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Preface

This volume contains the invited and contributed papers selected for presentation
at SOFSEM 2013, the 39th Conference on Current Trends in Theory and Practice
of Computer Science, held January 26–31, 2013, in Hotel Bedřichov, Špindler̊uv
Mlýn, in the Krkonoše Mountains of the Czech Republic.

SOFSEM (originally: SOFtware SEMinar) is devoted to leading research and
fosters the cooperation among researchers and professionals from academia and
industry in all areas of computer science. As a well-established and fully interna-
tional conference, SOFSEM maintains the best of its original Winter School
aspects, like a high number of invited talks (10 this year) and an in-depth
coverage of novel research results in selected areas of computer science.
SOFSEM 2013 was organized around the following four tracks:

– Foundations of Computer Science (Chair: Giuseppe F. Italiano, University
of Rome “Tor Vergata”, Italy)

– Software and Web Engineering (Chair: Jerzy Nawrocki, Poznan University
of Technology, Poland)

– Data, Information and Knowledge Engineering (Chair: Harald Sack,
University of Potsdam, Germany)

– Social Computing and Human Factors (Chair: Frans C.A. Groen, Intelligent
Systems Lab Amsterdam, The Netherlands)

With its four tracks, SOFSEM 2013 covered the latest advances in research, both
theoretical and applied, in leading areas of computer science. The SOFSEM 2013
Program Committee consisted of 68 international experts from 21 different coun-
tries, representing the track areas with outstanding expertise.

An integral part of SOFSEM 2013 was the traditional SOFSEM Student
Research Forum (Chair: Roman Špánek, Institute of Computer Science of the
Academy of Sciences of the Czech Republic in Prague - ICS ASCR), organized
with the aim of presenting student projects on the theory and practice of com-
puter science and to giving students feedback on both the originality of their
scientific results and on their work in progress. The papers presented at the
Student Research Forum and at the poster section were published in the local
proceedings.

In response to the call for papers, SOFSEM 2013 received 117 submissions
by 297 authors from 39 different countries of 5 continents (Americas, Asia, Aus-
tralia, and Europe): full papers were provided for 98 (83 %) of them. From these,
there were: 57 submissions in the Foundations of Computer Science Track (58 %)
and 55 submissions (42 %) in the remaining three tracks: 22 in the Software and
Web Engineering Track (23 %), 16 in the Data, Information and Knowledge
Engineering Track (16 %), and 3 in the Social Computing and Human Factors
Track (3 %).

After a detailed review process (using the EasyChair Conference System) with
at least 3 reviewers per paper, a careful electronic selection procedure was carried
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out within each track between August 29th and September 21th, 2012. Following
strict criteria of quality and originality, 37 papers were selected for presentation
at SOFSEM 2013. From these, there were: 22 submissions in the Foundations
of Computer Science Track (59 %) and 15 (41 %) in the other three tracks: 8 in
the Software and Web Engineering Track (21 %), 5 in the Data, Information
and Knowledge Engineering Track (15 %), and 2 in the Social Computing and
Human Factors Track (5 %).

From 98 submitted full papers, 22 submissions were provided by students, and
8 of them were accepted into regular tracks (see above). Based on the recom-
mendations of the Chair of the Student Research Forum and with the approval
of the Track Chairs and Program Committee members, 10 student papers were
chosen for the SOFSEM 2013 Student Research Forum.

As editors of these proceedings, we are grateful to everyone who contributed
to the scientific program of the conference, especially the invited speakers and
all the authors of contributed papers. We thank all authors for their prompt
responses to our editorial requests.
SOFSEM 2013 was the result of a considerable effort by many people. We would
like to express our special thanks to:

– The SOFSEM 2013 Program Committees of four tracks and all additional
referees for their precise and detailed reviewing of the submissions

– Roman Špánek, of the ICS ASCR, for his preparation and handling of the
Student Research Forum

– The SOFSEM Steering Committee headed by Július Štuller (ICS ASCR),
for guidance and support throughout the preparation of the conference

– Springer’s LNCS series, for its great support of the SOFSEM conferences

We are also greatly indebted to:

– The SOFSEM 2013 Organizing Committee consisting of Martin Řimnáč
(Chair), Július Štuller, Pavel Tyl, and Dana Kuželová for the support and
preparation of all aspects of the conference

– The Action M Agency, in particular Milena Zeithamlová, for the local ar-
rangements of SOFSEM 2013

We thank the Institute of Computer Science of the Academy of Sciences of
the Czech Republic in Prague, for its invaluable support of all aspects of
SOFSEM 2013.

Finally, we are very grateful for the financial support of the Czech Society
for Cybernetics and Informatics, which enabled us to compose a high-quality
program of invited speakers and helped us to keep the student fees low.

November 2012 Peter van Emde Boas
Giuseppe F. Italiano

Jerzy Nawrocki
Harald Sack

Frans C.A. Groen
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Rostislav Horč́ık
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State Coverage: An Empirical Analysis Based on a User Study . . . . . . . . . 469
Dries Vanoverberghe, Emma Eyckmans, and Frank Piessens

Data, Information, and Knowledge Engineering

Surrogate Model for Mixed-Variables Evolutionary Optimization Based
on GLM and RBF Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
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Theory of Multi Core Hypervisor Verification

Ernie Cohen1, Wolfgang Paul2, and Sabine Schmaltz2

1 Microsoft
ecohen@microsoft.com

2 Saarland University, Germany
{wjp,sabine}@wjpserver.cs.uni-saarland.de

Abstract. From 2007 to 2010, researchers from Microsoft and the Verisoft XT
project verified code from Hyper-V, a multi-core x-64 hypervisor, using VCC,
a verifier for concurrent C code. However, there is a significant gap between
code verification of a kernel (such as a hypervisor) and a proof of correctness of
a real system running the code. When the project ended in 2010, crucial and tricky
portions of the hypervisor product were formally verified, but one was far from
having an overall theory of multi core hypervisor correctness even on paper. For
example, the kernel code itself has to set up low-level facilities such as its call
stack and virtual memory map, and must continue to use memory in a way that
justifies the memory model assumed by the compiler and verifier, even though
these assumptions are not directly guaranteed by the hardware. Over the last two
years, much of the needed theory justifying the approach has been worked out.
We survey progress on this theory and identify the work that is left to be done.

1 Introduction and Overview

Low-level system software is an important target for formal verification; it represents
a relatively small codebase that is widely used, of critical importance, and hard to get
right. There have been a number of verification projects targetting such code, particu-
larly operating system (OS) kernels. However, they are typically designed as providing
a proof of concept, rather than a viable industrial process suitable for realistic code run-
ning on modern hardware. One of the goals of the Verisoft XT project [1] was to deal
with these issues. Its verification target, the hypervisor Hyper-V [2] was highly opti-
mized, concurrent, shipping C/assembler code running on the most popular PC hard-
ware platform (x64). The verification was done using VCC, a verifier for concurrent C
code based on a methodology designed to maximize programmer productivity – instead
of using a deep embedding of the language into a proof-checking tool where one can
talk directly about the execution of the particular program on the particular hardware.

We were aware that taking this high-level view meant that we were creating a non-
trivial gap between the abstractions we used in the software verification and the system
on which the software was to execute. For example,

– VCC has an extension allowing it to verify x64 assembly code; why is its approach
sound? For example, it would be unsound for the verifier to assume that hardware
registers do not change when executing non-assembly code, even though they are
not directly modified by the intervening C code.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 1–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 E. Cohen, W. Paul, and S. Schmaltz

– Concurrent C code (and to a lesser extent, the C compiler) tacitly assumes a strong
memory model. What justifies executing it on a piece of hardware that provides
only weak memory?

– The hypervisor has to manage threads (which involves setting up stacks and im-
plementing thread switch) and memory (which includes managing its own page
tables). But most of this management is done with C code, and the C runtime al-
ready assumes that this management is done correctly (to make memory behave
like memory and threads behave like threads). Is this reasoning circular?

When we started the project, we had ideas of how to justify all of these pretenses, but
had not worked out the details. Our purpose here is to i) outline the supporting theory,
ii) review those parts of the theory that have already been worked out over the last few
years, and iii) identify the parts of the theory that still have to be worked out.

1.1 Correctness of Operating System Kernels and Hypervisors

Hypervisors are, at their core, OS kernels, and every basic class about theoretical com-
puter science presents something extremely close to the correctness proof of a kernel,
namely the simulation of k one-tape Turing machines (TMs) by a single k-tape TM [3].
Turning that construction into a simulation of k one-tape TMs by a single one-tape TM
(virtualization of k guest machines by one host machine) is a simple exercise. The stan-
dard solution is illustrated in Figure 1. The tape of the host machine is subdivided into
tracks, each representing the tape of one of the guest machines (address translation).
Head position and state of the guest machines are stored on a dedicated field of the track
of that machine (a kind of process control block). Steps of the guests are simulated by
the host in a round robin way (a special way of scheduling). If we add an extra track
for the data structures of the host and add some basic mechanisms for communica-
tions between guests (inter process communication) via system calls, we have nothing
less than a one-tape TM kernel. Generalizing from TMs to an arbitrary computation
model M (and adding I/O-devices), one can specify an M kernel as a program running
on a machine of type M that provides

– virtualization: the simulation of k guest machines of type M on a single host ma-
chine of type M

– system calls: some basic communication mechanisms between guests, I/O devices,
and the kernel

At least as far as the virtualization part is concerned, a kernel correctness theorem is es-
sentially like the Turing machine simulation theorem, and can likewise be conveniently
expressed as a forward simulation. For more realistic kernels, instead of TMs we have
processors, described in dauntingly large manuals, like those for the MIPS32 [4] (336
pages), PowerPC [5] (640 pages), x86 or x64 [6, 7] (approx. 1500, resp. 3000 pages).
The TM tape is replaced by RAM, and the tape head is replaced by a memory manage-
ment unit (MMU), with address translation driven by in-memory page tables. Observe
that a mathematical model of such machine is part of the definition of correctness for
a ‘real’ kernel.
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Fig. 1. Simulating k Turing machines with 1 k-band Turing machine

Hypervisors are kernels whose guests are themselves operating systems or kernels,
i.e. each guest can run several user processes. In terms of the TM simulation, each guest
track is subdivided into subtracks for each user, each subtrack having its own process
control block; the actual tape address for the next operation of a process can be calcu-
lated from its tape address, the layout of the subtrack within the track, and the layout
of the track itself. In a real kernel, the address of a memory access is calculated from
a virtual address using two levels of address translation, the first level of traslation pro-
vided by the guest to users via the guest page tables (GPTs), and the second provided
by the hypervisor to the guest. On many recent processors, this second level of address
translation is provided in hardware by a separate set of host page tables. On processors
providing only a single level of translation, it is possible to take advantage of the fact
that the composition of two translations is again a translation, and so can be provided
by a single set of page tables. Because these shadow page tables (SPTs) correspond to
neither the guest nor the host page tables, they are constructed on the fly by the hyper-
visor from the GPTs, and the hypervisor must hide from the guest that translation goes
through these tables rather than the GPTs. Thus, the combined efforts of the hypervisor
and the MMU simulate a virtual MMU for each guest.

1.2 Overview

We discuss the following seven theories in the remainder of the paper:

Multi-Core ISA-sp. We define a nondeterministic concurrent instruction set architec-
ture (ISA) model, suitable for system programming. In addition to processor cores
and main memory, it includes low-level (but architecturally visible) features such as
store buffers, caches, and memory management units. Ideally, this would be given
in (or at least derived from) the system programmer’s manuals published by the
chip manufacturers. In reality, many subtle (but essential) details are omitted from
these manuals. Indeed, hardware manufacturers often deliberately avoid commiting
themselves to architectural boundaries, to maximize their flexibility in optimizing
the implementation, and many details leveraged by real operating systems (such
as details concerning the walking of page tables) are shared only with their most
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important customers, under agreements of nondisclosure. Such fuzzy architectural
boundaries are acceptable when clients are writing operating systems; a progammer
can choose whether to program to a conservative model (e.g., by flushing transla-
tions after every change to the page tables) or program more aggressively to a model
that takes advantage of architectural details of the current processor generation. But
such a fuzzy model is fatal when trying to build an efficient hypervisor, because the
architectural specification must both be strong enough for client operating systems
to run correctly, yet weak enough that it can be implemented efficiently on top of
the available hardware.

We provide evidence for the particular model we use and for the particular ways
in which we resolved ambiguities of the manuals in the following way: i) we define
a simplified ISA-sp that we call MIPS-86, which is simply MIPS processor cores
extended with x86-64 like architecture features (in particular, memory system and
interrupt controllers), ii) we reverse engineer the machine in a plausibly efficient
way at the gate level, and iii) we prove that the construction meets the ISA-sp, and
iv) we confirm with OS engineers that the model is sufficiently strong to support
the memory management algorithms used in real operating systems. The correct-
ness theorems in this theory deal with the correctness of hardware for multi-core
processors at the gate level.

ISA Abstraction. Multi-core machines are primarily optimized to efficiently run or-
dinary user code (as defined in the user programming manuals). In this simplified
instruction set (ISA-u), architectural details like caches, page tables, MMUs, and
store buffers should be transparent, and multithreaded programs should see sequen-
tially consistent memory (assuming that they follow a suitable synchronization dis-
cipline). A naive discipline combines lock-protected data with shared variables,
where writes to shared variables flush the store buffer. A slightly more sophisti-
cated and efficient discipline requires a flush only when switching from writing to
reading [8]. After proper configuration, a simulation between ISA-sp and ISA-u
has to be shown in this theory for programs obeying such disciplines.

Serial Language Stack. A realistic kernel is mostly written in a high-level language
(typically C or C++) with small parts written in macro assembler (which likewise
provides the stack abstraction) and even smaller parts written in plain assembler
(where the implementation of the stack using hardware registers is exposed, to
allow operations like thread switch). The main definition of this theory is the formal
semantics of this computational model. The main theorem is a combined correct-
ness proof of optimizing compiler + macro assembler for this mixed language. Note
that compilers translate from a source language to a clean assembly language, i.e.
to ISA-u.

Adding Devices. Formal models for at least two types of devices must be defined:
regular devices and interrupt controllers (the APIC in x86/64). A particularly
useful example device is a hard disk – which is needed for booting. Interrupt con-
trollers are needed to handle both external interrupts and interrupt-driven interpro-
cess communication (and must be virtualized by the hypervisor since they belong
to the architecture). Note that interrupt controllers are very particular kinds of de-
vices in the sense that they are interconnected among each other and with processor
cores in a way regular devices are not: They inject interrupts collected from regular
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devices and other interrupt controllers directly into the processor core. Thus, inter-
rupt controllers must be considered specifically as part of an ISA-sp model with
instantiable devices1. Crucial definitions in this theory are i) sequential models for
the devices, ii) concurrent models for ISA-sp with devices, and iii) models for sin-
gle core processors semantics of C with devices (accessed through memory mapped
I/O (MMIO)). The crucial theorems of this theory show the correctness of drivers
at the code level.

Extending the Serial Language Stack with Devices to Multi-Core Machines. The
crucial definition of this theory is the semantics of concurrent ‘C + macro assembly
+ ISA-sp + devices’. Besides ISA-sp, this is the crucial definition of the overall
theory, because it defines the language/computational model in which multi-core
hypervisors are coded. Without this semantics, complete code level verification of
a hypervisor is not meaningful. Essentially, the ownership discipline of the ISA
abstraction theory is lifted to the C level; in order to enable the implementation
of the ownership discipline, one has to extend serial C with volatile variables and
a small number of compiler intrinsics (fences and atomic instructions). In this the-
ory there are two types of major theorems. The first is compiler correctness: if the
functions of a concurrent C program obeying the ownership discipline are com-
piled separately, then the resulting ISA-u code obeys the ownership discipline and
the multi-core ISA-u code simulates the parallel C code. The second is a reduc-
tion theorem that allows us to pretend that a concurrent C program has scheduler
boundaries only just before actions that race with other threads (I/O operations and
accesses to volatile variables).

Soundness of VCC and its Use. Programs in the concurrent C are verified using VCC.
In order to argue that the formal proofs obtained in this way are meaningful, one
has to prove the soundness of VCC for reasoning about concurrent C programs,
and one has to show how to use VCC in a sound way to argue about programs in
the richer models.

Obviously, for the first task, syntax and semantics of the annotation language
of VCC has to be defined. VCC annotations consist essentially of “ghost” (a.k.a.
“auxilliary” or “specification”) state, ghost code (used to facilitate reasoning about
the program, but not seen by the compiler) and annotations of the form “this is
true here” (e.g. function pre/post-conditions, loop invariants, and data invariants).
Then three kinds of results have to be proven. First, we must show that if a pro-
gram (together with its ghost code) is certified by VCC, then the “this is true here”
assertions do in fact hold for all executions. Second, we must show that the program
with the ghost code simulates the program without the ghost code (which depends
on VCC checking that there is no flow from ghost state to concrete state, and that
all ghost code terminates). Third, we must show that the verification implies that
the program conforms to the Cohen/Schirmer [8] ownership discipline (to justify
VCC’s assumption of a sequentially consistent model of concurrent C).

To reason about richer programming models with VCC, we take advantage of
the fact that the needed extensions can be encoded using C. In particular, one can

1 MIPS-86 provides such an ISA-sp model with interrupt controllers and instantiable devices –
albeit currently at a level where caches are already invisible.
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add additional ghost data representing the states of processor registers, MMUs and
devices to a C program; this state must be stored in “hybrid” memory that exists
outside of the usual C address space but from which information can flow to C
memory. We then represent assembly instructions as function calls, and represent
active entities like MMUs and devices by concurrently running C threads.

Hypervisor Correctness. The previous theories serve to provide a firm foundation for
the real verification work, and to extend classical verification technology for se-
rial programs to the rich computational models that are necessarily involved in
(full) multi-core hypervisor verification. Verification of the hypervisor code itself
involves several major components, including i) the implemention of a large num-
bers of ‘C + macro assembly + assembly’ threads on a multi-core processor with
a fixed small number of cores, ii) for host hardware whose MMUs do not support
two levels of translations, the correctness of a parallel shadow page table algorithm,
iii) a TM-type simulation theorem showing virtualization of ISA-sp guests by the
host, and iv) correct implementation of system calls.

2 ISA Specification and Processor Correctness

2.1 Related Work

For single core RISC (reduced instruction set computer) processors, it is well under-
stood how to specify an ISA and how to formally prove hardware correctness. In the
academic world, the papers [9] and [10] report the specification and formal verification
of a MIPS-like processor with a pipelined core with forwarding and hardware interlock,
internal interrupts, caches, a fully IEEE compliant pipelined floating point unit, a Toma-
sulo scheduler for out of order execution, and MMUs for single-level pages tables. In
industry, the processor core of a high-end controller has been formally verified [11]. To
our knowledge, there is no complete formal model for any modern commercial CISC
(complex instruction set computer); until recently, the best approximations to such
a model were C simulators for large portions of the instruction set [12–14].

The classical memory model for multi-core processors is Lamport’s sequentially
consistent shared memory [15]. However, most modern multi-core processors provide
efficient implementations only of weaker memory models. The most accurate model
of the memory system of modern x86/64 architectures, “x86-tso”, is presented in [16].
This model abstracts away caches and the memory modes specifying the cache cohe-
rence protocol to be used, and presents the memory system as a sequentially consistent
shared memory, with a separate FIFO store buffer for each processor core. It is easy
to show that the model collapses if one mixes in the same computation cacheable and
non cacheable memory modes on the same address (accesses in non cacheable memory
modes bypass the cache; accesses in different non cacheable modes have different side
effects on the caches). That the view of a sequentially consistent shared memory can be
maintained even if of one mixes in the same computation accesses to the same address
with different “compatible” memory modes/coherence protocols is claimed in the clas-
sical paper introducing the MOESI protocol [17], but we are not aware of any proof of
this fact.
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Another surprising observation concerns correctness proofs for cache coherence pro-
tocols. The model checking literature abounds with papers showing that certain invari-
ants of a cache system are maintained in an interleaving model where the individual
cache steps are atomic. The most important of these invariants states that data for the
same memory address present in two caches are identical and thus guarantees a consis-
tent view on the memory at all caches. For a survey, see [18]. These results obviously
provide an important step towards the provably correct construction of a sequentially
consistent shared memory. Apart from our own results in [19], we are not aware of
a gate-level construction of hardware main memory, caches, cache controllers, and the
busses connecting them for which it has been proved that parallel execution of hardware
accesses to the caches simulates the high-level cache model.

2.2 Modeling an x86-64-Like ISA-sp

A formal model of a very large subset of the x64 ISA-sp was constructed as part of the
Hyper-V verification project, and is presented in [20]. This 300 page model specifies
140 general purpose and system programming instructions. Due to time constraints,
the model omits debug facilities, the alignment check exception, virtual-8086 mode,
virtual interrupts, hardware task-switching, system management mode, and devices
other than the local APICs. The MMX extension of the instruction set is formalized
in the complementary thesis [21]. The instruction set architecture is modeled by a set of
communicating nondeterministic components as illustrated in Figure 2. For each pro-
cessor, there is a processor core, MMU, store buffer, caches (which become visible
when accesses of non cacheable and cacheable memory modes to the same address are
mixed in the same computation), and a local APIC for interrupt handling. The remaining
components (shared between the cores) are main memory and other devices. Sizes of
caches, buffers, and translation look aside buffers (TLBs) in the MMU are unbounded
in the model, but the model is sufficiently nondeterministic to be implemented by an im-
plementation using arbitrary specific sizes for each of these. In the same spirit, caches
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and MMUs nondeterministically load data within wide limits, allowing the model to be
implemented using a variety of prefetch strategies. Nevertheless, the model is precise
enough to permit proofs of program correctness.

As mentioned in the introduction, an accurate ISA-specification is more complex
than meets the eye. Only if the executed code obeys a nontrivial set of software condi-
tions, the hardware interprets instructions in the way specified in the manuals. In RISC
machines, the alignment of accesses is a typical such condition. In pipelined machines,
the effects of certain instructions only become visible at the ISA level after a certain
number of instructions have been executed, or after an explicit pipeline flush. In the
same spirit, a write to a page table becomes visible at the ISA level when the instruction
has left the memory stages of the pipe, the write has left the store buffer, and previous
translations effected by this write are flushed from the TLB by an INVLPG instruction
(which in turn does only become visible when it has left the pipe). In a multi-core ma-
chine, things are even more complicated because a processor can change code and page
tables of other processors. In the end, one also needs some specification of what the
hardware does if the software violates the conditions, since the kernel generally cannot
exclude their violation in guest code. In turn, one needs to guarantee that guest code
violating software conditions does not violate the integrity of other user processes or
the kernel itself. Each of these conditions exposes to the ISA programmer details of the
hardware, in particular of the pipeline, in a limited way.

Obviously, if one wants to verify ISA programs, one has to check that they satisfy the
software conditions. This raises the problem of how to identify a complete set of these
conditions. In order to construct this set, we propose to reverse engineer the processor
hardware, prove that it interprets the instructions set, and collect the software conditions
we use in the correctness proof of the hardware. Reverse engineering a CISC machine
as specified in [20] is an extremely large project, but if we replace the CISC core by a
MIPS core and restrict memory modes to ‘write back’ (WB) and ‘uncacheable’ (UC)
(for device accesses), reverse engineering becomes feasible. A definition of the corre-
sponding instruction set called ‘MIPS-86’ fits on 44 pages and can be found in [22].

2.3 Gate Level Correctness for Multi-core Processors

A detailed correctness proof of a multi-core processor for an important subset of the
MIPS-86 instruction set mentioned above can be found in the lecture notes [19].
The processor cores have classical 5 stage pipelines, the memory system supports me-
mory accesses by bytes, half words, and words, and the caches implement the MOESI
protocol. Caches are connected to each other by an open collector bus and to main
memory (realized by dynamic RAM) by a tri-state bus. There are no store buffers or
MMUs, yet. Caches support only the ‘write back’ mode. The lecture notes contain a
gate-level correctness proof for a sequentially consistent shared memory on 60 pages.
Integrating the pipelined processor cores into this memory system is not completely
trivial, and proving that this implements the MIPS-86 ISA takes another 50 pages. The
present proof assumes the absence of self-modifying code.

Dealing with tri-state busses, open collector busses, and dynamic RAM involves de-
sign rules, which can be formulated but not motivated in a gate-level model. In analogy
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Fig. 3. Abstracting ISA-sp to ISA-u

to data sheets of hardware components, [19] therefore uses a detailed hardware model
with minimal and maximal propagation delays, enable and disable times of drivers,
and setup and hold times of registers as its basic model. This allows derivation of
the design rules mentioned above. The usual digital hardware model is then derived
as an abstraction of the detailed model.

2.4 Future Work

The correctness proof from [19] has to be extended in the following ways to cover
MIPS-86

– introducing a read-modify-write operation (easy),
– introducing memory fences (easy),
– extending memory modes to include an uncacheable mode UC (easy),
– extending the ISA-sp of MIPS-86 with more memory modes and providing an im-

plementation with a coherence protocol that keeps the view of a single memory
abstraction if only cacheable modes are used (easy)

– implementing interrupt handling and devices (subtle),
– implementing an MMU to perform address translation (subtle),
– adding store buffers (easy), and
– including a Tomasulo scheduler for out-of-order execution (hard).

3 Abstracting ISA-sp to ISA-u

One abstracts ISA-sp to ISA-u in three steps: i) eliminating the caches, ii) eliminating
the store buffers, and iii) eliminating the MMUs. A complete reduction (for a naive store
buffer elimination discipline and a simplified ownership discipline) is given in [23].
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3.1 Caches

To eliminate caches, an easy simulation shows that the system with caches S simulates
a system without caches S′; the coupling invariant is that for every address, the S′ value
at that address is defined as the value cached at that address if it is cached (the value
is unique, since all cache copies agree), and is the value stored in the S memory if the
location is uncached. One gets the processor view of Figure 3(b).

3.2 Store Buffers and Ownership Disciplines

In single-core architectures, an easy simulation shows that the system with FIFO store
buffers S simulates a system without store buffers S′: the value stored at an address
in S′ is the value in the store buffer farthest away from memory (i.e., the last value
saved) if the address appears in the store buffer, and is otherwise the value stored
in the memory of S. For a single-core architecture, no extra software conditions are
needed; a more careful proof can be found in [24]. One gets the view of Figure 3(c).
For the multi-core architecture, store buffers can only be made invisible if the executed
code follows additional restrictions.

A trivial (but highly impractical) discipline is to use only flushing writes (which in-
cludes atomic read-modify-write operations); this has the effect of keeping the store
buffers empty, thus rendering them invisible. A slightly more sophisticated discipline
is to classify each address as either shared or owned by a single processor. Unshared
locations can be accessed only by code in the owning processor; writes to shared ad-
dresses must flush the store buffer. The proof that this simulates a system without store
buffers is almost the same as in the uniprocessor case: for each owned address, its value
in the S′ memory is the value in its owning processor according to the uniprocessor
simulation, and for each shared address, the value is the value stored in memory.

A still more sophisticated discipline to use the same rule, but to require a flush only
between a shared write and a subsequent share read on the same processor. In this case,
a simple simulation via a coupling invariant is not possible, because the system, while
sequentially consistent, is not linearizable. Instead, S′ issues a write when the corre-
sponding write in S actually emerges from the store buffer and hits the memory. S′

issues a shared read at the same time as S; this is consistent with the writes because
shared reads happen only when there are no shared writes in the store buffer. The un-
shared reads and writes are moved to fit with the shared writes2. It is straightforward to
extend this reduction to include shared “read-only” memory.

A final, rather surprising improvement to the last reduction discipline is to allow lo-
cations to change from one type to another programatically. For example, we would
like to have a shared location representing a lock, where an ordinary operation on that
lock (acquiring it) gives the thread performing that action ownership of some location

2 Note that this means that in S′, an unshared write from one processor might be reordered
to happen before a shared write from another processor, even though the shared write hits
memory first, so while the execution is sequentially consistent, it is not “memory sequential
consistent” as defined in [25], because it violates the triangle race condition. Allowing se-
quentially consistent executions with triangle races is an absolute requirement for practical
reduction theorems for x86-TSO.
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protected by that lock. Moreover, we might want to allow the set of locations pro-
tected by that lock to change, perhaps determined by data values. [8] gives a very ge-
neral reduction theorem for x86-TSO that allows these things to be done in the most
flexible way possible, by allowing the program to take ownership of shared data, give
up ownership of data, and change it between being read-only and read-write, in ordi-
nary ghost code. This theorem says that if you can prove, assuming sequential consis-
tency, that a concurrent program (which includes ghost code that might change memory
types of locations) follows (a minor modification of) the flushing discipline above, then
the program remains sequentially consistent when executed under x86-TSO. The proof
of this reduction theorem is much more difficult than the previous ones, because redu-
cing a single TSO history requires reasoning from the absence of certain races in related
sequentially consistent histories.

3.3 Eliminating MMUs

Modern processors use page tables to control the mapping of virtual to physical ad-
dresses. However, page tables provide this translation only indirectly; the hardware has
to walk these page tables, caching the walks (and even partial walks) in the hardware
TLBs. x86/64 machines require the system programmer to manage the coherence of the
TLBs in response to changes in the page tables. The simplest way to make MMUs in-
visible is to set up a page table tree that represents an injective translation (and does not
map the page tables themselves), before switching on virtual memory. It is an easy folk-
lore theorem that the resulting system simulates unvirtualized memory; a proof can be
found in [24]. One gets the view of Figure 3(d). However, this is not how real kernels
manage memory; memory is constantly being mapped in and unmapped. The easiest
way to do this is to map the page tables in at their physical addresses (since page table
entries are based on physical, rather than virtual, page frame numbers). At the other
extreme, one can model the TLBs explicitly, and keep track of those addresses that are
guaranteed to be mapped to a particular address in all possible complete TLB walks
(and to not have any walks that result in a page fault), and to keep track of a subset of
these addresses, the “valid” addresses3, such that the induced map on these addresses is
injective. Only those addresses satisfying these criteria can be read or written. This flex-
ibility is necessary for kernels that manage memory agressively, trying to minimize the
number of TLB flushes. Essentially, this amounts to treating the TLB in the same way
as a device, but with the additional proof obligation connecting memory management
to reading and writing, through address validity. This, however, we currently consider
future work.

3.4 Mixed ISA-sp and ISA-u Computations

In a typical kernel, there is a stark contrast between the kernel code and the user pro-
grams running under the kernel. The kernel program needs a richer model that includes
system instructions not accessible to user programs, but at the same time the kernel can

3 Note that validity of an address is, in general, different for different processors in a given state,
since they flush their TLB entries independently.
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be written using a programming discipline that eliminates many irrelevant and mathe-
matically inconvenient details. For example, if the kernel is being proved memory-safe,
the programming model in the kernel does not have to assign semantics to dereferencing
of null pointers or overrunning array bounds, whereas the kernel must provide to user
code a more complex semantics that takes such possibilities into account. Similarly,
the kernel might obey a synchronization discipline that guarantees sequential consis-
tency, but since user code cannot be constrained to follow such a discipline, the ker-
nel must expose to user code the now architecturally-visible store buffers. In the case
of a hypervisor, the guests are themselves operating systems, so the MMU, which is
conveniently hidden from the hypervisor code (other than boot code and the memory
manager), is exposed to guests.

3.5 Future Work

Extension of the work in [23] to a full a proof of the naive store buffer reduction theorem
should not be hard. In order to obtain the reduction theorem with dirty bits, it is clearly
necessary to extend the store buffer reduction theorem of [8] to machines with MMUs.
This extension is not completely trivial as MMUs directly access the caches without
store buffers. Moreover MMUs do not only perform read accesses; they write to the
‘accessed’ and ‘dirty’ bits of page table entries. One way to treat MMUs and store
buffers in a unified way is to treat the TLB as shared data (in a separate address space)
and the MMU as a separate thread (with an always-empty store buffer). This does not
quite work with the store buffer reduction theorem above; because the TLB is shared
data, reading the TLB to obtain an address translation for memory access (which is
done by the program thread) would have to flush the store buffer if it might contain
a shared write, which is not what we want. However, the reduction theorem of [8] can
be generalized so that a shared read does not require a flush as long as the same read
can succeed when the read “emerges” from the store buffer; this condition is easily
satisfied by the TLB, because a TLB of unbounded capacity can be assumed to grow
monotonically between store buffer flushes.

4 Serial Language Stack

4.1 Using Consistency Relations to Switch between Languages

As explained in the introduction, realistic kernel code consists mostly of high-level lan-
guage code, with some assembler and possibly some macro assembler. Thus, complete
verification requires semantics for programs composed of several languages Lk with
0 ≤ k < n ∈ N. Since all these languages are, at some point, compiled to some ma-
chine code language L, we establish for each Lk that programs p ∈ Lk are translated to
programs q ∈ L in such a way that computations (di) – i.e. sequences of configurations
di, i ∈ N – of program q simulate computations (ci) of program p via a consistency
relation consis(c, d) between high level configurations c and low level configurations
d. Translation is done by compilers and macro assemblers. Translators can be optimiz-
ing or not. For non-optimizing translators, steps of language Lk are translated into one
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or more steps of language L. One shows that, for each computation (ci) in the source
language, there is a step function s such that one has

∀i : consis(ci, ds(i))

If the translator is optimizing, consistency holds only at a subset of so called ‘consis-
tency points’ of the source language. The translator does not optimize over these points.
Let CP (i) be a predicate indicating that configuration ci is a consistency point. Then
an optimizing translator satisfies

∀i : CP (i)→ consis(ci, ds(i))

Note that the consistency relation and the consistency points together specify the com-
piler. The basic idea to formulate mixed language semantics is very simple. We explain
it here only for two language levels (which can be thought of as machine code and high
level abstract semantics, as in Figure 4); extension to more levels is straightforward
and occurs naturally when there is a model stack of intermediate languages for com-
pilation4. Imagine the computations (ci) of the source program and (qj) of the target
program as running in parallel from consistency point to consistency point. We assume
the translator does not optimize over changes of language levels, so configurations ci

where the language level changes are consistency points of the high level language.
Now there are two cases

– switching from Lk to L in configuration ci of the high level language: we know
consis(ci, ds(i)) and continue from ds(i) using the semantics of language L.

– switching from L to Lk in configuration dj of the low level language: we try to
find a configuration c′ of the high level language such that consis(c′, dj) holds. If
we find it we continue from c′ using the semantics of the high level langue. If we
do not find a consistent high level language configuration, the low level portion of
the program has messed up the simulation and the semantics of the mixed program
switches to an error state.

In many cases, switching between high-level languages Lk and Ll by going from Lk to
shared languageL, and from the resulting configuration in L to Ll can be simplified to a
direct transition from a configuration of Lk to a configuration of Ll by formalizing just
the compiler calling convention and then proving that the resulting step is equivalent to
applying the two involved consistency relations (e.g., see [26]). This explains why the
specification of compilers necessarily enters into the verification of modern kernels.

4.2 Related Work

The formal verification of a non-optimizing compiler for the language C0, a type safe
PASCAL-like subset of C, is reported in [27]. The formal verification of an optimizing

4 Note in particular, that, when two given high level language compilers have an intermediate
language in common, we only need to switch downwards to the highest level shared interme-
diate language.
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compiler for the intermediate language C-minor is reported in [28]. Mixed language
semantics for C0 + in line assembly is described in [29] as part of the Verisoft project
[11]. Semantics for C0 + external assembly functions is described in [30]. Both mixed
language semantics were used in sebsequent verification work of the Verisoft project.
As the underlying C0 compiler was not optimizing, there was only a trivial calling
convention. Note that the nontrivial calling conventions of optimizing compilers pro-
duce proof goals for external assembly functions: one has to show that the calling
conventions are obeyed by these functions. Only if these proof goals are discharged,
one can show that the combined C program with the external functions is compiled
correctly.

4.3 A Serial Language Stack for Hypervisor Verification

Similar to [28], we use an intermediate language C-IL with address arithmetic and func-
tion pointers. The semantics of C-IL together with a macro assembler obeying the same
calling conventions is described in [26]. Calls from C-IL to macro assembly and vice
versa are allowed. To specify the combined semantics, one has to describe the ABI (i.e.
the layout of stack frames and the calling convention used). In [31], an optimizing com-
piler for C-IL is specified, a macro assembler is constructed and proven correct, and it is
shown how to combine C-IL compiler + macro assembler to a translator for combined
C-IL + macro assembly programs. As explained in the introduction, extension of this
language stack to C-IL + macro assembly + assembly is necessary to argue about saving
and restoring the base and stack pointers during a process switch or a task switch. This
can be done using the construction explained in subsection 4.1.

4.4 Future Work

We believe that, for the consistency relations normally used for specifying compilers
and macro assemblers, the mixed language semantics defined in subsection 4.1 is es-
sentially deterministic in the following sense: if consis(c, d) holds, then d is unique up
to portions of c which will not affect the future I/O behavior of the program (e.g. non
reachable portions of the heap). A proof of such a theorem should be written down.

5 Adding Devices

The obvious way to add devices is to represent them as concurrent threads, and to rea-
son about the combined program in the usual way. This approach is justified only if the
operational semantics of the language stack executing the program in parallel with the
device models simulates the behavior of the compiled code running on the hardware in
parallel with the devices. This is already nontrivial, but is further complicated by the
addition of interrupts and interrupt handlers. It is obviously undesirable to introduce
interrupt handling as a separate linguistic concept, so the natural way to model an in-
terrupt handler is as a concurrent thread. However, the relationship between a program
and an interrupting routine is somewhat closer than that between independent threads;
for example, data that might be considered "thread local" in the context of a concurrent
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program might nevertheless be modified by an interrupt handler, which requires care-
ful management of when interrupts are enabled and disabled. Another complication that
arises with many kinds of devices is the need to capture and model real-time constraints.

5.1 Related Work

Formal methods have been extremely successful identifying large classes of frequent
bugs in drivers [32]. In contrast, complete formal verification results of even of
the most simple drivers have only recently appeared. An obvious prerequisite is a formal
model of devices that can be integrated with processor models both at the hardware and
ISA level [33]. At the hardware level, processor and devices work in parallel in the same
clock domain. At the hardware level, the models of some devices are completely deter-
ministic; an example is a dedicated device producing timer interrupts. But these models
also can have nondeterministic portions, e.g. the response time (measured in hardware
cycles) of a disk access. When we lift the hardware construction to the ISA model, one
arrives in a natural way at a nondeterministic concurrent model of computation: proces-
sor and device steps are interleaved in an order not known to the programmer at the ISA
level or above. This order observed at the ISA level can be constructed from the hard-
ware construction and the nondeterminism stemming from the device models. A formal
proof for the correctness of such a concurrent ISA model for a single core ‘processor
+ devices’ was given in [34, 35]. The hardware construction for catching the external
interrupts and the corresponding correctness argument are somewhat tricky due to an
- at first sight completely harmless - nonstandard specification in the instruction set of
the underlying processor, which was taken from [36]. There, external interrupts are de-
fined to be of type ‘continue’, i.e. the interrupted instruction is completed before the
interrupt is handled. In the MIPS-86 instruction set [22] mentioned above, this defi-
nition was changed to reflect standard specification, where external interrupts are of
type ‘repeat’, i.e. the interrupted instruction is not executed immediately, but is instead
repeated after the run of the handler.

Now consider a system consisting of a (single core) processor and k devices as shown
in Figure 5, and consider a run of a driver for device i. Then one wants to specify the
behavior of the driver by pre and post conditions. For example, if the driver writes a
page from the processor to the disk, the precondition would state that the page is at
a certain place in processor memory and the post condition would specify that it is
stored at a certain place on the memory of the disk. To prove this one has to show that
the other devices do not interfere with the driver run. Indeed one can show an order
reduction theorem showing that if during the driver run i) interrupts of other devices
are disabled and ii) the processor does not poll the devices, then in a driver run with
arbitrary interleaving all steps of devices �= i can be reordered such that they occur
after the driver run without affecting the result of the computation. A formal proof of
this result is given in [30, 37]. At the same place and in [38] the integration of devices
into the serial model stack of the Verisoft project (resulting in C0 + assembly + devices)
and the formal verification of disk drivers is reported.

Note that the above reorder theorem for device steps has the nontrivial hypothe-
sis that there are no side channels via the environment, i.e. the outside world between
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the devices. This is not explicitely stated; instead it it is implicitly assumed by forma-
lizing Figure 5 in the obvious way. For example, if device 2 is a timer triggering
a gun aimed at device 1 during the driver run of device 1, the post condition is false
after the run because the device is not there any more. Side channels abound of course,
in particular in real time systems. If device 1 is the motor control and device 2 the cli-
mate control in a car, then the devices are coupled in the environment via the power
consumption.

5.2 Multi-core Processors and Devices

Only some very first steps have been made towards justifying verification of multi-core
processors along with devices. The current MIPS-86 instruction set contains a generic
device model and a specification of a simplified APIC system consisting of an I/O
APIC (a device shared between processors that distributes device interrupts) and local
APICs (processor local devices for handling external and inter processor interrupts).
Rudimentary models of interrupt controllers for various architectures have been built as
parts of VCC verifications.

5.3 Future Work

Instantiating the generic device model of MIPS-86 with an existing formal disk model is
straightforward. Justification of the concurrent ‘multi-core processor + devices model’
of the MIPS-86 ISA requires of course the following steps

– extending the MIPS-ISA hardware from [19] with the pipelined interrupt mecha-
nism from [10]. The catching and triggering of external interrupts needs to be mo-
dified to reflect that external interrupts are now of type ‘repeat’. This should lead to
a simplification of the construction.

– reverse engineering of hardware APICs and the mechanism for delivering inter
processor interrupts (IPIs).

– showing that the hardware constructed in this ways interprets the MIPS-86 ISA.
This proof should be simpler than the proof in [34].
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Three more tasks remain open: i) proving a reorder theorem for driver runs,
ii) the reduction theorem from multi-core ISA-sp to ISA-u has to be generalized to
the situation, where the hardware contains devices, and iii) devices must be integrated
in the serial model stack (resulting in C-IL + macro assembly + assembly + devices)
along the lines of [30, 37, 38]. These results would justify language-level reasoning
about device drivers in multi-core systems.

Formally verifying secure booting is another interesting research direction: ‘secure
boot’ guarantees that the verified hypervisor (if we have it) is indeed loaded and run.
This involves the use of verified hardware and libraries for crypto algorithms. Such
libraries have already formally been verified in the Verisoft project [11].

6 Extending the Serial Language Stack to Multi-core
Computations

Language stacks deal with languages at various levels and translations between them.
A ‘basic’ language stack for multi-core computations consists simply of i) a specifi-
cation of some version of ‘structured parallel C’, ii) a compiler from this version of
parallel C to the ISA of a multi-core machine and iii) a correctness proof showing
simulation between the source program and the target program. Definitions of versions
of structured parallel C (or intermediate languages close to it) and correctnes proofs for
their compilers proceed in the flowing way:

– one starts with a small-step semantics of the serial version of the high level lan-
guage; configurations of such semantics have program rests/continuations, stacks,
and global memory. Configurations for parallel C are easily defined: keep program
rests and stack local for each thread; share the global variables among threads.
Computations for unstructured parallel C are equally easy to define: interleave steps
of the small steps semantics of the individual threads in an arbitrary order.

– compiling unstructured parallel C to multi-core machines tends to produce very in-
efficient code. Thus one structures the computation by restricting accesses to mem-
ory with an ownership discipline very similar to the one of [8]. Different versions
of parallel C differ essentially by the ownership discipline used. As a directive for
the compiler, variables which are allowed to be unowned and shared (such that they
can e.g. be used for locks) are declared as volatile. Accesses to volatile variables
constitute I/O-points of the computation.

– Compilers do not optimize over I/O-points, thus I/O-points are consistency points.
Except for accesses to volatile variables, threads are simply compiled by serial
compilers. Code produced for volatile accesses has two portions: i) possibly a fence
instruction draining the local store buffer; clearly this is only necessary if the target
machine has store buffers, and ii) an appropriate atomic ISA instruction.

– Compiler correctness is then argued in the following steps: i) The compiled code
obeys the ownership discipline of the target language in such a way that volatile
accesses of the compiled code correspond to volatile accesses of the source code,
i.e. I/O points are preserved. Then one proves both for the source language and
the target language that, due to the ownership discipline, memory accesses between



18 E. Cohen, W. Paul, and S. Schmaltz

I/O points are to local, owned, or shared-read-only addresses only. This implies at
both language levels an order reduction theorem restricting interleavings to occur
at I/O points only. We call such an interleaving an I/O-block schedule. iii) One
concludes simulation between source code and target code using the fact that I/O
points are compiler consistency points and thus in each thread compiler consistency
is maintained by the serial (!) computations between I/O-points.

6.1 Related Work

The ‘verified software toolchain’ project [39] presently deals with a ‘basis’ language
stack. C minor is used as serial source language. The serial compiler is the formally
verified optimizing compiler from the CompCert project [28]. Permissions on memory
are modified by operations on locks – this can be seen as a kind of ownersip discipline.
The target machine has sequentially consistent shared memory in the present work;
draining store buffers is identified as an issue for future work. Proofs are formalized
in Coq. In the proofs the permission status of variables is maintained in the annotation
language. We will return to this project in the next section.

6.2 Extending the Language Stack

A crucial result for the extension of a language stack for ‘C + macro assembly + ISA-sp
+ devices’ to the multi-core world is a general order reduction theorem that allows to
restrict interleavings to I/O-block schedules for programs obeying the ownership dis-
cipline, even if the changes of language level occur in a single thread of a concurrent
program. Besides the volatile memory accesses, this requires the introduction of addi-
tional I/O points: i) at the first step in hypervisor mode (ASID = 0) after a switch
from guest mode (ASID �= 0) because we need compiler consistency there, and ii)
at any step in guest mode because guest computation is in ISA-sp and we no not want
to restrict interleavings there. An appropriate general reorder theorem is reported in
[40]. Application of the theorem to justify correctness of compilation across the lan-
guage stack for a version of parallel C-IL without dirty bits and a corresponding simple
handling of store buffers is reported in [23].

6.3 Future Work

The same reorder theorem should allow to establish correctness of compilation across
the language stack for a structured parallel C-IL with dirty bits down to ISA-u with dirty
bits. However, in order to justify that the resulting program is simulated in ISA-sp with
store buffers one would need a version of the Cohen-Schirmer theorem for machines
with MMUs.

The language stack we have introduced so far appears to establish semantics and cor-
rectness of compilation for the complete code of modern hypervisors, provided shadow
pages tables (which we introduced in the introduction) are not shared between proces-
sors. This restriction is not terribly severe, because modern processors tend more and
more to provide hardware support for two levels of translations, which renders shadow
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page tables unnecessary in the first place. As translations used by different processors
are often identical, one can save space for shadow page tables by sharing them among
processors. This permits the implemention of larger shadow page tables leading to fewer
page faults and hence to increased performance. We observe that this introduces an in-
teresting situation in the combined language stack: the shadow page tables are now a
C data structure that is accessed concurrently by C programs in hypervisor mode and
the MMUs of other processors running in guest mode. Recall that MMUs set accessed
and dirty bits; thus both MMU und C program can read and write. Now interleaving
of MMU steps and hypervisor steps must be restricted. One makes shadow page ta-
bles volatile and reorders MMU accesses of other MMUs immediately after the volatile
writes of the hypervisor. To justify this, one has to argue that the MMUs of other MMUs
running in guest mode never access data structures other than shadow page tables; with
the modelling of the MMU as an explicit piece of concurrent code, this proof becomes
part of ordinary program verification.

7 Soundness of VCC and Its Use

Formal verification with unsound tools and methods is meaningless. In the context
of proving the correctness of a hypervisor using VCC as a proof tool, two soundness
arguments are obviously called for: i) a proof that VCC is sound for arguing about pure
structured parallel C. ii) a method to ‘abuse’ VCC to argue about machine components
that are not visible in C together with a soundness proof for this method.

7.1 Related Work

In the Verisoft project, the basic tool for proving program code correct was a verification
condition generator for C0 whose proof obligations were discharged using the interac-
tive theorem prover Isabell-HOL. The soundness of the verification condition generator
for C0 was established in a formal proof [41]. The proof tool was extended to handle
‘external variables’ and ‘external functions’ manipulating these variables. Components
of configurations not visible in the C0 configuration of kernels (processor registers, con-
figurations of user processes, and device state) were coded in these external variables.
The proof technology is described in great detail in [38].

A formal soundness proof for a program analysis tool for structured parallel C is
developed in the ‘verified software toolchain’ project [39].

7.2 Soundness of VCC

An obvious prerequisite for a soundness proof of VCC is a complete specification
of VCC’s annotation language and its semantics. VCC’s annotations have two parts:
i) a very rich language extension for ghost code, where ghost instructions manipu-
late both ghost variables and ghost fields which are added to records of the original
implementation language, and ii) a rich assertion language referring to both implemen-
tation and ghost data. A complete definition of ‘C-IL + ghost’ can be found in [22] to-
gether with a proof that ‘C-IL + ghost’ is simulated by C-IL provided ghost code always
terminates.
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The VCC assertion language is documented informally in a reference manual and
a tutorial [42]; the reference manual also has some rudimentary mathematical under-
pinnings. More of these underpinnings are described in various articles [43–45]. How-
ever, there is currently no single complete mathematical definition. Thus establishing
the soundness of VCC still requires considerable work (see subsection 7.5).

7.3 Using VCC for Languages Other Than C

As C is a universal programming language, one can use C verifiers to prove the correct-
ness of programs in any other programming language L by i) writing in C a (sound)
simulator for programs in L, followed by ii) arguing in VCC about the simulated pro-
grams, and iii) proving property transfer from VCC results to results over the original
code given in language L. Extending ‘C + macro assembly + assembly’ programs with
a simulator for program portions not written in C then allows to argue in VCC about
such programs. A VCC extension for x64 assembly code is described in [46, 47] and
was used to verify the 14K lines of macro assembly code of the Hyper-V hypervisor.
In the tool, processor registers were coded in a straightforward way in a struct, a so
called hybrid variable which serves the same role as an external variable in the Verisoft
tool chain mentioned above. Coding the effect of assembly or macro assembly instruc-
tions amounts to trivial reformulation of the semantics of the instructions as C functions.
Calls and returns of macro assembly functions are coded in a naive way. The extension
supports gotos within a routine and function calls, but does not support more extreme
forms of control flow, e.g. it cannot be used to prove the correctness of thread switch
via change to the stack pointer.

Currently, however, there is a slight technical problem: VCC does currently not sup-
port hybrid variables directly. We cannot place hybrid variables in ghost memory, be-
cause information clearly flows from hybrid variables to implementation variables, and
this would violates a crucial hypothesis in the simulation theorem between original and
annotated program. If we place it into implementation memory, we have to guarantee
that it is not reachable by address arithmetic from other variables. Fortunately, there cur-
rently is a possible workaround: physical addresses of modern processors have at most
48 bits and VCC allows up to 64 bit addresses. Thus hybrid variables can be placed in
memory at addresses larger than 248−1. Future versions of VCC are planned to support
hybrid memory as a third kind of memory (next to implementation and ghost memory)
on which the use of mathematical types is allowed; in turn, the formalization of ‘C-IL
+ ghost’ should be extended to include this special hybrid memory.

The papers [31, 48] show the soundness of an assembler verification approach in the
spirit of Vx86 relative to the mixed ‘C-IL + macro assembly’ language semantics of our
language stack.

7.4 Verifying Device Drivers with VCC

One way to reason about device drivers is to use techniques from concurrent program
reasoning. In a concurrent program, one can rarely specify a function on shared state
via a pre and post condition on the state of the device, since other concurrent operations
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may overlap the execution of the function. Instead, one can specify the function as
a linearizable operation that appears to take place atomically at some point between
invocation of the function and its return. In VCC, the usual idiom for such verification
is to introduce a ghost data object representing the abstract state provided by the device
in combination with the driver; the state of this object is coupled to the concrete states
of the driver and the device via a coupling invariant. Associated with a function call
is a ghost object representing the operation being performed; this operation includes
a boolean field indicating whether the operation has completed; an invariant of the ope-
ration is that in any step in which this field changes, it goes from false to true and
the abstract state of the device changes according to the semantics of the operation.
The abstract device has a field that indicates which operation (if any) is “executing”
in any particular step, and has an invariant that the abstract state of the device changes
only according to the invariant of the operation being performed (which might also be
an operation external to the system).

However, another current limitation of VCC is that it allows ordinary C memory
operations only on locations that act like memory. This means that it cannot directly
encode devices where writing or reading a memory mapped I/O (MMIO) address has
an immediate side effect on the device state; currently, the semantics of such operations
have to be captured via intrinsics.

7.5 Future Work

A proof of the soundness of VCC apparently still requires the following three major
steps:

– documenting the assertion language. This language is rich and comprises
i) the usual assertions for serial code, ii) an ownership calculus for objects which is
used in place of separation logic to establish frame properties, and iii) a nontrivial
amount of constructs supporting arguments about concurrency.

– documenting the assertions which are automatically generated by VCC in order to
i) guarantee the termination of ghost code, and ii) enforce an ownership discipline
on the variables and a flushing strategy for store buffers.

– proving the soundness of VCC by showing i) ghost code of verified programs ter-
minates; thus we have simulation between the annotated program and the imple-
mentation code, ii) assertions proven in VCC hold in the parallel C-IL semantics;
this is the part of the soundness proof one expects from classical theory (this por-
tion of the soundness proofs for VCC should work along the lines of soundness
proofs for rely/guarantee logics – a proof outline is given in the VCC manual [42]),
and iii) variables of verified programs obey ownership discipline and code of trans-
lated programs obeys a flushing discipline for store buffers; this guarantees correct
translation to the ISA-sp level of the multi-core machine.

8 Hypervisor Correctness

Figure 7 gives a very high-level overview of the structure of the overall theory. After
establishing the model stack and the soundness of proof tools and their application, what
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is left to do is the actual work of program verification. Thus we are left in this survey
paper with the task to outline the proof of a hypervisor correctness theorem which
expresses virtualization of several ISA-sp machines enriched with system calls stated
on ‘C + macro assembly + ISA-u + ISA-sp’. Fortunately we can build on substantial
technology from other kernel verification projects.

