
Coalgebraic Bisimulation-Up-To

Jurriaan Rot1,2,�, Marcello Bonsangue1,2, and Jan Rutten2,3

1 LIACS – Leiden University
{jrot,marcello}@liacs.nl

2 Centrum Wiskunde en Informatica
3 Radboud University Nijmegen

janr@cwi.nl

Abstract. Bisimulation-up-to enhances the bisimulation proof method
for process equivalence. We present its generalization from labelled tran-
sition systems to arbitrary coalgebras, and show that for a large class
of systems, enhancements such as bisimulation up to bisimilarity, up to
equivalence and up to context are sound proof techniques. This allows
for simplified bisimulation proofs for many different types of state-based
systems.

1 Introduction

Bisimilarity is a fundamental notion of equivalence between labelled transition
systems. Two processes are bisimilar if they are related by a bisimulation, which
is a relation between states such that related pairs match each others transitions
and their successors (also called derivatives) are again related. Bisimulation-
up-to refers to a family of techniques for proving bisimilarity based on smaller
relations than usual, in many cases reducing the amount of work [13,9,4]. For
example, in a bisimulation up to bisimilarity the derivatives do not need to be
related directly but may be bisimilar to states which are [8]; this is a valid
proof method for bisimulation on labelled transition systems. Bisimulation up
to context [13] is another such technique, in which one can use the algebraic
structure (syntax) of processes to relate derivatives.

The theory of coalgebras provides a mathematical framework for the uniform
study of many types of state-based systems, including labelled transition systems
but also (non)-deterministic automata, stream systems, various types of proba-
bilistic and weighted automata, etc. The type of a coalgebra is expressed by an
endofunctor F . One of the main elements of the theory is the coalgebraic notion
of bisimulation, which generalizes classical bisimulation for labelled transition
systems to arbitrary coalgebras. Another notion of equivalence of coalgebras is
behavioural equivalence. Intuitively, two states are behaviourally equivalent if
they have the same observable behaviour, where the observations depend on
the type functor F . For many types of systems, including labelled transition

� The research of this author has been funded by the Netherlands Organisation for
Scientific Research (NWO), CoRE project, dossier No.: 612.063.920.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 369–381, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

370 J. Rot, M. Bonsangue, and J. Rutten

systems, these notions coincide, but for some types, such as certain types of
weighted automata, bisimulation is stronger than behavioural equivalence (see,
e.g., [3]).

In this paper we introduce a generalization of bisimulation-up-to from
labelled transition systems to the theory of coalgebras. In this setting we define
bisimulation up to bisimilarity, up-to-union, up-to-context, up-to-equivalence
and combinations thereof. As it turns out, the general notion of coalgebraic
bisimulation-up-to which we introduce is somewhat problematic: we show that
bisimulation up to bisimilarity is not sound in general, i.e., that it can not be
used as a valid proof principle. So we introduce behavioural equivalence-up-to,
for which all of the aforementioned instances work very well. Then by the cor-
respondence between behavioural equivalence and bisimulation which holds for
many types of systems (for coalgebras for weak pullback preserving functors, to
be precise) we obtain the soundness of bisimulation-up-to for such systems.

Related work. Sangiorgi [13] introduced the first systematic treatment of more
general up-to techniques for labelled transition systems, and discussed the im-
portant notion of bisimulation up to context. A good reference for the current
state of the art in this line of research is [9]. In [4] bisimulation up to con-
text is applied to obtain a very efficient algorithm for checking equivalence of
non-deterministic finite automata. Lenisa [7] developed bisimulation-up-to in the
context of a set-theoretic notion of coinduction. Moreover in loc. cit. a framework
for up-to techniques for coalgebraic bisimulation is studied, but as mentioned in
the paper itself already, the important notion of bisimulation up to bisimilarity
is problematic in this setting. Bisimulation up to context is studied at a general
coalgebraic level in [7].

The up-to-context technique for coalgebraic bisimulation was later derived as
a special case of so-called λ-coinduction: Bartels [2] showed that this technique
can be applied in the context of operators defined by certain natural transforma-
tions, corresponding for example to the well-known GSOS format in the case of
labelled transition systems. A direct corollary of this is the soundness of bisim-
ulation up to context for CCS. However, [2, pages 126, 129] mentions already
that it would be ideal to combine the up-to-context technique with other up-to
techniques. Indeed, combining up-to-context with up-to-bisimilarity or up-to-
equivalence yields powerful proof techniques (see, e.g., [9] and this paper for
examples).

