semantics

c[(F ′,M)] ‖ o[c, F, L] ‖ n1〈let x:T = o.l(�v) in t1〉 τ−→
c[(F ′,M)] ‖ o[c, F, L] ‖ n1〈let x:T = n2 in t1〉

‖ n2〈let x:T2 = grab(o);M.l(o)(�v) in release(o);x〉
Futi

n1〈v〉 ‖ n2〈let x : T = claim@(n1, o) in t〉 � n1〈v〉 ‖ n2〈letx : T = v in t〉 Claim1
i

t2 �= v
Claim2

i
n2〈t2〉 ‖ n1〈let x : T = claim@(n2, o) in t

′
1〉 �

n2〈t2〉 ‖ n1〈let x : T = release(o); get@n2 in grab(o); t
′
1〉

n1〈v〉 ‖ n2〈let x : T = get@(n1, o) in t〉 � n1〈v〉 ‖ n2〈let x : T = v in t〉 Get1
i

n1〈v〉 ‖ n2〈let x : T = get@n1 in t〉 � n1〈v〉 ‖ n2〈let x : T = v in t〉 Get2
i

n〈suspend(o); t〉 � n〈release(o); grab(o); t〉 Suspend

Invoking a method (cf. rule Futi) creates a new future reference and a cor-
responding thread is added to the configuration. In the configuration after the
reduction step, the meta-mathematical notation M.l(o)(�v) stands for t[o/s][�v/�x],

when the method suite [M] equals [. . . , l = ς(s:T).λ(�x:�T).t, . . .]. Upon termina-
tion, the result is available via the claim- and the get-syntax (cf. the Claim-
and Get-rules), but not before the lock of the object is given back again using
release(o). If the thread is not yet terminated, in the case of claim statement, the
requesting thread suspends itself, thereby giving up the lock. The rule Suspend

A Petri Net Based Analysis of Deadlocks 117

releases the lock to allow for interleaving. To continue, the thread has to reac-
quire the lock.

The above reduction relations are used modulo structural congruence, which
captures the algebraic properties of especially parallel composition.

3 Deadlock

We give two different notions of deadlock in Creol. The first one follows [8]. In
this case not only processes are blocked but also the objects hosting them.

The second notion resembles the definition of deadlock by Holt [14]. Instead
of looking at blocked objects we look at blocked processes. A blocked process
does not necessarily block the object hosting it.

To facilitate the definition of deadlock we introduce two notions of the location
and state of a process. The notion of a waiting process links a process to another
process or to an object. In the first case, it is waiting to read a future that the
other process has to calculate. In the second case, the process is waiting to obtain
the lock of the object.

Definition 1 (Waiting Process). A process n1〈t〉 is waiting for:

1. n2 iff 〈t〉 is of the form 〈letx:T = claim@(n2, o) in t′〉, 〈letx:T =
get@(n2, o) in t′〉, or 〈letx:T = get@n2 in t′〉;

2. o iff 〈t〉 is of the form 〈letx:T = grab(o) in t′〉

The notion of a blocking process links a process that is waiting for a future while
holding the lock of the object.

Definition 2 (Blocking Process). A process n1〈t〉 blocks object o iff 〈t〉 is of
the form 〈letx : T = get@(n2, o) in t′〉.
Note that a process needs to hold the object lock and execute a blocking state-
ment, i.e. get-statement, to block an object. Furthermore note that the process
can at most acquire one lock, i.e. the lock of its hosting object.

Our notion of a classical deadlock follows the definition of deadlock by Coff-
man Jr. et al.[8]. The resource of interest is the exclusive access to an object
represented by the object lock. In opposite to the multithreaded setting, e.g. like
in Java, where a thread can collect a number of these exclusive right, a process
in the active object setting can at most acquire the lock of the object hosting it.
But by calling a method on another object and requesting the result of that call
it requests access to that object indirectly. Or to be more precise a process can
derive the information, that the process created to handle its call and access to
the callee, by the availability of the result in terms of the future.

Definition 3 (Classical Deadlock). A configuration Θ is deadlocked iff there
exists a set of objects O such that, for all o ∈ O, o is blocked by a process n1

which is waiting for a process n2 which is waiting for o′ ∈ O.

118 F.S. de Boer et al.

Note that the definition of “waiting for” plays a crucial role here, because the
process is waiting, the process does not finish its computation. Being blocked by
a process, another process can only gain access to the object after the blocking
process has made progress. Since each process blocking an object in O is waiting
for another process blocking an object in O we have a classical deadlock situa-
tion. Note that a blocking process does not necessarily directly wait for another
blocking process but can also wait for a process which is waiting to get access
to an object in O. But this process can only proceed if the process blocking the
object proceeds.

The second notion resembles the definition of deadlock by Holt [14]. Instead
of looking at blocked objects we look at blocked processes. A process can be
blocked due to the execution of either a get–statement or a claim–statement. In
the first case the object is blocked via the active process, in the second case only
the process is blocked. Processes that are blocked on a claim–statement are not
part of a deadlock according to the first definition since they are not holding
any resources. Yet they can be part of a circular dependency that prevents them
from making any progress.

Definition 4 (Extended Deadlock). A configuration Θ is deadlocked iff
there exists a finite set of processes N such that, for all n1 ∈ N , n1 is wait-
ing for n2 ∈ N , or waiting for o which is blocked by n2 ∈ N .

We require the set of processes to be finite in order to guarantee circularity. This
notion of deadlock is more general than the classical one.

Corollary 1. Every classical deadlock is an extended deadlock.

4 Translation into Petri Nets

We translate Creol programs into Petri nets in such a way that extended dead-
locks in a Creol program can be detected by analyzing the reachability of a
given class of markings (that we will call extended deadlock markings) in the
corresponding Petri net.

We first recall the definition of Petri nets. A Petri net is a tuple 〈P, T, �m0〉
such that P is a finite set of places, T is a finite set of transitions, and �m0 is a
marking, i.e. a mapping from P to N that defines the initial number of tokens in
each place of the net. A transition t ∈ T is defined by a mapping •t (preset) from
P to N, and a mapping t• (postset). A configuration is a marking �m. Transition
t is enabled at marking �m iff •t(p) ≤ �m(p) for each p ∈ P . Firing t at �m leads

to a new marking �m′ defined as �m′(p) = �m(p)−•t(p) + t•(p), for every p ∈ P . A
marking �m is reachable from �m0 if it is possible to produce it after firing finitely
many times transitions in T .

During this translation we apply abstraction with respect to the futures. In
Creol a fresh unique label is created for each method invocation; instead, we use
abstract labels for the futures only identifying a tuple of caller, calling method,
callee, and called method. The reason for this abstraction is to get a Petri nets

A Petri Net Based Analysis of Deadlocks 119

with finite places. Yet we still allow for an unbounded number of method invo-
cations, i.e. an unbounded number of processes.

In the Petri net, we will have two kinds of places: those representing a method
code to be executed by a given object, and those representing object locks. In
order to keep the Petri net finite, we assume that only boundedly many ob-
jects will be present in a Creol configuration (otherwise we will have to consider
unboundedly many places for the object locks). Moreover, in the places repre-
senting the method code to be executed, we abstract away from the data that
could influence such method (like, e.g., the object fields) otherwise we would
need infinitely many places.

Due to the abstraction with respect to the labels of futures, the abstract Petri
net semantics could have the following token confusion problem. Namely, if there
are two concurrent invocations between the same two methods of the same two
objects, in the Petri net it could happen that one caller could read the reply
generated by the method actually called by the other one. To avoid at least the
propagation of the token confusion problem, in the Petri net, as soon a caller
accesses to a return value in a future, such value is consumed. In this way, we
assign the future to a concrete caller and consuming the future prevents it from
being claimed by two different processes. To apply this technique in a sound way
we have to transform the program. Removing the future upon first claim implies
that it is not available for consecutive claims (in opposite to the concrete case).
On the other hand consecutive claims do not provide any new information with
respect to deadlock detection. Once a future has been claimed in the concrete
case all consecutive claims pass. We model this by removing consecutive claims
from the program.

But this approach only allows to avoid the token confusion for sequential
identical abstract processes. In the case of concurrent identical abstract processes
this is not enough. To address this problem each future creation can be marked
or not. The Petri net will be defined in such a way that token confusion will
not occur between a marked and non-marked call. The deadlock analysis will be
done only over the marked processes: if only the method calls directly involved
in the deadlock are marked, then there will be no token confusion between the
method executions which are involved in the deadlock and those which are not.

Internal choice is an obstacle with respect to this approach. In a sequence of
internal choices the kind of a claim (first or consecutive) depends on the choices
taken so far and can vary depending on them. To overcome this problem we
move all internal choices up front.

During the transformations we remove superfluous internal steps and dupli-
cated choices from the program to reduce the size of the Petri net. For the tech-
nical details of the transformations we refer the reader to [6]. We now describe
the Petri net construction more in details.

4.1 Places and Tokens

The resulting Petri net contains two kinds of places:

120 F.S. de Boer et al.

Locks. Places identifying the locks of the objects. Each object has its designated
lock place labeled by the unique name of the object. A token in such a place
represents the lock of the corresponding object being available. There is at
most one token in such a place.

Process. Places identifying a particular process in execution or the future as a
result of the execution of a process. These places are labeled with l〈t〉 where
l is an abstract label identifying the call and t is abstract method code to be
“executed”. A token in this place represents one instance of such a process
in execution or a future. In case of a future, the token is consumed if the
future is claimed.

o l〈t〉

(a) Places for objects and abstract
processes

start

l〈t1〉

l〈tn〉
(b) Transition from the initial place start:
ti’s are the abstract traces of the initial pro-
cess run

Fig. 1. Places and Initial transitions

4.2 Code Abstractions

In [6] the code abstraction is defined in detail, here we give a quick description.
The syntactical transformation is composed of five functions:

Step One s1. It applies data abstraction.
Step Two s2. It removes choices. If t is the code of a method, s2(s1(t)) is a

set of sequential code without branching. We will call these also “traces”, as
they represent possible (abstract) executions of the method.

Step Three sF3 . It removes the redundant claims of a future, i.e. the claims
that are after the first one with respect to particular future. Notice that
this function is applied over traces, then, it can be checked when a future
is claimed. It also replaces claim–statement by a sequence of release, get and
grab statements. We justify this decision below, when we define the transi-
tion associated to the claim–statement. The function also replaces suspend–
statement by a release and a grab. F is a set used to keep track of the already
claimed futures.

Step Four s4. The function takes a trace and returns a set of traces. The set is
constructed such that each trace in the set is the received trace with at most

A Petri Net Based Analysis of Deadlocks 121

one of the future claims marked. In this way, the function takes into account
every claim for deadlock analysis (if a deadlock exists, the corresponding
trace will be included among the possible non-deterministic ones considered).
Notice that a trace without mark, i.e. the received trace, is also included.

Step Five s5. It applies the abstraction on the futures replacing them with the
tuple calling object, calling method, called object, and called method.

Functions sF3 , s4 and s5 are lifted to support sets of traces. Then the code
transformation is defined as the composition of all the functions ST ::= s5 ◦
s4 ◦ s∅3 ◦ s2 ◦ s1 and it is applied to the method definitions. Suppose m is the
method code in a class definition, i.e. in the configuration there is a method
suite [M] equals to [. . . , l = ς(s:T).λ(�x:�T).m, . . .]. Then, ST(m) is a set of
traces where each trace represents a possible abstract execution of the method
l. A trace in ST(m) is a sequence of abstract statements of the following form:
letx:T = o.l, claim@(n, n′), get@(n, n′), get@n, suspend(n), release(n), grab(n),
stop, claim@(n?, n′), get@(n?, n′) and get@n?. Notice that the last three state-
ments include marked calls. Each trace will have at most one marked claim.

4.3 Transitions

The transitions of the Petri net are determined by the translation of the semantic
steps. For each object and each method a path for all pairs of caller and calling
method is created. We give the translation for the individual execution steps
according to the operational semantics in Section 2.2. In case the syntactical
transformation affects the operational step we briefly discuss the consequences
of the transformation.

Initial Transitions. A Creol program is defined by an initial configuration C0

composed of a set of classes, a set of objects and an initial thread. We denote
the initial thread run. This one is the main process in the program, then it is
not called by another thread, does not belong to any object, nor class. The code
associated to this thread has to be also translated using ST. The election of the
trace for the main process is done by the initial transition depicted in Fig. 1(b),
to do this we have included an auxiliary place start. This place will be the initial
place of the Petri net.

Method Calls. We present the Petri net transitions for a method call in Fig.
2. A process place in the Petri net is labeled with a tuple o1.l1@o2.l2 where
o1 denotes the caller, l1 the calling method, o2 the callee, and l2 the called
method. We abbreviate parts of the label by c@o.l resp. o.l@c or the whole label
by l if details are not needed. Depending on whether the result of the call will
be assumed to be part of a deadlock the created process is marked (see Fig.
2(a), notice the symbol “?”) or is not (see Fig. 2(b)). The method body of the
called process t′ is in both cases of the form grab(o); to.l; release(o) where to.l is
an abstract trace execution of the method l of the object o according to the
definitions in the associated class. At this point, the abstract execution unifies

122 F.S. de Boer et al.

all the internal choices into one general internal choice that is resolved when the
method is called.

c@o′.l′〈let o.l?; t〉

o′.l′@o.l?〈t′〉

c@o′.l′〈t〉

(a) marked calls

c@o′.l′〈let o.l; t〉

o′.l′@o.l〈t′〉

c@o′.l′〈t〉

(b) calls without marking

Fig. 2. Transitions for method calls

Lock Handling. To execute the grab(o) statement the object lock of object o
must be available. When releasing the lock of an object o by release(o) a token
is added to the place representing the object lock. (Fig. 3)

o

l〈grab(o); t〉

l〈t〉

(a) grabbing the lock

o

l〈release(o); t〉

l〈t〉

(b) releasing the lock

Fig. 3. Transitions for lock handling

Claiming Results. We present the Petri net transitions for claiming the result
of a method call in Fig. 4. The notations “o.l+” or “o.l∗” denote that o.l can
be marked or not: formally, + and ∗ are meta-variables that can be either the
empty string or ?. As was explained before, to avoid the token confusion of
sequential calls, the tokens are consumed. Notice that removing the result is not
problematic with respect to multiple claims of a value because subsequent claims
are removed in the syntactical transformation.

Rescheduling. In Creol semantics there are two different kinds of rescheduling.
Unconditional rescheduling, using keyword suspend(o), which is translated to
release(o); grab(o) and covered by the transition rules for lock handling (Fig. 3).

A Petri Net Based Analysis of Deadlocks 123

c@o′.l′+〈get@o.l∗; t〉

c@o′.l′+〈t〉

o′.l′+@o.l∗〈〉

(a) non-blocking

c@o′.l′+〈get@(o.l∗, o); t〉

c@o′.l′+〈t〉

o′.l′+@o.l∗〈〉

(b) blocking

Fig. 4. Translation of a claim of a result

The translation of conditional rescheduling on the other hand deviates from
the operational semantics of the claim statement. In opposite to the concrete
case the object lock is always released upon reaching the claim statement. The
statement claim@(n, o) is translated to the sequence release(o); get@n; grab(o)
(by function s3). In the concrete case the lock is only released if the result, that
the process is waiting for, is not available. In case the result is available the
process continues its execution without rescheduling.

This deviation is justified by the syntactical transformation. In the concrete
case the rules for the operational semantics have to cover both the first claim of
a result and the subsequent claims. In case of a subsequent result the claim state-
ment has to be executed without rescheduling since the existence of the result
has been proven by the previous claim. In the abstract semantics, consecutive
claims have been removed, i.e. each claim in the abstract case is the first claim
of the result. This justifies the deviation from the operational semantics.

4.4 Petri Net Construction for Creol Programs

We complete the definition of the Petri net associated to an initial configuration.

Definition 5. Given an initial configuration
C0 = c0[(F0,M0)] ‖ . . . ‖ o0[co0 , F0, L0] ‖ . . . ‖ on[con , Fn, Ln] ‖ run〈t〉

the corresponding Petri net PC0 has one starting place start, the lock places
o0, . . . , on, and the places n〈t′〉 with:
1. n = run@run or n = run@oi.lj or n = oi′ .lj′@oi.lj with lj and lj′ methods of

the classes cj and cj′ , respectively. Same condition holds for abstract names
containing the marker ?;

2. if n = run@run then t′ is a suffix of one of the traces in ST(t);
3. if n = c@oi.lj then t′ is a suffix of one of the traces in ST(grab(oi);m[oi/self];

release(oi)), where m is the method definition of lj, namely, given the class

ci of oi and ci[(Fi,Mi)], we have [Mi] = [. . . , lj = ς(self :T0).λ(�x0:�T0).m, . . .].

The initial marking of PC0 has one token in the places start, o0, . . . , on. The
transitions are defined as already described in Section 4.3.

124 F.S. de Boer et al.

Notice that in item 3, statements grab(oi) and release(oi) are added because
processes have to acquire the lock before start running and and it has to be
released when the computation is complete. In addition, notice also that keyword
self is replaced by the appropiate object.

5 Deadlock Freedom

The Petri net translation of a program is an over-approximation of the behavior
of the program. Due to the over-approximation the Petri net might contain more
deadlocks than the concrete program. By proving the Petri net to be deadlock
free we prove the concrete program to be deadlock free.

We give a Petri net representation of the notion of extended deadlock in terms
of marking of the Petri net. These markings can be detected by reachability
analysis. By proving the absence of the deadlock markings in the Petri net we
prove deadlock freedom of the program.

When speaking about a Petri net, we implicitly assume that the Petri net was
derived from a program by the above mentioned translation. We only focus in
the extended deadlock because it subsumes the classical one (Corollary 1).

5.1 Extended Deadlock Marking

An extended deadlock in the Petri net can be characterized in terms of a marking.
This particular marking is just the mapping of Definition 4 to the Petri net
context more some extra conditions that we explain after definition.

Definition 6 (Extended Deadlock Marking). A marking m in a Petri net
is an extended deadlock marking iff the set of places in the Petri net can be
divided in three disjoint sets P1, P2 and P3 such that

1. P1 is a set of places of the form o.l+@o′.l′∗〈get@(o′.l′?, o); t〉,
o.l+@o′.l′∗〈get@o′.l′?; t〉 or o.l+@o′.l′∗〈grab(o); t〉 such that

(a) if + = ? then there is p ∈ P1 in the form c@c′〈get@(o.l?, o′); t′〉 or
c@c′〈get@o.l?; t′〉;

(b) if ∗ = ? then there is p ∈ P1 in the form c@c′〈get@(o′.l′?, o′); t′〉 or
c@c′〈get@o′.l′?; t′〉;

(c) if t = grab(o); t′ then t′ does not contain a claim with a question mark
and there is p ∈ P1 with the form c@c′〈get@(o′.l′?, o); t′′〉.

All the places of P1 have at least one token in m.
2. P2 is a set of places c@c′〈t〉 such that one of the following holds

(a) c, c′ and t do not contain question marks;
(b) c′ and t do not contain question marks and if c = o.l? then there is

c′′@o.l?〈t′〉 ∈ P1.

All the places of P2 have zero or more tokens in m.
3. All the remaining places, composing the set P3, have zero tokens in m.

A Petri Net Based Analysis of Deadlocks 125

Conditions in item (1) are the condition defined in Definition 4 adapted to the
Petri net context. In addition extra conditions are added to ensure the consis-
tency between the marked calls and the marked abstract names. Conditions in
(2) refer to the places that can be used to represent an active process that does
do not belong to the deadlock and cannot produce the token confusion. This is
evident in condition (2a), because there are no marks. On the other hand, con-
dition (2b) is the abstract representation of a process that was called by another
process that belongs to the deadlock. Notice that this process cannot create a
token confusion because t has not a marked claim, then it could not do a marked
call. Condition (3) is imposed to avoid the token confusion in the marked calls.
Notice that P3 are the places with a question mark that do not belong to P1 or
P2. Not allowing tokens in these places guarantees that token confusion is not
possible.

Theorem 1 (Inclusion of Extended Deadlock). Given a Creol program, if
it has an extended deadlock which is reachable, then the corresponding Petri net
has a reachable extended deadlock marking.

To prove Theorem 1 we define a mapping from both a Creol configuration and
the Creol execution that reaches this configuration, to a set of markings in the
Petri net. We prove that the mapping is sound, i.e. if C is a Creol configuration
reached with an execution α and it reaches Creol configuration C′ with a step
of the operational semantics, then all markings associated to C′ are reachable
from at least one marking associated to C. Finally, we apply this mapping to a
Creol execution that reaches a deadlock and we show that there is a marking
in the set of reachable markings in the Petri net that satisfies the conditions in
Definition 6. The definition of the mapping and the proofs are in [6].

Due to the connection between the extended deadlock in the Creol config-
uration and the extended deadlock marking in the Petri net, we can conclude
freedom of extended deadlock of the program from freedom of extended deadlock
markings of the Petri net.

As a final remark, we observe that the reachability of an extended deadlock
marking is decidable in a Petri net. This is a consequence of the decidability
of the target reachability problem for Petri nets [4]. Such a problem consists in
checking whether a marking is reachable which satisfies some given lower bounds
(possibly 0) and upper bounds (possibly 0 or ∞) associated to the places.

Notice that it is not possible to reduce our reachability problem to a cover-
ability problem because we need to check the “absence” of tokens. In particular,
we need to check the absence of return values or active methods which are com-
puting the marked return value.

6 Conclusion

In this paper we presented a technique based on Petri net translation and Petri
net reachability analysis to detect deadlock in systems made of asynchronously
communicating active objects where futures are used to handle return values

126 F.S. de Boer et al.

which can be retrieved via a lock detaining get primitive or a lock releasing
claim primitive. We showed soundness of our analysis with respect to extended
deadlocks (which encompass also blocked processes in addition to blocked objects
considered in the classical notion of deadlock), i.e. if the analysis does not detect
any deadlock then we are guaranteed that the original system is deadlock free.

Concerning the other direction, we claim our technique to be complete apart
from false positives due to abstraction from data values, i.e. transformation
of “if” primitives into non-deterministic choices (which obviously leads to new
behavioral possibilities, hence deadlocks, with respect to the original system).

We now make some remark concerning related and future work.
We would like to mention the work in [9,10]. The authors deal with a similar

language but use a different technique to discover deadlock: an abstract global
system behaviour representation is statically devised from the program code in
the form of a transition system whose states are labeled with set of dependencies
(basically pairs of objects representing an invocation from an object to another
one). The system is, then, deadlock free if no circular dependency is found. With
respect to [9,10] our analysis is somehow more precise in that it is process based
(i.e. also detecting extended deadlocks) and not just object based. An example
of a false positive detected by the [9,10] approach, taken from [10] itself (and
translated to our language), follows.

Consider the program consisting of two objects o1 and o2 belonging to classes
c1 and c2, respectively, with c1 defining methods m1 and m3 and c2 defining
method m2. Such methods, plus the (static) initial method run are defined as:

– run() ::= o1.m1()
– m1() ::= letx = o2.m2() in

claim@(x, self); ret
– m2() ::= letx = o1.m3() in

get@(x2, self); ret
– m3() ::= ret

This program would originate a deadlock if we had a get instead of a claim
in method m1. This because method m1 would call method m2, which in turn
would call m3 which would not be able to proceed because the lock on object
o1 would be kept by m1 waiting on the get. Differently from [9,10], our analysis
correctly detects that the system is deadlock free in that method m1 is waiting
on a claim instead of a get.

Concerning language expressivity, [9,10] additionally considers, with respect
to our language, a (finitely bound) “new” primitive for object creation and the
capability of accounting for (a finite set of) objects used as values (e.g. passed
as parameters or stored in fields) in the analysis. Concerning the former, only
objects within a finite set of object names can be created (if invocations to the
“new” primitive exceed the amount of available object names, as in the case of
recursive object creation, old objects are returned), thus such primitive can be
easily encoded in our approach by considering all the objects in the set of object
names to be present since the beginning (and then “activated”). Concerning
the latter, we can quite easily extend the language abstraction considered in

A Petri Net Based Analysis of Deadlocks 127

our analysis by considering objects, out of a finite set, passed to methods (by
considering object names as part of the method name). Dealing with objects
stored in fields would however require an extension of the encoding into the Petri
net, where a different place is considered for each possible object to be stored.
We plan to do such extensions and to prove our claim about completeness as a
future work.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.
Springer (1996)

2. Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description
of an object-oriented language with futures and promises. Journal of Logic and
Algebraic Programming 78(7), 491–518 (2009)

3. Armstrong, J.: Erlang. Communications of ACM 53(9), 68–75 (2010)
4. Busi, N., Zavattaro, G.: Deciding reachability problems in turing-complete frag-

ments of mobile ambients. Mathematical Structures in Computer Science 19(6),
1223–1263 (2009)

5. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
SIGPLAN Not. 39(1), 123–134 (2004)

6. de Boer, F.S., Bravetti, M., Grabe, I., Lee, M., Steffen, M., Zavattaro, G.: A petri
net based analysis of deadlocks for active objects and futures, extended version
(2012),
http://cs.famaf.unc.edu.ar/~lee/publications/facs12_complete.pdf

7. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages: NATO Advanced Study Institute, pp. 43–112. Academic Press
(1968)

8. Edward, J., Coffman, G., Elphick, M.J., Shoshani, A.: System deadlocks. ACM
Computing Surveys 3(2), 67–78 (1971)

9. Giachino, E., Laneve, C.: Analysis of Deadlocks in Object Groups. In: Bruni, R.,
Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 168–182. Springer,
Heidelberg (2011)

10. Giachino, E., Laneve, C., Lascu, T.: Deadlock and livelock analysis in concurrent
objects with futures. Technical report, University of Bologna (December 2011),
http://www.cs.unibo.it/~laneve/publications.html

11. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: Reduction and typing.
In: Nestmann, U., Pierce, B.C. (eds.) Proceedings of HLCL 1998. Electronic Notes
in Theoretical Computer Science, vol. 16.3, Elsevier Science Publishers (1998)

12. Smith, S.F., Agha, G.A., Mason, I.A., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming (1997)

13. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

14. Holt, R.C.: Some deadlock properties of computer systems. ACM Computing Sur-
veys 4(3), 179–196 (1972)

15. Johnsen, E.B., Owe, O.: An Asynchronous Communication Model for Distributed
Concurrent Objects. Software and Systems Modeling (2007)

http://cs.famaf.unc.edu.ar/~lee/publications/facs12_complete.pdf
http://www.cs.unibo.it/~laneve/publications.html

Run-Time Verification of Black-Box
Components Using Behavioral Specifications:
An Experience Report on Tool Development�

Frank S. de Boer1,2 and Stijn de Gouw1,2

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands

Abstract. We introduce a generic component-based design of a run-
time checker, identify its components and their requirements, and eval-
uate existing state of the art tools instantiating each component.

1 Introduction

Run-time assertion checking is one of the most useful techniques for detecting
faults, and can be applied during any program execution context, including
debugging, testing, and production [3]. Compared to program logics, assertion
checking emphasizes executable specifications. Whereas program logics statically
cover all possible execution paths, run-time assertion checking is fully automated,
and applies on demand to the actual runs of the program.

By their very nature, assertions are state-based in that they describe proper-
ties of the program variables (fields of classes and local variables of methods). In
general, assertions expressed in languages supporting design by contract (like the
Java Modeling Language (JML) [1]) cannot be used to specify the interaction
protocol between objects or components, in contrast to other formalisms such
as message sequence charts and UML sequence diagrams. Nor can state-based
assertions be used to specify component interfaces since such interfaces do not
have a state1.

This paper reports on an integrated tool environment which provides a smooth
integration of the specification and run-time checking of both data- and protocol-
oriented properties of component interfaces. The basic idea underlying our frame-
work is the representation of message sequences as words of a language generated
by a grammar. The formalism of attribute grammars allows the high-level specifi-
cation of user-defined abstractions of message sequences in terms of attributes of
grammars describing these sequences. We introduce a generic component-based

� This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu/).

1 JML uses model variables for interface specifications. However, a separate represents
clause is needed for a full specification, and such clauses can only be defined once
an implementation has been given (and is not implementation independent).

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 128–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Run-Time Verification of Black-Box Components 129

design which supports run-time checking of assertions about these attributes,
which involves parsing the generated sequences of messages. We identify the
components and their requirements, and evaluate existing state of the art tools
which instantiate the components of the generic tool architecture.

Related Work. A preliminary version describing a prototype of an instantiation
of our tool architecture was presented at the workshop “Formal Techniques for
Java-Like Programs 2010” and appeared in its informal proceedings2. This pro-
totype was based on state of the art tools. However, for industrial usage we need
a component-based design (as described above), and an experience report on
various instantiations of the generic tool design.

There exist many other interesting approaches to run-time verification and
monitoring of message sequences which however do not address its integration
with the general context of run-time assertion checking, e.g. JML: PQL, Trace-
matches, JmSeq, LARVA, Jass and JavaMOP. Due to space limitations we do
not further discuss these approaches individually.

2 The Modeling Framework

Abstracting from implementation details (such as field values of objects), an
execution of a Java program can be represented by its global communication
history: the sequence of messages corresponding to the invocation and comple-
tion of (possibly static) methods. Similarly, the execution of a single object can
be represented by its local communication history, which consists of all messages
sent and received by that object. The behavior of a program (or object) can then
be defined as the set of its allowed histories. Whether a history is allowed de-
pends in general both on data (the contents of the messages, e.g. parameter and
return values of method calls) and protocol (the order between messages). The
question arises how such allowed sets of histories can be defined conveniently. In
this section we show how attribute grammars provide a powerful and declarative
way to define such sets. We will use the interface of the Java BufferedReader

(Figure 1) as a running example to explain the basic modeling concepts.

interface BufferedReader {
void close();
int read();

}

Fig. 1. Relevant methods of the
BufferedReader Interface

S ::= open C1 assert open.caller != null
==> open.caller == C1.caller;

| ε
C ::= read C1 C.caller = C1.caller;

| close S1 C.caller = close.caller;
| ε C.caller = null;

Fig. 2. Extended Attribute Grammar mod-
eling the behavior of a BufferedReader

2 Available in the ACM Digital Library with the title “Prototyping a tool environment
for run-time assertion checking in JML with communication histories”, authored by
Frank S. de Boer, Stijn de Gouw and Jurgen Vinju.

130 F.S. de Boer and S. de Gouw

To each method m in the interface we associate two communication events :
‘call-m’ and ‘return-m’. The observable communication history of an object of a
class implementing the above interface consists of sequences of communication
events.

Context-free grammars provide a declarative way to define the allowed histo-
ries of an object. The context-free grammar underlying the attribute grammar
in Figure 2 generates the valid histories for BufferedReader, describing the
prefix closure of sequences of the terminals call-BufferedReader’, ‘call-read’ and
‘call-close’ as given by the regular expression (call-BufferedReader call-read*
call-close). Note that since grammars specify invariant properties of the ongo-
ing behavior of an object, they must be prefix-closed. In general, communication
events form the terminal symbols of the grammar, and non-terminal symbols
specify the valid sequences of communication events.

While context-free grammars provide a convenient way to specify the protocol
structure of the valid histories, they do not take data such as parameters and re-
turn values of method calls and returns into account. Thus the question arises how
to specify the data-flow of the valid histories. To that end, we extend the grammar
with attributes. A terminal symbol ‘call-m’ has built-in attributes ‘caller’, ‘callee’
and the parameter names for respectively the actual parameters and object iden-
tities of the caller and callee. A terminal ‘return-m’ additionally has an attribute
result referring to the return value. Non-terminals have user-defined attributes
to define data properties of sequences of events. However the attributes themselves
do not alter the language generated by the attribute grammar, they only define
properties of data-flow of the history. We extend the attribute grammar with as-
sertions to specify properties of attributes. For example, in the attribute grammar
in Figure 2 a user-defined attribute ‘caller’ for the non-terminal ‘C’ is defined stor-
ing the identity of the object which closed the BufferedReader (and is null if the
reader was not closed yet). The assertion allows only those histories in which the
object which opened (created) the reader also closed it.

Assertions can be placed at any position in a production rule and are evaluated
there. Note that assertions appearing directly before a terminal can be seen as a
precondition of a terminal, whereas post-conditions are placed directly after the
terminal. This is in fact a generalization of traditional pre- and post-conditions
for methods as used in design-by-contract: a single terminal ‘call-m’ can appear
in multiple productions, each of which followed by a different assertion. Hence
different preconditions (or postconditions) can be used for the same method,
depending on the context (grammar production) in which the call was made.

3 Generic Tool Architecture

Given a Java interface specified with an attribute grammar, we would like to test
whether an object implementing the interface satisfies the properties defined in
the grammar at every point in its lifetime. In this section we describe a generic
tool architecture which achieves this. Four different components are combined:
a state-based assertion checker, a parser generator, a debugger and a general
tool for meta-programming. Traditionally these tools are used for very diverse

Run-Time Verification of Black-Box Components 131

purposes and don’t need to interact with each other. We therefore investigate
requirements needed to achieve a seamless integration of these components, mo-
tivated by describing the workflow of the run-time checker.

Suppose that during execution of a Java program, a method of a class (sub-
sequently referred to as CUT, the ‘class under test’) which implements an inter-
face specified by an attribute grammar is called. The new history of the object
on which the method was called should be updated to reflect the addition of
the method call. To represent the history of an object of CUT, the Meta-
Programming tool generates for each method m in CUT two classes call-m

and return-m. These classes contain the following fields: the object identitity
of the callee, the identity of the caller and the actual parameters. Additionally
return-m contains a field result containing the return value. A Java List con-
taining instances of call-m and return-m then stores the history of an object
of CUT.

Fig. 3. Generic Tool Architecture

The meta-programming tool further
generates code for a wrapper class which
replaces the original main class. This
wrapper class contains a field H, a Java
map containing pairs (id, h) of an ob-
ject identity id and its local history h.
The new main class executes the origi-
nal program inside the Debugger. The
Debugger is responsible for monitoring
execution of the program. It must be ca-
pable of temporarily ‘pausing’ the pro-
gram whenever a call or return occurs,
and execute user-defined code to update
H appropriately . Moreover the Debug-
ger must be able to read the identity of
the callee, caller and parameters/return-
value.

After the history is updated the run-time checker must decide whether it still
satisfies the specification (the attribute grammar). Observe that a communica-
tion history can be seen as a sequence of tokens (in our setting: communication
events). Since the attribute grammar together with the assertions generate the
language of all valid histories, checking whether a history satisfies the specifica-
tion reduces to deciding whether the history can be parsed by a parser for the
attribute grammar, where moreover during parsing the assertions must evaluate
to true. Therefore the Parser Generator creates a parser for the given attribute
grammar. Since the history is a heterogenous list of call-m and return-m ob-
jects, the parser must support parsing streams of tokens with user-defined types.
Assertions in general describe properties of Java objects, and the grammar con-
tains assertions over attributes, the attributes must be normal Java variables.
Consequently the parser generator must allow arbitrary user-defined java code
(to set the attribute value) in rule actions. The use of Java code ensures the
attribute values are computable. Since assertions are allowed in-between any

132 F.S. de Boer and S. de Gouw

two (non)-terminals, the parser generator should support user-defined actions
between arbitrary grammar symbols. At run-time, the parser is triggered when-
ever the history of an object is updated. The result is either a parse error,
which indicates that the current communication history has violated the pro-
tocol structure specified by the attribute grammar, or a parse tree with new
attribute values. During parsing, the Assertion Checker evaluates the asser-
tions in the grammar on the newly computed attribute values. To avoid parsing
the whole history of a given object each time a new call or return is appended,
ideally the parser should support incremental parsing [4]. An incremental parser
computes a parse tree for the new history based on the parse trees for prefixes of
the history. In our setting, the attribute grammar specifies invariant properties
of the ongoing behavior. Hence the parser constructs a new parse tree after each
call/return, consequently parse trees for all prefixes of the current history can
be exploited for incremental parsing.

4 Instantiating the Generic Tool Architecture

The previous section introduced the generic tool architecture, which was based
on four different components: meta-programming, debugger, parser generator
and state-based run-time assertion checker. Here we instantiate these four com-
ponents with particular (state of the art) tools, and report our experiences.

Rascal [5] is a powerful tool-supported meta-programming language tailored
for program analysis, program transformation and code generation. We wrote a
Rascal program of approximately 600 lines in total which generates the classes
call-m, return-m, the new main class, and glue code to trigger the debugger
and parser. Rascal is still in an alpha stage, it is not fully backwards compatible
and we discovered numerous bugs in Rascal during development of the Rascal
program. However overall our experience was quite positive. All bugs were fixed
quickly by the Rascal team, and its powerful parsing, pattern matching and
transforming concrete syntax features proved indispensable.

We evaluated Sun’s implementation of the Java Debugging Interface for the
debugger component. It is part of the standard Java Development Kit, hence
maintenance of the debugger is practically guaranteed. The Sun debugger starts
the original user program in a virtual machine which is monitored for occurences
of MethodEntryEvent (method calls) and MethodExitEvent (method returns).
It allows defining event handlers which are executed whenever such events occur.
It also allows retrieving the caller, callee, parameters values and return value of
events using StackFrames. The Sun debugger meets all requirements for the
debugger stated above. As the main disadvantage, we found that the current
implementation of the debugger is very slow. In fact it was responsible for the
majority of the overhead of the run-time checker. This is not necessarily prob-
lematic: as testing is done during development, the debugger will typically not be
present in performance critical production code. Moreover, one usually wants to
test only up to a certain bound (for instance, in time, or in the number of events),
and report on results once the bound is exceeded. Nonetheless, for testing up to
huge bounds, a different implementation for the debugger is needed.

Run-Time Verification of Black-Box Components 133

We instantiated the parser generator component with ANTLR, a state of
the art parser generator. It generates fast recursive descent parsers for Java
and allows grammar actions and custom token streams. It even supports con-
ditional productions : such productions are only chosen during parsing whenever
an associated Boolean expression (the condition) is true. Attribute grammars
with conditional productions express protocols that depend on data which are
typically not context-free. ANTLR can only handle LL(*) grammars3, and it
lacks support for incremental parsing, though this is planned by the ANTLR
developers. We could not find any Java parser generator which supports general
context-free grammars and incremental parsing of attribute grammars.

We tested two state-based assertion languages: standard Java assertions and
the Java Modeling Language (JML). Both languages suffice for our purposes.
JML is far more expressive than the standard Java assertions, though its tool
support is not ready for industrial usage. In particular, the last stable version of
the JML run-time assertion checker dates back over 8 years, when for instance
generics were not supported yet. The main reason is that JML’s run-time asser-
tion checker only works with a proprietary implementation of the Java compiler,
and unsurprisingly it is costly to update the proprietary compiler each time the
standard compiler is updated. This problem is recognized by the JML develop-
ers [2]. OpenJML, a new pre-alpha version of the JML run-time assertion checker
integrates into the standard Java compiler, and initial tests with it provided
many valuable input for real industrial size applications. See the Sourceforge
tracker for the kind of issues we have encountered when using OpenJML.

A (variant of) the above tool suite can be obtained from
http://www.cwi.nl/~cdegouw. It was applied successfully to an industrial size
case study of the eCommerce software company Fredhopper.

References

1. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer 7(3), 212–232 (2005)

2. Chalin, P., James, P.R., Karabotsos, G.: Jml4: Towards an industrial grade ive for
java and next generation research platform for jml. In: VSTTE, pp. 70–83 (2008)

3. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Software Engineering Notes 31(3),
25–37 (2006)

4. Hedin, G.: Incremental Attribute Evaluation with Side-effects. In: Hammer, D. (ed.)
CCHSC 1988. LNCS, vol. 371, pp. 175–189. Springer, Heidelberg (1989)

5. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for source
code analysis and manipulation. In: Walenstein, A., Schupp, S. (eds.) SCAM 2009,
pp. 168–177 (2009)

3 A strict subset of the context-free grammars. Left-recursive grammars are not LL(*).

http://www.cwi.nl/~cdegouw

Symbolic Counterexample Generation

for Discrete-Time Markov Chains�

Nils Jansen1, Erika Ábrahám1, Barna Zajzon1, Ralf Wimmer2,
Johann Schuster3, Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-University Freiburg, Germany

3 University of the Federal Armed Forces Munich, Germany

Abstract. In this paper we investigate the generation of counterexam-
ples for discrete-time Markov chains (DTMCs) and PCTL properties.
Whereas most available methods use explicit representations for at least
some intermediate results, our aim is to develop fully symbolic algorithms.
As in most related work, our counterexample computations are based on
path search. We first adapt bounded model checking as a path search
algorithm and extend it with a novel SAT-solving heuristics to prefer
paths with higher probabilities. As a second approach, we use symbolic
graph algorithms to find counterexamples. Experiments show that our
approaches, in contrast to other existing techniques, are applicable to
very large systems with millions of states.

1 Introduction

Model checking is a very successful technique to automatically analyze the cor-
rectness of a system. During the last two decades, a lot of work has been done
to develop model checking techniques for different kinds of systems like digital
circuits, hybrid and probabilistic systems.

One feature which made model checking for digital circuits a standard tech-
nology in industry is the ability to deliver a counterexample if a desired property
is violated. Counterexamples, which provide an explanation for the violation,
are indispensable for reproducing and fixing errors in the design. They are also
crucial for so-called CEGAR frameworks [1,2], in which the system is abstracted
for verification. In case the abstraction is too coarse, verification might yield a
spurious counterexample, which is used to refine the abstraction accordingly.

This paper addresses counterexample generation for probabilistic systems
modeled as discrete-time Markov chains (DTMCs) and properties formalized
in the logic PCTL [3]. Standard model checking algorithms for PCTL proper-
ties of DTMCs are based on probabilistic reachability analysis: they compute

� This work was partly supported by the German Research Council (DFG) as part of
the research project CEBug (AB 461/1-1), the Transregional Collaborative Research
Center AVACS (SFB/TR 14) and by the Netherlands Organisation for Scientific
Research (NWO) as part of the DFG/NWO Bilateral Research Programme ROCKS.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 134–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Symbolic Counterexample Generation for Discrete-Time Markov Chains 135

the probability of reaching a given set of states by solving a linear equation
system [4]. However, if a PCTL property is violated, e. g., if the probability to
reach a set of unsafe states is larger than a certain value, these model check-
ing algorithms are not able to return any information about the reason of the
violation.

Therefore, in the last few years intensive research was carried out to de-
velop methods which allow to generate counterexamples for PCTL properties
of DTMCs. For digital circuits a single execution that leads from an initial state
to a safety-critical state suffices as a counterexample, for DTMCs a set of such
executions is required whose cumulated probability mass exceeds the maximally
tolerated value. While some of the available counterexample generation meth-
ods [5,6,7,8] represent counterexamples as such sets of paths, other methods use
alternative representations: Counterexamples are represented as regular expres-
sions in [8] and as winning strategies for probabilistic games in [9,10]. In [11], ab-
stractions of strongly connected components of DTMCs are used. Most relevant
for our work is the representation of counterexamples as paths of a subsystem
of the given DTMC [12,13,14]. In [13] we proposed two methods to build such
subsystems. The global search starts with an empty subsystem, searches incre-
mentally for paths to be included and extends the subsystem with the states
along the paths and all induced transitions until the subsystem is large enough
to violate the given property. The local search not only finds further violating
paths but also path fragments which connect parts of already included paths.

Practically relevant systems are often too large to be represented explic-
itly, i. e., by enumerating all the states and transitions. To overcome this prob-
lem, large DTMCs can be represented symbolically by binary decision diagrams
(BDDs) [15,16]. Sets of states and transitions are encoded by acyclic graphs,
with the elements in the set being represented by paths in the graph. Symbolic
representations are often smaller by orders of magnitude than explicit ones.

Symbolic model checking has been successfully established for DTMCs [17,18].
However, there is still a lack of symbolic algorithms for counterexample genera-
tion. In order to take full advantage of efficient representations of DTMCs and
path sets, the applied path search methods should work on symbolic representa-
tions without using any explicit representations for intermediate results. In [5,6]
approaches for symbolic counterexamples are presented, but all paths forming a
counterexample are enumerated explicitly. For very large systems, this approach
is not scalable, as (1) a counterexample may consist of a very large or even in-
finite number of paths. Their explicit representation has to be computed which
may consist of a very large number of states. An alternative symbolic path search
algorithm was introduced in [7]. This algorithm calculates the k most probable
paths of a symbolically represented DTMC. Although this algorithm is well-
suited for fully symbolic counterexample generation, due to some auxiliary data
structures, the memory requirements increase strongly with increasing k.

As mentioned above, most of the available counterexample generation
approaches for DTMCs apply path search algorithms (e. g., k shortest paths
search [8] or heuristic search [12]). A suitable path search method which works

136 N. Jansen et al.

on symbolic system representations is bounded model checking, encoding paths
of a given length from the initial state of a DTMC to a target state by a formula
such that each satisfying solution corresponds to such a path. In [5,6], coun-
terexamples are generated by searching for solutions until enough paths have
been found to form a counterexample. The method in [5] encodes paths without
their probabilities in propositional logic and uses SAT-solving to find satisfying
solutions. A disadvantage of this method is that it finds paths with fewer steps
first, in contrast to more probable ones. The approach [6] uses SMT-solving
to search for paths having at least a given minimal probability, which leads to
longer running times while more probable paths are found earlier.

In this paper we first adapt SAT-based bounded model checking to support
the ideas of local and global search from [13] and suggest a heuristic for SAT-
solving that allows to influence the SAT search to find more probable paths
first, without the need to invoke SMT-solving. Furthermore, we do not restrict
the search to paths of a fixed length as suggested by standard bounded model
checking, but search for paths whose length is between a given lower and upper
bound.

As a second approach, we propose in this paper novel fully symbolic methods
based on BDDs for the generation of counterexamples for DTMCs and PCTL
properties. Our methods take as input a DTMC which is symbolically repre-
sented by BDDs. The counterexample computation uses the algorithm from [7]
to find most probable paths of a DTMC. In our first BDD-based method, we com-
bine the symbolic k-shortest path search with the idea of global search from [13]
to compute a symbolically represented subsystem of the original DTMC, whose
paths form a counterexample. However, this suffers from very high memory con-
sumption, while by not enumerating the paths some computation time can be
saved. As our best approach, we adapt the idea for local search, also presented
in [13] which is applicable to systems with up to 1.2 · 108 states.

The contribution of this paper is the development of fully symbolic algorithms,
which overcome the main disadvantages of previous approaches:

– No explicit representation of states is needed during the counterexample
generation. This is crucial for handling large systems.

– In comparison to other approaches we are now able to generate counterex-
amples for systems with millions of states.

– As in [12,13] the counterexample is not represented by an enumeration of
paths which yields a counterexample that is smaller by orders of magnitude.

In the next section we briefly introduce some theoretical foundations. Section 3
describes the general framework of our symbolic methods for counterexample
generation. The usage of SAT-based path search is described in Section 4 and the
application of BDD-based graph search algorithms in Section 5. These methods
are evaluated experimentally on some case studies in Section 6. We conclude our
work and discuss future work in Section 7.

Symbolic Counterexample Generation for Discrete-Time Markov Chains 137

2 Preliminaries

We introduce the basic definitions and concepts used in this paper. For more
details we refer to [4].

2.1 Discrete-Time Markov Chains and Critical Subsystems

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = (S, I, P, L)
with S being a finite set of states, I : S → [0, 1] ⊆ R with

∑
s∈S I(s) ≤ 1 an ini-

tial distribution, P : S × S → [0, 1] ⊆ R a matrix of transition probabilities such
that

∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S, and L a labeling function with L : S → 2AP

with AP a denumerable set of atomic propositions.

Please note that we allow sub-stochastic distributions
∑

s∈S I(s) ≤ 1 and∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S. Usually, these sums of probabilities are required

to be exactly 1. This can be obtained by defining M ′ = (S ∪ {s⊥}, I ′, P ′, L′)
with s⊥ a fresh sink state such that for all s, s′ ∈ S we have I ′(s) = I(s) and
I ′(s⊥) = 1 −∑s∈S I(s), P ′(s, s′) = P (s, s′), P ′(s, s⊥) = 1 −∑s′∈S P (s, s′),
P ′(s⊥, s⊥) = 1 and P ′(s⊥, s) = 0, and finally L′(s) = L(s) and L′(s⊥) = ∅.

For simplicity, in the following we restrict ourselves to DTMCs (S, I, P, L) hav-
ing a single initial state sI ∈ S with I(sI) = 1 and use the notation (S, sI , P, L).
Note that every DTMC having an arbitrary initial distribution can be trans-
formed to this form by adding a fresh unique initial state.

Assume in the following a DTMC M = (S, sI , P, L). We say that there is a
transition (s, s′) from a state s ∈ S to a state s′ ∈ S iff P (s, s′) > 0. A path
of M is a finite or infinite sequence π = s0s1 . . . of states si ∈ S such that
P (si, si+1) > 0 for all i. We call the transitions (si, si+1) to be contained in
the path π, written (si, si+1) ∈ π. We write πi for the ith state on path π; its
position is called depth. The length of a finite path π = s0 . . . sn is the number
n of its transitions.

