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Abstract. For many applications, the data sets to be processed grow
much faster than can be handled with the traditionally available algo-
rithms. We therefore have to come up with new, dramatically more scal-
able approaches. In order to do that, we have to bring together know-how
from the application, from traditional algorithm theory, and on low level
aspects like parallelism, memory hierarchies, energy efficiency, and fault
tolerance. The methodology of algorithm engineering with its emphasis
on realistic models and its cycle of design, analysis, implementation, and
experimental evaluation can serve as a glue between these requirements.
This paper outlines the general challenges and gives examples from my
work like sorting, full text indexing, graph algorithms, and database
engines.

1 Algorithms for Large Data Sets

Application data sets from various sources have grown much faster than the
available computational resources which are still governed my Moore’s law but
increasingly hit physical limitations like clock frequency, energy consumption,
and reliability. To name just a few applications, one can mention sensor data
from particle colliders like LHC at CERN, the world wide web, sequenced genome
data – ultimately from most human individuals, or GPS traces from millions and
millions of smart phone users that can yield valuable information, e.g., on the
current traffic situation.

Large data sets are a fascinating topic for computer science in general and for
algorithmics in particular. On the one hand, the applications can have enormous
effects for our daily life, on the other hand they are a big challenge for research
and engineering. The main difficulty is that a successful solution has to take into
account issues from three quite different area of expertise: The particular appli-
cation at hand, technological challenges, and the “traditional” areas of computer
science know-how. I will focus on the algorithmic aspects here which will often
be particularly interesting. Figure 1 illustrates this triangle of challenges. The
problem is that, traditionally, individual persons and even teams are mostly pro-
ficient in only one of these three areas. The solution of this problem will have to
bridge the gaps between the areas in several different ways. We probably have to
stress interdisciplinary aspect of university education and we have to integrate
technological aspects into the main stream of computer science teaching and
research. For example, current research in algorithmics is still predominantly
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Fig. 1. Engineering algorithms for large data sets

using the von Neumann/RAM model with a sequential processor and homoge-
neous memory. In contrast, even non-large data applications need to take into
account at least parallel processing and memory hierarchies if the application is
in any way performance critical. Traditionalists might argue that the problems
are already sufficiently challenging and difficult in the von Neumann model but
obviously this is an argument from the ivory tower.

Algorithm engineering with its emphasis on realistic models and its cycle
of design, analysis, implementation, and experimental evaluation can serve as
a glue between these requirements. The talk will focus on examples from my
work. This abstract mostly gives a few pointers to already existing papers.
Much of the material presented in the talk is work in progress however including
promising results in main-memory data bases, track reconstruction at CERN,
genome sequencing, and phylogenetic tree reconstruction.

2 Examples from My Work

We have done a lot of work on sorting in some sense cumulating in a parallel
external algorithm that won the sorting benchmark competition GraySort for
large data sets in 2009 [9]. In contrast to previous codes, this algorithm also
works for worst case inputs. This benchmark from the data base community
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asks for the fastest machine/code sorting 100 Terabytes of 100 byte records on
a file system. Interestingly, a similar code worked well for the category of the
most energy efficient sorter JouleSort [2].

A more complex sorting problem asks for sorting all suffixes of a string. The
resulting suffix array can be used for full text search, data compression and
various applications in bioinformatics. Our simple linear time algorithm [6] has
the additional advantage of being parallelizable [7] and externalizable [4].

An even more basic service is management of data on disk arrays. One in-
teresting result is that parallel disks can emulate a single high capacity, high
throughput logical disk allowing parallel access by using random redundant al-
location of data: Any set of N requested data blocks can be retrieved from
D disks in just �N/D� + 1 parallel I/O steps [13] (often, even the +1 can be
dropped). Refinements for asynchronous access [11], variable block sizes [10],
fault tolerance, heterogeneity [12] and many other issues are possible.

When processing large graphs, they have to be partitioned between many
processors such that the interactions (e.g., number of cut edges) are small. We are
intensively working on parallel and high quality graph partitioning algorithms
for large graphs. Multilevel methods are the method of choice here since they
combine near linear work with high quality [8].

With modern speedup techniques [3,5] for route planning in road networks,
routing in continent sized networks can be done in the submillisecond range on
a server and still without perceptible delay on a mobile device. However, for
advanced applications we would like to integrate public transportation, histor-
ical congestion information, and real time information on the traffic situation.
Currently we can handle historical information modelled as piece-wise linear
functions [1] and a small number of traffic jams.
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