The recent paper [14] introduces bisimulation-up-to, where the notion of
bisimulation is based on a specification language for polynomial functors (which
does not include, for example, labelled transition systems). In contrast, we base
ourselves on the standard notion of bisimulation, and only need to restrict to
weak pullback preserving functors, to obtain our soundness results.

Outline. The following section contains the necessary preliminaries. Then in
Section 3 we introduce bisimulation-up-to for coalgebras, together with impor-
tant instances and examples, and we discuss their soundness in Section 4. In
Section 5 we recall behavioural equivalence and its relation with bisimulation,

Coalgebraic Bisimulation-Up-To 371

and in Section 6 we present the main soundness results of bisimulation-up-to via
behavioural equivalence-up-to. We conclude in Section 7.

2 Preliminaries

By Set we denote the category of sets and total functions. For a relation R ⊆
X ×X we denote by R the smallest equivalence relation containing R, i.e., its
reflexive, symmetric and transitive closure, or equivalence closure. If R is an
equivalence relation then we denote by qR : X → X/R the quotient map, which
sends each element to its equivalence class. For any relation R ⊆ X × Y we
denote by πR

1 : R → X and πR
2 : R → Y the respective projection maps, and

we omit R if it is clear from the context. Given two functions f : X → Y and
g : X → Z, the pairing of f and g is the unique function 〈f, g〉 : X → Y ×Z with
the property that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g. The kernel of a function
f : X → Y is defined as ker(f) = {(x, y) ∈ X ×X | f(x) = f(y)}.

A coalgebra for a functor F : Set → Set is a pair (X,α) consisting of a set X
and a function α : X → FX . We call X the carrier or the set of states, and α
the transition structure or dynamics. A function X → Y between the respective
carriers of two coalgebras (X,α) and (Y, β) is a homomorphism if Ff ◦α = β ◦f .
For a coalgebra α : X → FX , a relation R ⊆ X ×X is an (F -)bisimulation if
R itself can be equipped with a transition structure γ : R → FR such that the
following diagram commutes:

X

α

��

R
π1��

γ

��

π2 �� X

α

��
FX FR

Fπ1

��
Fπ1

�� FX

The largest bisimulation on α exists [11] and is denoted by ∼α, or simply by
∼ if α is clear from the context. Two states x, y ∈ X of a coalgebra are called
bisimilar if x ∼ y.

Example 1. We recall several types of coalgebras and their corresponding notions
of bisimulation. In (3) and (4) below we introduce operations on coalgebras; these
will become relevant in the examples in Section 3.

1. Finitely branching labelled transition systems (lts’s) over a set of labels A are
coalgebras for the functor FX = Pf (A×X). For an lts α : X → Pf(A×X)

we write x
a→ x′ iff (a, x′) ∈ α(x). So intuitively, for a state x ∈ X ,

α(x) contains all the outgoing labelled transitions from x. Bisimulation
instantiates to the classical definition. A relation R ⊆ X × X is called
a bisimulation provided that for all (x, y) ∈ R: if x

a→ x′ then there

exists a state y′ such that y
a→ y′ and (x′, y′) ∈ R, and vice versa.

372 J. Rot, M. Bonsangue, and J. Rutten

2. One of the simplest interesting types of coalgebras is given by the functor
FX = X + 1, where 1 is the singleton {∗}. We call such coalgebras deter-
ministic systems with termination. An F -coalgebra α : X → X + 1 can, for
a given state x, either terminate (α(x) = ∗) or make a transition to another
state x′ ∈ X (α(x) = x′). If a state x terminates we write x ↓, otherwise we
write x′ for α(x), and call x′ the derivative of x. In this case a bisimulation
is a relation R ⊆ X ×X such that for all (x, y) ∈ R : either x ↓ and y ↓, or
(x′, y′) ∈ R.

3. Coalgebras for the functor FX = R × X , where R is the set of real num-
bers, are called stream systems (over the reals). For a stream system 〈o, t〉 :
X → R × X and a state x ∈ X , if o and t are clear from the context we
denote o(x) by x0 and t(x) by x′. A relation R ⊆ X × X is a bisimula-
tion if for each (x, y) ∈ R : x0 = y0 and (x′, y′) ∈ R. A special stream
system is formed by taking as carrier the set R

ω = {σ | σ : N → R} of
all streams (infinite sequences) of elements of R, and defining the transition
structure 〈o, t〉 : Rω → R×R