We write PathsMinf for the set of all infinite paths of M , and PathsMinf (s) for

those starting in s ∈ S. Analogously, PathsMfin is the set of all finite paths of

M , PathsMfin(s) of those starting in s ∈ S, and PathsMfin (s, t) of those starting in
s ∈ S and ending in t ∈ S. A state t ∈ S is called reachable from another state
s ∈ S iff PathsMfin(s, t) �= ∅.

The cylinder set of a finite path π of M is defined as Cyl(π) = {π′ ∈
PathsMinf |π is a prefix of π′}. To each state s ∈ S of M we associate the smallest

σ-algebra that contains all cylinder sets of all finite paths in PathsMfin(s). This

yields a unique probability measure PrMs (or short Pr) on the σ-algebra where
the probabilities of the cylinder sets are given by

Pr
(
Cyl (s0 . . . sn)

)
=

n−1∏
i=0

P (si, si+1) .

For finite paths π we set Prfin(π) = Pr
(
Cyl(π)

)
. For sets of finite paths R ⊆

PathsMfin(s) we define Prfin(R) =
∑

π∈R′ Prfin(π) with R′ = {π ∈ R | ∀π′ ∈
R. π′ is not a prefix of π}.

138 N. Jansen et al.

The syntax of probabilistic computation tree logic (PCTL) [19] is given by1

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | P∼λ(ϕ U ϕ)

for (state) formulae with p ∈ AP , λ ∈ [0, 1] ⊆ R, and ∼ ∈ {<, ≤, ≥, >}. We
define the “finally”-operator ♦ and the “globally”-operator � in the usual way.

For a property P≤λ (ϕ1 U ϕ2) refuted by M , a counterexample is a set C ⊆
PathsMfin(sI) of finite paths starting in the initial state and satisfying ϕ1 U ϕ2

such that Prfin(C) > λ. For P<λ (ϕ1 U ϕ2), the probability mass has to be at
least λ. We consider only upper probability bounds; see [8] for the reduction of
lower bounds to this case.

The model checking and counterexample generation problems for P≤λ (ϕ1 U ϕ2)
can be recursively reduced to a reachability problem as follows: We transform the
DTMC M = (S, sI , P, L) to a DTMC M ′ = (S, sI , P

′, L) by removing all out-
going transitions from states satisfying ¬ϕ1 ∨ ϕ2, i. e., P

′(s, s′) = 0 if s satisfies
¬ϕ1 ∨ ϕ2 and P ′(s, s′) = P (s, s′) otherwise. Then M satisfies P≤λ (ϕ1 U ϕ2) iff
M ′ satisfies P≤λ (♦ϕ2). In the following we concentrate on this reduced problem.

Consider a DTMC M = (S, sI , P, L), a set of target states T ⊆ S and an
upper bound λ ∈ [0, 1] on the allowed probability to reach one of these target
states from the initial state sI . For notational convenience we write P≤λ(♦T)
for the property that the probability of reaching a target state from the initial
state is less or equal λ. We assume this property to be violated, i. e., the actual
probability of reaching T exceeds λ.

In [13] we proposed to represent counterexamples as so-called critical sub-
systems instead of large, possibly infinite sets of paths. Intuitively, a critical
subsystem is a part of the original system in which the given probability bound
is already exceeded.

Definition 2. A subsystem of a DTMC M = (S, sI , P, L) is a DTMC M ′ =
(S′, sI , P

′, L′) such that S′ ⊆ S, sI ∈ S′, P ′(s, s′) ∈ {P (s, s′), 0} and L′(s) =
L(s) for all s, s′ ∈ S′. We call such a subsystem M ′ of M critical for T ⊆ S and
λ ∈ [0, 1] ⊆ R iff S′ ∩ T �= ∅ and the probability to reach a state in S′ ∩ T from
sI in M ′ is larger than λ.

Note that the set of all paths leading from the initial state sI to the set of target
states T inside the critical subsystem forms a counterexample.

2.2 Symbolic Representation of DTMCs

In this paper we use symbolic representations of DTMCs and generate symbolic
critical subsystems. Explicit means that the transition probabilities are repre-
sented as a sparse matrix, which contains one entry per transition with non-zero
probability. This representation is used, e. g., by the probabilistic model checker
Mrmc [20]. A symbolic DTMC representation encodes state and transition sets,
e. g., as paths in a graph or as solutions of a certain formula. Symbolic repre-
sentations are often smaller by orders of magnitude than the explicit ones and

1 In this paper we only consider unbounded properties.

Symbolic Counterexample Generation for Discrete-Time Markov Chains 139

allow to reduce not only the memory consumption but also the computational
costs for operations on the data structures.

As a symbolic data structure for the representation of DTMCs we choose
binary decision diagrams [15] and multi-terminal binary decision diagrams [16].

Definition 3. Let Var be a set of Boolean variables. A binary decision diagram
(BDD) over Var is a rooted, acyclic, directed graph B = (V, nroot, E) with a
finite set V of nodes, a root node nroot ∈ V and edges E ⊆ V × V . Each node
is either an inner node or a leaf node. Leaf nodes n ∈ V have no outgoing
edges and are labeled with label(n) ∈ {0, 1}. Inner nodes n ∈ V have exactly
two successor nodes, denoted by hi(n) and lo(n), and are labeled with a variable
label(n) ∈ Var.

A multi-terminal binary decision diagram (MTBDD) is like a BDD but it
labels leaf nodes n ∈ V with real values label (n) ∈ R.

Let B be a BDD over Var and V(Var) =
{
ν : Var → {0, 1}} the set of all

variable valuations. Each ν ∈ V(Var) induces a unique path in B from the root
to a leaf node by moving from each inner node n to hi(n) if ν(label (n)) = 1
and to lo(n) otherwise. A BDD B represents a function fB : V(Var) → {0, 1}
assigning to each ν ∈ V(Var) the label of the leaf node reached in B by the path
induced by ν. We often identify B with fB and write B(ν) instead of fB(ν).
Analogously, each MTBDD B represents a function fB : V(Var)→ R.

An (MT)BDD is ordered if there is a linear order < ⊆ Var × Var on the
variables such that for all inner nodes n either hi(n) is a leaf node or label (n) <
label

(
hi(n)

)
, and the same for lo(n). An (MT)BDD is reduced if all functions

rooted at the different nodes of the (MT)BDD are different. For a fixed variable
order, they are canonical data structures for representing functions f : V(Var)→
{0, 1} resp. f : V(Var) → R [15]. In the following we assume all (MT)BDDs to
be reduced and ordered with respect to a fixed variable order.

By Var ′ we denote the variable set Var with each variable x ∈ Var renamed
to some x′ ∈ Var ′ such that Var ∩ Var ′ = ∅. Our algorithms use the standard
(MT)BDD operations union B1 ∪ B2, intersection B1 ∩ B2, variable renaming
B[x→ x′], and existential quantification ∃x. B for x ∈ Var , x′ ∈ Var ′.

BDDs and MTBDDs can be used to represent DTMCs symbolically as follows:
Let M = (S, sI , P, L) be a DTMC and Var a set of Boolean variables such that
for each s ∈ S there is a unique binary encoding νs : Var → {0, 1} with νs �= νs′

for all s, s′ ∈ S, s �= s′. For s, s′ ∈ S we also define νs,s′ : Var ∪ Var ′ → R
with νs,s′(x) = νs(x) and νs,s′(x

′) = νs′(x) for x ∈ Var , x′ ∈ Var ′. A target

state set T ⊆ S is represented by a BDD T̂ over Var such that T̂ (νs) = 1 iff
s ∈ T . Similarly for the initial state, Î(νs) = 1 iff s = sI . The probability matrix
P : S×S → [0, 1] ⊆ R is represented by an MTBDD P̂ over Var ∪Var ′ such that
P̂ (νs,s′) = P (s, s′) for all s, s′ ∈ S. For an MTBDD B over Var we use Bbool to
denote the BDD over Var with Bbool(ν) = 1 iff B(ν) > 0 for all valuations ν.

This formalism is used, e. g., by the stochastic model checker PRISM [21],
whose benchmark set [22] is standard for DTMCs. These test-cases are modeled
in a guarded command language describing system components ; the global state

140 N. Jansen et al.

space and the transition probabilities are generated by parallel composition. The
transition matrices are usually sparse and well-structured with relatively few
different probabilities; therefore the symbolic MTBDD representation is in many
cases more compact by several orders of magnitude than explicit representations.
For more details we refer to documentation of PRISM.

3 Symbolic Counterexample Generation Framework

In this section we present our framework for the generation of probabilistic coun-
terexamples with symbolic data structures. We give an algorithm that computes,
for a symbolically represented DTMC as input, a critical subsystem, which is
again symbolically represented. As the most significant ingredient, this algorithm
needs a symbolic path search method, which returns paths of the input DTMC.
The critical subsystem is initially empty and is incrementally extended with the
states along found paths and with transitions between them. Implementations
of the path search method will be described in Sections 4 and 5.

Algorithm 1. Finding a critical subsystem

FindCriticalSubsystem(MTBDD P̂ , BDD Î , BDD T̂ , double λ)
begin

BDD States = ∅; BDD NewStates = ∅; MTBDD SubSys = ∅; (1)
if (ModelCheck(P̂ , Î, T̂) > λ) (2)

while (ModelCheck(SubSys , Î , T̂) ≤ λ) (3)
NewStates := FindNextPath(P̂ , Î, T̂ ,SubSys); (4)
if (NewStates �= ∅) (5)

States := States ∪NewStates ; (6)
SubSys := ToTransitionBDD(States) ∩ P̂ (7)

end if (8)
end while (9)

end if (10)
return SubSys (11)

end

The algorithm for finding a symbolic counterexample is depicted in Algo-
rithm 1. The parameters specify the input DTMC symbolically by the MTBDD
P̂ for the transition probabilities, the BDD Î for the initial state and the BDD
T̂ for the target states, as well as a probability bound λ which shall be exceeded
by the resulting critical subsystem. The local variable States is used to symboli-
cally represent the set of states which are part of the current subsystem, while
NewStates is used to store the states occurring on a path which shall extend the
current subsystem. The MTBDD SubSys stores the transition MTBDD of the
current subsystem. The algorithm uses the following methods:

Symbolic Counterexample Generation for Discrete-Time Markov Chains 141

ModelCheck(MTBDD P̂, BDD Î, BDD T̂) performs symbolic probabilistic model
checking [17,18] and returns the probability of reaching states in T̂ from
states in Î via transitions from P̂ .

FindNextPath(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) computes a path
leading through the DTMC induced by the transition MTBDD P̂ , the initial
state Î, and the set of target states T̂ . Which path is found next depends on
the current subsystem SubSys and therefore on the set of previously found
paths. Implementations of this method will be discussed in Sections 4 and
5.

ToTransitionBDD(BDD States) computes first the BDD States ′ by renaming
each variable x ∈ Var occurring in States to x′ ∈ Var ′ and returns the
transition BDD States ∩ States ′ in which there is a transition between all
pairs of states occurring in States, i. e., (States ∩ States ′)(νs1,s2) = 1 iff
States(νs1) = States(νs2) = 1.

The algorithm proceeds as follows. First, the three empty objects States,
NewStates, and SubSys are created in line (1). If ModelCheck(P̂ , Î, T̂) in line (2)
reveals that λ is exceeded then the reachability property is violated and the
search for a counterexample starts. Otherwise the algorithm just terminates. The
condition of the while-loop in line (3) invokes model checking for the current sub-
system described by SubSys and the original initial states and target states. The
loop runs until ModelCheck(SubSys, Î , T̂) returns a value which is greater than
λ. In this case, the current subsystem is critical. Please note, that in our imple-
mentation we do not invoke model checking in every iteration. Depending on the
input system, we search for a certain number of paths until we invoke this method.
In every iteration, first the method FindNextPath(P̂, Î, T̂ , SubSys) in line (4)
returns a set of states which occur on a path through the system. If this set is not
empty, the current set of states is extended by these new states in line (6). After-
wards, the current subsystem is extended in line (7): ToTransitionBDD(States)
generates a transition relation between all states found so far. The intersection
of the resulting BDD and the original transition MTBDD P̂ represents a prob-
ability matrix P ′ ⊆ P which is restricted to transitions between the states in
States . These induced transitions define the updated subsystem SubSys.

4 Searching Paths Using SAT Solving

In this section we present two implementations for the path searching method
(Algorithm 1) using bounded model checking and SAT solving. First, an existing
method which searches paths with certain lengths is adapted to our symbolic
framework. Second, we present a new method which searches for path fragments
that extend the subsystem. Finally, we describe a new SAT-solving heuristic
which guides the SAT solver to prefer more probable path fragments.

4.1 Adapting Bounded Model Checking for Global Search

In [5], a bounded model checking (BMC) approach for DTMCs was developed.
Starting with a symbolic representation of a DTMC by an MTBDD P̂ and

142 N. Jansen et al.

BDDs Î and T̂ as described before, first Tseitin’s transformation [23] is applied
to generate formulae in conjunctive normal form (CNF) from the BDDs. We will
denote the resulting CNF predicates by P̌ , Ǐ, and Ť , respectively.

The BMC formula built from the symbolic representation of a DTMC is pa-
rameterized in k ∈ N and has the following structure:

BMC (k) = Ǐ(Var0) ∧
k−1∧
i=0

P̌ (Var i,Var i+1) ∧ Ť (Vark) (1)

where k is the length of the paths considered.
This formula depends on sets Var i = {σi,1, . . . , σi,m} of Boolean variables

which encode the ith state of a path of length k through the DTMC starting
in an initial state and ending in a target state. Each satisfying assignment ν of
formula (1) corresponds to such a path. If there is no satisfying assignment, there
is no such path with length k. We identify the assignment

(
ν(σi,1), . . . , ν(σi,m)

)
with the state si of the DTMC.

Since usually multiple paths need to be found in order to form a counterexam-
ple, the solver has to enumerate satisfying solutions for BMC (k), k = 0, 1, . . ., un-
til enough probability mass has been accumulated. To exclude an already found
solution from further search, new clauses are added to the SAT solver’s clause
database. Consider a path πj = s0 . . . sk that was found in the jth iteration of

the search process. Let ν :
⋃k

i=0 Var i → {0, 1} be the corresponding satisfying
assignment. The path πj is uniquely described by the following formula:

k∧
i=0

σ
ν(σi,1)
i,1 ∧ σ

ν(σi,2)
i,2 ∧ · · · ∧ σ

ν(σi,m)
i,m , (2)

where σ1
i,j = σi,j and σ0

i,j = ¬σi,j . To exclude πj from the solution space of
BMC (k), its negation is built and added to the solver’s clause database:

k∨
i=0

m∨
j=1

σi,j
1−ν(σi,j) . (3)

This ensures that for a new path at least one state variable has to be differently
assigned than for path πj .

Every time the SAT solver returns a new satisfying assignment, the probability
of the underlying path is computed and the path is saved. This proceeds until the
probability of all paths found exceeds the bound λ. The resulting counterexample
is therefore a set of explicitly represented paths whose cumulated probability
mass exceeds the probability bound. If no further satisfying assignment can be
found, the path length k is increased by one and the search process gets restarted.

We adopt this procedure for our framework for generating a symbolically
represented critical subsystem. Instead of computing the probability of single
paths, the BDD state representation of each new path is computed and returned
to Algorithm 1. This is done in form of a callback, as we do not want to restart

Symbolic Counterexample Generation for Discrete-Time Markov Chains 143

the solver after each iteration. If model checking reports that the probability
mass of the generated subsystem is high enough, the procedure stops.

In general, termination is guaranteed as the SAT solver finds all possible paths
of length k. Eventually, the subsystem will consist of all states that are part of
paths from initial to target states. This subsystem induces the whole probability
mass of reaching a target state in the original system. As the algorithm only
starts if the probability bound is exceeded, the probability mass of this system
will also exceed the bound. Therefore, the algorithm always terminates.

4.2 Adapting Bounded Model Checking for Fragment Search

The previously described approach of using the SAT solver to find paths leading
from the initial state of the DTMC to the target states is now extended according
to the local search approach described in [13]. We aim at finding path fragments
that extend the already found system iteratively.

The intuition is as follows: In the first search iteration, the CNF formula given
to the SAT solver is satisfied if and only if the assignment corresponds to a path
of maximal length n through the input DTMC leading from the initial state sI
to a target state t ∈ T . This path induces the initial subsystem. Subsequently,
this system is extended by paths whose first and last states are included in the
current subsystem, while all states in between are fresh states.

For this we need to consider already found states for all possible depths 0 ≤
d ≤ n. For a state s let νd

s : Vard → {0, 1} be the unique assignment of Vard
corresponding to state s.

We introduce a flag fd
s for each state s and each depth d. This flag is assigned

1 if and only if the assignment of the state variables at depth d corresponds to
the state s:

fd
s ↔ (σ

νd
s (σd,1)

d,1 ∧ · · · ∧ σ
νd
s (σd,m)

d,m) . (4)

The next variable Kd
j describes the whole set of states which have been found

in the iterations 0, 1, . . . , j of the search process (again in terms of the variables
Vard for depth d). Note, that these are exactly the states of the current subsystem
SubSys after iteration j. We set Kd

−1 := false. Assume that in iteration j of the
search process path πj = s0s1 . . . sn is found. We then define

Kd
j ↔

(
Kd

j−1 ∨
n∨

i=1

fd
si

)
. (5)

In the first search iteration we need a formula which is true iff the variable
assignment corresponds to a path of maximal length n leading from the initial
state to a target state of the DTMC:

Ǐ(Var0) ∧
n∨

i=0

Ť (Var i) ∧ (6a)

n−1∧
i=0

[(¬Ť (Var i)→ P̌ (Var i,Var i+1)
) ∧ (Ť (Var i)→ (Var i = Var i+1)

)]
. (6b)

144 N. Jansen et al.

Assume that ν is an assignment corresponding to the path π = s0s1 . . . sn.
Formula (6a) states, that the first state s0 is the initial state and that one of
the states s0, . . . sn is a target state. Formula (6b) ensures, that if a state si is
not a target state, a transition will be taken to the next state. Contrary, if si is
a target state, all following state variables will be assigned si which creates an
implicit self loop on this state. In the context of the original system, this path
ends with a target state sn.

For the following iterations j > 1, we need the previously defined variables
Kj

d:

K0
j−1 ∧ P̌ (Var0,Var1) ∧ ¬K1

j−1 ∧
n∨

d=2

Kd
j−1 (7a)

∧
n−1∧
d=1

[(¬Kd
j−1 → P̌ (Var i,Var i+1)

) ∧ (Kd
j−1 → Var i = Var i+1

)]
. (7b)

Formula (7a) ensures that the first state s0 of a solution path πj = s0 . . . sn is
contained in the set K0

j−1 of previously found states, that a transition is taken
from this state to a not yet found state s1 and that one of the following states
sd, d ≥ 2, is again contained in Kd

j−1. Formula (7b) enforces transitions from all
not yet found states si to si+1. If si was already included in previous paths then
all following states are assigned as si.

Termination is guaranteed, as the length of the paths is bounded by n. If
no further satisfying assignments are found, this number has to be increased.
However, the diameter, i. e., the longest cycle-free path of the underlying graph,
is an upper bound on the length of loop-free paths from sinit to target states.
Therefore, n needs to be increased only finitely many times, such that a critical
subsystem is always determined in finite time.

4.3 SAT Heuristic for Finding More Probable Paths

A drawback of the SAT-based search strategies is that paths are found with-
out considering their probability beforehand. If paths or transitions with higher
probabilities are preferred, the process can be accelerated. We therefore try to
modify the variable selection of the SAT solver.

SAT solvers have efficient variable selection strategies, i. e., strategies to decide
which variable should be assigned next during the search process. We adjust the
choice of the value the solver assigns to the selected variable, in order to prefer
paths with higher probabilities.

The decision how to assign a variable is based on the transition probabilities.
If a variable σi+1,j is to be assigned at depth 0 < i + 1 ≤ n, its value partly
determines si+1, being the target state of a transition from si. We choose the
value for σi+1,j which corresponds to the state si+1 to which the transition with
the highest probability can be taken (under the current assignment).

Example 1. Assume the following DTMC:

Symbolic Counterexample Generation for Discrete-Time Markov Chains 145

l2

0.8

0.1

0.7

0.3

l4

l5

l3

l1 1

10.1

1

Let the states of the DTMC be encoded by three propositional variables and
assume that the solver partially assigned the state variables for the ith and the
(i+ 1)th time instance as follows:

σj,1 σj,2 σj,3

l1 0 0 0
l2 0 0 1
l3 0 1 0
l4 0 1 1
l5 1 0 0

︷ ︸︸ ︷
σi,1

σi,2
σi,3

0 0

σi+1,1
σi+1,2

σi+1,3

︷ ︸︸ ︷si si+1

The ith state si is determined to be l1 or l2. For si+1 still all states are possible.
The first bit of the (i+1)th state, as indicated by the arrow, should be assigned
next. We would choose to set the bit to 0, because in this way we do not exclude
the most probable eligible transition from l1 to l3.

5 Searching Paths Symbolically

In this section we use symbolic graph algorithms to implement the path search
(Algorithm 1) by which a critical subsystem of a DTMC is built. We first re-
call how one can find the k most probable paths through a symbolically rep-
resented DTMC. We call this the symbolic global search as the most probable
paths through the whole system are found. We embed this procedure into our
symbolic counterexample search. Afterwards we present a new search method
which symbolically searches for the most probable path fragments that extend
the current subsystem. We call this approach the symbolic fragment search.

5.1 Symbolic Global Search

The goal of this procedure is to find paths leading from the initial state to a
target state ordered by their probability, starting with the most probable path.
As usually classical graph algorithms are used, this is also referred to as the k
shortest path search, although this corresponds to the k most probable paths.
Utilized for a counterexample search, the value of k is not fixed beforehand but
the search terminates if enough probability mass is accumulated [8].

In [7], a symbolic version of the k shortest path search was presented. The core
components are the calculation of the actual shortest path and a transformation
of the DTMC such that the shortest path in the altered system corresponds
to the second shortest path in the original system. We adapt this method for

146 N. Jansen et al.

Algorithm 2. The global search algorithm for symbolic DTMCs

SymbolicGlobalSearch(MTBDD P̂ , BDD Î, BDD T̂ , MTBDD SP)
begin

if (SP �= ∅) (1)
(P̂ , Î , T̂) := Change(P̂ , Î, T̂, SP); (2)

endif (3)
SP := ShortestPath(P̂ , Î, T̂); (4)

return SP ; (5)
end

symbolic counterexample computation for DTMCs. The resulting algorithm is
depicted in Algorithm 2.

Parameters are as usual P̂ , Î and T̂ as well as an MTBDD SP to store the
path computed in the last iteration. The following methods are used (for details
on the MTBDD operations we refer to the appendix of [7]):

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) computes the most probable path
leading from a state of Î to a state of T̂ via transitions from P̂ and returns
the MTBDD representation SP of this path. For this method, a set-theoretic
variant of Dijkstra’s algorithm is used.

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SP) changes the DTMC (P̂ , Î, T̂)
to a new one such that the shortest path in the new DTMC corresponds
to the second shortest path of the original DTMC(for the basic algorithm
cf. [24]). The core idea of the symbolic implementation is to add an additional
state variable that indicates a copy (when set to 1) or the original state (when
set to 0). The MTBDD P̂ is therefore extended by two variables: One for
the source and one for the target state.

The original algorithm works with a fixed number k of search iterations. We
modified this method to be incremental, i. e., the resulting P̂ and SP after an
iteration step are input for the next iteration. If the SP parameter is empty,
the first shortest path is computed (line 4). Otherwise, the system is modified
to exclude the previously found path (line 2). On the modified system, a new
search is performed, yielding the next shortest path (line 4).

As in our framework the termination condition lies inside the symbolic coun-
terexample algorithm (see Algorithm 1), we call Algorithm 2 as often as needed
to form a counterexample. We use the MTBDD SP as a parameter in order to
determine, what the next shortest path is. Note that in this case Algorithm 1
has to call the search method with the last shortest path instead of the current
subsystem and it also has to transform the resulting shortest path MTBDD SP
to a state set BDD (see the method ToStateBDD(·) on page 147).

Finally, this procedure yields a critical subsystem induced by a finite number
k of paths. The paths are ordered w. r. t. to their probability. Note that the
MTBDD resulting from the iterative application of the Change()-method grows

Symbolic Counterexample Generation for Discrete-Time Markov Chains 147

rapidly and renders this method not applicable to systems which require a large
number of paths, as our test cases will show.

5.2 Symbolic Fragment Search

In contrast to the previous approach, where we search for whole paths through
the system, we aim now at finding most probable path fragments. Intuitively,
first a base path is found being the most probable path from the initial state
to one of the target states of the input system. This path forms the initial
subsystem. Afterwards, the subsystem is incrementally extended by finding the
most probable path fragment that connects states from the current subsystem.
This approach was successfully implemented for explicit graph representations
[13] and is now adapted to symbolic representations. The algorithm is depicted
in Algorithm 3.

Algorithm 3. The fragment search for symbolic DTMCs

SymbolicFragmentSearch(MTBDD P̂ , BDD Î , BDD T̂ , MTBDD SubSys)
begin

MTBDD SP ; (1)
BDD SubSysStates ; (2)
if (SubSys = ∅) (3)

SP := ShortestPath(P̂ , Î, T̂); (4)
else (5)

SubSysStates := ToStateBDD(SubSys); (6)
SP := ShortestPath(P̂ \ SubSys, SubSysStates, SubSysStates); (7)

end if (8)
return ToStateBDD(SP) (9)

end

We need an MTBDD SP to store the path which is computed and a BDD
SubSysStates which stores the states of the current subsystem. The following
methods are used:

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) uses a set-theoretic variant of Dijk-
stra’s algorithm as in Section 5.1.

ToStateBDD(MTBDD SubSys) computes for the transition MTBDD SubSys a
BDD describing all states that occur as source state or target state for one
of the transitions of SubSys. When SubSys is defined over the variablesVar =
{x1, . . . , xn} and Var ′ = {x′

1, . . . , x
′
n}, this is done by first building the set

OUT := ∃x′
1, . . . , x

′
n. SubSysbool of all states with an outgoing transition.

Afterwards, the set IN ′ := ∃x1, . . . , xn. SubSysbool of states with ingoing
transitions is built. These resulting BDDs have to be defined over the same
variable set, therefore we perform a variable renaming for the set of states
with ingoing transitions: IN := IN ′[x′

1 → x1] . . . [x
′
n → xn]. Building the

union IN ∪OUT yields the needed BDD.

148 N. Jansen et al.

The symbolic fragment search checks whether the parameter SubSys is empty,
which means, whether this is the first search iteration. If this is the case then the
base path leading from the initial state sI ∈ Î to one of the target states t ∈ T̂
is computed by invoking the shortest path search. The resulting path, stored in
the BDD SP , is transformed into a state BDD and returned to the symbolic
model checking framework (see Algorithm 1). If SubSys is not empty then a part
of the subsystem has already been determined. In this case, we compute the
state BDD SubSysStates by invoking ToStateBDD(SubSys). The shortest path
algorithm is called to find the most probable path from a state in SubSysStates
to a state in SubSysStates inside the DTMC induced by P̂ without using direct
transitions from SubSysStates to SubSysStates. Note that, since we seach for
the most probable such path, this path will not contain any SubSysStates states
between the starting and ending ones.

6 Case Studies

We developed prototypes in C++ for all approaches described in this paper us-
ing the BDD package CUDD [25] and the SAT solver MiniSat [26]. All experi-
ments were performed on a QuadCore Intel CPU (2.66 GHz) with 8 GB RAM.
We present results for the Probabilistic Contract Signing protocol [27] and the
CROWDS protocol [28]. We used the PRISM models [22] of both protocols.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 100 1000 10000 100000 1e+06

Number of explicit states of the input system/1000

Nodes Original MTBDD
Nodes Resulting MTBDD (Subsystem)

Fig. 1. BDD sizes

Probabilistic Contract Signing
is a network protocol targeting
the fair exchange of critical in-
formation between two parties A
and B. In particular, whenever B
has obtained A’s commitment to
a contract, B shall not be able
to prevent A from getting B’s
commitment. The PCTL property
P≤0.5

(
♦ [knowA∧¬knowB]

)
we are

investigating describes an unfair
situation where A knows B’s se-
crets while B doesn’t know A’s
secrets. The target states in our
model carry corresponding labels.
The model size is scaled by the
number of data pieces to exchange and the size of each data piece.

The CROWDS protocol aims at anonymous communication in networks, where
a crowd of n users is divided in good members and bad members. A good member
delivers a message to its destination with probability 1 − pf and forwards it to
another member, randomly chosen, with probability pf . This guarantees that no
bad member knows the original sender of the message. Each session describes
the delivery of a message to a sender. If a user is identified twice by a bad mem-
ber, anonymity is no longer guaranteed. This is called positively identified (Pos).

Symbolic Counterexample Generation for Discrete-Time Markov Chains 149

Crowds protocol Contract Signing protocol

states 18817 198199 485941 1058353 50445495 33790 156670 737278

model checking 0.426153 0.716089 0.807731 0.871703 0.85054 0.515625 0.515625 0.503906

probability threshold 0.25 0.35 0.4 0.4 0.2 0.5 0.5 0.5

Symb global # states 630 622 622 622 1013 6804 24006 13222
paths 1019 978 977 979 738 512 326 733
prob. 0.149138 0.14843 0.14843 0.14843 0.117311 0.5 0.318359 0.0447388
time (s) TO TO TO TO TO 1871.82 TO TO

Symb fragment # states 600 1611 2415 2884 10239 6927 38247 139980
paths 201 1359 555 835 2641 521 521 8192
prob. 0.25659 0.350066 0.401258 0.400333 0.201197 0.508789 0.508789 0.5
time (s) 12.18 169.93 276.41 413.15 2830.55 26.61 740.15 972.57

BMC classic # states 1241 1205 1241 1241 1558 6684 37464 139302
paths 140822 127845 126318 129960 43250 513 513 8193
prob. 0.175123 0.173481 0.173651 0.1746 0.0994408 0.500977 0.500977 0.500061
time (s) TO TO TO TO TO 20.17 410.61 367.1

SAT global # states 908 997 997 997 1583 6825 38025 139302
paths 231359 295240 258860 253733 238894 520 520 8193
prob. 0.250057 0.261859 0.26189 0.261859 0.179294 0.507812 0.507812 0.500061
time (s) 3492.98 TO TO TO TO 23.1 449.1 411.42

SAT fragment # states 6757 9079 8581 16038 10158 6684 9131 11875
paths 1973 2446 2211 4434 2728 3074 1956 604
prob. 0.250548 0.165949 0.0764908 0.0866818 0.0653038 0.500977 0.0715447 0.0378418
time (s) 805.68 TO TO TO TO 3584.47 TO TO

SAT fragment + H # states 2489 7535 19132 19662 5898 6684 8254 7009
paths 700 2166 5573 5556 1704 3073 1807 537
prob. 0.2858817 0.350044 0.0971835 0.0648511 0.0562423 0.500977 0.092741 0.038967
time (s) 192.33 4172.44 TO TO TO 5152.11 TO TO

Fig. 2. Results for crowds and contract signing (TO > 2h)

The PCTL property we consider is P≤p(♦Pos). The models are parameterized
in their size by the number of sessions and the size of the crowd.

In Figure 2 we have collected a number of results we achieved on different
instances of the described case studies. For the input data, we list the number
of states (# states), the actual model checking result of reaching target states
(model checking) and the probability threshold. We tested the methods for sym-
bolic counterexample generation described in this paper as well as the bounded
model checking approach, which computes a set of paths [5]:

– Symb global: The symbolic global search approach, Section 5.1
– Symb fragment: The symbolic fragment search approach, Section 5.2
– BMC classic: The standard bounded model checking approach for DTMCs

as described in [5]
– SAT global: The global search approach using SAT solvers, Section 4.1
– SAT fragment: The fragment search approach using SAT solvers, Section 4.2
– SAT fragment + H: The SAT-based fragment search approach together with

the SAT heuristic preferring more probable paths, Section 4.3.

For the resulting critical subsystems we present the number of states, the number
of performed path searches (# paths), the probability of this system (prob), and
the computing time in seconds (time (s)). The timeout (TO) was defined as 2
hours. All results which were finished within this time are printed in boldface.
For unfinished cases we give the results that were achieved so far. Note that the
probability for these unfinished benchmarks lies under the probability threshold.

150 N. Jansen et al.

In Figure 1 we present the number of MTBDD nodes for original instances of
the CROWDS-protocol w. r. t. the number of explicit nodes presented by these
MTBDDs. The figure shows, that the number of nodes highly increases while
the number of nodes for the subsystems stay relatively constant.

The results show that the symbolic fragment search outperforms all other ap-
proaches by far on our benchmarks sets. We can compute critical subsystems for
benchmarks consisting of millions of states. A result could still be computed for
a system having over 1.2 ·108 states in about 3 hours. The explicit counterexam-
ple algorithms described in [13,29] were faster on small benchmarks but explicit
approaches are not applicable to benchmarks as large as presented here.

7 Conclusion and Future Work

In this paper we presented a new framework for the generation of probabilis-
tic counterexamples for symbolic DTMC representations. We suggested several
methods, while the symbolic fragment search turned out to be the best alterna-
tive. Our experiments showed that using our framework the size of possible input
systems for counterexample generation is increased by orders of magnitude.

In the future we want to integrate this symbolic framework into the COMICS
tool [29] for counterexample generation for DTMCs. The adaption of the hierarchi-
cal abstraction techniques presented in [13] would increase the usability of coun-
terexamples even for very large systems. It would also be interesting to see if using
an SMT solver instead of a SAT solver would accelerate the search process.

References

1. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

2. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM TOCL 12(1), 1–45 (2010)

3. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
5. Wimmer, R., Braitling, B., Becker, B.: Counterexample Generation for Discrete-

Time Markov Chains Using Bounded Model Checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)

6. Braitling, B., Wimmer, R., Becker, B., Jansen, N., Ábrahám, E.: Counterexample
Generation for Markov Chains Using SMT-Based Bounded Model Checking. In:
Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 75–89.
Springer, Heidelberg (2011)

7. Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool Caspa. In: Proc. of
DYADEM-FTS 2010, pp. 13–18. ACM Press (2010)

8. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

9. Kattenbelt, M., Huth, M.: Verification and refutation of probabilistic specifications
via games. In: Proc. of FSTTCS 2009. LIPIcs, vol. 4, pp. 251–262. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik (2009)

Symbolic Counterexample Generation for Discrete-Time Markov Chains 151

10. Fecher, H., Huth, M., Piterman, N., Wagner, D.: PCTL model checking of Markov
chains: Truth and falsity as winning strategies in games. Performance Evalua-
tion 67(9), 858–872 (2010)

11. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant Diagnostic Counterexam-
ples in Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)

12. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. on Software Engi-
neering 36(1), 37–60 (2010)

13. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.: Hier-
archical Counterexamples for Discrete-Time Markov Chains. In: Bultan, T., Hsiung,
P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidelberg (2011)

14. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal Critical
Subsystems for Discrete-Time Markov Models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)

15. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

16. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design 10(2/3), 149–169 (1997)

17. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.:
Symbolic Model Checking for Probabilistic Processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997)

18. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham (2002)

19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

20. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68(2),
90–104 (2011)

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

22. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proc.
of QEST. IEEE CS (September 2012)

23. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic (Part II), 115–125 (1968)

24. Schmid, W.: Berechnung kürzester Wege in Straßennetzen mit Wegeverboten. PhD
thesis, Universität Stuttgart, Fakultät für Bauingenieur- und Vermessungswesen
(2000)

25. Somenzi, F.: Cudd: Cu decision diagram package release 2.4.1 (2005)
26. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
27. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of

Computer Security 14(6), 561–589 (2006)
28. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.

on Information and System Security 1(1), 66–92 (1998)
29. Jansen, N., Ábrahám, E., Volk, M., Wimmer, R., Katoen, J.-P., Becker, B.:

The COMICS Tool – Computing Minimal Counterexamples for DTMCs. In:
Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 349–353.
Springer, Heidelberg (2012)

XCD – Modular, Realizable Software Architectures ∗

Christos Kloukinas and Mert Ozkaya

School of Informatics
City University London

London EC1V 0HB, U.K.
{c.kloukinas,mert.ozkaya.1}@city.ac.uk

Abstract. Connector-Centric Design (XCD) is centred around a new formal ar-
chitectural description language, focusing mainly on complex connectors. In-
spired by Wright and BIP, XCD aims to cleanly separate in a modular manner
the high-level functional, interaction, and control system behaviours. This can
aid in both increasing the understandability of architectural specifications and the
reusability of components and connectors themselves. Through the independent
specification of control behaviours, XCD allows designers to experiment more
easily with different design decisions early on, without having to modify the func-
tional behaviour specifications (components) or the interaction ones (connectors).

At the same time XCD attempts to ease the architectural specification by fol-
lowing (and extending) a Design-by-Contract approach, which is more familiar to
software developers than process algebras like CSP or languages like BIP that are
closer to synchronous/hardware specification languages. XCD extends Design-
by-Contract (i) by separating component contracts into functional and interac-
tion sub-contracts, and (ii) by allowing service consumers to specify their own
contractual clauses. XCD connector specifications are completely decentralized,
foregoing Wright’s connector glue, to ensure their realizability by construction.

Keywords: Software architecture, Modular specifications, Separation of func-
tional interaction and control behaviours, Design by contract, Connector
realizability.

1 Introduction

Architectural descriptions of systems are extremely valuable for communicating high-
level system design aspects and the different solutions that have been evaluated for
meeting system-wide, non-functional properties. The need for components and con-
nectors to be first-class architectural entities has been advocated from the very begin-
ning [15, 30]. However, support for complex connectors is minimal in languages used
more widely by practitioners currently, e.g., AADL [13], SysML [6]. These rely mostly
on simple interconnection mechanisms like procedure-calls and provide no support for
specifying complex connectors, focusing their attention mostly upon components. The
end result is that architectures end up more like low-level designs [11].

∗ This work has been partially supported by the EU project FP7-257367 IoT@Work.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 152–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

XCD – Modular, Realizable Software Architectures 153

With minimal support for connectors, components have to incorporate specific inter-
action protocols, thus reducing their reusability. Worse yet, when component specifica-
tions omit to specify explicitly which protocols they have been designed for, we have
the problem of “architectural mismatch” [14], i.e., the inability to compose seemingly
compatible components, due to the (undocumented) assumptions these make on their
interaction with their environment. In quite a few cases designers are supposed to use
specific components that act as connectors in order to represent complex connectors.
This hinders analysis, as it is not possible to identify automatically which components
represent components and which ones represent connectors. It also places a lot of re-
sponsibility upon designers for ensuring that the architectural abstraction constraints are
respected. It is similar to trying to encode some O-O features by hand in C – possible
but very difficult to get (and keep. . .) correct. In our view the main value of software
architectures is to enable early formal system analysis and not to be used for code gen-
eration alone. As such, an ADL needs to cleanly represent the various entities, in order
to aid the automation of architectural analysis.

The Connector-Centric Design (XCD) approach attempts to apply Wirth’s equation
“Algorithms + Data Structures = Programs” [35] at an architectural level. We advocate
that “Connectors + Components = Systems”, with connectors being essentially decen-
tralized algorithms and components the equivalent to data structures [22]. This means
that the main active elements in an architecture are its connectors, not its components.
XCD focuses on improving the modularity of architectural specifications, so to aid their
development, their formal analysis, and the experimentation with different design so-
lutions. Complex connectors are at the very centre of XCD, since it is them that are
responsible for meeting system-wide, non-functional requirements that no component
can meet, such as reliability, performance, etc. In the following we shortly introduce
the reasons behind the three orthogonal goals of XCD, namely support for complex
connectors, support for external control strategies, and specification through a Design
by Contract approach.

Complex Connectors for Architectural Analysis. Herein we use an example from
electrical engineering to demonstrate the importance of complex connectors for analyz-
ing system architectures. Let us consider k concrete electrical resistors, r1, · · · ,rk, i.e.,
the system components. When using a sequential connector (→), the overall resistance
is computed as R→(N,{Ri}N

i=1) = ∑N
i=1 Ri, where N,Ri are variables (Ri correspond to

connector roles), to be assigned eventually some concrete values k,r j . If using a par-
allel connector (‖) instead, it is computed as R‖(N,{Ri}N

i=1) = 1/∑N
i=1 1/Ri. So the

interaction protocol (connector) used is the one that gives us the formula we need to
use to analyze it – if it does not do so, then we are probably using the wrong connec-
tor abstraction. The components (r j) are simply providing some numerical values to
use in the formula, while the system configuration tells us which specific value (k, r j)
we should assign to each variable (N, Ri) of the connector-derived formula. By simply
enumerating the wires between resistors, as AADL and SysML do, we miss the forest
for the trees. Analysis becomes difficult and architectural errors can go undetected un-
til later development phases. Indeed, we are essentially forced to reverse-engineer the
architect’s intention in order to analyze our system – after all, the architect did not se-
lect the specific wire connections by chance but because they form a specific complex

154 C. Kloukinas and M. Ozkaya

connector. The current situation is similarly to coding with labels and go-to statements
and expecting our compilers to identify the higher-level looping and procedural con-
structs within our code so as to analyse and optimize it.

Connector Role Strategies for Control/Design Decisions. A cleaner separation of
functional and interaction behaviour aids in increasing the reusability of both compo-
nents and connectors. However, one can go even further, e.g., as in BIP [8], and attempt
to separate the control behaviour as well. XCD supports this through modular connec-
tor role strategies, which are specified externally to connectors, and so can be replaced
and modified easily. These are used to specify different design solutions for various is-
sues that basic role specifications do not address (on purpose) so as to be as reusable as
possible. In fact, such role strategies are already being used in good designs implicitly.
Consider a simple call in C: foo(i, ++i), where i=1. According to the C language
specification this call is undefined since the second parameter expression (++i) may
potentially change the value of the first one (i). So we can obtain either foo(1,2)
or foo(2,2). The C language specification does not specify a specific order for eval-
uating parameters either in the caller or the callee role, instead under-specifying the
procedure-call connector specification on purpose. If compilers have multiple cores at
their disposal they are allowed to evaluate parameters in parallel, instead of having to
evaluate each one in a specific sequential order. The C language specification allows
compilers to apply different evaluation strategies on the caller role by delaying this de-
sign decision until the optimal choice can be made, based on the call context and the
implementation costs of the available strategies.

Design by Contract. JML [9] seems to be gaining popularity among developers, as
they use it for “test-driven development”. XCD attempts to follow this trend so as to
maximize adoption by practitioners. Thus, it departs from Wright’s [1] use of a process
algebra (Hoare’s CSP [18]) and follows a Design by Contract (DbC) [28] approach like
JML instead, specifying systems through simple pairs of method pre-/post-conditions,
based upon Hoare’s logic [17]. In fact, XCD extends DbC in two ways. First, it separates
the component functional behaviour from its minimal interaction requirements. Second,
it allows service consumers to specify their own contractual clauses.

1.1 Running Example – The Dining Philosophers

We present XCD through the classic Dining Philosophers problem, since one needs a
complex enough system to demonstrate the need for the different aspects of the ap-
proach. This system can be designed with either decentralized or centralized control
(i.e., a butler), and for each of these general architectural solutions, there are differ-
ent specific design solutions for controlling the system in particular ways (e.g., for
deadlock-freedom). In the dining philosophers problem a set of n philosophers occa-
sionally sit on seats at a round table, sharing a fork at their right and left. Each philoso-
pher needs both forks to be able to eat but if all philosophers get one fork then there is
a deadlock, since no philosophers put down a fork until they have finished eating.

We show how designers can specify the system architecture and experiment with
different control policies, without changing the specifications of either the connectors

XCD – Modular, Realizable Software Architectures 155

PhilRole1

Ph
il
1

PhilRole2

Ph
il
2

Se
at
1

SeatRole1

LForkRole1
ps

pfL

pfR

pfR

pfL

ps

RForkRole2

LForkRole2

RForkRole1

SeatRole2

Fo
rk
1

Fo
rk
2

Se
at
2

Role
Co
mp
on
en
t

FIGURE KEY
port var.

port

channel

Philosopher ports are named (ps, pfL, pfR) as they are mirrored.

Fig. 1. Dining Philosophers System configuration for decentralized control

Component

Data, Predicates

Socket|Plug Ports

Methods

Interaction Constraints

Functional Constraints

Role Strategy

Data

Predicates

Socket|Plug Port Variables

Methods

Interaction Constraints

Connector

Roles

Data, Predicates

Socket|Plug Port Variables

Methods

Interaction Constraints

Channels (connecting role port variables)

Configuration

Component Instances

Connector Instances

Role Strategy Instances

Component/Role/Strategy Instance Bindings

Fig. 2. XCD language top-level structure

or components. Fig. 1 shows a possible configuration of the dining philosophers case
study, for two philosophers. Some of the elements there (ports, port variables, etc.) are
explained later, though Fig. 2 presents a quick summary of the main language struc-
ture. All constraints in XCD’s elements in Fig. 2 are expressed as pre/post-conditions.
Strategies may introduce their own data, predicates, and constraints but can refer only to
methods of port variables defined in a role. Designers are expected to start an architec-
tural description by the components, then derive connectors for them, and finally specify
appropriate strategies. Connector roles are defined over component interface fragments,
as is done in generic programming [10,29]. For example, C++’s STL defines algorithm

156 C. Kloukinas and M. Ozkaya

void sit(ID caller) throws (NullIDEX);

void arise(ID caller) throws (NullIDEX, WrongCallerEX,InteractionEX);

Fig. 3. The sit/arise (iSA) Seat interface

<D =
[
ID h :=⊥],preds =

⎡
⎢⎣

Occupied = (h �=⊥), NullCaller(c) = (c=⊥),
CallerIsHolder(c) = (c= h), HolderIsCaller(c) = (h′ = c),

NoHolder = (h′ =⊥),

⎤
⎥⎦,

Ps = {piSA
s },Pp = /0,φ ,χ >

(a) Seat top-level specification[
sφ
1 =

(
ps,sit(c),¬NullCaller(c),HolderIsCaller(c)

)
sφ
2 =

(
ps,sit(c),NullCaller(c),NullIDEX

)
]

⎡
⎢⎢⎣

aφ
1 =

(
ps,arise(c),¬NullCaller(c)∧CallerIsHolder(c),NoHolder

)
aφ

2 =
(
ps,arise(c),NullCaller(c),NullIDEX

)
aφ

3 =
(
ps,arise(c),¬CallerIsHolder(c),WrongCallerEX

)
⎤
⎥⎥⎦

(b) Seat functional constraints (φ)

[
sχ
1 =

(
ps,sit(c),

when(¬Occupied),T

)] ⎡
⎣aχ

1 =
(
ps,arise(c),Occupied,T

)
aχ

2 =
(
ps,arise(c),¬Occupied,InteractionEX

)
⎤
⎦

(c) Seat interaction constraints (χ)

Fig. 4. Seat component specification

sort on a sequence of elements of type T, using T’s less-than, assignment, and copy
constructor operations.

1.2 Paper Structure

We consider first component specifications in XCD, concentrating then on connectors
– their specification in a decentralized manner that facilitates their implementation and
analysis, and the fundamental properties that a connector should provide. We then con-
sider role strategies for expressing control and other design decisions, and present an
evaluation of the approach before discussing related work and concluding.

2 XCD Components

Fig. 3 shows the iSA interface implemented by Seat components; the get/put one im-
plemented by Forks (iGP) is exactly the same. Method sit throws a NullIDEX excep-
tion, while arise also throws WrongCallerEXwhen the Seat is occupied by someone
that is not the caller. However, arise throws yet another exception – the enigmatic

XCD – Modular, Realizable Software Architectures 157

pre(sχ
1)→

∧(pre(sφ
1)→ post(sφ

1)

pre(sφ
2)→ post(sφ

2)

)
, pre(aχ

1)→
∧
⎛
⎜⎜⎝

pre(aφ
1)→ post(aφ

1)

pre(aφ
2)→ post(aφ

2)

pre(aφ
3)→ post(aφ

3)

⎞
⎟⎟⎠, pre(aχ

2)→ post(aχ
2)

Fig. 5. Constraint composition semantics

InteractionEX. Components “throw” this special exception when their minimal in-
teraction constraints (rather than functional ones) have been violated, to denote subse-
quent chaotic behaviour. If one opens the door of a washing machine while it is washing,
subsequent behaviours include everything, even electrocution.

2.1 Extending DbC – Different Contract Types

Fig. 4a shows the Seat component specification. It defines its data variable set (D)
and some helper predicates (preds). Then it defines two sets of ports, (Ps, Pp), for
the “socket” and “plug” ports (empty set) respectively, i.e., the ones providing some
interface and these using some interface – what in CORBA are facets and receptacles.
Finally, it defines functional (φ) and interaction (χ) constraints, as in Fig. 4b and 4c.