8.1 Related Work

The well known ‘seL4’ project [49] succeeded in formally verifying the C portion
of an industrial microkernel comprising about 9000 lines of code (LOC), although that
verification ignored a number of important hardware issues such as the MMU and de-
vices, and used a rather unrealistic approach to interrupt handling, largely because that
verification was based entirely on sequential program reasoning. In the Verisoft project
[11] both the C portion and the assembly portion of two kernels was formally verified:
i) the code of a small real real time kernel called OLOS comprising about 450 LOC
[50] and ii) the code of a general purpose kernel called VAMOS of about 2500 LOC
[51, 52]. In that project the verification of C portions and assembly portions was decou-
pled [29] in the following way: A generic concurrent model for kernels and their user
processes called CVM (for ‘communicating virtual machines’) was introduced, where
a so called ‘abstract kernel’ written in C communicates with a certain number of virtual
machines vm(u) (see Figure 8) programmed in ISA. At any time either the abstract
kernel or a user process vm(u) is running. The abstract kernel uses a small number
of external functions called ‘CVM primitives’ which realize communication between
the kernel, user processes and devices. The semantics of these user processes is entirely
specified in the concurrent CVM model. To obtain the complete kernel implementation,
the abstract kernel is linked with a few new functions and data structures, essentially
process control blocks, page tables and a page fault handler in case the kernel supports
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demand paging (e.g. like VAMOS does); CVM primitives are implemented in assem-
bly language. The resulting kernel in called the ‘concrete kernel’. Correctness theorems
state that the CVM model is simulated in ISA by the compiled concrete kernel together
with the user machines running in translated mode. Since the C portions of seL4 are al-
ready formally verified, one should be able to obtain a similar overall correctness result
by declaring appropriate parts of seL4’s C implementation as abstract kernel without
too much extra effort.

8.2 Hypervisor Verification in VCC

That VCC allows to verify the implementations of locks has been demonstrated in [53].
Partial results concerning concurrent C programs and their interrupt handlers are re-
ported in [54]. Program threads and their handlers are treated like different threads
and only the C portions of the programs are considered; APICs and the mechanism
for delivery of inter processor interrupts (IPIs) are not modeled. Thus the treatment
of interrupts is still quite incomplete. The full formal verification of a small hypervisor
written in ‘C + macro assembly + assembly’ in VCC using the serial language stack
of Section 4 (which is also illustrated in Figure 6) and the proof technology described
in Subsection 7.3 is reported in [31, 48]. The formal verification of shadow page ta-
ble algorithms without sharing of shadow page tables between processors is reported
in [23, 55].

8.3 Future Work

The following problems still have to be solved:

– Adding features to VCC that allow memory mapped devices to be triggered by
reading or writing to an address that already has a value identical to the data written.

– Proving the correctness of a ‘kernel layer’ of a hypervisor. In order to provide guests
with more virtual processors than the number np of physical processors of the host,
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one splits the hypervisor in a kernel layer and a virtualization layer. The kernel
layer simulates large numbers n of ‘C + macro assembly + ISA-sp’ threads by np
such threads. Implementation of thread switch is very similar to the switching of
guests or of user processes. A data structure called thread control block (TCB) takes
the role of process control block. Correctness proofs should be analogous to kernel
correctness proofs but hinge on the full power of the semantics stack.

– The theory of interrupt handling in concurrent C programs and its application in
VCC has to be worked out. The conditions under which an interrupt handler can be
treated as an extra thread needs to be worked out. This requires to refine ownership
between program threads and their interrupt handlers. For reorder theorems, the
start and return of handler threads has to become an I/O-point. Finally, for liveness
proofs, the delivery of IPI’s (and the liveness of this mechanism) has to be included
in the concurrent language stack and the VCC proofs.

– Proving actual hypervisor correctness by showing that the virtualization layer
(which possibly uses shadow page tables depending on the underlying processor)
on top of the kernel layer simulates an abstract hypervisor together with a number
of guest machines and their user processes. Large portions of this proof should work
along the lines of the kernel correctness proofs of the Verisoft project. New proofs
will be needed when one argues about the state of machine components that can-
not explicitly be saved at a context switch. Store buffers of sleeping guests should
be empty, but both caches and TLBs of sleeping processors may contain nontrivial
data, some or all of which might be flushed during the run of other guests.

9 Conclusion

Looking at the last section, we see that i) the feasibility of formal correctness proofs
for industrial kernels has already been demonstrated and that ii) correctness proofs for
hypervisors are not that much more complex, provided an appropriate basis of mixed
language semantics and proof technology has been established. It is true that we have
spent 6 of the last 7 chapters of this paper for outlining a paper theory of this basis.
But this basis seems to be general enough to work for a large variety of hypervisor
constructions such that, for individual verification projects, ‘only’ the proofs outlined
in section 8 need to be worked out.
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pp. 284–298. Springer, Heidelberg (2008)

48. Paul, W., Schmaltz, S., Shadrin, A.: Completing the Automated Verification of a Small Hy-
pervisor – Assembler Code Verification. In: Eleftherakis, G., Hinchey, M., Holcombe, M.
(eds.) SEFM 2012. LNCS, vol. 7504, pp. 188–202. Springer, Heidelberg (2012)

49. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating system kernel. Communications of the ACM 53(6), 107–115
(2010)

50. Daum, M., Schirmer, N.W., Schmidt, M.: Implementation correctness of a real-time ope-
rating system. In: 7th IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2009), Hanoi, Vietnam, November 23-27, pp. 23–32. IEEE (2009)

51. Daum, M., Dörrenbächer, J., Bogan, S.: Model stack for the pervasive verification of a
microkernel-based operating system. In: Beckert, B., Klein, G. (eds.) 5th International Ver-
ification Workshop (VERIFY 2008). CEUR Workshop Proceedings, vol. 372, pp. 56–70.
CEUR-WS.org (2008)

52. Dörrenbächer, J.: Formal Specification and Verification of a Microkernel. PhD thesis, Saar-
land University, Saarbrücken (2010)

53. Hillebrand, M.A., Leinenbach, D.C.: Formal verification of a reader-writer lock implemen-
tation in C. Electron. Notes Theor. Comput. Sci. 254, 123–141 (2009)

54. Alkassar, E., Cohen, E., Hillebrand, M., Pentchev, H.: Modular specification and verifica-
tion of interprocess communication. In: Formal Methods in Computer Aided Design. IEEE
(2010)

55. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.: Verification of TLB Virtualization Imple-
mented in C. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 209–224. Springer, Heidelberg (2012)



Software Components in Computer

Assisted Living?

Frantisek Plasil and Tomas Bures

Charles University, Prague, Czech Republic

Abstract. Component-based software engineering has developed ma-
ture techniques for modeling software by composition of components.
They facilitate modeling of many kinds of systems, ranging from enter-
prise systems to embedded control systems. The common denominator
of these systems is that their architecture is relatively static (i. e. the sys-
tems do not significantly evolve at runtime). This is however in strong
contrast to characteristics of modern ubiquitous systems that aim at
assisting humans in their lives (e.g. systems for smart-transportation,
smart-energy, eldercare services) and that are one of the key priorities of
EU R&D programs (e.g. FP7 ICT, ITEA2, ARTEMIS). Such systems are
typically open-ended and need to dynamically evolve their architecture
in response to changes in the physical world. In this talk, we investigate
these future systems and outline challenges and ways of addressing their
development via components.
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Abstract. For many applications, the data sets to be processed grow
much faster than can be handled with the traditionally available algo-
rithms. We therefore have to come up with new, dramatically more scal-
able approaches. In order to do that, we have to bring together know-how
from the application, from traditional algorithm theory, and on low level
aspects like parallelism, memory hierarchies, energy efficiency, and fault
tolerance. The methodology of algorithm engineering with its emphasis
on realistic models and its cycle of design, analysis, implementation, and
experimental evaluation can serve as a glue between these requirements.
This paper outlines the general challenges and gives examples from my
work like sorting, full text indexing, graph algorithms, and database
engines.

1 Algorithms for Large Data Sets

Application data sets from various sources have grown much faster than the
available computational resources which are still governed my Moore’s law but
increasingly hit physical limitations like clock frequency, energy consumption,
and reliability. To name just a few applications, one can mention sensor data
from particle colliders like LHC at CERN, the world wide web, sequenced genome
data – ultimately from most human individuals, or GPS traces from millions and
millions of smart phone users that can yield valuable information, e.g., on the
current traffic situation.

Large data sets are a fascinating topic for computer science in general and for
algorithmics in particular. On the one hand, the applications can have enormous
effects for our daily life, on the other hand they are a big challenge for research
and engineering. The main difficulty is that a successful solution has to take into
account issues from three quite different area of expertise: The particular appli-
cation at hand, technological challenges, and the “traditional” areas of computer
science know-how. I will focus on the algorithmic aspects here which will often
be particularly interesting. Figure 1 illustrates this triangle of challenges. The
problem is that, traditionally, individual persons and even teams are mostly pro-
ficient in only one of these three areas. The solution of this problem will have to
bridge the gaps between the areas in several different ways. We probably have to
stress interdisciplinary aspect of university education and we have to integrate
technological aspects into the main stream of computer science teaching and
research. For example, current research in algorithmics is still predominantly
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Fig. 1. Engineering algorithms for large data sets

using the von Neumann/RAM model with a sequential processor and homoge-
neous memory. In contrast, even non-large data applications need to take into
account at least parallel processing and memory hierarchies if the application is
in any way performance critical. Traditionalists might argue that the problems
are already sufficiently challenging and difficult in the von Neumann model but
obviously this is an argument from the ivory tower.

Algorithm engineering with its emphasis on realistic models and its cycle
of design, analysis, implementation, and experimental evaluation can serve as
a glue between these requirements. The talk will focus on examples from my
work. This abstract mostly gives a few pointers to already existing papers.
Much of the material presented in the talk is work in progress however including
promising results in main-memory data bases, track reconstruction at CERN,
genome sequencing, and phylogenetic tree reconstruction.

2 Examples from My Work

We have done a lot of work on sorting in some sense cumulating in a parallel
external algorithm that won the sorting benchmark competition GraySort for
large data sets in 2009 [9]. In contrast to previous codes, this algorithm also
works for worst case inputs. This benchmark from the data base community
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asks for the fastest machine/code sorting 100 Terabytes of 100 byte records on
a file system. Interestingly, a similar code worked well for the category of the
most energy efficient sorter JouleSort [2].

A more complex sorting problem asks for sorting all suffixes of a string. The
resulting suffix array can be used for full text search, data compression and
various applications in bioinformatics. Our simple linear time algorithm [6] has
the additional advantage of being parallelizable [7] and externalizable [4].

An even more basic service is management of data on disk arrays. One in-
teresting result is that parallel disks can emulate a single high capacity, high
throughput logical disk allowing parallel access by using random redundant al-
location of data: Any set of N requested data blocks can be retrieved from
D disks in just �N/D� + 1 parallel I/O steps [13] (often, even the +1 can be
dropped). Refinements for asynchronous access [11], variable block sizes [10],
fault tolerance, heterogeneity [12] and many other issues are possible.

When processing large graphs, they have to be partitioned between many
processors such that the interactions (e.g., number of cut edges) are small. We are
intensively working on parallel and high quality graph partitioning algorithms
for large graphs. Multilevel methods are the method of choice here since they
combine near linear work with high quality [8].

With modern speedup techniques [3,5] for route planning in road networks,
routing in continent sized networks can be done in the submillisecond range on
a server and still without perceptible delay on a mobile device. However, for
advanced applications we would like to integrate public transportation, histor-
ical congestion information, and real time information on the traffic situation.
Currently we can handle historical information modelled as piece-wise linear
functions [1] and a small number of traffic jams.
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DFG for several funding sources.

References

1. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-
tion Hierarchies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 166–177. Springer, Heidelberg (2010)

2. Beckmann, A., Meyer, Sanders, P., Singler, J.: Energy-efficient sorting using solid
state disks. In: 1st International Green Computing Conference, pp. 191–202. IEEE
(2010)

3. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS,
vol. 5515, pp. 117–139. Springer, Heidelberg (2009)
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Abstract. In many economic, social and political situations individuals
carry out activities in groups (coalitions) rather than alone and on their
own. Examples range from households and sport clubs to research net-
works, political parties and trade unions. The underlying game theoretic
framework is known as coalition formation.

This survey discusses the notion of core stability in hedonic coali-
tion formation (where each player’s happiness only depends on the other
members of his coalition but not on how the remaining players outside
his coalition are grouped). We present the central concepts and algorith-
mic approaches in the area, provide many examples, and pose a number
of open problems.

Keywords: computational social choice, computational complexity,
coalition formation, hedonic game.

1 Introduction

In economic, social and political situations individuals often carry out activities
in groups (coalitions) rather than alone and on their own. Examples range from
households, families and sport clubs to research networks, political parties and
trade unions. The underlying game theoretic framework is known as coalition
formation. In hedonic coalition formation each player’s happiness/satisfaction
only depends on the other members of his coalition, but not on how the remain-
ing players outside his coalition are grouped together. The study of coalition
formation in hedonic games goes back to the seminal paper [19] of Drèze &
Greenberg.

A central question in coalition formation concerns the stability of a system of
coalitions: if there is a possibility of increasing one’s happiness/satisfaction by
moving to another coalition or by merging or splitting or otherwise restructuring
coalitions, players will react accordingly and the system will become unstable.
The social choice literature knows a wide variety of stability concepts, as for
instance the core, the strict core, the Nash stable set, the individually stable
set, and the contractually individually stable set. A research line initiated by
Banerjee, Konishi & Sönmez [5] and by Bogomolnaia & Jackson [8] concentrates
on sufficient conditions that guarantee the existence of such stable solutions.
Computational complexity issues related to hedonic coalition formation have
first been investigated by Ballester [4] who establishes the NP-completeness of
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detecting core stable, Nash stable, and individually stable partitions (under ap-
propriately chosen encodings of the input).

This paper zooms into core stability, a particularly active subarea of hedonic
coalition formation games. We survey the central computational questions of
this rich and colorful area, and we will see that their algorithmic behavior is
surprisingly diverse. The underlying main definitions are introduced in Section 2.
Each of the remaining sections discusses one particular type of hedonic game,
summarizes the known results on algorithms and complexity, provides examples,
and also poses a number of open problems. The open problems are marked in
the following way: (∗) marks a problem that should be doable; (∗∗) means that
the problem might be difficult; (∗∗∗) marks a hard and outstanding problem.

2 Basic Definitions and First Observations

Let N be a finite set of players. A coalition is a non-empty subset of N . Every
player i ∈ N ranks all the coalitions containing i via his preference relation

i; this order relation is reflexive (S 
i S), transitive (S 
i T and T 
i U
implies S 
i U) and complete (at least one of S 
i T and T 
i S holds),
but it is not necessarily anti-symmetric (so that S 
i T and T 
i S may hold
simultaneously). The underlying strict order is denoted ≺i, where S ≺i T means
that S 
i T but not T 
i S. If S ≺i T then player i prefers participating in T
to participating in S, and if S 
i T then player i weakly prefers participating in
T to participating in S.

A partition Π is simply a collection of coalitions which partitions N ; hence
every coalition in Π is non-empty, distinct coalitions are disjoint, and the union
of all coalitions equals N . For a partition Π and a player i, we denote by Π(i)
the unique coalition in Π containing player i. The following definition introduces
core stability, the key concept of this paper.

Definition 1. A coalition S blocks a partition Π, if every player i ∈ S strictly
prefers Π(i) ≺i S. A partition Π is core stable, if there is no blocking coalition.

Intuitively speaking, the players in a blocking coalition would like to separate and
form their own coalition, which makes the underlying partition unstable. The
game is hedonic, since the satisfaction/dissatisfaction of a player only depends
on the other members of his coalition, but not on the grouping of the remaining
players outside his coalition.

A closely related stability notion is strict core stability. A coalition S weakly
blocks a partition Π , if every player i ∈ S weakly prefers Π(i) 
i S, and if at
least one player j ∈ S strictly prefers Π(j) ≺j S. A partition Π is strictly core
stable, if it has no weakly blocking coalition. Note that a strictly core stable
partition is also core stable. While our main focus in this survey is on core
stability, we will from time to time also point out results on strict core stability.

Example 2. Consider a situation with three players a, b, c that have the follow-
ing preferences over their coalitions:
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Preferences of player a: ab > ac > a > abc
Preferences of player b: bc > ab > b > abc
Preferences of player c: ac > bc > c > abc

There are only five possible partitions of the players: the partition {abc} is blocked
by a, {ab, c} is blocked by bc, {ac, b} is blocked by ab, {bc, c} is blocked by ac,
and {a, b, c} is blocked by ab. Hence there is no core stable partition, and there
also is no strictly core stable partition.

Problem: Core-Stability (Existence)

Instance: A hedonic game, that consists of a set N of players and their
preference relations �i.

Question: Does there exist a core stable partition of N?

Problem: Core-Stability (Verification)

Instance: A hedonic game, that consists of a set N of players and their
preference relations �i; a partition Π of N .

Question: Does there exist a blocking coalition S for partition Π?

Fig. 1. The algorithmic problems around core stability

The central algorithmic questions are of course to decide whether a given game
possesses a core stable partition (existence problem) and to check whether a
given partition for a given game actually is core stable (verification problem).
Both problems are formally specified in Figure 1. The precise computational
complexity of these two problems depends on the way the preference relations
are specified in the input, and we will see a variety of natural ways in the following
chapters. Throughout we only consider representations of the input for which
the preference relations can be evaluated in polynomial time: given a player i
and two coalitions S and T with i ∈ S and i ∈ T , we can decide in polynomial
time whether S 
i T . Consequently we are also able to decide in polynomial
time whether a given coalition S blocks a given partition Π of a given hedonic
game.

Here is a rewording of the existence problem that clearly shows the quantifiers
in the underlying question:

Does there exist a partition Π of the players, such that every coalition
S satisfies the property that S is not blocking for Π?

Or even shorter: ∃Π ∀S: ¬(S blocks Π). This reworded formulation starts with
an existential quantification, followed by an existential quantification, followed
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by a property that can be verified in polynomial time, and hence is a Σp
2 -

formulation; see for instance Theorem 17.8 in Papadimitriou [34].

Observation 3. As the preference relations can be evaluated in polynomial
time, the existence version of Core-Stability is contained in the complexity
class Σp

2 and the verification version is contained in NP. �

The verification problem ∃S: (S blocks Π) is the negation of the inner part of
the existence problem ∃Π ∀S: ¬(S blocks Π). This yields the following straight-
forward connection between the two problems.

Observation 4. If the verification problem of Core-Stability is polynomi-
ally solvable, then the existence version of Core-Stability is contained in the
complexity class NP. �

There are no further close connections between existence problem and
verification problem. In particular, hardness of the verification problem does not
necessarily imply hardness of the existence problem: under the enemy-oriented
preferences in Section 4 existence is easy whereas verification is hard. We close
this section with the common ranking property of Farrell & Scotchmer [21] for
hedonic games in which all players have the same opinion about their coalitions.
Since such a game has little potential for disagreement, there always is a core
stable partition:

Observation 5. (Farrell & Scotchmer [21]) Consider a hedonic game for which
there exists a function f : 2N → R such that S 
i T (for any player i with i ∈ S
and i ∈ T ) always implies f(S) ≤ f(T ). Then this game has a core stable
partition.

Proof. Pick a coalition S that maximizes the value of function f . As the players
in S prefer S to all other coalitions, they will never participate in a blocking
coalition. Repeat this step for the remaining players. �

3 Complexity of the Most General Variants

We already noted earlier that the computational complexity of the Core-Sta-

bility existence and verification problem does heavily depend on the represen-
tation of the input.

The trivial encoding of an n-player game presents the preference relation of
every player by explicitly listing and ranking all the 2n−1 coalitions that contain
that player. If we ignore polynomial factors, the resulting encoding length is
roughly L ≈ 2n. As the verification problem can be solved by searching through
all 2n ≈ L coalitions, it is polynomially solvable under the trivial encoding. The
existence problem can be solved similarly by searching through all partitions
of the player set. Now recall that an n-element set has roughly cn log n different
partitions (where c is some real constant; see for instance De Bruijn [10]),
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so that the resulting time complexity would be roughly proportional to Llog logL.
On the one hand this time complexity is bad, as it is not polynomially bounded
in the encoding length L. But on the other hand this time complexity is quite
good, as it has a very mild and innocent sub-exponential growth rate; this makes
it virtually impossible that the existence problem could be NP-complete.

Open Problem 6. (∗∗) Pinpoint the computational complexity of the Core-

Stability existence problem under the trivial encoding.

A good starting point for this open problem might perhaps be the complexity
class LOGLOGNP introduced by Papadimitriou & Yannakakis in [35]. In any
case the trivial encoding is inefficient, wasteful and unwieldy, and it definitely is
not the right way for encoding preference structures in the real world.

A central assumption in cooperative game theory is individual rationality,
which says that no player should receive less than what he could get on his
own. In our framework a coalition S is individually rational for player i iff it
satisfies {i} 
i S. If a coalition is not individually rational, it is blocked by
some single-player set and hence can never occur in a core stable partition. In
this spirit Ballester [4] suggests to specify the preference relation for player i
by listing only his individually rational coalitions; we call this the individually
rational encoding of the input.

Theorem 7. (Ballester [4]) Under the individually rational encoding, the
Core-Stability verification problem is polynomially solvable and the Core-

Stability existence problem is NP-complete.

Proof. The verification problem is straightforward, as the input explicitly lists
all candidates for a blocking set. By Observation 4 then the existence problem
lies in NP, and it remains to establish its NP-hardness.

The NP-hardness proof is done by a reduction from the NP-complete Exact
Cover by 3-Sets (XC3) problem; see Garey & Johnson [24]. An instance of
XC3 consists of a ground set X and a system T of 3-element subsets of X . The
problem is to decide whether there exists a partition of X that only uses parts
from T . We introduce for every element x ∈ X three corresponding players x,
x′ and x′′ in a hedonic game. The preferences of these players are as follows.

– The top choices of player x are the triples T ∈ T with x ∈ T ; he likes all
of them equally much. Strictly below these sets he (strictly) ranks the three
coalitions xx′′ � xx′ � x.

– Player x′ only wants to be in three coalitions which he ranks xx′ � x′x′′ � x′.
– Player x′′ only wants to be in three coalitions which he ranks x′x′′ � xx′′ �

x′′.

We claim that the constructed hedonic game has a core stable partition if and
only if the XC3 instance has a feasible partition. (Proof of if): Use the sets in the
XC3 partition together with all sets x′x′′. The resulting partition is core stable,
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since every player x ∈ X is in one of his most preferred coalitions. (Proof of only
if): If a partition for the hedonic game puts a player x ∈ X into one of the three
coalitions xx′′, xx′, x, it cannot be core stable as the three players x, x′, x′′ are
essentially in the unstable situation of Example 2. Hence every player x must be
placed into a group from T , and a core stable partition induces a partition of X
with all parts from T . �

Ballester [4] also extends his NP-completeness result to the case where all prefer-
ence relations are strict; as a side result this yields NP-completeness of deciding
the existence of a strictly core stable partition under the individually rational
encoding. Next we turn to so-called additive hedonic games, which form a com-
mon generalization of many other hedonic games that will be discussed lateron
in this survey.

Definition 8. A hedonic game is additive, if every player i ∈ N has a real-
valued preference function vi : N → R so that S 
i T holds if and only if∑

j∈S vi(j) ≤
∑

j∈T vi(j).

In other words, in an additive hedonic game every player has a value for every
other player, and the value of a coalition is simply the overall value of its members
(from the view point of player i); hence every player can easily evaluate his profit
from participating in a certain coalition. Additive preference structures allow a
particularly natural and succinct representation, as they can be specified by n2

numbers for n players. Furthermore, additive preferences satisfy a number of
desirable axiomatic properties; see Barberà, Bossert & Pattanaik [6].

Sung & Dimitrov [40] show that Core-Stability verification in additive
hedonic games is strongly NP-complete; this also follows from Theorem 15. It
took more time to fully understand the complexity of the Core-Stability

existence problem for the additive case. On the positive side, Observation 4 tells
us that the problem is contained in Σp

2 . On the negative side, Sung & Dimitrov
[41] proved it to be NP-hard, and later Aziz, Brandt & Seedig [3] extended the
NP-hardness argument even to the symmetric case where vi(j) = vj(i) holds for
all players i, j ∈ N . Finally Woeginger [44] settled the problem by showing that
is encapsulates the full difficulty of Σp

2 .

Theorem 9. (Woeginger [44]) In additive hedonic games, the Core-Stabi-

lity existence problem is Σp
2 -complete. �

Next, let us turn to strictly core stable partitions in additive hedonic games.
The arguments of Sung & Dimitrov [40] imply the NP-completeness of the ver-
ification question for this scenario. Sung & Dimitrov [41] prove NP-hardness of
the existence question, but it seems very unlikely to me that this problem could
actually be contained in NP.

Open Problem 10. (∗) Establish Σp
2 -completeness of deciding whether a given

additive hedonic game has a strictly core stable partition.
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4 Preference Structures from Graphs

Dimitrov, Borm, Hendrickx & Sung [18] study hedonic games where each player
views every other player either as a friend or as an enemy: the players form the
vertices of a directed graph G = (N,A), an arc (x, y) from player x to player y
means that x considers y a friend, and the absence of such an arc means that x
considers y an enemy. We stress that here friendship is not a symmetric relation.
For a player x ∈ N , we denote by Fx the set of his friends and by Ex the set
of his enemies. Dimitrov & al [18] introduce two concrete preference structures
that we will dub friend-oriented and enemy-oriented, respectively.

Definition 11. Under friend-oriented preferences, player x prefers coalition T
to coalition S (that is, S 
x T with x ∈ S and x ∈ T )

– if |S ∩ Fx| < |T ∩ Fx|, or
– if |S ∩ Fx| = |T ∩ Fx| and |S ∩ Ex| ≥ |T ∩Ex|.

Under enemy-oriented preferences, player x prefers coalition T to coalition S

– if |S ∩ Ex| > |T ∩ Ex|, or
– if |S ∩ Ex| = |T ∩ Ex| and |S ∩ Fx| ≤ |T ∩ Fx|.

Note that friend-oriented and enemy-oriented preferences both form special cases
of additive preferences: in the friend-oriented case, we set vx(y) = |N | if x
considers y a friend and vx(y) = −1 otherwise; in the enemy-oriented case, we
set vx(y) = 1 if x considers y a friend and vx(y) = −|N | otherwise. Although
the definitions of these two preference structures are symmetric to each other,
the two resulting classes of hedonic games do behave very differently from each
other. Let us start our discussion with the friend-oriented scenario.

Theorem 12. (Dimitrov & al [18]) Under friend-oriented preferences, there
always exists a core stable partition.

Proof. We use the strongly connected components C1, . . . , Ck of the directed
graph as partition. Suppose for the sake of contradiction that there exists
a blocking coalition S. Without much loss of generality we assume that S in-
tersects every component Ci (as the non-intersecting components can be safely
ignored). There exists a sink component Cj without arcs to other components,
and we distinguish two cases. If Cj �⊆ S, then one of the vertices in S ∩ Cj has
an arc into Cj − S; hence this vertex has fewer friends in S than in Ci, and S is
not blocking. If Cj ⊆ S, then every vertex in Cj has the same number of friends
in Cj and in S, but strictly more enemies in S; hence S is not blocking. �

(A closer look at this proof shows that the strongly connected components ac-
tually form a strictly core stable partition.) It is easy to see that in a core stable
partition every coalition must be strongly connected, but there also exist ex-
amples with core stable partitions where every coalition is a proper subset of
a strongly connected component: assume that players A1 and A2 are mutual
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friends, that B1 and B2 are mutual friends, that A1 is friendly towards B1, and
that B2 is friendly towards A2. Then the partition {A1, A2} and {B1, B2} is core
stable.

Open Problem 13. (∗) Is there a polynomial time algorithm for the Core-

Stability verification problem under friend-oriented preferences?

We turn to the enemy-oriented scenario, and we start with a crucial observation:
if player x considers player y an enemy, then a core stable partition cannot
place x and y together into the same coalition. Such a coalition would violate
individual rationality, as player x would rather stay alone than be together with
y. Consequently under the enemy-oriented scenario only mutual (symmetric)
friendship relations matter, and from now on we will assume that the underlying
friendship graph G actually is undirected. Note furthermore that in a core stable
partition every coalition induces a clique in G.

Theorem 14. (Dimitrov & al [18]) Under enemy-oriented preferences, there
always exists a core stable partition.

Proof. The game satisfies the common ranking property in Observation 5: set
f(S) = |S| if S induces a clique and f(S) = 0 otherwise. �

Superficially, the results for friend-oriented preferences in Theorem 12 and for
enemy-oriented preferences in Theorem 14 have a very similar smell. But the two
problems differ a lot, if one actually wants to find such a core stable partition.
As the strongly connected components of a directed graphs can be determined
in polynomial time (see for instance Cormen & al. [15]), in the friend-oriented
scenario core stable partitions are easy to find. On the other hand maximum
cliques are NP-hard to find (Garey & Johnson [24]), and every core stable parti-
tion in the enemy-oriented scenario must contain such a maximum clique; hence
in the enemy-oriented scenario core stable partitions are hard to find.

Theorem 15. (Sung & Dimitrov [40]) Under enemy-oriented preferences,
the Core-Stability verification problem is strongly NP-complete.

Proof. By Observation 3 the verification problem lies in NP. NP-hardness is
shown by a reduction from the NP-complete Maximum Clique problem; see
Garey & Johnson [24]. An instance of the clique problem consists of an undirected
graph G′ = (V ′, E′) and an integer bound k. The problem is to decide whether
the graph contains a clique on k vertices.

We define a new graph G = (V,E) by adding vertices and edges to G′: for
every vertex v ∈ V ′, we create k − 2 new vertices that together with v form
a (k − 1)-clique. Finally we define the partition Π of V whose parts are exactly
the vertex sets of these (k−1)-cliques. We claim that in the constructed hedonic
game for G there is a blocking set for partition Π if and only if the graph G′

has a clique of size k. (Proof of if): The clique of size k forms a blocking set for Π .
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(Proof of only if): If G′ has no clique of size k, the largest clique in graph G has
size k − 1. Hence Π assigns every player to his most preferred coalition. �

Next let us discuss strictly core stable partitions. The proof of Theorem 15 also
implies NP-completeness of the strict verification problem. The strict existence
problem seems to be fairly messy, and I would not be surprised if it turns out to
be Σp

2 -complete; note for instance that the path Pn on n ≥ 2 vertices and the
cycle Cn on n ≥ 4 vertices allow a strictly core stable partition if and only if n
is even.

Open Problem 16. (∗) Pinpoint the computational complexity of deciding
whether a given hedonic game with enemy-oriented preferences has a strictly
core stable partition.

Here is another variation. For an undirected graph G and a vertex v ∈ G, we
let ωG(v) denote the size of the largest clique that contains v. A partition of
the vertices is called wonderfully stable, if every vertex v ends up in a coalition
of size ωG(v). In the enemy-oriented scenario, a wonderfully stable partition puts
every player into his most preferred coalition.

Open Problem 17. (∗∗) Pinpoint the computational complexity of deciding
whether a given undirected graph has a wonderfully stable partition.

The wonderfully stable partition problem is NP-hard, but perhaps unlikely to
be contained in NP. The problem is also unlikely to be Σp

2 -complete, as it can
be solved in polynomial time with a logarithmic number of calls to an NP-
oracle: the oracle algorithm first determines the value of

∑
v∈N ωG(v) by a binary

search; every step in this binary search costs one call to the NP-oracle; then the
algorithm asks the NP-oracle whether there exists a partition into cliques that
reaches this value. This places the problem into the complexity class Θp

2 which
is believed to be a proper subset of Σp

2 ; see for instance Wagner [43] or Theorem
17.7 in [34] for more information on this class.

5 Anonymous Preference Structures

In a hedonic game with anonymous preferences, every player is indifferent about
coalitions of the same size. Hence a player’s preferences can be concisely speci-
fied by stating his ranking of coalition sizes. A natural example for anonymous
preferences is a chess club where all even group sizes should be fine, whereas odd
groups sizes would prevent the players from splitting into chess-playing pairs.

Theorem 18. (Ballester [4]) Under anonymous preferences, the Core-Sta-

bility verification problem is polynomially solvable and the Core-Stability

existence problem is NP-complete.
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Proof. In the verification problem, we search for a blocking coalition S by
checking the possible sizes s = |S| one by one. For a fixed size s, it is easy to
decide whether there are s players who would be happier in a coalition of size
s than in their current coalitions. Since the verification problem is polynomially
solvable, Observation 4 yields that the existence problem lies in NP.

The NP-hardness proof is done by a reduction from the Exact Cover by

3-Sets (XC3) problem as defined in the proof of Theorem 7. Let T1, . . . , Tm

be an enumeration of the triples in T , and define num(Tk) = 4k. Here are our
players:

– For every triple T ∈ T , create num(T ) − 3 players who like the two sizes
num(T )− 3 and num(T ) and hate all other sizes.

– For every x ∈ X , create a single player P (x) who only likes the sizes num(T )
for the triples T with x ∈ T and hates all the other sizes.

It can be seen that the constructed hedonic game has a core stable partition if
and only if the XC3 instance has a feasible partition. �

Note that every player in the above NP-hardness argument has a primitive black-
and-white view of the world: he (equally) likes some of the sizes, and he (equally)
hates the remaining ones. Darmann & al [17] show that the problem remains
NP-complete even if every player (equally) likes two sizes and (equally) hates all
the remaining ones.

Open Problem 19. (∗∗) Consider the anonymous hedonic game where every
player i (equally) likes the sizes s in a certain interval ai ≤ s ≤ bi and (equally)
hates the remaining sizes. Is this problem polynomially solvable?

6 Partition into Pairs

Throughout this section we only consider coalitions of size two. Hence the prefer-
ences of a player can be specified by simply listing his ranking of the other play-
ers, and the resulting hedonic games clearly are additive. Since in this case the
Core-Stability verification problem is straightforward (by searching through
all pairs), we concentrate on the existence problem.

There are two basic variants that are known as the stable matching (or stable
marriage) problem and as the stable roommate problem. The stable matching
problem has a bipartite structure: there are n male and n female players, and
the only feasible pairs are man-woman couples. The stable roommate problem
has a non-bipartite structure: there are 2n unisex players, and every possible
pair is feasible.

6.1 Stable Matchings

The stable matching problem was introduced in the seminal paper by Gale
& Shapley [22], one of the most cited papers in computational social choice.
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A matching μ pairs the men with the women; the partner of man M in the
matching is denoted μ(M) and the partner of woman W is denoted μ(W ).
A man M and a woman W form a blocking pair (M,W ) for matching μ, if
M prefers W to his woman μ(M) and if simultaneously W prefers M to her
man μ(W ).

Perhaps the most natural approach to stable matching would be the follow-
ing iterative improvement procedure: Start with an arbitrary matching, and
then iteratively find a blocking pair (M,W ) and improve the situation by re-
placing the two pairs (M,μ(M)) and (μ(W ),W ) by the new pairs (M,W )
and (μ(W ), μ(M)). The following example demonstrates that this idea may fail
horribly.

Example 20. (Tamura [42]) There are four men A,B,C,D and four women
W,X, Y, Z with the following preference lists:

A: X > Z > W > Y W : A > C > B > D
B: Y > W > X > Z X: B > D > C > A
C: Z > X > Y > W Y : C > A > D > B
D: W > Y > Z > X Z: D > B > A > C

Assume that the iterative improvement procedure picks AW,BX,CZ,DY as its
starting point. The following lines show the dynamics of the resulting process.

1. AW,BX,CZ,DY A and Z are blocking
2. AZ,BX,CW,DY C and Y are blocking
3. AZ,BX,CY,DW B and W are blocking
4. AZ,BW,CY,DX D and Z are blocking
5. AX,BW,CY,DZ C and X are blocking
6. AY,BW,CX,DZ A and W are blocking
7. AW,BY ,CX,DZ D and Y are blocking
8. AW,BZ,CX,DY B and X are blocking

The last improvement yields the matching AW,BX,CZ,DY , so that we are back
at our starting point. The process is cycling and will never terminate!

Let us take a closer look at the instance in Example 20. There are 24 possi-
ble matchings, five of which are actually stable. If we start the iterative im-
provement procedure from one of the three matchings AY,BZ,CW,DX or
AW,BZ,CY,DX or AY,BX,CW,DZ, then the process will eventually reach
the stable matching AW,BX,CY,DZ and terminate. But if we start the itera-
tive improvement procedure from any of the remaining 16 matchings, then the
procedure will cycle and does not terminate.

Fortunately, there exist better approaches for the stable matching problem: it
can be shown that there always exists a stable solution, which furthermore can
be computed in polynomial time by the celebrated Gale-Shapley algorithm [22].
As the books by Knuth [31], Gusfield & Irving [25], and Roth & Sotomayor [37]
comprehensively analyze this algorithm and extensively cover the combinatorial
facets of the problem, we only formulate a summarizing theorem.



44 G.J. Woeginger

Theorem 21. (Gale & Shapley [22]) If all preferences are strict, a stable
matching always exists and can be found in polynomial time. �

We now would like to spend some lines on several closely related variants.
Theorem 21 assumes that every player has a strict preference ranking of the
other players. Allowing ties in the preference relations does not change much:
a stable matching always exists and can be found in polynomial time (by break-
ing ties arbitrarily and then applying Gale-Shapley); see for instance Irving [27].

Allowing incomplete preference lists (but still forbidding ties) changes the
situation a little bit. Now every player can exclude some other players with
whom he does not want to be matched (formally this can be done by ranking the
unwanted coalitions below the coalition where he stays alone). It turns out that
also for this case a stable matching always exists and can be found in polynomial
time by a slight modification of the Gale-Shapley algorithm. However a stable
matching is not necessarily perfect: it will consist of some pairs and of some
isolated singletons. Interestingly every stable matching has the same set of men
and women paired up and the same set of men and women as singletons; see
Gale & Sotomayor [23].

Simultaneously allowing both incomplete preference lists and ties messes
things up a lot. A stable matching always exists and can be found in polynomial
time, but the same instance can have very different stable matchings with vary-
ing numbers of pairs. Deciding whether there is a perfect stable matching (which
pairs up all the players) is NP-complete; see Manlove, Irving, Iwama, Miyazaki
& Morita [32]. In fact this perfect stable matching variant is NP-complete even if
the preference list of every player lists only three acceptable partners; see Irving,
Manlove & O’Malley [30].

Finally Irving & Leather [28] have shown that counting the number of stable
matchings (in the classical version without ties and without incomplete prefe-
rence lists) is #P-complete Chebolu, Goldberg & Martin [14] indicate that even
approximate counting should be difficult.

6.2 Stable Roommates

The stable roommate problem is the non-bipartite unisex version of the stable
matching problem. The following example demonstrates that there are room-
mate instances without stable matching (note the structural similarity between
Example 2 and Example 22).

Example 22. Consider a situation with four players A,B,C,D that have the
following preferences: player A prefers B > C > D; player B prefers C > A >
D; player C prefers A > B > D; and player D prefers A > B > C. Note that
none of A,B,C wants to play with the unpopular dummy player D.

The matching {AB,CD} is blocked by BC, and matching {AC,BD} is blocked
by AB, and matching {BC,AD} is blocked by AC. Hence there is no core stable
partition.



Core Stability in Hedonic Coalition Formation 45

A milestone paper by Irving [26] characterizes the roommate instances with core
stable matchings.

Theorem 23. (Irving [26]) For the stable roommate problem with strict prefe-
rences, the existence of a stable matching can be decided in polynomial time. �

If we allow incomplete preference lists (but still forbid ties), a minor modification
of Irving’s algorithm [26] solves the stable roommate problem in polynomial time.
If we allow ties in the preference relations, the stable roommate problem becomes
NP-complete; see Ronn [36] and Irving & Manlove [29].

Arkin, Bae, Efrat, Okamoto, Mitchell & Polishchuk [2] discuss a metric variant
of the stable roommate problem where every player is a point in a metric space
with distance function | · |. Player P prefers being with player X to being with
player Y if and only if |PX | ≤ |PY |. This special case always has a stable
matching, as it satisfies the common ranking property of Observation 5: just set
f(XY ) = −|XY | for coalitions XY of size two [2].

7 Partition into Triples

Generalizations of the classical Gale-Shapley stable matching problem (with men
and women as the two genders) to three genders (men, women, dogs) usually
are very messy. Alkan [1] seems to have been the first to publish a result on this
3-gender variant, by constructing a concrete example that does not allow a core
stable matching. The preferences in Alkan’s example are additively separable,
and there are n = 3 men, women and dogs. Ng & Hirschberg [33] exhibit an even
smaller bad instance with n = 2:

Example 24. (Ng & Hirschberg [33]) Consider two men M1,M2, two women
W1,W2 and two dogs D1, D2 that have the following preferences over the triples:

M1: M1W1D2 > M1W1D1 > M1W2D2 > M1W2D1

M2: M2W2D2 > M2W1D1 > M2W2D1 > M2W1D2

W1: M2W1D1 > M1W1D2 > M1W1D1 > M2W1D2

W2: M2W2D1 > M1W2D1 > M2W2D2 > M1W2D2

D1: M1W2D1 > M1W1D1 > M2W1D1 > M2W2D1

D2: M1W1D2 > M2W2D2 > M1W2D2 > M2W1D2

There are only four possible partitions into two disjoint triples:

The partition {M1W1D1, M2W2D2} is blocked by M1W1D2.

The partition {M1W1D2, M2W2D1} is blocked by M2W1D1.

The partition {M1W2D1, M2W1D2} is blocked by M1W1D2.

The partition {M1W2D2, M2W1D1} is blocked by M2W2D2.

Hence there exists no core stable matching.
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Ng & Hirschberg [33] also establish the NP-completeness of deciding the exis-
tence of a core stable matching; this result has also been derived by Subramanian
[39] (independently and by a very different approach).

Donald Knuth [31] proposes the 3-gender stable matching variant with so-
called cyclic preferences : every man M has a strict ordering of the women in the
instance, every woman W has a strict ordering of the dogs, and every dog D
has a strict ordering of the men. A triple MWD is blocking for a given current
partition into triples, if man M prefers W to his currently assigned woman, if
woman W prefers D to her currently assigned dog, and if dog D prefers M to
its currently assigned man. Boros, Gurvich, Jaslar & Krasner [9] prove by case
distinctions that every cyclic instance with n = 3 has a core stable matching,
and Eriksson, Sjöstrand & Strimling [20] extend this positive result to n = 4.
The approaches in [9,20] are quite technical and involve much case analysis, and
they do not seem to generalize to larger values of n.

Open Problem 25. (∗∗∗) Prove that every instance of the 3-gender stable
matching problem with cyclic preferences has a stable solution.

Biró & McDermid [7] consider the case of cyclic preferences with unacceptable
partners: every man finds certain women unacceptable, every woman hates cer-
tain dogs, and every dog dislikes certain men. Under this scenario there exist
instances without stable solution, and deciding the existence of a stable solution
is NP-complete.

Danilov [16] discusses a related (but much easier) special case where every man
primarily cares about women and where every woman primarily cares about
men (and where the preferences of the dogs are arbitrary). This special case
always has a stable matching. In a first step, we find a stable matching for the
underlying 2-gender instance that consists of men and women. The preferences
of men and women in this 2-gender instance are their primary rankings in the
3-gender instance. In the second step, we find a stable matching for the 2-gender
instance with dogs on the one side and on the other side the man-woman pairs
from the first step. The preferences of the dogs on man-woman pairs are copied
from the 3-gender instance. The preferences of the man-woman pairs on the dogs
are always fixed according to the man in the pair: the pair MW prefers dog D
to dog D′, if and only if in the 3-gender instance man M prefers triple MWD
to triple MWD′. Everything else follows from the Gale-Shapley Theorem 21.

In the 3-dimensional roommate problem all players have the same gen-
der and every triple is a potential coalition. Ng & Hirschberg [33] estab-
lish NP-completeness of deciding the existence of a core stable matching
in the 3-dimensional roommate problem. Arkin, Bae, Efrat, Okamoto,
Mitchell & Polishchuk [2] discuss the following geometric variant of the
3-dimensional roommate problem in the Euclidean plane with distance function
| · |: every player is a point in the Euclidean plane, and player P prefers
triple PX1X2 to triple PY1Y2 if and only if |PX1| + |PX2| < |PY1| + |PY2|.
(Note that here the matching problem is 3-dimensional, whereas the underlying
geometric space is 2-dimensional. Note furthermore that the preference structure
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is additive.) Arkin & al. [2] exhibit a highly structured instance that does not
possess a core stable matching; the computational complexity of this special case
however remains open.

Open Problem 26. (∗∗) Settle the complexity of the Euclidean 3-dimensional
roommate problem as described in the preceding paragraph.

8 Preference Structures from Maxima and Minima

Cechlárová & Romero-Medina [13] investigate hedonic games where every player
ranks his coalitions according to the most or least attractive member of the
coalition. Similarly as in the additive games in Definition 8, every player i ∈ N
has a real-valued function vi : N → R that measures his addiction to each of the
other players. For a coalition S, we define vmax

i (S) = maxj∈S vi(j) as player i’s
addiction to the best member of S.

Definition 27. Under max-preferences, player i prefers coalition T to coalition
S (that is, S 
i T with i ∈ S and x ∈ T )

– if vmax
i (S) < vmax

i (T ), or

– if vmax
i (S) = vmax

i (T ) and |S| ≥ |T |.

An important special case of this scenario are max-preferences without ties ; this
means that for distinct players a and b the values vi(a) and vi(b) assigned to
them by player i are always distinct.

Theorem 28. (Cechlárová & Hajduková [11]) Under max-preferences, the
Core-Stability verification problem is polynomially solvable.

Proof. How would we verify the core stablitiy of a given partition Π? The main
idea is to check step by step for k = 1, 2, . . . , |N | whether there exists a blocking
coalition S of size at most k. For checking a concrete value k, we construct an
auxiliary directed graph Gk on the vertex set N ; an arc i→ j means that player
i strictly prefers every coalition S with j ∈ S and |S| ≤ k to his current coalition
Π(i). Formally the graph Gk contains the arc i→ j if vmax

i (Π(i)) < vi(j) holds,
or if vmax

i (Π(i)) = vi(j) and |S| > k.
If graph Gk contains a directed cycle of length at most k, the corresponding

vertices form a blocking coalition of size at most k. Vice versa, a blocking coali-
tion of size at most k induces a subgraph in Gk with a cycle of length at most
k. The shortest cycle in a directed graph can be found in polynomial time; see
for instance Cormen & al [15]. �

Theorem 29. (Cechlárová & Hajduková [11]) Under max-preferences without
ties, there always exists a core stable partition.
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Proof. Make every player i point at the player whom he likes most. Then the
underlying directed graph contains a cycle. Pick the players along such a cycle
as coalition S, and repeat this procedure for the remaining graph. �

The algorithm in the proof of Theorem 29 is essentially the famous top-trading-
cycle algorithm of David Gale for the house swapping game (see for instance
[38]). On the negative side Cechlárová & Hajduková [11] prove that under max-
preferences with ties the Core-Stability existence problem is NP-complete.

In a closely related line of research Cechlárová & Hajduková [12] investigate
min-preferences where every player ranks his coalitions according to the least
attractive member in the coalition. Under this scenario unstable partitions al-
ways have small blocking sets of size at most 2, so that the Core-Stability

verification problem is straightforward to solve. Furthermore stable partitions
always consist of small coalitions of size at most 3. For min-preferences without
ties, Cechlárová & Hajduková [12] design a modification of Irving’s roommate
algorithm (Theorem 23) that solves the Core-Stability existence problem in
polynomial time. They also show that for min-preferences with ties the existence
problem is NP-complete.
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(1997)

32. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoretical Computer Science 276, 261–279 (2002)

33. Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems. SIAM Jour-
nal on Discrete Mathematics 4, 245–252 (1991)

34. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
35. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complex-

ity of the V-C dimension. Journal of Computer and System Sciences 53, 161–170
(1996)



50 G.J. Woeginger

36. Ronn, E.: NP-complete stablematching problems. Journal ofAlgorithms 11, 285–304
(1990)

37. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching. Cambridge University Press
(1990)

38. Shapley, L.S., Scarf, H.: On cores and indivisibility. Journal of Mathematical Eco-
nomics 1, 23–37 (1974)

39. Subramanian, A.: A new approach to stable matching problems. SIAM Journal on
Computing 23, 671–701 (1994)

40. Sung, S.-C., Dimitrov, D.: On core membership testing for hedonic coalition for-
mation games. Operations Research Letters 35, 155–158 (2007)

41. Sung, S.-C., Dimitrov, D.: Computational complexity in additive hedonic games.
European Journal of Operational Research 203, 635–639 (2010)

42. Tamura, A.: Transformation from arbitrary matchings to stable matchings. Journal
of Combinatorial Theory A 62, 310–323 (1993)

43. Wagner, K.: Bounded query classes. SIAM Journal on Computing 19, 833–846
(1990)

44. Woeginger, G.J.: A hardness result for core stability in additive hedonic games.
Mathematical Social Sciences (2013)



Software Production: A New Paradigm

for Software Engineering Research

Sjaak Brinkkemper

Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands

S.Brinkkemper@uu.nl

Abstract. Increasingly software products are being offered in an online
mode, also called software-as-a-service. Serving millions of users possi-
bly spread over the world from a central software producing organiza-
tion brings about many challenges and will require several innovations
from the software engineering domain. In this keynote we will introduce
the notion of software production that unifies the whole range of soft-
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Abstract. A fundamental unit of work in programming is the code con-
tribution (“commit”) that a developer makes to the code base of the
project in work. We use statistical methods to derive a model of the
probabilistic distribution of commit sizes in open source projects and
we show that the model is applicable to different project sizes. We use
both graphical as well as statistical methods to validate the goodness of
fit of our model. By measuring and modeling a fundamental dimension
of programming we help improve software development tools and our
understanding of software development.

1 Introduction

Free/libre/open source software (FLOSS) has been adopted widely by industry
in recent years. In 2008, 85% of all enterprises were using open source software
[8]. A 2010 study estimated that 98% of all enterprises were using open source
software [24].

Given the significance of open source, it is surprising that there are few repre-
sentative statistical analyses of open source projects, and that there are no high
quality models of the fundamental dimensions of programming in open source
projects.

In this paper we present a model of one important dimension of programming
in open source software development, the distribution of the sizes of code con-
tributions made to open source projects. This so-called commit size distribution
describes the probability that a given commit is of a particular size.

A commit is an individual code contribution of a developer. [14] show that
lines of code are a good proxy for work spent on that code. Hence, a commit is
a basic unit of work performed by a developer.

The commit size distribution is therefore a model of fundamental units of
work performed in open source programming.

Understanding the work performed in open source programming is helpful
for building better software development tools and understanding software de-
velopment in general. Moreover, case studies suggest that open source is simi-
lar to closed source in terms of growth, project complexity or modularity [19].

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 52–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Thus the results of this paper are likely to apply not only to open source but to
closed source as well.

The contributions of this paper are:

1. A high quality analytical model of the commit size distribution of open
source.

2. An in-depth validation of the model using appropriate statistical measures.
3. A comparison of commit size distributions of different project sizes.

The rest of the paper is organized as follows. Section 2 describes the necessary
terms. Section 3 defines and analyzes the commit size distribution. Section 4 dis-
cusses the potential threats to validity and Section 5 discusses prior and related
work. We consider potential extensions in Section 6, and present our conclusions
in Section 7.

2 Commit Sizes

A software project is typically developed in multiple iterations, in a series of
changes to its artifacts, for instance, code, documentation, or artwork. If a project
is managed using a version control system (also known as a source code man-
agement system), these changes are organized into sets known as commits.

In this paper we address programming, hence we are only concerned with
source code commits. We measure the commit size in terms of lines of code
(LoC). We distinguish between source code lines, comment lines, and empty
lines. We use the following definitions:

1. a source code line (SLoC) is one line of program code,
2. a comment line (CL) is a line consisting only of comments,
3. an empty line contains only whitespace, and
4. a line of code (LoC) is either a source code line or a comment line.

Measuring the size of a commit is a non-trivial task. The main tool for assessing
commit sizes is the “diff” tool which tells the user which lines have been added
and which lines have been removed. Unfortunately, a diff tool cannot identify
with certainty whether a line was changed, because a changed line is always
counted as one line removed and one line added. However, a changed line should
count as one line of work, while an added and a separately removed line of code
should count as two lines of work.

[4] developed an algorithm for identifying changed lines of code from added
and removed lines of code. They use the Levenshtein distance algorithm which
is a metric for measuring the distance between two strings. While helpful this
approach has one major disadvantage: it is computationally expensive and does
not scale to large amounts of source code. Because our analysis covers about
30% of all of open source code at its time, we need another approach.

We use the sample data from Canfora et al. to derive a simple function for
estimating diff chunk sizes where the diff chunk size is a function of two vari-
ables: lines of code added and lines of code removed. This function provides a
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lower bound(a, r) = max(a, r)

full overlap, highest number of changed lines (1)

upper bound(a, r) = a+ r

no overlap, no changed lines in diff chunk (2)

diff chunk size(a, r) =
(lower bound(a, r) + upper bound(a, r))

2
mean value of lower and upper bound (3)

Fig. 1. Equations used to compute a commit’s size from input lines added and removed

statistically valid estimate for the size of a given diff output as shown in [13].
However, our evaluation based on Canfora’s sample data revealed that the regres-
sion performs only trivially better than estimating the diff chunk size by taking
the mean of the minimum possible and the maximum possible sizes. Thus, a
more plausible and unbiased algorithm for estimating the statistically expected
value is simply to take the mean of the minimum and maximum possible values.

Figure 1 provides the necessary equations. In these equations, a represents the
number of lines added and r represents the number of lines removed according
to the diff tool.

In this paper we compute commit sizes by adding up the diff chunk sizes
computed using equation 3 of figure 1. A diff chunk size is the size of the diff of
one file in the commit. After calculating the size of every commit in our data set
we compute the commit size distribution. The commit size distribution describes
the relative likelihood that a commit has a particular size. The commit size
distribution of some commit population is the distribution of the probabilities
(or number of occurrences) of all possible commit sizes.