ω as o(σ) = σ(0) and t(σ)(n) = σ(n+1)). This
F -coalgebra is in fact the final one, that is, every stream system has a unique
homomorphism into it [11]. We may define operations on streams by means
of behavioural differential equations [12], in which an operation is defined by
specifying its initial value and its derivative. Instead of recalling the general
definition we only consider the operations of addition (+), shuffle product
(⊗) and shuffle inverse (−1):

Differential equation Initial value Name
(σ + τ)′ = σ′ + τ ′ (σ + τ)0 = σ0 + τ0 sum
(σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ (σ ⊗ τ)0 = σ0 × τ0 shuffle product
(σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) (σ−1)0 = (σ0)

−1 shuffle inverse

The inverse operation is only defined on streams σ for which σ0 �= 0. With
every real number r we associate a stream [r] = (r, 0, 0, 0, . . .) (we will abuse
notation and denote [r] by r), and we abbreviate (−1)⊗σ by −σ. The set of
terms T (Rω) is defined by the grammar t ::= σ | t1+ t2 | t1⊗ t2 | t−1

1 where
σ ranges over Rω. We can turn T (Rω) into a coalgebra S = (T (Rω), β) by
defining the transition structure by induction according to the final coalgebra
(for the base case) and the above specification (for the other terms).

4. Coalgebras for the functor FX = 2 × XA correspond to deterministic au-
tomata with transitions in A. For a coalgebra 〈o, f〉 : X → 2 × XA and
a state x ∈ X , we have o(x) = 1 iff x is a final or accepting state. The
function f(x) assigns, to each alphabet letter a ∈ A, the next state or
a-derivative, denoted xa. A relation R ⊆ X × X is a bisimulation if for
each (x, y) ∈ R : o(x) = o(y) and for each a ∈ A: (xa, ya) ∈ R. The set
of formal languages P(A∗) can be given an F -transition structure 〈o, f〉 as
follows: o(l) = 1 iff l contains the empty word, and f(l)(a) = {w | aw ∈ L }.
This is the final F -coalgebra.

Coalgebraic Bisimulation-Up-To 373

Using a suitable format of behavioural differential equations we can define
the operations of regular expressions as follows [10]:

Differential equation Initial value Name
0a = 0 o(0) = 0 zero
1a = 0 o(1) = 1 one

ba =

{
1 if b = a

0 otherwise
o(b) = 0

(x+ y)a = xa + ya o(x + y) = max(o(x), o(y)) union

(x · y)a =

{
xa · y if o(x) = 0

xa · y + ya otherwise
o(x · y) = min(o(x), o(y)) composition

(x∗)a = xa · x∗ o(x∗) = 1 Kleene star

In a similar way as we have done for the operations on streams, we can
construct the set of regular expressions over languages T (P(A∗)) and turn
it into a coalgebra R = (T (P(A∗)), β), defining the transition structure β
by induction according to the final coalgebra and the above specification of
the operators.

Algebras and distributive laws. In this paragraph we shortly recall some concepts
needed for our discussion of bisimulation up to context. These are quite techni-
cal, and we do not have the space to cover them in detail; however, a large part of
the remainder of this paper can be understood without these preliminaries. An
(Eilenberg-Moore) algebra for a monad T on Set is a tuple (X,α) consisting of
a set X and a map TX → X , satisfying some additional laws (see, e.g., [6]). For
an example, recall that in the above Example 1(3), we formed the set of terms
T (Rω) over streams of real numbers. In general, given operation and constant
symbols (with associated arities), the functor T which constructs the correspond-
ing set of terms over sets of variables X , is (part of) a monad, which we call
the term monad (for this signature). The construction of regular expressions in
Example 1(4) is another such example. Moreover for a set X , a monad gives us
an algebra α : TTX → TX . In the case of a term monad this α is called a term
algebra; it turns a term over terms into a single term.

An (F, T)-bialgebra is a triple (X,α, β) consisting of a T -algebra α and an
F -coalgebra β. We can extend the coalgebra S = 〈T (Rω), β〉 from Example 1(3)
above to a bialgebra 〈T (Rω), α, β〉 where α is the term algebra. Similarly R
forms a bialgebra together with its associated term algebra. Given a T -algebra
α, the set of contexts over a relation R ⊆ X×X is defined as Cα(R) ⊆ X×X =
〈α ◦ Tπ1, α ◦ Tπ2〉(TR). If T is a term monad, then Cα(R) can be characterized
concretely as follows: for two terms t1, t2 ∈ TX we have (t1, t2) ∈ Cα(R) iff we
can obtain t2 by substituting the variables of t1 for variables related by R.