All constraints use the syntax (port-expr., method, pre-condition, post-condition).
They are grouped ([]) by the (port-expr., method) pair they apply to. They are labelled
here for easy reference as (s|a)(φ |χ) – for sit/arise (s|a) and for functional/interac-
tion (φ |χ). So in sφ

1 , ps’s sit pre-condition is ¬NullCaller(c) and HolderIsCaller(c)
its post-condition, where c is sit’s parameter. This is a JML “normal behaviour”, un-
like sφ

2 that throws a NullIDEX if the pre-condition NullCaller(c) is true. Constraints

aφ
1 , aφ

2 are similar ones for arise, while aφ
3 covers the case when the pre-condition is

¬CallerIsHolder(c). In that case, the post-condition throws a WrongCallerEX.
This last constraint aφ

3 introduces the difference between functional and (minimal)
interaction constraints. Method arise accepts calls where the caller is not the current
seat holder and throws an exception, while sit does not specify anything about this.
According to sφ

1 it seems it simply replaces Seat’s holder with the caller. However, this
is captured in Fig. 4c, through Seat’s minimal interaction constraints. Constraint sχ

1 asks
that sit be delayed until Occupied is false. This is expressed using the “when” keyword
as in JML’s extension for multi-threaded programming [33], though in XCD functional
constraints are not allowed to use it. To relate it to JML, one can think of it as a “normal”
interaction behaviour, describing a method’s acceptable concurrent behaviours. For all
“normal” interaction constraints of components, the post-condition is always T. Fig. 4c
also specifies the minimal interaction constraints of arise. Constraint aχ

1 states that
calling arise on an occupied Seat is acceptable. Constraint aχ

2 , however, states that
calling arise on an unoccupied Seat, results in an InteractionEX exception (which
functional constraints cannot use). This is a situation that Seat does not know how to
deal with, like calling a method on a component without having initialized it first. An
InteractionEX exception leads to undefined/chaotic component behaviour.

Interaction constraints take precedence over functional ones and if both can throw
an exception then the exception thrown is InteractionEX. With pre(φ) and post(φ)

158 C. Kloukinas and M. Ozkaya

standing for the pre-condition and the post-condition respectively of a constraint φ , the
real specification of the Seat constraints is shown in Fig. 5. As highlighted there for
aχ

2 , when an interaction exception’s precondition is true, then the functional constraints
are ignored. Otherwise, when the pre-condition of a normal interaction constraint is
satisfied, the functional constraints should also be satisfied.

If one specified contracts in the usual JML manner, they would need F× I cases in
the worst case, combining F functional and I interaction constraints, e.g., for arise:
Case 1: pre(aχ

1)∧pre(aφ
1)→ post(aφ

1) Case 3: pre(aχ
1)∧pre(aφ

3)→ post(aφ
3)

Case 2: pre(aχ
1)∧pre(aφ

2)→ post(aφ
2) Case 4: pre(aχ

2)→ post(aχ
2)

Repeating “pre(aχ
1)” each time makes specifications more difficult to read than they

need be and much easier to get wrong. The introduction of the (minimal) interaction
constraints imposes a much cleaner and modular manner (and guides the specification
of connectors as discussed later).

2.2 Extending DbC – Service Consumer Contracts

In DbC service providers specify pre-/post-conditions for their methods but service con-
sumers cannot express their own contractual clauses on them. Indeed, most languages
do not allow consumers to even declare the services/interfaces they use. However, in
component models like CORBA one declares both the services it provides (our sockets)
and those it consumes (our plugs). Here we extend DbC further, so that we can specify
contracts for consumed services as well. This is done for the Philosopher in Fig. 6a.
Philosopher has a Boolean variable wte (“want to eat”), and three more (hs, hl, hr) to
state whether it has a Seat, a left and a right Fork respectively. These change their values
according to its functional constraints in Fig. 6b, which apply when a method does not
throw an exception – that is why we call them “normal”. On exceptions components do
not update their data. Keyword self denotes the ID of the component instance.

The Philosopher interaction constraints in Fig. 6c state when services may be re-
quested from others. These constraints specify no resource acquisition/release order.
Philosopher is free to acquire a Seat after both Forks or in between them. In fact, it
can even acquire or release a resource multiple times. The constraints state that when it
wants to eat it will need to acquire all three resources, without releasing any of them.
When it does not want to eat, it will release all three resources (again in some unspec-
ified order), without attempting to re-acquire any of them until all of them have been
released. These constraints were added so that the system can deadlock. Otherwise,
Philosopher can always release the resources it holds when those it needs are not avail-
able. It is exactly for this that we have introduced functional and interaction constraints
to plug ports (required interfaces). They are needed to express the constraints under
which the service providers must operate, i.e., the service’s “environment model”.

2.3 Component Structure and Its Translation to FSP

XCD components have six components – Data, Predicates, Socket Ports, Plug Ports,
Functional Constraints, and Interaction Constraints. We encode these into the FSP pro-
cess algebra [26] by first creating a process for the Data component of each component
C, that acts as the XCD component’s internal memory.

XCD – Modular, Realizable Software Architectures 159

<D =

{
Bool wte := T,Bool hs := F,

Bool hl := F,Bool hr := F

}
,preds =

[
Eat = (wte∧hs′ ∧hl′ ∧ lr′),
Think = ¬(wte∨hs′ ∨hl′ ∨ lr′)

]
,

Ps = /0,Pp = {piSA
p s,p

iGP
p fR,p

iGP
p fL},φ ,χ >

(a) Philosopher top-level specification[(
pp s,sit(self),T,hs′= T∧wte′= ¬Eat

)]
[(

pp fL,get(self),T,hl′= T∧wte′= ¬Eat
)]

[(
pp fR,get(self),T,hr′= T∧wte′= ¬Eat

)]

[(
pp s,arise(self),T,hs′= F∧wte′= Think

)]
[(

pp fL,put(self),T,hl′= F∧wte′= Think
)]

[(
pp fR,put(self),T,hr′= F∧wte′= Think

)]
(b) “Normal” functional constraints (φ)

[(pp s,sit(self),when(wte),T)]

[(pp fL,get(self),when(wte),T)]

[(pp fR,get(self),when(wte),T)]

[(pp s,arise(self),when(¬wte),T)]

[(pp fL,put(self),when(¬wte),T)]

[(pp fR,put(self),when(¬wte),T)]

(c) Philosopher interaction constraints (χ)

Fig. 6. Philosopher component specification

1 C_Mem = D([InitialValue (V)])*,

2 D([Name(V):Type(V)])* = read ([Name(V)])* -> D([Name(V)])*

3 | write([Name(V)_n:Type(V)])* -> D([Name(V)_n:Type(V)])* .

That is, a state of the memory is indexed for each Data variable (V) and the initial state is
selected according to the initializations in the Data component. Name/Type(V) produces
the name, respectively type, of the variable and the star operator means zero or more oc-
currences of its operand. Our translator currently supports Boolean and bounded integer
variables. For Philosopher, this produces:

1 Philosopher_Mem = D[True][False][False][False],

2 D[wte:Bool][hs:Bool][hl:Bool][hr:Bool]

3 = (read[wte][hs][hl][hr] -> D[wte][hs][hl][hr]

4 | write[wten:Bool][hsn:Bool][hln:Bool][hrn:Bool]

5 -> D[wten][hsn][hln][hrn]) .

Then each port P of a component C is encoded as an FSP process that locks the memory,
reads its current state, and evaluates the interaction constraints of the port’s methods.

1 C_P(ID=1) = Port ,

2 Port = (lock -> read ([Name(V):Type(V)])* -> P([Name(V)])*),

3 P([Name(V):Type(V)])* =

4 {forall(m : Method , i : Interaction_Constraint)

5 when(pre(interaction (m, i))) m([Name(arg):Type(arg)])*

6 -> internal_m ([Name(arg)])* ([Name(V)])*

7 -> internal_m ([Name(arg)])* ([Name(V)_n:Type(V)])*

8 [r:RES][e:EX]

9 -> (when (NoEXCEPTION != e) unlock

160 C. Kloukinas and M. Ozkaya

10 -> RES_m([Name(arg)])*[r][e] ([Name(V)])*

11 ([Name(V)_n])*

12 | when (NoEXCEPTION == e) write([Name(V) n])* -> unlock

13 -> RES_m([Name(arg)])*[r][e] ([Name(V)])*

14 ([Name(V)_n])*)

15 ...

16 } // end of forall(m, i)

17 | when ({ forall(m,i) !pre(interaction (m, i))}) unlock ->Port ,

Here, when a method m’s ith interaction precondition is satisfied, a call to it is accepted
(m([Name(arg):Type(arg)])*) and it is passed to another process through the internal m
action. The other process, which can be seen as m’s “implementation”, responds by an
action internal m which has the same values for the arguments and the new values for
the Data variables, as well as the result (r) and exception (e) returned. When there is an
exception the memory is unlocked and we pass control to sub-process “RES m”. When
there is no exception we update the memory, unlock it and then pass control to RES m.
Here, RES m is a sub-process of P (one per method m) responsible for checking m’s
functional constraints, using m’s arguments (arg), return type (r), exception thrown (e),
and values of the Data variables (V). Predicates are expanded wherever they are used.

Processes implementing a method m (those controlling the “internal m” actions),
follow this pattern, where C is the component name and P its port:

1 C_P_m(ID=1) = (

2 internal_m ([Name(arg)]:Type(arg))* ([Name(V):Type(V)])*

3 -> ({forall(f : Functional_Constraint)

4 when (pre(functional (m,f)))

5 internal_m ([Name(arg)])* ([V’])* [r’][e’] -> C_P_m }

6 | when !(CP2) incomplete_pre_conditions -> ERROR).

7 // where CP2 is {∨ f pre(functional (m,f))} -- see eq. (2) below

2.4 Testing Architectural Components

Following Fig. 5’s constraint semantics, one needs to check that (CP1) the interaction
pre-conditions are complete; and that whenever the normal interaction pre-conditions
are satisfied that (CP2) the functional pre-conditions are complete; and (CP3) the func-
tional constraints are consistent.

CP1 = ∀m.
∨
n

pre(mχ
n) (1)

CP2 = ∀m.
∧
k

(
pre(mχ

k)→
∨
n

pre(mφ
n)

)
(2)

CP3 = ∀m.
∧
k

(
pre(mχ

k)→
∧
n

[
pre(mφ

n)→post(mφ
n)
])

(3)

In equation (1) n ranges over both the normal and exceptional interaction constraints
and the predicate when(φ) always evaluates to T. So for Seat’s sit, we need to verify
that pre(sχ

1) holds. Being a when predicate, this is the case. For Seat’s arise we can

XCD – Modular, Realizable Software Architectures 161

also verify that (pre(aχ
1)∨ pre(aχ

2)) = (Occupied∨¬Occupied) holds. In equation (2)
k ranges over the normal interaction constraints of method m and n ranges over all its
functional constraints. Both here and in equation (3) the predicate when is evaluated as
the identity function, i.e., when(φ) = φ . This is because we want to evaluate the com-
pleteness of the functional pre-conditions only when the method is eventually executed,
in which case the when condition should hold.

The CP3 condition is effectively checked in our FSP models through the RES m
sub-processes of ports mentioned in the previous section:

1 RES_m([Name(arg):Type(arg)])*

2 [r:RES][e:EX] ([Name(V): Type(V)])* =

3 Let CP3={∧ f !pre(functional (m,f)) || post(functional (m,f))}

4 when (CP3) m_ret([Name(arg)])* [r][e] -> Port

5 | when (! CP3) inconsistent_normal_conditions -> ERROR

3 XCD Connectors

We can now consider connectors, as Fork is similar to Seat. If we opt for something like
procedure-call, event-bus, etc. then we are specifying our system at a very low level. The
extra details obfuscate the design, making it difficult to identify the high-level interac-
tion protocols, thanks to which the system achieves its non-functional requirements.
This is why XCD focuses instead on complex connectors. These connectors consist of
a set of roles, each one with a set of port variables. Role port variables are assumed by
some component ports, as specified by the architectural configuration.

Glue-Less Connectors. XCD connectors differ from those of Wright [1], since XCD

employs no “glue” element for coordinating role behaviours. The glue is problematic
for a number of reasons. First, the glue is a choreography, so one needs to realize it as
a set of individual services (i.e., role implementations) composed in parallel. But [2, 3]
have shown that the choreography realization problem is undecidable in general. De-
ciding realizability in certain cases is indeed possible, e.g., [7], and in some cases unre-
alizable choreographies can be repaired by extending the recipient set of messages [25].
However, this is the least of the problems introduced by glues. More importantly, if we
need to consider multiple instances of some role, then we need to manually specify in
the glue all the acceptable composed behaviours of these instances. For example, when
considering a market system with one consumer and two merchants in [12], the glue
describes all possible interactions of the three roles. This does not scale – it is imprac-
tical to specify a glue with five or more merchants and quasi-impossible to do so for N
merchants. Finally, the glue hinders the architectural analysis for further non-functional
requirements, such as reliability, performance, real-time behaviour, etc. It introduces an
artificial centralization point in the connector, even if the protocol represented by the
connector does not have such a centralization point, e.g., the procedure-call. This makes
analysis more difficult, since now one has to consider the real centralization points (e.g.,
for reliability analysis), while ignoring the fictitious ones (the glue elements of the var-
ious connectors). It also makes the modelling more difficult to validate. For example,
in [12] the authors perform a probabilistic analysis of a market system, assigning a rate

162 C. Kloukinas and M. Ozkaya

< R =
{

rp,rs,rfL,rfR
}
,Chan >

(a) Connector top-level specification

rp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D =

⎧⎪⎪⎨
⎪⎪⎩
Bool sitting := F,

BoolgotLF := F,

BoolgotRF := F

⎫⎪⎪⎬
⎪⎪⎭ ,

preds = /0,Pp
v =

{
pviSA

p s,pviGP
p fL,

pviGP
p fR

}
,

Ps
v = /0,χp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rs=
[
Ps

v =
{

pviSA
s

}]
rfL=

[
Ps

v =
{

pviGP
fL

}]
rfR=

[
Ps

v =
{

pviGP
fR

}]
(b) Role (R) definitions

[(
pvp s,sit(self),when(¬sitting),sitting′ = T

)]
[(

pvp s,arise(self),when(sitting),sitting′ = F
)]

[(
pvp fL,get(self),when(¬gotLF),gotLF′ = T

)]
[(

pvp fL,put(self),when(gotLF),gotLF′ = F
)]

[(
pvp fR,get(self),when(¬gotRF),gotRF′ = T

)]
[(

pvp fR,put(self),when(gotRF),gotRF′ = F
)]

(c) Philosopher role constraints (χp)

c�p,s = (pvp s,pvs),c
�
p, f l = (pvp fL,pvfL),

c�p, f r = (pvp fR,pvfR)

(d) Channels (Chan) connecting port-variables

Fig. 7. Dining philosophers decentralized control connector

R1 to all transitions between the consumer role and the glue and a rate R2 to all tran-
sitions among the glue and the merchant roles. However, transitions between the con-
sumer and the glue represent in reality requests from the consumer to the merchants, as
well as responses from the merchants to the consumer. The transitions among the glue
and the merchants also represent the same requests and responses. We fail to see how
these rate assignments can be justified – in our view, the glue complicates the situation
so much that it is very easy to produce models that are difficult to understand, and, thus,
difficult to ensure that they represent the real system faithfully.

Wrapper-Like Connectors. In [1], a component should implement the roles it as-
sumes, L (Comp) ⊆ L (Role), i.e., have the same set of behaviours as the role or a
subset of that. This seems too constraining and limiting component reusability. Instead,
XCD components focus on implementing just the minimum interaction constraints that
they need to operate correctly. The roles they assume act as a sort of wrapper, control-
ling their behaviour so that it meets the expected role behaviours.

Another way of looking at it is to consider components as machines that (modulo
their constraints) execute the script (constraints) specified by the connector roles they
assume, just like human actors do.

3.1 Decentralized Control Connector

Fig. 7 shows the specification of a complex Decentralized Control connector for the din-
ing philosophers. The connector defines a set of roles and interaction channels (Fig. 7a).
The specifications of the roles are shown in Fig. 7b. Each of them has five constituent
parts: a set of role data variables (D), a set of predicates (preds), a set of plug port vari-
ables (Pp

v), a set of socket port variables (Ps
v), and a set of interaction constraints (χ).

Roles rs, rfL, and rfR, have socket port variables only (rest omitted for brevity). Role rp

XCD – Modular, Realizable Software Architectures 163

uses variables to keep track of the state of resources and to control it through its con-
straints in Fig. 7c so that it only acquires resources when it does not hold them already
and releases them when it does hold them. Constraints modify role variables only when
the respective methods do not raise exceptions. Channels in Fig. 7d state which role
port variables are linked to each other – all the channels we use are rendez-vous ones.

This connector does not describe the full system configuration. If there are n in-
stances of the Philosopher, Seat, and Fork components in the system then there should
be n instances of the Decentralized connector as well, since a single connector instance
can only connect one Philosopher, with one Seat and two Forks.

3.2 FSP Encoding of XCD Connector Roles

Encoding connector role port variables is similar to encoding component ports. The
only difference is that since roles do not have functional constraints, a request for a
method “m([Name(arg):Type(arg)])*” is immediately followed by a response through
its corresponding “m ret” action (performed by some component’s RES m sub-process).

3.3 Fundamental Connector Properties

There is only one fundamental property for a connector to be complete: (XP1) interac-
tion exception-freedom. (XP1) is a connector-level property. It requires that component
socket ports never throw an interaction exception, no matter how the component plug
ports behave. This can be checked by composing the connector with the corresponding
components that assume its roles, while setting all interaction pre-conditions of compo-
nent plug ports to T (i.e., those in Fig. 6c). Doing so allows us to explore all possible
interaction patterns that the connector roles allow for the components and verify that
interaction exceptions have been rendered impossible by it. However, a connector can
be left incomplete on purpose and be completed later using role strategies.

It should be noted that a connector is not necessarily deadlock-free, not even at a
local, role level. That is, a role may introduce such constraints that it renders its compo-
nent’s actions impossible after some point. XCD permits this as the designer may need
it to essentially remove a component from a protocol at some point. If one wants to
check that this is not the case, then they need to check local deadlock-freedom (XP2):
L (Comp ‖ Role)@ΣRole ⊆L (Role), where @ projects a language on an alphabet.

Even when a connector is complete and locally deadlock-free it is not necessarily
deadlock-free as a whole. Nevertheless we do not view this as being problematic be-
cause we believe that connector-level deadlock-freedom is best met through external
role strategies as discussed in section 4.

4 Role Strategies – Control/Design Decisions

XCD advocates the underspecification of connectors – additional interaction properties
are to be imposed through modular role strategies [22]. These can enforce an action or-
der, e.g., that Seat is acquired before the Forks, or render the system deadlock-free.
Deadlock-freedom can usually be achieved through different techniques. Instead of

164 C. Kloukinas and M. Ozkaya

[(
pvp fL,get(c),when(sitting),T

)][(
pvp fR,get(c),when(sitting),T

)]
(a) Resource acquisition order

[(
pvp s,arise(c),when¬(gotLF∨gotRF),T

)]
(b) Resource release order

[(
pvp fL,get(c),when(gotRF∨ c%2 = 0),T

)][(
pvp fR,get(c),when(gotLF∨ c%2 �= 0),T

)]
(c) Deadlock-avoidance by asymmetry – for even/odd c[(

pvp fL,get(c),when(gotRF∨ (rfL.ID< rfR.ID)),T
)][(

pvp fR,get(c),when(gotLF∨¬(rfL.ID< rfR.ID)),T
)]

(d) Deadlock-avoidance by resource order – the fork with the least ID has priority

Fig. 8. Philosopher role strategies (their constraints)

hard-coding one in the connector, XCD allows designers to re-use the same connec-
tor specification and experiment with different strategies for it in a modular fashion.

Fig. 8 shows examples of such strategies for the Philosopher role. The strategy in
Fig. 8a forces Seat to be acquired before the Forks, while that of Fig. 8b forces Forks to
be released first. Then the asymmetry strategy in Fig. 8c avoids deadlocks by picking
a different Fork when the ID of the caller c is odd or even. The strategy in Fig. 8d also
avoids deadlocks but does so by always acquiring the Fork with the smallest ID first.

Strategies are encoded in FSP like roles are. Finally, configurations are encoded by
a series of action prefixing, renaming, etc., that are too tortuous to describe in detail.

5 Evaluating XCD’s Modular Specifications

We have encoded (first manually, then automatically) these architectural specifications
in the FSP process algebra [26] and have verified them automatically. Our goal was to
establish that our architectural specifications can be verified automatically indeed and to
obtain some early results on the usefulness of modular specifications. In particular we
wanted to evaluate the usefulness of control strategies and how these could aid design-
ers when developing an architecture. In total, we considered 12 different configurations
for the decentralized system, shown in Fig. 1 for two philosophers, using different com-
binations of strategies. In all these cases our models remained the same, with the only
difference being the enabling/disabling of strategies. This cannot be stressed enough –
without such a modular specification it would have been extremely difficult to encode
in FSP the different models of connector/strategy combinations or, even worse, the dif-
ferent models of connector/strategy/component combinations if we were to use AADL-
like simple connectors. Not having a compiler initially (a prototype one is available
now) had forced us to increase the modularity of our language as much as possible.
This modularity maximizes architectural exploration in practice – one can start with
minimal component and connector specifications and test multiple strategies without
having to modify any specifications.

The different role strategies defined in Fig. 8 allow designers to easily experiment
with controlling their system and evaluating different design decisions early on. XCD

XCD – Modular, Realizable Software Architectures 165

Table 1. Different decentralized control strategy combinations

(a) 2 Philosophers

Strategies States
Red.
(%)

Trans.
Red.
(%)

Dead-
lock

No strategies 505 0.00 1104 0.00 Yes
Acq(uisition) 303 40.00 628 43.12 Yes
Rel(ease) 345 31.68 732 33.70 Yes
As(ymmetry) 335 33.66 708 35.87 No
Acq./Rel. 179 64.55 352 68.12 Yes
Acq./As. 245 51.49 504 54.35 No
Rel./As. 205 59.41 412 62.68 No
Acq./Rel./As. 133 73.66 256 76.81 No

Res. Order (RO) 335 33.66 708 35.87 No
Acq./RO 245 51.49 504 54.35 No
Rel./RO 205 59.41 412 62.68 No
Acq./Rel./RO 133 73.66 256 76.81 No

(b) 3 Philosophers

Strategies States
Red.
(%)

Trans.
Red.
(%)

Dead-
lock

No strategies 12750 0.00 42060 0.00 Yes
Acq(uisition) 6381 49.95 20178 52.03 Yes
Rel(ease) 6615 48.12 21030 50.00 Yes
As(ymmetry) 7550 40.78 24320 42.18 No
Acq./Rel. 2532 80.14 7452 82.28 Yes
Acq./As. 4850 61.96 15278 63.68 No
Rel./As. 3260 74.43 9892 76.48 No
Acq./Rel./As. 1667 86.93 4804 88.58 No

Res. Order (RO) 7550 40.78 24320 42.18 No
Acq./RO 4850 61.96 15278 63.68 No
Rel./RO 3260 74.43 9892 76.48 No
Acq./Rel./RO 1667 86.93 4804 88.58 No

(c) 4 Philosophers

Strategies States
Red.
(%)

Trans.
Red.
(%)

Dead-
lock

No strategies 304325 0.00 1340320 0.00 Yes
Acq(uisition) 123327 59.48 521992 61.05 Yes
Rel(ease) 124545 59.08 527864 60.62 Yes
As(ymmetry) 146925 51.72 631480 52.89 No
Acq./Rel. 34775 88.57 136496 89.82 Yes
Acq./As. 85725 71.83 361960 72.99 No
Rel./As. 44455 85.39 178168 86.71 No
Acq./Rel./As. 19561 93.57 75136 94.39 No

Res. Order (RO) 156675 48.52 675680 49.59 No
Acq./RO 86925 71.44 366896 72.63 No
Rel./RO 50305 83.47 204108 84.77 No
Acq./Rel./RO 20173 93.37 77568 94.21 No

(d) 5 Philosophers

Strategies States
Red.
(%)

Trans.
Red.
(%)

Dead-
lock

No strategies 7178125 0.00 39529000 0.00 Yes
Acq(uisition) 2334189 67.48 12361790 68.73 Yes
Rel(ease) 2340375 67.40 12398970 68.63 Yes
As(ymmetry) 2996250 58.26 16129250 59.20 No
Acq./Rel. 475359 93.38 2332320 94.10 Yes
Acq./As. 1497825 79.13 7915260 79.98 No
Rel./As. 691550 90.37 3484630 91.18 No
Acq./Rel./As. 235655 96.72 1132228 97.14 No

Res. Order (RO) 3191250 55.54 17227750 56.42 No
Acq./RO 1518225 78.85 8020772 79.71 No
Rel./RO 773450 89.22 3929690 90.06 No
Acq./Rel./RO 242387 96.62 1165100 97.05 No

aids designers to decide on, and explicitly document, the relative importance of the var-
ious system properties and the specific solutions they have provided for each. XCD also
makes it easier to experiment with different strategies and configurations of strategies,
as these are represented explicitly and externally to connectors.

Table 1a shows results from combinations of the two ordering strategies of Fig. 8a
and Fig. 8b with the asymmetry strategy of Fig. 8c and the resource order strategy of
Fig. 8d, for a system with 2 philosophers. Table 1b, Table 1c, and Table 1d show results
for 3, 4, and 5 philosophers respectively. We used LTSA v. 2.2 with 7000 MB of RAM.
Surprisingly, we see that the best state space reduction (third column, headed “Red.
(%)”) for two strategies is obtained when combining the two strategies that constrain
the acquisition (Acq.) and release order (Rel.) of resources (64%, 80%, 88%, and 93%
respectively), even though these do not render the system deadlock-free. These reduc-
tions are almost the double of those achieved by the strategies for deadlock-freedom
(As., RO) on their own (33%, 40%, 51%, and 58% respectively).

166 C. Kloukinas and M. Ozkaya

As these results indicate, it is not necessarily true that a designer should choose to
apply a deadlock-freedomstrategy first. In fact, the results obtained by the two deadlock-
freedom strategies for 2 and 3 philosophers in Table 1a and Table 1b give a reason for
not doing so, since they are identical. So designers have to consider a larger system, with
4 philosophers and possibly with 5, to be able to choose one deadlock-freedom strategy
over another. There the two strategies produce different results (a 51% versus 48% reduc-
tion and a 58% versus a 55% one respectively). However, checking a larger system is far
more expensive and may lead to state-space explosion. So we can see that constraining
first with some strategies that do not meet any critical properties, as with the acquisition
and release ordering strategies, is a sensible step for reducing the overall state-space. It
allows designers to explore larger instances of the system, which may potentially help
identify further problems, opportunities for optimization, or simply provide evidence for
choosing among alternative strategies for meeting a particular property, as it does here.
Designers can then easily remove some of the non-critical strategies, if they need to use
the extra degrees of freedom for meeting other critical properties, e.g., performance.This
is made possible by the modular nature of the strategies – adding and removing them
requires no modifications to either component or connector specifications.

A connector for centralized control (with a “Butler” role) and associated evaluation
results is described in a separate technical report [23].

6 Related Work

Research in software architectures identified the need for first-class connectors from the
very beginning [15, 30]. The problems created by the non-documentation of protocols
was also identified early on in [14] and a formalization of connectors was presented in
[1] shortly after that – a formalization that is still being used today, e.g., [19,34]. Indeed,
the connectors in CONNECT [19] follow the same general structure as Wright’s (roles
and glue), but seem to be specified in FSP instead of CSP. Compared to Wright [1], XCD

adds the extra element of role strategy, and the additional constraint that connectors and
strategies should not have a glue. As such XCD avoids the glue realizability problem –
XCD connector roles are realizable by construction, as they only require access to local
data (Booleans, integers, buffers, etc.). XCD also abandons the use of CSP for what we
believe is a more developer-friendly approach.

Work which has been done at identifying different types of connectors [16, 27] has
tended to focus at cataloguing and specifying basic interaction mechanisms, e.g., proce-
dure calls, event buses, etc., especially since these were needed to base upon them more
complex connectors. However, the use of basic interaction mechanisms as connectors
in an architectural specification makes it difficult to understand what the real protocols
in the system are and leads to system specifications that are at a very low level of ab-
straction, as is the case with AADL [11]. Indeed, designers are forced to incorporate the
behaviour of the more complex connectors they wish to use into their components, de-
creasing their re-use potential and increasing the chance of architectural mismatch [14].
In fact, the presence of low-level connectors [16, 27] in a system architecture should
alert designers that they have a potential problem. That is, they have over-designed the
architectural description and/or have failed to describe the general protocols that are

XCD – Modular, Realizable Software Architectures 167

supposed to be used among their components in a way that is sufficiently abstract, and
therefore understandable and analyzable. Blackboards, event buses, tuple spaces, etc.,
are low-level interconnection mechanisms that give precious little information on what
interaction protocols a system uses and how these meet its non-functional requirements.

Languages used by practitioners suffer from this problem in particular. A connec-
tor in UML 2.0 is just a UML association, so architects must use modelling elements
other than UML connectors to describe architectural connectors [20]. AADL [13] only
supports certain specific, basic connector types and does not offer the possibility to de-
fine more complex connector types, while SysML [6] does not support architectural
connectors at all (only UML ones).

Plasil et al.’s work [5, 31, 32] is somewhat similar to ours, in particular the need to
describe component interactions as separate entities, albeit ones which still form part
of the component. Instead, XCD cleanly separates component and connector behaviour,
and further separates the control parts of the connectors through role strategies.

It should be noted here that the constraints introduced through strategies are orthog-
onal to architectural style constraints, such as those of ACME [21]. The latter are global
constraints enforcing a style, while strategies are local constraints. So there are cases
where the strategy constraints are met but the style ones are not, as in a pipe-and-filter
style prohibiting cycles, something that cannot be enforced through role strategies.

Compared to BIP [8], XCD differs in the fact that it tries to support complex connec-
tors as first class entities, while BIP only provides two basic connectors, for “rendez-
vous” and “atomic broadcast”. We believe that latter can be misused very easily by
designers who mistake it for “broadcast”. At the same time, BIP offers a specification
framework that is closer to synchronous/hardware description languages that XCD tries
to avoid as we believe that languages like JML will prove much more popular with
software developers.

Compared to Exogenous Connectors [24] and Reo [4], XCD differs by introducing
role strategies and by not trying to remove interaction constraints from components
entirely. We believe that components still need to be able to specify some interaction
constraints so as to describe what they expect of their environment and how they plan to
use it. Another difference is with the way a designer is expected to specify their system.
XCD uses pre-/post-conditions to specify the behaviour of components, connectors, and
strategies, while exogenous connectors uses a graphical representation, which to our
eyes looks too much like hardware block diagrams. Reo also constructs complex con-
nectors by the appropriate composition of simpler channel specifications, in a manner
that again resembles a circuit design. We do not expect such languages to gain a signif-
icant follow up from the general software development community – they do not look
like “code” enough. XCD does use some of Reo’s basic connectors as channel types
that link connector roles together.

7 Conclusions

XCD is a new connector-centric approach for designing systems, aimed at facilitating
their formal analysis at an early stage. XCD views connectors as the most important
architectural element and uses them to cleanly separate functional behaviour from in-
teraction behaviour. XCD attempts to further modularize architectural specifications by

168 C. Kloukinas and M. Ozkaya

separating control behaviour into external controller role strategies that can be easily
combined and replaced, without having to modify the component or connector speci-
fications. These structural characteristics of XCD mean that designers can experiment
more easily with different combinations of components, connectors, and strategies, to
formally evaluate the properties of their systems and the potential solutions that exist
for meeting those, without having to modify the specifications of any of these elements.

Inspired by JML, XCD follows a Design by Contract (DbC) specification approach,
through the use of simple pre-/post-conditions so that it is easier to use. XCD extends
DbC in two ways. First XCD introduces a new structure for contracts, to distinguish
between the different behaviour/contract types (functional/interaction) in a clean man-
ner. Second, XCD extends DbC so that service consumers can specify contractual terms
too, expressing their intended use of the services they are interested in, i.e., providing a
service “environment model”. Finally, by foregoing the use of Wright’s [1] connector
glue element and instead expressing all constraints through local pre-/post-conditions,
XCD ensures that connectors can be realized by construction and that connectors can
be easily specified even in the case where the number of roles is high (or a parameter).

Apart from improving tool support, we are currently considering extensions of XCD

so that it can deal with events (i.e., asynchronous oneway calls), and different types of
interaction channels (buffered, lossy, etc.).

Acknowledgements. This work has been partially supported by the EU project FP7-
257367 IoT@Work – “Internet of Things at Work”.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM TOSEM 6(3), 213–
249 (1997)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans.
Software Eng. 29(7), 623–633 (2003)

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theor.
Comput. Sci. 331(1), 97–114 (2005)

4. Arbab, F.: Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science 14(3), 329–366 (2004)

5. Bálek, D., Plasil, F.: Software connectors and their role in component deployment. In: IFIP
Conf. Proc. vol. 198, pp. 69–84. Kluwer (2001)

6. Balmelli, L.: An overview of the systems modeling language for products and systems de-
velopment. J. of Obj. Tech. 6(6), 149–177 (2007), www.sysml.org

7. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field, J., Hicks,
M. (eds.) POPL 2012, pp. 191–202. ACM (2012)

8. Bliudze, S., Sifakis, J.: The algebra of connectors – Structuring interaction in BIP. In: Em-
Soft, pp. 11–20 (October 2007)

9. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg (2006)

10. Dehnert, J.C., Stepanov, A.A.: Fundamentals of Generic Programming. In: Jazayeri, M.,
Loos, R., Musser, D. (eds.) Generic Programming 1998. LNCS, vol. 1766, pp. 1–11.
Springer, Heidelberg (2000)

11. Delanote, D., Van Baelen, S., Joosen, W., Berbers, Y.: Using AADL to model a protocol
stack. In: ICECCS, pp. 277–281 (April 2008)

www.sysml.org

XCD – Modular, Realizable Software Architectures 169

12. Di Giandomenico, F., Kwiatkowska, M., Martinucci, M., Masci, P., Qu, H.: Dependabil-
ity Analysis and Verification for CONNECTed Systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2010, Part II. LNCS, vol. 6416, pp. 263–277. Springer, Heidelberg (2010)

13. Feiler, P.H., Lewis, B.A., Vestal, S.: The SAE architecture analysis & design lan-
guage. In: IEEE Intl. Symp. on Intell. Control, pp. 1206–1211 (October 2006),
http://www.aadl.info

14. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to build sys-
tems out of existing parts. In: ICSE, pp. 179–185 (April 1995)

15. Garlan, D., Shaw, M.: An introduction to software architecture. In: Adv. in SW Eng. and
Knowledge Eng., pp. 1–39. World Scientific Publishing Company, Singapore (1993)

16. Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a Periodic Table of Connectors. In: Cian-
carini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, p. 418. Springer,
Heidelberg (1999)

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–
580 (1969)

18. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

19. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-Layer Connector Synthesis: Be-
yond State of the Art in Middleware Interoperability. In: Bernardo, M., Issarny, V. (eds.)
SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg (2011)

20. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O.: Documenting com-
ponent and connector views with UML 2.0. TR CMU/SEI-2004-TR-008 (2004)

21. Kim, J.S., Garlan, D.: Analyzing architectural styles with Alloy. In: ROSATEA (July 2006)
22. Kloukinas, C.: Better abstractions for reusable components & architectures. In: ICSE-NIER

– ICSE Companion, pp. 199–202. IEEE Press, Vancouver (2009)
23. Kloukinas, C., Ozkaya, M.: Xcd – Simple, modular, formal software architectures. Tech.

Rep. TR/2012/DOC/01, Department of Computing, School of Informatics, City University
London, Northampton Square, London, EC1V 0HB, U.K. (May 2012), ISSN 1364–4009

24. Lau, K.K., Elizondo, P.V., Wang, Z.: Exogenous Connectors for Software Components. In:
Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.)
CBSE 2005. LNCS, vol. 3489, pp. 90–106. Springer, Heidelberg (2005)

25. Lekeas, G., Kloukinas, C., Stathis, K.: Producing Enactable Protocols in Artificial Agent
Societies. In: Kinny, D., Hsu, J.Y.-J., Governatori, G., Ghose, A.K. (eds.) PRIMA 2011.
LNCS, vol. 7047, pp. 311–322. Springer, Heidelberg (2011)

26. Magee, J., Kramer, J.: Concurrency – state models and Java programs, 2nd edn. Wiley (2006)
27. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of SW connectors. In: ICSE,

pp. 178–187 (2000)
28. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
29. Musser, D.R., Stepanov, A.A.: Generic Programming. In: Gianni, P. (ed.) ISSAC 1988.

LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989)
30. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw.

Eng. Notes 17(4), 40–52 (1992)
31. Plasil, F., Besta, M., Visnovsky, S.: Bounding component behavior via protocols. In: TOOLS,

vol. (30), pp. 387–398. IEEE (1999)
32. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans. Software

Eng. 28(11), 1056–1076 (2002)
33. Rodrı́guez, E., Dwyer, M.B., Flanagan, C., Hatcliff, J., Leavens, G.T., Robby: Extending

JML for Modular Specification and Verification of Multi-threaded Programs. In: Gao, X.-X.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 551–576. Springer, Heidelberg (2005)

34. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons (2010), ISBN-13: 978-0470167748

35. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall (1975)

http://www.aadl.info

LOVER: Light-Weight fOrmal Verification

of adaptivE Systems at Run Time

Amir Molzam Sharifloo1 and Paola Spoletini2

1Dipartimento di Elettronica e Informazione, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy

2Università dell’Insubria
via Ravasi, 2, 21100 - Varese, Italy

molzam@elet.polimi.it, paola.spoletini@uninsubria.it

Abstract. Adaptive systems are able to modify their behaviors to re-
spond to significant changes at run time such as component failures. In
many cases, run-time adaptation is simply replacing a piece of system
with a new one without interrupting the system operation. In terms of
component-based systems, an adaptation may be defined as replacing a
system component with a new version at run time. However, updating a
system with new components requires the assurance that the new config-
uration will fully satisfy the expected requirements. Formal verification
has been widely used to guarantee that a system specification satisfies a
set of properties. However, applying verification techniques at run time
for any potential change can be very expensive and sometimes unfea-
sible. In this paper, we present a methodology, called LOVER, for the
lightweight verification of component-based adaptive systems. LOVER
provides a new process model supported with formalisms, verification
algorithms and tool to verify a significant subset of CTL properties.

1 Introduction

Adaptive systems have been deeply studied over the last decade as means for
developing dependable software applications, always more flexible and dynamic
[4]. Examples of such systems are service-oriented applications [10], active sensor
networks [12] and smart grids [1]. Due to the increasingly use of such systems, a
lot of research has been carried out to develop techniques that support adapta-
tion [4,8]. Run-time adaptation is required if a system is not able to cope with
the unpredicted changes occurring at run time. For example, a service hired from
an external component fails during the system operation or stops supporting a
set of requirements. To react to such failures, a new component, discovered at
run time, may be plugged to the system. Similarly, new components with higher
level of QoS may become available while the system is operating, which may be
preferred to the currently used component. However, since there has been no
information about the behavior of the new component at design time, it is nec-
essary to reason about its impact and negative side effects on the overall system
behavior at run time.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 170–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Light-Weight Formal Verification 171

To avoid any violations, it is necessary to guarantee that the overall system
properties will be satisfied in case of applying an adaptation. This could be
assured by formally verifying the new system specification, which is obtained
by integrating the specification of the new component, against the properties.
Intuitively, it is an extra work and overhead due to the fact that the major part of
the specification does not change. Moreover, model checking a large specification
at run time is quite difficult because of the time and resource limitations. If we
could reuse the verification results of the invariant part for future verifications,
this would significantly save the time and resource usage at run time.

The existing approaches to verifying adaptive systems mainly focus on the
specification and verification of adaptation process [19,2]. These approaches as-
sume that there is a complete knowledge about the system and environment
behavior at design time, so they are able to reason about the properties of the
whole interaction model. However, this is not the case in many realistic ex-
amples, in which the information about the behavior of some components and
the environment are obtained only at run time. This is why run-time verifica-
tion techniques come into play to monitor and check that the running system
does not violate the specification and the properties [11,14]. Although these ap-
proaches are less expensive than model-checking techniques but still they are
not complete, and do not guarantee the satisfaction of the properties.

The contribution of this paper is a methodology, called LOVER1, to effi-
ciently verify that a set of adaptations will lead to the satisfaction of the overall
system properties. More specifically, our approach allows the designer to verify
the system at design time, even if some components are unspecified. Our model
checking algorithm then verifies if the requirements hold and produces a set
of constraints for the unspecified components, if needed. Once the components
are specified at runtime they can be verified in isolation against this new set of
constraints, without checking again the entire system.

Our approach is different from the assume-guarantee approaches in which a
set of assumptions on the environment of a component is made that guaran-
tees the satisfaction of the desired properties [13,6,9]. Instead we address the
run-time model checking of incomplete or changing specifications that comprise
dynamic components evolving at run time. We focus on component-based adap-
tive systems represented by an extension of Labeled Transition Systems (LTS)
and verification algorithms for qualitative Computational Tree Logic (qCTL),
CTL without the next operator. Moreover, we provide a tool support for the
verification algorithm, and a formalism to specify the constraints.

The remainder of the paper is organized as follows. Section 2 intuitively mo-
tivates the research problem through a running example. Section 3 presents
LOVER process model, the formalisms, and the verification algorithms. Exper-
imental results are reported in Section 4. Section 5 discusses the state of the
art in verifying adaptive systems, and finally, Section 6 concludes the paper and
gives some hints for the future work.

1 Light-weight formal verification of adaptive systems at run time.

172 A. Molzam Sharifloo and P. Spoletini

2 The Running Example

In this section, we introduce the running example that is used through the pa-
per. Secure Information Retrieval (SIR) is an information system that receives
requests, in form of questions, from the clients and responds to them via en-
crypted messages. The system behavior, in terms of the interactions among the
components, is illustrated in Figure 1.

Fig. 1. The activity flow of the Secure Information Retrieval system

A request received from a client is processed by Request Processor component.
First, the validity of the request is checked and then the requested information
is retrieved by querying on different data centers. The results are composed as
a message to be sent to the client. This message is encrypted by an Encryptor
component. The system is designed in such a way that is able to dynamically
change the encryption method depending on the level of the requested security
and performance. Hence, Encryptor can be rebound to different components at
run time with respect to the context. The encrypted message is checked against
a set of security standards by a Certifier component. The certified message is
logged and sent to the client. For security and reliability reasons, the following
set of properties shall be guaranteed by the system.

Security Property: Any message shall be encrypted before being sent out over
the network;

Reliability Property: The system shall recover from any failure.

Note that the satisfiability of these properties strongly depends on how the
encryption is performed and the details of this module are unknown at design
time. Indeed, even if an encryption module is selected and the verification is
accomplished at design time, this binding may change for different reasons at
run time and may require a new verification phase to re-assure the properties.
The SIR system is only an example of many component-based systems whose
properties depend on dynamic components, which may be bound or changed at
run time. Such systems require a continuous verification process that should be
as light-weight as possible to avoid intolerable overheads.

Light-Weight Formal Verification 173

3 The LOVER Framework

Differently from traditional model checking approaches, LOVER deals with in-
complete models, where a set of components are unspecified at design time and
are known only at run time. Obviously, the classical techniques could be applied
by checking the system every time the bindings (unspecified at design time) are
resolved or changed. Indeed, the time and space required for the verification
could be considerable, and since some bindings are resolved only while the sys-
tem is operating, the total overhead in resolving them should be kept as small
as possible.

To overcome these limitations, we propose LOVER, which is a two-phase
approach, that allows the designer to verify the incomplete system specification
at design time and generates a set of constraints for the unspecified components.
Those constraints are verified at run time whenever the component specifications
become available. An overall view of LOVER is given in Figure 2. At design
time, the incomplete system is described as a particular kind of LTS, where
some states are transparent w.r.t. the labels. This model is then checked against
a desired qCTL property. The result of the verification could be “yes”, “no”
or “conditionally yes”. The last option gives the set of constraints that has to
be satisfied by the unspecified components such that the whole system satisfies
the given property. These constraints are expressed in path-qCTL, an extension
of qCTL that allows the specification of properties also over finite paths. The
constraints are verified by a path-qCTL model checker, which can be obtained
by a simple extension to any CTL model checker, such as NuSMV [5].

In this section, we first introduce the novel formalisms and briefly recall qCTL.
Then we present the core of LOVER: the model checking algorithm for incom-
plete models, and a sketch the proof of its equivalence with the traditional so-
lution. We then conclude by showing how to check path-qCTL properties on a
component specification expressed as a variation of LTS.

3.1 Incompletely Labeled Transition System

An Incompletely Labeled Transition System (ILTS) is a labelled transition sys-
tem (LTS) in which the set of states is partitioned in R, the set of regular states,
and T , the set of transparent states, that are special states that can represent
more complex components and are considered as unknown. Formally, an ILTS
is specified as a tuple 〈S, s0,→, L〉 over the alphabet A of atomic propositions,
where

– S is a set of states, which is partitioned in two sets: R (Regular) and T
(Transparent) , i.e., S = R ∪ T and R ∩ T = ∅;

– s0 is the initial state;

– →⊆ S × S represents the transitions between states;

174 A. Molzam Sharifloo and P. Spoletini

ILTS

qCTL
False

True

Conditionally True
{Path-CTL}

D
es

ig
n

Ti
m

e
R

un
 T

im
e Path-qCTL

Checker LTS

False

True

ILTS/qCTL
Checker

LLLLLLLLLLLTTTTLLLLLLLTTTTTTTTTSTSTSSSTSTSTSSSSSSSSSLLLLLLLLLTTLLLLTTTTTTTTSTTSTSSTSTSSSSSSSSLTSLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLTTTTTLLLLLLLTTTTTTTTTTTTTTTTSSSSSSTSTSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLLTLLLLLLLLLLLLLLLLLTTTTTTLLLLLLLLLLTTTTTTTTTTLLLLLLLLLLLLLLLLTTTTTTTTLLLLLTTTTTTTTTTTTTLLLLLLLLTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSTTTTTSSSSSSTSSTSTSSSSSSTSSSSTSTSTSTSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLTTLLLLTTTTTTTTTTTTTLLLLLLTTTTTTTTTTLLLLTTTSSLTS

U
p
d
at
ed

C
o
m
p
o
n
en
ts

Fig. 2. The LOVER Framework

– L : R → ℘(A) is the labeling function that associates a subset of atomic
propositions to each regular state.

The transparent states represent unknown components that, once specified, can
be modeled using a special kind of LTS, namely LTS with single final state,
i.e., a tuple 〈S, s0, sF ,→, L〉, where sF ∈ S is the final state. The initial state
and the final state represent the unique entering and exiting points in and from
the component, respectively. ILTS can be used to model dynamic systems in
which some components are unspecified at design time or may change at run
time. In other words, there is a big part of system specification that is known at
design time, but there are some components that may be left undefined or may
be dynamically replaced with other components. Figure 3 shows the ILTS of
the motivating example, which is driven from the activity flow, presented in Sec-
tion 2. Transparent state 5 represents the unavailable specification of Encryptor.
The other states are labeled regarding the three message attributes: encrypted,
failed, and sent.

3.2 Qualitative CTL and Path-Qualitative CTL

Qualitative CTL (qCTL) is a proper subset of CTL that excludes metrics by ne-
glecting the operators EX and AX . Hence, the syntax of the language becomes:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | p

Light-Weight Formal Verification 175

3
{¬e,¬f}

2
{¬e,¬f}

4
{¬e,¬f}

1
{¬e,¬f}

7
{¬e,f}

8
{e,¬f}

6
{e,¬f}

11
{e,¬f}

9
{e,¬f}

10
{e,f}

14
{e,¬f}

13
{e,f}

0
{¬e,¬f}

12
{e,¬f}

15
{e,¬f,s}

Legend

e = encrypted

f = failed

s = sent

5
{?}

Fig. 3. The ILTS of the Secure Information Retrieval system

where p ∈ AP , EU and EG are the CTL operators whose semantics is briefly
recalled below.

CTL is classically defined on a state of LTS M = 〈S, s0, L〉 (M, s |= ϕ means
that ϕ holds in a state s of the LTS M) as follows:

– M, s |= p ⇔ p ∈ L(s);
– M, s |= ¬ϕ ⇔ M, s � ϕ
– M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2;
– M, s |= Eϕ1 ∪ ϕ2 ⇔ if there exists a path π starting from s such that
∃sk ∈ π | M, sk |= ϕ2 and ∀si ∈ π with i < k, M, si |= ϕ1;

– M, s |= EG ϕ⇔ if there exists an infinite path π starting from s such that
∀si ∈ π, M, si |= ϕ.