3 Commit Size Distribution

3.1 Data Source and Research Method

This paper uses the database of the Ohloh.net open source project index. Our
database snapshot is dated March 2008. It contains 11,143 open source projects
with a total of 8,705,118 commits. [6] estimates that there were 18,000 active
open source projects in September 2007 worldwide. The total number of projects
is much larger, but most open source projects are not active and by our activity
definition have to be excluded. We use the same definition of “active project” as
Daffara: A project is active at a given point in time if the number of commits
in the preceding 12 months is at least 60% of the number of commits in the 12
months before that. Using this definition our data set contains 5,117 active open
source projects. We therefore estimate that our database contains about 30% of
all open source projects considered active in March 2008.
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Our analysis is descriptive: we are discovering existing characteristics in our
data rather than starting off with a hypothesis and attempting to invalidate
or validate it. We provide details not only of our final findings but also of the
attempted distributions that did not fit. We also split our analysis along project
sizes and provide the characteristics of commit size distributions by project size.

3.2 Measurements

We determined the total commit size distribution of our open source sample
population using the definition of Section 2. In statistics a distribution can be
represented as a probability distribution function (PDF) or a cumulative distri-
bution function (CDF). The PDF in our case describes the relative likelihood
that a commit of a certain size occur at a given point. The CDF can be com-
puted by integrating the PDF. Integrating the PDF over an interval provides the
probability that a commit is of the size determined by the interval boundaries.
For example, integrating over the interval [1,10] provides the probability that
a commit has between 1 and 10 lines of code, 1 and 10 included.

Commit Size [LoC]
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Fig. 2. The EPDF of the commit size distribution up to the 95th percentile of about
30% of all active open source projects (March 2008)

The empirical result of our measurements is the empirical probability distribu-
tion function (EPDF) as shown in Figure 2. The EPDF is a density estimation
based on the observed data. It describes the probability that a certain commit
has a certain commit size. The EPDF is not a closed model, it is just a repre-
sentation of the observed data. The statistical key characteristics are shown in
Table 1.

The form of the EPDF, in particular that it is monotonically falling suggests
the following possible probability distributions:

– Biexponential
– Exponential
– Generalized Pareto
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– Pareto
– Simple Power Law
– Weibull
– Zipf’s

To determine the analytically closed form of the PDF and CDF we calculated
the empirical cumulative distribution function (ECDF) and fitted the different
possible distributions to the ECDF based on Newman’s advice to choose the
CDF for analytical purposes [17]. This approach is robust and allows us to use
different regression techniques without binning. Thus we prevent the introduc-
tion of biases and information loss that comes with binning. We then fitted the
different distributions (see enumeration above).

Table 1. Statistical key characteristics of the open source commit size distribution

Key Parameter Value

Mean 465.72
Median 16

90th percentile 261
95th percentile 604.5

After reviewing the different fits and the residual plots as well as the P-P plots
(“P” stands for percentile) we found that the Generalized Pareto Distribution
(GPD) provides the best fit.

The GPD is broadly applicable and incorporates both exponential and Pareto
distributions when certain parameters are fixed [15].

The Generalized Pareto Distribution is difficult to fit using the maximum
likelihood approach, as the location parameter is unbounded (see [22] and [21]).
We therefore decided to use a least square fit on the ECDF. The location pa-
rameter is chosen manually, attempting to fit the other two parameters with
increasing values of location in increments of 0.5 (the granularity of commit size
estimates, since they are averages of two integral values). We find that a value
of 0.5 minimizes the difference between CDF and ECDF at the mode commit
size of 1.

f(x) =

{
1
σ
(1 + ξ x−θ

σ
)
−1− 1

ξ for ξ �= 0
1
σ
exp(− (x−θ)

σ
) for ξ = 0

(4)

Fig. 3. PDF formula for the Generalized Pareto Distribution

The result of our fit is the CDF of the commit size distribution in closed form,
which is shown next to the ECDF in Figure 5.

The parameters of the Generalized Pareto Distribution are shown in Table 2,
the equations for the Generalized Pareto Distribution are shown in Figure 3



Commit Size Distribution of OSS 57

F (x) =

{
1− (1 + ξ(x−θ)

σ
)−1/ξ for ξ �= 0

1− exp(−x−θ
σ

) for ξ = 0
(5)

Fig. 4. CDF formula for the Generalized Pareto Distribution

and 4. Where θ is the location parameter, it controls how much the distribution
is shifted. σ is the scale parameter it controls the dispersion of the distribution,
while ξ is the shape parameter which controls the shape of the generalized pareto
distribution [5].
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Fig. 5. The Generalized Pareto Distribution of the CDF up to the 95th percentile of
about 30% of all active open source projects (March 2008)

Table 2. Model parameters of Generalized Pareto Distribution as calculated from least
squares

Parameter Value

ξ (xi) / Shape 1.4617
θ (theta) / Location 0.5
σ (sigma) / Scale 13.854

Figure 6 shows the P-P plot that compares our model to the empirical data.
A P-P plot is a graphical method to compare two probability distributions by
plotting their percentiles against each other; here, we compare the percentiles
of our model (i.e. the CDF) to the percentiles of the empirical data (i.e. the
ECDF).

As can be observed by examining the CDFs of our model and empirical data,
both distributions are long-tailed; thus, per [10], the P-P plot is more appropriate
than the more familiar Q-Q (quantile-quantile) plot.
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Fig. 6. P-P plot comparing the percentiles of the model and the empirical percentiles

To show the goodness of our fit we also compute quantitative measures such
as R-square and Pearson’s R as shown in Table 3.

Table 3. Goodness of Fit Indicators calculated up to the 95th percentile

Parameter Value

R-square on CDF 0.9949
Pearson’s R on CDF 0.99755

3.3 Comparison by Project Size

We also want to understand how the commit size distribution varies by project
size. One might hypothesize that small projects are different from medium sized
and large projects. However, we found that the GPD not only fits when ana-
lyzing all projects, it also fits to subsets of different sizes in terms of number of
developers.

We classify the projects into small, medium, and large sized projects based
on the number of involved developers. [3] provide an analysis of the number of
developers in a random sample of projects included in the Debian GNU/Linux
distribution. We use their proposed partitioning to group our projects accord-
ingly (see Table 4).
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Table 4. Project size boundaries

Parameter Minimum number of developers Maximum number of developers

Small 1 5
Medium 6 47
Large 48 ∞
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Fig. 7. EPDF for small projects
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Fig. 8. EPDF for medium projects

We can now measure how the commit size distribution correlates with project
sizes. We found that the commit size distribution of small, medium, and large
projects are also best characterized as generalized Pareto distributions. Figures
10, 11, and 12 show the cumulative distribution functions respectively.

The parameters of these distributions (see Table 5) are close to the parame-
ters of the total distribution. Figure 13 compares the EPDFs of the different
subsets. After comparing the plots and the model parameters we came to the
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conclusion that the location parameters is invariant to the number of developers
in a project. The shape parameters have no obvious correlation with the number
of developers and the differences are small, while the scale parameter falls as
the number of developers increases. A possible explanation for this is that when

Table 5. Model parameters of the Generalized Pareto Distribution as calculated for
different project sizes

Parameter Small projects Medium projects Big projects

ξ (xi) / Shape 1.5969 1.6008 1.5708
θ (theta) / Location 0.5 0.5 0.5
σ (sigma) / Scale 14.249 12.199 10.822
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Fig. 9. EPDF for large projects
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Fig. 10. Generalized Pareto Distribution as CDF of small open source projects (March
2008)
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Fig. 11. Generalized Pareto distribution as CDF of medium open source projects
(March 2008)
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Fig. 12. Generalized Pareto distribution as CDF of large open source projects (March
2008)
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more and more developers join a project the average commit size goes down
to prevent merge conflicts. Another explanation is the observation of [23] that
small patches are more likely to be accepted then large ones; we posit that this
affects larger projects more since they are more likely to have a formalized code
review process.

The effect is not very big; in fact, in the region of commit sizes with the
most pronounced difference (commits smaller than 13 LoC), the difference in
proportion of commits in this category between large and small projects is 6.03%.
For commits in this region, both models have errors (the difference between the
respective model and the empirical data) smaller than 3%.

4 Threats to Validity

4.1 Poor Support for Multiple Enlistments

TheOhloh 2008 dataset has limited support for multiple enlistments [18]. Projects
that have changed their SCM, either moving it to a new URL or transitioning to
newer technology (e.g. CVS→ SVN→ Git or Mercurial) thus face either having
their commits listed multiple times (resulting in older commits being given too
much weight). But in practice this is not a problem because there is no difference
in the distribution of old and new commits [7].

4.2 Model Errors

The slight over- and undercutting is an indication for a systematic error in our
model. We cannot explain this systematic error, but the goodness of fit calcula-
tions and the P-P plot show that it is sufficiently small. That is the reason why
we do not address it further. There might be a second underlying distribution
that is responsible for this error but we have not been able to determine it. We
also think that removing that error would come at the risk of overfitting our
model.

4.3 Bias of the Ohloh Data

As mentioned earlier we rely on the Ohloh data for our analysis. The Ohloh data
has two self-selection biases:

Projects that die very early probably never make it into the Ohloh database
and are therefore underrepresented in our analysis. Projects from non-English
speaking countries are also less likely to be included in Ohloh.

We think the first bias is not an issue because for such projects it would
be difficult to derive a statistically significant measure as there are almost no
commits yet. We also think that the language bias is unproblematic because we
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do not think that there are differences in the commit size distribution whether
a project is done in an English- or non-English-speaking environment.

5 Related Work

We previously presented a preliminary analysis of the commit size distribu-
tion [2]. Compared to this work our current analysis adds a closed model and
a validation of this model as well as an analysis of the commit size distribution
by project size.

[1] present an analysis of “a typical commit” using the version history of 9 open
source projects. They mostly focus on the number of files changed (and how),
but also provide chunk and line-size data. They compute line size changes by
adding lines added and removed, thus overestimating sizes by ignoring changed
lines of code. Still, they find “quite small” commit sizes without giving more
details. Interestingly, they find a strong correlation between diff chunk and size.
Alali et. al.’s 9 projects are large well-known open source projects. In contrast to
Alali we focus solely on commit size, use a more precise measure and compute a
derived function, the commit size distribution, on a more representative sample
rather than 9 selected projects.

[20] analyze the impact that small changes have on various quality attributes
of the software under consideration. Their data is derived from a single large
closed source project. They find that one-line changes represent the majority
of changes during maintenance, which is in line with our results. [12] analyze
2,000 large commits from 9 selected open source projects and they find that
small commits are more corrective while large commits are more perfective.
Unfortunately, the authors do not discuss as to what extent their results might be
representative of open source. [23] look at the patch submission and acceptance
process of two open source projects. They find that small patches are more likely
to get accepted into the code base than large patches. An obvious reason may be,
that smaller patches are easier to review than large patches which, if not handled
quickly, get harder to review and accept with time. While not representative,
Weißgerber’s observation is interesting to us, as it might explain why the commit
size distribution is skewed towards small commits, and why this skewness is more
pronounced in larger projects.

The analysis of code repositories for various purposes is an important research
area that has given birth to the annual Mining Software Repositories conference
series, usually co-located with ICSE [11]. A 2009 IEEE Software special issue on
Mining Software Archives [16] was followed by a symposium of the same name
in 2010. Ghezzi and Gall propose not only to undertake such research but to
provide a platform that allows for the distributed composition of services for
such analysis work [9].

Our research has one key distinguishing feature when compared to other open
source data analysis research: The size of our sample population is much larger
than any other published data set and brings us close to being representative of
open source.
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6 Future Work

6.1 Study of Proprietary Software

We would like to extend our analysis to that of proprietary software projects. In
order to do this we require access to commit statistics of proprietary software
projects, and this in turn requires collaboration with software vendors to get
access to their statistics.

6.2 Validation by Accessing Software Repositories

For the open-source projects that we analyze it would be desirable to validate our
findings by picking several key projects, mining their revision history ourselves
(rather than depending on the Ohloh statistics) and comparing the results to
the same statistics computed over the Ohloh data (for the same projects).

6.3 Extended Analysis

Some analysis are not possible with the Ohloh data, and like those above require
direct access to the software repositories:

Certain version control systems, like Git allow a commit to have an author,
multiple signatories, and a committer. With certain others (e.g. SVN) it’s not
built-in, and projects have to resort to informal conventions for marking commit
authorship if the author does not have commit access. Thus it is not possible to
reliably reconstruct this data.

With direct access we could better characterize projects based on write access
to code – whether BSD-style (a core team with commit bit can touch any part of
the codebase; centralized development), Linux-style (a hierarchical system with
lieutenants in charge of certain parts of the codebase; distributed development,
changes can still be made to the entire tree, but commits tend to be accepted
only if they are within the developer’s competence), commercial open source
(most development is done by paid employees; external fixes might be accepted
but are committed by a paid employee)

7 Conclusions

This paper shows that small commits are much more likely than large commits
with 50% being 16 lines of code or less.

The actual commit size distribution of open source is best modeled by a
Generalized Pareto Distribution and we have found the same kind of distribution
fits for different project sizes, with the likeliness of small commits increasing with
the number of developers.

The fact that it is a Pareto Distribution, which is a distribution with a long
tail, also shows that large commits happen although they are less likely.

The empirical knowledge gained from actually measuring the commit size
distribution is the first step to creating hypotheses for future research to improve
software development tools. It can be used as a benchmark to compare projects
as well.
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The mathematical model presented in this paper is one step towards a more
precise model of software development. It is also important for developing new
software development methodologies and to develop a general model of software
development.
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Abstract. The ISICIL initiative (Information Semantic Integration through Com-
munities of Intelligence onLine) mixes viral new web applications with formal
semantic web representations and processes to integrate them into corporate prac-
tices for technological watch, business intelligence and scientific monitoring. The
resulting open source platform proposes three functionalities: (1) a semantic so-
cial bookmarking platform monitored by semantic social network analysis tools,
(2) a system for semantically enriching folksonomies and linking them to corpo-
rate terminologies and (3) semantically augmented user interfaces, activity mon-
itoring and reporting tools for business intelligence.

Keywords: social semantic web, business intelligence, social network, social
network analysis, folksonomies, semantic wiki.

1 Introduction

Recently, online communities of interest have emerged and started to build di-rectories
of references in their domains of interest at an impressive speed. One of the
main strengths of the tools enabling these communities is their ability to turn usu-
ally passive users into active participants and producers. The diversity and the mass of
users are used to tackle the diversity and the mass of information sources.
Monitoring market, science and technological changes is a vital ability of today’s or-
ganizations, yet the growing diversity of sources to track in each domain of inter-
est remains a challenge for any organization. Therefore there is a growing interest in
importing inside corporate information systems the tools and practices that made the
success of these online communities. But, Web 2.0 tools exhibit limits when it
comes to automating tasks or controlling processes. On another hand, more structured
information systems often suffer from usability and knowledge capture issues. Thus
a challenge of the ISICIL project is to reconcile viral new web applications with for-
mal representations and processes and to integrate them into corporate practices. More
specifically, we studied and experimented with the usage of new tools for assisting
corporate intelligence tasks. These tools rely on web 2.0 advanced interfaces for
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interactions and on semantic web technologies for interoperability and information
processing.

2 Overview of the ISICIL Project

Over the past four years, the goal of the ISICIL project has been to combine social net-
works and semantic web in a user-friendly platform supporting corporate intelligence.
The project started with a multidisciplinary design methodology to specify a new form
and a new platform for corporate intelligence. From the technical point of view, the
main challenge of this project was to reconcile the new viral web applications with
formal representations of business processes and to integrate them into communities
of practice of the company. We explored new scientific developments of the notion of
epistemic cooperation (human interaction oriented toward the development and trans-
mission of knowledge) and we identified usable technological solutions. An ergonomic
approach, combining impregnation of ground truth data and freer technological inspi-
rations from bibliographic and webographic sources, was followed and evaluated. The
results of this study allowed us to specify, design, experiment and evaluate new tools
to support collaborative tasks in business intelligence by leveraging Web 2.0 interfaces
(blog, wiki, social bookmarking) for interactions and semantic web technologies for
interoperability and information processing.

All the models proposed and formalized in the project are typed graphs. These mod-
els capture structures and semantics underlying epistemic communities, their networks,
their resources and their interactions. ISICIL relies on a unifying model based on RDF
graphs to represent resources and community stakeholders. These models are integrated
with bookmarking or “web scraping” tools. The outputs of these tools are tagged and
the tags are collected to form folksonomies and analyzed to semi-automatically struc-
ture these folksonomies. The user feedback on this structure is capture when they use
the search engine which offers tags related to their keywords. Users can accept, reject
or adjust these suggestions and enrich or correct the structure as a side-effect of refining
their queries. User profiles and links are processed by a series of operators to propose
a semantic analysis of social networks e.g. centrality metrics parameterized by an on-
tology. Merged graphs of structured folksonomies and of social networks finally allow
the detection and labeling of epistemic communities.

ISICIL is a proof of concept of the compatibility of the Semantic Web formalisms,
practices and models of Web 2.0 and the philosophical framework of social epistemo-
logy. An open-source platform is available under CeCILL-C and was tested at ADEME
and Orange, and all the deliverables are online1. In the following sections we zoom on
three types of results from the project: semantic social network analysis (Section 3.1),
folksonomy enrichment (Section 3.2) and community and interest detection (Section
3.3). We explain the software architecture and implementation in Section 4. We provide
a guided tour of some of the users’ the interfaces in Section 5. Finally we position the
project within the state of the art (Section 6) and we conclude and discuss the results
and evaluation (Section 7).

1 http://isicil.inria.fr

http://isicil.inria.fr
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3 Semantics and Social Metrics

3.1 Social Network Analysis (SNA)

ISICIL integrates a bookmark-centric social network and Semantic Network Analysis
(SNA) tools. We used popular ontologies to model a social graph in RDF (linking peo-
ple, resources, tags). We implemented the computation of the main SNA indices using
Sparql and post-processing in a few cases, see [1] and [3] for details. We designed stack
of tools (Figure 1) to conduct a semantic social network analysis. The goal of this stack
is to provide a framework that enables us to consider not only the network structure
embedded in social data, but also the schemas that are used to structure, link and ex-
change these data. This stack is composed of (1) tools for building, representing and
exchanging social data and (2) tools for extracting social network analysis metrics and
leveraging social graphs with their characteristics.

Fig. 1. Abstraction Stack for Semantic Social Network Analysis

We represented the social graphs in RDF, which provides a directed typed graph
structure. Then we leveraged the typing of nodes and edges with the primitives of ex-
isting ontologies together with specific domain ontologies when needed. With this rich
typing, semantic engines are able to perform type inferences from data schemas for
automatically enriching the graph and checking its consistency.

For the analysis of the network, we designed SemSNA2 (Figure 2) that defines differ-
ent SNA metrics ranging from the annotation of strategic positions and strategic actors
(like degrees or centralities), to the description of the structure of the network (diam-
eter, etc.). With this ontology, we can abstract social network constructs from domain
ontologies to apply our tools on existing schemas by having them extend our primi-
tives. We can also enrich the social data with the SNA metrics that are computed on
the network. These annotations enable us to manage more efficiently the life cycle of
an analysis, by pre-calculating relevant SNA indices and updating them incrementally
when the network changes over time. Moreover they can be used during the querying
of social data for ordering and filtering the results and reused by other applications.

2 http://ns.inria.fr/semsna/2009/06/21/voc.rdf

 http://ns.inria.fr/semsna/2009/06/21/voc.rdf 
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Fig. 2. Subset of SemSNA ontology: paths and strategic positions

Fig. 3. Example of a social graph enriched with social network analysis results
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Figure 3 shows an example of enrichment of a semantic social graph with SemSNA.
We use the property hasSNAConcept to link Guillaume to a Degree, the property sem-
sna:isDefinedForProperty specifies that this degree has been computed in the colleague
sub-network (taking into account sub-relationships like supervisor), the property has-
Value describes the value of this degree, and hasCentralityDistance defines the path
length that was considered.

On top of SemSNA we proposed SPARQL formal definitions of SNA operators
handling the typing of the semantic representations of social networks through pa-
rameterized queries focusing automatically on specific path patterns, involving specific
resource or property types. The SPARQL queries that we designed are based on ex-
tensions of the SPARQL language that are implemented in the semantic graph engine
CORESE [4]. In particular, the property path extension of CORESE [5] enables us to
extract paths in RDF graphs by specifying multiple criteria such as the type of the prop-
erties involved in the path with regular expressions, or edge directions or constraints on
the vertices that paths go through.

3.2 Semi-automated Semantic Structuration of Folksonomies

Social tagging is a successful classification means to involve users in the life cycle of
the content they exchange, read or publish online. However, folksonomies resulting from
this practice have shown limitations (spelling variations, lack of semantic relationships,
etc.) that significantly hinder the navigation within tagged corpora. One way of tack-
ling these limitations is to semantically structure folksonomies. This can help navigate
within tagged corpora by (1) enriching tag-based search results with spelling variants
and hyponyms, or (2) by suggesting related tags to extend the search, or (3) by semanti-
cally organizing tags to guide novice users in a given domain more efficiently than with
flat lists of tags or occurrence-based tag clouds, or (4) by assisting disambiguation. We
designed a tagging-based system that integrates collaborative and assisted semantic en-
richment of the community’s folksonomy. We proposed formal models and methods to
support diverging points of view regarding the semantics of tags and to efficiently com-
bine them into a coherent and semantically structured folksonomy, see [6] and [7] for
details. Our approach consists in creating a synergistic combination of automatic struc-
turing methods to bootstrap the process, and of users’ contributions at the lowest possible
cost through user-friendly interfaces to improve the results. The system supports con-
flicting points of view regarding the semantic organization of tags, but also helps online
communities build a consensual point of view emerging from individual contributions.

Fig. 4. SRTag RDF schema
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We proposed an RDF schema (Figure 4), SRTag3, which makes use of named graphs
mechanisms [8] and [9] to capture statements and points of views. We encapsulate
statements about tags within a named graph typed as srtag:TagSemanticStatement or
more precise subclasses.

The relationships between tags can be taken from any model, but we chose to limit
the number of possible relations to thesaurus-like relations as modeled in SKOS. Then
we modeled a limited series of semantic actions which can be performed by users
(represented using sioc:User class), namely srtag:hasApproved, srtag:hasProposed, and
srtag:hasRejected. This allows us to capture and track users’ opinions on the asserted
relations, and thus to collect consensus and diverging points of view. We distinguish
different types of automatic and human agents according to their role in the life cycle
of the folksonomy. We modeled different subclasses of the class sioc:User in order to
filter statements according to the users who approve it. This includes srtag:SingleUser
which corresponds to regular users of the system, srtag:ReferentUser (e.g. an archivist)
who is in charge of building a consensual point of view, srtag:TagStructureComputer
which corresponds to the software agents performing automatic handling of tags, and
srtag:ConflictSolver corresponding to software agents which propose temporary con-
flict resolutions for diverging points of view before referent users choose one consen-
sual point of view.

Fig. 5. Folksonomy enrichment lifecycle

As a result, our model allows for the factorization of individual contributions as
well as the maintenance of a coherent view for each user and a consensual view linked
to a referent user. Furthermore, by modeling different types of agents who propose,
approve or reject tag relations, we are able to set up a complete life cycle of enriched

3 http://ns.inria.fr/srtag/2009/01/09/srtag.html

http://ns.inria.fr/srtag/2009/01/09/srtag.html
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folksonomies (Figure 5) which starts with a ”flat” folksonomy (i.e. with no semantic
relationships between tags) and can be decomposed as follows:

1. Automatic processing is performed on tags using (a) string based comparisons be-
tween pairs of tags and (b) methods on the network structure of the folksonomy
(linking tags, users and resources), see [6] and [7] for details. Agents then add
assertions to the triple store stating semantic relations between tags. These com-
putations are done overnight due to their algorithmic complexity. We conducted
a benchmark to evaluate the ability of string metrics to retrieve other types of
semantic relations such as related relation, or narrower or broader relation, also
called hyponym relation. We also implemented the algorithm described by [10] in
order to extract subsumption relations which consists in looking at the inclusions
of the sets of users associated to a tag. Co-occurrences of tags have also been used
for determining missing related relations. The zoom in Figure 6 shows an extract
of the structured folksonomy we obtain just after automatic processing.

Fig. 6. Example of the results of automatic processing with the String Based method showing
tags linked with the tag ”transports”. The size of the nodes indicates the in-degree.

2. User’s contributions: people contribute through interfaces integrated into tools
they use daily by suggesting, correcting or validating tag relations. Each user main-
tains his point of view, while benefitting from the points of view of other users.

3. Conflict detection: as logical inconsistencies arise between users’ points of view,
a software agent using production rules detects these conflicts and proposes reso-
lutions when possible. The statements proposed are used to reduce the noise that
may hinder the use of the system when, for instance, different relations are stated
about the same pair of tags.

4. Global structuring: the statements from the conflict solver agent are also used to
help referent users (e.g. librarians) in their tasks to maintain global and consensual
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thesaurus with no conflicts. This view is used to filter the suggestions of related tags
by giving priority to referent-validated relations over others suggested by comput-
ers or individual users.

5. Structured folksonomy: at this point of the life cycle we have a semantically struc-
tured folksonomy in which each user’s point of view co-exists with the consensual
point of view. Then a set of rules is applied to exploit these points of view in order
to offer coherent navigation and search tools to each and every user.

6. And again: another cycle restarts with automatic handlings to take into account
new tags added to the folksonomy.

3.3 Identifying Communities and Shared Interests

Building on top of our results on semantic social network analysis and folksonomy
structuring, we proposed a community detection algorithm, SemTagP. This algorithm
not only offers to detect but also to label communities of interest by exploiting at the
same time the structure of the social graph and the semantics of the tags used. Doing so,
we are able to refine the partitioning of the social graph with semantic processing and
to label the activity of detected communities. We tested and evaluated this algorithm on
the social network built from Ph.D. theses funded by ADEME, the French Environment
and Energy Management Agency. We showed how this approach allows us to detect and
label communities of interest and control the precision of the clustering and labeling.

SemTagP [2,3] is an extension of the RAK algorithm [18] in which we turned the
random label propagation into a semantic propagation of tags: instead of assigning and
propagating random labels, we assign to actors the tags they use and we propagate them
using generalization relations between tags (e.g. skos:narrower / skos:broader) to merge
over-specialized communities and generalize their labels to common hyperonyms (for
instance merging football and handball communities into a sport community).

We use the directed modularity on RDF directed graphs to assess the quality of the
community partition obtained after each propagation loop. When a partitioned network
has a high modularity, it means that there are more connections between nodes within
each community than between nodes from different communities.

SemTagP iteratively propagates the tags in the network in order to get a new partition-
ing: nodes that share the same tag form a community. During a propagation loop each
actor chooses the most used tag among its neighbors, for a tag t we count 1 occurrence
for each neighbor using t and 1 occurrence for each neighbor using a skos:narrower
tag of t. We iterate until the modularity stops increasing. The penultimate partitioned
network is the output of the algorithm.

In our first experimentation, we witnessed that some tags with many skos:narrower
relations absorbed too many tags during the propagation phase, such as the tag ”envi-
ronnement” (environment), which is ubiquitous in the corpus of the ADEME agency.
Such tags grouped actors in very large communities. Consequently, we added an option
to refine manually the results: after the first propagation loop we present the current
community partition and labeling to a user that can reject the use of skos:narrower rela-
tions of tags labeling too large communities. Then, we restart the algorithm and repeat
this process until no more relation is rejected.
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We formalized our algorithm in [2] and [3] and it was implemented on top
of the semantic graph engine CORESE-KGRAM [4] that supports RDF/S and SPARQL
1.1 query language. We delegate all the semantic processing performed on the graph
to the semantic graph engine, taking benefits of SPARQL queries to exploit seman-
tic relations between tags. Notice that the pattern matching mechanism of KGRAM’s
SPARQL implementation is based on graph homomorphism that is an NP complete
problem. However, many heuristic optimizations enable us to significantly cut the time
calculation of the RDF graph querying.

Fig. 7. Ph.D. social network of the ADEME with tags labeling the communities

In Figure 6 we show an overview of the ADEME social network with the labels of the
communities identified by SemTagP. We used a graph visualization tool, GEPHI, with a
force layout to render the results. The size of the nodes is proportional to their degrees,
and the size of the tags is proportional to the size of the labeled communities. Groups
of densely linked actors are gathered around few tags, which highlight the efficiency
of the algorithm at partitioning the network. Moreover, communities that are labeled
with tags representing related topics are close in the visualization, which enables us to
build thematic area of the network using the labeling of the communities. In Figure 6,
communities displayed in framed area are respectively labeled with tags related to:
pollution (1), sustainable development (2), energy (3), chemistry (4), air pollution (5),
metals (6), biomass (7), wastes (8). For instance, the area 3 contains tags related to
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energy production and consumption with the tags energie (energy), silicium, solaire
(solar), moteur (engine), bâtiment (building) and transports. This observation shows
that SemTagP labeled closest communities with related labels.

4 Implementing ISICIL

The ISICIL platform integrates all the approaches summarized in the previous section
into a web architecture deploying interconnected social semantic tools on an intranet
to support business intelligence and technology monitoring activities including watch,
search, notification and reporting4.

4.1 General Architecture of the Platform

The platform is a typical REST API architecture, built as a JavaEE webapp, hosted in
a classical servlet container. For practical reasons we split this project into 3 layers:

The core layer embeds the CORESE/KGram library as the main triple store, concep-
tual graph engine and SPARQL 1.1 compliant interpreter [11]. As such, we make an
extensive use of new features of SPARQL 1.1 like update, named graphs, paths. This
layer also implements the read/write mechanisms between CORESE/KGram and the
ISICIL custom persistence system.

The business layer is dedicated to the implementation of ISICIL models and pub-
lishes services and methods required for interacting with the semantic engine. Each
business object has a dedicated service for inserting/updating/deleting annotations. For
mobile devices concerns, we also have pre-wired some of the main queries users can
have to ask to the system. This work greatly simplifies the client-side interaction with
the server and the parsing of the results. For those who need complex queries, a SPARQL
endpoint service is also provided.

The RESTful API represents the HTTP translation of the business layer. Almost all
of the business services have a corresponding web service. Because of the sensitive as-
pect of the business intelligence information, we took special care of security issues. An
ontology based access control model had been designed and implemented in a prototype
based on ISICIL datasets [12].

4.2 Clients of the RESTful API

Two software clients were also developed during the project. One is a semantic en-
hancement of an industrial quality open source wiki5 whose role is to support web
scraping and reporting and the second one is a Firefox add-on whose goal is to propose
a semantic augmented browsing experience to the user. Users can access ISICIL infor-
mation through them, but their activities within these tools also feed the ISICIL social
network. For instance, the wiki tracks collaboration between contributors, comments,

4 The platform is open-source, available on the INRIA repository,
https://gforge.inria.fr/projects/isicil

5 Mindtouch Dekiwiki, http://www.mindtouch.com/

https://gforge.inria.fr/projects/isicil
http://www.mindtouch.com/
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tags and proposes some reporting features through several dashboard widgets that can
be embedded into wiki pages. It also proposes corporate documentation templates to
guide users in their editorial activities and to push them to bring this kind of documents
out of the office.

The second tool, the Firefox add-on provides a bookmark extension, called Web-
marks, which allows the user to share his web references through the ISICIL social
network. Furthermore, users can scrap (archive) a web page that is uploaded to the wiki
and use it in a wiki page to have a backup copy, to illustrate something or to initiate
a discussion or a report. The Firefox add-on also embeds an RDFa parser that ana-
lyses metadata hidden in the pages that are marked. This feature for instance is used
to bootstrap the Webmarking form with some Dublin core, FOAF or OGP metadata6.
RDFa can also be injected in the PHP templates of corporate legacy tools to use their
web front end as integration points and analyze what the user is currently browsing on
a corporate intranet tool and start tracking his activity or suggest him some other good
readings or good persons to contact, or relevant services for the data he accesses. The
Figure 8 illustrates the way these tools are connected together.

Fig. 8. ISICIL General Architecture

4.3 Data Consolidation, Metrics Computing and Connectors

One thing that the three layers architecture allowed was the building of independent,
small and easy-to-maintain software agents, sharing the same business layer that
the REST API. This is of primary importance as when the model evolves, automati-
cally every dependent module benefits of the business layer update.

6 http://developers.facebook.com/docs/opengraph/

 http://developers.facebook.com/docs/opengraph/
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In Section 3, we have presented the algorithms that we are using for respectively
social network analysis, semantic structuration of folksonomies and community detec-
tion. Those resource-consuming processes cannot be done in real-time. For that pur-
pose, those independent software agents can be dispatched through a local network and
remotely consolidate the ISICIL database with their results. Their execution can also be
scheduled as an entry in a crontab or in any other scheduling system. Our data connec-
tors are following exactly the same design principles.

4.4 ISICIL Ontologies: Effective Reuse and Required Adaptations

Modeling the identity was a critical step during the design phase. As a conception guide,
we relied mostly on a real use case from the French agency for sustainable development
and energy mastery (ADEME). They were very interested in merging their contacts
databases into a unified social network. For that task, we set up the ISICIL social net-
work with both of their corporate directory and PHD contact databases, but to do so,
many difficult aspects had to be taken into account:

– Distinguish employees of the company and external persons. Bootstraping the so-
cial network only with ADEME employees was not considered of interest. The
most valuable information in such a corporate social network resides in the links
between inner experts and industrial or academic partners.

– Manage the turnover. Many experts stay only a few years as members of the agency.
So the system should be able to disable their account, but also keep track of what
they did before and what they are doing next.

– Bridge existing online identities under a unique URI. Many of the staff members
are contributing to the corporate knowledge under many different online identities
on intranet or extranet tools, like blogs or forums. Our first work was to integrate,
curate and merge all of these fragments into a single coherent entity so that it is
possible to answer to (not so) simple questions such as “who wrote that?”, ”who’s
currently working on that topic in the agency?”. . .

– Enable online communities. Social network users like to create online groups and
communities to share information. But in our case, groups inherited from the or-
ganization chart were not considered representative of the way members wanted to
collaborate. So we had to integrate in our model a second kind of group to model
these parallel online communities.

The part of the ISICIL model dedicated to identity, groups and communities is illus-
trated by Figure 9. We made design choices using some parts of the FOAF ontologies,
such as foaf:Person, foaf:Group, foaf:Organization to model information from the cor-
porate organization chart while SIOC was used to model online activities. Though,
any user of the ISICIL software has at least two identities, an official one named by
a foaf:Person URI and an online account represented by a sioc:UserAccount.

At the beginning, social relations were defined as properties of the relationship on-
tology7. This model proposes a many foaf:knows sub-properties enabling the specifica-
tion of each social relation type. But, we faced a lot of issues when we tried to calculate

7 http://vocab.org/relationship/.html

http://vocab.org/relationship/.html


ISICIL: Semantics and Social Networks for Business Intelligence 79

Fig. 9. ISICIL Global model

some basic SNA metrics. Results were false because most of these relations were de-
fined symmetric while we needed to take into account in-degree and out-degree. For
that purpose, we had to define our own non-symmetric sub-properties of foaf:knows.

Another important part of the design task was the integration of the ADEME con-
trolled vocabulary into the system and its articulation it with other legacy folksonomies
inherited from intranet CMS/Blogs/Wikis that provide free form social tagging. The
idea was to bootstrap the ISICIL tagging system in such a manner that we can propose
some relevant auto-completions and tag suggestions, assisting users in their tagging ac-
tivities. This approach is also fostered by our semi-automated semantic structuration of
folksonomies presented in Section 3.2.

To do so, we made an extensive use of the SKOS vocabulary8, separating “offi-
cial” controlled terms (skos:Concept) from tags created by users. For tags, we are using
the SCOT ontology [13] that defines a scot:Tag as a subclass of a skos:Concept
(Figure 9). As explained in the Section 3.2, we infer SKOS relations between these con-
cepts. The NiceTag vocabulary [14] is used to model tagging events as named graphs
including a creator, a date and a targeted resource. Tagging events represent a very im-
portant part of the online activity that we are tracking. We analyse the tags an expert
is currently using, and tags that are related, to suggest him relevant people to contact.

8 http://www.w3.org/TR/skos-reference/

 http://www.w3.org/TR/skos-reference/
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Moreover, a macroscopic usage analysis on tagging events for a given period provides
valuable information about scientific and technological trends.

Business Intelligence tasks are not always focusing on the same topics. So, an expert
should be able to describe his current field of interest by a set of keywords that he
can activate or deactivate according to his current activity. For that purpose, we used
the foaf:topic interest property as a link between an expert and a tag, a concepts or
a person. As we can see on Figure 9, the user can organize these topics in labeled lists
(skos:Collection) that he can share with others. The user who described his topics of
interest this way, will be notified of incoming information produced over the ISICIL
social network that is related to his active topics. These declarations of interests could
also be exploited to improve the suggestions of readings and contacts the system can
provide.

One of the principal concerns of experts at the ADEME is to qualify information.
How to distinguish valuable information in a flow of poorly reliable data? Answering
such a question requires information about authors. The ISICIL platform manages two
kinds of documentary resources: legacy documents coming from corporate databases
and pages produced on the ISICIL semantic wiki.

For legacy documents, most of the time, we know nothing about authors and the
context where these documents were created. Thus, it is almost impossible to qualify
“a priori” their informational value. But it is possible to analyze the way ISICIL users
reference it. For instance, if a well-known expert in the ISICIL social network adds
a Webmark on a report and tag it, there are chances that this document contains some-
thing useful. If many users do the same, this probability increases. The ISICIL platform
computes ranking metrics based on Webmarks and tagging analysis that give to docu-
mentary resource a value that represents its social relevance. These values are used to
sort suggestions or the results of a full-text search.

For ISICIL wiki pages, we have made an extension of the SIOC ontology for wiki
pages, revisions, attached documents and comments. This model is mainly based on
sioc:Item and sioc:Container and contributors on wiki pages are identified by their
sioc:UserAccount and the sioc:creator of property. Then, in addition to the previous
analysis made from tagging and webmarking, we also have the social information about
the author.

5 User Interfaces

5.1 Capture Online Activity

For a social network to be alive the social data need to be attractive. None of the ISCIL
algorithms are efficient without good tagging, interesting wiki content, webmarks or
social relations. Thus, providing intuitive tools to produce these data was a primary task.
The commercial wiki (Figure 10A) we choose to be enhanced with semantic features in
ISICIL already provides a friendly WYSIWYG editor and a templating system enabling
the wiki pages customisation. We have replaced the original tagging system and we have
implemented many hooks to capture editorial events but most of the editing system was
left as is.
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Finally, the webmarking extension (Figure 10B) allows a user to specify the type of
the resource that he is going to mark. He can also specify if and how this resource is
geo-localized (e.g. a place), temporally constrained (e.g. an event) or socially linked
(e.g. a colleague). The user can also scrap the web page content to preserve and share
it on an ISICIL wiki page. The webmarking tool also provides assisted tagging and
sharing features.

Fig. 10. ISICIL GUI sample : (A) the semantic wiki, (B) the webmarking dialog, (C) the “search
and suggest” interface

5.2 Search Features

Once the social network is fed, BI tasks require global search functionalities to retrieve
information. The Firefox add-on (Figure 10C) provides a “search and suggest” feature
seamlessly integrating tag structuring capabilities (left part). The user was about to
drag the tag “energy” towards the “spelling variant” area to state that the tag “energie”
(the tag currently searched for) is a spelling variant of “energy”. In this interface, as
a side effect of searching and refining search results, the users make statements on the
structure found for the folksonomy and contribute to its maintenance.

Recently, we have improved our full-text searching system with Fresnel based data
selectors [15]. Fresnel lenses were written for each type of resources we want to show.
After a full-text query, the system applies the lenses on the list of the matching URIs.
Then according to the rdf:type of the resource, it automatically selects the adequate
properties and output formats as defined in the corresponding lens.
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5.3 Reporting and Data Visualization

As we said before, the ISICIL wiki (called SweetDeki) is an enhancement of a com-
mercial wiki which integrates a custom scripting language, and powerful extension
mechanisms. We developed a set of extensions that communicate with the ISICIL REST
services like SNA, etc. Some inject RDFa annotations in pages, generate semantic anno-
tations such as collaboration notifications between users for the social network, replace
the original tagging system with our own, etc. We also developed a set of extensions
for the WYSIWYG editor for inserting dynamic visualizations or data into wiki do-
cuments. For example, widgets from the ISICIL social networks services such as the
ones presented in Figure 11 can be integrated in any document. They represent col-
laboration diagrams between users, users-tag-users relationships, or results from the
Semantic Network Analysis tools.

Fig. 11. ISICIL dashboard widgets sample

6 Related Works

As this article focuses on the overall ISICIL platform we will restrain this section to
this topic too. The KIWI framework9 has similarities with the ISICIL framework as
both have service oriented architecture that provides a set of RESTful web services,
both use a fully versioned triple store, a full text and metadata search index and ser-
vices to manage content, users and tags. However, where KIWI describes itself as
a “generic framework for Semantic Social Media” and is a natural evolution of the se-
mantic wiki IkeWiki into a framework (KIWI means “Knowledge in a Wiki”), ISICIL
is a framework dedicated to semantic social networks that provides a social network
analysis stack and a system for structuring semi automatically the tags. Moreover, the
tools developed on top of this framework have been targeted to business intelligence

9 http://kiwi-project.eu

 http://kiwi-project.eu
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users: a semantic wiki based on the Mindtouch Core open source wiki that interacts
with the social network and acts as a reporting tool, FireFox extensions dedicated to
searching and exploring the network in order to locate experts on particular domains or
collaborations between members on particular subjects, social bookmarking tools, etc.
Other works related to semantic enhancement of content management systems (CMS)
share common points with our work (many propose to use ontologies to link resources,
people and tags), see [16] for a survey, but are not focused on the social network part
or on the semantic enrichment of tags as much as ISICIL. For the years to come, works
conducted by members of the IKS European project10, that address the problem of in-
teraction with semantic contents in CMS and in the Linked Open Data [17], open new
perspective for framework like ISICIL.

7 Discussion and Conclusion

To conclude the project, an experiment was conducted over several months at ADEME.
Its aim was to evaluate the usefulness, usability and collaborative practices allowed by
the platform for a representative sample of members of the ADEME. This sample was
composed of engineers, librarians and PhD students.

The experiment consisted of a series of activities carried out in a spirit of co-design
with users: a) a questionnaire on business intelligence practices b) individual sessions
of exploration and discovery of the platform c) guided cognitive tracking sessions in
the platform d) collaborative online sessions supported by the communication features
of the platform (chat and comments), e) focus group.

The data collected during these activities were analyzed in terms of:

– Purpose: to assess whether the platform is useful for achieving business objectives,
to accomplish the tasks of business intelligence.

– Usability: evaluating ergonomic three main criteria: effectiveness, efficiency and
satisfaction when interacting with the platform.

– Collaborative practices: identify the practices and forms of cooperation induced by
the platform.

In general, the ISICIL platform has been validated regarding the usefulness and col-
laborative practices: users clearly see the collaborative potential of ISICIL. However,
the usability of the platform is the critical point. The main point is the lack of unity
among the features, it was difficult for the user to understand that the building blocks
of ISICIL (browser, wiki and webmarks) form a whole; interfaces are isolated from
each other, and users lack a main interface that centralizes and guides them; this made
the understanding and learning of the platform too heavy for the user. Despite these
negative aspects of usability, multiple users ADEME expressed the wish to continue
experimenting with ISICIL, in addition, discussions are underway with ADEME on
possible actions for further developments of ISICIL within the agency. To improve the
usability of the platform, ergonomic recommendations have been proposed. Many of
these recommendations have already been taken into account.

10 http://www.iks-project.eu

http://www.iks-project.eu


84 M. Buffa et al.

As we have seen, the ISICIL platform is innovative in many aspects of the features it
proposes. This truly experimental characteristic has a cost. Some of these features are
not optimized enough and can involve sometimes performance issues.

In this paper, we have presented the ISICIL platform as the result of a four years re-
search project. We have seen the core algorithms and the software architecture. In this
project, we can say that we have fully embraced the latest technologies of the semantic
web and the entire architecture of the software suite relies on semantic web standards.
The main difficulty here resided in the articulation of many lightweight ontologies in
a read and write context. Sometimes we had to make some arbitrary choices in the de-
sign in order to solve inconsistency issues implied by this aggregation. But, we believe
that this experiment proves the effectiveness of semantic web technologies in a “real
world” scenario of business intelligence.

Acknowledgements. French Research National Agency (ANR) and the ISICIL project
team (contract No. ANR-08-CORD-011-05).
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A Multi-dimensional Comparison

of Ontology Design Patterns
for Representing n-ary Relations
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Abstract. Within the broad area of knowledge pattern science, an im-
portant topic is the discovery, description, and evaluation of modeling
patterns for a certain task. One of the most controversial problem is
constituted by modeling relations with large or variable (polymorphic)
arity. There is indeed a large literature on representing n-ary relations
in logical languages with expressivity limited to unary and binary rela-
tions, e.g. when time, space, roles and other knowledge should be used
as indexes to binary relations. In this paper we provide a comparison
of several design patterns, based on their respective (dis)advantages, as
well as on their axiomatic complexity. Data on actual processing time
for queries and DL reasoning from an in-vitro study is also provided.

Keywords: n-ary relations, ontology design patterns.

1 A Knowledge Pattern Science

Semantics is finally taking off in the web context, impacting on the way data
and software applications are being built both at academic and industrial levels.
The Semantic Web, after some years of lagging behind, just while the social web
was substantially changing the relations between humans by creating an unprece-
dented world of socio-technical entities, has now started providing flexible, yet
precise solutions that scale well beyond the artificial-intelligence-oriented past.
The growth of the Linked Open Data Cloud and the widespread adoption of the
Open Data paradigm in public administrations and e-Science is accompanied by
the adoption of natural language processing techniques in content management
systems and search engines (“semantic search”), and by novel paradigms of data
consumption: visual analytics and exploratory search. Ontologies are being used
in the large for data integration and interoperability, and in layman tools like
vCard, RSS, etc. Big graphs, like Google Knowledge Graph and Facebook Social
Graph reuse and extend semantic web data or technologies, and are clear indi-
cations of the paradigm shift that Jim Hendler and Tim Berners-Lee envisioned
in the late nineties of the past century, i.e. to put semantics at the core of the
Web and the socio-technical system that is growing from it. This paradigm shift
is fully endorsed by a research area called knowledge pattern science [16], which
tries to discover, represent, reuse, extract, and reason with, structures, called
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knowledge patterns, which emerge as relevant invariances from either struc-
tured or unstructured content: ontologies, schemas, databases, web links, social
graphs, natural language, etc. In the vein of Christopher Alexander’s work on
design patterns [1], we call relevant invariances the structures that are key for
solving problems, and therefore are closely associated to requirements, centrality
in graphs and linguistic parse trees, user-orientation in interaction, etc.

Some research carried out by our laboratory in this area include e.g. modelling
and experimenting with ontology design patterns [6,7,34], knowledge patterns ex-
tracted from full text [33], crowd-sourced patterns discovered in Wikipedia link
structure [32]. In this paper, we show an example of such knowledge pattern sci-
ence by studying modeling solutions for arbitrary relationships in web ontologies
and linked data.

2 Problem Addressed

The problem of logically representing facts that involve more than two entities,
usually called n-ary relations,1 is a known issue in formal languages that only
have unary or binary predicates, as it is the case in semantic web languages
(RDF, OWL, RIF), many frame languages, most description logics, etc. Re-
stricted expressivity is well known to require an approximation of the intended
semantics of a model.

In the very spirit of knowledge pattern science, behind this modeling require-
ment, there is the big problem of recognizing and describing the boundaries of
a fact, situation, event, from an arbitrary set of data, or from a graph (a de-
scription of this problem in the Semantic Web context is [16]). The problem is
therefore related to cognitive, philosophical, logical, and computational issues
that go well beyond the pragmatics of approximating the intended semantics of
the predicates.

As an example of the related issues, on one hand, Gestalt psychology described
some principles that seem to affect the way humans organize their perception,
such as emergence, reification, invariance, and pithiness, all pointing to our “syn-
thetic” attitude to perceiving and describing the world and our knowledge. These
principles sometimes are found in actual modeling practices, sometimes not. For
example, extended axiomatization of ontologies goes deeper in terms of ana-
lytic specification, and in principle enhances interoperability if semantic data are
structured according to those axioms, but goes also against gestaltic principles.
However, current web ontology engineering practices show that interoperability
can be reached more easily and pragmatically by following gestaltic pithiness. In
this case, we see the emergence of conflicting requirements with reference to e.g.
intuitiveness vs. complexity of modeling, and technical views on data integration
and interoperability.

In this paper we do not concentrate on the cognitive motivations why n-
ary relations are difficult to handle in many logical languages, or why ontology

1 n-ary would actually include also unary and binary relations, but a convention has
emerged to use the term for relations with arity higher than 2.
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designers have so many different opinions on the pros and cons of the different
modeling solutions adopted. On the contrary, we get empirical evidence of those
pros and cons.

In [14] we have started an empirical study on comparing logical patterns
for representing extensional and intensional n-ary relations2 in semantic web
languages. In this paper, we focus on one of the problems addressed in [14], by
deepening the analysis of how extensional n-ary relationships are represented,
and adding new patterns and data.

We firstly (Section 3) summarize the (huge) literature on the topic. In Section
4 we describe the general characterization of the problem in [18], and motivate
the need for an empirical analysis of design solutions beyond first-order logic
ones. In Section 5 we compare seven different designs in OWL2, with realis-
tic examples, on a multi-dimensional design space. Section 6 presents a dis-
cussion of the results of this work, which come from an “in vitro” study, and
relates them to quantitative evidence of the presence of some design patterns on
the linked open data cloud, as recently published in [35].

3 Related Work

N-ary relations are everywhere in human interaction. Underlying natural lan-
guage verbal structures, in relational database tables, when recognizing or talk-
ing about events, when interpreting news, when making medical diagnoses,
interpreting legal norms, controlling situations, or simply preparing a coffee.
Most of the times, more than two entities are bound together, and we cannot
easily represent that boundary with just unary and binary predicates.

Ontology engineering has focused on some special cases of n-ary relations,
such as time-indexing of relations, role-indexing of people and objects in actions,
projection or slicing of objects through space, time, roles (called sometimes qua-
entities), aggregation of selected entities to make an observation emerge, etc.
A notable problem emerged in the last years is to represent, discover, reconstruct,
or integrate event descriptions out of linked data (cf. [36]). It is then needed to
attempt a general overview and empirical comparison of the solutions that have
been devised to represent n-ary relations.

The amount of related work pairs the relevance of real world use cases pre-
sented above; there is no room in this paper to make a decent survey of them,
hence we only recap them according to the different communities and topics.
There is a long history of solutions to deal with relations that range over more
than two arguments, or have polymorphic arities. (Generic) use cases and so-
lution proposals come from AI (e.g. situation calculus [27], relation reification
[11,12,20,26], Minsky’s frames [28], description logics [2,10,30], etc.), from phi-
losophy (e.g. Gestalt theory [24], Davidson’s reified events [9], and the debate on
the nature of events vs. propositions [29]), from linguistics (e.g. Bach’s eventuali-
ties [3], Discourse Representation Theory [23], FrameNet frames [4,32], cognitive

2 The difference is between actually occurring relationships, and relation types.
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linguistics schemata [13]), from conceptual modeling (e.g. [17]), from the Seman-
tic Web (e.g. n-ary relation reification [14,15,31], fluents [5,37], named graphs
[8], linked data integration [21], RDF data structure extensions [25]), etc. We
have taken inspiration from the literature, and have tried to single out all the
patterns that are used for n-ary relation representation.

4 Three Logical Patterns to Time Indexing of Sentences

Based on [19], Pat Hayes recently stimulated the discussion [18] with respect to
how to attach temporal indexing to sentences of the form R(a, b), and suggested
three possible logical patterns, summarized as follows (we quote him literally
here):

I. Attach it to the sentence, meaning that the sentence R(a, b) is true at the
time t. [...] Call this 3D.

II. Attach it to the relation as an extra argument, and call the relation a ‘flu-
ent’: R(a, b, t) [...] Call this 3D+1.

III. Attach it to the object terms, (using a suitable function, written here
as an infix @): R(a@t, b@t) [...] @ operation [...] means the t-slice of the
thing named [...] Call this 4D.

Hayes shows that the different patterns are just syntactic variants, which (in
principle) could be unified by some algorithm. Indeed the algorithm indicated for
unification by [19] is purely syntactic, and works on a parse tree representation
of the three solutions, by showing that the time indexing parameter “trickles
down” from 3D to 4D, i.e. from sentences to relational constants to individual
constants. Given the three propositions 1,2,3,

(R(a,b))+t [sentence indexing] (1)

R(a,b) + t [relation indexing] (2)

R(a+t,b+t) [individual indexing] (3)

the parse tree (Figure 1) shows the trickling down of the time parameter from
the sentence level to the individual level through the relation level.

The unification suggested by [19] however works well with a formal language
that has enough expressivity to encode the topology of the parse tree. For ex-
ample, this is straightforward in first-order logic with some meta-level sugar3

(propositions 4,5,6), but not in a description logic.

holdsAt(R(a,b)),t) (4)

R(a,b,t) (5)

R(h(a,t),h(b,t)) (6)

3 [18] also adds a sort for time-indexed terms of the vocabulary, so requiring a sorted
FOL.
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Fig. 1. The parse tree of Hayes’ time-indexing solutions, with the “trickling-down”
time parameter

Notice that in FOLwe already need some design touches to represent the solutions
effectively: the holdsAt predicate is meta-level sugar for a proposition holding at a
certain time, while the dyadic function h (standing for history) encodes the “time
slices” of the individuals, e.g. the time slice of a at t is the history h(a,t).

But besides those touches, FOL design preserves the basic topology of the re-
lation, i.e. a sub-tree remains invariant across transformations, as Figure 1 shows:
the parse tree from statements to relations to individuals still exists untouched
in the three solutions. Moreover, the different designs do not affect the constants
of the vocabulary, which stay the same {R, a, b, t} (and the holdsAt relational
constant is meta-level sugar).