The interplay between syntax and semantics can be captured by the categor-
ical notion of a distributive law of a monad T over a functor F × Id , which is
a natural transformation λ : T (F × Id) ⇒ FT × T satisfying some laws (see,
e.g., [2,6] for a definition). Intuitively T models syntax and F models behaviour,

374 J. Rot, M. Bonsangue, and J. Rutten

and distributive laws of this type can in fact be seen as abstract operational se-
mantics. Indeed, for particular functors F they correspond to concrete formats
such as the well-known GSOS format for processes [2,6]. For instance, the defi-
nition of the operations in Example 1 above give rise to distributive laws. For
a distributive law λ, a bialgebra is called a λ-bialgebra if α and β decompose via
λ; for lack of space we again refer to [2,6] for a precise definition. For now we
note that the coalgebras S and R of Example 1, together with their respective
term algebras, form λ-bialgebras.

3 Bisimulation-Up-To

We introduce the following definition, which generalizes the notions of progres-
sion and bisimulation-up-to from labelled transition systems [9] to coalgebras.

Definition 1. Let α : X → FX be an F -coalgebra. Given relations R,S ⊆
X × X, we say that R progresses to S if there exists a transition structure
γ : R → FS making the following diagram commute:

X

α

��

R
πR
1��

γ

��

πR
2 �� X

α

��
FX FS

FπS
1

��
FπS

2

�� FX

If R progresses to f(R) for a function f : P(X ×X) → P(X ×X) then we say
R is a bisimulation up to f .

Notice that we have not put any restrictions on the function f in the defini-
tion of bisimulation-up-to, and so in general a bisimulation up to f will not
be a bisimulation, neither will it contain only bisimilar pairs. We continue to
introduce several concrete instances of bisimulation-up-to, inspired by the corre-
sponding techniques for labelled transition systems [9]. For now, these instances
of bisimulations-up-to do not yet guarantee any pairs to be bisimilar; a discussion
of when they do follows afterwards, when we define and study their soundness.

Up-to-identity. For a trivial instance of bisimulation-up-to, consider the identity
function id on relations. A bisimulation up to id is simply a bisimulation.

Up-to-equivalence. Consider the function f(R) = R which takes a relation R
to its equivalence closure. We call a bisimulation up to f a bisimulation up to
equivalence.

Example 2. Let α : X → X + 1 be a deterministic system with termination,
and R ⊆ X × X a relation. Spelling out the definition, we find that R is
a bisimulation up to equivalence if for all (x, y) ∈ R: either x ↓ and y ↓, or
x′ R y′. Thus instead of requiring the respective derivatives of each of the pairs

Coalgebraic Bisimulation-Up-To 375

to be related in R again, for a bisimulation up to equivalence, they need only to
be related by the reflexive, symmetric and transitive closure of R. Consider the
following three deterministic systems and relations (where x → y iff x′ = y):

a
��
b�� c

���
��

��
��

e

����������
d��

g

		�
��

��
��

� h

��
��
��
�

i
{(a, b)} {(c, d), (d, e)} {(g, h)}

All three of these relations are bisimulations up to equivalence, whereas none of
them are actual bisimulations. Consider for instance the relation {(a, b)}; when
we compute the respective derivatives of a and b we obtain a′ = b and b′ = a,
but (b, a) �∈ {(a, b)}. However, the pair (b, a) is in the least equivalence relation
containing {(a, b)}. ��

Up-to-union. For S ⊆ X × X a relation, consider the function f(R) = R ∪ S.
We call a bisimulation up to f a bisimulation up to union with S. In order for a
relation R to be a bisimulation up to union with S, the derivatives of R may be
related either by R again or by S.

Example 3. For a deterministic automaton 〈o, f〉 : X → 2 × XA, a relation
R ⊆ X×X is a bisimulation up to union with S if for all (x, y) ∈ R: o(x) = o(y)
and for any alphabet letter a ∈ A: either xaRya or xaSya.

Consider for instance the relation R = {(1∗, 1)} on the automaton R of reg-
ular expressions over languages, introduced in Example 1(4). We first note that
o(1∗) = 1 = o(1); next let a ∈ A be an alphabet letter. Then (1∗)a = 1a·1∗ = 0·1∗
and 1a = 0. Note that (0 · 1∗, 0) �∈ R, so R is not a bisimulation. However sup-
pose S is a relation containing some of the basic equivalences between regular
expressions, such as (0 · r, 0) ∈ S for any regular expression r. Then our relation
R is a bisimulation up to union with S, since the derivatives of the single pair
in R are related by S. Notice that R is also a bisimulation up to union with ∼,
given that 0 · a is bisimilar to 0. ��

Up-to-context. The notion of bisimulation up to context applies to coalgebras
where the state space consists of the elements of an algebra. So let (X,α, β) be
an (F, T)-bialgebra (see the last part of Section 2). If a relation R ⊆ X × X
progresses to the set of contexts Cα(R), then we call R a bisimulation up to
context.

