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1 Introduction

Clustering is one of the most important unsupervised learning problems. It deals
with finding a structure in a collection of unlabeled data points. Hierarchical
clustering algorithms are typically more effective in detecting the true clustering
structure of a structured data set than partitioning algorithms. We find in litera-
ture several important research in hierarchical cluster analysis [Jain et al., 1999].
Hierarchical methods can be further divided to agglomerative and divisive algo-
rithms, corresponding to bottom-up and top-down strategies, to build a hierarchi-
cal clustering tree. Another works concerning hierarchical classifiers are presented
in [Jiang et al., 2010]. In this paper we propose a new way to build a set of self-
organized hierarchical trees.

Self-organizing models (SOM) are often used for visualization and unsuper-
vised topological clustering [Kohonen et al., 2001]. They allow projection in small
spaces that are generally two dimensional. Some extensions and reformulations
of SOM model have been described in the literature [Hammer et al., 2009],
[Bishop et al., 1998, Rossi and Villa-Vialaneix, 2010]. Hierarchical version of SOM
are also defined in [Vesanto and Alhoniemi, 2000]. A variety of these topologi-
cal maps algorithms are derived from the first original model proposed by Ko-
honen. All models are different from each other but share the same idea: de-
pict large datasets on a simple geometric relationship projected on a reduced
topology (2D). SOM model has several tree-structured versions such as TS-SOM
[Koikkalainen and Horppu, 2007], GH-SOM [Dittenbach et al., 2000], TreeSOM
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[Samsonova et al., 2006] and SOM-AT [Peura, 1998]. Our approach should not be
confused with these methods, it is totally different from TS-SOM, GH-SOM in
which the map architecture has the form of a tree. Each neuron of map now becomes
one node of tree. On the other hand TreeSOM proposed to generate a hierarchical
tree where only the leaf nodes may get many data elements, and other nodes none.
SOM-AT introduce matching and adjusting schemes for input data attribute trees.
The most optimal tree is selected to represent input data.

Concerning the visual aspect of our studies, we can find in the literature sev-
eral algorithms for visualizing hierarchical structures, which are mostly 2D. One
may cite treemap method which recursively maps the tree to embedded rectan-
gles [Johnson and Shneiderman, 1991, Shneiderman, 1992]. Hyperbolic displays
have also been studied in 2D and 3D [Carey et al., 2003]. Another example is the
cone tree [Robertson et al., 1991]: the root of the tree is the top of a cone. The
subtrees of this root are all included in this cone. The size of a cone may depend
on the number of nodes which are present in each tree. In this work we intro-
duce a new method named MTM (Map Tree Map), that proposes a self-organizing
treemap, which provides a simultaneously hierarchical and topological clustering.
Each cell of map represents a tree structured data and treemap method provides
a global view of the local hierarchical organization. Data moves toward a map of
trees according to autonomous rules that are based on nearest neighborhood ap-
proach. The topological process of the proposed algorithm is inspired from SOM
model and the rules for building tree are inspired from autonomous artificial ants
method [Azzag et al., 2007, Slimane et al., 2003]. The rest of this paper is orga-
nized as follows: in section 2, we present both SOM model and proposed model.
In section 3, we show the experimental results on several data sets. These data sets
illustrate the use of this algorithm for topological and visual hierarchical clustering.
Finally we offer some concluding comments of proposed method and the further
research.

2 Hierarchical and Topological Clustering Model

We present in this paper a new model that provides a hierarchical clustering of data
where each partition is a forest of trees organized in a 2D map. The obtained map is
inspired from SOM algorithm and could be seen as a forest of trees.

2.1 Self-Organizing Maps

Self-organizing maps are increasingly used as tools for visualization and cluster-
ing, as they allow projection over small areas that are generally two dimensional.
The basic model proposed by Kohonen (SOM: Self-Organizing-Map) consists of a
discrete set C of cells called map. This map has a discrete topology defined by undi-
rected graph, it is usually a regular grid in 2 dimensions. We denote p as the number



A New Way for Hierarchical and Topological Clustering 87

of cells. For each pair of cells (c,r) on the map, the distance δ (c,r) is defined as the
length of the shortest chain linking cells r and c on the grid without sub-trees. For
each cell c this distance defines a neighbor cell; in order to control the neighbor-
hood area, we introduce a kernel positive function K (K ≥ 0 and lim

|x|→∞
K(x) = 0).