On the contrary, when attempting to represent those solutions in formal lan-
guages with restricted expressivity, we do usually affect relation topology (e.g.
because of relation reification in OWL, which changes the parse tree) and/or
vocabulary constants (e.g. because of individual time slice reification in OWL,
which adds new individual constants). This means that for languages with re-
stricted expressivity we need to understand the design consequences of each
solution, which can eventually bring representation and reasoning constraints.

For this reason, instead of attempting a unification algorithm for restricted ex-
pressivity languages, we want to compare, on a multi-dimensional design space,
the respective solutions. Only once the design choices are compared, we can also
figure out to what extent the different solutions can be unified, e.g. by providing
a “lingua franca” approach that is able to reconcile the design choices imple-
mented for each solution.

Consider that the proposal of Hayes’ came in the middle of a discussion about
3D vs. 4D ontologies, and the approaches were tied to time indexing, but the
problem is more general, and touches any attempt to include a new dimension in
order to perspectivize facts or entities, e.g. with space, roles, etc., as exemplified
in Section 3.

As a matter of fact, often one cannot know in advance the arity that is intended
when a(n intensional) relation is used. The classic example by Davidson [9] is
the predicate preparing a coffee: how many arguments are needed: the agent
preparing the coffee, the amount of coffee, its quality, the coffee-pot, the heating,
the kind of water, the time and place of preparing it, etc.?
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5 Seven RDF-OWL Patterns for n-ary Relation
Representation

We have looked for representations of the three Hayes’ logical patterns in RDF
and OWL2 knowledge bases, and we have singled out seven RDF and OWL2
logical patterns. Then we have compared the resulting models against a multi-
dimensional design space, including the following dimensions:

(a) amount of axioms needed for the representation of each design pattern, cal-
culated on a normalized set of 10000 individuals per ontology

(b) expressivity of the resulting model, in terms of description logic varieties
(c) time needed to check the consistency of the model
(d) time needed to classify the model
(e) amount of newly generated constants needed
(f) ability to support DL reasoning with reference to the full n-ary model (cf.

Section 4)
(g) ability to support polymorphism (possibility to add new arguments when

needed)
(h) preservation of FOL relation topology, which we call relation footprint, i.e.

the vability to fully navigate the graph structure of n-ary relations instances,
as described in Section 4

(i) intuitiveness of representation and usability: these have been evaluated anec-
dotically and subjectively, but an ongoing study is addressing users. Indirect
usability data come also from an empirical study on RDF temporal data pat-
terns for linked data [34], which we discuss in Section 6.2.

Dimensions (a) to (e) are quantitative and objective, dimensions (f) to (h) are
objective, but qualitative, and dimension (i) is subjective and qualitative, except
for combined results presented in Section 6.2. We represent qualitative dimen-
sions on a three-value scale (good, limited, none).

In order to represent the approaches in a computable language, the patterns
are exemplified with reference to a leading example of time indexing: the fact
that Garibaldi landed in Sicily in 1860 (during the so-called Expedition of the
Thousand). We restricted this in-vitro study to a simple case, but we remark
again that larger arities are just more complex variations of the same design
patterns.

In order to create a critical mass of individuals and axioms for ontologies
that sample the patterns, we have used SyGENiA (Synthetic GENerator of in-
stance Axioms)4, which, contrarily to many random axiom generators, allows
to specify a query that is used to generate ABox axioms from an ontology. We
have used Pellet 2.35 that produces accurate accounts of time used by the rea-
soner, running on a MacBookPro 3.06 GHz Intel Core Duo processor, with 8GB
of RAM and MacOSX 10.7.3.We have not attempted to balance axioms with
specific constructs, hoping that SyGENiA would think about it by using the

4 http://code.google.com/p/sygenia/
5 http://clarkparsia.com/pellet/

http://code.google.com/p/sygenia/
http://clarkparsia.com/pellet/
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queries provided. This is not completely true however, and the results, iterated
10 times to neutralize random effects of concurrent processes, reflect the lack of
a real balance. Since we were interested in a first assessment of these dimensions,
we have decided to live with some imbalance derived from the synthetic ABox,
deferring a more grounded assessment to in vivo studies.

In this section, the patterns are presented and exemplified quite schematically
for space reasons, and their pros and cons with respect to the seven dimensions
are briefly explained. Section 6 will recap on these summaries, and will present
tables that compare the measures and the objective or subjective assessments.

5.1 StatementContextualization

This pattern is one of the alternative OWL2 logical patterns for the FOL sentence
indexing Hayes’ logical pattern, à la context/modal logic or 3D ontologies. In
RDF (referring to a specific implementation by quad store using named graph) or
OWL2 a possible representation is depicted in Figure 2. This solution requires the
contextualization of the triples using a certain index (1860 in the example). The
contextualization can be implemented in different ways. In RDF, the triple data
structure is extended by adding a fourth element to each triple, which is intended
to express the context (a label), or the named graph (i.e. a document URI) of
a set of triples. In OWL2, the same solution can be obtained by indicating
an ontology URI instead of a named graph, either in a quad store for RDF
serialization, or by using a holdsAt annotation property that asserts the time
index to the named graph or the ontology URI. This solution has the advantage
of being able to talk about assertions, but the disadvantages of needing a lot of
contexts (i.e. documents) that could make a model very sparse.

With respect to polymorphism, this solution cannot do much, because the
possible design depends on the ability to create appropriate contexts that handle
a partitioning of the triples that can prevent ambiguities, e.g. for different landing
events of Garibaldi in Sicily in different years or with different modalities.

This solution disrupts the relation footprint depicted in Figure 1, because no
connection is maintained between t and either the relation or the individuals. The
sentence is actually transformed into a context (an ontology in this rendering),

Fig. 2. Example OWL graph for StatementContextualization pattern
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which is connected to t, but it is not available to DL reasoning. The footprint could
be reconstructed in RDF bymeans of a SPARQL query, but only if we assume that
each named graph only contains one occurrence of the landsIn property, and no
other properties in the graph need to be indexed. Of course, we can think of more
hacking, but here we want to stay close to typical modeling practices.

A radical proposal to extend the RDF data structure to quintuples (“quins”)
to deal with starting and ending times is [25], in which there is also a proof of
the computational advantages of quin-stores over reified relation-based models.

5.2 StatementReification

This pattern is a second alternative for the sentence indexing Hayes’ logical
pattern. In OWL2 (OWL2 axiom reification/annotation), or in RDF (statement
reification/annotation) a possible solution is depicted in Figure 3. This solution
requires reification of either a RDF statement or an OWL2 axiom, and its an-
notation. Syntactically, RDF and OWL2 differ, because the latter puts axiom
reification and annotation in one construct.

This solution has the advantage of being able to talk about assertions, but the
disadvantages of needing a lot of reification axioms, to introduce a primary bi-
nary relation to be used as a pivot for axiom annotations, and that in OWL2(DL)
reasoning is not supported for axiom annotations.

With respect to polymorphism, this solutionneedsmore statement/axiomanno-
tations, e.g. for the sentenceGaribaldi landed in Sicily in 1860 with 1000 soldiers :

:[Garibaldi landsIn Sicily] with 1000Soldiers (7)

However, it is not possible to ensure that different events of Garibaldi landing in
Sicily in the same year will be associated with the correct modality: if he landed
twice, one with 500 soldiers, and another with 1000, both will be true for both
landings.

Fig. 3. Example OWL graph for StatementReification pattern
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This solution loosely maintains the relation footprint, because the connection
between t and either the relation or the individuals is only granted by means
of an annotation, or statement reification, which are not used for DL reasoning.
Anyway, the footprint can be reconstructed in RDF by means of a SPARQL
query, e.g.:

SELECT ?r ?x ?y ?t

WHERE {?r ?x ?y . ?a owl:annotatedProperty ?r .

?a owl:annotatedSource ?x .

?a owl:annotatedTarget ?y . ?a holdsAt ?t }

5.3 StatementAbstraction

This pattern is another alternative OWL2 logical pattern for the FOL sentence
indexing logical pattern. A sample model on the running example is depicted
in Figure 4. This solution requires a singleton domain and range for an object
property, which is also punned as an individual in order to assert time indexing.

With respect to polymorphism, i.e. the need to add more arguments to the
relation “on-the-go”, this solution needs more punned singleton-domain proper-
ties, e.g. for the sentence Garibaldi landed in Sicily in 1861 with 1000 soldiers :

Fig. 4. Example OWL graph for StatementAbstraction pattern.

GaribaldiLandsInSicilyWith1000Soldiers rdfs:subPropertyOf landsIn (8)

GaribaldiLandsInSicilyWith1000Soldiers rdfs:domain {Garibaldi} (9)

GaribaldiLandsInSicilyWith1000Soldiers rdfs:range {Sicily} (10)

GaribaldiLandsInSicilyWith1000Soldiers with 1000Soldiers (11)

which looks quite goofy in terms of naming.
This solution loosely maintains the relation footprint, because the connection

between t and either the relation or the individuals is only granted by means of
the punning of the sub-property of landsIn, but punning does not enable DL
reasoning across object and metalevel. Anyway, the footprint can still be recon-
structed in RDF by means of a SPARQL query that traverses all the indirections
created by this solution (domain and range to nominals to individuals, time to
punned sub-property to property).
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5.4 Situation

This pattern implements the relation indexing logical pattern, à la frame logic,
situation calculus, or 3D+1 ontologies. A sample model on the running example
is depicted in Figure 5. This solution requires to put owl:hasKey axioms for
preserving identification constraints (i.e. that any two same occurrences of the
relation would be actually inferred to be the same). Ordering can be put in the
name of properties as an index when ambiguity arises. Punning is not needed.

This solution has the advantage of being able to talk about assertions as
(reifying) individuals, but the disadvantage of not being able to use them as
properties as well (this could be accommodated by punning the reified relation
individuals as object or data properties).

Fig. 5. Example OWL graph for Situation pattern

Another advantage consists in representing temporally heterogeneous rela-
tions, at the cost of additional entities and axioms (one more property in the
TBox, n more data declarations), e.g.:

Liking hasAgent John (12)

Liking hasTime 2011 (13)

Liking hasTarget NewYork (14)

Liking hasTargetTime 1899 (15)

For a complete representation, there should be one main time (the time of the
main fact expressed in the sentence), and other times related to situations re-
ferred by the elements of the sentence. E.g. in axiom 15 NewYork is considered
at a different time from the time of the liking situation (as from axiom 14). The
time of the sentence can even be different from the times reported in the content
of that sentence, e.g. as from this multiple time reference: From 2007 to 2008,
John used to like New York in 1899.

With respect to polymorphism, this solution only needs more property asser-
tions, e.g. for the sentence Garibaldi landed in Sicily in 1861 with 1000 soldiers :

GaribaldiLandsInSicilyIn1860 with 1000Soldiers (16)
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This solution maintains the relation footprint, because the connection between
t and the relationship is provided by a reification, which preserves direct con-
nections to the entities, and ensures uniqueness of tuples via an owl:hasKey

statement. This preserves DL reasoning and closely approximates FOL seman-
tics. The footprint can be reconstructed in RDF by means of a SPARQL1.1
query with property paths6, e.g.:

SELECT ?r ?x ?y ?t

WHERE {?r1 a ?r . ?r1 ?b1 ?x . ?r1 ?b2 ?y . ?r1 ?b3 ?t .

?r owl:hasKey/rdf:first ?b1 . ?r owl:hasKey/rdf:rest/rdf:first ?b2 .

?r owl:hasKey/rdf:rest/rdf:rest/rdf:first ?b3 }

The Situation pattern has been proposed in various forms. [31] describes a
purely logical pattern; [15] proposes a Situation knowledge pattern7, with
a basic OWL vocabulary, that has been extended in domain-oriented use cases.

5.5 Simple4D

This pattern implements a basic version of the individual indexing logical pattern,
à la 4D ontology. As a sentence in FOL, an example is (cf. axiom schema 6, from
which axiom 17 departs, because the binary function h cannot be expressed in
OWL, and only the reified value of the function is therefore expressed). Figure 6
depicts a sample model on the running example for this pattern. It requires to
introduce new entities: the time slices of the individuals referenced in the sentence.

landsIn(Garibaldi@1860,Sicily@1860) (17)

An advantage of this solution is that it allows to compactly (no additional axioms
required) represent temporally heterogeneous relations, e.g. John@2011 likes

NewYork@1899. However, the time of the sentence as different from the times of
the elements cannot be represented.

Fig. 6. Example OWL graph for Simple 4D pattern

A general objection to 4D approaches is that we could have nD entities, e.g.
for place, orientation, state of matter, numerosity, etc. In other words, we can
perspectivize things within any dimension, not just time (cf. [13]). The solution
5.6 is an extension that allows to create more general contextual slices.

6 Property paths are not strictly needed, but the syntax is much more readable.
7 http://www.ontologydesignpatterns.org/cp/owl/situation.owl

http://www.ontologydesignpatterns.org/cp/owl/situation.owl
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With respect to polymorphism, this solution needs more kinds of perspec-
tivized individuals, e.g. for the sentence Garibaldi landed in Sicily in 1861 with
1000 soldiers :

GaribaldiWith1000Soldiers with 1000Soldiers (18)

Garibaldi hasCollectivePerspective GaribaldiWith1000Soldiers (19)

In this respect, 5.6 appears more elegant because it does not require additional
names for each type of index, but just one for a context slice, while the context
can bear the indices.

This solution maintains the relation footprint, because the connection between
t and the relationship is a direct trickledown like in FOL. Also DL reasoning is
preserved, and closely approximates FOL semantics. The footprint can be re-
constructed in RDF by means of a SPARQL query, e.g.:

SELECT ?r ?x ?y ?t

WHERE { ?xt ?r ?yt . ?x hasTemporalPart ?xt .

?y hasTemporalPart ?yt . ?xt existsAt ?t . ?yt existsAt ?t }

5.6 ContextSlices

This pattern implements a more sophisticated variety of the individual indexing
logical pattern, by actually mixing 5.4 and 5.5. As a sentence in FOL an example
is:

landsIn(Garibaldi@1860,Sicily@1860,ExpeditionOfTheThousand) (20)

that actually inserts new information by giving a name to a context parameter,
i.e. the implicit knowledge of the context, in which Garibaldi landed in Sicily in
1860. In OWL2 (contextualized individual logical pattern), a possible solution is
depicted in Figure 7. This solution requires to introduce new entities: the con-
textual projections and assignment of the individuals referred to in the sentence,
as well as a context index that takes the indexes. An advantage of this solution
is that it allows to get the freedom of the pattern 5.4, which allows to attach all

Fig. 7. Example OWL graph for Context slices pattern
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kinds of indices to the reified relation (or context in this case), which overcomes
e.g. the problem of dealing with multiple times, and the general perspectivization
problem objected to 4D patterns.

With respect to polymorphism, this solution has the same simplicity as the 5.4
pattern: only one more axiom for each index is needed, attached to the context pa-
rameter. E.g. for the sentenceGaribaldi landed in Sicily in 1861 with 1000 soldiers :

ExpeditionOfTheThousand with 1000Soldiers (21)

However, when an index is bound to parts of a context, this solution needs
to build a partonomy of contexts in order to deal with it. Such a partonomy
may require a possibly elaborated reasoning in order to find out what is in-
dexed in what part of a context, since some parts will be accessible by other
parts, but others not. For example, ExpeditionOfTheThousand maximal con-
text is a military campaign, in which Garibaldi’s army numerosity has changed
substantially through time, thus a GaribaldiLanding context that is part of
ExpeditionOfTheThousand should be created, etc.

Similarly to pattern 5.5, this solution maintains the relation footprint, because
the connection between t and the relationship is a direct trickledown. DL rea-
soning is preserved, and closely approximates FOL semantics. The footprint can
be reconstructed in RDF by means of a SPARQL query, e.g.:

SELECT ?r ?x ?y ?t

WHERE { ?xt ?r ?yt . ?x hasProjection ?xt . ?c existsAt ?t .

?y hasProjection ?yt . ?xt hasContext ?c . ?yt hasContext ?c }

Context slices has been proposed e.g. by Chris Welty’s8, based on the fluent
representation described in [37]. A solution focused on temporal reasoning for
OWL is presented in [5].

5.7 NameNesting

This solution implements the name nesting logical pattern, which results to be
a common semantic web practice. As a sentence in FOL an example is:

landsInSicily(Garibaldi,1860) (22)

while in OWL2 (name nesting logical pattern), a sample model on the running
example is shown in Figure 8.

This solution requires to nest the name of one of the arguments into the name
of the property. Therefore, it works well when nested names are not essential to
the knowledge to be represented.

An advantage of this solution is clearly the minimal amount of axioms needed.
However, the expressivity is very limited, and seems recommendable only in
contexts when one argument is much more prominent than others that can be

8 http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices

http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
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Fig. 8. Example OWL graph for Name nesting pattern

made implicit with name nesting, a form of “property localization”. A realistic
example is the property blogEntryDate, which nests the blog argument in the
property name: as far as we only talk of entry dates in a specific blog, it works.
Disadvantages with respect to the other solutions include not being able to talk
about the situation itself, and not being able to add further arguments.

With respect to polymorphism, this solution needs more localized properties,
e.g. for the sentence Garibaldi landed in Sicily in 1861 with 1000 soldiers :

Garibaldi landsInSicilyIn1860With 1000Soldiers (23)

Name nesting disrupts the relation footprint, because the connection between t
and either the relationship or individuals is broken. DL reasoning is also very
limited. The footprint cannot be reconstructed in RDF either.

6 Results and Discussion

In the presentation of the patterns, we have summarized data about the four
qualitative dimensions in the design space: DL reasoning support for full n-ary
sentences (f), polymorphism support (g), relation footprint (h), and intuitive-
ness (i): those data are also summarized in Table 1. The amount of axioms (a)
dimension is reported in Table 2. The three purely computational dimensions:
expressivity (b), consistency checking time (c), and classification time (d) are
reported in Table 3. The last dimension: the amount of base and new constants
(e) in the signature of each pattern, is reported in Table 4.

Table 1. Qualitative evaluation of OWL patterns on a three-value scale (good, limited,
none)

OWL pattern DL reasoning Polymorphism Footprint Intuitiveness

StatementContextualization limited none none good

StatementReification limited limited limited good

StatementAbstraction limited limited limited limited

Situation good good good good

Simple4D good limited good limited

ContextSlices good good good limited

NameNesting limited/none limited none good
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Table 2. Amount of OWL axioms needed for the representation of each pattern in
function of the number n of sentences represented in the ontology

FOL pattern OWL pattern TBox
axioms

ABox
axioms

Annotation
axioms

Total
axioms

Sentence indexing (SI) StatementContextualization c n n 2n + c

Sentence indexing (SI) StatementReification c 4n n 5n + c

Sentence indexing (SI) StatementAbstraction 4n n 0 5n

Relation indexing Situation c 4n 0 4n + c

Individual indexing Simple4D 0 7n 0 7n

Individual indexing ContextSlices 0 9n 0 9n

n/a NameNesting n 0 0 n

Table 3. Expressivity of each OWL pattern and time taken for consistency checking
and classification go the in-vitro knowledge base. Times are in milliseconds

OWL Pattern Expressivity Cons Check
Time Base

Classific.
Time Base

Cons Check
Time Artif

Classific.
Time Artif

Artif
Indiv

Artif
Axioms

StatementContextualization ELH 18 11 68 11 876 1012

StatementReification ELH 18 14 64 10 617 1017

StatementAbstraction ALHO(D) 18 7 n/a n/a 823 1019

Situation ALH(D) 54 21 1824 48 650 1024

Simple4D ALH(D) 18 7 54 7 528 1027

ContextSlices ALH(D) 19 26 57 23 551 1035

NameNesting ALH(D) 17 7 75 6 1001 1007

Table 4. Data about the constants needed for each OWL pattern. Reference FOL data
is in the last row

OWL Pattern Class#base Prop#base Ind#base NewIndividuals NewProperties NewClasses

StatementContextualization 0 2 2 0 0 0

StatementReification 1 5 2 0 0 0

StatementAbstraction 1 3 3 n n 2n

Situation 2 3 3 n 2 1

Simple4D 1 2 4 2n 1 0

ContextSlices 2 4 5 3n 2 2

NameNesting 1 1 1 –1n 0 0

FOL 0 1 3 0 0 0

Among the nine design dimensions, the first five ((a) to (f)) (cf. data reported
in Tables 2 and 3) are used to assess the efficiency and expressivity of a solution;
(e) and (i) (cf. Tables 4 and 1) are used to assess its usability; (g) (cf. Table 1)is
used to assess its robustness and flexibility; finally, (h) (cf. Table 1) is used to
assess its potential for interoperability.

Concerning efficiency and expressivity, there is an uneven distribution of ax-
ioms, which e.g. in case of 1000 n-ary FOL sentences, would result in OWL
models figures as different as 1000 for NameNesting to 9000 for ContextSlices
pattern. StatementAbstraction is the only one to grow its TBox proportion-
ally to the number of sentences, which we can expect to be computationally
cumbersome, but actually that is not the case, at least on the base model 9. The

9 The artificial model cannot be generated for StatementAbstraction with SyGENiA
because of the TBox generativity.
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theoretical expressivity remains low on all solutions, which is basically confirmed
by empirical results of consistency checking and classification on the base model,
where the only clear increase (about 300%) seems on the consistency checking
time for the Situation pattern, which becomes worse with the artificial knowl-
edge base, which has created 1000 artificial axioms and a variable number of
individuals for each ontology implementing an example of a pattern. In terms
of enabling DL reasoning over the entire n-ary sentence elements (cf. Table 1),
three patterns are outstanding: Situation, ContextSlices, and Simple4D. This
feature could actually correlate with longer times for reasoning tasks, although
in this in vitro study such correlation is not completely proved.

Concerning usability, on one hand intuitiveness is highly debated. A common
assumption is that individual-indexing-based patterns are less intuitive, because
humans tend to reason by attributing some “endurant” qualities to objects,
rather than thinking about them in terms of “slices”. As [19] correctly notices,
this could be due to cultural effects, since many scientists and manufacturers
reason exactly in terms of slices, let alone the possibility that some features of
noun-centric grammars of Western languages may induce an endurant effect.
However, the ContextSlices pattern seems to be a good compromise, by mini-
mizing the slices to the situations or contexts where objects are considered. On
the other hand, the need to generate new terms in the signature of either a TBox
or ABox is usually considered problematic for intuitiveness. Humans are accus-
tomed to consider a conventionally finite amount of entities, and making them
grow quite artificially with reification, abstraction, or slicing reduces usability.
Also, semantic web toolkits are not quite proficient in smoothing the process
of creating additional entities. Finally, linked data and semantic web developers
are quite suspicious of entities that are created for the sake of design, rather
than actually referenced in databases, texts, or social networks. The best pat-
terns from this respect are StatementContextualization, StatementReification,
and NameNesting, which seem actually the first choice in lightweight vocab-
ularies and linked data, and typically preferred in the loose debates from the
semantic technology blogosphere.

Concerning robustness/flexibility, polymorphism is poorly supported by 5 pat-
terns out of 7. Only Situation and ContextSlices are flexible enough to make their
knowledge bases grow linearly when new arguments are added to an n-ary re-
lation. Situation is probably ideal here, because it is isomorphic to linguistic
frame semantics, which is assumed to be closest to the cognitive structures that
humans use in organizing their knowledge (cf. e.g. [13]).

Concerning interoperability, the relation footprint from the FOL sentences is
still there in 5 patterns, which is good news for future unification algorithms:
we have shown some simple SPARQL queries to extract the footprint from some
patterns, and we can generate them from the footprint as well, so enabling
a lightweight unification. Unfortunately, relation footprint tends to disappear
when expressivity decreases, as is the case with StatementContextualization and
NameNesting.
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6.1 Comparison to LOD Data Patterns Evidence

Additional dimensions to the comparison between n-ary modeling patterns need
to be added from empirical analysis of actual usage and subjective preference or
intuitivity of the patterns. Leaving the second to ongoing experiments, for the
first, we have some recent results that can be combined to our results.

The survey presented in [35] contains data about the usage of temporal in-
formation in Linked Open Data. They present 5 design patterns, represented
over an abstraction of the RDF data model. There is an interesting and use-
ful overlap with the patterns presented here: the authors distinguish between
document-centric and fact-centric temporal perspectives on representing tempo-
ral information in RDF, the second being the one addressed in this paper as
well. Among fact-centric patterns, they identify two “sentence-centric” patterns:
Reification and Applied temporal RDF, and two “relationship-centric” patterns:
N-ary relationship, and 4D-fluents.

Their Reification corresponds to our StatementReification pattern, their
Applied temporal RDF corresponds to our StatementContextualization pattern,
their N-ary relationship corresponds to our Situation pattern, and their
4D-fluents corresponds to our Simple4D, although the authors attribute their
4D-fluents explicitly to [37], which is actually our ContextSlices pattern, but
their example does not provide a context index, then making it a case of Sim-
ple4D instead. They do not search data patterns for StatementAbstraction, Con-
textSlices, and NameNesting.

The quantitative results of [35] indicate a neat preference of LOD for two
patterns: the document-centric pattern called Metadata-based representation,
which looks quite close to our StatementContextualization pattern (as well as
to their Applied temporal RDF pattern), and the N-ary relationship (our Situ-
ation) pattern. The authors of [35] do not give data for NameNesting, which
seems anecdotically well attested in LOD.

6.2 General Assessment

As a general assessment, more sophisticated patterns stand out on most cri-
teria, however potential (anecdotically based) usability aspects and avoidance
of newly introduced entities may work for the “unsophisticated” solutions such
as StatementContextualization and NameNesting, which are however also the
least interoperable patterns. Usage data from [35] are also ambivalent, since
by far the most used data patterns are Situation and and StatementContextual-
ization.

It is therefore easy to recognize, on objective grounds, the gap (cf. [22]) that
has emerged when the linked data wave has hit the neat island of logically
sound and well-designed ontologies. We can only hope for a reduction of the gap,
partly with automatic reconciliation techniques, partly with the good practice
of listening to the reasons and practices of the different parties.
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7 Conclusion

We have compared seven design patterns for representing sentences with n-ary
relations. We have used a multi-dimensional design space covering expressivity,
efficiency, usability, flexibility, and interoperability aspects. An in-vitro study
has been performed to assess the respective pros and cons in a fully comparable
scenario. We have also combined our results with those of [35] obtained from
empirical observation of linked data patterns. However, future work intends to
bring this analysis and the methods emerging from it to in-vivo studies on human
subjects.

Results basically confirm expectations about the divide between expressive,
sophisticated patterns that enable deep reasoning, interoperability and smart
knowledge engineering practices, and lightweight patterns that are limited in
flexibility, but can be handy and usable to most developers of semantic tech-
nologies. A reduction of the gap can only come from the mutual understanding
of the reasons why certain patterns tend to establish, or to live in a niche.
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Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Par-
reira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC
2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012)

36. Shaw, R., Troncy, R., Hardman, L.: LODE: Linking Open Descriptions of Events. In:
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Abstract. This talk gives an overview of cognition-enabled robot con-
trol, a computational model for controlling autonomous service robots
to achieve home chore task intelligence. For the realization of task intel-
ligence, this computational model puts forth three core principles, which
essentially involve the combination of reactive behavior specifications
represented as semantically interpretable plans with inference mecha-
nisms that enable flexible decision making. The representation of be-
havior specifications as plans enables the robot to not only execute the
behavior specifications but also to reason about them and alter them
during execution. I will provide a description of a complete system for
cognition-enabled robot control that implements the three core princi-
ples, demonstrating the feasibility of our approach.
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Abstract. A unary operator f is idempotent if the equation f(x) =
f(f(x)) holds. On the other end, an element a of an algebra is said to be
an idempotent for a binary operator � if a = a� a. This paper presents
a rule format for Structural Operational Semantics that guarantees that
a unary operator be idempotent modulo bisimilarity. The proposed rule
format relies on a companion one ensuring that certain terms are idem-
potent with respect to some binary operator.

1 Introduction

Over the last three decades, Structural Operational Semantics (SOS) [22] has
proven to be a flexible and powerful way to specify the semantics of programming
and specification languages. In this approach to semantics, the behaviour of
syntactically correct language expressions is given in terms of a collection of
state transitions that is specified by means of a set of syntax-driven inference
rules. This behavioural description of the semantics of a language essentially
tells one how the expressions in the language under definition behave when run
on an idealized abstract machine.

Language designers often have expected algebraic properties of language con-
structs in mind when defining a language. For example, in the field of process
algebras such as ACP [8], CCS [18] and CSP [15], operators such as nonde-
terministic and parallel composition are often meant to be commutative and
associative with respect to bisimilarity [21]. Once the semantics of a language
has been given in terms of state transitions, a natural question to ask is whether
the intended algebraic properties do hold modulo the notion of behavioural se-
mantics of interest. The typical approach to answer this question is to perform
an a posteriori verification: based on the semantics in terms of state transitions,
one proves the validity of the desired algebraic laws, which describe the expected
semantic properties of the various operators in the language. An alternative ap-
proach is to ensure the validity of algebraic properties by design, using the so
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Process Theories’ (No. 100014021) of the Icelandic Research Fund. Eugen-Ioan Go-
riac is also funded by the project ‘Extending and Axiomatizing Structural Opera-
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called SOS rule formats [6]. In this approach, one gives syntactic templates for
the inference rules used in defining the operational semantics for certain oper-
ators that guarantee the validity of the desired laws, thus obviating the need
for an a posteriori verification. (See [1,2,3,6,10,19] for examples of rule formats
for algebraic properties in the literature on SOS.) The definition of SOS rule
formats is based on finding a reasonably good trade-off between generality and
ease of application. On the one hand, one strives to define a rule format that
can capture as many examples from the literature as possible, including ones
that may arise in the future. On the other, the rule format should be as easy to
apply, and as syntactic, as possible.

The main advantage of the approach based on the development of rule for-
mats is that one is able to verify the desired algebraic properties by syntactic
checks that can be mechanized. Moreover, it is interesting to use rule formats for
establishing semantic properties since the results so obtained apply to a broad
class of languages. Last, but not least, these formats provide one with an under-
standing of the semantic nature of algebraic properties and of their connection
with the syntax of SOS rules. This insight may serve as a guideline for language
designers who want to ensure, a priori, that the constructs of a language under
design enjoy certain basic algebraic properties.

Contribution. The main aim of this paper is to present a format of SOS rules
that guarantees that some unary operation f is idempotent with respect to any
notion of behavioural equivalence that includes bisimilarity. A unary operator
f is idempotent if the equation f(x) = f(f(x)) holds. Examples of idempotent
unary operators from the fields of language theory and process calculi are the
unary Kleene star operator [16], the delay operator from SCCS [17], the replica-
tion operator from the π-calculus [24] and the priority operator from [7].

It turns out that, in order to develop a rule format for unary idempotent
operations that can deal with operations such as Kleene star and replication,
one needs a companion rule format ensuring that terms of a certain form are
idempotent for some binary operator. We recall that an element a of an algebra
is said to be an idempotent for a binary operator � if a = a � a. For example,
the term x∗, where ∗ denotes the Kleene star operation, is an idempotent for
the sequential composition operation ‘·’ because the equation x∗ = x∗ ·x∗ holds.
As a second contribution of this paper, we therefore offer an SOS rule format
ensuring that certain terms are idempotent with respect to some binary oper-
ator. Both the rule formats we present in this paper make an essential use of
previously developed formats for algebraic properties such as associativity and
commutativity [10,19].

In [5], we provide a variety of examples showing that our rule formats can
be used to establish the validity of several laws from the literature on process
algebras dealing with idempotent unary operators and idempotent terms.

Roadmap of the Paper. The paper is organized as follows. Section 2 reviews some
standard definitions from the theory of SOS that will be used in the remainder
of this study. We present our rule format for idempotent terms in Section 3.
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That rule format plays an important role in the definition of the rule format for
idempotent unary operators that we give in Section 4. We discuss the results of
the paper and hint at directions for future work in Section 5.

2 Preliminaries

In this section we review, for the sake of completeness, some standard definitions
from process theory and the meta-theory of SOS that will be used in the remain-
der of the paper. We refer the interested reader to [4,20] for further details.

Transition System Specifications in GSOS Format

Definition 1 (Signature, Terms and Substitutions). We let V denote an
infinite set of variables with typical members x, x′, xi, y, y

′, yi, . . .. A signature
Σ is a set of function symbols, each with a fixed arity. We call these symbols
operators and usually represent them by f, g, . . .. An operator with arity zero is
called a constant. We define the set T(Σ) of terms over Σ (sometimes referred
to as Σ-terms) as the smallest set satisfying the following constraints.

– A variable x ∈ V is a term.
– If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use t, t′, ti, u, . . . to range over terms. We write t1 ≡ t2 if t1 and t2 are
syntactically equal. The function vars : T(Σ) → 2V gives the set of variables
appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., the
set of all terms t such that vars(t) = ∅. We use p, p′, pi, q, . . . to range over
closed terms. A context is a term with an occurrence of a hole [ ] in it.

A substitution σ is a function of type V → T(Σ). We extend the domain of
substitutions to terms homomorphically. If the range of a substitution is included
in C(Σ), we say that it is a closed substitution. For a substitution σ and se-
quences x1, . . . , xn and t1, . . . , tn of distinct variables and of terms, respectively,
we write σ[x1 �→ t1, . . . , xn �→ tn] for the substitution that maps each variable
xi to ti (1 ≤ i ≤ n) and agrees with σ on all of the other variables. When σ is
the identity function over variables, we abbreviate σ[x1 �→ t1, . . . , xn �→ tn] to
[x1 �→ t1, . . . , xn �→ tn].

The GSOS format is a widely studied format of deduction rules in transition
system specifications proposed by Bloom, Istrail and Meyer [9], which we now
proceed to define.

Definition 2 (GSOS Format [9]). A deduction rule for an operator f of arity
n is in the GSOS format if and only if it has the following form:

{xi
lij−→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi

lik
� | 1 ≤ i ≤ n, 1 ≤ k ≤ ni}

f(x)
l−→C[x,y]

(1)

where the xi’s and the yij’s (1 ≤ i ≤ n and 1 ≤ j ≤ mi) are all distinct variables,
mi and ni are natural numbers, C[x,y] is a Σ-term with variables including at
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most the xi’s and yij’s, and lij ’s and l are labels. The above rule is said to be
f -defining and l-emitting.

A transition system specification (TSS) in the GSOS format T is a triple
(Σ,L,D) where Σ is a finite signature, L is a finite set of labels, and D is
a finite set of deduction rules in the GSOS format. The collection of f -defining
and l-emitting rules in a set D of GSOS rules is denoted by D(f, l).

Example 1. An example of a TSS in the GSOS format is the one describing the
semantics of BCCSP [14]. The signature for this TSS contains the operators 0
(of arity zero), a. (a ∈ L) and + . The standard deduction rules for these
operators are listed below, where a ranges over L.

a.x1
a−→x1

x1
a−→x′

1

x1 + x2
a−→x′

1

x2
a−→x′

2

x1 + x2
a−→x′

1

Informally, the intent of a GSOS rule of the form (1) is as follows. Suppose that
we are wondering whether f(p) is capable of taking an l-step. We look at each f -

defining and l-emitting rule in turn. We inspect each positive premise xi
lij−→ yij ,

checking if pi is capable of taking an lij-step for each j and if so calling the
lij-children qij . We also check the negative premises: if pi is incapable of taking

an lik-step for each k. If so, then the rule fires and f(p)
l−→C[p, q]. This means

that the transition relation −→ associated with a TSS in the GSOS format is
the one defined by the rules using structural induction over closed Σ-terms. This
transition relation is the unique sound and supported transition relation. Here
sound means that whenever a closed substitution σ ‘satisfies’ the premises of a

rule of the form (1), then σ(f(x))
l−→σ(C[x,y]). On the other hand, supported

means that any transition p
l−→ q can be obtained by instantiating the conclusion

of a rule of the form (1) with a substitution that satisfies its premises. We refer
the interested reader to [9] for the precise definition of −→ and much more
information on GSOS languages. The above informal description of the transition
relation associated with a TSS in GSOS format suffices to follow the technical
developments in the remainder of the paper.

Bisimilarity. Terms built using operators from the signature of a TSS are usually
considered modulo some notion of behavioural equivalence, which is used to
indicate when two terms describe ‘essentially the same behaviour’. The notion
of behavioural equivalence that we will use in this paper is the following, classic
notion of bisimilarity [18,21].

Definition 3 (Bisimilarity). Let T be a TSS in GSOS format with signature
Σ. A relation R ⊆ C(Σ)×C(Σ) is a bisimulation if and only if R is symmetric
and, for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L,

(p0 R p1 ∧ p0
l−→ p′0)⇒ ∃p′1 ∈ C(Σ). (p1

l−→ p′1 ∧ p′0 R p′1).
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Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by T � p0 ↔ p1 (or simply
by p0 ↔ p1 when T is clear from the context), when there exists a bisimulation
R such that p0 R p1. We refer to the relation ↔ as bisimilarity.

It is well known that ↔ is an equivalence relation over C(Σ). Any equivalence
relation∼ over closed terms in a TSS T is extended to open terms in the standard
fashion, i.e., for all t0, t1 ∈ T(Σ), the equation t0 = t1 holds over T modulo ∼
(sometimes abbreviated to t0 ∼ t1) if, and only if, T � σ(t0) ∼ σ(t1) for each
closed substitution σ.

Definition 4. Let Σ be a signature. An equivalence relation ∼ over Σ-terms is a
congruence if, for all f ∈ Σ and closed terms p1, . . . , pn, q1, . . . , qn, where n is the
arity of f , if pi ∼ qi for each i ∈ {1, . . . , n} then f(p1, . . . , pn) ∼ f(q1, . . . , qn).

Remark 1. Let Σ be a signature and let ∼ be a congruence. It is easy to see
that, for all f ∈ Σ and terms t1, . . . , tn, u1, . . . , un, where n is the arity of f , if
ti ∼ ui for each i ∈ {1, . . . , n} then f(t1, . . . , tn) ∼ f(u1, . . . , un).

The following result is well known [9].

Proposition 1. ↔ is a congruence for any TSS in GSOS format.

The above proposition is a typical example of a result in the meta-theory of SOS:
it states that if the rules in a TSS satisfy some syntactic constraint, then some
semantic result is guaranteed to hold. In the remainder of this paper, following
the work presented in, e.g., [1,2,3,6,10,19], we shall present a rule format ensuring
that certain unary operations are idempotent. This rule format will rely on one
yielding that terms of a certain form are idempotent for some binary operator.
For this reason, we present first the latter rule format in the subsequent section.

3 A Rule Format for Idempotent Terms

Definition 5 (Idempotent Term). Let Σ be a signature. Let f and � be,
respectively, a unary and a binary operator in Σ. We say that f(x) is an idem-
potent term for � with respect to an equivalence relation ∼ over T(Σ) if the
following equation holds:

f(x) ∼ f(x)� f(x). (2)

In what follows, we shall present some syntactic requirements on the SOS rules
defining the operators f and � that guarantee the validity of equation (2).
In order to motivate the syntactic constraints of the rule format, let us con-
sider the unary replication operator ‘!’, which is familiar from the theory of the
π-calculus (see, e.g., [24]), and the binary interleaving parallel composition ‘||’,
which appears in, amongst others, ACP [8], CCS [18], and CSP [15]. The rules for
these operators are given below, where a ranges over the set of action labels L.

x
a−→x′

!x
a−→x′ ||!x

x
a−→x′

x || y a−→x′ || y

y
a−→ y′

x || y a−→x || y′
(3)
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It is well known that !x is an idempotent term for || modulo any notion of
equivalence that includes bisimilarity. Indeed, the equation

!x = (!x) ||(!x)

is one of the laws for the structural congruence over the π-calculus with replica-
tion considered in, e.g., [11].

It is instructive to try and find out why the above law holds by considering
the interplay between the transition rules for ‘!’ and those for ‘||’, rather than
considering the transitions that are possible for all the closed instantiations of
the terms !x and (!x) ||(!x). To this end, consider the rule for replication for some
action a. The effect of this rule can be mimicked by the term (!x) ||(!x) by means
of a combination of the instance of the first rule for || in (3) for action a and
of the rule for replication. When we do so, the appropriate instantiation of the
target of the conclusion of the first rule for || is the term

(x′ || y)[x′ �→ x′ ||!x, y �→!x] = (x′ ||!x) ||!x.

Note that the target of the conclusion of the rule for replication, namely x′ ||!x,
and the above term can be proved equal using associativity of ||, which is well
known, and the version of axiom (2) for replication and parallel composition, as
follows:

(x′ ||!x) ||!x = x′ ||(!x ||!x) = x′ ||!x.
The validity of the associativity law for || is guaranteed by the rule format for
associativity given in [10, Definition 8]. On the other hand, the soundness of the
use of equation (2) can be justified using coinduction [23].

Consider instead the combination of the instance of the second rule for || in
(3) for action a and of the rule for replication. When we do so, the appropriate
instantiation of the target of the conclusion of the second rule for || is the term

(x || y′)[x �→!x, y �→ x′ ||!x] =!x ||(x′ ||!x).

Note that the target of the conclusion of the rule for replication, namely x′ ||!x,
and the above term can be proved equal using commutativity and associativity
of ||, which are well known, and the version of axiom (2) for replication and
parallel composition, as follows:

!x ||(x′ ||!x) = (x′ ||!x) ||!x = x′ ||(!x ||!x) = x′ ||!x.

The validity of the commutativity law for || is guaranteed by the rule format for
commutativity given in [19].

The above discussion hints at the possibility of defining an SOS rule format
guaranteeing the validity of equation (2) building on SOS rule formats for al-
gebraic properties like associativity and commutativity of operators [6], and on
a coinductive use of equation (2) itself. The technical developments to follow will
offer a formalization of this observation.

Our definition of the rule format is based on a syntactically defined equi-
valence relation over terms that is sufficient to handle the examples from the
literature we have met so far.
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Definition 6 (The Relation �). Let T = (Σ,L,D) be a TSS in GSOS
format.

1. The relation � is the least equivalence relation over T(Σ) that satisfies the
following clauses:

– f(t, u) � f(u, t), if f is a binary operator in Σ and the commutativity
rule format from [19] applies to f ,

– f(t, f(t′, u)) � f(f(t, t′), u), if f is a binary operator in Σ and one of
the associativity rule formats from [10] applies to f , and

– C[t] � C[t′], if t � t′, for each context C[ ].

2. Let f and � be, respectively, a unary and a binary operator in Σ. We write
t↓f,�u if, and only if, there are some t′ and u′ such that t � t′, u � u′, and
t′ = u′ can be proved by possibly using one application of an instantiation
of axiom (2) in a context—that is, either t′ ≡ u′, or t′ = C[f(t′′)] and
u′ = C[f(t′′)� f(t′′)], for some context C[ ] and term t′′, or vice versa.

Example 2. Consider the terms !x ||(x′ ||!x) and x′ ||!x. Then

x′ ||!x ↓!,|| !x ||(x′ ||!x).

Indeed, !x ||(x′ ||!x) � x′ ||(!x ||!x), because the rules for || are in the associativ-
ity and commutativity rule formats from [10,19], and x′ ||!x = x′ ||(!x ||!x) can be
proved using one application of the relevant instance of axiom (2) in the context
x′ ||[ ].

We are now ready to present an SOS rule format guaranteeing the validity of
equation (2).

Definition 7 (Rule Format for Idempotent Terms). Let T = (Σ,L,D) be
a TSS in the GSOS format. Let f and � be, respectively, a unary and a binary
operator in Σ. We say that the rules for f and � in T are in the rule format
for idempotent terms if either � is in the rule format for idempotence from [1]
or the following conditions are met:

1. For each f -defining rule in D, say
H

f(x)
a−→ t

, there is some �-defining rule

H ′

x1 � x2
a−→u

, such that

(a) H ′ ⊆ {x1
a−→ y1, x2

a−→ y2}, and
(b) t ↓f,� u[x1 �→ f(x), x2 �→ f(x), y1 �→ t, y2 �→ t].

2. Each �-defining rule has the form

{xi
a−→ yi} ∪ {x1

aj−→ yj | j ∈ J} ∪ {x2
bk−→ zk | k ∈ K}

x1 � x2
a−→u

, (4)

where i ∈ {1, 2}, J and K are index sets, and vars(u) ⊆ {x1, x2, yi}.
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3. Let r be an �-defining rule of the form (4) such that D(f, aj) �= ∅, for each

j ∈ J , and D(f, bk) �= ∅, for each k ∈ K. Let
H

f(x)
a−→ t

be a rule for f .

Then
t ↓f,� u[x1 �→ f(x), x2 �→ f(x), yi �→ t].

Theorem 1. Let T = (Σ,L,D) be a TSS in the GSOS format. Let f and �
be, respectively, a unary and a binary operator in Σ. Assume that the rules for
f and � in T are in the rule format for idempotent terms. Then equation (2)
holds over T modulo bisimilarity.

The proof of this result may be found in [5].

Example 3 (Replication and Parallel Composition). The unary replication oper-
ator and the parallel composition operator, whose rules we presented in (3), are
in the rule format for idempotent terms. Indeed, we essentially carried out the
verification of the conditions in Definition 7 when motivating the constraints of
the rule format and the relation �. Therefore, Theorem 1 yields the soundness,
modulo bisimilarity, of the well-known equation

!x = (!x) ||(!x).

We give further examples of application of the rule format in [5].

4 A Rule Format for Idempotent Unary Operators

Definition 8 (Idempotent Unary Operator). Let Σ be a signature. Let f
be a unary operator in Σ. We say that f(x) is idempotent with respect to an
equivalence relation ∼ over T(Σ) if the following equation holds:

f(x) ∼ f(f(x)). (5)

In what follows, we shall present some syntactic requirements on the SOS rules
defining a unary operator f that guarantee the validity of equation (5). The rule
format for idempotent unary operators will rely on the one for idempotent terms
given in Definition 7.

In order to motivate the use of the rule format for idempotent terms in the
definition of the one for idempotent unary operators, consider the replication
operator whose rules were introduced in (3). As is well known, the equation
!x =!(!x) holds modulo bisimilarity. The validity of this equation can be ‘justified’
using the transition rules for ‘!’ as follows. Consider the rule for replication for

some action a, namely
x

a−→x′

!x
a−→x′ ||!x

. The effect of this rule can be mimicked by

the term !(!x) by using the same rule twice. When we do so, the appropriate
instantiation of the target of the conclusion of the rule for ‘!’ is the term

(x′ ||!x)[x′ �→ x′ ||!x, x �→!x] = (x′ ||!x) ||!(!x).
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Note that the target of the conclusion of the rule for replication, namely x′ ||!x,
and the above term can be proved equal using associativity of ||, the version of
axiom (2) for replication and parallel composition, and the version of axiom (5)
for replication, as follows:

(x′ ||!x) ||!(!x) = (x′ ||!x) ||!x = x′ ||(!x ||!x) = x′ ||!x.

As mentioned in Example 3, the validity of the version of axiom (2) for replication
and parallel composition is guaranteed by Theorem 1. On the other hand, the
soundness of the use of equation (5) can be justified using coinduction [23].

As we did in the definition of the rule format for idempotent terms presented
in Definition 7, in stating the requirements of the rule format for idempotent
unary operators, we shall employ a syntactically defined equivalence relation
over terms that is sufficient to handle the examples from the literature we have
met so far.

Definition 9 (The Relation ↔). Let T = (Σ,L,D) be a TSS in the GSOS
format.

1. The relation ↔ is the least equivalence relation over T(Σ) that satisfies the
following clauses:

– f(t)↔ f(t)� f(t), if the rules for f and � in T are in the rule format
for idempotent terms from Definition 7,

– f(t, u) ↔ f(u, t), if f is a binary operator in Σ and the commutativity
rule format from [19] applies to f ,

– f(t, f(t′, u)) ↔ f(f(t, t′), u), if f is a binary operator in Σ and one of
the associativity rule formats from [10] applies to f , and

– C[t]↔ C[t′], if t↔ t′, for each context C[ ].

2. Let f be a unary operator in Σ. We write t ⇓f u if, and only if, there are
some t′ and u′ such that t↔ t′, u↔ u′, and t′ = u′ can be proved by possibly
using one application of an instantiation of axiom (5) in a context—that is,
either t′ ≡ u′, or t′ = C[f(t′′)] and u′ = C[f(f(t′′))], for some context C[ ]
and term t′′, or vice versa.

Example 4. Consider the terms (x′ ||!x) ||!(!x) and x′ ||!x. Then

x′ ||!x ⇓! (x′ ||!x) ||!(!x).

Indeed, x′ ||!x↔ (x′ ||!x) ||!x, using the relevant instance of axiom (2) and asso-
ciativity of ||, and (x′ ||!x) ||!x = (x′ ||!x) ||!(!x) can be proved using one applica-
tion of the relevant instance of axiom (5) in the context (x′ ||!x) ||[ ].

Definition 10 (Rule Format for Idempotent Unary Operators). Let T =
(Σ,L,D) be a TSS in the GSOS format. Let f be a unary operator in Σ. We
say that the rules for f are in the rule format for idempotent unary operators
if the following conditions are met:
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1. Each rule for f in D has the form

H ∪ {x bj
� | j ∈ J}

f(x)
a−→ t

, (6)

where

(a) H ⊆ {x a−→x′} and

(b) H = {x a−→x′} if J is non-empty.

2. If some rule for f of the form (6) has a premise of the form x
b
� , then each

b-emitting and f -defining rule has a positive premise of the form x
b−→x′.

3. Consider a rule for f of the form (6). Then

(a) either H is empty and t ⇓f t[x �→ f(x)]

(b) or H = {x a−→x′} and, for each a-emitting rule for f
H ′

f(x)
a−→ t′

, we

have that t′ ⇓f t[x �→ f(x), x′ �→ t′].

Theorem 2. Let T = (Σ,L,D) be a TSS in the GSOS format. Let f be
a unary operator in Σ. Assume that the rules for f in T are in the rule for-
mat for idempotent unary operators. Then equation (5) holds over T modulo
bisimilarity.

The proof of this result may be found in [5].

Remark 2. Condition 1b in Definition 10 requires that, in rules of the form (6),

H = {x a−→x′} if J is non-empty. This requirement is necessary for the validity
of Theorem 2. To see this, consider the unary operator f with rules

x
b
�

f(x)
a−→0

x
b−→x′, x

c
�

f(x)
b−→0

x
c−→x′, x

b
�

f(x)
c−→0

.

The rules for f satisfy all the conditions in Definition 10 apart from the re-
quirement in condition 1b that all rules have positive premises when they have
negative ones.

It is not hard to see that f(b.0 + c.0) has no outgoing transitions. On the

other hand, using the a-emitting rule for f , we have that f(f(b.0+ c.0))
a−→0.

Therefore, f(b.0+c.0) � f(f(b.0+c.0)), and the equation f(x)↔ f(f(x)) does
not hold.

Example 5 (Priority). Assume that < is an irreflexive partial ordering over L.
The priority operator θ from [7] has rules

x
a−→x′, (x

b
� for each b such that a < b)

θ(x)
a−→ θ(x′)

(a ∈ L).
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It is not hard to see that the rules for θ satisfy the conditions in Definition 10. In
particular, for each a ∈ L, the only a-emitting rule for θ has a positive premise
of the form x

a−→x′. Hence, condition 1b in Definition 10 is met.
Therefore, Theorem 2 yields the soundness, modulo bisimilarity, of the well-

known equation θ(x) = θ(θ(x)).
We give further examples of application of the rule format in [5].

5 Conclusions

In this study, we have presented an SOS rule format that guarantees that a unary
operator is idempotent modulo bisimilarity. In order to achieve a sufficient degree
of generality, that rule format relies on a companion one ensuring that certain
terms are idempotent with respect to some binary operator. In addition, both
rule formats make use of existing formats for other algebraic properties such as
associativity [10], commutativity [19] and idempotence for binary operators [1].
In this paper, we have restricted ourselves to TSSs in GSOS format [9] for the
sake of simplicity. The rule formats we offered in this study can be extended
to arbitrary TSSs in standard fashion, provided one gives the semantics of such
TSSs in terms of three-valued stable models.

The auxiliary rule format ensuring that certain terms are idempotent with
respect to some binary operator may be seen as a refinement of the one from [1].
That paper offered a rule format guaranteeing that certain binary operators
are idempotent. We recall that a binary operator � is idempotent if the equa-
tion x � x = x holds. Of course, if a binary operation is idempotent, then any
term is an idempotent for it. However, the sequential composition operator ‘·’ is
not idempotent, but the term x∗ is an idempotent for it. Similarly, the parallel
composition operator ‘||’ is not idempotent, but the term !x is an idempotent
for ||. Since the laws x∗ · x∗ = x∗ and !x ||!x =!x play an important role in
establishing, via syntactic means, that the unary Kleene star and replication
operators are idempotent, we needed to develop a novel rule format for idem-
potent terms in order to obtain a powerful rule format for idempotent unary
operations.

To our mind, idempotence of unary operators is the last ‘typical’ algebraic
law for which it is worth developing a specialized rule format. An interest-
ing, long-term research goal is to develop a general approach for synthesizing
rule formats for algebraic properties from the algebraic law itself and some as-
sumption on the format of the rules used to give the semantics for the lan-
guage constructs in the style of SOS. We believe that this is a hard research
problem. Indeed, the development of the formats for algebraic properties sur-
veyed in [6] has so far relied on ad-hoc ingenuity and it is hard to discern
some common principles that could guide the algorithmic synthesis of such
formats.
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3. Aceto, L., Cimini, M., Ingólfsdóttir, A., Mousavi, M.R., Reniers, M.A.: Rule for-
mats for distributivity. Theoretical Computer Science 458, 1–28 (2012)

4. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 3, pp. 197–292.
Elsevier Science, Dordrecht (2001)
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Abstract. Non-local games are studied in quantum information because
they provide a simple way for proving the difference between the classical
world and the quantum world. A non-local game is a cooperative game
played by 2 or more players against a referee. The players cannot com-
municate but may share common random bits or a common quantum
state. A referee sends an input xi to the ith player who then responds
by sending an answer ai to the referee. The players win if the answers ai

satisfy a condition that may depend on the inputs xi.
Typically, non-local games are studied in a framework where the ref-

eree picks the inputs from a known probability distribution. We initiate
the study of non-local games in a worst-case scenario when the referee’s
probability distribution is unknown and study several non-local games
in this scenario.