Notice that the classical boolean connectives (∨, ⇒ and ⇔) and the temporal
operators AU , AG, EF , and AF can be derived from the above sets of operators.
As an example, let us consider the security and reliability properties presented
in Section 2, using the set of atomic propositions AP = {s, e, f}, the meaning
of which was explained above. The property “All messages are encrypted before
being sent out over the network” can be expressed as A(¬sUe), meaning that
there is no sending until the encryption is performed. The reliability property
(“The system eventually recovers from any failure”) can be instead expressed as
¬EFEGf , meaning that there does not exist a path in which eventually there
will be a path in which there is a failure forever.

We formally define path-qCTL by adding a temporal operator to qCTL that
allows the designer to predicate also on finite sequences of events. Path-qCTL will
be used to describe the constraints that has to be guaranteed by the transparent
components to assure the requirements validity. The syntax of the language is
formally defined as follows:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | Ep G φ | p

176 A. Molzam Sharifloo and P. Spoletini

where p ∈ AP , EU and EG are the CTL operators (the above set of derivable
operators is still derivable)), EPG is a fresh temporal operator, that indicates
that the arguments, on which it is applied, holds at least in a possible scenario
starting from the present until the end of the system behavior, i.e, the final state.

We can define the semantics of path-qCTL on M , a labelled transition system
with a unique final state sF , as defined above. If ϕ is a formula M, s |= φ means
that φ holds in a state s of the LTS M . Omitting the qCTL operators, we just
need to define the semantics of EpG as follows

M, s |= EpG φ ⇔ if there exists a path π, starting from s and ending in the
final state sF of M , such that, for all si in π, M, si |= φ.

3.3 qCTL Model Checking of Incomplete Models

The core of LOVER is the qCTL model checking algorithm for incomplete mod-
els, described as ILTS. The basic idea is to modify the traditional explicit CTL
model checking [3] in order to deal with transparent states. The algorithm takes
as inputs a qCTL property and an ILTS. If the ILTS is a regular LTS, it behaves
as the traditional approach on regular LTS, while if the ILTS contains transpar-
ent states, it computes the set of path-qCTL formulae that shall be guaranteed
by the components modeled as transparent states.

More precisely, the algorithm works as follows. First, the qCTL formula is
parsed and its parsing tree is derived. As usual, the leaves of the tree are propo-
sitions and the inner nodes are boolean and temporal operators. Similarly to
CTL model checking, a bottom-up approach is applied to the tree to calculate
the satisfactory states for each sub-formula, starting from the leaves of the tree.
For each node of the tree, the set of the states in which the sub-formula holds is
calculated by applying Algorithm 1.

Algorithm 1 is invoked for every subtree of the parsing tree, starting from the
leaves. The algorithm takes as inputs a subtree T of the parsing tree (possibly the
parsing tree itself), the formulaϕ, and the ILTSM onwhich the original formula is
evaluated. The tree T is a binary tree, where a node representing a unary operator
has a single son, while a node representing a binary operator has two sons. We use
T.S to refer to the set of states in M that satisfy the formula represented by the
current subtree, T.left and T.right to refer to the left and the right subtrees of
the current tree (when the root is a binary operator), and T.son to refer to the
subtree of the current tree (when the root is a unary operator). The elements of
the ILTS M are referred asM.S (states),M.R (regular states),M.T (transparent
states), M.Transitions (transition relation), and M.L (labeling function).

The algorithm uses the set X (initialized in line 2) as a local set to store the el-
ements that satisfy ϕ. Moreover, the set of constraints that are needed to satisfy
the formula ϕ in a transparent state s are saved in a matrix constr. Each element
constr(ϕ, s) is a set of constraints in the form [(ψ1, state1), . . . , (ψn, staten)],
meaning that the formula ϕ holds in s if the path-qCTL formula ψ1 holds
in state1, . . ., and the path-qCTL formula ψn holds in staten. For example,
constr(EGa, s) = {[(EGa, s)], [(EpGa, s), (EGa, s′)]} means that the formula

Light-Weight Formal Verification 177

Algorithm 1. Node evaluation
1: evaluate(ϕ, T,M){
2: X = ∅

3: switch (ϕ){
4: case ϕ ∈ AP :
5: for all s ∈ M.S { constr(ϕ, s) = ∅; }
6: for all s ∈ M.S {
7: if (s ∈ M.R && p ∈ L(s)) {
8: X = X ∪ {s};
9: }elseif(s ∈ M.T){
10: X = X ∪ {s};
11: constr(ϕ, s) = constr(ϕ, s) ∪ {(Θp, s)}; }}
12: case ϕ = ¬ϕ1 :
13: for all s ∈ M.R − T.son.R{
14: X = X ∪ {s}; }
15: for all s ∈ (T.son.S ∩ M.T) ∨ (s ∈ T.son.R ∧constr(ϕ1, s) �= ∅){
16: X = X ∪ {s};
17: constr(ϕ, s) = buildNeg(constr(ϕ1, s)); }
18: case ϕ = ϕ1 ∧ ϕ2 :
19: for all s1 ∈ T.left.S{
20: for all s2 ∈ T.right.S{
21: if (s1 = s2){
22: X = X ∪ {s1};
23: if(constr(ϕ1, s1) �= ∅ ∨ constr(ϕ2, s1) �= ∅){
24: constr(ϕ, s) = ANDCombine(constr(ϕ1, s1), constr(ϕ2, s1)); }}}}
25: case ϕ = Eϕ1Uϕ2 :
26: for all s2 ∈ T.right.S{
27: X = X ∪ s2
28: if(s2 ∈ T.right.S){constr(ϕ, s2) = resolveRightUntil(ϕ2 , s2)}
29: X′ = ∅;
30: while(X′! = X){
31: X′ = X;
32: for all s1 ∈ T.left.S{
33: if(∃s′ ∈ X|(s1, s′) ∈ M.Transitions)
34: X = X ∪ {s1}
35: π = buildPath(s1, T.right.S)
36: {constr(ϕ, s1) = resolveLeftIUntil(constr(ϕ1, s1), π); }}}}
37: case ϕ = EGϕ1 :
38: S′ = ∅;
39: for all s ∈ M.T{
40: S′ = S′ ∪ {{s}};X = X ∪ {s};
41: constr(ϕ, s) = resolveOutSCC(constr(ϕ1, s); }
42: for all subS ∈ ℘(T.son.S){
43: if(subS is a scc){
44: S′ = S′ ∪ {subS};X = X ∪ subS ;
45: for all s ∈ subS{
46: constr(ϕ, s) = resolveInSCC(constr(ϕ1, s), subS); }}}
47: for all sub ∈ S′ ∪ M.T{
48: X′ = sub
49: X′′ = ∅;
50: while(X′′! = X′){
51: X′′ = X′;
52: for all s1 ∈ T.son.S{
53: if(∃s′ ∈ X′|(s1, s′) ∈ M.Transitions)
54: X′ = X′ ∪ {s1}
55: π = buildPath(s1, T.right.S)
56: constr(ϕ, s1) = resolvePathGlobally(constr(ϕ1, s1), π); }}
57: X = X ∪ X′; }
58: }
59: T.S = X;
60: }

178 A. Molzam Sharifloo and P. Spoletini

EGa holds in the transparent state s either if the formula itself holds in the
correspondent component or if the formula EpGa holds in the correspondent
component and EGa holds in the component represented by the transparent
state s′. Roughly speaking, the elements of the set are conjunctions and the set
is seen as a disjunction of such conjunctions. The evaluation algorithm is based
on a switch on the value of the most external operator in ϕ (line 3). Considering
the grammar of qCTL, there are five different cases: atomic proposition (lines
4–11), negated formulae (lines 12–17), conjunctions (lines18–24), EU formulae
(lines 25–36), and EG formulae (lines 37–58).

If ϕ is an atomic proposition and T is a leaf, the value of constr(ϕ, s) is
initialized for all s. Note that this is the only case in which constr(ϕ, s) is based
on the value of the sub-formulae. Then, all the regular states labeled with ϕ are
added to the set of states X in which the formula holds (lines 7-8). Moreover
all the transparent states are added to X (line 10), together with an update of
the correspondent constr slot. In particular, for each transparent state s, the
constraint Θp is added to constr(ϕ, s)(line 11). The symbol Θ represents a still
non-identified path-qCTL operator, of which the kind will be resolved in the
rest of the algorithm. The operator Θ indicates that a propositional formula,
that is apparently evaluated on a state, will be evaluated on a component. If
the propositional formula is inside a temporal formula, Θ will be resolved by the
semantics of the outer operators.

If T is a subtree of which the root is a ¬ operator, i.e., ϕ is a formula of
the form ¬ϕ1, all the regular states that are not in the set of states in which
ϕ1 holds are added to the set X of states in which ϕ holds (line 13-14). The
transparent states are always added to the set of states in which a formula
holds together with a set of constraints (that however could also be unsatis-
fiable). Thus, every transparent state s is added to X . Moreover, the regular
states in which the formula ϕ1 conditionally holds are added to X . For both
these kinds of states, the correspondent slot constr(ϕ, s) is updated through the
function buildNeg(constr(ϕ1, s)) (lines 15-17). This function basically consid-
ers the “negation” of the set of constraints for ϕ1 in s. At this stage, ¬Θp is
changed to Θ¬p, since the constraint comes from an untimed sub-formula. Note
that the set represents a disjunction of constraints, while each element in square
bracket represents a conjunction of constraints and this has to be considered in
negating the set. For example the negation of constr(EGa, s) considered above
is {[(¬EGa, s), (¬EpGa, s)], [(¬EGa, s), (¬EGa, s′)]}.

When ϕ is a formula of the form ϕ1∧ϕ2 and T is a subtree of which the root is a
∧ operator, all the states that are both in the set of states in which ϕ1 and ϕ2 hold
are added to the set X of states in which ϕ holds (line 19-23). If the added state
contains a constraint w.r.t. the considered sub-formula, the correspondent con-
straint is built using the function ANDCombine (constr(ϕ1, s1), constr(ϕ2, s1))
(lines 23-24). This function basically considers the “conjunction” of the two sets,
by simplifying the elements on the same state in the same constraint. At this
stage, the conjunction of the elements Θp and Θp′ is considered as Θ(p ∧ p′), be-
cause both the constraints come from an untimed formula. For example, if ϕ =

Light-Weight Formal Verification 179

EGa ∧ EaUb, constr(EGa, s) is defined as shown above and constr(EaUb, s) =
{[(EaUb, s)], [(EpGa, s), (EaUb, s′)]}, then constr(EGa ∧ EaUb, s) becomes
{[(EaUb, s), (EGa, s)], [(EpGa, s), (EGa, s), (EaUb, s′)], [(EaUb, s), (EpGa, s),
(EGa, s′)], [(EpGa, s), (EaUb, s′), (EGa, s′)]}.

If T is a subtree of which the root is an EU operator and ϕ is a formula of
the form Eϕ1Uϕ2, the procedure is in two steps. First, all the states that are in
the set of states in which ϕ2 holds (T.right.S) are added to the set X of states
in which ϕ holds. (line 26-27). If the added state s is transparent, the constraint
of s for ϕ is updated using the function resolveRightUntil(ϕ2, s). This function
transforms the elements of the form (x, s) that appears in constr(ϕ2, s) into
(Eϕ1Ux, s). Note that the algorithm only changes the constraints connected
to the current states and not the others on adjacent states of a constrained
sequence. At this stage, if x has the form Θp or contains a Θ, the operator Θ
is deleted. Second, X is updated by using ϕ1 (lines 29-36). More precisely, we
update X by adding in it the states, in which ϕ1 holds (condition in line 32) and
from which it is possible to reach a state in X (condition in line 33). The idea is
that ϕ1 holds in such states (these states can be either regular or transparent)
and from them it is possible to reach directly the states in X , i.e., the states in
which ϕ holds. For each added state, the path π that connects it to a state in the
set in which ϕ2 holds is computed (line 35). The path π is used to enrich the set
of constraints that make ϕ hold in it. For this purpose, the algorithm uses the
function resolveLeftIUntil(constr(ϕ1, s), π). This function adds to constr(ϕ, s)
a constraint composed by the conjunction of all the constraints x that makes ϕ1

true in the transparent states of π (except the last one), after updating them in
EpGx. Again, if the original constraints contain Θ, the operator Θ is deleted.

Finally, if T is a subtree of which the root is anEG operator, i.e., ϕ is a formula
of the form EGϕ1, all the transparent states are added to the set X of the states
in which ϕ holds. Moreover, these states are added as singleton to the set S′ that
contains all the sets that represent strongly connected components, in which ϕ1

always holds. Since, the added states are transparent, the correspondent set of
constraints is updated using the function resolveOutSCC(constr(ϕ1, s)) (lines
39-41). This function adds the constraint EGϕ1 to each of these states. Then
as in the classical explicit model checking algorithm, for all the non-elementary
possible subset in which ϕ1 holds, if the subset is a strongly connected compo-
nent, the set of the subset is added to S′ and the states to X . If there exist
transparent states in the added subset, their constraints are updated with the
function resolveInSCC(constr(ϕ1, s), subS) (lines42-46). This function, for all
the states in the subsets, adds a conjunction that includes for each state the
constraint EpGx, where x is the constraint that makes ϕ1 hold in that state.
Obviously, if the components only contain regular states, this constraint is empty.
As the last step, analogously to what is done for operator EU , X is updated
by using ϕ1 and S′ (lines 47-57). More precisely, starting from each strongly
connected components in S′, the set of the states in which ϕ1 (condition in line
53) holds and from which it is possible to reach a state in which ϕ holds (con-
dition in line 54) is added to X . Once a transparent node is added, the path

180 A. Molzam Sharifloo and P. Spoletini

π that connects it to the strongly connected component in which ϕ1 holds is
computed (line 56), and using π (that contains also the considered strongly con-
nected component), the set of constraints that makes ϕ hold in it, is updated
using resolvePathGlobally(constr(ϕ1, s1), π). This function works analogously
to function resolveLeftIUntil(constr(ϕ1, s), π). In all the functions considered
for this case, the operator Θp is automatically deleted.

After the evaluation algorithm is performed on the whole parsing tree from
the leaves to the root, if the set of the states, that satisfy the root, contains
the initial state of M , then the property ϕ holds constrained to const(ϕ, s0). If
there is still an unresolved Θ in this set of constraints, it means that the initial
state is a transparent state and that the property ϕ is untimed. In this case the
untimed property that follows Θ has to hold in the initial state of the component
representing the transparent state.

Sketching the Correctness of qCTL Algorithm for Incomplete Models
Here we informally describe the correctness of our algorithm by showing the
equivalence between the classical checking of qCTL and the two-stage checking
performed by LOVER. Our “proof” technique is based on the semantics of qCTL
and path-qCTL. Basically, we show that checking a qCTL property ϕ on an
ILTS with Algorithm 1 and imposing the obtained path-qCTL formulae to the
components that are bound to the transparent states in the ILTS is equivalent
to check the same property ϕ with the traditional qCTL algorithm on an LTS,
obtained by substituting the transparent states in the original ILTS with the
components bound to them.

Consider an LTS M and an ILTS M ′, obtained by removing k independent
LTSs MT

i (with 1 ≤ i ≤ k) - starting from si0 with final state siF - from M and
replacing each of them with a transparent state sTi . An example, with k = 2, is
shown in Figure 4, where the LTS MT

1 and MT
2 in M are abstracted through

sT1 and sT2 in M ′. A path π of M is called compatible with a path π′ of M ′ if
and only if π contains exactly the same (and in the same order) regular states
of π′ and, instead of the transparent states of π′, it contains one of the possible
paths that cross the graph obtained by substituting the transparent states with
the actual components.

We want to show that proving a qCTL formula ϕ on M is equivalent to
proving ϕ on M ′ using the LOVER approach.

Let us start by considering formulae of the form Eϕ1Uϕ2. Checking the valid-
ity of this formula corresponds to check if M, s0 |= Eϕ1Uϕ2 holds, i.e., if there
exists a path π starting from the initial state s0 such that ∃sk ∈ π |M, sk |= ϕ2

and ∀si ∈ π with i < k, M, sj |= ϕ1. To show the correctness of Algorithm 1 is
enough to show that, given a generic path π′ in M ′, it satisfies Eϕ1Uϕ2 and the
components corresponding to the transparent states in M ′ satisfy the constraints
obtained by LOVER if and only if there exists a path π of M , compatible with
π′, that satisfies Eϕ1Uϕ2.

A generic path π′ in M ′ can be as follows:

1. π′ does not contain any transparent state sTi ;

Light-Weight Formal Verification 181

S0

S1

S2

S3 S4

S0 SF... S6

S7

S8

S0 SF... S9S5

...

...

M

M

1 1

2 2

S0

S1

S2

S3 S4

S6

S7

S8

S9S5

...

...

S1
T

S2
T

M

M'

T

2

1

T

Fig. 4. An example of LTL and its corresponding ILT

2. the last state of π′ is a transparent state;

3. π′ contains transparent states, but the last state is not transparent;

4. π′ contains transparent states, including the last position.

Obviously, case (4) is a generalization of cases (2) and (3), but since they are
more intuitive, we will treat them separately (even if the proof for these cases
are included in the proof for case (4)).

The first case is naive. Since there is no transparent state, Algorithm 1 be-
haves exactly as the classical model checking. The second case corresponds to
π′ containing only a transparent state at the end. Our algorithm will produce
“yes” only if for all sx in π′ (excluded the last s|π′|) M ′, sx |= ϕ1, exactly as
required by the classical model checking algorithm. Moreover our algorithm will
impose that Eϕ1Uϕ2 holds in the component corresponding to s|π′| and this will
happen only if exists a path π in M compatible with π′ that satisfies Eϕ1 ∪ ϕ2.
The third case considers a path π′ that contains a number of transparent states,
but not at the end. Our algorithm will produce “yes” only if for all non-transient
state sx in π′ (excluded the last s|π′|) M

′, sx |= ϕ1, and M ′, s|π′| |= ϕ2. Moreover
our algorithm will impose that EpGϕ1 holds in the component corresponding to
the transparent state of π′. All these requirements are satisfied if there exists a
path π in M compatible with π′ that satisfies Eϕ1Uϕ2.

The last case is the most general case and corresponds to π′ containing a
number of transparent states, including the end. Our algorithm on such a path
would first label the state with ϕ, using only ϕ2. Among all the possible con-
straints that the labeling imposes, for the proof, we are only interested to the

182 A. Molzam Sharifloo and P. Spoletini

sets that include all the states through the end of π′2. So, if π′ = s0, s1, ..., sn
and the sequence of transparent states in it is [s′1, . . . , s

′
m], for all 0 ≤ i ≤ n− 1,

the set constr(ϕ2, si) can contain the constraint [(subϕ2 , s
′
j), (subϕ2, s

′
j+1), . . .,

(subϕ2, s
′
m−1), (ϕ2, s

′
m)], where s′j is the first transparent state after si in π′ and

subϕ2 is a subcondition needed to make ϕ2 true in the current state. Moreover in
sn, constr(ϕ2, sn) contains the constraint [(ϕ2, sn)], where sn is exactly the last
transparent state s′m. When our algorithm starts the labeling using also ϕ1, each
of the above constraints can be used to compute constr(Eϕ1Uϕ2, s0), adding
constraints of the form [(EpGϕ1, s

′
1), . . ., (EpGϕ1, s

′
j−1), (E(ϕ1Usubϕ2), s

′
j),

(subϕ2, s
′
j+1), . . ., (subϕ2 , s

′
m−1), (ϕ2, s

′
m)]. Moreover, if such a constraint ex-

ists, the algorithm checks that all the regular states before the j-th transparent
state satisfy ϕ1 and all the regular states after the j-th transparent state satisfy
subϕ2. A compatible path π satisfies Eϕ1 ∪ ϕ2 if and only if it satisfies one of
the previous constraints.

An analogous reasoning can be applied to EG ϕ, while the atomic proposition
case and the boolean connectors need to be treated differently. When ϕ ∈ AP ,
ϕ holds in M if s0 is labeled with ϕ. If s0 is a regular state, then our algorithm
will check exactly the same. If instead s0 is included in an LTS substituted with
a transparent state, the algorithm will come up with the constraint that in this
component, that is exactly the same condition checked by the classical algorithm.
Moreover, our algorithm deals with the boolean connectors as the classical one,
only modifying the previously obtained constraints according to the connector
semantics.

Notice that this is not a formal proof, but is an informal reasoning to show
the equivalence of the two approaches.

3.4 Path-CTL Model Checking

To verify a path-qCTL property on an ILTS with unique final state, we need to
observe that ILTS with a unique final state is a particular case of LTS and that
the final state does not influence the verification of classical qCTL properties.
Hence, since path-qCTL is qCTL with the extra temporal operator EpG, we can
readapt the classical CTL algorithm to deal with this new operator. Algorithm
2 shows a fragment of an evaluation function to deal with formulae ϕ of the form
EpGϕ1. The fragment uses the same notation and structure of Algorithm 1. The
idea is that, starting from an LTS with final state M , the algorithm builds M ′ by
delating the states where ϕ1 does not hold and the transitions as a consequence
(line 3). Then, a state s of M ′ is added to the set of states in which ϕ holds (line
7) if the final state sF belongs to M ′ (line 4) and there exists at least a path
from s to sF in M ′ (line 6). This check can be done easily with a breadth-first
search in O(|M ′.S|), making the overall evaluation O(|M ′.S|2).

2 We are looking at the satisfiability using the whole path; all the subpaths are con-
sidered separately as one of the possible four mentioned scenarios.

Light-Weight Formal Verification 183

Algorithm 2. Checking formulae of the form EpGϕ

1: case(ϕ = EpGϕ1) :
2: S′ = {s ∈ M.S|s ∈ T.son.S};
3: M ′ = M |S←S′ ;
4: if sF ∈ S′{
5: for all s ∈ S′{
6: if SearchPaths(s, sF ,M

′){
7: X = X ∪ {s}; }}}

4 Experimental Results

In this section, we present the applicability and scalability of the proposed ap-
proach in practice.

4.1 Tool Support and Applicability

We have developed a prototype tool to verify ILTSs against properties expressed
in qCTL according to the algorithm presented in Section 3. The inputs of the
tool are two files, which contain the ILTS and the qCTL property. The tool
is capable to verify the property and report the output as a set of solutions3.
Solutions are path-CTL properties that constrain the transparent states. The
tool is also able to verify LTSs against properties expressed in path-CTL.

To demonstrate the applicability of our approach, we used the tool to verify
the ILTS of the running example against the properties (presented in Section 2).
Regarding the global security property A(¬s∪e), the model checker returns two
solutions that constrain a possible specification of the transparent state (state
5). The first solution is {S5 |= A(¬s ∪ e)}, which means that the global prop-
erty shall hold also in the specification. The second solution is {S5 |= ApG¬s}.
This property enforces the paths between the start and the end states of the
specification to be labeled with ¬s.

Applying the verification algorithm to the second property returns only one
solution: {S5 |= ¬EFEGf}. Therefore, any component that is bound at run
time to play the role of Encryptor shall satisfy this path-qCTL property.

4.2 Scalability

To see how our approach scales up with respect to the number of regular and
transparent states, we performed a scalability experiment. To do so, we gen-
erated different models by concatenating the running example. Concatenation
here means to produce a new ILTS by simply connecting the last state (state
15) of the ILTS to the first state of another copy of the ILTS. For example, the

3 The tool is available online:
https://sites.google.com/site/amirsharifloo/tool-lover

https://sites.google.com/site/amirsharifloo/tool-lover

184 A. Molzam Sharifloo and P. Spoletini

first concatenation results in an ILTS with 30 states in which two states are
transparent. This way we generated larger models and applied the tool to verify
the properties.

Figure 5 illustrates the result, which is obtained by running the experiment
100 times and computing the average. The result shows that the verification
time of both properties exponentially grow. However, the verification time of the
nested property grows faster as the number of states increases. The machine we
used for the experiments had the following characteristics: OS = Mac, CPU=2.4
GHz Core 2 Duo, and RAM=4 GB.

Although in general the verification cost of the algorithm exponentially grows
with respect to the number of transparent states, the specification topology is a
key parameter that can significantly affect the total amount of the computation.
Note that this is the verification time required at design-time. Obviously, it is
more than a simple verification performed by an LTS model checker, since the al-
gorithm calculates constraints, considering the combinations. Moreover, our tool
is a prototype and the result can be improved by applying further optimizations.
Despite such overhead at design-time, the verification cost of verifying unspeci-
fied components at run time is always less than the model-checking of the whole
specification, and that is the main advantage of applying LOVER in practice.
This is due to the fact that the verification at run-time phase is performed on
the specifications of the components, which are much smaller than the entire
one. Moreover, the constraints can be checked in parallel in order to speed up
the verification.

Transparent State A(¬s ∪ e) ¬E♦E�f

1 15 0.105637 0.079811

4 60 0.76972 0.702177

7 105 3.156306 5.841801

10 150 8.659444 24.611509

13 195 19.197839 70.304578

16 240 36.051059 161.264

19 285 59.829017 326.778

Fig. 5. The verification time for the properties (The table provides the precise values
shown in the diagram.)

5 Related Work

There have been a set of approaches to formally specify adaptive systems and
apply model checking techniques to verify their properties at design time [16].
To formally specify adaptive behaviors, Zhang et al. [19,20] introduce A-LTL
(an extension of LTL). A-LTL adds an operator Adapt-operator which eases
describing the properties that hold in the initial program and the adapted pro-
gram. They also present a modular verification algorithm to verify an adaptive

Light-Weight Formal Verification 185

system against the formulae expressed in A-LTL [21]. The system is represented
as a state machine in which the states present the system configurations and
transitions are adaptation actions.

Adler et al. [2] propose an approach to modularly design and model adaptive
embedded systems such that the system specification is suitable for verification
analysis. The approach distinguishes between the part of the system that sup-
ports the functionality and the part that manages the adaptation, and focuses
on specifying the adaptation behavior in order to verify the stability property of
the adaptation process. Theorem proving techniques e.g. Isabelle/HOL are em-
ployed to verify the properties. The approach is extended in [15] to verify system
properties with respect to environment constraints. To this end, the interaction
among the system and the environment is modeled and is verified that the sys-
tem properties are guaranteed assuming a maximal environment. This approach
assumes that all the environmental behaviors can be predetermined in advanced
so the verification of the properties are performed at design time. Although ap-
plying modular techniques reduces the verification costs, the approach assumes
that the whole knowledge on the specification and the adaptations is available
at design time.

Păsăreanu et al. [6,9] propose an approach to automatically generating as-
sumptions for the environments of a component, and apply the technique for
compositional verification. The output of the approach describes the environ-
ments in which a component will satisfy the expected properties. Our approach
is different in the point that there exists a couple of unspecified components
that make the specification incomplete and the verification unfeasible. What we
do is to enforce those components with some constraints such that the global
properties hold.

To verify the properties of dynamic component-based systems, there has been
a trend of research based on black-box testing and monitoring at run time
[18,17,7]. Xie and Zhe [18,17] propose a test-based approach for the verifica-
tion of component-based systems, in which the behavior of some components
is not specified. The system consists of a host system and a collection of un-
specified components, which are represented as finite transition systems that
synchronously communicate via a set of input/output symbols. An algorithm
is used to derive a set of strings that unspecified components are supposed to
generate through black-box testing. Although testing approaches do not lead to
state explosion, applying them at run time is still challenging.

Run-time verification [11,14] an interesting area that addresses a problem
similar to what we deal with in this paper. Runtime verification approaches
assume that the implementation may be different from the specification, or the
environment may change in such a way that the expected system properties
violate. The aim of run-time verification is to ensure that the traces generated by
the system satisfy the properties. To this end, the key idea is to generate specific
elements, called monitor, to check the compliance at run time. Differently from
model checking, run-time verification does not lead to state exploration, but it
does not guarantee that the properties certainly hold.

186 A. Molzam Sharifloo and P. Spoletini

6 Conclusion and Future Work

This paper presents a two-phase framework to efficiently verify adaptive systems,
in which some components may dynamically change at run time. To support the
framework, we developed formalisms, verification algorithms, and a prototype
tool. We applied our approach to a running example, and evaluated the scala-
bility by larger models.

This paper states the initial steps that we have taken to address the run-
time model checking of dynamic systems. There are many directions to extend
this work. At the moment, we are working to optimize the implementation and
to explore a new symbolic approach. In the current paper, we have focused on
qualitative CTL, but the future work is to support the full CTL by adding
Next operator. Further steps are applying the approach to other case studies in
different areas and extending the framework to support other temporal logics
such as LTL.

Acknowledgments. We would like to thank Carlo Ghezzi for the fruitful dis-
cussions on this work. This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-SMScom.

References

1. Smart Grids European Technology Platform, http://www.smartgrids.eu/
2. Adler, R., Schaefer, I., Schuele, T., Vecchié, E.: From Model-Based Design to For-

mal Verification of Adaptive Embedded Systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76–95. Springer,
Heidelberg (2007)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg
(2009)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

6. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

7. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime Verifica-
tion of Component-Based Systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

8. Ghezzi, C.: Engineering evolving and self-adaptive systems: An overview. In: Soft-
ware and Systems Safety - Specification and Verification, pp. 88–102 (2011)

9. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, ASE 2002 (2002)

http://www.smartgrids.eu/

Light-Weight Formal Verification 187

10. Gold, N., Mohan, A., Knight, C., Munro, M.: Understanding service-oriented soft-
ware. IEEE Software 21(2), 71–77 (2004)

11. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

12. Levis, P., Gay, D., Culler, D.: Active Sensor Networks. In: Proc. of the 2nd Sym-
posium on Networked Systems Design & Implementation, vol. 2, pp. 343–356.
USENIX Association (2005)

13. Pasareanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of soft-
ware: A comparative case study. In: Proceedings of the 5th and 6th International
SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Checking,
pp. 168–183 (1999)

14. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tomated Software Engg. 12(2), 151–197 (2005)

15. Schaefer, I., Poetzsch-Heffter, A.: Model-based verification of adaptive embedded
systems under environment constraints. SIGBED 6(3), 9:1–9:4 (2009)

16. Schneider, K., Schuele, T., Trapp, M.: Verifying the adaptation behavior of em-
bedded systems. In: SEAMS 2006, pp. 16–22 (2006)

17. Xie, G., Dang, Z.: Ctl model-checking for systems with unspecified finite state
components. In: SAVCBS (2004)

18. Xie, G., Dang, Z.: An Automata-Theoretic Approach for Model-Checking Systems
with Unspecified Components. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 155–169. Springer, Heidelberg (2005)

19. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE 2006, pp. 371–380. ACM, New York (2006)

20. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program se-
mantics. Journal of Systems and Software 79(10), 1361–1369 (2006)

21. Zhang, J., Goldsby, H.J., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: AOSD 2009, pp. 161–172. ACM, New York (2009)

A Calculus for Quality

Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo

DTU Informatics, Technical University of Denmark, Denmark
{riis,nielson,rvig}@imm.dtu.dk

Abstract. A main challenge of programming component-based software
is to ensure that the components continue to behave in a reasonable man-
ner even when communication becomes unreliable. We propose a process
calculus, the Quality Calculus, for programming software components
where it becomes natural to plan for default behaviour in case the ideal
behaviour fails due to unreliable communication and thereby to increase
the quality of service offered by the systems. The development is facili-
tated by a SAT-based robustness analysis to determine whether or not
the code is vulnerable to unreliable communication. This is illustrated
on the design of a fragment of a wireless sensor network.

Keywords: Distributed systems, availability of data, robustness,
SAT-solving.

1 Introduction

One of the main challenges of component-based software development is to en-
sure that the distributed components continue to behave in a reasonable manner
even when communication becomes unreliable. This is especially important for
safety-critical software components in embedded systems and control software
components that control part of our physical environment. With the advent of
cyber-physical systems, in which software components are distributed through-
out a physical system, the challenges will continue to grow in importance.

Considerable focus has been placed on how to ensure the integrity, confiden-
tiality and authenticity of data communicated between components. In embed-
ded systems this is easiest when communication takes place over cables shielded
from other applications and used only for this purpose. However, increasingly
cables are shared between many applications, including for example the infotain-
ment system on cars, and often wireless communication needs to be employed as
well, as when the control system needs to communicate with the pressure meter
installed in the tyres. In health care applications there also is a trend to use
wireless communication for interconnecting measuring apparatus with patient
monitoring systems and with systems that dispense oxygen, saline or morphine.
Solutions generally include the proper use of cryptographic communication pro-
tocols that can be proved secure using state-of-the-art analysis tools.

Less focus has been placed on how to ensure that the expected communication
actually takes place. This is hardly surprising given the much more challenging

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 188–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Calculus for Quality 189

nature of this problem. One dimension of the problem is to ensure that other
control components continue to operate and for this it often suffices to use model
checking techniques for proving the absence of deadlock and livelock in software
components. Another dimension is to ensure that messages sent are in fact re-
ceived and this is much harder. Over the internet the possibility of denial of
service attacks is well-known — simply flooding the internet with messages be-
yond the capacity of the recipient thereby masking the proper messages. Wireless
communication is open to the same attacks as well as interference with the fre-
quency band and physically shielding the antennas of sender and receiver as they
are distributed throughout a cyber-physical system. Indeed, it might seem that
this problem cannot be solved by merely using computer science techniques.

What is feasible using computer science techniques is to ensure that software
systems are hardened against the unreliability of communication. This calls for
programming software components of distributed systems in such a way that one
has programmed a default behaviour to be enacted when the ideal behaviour is
denied due to the absence of expected communication. To this end we propose

– a process calculus, the Quality Calculus, for programming software compo-
nents and their interaction, and

– a SAT-based analysis to determine the vulnerability of the processes against
unreliable communication.

The Quality Calculus is developed in Section 2 and clearly inherits from calculi
such as CCS [9] and the π-calculus [10]. Its main novelty is a binder specifying the
inputs to be performed before continuing. In the simplest case it is an input guard
t?x describing that some value should be received over the channel t and should
be bound to the variable x. Increasing in complexity we may have binders of
the form &q(t1?x1, · · · , tn?xn) indicating that several inputs are simultaneously
active and a quality predicate q that determines when sufficient inputs have been
received to continue. As a consequence, when continuing with the process after
the binder some variables might not have obtained proper values as the corre-
sponding inputs have not been performed. To model this we distinguish between
data and optional data, much like the use of option data types in programming
languages like Standard ML. The construct case e of some(y) : P1 else P2 will
evaluate the expression e; if it evaluates to some(c) we will execute P1 with y
bound to c; if it evaluates to none we will execute P2. The expressiveness of the
Quality Calculus is considered in Section 3 and an example in the context of a
wireless sensor network is presented in Section 4.

The SAT-based [8] robustness analysis is developed in Section 5. It is based on
the view that processes must be coded in such a way that error configurations
are not reached due to unreliable communication; rather, default data should
be substituted for expected data in order to provide meaningful behaviour in
all circumstances. Of course, this is not a panacea — default data is not as
useful as the correct data, but often better quality of service may be obtained
when basing decisions on default or old data, rather than simply stopping in an
error state. As an example, if a braking system does not get information about
the spinning of the wheels from the ABS system, it should not simply stop

190 H.R. Nielson, F. Nielson, and R. Vigo

Table 1. The syntax of the Quality Calculus

P ::= (νc)P | P1 |P2 | 0 | b.P | t1!t2.P | A(e)
| case e of some(y) : P1 else P2

b ::= t?x | &q(b1, · · · , bn)
t ::= y | c | g(t1, · · · , tn)
e ::= x | some(t) | none | f(e1, · · · , en)

| case e of some(y) : e1 else e2

braking, rather it should continue to brake — perhaps at reduced effect to avoid
blocking the wheels. The analysis attaches propositional formulae to all points
of interest in the processes; they characterise the combinations of optional data
that could be missing. This is useful for showing that certain error configurations
cannot be reached; indeed, if the propositional formula is unsatisfiable then the
corresponding program point cannot be reached. The availability of extremely
efficient SAT-solvers makes this a very precise analysis method with excellent
scalability.

We conclude and present our outlook on future work in Section 6.

2 Syntax and Semantics

Process calculi are useful for delineating a programming abstraction that focuses
on specific challenges in the development of distributed systems. Calculi such as
CCS [9] and the π-calculus [10] have provided profound insights into the nature
of concurrent computation.

There are a least two approaches to the use of process calculi. One focuses
on the universality of calculi such as the π-calculus and would explain the com-
putational paradigms of interest by their encoding into the π-calculus (which is
known to be Turing complete). The other focuses on explaining the computa-
tional paradigms of interest as primitives in a suitable process calculus in order
to avoid modelling artifacts, analysis artifacts, or other intricacies due to the en-
coding. The latter approach has lead to recent calculi such as COWS [7], SOCK
[6], SCC [2] and CaSPiS [3] for understanding service-oriented computation and
have suggested several novel paradigms for how to deal with services and the
increasingly important notion of quality of service. We follow the latter approach
in developing a process calculus, the Quality Calculus, that enforces robustness
considerations on software systems that execute in an open environment that
does not always live up to expectations — possibly because anticipated commu-
nications do not take place (due to faults or denial of service attacks).

A Calculus for Quality 191

Syntax. A system consists of a number of process definitions and a main process:

define A1(x1) � P1

...

An(xn) � Pn

in P∗

Here Ai is the name of a process, xi is its formal parameter, Pi is its body and
P∗ is the main process. The syntax of processes is given in Table 1. A process
can have the form (νc)P introducing a new constant c and its scope P , it can be
a parallel composition P1 |P2 of two processes P1 and P2 and it can be an empty
process denoted 0. An input process is written b.P where b is a binder specifying
the inputs to be performed before continuing with P . An output process has
the form t1!t2.P specifying that the value t2 should be communicated over the
channel t1. A process can also be a call A(e) to one of the defined processes
with e being the actual parameter. Finally, a process can be a case construct
whose explanation we defer to later. We shall feel free to dispense with trailing
occurrences of the process 0.

The main novelty of the calculus is the binder b specifying the inputs to be
performed before continuing. In the simplest case it is an input guard t?x de-
scribing that some value should be received over the channel t and it will be
bound to the variable x. Increasing in complexity we may have binders of the
form &q(t1?x1, · · · , tn?xn) indicating that n inputs are simultaneously active
and a quality predicate q determines when sufficient inputs have been received
to continue. As an example, q can be ∃ meaning that one input is required, or it
can be ∀ meaning that all inputs are required; these and other examples are sum-
marised in Table 4. Even more complex cases arise when binders are nested, as
in &∀(t0?x0,&∃(t1?x1, t2?x2)) that describes that input must be received over t0
as well as one of t1 or t2. If we assume that our quality predicates can express all
combinations of arguments then nested binders can always be unnested without
changing the overall semantics; as an example &∀(t0?x0,&∃(t1?x1, t2?x2)) has
the same effect as &q(t0?x0, t1?x1, t2?x2) if q(r0, r1, r2) amounts to r0∧ (r1∨r2).

As a consequence, when continuing with the process P in b.P some variables
might not have obtained proper values as the corresponding inputs have not
been performed. To model this we distinguish between data and optional data,
much like the use of option data types in programming languages like Standard
ML. In the syntax we use terms t to denote data and expressions e to denote
optional data; in particular, the expression some(t) signals the presence of some
data t and none the absence of data. Returning to the processes, the construct
case e of some(y) : P1 else P2 will test whether e evaluates to some data and if
so, bind it to y and continue with P1 and otherwise continue with P2.

Clearly more elaborate choices of syntax for expressions and terms are possible
including the possibility of distinguishing between them using type systems.
However, for simplicity we have opted for two syntactic categories and therefore
we also distinguish between functions g returning data values and functions f

192 H.R. Nielson, F. Nielson, and R. Vigo

Table 2. The structural congruence of the Quality Calculus

P ≡ P P1 ≡ P2 ⇒ P2 ≡ P1 P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3

P |0 ≡ P P1 |P2 ≡ P2 |P1 P1 |(P2 |P3) ≡ (P1 |P2) |P3

(νc)P ≡ P
if c /∈ fc(P)

(νc1) (νc2)P ≡ (νc2) (νc1)P
(νc) (P1 | P2) ≡ ((νc)P1) | P2

if c /∈ fc(P2)

A(e) ≡ P [e/x]

if A(x) � P
P1 ≡ P2 ⇒ C[P1] ≡ C[P2]

returning optional data values. For expressions we additionally support a case
construct much as for processes.

We need to impose a few well-formedness constraints on systems. For this we
write fc(P) to denote the set of free constants in P , fx(P) to denote the set of free
variables ranging over expressions, and fy(P) to denote the set of free variables
ranging over terms. For a system of the form displayed above we require that
fx(Pi) ⊆ {xi}, fy(Pi) = ∅, fx(P∗) = ∅, fy(P∗) = ∅, and put no restrictions on
fc(Pi) and fc(P∗).

Semantics. The semantics consists of a structural congruence and a transition
relation [10]. The structural congruence P1 ≡ P2 is defined in Table 2 and ex-
presses when two processes, P1 and P2, are congruent to each other. It enforces
that processes constitute a monoid with respect to parallel composition and the
empty process and it takes care of the unfolding of calls of named processes and
scopes for constants. Finally, it allows replacement in contexts C given by:

C ::= [] | (νc)C | C |P | P |C

As usual, we apply α-conversion whenever needed in order to avoid accidental
capture of names during substitution. The transition relation

P −→ P ′

describes when a process P evaluates into another process P ′. It is parameterised
on a relation t � c describing when a term t evaluates to a constant c and a
similar relation describing when an expression e evaluates to a constant that
either has the form some(c) or is none; the definitions of these relations are
straightforward and hence omitted. Furthermore, we make use of two auxiliary
relations

c1!c2 " b→ b′

for specifying the effect on the binder b of matching the output c1!c2, and

b ::v θ

A Calculus for Quality 193

Table 3. The transition rules of the Quality Calculus

t1 � c1 t2 � c2 c1!c2 � b → b′ b′ ::ff θ

t1!t2.P1 | b.P2 −→ P1 | b′.P2

t1 � c1 t2 � c2 c1!c2 � b → b′ b′ ::tt θ

t1!t2.P1 | b.P2 −→ P1 | P2θ

e � some(c)

case e of some(y) : P1 else P2 −→ P1[c/y]

e � none

case e of some(y) : P1 else P2 −→ P2

P1 ≡ P2 P2 −→ P3 P3 ≡ P4

P1 −→ P4

P1 −→ P2

C[P1] −→ C[P2]

t1 � c1

c1!c2 � t1?x2 → [some(c2)/x2]

c1!c2 � bi → b′i
c1!c2 � &q(b1, · · · , bi, · · · , bn) → &q(b1, · · · , b′i, · · · , bn)
t?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn

&q(b1, · · · , bn) ::v θn · · · θ1
where v = [{q}](v1, · · · , vn)

for recording (in v ∈ {tt,ff}) whether or not all required inputs of b have
been performed as well as information about the substitution (θ) that has
been constructed. To formalise this we extend the syntax of binders to include
substitutions

b ::= · · · | [some(c)/x]

where [some(c)/x] is the substitution that maps x to some(c) and leaves all other
variables unchanged. We write id for the identity substitution and θ2θ1 for the
composition of two substitutions, so (θ2θ1)(x) = θ2(θ1(x)) for all x.

The first part of Table 3 defines the transition relation P −→ P ′. The first
clause expresses that the original binder is replaced by a new binder recording
the output just performed; this transition is only possible when b ::ff θ holds,
meaning that more inputs are required before proceeding with the continuation
P2. The second clause considers the case where no further inputs are required;
this is expressed by the premise b ::tt θ. In this case the binding is performed
by applying the substitution θ to the continuation process. The next clauses
are straightforward; they define the semantics of the case construct, how the
structural congruence is embedded in the transition relation and how transitions
take place in contexts.

The next group of clauses in Table 3 defines the auxiliary relation c1!c2 " b→
b′. We have one clause for each of the two syntactic forms of b and the idea is
simply to record the binding of the value received in the appropriate position.

194 H.R. Nielson, F. Nielson, and R. Vigo

Table 4. Quality predicates and their semantics

[{∀}](r1, · · · , rn) = (|{i | ri = tt}| = n) = r1 ∧ · · · ∧ rn
[{∃}](r1, · · · , rn) = (|{i | ri = tt}| ≥ 1) = r1 ∨ · · · ∨ rn
[{∃!}](r1, · · · , rn) = (|{i | ri = tt}| = 1)

[{m/n}](r1, · · · , rn) = (|{i | ri = tt}| ≥ m)

The auxiliary relation b ::v θ is defined in the final group of clauses in Table 3.
Here we perform a pass over the syntax of (the extended syntax of) the binder
b evaluating whether or not a sufficient number of inputs has been performed
(recorded in v) and computing the associated substitution θ. Table 4 gives exam-
ples of quality predicates to be used in the sequel together with their semantics;
here we write |X | for the cardinality of the set X .

Discussion. The semantics of Table 3 is a rigid semantics: The first time the
top-level quality predicate holds the remaining inputs are no longer of interest
and the computation can proceed. An alternative would be to use a flexible
semantics and replace the two topmost rules of Table 3 with

t1 � c1 t2 � c2 c1!c2 " b→ b′

t1!t2.P1 | b.P2 −→ P1 | b′.P2

b ::tt θ

b.P −→ Pθ

The first clause expresses that we may continue accepting inputs even when
b ::tt θ holds, that is, after the top-level quality condition is met the first time.
The second clause ensures that at any point where the quality condition is met
we can decide to proceed with the continuation process. Thus there is a non-
deterministic choice as to how many inputs are accepted beyond the minimum
number. This becomes a bit tricky when using quality predicates that do not
satisfy a monotonicity requirement, meaning that the quality condition may go
from true to false once more inputs have been accepted; this is for example the
case for ∃! in Table 4. On top of this important difference between the rigid
and the flexible semantics, they also differ in their “speed”; as an example, in
the rigid semantics a single step is needed to perform the binding of a single
input whereas two steps are needed in the flexible semantics. Clearly the flexible
semantics admits all the behaviours of the rigid semantics as well as sometimes
additional ones.

3 Expressiveness of Binders

The binding operator &q(b1, · · · , bn) is surprisingly powerful and in this section
we show how the primitives of the Quality Calculus can be used to define a
number of other constructs known from process calculi. In the other direction
the Quality Calculus can be encoded into the π-calculus but it would seem that
some binding operators would require an exponential expansion; as an example,
&n/2n(b1, · · · , b2n) indicating that half of the 2n arguments are needed would
seem to require that the π-calculus encoding would need to enumerate subsets
of {1, · · · , 2n} with at most n elements.

A Calculus for Quality 195

Guarded sum. Let us consider the guarded sum Σn
i=1ti?xi.Pi of processes that

each wants to perform an input before proceeding with their continuation. It
can easily be encoded in our calculus using the binding construct:

Σn
i=1ti?xi.Pi � &∃(t1?x1, · · · , tn?xn).

(case x1 of some(y1) : P1 else 0 |
...

| case xn of some(yn) : Pn else 0)

Here the quality predicate ∃ expresses that only 1 of the n inputs is required
and we assume that no xi occurs free in Pj when i �= j.

To illustrate this in more detail let us consider the binary case c1?x1.P1 +
c2?x2.P2 where the encoding amounts to:

c1?x1.P1 + c2?x2.P2 � &∃(c1?x1, c2?x2).
(case x1 of some(y1) : P1 else 0
| case x2 of some(y2) : P2 else 0)

Let us assume that this process is in parallel with the process c1!c.Q. Using Table
3 we have

c1!c " &∃(c1?x1, c2?x2)→ &∃([some(c)/x1], c2?x2)

and
&∃([some(c)/x1], c2?x2) ::tt [some(c)/x1][none/x2]

so we get

c1!c.Q | (c1?x1.P1 + c2?x2.P2) −→ Q | P1[some(c)/x1][none/x2]

We have assumed that x2 does not occur free in P1 and hence we have the result
we would expect.

Generalised input binder. We now introduce a version of the binding operator
that even though it does not need all inputs in order to proceed still will honour
them – and thereby ensure that other processes will not become stuck for that
reason. The new binding operator is written &?

q(t1?x1, · · · , tn?xn) and is defined
by

&?
q(t1?x1, · · · , tn?xn).P � &q(t1?x1, · · · , tn?xn).

(P | case x1 of some(y1) : 0 else t1?x1

...
| case xn of some(yn) : 0 else tn?xn)

Thus the idea is to spawn processes in parallel to the continuation P taking care
of the inputs that were not necessary according to the quality predicate.

To illustrate this let us consider the binary case &?
∃(c1?x1, c2?x2) where the

encoding amounts to:

&?
∃(c1?x1, c2?x2).P � &∃(c1?x1, c2?x2).