If T is a term monad, such as in the case of the introduced operations on
streams or regular expressions, then in practice this technique only becomes
interesting when combined with other techniques such as up-to-equivalence or
up-to-bisimilarity. A notable exception is when one considers bisimulation up to
context on a final coalgebra, which is the approach taken in the examples in [2]
(e.g., page 126). In that case, combination with up-to-bisimilarity comes for free,
since bisimilarity implies equality on final coalgebras [11].

376 J. Rot, M. Bonsangue, and J. Rutten

Up-to-union-and-equivalence. Let f(R) = R ∪ S for a fixed relation S. If R
progresses to f(R) then we call R a bisimulation up to S-union and equivalence.
By taking the equivalence closure ofR∪S, derivatives may be related by arbitrary
compositions of R and S. If we consider the special case S = ∼ we see that this
is in fact a generalization of bisimulation up to bisimilarity, meaning that the
derivatives may be bisimilar to elements which are related by R. More formally,
a bisimulation up to bisimilarity is based on the function g(R) = ∼ ◦R◦ ∼. Note
that for any relation R, we have g(R) ⊆ f(R). Indeed for a bisimulation up to
∼-union and equivalence we take arbitrary compositions of ∼ and R, including
the specific one ∼ ◦R◦ ∼.

Example 4. For a deterministic automaton 〈o, f〉 : X → 2 × XA, a relation
R ⊆ X ×X is a bisimulation up to S-union and equivalence if for all (x, y) ∈ R:
o(x) = o(y) and for any alphabet letter a ∈ A: (x, y) ∈ R ∪ S. Recall the
automatonR of regular expressions from Example 1(4). Consider the implication
l ∼ al+ b ⇒ l ∼ a∗b for a language l ∈ P(A∗) over alphabet symbols A = {a, b},
intuitively expressing that a∗b is the unique solution of the “equation” l ∼ al+b.
Let R = {(l, a∗b) | l ∼ al+ b}, and let l be a language such that l ∼ al+ b. First
we check that the outputs are equal: o(l) = o(al + b) = 0 = o(a∗b). Next we
compute the a- and b-derivatives of l: la ∼ (al + b)a ∼ l and lb ∼ (al + b)b ∼ 1.
Now la ∼ lR(a∗b)a and lb ∼ 1 ∼ (a∗b)b. Thus R is a bisimulation up to ∼-union
and equivalence. It is not a bisimulation, since (lb, (a

∗b)b) �∈ R. ��

Up-to-union-context-and-equivalence. If a relation R ⊆ X ×X on the carrier of
an (F, T)-bialgebra (X,α, β) progresses to Cα(R ∪ S), then R is called a bisim-
ulation up to S-union, context and equivalence. This is an important extension
of bisimulation up to context because the equivalence closure allows us to relate
derivatives of R by equational reasoning, using Cα(R ∪ S) in multiple steps.

Consider again the bialgebra 〈T (Rω), α, β〉 consisting of the stream system S
of Example 1(3) and the term algebra α. A bisimulation up to S-union, context
and equivalence is a relation R ⊆ T (Rω) × T (Rω) such that for all (t1, t2) ∈ R:
o(t1) = o(t2) and (t′1, t

′
2) ∈ Cα(R ∪ S). The following is an example on S.

Example 5. Suppose we are given that ⊗ is associative and commutative (so
σ ⊗ τ ∼ τ ⊗ σ, etc.) and that σ + (−σ) ∼ 0 (notice that these assumptions
actually hold in general [12]). Let R = {(σ ⊗ σ−1, 1) | σ ∈ T (Rω), σ0 �= 0}. We
can now establish thatR is a bisimulation up to ∼-union, context and equivalence
on the coalgebra S. First consider the initial values: (σ ⊗ σ−1)0 = σ0 × σ−1

0 =

0 = σ0 × (σ0)
−1 = 1 = 10. Next we relate the derivatives by Cα(R∪ ∼):

(σ ⊗ σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (−σ′ ⊗ (σ−1 ⊗ σ−1))

Cα(∼)∗ (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ (σ ⊗ σ−1))