1 Overview

Quantum mechanics is strikingly different from classical physics. In the area
of information processing, this difference can be seen through quantum algo-
rithms which can be exponentially faster than conventional algorithms [18,16]
and through quantum cryptography which offers degree of security that is im-
possible classically [7].

Another way of seeing the difference between quantum mechanics and the
classical world is through non-local games. An example of non-local game is the
CHSH (Clauser-Horne-Shimonyi-Holt) game [11]. This is a game played by two
parties against a referee. The two parties cannot communicate but can share
common randomness or common quantum state that is prepared before the
beginning of the game. The referee prepares two uniformly random bits x, y and
gives one of them to each of two parties. The parties reply by sending bits a and
b to the referee. They win if a ⊕ b = x ∧ y. The maximum winning probability
that can be achieved is 0.75 classically and 1

2 + 1
2
√
2
= 0.85... quantumly.
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Other non-local games can be obtained by changing the winning conditions,
replacing bits x, y with x, y ∈ {1, . . . ,m} or changing the number of parties.
The common feature is that all non-local games involve parties that cannot
communicate but can share common random bits or a common quantum state.

There are several reasons why non-local games are interesting. First, CHSH
game provides a very simple example to test validity of quantum mechanics. If
we have implemented the referee and the two players by devices so that there
is no communication possible between A and B and we observe the winning
probability of 0.85..., there is no classical explanation possible. Second, non-local
games have been used in device-independent cryptography [1,17].

Non-local games are typically analyzed with the referee acting according to
some probability distribution. E. g., for the CHSH game, the referee chooses each
of possible pairs of bits (0, 0), (0, 1), (1, 0), (1, 1) as (x, y) with equal probabilities
1/4. This is quite natural if we think of the CHSH game as an experiment for
testing the validity of quantum mechanics. Then, we can implement the device
for the referee so that it uses the appropriate probability distribution.

On the other hand, most of theoretical computer science is based on the worst-
case analysis of algorithms, including areas such as quantum communication
complexity [20] and distributed computing [13] (which are both related to non-
local games). Because of that, we think that it is also interesting to study non-
local games in a worst case setting, when the players have to achieve winning
probability at least p for every possible combination of input data (x, y)1.

In this paper, we start a study of non-local games in the worst-case framework.
We start with several simple observations (section 3). First, the maximum gap
between quantum and classical winning probability in the worst-case scenario
is at most the maximum gap for a fixed probability distribution. Second, many
of the non-local games that achieve the biggest gaps for a fixed probability
distribution (such as CHSH game for 2-player XOR games or Mermin-Ardehali
game [15,5] for n-player XOR games) also achieve the same gap in the worst-case
scenario, due to natural symmetries present in those games.

Then, in section 4, we look at examples of non-local games for which the
worst case is different from the average case under the most natural probability
distribution, with two goals. First, we show natural examples of non-local games
for which the worst-case behaviour is not a straightforward consequence of the
average-case behaviour under the uniform distribution.

Second, at the same time, we develop methods for analyzing non-local games
in the worst case. For non-local games under a fixed probability distribution,
computing the best winning probability is at least NP-hard [14] in the general
case but there are efficient algorithms for fairly broad special cases (such as
2-player XOR games [12]). Those algorithms crucially rely on the fact that non-
local games are studied under a fixed probability distribution on inputs (x, y).
This allows to reduce the maximum winning probability to a simple expression

1 Also, when we give talks about non-local games to computer scientists who are not
familiar with quantum computing, we often get a question: why don’t you consider
the worst case setting?



Worst Case Analysis of Non-local Games 123

whose maximum can be computed by a polynomial time algorithm. (For exam-
ple, for 2-player XOR games, this is done via semidefinite programming [12].)

These methods no longer work in the worst case scenario, where we have to
develop new methods on case-by-case basis - for games that would have been
easy to analyze with previous methods if the probability distribution was fixed.

2 Technical Preliminaries

We will study non-local games of the following kind [12] in both classical and
quantum settings. There are n cooperating players A1, A2, . . . , An trying to
maximize the game value (see below), and there is a referee. Before the game the
players may share a common source of correlated random data: in the classical
case, a common random variable R taking values in a finite set R, and in the
quantum case, an entangled n-part quantum state |ψ〉 ∈ A1⊗ . . .⊗An (where Ai

is a finite-dimensional subspace corresponding to the part of the state available
to Ai). During the game the players cannot communicate between themselves.

Each of the players (Ai) has a finite set of possible input data: Xi. At the start
of the game the referee randomly picks values (x1, . . . , xn) = x ∈ X1 × . . .×Xn

according to some probability distribution π, and sends each of the players his
input (i. e. Ai receives xi).

Each of the players then must send the referee a response ai which may depend
on the input and the common random data source. In this paper we will consider
only binary games, that is games where the responses are simply bits: ai ∈ {0, 1}.
We denote (a1, . . . , an) by a.

The referee checks whether the players have won by some predicate (known
to all parties) depending on the players’ inputs and outputs: V (a | x). For
convenience in formulas, we will suppose that V takes value 1 when it is true
and −1 when it is false. A binary game whose outcome depends only on the
XOR of the players’ responses: V (a | x) = V ′(

⊕n
i=1 ai | x), is called an XOR

game. A game whose outcome does not change after any permutation γ of the
players (i. e. V (γ(a) | γ(x)) = V (a | x) for any γ) is called a symmetric game.

The value ω of a non-local game G for given players’ strategies is the difference
between the probability that the players win and the probability that they lose:

ω(G) = Pr[V (a | x) = 1]− Pr[V (a | x) = −1] ∈ [−1, 1].

The probability that the players win can then be expressed by the game value
in this way: Pr[V (a | x) = 1] = 1

2 + 1
2ω(G).

In the classical case, the players’ strategy is the random variable R and
a set of functions ai : Xi×R → {0, 1} determining the responses. The maximal
classical game value achievable by the players for a given distribution π is thus:

ωπ
c (G) = sup

R,a

∑
r,x

π(x) Pr[R = r]V (a1(x1, r), . . . , an(xn, r) | x).

However, the use of random variable here is redundant, since in the expression
it provides a convex combination of deterministic strategy game values, thus the
maximum is achieved by some deterministic strategy (with ai : Xi → {0, 1}):
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ωπ
c (G) = max

a

∑
x

π(x)V (a1(x1), . . . , an(xn) | x).

In this paper we investigate the case when the players do not know the prob-
ability distribution π used by the referee, and must maximize the game value
for the worst distribution the referee could choose, given the strategy picked by
the players. We will call it the worst-case game value. The maximal classical
worst-case game value ωc achievable by the players is given by the formula

ωc(G) = sup
R,a

min
π

∑
r,x

π(x) Pr[R = r]V (a1(x1, r), . . . , an(xn, r) | x).

Note that in the worst-case approach the optimal strategy cannot be a deter-
ministic one, unless there is a deterministic strategy winning on all inputs: if
there is an input on which the strategy loses, then the referee can supply it with
certainty, and the players always lose. Clearly, ωc(G) ≤ ωπ

c (G) for any π.
In the most of the studied examples π has been the uniform distribution. We

will call it the average case and denote its maximum game value by ωuni
c (G).

In the quantum case, the players’ strategy is the state |ψ〉 and the measure-
ments that the players pick depending on the received inputs and perform on
their parts of |ψ〉 to determine their responses. Mathematically, the measure-
ment performed by Ai after receiving input xi is a pair of positive semidefinite

dimAi-dimensional matrices M
0|xi

i , M
1|xi

i with M
0|xi

i + M
1|xi

i = I where I is
the identity matrix. We denote the collection of all measurements by M.

The maximum quantum game value for a fixed distribution π is

ωπ
q (G) = sup

|ψ〉,M

∑
x,a

π(x)〈ψ|
n⊗

i=1

M
ai|xi

i |ψ〉V (a | x),

and the maximum quantum worst-case game value is

ωq(G) = sup
|ψ〉,M

min
π

∑
x,a

π(x)〈ψ|
n⊗

i=1

M
ai|xi

i |ψ〉V (a | x).

Since the shared entangled state can be used to simulate a random variable,
ωq(G) ≥ ωc(G) and for any π: ωπ

q (G) ≥ ωπ
c (G).

In the case of two player games (n = 2) we will use notation A,B for the
players, X,Y for the input sets, x, y for the inputs, a, b for the responses.

3 Games With Worst Case Equivalent to Average Case

3.1 Maximum Quantum-Classical Gap

The advantage of quantum strategies is usually measured by the ratio
ωπ

q (G)

ωπ
c (G)

(or
ωq(G)
ωc(G) in the worst-case setting) between the quantum value ωπ

q (G) and the
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classical value ωπ
c (G). Finding non-local games with maximum

ωπ
q (G)

ωπ
c (G) has been

an object of much research (e.g. [9,8]).
We show that the maximum advantage in the worst-case scenario is never

bigger than for the best choice of a fixed probability distribution.

Theorem 1. For any game G,

ωq(G)

ωc(G)
≤ max

π

ωπ
q (G)

ωπ
c (G)

.

Proof. By Yao’s principle [21], ωc(G) is equal to the minimum of ωπ
c (G) over all

probability distributions π. Let π be the probability distribution that achieves
this minimum. Then, ωπ

q (G) ≥ ωq(G) (since knowing π can only make it easier

to win in a non-local game) and, hence,
ωπ

q (G)

ωπ
c (G) ≥

ωq(G)
ωc(G) . "#

For many natural games, maxπ
ωπ

q (G)

ωπ
c (G) is achieved by π = uni and, often, there is

a straightforward symmetry argument that shows that ωuni
c = ωc or ωuni

q = ωq.
Then, the uniform distribution on inputs is equivalent to the worst case. We
show two examples of that in the next two subsections.

3.2 CHSH Game

The CHSH game [11,12] is a canonical example of a 2-player non-local game with
a quantum advantage. It is a two player XOR game withX = Y = {0, 1}, V (a, b |
x, y) = a ⊕ b ≡ x ∧ y, and π the uniform distribution. It is easy to
check that no deterministic strategy can win on all inputs, but the strategy a(x) =
0, b(y) = 0 wins on 3 inputs out of 4, so [12]: ωuni

c (CHSH) = 0.75− 0.25 = 0.5.
Moreover, since out of the four strategies S1: a(x) = 0, b(y) = 0; S2: a(x) = x,

b(y) = 0; S3: a(x) = 0, b(y) = y; S4: a(x) = x, b(y) = ¬y each one loses on
a different input, and wins on the 3 other ones, we have for any predetermined
π: ωπ

c (CHSH) = 1 − 2minx,y π(x, y) ≥ 0.5. Indeed, one can pick the strategy
losing on the input with the minimal value of π.

Theorem 2. ωc(CHSH) = 0.5; ωq(CHSH) = 1/
√
2.

Proof. If the players use a random variable R to pick one of the strategies S1, S2,
S3, S4 mentioned above with equal probability (i. e. 0.25), then for any input x, y
they will have a winning strategy with probability 0.75. Thus ωc(CHSH) ≥ 0.5.
On the other hand, ωc(CHSH) ≤ ωuni

c (CHSH) = 0.5.
[12] shows that the winning probability in the quantum case is 1

2 +
1

2
√
2
giving

ωuni
q (CHSH) = 1/

√
2. Moreover, the used strategy achieves this value on every

input x, y, therefore it gives also the worst-case value: ωq(CHSH) = 1/
√
2. "#
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3.3 Mermin-Ardehali Game

Mermin-Ardehali (MA) game is an n-player XOR game that achieves the biggest
quantum advantage among XOR games with 2 questions to each player (X1 =
. . . = Xn = {0, 1}). This game corresponds to Mermin-Ardehali n-partite Bell
inequality [15,5].

The winning condition for MA game is: a1 ⊕ . . . ⊕ an = 0 if (x1 + . . . +
xn) mod 4 ∈ {0, 1} and a1 ⊕ . . .⊕ an = 1 if (x1 + . . .+ xn) mod 4 ∈ {2, 3}.

For the uniform distribution on the inputs, we have ωuni
q (MA) = 1√

2
and

ωuni
c (MA) = 1

2�
n
2

−1� classically [15,5,4]. As shown by Werner and Wolf [19], no

XOR game has a bigger quantum advantage.

Theorem 3. [19] No n-party XOR game G with binary inputs xi (with any

input distribution π) achieves
ωπ

q (G)

ωπ
c (G) > 2

n−1
2 .

This makes the worst-case analysis of Mermin-Ardehali game for even n quite
straightforward. For the quantum case, the maximal game value 1√

2
is given by

a quantum strategy which achieves the corresponding winning probability 1
2 +

1
2
√
2
on every input [15,5,4], thus

Theorem 4. For all n: ωq(MA) = 1/
√
2.

For the classical case, Theorems 1 and 3 together imply
ωq(MA)
ωc(MA) ≤ 2

n−1
2 and

ωc(MA) ≥ 1
2n/2 . Thus,

1

2n/2
≤ ωc(MA) ≤ ωuni

c (MA) ≤ 1

2	
n−1
2 
 .

For even n, the upper and lower bounds coincide, implying

Theorem 5. For even n: ωc(MA) = 2−
n
2 .

Other Examples. Other examples of well known non-local games with ωuni
c =

ωc and ωuni
q = ωq are the Odd Cycle game of [12] and the Magic Square game

of [6,12]. Again, the natural symmetries present in these games which make the
worst case equivalent to the average case.

4 Games with Worst Case Different from Average Case

The goals of this section are:

– to present natural examples of non-local games for which the worst-case
scenario is different from the average case;

– to develop methods for analyzing quantum games in the worst-case scenario
(which is substantially more difficult than in the average case).
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4.1 EQUAL-EQUAL Game

We define EQUAL-EQUAL (EEm) as a two-player XOR game with X = Y =

{1, . . . ,m} and V (a, b | x, y) def
= (x = y) ≡ (a = b).

This is a natural variation of the Odd-Cycle game of [12]. For m = 3, the
Odd-Cycle game can be viewed as a game in which the players try to prove to
the referee that they have 3 bits a1, a2, a3 ∈ {0, 1} which all have different values.

This can be generalized to larger m in two ways. The first generalization is
the Odd-Cycle game [12] in which the players attempt to prove to the referee
that an m-cycle (for m odd) is 2-colorable. The second generalization is a game
in which the players attempt to prove that they have m bits a1, . . . , am ∈ {0, 1}
which all have different values. This is our EQUAL-EQUAL game.

Theorem 6. For even m: ωc(EEm) = m
3m−4 , and for odd m: ωc(EEm) = m+1

3m−1 .

Proof. In the full version of paper [3]. "#

Theorem 7. For even m: ωq(EEm) = m
3m−4 , and for odd m: m+1

3m−1 ≤ ωq(EEm)

≤ m2+1
(3m−1)(m−1) .

Proof. The lower bounds follow from ωq(EEm) ≥ ωc(EEm). For the upper
bounds, let πα,β denote the probability distribution defined by πα,β(i, i) = α for
any i and πα,β(i, j) = β for any distinct i, j. Then, ωq(EEm) ≤ ω

πα,β
q (EEm).

For the two-player XOR games where on every input exactly one of the cases
a⊕ b = 0 and a ⊕ b = 1 is winning, it is useful to introduce the matrix V with
Vxy = V (0, 0 | x, y), and to observe that V (a, b | x, y) = (−1)a(−1)bVxy. Thus,
for any distribution π

ωπ
q (EEm) = sup

|ψ〉,M

∑
x,y,a,b

π(x, y)〈ψ|Ma|x
1 ⊗M

b|y
2 |ψ〉(−1)a(−1)bVxy,

and by the Tsirelson’s theorem [10] this game value is equal to

sup
d

max
ui:‖ui‖=1

max
vj :‖vj‖=1

m∑
i=1

m∑
j=1

π(i, j)Vij(ui, vj)

where u1, . . . , um, v1, . . . , vm ∈ IRd and (ui, vj) is the scalar product.
The part of the sum containing ui is

m∑
j=1

π(i, j)Vij(ui, vj) =

⎛⎝ui,
m∑
j=1

π(i, j)Vijvj

⎞⎠ .

To maximize the scalar product, ui must be the unit vector in the direction of∑m
j=1 π(i, j)Vijvj .
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For the EQUAL-EQUAL game and the distribution πα,β we have Vij = 1 and
πα,β(i, j) = α if i = j, Vij = −1 and πα,β(i, j) = β if i �= j. So we have to
maximize the sum

S =

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

πα,β(i, j)Vijvj

∥∥∥∥∥∥ =

m∑
i=1

∥∥∥∥∥∥αvi − β

m∑
j=1,j �=i

vj

∥∥∥∥∥∥ .
Let us denote s =

∑m
j=1 vj and apply the inequality between the arithmetic and

quadratic means (and use the fact that ‖vi‖ = 1):

S2 ≤ m

m∑
i=1

‖αvi − β(s− vi)‖2 = m

m∑
i=1

‖(α+ β)vi − βs‖2

= m

(
m∑
i=1

(α+ β)2‖vi‖2 −
m∑
i=1

2(α+ β)β(vi, s) +

m∑
i=1

β2‖s‖2
)

= m

(
(α+ β)2m− 2(α+ β)β

(
m∑
i=1

vi, s

)
+mβ2‖s‖2

)
= m((α + β)2m− 2(α+ β)β‖s‖2 +mβ2‖s‖2)
= m2(α+ β)2 + ‖s‖2mβ(mβ − 2(α+ β)).

With values of α and β

α =

{
m−1

m(3m−1) if m is odd,
m−2

m(3m−4) if m is even,
β =

{
2

(m−1)(3m−1) if m is odd,
2

m(3m−4) if m is even.
(1)

one can calculate that the coefficient at ‖s‖2 is 0 for even m and − 4
(m−1)2(3m−1)2

(negative) for odd m, so dropping this summand and extracting the square root
we get S ≤ m(α+ β). Substituting the values of α and β according to equation
(1) we get the desired estimations. "#
Thus, for any even m the quantum strategy cannot achieve any advantage over
the classical strategies (and for odd m there is no difference asymptotically). It
was quite surprising for us. In the Appendix of full paper [3], we show a similar
result for any of the symmetric distributions πα,β .

Theorem 8. If m is even, then ω
πα,β
q (EEm) = ω

πα,β
c (EEm). If m is odd, then

0 ≤ ω
πα,β
q (EEm)− ω

πα,β
c (EEm) ≤ 2

m(3m− 4)
.

While games with quantum advantage are common, there are only a few ex-
amples of games with no quantum advantage for an entire class of probabil-
ity distributions. ”Guess your neighbour’s input” of [2] is one such example,
with quantum strategies having no advantage for any probability distribution
on the input. Our EQUAL-EQUAL game provides another natural example
where quantum strategies have no advantage for a class of distributions.

Also in the Appendix of full paper [3], we show that quantum and classical
values are the same for the uniform distribution.
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Corollary 1. For m ≥ 4: ωuni
q (EEm) = ωuni

c (EEm) = m−2
m .

4.2 n-Party AND Game

n-party AND game (nAND) is a symmetric XOR game with binary inputs
X1 = . . . = Xn = {0, 1} and V (a | x) = (

⊕n
i=1 ai =

∧n
i=1 xi).

Although this is a natural generalization of the CHSH game (compare the win-
ning conditions), it appears that this game has not been studied before. Possibly,
this is due to the fact that in the average case the game can be won classically
with a probability that is very close to 1 by a trivial strategy: all players always
outputting ai = 0. If this game is studied in the worst-case scenario, it becomes
more interesting. The following theorem implies that limn→∞ ωc(nAND) = 1/3.

Theorem 9. ωc(nAND) = 2n−2/(3 · 2n−2 − 1).

Proof. In the full version of paper [3]. "#
In the quantum case, since the game is symmetric with binary inputs, we can
introduce parameters ci being equal to the value of V ((0, . . . , 0) | x) on any
input x containing i ones and n− i zeroes, and pi being equal to the probability
(determined by π) of such kind of input. According to [4], for such game G:

ωπ
q (G) = max

z:|z|=1

∣∣∣∣∣
n∑

i=0

piciz
i

∣∣∣∣∣
where z is a complex number. By Yao’s principle,

ωq(G) = min
p0,...,pn:

∑
pi=1

max
z:|z|=1

∣∣∣∣∣
n∑

i=0

piciz
i

∣∣∣∣∣ . (2)

We have for the nAND game: c0 = . . . = cn−1 = 1 and cn = −1.

Theorem 10. limn→∞ ωq(nAND) = 1/3.

Proof. Since ωq(nAND) ≥ ωc(nAND) > 1/3, it is sufficient to prove that
ωq(nAND) ≤ 1/3 + o(1) by picking particular values of pi and showing that
with them the limit of the expression (2) does not exceed 1/3. Such values are:

pn = 1/3, pi = pqn−i for i = 0, . . . , n − 1 where q = e
− 1√

n and p is chosen so
that p

∑n
i=1 q

i = 2
3 , i.e. p = 2

3
1−q

q(1−qn) . The inequality to prove is

lim
n→∞ max

z:|z|=1

∣∣∣∣∣p
n−1∑
i=0

qn−izi − 1

3
zn

∣∣∣∣∣ ≤ 1

3
.

Since |z| = 1, we can divide the expression within modulus by zn and use the
substitution w = 1/z. We obtain

lim
n→∞ max

w:|w|=1

∣∣∣∣∣p
n∑

i=1

(qw)i − 1

3

∣∣∣∣∣ = lim
n→∞ max

w:|w|=1

∣∣∣∣23 1− q

1− qn
w(1 − qnwn)

1− qw
− 1

3

∣∣∣∣ . (3)
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From limn→∞ qn = limn→∞ e−
√
n = 0 we get limn→∞(1 − qn) = 1 and, since

|w| = 1, limn→∞(1 − qnwn) = 1. Thus (3) is equal to

lim
n→∞ max

w:|w|=1

∣∣∣∣23 (1 − q)w

1− qw
− 1

3

∣∣∣∣ . (4)

Claim 1. For each ε > 0 there exists δ0 such that the inequality∣∣∣∣∣∣∣∣ 2δw

1− (1 − δ)w
− 1

∣∣∣∣− 1

∣∣∣∣ < ε (5)

holds where 0 < δ < δ0 and z ∈ C, and |w| = 1.

Now Claim 1 gives that (4) is equal to 1/3. We used the fact that limn→∞ e
− 1√

n

= 1 and the substitution 1− q = δ. "#

Proof (of Claim 1).
The inequality (5) requires that there exists some number with absolute value 1
that is sufficiently close to 2δw

1−(1−δ)w − 1 or, equivalently, that there exists some

number on a circle in the complex plane with its center at 1/2 and a radius of
1/2 that is sufficiently close to δw

1−(1−δ)w = 1
1+((1/w)−1)/δ .

The numbers
{

1
1+((1/w)−1)/δ |w ∈ C and |w| = 1

}
form a circle in the complex

plane with its center on the real axis that has common points with the real axis
at 1 and 1

1−2/δ = δ
δ−2 . The latter circle is sufficiently close to the circle with its

center at 1/2 and radius of 1/2 if we choose δ0 > 0 sufficiently small so that the
value of δ

δ−2 is sufficiently close to 0. "#

4.3 n-Party MAJORITY Game

By replacing the AND function with the MAJORITY function in the definition
of the n-party AND game, we obtain the n-party MAJORITY game.

More formally, n-party MAJORITY game (nMAJ) is a symmetric XOR game
with X1 = . . . = Xn = {0, 1} and V (a | x) demanding that

⊕n
i=1 ai is true if at

least half of xi is true, and false otherwise. Similarly as in the previous section,
we introduce parameters ci and pi and use the expression for game value given
in [4]. This time c0 = . . . = c	n/2
−1 = 1, c	n/2
 = . . . = cn = −1.

We have

Theorem 11. limn→∞ ωc(nAND) = limn→∞ ωq(nAND) = 0.

Proof. Since 0 ≤ ωc(nMAJ) ≤ ωq(nMAJ), it suffices to prove limn→∞ ωq

(nAND) = 0. Similarly as above, we can do it by picking particular values
of pi for which the limit of (2) is 0. Such values are as follows. If n is even, let
n = 2k and p2k = 0, otherwise let n = 2k − 1. Let pi = ri/s where ri = r2k−1−i

and ri = 1/(2k − 1− 2i) for 0 ≤ i ≤ k − 1, and s = 2
∑k

i=1 1/(2i− 1). We have
to prove that

lim
k→∞

max
z:|z|=1

∣∣∣∣∣
k−1∑
i=0

piz
i −

2k−1∑
i=k

piz
i

∣∣∣∣∣ = 0.
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Since |z| = 1, we can multiply the polynomial within the modulus by z1/2−k and
use the substitution w = z−1/2 obtaining:

max
z:|z|=1

∣∣∣∣∣
k−1∑
i=0

piz
i −

2k−1∑
i=k

piz
i

∣∣∣∣∣ = max
w:|w|=1

∣∣∣∣∣
k−1∑
i=0

piw
2k−1−2i −

2k−1∑
i=k

piw
2k−1−2i

∣∣∣∣∣
=

2

s
max

w:|w|=1

∣∣∣∣∣Im
(

k−1∑
i=0

riw
2k−1−2i

)∣∣∣∣∣ = 2

s
max

θ

∣∣∣∣∣
k∑

i=1

sin(2i− 1)θ

2i− 1

∣∣∣∣∣
where Im(z) is the imaginary part of z and w = eiθ.

Since the function
∑k

i=1(sin(2i− 1)θ)/(2i− 1) is a partial sum of the Fourier
series of a square wave function, we have

max
θ

∣∣∣∣∣
k∑

i=1

sin(2i− 1)θ

2i− 1

∣∣∣∣∣ = O(1).

Also, 2/s = o(1) because limk→∞ s =∞. The result follows. "#

5 Games without Common Data

What happens if the players are not allowed to share neither common random-
ness nor common quantum state?

If the probability distribution on the inputs is fixed, this scenario is equivalent
to two players with common randomness because common random bits can be
always fixed to the value that achieves the best result for the two players. For
this reason, the question above has never been studied.

In the worst-case setting, the situation changes. Players with no common
randomness are no longer equivalent to players with shared randomness. For
many games, not allowing shared randomness results in the players being unable
to win the game with any probability p > 1/2.

Let ωn(G) denote the value of a game G if no shared randomness is allowed.
We have

Theorem 12. Suppose G is a two-player XOR game (with sets of inputs X,Y
of arbitrary size) where on every input (x, y) exactly one of the two possible
values of a ⊕ b wins. If ωn(G) > 0 then ωn(G) = 1, i. e. then G can be won
deterministically.

If we do not restrict to XOR games, it becomes possible to have a game which
can be won with probability more than 1

2 but not with probability 1.

Theorem 13. There is a two-player game G (with binary sets of inputs and
outputs X = Y = A = B = {0, 1}) with 0 < ωn(G) =

(√
5− 2

)
< 1.

We give the proofs of both theorems in the full version of this paper [3].



132 A. Ambainis et al.

References

1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-
independent security of quantum cryptography against collective attacks. Physical
Review Letters 98, 230501 (2007)

2. Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., Pironio, S.: Guess
your neighbour’s input: a multipartite non-local game with no quantum advantage.
Physical Review Letters 104, 230404 (2010)

3. Ambainis, A., Backurs, A., Balodis, K., Skuskovniks, A., Smotrovs, J., Virza, M.:
Worst case analysis of non-local games

4. Ambainis, A., Kravchenko, D., Nahimovs, N., Rivosh, A.: Nonlocal Quantum XOR
Games for Large Number of Players. In: Kratochv́ıl, J., Li, A., Fiala, J., Kolman,
P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 72–83. Springer, Heidelberg (2010)

5. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponen-
tially with the number of particles. Physical Review A 46, 5375–5378 (1992)

6. Aravind, P.K.: The magic squares and Bell’s theorem (2002) (manuscript)
7. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and

coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, p. 175 (1984)

8. Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of
multiplayer XOR games

9. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-Optimal and Explicit Bell
Inequality Violations. In: Proceedings of CCC 2011, pp. 157–166 (2011)

10. Cirelson, B. (Tsirelson): Quantum generalizations of Bell’s inequality. Letters in
Mathematical Physics 4, 93–100 (1980)

11. Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local
hidden-variable theories. Physical Review Letters 23, 880 (1969)

12. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal
strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004)

13. Gavoille, C., Kosowski, A., Markiewicz, M.: What Can Be Observed Locally? In:
Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 243–257. Springer, Heidelberg
(2009)

14. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled Games
are Hard to Approximate. In: Proceedings of FOCS 2008, pp. 447–456 (2008)

15. Merminm, D.: Extreme Quantum Entanglement in a Superposition of Macroscop-
ically Distinct States. Physical Review Letters 65, 15 (1990)

16. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134 (1994)

17. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully
distrustful quantum cryptography. Physical Review Letters 106, 220501 (2011)

18. Simon, D.R.: On the power of quantum computation. In: Proceedings of FOCS
1994, pp. 116–123. IEEE (1994)

19. Werner, R.F., Wolf, M.M.: Bell inequalities and Entanglement. Quantum Informa-
tion and Computation 1(3), 1–25 (2001)

20. de Wolf, R.: Quantum Communication and Complexity. Theoretical Computer
Science 287(1), 337–353 (2002)

21. Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In:
Proceedings of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 222–227 (1977)



Two-Dimensional Rational Automata: A Bridge

Unifying One- and Two-Dimensional
Language Theory�

Marcella Anselmo1, Dora Giammarresi2, and and Maria Madonia3

1 Dipartimento di Informatica, Università di Salerno I-84084 Fisciano (SA) Italy
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Abstract. We define two-dimensional rational automata for pictures as
an extension of classical finite automata for strings. They are obtained
replacing the finite relation computed by the transition function with a
rational relation computed by a transducer. The model provides a uni-
form setting for the most important notions, techniques and results pre-
sented in the last decades for recognizable two-dimensional languages,
and establishes new connections between one- and two- dimensional
language theory.

1 Introduction

Two-dimensional languages are the extension of string languages to two dimen-
sions: a two-dimensional string, called also picture, is a rectangular array of sym-
bols taken from a finite alphabet. The first automaton model for two-dimensional
languages was introduced in 1967 by M. Blum and C. Hewitt [5]: it was the four-
way automaton and generalized the two-way automaton for strings. It was an
unsatisfactory model because recognized languages lack of basic closure prop-
erties. Since then, different types of models have been introduced to generate
or recognize two-dimensional languages with the intent of developing a formal
theory of two-dimensional recognizability.

In the past 20 years the class that got more consensus as a valid counterpart
of regular string languages is the family REC of tiling recognizable picture lan-
guages introduced in [13] (see also [14]). A two-dimensional language is tiling
recognizable if it can be obtained as a projection of a local picture language
(given by a finite set of allowed sub-pictures called tiles). The local picture lan-
guage together with the alphabetic projection is called tiling system. REC family
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inherits several properties from the class of regular string languages and it has
characterizations also in terms of domino tiles, Wang systems, logic formulas and
of some kind of regular expressions ([9,14,15,18]). Moreover REC is equivalent to
the class of languages recognized by on-line tesselation automata (2OTA) [17].

It is worth remarking that tiling systems are intrinsically non-deterministic
and that, unlike the one-dimensional case, REC is not closed under comple-
mentation. The definition of unambiguous recognizable languages (UREC class)
is quite natural. The definition of a first deterministic subclass, referred to as
DREC, was inspired to the above mentioned on-line tesselation acceptors. More-
over other REC subclasses (called Col-UREC and Row-UREC) were introduced
and studied in [2] as intermediate classes between UREC and DREC. Later
it was proved that Col- and Row-UREC correspond to a deterministic class
called Snake-DREC based on a boustrophedonic scanning strategy for the input
([20]). Recently, two different versions of automata, tiling automata and Wang
automata, [1,19,20] were proposed as a “machine version” of tiling systems, with
the main intent of understanding the notion of determinism in tiling systems.

The initial motivation of this paper is the observation that all the theory
of tiling recognizable picture languages collect several results and characteri-
zations always obtained with ad hoc techniques that come from different ap-
proaches and points of view for class REC. Furthermore all approaches started
from one-dimensional language theory, but then they had no more relation with
it. Especially the definitions of deterministic subclasses seem to be difficult to
be accepted as “natural” generalizations of determinism for strings.

Then, we restart from the string language theory and in particular from the
definition of finite automaton. To go from one-dimensional to two-dimensional
world, we take inspiration from geometry: the roles of points and lines in one
dimension are played, in two dimensions, by lines and planes respectively. By
analogy, we assume that in formal language theory, symbols are “points”, strings
are “segments”, or portion of a “line”, and pictures are “rectangles”, or portions
of a “plane”. In one dimension, finite sets of symbols are used to define finite
automata that accept rational sets of strings. Here we use rational sets of strings
to introduce rational automata that define recognizable sets of pictures. We then
replace all words “symbol” with “string” and “finite” with “rational”. We call
the model, a (two-dimensional) rational automaton, RA for short, to emphasize
the replacement of the finiteness hypothesis with the rationalness hypothesis.

Let Σ be a finite alphabet we use in one dimension, then in two dimensions
we take as alphabet the rational set of strings Σ+ to be considered as vertical
strings, we simply call columns. In this setting, a picture p over Σ can be viewed
as a string (read from left-to right) over the alphabet Σ+ of columns. The set
of states will be a rational set of strings (again columns) over a finite set Q of
symbols and the transition function is such that its graph is a rational relation
over (Q × Σ) and Q. This implies that the transition function corresponds to
a rational transduction that hence can be computed by a transducer. We point
out that other authors used transducers or rational graphs when dealing with
two-dimensional languages, although the context was different (see [18,10,8,6]).
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As a two dimensional version of a fundamental theorem for strings (see [11]),
we prove that: a picture language is recognized by a two-dimensional rational
automaton if and only if it is the projection of a local picture language. Namely,
picture languages accepted by RA correspond to family REC.

From FA we also import definitions of unambiguity and determinism. A two-
dimensional unambiguous RA has the property that each input picture has at
most one accepting computation. A RA is deterministic if the transition function
corresponds to a rational function. We observe that we can also define determin-
ism as a stronger property of the transducer that computes the transition func-
tion, by requiring that it is left-sequential (we call it strong determinism). Then
we show that the classes UREC, Col-UREC and DREC can be characterized
as families of languages recognized by unambiguous, deterministic and strongly
deterministic, respectively, rational automata.

As interesting consequence we show that this new characterization of REC
via rational automata allows us to prove all known results uniformly inside this
new setting, without ad hoc special techniques, by just using the theory of finite
automata for strings or by applying old results on transducers.

2 Preliminaries

We introduce some definitions about two-dimensional languages ([14,7]).
A picture over a finite alphabet Σ is a two-dimensional rectangular array of

elements of Σ. Given a picture p with m rows and n columns, the pair (m,n) is
the size of p. The set of all pictures over Σ is denoted by Σ∗∗. A two-dimensional
language, or picture language, over Σ is a subset of Σ∗∗. Let p, q ∈ Σ∗∗ be
pictures of size (m,n) and (m′, n′), respectively, the column concatenation of p
and q (denoted by p�q) and the row concatenation of p and q (denoted by p'q)
are partial operations, defined only if m = m′ and if n = n′, respectively, as:

p � q = p q p' q =
p
q

.

The definitions can be extended to define languages concatenations. By iterating
the row (column, resp.) concatenation for language L, we obtain the row (column,
resp.) star of L, denoted by L∗� (L∗�, resp.).

To give definitions of recognizability, we consider for a picture p, the bordered
picture p̂ obtained by surrounding p with a special boundary symbol # �∈ Σ. A
tile is a picture of size (2, 2) and [[p]] is the set of all sub-blocks of size (2, 2)
of picture p̂. Given a finite alphabet Γ , a two-dimensional language L ⊆ Γ ∗∗ is
local if there exists a set Θ of tiles over Γ ∪ {#} (the set of allowed blocks) such
that L = {p ∈ Γ ∗∗| [[p]] ⊆ Θ} and we will write L = L(Θ).

A tiling system is a quadruple (Σ,Γ,Θ, π) where Σ and Γ are finite alphabets,
Θ is a set of tiles over Γ ∪{#} and π : Γ → Σ is a projection. A picture p′ ∈ Γ ∗∗

is a pre-image of p ∈ Σ∗∗ if π(p′) = p. A two-dimensional language L ⊆ Σ∗∗ is
recognized by a tiling system (Σ,Γ,Θ, π) if L = π(L(Θ)). The family of all tiling
recognizable picture languages over the alphabet Σ, is denoted by REC.
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Example 1. Consider the language L of square pictures over Σ = {a}, that is
pictures with the same number of rows and columns. L is not a local language,
but it belongs to REC. Indeed it can be obtained as the projection of the local
language of squares over the alphabet Γ = {0, 1, 2} in which all the symbols in
the main diagonal are 1, positions below it carry symbol 2, whereas the remaining
positions carry symbol 0. An example of a picture p ∈ L together with its pre-
image p′ is given below. The reader can infer the set Θ of tiles by taking [[p′]].
The projection π maps any symbol in Γ to a.

p =

a a a a
a a a a
a a a a
a a a a

p′ =

1 0 0 0
2 1 0 0
2 2 1 0
2 2 2 1

.

Wang systems are a model, that is equivalent to tiling systems, introduced in [9]
and based on labeled Wang tiles. A labeled Wang tile is a 5-tuple consisting of
four colors w, e, n, s, chosen from a finite set, placed at the borders of a picture

with a label x taken in a finite alphabet, usually represented as follows:
n

w x e
s

.

A tiling system is unambiguous if any recognized picture has a unique pre-
image. UREC is the class of languages recognized by an unambiguous tiling
system [13]. The notion of determinism is instead related to some “direction” of
computation. DREC is the class of all languages recognized by a deterministic
tiling system along one of the four corner-to-corner directions. Note that, the
determinism referred to different directions, yields different subfamilies of REC.
In this paper we consider family DRECtl, corresponding to the direction from the
top-left corner to the bottom-right corner. A language in DRECtl is recognized
by a tiling system (Σ,Γ,Θ, π) with the property that, for any three symbols

γ1, γ2, γ3 ∈ Γ and a ∈ Σ there is at most one tile
γ1 γ2
γ3 γ4

∈ Θ with π(γ4) = a.

In [2], the column-unambiguity was introduced as an intermediate notion be-
tween determinism and unambiguity. It refers to a scanning strategy along the
left-to-right (or right-to-left) direction and then reading pictures column after
column. Roughly speaking, a tiling system is column-unambiguous if any column
of a recognized picture has a unique pre-image: it is actually a sort of unambi-
guity defined on each single column. Col-UREC denotes the class of languages
recognized by a column-unambiguous tiling system, along some side-to-side di-
rection. In this paper we will be interested in Col-URECl, the class of languages
recognized by l2r-unambiguous tiling systems. In [20] the class Col-URECl is
characterized in terms of snake-determinism. In [2,3] it is proved that DREC �

Col-UREC � UREC � REC.
We conclude this section by recalling some definitions about rational trans-

ductions and rational functions following [4] (other textbooks could use different
terminology, e.g. [16,23]). Let X and Y be two alphabets. A transduction τ
from X∗ into Y ∗ is a function from X∗ to the set 2Y

∗
of subsets of Y ∗. The
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graph of τ is the relation R = {(u, v) ∈ X∗ × Y ∗ | v ∈ τ(u)}. A transduc-
tion τ : X∗ −→ Y ∗ is rational if and only if its graph is a rational relation
over X and Y . The machines realizing rational transductions are called transdu-
cers. A transducer T = (X,Y,R, r0, RF , E) is composed of an input alphabet X ,
an output alphabet Y , a finite set of states R, an initial state r0, a set of fi-
nal states RF , and a finite set of transitions or edges E ⊆ R × X∗ × Y ∗ × R.
If E ⊆ R × X × Y × R, then T is said letter-to-letter. It is well known that
a transduction τ is rational if and only if τ is realized by a transducer. A ratio-
nal function is a rational transduction which is a partial function.

A “deterministic” model of transducers is given by left sequential transdu-
cers. The transitions in a left sequential transducer L are usually given by two
partial functions μ : R × X −→ R and ν : R × X −→ Y ∗. The function
realized by L is the output of L when it starts in the initial state and reads u
from left to right. A partial function is a left sequential transduction if it can
be realized by some left sequential transducer L. Similar definitions are given
for right sequential transducer/transduction that read the input from right to
left. Not all partial functions can be realized by a left sequential transducer.
Nevertheless, the following “decomposition” theorem was proved ([12,4]).

Theorem 1 (Elgot, Mezei, 1965). Let α : X∗ −→ Y ∗ be a partial function.
Then α is rational if and only if there are a left sequential transduction λ :
X∗ −→ Z∗ and a right sequential transduction ρ : Z∗ −→ Y ∗ such that α = λ◦ρ.

3 Two-Dimensional Rational Automata

We now extend the classical model of finite automaton (FA) for string languages,
to recognize sets of pictures. To go from one to two dimensions, we take inspira-
tion from geometry where objects defined in d dimensions are used to build and
define objects in d+ 1 dimensions. While in one dimension we use finite sets of
symbols to introduce finite automata that define rational sets of strings, in this
paper we use rational set of strings to introduce rational automata that define
recognizable set of pictures.

Let Σ be a finite set of symbols we use as alphabet in one dimension, then in
two dimensions we take as alphabet the rational set of stringsAΣ = Σ+. Without
loss of generality, think of strings in AΣ as vertical strings to be read from top
to bottom, to which we refer as columns. A column in AΣ will be indicated as
a. Moreover, as in one dimension we identify symbols with strings of length 1,
here we consider a vertical string of length m as a picture of size (m, 1) and,
with a little abuse of notation, we use the column concatenation operator � to
concatenate strings in AΣ . In this setting, a picture p over Σ can be viewed as
a string over the alphabet of columns AΣ and we write p = a1 � a2 � . . . � am.
This is coherent with our aim: by definition, the use of �-concatenation produces
only rectangular pictures and we can write A +�

Σ = Σ++.
To extend the definition of automaton to two dimensions, we then substitute

all words “symbol” with “string” and all words “finite” with “rational” and
define a two-dimensional rational automaton whose alphabet is AΣ . The set of
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states will be a rational set of strings over a finite set Q of symbols we denote
by SQ. Again strings in SQ will be considered as vertical strings, while s will be
a generic column state in SQ. We consider a distinguished initial symbol q0 ∈ Q
from which we define the set S0 = q+0 of initial states, while a rational subset
FQ ⊆ SQ will be taken as set of accepting states. The transition function will be
defined as usual, i.e. it takes a state and a symbol and gives a certain number of
possible new states. Since in FA the transition function is such that its graph is
a finite relation over (Q×Σ) and Q, here, consistently, we impose the constrain
that the graph of the transition function is a rational relation over (Q×Σ) andQ.
This implies that the transition function corresponds to a rational transduction
τ : (Q×Σ)+ → 2Q

+

computed by a transducer T . Remark that the transducer
T needs to be letter-to-letter to ensure that the transition function produces
a column state “compatible” with the next column of the picture.

Definition 1. A (two-dimensional) rational automaton, (RA for short), over
the alphabet Σ is a quintuple H = (AΣ , SQ, S0, δT , FQ) where:
- AΣ = Σ+ is the alphabet
- SQ ⊆ Q+, for some finite set Q, is a rational language called the set of states
- S0 = {q0}+, for some q0 ∈ Q, is the set of initial states
- δT : SQ × AΣ −→ 2SQ is the rational relation computed by a letter-to-letter
transducer T = (Q×Σ,Q,R, r0, RF , E), and is called the transition function
- FQ ⊆ SQ is a rational language called the set of final states.

More precisely: let s = s1s2 . . . sm be a state in SQ and let a = a1a2 . . . am be
a column in AΣ . Then δT (s, a) = q where q = q1q2 . . . qm is the output of the
transducer T on the string (s1, a1)(s2, a2) . . . (sm, am) over the alphabet Q×Σ.

A computation of a RA H on a picture p ∈ Σ++ of size (m,n) is given
exactly as in FA, just considering the input picture as a string of columns p =
p
1
� p

2
� . . .� p

n
. The computation starts from the initial state of length m, i.e.

from qm0 , reading the columns from left to right. Then p is recognized by H if at
the end of the computation, we end up in a state sf ∈ FQ (the condition can be
checked by a FA recognizing FQ). The language recognized by a two-dimensional
rational automaton H, denoted L(H), is the language of all pictures recognized
by H; whereas L(RA) denotes the class of all languages recognized by a RA.

The state graph of a RA can be defined as in the case of FA: remark that in
this case the graph is infinite, and that all vertices labeled qi0, for some i ≥ 1,
are initial states. The definition of picture recognized by a RA can be given as
well by using the state graph, and the state graph can be viewed as the disjoint
union of the graphs used for the recognition of pictures of fixed height m, for
any m ≥ 1. Such graphs correspond indeed to the automata introduced by
O. Matz in [21] for proving non-recognizability conditions of picture languages.
Notice that rational automata manage the Matz’s automata all together by the
transducer of the transition function. It is also interesting to notice that the
rational automata resemble the rational graphs described in [6] to recognize
string languages. It can be seen that rational automata includes as particular
case such rational graphs. Two-dimensional tilings have been sometimes put in
relation with iteration of rational transducers although in a different context
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[8,10,18]. The model of rational automata we introduce does not correspond
to a mere iteration of a transducer since, at each step of the computation, it
combines a column of states with a new column of input symbols. This comes
from the fact that two-dimensional languages are recognized by labeled Wang
tiles.

Example 2. Let L be the set of square pictures over Σ = {a}, as in Example 1.
To obtain a rational automaton H = (AΣ , SQ, S0, δT , FQ) recognizing L let us
set Q = {q0, 0, 1, 2}, AΣ = a+, SQ = q+0 + 0∗12∗, S0 = q+0 and FQ = 0∗1. The
transition function δT maps the pair (qm0 , am) ∈ SQ ×AΣ to state 12m−1 ∈ SQ,
and the pair (0h12k, ah+k+1) ∈ SQ × AΣ to state 0h+112k−1 ∈ SQ, for any
m,h ≥ 0 and k ≥ 1. The state graph of H is the disjoint union of the state
graphs recognizing pictures with fixed height m, for any m ≥ 1.

It is immediate to verify that there is a one-to-one correspondence between
the above successful computation of H on a picture p of size (4, 4) throughout
states s04, s14, s24, s34, s44 and the local picture p′ given in Example 1. Actually
it is exactly p′ = s14 � s24 � s34 � s44. In general given a tiling system for
a language L, we can define a RA H that accepts L, whose transitions are
defined in a way that the sequence of states of an accepting computation for a
picture p ∈ L corresponds to its pre-image p′ in the tiling system.

On the converse, given a a rational automaton H with transition function δT
computed by transducer T , we can always define a tiling system in a way that
a successful computation of H on a picture p is represented as its pre-image
p′ in the tiling system. The key idea is to take the transitions of the trans-
ducer T as symbols of the local alphabet in the tiling system and write them in
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a “spatial shape”. More precisely, a transition (rh, (qi, a), qj , rk) will correspond

to the local symbol
rh

qi a qj
rk

that already “resemble” a labeled Wang tile.

All these reasonings give the evidence of the fact that picture languages ac-
cepted by two-dimensional rational automata coincide with all tiling recogniz-
able languages (i.e. projection of local picture languages). We state this as the
following theorem. We omit the proof for lack of space.

Theorem 2. A picture language is recognized by a two-dimensional rational
automaton if and only if it is tiling recognizable.

It is interesting to remark that Theorem 2 is the two-dimensional version of a
classical theorem (credited to Y. Medvedev [22], see [11]) stating that a string
language is recognized by a FA iff it is the projection of a local string language.
Then rational automata recognize REC family confirming the robustness of the
definition of this class that can be characterized in several contexts and settings.

4 Studying REC via Rational Automata

In this section we show how to use the model of rational automaton to obtain
results on (recognizable) two-dimensional languages. As a main outcome, we
obtain that most of the results on REC proved in the past 20 years using ad
hoc techniques, exploiting the different characterizations for REC, obtain now
a more natural and uniform placement in the theory of rational automata. More
precisely, we show how several properties (closure properties, non-inclusion re-
sults and decidability issues) on REC can be proved by using known results on
transducers (to be applied to the rational automaton transition function) or by
“translating” proof techniques from finite automata to rational automata.

First of all, let us point out some peculiar features of the model of RA, with re-
spect to other representations of two-dimensional languages. Example 2 presents
a RA that mimics a tiling system to recognize the language of unary squares. Re-
mark that, while being equivalent to a tiling system, RA besides their states can
exploit the “extra memory” of the states of the transducer, as in the following
example. This could simplify the recognition algorithm of a language.

Example 3. Let Lfr=fc be the language of squares over a two letters alphabet
Σ = {a, b} with the first row equal to the first column. A rational automaton
H = (AΣ , SQ, S0, δT , FQ) recognizing Lfr=fc is the following: AΣ = {a, b}+;
Q = {q0, xy, xd |x, y ∈ Σ, d /∈ Σ}; a state in SQ is either a string in q+0 or any
column x(1)x(2) · · ·x(k − 1)x(k)dx(k + 1)lk+1

· · ·x(n)ln , where 1 ≤ k ≤ n, and

x(i), lj ∈ Σ, for 1 ≤ i < k, k < j ≤ n; S0 = q+0 and FQ is the set of states
x(1)x(2) · · ·x(n− 1)x(n)d. The idea is that in each column state the subscript d
denotes the position on the diagonal, while subscripts lj propagate to the right
the corresponding symbol of the first column.

The transducer T that realizes δT is schematized here below. Its states are:
r0, r1, r2, and ry and dy, for any y ∈ Σ. In fact the generic path from r0 to r2
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(or r1) here depicted, represents several paths. The state ry keeps track of the
first symbol y read in the column; the information is passed to next state dy,
whenever the diagonal is reached, and then matched with the symbol propagated
from the first column by the transition from dy to r2 on input xy.

Remark 1. The nondeterminism of the RA model allows to recognize all lan-
guages in REC, even when restricting the model to those RA whose set of final
states is FQ = f+, for some f ∈ Q. As an example, consider the language L of
Example 2. We can define a RA for L by modifying the one in Example 2 by
adding the new element f to the set Q and by using the following transducer
T ′ to compute the transition function δT ′ . The idea is, to insert the state fm in
δT ′(s, a), for any m and pair (s, a) ∈ SQ ×AΣ such that δT (s, a) ∩ FQ �= ∅.

We now show how some closure properties of REC can be proved with RA
in a way that naturally extends techniques from finite automata. Consider for
example the column concatenation of two recognizable languages. In one dimen-
sion the concatenation of two FA can be simply achieved using as first automaton
a FA with a single final state with no outgoing transitions, and identifying this
final state with the initial state of the second automaton. In the RA framework
we can naturally extends this proof. On the other hand, the original proof by
tiling systems, needs a special manipulation of the tiles to glue the columns, while
OTA or logic formulas, seem to be not at all adequate to prove such results.
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Proposition 1. The class of languages recognized by rational automata is closed
under union, intersection, column and row concatenations and stars.

Proof. (Sketch) The proof of the closure under row concatenation starts remark-
ing that, if R1 and R2 are graphs of two transductions then the transduction
with graph R1R2 is still rational [4], and working on details.

To prove the closure under column concatenation, notice that one can suppose
that the first RA has final states of the form f+ (for some fresh symbol f) (see
Remark 1). Then it is sufficient to combine states and transitions of the two RA,
replacing any occurrence of f with the initial state of the second RA.

In a similar way, the closure under union, intersection, column and row closure
can be proved generalizing analogous proofs for FA. "#

The notions of unambiguity and determinism are fundamental for formal lan-
guages and their effectiveness. While the definition of unambiguity is well ac-
cepted, the definition of determinism for 2d languages is still controversial: it
needs the choice of some “scanning strategy” and, in a “non-oriented” model as
tiling systems are, it is not clear which strategy is the “right” one. Let us intro-
duce these definitions in the RA framework. An unambiguous two-dimensional
rational automaton (URA, for short) is a RA with the property to admit at most
one accepting computation on each input picture. Regarding determinism, two
different definitions can be naturally given, depending whether the transition
function corresponds to a rational function or the transducer is left-sequential.

Definition 2. A two-dimensional rational automaton H = (AΣ , SQ, S0, δT , FQ)
is a deterministic rational automaton (DRA) if δT : SQ × AΣ → SQ; H is
a strongly deterministic rational automaton (SDRA) if T is left-sequential.

As usual L(URA), L(DRA), L(SDRA) will denote the corresponding classes of
languages. As an example, the RA given in Example 2 is strongly deterministic,
while the RA depicted in Remark 1 for the same language is neither strongly
deterministic nor deterministic.

Theorem 2 states a correspondence between the classes of languages recog-
nized by RA and REC. By working on the details of the constructions, it can be
seen that such correspondence is inherited by restricted version of rational au-
tomata. We emphasize the relevance of Theorem 3: it somehow warrants (putting
them in a common setting with non-determinism and unambiguity) the defini-
tions of determinism and column unambiguity, that were sometimes regarded as
arbitrary.

Theorem 3. Let L be a picture language.
L ∈ L(URA) if and only if L ∈UREC.
L ∈ L(DRA) if and only if L ∈Col-URECl.
L ∈ L(SDRA) if and only if L ∈DRECtl.

In [2] it is proved that all the inclusions DRECtl �Col-URECl �UREC�REC
are strict. It is interesting to remark that the original proofs can be directly used
and they are even “more natural” in the setting of rational automata, since they
are based on Matz’s automata ([21]). We then state the following corollary.
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Corollary 1. L(SDRA) � L(DRA) � L(URA) � L(RA).

Let us now consider decidability issues. Using known decidability results on
transducers, we directly obtain decidability results for rational automata (that
in turns imply decidability results for tiling systems). Among all, we state the
following result whose proof follows from the fact that is decidable whether
the transduction realized by a transducer is a function and whether it is a left
sequential transduction [4].

Proposition 2. It is decidable whether a rational automaton is deterministic
(strongly deterministic, resp.).