(P | case x1 of some(y1) : 0 else c1?x1

| case x2 of some(y2) : 0 else c2?x2)

196 H.R. Nielson, F. Nielson, and R. Vigo

Assume that this process is in parallel with the process c1!c.Q1. Then we get

c1!c.Q1 | &?
∃(c1?x1, c2?x2).P

−→∗ Q1 | P [some(c)/x1][none/x2] | c2?x2

Thus the process c2?x2 is ready to take care of a late arrival of the input; so we
will for example have

c2!c
′.Q2 | Q1 | P [some(c)/x1][none/x2] | c2?x2

−→ Q2 | Q1 | P [some(c)/x1][none/x2]

showing that the unsuccessful process c2!c
′.Q2 will not be stuck even though its

output is neglected.

Internal nondeterministic choice. We now show how to encode a version of the
general sum

⊕n
i=1 Pi of processes modelling internal nondeterministic choice

between the alternatives. The idea is to introduce n fresh channels di over which
a fresh constant d is communicated and bound to fresh variables xi and yi and
then to select one of the summands:⊕n

i=1 Pi � (νd1) · · · (νdn) (νd)
(d1!d | · · · | dn!d
| &∃(d1?x1, · · · , dn?xn).

(case x1 of some(y1) : P1 else d1?x1 |
...

| case xn of some(yn) : Pn else dn?xn))

The difference from the ordinary CCS sum is that the choices are not made
according to the availability of inputs but rather an internal nondeterministic
choice is performed as in CSP.

Again let us consider the binary case where the encoding amounts to:

P1 ⊕ P2 � (νd1) (νd2) (νd)
(d1!d | d2!d
| &∃(d1?x1, d2?x2).

(case x1 of some(y1) : P1 else d1?x1

| case x2 of some(y2) : P2 else d2?x2))

Let us assume that it is d1!d that is successful and as above we get

d1!d " &∃(d1?x1, d2?x2)→ &∃([some(d)/x1], d2?x2)

and
&∃([some(d)/x1], d2?x2) ::tt [some(d)/x1][none/x2]

and therefore we get

P1 ⊕ P2 −→∗ (νd2) (νd) (d2!d | P1[some(d)/x1][none/x2] | d2?x2)
−→ P1

Here we have used that neither x1, x2, y1 nor y2 occur free in P1 and that
d2!d | d2?x2 −→ 0.

A Calculus for Quality 197

Generalised output prefix. Finally we introduce an operator that allows a process
to learn which outputs have been delivered and then use a quality predicate to
determine when to proceed. The idea is to introduce new channels that can
be used for internal communication when the outputs have been accepted. The
new operator is denoted &!

q(t1!t
′
1, · · · , tn!t′n) and it is defined using the &?

q(· · ·)
binding operator introduced above:

&!
q(t1!t

′
1, · · · , tn!t′n).P � (νd1) · · · (νdn) (νd)

(t1!t
′
1.d1!d | · · · | tn!t′n.dn!d

| &?
q(d1?x1, · · · , dn?xn).P)

Here we assume that the new constants and variables do not occur in the terms
ti and t′i nor in the process P . This operator will ensure that the continuation
process P can start when some of the outputs have taken place (as determined
by the quality predicate q) and it will also ensure that remaining outputs are
still ready to be performed so that other processes do not get stuck because of
missing communication possibilities.

To illustrate this let us consider the binary case &!
∃(c1!c

′
1, c2!c

′
2) where the

encoding amounts to:

&!
∃(c1!c

′
1, c2!c

′
2).P � (νd1) (νd2) (νd)

(c1!c
′
1.d1!d | c2!c′2.d2!d

| &∃(d1?x1, d2?x2).
(P | case x1 of some(y1) : 0 else d1?x1

| case x2 of some(y2) : 0 else d2?x2))

Assuming that this process is in parallel with the process c1?z1.Q1 we get

c1?z1.Q1 | &!
∃(c1!c

′
1, c2!c

′
2).P

−→ Q1[c
′
1/z1] | (νd1) (νd2) (νd)

(d1!d | c2!c′2.d2!d
| &∃(d1?x1, d2?x2).

(P | case x1 of some(y1) : 0 else d1?x1

| case x2 of some(y2) : 0 else d2?x2))
−→∗ Q1[c

′
1/z1] | P | (νd2) (νd) (c2!c′2.d2!d | d2?x2)

where we have used that neither x1 nor x2 occurs free in P . The resulting process
is thus ready to handle the late communication over c2; indeed we have

c2?z2.Q2 | Q1[c
′
1/z1] | P | (νd2) (νd) (c2!c′2.d2!d | d2?x2)

−→∗ Q2[c
′
2/z2] | Q1[c

′
1/z1] | P

showing that the additional machinery introduced ensures that all three pro-
cesses can continue.

4 Motivating Example

We now consider a scenario inspired by [1] where a base station BS will com-
municate with a sensor node SN to obtain the value of a physical parameter,

198 H.R. Nielson, F. Nielson, and R. Vigo

which has to be communicated to a central aggregating unit. In order to ease
the presentation, we will take the liberty to use a polyadic version of the calculus.

The sensor node SN is defined by

SN � 0⊕ (sn?(xi, xp).
case xi of some(yi) :

case xp of some(yp) : yi!value(yp).SN else 0
else 0)

A basic node is equipped with a sensor able to measure one or more physical
parameters (e.g. temperature, radioactivity) and a transceiver. As a node is
typically powered by batteries, at some point in time it will die: this behaviour
is captured by the possibility to non-deterministically evolve to 0 in the first line.
While the node is alive, it waits for a request from the base station on channel
sn, expecting the identity xi of the sender and the name xp of the parameter
to be measured. The subsequent case constructs are used to extract the actual
data, and then the measure is taken and communicated to the base station;
the two else branches are in fact not reachable. The function value (which takes
data as input and returns data) produces the result of measuring the intended
parameter.

The base station will ask the sensor node to measure a physical parameter,
and in the interest of its robustness we extend it with a process representing
a local computer, able to estimate such a value. The local estimate will be
communicated to the central unit and used whenever the sensor node does not
respond. The local computer is defined by

LC � lc?xe.case xe of some(ye) : lc!guess(ye).LC else 0

and it uses the function guess (taking data and returning data) to estimate the
value of the intended parameter; again, the case construct is used to extract the
actual request and the else branch is not reachable.

The base station will put a limit on how long it will wait for a measure. In
order to model this behaviour we make use of a time counter defined by

Clock � set?xt.tick!�.Clock

where channel set is used to set a time-out, and the output of the constant �
signals that the prescribed amount of time has passed.

Finally, the base station is defined by the process

BS � (νid) (νp) (νt)&!
∃(lc!p, sn!(id, p)).set!t

&∀(tick?xt,&
?
∃(lc?xl, id?xr))

case xr of some(yr) :
1cu!yr.BS else

case xl of some(yl) :
2cu!yl.BS else 30

where we have added some labels for later reference. In the first line the base
station issues a request for a parameter p to the local computer and to the sensor
node, identifying itself as id. The timer is set to the constant t as soon as one

A Calculus for Quality 199

of the recipients has received the request. The second line waits for the deadline
and for at least one value among the local estimate and the real measure. This
behaviour is determined by the top-most quality predicate ∀, which requires that
both inputs are successful, and by the inner quality predicate ∃, which insists
that at least one of its two inputs is successful. As we are using the binding
operator &?

∃(. . .) the other input will be handled when (and if) it arrives. It is
important to note that it is also possible that both values arrive before the time
has passed. The third line tests whether or not the sensor node responded; if
this is the case the value is communicated to the central unit, otherwise the local
estimate is sent. Observe that in this formalisation the final else branch (labelled
3) is not reachable, as the requests built by the base station correctly match the
inputs of SN and LC, and the latter always responds.

Discussion. Let us conclude by discussing two alternative choices for the binding
construct in the second line of BS. One possibility is to use the binder

&2/3(tick?xt, lc?xl, id?xr)

and this would require that at least one entity among the sensor network and the
local computer has communicated a value before proceeding. Another possibility
is to use

&∃(tick?xt,&
?
∃(lc?xl, id?xr))

and in this case we might end up having no value at all.

5 Robustness Analysis

The Quality Calculus provides the means for expressing dure care in always
having default data availble in case the real data cannot be obtained — but it
does not enforce it.

Our enforcement mechanism will be a SAT-based [8] robustness analysis for
characterising whether or not variables over optional data do indeed contain
data. The analysis attaches propositional formulae to all points of interest in
the processes; the formulae characterise the combinations of optional data that
could be missing. At key places one would like to demand that such formulae
would always require default data to be available; this translates into demanding
that certain logical formulae are unsatisfiable as determined by a SAT-solver.

The formulae encode optional data as booleans as follows. A value of the form
some(·) is coded as tt and a value of the form none is coded as ff. We find it
helpful to let v denote the boolean encoding of the value v, i.e. some(·) = tt and
none = ff. As an example, the formula x1 ∨ (x2 ∧ x3) indicates that either x1 is
available or both of x2 and x3 are available, the variables ranging over booleans.

The judgements. The main judgement of our analysis takes the form

" ϕ@P

200 H.R. Nielson, F. Nielson, and R. Vigo

Table 5. Robustness Analysis of the Quality Calculus

� tt@P∗ � tt@P1 · · · � tt@Pn

� ϕ@(νc)P

� ϕ@P

� ϕ@(P1 | P2)

� ϕ@P1

� ϕ@(P1 | P2)

� ϕ@P2

� ϕ@(b.P) � b � ϕb

� (∃bv(b).ϕ) ∧ ϕb @P

� ϕ@(t1!t2.P)

� ϕ@P

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ϕe @P1

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ¬ϕe @P2

� ϕ@P

� (∃x.ϕ)@P
if x ∈ fv(ϕ) \ fv(P)

� ϕ@P

� ϕ′ @P
if ϕ ⇔ ϕ′

� t?x � x
� b1 � ϕ1 · · · � bn � ϕn

� &q(b1, · · · , bn) � [{q}](ϕ1, · · · , ϕn)

� x � x � some(t) � tt � none � ff

� e1 � ϕ1 · · · � en � ϕn

� f(e1, · · · , en) � [{f}](ϕ1 , · · · , ϕn)

� e0 � ϕ0 � e1 � ϕ1 � e2 � ϕ2

� case e0 of some(y) : e1 else e2 � (ϕ1 ∧ ϕ0) ∨ (ϕ2 ∧ ¬ϕ0)

and the idea is that the formula ϕ describes the program point immediately
before P . This is ambiguous in case there are multiple occurrences of the same
subprocess in the system and the traditional solution is to add labels to disam-
biguate such occurrences but we dispense with this in order not to complicate
the notation. The intended semantic interpretation of this judgement is that

if " ϕ@P and P∗ →∗ C[Pθ] then θ |= ϕ

where θ is the mapping obtained by pointwise application of the encoding ·, and
θ |= ϕ denotes the truth of ϕ under the interpretation θ.

We will make use of two auxiliary judgements. One is for bindings

" b � ϕ

and the idea is that the formula ϕ describes the bindings of the variables that
correspond to successful passing the binder b. The intended semantic interpre-
tation of this judgement is that

if " b � ϕ and b ::tt θ then θ |= ϕ

The other auxiliary judgement is for expressions; it takes the form

" e � ϕ

A Calculus for Quality 201

and the idea is that the formula ϕ describes the result of evaluating the expression
e. The intended semantic interpretation of this judgement is that

if " e � ϕ and e � v then |= (ϕ = v)

As usual, we write ϕ1 = ϕ2 as a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).

The detailed definition. The formal definition of " ϕ@P is given by the inference
system in the topmost part of Table 5. It operates in a top-down manner (as
opposed to a more conventional bottom-up manner) and gets started by an
axiom " tt@P∗ for the main process saying that it is reachable. Also we have
an axiom for each of the defined processes; they have the form " tt@Pi thereby
ensuring that the process definitions are analysed in all contexts.

The first inference rule expresses that if ϕ describes the program point just
before a process of the form (νc)P then it also describes the program point
just before P . Then we have two rules for parallel composition: if ϕ describes
the program point before P1 | P2 then it also describes the program point just
before each of the two processes. The rule for bindings in more interesting; here
we make use of the auxiliary analysis judgement " b � ϕb explained below for
analysing the binding b. The information ϕ describing the program point before
b.P is transformed into (∃bv(b).ϕ) ∧ ϕb in order to describe the program point
before P ; the existential quantification captures that potential free occurrences
of the bound variables of b in ϕ are no longer in scope. The rule for output
should now be straightforward. The two rules for the case construct make use
of the auxiliary analysis judgement " e � ϕe explained below for analysing the
expression; this gives rise to a formula describing the outcome of the test being
performed and this information is added to describe the program point just
before the selected branch.

Finally, we have two inference rules for manipulating the formulae describing
the program points. The first one allows us to existentially quantify over variables
not occurring free in the process being described. The second allows us to replace
a formula with a logically equivalent one.

In the case of binders the formula ϕ produced by the judgement " b �
ϕ denotes that succesful passing of the binder gives rise to the formula ϕ for
characterising the availability of data as provided by the binder. In the detailed
definition of " b � ϕ presented in the second part of Table 5 we rely on the
formula schemes [{q}](r1, · · · , rn) of Table 4 for encoding the effect of quality
predicates q.

The last part of Table 5 defines the judgement " e � ϕ for expressions and as
already mentioned the idea is that the formula ϕ characterises the availability of
data used in e. Also here we rely on formula schemes of the form [{f}](r1, · · · , rn)
for encoding the effect of functions f and we assume that they satisfy the fol-
lowing soundness and completeness property:

[{f}](v1, · · · , vn) = v whenever f(v1, · · · , vn) � v

Implementation. We have implemented this analysis by writing a program in
Standard ML for computing the formulae at the program points of interest and

202 H.R. Nielson, F. Nielson, and R. Vigo

next use the SAT [8] and SMT [5] solver Z3 [4] to determine whether or not the
formulae are satisfiable. For the examples we have studied the answer is obtained
in less than a second on an ordinary laptop computer.

The motivating example. Let us return to the base station BS of Section 4 where
we now want to compute the analysis results for the program points identified
by the three labels. Starting with " tt@BS we obtain the following formulae at
the labels:

1 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ xr

2 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ xl

3 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

where we used the same variable names used in the process in order to stress
the relationship between the formulae produced by the analysis and the pro-
gram points they describe, even if here the variables range over the boolean
encoding of optional data. Observe that (x1∨x2) refer to the generalised output
prefix &!

∃(lc!p, sn!(id, p)) encoded as shown in Section 3, (xt ∧ (xl ∨ xr)) is the
condition for passing the quality binder in the second line, and the remainder
identifies the condition for reaching the given label. We can then ask whether or
not the process points decorated with labels are reachable, that is, whether or
not the related formulae are satisfiable. Using Z3 we obtain the following satis-
fying substitutions:

1 : [x2 �→ ff;x1 �→ tt;xl �→ tt;xr �→ tt;xt �→ tt]
2 : [x2 �→ ff;x1 �→ tt;xl �→ tt;xr �→ ff;xt �→ tt]
3 : not satisfiable

This shows that the 0 process of BS will never be executed.
Let us conclude by considering the variants of the base station discussed at

the end of Section 4. Using the binder &?
2/3(tick?xt, lc?xl, id?xr) we get slightly

different formulae but the satisfiability results are the same as above: the formula
for the process labelled 3 is unsatisfiable whereas the others have satisfying
assignments.

Using the binder &∃(tick?xt,&
?
∃(lc?xl, id?xr)) we get the following formula

for the process labelled 3:

3 : (x1 ∨ x2) ∧ (xt ∨ xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

which is satisfiable using the substitution:

3 : [x2 �→ ff;x1 �→ tt;xl �→ ff;xr �→ ff;xt �→ tt]

The 0 process labelled 3 might thus be reachable. The above substitution gives us
an indication of when this can happen: the binder &∃(tick?xt,&

?
∃(lc?xl, id?xr))

will be successful when xt = tt meaning that the time has passed but it does
not need to be the case that any of the schedules are available as reflected by
xl = ff and xg = ff. In this case the 0 process will in fact be reached and the BS
process will terminate.

A Calculus for Quality 203

Formal correctness. We have argued informally that the analysis is correct with
respect to the semantics and this is in line with how static analyses of pro-
gramming languages are often presented. The main obstacle in giving a formal
proof of correctness is that the semantics applies substitutions directly whereas
the correctness statements talk about explicit substitutions. This is a well-known
obstacle and at least two solutions are possible. One is to keep the semantics and
correctness statements and to emulate the technically complex approach of [11].
Another is to modify the semantics to use explicit substitutions and perform a
more direct proof of correctness leaving the technical complexities to proving the
equivalence of the original semantics to the modified semantics. However, this
technically complex development would provide little additional insight onto our
approach.

6 Conclusion

Many of the errors in current software are due to an overly optimistic program-
ming style. Programmers tend to think of benign application environments and
hence focus on getting the software to perform as many functions as possible.
To a much lesser extent they consider malign application environments and the
need to focus on avoiding errors that can be provoked by outside attackers.

This is confounded by the fact that key software components are often de-
veloped in one context and then ported to another. The Simple Mail Transfer
Protocol (SMTP) is a case in point. Originally developed in benign research or
development environments, where few would be motivated to misuse the proto-
col and could easily be reprimanded if doing so, it has become a key constituent
of the malign environment provided by the global internet where many users
find an interest in misusing the protocol, and where it is extremely difficult to
even identify offenders.

Future programming languages and programming environments need to sup-
port a more robust (pessimistic) programming style: What conceivably might
go wrong probably will go wrong. A major cause of disruption is due to the
communication between distributed sofware components. There is an abundant
literature on methods and techniques for how to prevent attackers from learning
secrets (confidentiality) or from telling lies (integrity, authenticity). Hence our
focus considers how to mitigate the consequences of attackers, nature or misfor-
tune preventing expected communication from taking place. This calls for a very
robust way of programming systems where there always are default data avail-
able for allowing the system to continue its operation as best as it can (rather
than simply terminate with an error or get stuck in an input operation).

We believe that the Quality Calculus presents the core ingredients of a process
calculus supporting such defensive (robust) programming. To assist in analysing
the extent to which robustness has been achieved we have developed a SAT-
based robustness analysis, that indicates the places where errors can still arise
in spite of robust programming, and where additional hardening of the code may
be called for.

204 H.R. Nielson, F. Nielson, and R. Vigo

Acknowledgement. The research has been supported by MT-LAB, a VKR
Centre of Excellence for the Modelling of Information Technology, and by
IDEA4CPS, supported by the Danish Foundation for Basic Research.

References

1. Anand, M., Ives, Z., Lee, I.: Quantifying eavesdropping vulnerability in sensor
networks. In: Proceedings of the 2nd International Workshop on Data Management
for Sensor Networks, DMSN 2005, pp. 3–9. ACM (2005)

2. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC:
A Service Centered Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

3. Bruni, R.: Calculi for Service-Oriented Computing. In: Bernardo, M., Padovani, L.,
Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg
(2009)

4. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

6. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

7. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

8. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM 52(8), 76–82 (2009)

9. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

10. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

11. Nielson, F., Nielson, H.R., Bauer, J., Nielsen, C.R., Pilegaard, H.: Relational Anal-
ysis for Delivery of Services. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS,
vol. 4912, pp. 73–89. Springer, Heidelberg (2008)

Model Checking of Qualitative Sensitivity

Preferences to Minimize Credential Disclosure�

Zachary J. Oster, Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
{zjoster,gsanthan,sbasu,honavar}@iastate.edu

Abstract. In most client-server interactions over the Web, the server re-
quires the client to disclose certain credentials before providing the client
with the requested service (server policy). The client, on the other hand,
wants to minimize the sensitivity of the set of credentials disclosed (client
preference). We present a qualitative preference formalism based on con-
ditional importance networks (CI-nets) for representing and reasoning
with client preferences over the relative sensitivity of sets of credentials.
The semantics of CI-net preferences is described using a preference graph
over the set of credentials for which the preferences are expressed. We
develop a model checking-based approach for analyzing the preference
graph, efficiently verifying whether one set of credentials is more sen-
sitive than another (dominance testing). Further, we identify the least
(minimum) sensitive set of information that may be disclosed by the
client to get access to the desired service. We present a technique based
on iterative verification and refinement of the preference graph for com-
puting a sequence of credential sets, ensuring that a credential set with
higher sensitivity is never returned before one with lower sensitivity. We
present a prototype implementation and preliminary simulation results.

1 Introduction

In online transactions, a client often must choose from multiple servers that
provide some desired service. Typically, each server expects to verify a set of
the client’s credentials (as specified by the server’s access control policy) before
allowing access to the requested service. As the servers may hold different access
control policies, they may demand different sets of credentials from the client;
some sets of credentials may be more sensitive to the client than others, in the
sense that they compromise the client’s privacy to a greater degree.

This induces a preference on the sets of credentials that the client can disclose.
Given a set of servers providing the same service, the client will prefer a server
requiring the disclosure of a less sensitive set of credentials over a server requiring
the disclosure of a more sensitive credential set.

For all except the smallest sets of possible credentials, it is impractical for
the client to explicitly specify preferences over all possible combinations of cre-
dentials. Even if the client has only four credentials, he or she would need to

� This work is supported in part by U.S. National Science Foundation grants
CCF0702758 and CCF1143734.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 205–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 Z.J. Oster et al.

assert preferences over 24 = 16 combinations of credentials. A more practical
approach would be to specify preferences over individual credentials, which can
then be used to reason about preferences over sets of credentials. This reduces the
decision-making burden on the client while still allowing him or her to access a
desired service from the server that requires the least sensitive set of credentials.

Existing approaches to this problem, including [4,7,14], assume that the client
has a priori knowledge of the access control policy of the server. However, in prac-
tice some servers may restrict the disclosure of their access control policies [1],
especially when the client may be able to infer sensitive information by looking
at the server’s policy. For example, a server storing medical records may wish
to release the records of a patient A suffering from a certain disease only to
specialist doctors who are qualified to treat the illness. The server may thus
require clients (in this case doctors) requesting access to patient A to present
credentials certifying that they are licensed doctors who are qualified to treat
A’s disease. However, disclosing this requirement may allow any client to infer
that A is suffering from that ailment, violating privacy laws. In such settings,
the server has to protect its policy from being fully or partially disclosed to its
clients.

Given the privacy preferences of a client that is totally or partially ignorant
of the server’s requirements, the client can access the service while minimizing
disclosure of the client’s credentials by providing increasingly sensitive creden-
tial disclosure sets (beginning from the least sensitive set) until the client finds
one that is accepted by the server. Thus there is a need for algorithms and for-
mal methods that compute a sequence of successively next-best (more sensitive)
credential disclosure sets based on the sensitivity preferences of the client.

Driving Problem. In this paper, we address two important problems in the
context of these scenarios. First, we use an intuitive formalism for representing
and reasoning with the client’s sensitivity preferences over the credentials. We
claim that it is natural for clients to specify their preferences over credentials
using an expressive preference language, namely conditional importance networks
(CI-nets) [2]. CI-nets can represent

– Monotonicity Preference: disclosing less information is preferred to disclosing
more information

– Set-Based Relative Importance Preference: disclosing one set of credentials
is always preferred to disclosing another set of credentials

– Conditional Relative Importance Preference: given the presence or absence
of certain credentials in the disclosure set, including one set of credentials in
the disclosure set is preferred to including another set of credentials

Second, we introduce a model checking-based technique for finding a sequence of
successively next-most-preferred (more sensitive) credential disclosure sets with
respect to the CI-net preferences specified by the client. This new technique
is built upon our previous work on dominance testing via model checking for
CP-nets [11], which are related to but less expressive than CI-nets.

Contributions. The contributions of our work are summarized as follows:

Model Checking of Qualitative Sensitivity Preferences 207

1. We employ a formal preference language and semantics based on CI-nets to
represent the client’s preferences over the sensitivity of the credentials.

2. We show how model checking techniques for preferential dominance testing
(finding whether one set of credentials is preferred over another) can be
used to find the least sensitive (most preferred) set of credentials that the
client would like to disclose and that the server will accept. This is done by
repeatedly finding the next-best (next-least-sensitive) set of credentials and
seeing whether the server will accept this credential set.

3. We present an implementation and preliminary experiments to show the
practical feasibility of our approach.

Organization. The rest of the paper is organized as follows. Section 2 moti-
vates the addressed problems and the proposed solution using a simple example.
Section 3 describes the syntax and semantics of CI-nets. Section 4 presents our
approach to finding the most preferred sets of credentials according to the sensi-
tivity preferences of the client, as well as a model checking-based technique for
ordering the sets of credentials based on their relative sensitivities. Section 5 de-
scribes our implementation and summarizes the results of our initial experiments.
Section 6 discusses related techniques from the existing literature. Section 7 sum-
marizes the paper and presents some directions for future work.

2 Illustrative Example

Consider a client who is interested in obtaining some financial quote (e.g., auto
and/or home insurance,mortgage, etc.) using an online service. Suppose that there
are multiple servers that provide the required service, and each server’s access
control policy requires a combination of several credentials from the client before
granting access to the service.We consider four such credentials: the client’s name,
residential address, bank account number, and bank routing number.

The client has some qualitative preferences over the relative importance of
his credentials based on their sensitivity. The rationale behind these preferences
is that the client would like to make it impossible (or at least difficult) for a
third party to perform any financial transaction maliciously posing as the client.
Therefore, from the client’s perspective, the objective is to choose the server that
provides the desired financial service by requiring the least sensitive set of client
credentials. Consider the following qualitative preferences specified by the client:

P1. If my bank account number is disclosed to the server, I would rather give
my address than my bank’s routing number to the server. This is because
my bank account number along with the bank routing number identifies
my bank account precisely, and hence it is highly sensitive information com-
pared to my bank account number and address.

P2. If I have to disclose my address without having to disclose my name, then
I would prefer giving my bank’s routing number over my bank account
number. However, this preference does not hold when I have to disclose my
name along with my address, because the combination of my name, address,

208 Z.J. Oster et al.

and bank routing number is not any less sensitive than my name, address,
and bank account number. In both cases, a malicious party needs to guess
one of the credentials – bank account number or bank routing number – to
gain access to important financial information.

P3. Because I would like to protect as many details as possible regarding my
bank account, when I don’t have to disclose my bank account number I
would provide my name and address rather than my bank’s routing number.

Based on these preferences, the client can identify successively more sensitive
sets of credentials (starting from the empty set) and verify whether a set of
credentials is sufficient to satisfy the access control policy of any server providing
the desired service. Any server that accepts this least sensitive acceptable set of
credentials may be selected to provide the service to the client.

3 Background: CI-Nets

We use conditional importance networks (CI-nets) [2] to capture and reason with
the client’s preferences over the set of credentials in terms of their sensitivity. CI-
nets allow a client to clearly and precisely specify sensitivity among credentials.

3.1 Syntax

Let V denote the set of credentials over which the client expresses his/her pref-
erences. A CI-net C is a collection of conditional importance statements of the
form S+, S− : S1 $ S2, where S+, S−, S1, and S2 are pairwise disjoint subsets of
V and where S2 �= ∅. Informally, given two sets of credentials which both include
the set S+ and exclude S−, the set that contains all of the credentials in S1 is
preferred (relatively less sensitive) to the set that contains all of the credentials
in S2.

Recall the preference P1 described in Section 2 that “if my bank account
number is disclosed to the server, I would rather give my address than my bank’s
routing number to the server”. It is expressed as the following CI-net statement:

{Bank Account Number}, {} : {Address} $ {Bank Routing Number} (1)

Similarly, the preference P2 that “if I have to disclose my address without
having to disclose my name, then I would prefer giving my bank’s routing number
over my bank account number” is expressed in the language of CI-nets as:

{Address}, {Name} : {Bank Routing Number}${Bank Account Number} (2)

3.2 Semantics

The ceteris paribus (“all else being equal”) semantics [2] provides a way to
use the statements in a CI-net to reason about preferences over various sets of
credentials. The semantics of preferences described using a CI-net C over a set of
credentials V is given in terms of a strict partial order (irreflexive and transitive)
relation $ over the powerset of V such that:

Model Checking of Qualitative Sensitivity Preferences 209

1. $ is monotonic, i.e., γ ⊂ γ′ ⇒ γ $ γ′

2. For each CI-net statement S+, S− : S1 $ S2,
γ ⊆ [V \ (S+ ∪ S− ∪ S1 ∪ S2)]⇒ γ ∪ S+ ∪ S1 $ γ ∪ S+ ∪ S2

In the original CI-net formalism [2], a set is preferred to its subset, i.e., it is
always preferred to have more elements in a set. We reverse the direction of
monotonicity (see item 1 above) in the semantics because in our context it is
always better to disclose fewer credentials. Further, note that allowing S2 = ∅
combined with monotonicity could permit preferences where a set is preferred
to itself. In order to ensure the strict partial ordering of preferences, we do not
allow S2 = ∅ in the syntax (see Section 3.1).

Going back to the CI-net preference statement P1 in our example, by the rule
in item 1 above, the set of credentials {Name, Address, Bank Account Number}
is preferred to the set {Name, Bank Account Number, Bank Routing Number}
according to ceteris paribus semantics. Similarly, a ceteris paribus interpretation
of the preference statement P2 in our example CI-net can be used to reason that
the set of credentials {Address, Bank Routing Number} is less sensitive than
(therefore more preferred to) the set {Address, Bank Account Number}.
CI-Nets for Preferences over Credential Disclosure Sets. CI-nets are
a natural choice for modeling client preferences over sets of credentials for the
following reasons:

1. Preferences in CI-nets are monotonic. According to the semantics of CI-nets,
a set of credentials is preferred to all of its proper supersets. The client
would typically like to protect as many credentials as possible (ideally all)
from being disclosed.

2. The CI-net semantics induces a strict partial order among the subsets of cre-
dentials with respect to the CI-net preference statements of the client. Thus,
it is possible to order the subsets of credentials in a way that is consistent
with the semantics of a CI-net. Such an ordering can be used to search for
less sensitive sets of credentials that fulfill the server’s requirement ahead of
the ones that are more sensitive.

4 Finding the Most Preferred Set of Credentials

We present a method for automatically identifying a most preferred set γ of cre-
dentials that the client has to disclose in order to satisfy the server’s requirement,
such that there exists no other credential set γ′ that (a) is preferred to (less sen-
sitive than) γ and (b) fulfills the server’s requirement. Our method consists of
the following two processes:

1.Decide: Automatically decide the preference of a set of credentials over another,
where preferences are specified using CI-nets (Section 4.1).
2. Order: Use the above decision process to automatically identify the preference
ordering of sets of credentials, starting from the most preferred sets and ending
in the least preferred ones (Section 4.4).

210 Z.J. Oster et al.

a = Name

b = Address

c = Bank Routing Number

d = Bank Account Number

P1. {d}, {} : {b} � {c}
P2. {b}, {a} : {c} � {d}
P3. {}, {d} : {a, b} � {c}

Fig. 1. Induced preference graph and CI-net preference statements for the preferences
given in Section 2, with the improving flipping sequence from {Address, Bank Account
Number} to {Bank Routing Number} shown in bold.

4.1 Dominance Testing

Given two choices (of sets of credentials), deciding the preference of one choice
over the other is referred to as dominance testing. Dominance testing is known to
be PSPACE-complete [2,6]. Recently, in [11], we have demonstrated an effective
model checking [5] based approach to dominance testing for certain families of
preferences, such as TCP-nets [3]. In this paper, we follow a similar approach
for dominance testing between choices (of sets of credentials) where preferences
are represented using CI-nets. This approach relies on alternate semantics of CI-
nets given in terms of an improving flipping sequence, analogous to the worsening
flipping sequence defined in [2].

Definition 1 (Improving Flipping Sequence [2]). A sequence of credential
sets γ1, γ2, · · · γn−1, γn is an improving flipping sequence with respect to a set
of CI-net statements if and only if, for 1 ≤ i < n, either

1. (Monotonicity Flip) γi+1 ⊂ γi; or
2. (Importance Flip) there exists a conditional importance statement S+, S− :

S1 $ S2 in the CI-net for which all of the following hold:

(a) γi+1 ⊇ S+, γi ⊇ S+, γi+1 ∩ S− = γi ∩ S− = ∅;
(b) γi+1 ⊇ S1, γi ⊇ S2, γi+1 ∩ S2 = γi ∩ S1 = ∅;
(c) γ = V \ (S+ ∪ S− ∪ S1 ∪ S2)⇒ γ ∩ γi+1 = γ ∩ γi.

In the above definition, condition (1) states that disclosing a set of credentials is
always preferred to disclosing its superset. (2) states that if the set S+ of creden-
tials are disclosed and the set S− of credentials are not disclosed, then disclosing
the set S1 of credentials is preferred to disclosing the set S2 of credentials, all
other disclosures being identical (which is ensured by condition (2c)). Given a
CI-net C and two sets γ and γ′ of credentials, we say that γ is preferred to γ′,
denoted by C |= γ $ γ′, if and only if there is an improving flipping sequence
with respect to C from γ′ to γ (Proposition 1, [2]).

Model Checking of Qualitative Sensitivity Preferences 211

In our example CI-net (right side of Figure 1), we can thus say that the set
{Bank Routing Number} is preferred to the set {Address, Bank Account Number}.
This is because the set {Address, Bank Account Number} has an improving
(importance) flip to the set {Address, Bank Routing Number} (see preference P2
in Section 2 and its CI-net representation, Equation 2 in Section 3), which in
turn has an improving (monotonicity) flip to {Bank Routing Number}.

From the above definition, one can construct a graph where each node corre-
sponds to a set of credentials and each directed edge from one node to another
denotes an “improving flip”, capturing the fact that the set of credentials at the
destination node is preferred to the set of credentials at the source node. This
graph is referred to as the induced preference graph [2].

Definition 2 (Induced Preference Graph). Given a CI-net C over a set of
credentials V , the induced preference graph δ(C) = (N,E) is constructed as fol-
lows. The nodes N correspond to the powerset of V , and for a pair γ, γ′ ∈ N , the
directed edge (γ, γ′) ∈ E indicates an improving (monotonicity or importance)
flip from γ to γ′ as per the CI-net semantics (Definition 1) such that γ′ $ γ.

Figure 1 presents the CI-net statements representing the preferences over cre-
dentials specified in Section 2, along with the corresponding induced preference
graph. The solid edges between sets of credentials in this graph correspond to
monotonicity flips and the dotted edges correspond to importance flips. Each
path in the graph corresponds to an improving flipping sequence.

A set γ′ of credentials dominates (i.e., is preferred to) another set γ with
respect to CI-net C if and only if the node corresponding to γ′ in δ(C) is reach-
able from γ. For example, the set {Bank Routing Number} is preferred to the set
{Address, Bank Account Number} due to the existence of the path bd→ bc→ c,
which is highlighted in Figure 1. The induced preference graph of a CI-net is
consistent if and only if it is cycle-free.

4.2 Kripke Structure Modeling of CI-Net Semantics

We use the Cadence SMV symbolic model checker [8] to verify reachability (and
therefore dominance) from one node to another in the induced preference graph.
There are three primary advantages in using Cadence SMV for testing dominance.
First, Cadence SMV is equipped with (symbolic or BDD-based) algorithms that
allow for efficient state-space exploration of large graphs. Second, Cadence SMV
can verify properties (beyond simple reachability) in expressive temporal logic
(e.g., CTL and LTL), a capability that we will use in Section 4.4 to obtain a
preference ordering over sets of credentials. Finally, the SMV input language
allows us to directly encode the CI-net preference statements. The induced pref-
erence graph is then automatically constructed by the model checker to answer
dominance (verification) queries. The model checker takes as input a Kripke
structure 〈S, S0, T, L〉, where S is the set of states, S0 ⊆ S is the set of start
states, T ⊆ S × S is the set of transition relations, and L is a labeling func-
tion mapping each state in S to a set of propositions that hold at that state.

212 Z.J. Oster et al.

In our encoding, we represent each credential (say, xi) as a proposition, where
the value of the proposition is true when the credential is disclosed and false
when the credential is not disclosed. The propositions are uninitialized, which
allow the model checker to consider all possible valuations of propositions as
initial states of the Kripke structure. Given a set of CI-net statements C, the
Kripke structure KC representing the induced preference graph δ(C) contains
states that are labeled with the truth values of the set of credential propositions
xi and two types of helper Boolean variables: a set of Boolean variables hi and
a Boolean variable g.

SMV Input Language: Role of Helper Variables. In SMV, a Kripke struc-
ture is encoded using a set of variables, their possible initial valuations, and a
set of transition relations. Each transition relation describes the valuation of the
variable based on certain conditions on the current state variable-valuations. For
instance, consider a Kripke structure with two Boolean variables a and b.

init(a) := 0;

next(a) := case

a = b : !a;

1 : a;

esac;

This SMV specification states that the initial valuation of a is 0, while the
initial valuation of b can be either 0 or 1 since it is not explicitly given. The
corresponding Kripke structure has two different start states: one where a and b
are equal to 0 and another where a is equal to 0 and b is equal to 1. Furthermore,
the transition relation (described by the next operation) states that the value
of a is toggled only when the valuations of a and b are equal in the current state.
The absence of next definitions for b indicates that the valuation of b can change
non-deterministically whenever a change in state occurs in the Kripke structure.

In the encoding of δ(C) as a Kripke structure KC , attributes over which the
CI-net statements are specified are encoded as Boolean variables in KC . Each
state in KC corresponds to a node in δ(C): if x3 ∧ x4 holds (evaluates to true)
in a state in KC , that state corresponds to the node annotated with x3 and x4

in δ(C). Next, note that the existence of a given edge in δ(C) depends on the
contents of the source and destination nodes (improving flip, see Definition 1).
Direct encoding of such edges in SMV requires encoding of transitions in KC

where the next operation on each variable (describing the enabling condition of
the transitions) includes conditions that depend on the variables’ values in the
next states. Encoding such conditions in SMV may lead to circular dependencies
between next operations for two or more variables. For instance,

next(a) := case

next(b) : !a;

1 : a;

esac;

next(b) := case

next(a) : !b;

1 : b;

esac;

From the above encoding, it is not clear what valuation a and b should have in
the next state when the current state valuations of the variables are equal to 1.

Model Checking of Qualitative Sensitivity Preferences 213

Role of hi. In order to correctly encode the edges of δ(C) as transitions in
KC , we have used one auxiliary variable hi for each proposition xi. Each hi is
encoded such that if hi is 0 (false) in the current state, then in the next state
the valuation of xi cannot change; otherwise, the valuation of xi may change in
the next state if a condition corresponding to a CI-net preference statement is
satisfied. The hi variables are all initialized to 0 and the model checker performs
updates to the his non-deterministically. For instance, the semantics of the CI-
net statement {d}, {} : {b} $ {c} (preference P1 from Section 2, resulting in
edges cd→ bd and acd→ abd in δ(C)) can be encoded in the SMV language as

next(b) := case

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 1

...

esac;

next(c) := case

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 0

...

esac;

The enabling conditions are identical in both cases to ensure that the valuations
of b and c are updated under identical conditions as specified by the CI-net, i.e.,
when d = 1 in the current and next states (ensured by hd = 0 in the current
state) and when the valuation of a is unaltered in the current and next states
(ensured by ha = 0 in the current state). Further, c = 1 and hc = 1 in the current
state, which allows the value of c to change in the next state; similarly, b = 0
and hb = 1 in the current state, which allows for the toggling of b in the next
state.

In this way, the semantics of CI-nets as given in Definition 1 is directly encoded
as SMV specifications. This encoding eliminates the need to manually construct
the induced preference graph δ(C); instead, the model checker automatically
constructs and explores the Kripke model representing δ(C).

Role of g. Within the above encoding, the different valuations of each hi for
the same valuation of each xi correspond to states in KC that allow different
ways in which the valuation of that xi can be changed. Consequently, KC con-
tains multiple states where an identical set of xi’s hold true; all of these states
correspond to one node in δ(C). Transitions between these states do not change
the valuation of any xi and, therefore, do not correspond to any edge in δ(C).

The variable g is set to 1 (true) whenever a transition traversed in KC results
in a change in the valuation of at least one of the xi’s (i.e., when a transition in
KC corresponds to an edge in δ(C)). Conversely, if a transition in KC does not

214 Z.J. Oster et al.

indicate a change in any of the xi variables, the variable g is set to 0 (false). Con-
sider the following SMV code, which updates g based on the CI-net statements
that encode the preferences expressed in Section 2:

next(g) := case

-- Guards corresponding to P1, where g will be set to 1 :

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 1 -- g is set to 1 indicating that this transition

-- corresponds to a change in "b" or "c"

...

-- Guards corresponding to P2, where g will be set to 1 :

...

-- Guards corresponding to P3, where g will be set to 1 :

...

1: 0 -- default case : if no variables change, then g is 0

esac;

Note that these are precisely the same conditions under which b changes to 1
(true) and c changes to 0 (false), as defined in the previous SMV code excerpt.
The code in this excerpt sets g to 1 whenever the conditions for changing the
value of b and c are satisfied. The full next(g) block contains conditions for
setting g to 1 when any monotonicity or importance flip causes one or more
variables to change; we have omitted the remaining conditions to save space.
The 1 condition at the end of the block sets g to 0 if no other condition is
met, i.e., if no variables change during the specified transition. In Section 4.4,
we show how the variable g can be used directly to compute the ordering of
preferred solutions.

Figure 2 shows how the data variables xi, the helper variables hi, and the
change variable g interact within the Kripke structure KC for a node in the
induced preference graph δ(C) containing variables a and b. The most preferred
node in δ(C) is the empty set, while the least preferred node is the set of all
elements; nodes containing a and b are intermediate nodes. Each node in δ(C) is
modeled by a set of interconnected states in KC . In Figure 2, we have expanded
and shown the set of states in KC that corresponds to one node (where a = 1
and b = 0) in δ(C). The expanded node is divided into two subsets of states:
the left subset ag represents the set of states where g = 1, while the right
subset a¬g represents the set of states where g = 0. There are four states in
both subsets, one for each possible valuation of the two Boolean variables ha

and hb. Any state in ag can be reached from some state in KC that represents
the node where a = 1 and b = 1 in δ(C). States where ha = 1 and hb = 0
move to states in KC where a = 0 and b = 0, regardless of g’s value. All other
states in ag can move to some state in a¬g by a transition in KC ; however,
since g = 0 in all states in a¬g, any transition to or between the states in
a¬g does not correspond to any edge in δ(C). Note that, as in ag, the state

Model Checking of Qualitative Sensitivity Preferences 215

Induced
preference

graph

ab

b

a

b

ab

a
b

a a
a

a
ab

a
b

a a
a

a
ab

= 1g = 0g

itop line: true x variables

ibottom line: true h variables

b
ab

(preference items)

(change variables)

empty line = no true variables

Kripke structure

Fig. 2. Diagram of a Kripke-structure encoding of part of an induced preference graph

in a¬g where ha = 1 and hb = 0 has transitions to states where a = 0 and
b = 0. The rest of the Kripke structure KC is constructed similarly: each node
in δ(C) corresponds to a set of states in KC , where the number of states in
the set is exponential in the number of variables (credentials) in δ(C). Further
details of the SMV encoding process may be found on this paper’s website at
http://fmg.cs.iastate.edu/project-pages/credentials.html.

Theorem 1. Given a CI-net C, a Kripke structure KC constructed as described
in this subsection preserves the semantics of the induced preference graph δ(C)
of the CI-net.

Proof. Consider the induced preference graph δ(C) for CI-net C as defined in
Definition 2. Each state in KC maps onto exactly one node in δ(C). Furthermore,
given two nodes γ, γ′ ∈ δ(C) and two states s, s′ ∈ KC where s maps to γ and
s′ maps to γ′, there exists a directed edge (γ, γ′) ∈ δ(C) if and only if both (1)
there exists a transition s → s′ ∈ KC and (2) g = 1 in state s′. This transition
s→ s′ models the improving flip (γ, γ′) in the induced preference graph. '(

4.3 Model Checking for Verifying Consistency and Dominance

Given a CI-net C, we use the method in Section 4.2 to specify the corresponding
Kripke model KC for input to the Cadence SMV model checker. We begin by
verifying that the induced preference graph δ(C) modeled by KC is consistent
(i.e., cycle-free). This is done by checking KC against the LTL formula F G(g =
0), which is satisfied if and only if every path from the initial state in KC

eventually reaches a point where no xi variable ever changes (i.e., g is always 0)
in any future state.1 If a cycle exists in the induced preference graph, then every
state in the cycle always has at least one outgoing transition from that state
where g = 1, indicating that a variable is changing; this violates the consistency
property.

1 Details of LTL syntax and semantics can be obtained in [10].

http://fmg.cs.iastate.edu/project-pages/credentials.html

216 Z.J. Oster et al.

After the model KC is verified to be consistent, it can be used for preference
reasoning. For any two sets of credentials γ and γ′, we use the following CTL
formula to check whether γ′ is preferred to γ: X ⇒ EF(X ′), where X (resp. X ′)
is the propositional formula indicating the presence or absence of credentials in γ
(resp. γ′). This property is satisfied by any state in KC where X holds true and
where there is a path leading to a state where X ′ holds true.2 If the property is
satisfied, we conclude that γ′ is preferred to γ. An improving flipping sequence
from γ to γ′ can be obtained by querying the model checker with the negation of
the formula X ⇒ EF(X ′). The counter-example to this formula returned by the
model checker is a path in the Kripke structure that proves dominance, which
can be used to construct the improving flipping sequence. On the other hand, if
the property X ⇒ EF(X ′) is not satisfied, then there exists no improving flipping
sequence from γ to γ′, i.e., γ′ is not preferred to γ. In the CI-net used in our
example (see Section 2), the model checker returns true when queried with the
formula (acd⇒ EF(bd)), which verifies that bd is preferred to or dominates acd.
When we query the model checker with the CTL formula ¬(acd ⇒ EF(bd)), it
yields a counter-example corresponding to either the path acd→ cd→ bd or the
path acd → abd → bd. Either path gives a proof of the dominance of bd over
acd.

We find the most preferred set of credentials by verifying the CTL property
EF(g = 1) for all states in KC . This property is satisfied at a state s in KC

if and only if s can reach any state (including itself) where g evaluates to 1
(true). The property is not satisfied at states in KC that correspond to the
top-most node (containing the most preferred set of credentials) of the induced
preference graph (see, for instance, Figure 1). This is because the top-most node
in δ(C) does not contain any outgoing edges. Any one of the states in KC that
corresponds to the top-most node in δ(C) is identified by Cadence SMV as a
counterexample, proving the unsatisfiability of the property EF(g = 1). In our
running example, this query returns the state where variables a, b, c, and d are
false, which corresponds to the empty set of credentials. This reflects the fact
that not disclosing any credentials at all is the most preferred option.

4.4 Preference Ordering over Credential-Sets

Once the induced preference graph δ(C) is modeled as a Kripke structure KC ,
our next objective is to order the sets of credentials from most to least preferred.
Note that δ(C) specifies a strict partial order between sets of credentials. The
ordering we obtain is a total order consistent with this strict partial order. We
achieve this by performing model checking on the modelKC and its modifications
against CTL properties. The steps in our approach are as follows.

1. We verify all states in KC against the CTL property EF(g = 1), which
returns the most preferred set of credentials (say γi) from the top of δ(C).
Since δ(C) is a strict partial order, it may have multiple elements at the top.

2 Details of CTL syntax and semantics can be obtained in [5].

Model Checking of Qualitative Sensitivity Preferences 217

Any state that corresponds to any one of the top elements will be returned
as a counterexample (proving the unsatisfiability of the CTL property).

2. Let γ1, γ2, . . . , γn be the sequence of sets of credentials that has been obtained
so far (as the total order consistent with the partial order presented in δ(C)).
We define the following formula

I =
n∨

i=1

∧
j

(xij) (3)

where xij is the proposition representing the presence or absence of the jth
credential in the set γi. We then query the model checker to verify whether
the modified CTL property EF(g = 1) ∨ I holds true in all states of KC .
The property is satisfied by a state s in KC if and only if (a) s can reach
some state (including itself) where g = 1 or (b) s corresponds to nodes
γ1, γ2, . . . , γn in δ(C). If the property is not satisfied by s, then s cannot
reach a state where g is set to true and s does not correspond to nodes
γ1, γ2, . . . , γn.

3. If the model checker returns false, then it identifies (as a counterexample) a
state corresponding to a set of credentials γn+1, which is at least as preferred
as one of the previously identified sets of credentials γ1, γ2, . . . , γn. In this
case, we iterate Step 2 using the new sequence γ1, γ2, . . . , γn+1. Otherwise,
the property is satisfied by all states in KC , meaning there exists no set of
credentials that is at least as preferred as one of the elements in γ1, γ2, . . . , γn.
If this occurs, we remove from the Kripke structure KC all states correspond-
ing to the credential sets γ1, γ2, . . . , γn (obtained by iterating Step 2 so far)
by adding ¬I (see Equation 3) to the Kripke structure as an invariant (the
model checker only considers the states where the invariant holds). Thus,
the reduced model corresponds to the induced preference graph where the
nodes corresponding to γ1, γ2, . . . , γn are not considered. We then iterate
starting from Step 1 until the invariant results in a model where no states
are considered by the model checker.