Cα(R∪ ∼) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ 1) Cα(∼)∗ 0 = 1′

where Cα(∼)∗ denotes the transitive closure of Cα(∼); in the above we ap-
ply multiple substitutions of terms for bisimilar terms. Notice that R is not a

Coalgebraic Bisimulation-Up-To 377

bisimulation; here, establishing a bisimulation-up-to is much easier than finding
a bisimulation which contains R. ��
For the special case S = ∅, bisimulation up to f is called bisimulation up to
context and equivalence, or bisimulation up to congruence. Finally notice that
bisimulation up to ∼-union, context and equivalence generalizes the notion of
bisimulation up to context and bisimilarity (see, e.g., [9]), in a similar way as
up-to-union-and-equivalence generalizes up-to-bisimilarity.

4 Soundness

In the above examples, intuitively, establishing that a relationR is a bisimulation-
up-to should imply that R indeed contains only bisimilar pairs, i.e., R ⊆ ∼. How-
ever this depends on the instance of bisimulation-up-to under consideration. For
example, one function f : P(X ×X) → P(X ×X) which, in general, does not
have this property is f(R) = X × X , where any derivatives are related. But
more subtly, for up-to-context, this depends on the bialgebraic structure.

Definition 2. Let α : X → FX be a coalgebra, and f : P(X×X) → P(X×X)
a function. If R ⊆ ∼ for any relation R ⊆ X×X which is a bisimulation up to f ,
then we say bisimulation up to f is sound for α. If this holds for any coalgebra,
then we say bisimulation up to f is sound.

Bisimulation up to identity is sound, of course. If S is a relation which contains
only bisimilar pairs, then bisimulation up to union with S is sound.

Proposition 1. For any coalgebra α : X → FX, and for any relation S ⊆
X ×X: if S ⊆ ∼ then bisimulation up to union with S is sound.

Proof. If R is a bisimulation up to union with S then it is also a bisimulation
up to union with ∼. For any such R, R∪ ∼ is a bisimulation. ��
As a consequence of the above proposition, Example 3 contains a full proof that
1∗ and 1 are bisimilar, given the knowledge that 0 · 1∗ is bisimilar to 0. From [2]
we obtain a sufficient condition for the soundness of bisimulation up to context:

Proposition 2 ([2], Corollary 4.3.8). If (X,α, β) is a λ-bialgebra for a dis-
tributive law λ of a monad T over a functor F × Id, then bisimulation up to
context is sound for (X, β).

Bisimulation up to bisimilarity is not sound in general. This is illustrated by
the following example, which is based on an example from [1] (introduced there
to show that bisimulation and behavioural equivalence (see Section 5) do not
coincide, in general).

Example 6. Define the functor F : Set → Set as FX = {(x1, x2, x3) ∈ X3 |
|{x1, x2, x3}| ≤ 2} and F (f)(x1, x2, x3) = (f(x1), f(x2), f(x3)). Consider the
F -coalgebra with statesX = {0, 1, 2, 0̃, 1̃} and transition structure {0 �→ (0, 1, 0),
1 �→ (0, 0, 1), 0̃ �→ (0, 0, 0), 1̃ �→ (1, 1, 1), 2 �→ (2, 2, 2)}. Then 0 �∼ 1. To see

378 J. Rot, M. Bonsangue, and J. Rutten

this, note that in order for the pair (0, 1) to be contained in a bisimulation
R, there must be a transition structure on this relation which maps (0, 1) to
((0, 0), (1, 0), (0, 1)). But this triple can not be in FR, because it contains three
different elements. However, it is easy to show that 0 ∼ 2 and 1 ∼ 2: the relation
{(0, 2), (1, 2)} is a bisimulation. Now consider the relation S = {(0̃, 1̃), (2, 2)}.
We can define a transition structure γ : S → FS as follows:

(0̃, 1̃) �→ ((0, 1), (0, 1), (0, 1)) (2, 2) �→ ((2, 2), (2, 2), (2, 2))

But 0 ∼ 2 S 2 ∼ 1 (and 2 ∼ S ∼ 2) so S is a bisimulation up to bisimilarity. Thus
if up-to-bisimilarity is sound, then S ⊆ ∼ so 0 ∼ 1, which is a contradiction. ��
Bisimulation up to equivalence is not sound either, which can be shown by
a similar argument. While the above counterexample is based on a somewhat
“unrealistic” functor, in [3, Figure 1] there is an example of a weighted automa-
ton, which is easily turned into another counterexample, showing that bisimula-
tion up to bisimilarity (or up to equivalence) is not sound in the case of weighted
automata. Fortunately, for a large class of systems (even including certain types
of weighted automata) bisimulation up to equivalence is sound, namely for those
modeled by functors which preserve weak pullbacks; we develop this result in
Section 6.