As a last exciting example of application of the rational automaton model, we
consider the result by Elgot and Metzei [12] (see Theorem 1). If we apply this
theorem to the transducer of a deterministic rational automaton we obtain that
its transition function corresponds to a composition of two sequential transduc-
ers; any input column is processed twice: the first transducer reads it from top
to bottom and then the second reads the output column from bottom to top.

Theorem 4. A picture language is recognized by a deterministic rational au-
tomaton if and only if it is recognizable by a rational automaton where the transi-
tion function is computed by a pair of letter-to-letter transducers, a left-sequential
one and a right-sequential one, used alternatingly on the columns.

Proof. Let L be recognized by a DRA H = (AΣ , SQ, S0, δT , FQ). Since H is
deterministic, δT is computed by a a transduction τ that is a rational partial
function. From Elgot and Mezei’s Theorem, we can both write τ = ρ ◦ λ and
τ = λ′ ◦ ρ′, where λ and λ′ are left sequential transductions and ρ and ρ′ are
right sequential transductions. The idea is now to use λ and λ′ to construct
a new left sequential transduction, say λ, and to use ρ and ρ′ to construct a new
right sequential transduction, say ρ, that together will play the same role as τ
in computing δT . More exactly, suppose λ : (Q × Σ)+ → Z+, ρ : Z+ → Q+,
ρ′ : (Q × Σ)+ → Z ′+ and λ′ : Z ′+ → Q+. Define ρ : (Z × Σ)+ → Z ′+ and
λ : (Z ′ × Σ)+ → Z+ such that for (z, σ) ∈ (Z × Σ)+, ρ(z, σ) = ρ′(ρ(z), σ) and
for (z′, σ) ∈ (Z ′ × Σ)+, λ(z, σ) = λ(λ′(z′), σ). Consider now the left-sequential
transducer Tλ realizing λ and the right-sequential transducer Tρ realizing ρ.

Observe that, since τ is realized by a letter-to-letter transducer, then also λ and
ρ can be realized by letter-to-letter transducers. Hence L is recognized by a RA
obtained from H replacing Q with Z ∪Z ′ and where the new transition function
can be computed by the pair (Tλ, Tρ) used alternatingly on the columns.

The converse follows directly by the definitions. �

Remark that Theorems 3 and 4 together show that Col-URECl corresponds to
a deterministic model of tiling system called Snake-DREC. This result can be
found in [20] where it is proved with ad hoc techniques.

All the results in this section show that, despite a rational automaton is in
principle more complicated than a tiling system, it has some major advantages.
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It unifies some concepts that seemed to come from different motivations (e.g.
notions of determinism) and allows to use results of the string language theory.
Further a very interesting step will be to look for other results on transducers
and finite automata to prove new properties of REC.
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Abstract. Let G = (V,E) be a digraph with disjoint sets of sources
S ⊂ V and sinks T ⊂ V endowed with an S–T flow f : E → Z+. It is a
well-known fact that f decomposes into a sum

∑
st fst of s–t flows fst be-

tween all pairs of sources s ∈ S and sinks t ∈ T . In the usual RAM model,

such a decomposition can be found in O(E log V 2

E
) time. The present pa-

per concerns the complexity of this problem in the external memory
model (introduced by Aggarwal and Vitter). The internal memory algo-
rithm involves random memory access and thus becomes inefficient. We

propose two novel methods. The first one requires O(Sort(E) log V 2

E
)

I/Os and the second one takes O(Sort(E) logU) expected I/Os (where
U denotes the maximum value of f).

1 Introduction

Network flows is, no doubt, one of best-known and widely-studied subject of
combinatorial optimization. The notion of a flow proved to be a useful tool for
solving many practical problems.

In this paper we deal with the following flow decomposition problem. Given a
digraph G = (V,E) with distinguished sets of sources S, sinks T , and
a multiterminal S–T flow f , the goal is to decompose f into a sum of (single-
terminal) flows between all possible pairs (s, t) of sources s ∈ S and sinks t ∈ T .

These decompositions play an important role in some multiflow algorithms
(see, e.g., [3]). They can also be used during the second phase of the two-phase
push-relabel algorithm [5] to get rid of excesses and turn a maximum preflow
into a maximum flow.

The simplest way of finding such a decomposition of f is as follows. Decompose
f into elementary flows (i.e. flows along simple S–T paths and simple circuits)
and collect paths having same endpoints (s, t). This method, however, is not
very efficient: a network flow may have no elementary decomposition of size less
than O(V E). Hence any direct approach would take at least O(V E) time, which
is too much.

A more efficient method was proposed in [3]. It employs edge splitting and

takes O(E log V 2

E ) time. Interestingly, the logarithmic factor in this bound does
not come from any sophisticated data structure.

The goal of the paper is to extend the above approach to the external memory
setting. Suppose that graph G is huge, possibly consisting of billions of vertices
and edges. Then even storing G in the usual internal memory is unfeasible.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 146–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Following the external memory model (proposed by Agrawal and Vitter [2])
we assume that the algorithm is given an internal memory (RAM) of size M
while G resides in an external memory (e.g. HDD) of larger size. The external
memory handles read and write requests for contiguous blocks of size B (typically
B ) M). The external memory is also used for storing the output and and
any intermediate data the algorithm finds necessary. In this framework, the
complexity is measured as the number of I/Os (reads and writes) the algorithm
performs in the worst case for inputs of a given size. The latter complexity may
depend on parameters M and B.

For example, consider the standard Sorting problem: given a sequence of N
integers (each fitting into a machine word), the goal is to reorder its elements in
non-decreasing order. The external memory version of Merge-Sort algorithm
solves this problem in O(NB logM

B

N
B ) I/Os. Define Sort(N) := N

B logM
B

N
B ; the

latter can often be found as a part of various complexity estimates. Also set
Scan(N) := �NB �, which is the number of I/Os needed to perform a sequential
scan of N items in external memory.

Another example, List Ranking problem, is somewhat less trivial. Consider
a linked list with N items (given by a collection of pairs (x, y) indicating that y
is the immediate successor of x). The goal is to compute the ranks of its items,
i.e. distances from the beginning of the list. While the task can be easily solved
in O(N) time in internal memory, this straightforward approach involves Θ(N)
random reads. A substantially better solution, which takes Sort(N) I/Os, is
known [2,6].

The above-described external memory model proved to be a useful framework
for estimating performance of real-world algorithms dealing with huge data sets.
Despite the fact that efficient external memory solutions were found for a large
number of classical algorithmic problems, much remains to be explored. In the
present paper we address the flow decomposition problem and devise new effi-
cient algorithms for constructing flow decompositions in external memory.

Our results are as follows:

Theorem 1. An arbitrary integer flow in a graph G = (V,E) can be decom-

posed in O(Sort(E) log V 2

E ) I/Os.

Theorem 2. An arbitrary integer flow with values in range [0, U ] in a graph
G = (V,E) can be decomposed in O(Sort(E) logU) expected I/Os.

The outline of the paper is as follows. In Section 2 we state the decomposition
problem formally, briefly describe the edge splitting technique, and estimate its
internal memory complexity. In Section 3 we explain how edge splitting can be
extended to the external memory setting. Namely, Subsection 3.1 deals with
the case of dense graphs. Subsection 3.2 presents the multipass approach suit-
able for sparse graphs. Subsection 3.3 concerns the case of small flow values.
Subsection 3.4 introduces the partial disassembly and randomized partitioning
techniques that ultimately lead to an efficient weakly-polynomial method. Fi-
nally Subsection 3.5 describes how the backward phase, which is an essential
part of all our algorithms, can be implemented in external memory.
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2 Preliminaries and Internal Memory Algorithms

2.1 Network Flows and Decompositions

We use some standard graph-theoretic and algorithmic notation throughout the
paper. Let G = (V,E) be a digraph with distinguished subsets of sources S ⊂ V
and sinks T ⊂ V (S ∩ T = ∅). We allow parallel edges in G but not loops.
Consider a flow function f : E → Z+ and define

divf (v) :=
∑

e∈δout(v)

f(e)−
∑

e∈δin(v)

f(e),

which is the divergence of f at v. Here δin(v) (resp. δout(v)) denotes the set of
edges that enter (resp. leave) v.

Informally, divf (v) indicates the amount of flow produced at v. Then f is
called an S–T flow if divf (v) is non-negative for v ∈ S, non-positive for v ∈ T ,
and zero for v ∈ V − (S ∪ T ). If S = {s} and T = {t} then call f an s–t flow.

Using the flow decomposition theorem [7], one can show that f admits
a decomposition

f =
∑

(s,t)∈S×T

fst, (1)

where for each (s, t) ∈ S × T , fst denotes some integer s–t flow in G. Such
a decomposition is not unique. Throughout the paper, we explore various efficient
methods for computing some decomposition (1) of a given f .

Cardinalities |S| and |T | are assumed to be fixed constants. In notation involv-
ing complexity bounds, we often indicate sets for their cardinalities, e.g. write
O(E) instead of O(|E|). We also assume that |V | ≤ |E| ≤ |V |2 /2 (which can
be readily achieved by removing isolated vertices, merging parallel edges, and
canceling flows on opposite edges).

2.2 Edge Splitting

The following reduction is the cornerstone of all our algorithms. Let us assume
that f is positive on all edges of G (for otherwise edges with zero flow can be
dropped). Fix an arbitrary inner node v (i.e. v ∈ V − (S ∪T )) and suppose that
v has an incoming edge e+ = (u, v) and an outgoing edge e− = (v, w). Then
splitting of e− and e+ is done as follows. First decrease both f(e+) and f(e−)
by a positive parameter ε (to be chosen later). Next if u �= w then add a new
edge e• = (u,w) endowed with flow f(e•) := ε. (See Fig. 1.)

If u = w then splitting cancels flows on oppositely directed edges. The value
of ε is chosen to be maximum possible preserving non-negativity of f , i.e.

ε := min
(
f(e+), f(e−)

)
.

This transformation decreases at least one of flows f(e+) and f(e−) to zero; the
corresponding edges are removed from G. The transformation also adds at most
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u v wf(u, v)− ε f(v, w)− ε

ε

Fig. 1. Splitting edges (u, v) and (v, w)

one new edge e• to G, so the total number of edges in G does not increase. (In
particular, if G contains another edge from u to w before the splitting then G
will contain a pair of such parallel edges after the splitting.) It is clear that the
updated f ′ still forms an S–T flow in the resulting graph G′.

The fundamental property of a splitting is its reversibility. Suppose that the
updated flow f ′ in G′ is decomposed as (cf. (1))

f ′ =
∑

(s,t)∈S×T

f ′
st,

where f ′
st are some s–t flows. Then a decomposition of f in G can be constructed

as follows. If u = w then we just ignore this splitting. (Hence at the end we obtain
a decomposition of some flow f0 that differs from f by a certain circulation, i.e. an
everywhere conservative function. This circulation can be added to an arbitrary
component of the decomposition.) Otherwise edge e• is present inG′ but not inG.
For each (s, t) ∈ S×T , we add ε = fst(e

•) to both fst(e
+) and fst(e

−). This way,
we get the desired decomposition for f in G. (See [3] for a detailed exposition.)

2.3 Vertex Disassembly

Let us choose a sequence splittings that leads to a graph without inner vertices.
For the latter one, flow decomposition can be found directly. The whole process
of converting the input graph into a trivial one is called the forward phase.

Edge splittings are combined into the following vertex disassembly operation.
Let v be an inner vertex, as before. Consider all incoming edges e+1 , . . . , e

+
p of

v and also all outgoing edges e−1 , . . . , e
−
q of v. We scan incoming edges e+i and

outgoing edges e−j and apply splittings to current pairs (e+i , e
−
j ). Initially i = 1

and j = 1. When the flow on e+i (resp. e−j ) decreases to zero, we increase i (resp.
j) by 1 thus switching to the next edge. At the end all incoming and outgoing
edges get exhausted (since the total flow on incoming edges equals the total flow
on outgoing edges), so v becomes isolated. We remove such v and proceed.

The forward phase finishes when no inner vertices remain. At this point the
desired decomposition can be found trivially. (For an edge e = (s′, t′) ∈ S × T ,
define fst(e) = f(e) if (s, t) = (s′, t′) and fst(e) = 0 otherwise). The final step
involves undoing splittings and converting the decomposition of the final flow
into a decomposition of the original one. This part of the algorithm is called the
backward phase.
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2.4 Internal Memory Min-Degree Disassembly

Consider the usual internal memory model. For a vertex v, the complexity of its
disassembly is O(deg v), where deg v denotes the total degree of v, i.e. the total
number of edges (both incoming and outgoing) that are incident to v.

It remains to choose an order in which to process the vertices to ensure
a good complexity bound. A very simple strategy turns out to be useful: on
each step pick an inner node with minimum total degree and disassemble it.
Let n (resp. m) be the number of inner vertices (resp. edges incident to at least
one inner vertex) in the original graph G. A counting argument implies that
there exists an inner vertex of total degree at most 2m

n . When this vertex gets
disassembled, n decreases by 1 and m does not increase. Hence on the second
step we pick a vertex of total degree 2m

n−1 , and so on. The total complexity of
the forward phase is

2m

n
+

2m

n− 1
+ . . .+

2m

1
= O(m logn) = O(E logV ).

The complexity of the backward phase is proportional to the number of splittings
during the forward phase and thus is also O(E logV ).

Note that if the initial G is dense then one may maintain f using a V × V -
matrix (merging parallel edges as they appear). Also one may be picking inner
vertices in an arbitrary order. Disassembling each vertex takesO(V ) time and the
whole algorithm runs in O(V 2) time. By combining the min-degree disassembly

with this flow-matrix approach the complexity can be improved to O(E log V 2

E )
(see [3]). We will discuss similar improvements in the context of external memory
algorithms in Subsection 3.1 and Subsection 3.2.

3 External Memory Algorithms

Let us now consider the external memory model and see how the above algo-
rithms apply here.

3.1 Dense Graphs

The case when G = (V,E) is dense is the simplest one since the O(V 2)-time
algorithm from [3] can be adopted to external memory quite easily. We apply the
time-forward processing [1], which is a generic technique for simulating internal
memory algorithms with a “static” data pipeline in an external memory.

The outline of this method is as follows. Consider an algorithm whose goal
is to compute a function φ on vertices of some auxiliary acyclic data flow graph
Γ = (VΓ , EΓ ). We assume that vertices of Γ are numbered from 1 to |VΓ | and
identify each vertex with its number. For each v ∈ VΓ , value φ(v) may depend
on v and also on values φ(u) of immediate predecessors u of v (i.e. (u, v) ∈ EΓ ).
Informally speaking, when φ(v) gets computed, it is propagated along the edges
of Γ to all immediate successors of v. Graph Γ need not be known in advance.
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Instead it is constructed incrementally: when φ(v) is computed the algorithm
also lists all immediate successors of v (thus deciding where φ(v) is propagated
to). It is important, however, for the topological ordering of Γ to be known in
advance. Namely we require u < v to hold for each edge (u, v) of Γ .

The time-forward processing incurs an overhead of O( 1
B logM

B

N
B ) amortized

I/Os per each propagated value (where N is the maximum number of simul-
taneously propagated values). Its implementation relies on an external memory
heap H . When the algorithm decides to propagate φ(v) from vertex v to vertex w
(with a larger index), it inserts (w, φ(v)) into H (using w as key). Also before
processing any vertex v the algorithm extracts all pairs with key v from H .
This way it “receives” values that were earlier “sent” to v from its immediate
predecessors.

We argue that the flow-matrix algorithm from Subsection 2.4 can be run in
external memory with the help of time-forward processing. Let us number the
vertices of G such that v1, . . . , vn are all inner vertices. Vertices of the data-
flow graph Γ correspond to v1, . . . , vn. To disassemble vk, the algorithm applies
splittings to edges (vi, vk) and (vk, vj) for i > k and j > k (at this point all
vertices with numbers less than k are already disassembled). We need to know
the current flows f(vi, vk) and f(vk, vj). Original values of f can be extracted by
a row-wise scan of the original flow matrix and its transposed copy. (Constructing
these matrices and scanning them takes O(Sort(V 2)) I/Os in total.) Changes to
the values of f are tracked by means of time-forward processing. Splitting edges
(vi, vk) and (vk, vj) increases f(vi, vj) by ε. This increase is propagated either
to vi or to vj , whichever will need this value first (i.e. to vi if i < j and to vj
otherwise).

The algorithm performs O(V 2) splittings and thus propagates O(V 2) values.

The total overhead caused by the time-forward processing is O(V
2

B logM
B

V 2

B ) =

O(Sort(V 2)) I/Os. Another O(Sort(V 2)) I/Os are needed to perform the back-
ward phase and to reverse splittings, see Subsection 3.5. The total complexity is
O(Sort(V 2)) I/Os (which is consistent with Theorem 1 for E = Θ(V 2)).

3.2 Sparse Graphs

Now let G = (V,E) be sparse. Ideally we would like to adapt the min-degree
disassembly method from Subsection 2.4. The major obstacle here is as fol-
lows: while we can easily compute the total degrees of vertices in the initial
graph, maintaining these degrees and picking a min-degree vertex on each step
is nontrivial. Even worse, the algorithm needs to access the incidence lists of
min-degree vertices on each step. Since the order in which vertices are chosen
is unpredictable, it is difficult to arrange edge information appropriately. (This
issue is quite common to all graph-traversal algorithms that scan vertices in
a dynamic order; see [4] for examples.)

We propose the following multi-pass technique to overcome this issue. The
algorithm runs a sequence of passes. At the beginning of each pass compute
the initial degrees deg0(v) and sort inner vertices v by these degrees thus
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constructing a list LV = (v1, . . . , vn) of all inner vertices (where deg0(vi) ≤
deg0(vi+1) for i = 1, . . . , n− 1).

Next, prepare the edge set for processing. For each edge e = (u, v) in G
we generate tuples (u, e) and (v, e) and sort these tuples by their first compo-
nent (comparing vertices by indices). The algorithm now scans LV (in order of
increasing degrees) and disassembles certain vertices. For each vertex v to be
disassembled, it fetches all incoming and outgoing edges for v. (The total cost
of preparation and fetching is O(Sort(E)) I/Os.)

Recall that LV reflects the ordering w.r.t. the initial degrees deg0(v). The
algorithm also maintains the current degrees deg(v) of vertices v (see details
below) and only disassembles v if deg(v) ≤ 2 deg0(v). This degree check guar-
antees that each pass involves O(E) splittings and (as we will show later) takes
O(Sort(E)) I/Os.

Lemma 1. Each pass disassembles at least half of all inner nodes.

Proof. Call an inner vertex vi good (resp. bad) if vi was (resp. was not) dis-
assembled during the pass. When vi gets disassembled its current total degree
obeys deg(vi) ≤ 2 deg0(vi). Splitting of vi may increase degrees of other ver-
tices in G; their total increase is at most deg(vi). Let dij denote the increase of
deg(vj) caused by disassembling vi (i.e. the additional degree propagated from
vi to vj). In particular, dij can only be positive if i < j and vi is good. Also∑

j dij ≤ 2 deg0(vi).

Fix an index t = 1, . . . , n and denote dt :=
∑

(dij : i < t, j ≥ t) (i.e. the total
degree propagated through the “cut” between {v1, . . . , vt−1} and {vt, . . . , vn}).
Let nt

good (resp. n
t
bad) be the number of good (resp. bad) vertices among vt, . . . , vn.

We claim the following:

nt
bad − nt

good ≤
dt

deg0(vt)
. (2)

To establish (2), we use induction on t (in the reverse order). For t = n, the
LHS of (2) is either 0 or 1. Moreover if LHS is 1 then vt is bad, so when the
algorithm comes to processing vt its current degree is larger than 2 deg0(vt).
Thus dt > deg0(vt), which implies (2).

Now consider an arbitrary t ∈ {1, . . . , n− 1}. Two cases are possible. Let
vt be good. Then nt

bad = nt+1
bad , n

t
good = nt+1

good + 1. When the algorithm disas-
sembles vt its current degree is deg0(vt) +

∑
(dit : i < t). Hence vt propagates∑

(dtj : j > t) ≤ deg0(vt) +
∑

(dit : i < t) of degree units to the right. There-
fore dt+1 = dt +

∑
(dtj : j > t) −

∑
(dit : i < t) ≤ dt + deg0(vt). Applying the

inductive hypothesis for t+ 1 we get

nt
bad − nt

good = nt+1
bad − nt+1

good − 1 ≤ dt + deg0(vt)

deg0(vt)
− 1 =

dt

deg0(vt)
.

Now suppose vt is bad. Then nt
bad = nt+1

bad + 1, nt
good = nt+1

good, and dt+1 ≤
dt − deg0(vt) (by a similar reasoning as above). Again applying the inductive
hypothesis for t+ 1 we obtain
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nt
bad − nt

good = nt+1
bad − nt+1

good + 1 ≤ dt − deg0(vt)

deg0(vt)
+ 1 =

dt

deg0(vt)
.

Hence the induction follows.
For t = 1 we have dt = 0 and thus n1

bad ≤ n1
good. Therefore at least half of the

vertices are good. "#

Let n (resp. m) be the number of nodes (resp. edges) in the original graph.
We run passes until less than

√
m inner nodes remain. A total of O(log n√

m
) =

O(log V 2

E ) passes are needed, each taking O(Sort(E)) I/Os. The remaining dense
instance is disassembled by the algorithm from Subsection 3.1; this takes another

O(Sort(E)) I/Os. The total complexity is O(Sort(E) log V 2

E ), as required by
Theorem 1.

It remains to explain how the current degrees and the current edge set are
tracked. When a vertex v gets disassembled all its incident edges (u, v) and (v, w)
vanish. Hence if we scan u or w after v we have to take care not to use these
edges again. Similarly u and w may have additional incident edges produced by
splittings.

The needed bookkeeping is carried out with the help of the time-forward
processing. We maintain a heap Hd to track degree changes. When splitting
edges (u, v) and (v, w), we check if degrees of u and w get changed. The degree
of u (resp. w) increases by one if (u, v) (resp. (v, w)) does not vanish during this
particular splitting. For each vertex x that gets degree increase and appears after
v in LV , we insert (x,+1) (using x as a key) into Hd. Also before processing
a vertex v we extract all propagated changes of deg(v) from Hd. This way the
algorithm figures out the up-to-date degree of v.

Maintaining the current edge set is done similarly. We keep a heap H+
E for

storing newly added edges. When a new edge e = (u,w) is formed we insert
(u, e) to H+

E if u appears after v in LV (and is thus processed after v) and also
(w, e) if w appears after v in LV . When the algorithm starts processing v, it first
extracts all tuples with key v from H+

E to see what new edges incident to v have
been added. A similar heap H−

E is used for bookkeeping of edges destroyed by
splittings.

Handling a vertex v of current degree deg(v) results into at most deg(v)
splittings. Since deg(v) ≤ 2 deg0(v) (for vertices v that get disassembled) each
pass leads to O(E) splittings. A splitting causes O(1) heap insertions and the
overhead incurred by the time-forward processing is O( 1

B logM
B

E
B ) amortized

I/Os per splitting. Hence each pass takes O(Sort(E)) I/Os. Combining this
with Lemma 1, we obtain Theorem 1.

3.3 Pseudo-polynomial Algorithm

If all values of f are small then the above techniques are suboptimal. To see this,
suppose that f(e) = 1 for all e ∈ E. Then one can decompose f in O(Sort(E))
I/Os as follows. Compute a decomposition D of f into elementary flows along
paths and circuits (each carrying a unit of flow). Since flow values are 1 the size
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of D is O(E). For each pair (s, t) ∈ S × T , combine all s–t paths of D into a
flow fst. Finally, attach circuits from the above decomposition to an arbitrary
component fst.

To construct D consider an inner vertex v and group incoming and outgoing
edges into pairs {(u, v), (v, w)} (in an arbitrary way). (The number of incoming
edges equals the number of outgoing edges, so such a matching exists.) We say
that (v, w) is the successor of (u, v). Now E partitions into a collection of linked
lists. Run List Ranking algorithm from [4] and decompose E into a collection
of edge-disjoint paths (connecting terminals) and circuits. The total complexity
is O(Sort(E)) I/Os.

This method extends to the case of small flows as follows. Define σ(f) :=∑
e f(e). Splitting each edge e with flow f(e) into f(e) copies each carrying unit

flow, we can solve the decomposition problem in O(Sort(σ)) I/Os.

3.4 Weakly-Polynomial Algorithm

We now improve the results of Subsection 3.3 and give a weakly-polynomial
algorithm. The idea is to partition the edge set into a collection of edge-disjoint
stars and then run splittings for these stars independently.

We may assume that G does not contain edges connecting pairs of terminals.
For each edge e = (u,w), consider a variable ω(e) ∈ {u,w}. We say that e belongs
to ω(e). Consider an arbitrary vertex v and let S+

v (resp. S−
v ) be the set of edges

that enter (resp. leave) v and belong to v. Also define Sv := S+
v ∪ S−

v . Then Sv

is a star centered at v and the whole edge set is partitioned into stars. Let us
run splittings for each inner vertex v using edges in Sv only. This step is similar
to the usual disassembly for v but only works with a subset of edges incident to
v. We call it a partial disassembly.

When the partial disassembly of v is finished, vertex v may still have incident
edges left. (E.g. the total flow on incoming edges of Sv may differ from that on
outgoing edges.) However observe that σ(f) decreases by

Δ(ω) :=
∑

(Δ(ω, v) : v is inner) ,

where for an inner vertex v we define

Δ(ω, v) := min (Δ+(ω, v), Δ−(ω, v)) ,
Δ+(ω, v) :=

∑
(f(e) : e ∈ S+

v ) ,
Δ−(ω, v) :=

∑
(f(e) : e ∈ S−

v ) .

The goal is to choose ω that maximizes Δ(ω). A simple randomized strategy
proves to be efficient:

Lemma 2. For each e = (u,w), let ω(e) ∈ {u,w} be chosen randomly, uni-
formly, and independently. Then E[Δ(ω)] ≥ 1

48σ(f).

Proof. Consider an arbitrary inner vertex v and let a+1 , . . . , a
+
p (resp. a−1 , . . . , a

−
q )

be flows on edges entering (resp. leaving) v. Define A :=
∑

i a
+
i (which is also
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equal to
∑

i a
−
i due to flow conservation). Let ξ+1 , . . . , ξ+p and ξ−1 , . . . , ξ−q be in-

dependent Bernoulli variables taking values 0 and 1 with probability 1
2 . Then

Δ+(ω, v) =
∑

i ξ
+
i a+i and Δ−(ω, v) =

∑
i ξ

−
i a−i . Note that E [Δ+(ω, v)] = 1

2A
and hence E [A−Δ+(ω, v)] = 1

2A. Now from Markov’s inequality it follows
that P

[
A−Δ+(ω, v) ≥ 2

3A
]
≤ 3

4 and thus P
[
Δ+(ω, v) ≥ 1

3A
]
≥ 1

4 . Similarly

P
[
Δ−(ω, v) ≥ 1

3A
]
≥ 1

4 and hence (since
{
ξ+i
}
and

{
ξ−i
}
are independent) we

have P
[
Δ(ω, v) ≥ 1

3A
]
≥ 1

16 , which implies E [Δ(ω, v)] ≥ 1
48A. Summing over

all inner vertices v we obtain the desired bound. "#

Hence a randomly chosen ω decreases σ(f) by a constant fraction. Rearranging
edges e according to the endpoint ω(e) they belong to and running partial disas-
sembly for all stars Sv takes O(Sort(E)) I/Os. Suppose that initially f(e) ≤ U
holds for all e ∈ E, thus σ(f) ≤ U |E|. Then after O(logU) expected iterations
σ(f) becomes O(E). The final step deals with the remaining flow by running
the algorithm from Subsection 3.3. Summing the complexity estimates one gets
Theorem 2.

3.5 Backward Phase

Let us explain how we deal with the backward phase in external memory. This
phase can be implemented to take O( s

B logM
B

E
B ) I/Os, where s denotes the

number of splittings to be reversed. The latter bound coincides with that for the
forward phase.

Roughly speaking, the data flow graph is known in advance so we can apply
the time-forward processing. The details are as follows. During the forward phase
we assign consequent integer numbers to edges of the original graph and also
new edges (added during splittings). In particular, the edges of the original G
are numbered from 1 to |E|, the first split edge is numbered |E|+ 1 and so on.
Let the ith edge be denoted by ei. Consider a splitting that was applied to edges
ei, ej and generated a new edge ek. We record this splitting by a triple (i, j, k).
Let LS be the list of these triples.

We need list LS to be sorted by k. This can be done in O(Sort(s)) I/Os but
there is a better way. During the forward phase we maintain a heap and for each
recorded triple (i, j, k) insert key k into the heap (augmented with data (i, j)).
Also when splitting is applied to edge el, we extract and list all items with key
less than or equal to l. (Since edges are numbered sequentially we cannot have
any new keys less that or equal to l added after this point.) It is clear that at
any point the total number of keys in the heap does not exceed the number of
edges in the current graph, which is bounded by |E|.

This way the algorithm sorts all triples (i, j, k) by k, as required. Constructing
a flow decomposition of f for the final graph is trivial. Thus for each edge e of this
final graph, we have a tuple D(e) = (fst(e) : (s, t) ∈ S × T ). Place these tuples
D(ek) into a heap HD using k as keys. Scan LS and join it with the items in HD

on k in decreasing order. Let k be the current key. Let (i, j, k) be the current
element in LD. Pop all tuples D1, . . . , Dl with key k from HD. Add these tuples
D1, . . . , Dl componentwise; their sum D(ek) describes the decomposition for ek.
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To undo the splitting that has produced ek, insert two copies of D(ek) into HD:
one with key i and another with key j.

Note that for edges ek of the initial G there are no triples (i, j, k) in LD.
Hence when LS is fully scanned, the algorithm stops adding items to HD but
still continues extracting items from HD and constructing tuples D(ek). These
tuples give the desired decomposition of f in the initial graph.

Each heap operation takes O( 1
B logM

B

E
B ) I/Os (amortized). Hence the com-

plexity of the whole backward pass is O( s
B logM

B

E
B ), as claimed.
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Abstract. The traveling salesman problem with precedence constraints
is one of the most important problems in operations research. Here, we
consider the well-known variant where a linear order on k special vertices
is given that has to be preserved in any feasible Hamiltonian cycle. This
problem is called Ordered TSP and we consider it on input instances
where the edge-cost function satisfies a β-relaxed triangle inequality, i. e.,
where the length of a direct edge cannot exceed the cost of any detour
via a third vertex by more than a factor of β > 1.

We design two new polynomial-time approximation algorithms for this
problems. The first algorithm essentially improves over the best previ-
ously known algorithm for almost all values of k and β < 1.12651. The
second algorithm gives a further improvement for 2n ≥ 11k + 7 and
β < 2/

√
3, where n is the number of vertices in the graph.

1 Introduction

One of the most prominent problems in operations research is the famous Trav-
eling Salesman Problem (TSP). This problem is studied under many gener-
alizations and modifications [12]. It is well known that TSP is very hard to
approximate, even very restricted special cases remain APX -hard. If no restric-
tions are given on the edge-cost function, the problem is not approximable by
any polynomial (dependent on the input size). On the other hand, if the edge
costs satisfy the standard triangle inequality, the problem becomes approximable
within a factor 1.5 due to Christofides’ algorithm [9]. If the metrics is even more
restricted and the vertices are placed into a fixed-dimension Euclidean space,
the problem turns out to have a PTAS [2]. For a brief overview on the different
notions of hardness and approximability of problems, refer, e. g., to [13].

In many applications, additional restrictions are given for the set of feasible
solutions, one of the most common type of such restrictions are precedence con-
straints, i. e., demanding that certain vertices have to be visited before certain
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others. In general, such precedence constraints can be expressed by an arbitrary
partial ordering on the vertices. However, in this paper, we focus on instances
where a linear order on a subset of k vertices is given as a part of the input
and every feasible solution has to contain these special vertices in the prescribed
order. We call this variant of the problem Ordered TSP or k-OTSP for short.

As we have discussed above, the properties of the edge-cost function can
influence the hardness of a problem. Here, we consider the β-relaxed triangle
inequality that can be formulated as cost(uv) ≤ β(cost(uw) + cost(wv)), where
u, v, w are arbitrary vertices of the graph and β ≥ 1 is a constant. For β = 1
this yields the well-known standard triangle inequality. If β > 1, the inequality
is referred to as β-relaxed triangle inequality. The instances where the standard
or relaxed triangle inequality holds are called metric or near-metric instances,
respectively. By the relaxed triangle inequality, we model how close the edge-
cost function is to being metric. The cases where β is close to 1 (and hence the
edge-cost function is almost a triangle inequality) are most interesting for the
following two reasons. First of all, many real world instances tend to have β
equal or close to 1 which supports the study of these cases. Secondly, from the
theoretical viewpoint, the study of such instances allows us to better understand
how the triangle inequality influences the hardness of problems and the stability
of approximation algorithms [11,13].

In the metric case, the best known approximation algorithm for k-OTSP

with approximation ratio 2.5 − 2/k is due to [7,8]. In this paper, we focus on
the version of k-OTSP where a β-relaxed triangle inequality holds which is de-
noted as k-ΔβOTSP. In [6], the first polynomial-time approximation algorithm
solving k-ΔβOTSP with ratio ((k+1) ·min{4β2+log2(k−1), 1.5β3+log2(k−1), (β+
1)β2+log2(k−1)}) is presented. A slightly different approach was used later in [7]
to improve the approximability of k-ΔβOTSP to ratio kβlog2(3k−3) and further
to kβlog2(�3k/2�+1) in the journal version [8].

In this paper, we introduce several new observations that allow us to im-
prove the original approximation algorithm for k-ΔβOTSP from [6]. Our im-
proved polynomial-time approximation algorithm yields a ratio of 3/2 · �k/2� ·
β2+log2(2	k/2
+k−3) which is better than the currently best known approxima-
tion algorithm for all instances with β ≤ (3/4)1/ log2(3/16) < 1.12651, except for
those with very small k. The pairs (β, k) for which we improved the approxima-
tion ratio are depicted in Figure 3. By a more involved analysis, for instances
where the number of vertices is at least 5.5k+3.5, we achieve a further improve-
ment even for β < 2/

√
3 ≈ 1.1547. We believe, that some of our observations

can be generalized to other problems where the β-relaxed triangle inequality
holds.

The paper is organized as follows. In Section 2, we give the formal defi-
nition of the problem and fix our notation; in Section 3 we present our ap-
proximation algorithm for k-ΔβOTSP. Section 4 discusses the more involved
analysis of our algorithm and in Section 5 we conclude the paper with open prob-
lems. Due to space restrictions, some of the proofs are omitted in this extended
abstract.
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2 Preliminaries

In this paper, we use standard notions of graph theory [10,14]. For an undirected
graph G = (V,E), the edge representation {u, v} is simplified into an unordered
pair uv (u, v ∈ V ). The set of vertices and the set of edges of a graph G are
denoted as V (G) and E(G), respectively. A list of vertices v0, . . . , vn, where
each vertex is used at most once and such that vivi+1 ∈ E (0 ≤ i < n), is
called a path with the endpoints v0 and vn. The length of such path is n. Once
the endpoints of a path are identical, i. e., v0 = vn, we speak about a cycle of
length n. A Hamiltonian cycle of a graph G is a cycle of length |V (G)|. A graph
consisting of all possible edges is referred to be complete. In a graph G, a subpath
of a path P = v0, . . . , vn is a path vi0 , . . . , vik , where i0 < i1 < · · · < ik and
vijvij+1 ∈ E(G) for all 0 ≤ j < k. We refer to the edges vijvij+1 of a subpath
to be a bypass or a jump and the vertices between vij and vij+1 (exclusively) in
the path P to be bypassed by the edge vijvij+1 .

The cost of a subgraph of a graph is the sum of the costs of its edges. For
simplicity, we write cost(H) when we mean the cost of a subgraph H .

The problem of finding a minimum-cost Hamiltonian cycle in a near-metric
complete undirected graph is called Near-Metric Traveling Salesman Problem
and is referred to as Δβ-TSP. If we fix, in addition, an ordered sequence of k
special vertices that have to be present in the minimum-cost Hamiltonian cycle
in the given order, we speak about the Ordered Traveling Salesman Problem.
If the underlying graph is near-metric, we refer to the problem as the Ordered
Near-metric Traveling Salesman Problem and we denote it as k-ΔβOTSP.

Note that k-ΔβOTSP with k ≤ 3 turns into the standard Near-metric Trav-
eling Salesman Problem. Hence, in this paper, we assume that k ≥ 4.

For the Near-metric Traveling Salesman Problem, we know three different
approximation algorithms, each is best for certain values of β.

Theorem 1 (Andreae [1], Bender&Chekuri [4], Böckenhauer et al. [5]).
There is a polynomial-time approximation algorithm solving Δβ-TSP with ap-
proximation ratio

M := min

{
3

2
β2, β2 + β, 4β

}
.

Furthermore, M =

⎧⎨⎩
3
2β

2 if β ≤ 2,
β2 + β if 2 ≤ β ≤ 3,
4β if β ≥ 3.

To be able to estimate the cost of bypasses of a path in near-metric complete
graphs, we recall a very basic lemma.

Lemma 1 (Bandelt et al., [3]). Let G be a complete graph with edge-cost
function cost that satisfies the β-relaxed triangle inequality. Let W = v0, . . . , v
be a path in G. For 0 = a0 < a1 < · · · < aq = �, where 1 ≤ q ≤ � holds, let
m := max0≤i<q{ai+1 − ai}. Then

q−1∑
i=0

cost(vai , vai+1) ≤ βlog2 m · cost(W ).
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Intuitively, this lemma says that the length of a jump over a path of length �
can be bounded from above by βlog2  times the cost of the bypassed path.

The algorithm that we present in the following section builds on the first
known approximation algorithm for k-ΔβOTSP designed by Böckenhauer et al.
in [6] as Algorithm 2. Its general idea is as follows. First, connect all vertices into
a Hamiltonian cycle. Secondly, color the non-special vertices cyclically by k + 1
colors. Then connect pairs of the consecutive special vertices by traversing the
Hamiltonian cycle and by including the vertices of just one fixed color (for each
pair of vertices a different one) in between the two special vertices to a subpath.
Use another subpath to connect the special vertex sk with a vertex x adjacent
to s1 via vertices of color k. Start the last subpath in the vertex x and traverse
the entire cycle to the vertex s1 and use the remaining vertices not yet included
to the subpaths. Finally, in the end, connect all the subpaths sequentially into
a feasible solution. In this paper we refer to this algorithm as HC-Algorithm.

A couple of years after the HC-Algorithm was introduced, the currently
best known approximation algorithm was presented in [7] and a slightly im-
proved version in [8]. The algorithm is based on a different underlying structure.
Instead of a Hamiltonian cycle, a cheaper minimum spanning tree is used as an
underlying structure. The vertices of the tree are colored again by k colors and
the special vertices are then connected by the unique paths in the tree via ver-
tices of fixed colors. The vertices not lying on these paths are in the end attached
to the cycle using som special rules and a feasible solution is obtained. The ap-
proximation ratio achieved by this algorithm is summarized by the following
theorem.

Theorem 2 (Böckenhauer et al., [8]). There exists a k · βlog2(�3k/2�+1)-ap-
proximation algorithm that solves k-ΔβOTSP in polynomial time.

3 Building on an Underlying Hamiltonian Cycle

As a stepping stone to improve the approximability of k-ΔβOTSP (k ≥ 4), we
use the HC-Algorithm. We modify this algorithm by incorporating three new
observations which yields Algorithm 1.

The general idea of both HC-Algorithm and Algorithm 1 is the same. We
first build a Hamiltonian cycle C that does not respect the given order of the
special vertices. The cycle is then used to construct paths between consecutive
special vertices that are then merged together into a cycle where the special
vertices are present in the right order. However, during the process of the path
construction, some vertices might be omitted and hence are not present anymore
in the new cycle. These vertices are in the end added into the cycle and the
required Hamiltonian cycle is obtained.

The three observations that are improving HC-Algorithm are as follows.

– We can always connect three special vertices present on a cycle in the pre-
scribed order by a single path – the path starts in the first vertex and tra-
verses, either clockwise or counterclockwise, the cycle through the second
prescribed vertex to the last vertex.
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Algorithm 1. (Approximation algorithm for k-ΔβOTSP)

Input: A complete graph G = (V,E) with edge cost function cost : E → Q+ that
satisfies the β-relaxed triangle inequality (β > 1), and a sequence of special vertices
(s1, . . . , sk) from V (k ≥ 4).

1: Using some constant-approximation algorithm, construct an approximate Δβ-TSP

solution C on (G, cost), disregarding the order on (s1, . . . , sk).
2: Let P be one of the two paths that may be obtained by removing one of the

edges incident with s1 in C, and let W = (w1, . . . , wn−k) be the sequence of the
non-special vertices in P , beginning with the non-special vertex closest to s1 in
P . Let f be a �k/2-cyclic coloring of non-special vertices of C defined as follows:
f : V → {−1, 0, . . . , �k/2−1} where f(si) := −1, for all 1 ≤ i ≤ k, and f(wi+1) :=
i mod �k/2, for all 0 ≤ i < n− k.

3: For 1 ≤ i ≤ �k/2 − 1, let Li−1 be the subpath in C (either clockwise or counter-
clockwise) from s2i−1 to s2i and then to s2i+1, restricted to s2i−1, s2i, and s2i+1

plus all vertices w with f(w) = i− 1 in between s2i−1 and s2i+1.
4: If k is odd, let L�k/2�−1 be the subpath in C from sk to s1 that is restricted to sk,

s1 and the non-special vertices w that have color f(w) = �k/2 − 1.
If k is even, let L�k/2�−1 be the subpath in C from sk−1 through sk to s1, restricted
to sk−1, sk, s1 and the non-special vertices w with f(w) = �k/2 − 1.

5: Create new subpaths L′
0, . . . , L

′
�k/2�−1 from L0, . . . , L�k/2�−1 by including the non-

special vertices bypassed by all Li as shown in Figure 1 and discussed later.
6: Let Y be the path of C containing all the vertices that are not included in any of

the L′
i. If such a path does not exist, skip this step. Otherwise, let x and y be the

two endpoints of Y and let s2γ+3 be the special vertex that is neighboring with x
in C (see Figure 2 for details).
Remove the endpoint s2γ+3 from the subpath L′

γ and extend it by including all the
vertices w of Y in the direction from x to y colored by f(w) = γ and terminate it
by the vertex y (if its color differs from γ).
Extend the subpath L′

γ+1 from s2γ+3 by including all the vertices of Y from x to
y that were not included into L′

γ and terminate the modified subpath in vertex y.
7: Merge the subpaths L′

0, . . . , L
′
�k/2�−1 into a cycle H .

Output: The Hamiltonian cycle H .

– The vertices that are bypassed by a subpath, but not included into any sub-
path, can be just included to the bypassing subpath – the cost of
the solution is not increased this way.

– Let H be a Hamiltonian cycle on a complete weighted graph and let L0, . . . ,
Lp−1 be some paths on H that can be sequentially merged in their endpoints
into a walk W , i. e., for all 0 ≤ i < p, paths Li and L(i+1) mod p share one
endpoint. Then the vertices of H that are not covered by W form a single
path Y of H . Moreover, the adjacent vertex of an endpoint of Y in H is
a vertex in which two paths Li and Li+1 are merged. The path Y split into
two subpaths can be used to extend the paths Li and Li+1 such that all
vertices of H are covered.

Note that, when the special vertices are connected by paths in the HC-

Algorithm, the cycle is traversed always in one direction so that the special
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vertex s1 is never bypassed. In our algorithm, instead, we connect an ordered
triple of special vertices together in one traversal of the cycle. (If k is odd, the
last path is connecting just two special vertices – sk and s1.) In such a traversal,
we cannot always avoid the bypasses of the special vertex s1 in the cycle.

The advantage of this approach is that connecting special vertices in triples is
roughly halving the estimated cost of the solution: In our algorithm we always
bound the cost of two paths connecting a pair of special vertices (except possible
the last one) by the cost of the underlying structure (the cycle C). This approach
of estimating the cost of more structures at once is unique and was not applied
in any of the previous approximation algorithms for k-ΔβOTSP. In all the
previous approximation algorithms the cost of each path connecting a pair of
special vertices was bounded by the cost of the entire underlying structure.
Furthermore, the side effect of our approach is that our algorithm needs only
�k/2� vertex-colors instead of k + 1.

The drawback of this approach is that the bypasses might be slightly longer.
More precisely, once we are passing the vertex s1 in our traversal, we might have
a cut in the coloring: the segment of the cycle between s1 and the next vertex
of the same color in the other direction than the one used for the coloring might
miss vertices of some colors. This happens if the number of non-special vertices
in the cycle is not divisible by the number of colors and thus the cycle does not
contain the same number of vertices of each color. Here, the algorithm might be
forced to bypass at most two vertices of the same color.

Lemma 2. In steps 3 and 4 of Algorithm 1, at most 2�k/2�+k−3 edges of C are
bypassed between two consecutive vertices of subpath Li, for all 0 ≤ i ≤ �k/2�−1.
Furthermore, a bypass of at most 2�k/2�+k−3 edges can occur only if the vertex
s1 is bypassed. All other bypasses jump over at most �k/2�+ k − 2 edges.

The second observation is used in step 5 of Algorithm 1 in the same way as
it was used in step 4 of Algorithm 3 in [7] – including bypassed vertices into
any subpath that is bypassing them cannot increase the cost of the subpath.
The bottom line why this is so, is that the inclusion of a bypassed vertex pre-
serves the vertex order in the subpath and does not increase the number of
vertices which are bypassed. The process of the inclusion of bypassed vertices
into subpaths Li in the construction of the subpaths L′

i is depicted in Figure 1
and is described in detail in [7].

Lemma 3. The cost of the paths L′
i constructed in step 5 from paths Li cannot

increase, i. e., for all i, 0 ≤ i ≤ �k/2� − 1, cost(L′
i) ≤ cost(Li).

At this point, if we sequentially merge the subpaths L′
0, . . . , L

′
	k/2
−1 by their

endpoints, we obtain a cycle Q that contains each vertex at most once and that
respects the given order on the special vertices. However, some vertices of C
might not be present in Q as no subpath is bypassing them. This case is covered
by the third observation – see Figure 2 for details. The vertices not included in Q
must form a single path Y in C and are included into two consecutive subpaths
as follows. Since Y , with the endpoints x and y, is a path of C, there must exist
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Fig. 1. Modifying path Li to path L′
i: All vertices which are bypassed by the edge xy

of Li and not yet included into other subpaths are connected to subpath Li

subpaths L′
γ and L′

γ+1 with an endpoint s2γ+3 that is adjacent with x. We split
Y into two subpaths and extend each of the subpaths L′

γ and L′
γ+1 by one of

these split subpaths of Y . The outcome of these extensions is that y becomes
the endpoint of both subpaths and each vertex of Y is included into exactly
one of the extended subpaths. Notice that, in the extension of the subpath L′

γ ,
its special vertex s2γ+3 is removed and then it is continued by inclusion of the
vertices of the color γ into the subpath up to the vertex y (inclusively). Since Y
was not covered by L′

γ , the vertices of color γ are not already included in any
subpath and this operation is sound. The other extension can be evaluated in
the same way. The subpath L′

γ+1 (which still contains the special vertex s2γ+3)
is extended by including all the remaining vertices of Y into the subpath and is
terminated in y. By the same reasoning as above, this operation is also sound.
For our convenience of presenting the statements comprehensively, we call the
extended subpaths still L′

γ and L′
γ+1.

After the transformation of the subpaths L′
γ and L′

γ+1 in step 6, observe
that two consecutive vertices in the extended subpaths are bypassing at most
2�k/2�+ k − 3 edges in C. This is true as (1) the non-extended parts have this
property as discussed above; (2) in the extended part of L′

γ , only the vertices of
color γ are used and the distance between the last vertex of the color γ and y,
which may be of a different color, cannot be too high as well; (3) the extended
part of L′

γ+1 from s2γ+3 to y contains all the remaining vertices. In particular,
this also includes the vertices of the color γ+1. Two consecutive vertices of this
color are at distance at most 2�k/2� + k − 3 in the cycle C. Note that this is
also true for the distance between the last vertex x of the extended subpath and
the vertex s2γ+3. The inclusion of the vertices of the other colors in between the
vertices of color γ + 1 cannot increase the distance.
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Fig. 2. An extension of the paths L′
γ and L′

γ+1 by the path Y in step 6 of Algorithm 1.
Squares denote special vertices, dots denote non-special vertices. The terminal vertex
s2γ+3 is removed from Lγ , the subpath Lγ is extended by inclusion of all the vertices
of color γ in Y and terminated by the vertex y. The subpath L′

γ+1, in which the special
vertex s2γ+3 is preserved, is extended by inclusion of all the remaining vertices of Y
and is terminated by the vertex y.

Lemma 4. The distance between two consecutive vertices in subpaths L′
i (for

0 ≤ i ≤ �k/2�− 1 and i /∈ {γ, γ+1}) and in the extended subpaths L′
γ and L′

γ+1

is at most 2�k/2�+ k − 3 on the cycle C.
Furthermore, a bypass of at most 2�k/2�+k−3 edges can occur only if the vertex
s1 is bypassed (i. e., if the bypass occurs on the color cut). All other bypasses jump
over at most �k/2�+ k − 2 edges.

Proof. The lemma is proven by the discussion above and a similar reasoning as
we used in Lemma 2. "#

From the description above, it is clear that the cycle H computed by our algo-
rithm is a feasible solution, i. e., each vertex of the graph is included in H once
and the special vertices are present in the given order. From now on, we omit
to write colorings and indexing modulo �k/2�, when it is clear from the context.
Now we are ready to estimate the approximation ratio of our algorithm.

Theorem 3. For k ≥ 4, Algorithm 1 computes, in polynomial time, an approx-
imate solution for k-ΔβOTSP with a ratio of at most⌈
k

2

⌉
min

{
4β1+log2(2	k/2
+k−3) ,

3

2
β2+log2(2	k/2
+k−3), (β+1)β1+log2(2	k/2
+k−3)

}
.

The following theorem characterizes the instances for which our algorithm im-
proves over the kβlog2(�3k/2�+1)-approximation algorithm of [8].

Theorem 4. For any 1 < β < (3/4)
1

log2 3/16 < 1.12651, there exists a fixed
k0 ≥ 4 such that, for all k ≥ k0, the approximation ratio of Algorithm 1 is better
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than the ratio achieved by Algorithm 2 of [8] for the pairs (β, k). In these cases,
the approximation ratio of Algorithm 1 is at most⌈

k

2

⌉
· 3
2
· β2+log2(2	k/2
+k−3).

Our calculations from the proof of Theorem 4 imply that, for arbitrary 1 < β <(
3
4

) 1
log2 3/16 , there exists an initial value k0 ≥ 4 such that, for all k ≥ k0, the

approximation ratio of Algorithm 1 is better than the ratio of the previously
best known algorithm. The pairs (k, β) for which we obtain an improvement are
depicted in Figure 3.

 1
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 1.06

 1.08

 1.1

 1.12

 1.14

 10  100  1000  10000  100000

k

β

Fig. 3. The graph shows the pairs (k, β) for which Algorithm 1 has provably better
approximation ratio than the best known approximation algorithm

4 Improving the Coloring

We can identify three parts of Algorithm 1 which contribute to the overall ap-
proximation ratio 3/2�k/2�·β2+log2(2	k/2
+k−3). The factor 3/2β2 is given by the
algorithm computing cycle C in step 1. The factor �k/2� comes from structural
properties of a cycle (i. e., the number of times cost(C) is used to estimate the
connected special vertices is halved as triples of such vertices can be connected at
once). We do not aim here for the improvement of these two factors. The last part
produces the factor βlog2(2	k/2
+k−3). Its exponent corresponds to the maximal
length of a bypass in the solution and is dependent on the used vertex-coloring
procedure. In this section, we introduce another observation which allows us to
decrease the length of bypasses and hence to improve the approximation ratio
of our algorithm.

All our bypasses in Algorithm 1 that are not bypassing the color cut around
s1 contain at most �k/2�+ k − 3 vertices. Only the bypasses that occur around
this cut are the bottleneck of our estimations and are increasing the estimated
length of the bypasses from �k/2�+k−2 to 2�k/2�+k−3 in all our calculations.
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For the ease of the presentation, we call a bypass that bypasses also vertex s1
(and hence the color cut) a color-cut bypass.

We estimated that each color-cut bypass contains at most 2 · (�k/2� − 1) + x
vertices, where x is the number of special vertices that are bypassed. Hence,
the main idea of the improvement is to choose a vertex from which the coloring
is started (and which also places the color cut into the cycle) such that each
color-cut bypass contains a minimum number of special vertices.

Let d be a positive integer whose precise value is specified later. Let us divide
the cycle C into d parts of roughly the same size. From the pigeon-hole principle,
one of these parts contains at most ,k/d- special vertices and at least ,n/d- of all
the vertices of C. If this part of the cycle contains at least 3·�k/2�−1 non-special
vertices, we can place the color cut into this part such that starting and ending
vertices of all color-cut bypasses are present in this part. Then, the number of
bypassed vertices in each color-cut bypass is at most 2·(�k/2�−1)+,k/d-. Hence,
if we choose d to be large (but still d ≤ n), the number of vertices bypassed by
each color-cut bypass converges to k + k

n .
The last part that we have to show is that, indeed, the chosen part contains at

least 3 · �k/2�− 1 vertices with respect to d and n. We can estimate the number
of non-special vertices in the chosen part of C which is at least⌊

n

d

⌋
−
⌊
k

d

⌋
≥n− d+ 1

d
− k

d
=

n− d+ 1− k

d
.

Hence, if

n− d+ 1− k

d
≥ 3 ·

⌈
k

2

⌉
− 1,

we can place the color cut into the chosen part. The inequality above is true if

n− d+ 1− k

d
≥ 3 · k + 1

2
− 1,

and hence,

2 · (n− d+ 1− k) ≥ 3d · (k + 1)− 2d.

If we further modify the inequality, we are able to bound d by

d ≤ 2(n+ 1− k)

3k + 3
. (1)

Any positive integer value d satisfying the inequality (1) can be used to divide
the cycle into d parts, one of these parts contains only ,k/d- special vertices
which allows each color-cut bypass to contain at most 2 · (�k/2� − 1) + ,k/d-
vertices. To minimize the length of the color-cut bypass, we need to minimize
,k/d- and hence d has to be maximal.