We define the mutual influence of two cells c and r by K(δ (c,r)). In practice, as
for traditional topological map we use smooth function to control the size of the
neighborhood as:

K(δ (c,r)) = exp

(
−δ (c,r)

T

)
(1)

Using this kernel function, T becomes a parameter of the model. As in the SOM
algorithm, we increase T from an initial value Tmax to a final value Tmin. Let Rd be
the euclidean data space andA= {xi; i = 1, . . . ,n} a set of observations, where each
observation xi = (x1

i ,x
2
i , . . . ,x

d
i ) is a continuous vector in Rd . For each cell c of the

grid, we associate a referent vector wc = (w1
c ,w

2
c , . . . ,w

j
c, . . . ,wd

c ) of dimension d.
We denote byW the set of the referent vectors. The set of parameterW , has to be
estimated fromA iteratively by minimizing a cost function defined as follows:

R(φ ,W) = ∑
xi∈A

∑
r∈C

KT (δ (φ(xi),r))||xi−wr||2 (2)

where φ assigns each observation x to a single cell in the map C. In this expres-
sion ||x−wr||2 is a square of the Euclidean distance. At the end of learning, SOM
provides a partition of p subsets.

2.2 Proposed Model: Map Treemap

The proposed model uses the same grid process, combined with a new concept of
neighborhood. Our model seeks to find an automatic clustering that provides a hi-
erarchical and topological organization of observationsA. This model is presented
as regular grid in 2D that has a topological order of p cells. Each cell c is the ‘root
support’ of a tree denoted by Treec and each node Nxi of the tree represents a data
xi. More precisely the proposed model defines a forest of trees organized on a 2D
map called C. Taking into account the proximity between two trees on the map C is a
useful information which allows to define a topological neighborhood relation used
in traditional topological maps. Thus, for each pair of trees Treec and Treer on the
map, the distance δ (c,r) is defined as the length of the shortest chain linking cells
r and c on the map associated to Treec and Treer. To model the influence between
Treer and Treec we use a neighborhood function K defined above (eq. 1). Thus,
the mutual influence between treec and treer is defined by the function KT (δ (c,r))
where T represents the temperature function that controls the size of the neighbor-
hood. We associate to each tree a representative point denoted wc which is a given
data denoted xi in treec (wc = xi ∈ treec). Choosing a representative point allows
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easily adapting our algorithm to any type of data (categorical, binary, and mixed data
data . . . etc). The objective function of self-organizing trees is defined as follows:

R(φ ,W) = ∑
c∈C

∑
xi∈Treec

∑
r∈C

KT (δ (φ(xi),r))||xi−wr||2 (3)

Minimizing the cost functionR(φ ,W) is a combinatorial optimization problem. In
practice, we seek to find the best (optimal) solution by using batch version. In this
work we propose to minimize the cost function in the same way as “batch” version
but using statistical characteristics provided by trees to accelerate the convergence
of the algorithm. Three basic steps are necessary to minimize the cost function and
are defined as follows:

1. Assignment step. Each datum xi is connected in Treec and forms a hierarchical
relationship noted parent-child. We denote by nodeChild(xi) the function, which
provides all child nodes with the same parent node Nxi associated to the data xi.
At step t = 0, nodeChild(xi) = xi.

Assignment step consists of finding for each observation xi a best match tree
called “Winner” using the assignment function named χ . This tree is also defined
as winner tree. The children nodes of xi (nodeChild(xi)). In other words, all
nodes of tree Nxi are recursively assigned to the winning tree. The assignment
function is defined as follows:

χ(nodeChild(xi)) = argmin
r ∑

c∈C

KT (δ (r,c))‖xi−wc‖2 (4)

where, wc ∈A
2. Building Tree step. In this step we seek to find the best position of a given

data xi in the Treec associated to cell c. We use connections/disconnections rules
inspired from [Azzag et al., 2007, Slimane et al., 2003]. Each data will be con-
nected to its nearest neighbor. The particularity of the obtained tree is that each
node N whether it is a leaf or an internal node represents a given data xi. In this
case, Nxi denotes the node that is associated to the data xi, Nxpos represents current
node of the tree and Nxi+ the node connected to Nxpos , which is the most similar
(closest by distance) to Nxi . We also note Vpos the local neighborhood observed
by Nxi and the node connected Nxpos in the concerned tree.