5 Behavioural Equivalence

In this section we recall a notion of equivalence which is in general weaker than
bisimulation, but in many cases (depending on the type of system) the two no-
tions coincide. Suppose α : X → FX is a coalgebra. Two states s, t are called
(F -)behaviourally equivalent if there exists a homomorphism f : X → Y into
some other coalgebra, such that f(s) = f(t). This notion is pointwise extended
to relations R ⊆ X ×X , i.e., R is an (F -)behavioural equivalence if R ⊆ ker(f).
In the sequel we will base ourselves on a more concrete characterization of be-
havioural equivalence, which can be seen to be a slight variation of a character-
ization from [5] (which considers only equivalence relations in this context, but
the generalization to arbitrary relations is easy).

Proposition 3 ([5], Lemma 4.12). Let α : X → FX be an F -coalgebra.
A relation R ⊆ X × X is a behavioural equivalence iff the following diagram
commutes:

R
π1 ��
π2

�� X
α �� FX

Fq �� F (X/R)

where q is the quotient map of R.

Example 7. Let α : X → X+1 be a deterministic system with termination, and
R ⊆ X ×X a relation with quotient map q; then Fq = q + id. According to the
above proposition, R is a behavioural equivalence if for all (x, y) ∈ R, either x ↓
and y ↓, or q(x′) = q(y′). The latter case is equivalent to x′ R y′. ��

Coalgebraic Bisimulation-Up-To 379

In [5], behavioural equivalences which are equivalence relations are called con-
gruences, after [1], which introduced this coalgebraic notion of congruence. We
chose not to use the term “congruence” to avoid confusion with the well-known
concept from universal algebra. Behavioural equivalence coincides with the no-
tion of pre-congruence from [1]. We proceed to recall from that paper the precise
relation with bisimulation.

Proposition 4 ([1]). Any F -bisimulation is an F -behavioural equivalence. If
F preserves weak pullbacks, then the equivalence closure of any F -behavioural
equivalence is an F -bisimulation.

For a fixed coalgebra α the greatest behavioural equivalence exists [1], and it
is denoted by ≈α or simply ≈ if α is clear from the context. From the above
proposition we immediately obtain that for weak pullback preserving functors,
the greatest behavioural equivalence and the greatest bisimulation coincide.

Many interesting functors used to model systems coalgebraically actually do
preserve weak pullbacks, including all functors introduced in Example 1. One
example of a relevant functor that does not preserve weak pullbacks is that
of weighted automata over R. Figure 1 of [3] is an example of a weighted au-
tomaton containing states which are behaviourally equivalent, but not bisimilar.
In fact, the notion of equivalence of weighted automata chosen in [3] is indeed
behavioural equivalence, which coincides with so-called weighted bisimilarity.

Example 7 on the one hand illustrates how to obtain a proof method for be-
havioural equivalence for a given functor F , using Proposition 3. On the other
hand, it suggests that in this proof method, we can reason up to equivalence.
Indeed, while bisimulation up to equivalence is problematic (not sound) in gen-
eral, we will see in the next section that for behavioural equivalence this comes
quite naturally.

6 Soundness via Behavioural Equivalence-Up-To

Given a function f : P(X ×X) → P(X×X), we define behavioural equivalence
up to f as a generalization of the characterization given in Proposition 3. The
quotient map of f(R) is now used to relate derivatives, instead of the quotient
map of R.

Definition 3. Let α : X → FX be an F -coalgebra and R ⊆ X × X. Let
f : P(X × X) → P(X × X). R is a behavioural equivalence up to f if the
following diagram commutes:

R
π1 ��
π2

�� X
α �� FX

Fq �� F (X/f(R))

where q is the quotient map of f(R).

For example, for a deterministic system α : X → X + 1, a relation R ⊆ X ×X
is a behavioural equivalence up to f whenever for all (x, y) ∈ R either x ↓
and y ↓ or x′ f(R) y′. In order to proceed we define soundness of behavioural
equivalence-up-to.

380 J. Rot, M. Bonsangue, and J. Rutten

Definition 4. Let α : X → FX be a coalgebra, and f : P(X×X) → P(X×X).
If R ⊆ ≈ for any relation R ⊆ X ×X which is a behavioural equivalence up to
f , then we say behavioural equivalence up to f is sound for α. If this holds for
any coalgebra, then we say behavioural equivalence up to f is sound.

