
Engineering Algorithms for Large Data Sets

Peter Sanders

Karlsruhe Institute of Technology
sanders@kit.edu

Abstract. For many applications, the data sets to be processed grow
much faster than can be handled with the traditionally available algo-
rithms. We therefore have to come up with new, dramatically more scal-
able approaches. In order to do that, we have to bring together know-how
from the application, from traditional algorithm theory, and on low level
aspects like parallelism, memory hierarchies, energy efficiency, and fault
tolerance. The methodology of algorithm engineering with its emphasis
on realistic models and its cycle of design, analysis, implementation, and
experimental evaluation can serve as a glue between these requirements.
This paper outlines the general challenges and gives examples from my
work like sorting, full text indexing, graph algorithms, and database
engines.

1 Algorithms for Large Data Sets

Application data sets from various sources have grown much faster than the
available computational resources which are still governed my Moore’s law but
increasingly hit physical limitations like clock frequency, energy consumption,
and reliability. To name just a few applications, one can mention sensor data
from particle colliders like LHC at CERN, the world wide web, sequenced genome
data – ultimately from most human individuals, or GPS traces from millions and
millions of smart phone users that can yield valuable information, e.g., on the
current traffic situation.

Large data sets are a fascinating topic for computer science in general and for
algorithmics in particular. On the one hand, the applications can have enormous
effects for our daily life, on the other hand they are a big challenge for research
and engineering. The main difficulty is that a successful solution has to take into
account issues from three quite different area of expertise: The particular appli-
cation at hand, technological challenges, and the “traditional” areas of computer
science know-how. I will focus on the algorithmic aspects here which will often
be particularly interesting. Figure 1 illustrates this triangle of challenges. The
problem is that, traditionally, individual persons and even teams are mostly pro-
ficient in only one of these three areas. The solution of this problem will have to
bridge the gaps between the areas in several different ways. We probably have to
stress interdisciplinary aspect of university education and we have to integrate
technological aspects into the main stream of computer science teaching and
research. For example, current research in algorithmics is still predominantly

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 29–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



30 P. Sanders

experience
PS

Applications
sensor data
genomes
data bases
www
GIS
mobile
...

data structures
graphs
geometry
strings
coding theory

Techniques

...

parallelism
memory hierarchies
communication
fault tolerance
energy

Technology

AE

Fig. 1. Engineering algorithms for large data sets

using the von Neumann/RAM model with a sequential processor and homoge-
neous memory. In contrast, even non-large data applications need to take into
account at least parallel processing and memory hierarchies if the application is
in any way performance critical. Traditionalists might argue that the problems
are already sufficiently challenging and difficult in the von Neumann model but
obviously this is an argument from the ivory tower.

Algorithm engineering with its emphasis on realistic models and its cycle
of design, analysis, implementation, and experimental evaluation can serve as
a glue between these requirements. The talk will focus on examples from my
work. This abstract mostly gives a few pointers to already existing papers.
Much of the material presented in the talk is work in progress however including
promising results in main-memory data bases, track reconstruction at CERN,
genome sequencing, and phylogenetic tree reconstruction.

2 Examples from My Work

We have done a lot of work on sorting in some sense cumulating in a parallel
external algorithm that won the sorting benchmark competition GraySort for
large data sets in 2009 [9]. In contrast to previous codes, this algorithm also
works for worst case inputs. This benchmark from the data base community



Engineering Algorithms for Large Data Sets 31

asks for the fastest machine/code sorting 100 Terabytes of 100 byte records on
a file system. Interestingly, a similar code worked well for the category of the
most energy efficient sorter JouleSort [2].

A more complex sorting problem asks for sorting all suffixes of a string. The
resulting suffix array can be used for full text search, data compression and
various applications in bioinformatics. Our simple linear time algorithm [6] has
the additional advantage of being parallelizable [7] and externalizable [4].

An even more basic service is management of data on disk arrays. One in-
teresting result is that parallel disks can emulate a single high capacity, high
throughput logical disk allowing parallel access by using random redundant al-
location of data: Any set of N requested data blocks can be retrieved from
D disks in just �N/D� + 1 parallel I/O steps [13] (often, even the +1 can be
dropped). Refinements for asynchronous access [11], variable block sizes [10],
fault tolerance, heterogeneity [12] and many other issues are possible.

When processing large graphs, they have to be partitioned between many
processors such that the interactions (e.g., number of cut edges) are small. We are
intensively working on parallel and high quality graph partitioning algorithms
for large graphs. Multilevel methods are the method of choice here since they
combine near linear work with high quality [8].

With modern speedup techniques [3,5] for route planning in road networks,
routing in continent sized networks can be done in the submillisecond range on
a server and still without perceptible delay on a mobile device. However, for
advanced applications we would like to integrate public transportation, histor-
ical congestion information, and real time information on the traffic situation.
Currently we can handle historical information modelled as piece-wise linear
functions [1] and a small number of traffic jams.

Acknowledgements. Partially supported by Helmholtz project Large-Scale
Data Management and Analysis (LSDMA). We also would like to thank the
DFG for several funding sources.

References

1. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-
tion Hierarchies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 166–177. Springer, Heidelberg (2010)

2. Beckmann, A., Meyer, Sanders, P., Singler, J.: Energy-efficient sorting using solid
state disks. In: 1st International Green Computing Conference, pp. 191–202. IEEE
(2010)

3. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS,
vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

4. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. Special issue on Alenex 2005. ACM Journal of Experi-
mental Algorithmics 12 (2008)



32 P. Sanders

5. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transportation Science (2012)

6. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM 53(6), 1–19 (2006)

7. Kulla, F., Sanders, P.: Scalable Parallel Suffix Array Construction. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192,
pp. 22–29. Springer, Heidelberg (2006); Parallel Computing 33, 605–612 (2007)

8. Osipov, V., Sanders, P., Schulz, C.: Engineering Graph Partitioning Algorithms.
In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 18–26. Springer, Heidelberg
(2012)

9. Rahn, M., Sanders, P., Singler, J.: Scalable distributed-memory external sorting.
In: 26th IEEE International Conference on Data Engineering, pp. 685–688 (2010)

10. Sanders, P.: Reconciling simplicity and realism in parallel disk models. Special Issue
on Parallel Data Intensive Algorithms and Applications. Parallel Computing 28(5),
705–723 (2002)

11. Sanders, P.: Asynchronous scheduling of redundant disk arrays. IEEE Transactions
on Computers 52(9), 1170–1184 (2003); Short version in 12th ACM Symposium on
Parallel Algorithms and Architectures, pp. 89–98 (2000)

12. Sanders, P.: Algorithms for Scalable Storage Servers. In: Van Emde Boas, P.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932,
pp. 82–101. Springer, Heidelberg (2004)

13. Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. Algorith-
mica 35(1), 21–55 (2003); Short version in 11th SODA, pp. 849–858 (2000)


	Engineering Algorithms for Large Data Sets
	Algorithms for Large Data Sets
	Examples from My Work
	References