Note that in Step 2, the states in the model corresponding to γ1 . . . γn are not
considered as counterexamples by the model checker, as I is added as a disjunc-
tion to the property EF(g = 1). This enables us to obtain the top-most nodes
one by one in sequence without altering the model. However, when all the top-
most nodes are obtained, we remove the states corresponding to γ1 . . . γn from
the model in Step 3 (by adding the ¬I as an invariant to the current model).
This modification of the model makes it possible for us to obtain the next set
of top-most nodes in the subsequent iteration. We explain the above steps using
the example δ(C) presented in Figure 1.

Iteration 1: The Kripke structure KC encoding of δ(C) is first model-checked
with the property EF(g = 1) following Step 1 above. The result (counterexample)
obtained is the top-most element γ11 = ∅. In Step 2, model checking is performed
again with the property EF(g = 1) ∨ I, where I = (¬a∧¬b∧¬c∧¬d) corresponds
to the absence of any credentials (γ11 = ∅). The property is satisfied because all

218 Z.J. Oster et al.

states except the one corresponding to γ11 = ∅ can reach a state where g = 1
(true). As per Step 3, we remove from KC the states corresponding to the node
γ11 = ∅ by adding ¬I = (a∨b∨c∨d) as an invariant to KC . As a result, we have
forced the model checker to consider only the states where the invariant holds
(the invariant does not hold at states corresponding to γ11). This can be viewed
as an updated KC , which encodes a δ(C) where the nodes ((a), (b), (d)) are at
the top (as Figure 1, but with the ∅ node and its incoming edges removed).
Iteration 2: Step 1 is performed again with the updated model, and the model
checker returns as a counterexample one of the states that corresponds to ei-
ther (a), (b), or (d). Note that such a state is identified non-deterministically by
the model checking algorithm. Suppose that the state corresponding to (a) is ob-
tained as a counterexample. So far, we have γ11 = ∅ (from the previous iteration)
followed by γ21 = (a) in our total ordering of sets of credentials. Proceeding to
Step 2, we have a new I = (a ∧ ¬b ∧ ¬c ∧ ¬d). When model checking is per-
formed again, one of the states corresponding to either (b) or (d) is obtained as
a counterexample. Suppose that a state corresponding to γ22 = (b) is returned.

We proceed to perform Step 2 again with I = (a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (¬a ∧
b ∧ ¬c ∧ ¬d). The model checker returns a counterexample state corresponding
to the node γ23 = (d). Proceeding further, Step 2 is again performed using
I = (a∧¬b∧¬c∧¬d) ∨ (¬a∧b∧¬c∧¬d) ∨ (¬a∧¬b∧¬c∧d). At this point, the
model checker fails to find any counterexamples for the property EF(g = 1) ∨ I.
In Step 3, we remove all the states corresponding to the nodes (a), (b), and (d) by
adding to KC the invariant ¬I = (¬a∨b∨c∨d) ∧ (a∨¬b∨c∨d) ∧ (a∨b∨c∨¬d)
to the model (in conjunction with the invariant (a∨ b∨c∨d) used to remove the
node ∅ in iteration 1), and we start a new iteration from Step 1. So far, we have
obtained an ordering of sets of credentials γ11 = ∅, γ21 = (a), γ22 = (b), γ23 = (d).

The iterative process (starting from Step 1) is illustrated in Table 1. The
iteration is continued until including an invariant in KC results in an empty
model (i.e., a model with no states). The number of such iterations is equal to
the height of the partial order in δ(C). In the example (Figure 1), it is equal to
9. Each such iteration obtains a sequence of sets of credentials that are equally
preferred (or indistinguishable as per the given preferences). For instance, in
iteration 3, we obtain the equally preferred sets (ab) and (ad). Such elements are
obtained by iterating Step 2 multiple times. The maximum number of iterations
starting at Step 2 is equal to the width of the partial order in δ(C). In the
example (Figure 1), it is equal to 3.

The main advantage of using this method is that a total ordering of sets of
credentials is obtained without performing all possible pairwise comparisons. In-
stead, systematic updates to the model corresponding to the induced preference
graph and repeated model checking using a CTL property are used to automat-
ically and effectively find the total order over the sets of credentials.

Finding Preferred Sets of Credentials with Sensitivity Thresholds. We
have presented a technique for using sensitivity preferences to generate a se-
quence or ordering of sets of credentials such that less (or equally) sensitive sets
of credentials are obtained prior to more sensitive sets of credentials based on

Model Checking of Qualitative Sensitivity Preferences 219

Table 1. Steps in finding the ordering of sets of credentials for example in Section 2

Iteration Query Result Action

1. Iteration 1 EF(g = 1) [] I = (āb̄c̄d̄)

2. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

3. Iteration 2 EF(g = 1) [a] I = (ab̄c̄d̄)

4. EF(g = 1) ∨ I [b] I = (ab̄c̄d̄) ∨ (ābc̄d̄)

5. EF(g = 1) ∨ I [d] I = (ab̄c̄d̄) ∨ (ābc̄d̄) ∨ (āb̄c̄d)

6. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

7. Iteration 3 EF(g = 1) [ab] I = (abc̄d̄)

8. EF(g = 1) ∨ I [ad] I = (abc̄d̄) ∨ (ab̄c̄d)

9. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

10. Iteration 4 EF(g = 1) [c] I = (āb̄cd̄)

11. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

12. Iteration 5 EF(g = 1) [ac] I = (ab̄cd̄)

13. EF(g = 1) ∨ I [bc] I = (ab̄cd̄) ∨ (ābcd̄)

14. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

15. Iteration 6 EF(g = 1) [abc] I = (abcd̄)

16. EF(g = 1) ∨ I [bd] I = (abcd̄) ∨ (ābc̄d)

17. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

18. Iteration 7 EF(g = 1) [abd] I = (abc̄d)

19. EF(g = 1) ∨ I [cd] I = (abc̄d) ∨ (āb̄cd)

20. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

21. Iteration 8 EF(g = 1) [acd] I = (ab̄cd)

22. EF(g = 1) ∨ I [bcd] I = (ab̄cd) ∨ (ābcd)

23. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

24. Iteration 9 EF(g = 1) [abcd] I = (abcd)

25. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

26. EF(g = 1) − No more states to explore. Terminate.

the preferences of the client. As we have shown, such an ordering can be used to
select a server from many that provide similar services. However, this ordering
by itself does not allow clients to prevent highly sensitive sets of credentials from
being disclosed. In many settings, clients may want to add additional constraints
to prevent such unacceptable disclosures. One way to express these constraints
is to specify, in addition to the preferences, one or more “threshold” sets of cre-
dentials which indicate the maximum sensitivity of information that the client
would like to disclose. In other words, the client will consider disclosing sets of
credentials in order of their sensitivity, as long as they are not more sensitive
than the threshold(s). Our model-based technique can seamlessly incorporate
such thresholds by extending the property to EF(g = true)∨EX EF(

∨
i ti), where

tis denote the credential sets describing the thresholds.

220 Z.J. Oster et al.

5 Implementation and Experiments

5.1 Overview of Framework

We have implemented our approach to finding the most preferred set of creden-
tials with respect to the client’s sensitivity preferences in a Java-based framework.
Our framework consists of two primary modules:

1. A pre-processor module that uses two sub-modules to produce input to the
model checker, namely:
(a) Parser: Reads CI-net statements specified in a text input file.
(b) Translator: Automatically translates CI-net statements to generate the

SMV input model.
2. A reasoning driver module that coordinates preference reasoning. Its two

sub-modules invoke the Cadence SMV model checker [8] to do different tasks:
(a) Consistency Checker: Checks the consistency of CI-nets, returning true

if and only if the CI-net is consistent.
(b) Rank Order Generator: Takes the model generated by the pre-processor,

generates appropriate temporal properties, and invokes the Cadence SMV
model checker [8]. After the first run of the model checker, it reads the
output of the model checker, appropriately updates the property or re-
fines the model (by including invariants), and repeatedly invokes the
model checker until all ordered results are obtained.

5.2 Experimental Setup

For our experiments, we generated random CI-nets with between 5 and 20 vari-
ables (denoting the disclosure of credentials) and either 5 or 10 CI-net statements.
We tested the consistency of each sample CI-net generated according to these
combinations of variables and statements; consistency is necessary to ensure that
the induced preference graph does not contain any loops. We collected 20 consis-
tent samples for each combination of variables and statements being considered,
then applied the algorithm described in Section 4 to find the top 25 (next-)most
preferred sets of credentials for each randomly generated sample. Our experi-
ments were performed and results were recorded on a Dell Latitude E5420 with
an Intel Core i5-2410M 2.30 GHz dual-core CPU and 4 GB of RAM, running a
64-bit Windows 7 operating system.

To examine the practical feasibility of our approach, we collected time and
memory usage data from the Cadence SMV model checker for each sample
tested in the experiment. We observed that consistency checking was much more
resource-intensive than identifying next-most-preferred credential sets, especially
with 16 or more variables; however, with 15 or fewer variables, consistency check-
ing generally used less than one second and 7 MB of memory (for 5 statements)
or a few seconds and 15 MB of memory (for 10 statements). To identify each
next-most-preferred set of credentials given up to 18 variables and 5 statements
(or up to 16 variables and 10 statements), the model checker generally used less

Model Checking of Qualitative Sensitivity Preferences 221

than 300 ms of time and less than 7 MB of memory; however, resource usage can
increase significantly once these bounds are passed. The amounts of resources
required to identify the next-most-preferred set in each case remain relatively
stable regardless of whether the overall most-preferred credential set or the 25th-
most-preferred set is being obtained. These results show that our approach is
feasible for use in practical applications.

Data from our experiments and a prototype version of our tool are available
at http://fmg.cs.iastate.edu/project-pages/credentials.html.

6 Related Work

In the past, cost-based approaches [4] for minimizing credential disclosure have
been proposed. These approaches assign higher cost to more sensitive credentials
of the client; the objective is to minimize the cost associated with disclosing a
set of credentials while satisfying the server’s requirements. Similarly, the point-
based approach in [14] assigns points to each credential based on the trustworthi-
ness of the client, and the client values its credentials with a private score. The
approaches in [4] and [14] use quantitative valuations to model preferences; in
our view, qualitative valuations are better for representing the naturally qualita-
tive preferences in this setting. Kärger et al. developed an expressive logic-based
preference formalism [7] for specifying qualitative privacy preferences over the
user’s credentials, which can be used to minimize the sensitivity of the disclosed
credentials. In contrast to all of these approaches, which require the client to
have a priori knowledge of the server’s access control policy, our method is able
to minimize disclosure of the client’s credentials even when all or part of the
access control policy is unavailable to the client.

A similar problem arises in online trust negotiation [12,13,15], where a client
iteratively negotiates with a server in order to determine the least sensitive set of
credentials that is acceptable to the server. Our approach can be applied within
such automatic trust negotiation frameworks, even when negotiating with servers
that have partially or fully protected access control policies.

Our earlier work in [11] introduced a new technique for using model checking
to compute dominance between two outcomes when preferences are expressed in
CP-nets. This paper builds on the ideas in [11] to solve two different problems
using model checking: in addition to computing dominance when preferences
are expressed in CI-nets, we also compute the sequence of next-most-preferred
outcomes. Our work in [9] addresses a related problem in the domain of goal-
oriented requirements engineering, while this paper focuses on the details of
the modeling strategy and the method of computing next-most-preferred sets in
order to minimize the sensitivity of credentials disclosed by a client to the server.

7 Summary and Discussion

In this paper, we introduced a new approach based on the CI-net [2] formal-
ism for representing and reasoning with a client’s sensitivity preferences over

http://fmg.cs.iastate.edu/project-pages/credentials.html

222 Z.J. Oster et al.

credentials. We have developed a model checking-based technique for finding
a sequence of successively next-preferred (more sensitive) credential disclosure
sets with respect to CI-net preferences specified by the client. Our approach
involves encoding the semantics of a CI-net as a model in the input language
of the Cadence SMV model checker, then querying the model checker with tem-
poral logic formulas to check the consistency of the CI-net preferences and to
obtain the top-k ranked sets of credentials such that less sensitive credentials
are returned before more sensitive ones. We have presented an implementation
and performed experiments that show the practical feasibility of our approach
for computing consistency and finding the top 25 sets of credentials when given
CI-nets of varying sizes.

Our approach can be used in client-server negotiation settings such as choosing
the most preferred server to provide a service (such that least-sensitive creden-
tials are disclosed), as well as in online trust negotiation where clients incremen-
tally disclose sensitive credentials while negotiating with servers that have par-
tially or fully protected access control policies. We are now seeking “real-world”
industrial applications where we can compare the performance of our approach
against existing solutions to these problems. Our future plans also involve de-
veloping techniques that take into account server preferences for obtaining some
client credentials over others along with the client’s sensitivity preferences.

References

1. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Neven, G., Paraboschi,
S., Preiss, F.-S., Samarati, P., Verdicchio, M.: Fine-Grained Disclosure of Access
Policies. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476,
pp. 16–30. Springer, Heidelberg (2010)

2. Bouveret, S., Endriss, U., Lang, J.: Conditional importance networks: A graphical
language for representing ordinal, monotonic preferences over sets of goods. In:
Boutilier, C. (ed.) IJCAI, pp. 67–72 (2009)

3. Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference
and importance. J. Artif. Intell. Res. (JAIR) 25, 389–424 (2006)

4. Chen, W., Clarke, L., Kurose, J., Towsley, D.: Optimizing cost-sensitive trust-
negotiation protocols. In: INFOCOM, pp. 1431–1442 (2005)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (January 2000)
6. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational com-

plexity of dominance and consistency in CP-nets. JAIR 33, 403–432 (2008)
7. Kärger, P., Olmedilla, D., Balke, W.-T.: Exploiting Preferences for Minimal Cre-

dential Disclosure in Policy-Driven Trust Negotiations. In: Jonker, W., Petković,
M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 99–118. Springer, Heidelberg (2008)

8. McMillan, K.L.: Cadence SMV (software). Release 10-11-02p1 (2002),
http://www.kenmcmil.com/smv.html

9. Oster, Z.J., Santhanam, G.R., Basu, S.: Automating analysis of qualitative prefer-
ences in goal-oriented requirements engineering. In: Alexander, P., Pasareanu, C.S.,
Hosking, J.G. (eds.) ASE, pp. 448–451. IEEE (2011)

10. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

http://www.kenmcmil.com/smv.html

Model Checking of Qualitative Sensitivity Preferences 223

11. Santhanam, G.R., Basu, S., Honavar, V.: Dominance testing via model checking.
In: AAAI, pp. 357–362. AAAI Press (2010)

12. Winsborough,W., Seamons,K., Jones,V.: Automated trust negotiation. In:Proceed-
ings DARPA Information Survivability Conference and Exposition, DISCEX 2000,
vol. 1, pp. 88–102. IEEE (2000)

13. Winsborough, W.H., Li, N.: Safety in automated trust negotiation. In: IEEE Sym-
posium on Security and Privacy, pp. 147–160. IEEE Computer Society (2004)

14. Yao, D., Frikken, K.B., Atallah, M.J., Tamassia, R.: Private information: To reveal
or not to reveal. ACM Trans. Inf. Syst. Secur. 12, 6:1–6:27 (2008)

15. Yu, T., Winslett, M., Seamons, K.E.: Interoperable strategies in automated trust
negotiation. In: Reiter, M.K., Samarati, P. (eds.) ACM Conference on Computer
and Communications Security, pp. 146–155. ACM (2001)

IBOS: A Correct-By-Construction

Modular Browser�

Ralf Sasse1, Samuel T. King2, José Meseguer2, and Shuo Tang2

1 Institute of Information Security, ETH Zurich, Switzerland
ralf.sasse@inf.ethz.ch

2 University of Illinois at Urbana-Champaign, USA
{kingst,meseguer,stang6}@illinois.edu

Abstract. Current web browsers are complex, have enormous trusted
computing bases, and provide attackers with easy access to computer
systems. This makes web browser security a difficult issue that increases
in importance as more and more applications move to the web. Our ap-
proach for this challenge is to design and build a correct-by-construction
web browser, called IBOS, that consists of multiple concurrent compo-
nents, with a small required trusted computing base. We give a formal
specification of the design of this secure-by-construction web browser in
rewriting logic. We use formal verification of that specification to prove
the desired security properties of the IBOS design, including the address
bar correctness and the same-origin policy.

Keywords: Browser security, same-origin policy, rewriting logic.

1 Introduction

The modern web browser has become a popular target for attackers of com-
puter systems [20,11,13,12,16] – two key factors contribute to this trend. First,
browsers are complex software artifacts that are riddled with security vulnera-
bilities. For example, Internet Explorer, Chrome, Safari, Opera, and Firefox had
over 500 new security vulnerabilities combined in 2010 [16]. Second, browsers are
the primary way users access the wide array of current web-based applications.
Web-based applications are collections of web pages that people use in concert
to carry out common computing tasks. As users continue to use browsers for
more fundamental computing needs, the browser itself contains more valuable
data, such as banking credentials, login information, and credit card numbers,
presenting an enticing target for attackers of computer systems.

Current research efforts into more secure web browsers help to deal with
the complexity of browsers themselves by decomposing them into smaller com-
ponents. The OP web browser [7], Gazelle [19], Chrome [2], and ChromeOS [6]
propose new browser architectures for separating the functionality of the browser

� This work was done while the first author was at the University of Illinois.

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 224–241, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

IBOS: A Correct-By-Construction Modular Browser 225

from security mechanisms and policies. This privilege separated architecture en-
ables a small program, called a browser kernel, to enforce browser security poli-
cies without relying on the correct operation of the millions of lines of code used
to implement the browser. In addition to these alternative browser architectures,
the IBOS system [17] extends these modularity principles to the operating sys-
tem to remove almost all traditional operating system (OS) components and
services from the browser’s trusted computing base (TCB).

In this work we first present the design of IBOS, which is highly modular, with
the browser kernel being separated from all other processes. Our presentation
includes a discussion of the browser’s security goals, in particular the ability
to enforce security policies, like the same-origin policy (SOP), and a trusted
user interface, to prevent address bar manipulation. The browser is also resilient
against having some of its components subverted, due to its modular structure
and central trust in the kernel only.

We give a formal specification of IBOS in rewriting logic [10], showing its
modular structure and its communication paths. The formal specification is ex-
ecutable in the Maude tool [5], which is a high-performance implementation of
rewriting logic. The IBOS security properties mentioned above are then model
checked in Maude for suitable bounds. Furthermore, we prove that the bounded
model-checking results thus obtained do actually extend to the unbounded case,
i.e., the full operation of the browser. In this way we prove that the browser
design implements SOP correctly and that its address bar cannot be spoofed,
i.e., it will always show the URL for the content on screen. Our analysis did
find an easy to correct bug related to how the display memory is handled, which
makes browser tabs inoperable, as their content does not update anymore.

Organization. The rest of this paper is organized as follows. Section 2 will
show some preliminaries on rewriting logic and the Maude tool. In Section 3 we
explain the IBOS system including its design and security properties. Section 4
presents a high-level picture of the formal specification of IBOS. In Section 5 we
show the formal verification of the security goals of IBOS. Finally, in Section 6
we discuss related work and present some conclusions.

2 Preliminaries

In this paper, we follow the classical notation and terminology from [18] for
term rewriting, and from [10] for rewriting logic. Rewriting logic specifications
are rewrite theories, R = (Σ,E∪Ax,R), with (Σ,E∪Ax) an equational theory.
Σ is the set of typed function symbols, sorts, and subsorts, while the equations E
together with the axioms Ax specify the set of states of R as an algebraic data
type. This equational theory represents the deterministic part of the system,
while the rules R represent the concurrent aspects and work on top of that
data type. The rewrite theory R provides both a mathematical model and an
executable semantics by term rewriting.

The Maude tool [5] is a high-performance implementation of rewriting logic.
It allows equational specification in functional modules, corresponding to equa-
tional theories (Σ,E ∪ Ax), and full rewrite theories R = (Σ,E ∪ Ax,R) can

226 R. Sasse et al.

be specified as system modules. In functional modules other modules can be in-
cluded, sorts and subsorts can be declared and operator symbols can be defined,
possibly with equational attributes (called axioms) like associativity, commuta-
tivity and/or identity. Sorts, subsorts, conditional equations and memberships
define the computations that are possible. Reasonable executability requirements
are needed to make a module admissible (see [5, Sections 4.6 and 6.3]), including
termination (modulo axioms), ground confluence and sort-decreasingness. Then,
Maude can execute the module by equational simplification modulo the axioms,
where the equations in E are used as rules from left to right and Maude’s built-
in matching modulo the axioms Ax leads for each term t to its canonical form
with a least sort. For functional modules this yields the algebra of canonical
forms CanΣ/E∪Ax which is isomorphic to the initial algebra semantics given by
TΣ/E∪Ax (see [5, Sections 4.6-4.8]). Equational simplification modulo axioms is
executed by the reduce command in Maude. Maude also has built-in support
for the modeling of objects, in the CONFIGURATION module, which we use here.

In order to be admissible, a system module has to, in addition to its equational
component being admissible, satisfy the ground coherence requirement of its
rules R with respect to equations in E and also needs to ensure that all variables
in rules can be instantiated by (incremental) matching. Such a module can be
executed in Maude by rewriting with the rules and oriented equations modulo
axiomsAx. This yields an initial reachability model TR whose states are elements
of CanΣ/E∪Ax and whose transitions are rewrites. Rewrites in a system module
are performed in Maude by the rewrite command, which is position fair and
rule fair. Breadth-first search is also available using the search command. A
linear temporal logic (LTL) model checker is built-in for verification of safety
and liveness properties.

3 Illinois Browser Operating System

We present the formal verification of the design and implementation of an
experimental operating system called the Illinois Browser Operating System
(IBOS) [17]. IBOS is an operating system and a browser co-designed to drasti-
cally reduce the trusted computing base (TCB) for a web browser and to simplify
the browsing system. We first give a brief introduction about the background of
the state-of-the-art of web browser security, then describe the architecture and
design principles of IBOS to show why its component-based design is suitable
for formal verification, and finally explain its key security properties related to
the browser components that we are going to verify.

3.1 Web Browser Security Background

The web is now the dominant platform for delivering interactive application to
hundreds of millions of users. Web browsers have become the de facto operating
system for hosting these web-based applications (web apps). On the one hand,
the current web introduces a rich set of features enabling a variety of web apps,

IBOS: A Correct-By-Construction Modular Browser 227

such as banking, shopping, social networking, etc. On the other hand, these
features inevitably increase the complexity of web apps and browsers. Due to
the complexity and outdated design of traditional browsers, attackers are able to
carry out web-based attacks against web apps, browsers, and operating systems.

As explained in the introduction, the use of a browser kernel is highly advised.
But, even when retrofitting a small such kernel to a browser, it still has to rely on
the underlying operating system. In contrast, IBOS takes the modular design one
step further to extend the principle to the operating system itself, introducing
a small browser and operating system kernel that is the sole TCB of the whole
system. The TCB makes it feasible to formally verify some of the key properties
of web browsers, such as the same-origin policy.

The primary security policy that all modern browsers implement is the same-
origin policy (SOP). The same-origin policy acts as a non-interference policy
to ensure that web apps from different origins are isolated from each other. An
origin is often defined as the <protocol, domain, port> tuple of the URL of a
web app. Under the same-origin policy, a malicious web app from attacker.com

should not be able to alter content and access sensitive information from bank.com.
Unfortunately, due to their design, Chrome, Internet Explorer, Safari, and Fire-
fox have to enforce the policy by using a number of checkers spread around the
whole code base that consists of millions lines of code. Evidence shows that all
of them have had trouble implementing the policy correctly [4].

3.2 IBOS Architecture

IBOS proposes a highly modularized architecture of operating system and web
browser by embracing principles from microkernel design. By exposing browser
abstractions at the operating system kernel level, IBOS is able to remove all tra-
ditional OS and browser components and services from the TCB of the systems.

Figure 1 shows the architecture of IBOS. The IBOS architecture uses a thin
kernel for managing hardware and facilitating message passing between pro-
cesses. The system includes all traditional OS and browser components such as
device drivers (e.g., networking interface card (NIC) driver), browser engines
used for rendering web apps, and storage subsystem for storing cookies.

Some of the key goals of IBOS are the following, see [17] for all the goals and
more detail:

– Security decisions happen at the lowest possible level: small TCB.
– Enough browser states and events exposed, so as to allow for security policy

checking; this makes IBOS flexible to allow new browser security policies.

A key property of the IBOS browser is that all communication, i.e., all messages
sent or received, get transmitted through the IBOS kernel. This is because the
message passing is implemented as system calls, which of course go the the
microkernel operating system, which is tightly integrated with the IBOS kernel.
The components of the IBOS architecture which we want to highlight are the
following three:

228 R. Sasse et al.

Traditional
App Web App Web App Web App

Unix Layer

Browser abstractions

UI Storage
Network

Device Drivers

IBOS Kernel

Hardware

Network Network Process

Browser abstractions

Fig. 1. IBOS Architecture

– The IBOS Kernel. The IBOS kernel builds upon the L4Ka microkernel
and is the central component of the IBOS web browser. It takes care of
traditional OS tasks, e.g., process creation and application memory man-
agement. Message passing is based on the L4Ka::Pistachio message passing
implementation, forcing all messages through the kernel, and specifically al-
lows the checking of the security policies. Some of these policies are shown
in Section 3.3

– Network Process. The network process is responsible for HTTP requests.
It transforms HTTP data into a TCP stream and in turn into a series of
Ethernet frames which are passed to the NIC driver.

– Web Apps. A new web app is created for each individual page visit of the
user; specifically, whenever a link is clicked or a new URL is entered into the
address bar. A web app sends out the HTTP request to the network process,
parses HTML and runs JavaScript and renders web content to a tab. Each
web app is labeled with the origin of the HTTP request used at creation.

3.3 Security Goals

The modularized design and the small size of the TCB of IBOS enable the use
of formal methods to verify the design’s correctness. IBOS’ use of small, simple,
and exposed APIs allows us to model the system and reason about it. Using
formal methods, we are able to check if the IBOS design preserves its security
goals during an attack.

In IBOS, the goal is to minimize the TCB for web browsers and to simplify
browser-based systems. To quantitatively evaluate its effort, the authors count
the LOC in the IBOS TCB to be approximately 42K lines of code, which includes
both the L4Ka kernel and integrated browser kernel. While the L4Ka kernel itself
should also be formally verified to provide the security guarantee, we argue that
it is a replaceable part in the TCB and there is already a verified kernel (seL4 [9])

IBOS: A Correct-By-Construction Modular Browser 229

in the L4 family that exposes a similar API that IBOS can use. As a result, in
this paper we focus on proving the security properties based on the browser
kernel design and implementation, and assume correct microkernel behavior.

Overall, we are going to verify the same-origin policy design in IBOS by
verifying that the following invariants are upheld:

1. The kernel must route network requests from web page instances to the
proper network process.

2. The kernel must route Ethernet frames from the network interface card
(NIC) to the proper network process.

3. Ethernet frames from network processes to the NIC must have an IP address
and TCP port that matches the origin of the network process.

4. HTTP data from network processes to web page instances must be from
acceptable origins.

5. Network processes for different web page instances must remain isolated.
6. Isolation of the browser chrome (UI elements) and web page content displays.
7. Only the current tab can access the screen, mouse, and keyboard.
8. All components can only perform their designated functions.
9. The URL of the current tab is displayed to the user.

The same-origin policy is given by properties (1)–(7). Property (8) is another
good property for IBOS, while property (9) aids in verifying property (7). An-
other important IBOS property we will verify is address bar correctness, that is,
the address displayed in the address bar is always correct and cannot be spoofed.

3.4 Comparing the IBOS Approach to Commercial Browsers

IBOS enforces strong security guarantees by implementing a small kernel and
exposing browser-related abstractions at the kernel level. By doing so, IBOS
is able to ensure all critical browser-related messages pass through the kernel,
which enforces security policies. Although commercial browsers, such as Chrome
and ChromeOS [6], also use a browser kernel to validate messages, this browser
kernel still runs on commodity operating systems and can only be as secure as
the underlying OS and system services. In contrast, IBOS has only a small kernel
in its trusted computing base, which is what makes our modeling and verification
effort feasible.

For performance, one concern is that the exclusive use of message passing in
IBOS would cause a slowdown compared to traditional commercial browsers,
such as Internet Explorer and Firefox. However, the authors show that the page
loading speed of an unoptimized IBOS prototype is roughly equivalent to Chrome
and Firefox for 6 popular web sites. Moreover, Chrome also uses message passing
for most of the communication between its components, showing that using
message passing in a browser implementation can be practical.

Although browser-based operating systems do limit the apps one can run on
their system, we anticipate a system like IBOS being used in the same way users
use ChromeOS where all user interface components are implemented using a
browser.

230 R. Sasse et al.

4 Formal Specification of IBOS

Maude specifications were used systematically in the design of IBOS before its
code was developed. Furthermore, we developed a more detailed formal specifi-
cation of IBOS by doing a detailed study of the IBOS C++ source code to reflect
all important details. This detailed specification was then subjected to thorough
review by a joint team of modelers and developers to ensure that it faithfully
reflected the implementation, and, in one case, to detect an implementation flaw.
In this way, the formal specification has been further refined during this phase.
Thus, we made sure that the original design intentions, the source code, and the
formal specification matched correctly.

For the full formal model with detailed explanations see the PhD thesis [15].
In this section we point out key properties and give a general flavor of the model.
At the top level, our state space is made up of objects with an object identifier,
a type, and a set of attributes. Each network process, web app, and the kernel
is modeled as a single object. Each of these components runs in parallel and is
independent, except for communication. We show the form of the distributed
state of the model in Figure 2. In that figure all objects outside the kernel are
shown as rectangles. Note that pipes are a special kind of object that connects
the objects at its left and right end. Other than that, arrows show connectivity.
The ellipses inside the kernel contain relevant pieces of the kernel, that are not
objects themselves, i.e., they are not independent components. There will of
course be multiple instances of objects for most classes, except for the NIC,
display and web app manager.

Let us start by looking at the kernel in more detail, particularly at the message
passing mechanism. First, we present more information on the messages. All
messages are passed as system calls of the underlying micro kernel operating
system, where the browser-specific part of the message is encapsulated in the
system call. The message part specific to the browser has the following format,
which we call the payload of the encapsulating system call:

op payload : Oid Oid MsgType String -> Payload [ctor] .

The arguments of payload are the sender (as Oid), the receiver (as Oid), the
message type (as MsgType), and an argument commonly containing the URL
that is requested or sent (as String). We have simplified a little here and left
out some extra arguments that are in the model, but which are not relevant for
the present purposes. The sort Oid is that of object or process identifiers. Each
web app, network process, etc., has a unique Oid. Note that the correct sender
Oid is enforced by the kernel, as it knows which process sent the system call
encapsulating this payload.

The actual message is then built using the payload and system call type:

op msg : SyscallType Payload -> Message [ctor] .

op OPOS-SYSCALL-FD-SEND-MESSAGE : -> SyscallType .

where OPOS-SYSCALL-FD-SEND-MESSAGE is the most commonly used type of sys-
tem call for sending browser messages.

IBOS: A Correct-By-Construction Modular Browser 231

Fig. 2. IBOS Model State

To model the fact that the kernel knows which process actually sent a message
(as a system call) and to make sure that in the model no two processes can
send messages directly to each other, but are forced to send messages via the
kernel, the model defines one pipe object per process (using the same Oid as the
associated process), which contains two one-way pipes, going to the kernel from
the process and going to the process from the kernel:

op pipe : -> Cid [ctor] .

op fromKernel : MessageList -> Attribute [ctor] .

op toKernel : MessageList -> Attribute [ctor] .

Let us show an example pipe object for the process with 1050 as Oid with
two buffers which currently holds no message (mt) going either way:

< 1050 : pipe | fromKernel(mt), toKernel(mt) >

Suppose this process wants to send, for example, the message:

msg(OPOS-SYSCALL-FD-SEND-MESSAGE, payload(1050, 256,

MSG-FETCH-URL, l(http,dom("test"),port(81))))

232 R. Sasse et al.

This message comes from web app 1050 and goes to network process 256, send-
ing the message to fetch a URL (MSG-FETCH-URL) from the (fictional) domain
http://test:81. This message would then be appended to the list of messages
held in toKernel in the pipe object. The kernel enforces correct sender Oid

based on the pipe’s id by simply changing the given sender Oid, if necessary.
As part of the policy checking when a network process and a web app com-

municate, their connection is checked. This means that both of them need to be
linked to the same origin. This is modeled by the equation:

eq < kernel-id : kernel |

handledCurrently(checkConnection(Num:Nat, Num’:Nat, M)) ,

weblabels(pi(Num’:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) , Att >

= < kernel-id : kernel |

handledCurrently(M) ,

weblabels(pi(Num’:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) , Att > .

The property being checked here is that the receiving web app with id Num’:Nat

is associated to a URL L:Label in the kernel storage for web app connections
weblabels, and that the sending network process with id Num:Nat is associ-
ated with the same URL L:Label in the network process connection storage
networklabels. Then the message is simply being passed on, by dropping the
checkConnection wrapper around the message M. The kernel is only handling
one thing at a time, which is stored in handledCurrently. Once the current
instruction has been dealt with, any of the currently incoming messages can
become the next message to be executed. This is modeled by the rule:

rl [kernelReceivesOPMessage] :

< kernel-id : kernel |

handledCurrently(mt) , msgPolicy(MP), Att >

< ID : pipe | toKernel(msg(ST:SyscallType,

payload(N, N’, M:MsgType, S:String)), ML) , Att2 >

=> < kernel-id : kernel |

handledCurrently(policyAllows(msg(ST:SyscallType,

payload(ID, N’, M:MsgType, S:String)), MP)) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(ML) , Att2 > .

Note that the kernel does not take the message to be dealt with directly, but
wraps the actual message inside the policyAllows operator, together with the
set of message policies MP as an extra argument, which is an attribute of the
kernel wrapped in msgPolicy. Also, in the message the sender id N, which was
given by the sender, is forcibly changed to the actual sender id ID, which is the
process id of the pipe (and thus the associated process).

IBOS: A Correct-By-Construction Modular Browser 233

For the network process we are using (as does IBOS) the process ids 256
through 1023. The attributes of a network process are:

op returnTo : ProcId -> Attribute [ctor] .

op in : LabelList -> Attribute [ctor] .

op out : LabelList -> Attribute [ctor] .

The returnTo attribute stores the process id of the web app that this network
process will return data to, while the attributes in and out hold the lists of
labels (representing URLs) that the network process will ask data from and has
received data from already. We simplify here by using a URL to represent its
data, instead of using its actual HTML code.

For web apps we are using the process ids 1024 through 1055 with attributes:

op rendered : Label -> Attribute [ctor] .

op URL : Label -> Attribute [ctor] .

op loading : Nat -> Attribute [ctor] .

The label inside rendered is the URL for which the web app has put the data
on the screen, provided it is the active web app. The label inside URL is the
location where this web app wants to load data from. loading is just a binary
flag indicating whether the web app has already sent a request to load data.
Initially, the rendered field for a new web app will be empty, and loading is
0, meaning that it has not yet started to load. The following equation sends the
message to start loading:

eq < N : proc | rendered(L) , URL(L’) , loading(0) , Att >

< N : pipe | toKernel(ML) , Att2 >

= < N : proc | rendered(L) , URL(L’) , loading(1) , Att >

< N : pipe | toKernel(ML, msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N, network-id, MSG-FETCH-URL, L’))) , Att2 > .

The message is sent to fetch the data from URL L’ and the loading attribute
changes to 1. On return of the requested data, rendered will change to L’.

The hardware pieces of Figure 1, video card, NIC, etc., are not modeled in any
detail. Only the NIC is modeled, and it receives target URLs from the memory
set aside for this purpose through the kernel, and then, after a potential delay,
returns the representation of the resulting data.

This model uncovered an issue with the display memory, which turned out to
be a bug. It was found in the model and could then be fixed in both model and
implementation. The issue was that when switching web apps, the newly active
web app would sometimes not get access to the actual display memory, which
would then simply stay blank. The model let us figure out how and why this
happened. This is not a security concern, but actually a usability issue, as the
tab in question becomes useless, but cannot be abused for malicious purposes.

5 Formal Verification of IBOS Security

The verification of IBOS design security is based on the formal model explained
in the prior section. We simply assume that the underlying microkernel operating

234 R. Sasse et al.

system performs its functions correctly. Of course, in order to not have to rely
on this we could instead use seL4 [9], which has been verified.

An important property for a web browser is the trustworthiness of user in-
terface elements. This is crucial to counter spoofing attacks. Particularly, the
address bar needs to be trustworthy, so that the user always knows which site is
currently being visited. It is truly important to know whether the currently vis-
ited site is really his/her banking web site, where entering credentials is fine, or
if it is instead a phishing web site, where if the user enters his/her account infor-
mation monetary loss is imminent. We all know that it is possible, even simple,
for malicious attackers to create phishing web sites that are indistinguishable on
the surface from the real web sites. A careful user should be able to trust the
address bar, to prevent such phishing from succeeding. Also see [3,15] about the
address bar spoofing possibilities we found in an analysis of Internet Explorer.

Similarly important is the correct implementation of security policies in the
browser. The same-origin policy, presented in Section 3.3, is one such policy that
assures the user that his private information, say from a banking web site, will
not be leaked to another web site, with possibly malicious intentions.

As IBOS has been designed with security in mind, our goal in this section is not
just to find possible flaws that could be abused by attackers. Our goal actually
is to be able to prove that no such address bar spoofing attacks are possible,
as well as to verify the correct implementation of SOP. First, let us show the
operator which drives the search, simulating user input, inspect-space:

op inspect-space : -> Configuration .

eq inspect-space = < testMsg : testMsg | cmd(inspect) > .

where testMsg is a wrapping process, which allows this to be put at the top
level of our multi-set of processes, and cmd is a wrapper allowing this to follow
the usual way of storing information in process attributes. The key here is the
inspect command. We will call the rules for inspect the trigger rules, and write
them as RT . All other rules belong to the internal rules of the model, written as
RI . We are working modulo the equations E. So we are actually rewriting with
→R(I∪T)/E

, which can be split into →RI/E
and →RT/E

. We will use the short-
hands →I and →I/E (resp. →T and →T/E) to represent →RI/E

(resp. →RT/E
).

op inspect : -> Cmd .

op inspect : Nat -> Cmd .

rl inspect => inspect(3) .

rl inspect(0) => mtCmdList .

rl inspect(s(N:Nat)) => new-url , inspect(N:Nat) .

rl inspect(s(N:Nat)) => switch-tab , inspect(N:Nat) .

This shows that inspect is unrolled step by step. The number 3 can of course
be changed, but that number is picked in particular so that two web apps can
be created and the tab can then be switched as well. At each step either a
switch-tab or new-urlwill be generated. This simulates user input. As inspect
is defined by rules, the search command will create all possible combinations.

IBOS: A Correct-By-Construction Modular Browser 235

We omit how new-url gets assigned a new URL and how switch-tab picks any
of the web apps to be the new active web app.

Internal Normalization Between Trigger Rules. We observe that there is
no interference between internal rules I and trigger rules T , i.e., we can re-order
them in any way we please. In particular, we like to normalize with the internal
rules after each execution of a trigger rule. That means, for execution using
both internal rules and trigger rules, →∗

(T∪I), we will rearrange that to →T→!
I

. . . →T→!
I . . . →T→∗

I , where →!
T denotes a terminating subsequence. The last

set of internal rules does not have to be carried all the way to normalization,
to take into account the fact that the combination of trigger and internal rules
might not normalize either. Let us state this formally as a lemma, noting that
by →i

T/E we mean the i-th use of a rule from T/E:

Lemma 1. Given terms s1 and s2, for any chain of rewrites of the form
s1 →∗

(T∪I)/E s2, with n uses of trigger rule, we can rearrange that sequence,

using the same rewrites, to s1 →1
T/E→!

I/E . . .→i
T/E→!

I/E . . .→n
T/E→∗

I/E s2.

This lemma is based on the minimal overlap of the trigger rules in T and the
internal rules in I. In particular, no trigger rule step is ever influenced by any
internal rule step, that is, trigger rule steps can either be taken, or not taken,
independently of anything happening with the internal rules. Conversely, a trig-
ger rule step may enable additional internal rule steps to be taken, but does not
disable internal rule steps that have been available already. The entire proof for
this is included in [15]. We can now consider the effect of each trigger rule on
the state by itself. We let the model do all internal computations until finished
before using another trigger rule step.

5.1 Address Bar Correctness Verification

Address bar correctness in the model means that the content of the displayed
page is always from the address which is displayed in the address bar. In our
model, the kernel keeps track of the address bar by means of the data stored
in the displayedTopBar. The source of the content being displayed is stored in
the display process abstraction, which has the displayedContent field to store
the information. The content of both these fields needs to be the same at all
times. Only when there currently is no content in one of the two field, which is
modeled by the about-blank URL, the other one can have any value.

To motivate the property of address bar correctness, note that the address
bar, and the content as stored in the display process, are both stateless objects.
They have no memory, but only know what is stored in them right now.

Both the address bar and the display content are only changed due to the
current web app interacting with the kernel when created or when the tab is
switched to it. To create a mis-match between the two, two different URLs are
all that is needed, which can be provided by just two web apps. This allows us to
make the reduction that only the last two web apps that are on the screen need

236 R. Sasse et al.

to be taken into account. The rest of the browser model state and the length of
the run of the browser model is irrelevant and thus can be abstracted away.

Assume we needed to consider a third web app, then that would only be the
case if that web app made a change to either of the two objects in question; but
then one of the other two does not make a change (or does a duplicate one),
so then that other web app becomes irrelevant and we are back to the case of
two web apps. If there was a way for more than two web apps to create such a
mis-match, then the deciding last step (we would stop at such a mis-matching
point) must be either a new web app being added or the tab being switched.
But then, that whole trace of actions and number of web apps can be simplified
to just the state before that last action, with only the old active web app and
the new active web app taken into account to create the exact same mis-match.
Now we can focus on the interaction of only two web apps, which requires search
up to depth three, due to the need of also allowing a tab switch.

We now present our theorem for the address bar correctness.

Theorem 1. The property of address bar correctness holds for any rewrite se-
quence, using any number of trigger rule steps.

For the detailed proof, see [15]. We will show that bounded model checking
analysis of all sequences with at most 3 trigger rules finds no possible violation.
So, the address bar is correct for all sequences with at most 3 trigger rules. A
reduction from longer sequences to sequences of at most length 3 then proves the
theorem. This means that the correctness extends to sequences with any number
of trigger rules being used. Let us start with that lemma, which is proved by a
detailed case analysis using Lemma 1, see [15].

Lemma 2 (Reduction). Any sequence of trigger rule steps that leads to a
violation of the address bar correctness and uses 4 or more trigger rule steps can
be reduced by a step. This yields that all possible trigger rule sequences leading
to a violation must be of length 3 or less.

Now that we have the reduction to 3 trigger rule steps, we can use bounded
model-checking to analyze this finite state space. We start the model-checking
search for potential attacks, in the form of a mismatch of these two fields, from
an initialized kernel, together with the driver inspect-space. We are look-
ing for any configuration in which there is a mismatch between the value of
displayedTopBar and displayedContent. If no solution to this search is found,
then there is no attack for this bounded case.

search init-simp-kernel

inspect-space =>* X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

displayedTopBar(URL:Label) >

< display-id : proc |

displayedContent(URL’:Label), Att2:AttributeSet >

such that URL:Label =/= URL’:Label

and URL:Label =/= about-blank

and URL’:Label =/= about-blank .

IBOS: A Correct-By-Construction Modular Browser 237

Indeed, when we run this search command we find no solutions as result:

No solution.

states: 247743 rewrites: 3663864 in 247886ms cpu

(248055ms real) (14780 rewrites/second)

Together with the reduction lemma, Lemma 2, this completes the proof.
Bounded model-checking is indeed required here, as the active web app can

change the content on screen after the address bar has been set. Of course, that
web app is associated to the URL in the address bar in the kernel, so the kernel
will not allow the web app to access any other origins and thus the address bar
correctness will hold.

5.2 Same-Origin Policy Verification

After the proof of the address bar correctness we now prove that IBOS imple-
ments the same-origin policy correctly, that is, that it satisfies properties (1)–(7)
in Section 3.3. We will now look more closely at those security requirements
which result in the browser implementing SOP.

To analyze the SOP property of our browser, we use the model of the internal
logic of the browser we have introduced; it includes the policies being enforced
by the kernel. We already noted that all messages go through the kernel and
thus are subject to being checked with respect to the policies. We then also
have to create canonical messages that different components can try to send to
each other. That is, we need a small set of messages that is generic, so that the
instances of these generic messages can cover all messages. Then the analysis
can in fact verify that none of those messages can reach disallowed destinations.
We again use a reduction to a limited number of required trigger steps and then
use model checking to show the property for this smaller state space.

See Section 3.3 for the whole list of SOP properties. Let us consider the first
property of SOP in more detail:

– (1) The kernel must route network requests from web page instances to the
proper network process.

Let us first motivate at a high level why this should be true before we state the
lemma and show the model-checking analysis afterwards. Simply said, each web
page instance and each network process have an associated URL which identify
them to the kernel, in addition to their actual process id. This URL is the URL
they are allowed to communicate with. Now, whenever a web page instance
tries to communicate with a network process, the kernel checks the process id
and associated URL for both. For this purpose, the kernel stores a mapping of
process id to URLs. If no appropriate network process exists, a new one will be
created by the kernel. In practice, the kernel (and its modeling) enforces that
only matching processes communicate. For checking property (1) we look at
each message that is received by any network process and compare the URLs of
sender and receiver using the kernel’s mapping. Note that sender and receiver
names cannot be forged as these are their process ids and enforced by the kernel
based on the underlying guarantees of the operating system.

238 R. Sasse et al.

Indeed, the execution for property (1) does not make use of a history of what
happened before, but only of the current assignment of each process to URL. We
can abstract away from a long sequence of network requests to simply one single
network request. As the state is generic and the correctness of the property only
depends on one network request, if we can show the absence of errors for this
one network request, we know that any arbitrary number of them still will not
exhibit any errors. Otherwise, we could take just that network request which
triggers the error and use it to get the error by itself, contradicting the fact that
we show that no single message creates an error.

Checking property (1) then boils down to checking executions (up to some
depth of input), from canonical starting points, to see whether there is a mis-
match between URLs in the resulting configuration for any message. If there is
no mis-match for all starting points, then all communications have been legal
and property (1) is actually proved. We can limit the depth of execution, i.e.,
the number of messages being considered, and still be complete. Each message is
generic and representative of a set of messages. The reason we can limit the depth
is that if the property would turn out to be possibly violated at an arbitrary
number of messages, then that final message triggering the failure will only
have one source process and one destination process. That violation can then be
boiled down to the triggering network request, and the setup for those involved
two processes, which would be a total depth of three actions.

Now we can state the theorem for SOP, whose detailed proof is given in [15]:

Theorem 2. The Same-Origin Policy holds for any rewrite sequence, using any
number of trigger rule steps.

The proof of this theorem consists of the proofs for all of the SOP properties (1)–
(7). To illustrate this we give the lemma for property (1).

Lemma 3. The property (1) holds for any rewrite sequence, using any number
of trigger rule steps.

The proof we give is based on the number of trigger rule steps needed to find a
violation. We have used bounded model-checking to show there is no violation
up to the bound. Assume there is a violation, then we pick one of the sequences
that lead to such a violation with the smallest number of trigger rule steps. That
number must be bigger than the bound. We then analyze that sequence and we
find at least one step that is not needed. By that we mean that after removing
this one trigger rule step the same violation is still reached, but now the sequence
is one trigger rule step shorter. This contradicts that we pick the sequence with
the smallest number of trigger rule steps and thus there is no violation for any
number of trigger rule steps. We can state this as a reduction lemma again:

Lemma 4 (Reduction). Any sequence of trigger rule steps that leads to a
violation of property (1) and uses 4 or more trigger rule steps can be reduced by a
step. Thus, all possible trigger rule sequences leading to a violation of property (1)
must be of length 3 or less.

IBOS: A Correct-By-Construction Modular Browser 239

The proof in [15, Chapter 4] explains this reduction by which we extend
the bounded model-checking proof for sequences with at most three triggers to
sequences with any number of triggers in detail.

The following search returns no solution, meaning that no illegal (according
to SOP) communication happened.

search init-simp-kernel inspect-space =>*

X:Configuration < N:Nat : pipe | toKernel(ML:MessageList) ,

fromKernel(msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N:Nat, MSG-FETCH-URL, L1:Label)),

ML’:MessageList) , Att:AttributeSet >

< kernel-id : kernel | Att2:AttributeSet ,

weblabels(pi(Num:Nat,L1’:Label), WAPIS:WebappProcInfoSet) ,

networklabels(pi(N:Nat, L2’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

displayedTopBar(URL:Label) >

such that L1:Label =/= L2:Label or L1’:Label =/= L2’:Label .