Since our coloring achieves bypasses of �k/2�+k−3 vertices for each segment
of the cycle without the color cut, the partition of the cycle C into many parts
does not always help to decrease the length of bypasses.



Improved Approximations for Ordered TSP 167

If d = 2 (and n ≥ 4k + 2), the color-cut bypasses contain at most 2(�k/2� −
1)+,k/2- = �k/2�+k−2 vertices which is by 1 vertex more than the number of
vertices bypassed in the remainder of the cycle. Therefore, if n ≥ 4k + 2, Algo-
rithm 1 enhanced by the special placement of the color cut has an approximation
ratio of⌈
k

2

⌉
·min

{
4β1+log2(	k/2
+k−1) ,

3

2
β2+log2(	k/2
+k−1), (β+1)β1+log2(	k/2
+k−1)

}
.

If k ≥ 4, then ,k/3- ≤ ,k/2- − 1. Thus, if in addition d = 3 (and hence 2n ≥
11k + 7), the color-cut bypasses become at most as long as the non-color-cut
bypasses and the enhanced Algorithm 1 is achieving ratio⌈
k

2

⌉
·min

{
4β1+log2(	k/2
+k−2) ,

3

2
β2+log2(	k/2
+k−2), (β+1)β1+log2(	k/2
+k−2)

}
.

For the latter approximation ratio with bypasses of length �k/2�+k−2 edges, we
can do similar calculations as we did in Section 3 when the 3

2β
2-approximation

algorithm for Δβ-TSP from Böckenhauer et al. [5] is plugged into step 1 which
yields the following theorem.

Theorem 5. For any 1 < β < 2√
3
, there exists a fixed k0 ≥ 4 such that, for all

k ≥ k0, the approximation ratio of Algorithm 1 with improved coloring is better
than the ratio achieved by Algorithm 2 of [8] for the pairs (β, k). In these cases,
the approximation ratio of Algorithm 1 is at most⌈

k

2

⌉
· 3
2
· β2+log2(	k/2
+k−2) .

5 Conclusion

In this paper, we investigated approximation algorithms for the Ordered Near-
metric Traveling Salesman Problem (k-ΔβOTSP). The first, general approxi-
mation algorithm improves the best known approximation ratio for instances
with β < 1.12651 and the last ratio is an improvement for β < 2/

√
3. In both

cases, this is true for all k except for the first finitely many small values.
Even though the obtained improvement of our algorithm does not cover the

entire space of instances, it broadens our knowledge on the approximability of
the most interesting instances – those that are close to being metric.

There are still several open questions related to k-ΔβOTSP and k-OTSP.
First of all, we are not aware of any hard instances for approximation algorithms
which could suggest whether the estimated ratios are tight or there is still space
for improvements. Furthermore, our algorithm, same as the algorithms of [6,7],
is using a “static” coloring of vertices that does not reflect the actual situation in
the initial Hamiltonian cycle. We believe that the approximation ratio, especially
the part that is dependent on the length of bypasses, could be improved by
a more sophisticated coloring.
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Our enhancement from Section 4 for n-vertex graphs can be applied only if
n ≥ 4k + 2 (or, to be a little bit better, if 2n ≥ 11k + 7), i. e., if the number of
special vertices is not too high. However, it seems that the cases where n and k
are of the same order of magnitude are the hardest ones. For these cases, one may
consider an approximation algorithm that is different in its used structures from
all our approaches. We can even generalize the idea and consider the problem
on instances where the number of special vertices k is a fraction of n.
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Abstract. Trust and reputation systems are decision support tools used to drive
parties’ interactions on the basis of parties’ reputation. In such systems, parties
rate with each other after each interaction. Reputation scores for each ratee are
computed via reputation functions on the basis of collected ratings. We propose
a general framework based on Bayesian decision theory for the assessment of
such systems, with respect to the number of available ratings. Given a reputa-
tion function g and n independent ratings, one is interested in the value of the
loss a user may incur by relying on the ratee’s reputation as computed by the
system. To this purpose, we study the behaviour of both Bayes and frequentist
risk of reputation functions with respect to the number of available observations.
We provide results that characterise the asymptotic behaviour of these two risks,
describing their limits values and the exact exponential rate of convergence. One
result of this analysis is that decision functions based on Maximum-Likelihood
are asymptotically optimal. We also illustrate these results through a set of nu-
merical simulations.

Keywords: trust, reputation, information theory, Bayesian decision theory.

1 Introduction

Trust and reputation systems are used as decision support tools for different applications
in several contexts. Probably the best known applications are related to e-commerce:
well-known examples in this context are the auction site eBay and the online shop
Amazon, cf. [10].

Trust management systems are used in many other contexts and applications, where
huge amount of data related to reputations of peers are usually available, such as ad-hoc
networks [18], P2P networks [25,24] and sensor networks [4]. The idea at the base of
trust and reputation systems is to let users of the system, the raters, rate the provided
services, or ratees, after each interaction. Then other users or the parties themselves
may use aggregate ratings to compute reputation scores for a given party: such values
are used to drive parties’ interactions. This approach to trust managing is referred to
as computational trust. Whereas traditional credential-based approaches [6,17] rely on
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access control policies and/or use of certificates for evaluating parties’ trustworthiness,
in computational trust parties’ trustworthiness is evaluated by on the basis of the parties’
past behaviour.

In this paper, we focus on probabilistic trust [11,5,16], which represents a specific
approach to computational trust. The basic postulate of probabilistic trust is that the
behaviour of each party can be modeled as a probability distribution, drawn from a given
family, over a certain set of interaction outcomes – success/failure being the simplest
case. Once this postulate is accepted, the task of computing reputation scores boils
down to inferring the true distribution’s parameters for a given party. Information about
party’s past behaviour is used for parameters inference: rating values are treated as
statistical data.

The potential usefulness and applicability of probabilistic trust is by now demon-
strated by a variety of tools that have been experimentally tested in several contexts.
One important example is the work on the travos system [23].

On the contrary, there are very few analytical results on the behaviour of such sys-
tems – with the notable exception of the work by Sassone and collaborators [20], which
is discussed in the concluding section. Examples of questions that could be addressed by
an analytical approach are: How do we quantify the confidence in the decisions calcu-
lated by the system? And how is this confidence related to such parameters as decision
strategy and number of available ratings? Is there an optimal strategy that maximizes
confidence as more and more information becomes available?

In this paper, we intend to address the above questions, and propose a framework
to analyze probabilistic trust systems based on bayesian decision theory [19,9,13]. A
prominent aspect of this approach is the use of a priori probability distributions to model
prior belief on the set of possible parties’ behaviours. However, we also consider con-
fidence measures that dispense with such prior belief. We study the behaviour of trust
and reputation systems relying on the concept of loss function. We quantify confidence
in the system in terms of risk quantities based on expected (a.k.a. bayes) and worst-case
loss. We study the behaviour of these quantities with respect to the available informa-
tion, that is number of available rating values. Our results allow to characterize the
asymptotic behaviour of probabilistic trust systems. In particular, we show how to de-
termine the limit value of both bayes and worst risks, and their exact exponential rates of
convergence, in the case of independent and identically distributed (i.i.d) observations.

In particular, we show that decision functions based on maximum likelihood or max-
imum a posteriori decision functions are asymptotically optimal. We complement these
theoretical results with set of numerical simulations.

The rest of the paper is organized as follows. Section 2 introduces some terminol-
ogy and preliminary notions. Section 3 presents the formal setting of our framework.
Section 4 introduces the confidence measures based on expected and bayes risk. Sec-
tion 5 reports the main results on the analysis of the asymptotic behaviour of reputation
functions. Section 6 presents a set of numerical simulations whose outcome support our
theoretical study.

Finally, Section 7 contain some concluding remarks and discussion of related work.
In particular, we touch upon an extension of the framework where raters tend to under-
or over-evaluate their interactions with the ratees.
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2 Notations and Preliminary Notions

Let X be a random variable taking values inX: we say that X is distributed according to a
probability distribution p(·) if for each x ∈ X, Pr(X = x) = p(x), and we write X ∼ p(·).
The support of p(·) is defined as supp(p)

�
= {x ∈ X|p(x) > 0}. We let pn(·) denote the

n-th extension of p(·), defined as pn(xn)
�
=
∏n

i=1 p(xi), where xn = (x1, x2, ..., xn); this
is in turn a probability distribution on the set Xn. For any A ⊆ X we let p(A) denote∑

x∈A p(x).
When A ⊆ Xn and n is clear from the context, we shall abbreviate pn(A) as just p(A).

Given a sequence xn = (x1, x2, ..., xn) ∈ Xn (n ≥ 1), we denote by txn its type or empirical

distribution, which is a probability distribution onX defined thus: txn (x)
�
=

n(x|xn)
n , where

n(x|xn) denotes the number of occurrences of x in xn.
Given two probability distributions p(·) and q(·) on X, the relative entropy, or

Kullback-Leibler divergence, (KL-divergence) between p(·) and q(·) is defined as

D(p(·) ‖ q(·)) =
∑
x∈X

p(x) log
p(x)
q(x)

(1)

with the convention that: 0 log 0
0 = 0, 0 log 0

q(·) = 0 and p(·) log p(·)
0 = ∞. It can be

shown that KL-divergence is always nonnegative and is 0 if and only if p(·) = q(·).
KL-divergence is not symmetric and does not satisfy the triangle inequality.

Let Θ be a set of parameters: we let {p(·|θ)}θ∈Θ denote a parametrized family of
probability distributions. When convenient, we shall denote a member of this family,
p(·|θ), as just pθ. Given a sequence xn that is a realization of n i.i.d. random variables
Xn = X1, ..., Xn, with Xi ∼ p(·|θ), a standard problem is to decide which of the distri-
butions p(·|θ) generated the data. This is a general hypothesis-testing problem, where
the distributions p(·|θ), θ ∈ Θ, are the hypotheses: the classical, binary formulation is
given for |Θ| = 2. We represent the decision-making process by a guessing function
g : Xn → Θ and we define the error probability for an hypothesis θ as follows. For
n ≥ 1 and each θ, let A(n)

θ

�
= g−1(θ) ⊆ Xn be the acceptance region for hypothesis θ

(relatively to g). Then the probability of error for θ is (by Ac we denote the complement
of set A)

P(g)
θ (n)

�
= p(A(n)

θ

c
) . (2)

In a Bayesian framework an a priori probability π(θ) is assigned to each hypothesis, and
the overall error probability is defined as the average, assuming Θ is discrete:

P(g)
e (n)

�
=
∑
θ

π(θ)P(g)
θ (n) . (3)

It is well-known (see e.g. [22]) that optimal strategies, i.e. strategies g minimizing the
error probability P(g)

e (n), are obtained when g satisfies the Maximum A Posteriori (map)
criterion

In this case, provided p(·|θ) � p(·|θ′) for θ � θ′, it holds that as n → +∞, P(g)
e (n) →

0. What is also important, though, is to characterize how fast the probability of error
approaches 0. Intuitively, we want to be able to determine an exponent ρ ≥ 0 such that,
for large n, P(g)

e (n) ≈ 2−nρ. To this purpose, we introduce the notion of rate for a generic
non-negative real-valued function f .
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Definition 1 (Rate). Let f : N → R
+ be a nonnegative function. Assume γ =

limn→∞ f (n) exists. Then, provided the following limit exists, we define the following
nonnegative quantity:

rate( f )
�
= lim

n→∞−
1
n

log | f (n) − γ|.
This is also written as | f (n) − γ| � 2−nρ, where ρ = rate( f ).

Intuitively, rate( f ) = ρ means that, for large n, | f (n) − γ| ≈ 2−nρ.
Note that we do allow rate( f ) = +∞, a case that arises for example when f (n) is

a constant function.
The rate of decrease of P(g)

e (n) is given by Chernoff Information. Given two proba-
bility distributions p(·), q(·) on X, we let their Chernoff Information be

C(p(·), q(·)) �= − min
0≤λ≤1

log(
∑

x∈supp(p)∩supp(q)

pλ(x)q1−λ(x)) , (4)

where we stipulate that C(p, q) = +∞ if supp(p)∩supp(q) = ∅. Here C(p(·), q(·)) can be
thought of as a sort of distance between p(·) and q(·): the more p(·) and q(·) are far apart,
the less observations are needed to discriminate between them. Assume we are in the
binary case, Θ = {θ1, θ2} and let pi = p(·|θi) for i = 1, 2. Then a well-known result gives
us the rate of convergence for the probability of error, with the proviso that π(θ1) > 0
and π(θ2) > 0 (cf. [22]): P(g)

e (n) � 2−nC(p1 ,p2) (here we stipulate 2−∞ = 0). Note that this
rate does not depend on the prior distribution π(·) on {θ1, θ2}, but only on the probability
distributions p1 and p2. This result extends to the case |Θ| < +∞, it is enough to replace
C(p1, p2) by minθ�θ′ C(p(·|θ), p(·|θ′)), thus (see [14,3]): P(g)

e (n) � 2−n minθ�θ′ C(p(·|θ),p(·|θ′))
with the understanding that, in the min, π(θ) > 0 and π(θ′) > 0.

3 A Bayesian Framework for Trust and Reputation

In the following section we discuss the main features of trust and reputation systems
and we introduce our framework based on Bayesian decision theory for modelling such
systems. The formal framework is composed by two main components: an observa-
tion framework, which describes how observations are probabilistically generated, and
a decision framework, which describes how decisions are taken. Two essential ingredi-
ents of the latter are loss and decision functions.

Parties in a trust and reputation system are free to interact and rate with each other.
After each interaction, a rater assigns a score to a ratee. We denote by O = {o1, ..., om}
a finite, non-empty set of rating values: in the rest of the paper we use the terms out-
comes, observables and rating values interchangeably. We focus on trust and reputation
systems where the behaviour/reputation of each party is modelled by a probability dis-
tribution on O.

Definition 2 (Observation System). An observation system is a quadruple S = (O, Θ,
F , π(·)), composed by a finite non-empty set of observations O, a set of world states or
parameters Θ, a set F = {p(·|θ)}θ∈Θ of probability distributions on O indexed by Θ, and
an a priori probability measure π(·) on Θ.
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In a trust setting, the a priori measure π(·) expresses the user’s belief over possible
behaviours θ ∈ Θ of the observed system. The data-model F represents how data are
generated: the value p(o|θ) denotes the probability of observing a rating value o ∈ O in
an interaction with a party whose behaviour is θ ∈ Θ.

Remark 1. The set Θ can be in principle discrete or continuous. In the following sec-
tions, unless otherwise stated, it is assumed that Θ is in fact finite. Moreover, we shall
always assume the following conditions that simplify our treatment, with no significant
loss of generality:

– for each θ, the distribution p(·|θ) has full support, that is p(o|θ) > 0 for each o. We
shall sometimes denote the distribution p(·|θ) as pθ;

– for any pair of parameters θ � θ′, one has pθ � pθ′ .

Example 1. A very simple possibility, but one widely used in practice, is to assume a set
of binary outcomes representing success and failure, sayO = {o, ō}, which are generated

according to a Bernoulli distribution: p(o|θ) �= θ and p(ō|θ) �= 1−θ, where θ ∈ Θ ⊆ (0, 1).
Another possibility is to rate a service’ quality by an integer value in a range of n + 1
values, O = {0, 1, ..., n}. In this case, it is sometimes sensible to model the parties’
behaviour by binomial distributionBin(n, θ), with θ ∈ Θ ⊆ (0, 1) (somehow the discrete
analog of a continuous Gaussian distribution). That is, the probability of an outcome

o ∈ O for an interaction with a party with a behaviour θ is p(o|θ) �=
(

n
o

)
θo(1 − θ)n−o.

In the following, we shall mostly concentrate on discretized sets of parameters. E.g.
Θ = {0.1, 0.2, · · · , 0.9}.
Reputation scores used to drive parties’ interactions are computed on the basis of a
party’s past behaviour, given as a sequence of observations on = (o1, ..., on) (n ≥ 1).
These may derive from direct interaction of the user, or be acquired by the user by
different means (e.g. they may be gathered and provided by an online evaluation support
system). Irrespective of how on is acquired, the basic idea – which will be studied
analytically in Section 5 – is that the sequence on is a realization of a random vector
On = (O1, ...On), where the r.v. Oi’s are i.i.d. given θ ∈ Θ: Oi ∼ p(·|θ). A decision
d = g(on) ∈ D is taken on the basis of the past behaviour. This decision may however
incur in a loss L(θ, d), depending on the true behaviour θ of the ratee and on the taken
decision itself. These concepts are formalized below.

Definition 3 (Decision Framework). A decision framework is a quadruple DF =
(S,D,L(·, ·), {g(n)}n≥1), composed by an observation system S = (O, Θ,F , π(·)), a deci-
sion set D, a loss function L(·, ·) = Θ × D → R+, and a family of decision functions
{g(n)}n≥1, one for each n ≥ 1, g(n) : On → D.

L(θ, d) is a (in general, user-defined) function that quantifies the loss incurred when
making a decision d ∈ D, given that the real behaviour of the party is θ ∈ Θ.

In the bayesian decision theory, the decision-making process is formalized via deci-
sion functions. For any n, a decision function is a function g(n) : On → D (the super-
script (n) will be normally omitted when n is clear from the context).

There are two main types of decisions one may wish to make when interacting with
a party: evaluation of the party’s behaviour, hence reputation; or the prediction of the
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outcome of the next interaction. In order to distinguish between these two cases, we
define two instances of the above decision framework that differ by the definition of the
decision set. In a reputation framework, one has D = Θ, that is the decision is made
about the behaviour. In a prediction framework, one has D = O, that is the decision is
made about the outcome of the (next) interaction.

Loss functions evaluate the consequences of possible decisions associating a loss to
each decision. The choice of such functions depend on the application at hand and is,
ultimately, responsibility of the user of the reputation system. For example, there could
be monetary or economic losses connected to taking a given decision in a given state of
the world.

Below, we shall limit ourselves to indicate a few concrete examples of such loss
functions.

For a reputation framework (D = Θ), one’s objective may be to minimize a sort of
distance between the true behaviour θ and the inferred reputation θ′. A common way
to do so is to employ KL-divergence as a measure of distance between probability dis-

tributions, and set: L(θ, θ′) �= D(p(·|θ′)||p(·|θ)). This loss function takes on a (proper)
minimum value when θ = θ′, with L(θ, θ′) = 0. It is also a legitimate choice to consider

the two arguments exchanged: L(θ, θ′) �
= D(p(·|θ)||p(·|θ′)), although the significance

of this measure is less clear to us. Other measures can be based on distance between
probability distributions seen as real valued vectors; one we shall consider is norm-1

distance: L(θ, θ′) �= ||p(·|θ) − p(·|θ′)||1. Finally, if Θ ⊆ R, a sensible choice might be
L(θ, θ′) �= |θ − θ′|. For a prediction framework (D = O), one generally considers loss
functions that are minimized when the probability of an outcome is maximum. One

such loss function is L(θ, o)
�
= − log p(o|θ), that is, the Shannon information content

of an outcome o: less probable the outcome o, more information/surprise (and loss)
it conveys. Such function takes its minimum value for oθ = arg maxo∈O p(o|θ) with
L(θ, oθ) = − log maxo∈O p(o|θ) = H∞(pθ). Here, H∞ denotes min-entropy of a probabil-
ity distribution/random variable.

As discussed in this Section, in trust and reputation systems the decision-making
process consists of choosing a behaviour θ ∈ Θ or a rating value o ∈ O. We model
such a process via decision functions. It is possible to formulate decision functions
through classical statistical inference procedures such as Maximum Likelihood (ml) and
Maximum A Posteriori (map) estimation (see e.g. [8]). Essentially, the ml rule yields
the θ maximizing the likelihood of the observed on - equivalently, minimizing the KL
distance between the empirical distribution of on and pθ (see [12]). The map rule yields
the θ whose posterior probability given on is maximum.

Definition 4 (ml and map decision function). Let on = (o1, ..., on) be a sequence of
observations. Then a ml decision function g(ML) : On → Θ satisfies

g(ML)(on) = argminθD(ton ||p(·|θ)).
A map decision function g(MAP) : On → Θ satisfies

g(MAP)(on) = θ implies p(θ|on) ≥ p(θ′|on) for each θ′ ∈ Θ.
Note that implementation of the map rule implies knowledge of the a priori distribution
π(·), which may be sometimes difficult or impossible to estimate. Fortunately, map and
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ml are asymptotically equivalent (and optimal). Despotovic and Aberer in [5] propose
the use of reputation functions based on ML estimation; we use such functions in Sec-
tions 5. Similarly, Jøsang and Ismail in [11] propose the use of a reputation function
based on the beta probability density function Beta(α, β).

4 Evaluation of Reputation Functions

In this section we introduce two measures for the evaluation of reputation functions,
based on the expected and worst loss, respectively. We also discuss the notion of rate
of convergence. In what follows, we fix a generic decision framework S; for each
θ ∈ Θ, we assume a decision dθ ∈ D exists that minimizes the loss given θ: dθ =
argmindL(θ, d). Let us first consider the definition of frequentist risk. For a parameter
θ ∈ Θ, the frequentist risk associated to a decision function g after n observation is just
the expected loss computed over On, that is explicitly

Rn(θ, g)
�
=
∑

on∈On

p(on|θ)L(θ, g(on)).

Relying on this definition we introduce first the bayes risk.

Definition 5 (Bayes risk). Let g : On → D be a decision function and π(·) a prior
probability distribution on the parameters set Θ. The bayes risk associated to g after n
observations is the expected loss with respect to θ

rn(π, g)
�
= Eπ[Rn(θ, g)] =

∑
θ

π(θ)Rn(θ, g).

The minimum bayes risk is defined as r∗ �=
∑
Θ π(θ)L(θ, dθ).

The bayes risk is the expected value of the risk Rn(θ, g), computed with respect to the a
priori distribution π(·), that represents the a priori information over possible behaviours
in the system.

The second measure we introduce is the worst risk.

Definition 6 (Worst risk). Let g : On → D be a decision function and Θ the parame-
ters set. The worst risk associated to g after n observations is given by

wn(g)
�
= max
θ∈Θ

Rn(θ, g).

The minimum worst risk is defined as w∗ �= maxθ∈Θ L(θ, dθ)

The worst risk is thence the maximum risk Rn(θ, g) over possible parameters θ ∈ Θ.

Example 2. We compute the values of both minimum bayes and worst risks for two spe-
cific loss functions. We use the definitions of loss funcions given in previous sections.
The first definition is for a reputation framework, the second for a prediction frame-
work. Let L(θ, θ′) = D(p(·|θ′)||p(·|θ)) be the loss function for a reputation framework.
Then we have

r∗ =
∑
Θ

π(θ)D(p(·|θ)||p(·|θ)) = 0 , w∗ = max
θ∈Θ

D(p(·|θ)||p(·|θ)) = 0.

Let now L(θ, o) = − log p(o|θ) be the loss function for a prediction framework. We have

r∗ =
∑
Θ

π(θ) log
1

p(oθ|θ) =
∑
Θ

π(θ)H∞(pθ) , w∗ = max
θ∈Θ

log
1

p(oθ|θ) = max
θ∈Θ

H∞(pθ).
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5 Results

In this section we discuss some results about the convergence of risk quantities rn =

rn(π, g) and wn = w(g) to minimum bayes risk and worst risk, respectively, and their
rates of convergence. We first examine risks in a reputation and in a decision framework;
then briefly discuss exponential bounds on the probability of exceeding a given loss.

Given a decision framework, it is important to establish not only the limit of the risk
functions, rn and wn, as the number n of available ratings grows, but also how fast this
limit is approached. The rate of convergence tells us how fast this limit is approached.
The concept of rate is important for two reasons. Firstly, it is desirable to distinguish
between reputation functions with different rates, as a reputation function with a high
rate may require considerably less observations in order to achieve an improvement of
the risks value, compared to a reputation function with a low rate. Secondly, knowledge
of the rate will allow us to obtain quick and accurate estimations of the risk functions
rn and wn depending on n.

In what follows, we fix a generic reputation frameworkRF = (S, Θ,L(·, ·), {g(n)}n≥1).
In order to discuss our results in the simplest possible form, we shall assume Θ is finite,
and that L(θ, θ′) > L(θ, θ) for each θ � θ′. We let

R
�
= minθ�θ′ C(pθ, pθ′)

be the least Chernoff Information between any pair of distinct distributions pθ and
pθ′ in F = {p(·|θ) | θ ∈ Θ}.

We shall often abbreviate rn(π, g) as just rn, similarly for wn.
The following theorem states that the best achievable rate of convergence to the

minimum values of any decision function, for both bayes and worst risks, is bounded
above by R. The proof can be found in the

extended version available online [2].

Theorem 1. Assume lim rn(π, g) exists. Then

– lim rn(π, g) ≥ r∗;
– if lim rn(π, g) = r∗ then rate(rn(π, g)) ≤ R, if defined.

Similarly for the worst risks wn and w∗.

The following theorem confirms that both map and ml are asymptotically optimal de-
cision functions. Such functions achieve minimum loss value and maximum rate of
convergence. The proof can be found in the extended version available online [2].

Theorem 2. Assume g is either a map or a ml decision function. Then limn rn = r∗ and
moreover rate(rn) = R. Similarly for wn.

In essence, the above results can be summarized by saying that, under an optimal deci-
sion function, rn behaves as ≈ r∗ + 2−nR, and wn as ≈ w∗ + 2−nR.

We fix a generic prediction framework PF = (S,O,L(·, ·), {h(n)}n≥1). For a distri-
bution p, let Argmax(p) denote the set of observables maximizing p(o). We assume Θ
is finite, and that for each θ there is oθ ∈ Argmax(pθ) such that L(θ, oθ) > L(θ, o) for
each o � oθ. Like in the preceding subsection, we let R denote the minimum Chernoff
Information between any pair of distinct distributions on O.
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We shall limit our discussion to the following result of practical interest, which de-
scribes the form of the (optimal) prediction function: as expected, given on, one has
to first identify the underlying distribution pθ and then take the observable that max-
imizes this distribution. The proof goes along the lines of the results in the preceding
subsection and is omitted.

Theorem 3. Let g = {g(n)}n≥1 be a family of ml decision functions. Assume h(n)(on)
�
= oθ

where θ
�
= g(n)(on). Then lim rn = r∗ and rate(rn) = R. Similarly for wn.

We discuss here the probability that the loss deviates from its minimal value above a
given threshold. These results apply to the case g is the ml or map decision functions.
Such results do not depend on the parameter θ but only on the number n of observations
and the threshold value fixed for the loss. The results also apply to the case when Θ is
continuous. We begin by considering the KL-loss function (proofs can be found in the
extended version available online [2]).

Theorem 4. Let g be the ml or map decision function. Let L(θ, θ′) �= D(p(·|θ′)||p(·|θ)) be
the KL loss function. Fix any θ ∈ Θ and assume On is a n-sequence of random variables
i.i.d. given θ, that is Oi ∼ p(·|θ). Let ε > 0. Then

Pr(L(θ, g(On)) > ε) ≤ (n + 1)|O|2−nε .

The above result can be easily extended to the case of norm-1 loss function.

Corollary 1. Let g be the ml or map decision function. Let L(θ, θ′) = ||p(·|θ′) − p(·|θ)||1,
be the norm-1 distance loss function. Fix any θ ∈ Θ and assume On is a n-sequence of
random variables i.i.d. given θ, that is Oi ∼ p(·|θ). Let γ > 0 . Then

Pr(L(θ, g(On)) > γ ) ≤ (n + 1)|O|2−n γ2

2 ln 2 .

6 Examples of Systems Assessment

Fig. 1. Empirical and asymptotic Bayes risk trend

We simulate a system composed
by a number of peers. In our
first experiment, the behaviour
of each peer is modelled as a
Bernoulli distribution B(θ) over
the set O = {0, 1}, representing
successful and unsuccessful in-
teractions, with θ being the suc-
cess probability. The parameter
θ is drawn from a fixed, finite
set Θ ⊆ (0, 1): we assume Θ to
be a discrete set of N points 0 <
γ, 2γ, ...,Nγ < 1, for a fixed pos-
itive parameter γ. Moreover, we
assume a uniform a priori distri-
bution π(·) over Θ. We consider
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the case of reputation, and fix the loss function to be L(θ, θ′) �= ||p(·|θ) − p(·|θ′)||1. The
purpose of this first experiment is twofold: (a) to study the rate of convergence of the
risk function to their limit value depending on γ; and (b) to compare the analytical ap-
proximations rn ≈ r∗ + 2−nR and wn ≈ w∗ + 2−nR where R

�
= minθ�θ′ C(pθ, pθ′) with the

empirical values of rn and wn obtained through the simulations. The value of γ affects
the risk value. Intuitively, for large values of γ, the incurred loss will be exactly zero in
most cases. On the contrary, for small values of γ, the incurred loss will be small but
nonzero in most cases.

A ml reputation function g is used: we know by Theorem 2 that the convergence
to both minimum bayes and worst risks is assured. Varying the value of γ, we analyse
how the rate of convergence changes. We consider the following values: γ = 0.2, γ =
0.1 and γ = 0.05, for which we get the values of the rate: 0.029447, 0.0073242 and
0.0018102, respectively. As expected, for smaller values of γ an improvement on the
risks values requires a larger amount of observations, compared to larger values of
γ. Figure 1 graphically shows the trend of bayes risk with respect to different values
of γ. We compare the asymptotic approximation of the bayes risk with its empirical
value obtained trough simulations, for different values of γ. The results for the worst
risk are similar and not shown. For the computation of the empirical values, we have
considered a trust and reputation system with 70 parties where possible behaviours in Θ
are uniformly distributed among the parties. As we can observe by Figure 1, the bayes
risk converges to its limit value according to its rate of convergence. Moreover, there is
a good agreement between the asymptotic approximation and the empirical values.

In our second experiment, we analyse a system with respect to the use of differ-
ent reputation functions. We consider a reputation system with 70 parties. Like in
the previous example, each peer exhibits a Bernoulli behavior, with the parameter θ
ranging in Θ. This time, though, the prior distribution π(·) on Θ is a binomial cen-
tered on the value θ = 0.5, Bin(|Θ|, 0.5). We compare the use of a ml and a map
reputation function, through the study of both bayes and worst risks trend. For sim-
plicity, we fix the value of γ to 0.2 and we use norm-1 distance as a loss function.

Fig. 2. Bayes and worst risks trend

Figure 2 shows the trend of
both bayes and worst risks for
both reputation functions. As
expected, map performs signif-
icantly better than ml when a
small number of observations
is available. This difference is
due to the the fact that map ac-
tually takes advantage of the
a priori knowledge represented
by π(·), differently from ml. As
the number of observations in-
creases the effect of the prior
washes out and both functions
converge to the same value – r∗
or w∗, depending on the chosen
risk model – as predicted by the theory.
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7 Conclusion

We have proposed a framework to analyze probabilistic trust systems based on bayesian
decison theory. We have focused on trust and reputation systems, examining the be-
haviour of two risk quantities: bayes and worst risks. Such quantities rely on the con-
cept of loss function. Our results allow us to characterize the asymptotic behaviour of
probabilistic trust systems. In particular, we show how to determine the limit value of
both bayes and worst risks, and their exact exponential rates of convergence. Specif-
ically, we show that decision functions based on maximum likelihood and maximum
a posteriori decision functions are asymptotically optimal. We also consider the case
where the raters may misbehave.
Related Work. Several trust and reputation models based on probabilistic concepts have
been proposed in literature. Jøsang and Ismail in [11] propose the use of a reputation
function based on the beta probability density function, Beta(α, β). Their approach is
based on Bayesian inference and the beta distribution is used to express the a priori
belief over possible parameters. The two values α and β represent, respectively, the
number of satisfactory and unsatisfactory interactions with a given party. The reputa-
tion score computed is the parameter θ of a Bernoulli distribution B(θ). Despotovic
and Aberer in [5] propose the use of reputation functions based on ml estimation: they
support the appropriateness of their proposal on the basis of

simulation results. Unlike Jøsang and Ismail’s proposal, the use of ml functions does
not limit the choice of the probability distributions that model the parties’ behaviour. In
this paper we show that ml functions are asymptotically optimal.

Several studies seek to evaluate and compare trust and reputation systems. The ma-
jority of them use simulation techniques for their assessments [25,5,4]. Schlosser et
al. [21] present a formal model for describing metrics in reputation systems and they
evaluate the effectiveness of reputation systems on the basis of simulations. Wang and
Vassileva [24] propose a Bayesian network-based trust model and evaluate their ap-
proach on the basis of simulations’ results. To the best of our knowledge, only a few
studies follow an approach similar to the one we propose for investigating

trust and reputation systems. Among these, Sassone et al. in [20]
propose a formal framework for the comparison of probabilistic trust models based

on KL-divergence.
The KL-divergence is proposed as a measure of quality for reputation functions.
ElSalamouny et al. in [7] analyse the case of ratees exhibiting dynamic behaviours.

Considerations on asymptotic behaviour are however absent. Alvim et al. [15] use the
notion of gain functions in the context of information flow analysis. Such functions are
the counterpart of loss functions we use. They propose different gain functions in order
to quantify information leakage in several scenarios.
Further Work. The extension of our framework to different data models, with rating
values released in different ways is one of the directions for our future research.

We shortly discuss here a possible refinement of the observation and rating mecha-
nism that takes into account possible raters’ mis-behaviour. We would like to take into
account the case in which each rater is characterised by a (unobservable, possibly ma-
licious) bias, which can lead him to under- or over-evaluate its interactions with the
ratees.
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In order to do that we have to introduce a refined data generation model, where the
probability of observing a given rating value does not depend solely on the behaviour
of the ratee, but also on some unobservable bias characterizing the rater’s behaviour.
We argue that a data-model with hidden variables is well-suited to model this kind of
scenario; this naturally prompts the use of Expectation-Maximization (em) algorithm
[1] to practically perform parameter estimation in this context. The em algorithm can
be used for efficiently implementing the decision functions we have considered in the
previous sections.

Another issue is how to evaluate the fitness of the model to the data actually available;
and, in general, how to assess the trade-off between tractability and accuracy of the
model.
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Abstract. We introduce a new problem modeling voter deterrence by
deletion of candidates in elections: In an election, the removal of cer-
tain candidates might deter some of the voters from casting their votes,
and the lower turnout then could cause a preferred candidate to win the
election. This is a special case of the variant of the Control prob-
lem in which an external agent is allowed to delete candidates and
votes in order to make his preferred candidate win, and a generalization
of the variant where candidates are deleted, but no votes. We initiate
a study of the computational complexity of this problem for several
voting systems and obtain NP-completeness and W[2]-hardness with
respect to the parameter number of deleted candidates for most of them.

1 Introduction

Imagine: finally, you have the chance of getting rid of your old mayor, whom
you absolutely cannot stand. Luckily, in addition to the normal unscrupulous
opponents, the perfect candidate is running for the vote this year. You agree
with everything he says and therefore you are even looking forward to Election
Day. But suddenly the word is spread that he has withdrawn his candidacy.
Again, you are feeling caught between a rock and a hard place. Does it make
any sense to go to the polls if you only have a choice between the lesser of two
evils?

Low voter turnouts caused by scenarios such as the one in the above example
may lead to modified outcomes of an election. This is reminiscent of a family
of problems which have been studied extensively in the computational social
choice literature recently, the Control problems [1–5] where an external agent
can change the outcome of an election by adding or deleting candidates and/or
voters, respectively. In particular, in the setting of constructive control by delet-
ing candidates, the agent can prevent candidates from running for office, which
causes other candidates to rise in ranking for certain voters. This may ultimately
result in the external agent’s preferred candidate winning the election.

In real life, this process is a little bit more complicated and control of an
election can occur in a more entangled way: As in our introductory example,
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if some candidates do not stand for election, then certain voters will not even
take part in the election because they feel that there is nothing interesting to
decide or no relevant candidate to vote for. The lower turnout could have con-
sequences for the remaining candidates: the winner of the election under normal
conditions might lose points because of the lower polling after the deletion of
certain candidates, and this can produce a different winner. Hence, by deterring
the voters by means of deleting their favorite candidates, one might prevent
them from casting their votes and therefore change the outcome of the election.
Therefore, we call this phenomenon voter deterrence.

This situation can be observed in the primaries in US elections or in mayoral
elections, where mayors often are elected with single-digit turnout, sometimes
caused by the withdrawal of candidacy of one or several alternatives in the
run-up.

As to our knowledge, this problem has not yet been considered from a com-
putational point of view. In this paper, we want to initiate the study of the
corresponding decision problem Voter Deterrence defined below. We mainly
consider the case where voters are easily deterred: As soon as their most preferred
candidate does not participate in the election, they refrain from the election. This
is what we denote as 1-Voter Deterrence, but clearly, one can also consider
x-Voter Deterrence, where a voter only refuses to cast his vote if his top x
candidates are removed. Surprisingly, it turns out that 1-Voter Deterrence

is already computationally hard for several voting systems, even for Veto.
This paper is organized as follows. After introducing notation and defining

the decision problem x-Voter Deterrence in Section 2, we investigate the
complexity of this problem for the case of x = 1 for the voting systems Plurality
(for which it turns out to be solvable in polynomial time, but with x = 2 it
is NP-complete), Veto, 2-approval, Borda, Maximin, Bucklin, Fallback Voting,
and Copeland (for all of which the problem turns out to be NP-complete).
As a corollary, we can show that the hard problems are also W [2]-hard with
respect to the solution size, i.e., with respect to the parameter number of deleted
candidates, which means that they remain hard even if only few candidates have
to be deleted to make the preferred candidate win. This is stated in Section 4
together with a short discussion of the complexity with respect to the parameter
number of candidates. We conclude with a discussion of open problems and
further directions that might be interesting for future investigations.

2 Preliminaries

Elections. An election is a pair E = (C, V ) consisting of a candidate set C =
{c1, . . . , cm} and a multiset V = {v1, . . . , vn} of votes or voters, each of them
a linear order over C, i.e., a transitive, antisymmetric, and total relation over
the candidates in C, which we denote by �. A voting system maps (C, V ) to
a set W ⊆ C called the winners of the election. All our results are given for the
unique winner case, where W consists of a single candidate.

We will consider several voting systems. Each of them is shortly described
in the corresponding subsection. Most of them are positional scoring protocols,
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which are defined by a vector of integers α = 〈α1, . . . , αm〉, with m being the
number of candidates. For each voter, a candidate receives α1 points if he is
ranked first by the voter, α2 if he is ranked second, etc. The score of a candidate is
the total number of points the candidate receives. Normally, whenever candidates
receive points in a voting system, the one with the highest score wins.

Voter Deterrence, Control. In an x-Voter Deterrence instance, we con-
sider a fixed natural number x, and we are given an election E = (C, V ),
a preferred candidate p ∈ C, and a natural number k ≤ |C|, as well as a vo-
ting system. It will always be clear from the context which voting system we
are using, so we will not mention it explicitly in the problem description. Let
R ⊆ C denote a subset of candidates, and let VR ⊆ V denote the set of voters
who have ranked only candidates from R among the first x ranks in their vote.
The task consists in determining a set R of at most k candidates that are re-
moved from C, and who therefore prevent the set of voters VR from casting their
votes, such that p is a winner in the election Ẽ = (C \R, V \ VR). The set R is
then called a solution to the x-Voter Deterrence instance. The underlying
decision problem is the following.

x-Voter Deterrence

Given: An election E = (C, V ), a preferred candidate p ∈ C, k ∈ N and
a fixed x ∈ N.
Question: Is there a subset of candidates R ⊆ C with |R| ≤ k, such

that p is the winner in the election Ẽ = (C \R, V \ VR)?

x-Voter Deterrence is a special case of one of the many variants of the
Control problem [5], where the chair is allowed to delete candidates and votes,
which is defined as follows.

Constructive Control by Deleting Candidates and Votes

Given: An election E = (C, V ), a preferred candidate p ∈ C, and
k, l ∈ N.
Question: Is there a subset C′ ⊆ C with |C′| ≤ k, and a subset V ′ ⊆ V

with |V ′| ≤ l, such that p is a winner in the election Ẽ = (C \C′, V \V ′)?

Note that in theVoter Deterrence problem, the deleted candidates and votes
are coupled, which is not necessarily the case in the above Control problem. If
we set x = m, we obtain Constructive Control by Deleting Candidates,
which is the above Constructive Control by Deleting Candidates and

Votes problem with l = 0. The latter variant hence is a special case of m-
Voter Deterrence, implying that the hardness results from [1] carry over to
m-Voter Deterrence.

In this paper, we will mainly consider 1-Voter Deterrence, i.e., a voter
will refuse to cast his vote if his most preferred candidate does not participate in
the election. For the voting system Plurality, we also consider 2-Voter Deter-

rence, where a voter only refrains from voting if his two top ranked candidates
are eliminated from the election.
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Parameterized Complexity. The computational complexity of a problem is
usually studied with respect to the size of the input I of the problem. One can
also consider the parameterized complexity [6–8] taking additionally into account
the size of a so-called parameter k which is a certain part of the input, such as the
number of candidates in an election, or the size of the solution set. A problem is
called fixed-parameter tractable with respect to a parameter k if it can be solved
in f(k) · |I|O(1) time, where f is an arbitrary computable function depending
on k only. The corresponding complexity class consisting of all problems that
are fixed-parameter tractable with respect to a certain parameter is called FPT .

The first two levels of (presumable) parameterized intractability are captured
by the complexity classesW [1] andW [2]. Proving hardness with respect to these
classes can be done using an FPT -reduction, which reduces a problem instance
(I, k) in f(k) · |I|O(1) time to an instance (I ′, k′) such that (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance, and k′ only depends on k but not on |I|,
see [6–8].

For all our hardness proofs, we use theW [2]-completeDominating Set (DS)
problem for undirected graphs.

Dominating Set

Given: An undirected graph G = (V , E), and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that every vertex
v ∈ V is contained in V ′ or has a neighbor in V ′?

Notation in our Proofs. In all our reductions from Dominating Set, we
will associate the vertices of the given graph G = (V , E) with candidates of the
election E = (C′ ∪ I, V ) to be constructed. For that sake, we use a bijection
g : V → I. By N(v) := {u ∈ V | {u, v} ∈ E}, we denote the set of neighbors or
the neighborhood of a vertex v ∈ V . Analogously, we define the neighborhood of
a candidate ci ∈ I as N(ci) = g(N(vi)) for ci = g(vi), i.e., the set of neighbors
of a candidate ci ∈ I corresponding to the vertex vi ∈ V is the set of candidates
corresponding to the neighborhood of vi in G. By N(vi) ⊂ I we denote the set
of non-neighbors of vi, analogously for neighborhoods of candidates.

In our reductions, we usually need one dummy candidate for every ci ∈ C,
these will be denoted by ĉi. All other dummy candidates appearing are marked
with a hat as well, usually they are called d̂ or similarly. When building the votes
in our reductions, we write ‘k ‖ a1 � · · · � al’ which means that we construct
the given vote a1 � · · · � al exactly k times.

In our preference lists, we sometimes specify a whole subset of candidates, e.g.,
c � D for a candidate c ∈ C and a subset of candidates D ⊂ C. This notation
means c � d1 � · · · � dl for an arbitrary but fixed order of D = {d1, . . . , dl}. If
we use a set

→
D in a preference list, we mean one specific, fixed (but arbitrary, and

unimportant) order of the elements in D, which is reversed if we write
←
D. Hence,

if c �
→
D stands for c � d1 � · · · � dl, then c �

←
D means c � dl � · · · � d1.

Finally, whenever we use the notation Drest for a subset of candidates in a vote,
we mean the set consisting of those candidates inD that have not been positioned
explicitly in this vote.
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3 Complexity-Theoretic Analysis

In this section, we will give several hardness proofs for Voter Deterrence for
different voting systems. All our results rely on reductions from theNP-complete
problem Dominating Set. We only prove NP-hardness for the different voting
systems, but since membership inNP is always trivially given,NP-completeness
follows immediately. For all these reductions we assume that every vertex of
the input instance has at least two neighbors, which is achievable by a simple
polynomial time preprocessing.

We will give the first of the following reduction proofs in detail. For the re-
maining reductions, we specify the constructed instances together with further
helpful remarks. The proofs that these are indeed equivalent to the Dominating

Set-instances are straightforward and can be found in the appendix. In each of
them, one obtains a solution to the x-Voter Deterrence-instance by deleting
exactly those candidates that correspond to the vertices belonging to a solution
of the corresponding Dominating Set-instance, and vice versa.

3.1 Plurality

The Plurality protocol is the positional scoring protocol with α = 〈1, 0, . . . , 0〉 [9].
It is easy to see that 1-Voter Deterrence can be solved efficiently for

Plurality. One can simply order the candidates according to their score and
if there are more than k candidates ahead of p, this instance is a no-instance.
Otherwise p will win after deletion of the candidates that were ranked higher than
him, because all the votes which they got a point from are removed. Therefore
the following theorem holds.

Theorem 1. 1-Voter Deterrence is in P for Plurality.

For 2-Voter Deterrence, it is not so easy to see which candidates should be
deleted. In fact, the problem is NP-complete.

Theorem 2. 2-Voter Deterrence is NP-complete for Plurality.

Proof. We prove Theorem 2 with an FPT -reduction from Dominating Set.
Let 〈G = (V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we need one candidate ci and one dummy
candidate ĉi, as well as the preferred candidate p and his dummy candidate p̂,
so C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn, p̂}. For ease of
presentation we denote I ∪ {p} by I∗.

Votes: The votes are built as follows.

n ‖ p � p̂ � Crest, (1)

∀ci ∈ I :

|N(ci)| ‖ ci � ĉi � Crest, (2)

∀cj ∈ N(ci) ∪ {p} :
1 ‖ ci � cj � Crest. (3)
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Note that n votes are built for every candidate ci. Therefore each candidate
in I∗ has the score n. The score of a candidate can only be decreased if the
corresponding candidate himself is deleted. Note also that the score of every
dummy candidate cannot exceed n− 1.
We will now show that one can make p win the election by deleting up to k
candidates if and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is
a solution to the corresponding 2-Voter Deterrence-instance. Since S is
a dominating set, every candidate in I will be at least once in the neighborhood
of a candidate ci ∈ R or be a candidate in R himself. Therefore p is the only
candidate who gains an additional point from every deleted candidate cx ∈ R
from the vote built by (3) and will therefore be the unique winner.

“⇐”: Let R be a given solution to a 2-Voter Deterrence-instance. Note
that every candidate in I∗ has the original score n. These scores can be increased
if the corresponding candidate himself is not deleted. If p wins, then with the
same argument as before, we see that every candidate cx ∈ I either must be
a member of the set R, or must not appear as cj on the second position of the
votes built by (3) for at least one candidate of R, hence must be in the neighbor-
hood of R. Therefore S = g−1(R) is a solution to the equivalent
DS-instance. "#

3.2 Veto

The positional scoring protocol with α = 〈1, 1, . . . , 1, 0〉 is called Veto [9].

Theorem 3. 1-Voter Deterrence is NP-complete for Veto.

We show Theorem 3 with an FPT -reduction from Dominating Set.
Let 〈G = (V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we need one candidate ci, as well as the
preferred candidate p and k+1 dummy candidates, so C = I ∪D∪{p} with I =

{c1, . . . , cn} and D = {d̂1, . . . , d̂k+1}. For ease of presentation we denote I ∪ {p}
by I∗.

Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :
1 ‖ ci � Crest � D � cj , (1)

∀cj ∈ N(ci) ∪ {ci} :
1 ‖ p � Irest � D � cj , (2)

∀d̂j ∈ D :

2 ‖ p � I � Drest � d̂j . (3)

Note that every vote built by (2) and (3) can only be removed by deleting the
candidate p, who should win the election. Therefore these votes will not be
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removed. Note also that for each set of votes constructed for a candidate ci ∈ I,
every candidate in C \D takes the last position in one of theses votes, hence the
score of every such candidate is the same. In contrast, the dummy candidates
cannot win the election at all, due to the fact that they are on the last position
of the constructed votes twice as often as the other candidates.

3.3 2-approval

The 2-approval protocol is the positional scoring protocol with the scoring vector
α = 〈1, 1, 0, . . . , 0〉 [9].

Theorem 4. 1-Voter Deterrence is NP-complete for 2-approval.

We show Theorem 4 by an FPT -reduction from Dominating Set. Let 〈G =
(V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V , we create one candidate ci and one addi-
tional dummy candidate ĉi, finally we need the preferred candidate p. So with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}, the candidates are C = I ∪D ∪ {p}.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci � cj � ĉj � Crest � p, (1)

∀cj ∈ I \ (N(ci) ∪ {ci}) :
1 ‖ ĉi � cj � ĉj � Crest � p, (2)

2 ‖ ĉi � p � Crest, (3)

n− |N(ci)| ‖ ci � ĉi � Crest � p. (4)

Without any candidate deleted, all ci ∈ I and p have the same score of 2n,
while the dummy candidates ĉj ∈ D have a score less than 2n. Note that one
decreases p’s score by deleting a dummy candidate, because a deletion of this
kind results in losing a vote built in (3). Therefore one has to delete candidates
in I to help p in winning.

3.4 Borda

The positional scoring protocol with α = 〈m−1,m−2, . . . , 0〉 is called Borda [9].

Theorem 5. 1-Voter Deterrence is NP-complete for Borda.

We show Theorem 5 by an FPT -reduction from Dominating Set. Let 〈G =
(V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi, finally we need the preferred candidate p. So the candidates are
C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}. For ease of
presentation, we denote I ∪ {p} by I∗.
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Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci �
→
I∗rest � cj � ĉj �

→
Drest � ĉi, (1)

1 ‖ ci � cj � ĉj �
←
I∗rest �

←
Drest � ĉi, (2)

1 ‖ ĉi � ĉj � cj �
←
I∗rest � ci �

←
Drest, (3)

1 ‖ ĉi �
→
I∗rest � ĉj � cj � ci �

→
Drest. (4)

Recall that
→
A denotes one specific order of the elements within the set A which

is reversed in
←
A. Keeping this in mind, it is easy to see that every candidate in I∗

has the same score within one gadget constructed by the four votes built by (1)
to (4) for one cj , while the dummy candidates all have a lower score. Note that
the deletion of any candidate will decrease the score of every other candidate.
Therefore the scores of the candidates in I have to be decreased more than the
one of p, whereas the scores of the candidates in I∗ can never be brought below
the score of any candidate in D.

3.5 Maximin

This voting protocol is also known as Simpson. For any two distinct candidates
i and j, let N(i, j) be the number of voters that prefer i to j. The maximin score
of i is minj �=i N(i, j) [9].

Theorem 6. 1-Voter Deterrence is NP-complete for Maximin.

We show Theorem 6 by an FPT -reduction from Dominating Set. Let 〈G =
(V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi, finally we need the preferred candidate p. So the candidates are
C = I ∪D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
I rest �

→
N(ci) � p �

→
Drest � ĉi, (1)

1 ‖ ci �
←
N(ci) � p �

←
I rest �

←
Drest � ĉi, (2)

1 ‖ ĉi �
→
I rest � p �

→
N(ci) �

→
Drest � ci, (3)

1 ‖ ĉi � p �
←
N(ci) �

←
I rest �

←
Drest � ci. (4)

Recall that
→
A denotes one specific order of the elements within set A which is

reversed in
←
A. With this in mind, it is easy to see that every candidate in I has

the same score as p, namely 2n. The dummy candidates are not able to win the
election as long as at least one of the candidates in I or p is remaining.
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3.6 Bucklin and Fallback Voting

A candidate c’s Bucklin score is the smallest number k such that more than half
of the votes rank c among the top k candidates. The winner is the candidate
that has the smallest Bucklin score [10].

Theorem 7. 1-Voter Deterrence is NP-complete for Bucklin.

Note that Bucklin is a special case of Fallback Voting, where each voter approves
of each candidate, see [11]. We therefore also obtain

Corollary 1. 1-Voter Deterrence is NP-complete for Fallback Voting.

We show Theorem 7 by an FPT -reduction from Dominating Set. Let 〈G =
(V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi. Additionally, we need the preferred candidate p and several dummy
candidates. We need n(n+k) filling dummies f̂ , k(2n+k−1) security dummies ŝ,

and finally k− 1 leading dummies l̂. So the candidates are C = I ∪D ∪ S ∪F ∪
L ∪ {p} with I = {c1, . . . , cn}, D = {ĉ1, . . . , ĉn}, S = {ŝ1, . . . , ŝk(2n+k−1)},
F = {f̂1, . . . , f̂n(n+k)}, and L = {l̂1, . . . , l̂k−1}. For ease of presentation, we
denote I ∪ {p} by I∗.

Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci � N(ci) � {f̂(i−1)(n+1)+1, . . . , f̂i(n+1)−|N(ci)|−1}
� {ŝ(2i−2)(k+1)+1, . . . , ŝ2(i−1)(k+1)} � Crest � p, (1)

1 ‖ ĉi � N(ci) � {f̂i(n+1)−|N(ci)|, . . . , f̂(i)(n+1)} � p

� {ŝ(2i−1)(k+1)+1, . . . , ŝ2i(k+1)} � Crest, (2)

∀r ∈ {1, . . . , k − 1} : one vote of the form

1 ‖ l̂r � {f̂n(n+1)+(r−1)n+1, . . . , f̂n(n+1)+in}
� {ŝ2n(k+1)+(r−1)(k+1)+1, . . . , ŝ2n(k+1)+r(k+1)} � Crest � p. (3)

Note that every candidate in I∗ occurs within the first n + 2 positions in the
votes built by (1) and (2) for every candidate ci ∈ I exactly once. Therefore p
is not the unique winner without modification. Note also that deleting some of
the dummy candidates is not helping p, as they all appear just once within the
first n + 2 positions. Because of the security dummies, no candidate in I∗ can
move up to one of the first n + 2 positions, if he has not been there before.
After the deletion of k candidates, up to k votes can be removed—note that
every removed vote has to be built by (1) or (3) if p wins the election with this
deletion.