Let TDist(Nxpos) be the highest distance value which can be observed among
the local neighborhood Vpos. xi is connected to Nxpos if and only if the connection
of Nxi further increases this value. Thus, this measure represents the value of the
maximum distance observed in the local neighborhood Vpos, between each pair
of data connected to the current node Nxpos :

TDist(Nxpos) = Max j,k
∥∥Nx j −Nxk

∥∥2

= Max j,k
∥∥x j− xk

∥∥2
(5)

Connections rules consist of comparing a node Nxi to the nearest node Nxi+ . In
the case where both nodes are sufficiently far away (‖Nxi−Nxi+‖2 > TDist(Nxpos))
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the node Nxi is connected to its current position Nxpos . Otherwise, the node Nxi

associated to xi is moved toward the nearest node Nxi+ . Therefore, the value
TDist decreases for each node connected to the tree. In fact, each connection of a
given data xi implies a local minimization of the value of the corresponding TDist .
Therefore it implies a minimization of the cost function (3).

It can be observed that, for any node of the tree, the value TDist(Npos) is
only decreasing, which ensures the termination and the minimization of the cost
function. At the end of the tree construction step, each cell c of the map C will
be associated to treec.

3. Representation step.
Minimizing the cost functionR(φ ,W) with respect to wc corresponds to finding
the point that minimizes all local distances weighted by neighborhood function.

wc = min
wc∈treec

∑
xi ∈A

K(δ (c,χ(xi)))‖xi−wc‖2 ,

∀c ∈C (6)

The temperature T evolves according to the iterations from Tmax to Tmin in the same
way as traditional topological maps. In the practical case we use neighborhood func-
tion as following:

KT (x) = e
−δ (r,c)

T

We present below the detail of MT M algorithm 4.

2.3 Topological Order in MT M Model

The decomposition of the cost functionR that depends on the value of T , allows to
rewrite its expression as follows:

RT (χ ,W) =

[
∑
c

∑
r �=c

∑
xi∈treer

KT (δ (c,r))‖xi−wr‖2

]

+

[
KT (δ (c,c))∑

c
∑

xi∈treec

‖xi−wc‖2

]

where δ (c,c) = 0
The cost functionR is decomposed into two terms. In order to maintain the topo-

logical order between trees, minimizing the first term will bring trees corresponding
to two neighboring cells. Indeed, if Treec and Treer are neighbors on the map, the
value of δ (c,r) is lowest and in this case the value of KT (δ (c,r)) is the highest.
Thus, minimizing the first term has as effect reducing the value of the cost function.
Minimizing the second term corresponds to the minimization of the inertia of points
connected to the Treec (in the case of Euclidean space). Minimizing this term is
considered as applying hierarchical clustering algorithm (AntTree).
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Algorithm 4. Detail of MT M algorithm
1: Input: Map C of nc cells, learning set A, the number of iteration niter

2: Output: Map C of nc empty cells or which contain sub-tree
3: for c ∈C do
4: wc = xi
5: end for

{ /* random Initialization of the map */}
6: for t = 1 to niter do
7: for xi ∈ A do
8: if first assignment of xi then
9: Find the “wining” cell χ(xi) by using the assignment function defined in (eq. 4)

10: Associate the data xi to a node Nxi ,
11: Connect the node Nxi in the sub-tree Treeχ(xi) by using connection rules
12: Update the representative point wc by using the defined expression (eq. 6)
13: else
14: Find the “wining” cell cnew = χ(nodechild(xi)) by using function defined in 4

{/* tth assignment for the data xi*/}
15: end if
16: if cnew �= cold then
17: Assign data xi and the child node nodechild(xi) to the new cell cnew

18: Connect the node Nxi and the child node in the sub-tree treecnew by using con-
nection rules.