As the above bounded model-checking did not return any violations, no illegal
messages were passed. All network requests indeed end up going to the proper
network processes. This bounded model-checking analysis proves the base cases
of up to 3 trigger steps, while together with the reduction lemma, Lemma 4, this
yields the proof for all possible sequences.

The model contains about 20 rules and 60 equations and the bounded model-
checking takes between 10 and 20 minutes to check each property.

For all of the remaining properties (2)–(9) we give similar proofs in [15].
We omit their statement and explanation due to space reasons in this paper.
Altogether, this shows that the SOP is correctly implemented for the IBOS
formal specification, and thus for the IBOS design.

6 Related Work and Conclusions

Let us consider some previous work formally verifying the design or implemen-
tation of operating system kernel and browsers. In seL4 [9], the authors use
a self-developed framework to verify the correctness of a L4 type microkernel,
which provides the foundation of further proof of systems built on top it, such as
our work in this paper. Heiser et al. discuss some possibilities in system security
once one has a truly trustworthy kernel [8]. One of those possibilities is providing
even stronger security guarantees for a web browser, like we do in this paper.
On the browser side, the designers of the OP browser [7] use formal methods to
verify some security properties of their design, in particular, they are concerned
with whether or not the security indicators behave as expected. Formal methods
have also been used to check properties of the status bar and address bar in
Internet Explorer [3]. Akhawe et al. also propose an abstract formal model of
web security and use it to analyze the security of several web apps [1]. How-
ever, even though those approaches improve the security of the corresponding
systems, these systems still rely on a large TCB that could not be verified.

240 R. Sasse et al.

In our work we were able to obtain an executable specification of the IBOS de-
sign thanks to the substantially smaller TCB of the web browser. This was key
to prove security properties of the IBOS design.

In this paper we present a correct-by-construction browser with analysis of its
correctness at the design level. For this, we show how useful a formal specification
of such a modular piece of software is. It allowed us to first find bugs, to fix them,
and then to prove correctness of the address bar and the same-origin policy.

There are a few follow up projects that would be useful as future work. First,
now that a design that has been analyzed in detail exists, it would be highly
desirable to analyze the implementation using (semi-)automatic source code ver-
ification tools such as matching logic [14]. Another way of further increasing the
confidence in IBOS would be to actually use the proven secure microkernel seL4
or to develop a new proof of security for IBOS’ underlying microkernel. In the
other direction, it would also be interesting to consider generating source code
from the model directly, i.e., code synthesis.

Acknowledgments. This research was partially supported by NSF Grant CCF
09-05584 and AFOSR Grant FA8750-11-2-0084 as well as by grant N0014-09-1-
0743 from the Office of Naval Research, AFOSRMURI grant FA9550-09-01-0539,
NSF grant CNS 0831212, and by Intel through the ISTC for Secure Computing.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: Proceedings of the 2010, 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, pp. 290–304. IEEE Computer Society, Wash-
ington, DC (2010)

2. Barth, A., Jackson, C., Reis, C., The Google Chrome Team: The secu-
rity architecture of the chromium browser (2008), http://crypto.stanford.

edu/websec/chromium/chromium-security-architecture.pdf

3. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.-M.: A systematic ap-
proach to uncover security flaws in GUI logic. In: IEEE Symposium on Security
and Privacy, pp. 71–85. IEEE Computer Society (2007)

4. Chen, S., Ross, D., Wang, Y.-M.: An analysis of browser domain-isolation bugs and
a light-weight transparent defense mechanism. In: Ning, P., di Vimercati, S.D.C.,
Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security,
pp. 2–11. ACM (2007)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

6. Google Inc. Chromium OS (2010), http://www.chromium.org/chromium-os

7. Grier, C., Tang, S., King, S.T.: Secure web browsing with the OP web browser. In:
Proceedings of the 2008 IEEE Symposium on Security and Privacy, pp. 402–416
(May 2008)

8. Heiser, G., Ryzhyk, L., Von Tessin, M., Budzynowski, A.: What if you could ac-
tually trust your kernel? In: Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS 2013, pp. 27–27. USENIX Association, Berke-
ley (2011)

http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://www.chromium.org/chromium-os

IBOS: A Correct-By-Construction Modular Browser 241

9. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

10. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

11. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of
spyware on the web. In: Proceedings of the 2006 Network and Distributed System
Security Symposium (NDSS) (February 2006)

12. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: Proceedings of the 17th Usenix Security Symposium, pp. 1–15 (July 2008)

13. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser: Analysis of Web-based malware. In: Proceedings of the 2007 Work-
shop on Hot Topics in Understanding Botnets (HotBots) (April 2007)

14. Rosu, G., Stefanescu, A.: Matching logic: a new program verification approach. In:
Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 868–871. ACM (2011)

15. Sasse, R.: Security Models in Rewriting Logic for Cryptographic Protocols and
Browsers. PhD thesis, University of Illinois at Urbana-Champaign (July 2012),
http://hdl.handle.net/2142/34373

16. Symantec. Symantec internet security threat report (2011),
http://www.symantec.com/business/threatreport

17. Tang, S., Mai, H., King, S.T.: Trust and protection in the illinois browser operat-
ing system. In: Arpaci-Dusseau, R.H., Chen, B. (eds.) OSDI, pp. 17–32. USENIX
Association (2010)

18. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press (2003)
19. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The

multi-principal OS construction of the Gazelle web browser. In: Proceedings of the
2009 USENIX Security Symposium (August 2009)

20. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.:
Automated Web Patrol with Strider HoneyMonkeys: Finding Web sites that ex-
ploit browser vulnerabilities. In: Proceedings of the 2006 Network and Distributed
System Security Symposium (NDSS) (February 2006)

http://hdl.handle.net/2142/34373
http://www.symantec.com/business/threatreport

Guided Search for Deadlocks

in Actor-Based Models

Steinar Hugi Sigurdarson, Marjan Sirjani,
Yngvi Björnsson, and Arni Hermann Reynisson

School of Computer Science, Reykjavik University

Abstract. Model checking is used to uncover errors by searching the
state space of a model. Informed search algorithms use heuristic strate-
gies with problem-specific knowledge to find solutions efficiently. Gener-
ally, such heuristics estimate the distance from a given state to a goal
state. In this paper, we present seven heuristics for guiding search algo-
rithms through the state-space of actor-based models to a deadlock. In
many cases, our methods can find a deadlock more efficiently than unin-
formed searches. The A* search algorithm guarantees an optimal solution
and returns the shortest counter-example when used with an admissible
heuristic. These methods are supported by a tool that performs directed
search for the deadlock property. The objective is to detect errors that
might not be found by simulation or by conventional model checkers
before reaching an upper bound or state-space explosion.

1 Introduction

Building reliable software systems is a complicated and important challenge of
modern engineering. Software systems nowadays are mostly reactive, concurrent,
and distributed. Even small such systems can exhibit complex behavior where
standard testing techniques often fall short of finding potential problems. Model
checking, through a systematic verification of the entire state-space, may help to
discover hard to find flaws in such systems. However, model checking comes with
its own set of problems. Even relatively simple reactive systems may have huge
state-spaces, many orders of magnitude larger than the memory of conventional
computers can store. Such state-space explosion can be somewhat alleviated with
techniques such as symmetry and partial order reduction [4], but the exponential
growth still remains.

Directed model checking is one of the key techniques developed to address
the state-space explosion problem [7,12,18,9]. Heuristics are used to expand the
state-space in a selective fashion, where states more likely to violate a required
property are expanded early. Although this does not save time to verify the
entire system, it may find bugs earlier. In practice, such use of model checking
is just as useful as proving a property [32].

The actor model is among the pioneering ones to address concurrent and
distributed applications [13], and is getting more and more popular in practice

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 242–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Guided Search for Deadlocks in Actor-Based Models 243

[20,15,16]; for example, Erlang [10] and Scala [28] are two widely used program-
ming languages that have applied the actor model of concurrency. The pure
asynchronous actors can be used as encapsulated components for modeling event-
driven systems and service-oriented software. Actors send messages (events) to
each other which are put in the message buffers of the receiver actor. Each actor
takes a message (event) from the buffer and executes the corresponding method
or service. Although we can see the increasing use of actors in applications rang-
ing from networks to multi-core programming, little has been done on analyzing
actor- based models [29,27]. Because of the asynchronous nature of communica-
tion in actor models and the message queues, the state space explosion is more
likely to happen rapidly, making directed model checking a good candidate for
finding flaws in such systems.

In this paper we present a directed model-checking approach for actor-based
models. We use the actor-based language Rebeca [30] and extend Modere [19],
the model checking tool of Rebeca, to use directed model checking. The resulting
model checker, Guided-Modere, provides a flexible framework with interchange-
able search algorithms and heuristics. We experiment with two commonly used
informed search algorithms, A* and pure heuristic search, and introduce several
heuristics for guiding them. The objective is to find a possible deadlock state,
before exhausting the computer’s memory. Moreover, we aim to find the shortest,
or a relatively short, counter-example reproducing the error found.

In a closed actor model (where there is no input to the system and the environ-
ment is modeled as an actor), a deadlock happens only when the message queues
of all actors are empty, i.e., there is no event left to handle. This feature of actors
is the basis of our proposed heuristics for guiding the search: to look for a state
where the message queues are empty. The ideas behind our proposed heuristics
are based on getting closer to such state: we look for a state where there are less
messages in the queues of all the actors, or a state with more actors with empty
queues, or a state which is in a path that shows a trend of decreasing messages, or
a state where the last executed actor has a smaller queue. Our experiments show
that Guided-Modere on average outperforms its unmodified counter part.

Contribution. To summarize our contribution, in this work we

– proposed seven heuristics suitable for a guided search to find possible dead-
locks in an actor-based model,

– implemented different search strategies and the heuristics in Guided-Modere,
as an extension of the Rebeca model checking tool,

– performed experiments over a set of case studies to show the effectiveness of
the heuristics and some of their combinations under various conditions.

Structure of the Paper. In Section 2 we give an overview of the relevant back-
ground, including model checking, state space reduction techniques, the actor
model, and heuristic search algorithms. In Section 3 we introduce the proposed
heuristics, and the experimental results are introduced in Section 4. Section 5
covers related work. We give a summary of the work and our general results
in the discussion and conclusion section, Section 6. Future work is presented in
Section 7.

244 S.H. Sigurdarson et al.

2 Background

When you run a model checker on a model to check a specific property, the
result may be that the property is valid, the property is invalid together with
a counter-example, or the model checker may exhaust available computing re-
sources (memory or time). If the property is validated it means that the model
checker has been able to explore the entire state-space and has concluded that
the model satisfies the given property. On the other hand, if the outcome was
invalid, the model checker has reached a state in which the provided property is
violated. Ideally, the model checker will return some form of a counter-example
showing a set of reproducible actions which will result in the violation of the
property. In the case when execution is terminated prematurely because of the
memory or allotted time being exhausted, no information about the validity of
the model can be derived.

2.1 Model Checking and State-Space Explosion

Traditional model checking tools exhaustively search the state space using either
depth first (DFS) or breadth first (BFS) algorithms. Modere, a model checking
tool for Rebeca [19], can exhaustively check for deadlocks and LTL properties
against Rebeca models. It is implemented with a variation of DFS called Nested
DFS and fitted with optimizations such as partial order reduction, to counter
against state explosion.

The state-space for a model can grow exponentially. A major disadvantage of
model checking is how poorly it scales. Symbolic model checking [2], partial order
reduction and symmetry [25], and model abstraction [3] are among techniques
that have been used to tackle state space explosion. Also, directed model check-
ing is a bug-hunting technique where selection from the enumerated successor
states is prioritized in order to find short counter examples quickly. Model check-
ing algorithms exploit the specification of properties to lead the search towards
their falsification. This approach is driven by the success of directed state space
exploration in the field of artificial intelligence and is among the key technologies
to overcome the state- space explosion problem in model checking [9].

Here, we focus on directed search for the deadlock property in actor-based
models.

2.2 Actor Model

In the actor model actors are treated as the universal primitives of concurrency.
Instead of threads, the actor model uses objects as units of distribution and
concurrency which provides a simple and natural concurrency model. Actors
are self-contained and communicate through fair asynchronous message pass-
ing. Actors can be created dynamically and the topology of the system changes
dynamically [14,1,30].

In a response to a message an actor can send a finite number of messages to
actors it knows, create a finite number of new actors and designate the behavior

Guided Search for Deadlocks in Actor-Based Models 245

for the next message it will process. More importantly, all of the actors in the
system can perform these actions concurrently and no assumptions are made
regarding the order in which they occur.

Rebeca [30,29] is an actor-based language and is designed for the verification
of distributed concurrent systems. A Rebeca model consists of a finite number of
rebecs (actors) which communicate via asynchronous message passing. Reactive
systems are typically not expected to halt, hence the terminal states represent a
design error and are not desired. Actor systems continue their execution as long
as there are messages to handle. If we have a closed actor model, with no input
from outside, a deadlock happens when all the message queues are empty.

2.3 Search Algorithms and Heuristics

In practice, finding a bug with a model checker can be more useful than proving a
property [32]. Informed search algorithms use heuristic strategies with problem-
specific knowledge to find solutions more efficiently than uninformed algorithms.
Generally, such heuristics estimate the distance from a given state to a goal state.

We consider two of the most commonly used informed search algorithms, pure
heuristic search and A* search, which belong to a family of best- first search
algorithms. They use an evaluation function, denoted by f(n) where n is a node
in the search tree, to prioritize the fringe, i.e. to decide which node to expand
next.

This evaluation function considers the estimated cost to reach a goal state
from the current state, denoted as h(n), and the cost to reach the current state
from the initial state, denoted as g(n). The function h(n) is refered to as the
heuristic function and g(n) as the path cost function. For a goal state, h(n) = 0
and g(n) is the length from the initial state the the goal state.

For pure heuristic search only the heuristic function is used to decide which ac-
tion to choose, thus f(n) = h(n). The A* algorithm uses the path-cost function
g(n) as well, thus f(n) = g(n) + h(n) [24]. A* search is optimal for admissi-
ble heuristics, described below, and is guaranteed to return a shortest counter
example if a goal state exists and is found before reaching state-explosion.

Experience has shown that for some problems A* search spends a great
amount of time exploring paths with insignificant difference in cost. The re-
quirement of optimality causes the algorithm to spend time choosing between
candidates with roughly the same cost. We may wish to relax the requirement
of optimality in exchange for a quicker solution. We do that by using a weighted
variant of the A* algorithm, Weighted-A* search [24]. It adds weight factor
w to the evaluation function, f(n) = (1 − w) g(n) + w h(n). By varying w
the desired mixture between relying on the heuristic and finding the shortest
counter-example can be achieved. Higher value of w will put more responsibility
on the heuristic and reduce the chance of an optimal solution and vice versa.
The factors 0, 1

2 and 1 would correspond to uniform cost, A* search and pure
heuristic search, respectively. In this study, Weighted-A* search is used to relax
the requirement of optimality. Thus, our experiments will use w ∈ [12 , 1].

246 S.H. Sigurdarson et al.

The efficiency of informed search is largely based on the quality of the heuris-
tic function used. A heuristic strategy is admissible (or optimistic) if it never
overestimates the distance from a given state to the nearest goal state. This is
important if we want to guarantee that the first solution found is optimal, i.e.
that no shorter solution exists. Model checkers using DFS search tend to return
longer paths which makes it more difficult for the user to identify the error.
In practice, a relatively short path will usually suffice. However, non-admissible
heuristics can be useful and are widely used [6]. Consistent, or monotone, heuris-
tics are monotonically non-decreasing along the shortest path to a goal state.
The estimated distance from a state n to a goal state will never exceed the esti-
mated distance of its successor state q to the goal state and the cost of traversing
between n and q. Formally, heuristic function h(n) is consistent if and only if for
every node n and every successor q of n,

h(n) ≤ c(n, q) + h(q),

where c(n, q) is the cost of traversing from n to q. A consistent heuristic function
is always admissible, but an admissible strategy can be inconsistent [24].

When searching with inconsistent but admissible heuristics we must be careful
when discarding previously expanded states if we wish to guarantee optimality.
A node on the closed list (the list of already expanded states), may have a greater
estimated total distance to a goal state than a new state, in which case we must
re-open it. In theory, exponential increase in the number of expanded nodes may
occur, however, in practice it rarely happens [9].

3 Deadlock Detection Heuristics for Actor Models

A Rebeca model is expressed semantically as a labeled transition systemM =
〈S,A, T, s0〉 where S is the set of global states, A is the set of actions, T is the set
of transitions and s0 is the set of initial states. A state in Rebeca is defined as the
combination of the local states of all rebecs in the system, s = Πj∈Irj , where I is
the set of rebecs. The local state of a rebec rj is identified by the values assigned
to its state variables, vj , and the contents of its message queue, mj , including
information about the sender, destination message server and parameters. We
say that rebec rj is enabled when the number of messages in its queue, |mj |, is
greater than zero.

In general, a deadlock is a situation where two or more actions are waiting
for each other to finish. The actor model is event-driven and Rebeca only allows
asynchronous message passing. Thus, the system cannot deadlock as long as
there are events driving it. A rebec will never wait for a process to finish, access
to a shared resource, or a reply from another rebec. The system will run into a
deadlock state if and only if there are no enabled rebecs, that is,

∑
j∈I |mj | = 0,

assuming the model has no terminal states. All of our heuristics exploit this
fact and share the intention of driving the search towards states which are more
likely to result in a deadlock. In the tool-supported subset of Rebeca dynamic
creation and deletion of rebecs are not allowed.

Guided Search for Deadlocks in Actor-Based Models 247

We define and implement seven heuristics, presented in the following sections.
All of the heuristics are admissible. In the literature, admissible heuristics are
often assumed consistent, implying that consistency is desirable. Only two of
the heuristics are consistent: Queue Size and Empty Queue. Although generally
considered worse for A* search, recent studies have shown that inconsistency can
be beneficial. Inconsistent heuristics are able to escape regions of poor heuristic
values before incurring significant cost [33]. However, due to reopening of states
and the relatively low heuristic values returned by our inconsistent heuristics
they are not expected to perform well with A* search and are intended for pure
heuristic search only.

The state of the system at node n is referred to as nstate and the single parent
state of n as nparent. We refer to the number of rebecs in nstate as |nstate|. The
cost of an action is fixed to 1.

3.1 Queue Size (QS)

Expand the state where the sum of the number of messages in the message queues
of all rebecs is the smallest. The number of messages on queue in a state is the
lower bound for number of actions required to reach a deadlock state. That is, if
no new messages will be sent, the number of actions required to drive a system
to a deadlock state from a given state s is equal to the number of unprocessed
messages in s. The Queue Size heuristic uses the total number of unprocessed
messages in the system as the estimated distance to a goal state, preferring states
with few messages to states with many. The Queue Size heuristic is formally
defined in Equation 1.

h(n) =
∑

j∈nstate

|mj |. (1)

Between every node n and its successor node q exactly one message has been
removed from the message queue of an enabled rebec (in n), and zero or more
messages have been sent (added to rebecs in q). The cost of an action is c(n, q) =
1, and therefore h(n) ≤ c(n, q)+h(q) holds for every n in the search tree. A goal
state n will have no messages, h(n) = 0. Given the above we know that h(n)
is consistent and, therefore, also admissible and will return an optimal solution
when used with A* search.

3.2 Empty Queue (EQ)

Expand the state which has the most disabled rebecs. The Empty Queue heuristic
assigns better heuristic values to states based on the number of disabled rebecs,
where a state with all rebecs disabled will receive the best heuristic value and a
state with no disabled rebecs will receive the worst value. This drives the search
towards paths closer to a deadlock state and possibly with smaller branching
factors, depending on the number of non-deterministic choices made by the en-
abled rebecs. The idea of this heuristic is similar to the deadlock heuristic of

248 S.H. Sigurdarson et al.

PROVAT[22] and Hap in HSF- SPIN[7]. This strategy is formally defined in
Equation 2.

h(n) = |nstate| −
∑

j∈nstate

0 if |mj | > 0,
1 otherwise.

(2)

Initial states will receive heuristic values equal to the number of rebecs in the
system, since all of them are enabled. For every node n and every successor q of
n, we know n can have at most one more enabled rebec than q. That is, at most
one more rebec has become disabled. Thus, this heuristic is consistent and will
not require reopening of states when guiding an A* search.

3.3 Current Queue (CQ)

Expand the state where the current rebec has the smallest message queue. We
refer to the last executed rebec as the current rebec of a state. The Current
Queue heuristic aims to ”drain” rebecs by favoring nodes whose current rebec
has the smallest message queue. The intention is to make the execution less fair,
focusing on rebecs becoming disabled and thus potentially reduce the branching
factor along the path. The branching factor of a node n is affected by the number
of enabled rebecs and number of non-deterministic choices made in nstate. The
heuristic is defined in Equation 3.

h(n) =
∑

j∈nstate

|mj | if j = current,
0 otherwise.

(3)

In Equation 3, current is the message queue of the most recently executed rebec
in state nstate. A search path using this heuristic function should empty out
rebecs with the smallest queues before proceeding to those with more messages
which might reactivate the rebec again. Once a rebec has become disabled the
node will receive a heuristic value equal to the second smallest queue at best.
Between such nodes the condition for consistent heuristics is broken. It never
overestimates the distance to the nearest goal and is therefore admissible.

3.4 Reductive Queue (RQ)

Expand the state where the number of messages is decreasing or not increasing.
Essentially, message servers that do not send any messages can cause deadlocks
in Rebeca models. The Reductive Queue heuristic utilizes this fact by comparing
the total number of messages of a state and its parent. States are categorized
as follows: 1. Number of messages has been reduced. 2. Number of messages has
not changed. 3. Number of messages has increased.

States in each category receive the best, neutral and worst heuristic value,
respectively. The initial states do not have a valid parent and are all assigned a
value equal to the number of rebecs in the system.

Guided Search for Deadlocks in Actor-Based Models 249

p =
∑

k∈nparent

|mk|

q =
∑

j∈nstate

|mj |

h(n) =

⎧⎨
⎩

best if q < p
neutral if q = p
worst otherwise

(4)

We choose the values for best, neutral and worst in Equation 4 as 0,) 12
∑ |mj |*

and
∑ |mj |, respectively. The heuristic is not consistent as the difference between

resulting heuristic values of two consecutive states can be greater than the added
cost (which is 1) if the two states have different heuristic values. Since the size
of the message queue is the upper limit it will never return a value greater than
the path cost to the nearest goal. Therefore, we know that the Reductive Queue
heuristic is admissible.

3.5 Reductive Queue with Memory (RM)

Expand the state where the number of messages is decreasing or not increasing. Use
the history of rebecs to break ties. TheReductive Queue heuristic strategy will only
identify and favor a state immediately after performing reducing number of mes-
sages. This variant of the heuristic keeps track of how often a rebec has decreased
or increased number of messages in the past. When no decrease or increase has
taken place, the state will receive the neutral heuristic value, as before, but with
a discount based on how likely executions of this rebec are to reduce number of
messages. This requires only two additional integers for each rebec in the system
and has insignificant impact on memory usage and execution time.

A state receiving maximum discount would get the heuristic value 1
2neutral

which, in this case, is equal to best. However, that can only happen if a state
has a reduced number of messages on every execution and the discount would
not apply. Should a rebec have a reduced number of messages on every other
execution, the value of a non-decreasing state would be 3

4neutral. To maintain
admissibility no penalty is given to rebecs which are likely to have increased size
of the message queue. This heuristic is defined formally in Equation 5. Again
we choose the values for best, neutral and worst as 0,) 12

∑ |mj |* and
∑ |mj |,

respectively.

p =
∑

k∈nparent

|mk|,

q =
∑

j∈nstate

|mj |,

h(n) =

⎧⎨
⎩

best if q < p,
1
2neutral +

1
2 (1− reductionsr

executionsr
)neutral if q = p,

worst otherwise.

(5)

250 S.H. Sigurdarson et al.

The discount is meant to serve as a tie-breaker between two non-reducing and
non-increasing states. For the same reason as Reductive Queue, this heuristic is
not consistent.

3.6 Queue Difference (QD)

Expand the state where the fewest messages were sent. This heuristic strategy is
identical to the Reductive Queue strategy except for the returned values. Instead
of returning best, neutral and worst it relies on the number of messages created
by the last action. This strategy will assign worse values for each additional
message that is sent while the Reductive Queue heuristic assigns the same value
to all states sending more than 1 message. The heuristic is defined formally in
Equation 6.

h(n) = 1 +
∑

j∈nstates

|mj | −
∑

k∈nparent

|mk|. (6)

This strategy will violate the requirement for consistency when
∑

j∈nstate
|mj | >

1 +
∑

k∈nparent
|mk|. This will happen every time a message server sends more

than one message. Thus, this heuristic is not consistent. As the path cost from
a state to a goal state will never be less than the number of messages created
the strategy is admissible. The number of messages sent is usually far smaller
than the total number of messages left to be processed. Because of how small
the heuristic values are, compared to the path cost, A* search behaves similar to
breadth-first search with this heuristic and will expand more nodes than better
informed search algorithms. This behavior could be overcome by upscaling, but
doing so would sacrifice the admissibility. Thus, the heuristic strategy is not
expected to return satisfying results with A* search but has good potentials
with pure heuristic search and, perhaps, weighted A* search with a sufficiently
small weight factor.

Initial states receive a value of 1, as if no difference took place. Should we
count each initialization as a sent message, returning a heuristic value equal to
the number of rebecs, chances are that only one rebec would ever be expanded
at level 1 since the successor states would almost certainly have lower values.

3.7 Queue Difference with Memory (QM)

Expand the state where the fewest messages were sent. Use the history of rebecs
to break ties. The Queue Difference strategy suffers from the same problem as
Reductive Queue when it comes to states which have not affected the total num-
ber of messages. We define a heuristic which is similar to Reductive Queue with
Memory except that it keeps track of the difference in the number of messages
instead of only incrementation and reduction. A rebec sending as many messages
as it consumes will have a memory value of 0 while a rebec only consuming mes-
sages but sending none would have a memory value of 1. The heuristic is defined
formally in Equation 7.

Guided Search for Deadlocks in Actor-Based Models 251

p =
∑

k∈nparent

|mk|

q =
∑

j∈nstate

|mj |

h(n) =

{
1 + q − p− (1 − reductionsr

executionsr
) if q = p

1 + q − p otherwise
(7)

When the difference in messages is 0, a state will receive a discount based on
the the history of the rebec, called memory value. The maximum discount has
the same effect on the heuristic value as half a message. However, that can only
happen when a rebec has a negative difference, i.e. −1, on every execution and,
therefore, the discount would not apply. Thus, the discount range is equal to 0
to 0.5 messages.

As before, the discount is only used as a tie-breaker for equal states. The aim is
to favor rebecs which have a history of decreasing the total number of messages
when the model checker has two or more otherwise equally-valued states. To
maintain admissibility, no penalty is given to rebecs having, on average a positive
difference, and, of course, no discount either. For the same reasons as the Queue
Difference heuristic, this one is not consistent.

As with the non-memory version, due to the extreme underestimating of the
heuristic, it is not expected to perform well with A* search but has good potential
with pure heuristic search.

4 Guided-Modere and Experimental Results

Guided-Modere is an extension of Modere, the standard model checker for Re-
beca, and was developed over the course of this research. The goal was to create
a flexible framework to study the efficiency of heuristic search for Rebeca mod-
els with respect to execution time, length of counter-examples, and number of
expanded nodes which affect both memory usage and execution time.

The implementation includes several variations of our heuristics, pure heuris-
tic search algorithm, two A* search algorithms and three blind search algorithms.

4.1 Test Models

We ran our experiments on various problems and protocols from the literature.
Each of them was modeled in Rebeca and verified for deadlock freedom before
adding errors occurring at different places in the state-spaces. Many commonly
experienced modeling errors will be discovered at certain depth in the search
tree, no matter which path in the search tree is chosen. For such errors DFS
is always equally good and faster than guided search. More interesting in the
context of this study are errors which occur only in rare situations, preferably
in models with a relatively large state-space. These errors might be missed by
simulation or conventional model checkers before reaching an upper bound or

252 S.H. Sigurdarson et al.

state-space explosion. The test models presented have a reasonably large state-
spaces with deadlock errors occurring at different depths in their search tree,
depending on the path chosen.

Self-Stabilizing Token Ring. We experimented with two different variations
of a Dijkstra’s self-stabilizing token ring [5]. Such a ring has a unique prede-
fined leader. By defining two distinct nodes as leaders, we have introduced
a deadlock error. Eventually the leaders will have distinct values and the
nodes between them share the value with the leader that is its closest ances-
tor. Both leaders will wait (forever) for receiving a value equal to their own
before increasing the value and passing on the token. The second variation
is a token ring with an incorrectly configured node which breaks the ring.
Within a finite number of steps the model is guaranteed to deadlock. The
two token rings have 6 and 5 nodes, respectively.

Dining Philosophers. The Dining Philosophers is another problem, originally
presented by Dijkstra as five computers competing for access to five shared
drives, but presented as five philosophers by Hoare in [17]. We experimented
with the problem both without taking any measure to prevent deadlocks and
by allowing the philosophers to forget the dinner. If all philosophers forget
the dinner, the system is in a deadlock state.

Needham-Schroeder Public-Key Protocol. TheNeedham-SchroederPublic-
Key Protocol is a well-known communication protocol providing mutual au-
thentication of two clients communicating over an insecure network using a
trusted server for key exchange [23]. Clients generate nonces, single-use keys
to prevent replay attacks, on two separate occasions. First, when a client ini-
tiates communication and second when a client responds to a communication
initiated by another client. By using the same memory slot to store the nonce,
regardless of which case it was created in, an error is introduced thatmay occur
when both clients initiate communication at the same time and the messages
are processed in a specific order. In these cases, both clients have an incorrect
nonce for each other the system will deadlock.

4.2 Results

Table 1 shows the result for different heuristics and algorithms. For each search
the number of expanded nodes, length of the counter-example found and average
execution time is shown. The experiments were executed on Dual Core Intel(R)
Xeon(TM) CPU 3.20GHz processors and 2GB RAM computers. Execution time
results are averaged over 20 executions. Modere’s default bound for maximum
depth is 10,000; Guided-Modere has no such limit.

We first contrast the performance of the different heuristics. For the pure-
heuristic search algorithm all heuristics return for the most part relatively short
counter examples, often optimal or close to optimal. Of those the Queue Size
(QS) and Empty Queue (EQ) heuristics find the counter-examples on average the
fastest. These two heuristics also performed the best for the A*-based algorithms,
where QS is on average slightly better for both A* and Weighted A* (w = 0.8).

Guided Search for Deadlocks in Actor-Based Models 253

Table 1. Results for pure heuristic, A*, Weighted-A*, breadth-first, and Modere’s
Nested Depth-First search, with and without partial order reduction (PO). For each
row bold numbers mark the best result.

Pure Heuristic A* WA* BFS Modere
QS EQ CQ RQ RM QD QM QS EQ QS EQ BFS MPO M

Token ring w/two leaders (TR2L)
Nodes 29 31 5882 31 29 131 131 262,355 834,609 86 1588 4,147,805 26,205 244,673
Length 17 18 23 15 17 17 17 13 13 17 20 13 13 13
Time (ms) 30 29 1062 28 32 55 56 58,043 164,134 41 254 359,106 795 19,215
Token ring w/broken relation (TRBR)
Nodes 31 14 315 191 31 54 54 15,595 113,340 63 372 236,769 35 35
Length 14 11 14 18 14 11 11 11 11 14 11 11 15 15
Time (ms) 25 21 57 34 26 29 29 2263 9191 28 45 12,906 26 26
Dining Philosophers (DP)
Nodes 230 863 1205 213 609 748 540 198,596 232,372 1724 5156 388,234 31 31
Length 31 76 31 31 76 31 31 31 31 31 31 31 31 31
Time (ms) 56 122 147 64 120 127 110 25,522 29,622 224 545 38,091 49 49
Forgetful Philosophers (FP)
Nodes 16 16 2119 86 30 873 1777 94,074 105,076 2305 6436 911,149 3,057,183 -
Length 16 16 16 16 16 16 16 16 16 17 16 16 21 -
Time (ms) 36 36 302 60 44 211 379 26,973 30,446 362 890 169,271 338,532 -
Needham-Schroeder (NS)
Nodes 973 108 238 974 973 335 120 788 784 830 850 1203 1576 1691
Length 18 18 18 18 18 18 18 18 18 18 18 18 450 450
Time (ms) 81 35 40 87 94 51 38 74 74 76 76 82 269 278

TR2L TRBR DP FP NS
0

2

4

6

Test Models

lo
g(

se
co

nd
s)

PH-EQ A*-QS WA*-QS M-PO

Fig. 1. Average execution times for pure heuristic search with empty queue heuristic
(PH-EQ), A* with queue size heuristic (A*-QS), Weighted-A* with queue size heuristic
(WA*-QS) and Modere with partial-order reduction (M-PO), for the five case studies
shown in Table 1

254 S.H. Sigurdarson et al.

TR2L TRBR DP FP NS
0

20

40

60

80

450

Test Models

A
ct
io
ns

PH-EQ A*-QS WA*-QS M-PO

Fig. 2. Length of counter examples returned for pure heuristic search with empty queue
heuristic (PH-EQ), A* with queue size heuristic (A*-QS), Weighted-A* with queue size
heuristic (WA*-QS) and Modere with partial-order reduction (M-PO), for the five case
studies shown in Table 1

When contrasting the performance of the different algorithms we see that
Guided Modere using either pure-heuristic search or Weighted A* perform on
average the best. Both give an attractive tradeoff between execution time and
counter-example length, that is, they consistently find close to optimal counter-
examples in a relatively short time, unlike standard Modere. This is better de-
picted in Figures 1 and 2 for the most relevant algorithms (each algorithm is
represented by its best variant 1). We can furthermore see that the optimality
guarantee of A* comes at the price of a somewhat longer running time. Nonethe-
less, the A* version of Guided Modere is performing on average at a comparable
execution time levels as Modere, even though the latter is equipped with the
partial-order reduction improvement (without that enhancement Modere per-
forms much worse and is even unable to solve one of the problems, as shown in
the last column of Table 1).

In terms of node expansions per second there is a significant difference between
models and search algorithms due the to different overhead in maintaining the

1 The breadth-first search algorithm, included in the table for a base-line comparison,
is omitted from the figures, but it requires up to an order of magnitude longer to
find optimal paths than its A*-based counterparts.

Guided Search for Deadlocks in Actor-Based Models 255

priority lists used by the guided searches and the cost of evaluating the heuristics.
Overall, standard Modere performs similarly or better than Guided-Modere for
satisfied, deadlock-free, models.

5 Related Work

Some form of directed model checking has been presented from the beginning
of model checking. Approver, first implemented in 1977, is assumed to be the
first automated verification tool for communication protocols and used directed
search for verification of safety properties [9]. In addition to classical communica-
tion protocols it was also capable of verifying other concurrency systems such as
mutual exclusion algorithms. It used techniques dedicated to bug-finding instead
of traditional depth-first or breadth-first search.

The PROVAT strategy presented in [22] has several heuristics, all of which
depend only on the send and receive operations. They cover the selection of states
from the open list, selecting between actions available from a specific state and
deciding whether to discard particular states. The heuristic proposed for finding
deadlocks is similar to our Empty Queue heuristic. When selecting a transition
the deadlock heuristic always selects a transition performing a receive operation,
choosing the one with the fewest messages. This corresponds to the behavior of
our Current Queue heuristic, but in a different context.

In 1998, Yang and Dill published a paper on validation with guided search.
They presented a strategy called Target Enlargement which was very effective for
some models [32]. The idea was to make the target states bigger by computing
their pre-image, the states that in one cycle can reach an error state, until the
computer’s memory limitation was reached. If the heuristics found problems,
they usually did so in fewer states than breadth-first and depth-first search. They
also show that their approach is more likely to find an error before state-space
explosion occurs. In addition to Target Enlargement, they propose a heuristic
using hamming distance as search metric. Their third technique, called Tracks,
is similar to Target Enlargement except it uses approximate pre-images of error
states based on subsets of the state variables, focusing on the main state variables
which control the behavior of the system. The fourth technique, Guideposts,
relies on hints provided by the designer. The number of guideposts a path passes
through is used as guidance for the search.

Edelkamp, Leue, and Lluch-Lafuente coined the term directed model checking
in their paper on HSF-SPIN [7]. Based on SPIN and its Promela modeling lan-
guage, HSF-SPIN used A*, best-first search (referred to as pure heuristic search
in this paper) and an improved NFDS algorithm to verify safety and a large class
of LTL-specified liveness properties. They present a formula-based heuristics for
different classes of properties. One of them, called Hap, is used for finding dead-
locks and is virtually identical to our Empty Queue heuristic. Other heuristics
aim at violation of liveness and safety properties, and allow designer-devised
heuristics where the protocol designer can alter the definition of heuristics and
explicitly define which states are dangerous. Without designer intervention, all

256 S.H. Sigurdarson et al.

reads, sends and conditions are considered dangerous. The paper includes test
results for variety of protocols.

Groce and Visser presented heuristic-guided model checking of Java programs
in [12] using Java PathFinder. They presented seven different heuristics, in
short, based on the number of executions of branches and byte-code instructions,
branch coverage, number of blocked threads, amount of interleaving, thread pref-
erence and non-determinism avoidance (choose-free). Additionally, they allow
developers to define their own heuristic functions or declare certain states ”bor-
ing” or ”interesting” by adding statements to the model in question.

In [18] predicate abstraction is used to generate heuristics for the verification of
networks of extended timed automata in Uppaal. They built the entire abstract
state-space before starting the search. During the search, states are mapped to
their counterpart in the abstracted state-space and the error distance of the
counterpart used as a heuristic estimate.

Our research was limited to A* and pure heuristic search, but other informed
search algorithms have been applied to model checking as well. IDA* search
(Iterative-Deepening A*) [21] has been successfully used in model checking [8]
and has been demonstrated to perform well in general with inconsistent heuris-
tics [33]. K-beam search and the non-pruning alternative k-best search [11] have
been successfully applied to model checkers [12,31]. MA* (Memory-bounded A*)
and SMA* (Simplified-MA*) are designed to overcome the impractical memory
requirements of A*. Simply put, once the search runs out of memory it expands
the best node on the open list and prunes off the worst node [26]. All of these
algorithms would be worthwhile experimenting with in Guided-Modere as a fu-
ture work. The Weighted A* search could potentially be improved by dynamic
weighting. Rather than keeping the weight constant throughout the search the
heuristics could have the most weight initially, reducing it as the search gets
deeper into the search tree [24]. This approach provides an upper bound for the
length of solution with respect to the optimal solution. Thus, the requirement
for optimality could be relaxed up to a specific point, with regard to an optimal
solution. In other words, the number of actions in the counter-example returned
would never be more than, for example, twice that of an optimal solution.

6 Discussion and Conclusion

The methods presented in this paper provide the ability to guarantee shortest
counter-examples for deadlocks more efficiently than the conventional breadth-
first search. Without the requirement of optimality and by exploring the state-
space more efficiently, these methods may find deadlock errors in models, where
standard depth-first search would suffer state-space explosion.

We have presented seven heuristics which guide actor-based models towards
deadlock states. Our experimental results indicate that in many cases they can
significantly reduce the number of node expansions required before finding an
error state. We have shown their ability to produce shorter counter-examples
than the conventional depth-first search and in fewer node expansions than the

Guided Search for Deadlocks in Actor-Based Models 257

optimal breadth-first search. For models with large state-spaces, blind searches
could exhaust the computer’s memory before reaching a goal, failing to find a
deadlock error if one exists. The proposed guided searches presented might reach
that deadlock state before the state-space explosion occurs. Of the heuristics
the Queue Size one showed the best overall performance regarding both node
expansion and execution time.

The requirement of optimality causes considerable overhead, and by remov-
ing that by using pure heuristic search only a fraction of the states A* search
explored were expanded, while still returning close to optimal counter examples.
Weighted A* with w = 0.8 was a good balance between the two objectives, re-
turning near-optimal counter-examples with fewer expansions than traditional
A* search.

7 Future Work

Further experiments can be done with Guided-Modere using the implemented
heuristics. One possibility is to use one or more heuristics in combination to get
potentially even more informed search guidance. One could even create combi-
nations targeting specific deadlock scenarios.

Heuristics based on information provided by the designer have been imple-
mented in [12] and [7], for example. Such a heuristic could be implemented for
Guided-Modere. The model designer could tag message servers as either inter-
esting or boring. Then the heuristic would guide the search such that states
processing interesting messages are chosen over those processing a boring one.
This strategy could be implemented by enabling either flags or annotations in
the Rebeca code or by the identification of specific message servers at run-time.

Modere implements partial-order reduction. Such a reduction would benefit
the informed search algorithms and further reduce node expansions.

The study focuses only on the message queue and its relation to the deadlock
property. The next big step would be developing property-based heuristics and
performing heuristic search for violations of safety properties for actor-based
models. Furthermore, applying the hybrid A*+Improved-Nested-DFS search al-
gorithm presented in [8] would enable the verification of liveness properties as
well. The Target Enlargement technique proposed in [32] or predicate abstrac-
tion such as proposed in [18] could result in reduced exploration. Both these
approaches could also benefit the search for violations of the deadlock property.

Acknowledgement. The work on this paper has been partially supported by
the projects ”Timed Asynchronous Reactive Objects in Distributed Systems:
TARO” (nr. 110020021) and ”General Problem Solving Agents” (nr. 100039022)
of the Icelandic Research Fund.

258 S.H. Sigurdarson et al.

References

1. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7(1), 1–72 (1997)

2. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
10∧20 states and beyond. In: [1990] Proceedings. Fifth Annual IEEE Symposium
on Logic in Computer Science, vol. (4976), pp. 428–439 (1986)

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

5. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Communica-
tions of the ACM 17(11), 643–644 (1974)

6. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. International Journal on Software Tools for Technology
Transfer 11(1), 27–37 (2009)

7. Edelkamp, S., Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Proceedings of the 8th International SPIN Workshop on Model Checking
of Software, pp. 57–79. Springer-Verlag New York, Inc. (2001)

8. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. International Journal on Software
Tools for Technology Transfer (STTT) 5(2), 247–267 (2004)

9. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.:
Survey on Directed Model Checking. In: Peled, D.A., Wooldridge, M.J. (eds.)
MoChArt 2008. LNCS, vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

10. Erlang. Erlang Programming Language Homepage, http://www.erlang.org

11. Felner, A.: Improving search techniques and using them on different environments.
Science (February 2001)

12. Groce, A., Visser, W.: Heuristics for model checking Java programs. International
Journal on Software Tools for Technology Transfer 6(4), 260–276 (2004)

13. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT Artificial
Intelligence Technical Report 258, Department of Computer Science. MIT (April
1972)

14. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
Intelligence 8(3), 323–364 (1977)

15. Hewitt, C.: Orgs for scalable, robust, privacy-friendly client cloud computing. IEEE
Internet Computing 12(5), 96–99 (2008)

16. Hewitt, C.: Actorscript(tm): Industrial strength integration of local and nonlocal
concurrency for client-cloud computing. CoRR, abs/0907.3330 (2009)

17. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

18. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.:
Using Predicate Abstraction to Generate Heuristic Functions in UPPAAL. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp.
51–66. Springer, Heidelberg (2007)

19. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: Proceedings of the 21st Annual ACM Symposium on Applied Com-
puting (SAC 2006), Software Verificatin Track, pp. 1810–1815 (April 2006)

http://www.erlang.org

Guided Search for Deadlocks in Actor-Based Models 259

20. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a
comparative analysis. In: PPPJ 2009: Proceedings of the 7th International Con-
ference on Principles and Practice of Programming in Java, pp. 11–20. ACM, New
York (2009)

21. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Arti-
ficial Intelligence 27(1), 97–109 (1985)

22. Lin, F.J., Chu, P.M., Liu, M.T.: Protocol verification using reachability analysis:
the state space explosion problem and relief strategies. In: Proceedings of the ACM
Workshop on Frontiers in Computer Communications Technology - SIGCOMM
1987, pp. 126–135 (1988)

23. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21(12), 993–999 (1978)

24. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley (1984)

25. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

26. Russell, S.: Efficient memory-bounded search methods. In: Proceedings of the 10th
European Conference on Artificial Intelligence (1992)

27. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. In: Proceedings of
FACS 2008. Electr. Notes Theor. Comput. Sci., vol. 260, pp. 209–224 (2010)

28. Scala. Scala Programming Language Homepage, http://www.scala-lang.org
29. Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience. In:

Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer, Heidelberg (2011)

30. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63(4), 385–410 (2004)

31. Wijs, A.J., Lisser, B.: Distributed Extended Beam Search for Quantitative Model
Checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI),
vol. 4428, pp. 166–184. Springer, Heidelberg (2007)

32. Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: Pro-
ceedings of the 35th Annual Conference on Design Automation Conference - DAC
1998, pp. 599–604 (1998)

33. Zahavi, U., Felner, A., Schaeffer, J., Sturtevant, N.: Inconsistent heuristics. In:
Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 1211.
AAAI Press, MIT Press, Menlo Park, Cambridge (1999, 2007)

http://www.scala-lang.org

Assumption Generation for Asynchronous

Systems by Abstraction Refinement

Qiusong Yang1, Edmund M. Clarke3, Anvesh Komuravelli3, and Mingshu Li1,2

1 National Engineering Research Center of Fundamental Software
2 State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing 100190, China

3 Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213, USA

{qiusong,mingshu}@nfs.iscas.ac.cn, {emc,anvesh}@cs.cmu.edu

Abstract. Compositional verification provides a way for deducing
properties of a complete program from properties of its constituents.
In particular, the assume-guarantee style of reasoning splits a specifi-
cation into assumptions and guarantees according to a given inference
rule and the generation of assumptions through machine learning makes
the automatic reasoning possible. However, existing works are purely
focused on the synchronous parallel composition of Labeled Transition
Systems (LTSs) or Kripke Structures, while it is more natural to model
real software programs in the asynchronous framework. In this paper,
shared variable structures are used as system models and asynchronous
parallel composition of shared variable structures is defined. Based on
a new simulation relation introduced in this paper, we prove that an
inference rule, which has been widely used in the literature, holds for
asynchronous systems as long as the components’ alphabets satisfy cer-
tain conditions. Then, an automating assumption generation approach is
proposed based on counterexample-guided abstraction refinement, rather
than using learning algorithms. Experimental results are provided to
demonstrate the effectiveness of the proposed approach.

1 Introduction

Compositional verification provides a way for deducing properties of a complete
program from properties of its constituents and it is a promising technique to
address the state explosion problem. In particular, the assume-guarantee rea-
soning splits a specification into assumptions and guarantees [1]. A typical rule
for assume-guarantee reasoning has the form of 〈ϕ〉P 〈φ〉, where the assumption
ϕ constrains the behavior of the environment and the guarantee φ specifies the
behavior of the component P when ϕ is ensured. The rule means that in any
execution where the environment behaves according to ϕ, it is guaranteed that P

C.S. Păsăreanu and G. Salaün (Eds.): FACS 2012, LNCS 7684, pp. 260–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Assumption Generation for Asynchronous Systems 261

behaves according to φ. For example, the following inference rule was proved in
[2] for synchronous composition of Kripke Structures against properties ACTL*.

M1 ‖ A |= G (〈A〉M1〈G〉)
M2 + A (〈〉M2〈A〉)

M1 ‖M2 |= G (〈〉M1 ‖M2〈G〉) (1)

To prove that M1 ‖ M2 |= G, where ‖ denotes the synchronous parallel com-
position operator, it is first to show that G is satisfied in M1 ‖ A, assuming
that its environment satisfies the assumption A. Then, the assumption A will
be discharged on the other component M2 by checking if M2 + A, where + is a
strong simulation relation between two components. If the assumption is much
smaller than M2, checking M1 ‖ A |= G and M2 + A might be more efficient
than directly checking M1 ‖M2 |= G.

However, in earlier works, human intervention was required to get an as-
sumption satisfying an assume-guarantee rule. As it requires the interaction
with an expert user, devising a proper assumption is not easy, even if not im-
possible, to accomplish for nontrivial verification problems. The pioneering work
[3] presented an automatic assume-guarantee reasoning framework, in which the
weakest assumption [4], represented as a finite-state automaton, is automati-
cally learned using the L* algorithm [5]. Since then, the problem of generating
assumptions automatically has been extensively studied.

Prior work can be categorized according to the following three dimensions:
system model, compositional pattern and learning algorithm used.

– System Model. Most of existing works [3,6,7,8,9,10] use Labeled Transition
Systems(LTSs) as system models. In [11],Kripke Structures are used instead.