Behavioural equivalence up to union, equivalence, context etc. are defined in the
same way as for bisimulation-up-to.

Lemma 1. If (X,α, β) is a λ-bialgebra for a distributive law λ of a finitary1

monad T over a functor F × Id, then behavioural equivalence up to context is
sound for (X, β).

We obtain our main result:

Theorem 1. Suppose S ⊆ ≈. Then (F -)behavioural equivalence up to (S-union
and) equivalence is sound. Moreover, if (X,α, β) is a λ-bialgebra for a distribu-
tive law λ of a finitary monad T over a functor F × Id, then (F -)behavioural
equivalence up to (S-union,) context (and equivalence) is sound for (X, β).

Proof. Let f(R) = Cα(R ∪ S). If R is a behavioural equivalence up to f , then it
is also simply a bisimulation up to f ′, where f ′(R) = Cα(R∪S). If S ⊆ ≈, then
R is a behavioural equivalence up to f ′′(R) = Cα(R∪ ≈) as well. Then R∪≈ is
behavioural equivalence up to context, so R ⊆ ≈ by Lemma 1. ��
Behavioural equivalence-up-to is related to bisimulation-up-to as follows:

Lemma 2. Let f : P(X×X) → P(X×X). Then (1) any bisimulation up to f is
also a behavioural equivalence up to f , and (2) if F preserves weak pullbacks, then
soundness of behavioural equivalence up to f implies soundness of bisimulation
up to f .

From the above lemma and Theorem 1 we immediately obtain the following:

Corollary 1. If F preserves weak pullbacks, then Theorem 1 holds for
bisimulation-up-to as well.

Consequently, all the examples of bisimulations-up-to in Section 3 contain actual
proofs of bisimilarity, based on smaller relations than any other relations needed
to establish bisimilarity without these techniques.

7 Conclusions and Future Work

We generalized bisimulation-up-to to the theory of coalgebras. By extending the
theory to behavioural equivalence, we established the soundness of bisimulation
up to union and equivalence for systems modeled by functors which preserve
weak pullbacks. For any coalgebra with an algebraically structured state space

1 A monad is finitary if its underlying functor T preserves filtered colimits. If T is a
term monad, this means there may be infinitely many operations, but each of them
must have finite arity.

Coalgebraic Bisimulation-Up-To 381

which forms a λ-bialgebra for a distributive law λ, we have shown that bisim-
ulation up to union, context and equivalence is sound. Future work includes a
generalization to other categories, investigation of instances of bisimulation-up-to
for concrete types of systems (e.g., [4]), and the integration with the systematic
treatment of enhancements of [9].

References

1. Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M.,
Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Bartels, F.: On generalised coinduction and probabilistic specification formats. PhD
thesis, CWI, Amsterdam (2004)

3. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic per-
spective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: POPL (to appear, 2013)

5. Gumm, H.P.: Elements of the general theory of coalgebras. In: LUATCS 1999 Rand
Afrikaans University, South Africa (1999)

6. Klin, B.: Bialgebras for structural operational semantics: An introduction.
TCS 412(38), 5043–5069 (2011)

7. Lenisa, M.: From set-theoretic coinduction to coalgebraic coinduction: some results,
some problems. ENTCS 19, 2–22 (1999)

8. Milner, R.: Calculi for synchrony and asynchrony. TCS 25, 267–310 (1983)
9. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Ad-

vanced Topics in Bisimulation and Coinduction, pp. 233–289. Cambridge Univer-
sity Press (2012)

10. Rutten, J.: Automata and Coinduction (An Exercise in Coalgebra). In: Sangiorgi,
D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer,
Heidelberg (1998)

11. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)
12. Rutten, J.: Behavioural differential equations: a coinductive calculus of streams,

automata, and power series. TCS 308(1-3), 1–53 (2003)
13. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comp. Sci. 8(5),

447–479 (1998)
14. Zhou, X., Li, Y., Li, W., Qiao, H., Shu, Z.: Bisimulation Proof Methods in a

Path-Based Specification Language for Polynomial Coalgebras. In: Ueda, K. (ed.)
APLAS 2010. LNCS, vol. 6461, pp. 239–254. Springer, Heidelberg (2010)

	Coalgebraic Bisimulation-Up-To
	Introduction
	Preliminaries
	Bisimulation-Up-To
	Soundness
	Behavioural Equivalence
	Soundness via Behavioural Equivalence-Up-To
	Conclusions and Future Work
	References