19: Update the two representative points wcold and wcnew by using the defined func-
tion (eq.6)

20: end if
21: end for
22: end for

For different values of temperature T , each term of the cost function has a rel-
ative relevance in the minimization process. For large values of T , the first term is
dominant and in this case, the priority is to preserve the topology. When value of T
is lowest, the second term is considered in the cost function. In this case, the prior-
ity is to determine representative compact trees. Our model provides a solution to
regularized AntTree algorithm: regularization is achieved through the constraint of
ordering on the trees.

3 Comparatives Results

3.1 Visual Exploration of MTM

We have tested and compared the proposed algorithm on several datasets that have
been generated with Gaussian and Uniform distributions. Others have been ex-
tracted from the machine learning repository [Blake and Merz, 1998] and have sev-
eral difficulties (fuzzy clustering, no relevant feature, . . . ). Before comparing our
numerical results, we present a map visualization with associated treemaps.
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Treemap is a visualization technique introduced in [Shneiderman, 1992]. An im-
portant feature of treemaps is that it makes very efficient use of display space.
Thus it is possible to display large trees with many hierarchical levels in a minimal
amount of space (2D). Treemap can be helpful when dealing with large clustered
tree. Treemaps lend themselves naturally to showing the information encapsulated
in the clustering tree. Viewing a tree at some level of abstraction, the viewer is re-
ally looking at nodes belonging to some level in the tree. A treemap can display the
whole structure of trees and allow the users to place the current view in context.
In the proposed visualization technique, each tree is represented by a treemap. This
aims to obtain an automatic organization of treemaps on a 2D map. Figure 1 shows
an example of four tree structures with its corresponding treemaps. The positioning
of tree nodes in a treemap is a recursive process. The nodes are represented as rect-
angles of various shapes. First, the children of the root are placed across the display
area horizontally. Then, for each node N already displayed, each of N’s children is
placed across vertically within N’s display area. This process is repeated, alternating
between horizontal and vertical placement until all nodes have been displayed. We
note that each rectangle is colored according to the real label of its corresponding
node/data. This makes easy a visual comparison of homogeneous clusters.

Fig. 1 Map treemaps representation: 2×2 MTM

In figure 1 each treemap represents a hierarchical organization of data belonging
to cluster “tree”. Thus, MTM approach has several properties that allow obtaining
a simultaneous topological hierarchical clustering. We observe in figure 1 that data
placed in the treec are similar to Nxi and the child nodes of Nxi represent recursively
subtrees that are dissimilar to their “sister” subtrees. In order to best analyze the
obtained result, we have learned for each dataset 1× 1 MTM in order to build a
single treemap. Figures 2,3, and 4 display some example of 1× 1 MTM and 4× 4
MTM. Observing both maps on each dataset, we find that our algorithm provides a
MTM, which is a multi-divisions of the main treemap. We can see that topological
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and hierarchical organization of data is more apparent. In order to visualize the
coherence between intra-organization of treemaps and the label points, we assign
one color to each label. In each figure (2, 3, 4), we distinguish two regions on the
MTM that are dedicated to the pure and mixed clusters. Map presented in Figure 2.b
shows diagonal from right to left is dedicated to one class (colored in blue) and
the treemap positioned in the bottom right is a mixed cluster. We observe in this
treemaps, that yellow point is positioned in a lower level on the tree, this behavior
is normal since the yellow classes are situated in the neighborhood. Same remarks
concern Lsun and Tetra dataset. In figure 4 observing the top right treemap (cell)
and the bottom left, we can conclude on the level and the side where cluster will
become mixed. Thus, this visual analysis is done using only 2D visualization unlike
SOM method where we can not conclude on which level data is positioned. This
visual system allows analyst to easily navigate trough the databases and to let the
user easily interact with the data and perceive details, global context and shape of
the tree.

3.2 Comparison with Other Clustering Methods

We remind here that MTM model provides more information than traditional hier-
archical models, K-means or others. In this work we compare the obtained result
with SOM model. In this case we adopt the same parameter: map size, initial and
final neighborhood.

To measure the quality of map clustering, we adopt the approach of comparing
results to a ‘ground truth’. We use two criterions for measuring the clustering re-
sults. The first one is Rand index which measures the percentage of observation

Table 1 Competitive results obtained with AHC, MTM and SOM using the same parameter
(map size, initial and final parameter T). DB is the Davides-Bouldin index.