– Compositional Pattern. Existing works are focused purely, as least as we
know, on the synchronous composition of LTSs or Kripke Structures. For
LTSs, synchronous composition1 usually allows the non-common actions be-
tween parallel components to be interleaved, while the executions of common
actions must be synchronized [3,6,7,8,9,10]. Similarly, all components are
forced to make transitions simultaneously in the synchronous composition
of Kripke Structures [11].

– Learning Algorithm. As only safety properties are considered in most of ex-
isting works, the assumptions can be modeled as finite state automata and
the L* algorithm and its variants are used for learning a regular set through
membership and equivalence queries [3,6,7,8,9,10]. As a Kripke Structure
is normally defined through its initial and transition predicates, the CDNF
algorithm [12] is employed to learn Boolean functions in [11]. The CDNF
algorithm can exactly learn a Boolean function by continuously asking mem-
bership and equivalence queries to a teacher, who can precisely answer every
query.

1 It should be noted that some authors called it as asynchronous composition of LTSs.
In this paper, we only think a definition allowing interleaving on common actions as
an asynchronous composition.

262 Q. Yang et al.

In this paper, for asynchronous systems, we propose an alternative approach for
the automatic assumption generation based on predicate abstraction and inter-
polation, instead of using learning algorithms. That we are focused on asyn-
chronous systems here is because real software programs are more naturally
modeled as asynchronous systems, while synchronous models are more amenable
to hardware systems. A concise example will be provided in the next section to
demonstrate the differences between synchronous and asynchronous composi-
tions. On the other side, the reason we propose an alternative to traditional
learning-based approaches is that learning algorithms normally have a very high
computational complexity. The running time of L* is bounded by a polynomial
of n and m [5], where n denotes the number of states of the target automaton
and m denotes the length of the longest counterexample, and CDNF bounded by
a polynomial of the minimal CNF and DNF size of the target formula. However,
in the assume-guarantee reasoning of asynchronous systems, the parameter n
and the minimal CNF or DNF size are exponential in the number of global and
local variables in the worst case.

The contribution of our paper is the following. First, we prove that the infer-
ence rule (1) holds for asynchronous systems with a redefined simulation relation
between two components. The standard simulation relation in assume-guarantee
reasoning, such as [9,10], is defined as the inclusion of trace languages, implying
that, if M1 +M2, the projection of every behavior of M1 on the alphabet of M2

is also a behavior of M2. Under the asynchronous circumstances, the trace lan-
guage inclusion induced simulation relation will be not monotonic with respect
to the parallel composition operator, i.e. M1 + M2 �⇒ M1 ‖ M3 + M2 ‖ M3,
which is essential for proving the inference rule (1), as a component can transit
to an arbitrary state because of jumps in which shared variables are modified by
other components while local variables are left untouched. The simulation rela-
tion introduced in Section 3 requires that the simulation relation is maintained
between two components even if they make jumps, rather than real transitions.

Second, a method automating the assumption generation is proposed. The as-
sumption A starts with the coarsest predicate abstraction, which is defined over
a set of predicates over variables of M2, such that M2 + A. Then, the assumption
A will be refined in a series of iterations. In each iteration, M1 ‖ A |= G will be
checked first. If it holds, we will have M1 ‖ M2 |= G. Otherwise, a finite coun-
terexample will be returned as a result of M1 ‖ A �|= G. Then, we will check if the
counterexample’s projection on A is also feasible in M2. If so, the algorithm can
terminate as a real counterexample is found. Otherwise, a refined assumption,
denoted as A′, will be generated based on a new predicate obtained through
counterexample analysis, using interpolation techniques. At the same time, the
refinement ensures that: 1) M2 + A′. 2) A′ contains strictly less behaviors than
A in the sense that the counterexample will be not feasible in M1 ‖ A′. When
the algorithm terminates, an assumption satisfying the two premises of rule (1)
is obtained, implying the property holds, or a real counterexample is found.

Finally, experimental results are provided to demonstrate that the proposed
approach outperforms typical learning approaches based on CDNF.

Assumption Generation for Asynchronous Systems 263

Related Work. Since the first approach for automatic assume-guarantee rea-
soning based on automata learning was proposed [3], there have been extensive
studies on the automatic assumption generation for compositional verification.
These include devising new inference rules [6], extensions and optimizations of
the L* algorithm [13,14], automatic refinement of the assumption’s alphabet
[15], symbolic methods for assume-guarantee reasoning [16,17], implicit learning
based on CDNF [11] and minimal separating automata-based reasoning [18,19].
However, as discussed before, all these works are focused only on the synchronous
parallel composition of LTSs or Kripke Structures, while it is more natural to
model real software programs in the asynchronous framework. The rules that
have been used for synchronous systems might not hold when asynchronous
composition is considered. The reasoning framework must also be changed ac-
cordingly.

Our assumption generation method given in Section 4 is essentially based
on the CEGAR(CounterExample Guided Abstraction Refinement) [20]. In [21],
the authors also present a CEGAR-based method for assume-grantee reasoning,
instead of using learning algorithms. Similarly, a CEGAR-based method for the
assume-guarantee reasoning of probabilistic systems is given in [22]. However,
those works are also focused on the synchronous parallel composition of LTSs.

2 Preliminary Definitions

In this section, preliminary definitions and notations used in the rest of the paper
are given. LTSs are not selected as system models because it is more natural to
model an asynchronous system with shared variable structures.

Shared Variable Structures. An SVS M = (η, ζ(η), τ(η, η′)), simplified as
(η, ζ, τ), consists of the following components:

– η = {u1, · · · , um}: A finite set of Boolean variables, containing data and
control variables. The set of states of M are the valuations over η, denoted
as 2η. For a state s ∈ 2η, we use the notation s�η1 , with η1 ⊆ η, to denote
the projection of s on η1. For a set S ⊆ 2η, then S�η1 = {s�η1 |s ∈ S}.

– ζ(η): The initial predicate characterizing the initial states. All valuations
over η such that the initial predicate evaluates to true are the initial state
of M .

– τ(η, η′): The transition predicate relating the values η of state s ∈ 2η to the
values η′ in a successor state s′ ∈ 2η. There is a transition from s to s′,
denoted as s→ s′, if and only if τ(s, s′) evaluates to true.

Parallel Composition. We also need to decide how to combine those processes
into a concurrent system. Let M1 = (η1, ζ1, τ1) and M2 = (η2, ζ2, τ2) be two
SVSs. The asynchronous and synchronous parallel compositions of M1 and M2

are denoted as M = M1 ‖a M2 and M = M1 ‖s M2, respectively. They agree on
the definitions of η and ζ as follows:

– η = η1 ∪ η2. The variables of the combined system are union of those of the
components. The set of states of M is 2η1∪η2 . It should be noted that we use

264 Q. Yang et al.

s ∈ 2η1∪η2 to represent a state of M instead of (s1, s2), with s1 ∈ 2η1 and
s2 ∈ 2η2 , as (s1, s2) is a state of M only if they agree on the shared variables
in η1 ∩ η2.

– ζ = ζ1 ∧ ζ2. For a state s of M , it is the initial state of M if and only
if s�η1 and s�η2 are the initial states of M1 and M2, respectively. That is,
ζ1(s�ζ1) = true and ζ2(s�ζ2) = true.

As for the transition predicate τ , it is respectively defined as follows:

– In asynchronous composition, τ = τ1∨τ2. For states s and s′ of M1 ‖a M2,
s→ s′ if and only if τ1(s�η1 , s

′
�η1) or τ2(s�η2 , s

′
�η2). During the transition, ex-

actly one component, eitherM1 orM2, will make a move. If only τ1(s�η1 , s
′
�η1)

(τ2(s�η2 , s
′
�η2)) evaluates to true, we say that s→ s′ is resulted from a tran-

sition of M1 (M2). If both τ1(s�η1 , t�η1) and τ2(s�η2 , t�η2) evaluates to true,
then M1 or M2 will be non-deterministically selected to make a move.

– In synchronous composition, τ = τ1 ∧ τ2. For states s and s′ of M1 ‖s M2,
s → s′ if and only if τ1(s�η1 , s

′
�η1) and τ2(s�η2 , s

′
�η2). The components M1

and M2 will make a move simultaneously .

P1 ::
l10 : x1 = 1;
l11 : x2 = 1;
l12 :

P2 ::
l20 : x1 = 0;
l21 :

Fig. 1. Process P1 and P2

(l10, l20,⊥,⊥)

(l11, l20, 1,⊥)

(l12, l20, 1, 1)

(l12, l21, 0, 1)

(l11, l21, 0,⊥)

(l10, l21, 0,⊥)

(l11, l21, 1,⊥)

(l12, l21, 1, 1)

Fig. 2. Composition of M1 and M2

With the short program provided in Fig. 1, we give a sense of SVSs and demon-
strate the difference between synchronous and asynchronous compositions. The
Boolean variable x1 is shared between the two processes P1 and P2. P1 has also a
local Boolean variable, named x2. We can construct two SVSs M1 = (η1, ζ1, τ1)
and M2 = (η2, ζ2, τ2) to receptively represent P1 and P2 as follows:

– η1 = {x1, x2, pc11, pc12} and η2 = {x1, pc2}, where pc11, pc12 and pc2 are
variables introduced to encode the program counters of P1 and P2. The
term !pc11∧!pc12 corresponds to l10, pc11∧!pc12 to l11, !pc11∧pc12 to l12, !pc2
to l20, and pc2 to l21.

– ζ1 =!pc11∧!pc12 and ζ2 =!pc2, The valuation 00 of pc12 and pc11 corresponds
to l10, 01 to l11, and so on.

– τ1 = ((!pc11∧!pc12 ∧ pc′11∧!pc′12 ∧ x′
1 ∧ x′

2 = x2) ∨ (pc11∧!pc12∧!pc′11 ∧ pc′12 ∧
x′
2 ∧ x′

1 = x1)) and τ2 = (!pc2 ∧ pc′2∧!x′
1).

Assumption Generation for Asynchronous Systems 265

Let ⊥ denote an arbitrary value of 1 or 0. The only path of M1 can be represented
as (l10,⊥,⊥) → (l11, 1,⊥) → (l12, 1, 1), where the first element of each state
records the value of PC1 and the other two elements record the values of x1 and
x2. M2’s only path is (l20,⊥)→ (l21, 0). The parallel composition of M1 and M2

is given in Fig. 2, in which a dotted edge represents a transition that could only
occur in the asynchronous composition. However, the synchronous composition
does not have any transitions because there is no state in M1 ‖s M2 such that
x1 evaluates to true and false at the same time.

Interpolant. Let (C1,C2) be a pair of sets of clauses, where a clause is a dis-
junction of literals and a literal is either a Boolean variable or its negation. If
C1 and C2 are inconsistent, meaning that the conjunction of C1 and C2 is un-
satisfiable. An interpolant for an inconsistent pair (C1, C2) is a formula I with
the following properties:

– C1 ⇒ I.
– I ∧ C2 is unsatisfiable.
– I is defined over the common variables of C1 and C2.

In practice, an interpolant can be generated from a proof by resolution that C1

and C2 are inconsistent. Several SMT solvers, such as MathSAT [23] and iZ3 [24],
have included supports for interpolant generation. The generation procedure is
actually very simple and can be finished in linear time [25].

3 Compositional Verification of Asynchronous Systems

Let M1 = (η1, ζ1, τ1) and M2 = (η2, ζ2, τ2) be shared variable structures with
η2 ⊆ η1

2. We define a simulation relation (+) between two shared variable
structures, using which we show that the inference rule (1) is sound and complete.
One fundamental requirement of this is that the simulation relation should be
compositional, i.e. whenever M1 + M2, we have that M3 ‖ M1 + M3 ‖ M2

for any other shared variable structure M3 (maybe under some suitable extra
assumptions). For simplicity, we will use ‖ to denote ‖a from here on.

Let H ⊆ 2η1 × 2η2 . First, we consider strong simulation3 [26], which is widely
used in compositional reasoning, and show that it is not compositional for asyn-
chronous systems.

Definition 1 (Strong Simulation [26]). H is a strong simulation w.r.t a set
of observable variables ηo ⊆ η2 iff for s ∈ 2η1 , t ∈ 2η2 , H(s, t) implies

– s�ηo = t�ηo , and
– for every s′ ∈ 2η1 with τ1(s, s

′), there exists a t′ ∈ 2η2 such that τ2(t, t
′) and

H(s′, t′).

2 This assumption comes naturally from the target application of assume-guarantee
reasoning.

3 A less restricted version of it appears in [11]; we will comment on it later in the
section.

266 Q. Yang et al.

M1 +ηo M2 iff there is a strong simulation H such that for every s01 ∈ 2η1 with
ζ1(s

0
1), there exists s02 ∈ 2η2 with ζ2(s

0
2) and H(s01, s

0
2).

In other words, every transition in M1 is simulated by some transition of M2.
If this is everything, compositionality may not hold of asynchronous systems
because a transition in M3 ‖ M1 resulting from a transition in M3 can change
the values of some variables common between M1 and M3

4.
To see this, let us consider a simple example. Let η1 = η2 = ηo = {x1, x2}.

Let ζ1 = ζ2 = (!x1∧!x2). Also, let

τ1 = (!(!x1 ∧ x2) ∧ (!x′
1∧!x′

2))

∨ ((!x1 ∧ x2) ∧ (x′
1 ∧ x′

2)),

τ2 = (!x′
1∧!x′

2).

It is easy to see that M1 +ηo M2 with H = {(〈0, 0〉, 〈0, 0〉)} as the strong
simulation. Now, let M3 = (η3, ζ3, τ3) with η3 = {x2}, ζ3(0) and τ3 = x′

2.
Consider M3 ‖ M1 and the initial state 〈0, 0〉. If M3 takes a step, M3 ‖ M1

goes from 〈0, 0〉 to 〈0, 1〉. This step can also be taken in M3 ‖ M2. Now, let M1

take a step and from τ1 defined above, M3 ‖ M1 moves to 〈1, 1〉. But the only
transitions from 〈0, 1〉 in M3 ‖ M2 are to either 〈0, 0〉 (if M2 takes a step) or
〈0, 1〉 (if M3 takes a step), neither of which is compatible with 〈1, 1〉.

To fix this problem, we add a condition to the definition of simulation relation
resulting in the following.

Definition 2 (Strong Jump Simulation). H is a strong jump simulation
w.r.t. a set of observable variables ηo ⊆ η2 iff for s ∈ 2η1 , t ∈ 2η2 , H(s, t) implies

– s�ηo = t�ηo , we also say that s and t are compatible on ηo, and
– for every s′ ∈ 2η1 with τ1(s, s

′), there exists a state t′ ∈ 2η2 such that τ2(t, t
′)

and H(s′, t′), and
– for every s′ ∈ 2η1 such that s′ �η1\ηo

= s �η1\ηo
, there exists a state t′ ∈ 2η2

such that t′ �η2\ηo
= t �η2\ηo

and H(s′, t′).

M1 +J
ηo

M2 iff there is a strong jump simulation H such that for every s01 ∈ 2η1

with ζ1(s
0
1), there exists s02 ∈ 2η2 with ζ2(s

0
2) and H(s01, s

0
2).

When the context is clear, +J
ηo

will be written as +J . Thus, in addition to being
a strong simulation, a strong jump simulation needs M2 to simulate any jump
in M1 which keeps the values of the variables in η1 \ ηo, where \ denotes the set
minus operator, intact while changing the remaining variables arbitrarily. Such
a jump effectively models any asynchronous transition in a system which M1 is
part of.

Now, it is not hard to see that in the example considered above, M1 �+ M2.
This is because a jump in M1 from 〈0, 0〉 to 〈0, 1〉 can not be simulated by a
similar jump in M2 as the only transition from 〈0, 1〉 in M2 is back to 〈0, 0〉.
4 This is not possible in synchronous composition [11], because such a transition would
be synchronized in both M3 and M1.

Assumption Generation for Asynchronous Systems 267

In fact, +J is compositional as we show below. The left part of Fig. 3 shows the
relation between η1, η2 and η3, in general. We observe that when M3 ‖M1 takes

a step, the variables in the region marked
?
= ∅ can be changed for which there

may not be a corresponding step in M3 ‖ M2 to a compatible state. For this
reason, this region is assumed to be empty, leading to the assumption η1∩η3 ⊆ η2
(note that this also holds in the above example); see the right part of the figure.
As we will see soon, this is not an unreasonable assumption.

η1 η3

η2

η2

η1 η3

?
= ∅ 1 2 23 3

Fig. 3. Inclusion Relationships between Sets

Lemma 1. If M1 +J
η23

M2 and η1 ∩ η3 ⊆ η2, where η23 = η2 ∩ η3, then M3 ‖
M1 +J

η3
M3 ‖M2.

Proof. The assumption η1 ∩ η3 ⊆ η2 divides the space of the state variables
into the four disjoint regions shown in Fig. 3 and given a state, we identify the
corresponding components of the state by using the notation in the figure for
subscripts. For example, the components for a state s in M3 ‖M1 are identified
as s1, s2, s23 and s3.

Let H12 be a strong jump simulation between M1 and M2 satisfying the condi-
tion for the initial states. We show thatH = {(s, t)|s ∈ 2η1∪η3 , t ∈ 2η2∪η3 , H12(s23·
s2 · s1, t23 · t2), s3 = t3} witnesses M3 ‖M1 +J

η23
M3 ‖M2, where · denotes that

concatenation of two state vectors. Let H(s, t). We need to first show the three
conditions of Definition 2 for H to be a strong jump simulation. Note that the
target simulation relation is respect to η3. So, any jump in M3 ‖ M1 or in M1

needs to only keep the variables in η1 \ η3 intact.
By the assumption on H , s3 = t3 and H12(s23 · s2 · s1, t23 · t2). As H12 only

has compatible pairs, the latter implies that s23 = t23. Together, s�η3 = t�η3 .
Let s→ s′ be a transition in M3 ‖M1. This can be due to a step in M1 or in

M3.
In the first case, we have that s23 · s2 · s1 → s′23 · s′2 · s′1 in M1. As H12(s23 · s2 ·

s1, t23 ·t2), there is a transition t23 ·t2 → t′23 ·t′2 in M2 with H12(s
′
23 ·s′2 ·s′1, t′23 ·t′2).

This transition in M2 also means the transition t → t3 · t′23 · t′2 = t′ exists in
M3 ‖M2. As s3 = t3, clearly H(s′, t′).

In the second case, where the step is in M3, we have that s3 · s23 → s′3 · s′23
in M3. As s3 = t3 and s23 = t23 from above, t3 · t23 · t2 → s′3 · s′23 · t2 = t′ in
M3 ‖M2. Now, s23 · s2 · s1 → s′23 · s2 · s1 is a jump. As H12(s23 · s2 · s1, t23 · t2),
there exists a state t′23 · t2 of M2 such that H12(s

′
23 · s2 · s1, t′23 · t2). Similarly, it

also implies that t′23 = s′23. As s′3 = s′3, clearly H(s′, t′).

268 Q. Yang et al.

Finally, if there is a jump s3 · s23 · s2 · s1 → s′3 · s′23 · s2 · s1 in M3 ‖ M1. It is
the same to the second case given above.

The condition on the initial states can easily be checked. '(
Finally, we show that the inference rule (1) is sound and complete for shared
variable structures. In order to do so, we show that +J is reflexive and that it
preserves LTL properties.

Lemma 2. +J is reflexive, i.e. M +J M for any shared variable structure M .

Proof. We only have jumps and the proof is straightforward. '(
Lemma 3. Let M1 +J

ηo
M2 (with ηo ⊆ η2 ⊆ η1). Let f be an LTL formula

defined over ηo. Then, M2 |= f implies M1 |= f .

Proof. Let H be a strong jump simulation witnessing M1 +J
ηo

M2. As H is also
a strong simulation and, for H(s, t), an atomic proposition of f is labeled in s if
and only if it is labeled in t, preservation follows [27]. '(
Theorem 1 (Compositional Verification). Let G be an LTL formula defined
over ηG. Let ηI = (η1∩η2). If ηG ⊆ η1∪ηI and ηI ⊆ ηA ⊆ η2, then the inference
rule

M1 ‖ A |= G

M2 +J
ηI

A

M1 ‖M2 |= G
(2)

is sound and complete.

Proof. Soundness. Assume M1 ‖ A |= G and M2 +J
ηI

A. Lemma 1 gives us

M1 ‖ M2 +J
η1

M1 ‖ A. From the former and ηG ⊆ η1 ∪ ηI , Lemma 3 gives us
M1 ‖M2 |= G.

Completeness. Assume M1 ‖M2 |= G. Let A = M2. From Lemma 2, M2 +J
ηI

M2. The other premise is what we just assumed. '(
Note that the assumptions on the variables in the above theorem are quite
reasonable and η1 ∩ η2 ⊆ ηA means that ηA should include all the common
variables of M1 and M2 which is what is expected of an assumption.

4 Automatic Assumption Generation

Let M1 = (η1, ζ1, τ1),M2 = (η2, ζ2, τ2), A = (ηA, ζ2, τ2) andG be an LTL formula
defined over the alphabet ηG. Let ηI = η1 ∩ η2 and ηG ⊆ η1 ∪ ηI . They will be
fixed in the rest of this section. Although the rule (2) holds for all LTL formulae,
we will only consider G as safety properties from here on to ensure that a finite
counterexample is returned when M1 ‖ A |= G does not hold. As discussed later,
the work presented is this paper can be easily extended to liveness properties.

Assumption Generation for Asynchronous Systems 269

The basic idea of our algorithm is the following. The assumption A starts
with the coarsest over-approximation. Then, the assumption A will be refined
in a series of iterations. In every iteration, M1 ‖ A |= G will be model checked
first. If it holds, we will have M1 ‖ M2 |= G, as A is an over-approximation of
M2, and the algorithm terminates. Otherwise, a finite counterexample will be
returned as a result of M1 ‖ A �|= G. Then, we will check if the counterexample’s
projection on A is also feasible in M2. If so, the algorithm can terminate as
a real counterexample is found. Otherwise, a refined version of A, denoted as
A′ = (η′A, ζ′A, τ ′A), will be generated based on counterexample analysis. At the
same time, the refinement has the following two properties: 1) M2 + A′, i.e. the
updated assumption is still an over-approximation of M2. 2) A′ contains strictly
less behaviors than A in the sense that the counterexample will be not feasible
in M1 ‖ A′. Then, the algorithm enters into the next iteration. The termination
of the algorithm is guaranteed by the completeness of the inference rule (2).

Alphabet Selection. In those works on assume-guarantee reasoning of syn-
chronous compositions with systems being modeled as LTSs, the alphabet ηA
of the assumption can be a strict subset of η2 and contains only those com-
mon variables between M1 and M2 and those variable necessary to prove the
property, i.e. ηA = (ηG ∪ η1) ∩ η2. Even a smaller alphabet is used in [28] with
the help of alphabet refinement techniques. However, when M1 ‖ A |= G does
not hold and the assumption is refined based on the returned counterexample,
the counterexample analysis in an asynchronous environment, in which systems
are modeled as SVSs, requires that ηA = η2. The rational behind the alphabet
selection is the following.

Assume that ηA ⊂ η2, i.e ηA is a strict subset of η2. When a counterexample
to M1 ‖ A |= G is returned, the assumption must be refined to make the coun-
terexample infeasible in M1 ‖ A′. In any way, some transition, assuming that
s → s′, that is enabled in A will be disabled in the refined assumption A′. The
problem is that for every transition t · s → t′ · s′ of M2, where t, t′ ∈ 2η2\ηA , no
transitions in A′ are available to simulate it. In the case of LTSs, it is different
because, if a transition labelled with an action is removed from A, another tran-
sition with the same label might still exist. For the same reason, the assumption
generation approach given in [11], which uses the CDNF algorithm to learn an
assumption represented as SVS, also assumes that ηA = η2.

Predicate Abstraction. If ηA = η2, the assumption A satisfying the premise
M2 +J A will be not “smaller” than M2. To solve the problem, we use predi-
cate abstraction to compress the states of the assumption. Let AP be a set of
predicates over η̄2 = η2 \ ηI (recall that ηI = η1 ∩ η2). Those variables in ηI are
not included because they are used for interacting with the component M1. The
equivalence relation induced from AP over the set 2η̄2 is denoted as ≡AP .

Given a set of predicatesAP over η̄2, an existential abstraction of M2, denoted
as MAP

2 = (ηI ∪ η̄2, ζP , τP), is defined as the following:

– For s1 ∈ 2η̄2 and s2 ∈ 2ηI , ζP(s1 · s2), if there exists a state t1 · s2 of M2,
where t1 ∈ 2η̄2 , such that t1 ∈ [s1]≡AP and ζ2(t1 · s2).

270 Q. Yang et al.

– For s1, s
′
1 ∈ 2η̄2 and s2, s

′
2 ∈ 2ηI , τP(s1 · s2, s′1 · s′2) if there exist t1, t

′
1 ∈ 2η̄2

such that τ2(t1 · s2, t′1 · s′2), t1 ∈ [s1]≡AP , and t2 ∈ [s′1]≡AP .

where [s]≡AP denotes an equivalence class of ≡AP . By introducing predicate
abstraction, we can reduce the size of M2 from 2|η2| to 2|AP|+|ηI |, where |S|
denotes the size of a set S. Normally, the size of ηI is small for a well designed
system.

Lemma 4. For a set of predicates AP over η̄2 and the induced existential ab-
straction MAP

2 of M2 from it, M2 +J
ηI

MAP
2 .

Proof. Let H = {(s, t)|s ∈ 2η2 , t ∈ 2η2 , sηI = t�ηI , s�η̄2 ∈ [t�η̄2]≡AP }.
Assumption Initialization. The set AP will be initialized to the empty set.
The abstraction of M2 induced from the empty set will be used as our coarsest
over-approximation.

Assumption Refinement. Let p = v0, v1, · · · , vk be a path of M1 ‖M2, where
vi is a valuation over η1 ∪ η2. Some transitions are executed as a result of the
executions of M1, while others as a result of M2. The projection of p on M1 (M2)
is obtained by removing details about those transitions and states not related to
any transitions of M1 (M2) and projecting those remained states onto η1 (η2).
It should be noted that a projection is not necessarily a path of a component.

For example, p′ = 〈0, 0〉 P1→ 〈1, 0〉 P2→ 〈0, 0〉 P1→ 〈0, 1〉 is a path of the program
given in Fig. 1, where the labels on transitions indicate the SVS, P1 or P2, to

be executed. The projection of p′ on P1 is p′′ = 〈0, 0〉 P1→ 〈1, 0〉� 〈0, 0〉 P1→ 〈0, 1〉,
where � denotes a jump. In the jump, the shared variable x1 is changed by P2

while the local variable x2 is left untouched. It is easy to see the jump is not
feasible in M1.

Definition 3 (η-J -Path). A projection including transitions and jumps, in
which the variables contained in η are left untouched, is called an η-J -path.
If M1 ‖ A |= G does not hold, a counterexample will be returned by a model
checker. Let ce = v0, v1, · · · , vk be the counterexample’s projection on A. As we
use the equivalence classes of ≡AP to represent the set of states of 2η̄2 , rather
than enumerating them explicitly, every state of ce belongs to 2AP∪η̄2 . From
previous discussions, we know that ce is an ηJ1-J -path, where ηJ1 = ηA \ η1.
Then, we will have to decide if ce is feasible in M2 by checking if there exists a
ηJ2-J -path p = s0, s1, · · · , sk in M2, where ηJ2 = η2 \ η1, such that:

– ζ2(s0), [s0�η̄2]≡AP= v0�AP , and s0�ηI = v0�ηI .
– If vi → vi+1 is a transition or an ηJ1 -jump of ce, then [si�η̄2]≡AP = vi�AP ,

si�ηI = vi�ηI , [si+1�η̄2]≡AP = vi+1�AP , si+1�ηI = vi+1�ηI , and τ2(si, si+1) if
vi → vi+1 is a real transition.

If such an ηJ2 -J -path is found, the counterexample to M1 ‖ A |= G is guaranteed
to be feasible in M1 ‖ M2, as η1 ∩ η2 ⊆ ηA ensures that all common variables

Assumption Generation for Asynchronous Systems 271

vi−1 vi vi+1

2ηI

2η̄2

Fig. 4. Counterexample Analysis

between M1 and M2 are included in ηA. Thus, M1 ‖M2 �|= G and the algorithm
will terminate. Otherwise, the assumption A has to be refined to exclude the
counterexample.

In reverse to the existential abstraction given before, a concretization function
γ will be defined as the following:

γ(v) = {s · t|s ∈ 2η̄2 , t ∈ 2ηI , [s]≡AP = v�AP , and t = v�ηI } (3)

In Fig. 4, the path ce is shown at the bottom, while the set of concrete states γ(vi)
corresponding to every state vi is shown above. All concrete states have the same
values over ηI , but different over η̄2. Let R0 = {s|s ∈ 2η2 , s ∈ γ(v0), and ζ2(s)}.
Thus, R0 denotes the set concrete states corresponding to the initial abstract
state. Then, Ri for i ≥ 1 is recursively defined as follows:

– if vi−1 → vi is a transition of ce, then Ri = {s|s ∈ 2η2 , s ∈ γ(vi), ∃t ∈ Ri−1 :
τ2(t, s)}.

– if vi−1 → vi is a jump of ce, then Ri = {s|s ∈ 2η2 , s ∈ γ(vi), ∃t ∈ Ri−1 :
s�η̄2 = t�η̄2}.

Every set Ri actually defines those concrete states that can be reachable along
the counterexample. If the counterexample ce is not feasible in M2, there’s no
corresponding transition in M2 for some transition vi → vi+1 of ce. Then, we
will have:

Ri ∩ (τ−1
2 (γ(vi+1)) ∩ γ(vi)) = ∅ (4)

where τ−1
2 denotes the pre-image calculation. As shown in Fig. 4, there is at

least one sate s ∈ γ(vi+1) which is reachable from some states of γ(vi). However,
none of those states of γ(vi) are included in Ri.

Because two states respectively from Ri and τ−1
2 (γ(vi+1)) ∩ γ(vi) agree on

their projections on ηI , the equation (4) implies that the intersection between
Ri�η̄2 and (τ−1

2 (γ(vi+1)) ∩ γ(vi))�η̄2 is also empty. As we can symbolically com-
pute the two sets, let f1 and f2 be the Boolean formulae representing Ri and
τ−1
2 (γ(vi+1))∩γ(vi), respectively. Let F1 = ∃ηI : f1 and F2 = ∃ηI : f2. We know
that F1∧F2 is unsatisfiable. Then, let I be the interpolant of (F1,F2), which is
defined over η̄2. We will add the interpolant I into AP as a new predicate and
refine the assumption according to the augmented AP .

272 Q. Yang et al.

Algorithm AAG(M1, M2, G)
Let AP = ∅ be a set of predicates over η̄2.
while TRUE do

Let A = MAP
2 .

Check if M1 ‖ A |= G.
if M1 ‖ A �|= G do

Let ce be the counterexample’s projection on A
Check if ce is feasible in M2.
if ce is feasible do

M1 ‖M2 �|= G and terminate.
else

Calculate interpolant based on formula (4).
Add the interpolant to AP .

else
M1 ‖M2 |= G and terminate.

Fig. 5. Interpolant-based Compositional Model Checking

Lemma 5. The counterexample ce will be not feasible in the new assumption.

The whole algorithm, named AAG (asynchronous assume-guarantee), is pre-
sented in Fig. 5. For the algorithm, we have the following theorem:

Theorem 2. The algorithm will terminate. When the algorithm terminates, if
M1 ‖ M2 �|= G, a real counterexample will be returned and, otherwise, an as-
sumption A such that M2 +J A and M1 ‖ A |= G will be found.

Proof. Termination. If a real counterexample or an assumption such that M2 +J

A and M1 ‖ A |= G is found, the algorithm will terminate. Otherwise, the
assumption A converges to M2 in at most |η̄2| iterations and the algorithm
terminates.

When the algorithm terminates, M1 ‖ M2 �|= G if a real counterexample is
returned. Otherwise, an assumption satisfying the two premises of rule (2) will
be reached. The correctness of M1 ‖M2 |= G is guaranteed by theorem 1. '(

5 Experimental Results

Our algorithm AAG, presented in Fig. 5, has been implemented in the C lan-
guage. We use NuSMV [29] to check the premise M1 ‖ A |= G and MathSAT
[23] to, given two inconsistent clauses, calculate an interpolant which will be
added to the set of existing predicates. To make a comparison with learning-
based algorithms, we also adapted the CDNF-based approach proposed in [11]
to learn the Boolean initial and transition predicates of an assumption. The work
is selected to be compared with because it also uses shared variable structures,
rather than LTSs, as system models although it is purely focused on synchronous

Assumption Generation for Asynchronous Systems 273

Table 1. Experimental Results

CDNF AAG
Problems Truth MQs EQs |ζA| |τA| Time(s) ARs |ζA| |τA| Time(s)

Inverter-1-2 T 221 45 2 9 0.49 1 2 9 0.03
Inverter-2-2 F 99 20 2 9 0.18 1 1 7 0.02
Inverter-3-2 T 211 45 2 9 0.53 1 2 9 0.04
Inverter-4-2 F 99 20 2 9 0.22 1 1 7 0.01
Inverter-1-4 T 1393 184 4 15 7.13 4 5 17 0.10
Inverter-2-4 F 749 98 2 7 2.19 1 1 9 0.03

Exclusive-3-1 T 348 53 4 11 0.17 1 2 7 0.15
Exclusive-2-2 T 5263 396 4 13 10.67 5 6 17 0.2
Exclusive-3-3 T × × × × × 8 8 22 0.66

parallel compositions. The authors also showed that their approach outperforms
interpolation-based monolithic model checking [30].

The examples we consider are systems consisting of multiple threads, i.e.
M = M1 ‖M2 ‖ · · · ‖Mn for some finite n. We arbitrarily divide such a system
into two sub-systems, say by composing the first i threads (M1 ‖ · · · ‖ Mi) and
composing the rest of the threads (Mi+1 ‖ · · · ‖ Mn) for some 1 ≤ i ≤ n. These
two composed models serve as M1 and M2 of the inference rule (2). Several
auxiliary variables are introduced in M2 to ensure that the executions are fair in
the sense that every enabled thread ofMi+1 ‖ · · · ‖Mn will be executed infinitely
often. We use the notation XXXX-a-b to denote the above described partition of
a verification problem, where XXXX is the name of the problem, a and b denote
the number of threads in M1 and M2, respectively. The experimental systems
used here are the asynchronous version of a ring of inverters and the semaphore-
based exclusive access, which are distributed with NuSMV. The property verified
for the first example states that any inverter will infinitely often output data and
receive data for its neighbors, while the property for the second one states that
no two processes are in the critical section at the same time.

The experimental results are summarized in Table 1. The CDNF algorithm
needs to ask membership queries (MQs) to a teacher on whether the initial pred-
icate or transition predicate evaluates to true for a given valuation to Boolean
variables. By asking an equivalence query (EQ), the learning algorithm can get
an affirmative answer, i.e. the submitted conjecture is an assumption satisfying
the premises of the inference rule, or a counterexample. In our AAG algorithm,
only abstraction refinements (ARs) are necessary. The size of generated assump-
tions are measured in the number of Boolean variables of ζA and τA, denoted
as |ζA| and |τA|, respectively. The execution time is measured in seconds. The
columns labelled with crosses indicate that the CDNF-based algorithm does not
terminate in 30 minutes. The experiments were run on a Macbook Pro laptop
with a 2.2 GHz Intel Core i7 CPU and 4GB of memory running Mac OS X.

The experiment results confirm the results presented in [10], showing that a
learning algorithm takes normally 90 percent of the time. The learning algorithms

274 Q. Yang et al.

CDNF asks a huge amount of queries to learn a formula. Normally, answering a
membership query needs to solve a SAT problem or do a simulation check, while
equivalence queries are more specific to the application domain and tend to be
even more expensive. On the contrary, the AAG algorithm just “mechanically”
calculates an abstraction and then checks if the second premise of the inference
rule is satisfied. As discussed above, it is required that ηA = η2 in the CDNF-
based assume-guarantee learning. It is possible to obtain an assumption smaller
than M2 only when the verified property does not hold. As our algorithm intro-
duces an abstraction over not shared variables of M2, the generated assumption
can be smaller than M2 even if a property holds, as shown in some cases. It’s also
possible that the generated assumption is greater than M2 when some redundant
predicates are produced.Apredicate is redundant if it is implied by the conjunction
of some predicates that are produced later. In general, our approach outperforms
the CDNF-based assume-guarantee reasoning.

6 Conclusion

As a promising technique to tackle the state explosion problem, compositional
verification of concurrent systems based on assume-guarantee reasoning has been
studied extensively. Inference rules play a key role in assume-guarantee reasoning
as they tell how to verify a system by checking its constituents. However, the
most widely used inference rule used in the literature has only been proved for
synchronous systems. Based on a new simulation relation introduced in this
paper, we prove that the rule holds for asynchronous systems as long as the
alphabets of the components satisfy certain constraints. Then, an automating
assumption generation approach is proposed based on counterexample-guided
abstraction refinement, rather than using learning algorithms. Our approach is
compared with the CDNF-based assume-guarantee reasoning algorithm.

Although only safety properties are considered in Section 4, the inference rule
(2) allows liveness properties. The techniques given in [20] for identifying spu-
rious loop counterexamples can be used for refining abstractions when liveness
properties are taken into account. In addition, some lazy or approximate ab-
straction strategies might replace the exact existential abstraction used in our
current implementation, which is normally very expensive.

Acknowledgements. The work was partially supported by the National Nat-
ural Science Foundation of China under grant Nos. 60903051, 61003028 and the
Knowledge Innovation Program of the Chinese Academy of Sciences under grant
No. ISCAS2009-DR09.

The first author’s academic visit to the Computer Science Department of
Carnegie Mellon University is supported by the Foundation for Selected Young
Scientists Studying Abroad, Chinese Academy of Sciences. Thanks are also due
to the Carnegie Mellon University for providing the infrastructure during the
first author’s visit.

Assumption Generation for Asynchronous Systems 275

References

1. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems, pp. 123–144.
Springer-Verlag New York, Inc., New York (1985)

2. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16, 843–871 (1994)

3. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

4. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, ASE 2002, p. 3. IEEE Computer
Society, Washington, DC (2002)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

6. Barringer, H., Giannakopoulou, D.: Proof rules for automated compositional veri-
fication through learning. In: Proc. SAVCBS Workshop, pp. 14–21 (2003)

7. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, ASE 2002, pp. 3–12. IEEE Com-
puter Society, Washington, DC (2002)

8. Bobaru, M.G., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: [31], pp. 135–148

9. Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Form. Methods Syst. Des. 32, 175–205 (2008)

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evalua-
tion of automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol.
17(2), 7:1–7:52 (2008)

11. Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Au-
tomated Assume-Guarantee Reasoning through Implicit Learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

12. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Inf.
Comput. 123, 146–153 (1995)

13. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular
systems and specifications. Innov. Syst. Softw. Eng. 7, 131–139 (2011)

14. Chaki, S., Strichman, O.: Optimized L*-Based Assume-Guarantee Reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

15. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated Assume-
Guarantee Reasoning by Abstraction Refinement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

16. Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification by
Learning Assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

17. Sinha, N., Clarke, E.: SAT-based compositional verification using lazy learning. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer,
Heidelberg (2007)

276 Q. Yang et al.

18. Gupta, A., Mcmillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Form. Methods Syst. Des. 32(3), 285–301 (2008)

19. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning Minimal
Separating DFA’s for Compositional Verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

21. Bobaru, M.G., Pasareanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: [31], pp. 135–148

22. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-Guarantee Abstraction
Refinement for Probabilistic Systems. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

23. MathSAT, http://mathsat.fbk.eu/
24. iZ3, http://research.microsoft.com/en-us/um/redmond/projects/z3/iz3.html
25. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with

small coefficients. J. Symb. Log. 62(3), 708–728 (1997)
26. Milner, R.: An algebraic definition of simulation between programs. Technical re-

port, Stanford, CA, USA (1971)
27. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press,

Cambridge (1999)
28. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining Interface Alphabets

for Compositional Verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

29. NuSMV, http://nusmv.fbk.eu/
30. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

31. Gupta, A., Malik, S. (eds.): CAV 2008. LNCS, vol. 5123. Springer, Heidelberg
(2008)

http://mathsat.fbk.eu/
http://research.microsoft.com/en-us/um/redmond/projects/z3/iz3.html
http://nusmv.fbk.eu/

Author Index

Ábrahám, Erika 134
Aguirre, Nazareno 73

Bae, Kyungmin 1
Basu, Samik 205
Bauer, Sebastian 19
Becker, Bernd 134
Beohar, Harsh 36
Bianculli, Domenico 55
Björnsson, Yngvi 242
Bravetti, Mario 110

Castro, Pablo F. 73
Chilton, Chris 92
Clarke, Edmund M. 260
Cuijpers, Pieter J.L. 36

de Boer, Frank S. 110, 128
de Gouw, Stijn 128

Ghezzi, Carlo 55
Grabe, Immo 110

Hennicker, Rolf 19
Honavar, Vasant 205

Jansen, Nils 134
Jonsson, Bengt 92

Katoen, Joost-Pieter 134
King, Samuel T. 224
Kloukinas, Christos 152
Komuravelli, Anvesh 260
Kwiatkowska, Marta 92

Lee, Matias 110
Legay, Axel 19

Li, Mingshu 260
López Pombo, Carlos Gustavo 73

Maibaum, Tom 73
Meseguer, José 1, 224
Molzam Sharifloo, Amir 170

Nielson, Flemming 188
Nielson, Hanne Riis 188

Ölveczky, Peter Csaba 1
Oster, Zachary J. 205
Ozkaya, Mert 152

Reynisson, Arni Hermann 242

San Pietro, Pierluigi 55
Santhanam, Ganesh Ram 205
Sasse, Ralf 224
Schuster, Johann 134
Sigurdarson, Steinar Hugi 242
Sirjani, Marjan 242
Spoletini, Paola 170
Steffen, Martin 110

Tang, Shuo 224

Vigo, Roberto 188

Wimmer, Ralf 134

Yang, Qiusong 260

Zajzon, Barna 134
Zavattaro, Gianluigi 110

	Title
	Preface
	Organization
	Table of Contents
	Formal Patterns for Multi-rate DistributedReal-Time Systems
	Introduction
	Preliminaries: Single-Rate PALS and Real-Time Maude
	Multirate Machine Ensembles
	Multirate PALS
	Formalizing the Asynchronous System in Real-Time Maude
	Correctness of the Multirate PALS Transformation

	An Aeronautics Case Study
	Related Work
	Conclusions
	References

	Component Interfaces with Contracts on Ports
	Introduction
	Labeled Interface Theories
	A Theory of Component Interfaces with Port Contracts
	Port Contracts and Component Interfaces
	Composition of Component Interfaces
	Refinement of Component Interfaces
	Correct Component Environments
	Reliability of Component Interfaces

	Component Interfaces with MIOs
	Labeled Modal Interface Theory
	Modal Component Interfaces

	Conclusion
	References

	Avoiding Diamonds in Desynchronization
	Introduction
	Basic Definitions
	Properties of Desynchronizable Systems
	Well-Posedness
	Independence of External Actions
	Input Determinism
	The Diamond Property
	Sufficient Conditions for Desynchronizability

	Half-Duplex Communication Eliminates the Diamonds
	Discussion
	Relaxing the Half-Duplex Condition
	Desynchronization in Supervisory Control
	Desynchronization of Non-Concrete Synchronous Systems
	Conclusions

	References

	The Tale of SOLOIST: A Specification Languagefor Service Compositions Interactions
	Introduction
	Requirements Elicitation and Design of the Language
	Eliciting Language Requirements from Usage of Specification Patterns in SBAs
	Design Choices

	Service Compositions and Their Specifications at a Glance
	Examples of Properties of Service Compositions Interactions

	SOLOIST
	Preliminaries
	Syntax
	SOLOIST at Work
	Informal Semantics
	Formal Semantics

	Translation to Linear Temporal Logic
	Related Work
	Conclusion and Future Work
	References

	A Categorical Approach to Structuringand Promoting Z Specifications
	Introduction
	A Brief Overview of Z
	A Categorical View of Z
	Schemas as Types and Promotion
	Promotion as an Institution Representation

	Heterogeneous Z Specifications and Structuring
	Related Work and Conclusions
	References

	Assume-Guarantee Reasoningfor Safe Component Behaviours
	Introduction
	Compositional Specification Theory
	Assume-Guarantee Framework for Safety Properties
	Refinement
	Inferring Components from AG Specifications
	Characteristic AG Specification of a Component
	Parallel Composition
	Conjunction
	Quotient
	Decomposing Parallel Composition

	A Printing Example
	Conclusion
	References

	A Petri Net Based Analysis of Deadlocksfor Active Objects and Futures
	Introduction
	A Calculus for Active Objects
	Syntax
	Operational Semantics

	Deadlock
	Translation into Petri Nets
	Places and Tokens
	Code Abstractions
	Transitions
	Petri Net Construction for Creol Programs

	Deadlock Freedom
	Extended Deadlock Marking

	Conclusion
	References

	Run-Time Verification of Black-Box Components Using Behavioral Specifications:An Experience Report on Tool Development
	Introduction
	The Modeling Framework
	Generic Tool Architecture
	Instantiating the Generic Tool Architecture
	References

	Symbolic Counterexample Generationfor Discrete-Time Markov Chains
	Introduction
	Preliminaries
	Discrete-Time Markov Chains and Critical Subsystems
	Symbolic Representation of DTMCs

	Symbolic Counterexample Generation Framework
	Searching Paths Using SAT Solving
	Adapting Bounded Model Checking for Global Search
	Adapting Bounded Model Checking for Fragment Search
	SAT Heuristic for Finding More Probable Paths

	Searching Paths Symbolically
	Symbolic Global Search
	Symbolic Fragment Search

	Case Studies
	Conclusion and Future Work
	References

	XCD – Modular, Realizable Software Architectures
	Introduction
	Running Example – The Dining Philosophers
	Paper Structure

	Xcd Components
	Extending DbC – Different Contract Types
	Extending DbC – Service Consumer Contracts
	Component Structure and Its Translation to FSP
	Testing Architectural Components

	Xcd Connectors
	Decentralized Control Connector
	FSP Encoding of Xcd Connector Roles
	Fundamental Connector Properties

	Role Strategies – Control/Design Decisions
	Evaluating Xcd's Modular Specifications
	Related Work
	Conclusions
	References

	LOVER: Light-Weight fOrmal Verificationof adaptivE Systems at Run Time
	Introduction
	The Running Example
	The LOVER Framework
	Incompletely Labeled Transition System
	Qualitative CTL and Path-Qualitative CTL
	qCTL Model Checking of Incomplete Models
	Path-CTL Model Checking

	Experimental Results
	Tool Support and Applicability
	Scalability

	Related Work
	Conclusion and Future Work
	References

	A Calculus for Quality
	Introduction
	Syntax and Semantics
	Expressiveness of Binders
	Motivating Example
	Robustness Analysis
	Conclusion
	References

	Model Checking of Qualitative SensitivityPreferences to Minimize Credential Disclosure
	Introduction
	Illustrative Example
	Background: CI-Nets
	Syntax
	Semantics

	Finding the Most Preferred Set of Credentials
	Dominance Testing
	Kripke Structure Modeling of CI-Net Semantics
	Model Checking for Verifying Consistency and Dominance
	Preference Ordering over Credential-Sets

	Implementation and Experiments
	Overview of Framework
	Experimental Setup

	Related Work
	Summary and Discussion
	References

	IBOS: A Correct-By-ConstructionModular Browser
	Introduction
	Preliminaries
	Illinois Browser Operating System
	Web Browser Security Background
	IBOS Architecture
	Security Goals
	Comparing the IBOS Approach to Commercial Browsers

	Formal Specification of IBOS
	Formal Verification of IBOS Security
	Address Bar Correctness Verification
	Same-Origin Policy Verification

	Related Work and Conclusions
	References

	Guided Search for Deadlocksin Actor-Based Models
	Introduction
	Background
	Model Checking and State-Space Explosion
	Actor Model
	Search Algorithms and Heuristics

	Deadlock Detection Heuristics for Actor Models
	Queue Size (QS)
	Empty Queue (EQ)
	Current Queue (CQ)
	Reductive Queue (RQ)
	Reductive Queue with Memory (RM)
	Queue Difference (QD)
	Queue Difference with Memory (QM)

	Guided-Modere and Experimental Results
	Test Models
	Results

	Related Work
	Discussion and Conclusion
	Future Work
	References

	Assumption Generation for AsynchronousSystems by Abstraction Refinement
	Introduction
	Preliminary Definitions
	Compositional Verification of Asynchronous Systems
	Automatic Assumption Generation
	Experimental Results
	Conclusion
	References

	Author Index