Datasets size. MTM SOM CAH
DB Rand DB Rand DB Rand

Atom(2) 800 1.4 0.88 1.47 0.51 0.81 0.77
Anneaux (2) 1000 0.80 0.61 0.90 0.51 0.50 0.55

ART1(4) 400 0.98 0.81 0.85 0.81 0.79 0.88
Demi-cercle(2) 600 0.58 0.60 0.67 0.5 0.55 0.48

Glass(7) 214 1.56 0.70 2 0.65 0.65 0.72
Hepta(7) 212 0.92 0.92 0.85 0.93 0.35 1.00

Iris(3) 150 1.06 0.75 1.03 0.75 0.43 0.77
Lsun(3) 400 0.97 0.71 1.09 0.72 0.54 0.85
Pima(2) 768 1.09 0.5 2.23 0.43 0.65 0.56
Target(6) 770 1.4 0.85 1.17 0.58 0.44 0.81
Tetra(4) 400 0.82 0.81 1.25 0.76 0.71 0.99

TwoDiamonds(2) 800 0.86 0.60 0.81 0.51 0.57 1.00
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pairs belonging to the same class and which are assigned to same cluster of the
map [Saporta and Youness, 2002]. The second index is Davides Bouldin criterion
which [Davies and Bouldin, 1979] is used to determine the optimal number of cen-
troids for K-means.

Table 1 reports clustering evaluation criterion obtained with MTM, SOM and
AHC. MTM method provides results quite comparable to those obtained with SOM
method on the majority of cases. Looking to columns (DB and Rand index) asso-
ciated to MTM, we observe that DB index value is lower using our algorithm and
rand index is highest near one for the majority of datasets.

(a) 1×1 Treemap of data set

(b) 4×4 MTM

Fig. 2 Iris Dataset
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(a) 1×1 Treemap of data set

(b) 4×4 MTM

Fig. 3 Lsun Dataset

Concerning AHC method [Jain et al., 1999], we have used DB index to select
the number of clusters. This justifies the best results of DB index obtained by AHC
comparing to MTM. Indeed DB is lower for the majority of cases but not far away
comparing to DB index obtained by MTM. Concerning Rand index values, MTM
obtains similar results as AHC for the majority of cases.

Our purpose through this comparison is not to assert that our method is the
best, but to show that MTM method can obtain quite the same good results as
SOM or other well known clustering algorithms. Unlike SOM method or AHC,
MTM does not require a posterior processing to analyze the structure of data be-
longing to clusters. MTM provides simultaneously hierarchical and topological
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(a) 1×1 Treemap of data set

(b) 5×5 Map-Treemaps

Fig. 4 Tetra Dataset

clustering which is more interesting for visualization task. Thus MTM has two main
advantages:

1. Complexity: we reduce the number of assignments. When an observation is re-
assigned to another tree, the entire sub-trees associated to this observation will
follow it into the new cell (see expression 4).

2. Data projection and rapid visualization: In our model, we don’t need to use a tra-
ditional projection of the map to get an idea about the structure of data. Treemap
organization of data presents a local structure for each cell of the map.
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4 Conclusion and Perspectives

In this paper, we have presented a new algorithm dedicated to hierarchical clustering
that has the following properties: it provides a local hierarchical clustering of data,
that allows a better visualization of the obtained organization. It generates both 2D
self-organization of the trees associated to each cell and hierarchical organization
provided by tree. The obtained results have been compared to those obtained by
traditional Kohonen algorithm (SOM) and AHC. This comparison shows that the
proposed approach is promising and can be used in various applications of data
mining. The major benefits of MTM approach are the following: MTM uncovers the
hierarchical structure of the data allowing the user to understand and analyze large
amounts of data. Using the various emerging trees at each cell being rather small in
size, it is much easier for the user to keep an overview of the various clusters.

Results presented in this papaer are preliminary and much work still be done. It
is obvious that using trees for data clustering greatly speeds up the learning process,
we wish to generalize these algorithms to other kind of structures which may not
be trees. The same principles seem to be applicable also to graphs. Also, it will be
necessary to focus on the visual aspect of our approach. Indeed, we will develop a
2D/3D view of the different trees that result from the hierarchical clustering in order
to allow an interactive exploration of data.
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