3.7 Copeland

For any two distinct candidates i and j, let again N(i, j) be the number of
voters that prefer i to j, and let C(i, j) = +1 if N(i, j) > N(j, i), C(i, j) = 0 if
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N(i, j) = N(j, i), and C(i, j) = −1 if N(i, j) < N(j, i). The Copeland score of
candidate i is

∑
j �=i C(i, j) [9].

Theorem 8. 1-Voter Deterrence is NP-complete for the voting system
Copeland.

We show Theorem 8 by an FPT -reduction from Dominating Set. Let 〈G =
(V , E), k〉 be an instance of DS.

Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi. Additionally we need the preferred candidate p, one thievish candi-
date t̂ and furthermore n filling dummy candidates. So the candidates are C =
I ∪D∪F ∪{t̂, p} with I = {c1, . . . , cn}, D = {ĉ1, . . . , ĉn}, and F = {f̂1, . . . , f̂n}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
N(ci) � t̂ �

→
I rest � p �

→
F �

→
Drest � ĉi, (1)

1 ‖ ci � p �
←
I rest �

←
N(ci) �

←
F � t̂ �

←
Drest � ĉi, (2)

1 ‖ ĉi � t̂ �
→
N(ci) �

→
I rest � p �

→
F � ci �

→
Drest, (3)

1 ‖ ĉi � p �
←
I rest �

←
F � t̂ �

←
N(ci) � ci �

←
Drest. (4)

These n gadgets (consisting of the above 4 votes) cause that the candidates have
different scores. Note that the candidates of each set are always tying with the
other candidates in their set, since every gadget has two votes with one specific
order of the members and another two of the reversed order. Since candidates
in D are losing every pairwise election against all other candidates, they have a
score of −(2n+2). The candidates in F are just winning against the candidates
in D and are tied against t̂ and therefore have a score of −1. Since the candidates
in I and p are on a par with t̂, this gives them a score of 2n and t̂ a score of n. Note
that if there exists a deletion of k candidates which makes p win the election,
there also exists a deletion of up to k candidates in I doing so. The main idea here
is that the thievish candidate can steal exactly one point from every candidate
in I by winning the pairwise election between them due to the deleted candidate
and thereby removed votes. Since t̂ starts with a score of n, this will only bring
him to a score of 2n − k with k deleted candidates. Therefore he cannot get a
higher score than p initially had.

4 Parameterized Complexity-Theoretic Analysis

In this section, we shortly take a closer look at the parameterized complexity of
Voter Deterrence for the previously considered voting systems.

Since all the NP-hardness proofs of the previous section are based on FPT -
reductions from Dominating Set, we immediately obtain

Corollary 2. 1-Voter Deterrence isW [2]-hard for Copeland, Veto, Borda,
2-approval, Maximin, Bucklin, and Fallback Voting, and 2-Voter Deter-

rence is W [2]-hard for Plurality, all with respect to the parameter number
of deleted candidates.
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In contrast, considering a different parameter, one easily obtains the following
tractability result.

Theorem 9. The problem x-Voter Deterrence is in FPT with respect to
the parameter number of candidates for all voting systems having a polynomial
time winner determination.

It is easy to see that Theorem 9 holds: An algorithm trying out every combination
of candidates to delete has an FPT -running time O(mk ·n ·m ·Tpoly), where m is
the number of candidates, n the number of votes, k ≤ m is the number of allowed
deletions, and Tpoly is the polynomial running time of the winner determination
in the specific voting system.

5 Conclusion

We have initiated the study of a voting problem that takes into account correla-
tions that appear in real life, but which has not been considered from a compu-
tational point of view so far. We obtained NP-completeness and W [2]-hardness
for most voting systems we considered. However, this is just the beginning, and it
would be interesting to obtain results for other voting systems such as k-approval
or scoring rules in general. Also, we have concentrated on the case of 1-Voter

Deterrence and so far have investigated 2-Voter Deterrence for Plurality
only.

One could also look at the destructive variant of the problem in which an
external agent wants to prevent a hated candidate from winning the election,
see, e.g., [2] for a discussion for the Control problem.

We have also investigated our problem from the point of view of parameterized
complexity. It would be interesting to consider different parameters, such as
the number of votes, or even a combination of several parameters (see [12]),
to determine the complexity of the problem in a more fine-grained way. This
approach seems especially worthwile because Voter Deterrence, like other
ways of manipulating the outcome of an election, is a problem for which NP-
hardness results promise some kind of resistance against this dishonest behavior.
Parameterized complexity helps to keep up this resistance or to show its failure
for cases where certain parts of the input are small, and thus it provides a more
robust notion of hardness. See, e.g., [11, 13–16], and the recent survey [17].

However, one should keep in mind that combinatorial hardness is a worst case
concept, so it would clearly be interesting to consider the average case complexity
of the problem or to investigate the structure of naturally appearing instances.
E.g., when the voters have single peaked preferences, many problems become
easy [18]. Research in this direction is becoming more and more popular in the
computational social choice community, see for example [18–20].

Acknowledgment. We thank Oliver Gableske for the fruitful discussion which
initiated our study of Voter Deterrence, and the referees of COMSOC 2012
and SOFSEM 2013 whose constructive feedback helped to improve this work.
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Abstract. In this paper, we study collective additive tree spanners for
families of graphs enjoying special Robertson-Seymour’s tree-decomposit-
ions, and demonstrate interesting consequences of obtained results. It
is known that if a graph G has a multiplicative tree t-spanner, then G
admits a Robertson-Seymour’s tree-decomposition with bags of radius at
most �t/2 in G. We use this to demonstrate that there is a polynomial
time algorithm that, given an n-vertex graph G admitting a multiplica-
tive tree t-spanner, constructs a system of at most log2 n collective addi-
tive tree O(t log n)-spanners of G. That is, with a slight increase in the
number of trees and in the stretch, one can “turn” a multiplicative tree
spanner into a small set of collective additive tree spanners. We extend
this result by showing that, for every fixed k, there is a polynomial time
algorithm that, given an n-vertex graph G admitting a multiplicative t-
spanner with tree-width k−1, constructs a system of at most k(1+log2 n)
collective additive tree O(t log n)-spanners of G.

1 Introduction

One of the basic questions in the design of routing schemes for communication
networks is to construct a spanning network (a so-called spanner) which has
two (often conflicting) properties: it should have simple structure and nicely ap-
proximate distances in the network. This problem fits in a larger framework of
combinatorial and algorithmic problems that are concerned with distances in a
finite metric space induced by a graph. An arbitrary metric space (in particular
a finite metric defined by a graph) might not have enough structure to exploit
algorithmically. A powerful technique that has been successfully used recently
in this context is to embed the given metric space in a simpler metric space
such that the distances are approximately preserved in the embedding. New and
improved algorithms have resulted from this idea for several important prob-
lems (see, e.g., [1,2,4,14,18]). There are several ways to measure the quality of
this approximation, two of them leading to the notion of a spanner. For t ≥ 1,
a spanning subgraph H of G = (V,E) is called a (multiplicative) t-spanner of
G if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V [5,23,24]. If r ≥ 0 and dH(u, v) ≤
dG(u, v)+ r, for all u, v ∈ V , then H is called an additive r-spanner of G [19,26].

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 194–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The parameter t is called the stretch (or stretch factor) of H , while the param-
eter r is called the surplus of H . In what follows, we will often omit the word
“multiplicative” when we refer to multiplicative spanners.

Tree metrics are a very natural class of simple metric spaces since many algo-
rithmic problems become tractable on them. A (multiplicative) tree t-spanner of
a graph G is a spanning tree with a stretch t [3], and an additive tree r-spanner
of G is a spanning tree with a surplus r [26]. If we approximate the graph by
a tree spanner, we can solve the problem on the tree and the solution interpret
on the original graph. The tree t-spanner problem asks, given a graph G and
a positive number t, whether G admits a tree t-spanner. Note that the prob-
lem of finding a tree t-spanner of G minimizing t is known in literature also as
the Minimum Max-Stretch spanning Tree problem (see, e.g., [16] and literature
cited therein). Unfortunately, not many graph families admit good tree spanners.
This motivates the study of sparse spanners, i.e., spanners with a small amount
of edges. There are many applications of spanners in various areas; especially,
in distributed systems and communication networks. In [24], close relationships
were established between the quality of spanners (in terms of stretch factor and
the number of spanner edges), and the time and communication complexities
of any synchronizer for the network based on this spanner. Another example is
the usage of tree t-spanners in the analysis of arrow distributed queuing proto-
cols [22]. Sparse spanners are very useful in message routing in communication
networks; in order to maintain succinct routing tables, efficient routing schemes
can use only the edges of a sparse spanner [25]. The Sparsest t-Spanner prob-
lem asks, for a given graph G and a number t, to find a t-spanner of G with
the smallest number of edges. We refer to the survey paper of Peleg [21] for an
overview on spanners.

Inspired by ideas from works of Bartal [1], Fakcharoenphol et al. [17], and
to extend those ideas to designing compact and efficient routing and distance
labeling schemes in networks, in [13], a new notion of collective tree spanners
was introduced. This notion is slightly weaker than the one of a tree spanner
and slightly stronger than the notion of a sparse spanner. We say that a graph
G = (V,E) admits a system of μ collective additive tree r-spanners if there is
a system T (G) of at most μ spanning trees of G such that for any two vertices
x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r
(a multiplicative variant of this notion can be defined analogously). Clearly,
if G admits a system of μ collective additive tree r-spanners, then G admits
an additive r-spanner with at most μ × (n − 1) edges (take the union of all
those trees), and if μ = 1 then G admits an additive tree r-spanner. Recently,
in [10], spanners of bounded tree-width were introduced, motivated by the fact
that many algorithmic problems are tractable on graphs of bounded tree-width,
and a spanner H of G with small tree-width can be used to obtain an ap-
proximate solution to a problem on G. In particular, efficient and compact dis-
tance and routing labeling schemes are available for bounded tree-width graphs
(see, e.g., [12,18] and papers cited therein), and they can be used to compute
approximate distances and route along paths that are close to shortest in G.
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The k-Tree-width t-spanner problem asks, for a given graph G, an integers
k and a positive number t ≥ 1, whether G admits a t-spanner of tree-width at
most k. Every connected graph with n vertices and at most n−1+m edges is of
tree-width at most m+1 and hence this problem is a generalization of the Tree

t-Spanner and the Sparsest t-Spanner problems. Furthermore, spanners of
bounded tree-width have much more structure to exploit algorithmically than
sparse spanners.

Our Results and Their Place in the Context of the Previous Results.
This paper was inspired by few recent results from [7,11,15,16]. Elkin and Pe-
leg in [15], among other results, described a polynomial time algorithm that,
given an n-vertex graph G admitting a tree t-spanner, constructs a t-spanner of
G with O(n log n) edges. Emek and Peleg in [16] presented the first O(log n)-
approximation algorithm for the minimum value of t for the tree t-spanner
problem. They described a polynomial time algorithm that, given an n-vertex
graph G admitting a tree t-spanner, constructs a tree O(t log n)-spanner of G.
Later, a simpler and faster O(log n)-approximation algorithm for the problem
was given by Dragan and Köhler [11]. Their result uses a new necessary con-
dition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner,
then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� in G.

To describe the results of [7] and to elaborate more on the Dragan-Köhler’s
approach, we need to recall definitions of a few graph parameters. They all are
based on the notion of tree-decomposition introduced by Robertson and Seymour
in their work on graph minors [27].

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I, F ))
where {Xi|i ∈ I} is a collection of subsets of V , called bags, and T is a tree.
The nodes of T are the bags {Xi|i ∈ I} satisfying the following three conditions:
1)

⋃
i∈I Xi = V ; 2) for each edge uv ∈ E, there is a bag Xi such that u, v ∈ Xi;

3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

Equivalently, this condition could be stated as follows: for all vertices v ∈ V , the
set of bags {i ∈ I|v ∈ Xi} induces a connected subtree Tv of T .

For simplicity we denote a tree-decomposition ({Xi|i ∈ I}, T = (I, F )) of
a graph G by T (G).

Tree-decompositions were used to define several graph parameters to measure
how close a given graph is to some known graph class (e.g., to trees or to chordal
graphs) where many algorithmic problems could be solved efficiently. The width
of a tree-decomposition T (G) = ({Xi|i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1.
The tree-width of a graph G, denoted by tw(G), is the minimum width, over
all tree-decompositions T (G) of G [27]. The trees are exactly the graphs with
tree-width 1. The length of a tree-decomposition T (G) of a graph G is λ :=
maxi∈I maxu,v∈Xi dG(u, v) (i.e., each bag Xi has diameter at most λ in G).
The tree-length of G, denoted by tl(G), is the minimum of the length, over all
tree-decompositions of G [8]. The chordal graphs are exactly the graphs with
tree-length 1. Note that these two graph parameters are not related to each
other. For instance, a clique on n vertices has tree-length 1 and tree-width n−1,



Collective Additive Tree Spanners 197

whereas a cycle on 3n vertices has tree-width 2 and tree-length n. In [11], yet
another graph parameter was introduced, which is very similar to the notion of
tree-length and, as it turns out, is related to the tree t-spanner problem. The
breadth of a tree-decomposition T (G) of a graph G is the minimum integer r
such that for every i ∈ I there is a vertex vi ∈ V (G) with Xi ⊆ Dr(vi, G) (i.e.,
each bag Xi can be covered by a disk Dr(vi, G) := {u ∈ V (G)|dG(u, vi) ≤ r} of
radius at most r in G). Note that vertex vi does not need to belong to Xi. The
tree-breadth of G, denoted by tb(G), is the minimum of the breadth, over all tree-
decompositions of G. Evidently, for any graph G, 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G)
holds. Hence, if one parameter is bounded by a constant for a graph G then the
other parameter is bounded for G as well.

We say that a family of graphs G is of bounded tree-breadth (of bounded tree-
width, of bounded tree-length) if there is a constant c such that for each graph G
from G, tb(G) ≤ c (resp., tw(G) ≤ c, tl(G) ≤ c).

It was shown in [11] that if a graph G admits a tree t-spanner then its tree-
breadth is at most �t/2� and its tree-length is at most t. Furthermore, any
graph G with tree-breadth tb(G) ≤ ρ admits a tree (2ρ,log2 n-)-spanner that
can be constructed in polynomial time. Thus, these two results gave a new
log2 n-approximation algorithm for the tree t-spanner problem on general
(unweighted) graphs (see [11] for details). The algorithm of [11] is conceptually
simpler than the previous O(log n)-approximation algorithm proposed for the
problem by Emek and Peleg [16].

Dourisboure et al. in [7] concerned with the construction of additive span-
ners with few edges for n-vertex graphs having a tree-decomposition into bags
of diameter at most λ, i.e., the tree-length λ graphs. For such graphs they con-
struct additive 2λ-spanners with O(λn+n logn) edges, and additive 4λ-spanners
with O(λn) edges. Combining these results with the results of [11], we obtain
the following interesting fact (in a sense, turning a multiplicative stretch into
an additive surplus without much increase in the number of edges).

Theorem 1. (combining [7] and [11]) If a graph G admits a (multiplicative)
tree t-spanner then it has an additive 2t-spanner with O(tn+ n logn) edges and
an additive 4t-spanner with O(tn) edges, both constructible in polynomial time.

This fact rises few intriguing questions. Does a polynomial time algorithm exist
that, given an n-vertex graph G admitting a (multiplicative) tree t-spanner,
constructs an additive O(t)-spanner of G with O(n) or O(n log n) edges (where
the number of edges in the spanner is independent of t)? Is a result similar to one
presented by Elkin and Peleg in [15] possible? Namely, does a polynomial time
algorithm exist that, given an n-vertex graph G admitting a (multiplicative) tree
t-spanner, constructs an additive (t−1)-spanner ofG with O(n log n) edges? If we
allow to use more trees (like in collective tree spanners), does a polynomial time
algorithm exist that, given an n-vertex graph G admitting a (multiplicative) tree
t-spanner, constructs a system of Õ(1) collective additive tree Õ(t)-spanners of
G (where Õ is similar to Big-O notation up to a poly-logarithmic factor)? Note
that an interesting question whether a multiplicative tree spanner can be turned
into an additive tree spanner with a slight increase in the stretch is (negatively)
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settled already in [16]: if there exist some δ = o(n) and ε > 0 and a polynomial
time algorithm that for any graph admitting a tree t-spanner constructs a tree
((6/5− ε)t+ δ)-spanner, then P=NP.

We give some partial answers to these questions in Section 2. We investi-
gate there a more general question whether a graph with bounded tree-breadth
admits a small system of collective additive tree spanners. We show that any
n-vertex graphG has a system of at most log2 n collective additive tree (2ρ log2 n)
-spanners, where ρ ≤ tb(G). This settles also an open question from [7] whether
a graph with tree-length λ admits a small system of collective additive tree
Õ(λ)-spanners.

As a consequence, we obtain that there is a polynomial time algorithm that,
given an n-vertex graph G admitting a (multiplicative) tree t-spanner, con-
structs: i) a system of at most log2 n collective additive tree O(t log n)-spanners
of G (compare with [11,16] where a multiplicative tree O(t log n)-spanner was
constructed for G in polynomial time; thus, we ”have turned” a multiplicative
tree O(t log n)-spanner into at most log2 n collective additive tree O(t log n)-
spanners); ii) an additive O(t log n)-spanner of G with at most n log2 n edges
(compare with Theorem 1).

In Section 3 we generalize the method of Section 2. We define a new notion
which combines both the tree-width and the tree-breadth of a graph.

The k-breadth of a tree-decomposition T (G) = ({Xi|i ∈ I}, T = (I, F )) of
a graph G is the minimum integer r such that for each bag Xi, i ∈ I, there
is a set of at most k vertices Ci = {vij|vij ∈ V (G), j = 1, . . . , k} such that for
each u ∈ Xi, we have dG(u,Ci) ≤ r (i.e., each bag Xi can be covered with at
most k disks of G of radius at most r each; Xi ⊆ Dr(v

i
1, G) ∪ . . . ∪Dr(v

i
k, G)).

The k-tree-breadth of a graph G, denoted by tbk(G), is the minimum of the
k-breadth, over all tree-decompositions of G. We say that a family of graphs G is
of bounded k-tree-breadth, if there is a constant c such that for each graph G from
G, tbk(G) ≤ c. Clearly, for every graph G, tb(G) = tb1(G), and tw(G) ≤ k− 1 if
and only if tbk(G) = 0. Thus, the notions of the tree-width and the tree-breadth
are particular cases of the k-tree-breadth.

In Section 3, we show that any n-vertex graph G with tbk(G) ≤ ρ has
a system of at most k(1+log2 n) collective additive tree (2ρ(1+log2 n))-spanners.
In Section 4, we extend a result from [11] and show that if a graph G admits
a (multiplicative) t-spanner H with tw(H) = k − 1 then its k-tree-breadth is
at most �t/2�. As a consequence, we obtain that, for every fixed k, there is
a polynomial time algorithm that, given an n-vertex graph G admitting a (mul-
tiplicative) t-spanner with tree-width at most k−1, constructs: i) a system of at
most k(1+log2 n) collective additive tree O(t log n)-spanners of G; ii) an additive
O(t log n)-spanner of G with at most O(kn logn) edges.

All proofs omitted in this extended abstract and a few illustrative figures can
be found in the full version of the paper [9].

Preliminaries. All graphs occurring in this paper are connected, finite, un-
weighted, undirected, loopless and without multiple edges. We call G = (V,E)
an n-vertex m-edge graph if |V | = n and |E| = m. A clique is a set of pairwise
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adjacent vertices of G. By G[S] we denote a subgraph of G induced by vertices of
S ⊆ V . Let also G\S be the graph G[V \S] (which is not necessarily connected).
A set S ⊆ V is called a separator of G if the graph G[V \ S] has more than one
connected component, and S is called a balanced separator of G if each connected
component of G[V \ S] has at most |V |/2 vertices. A set C ⊆ V is called a ba-
lanced clique-separator of G if C is both a clique and a balanced separator of G.
For a vertex v of G, the sets NG(v) = {w ∈ V |vw ∈ E} and NG[v] = NG(v)∪{v}
are called the open neighborhood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the
length of a shortest path connecting u and v in G. The diameter in G of a set
S ⊆ V is maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in
some papers they are called the weak diameter and the weak radius to indicate
that the distances are measured in G not in G[S]). The disk of G of radius
k centered at vertex v is the set of all vertices at distance at most k to v:
Dk(v,G) = {w ∈ V |dG(v, w) ≤ k}. A disk Dk(v,G) is called a balanced disk-
separator of G if the set Dk(v,G) is a balanced separator of G.

2 Collective Additive Tree Spanners and Tree-Breadth

In this section, we show that every n-vertex graph G has a system of at most
log2 n collective additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). We also
discuss consequences of this result. Our method is a generalization of techniques
used in [13] and [11]. We will assume that n ≥ 4 since any connected graph with
at most 3 vertices has an additive tree 1-spanner.

Note that we do not assume here that a tree-decomposition T (G) of breadth
ρ is given for G as part of the input. Our method does not need to know T (G),
our algorithm works directly on G. For a given graph G and an integer ρ, even
checking whether G has a tree-decomposition of breadth ρ could be a hard
problem. For example, while graphs with tree-length 1 (as they are exactly the
chordal graphs) can be recognized in linear time, the problem of determining
whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [20]). We will need the following results proven in [11].

Lemma 1 ([11]). Every graph G has a balanced disk-separator Dr(v,G) cen-
tered at some vertex v, where r ≤ tb(G). For an arbitrary graph G with n vertices
and m edges a balanced disk-separator Dr(v,G) with minimum r can be found
in O(nm) time.

Hierarchical Decomposition of a Graph with Bounded Tree-Breadth.
In this subsection, following [11], we show how to decompose a graph with
bounded tree-breadth and build a hierarchical decomposition tree for it. This
hierarchical decomposition tree is used later for construction of collective addi-
tive tree spanners for such a graph.

Let G = (V,E) be an arbitrary connected n-vertex m-edge graph with
a disk-separator Dr(v,G). Also, let G1, . . . , Gq be the connected components of
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G[V \Dr(v,G)]. Denote by Si := {x ∈ V (Gi)| dG(x,Dr(v,G)) = 1} the neigh-
borhood of Dr(v,G) with respect to Gi. Let also G+

i be the graph obtained from
component Gi by adding a vertex ci (representative of Dr(v,G)) and making it
adjacent to all vertices of Si, i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i ) if and
only if there is a vertex xD ∈ Dr(v,G) with xxD ∈ E(G). In what follows,
we will call vertex ci a meta vertex representing disk Dr(v,G) in graph G+

i .
Given a graph G and its disk-separator Dr(v,G), the graphs G+

1 , . . . , G
+
q can

be constructed in total time O(m). Furthermore, the total number of edges in
the graphs G+

1 , . . . , G
+
q does not exceed the number of edges in G, and the total

number of vertices (including q meta vertices) in those graphs does not exceed
the number of vertices in G[V \Dr(v,G)] plus q.

Denote by G/e the graph obtained from G by contracting its edge e. Recall
that edge e contraction is an operation which removes e from G while simultane-
ously merging together the two vertices e previously connected. If a contraction
results in multiple edges, we delete duplicates of an edge to stay within the
class of simple graphs. The operation may be performed on a set of edges by
contracting each edge (in any order).

Lemma 2 ([11]). For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤
ρ. Consequently, if tb(G) ≤ ρ, then tb(G+

i ) ≤ ρ for each i = 1, . . . , q.

Clearly, one can get G+
i from G by repeatedly contracting (in any order) edges

of G that are not incident to vertices of Gi. In other words, G+
i is a minor

of G. Recall that a graph G′ is a minor of G if G′ can be obtained from G by
contracting some edges, deleting some edges, and deleting some isolated vertices.
The order in which a sequence of such contractions and deletions is performed
on G does not affect the resulting graph G′.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Lemma 1 guarantees that G has a balanced disk-separator Dr(v,G)
with r ≤ ρ, which can be found in O(nm) time by an algorithm that works
directly on graph G and does not require construction of a tree-decomposition of
G of breadth ≤ ρ. Using these and Lemma 2, we can build a (rooted) hierarchical
tree H(G) for G as follows. If G is a connected graph with at most 5 vertices,
thenH(G) is one node tree with root node (V (G), G). Otherwise, find a balanced
disk-separator Dr(v,G) in G with minimum r (see Lemma 1) and construct the
corresponding graphs G+

1 , G
+
2 , . . . , G

+
q . For each graph G+

i (i = 1, . . . , q) (by

Lemma 2, tb(G+
i ) ≤ ρ), construct a hierarchical tree H(G+

i ) recursively and
build H(G) by taking the pair (Dr(v,G), G) to be the root and connecting the
root of each tree H(G+

i ) as a child of (Dr(v,G), G).
The depth of this tree H(G) is the smallest integer k such that n

2k
+ 1

2k−1 +

. . . + 1
2 + 1 ≤ 5, that is, the depth is at most log2 n − 1. It is also easy to see

that, given a graph G with n vertices and m edges, a hierarchical tree H(G) can
be constructed in O(nm log2 n) total time. There are at most O(log n) levels in
H(G), and one needs to do at most O(nm log n) operations per level since the
total number of edges in the graphs of each level is at most m and the total
number of vertices in those graphs can not exceed O(n logn).
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For an internal (i.e., non-leaf) node Y of H(G), since it is associated with
a pair (Dr′(v

′, G′), G′), where r′ ≤ ρ,G′ is a minor ofG and v′ is the center of disk
Dr′(v

′, G′) of G′, it will be convenient, in what follows, to denote G′ by G(↓ Y ),
v′ by c(Y ), r′ by r(Y ), and Dr′(v

′, G′) by Y itself. Thus, (Dr′(v
′, G′), G′) =

(Dr(Y )(c(Y ), G(↓ Y )), G(↓ Y )) = (Y,G(↓ Y )) in these notations, and we identify
node Y of H(G) with the set Y = Dr(Y )(c(Y ), G(↓ Y )) and associate with this
node also the graph G(↓ Y ). Each leaf Y of H(G), since it corresponds to a pair
(V (G′), G′), we identify with the set Y = V (G′) and use, for a convenience, the
notation G(↓ Y ) for G′. If now (Y 0, Y 1, . . . , Y h) is the path of H(G) connecting
the root Y 0 of H(G) with a node Y h, then the vertex set of the graph G(↓ Y h)
consists of some (original) vertices of G plus at most h meta vertices representing
the disks Dr(Y )(c(Y

i), G(↓ Y i)) = Y i, i = 0, 1, . . . , h − 1. Note also that each
(original) vertex of G belongs to exactly one node of H(G).

Construction of Collective Additive Tree Spanners. Unfortunately, the
class of graphs of bounded tree-breadth is not hereditary, i.e., induced subgraphs
of a graph with tree-breath ρ are not necessarily of tree-breadth at most ρ (for
example, a cycle of length � with one extra vertex adjacent to each vertex of
the cycle has tree-breadth 1, but the cycle itself has tree-breadth �/3). Thus,
the method presented in [13], for constructing collective additive tree spanners
for hereditary classes of graphs admitting balanced disk-separators, cannot be
applied directly to the graphs of bounded tree-breadth. Nevertheless, we will
show that, with the help of Lemma 2, the notion of hierarchical tree from previous
subsection and a careful analysis of distance changes (see Lemma 3), it is possible
to generalize the method of [13] and construct in polynomial time for every n-
vertex graph G a system of at most log2 n collective additive tree (2ρ log2 n)-
spanners, where ρ ≤ tb(G). Unavoidable presence of meta vertices in the graphs
resulting from a hierarchical decomposition of the original graph G complicates
the construction and the analysis. Recall that, in [13], it was shown that if every
induced subgraph of a graph G enjoys a balanced disk-separator with radius ≤ r,
then G admits a system of at most log2 n collective additive tree 2r-spanners.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Let H(G) be a hierarchical tree of G. Consider an arbitrary internal
node Y h of H(G), and let (Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the

root Y 0 of H(G) with Y h. Let Ĝ(↓Y j) be the graph obtained from G(↓Y j) by

removing all its meta vertices (note that Ĝ(↓Y j) may be disconnected).

Lemma 3. For any vertex z from Y h∩V (G) there exists an index i ∈ {0, . . . , h}
such that the vertices z and c(Y i) can be connected in the graph Ĝ(↓ Y i) by
a path of length at most ρ(h+ 1). In particular, dG(z, c(Y

i)) ≤ ρ(h+ 1) holds.

Consider arbitrary vertices x and y of G, and let S(x) and S(y) be the nodes
of H(G) containing x and y, respectively. Let also NCAH(G)(S(x), S(y)) be the

nearest common ancestor of nodes S(x) and S(y) in H(G) and (Y 0, Y 1, . . . , Y h)
be the path ofH(G) connecting the root Y 0 of H(G) with NCAH(G)(S(x), S(y))

= Y h (i.e., Y 0, Y 1, . . . , Y h are the common ancestors of S(x) and S(y)).
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Lemma 4. Any path PG
x,y connecting vertices x and y in G contains a vertex

from Y 0 ∪ Y 1 ∪ . . . ∪ Y h.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Y i

be the node of the path (Y 0, Y 1, . . . , Y h) with the smallest index such that
SPG

x,y

⋂
Y i �= ∅ in G. The following lemma holds.

Lemma 5. For each j = 0, . . . , i, dG(x, y) = dG′(x, y) where G′ := Ĝ(↓Y j).

Let now Bi
1, . . . , B

i
pi

be the nodes at depth i of the tree H(G). For each node Bi
j

that is not a leaf ofH(G), consider its (central) vertex cij := c(Bi
j). If c

i
j is an orig-

inal vertex of G (not a meta vertex created during the construction of H(G)),
then define a connected graph Gi

j obtained from G(↓ Bi
j) by removing all its

meta vertices. If removal of those meta vertices produced few connected compo-
nents, choose as Gi

j that component which contains the vertex cij . Denote by T i
j

a BFS–tree of graph Gi
j rooted at vertex cij of Bi

j . If B
i
j is a leaf of H(G), then

Bi
j has at most 5 vertices. In this case, remove all meta vertices from G(↓ Bi

j)
and for each connected component of the resulting graph construct an additive
tree spanner with optimal surplus ≤ 3. Denote the resulting subtree (forest) by
T i
j . The trees T i

j (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi), obtained this way,
are called local subtrees of G. Clearly, the construction of these local subtrees
can be incorporated into the procedure of constructing hierarchical tree H(G)
of G.

Lemma 6. For any two vertices x, y ∈ V (G), there exists a local subtree T such
that dT (x, y) ≤ dG(x, y) + 2ρ log2 n− 1.

This lemma implies two important results. Let G be a graph with n vertices and
m edges having tb(G) ≤ ρ. Also, let H(G) be its hierarchical tree and LT (G) be
the family of all its local subtrees (defined above). Consider a graph H obtained
by taking the union of all local subtrees of G (by putting all of them together),
i.e., H :=

⋃
{T i

j |T i
j ∈ LT (G)} = (V,∪{E(T i

j )|T i
j ∈ LT (G)}). Clearly, H is

a spanning subgraph of G, constructible in O(nm log2 n) total time, and, for
any two vertices x and y of G, dH(x, y) ≤ dG(x, y) + 2ρ log2 n − 1 holds. Also,
since for every level i (i = 0, 1, . . . , depth(H(G))) of hierarchical tree H(G), the
corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their union
has at most n−1 edges. Therefore, H cannot have more than (n−1) log2 n edges
in total. Thus, we have proven the following result.

Theorem 2. Every graph G with n vertices and tb(G) ≤ ρ admits an addi-
tive (2ρ log2 n)–spanner with at most n log2 n edges. Furthermore, such a sparse
additive spanner of G can be constructed in polynomial time.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈
{0, 1, . . . , depth(H(G))}) and consider separately the union of only local sub-
trees T i

1, . . . , T
i
pi
, corresponding to the level i of the hierarchical tree H(G), and

then extend in linear O(m) time that forest to a spanning tree T i of G (using, for
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example, a variant of the Kruskal’s Spanning Tree algorithm for the unweighted
graphs). We call this tree T i the spanning tree of G corresponding to the level i
of the hierarchical tree H(G). In this way we can obtain at most log2 n spanning
trees for G, one for each level i of H(G). Denote the collection of those spanning
trees by T (G). Thus, we obtain the following theorem.

Theorem 3. Every graph G with n vertices and tb(G) ≤ ρ admits a system
T (G) of at most log2 n collective additive tree (2ρ log2 n)–spanners. Furthermore,
such a system of collective additive tree spanners of G can be constructed in
polynomial time.

Additive Spanners forGraphsHaving (Multiplicative)Tree t–spanners.
Now we give implications of the above results for the class of tree t–spanner ad-
missible graphs. In [11], the following important (“bridging”) lemma was proven.

Lemma 7 ([11]). If a graph G admits a tree t-spanner then its tree-breadth is
at most �t/2�.

Note that the tree-breadth bounded by �t/2� provides only a necessary condition
for a graph to have a multiplicative tree t-spanner. There are (chordal) graphs
which have tree-breadth 1 but any multiplicative tree t-spanner of them has
t = Ω(logn) [11]. Furthermore, a cycle on 3n vertices has tree-breadth n but
admits a system of 2 collective additive tree 0-spanners.

Combining Lemma 7 with Theorem 2 and Theorem 3, we deduce the follo-
wing results.

Theorem 4. Let G be a graph with n vertices and m edges having a (multiplica-
tive) tree t–spanner. Then, G admits an additive (2�t/2� log2 n)–spanner with at
most n log2 n edges constructible in O(nm log2 n) time.

Theorem 5. Let G be a graph with n vertices and m edges having a (multiplica-
tive) tree t–spanner. Then, G admits a system T (G) of at most log2 n collective
additive tree (2�t/2� log2 n)–spanners constructible in O(nm log2 n) time.

3 Graphs with Bounded k-Tree-Breadth, k ≥ 2

In this section, we extend the approach of Section 2 and show that any n-vertex
graph G with tbk(G) ≤ ρ has a system of at most k(1+log2 n) collective additive
tree (2ρ(1+ log2 n))-spanners constructible in polynomial time for every fixed k.

Balanced Separators for Graphs with Bounded k-Tree-Breadth. We
say that a graph G = (V,E) with |V | ≥ k has a balanced Dk

r -separator if there
exists a collection of k disks Dr(v1, G), Dr(v2, G), . . . , Dr(vk, G) in G, centered
at (different) vertices v1, v2, . . . , vk and each of radius r, such that the union of

those disks Dk
r :=

⋃k
i=1 Dr(vi, G) forms a balanced separator of G, i.e., each

connected component of G[V \ Dk
r ] has at most |V |/2 vertices. The following

result generalizes Lemma 1.
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Lemma 8. Every graph G with at least k vertices and tbk(G) ≤ ρ has a bal-
anced Dk

ρ -separator. For an arbitrary graph G with n ≥ k vertices and m edges,

a balanced Dk
r -separator with the smallest radius r can be found in O(nkm) time.

Collective Additive Tree Spanners of a Graph with Bounded k-Tree-
Breadth. Using Lemma 8, we generalize the technique of Section 2 and obtain
the following results for the graphs with bounded k-tree-breadth (k ≥ 2). Details
can be found in the full version of this extended abstract (see [9]).

Theorem 6. Every graph G with n vertices and tbk(G) ≤ ρ admits an additive
(2ρ(1+ log2 n))–spanner with at most O(kn logn) edges constructible in polyno-
mial time for every fixed k.

Theorem 7. Every n-vertex graph G with tbk(G) ≤ ρ admits a system T (G) of
at most k(1+log2 n) collective additive tree (2ρ(1+log2 n))-spanners constructible
in polynomial time for every fixed k.

4 Additive Spanners for Graphs Admitting t–Spanners of
Bounded Tree-Width

In this section, we show that if a graph G admits a (multiplicative) t-spanner H
with tw(H) = k − 1 then its k-tree-breadth is at most �t/2�. As a consequence,
we obtain that, for every fixed k, there is a polynomial time algorithm that, given
an n-vertex graph G admitting a (multiplicative) t-spanner with tree-width at
most k − 1, constructs a system of at most k(1 + log2 n) collective additive tree
O(t log n)-spanners of G.

k-Tree-Breadth of a Graph Admitting a t-Spanner of Bounded Tree-
width. Let H be a graph with tree-width k − 1, and let T (H) = ({Xi|i ∈
I}, T = (I, F )) be its tree-decomposition of width k − 1. For an integer r ≥ 0,

denote by X
(r)
i , i ∈ I, the set Dr(Xi, H) :=

⋃
x∈Xi

Dr(x,H). Clearly, X
(0)
i = Xi

for every i ∈ I. The following important lemmas hold.

Lemma 9. For every integer r ≥ 0, T (r)(H) := ({X(r)
i |i ∈ I}, T = (I, F )) is a

tree-decomposition of H with k-breadth ≤ r.

Lemma 10. If a graph G admits a t-spanner with tree-width k−1, then tbk(G) ≤
�t/2�.

Consequences. Now we give two implications of the above results for the class
of graphs admitting (multiplicative) t–spanners with tree-width k− 1. They are
direct consequences of Lemma 10, Theorem 6 and Theorem 7.

Theorem 8. Let G be a graph with n vertices and m edges having a (multiplica-
tive) t–spanner with tree-width k − 1. Then, G admits an additive (2�t/2�(1 +
log2 n))–spanner with at most O(kn logn) edges constructible in polynomial time
for every fixed k.
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Theorem 9. Let G be a graph with n vertices and m edges having a (multiplica-
tive) t–spanner with tree-width k− 1. Then, G admits a system T (G) of at most
k(1 + log2 n) collective additive tree (2�t/2�(1 + log2 n))–spanners constructible
in polynomial time for every fixed k.
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Abstract. We present a completeness proof of the inductive assertion
method for object-oriented programs extended with auxiliary variables.
The class of programs considered are assumed to compute over structures
which include the standard interpretation of Presburger arithmetic. Fur-
ther, the assertion language is first-order, i.e., quantification only ranges
over basic types like that of the natural numbers, Boolean and Object.

1 Introduction

In [5], Cook introduced a general condition of completeness of Hoare logics in
terms of the expressibility of the weakest precondition. Harel defined in [9]
a general class of (first-order) structures which include the standard interpre-
tation of Peano Arithmetic. For this class standard coding techniques suffice
to express the weakest precondition. This is not the case for programs with
general abstract data structures as studied by Tucker and Zucker in [18]. They
prove therefore expressibility of the weakest precondition in a weak second-order
language which contains quantification over finite sequences.

In this paper we study arithmetic completeness of inductive assertion net-
works [7] for proving correctness of object-oriented programs. Our main con-
tribution shows that the inductive assertion method is complete for a class of
programs which compute over weak arithmetic structures. Such structures in-
clude the standard interpretation of Presburger arithmetic. Though multiplica-
tion can be simulated in the programming language by repeated addition using
a while loop, omitting multiplication limits the expressiveness of the assertion
language severely, as can be seen by the following argument. In a Turing complete
programming language, any recursively enumerable set is the weakest precondi-
tion of some program. But by Presburger’s result [16], formulas of Presburger
arithmetic define only recursive sets, and hence, cannot express the weakest
precondition (nor strongest postcondition) of arbitrary programs.
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We show however that the strongest postcondition is expressible using only
Presburger arithmetic for object-oriented programs, when appropriately instru-
mented with auxiliary array variables. In particular we demonstrate that treat-
ing arrays as objects allows a direct representation of a computation at the
abstraction level of both the programming language and the first-order logic
and enables us to express arbitrary properties of the heap in first-order logic.
As a practical consequence, any first-order logic theorem prover can be used
to prove verification conditions of instrumented object-oriented programs. In
contrast to second-order logic (as used by Tucker and Zucker) or recursive pre-
dicates (separation logic) which are traditionally used to express heap properties,
first-order logic has desirable proof-theoretical properties: first-order logic is the
strongest logic satisfying completeness and the Löwenheim-Skolem theorem [10].
Our approach is tool supported by a special version of KeY [4], a state-of-the-art
prover for Java. On the theoretical side we show that the above expressiveness
result implies completeness: for any valid pre-/postcondition specification of an
object-oriented program there is an inductive assertion network of the program
extended with auxiliary variables.

Finally, using auxiliary variables allows us to restrict the network to recursive
assertions in case the given pre- and postcondition are recursive. This possibility
is of fundamental practical importance as recursive assertions are effectively
computable and, hence, we can use them for run-time checking of programs.

Related work. In [6] completeness of the inductive assertion method has been
studied for recursive programs only and without the use of auxiliary variables.
The absence of auxiliary variables made it necessary to resort to an infinite
collection of intermediate assertions. Apt showed in [2] that recursive assertions
are complete for while programs extended with auxiliary variables. In this paper
we combine and extend on the above results by showing that recursive assertions
are complete for object-oriented programs extended with auxiliary variables.

Completeness of Hoare logics for object-oriented programs is also formally
proven e.g. in [15]. This completeness result however is based on the expressibil-
ity of the strongest postcondition in a weak second-order language which contains
quantification over finite sequences. In [3] completeness for an object-oriented
core language without object creation is proven assuming the standard inter-
pretation of Peano arithmetic for the expressibility of the weakest precondition.
We are not aware of any other completeness result based on weak arithmetic
structures using only Presburger arithmetic and an assertion language which
only contains quantification over basic types., i.e., integer, Boolean and Object.

2 The Programming and Specification Language

We introduce now our core object-oriented language. The language is strongly
typed and contains the primitive types Presburger and Boolean. The only ope-
rations provided by Presburger are those of Presburger arithmetic (0, successor
and addition). The only operations allowed on Booleans are those of Boolean
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algebra. Additionally there are user-defined class types C, predefined class types
T [ ] of unbounded arrays in which the elements are of type T and a union type
Object. Arrays can be dynamically allocated and are indexed by natural num-
bers. Multi-dimensional arrays are modeled (as in Java) as arrays of arrays.
We assume a transitive reflexive subtype relation between types with Object
being the supertype of any class type. Our language can be statically type
checked.

2.1 Syntax

Expressions of our language are side-effect free and generated by the grammar:

e ::= u |e.x |null |e1 = e2 | if b then e fi | if b then e1 else e2 fi |e1[e2] |f(e1, . . . , en) |C(e)

Variables are indicated by u while x denotes a typical field. The Boolean expres-
sion e1 = e2 denotes the test for equality between the values of e1 and e2. For
object expressions we use Java reference semantics, i.e., to be equal e1 and e2
must denote the same object identity. The expression if b then e fi has value e if
the Boolean expression b is true, otherwise it has an arbitrary value. This expres-
sion allows a systematic approach to proving properties about partial functions.
A conditional expression is denoted by if b then e1 else e2 fi. The motivation for
including it in our core language is that it significantly simplifies treatment of
aliasing. If e1 is an expression of type T [ ] and e2 is an expression of type Pres-
burger then e1[e2] is an expression of type T , also called a subscripted variable.
Here T itself can be an array type. For example, if a is an array variable of type
Presburger[ ][ ] then the expression a[0] denotes an array of type Presburger[ ].
The function f(e1, ..., en) denotes a Presburger arithmetic or Boolean operation
of arity n. For class types C the Boolean expression C(e) is true if and only
if the dynamic type of e is C. Dynamic binding can be simulated in our core
language with such expressions. Expressions of a class type can only be com-
pared for equality, dereferenced, accessed as an array if the object is of an array
type, or appear as arguments of a class predicate, if-expression, or conditional
expression.

The language of statements is generated by the following grammar:

s ::= s1; s2 | if b then s2 else s3 fi | while e do s od | abort |
e0.m(e1, ..., en) | u := new | u := e | e1[e2] := e | e1.x := e

The abort statement causes a failure. A statement u := new assigns to the pro-
gram variable u a newly created object of the declared type (possibly an array
type) of u. Objects are never destroyed. We assume every statement and expres-
sion to be well-typed. A program in our language consists of a main statement
together with sets for variable-, field- and method declarations (respectively Var
and FC, MC for every class C).

Assertions are generated by the following first-order language:

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | φ→φ2 | ∃l : φ | ∀l : φ
Here, b is a Boolean expression and l is a logical variable of any type.
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2.2 Semantics

The basic notion underlying the semantics of both the programming language
and the assertion language is that of a many-sorted structure of the form

(dom(Presburger), {true, false}, dom(T1), . . . , dom(Tn), I)

where Ti for 1 ≤ i ≤ n, denotes a class type, array type or some abstract data
type and I denotes an interpretation I of the non-logical function and predicate
symbols (i.e. arithmetic and logical operations). The non-logical symbols include
at least (i) variables declared in Var; (ii) for every class C, its fields declared in
FC; (iii) for every class C a unary predicate C of type Object→ Boolean; and (iv)
for each array type T [ ] an access function [ ]T [ ] of type Presburger→ (T [ ]→ T ).
The domains of different class types are assumed to be disjoint. There is no need
for a separate sort for Object, semantically this set is simply the union of all
the sorts for the class types (which includes array types). It is crucial here that
the structure fixes the standard interpretation of both the types Presburger
and Boolean, and the arithmetical and logical operations defined on them. The
interpretation of the other sorts and operations are user-defined (i.e. not fixed).

We write M(s) instead of I(s) for the interpretation of the non-logical sym-
bol s and M(T ) for the sort dom(T ) in a structure M of our language.

If u is declared in Var as a variable of type T , it is interpreted as an individual
of the sort M(T ). A field x ∈ FC of type T is interpreted as a unary function
M(C)→M(T ). Array access functions [ ]T [ ] are interpreted as binary functions
M(Presburger)→ (M(T [ ])→M(T )). Thus array indices can be seen as fields.

Semantics of Expressions and Statements. The meaning of an expression e of
type T is a total function [[e]] that maps a structure M to an individual of M(T ).
This function is defined by induction on e. Here are the main cases:

– [[e1.x]](M) = M(x)([[e1]](M)).
– [[e1[e2]]](M) = M([ ]T [ ])([[e2]](M))([[e1]](M))

where e1 has the array type T [ ] and e2 has type Presburger.
– [[C(e1)]](M) = true iff [[e1]](M) ∈M(C)

As the meaning function of our semantics is total, some meaning is assigned to
the expression null .x. However, in the execution of programs their meaning is
given operationally by executing the abort statement.

Statements in our language are deterministic and can fail (abort) or diverge.
We define the meaning of a statement in terms of a small-step operational se-
mantics, and use the (quite common) notation

〈s,M〉 −→ 〈s′,M ′〉
to express that executing s in structure M , results after one step in the state-
ment s′ and structure M ′. We use −→∗ for the reflexive transitive closure of this
transition relation. We omit s′ if s immediately terminates from M . Since calls
can appear in statements, the definition of the above transition relation depends
in general on the method declarations. Note that throughout execution, assign-
ments to variables and fields change the structure in the interpretation of the
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variables and fields respectively. The interpretation of the array access function
changes due to assignments to subscripted variables. Moreover during execut-
ing, the sorts dom(Ci) containing instances of Ci are extended with new objects
by object creations u := new. Statements do not affect the sorts Presburger,
Boolean, and the interpretation of the other non-logical symbols.

The meaning of normal assignments, conditional statements and while loops is
defined in the standard way. Hence, we focus on the semantics of array creation.
First define for each type a default value: initPresburger = 0, initBoolean = false
and initC = null. For the selection of a new object of class C we use a choice
function ν on a structure M and class C to get a fresh object ν(M,C) of class C
which satisfies ν(M,C) �∈M(T ) for any type T (in particular, ν(M,C) �∈M(C)).
Clearly, without loss of generality we may assume that ν(M,C) only depends on
M(C) in the sense that this choice function preserves the deterministic nature
of our core language (formally: ν(M,C) = ν(M ′,C) if M(C) = M(C)). Non-
deterministic (or random) selection of a fresh object would require reasoning
semantically up to a notion of isomorphic models which would unnecessarily
complicate proofs.

Let u be of type T [ ]. The semantics of an array creation is modeled by:

〈u := new,M〉 −→M ′

where M ′ is changed from M as follows: Let o denote the object identity chosen
by ν(M,T [ ]), i.e, o = ν(M,T [ ]) then

1. M ′(T [ ]) = M(T [ ]) ∪ {o}.
2. M ′([ ]T [ ])(n)(o) = initT for all n ∈M(Presburger).
3. M ′(u) = o.

The second clause states that all array elements have initially their default value.
The operational semantics of a program is given by the one of its main state-

ment, executed in the initial structure M0. In M0, for every class type C no
objects other than nullC exist, and all variables have their default value.

Semantics of Assertions. The semantics of assertions is defined by the usual
Tarski truth definition. Interestingly, even though we allow quantification over
array objects, all assertions are first-order formulas (interpreted over arbitrary
structures obeying the first-order Presburger and Boolean algebra axioms, in-
cluding non-standard interpretations). This is because of a subtle difference in
meaning between modeling arrays as sequences (not first-order), or as point-
ers to sequences (first-order [17,12]): In case s ranges over (finite) sequences
∃s : s[0] = 0 expresses that there exists a sequence s of natural numbers, of
which the first is 0. This sequence itself is not an element of the domain of a
structure for our many-sorted dynamic logic language, but rather a sequence of
elements of the domain Presburger. In this interpretation the above formula is
valid. In this paper we model arrays as pointers to data-structures in the heap
(e.g., structure) as in Java. If a is a logical variable of type Presburger[ ] then
∃a : a[0] = 0 asserts the existence of an array object (an individual of the sort
for Presburger[ ]) in which currently the first element is 0. This formula is not
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valid, for it is false in all structures in which no such array exists. Note that the
extensionality axiom ∀a, b, n : a[n] = b[n]→ a = b for arrays is also not valid.

3 Inductive Assertion Networks

We extend Floyd’s inductive assertion method to object-oriented programs.
An inductive assertion network is a labelled transition system where transitions
are labelled with conditional assignments of (local) variables. A labelled tran-
sition may fire if its (pre-)condition is satisfied. The corresponding assignment
is executed and the state updated accordingly. Obviously control-flow graphs of
imperative programs fall into the class of these transition systems. The labelled
transition system is extended to an assertion network by assigning each state a
(set of) assertions. An assertion network is called inductive if and only if when-
ever M(φ) holds for a structure (state) M and the condition of a transition is
satisfied, then the assertion φ′ assigned to the resulting structure holds as well.

We extend Floyd’s notion of an inductive assertion network to object-oriented
programs: besides basic assignments, transitions can be labelled with object cre-
ations and assignments to fields and subscripted variables. This requires a cor-
responding extension for computing verification conditions, taking for example
aliasing into account. Finally we need in general auxiliary variables to describe
the object structures in the heap. Because, for instance, first-order logic itself
cannot express reachability in linked lists (see Section 5).

As one main feature of our semantics is to model object creation as exten-
sion of the underlying structure’s domain, the rule for deleting assignments to
auxiliary variables as introduced in Owicki and Gries [14] for reasoning about
shared variable concurrency is not sound anymore. Clearly we cannot remove
the dynamic allocation of the auxiliary variable u even if u does not appear in
the assertions (an assignment u := new in fact may validate an assertion ∃l : φ,
where the logical variable is of the same type as u). To obtain a complete in-
ductive assertion method we allow method signatures extended with auxiliary
formal parameters.

A basic assertion network of a program extended with auxiliary variables as-
sociates assertions with each (sub)statement of the program. A (finite) set of
verification conditions for this annotated program is then generated fully auto-
matically by means of the weakest precondition calculus defined in [1] extended
with a substitution for the (dynamic) creation of arrays. The verification condi-
tions of the pre- and postcondition of a method call are defined in the standard
way in terms of the pre- and postcondition of the method body, modeling pa-
rameter passing by substitution.

4 Expressiveness

In this section we first investigate the expressiveness of auxiliary variables. This
leads to the following main result: the set of reachable states at each control
point of a general class of instrumented programs is expressible in a first-order
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assertion language with equality, unbounded arrays and addition. This forms the
basis for the completeness of our object-oriented inductive assertion method.

4.1 Instrumentation

Below we show how the computation history of instrumented programs can be
stored in auxiliary variables in a canonical manner. The instrumentation must
be faithful to the original program:

Definition 1 (Faithful Instrumentation). Given a set of auxiliary variables,
an instrumented program is faithful to the original program if neither the value
of the normal (non-auxiliary) variables nor the termination behavior is affected
by the instrumentation.

Intuitively the instrumentation adds auxiliary array variables to the original pro-
gram which record only the changes to the values of variables and fields of the
program (including those of an array type). In comparison to storing the full
state at each computation step, this allows for a fairly simple update mecha-
nism for the auxiliary variables. Faithful instrumentations allow the expression
of properties of the original program which cannot be expressed in first-order
logic formulas directly. We now list the auxiliary variables, along with a descrip-
tion how they are set during the execution of instrumented programs, assuming
a unique line number for each (sub)statement:

– A one-dimensional array variable pc of Presburger[ ] to record the history
of the program counter. The intention is that if pc[i] = j, then line j was
executed in the i-th step of the computation.

– A variable |pc| of type Presburger containing the number of completed com-
putation steps.

– For each variable u of a type T an array variable u′ with content type T , and
an array variable u′′ of type Boolean. If in the i-th step of the computation
the value v is assigned to u, then u′[i] = v, and u′′[i] = true. If the i-th step
does not involve an assignment to variable u, we have u′[i] = initT , where
T is the type of u, and u′′[i] = false, which is the default Boolean value.

– For each field x an array x′ of pairs < o, v > (where o is an object identity
and v a value)1, and an array x′′ of Boolean. In analogy to the two arrays
storing the changes to variables, these two arrays store the changes to the
field. The extra object identity is needed to identify the object whose field
was changed.

– For each array type T occurring in the program, a one-dimensional array
variable Arr′T of Boolean storing the computation steps in which the inter-
pretation of an array object of type T was changed, and a one-dimensional
array ArrT of triples < o, n, v > storing the new values of the changed
element in that array (o is an array object, n an array index and v a value).

– A method parameter loc of type Presburger, which stores the line number
on which the call was made.

1 Such a type can be easily defined in our language as a class with two fields.
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pc[|pc|] := j ;
u′[|pc|] := e ;

j : u := e ;
u′′[|pc|] := true ;
|pc| := |pc|+ 1 ;

Fig. 1. Instrumentation of the state-
ment u := e on line number j

pc[|pc|] := j ;
x′[|pc|] :=< e, e′ > ;

j : e.x := e′ ;
x′′[|pc|] := true ;
|pc| := |pc|+ 1 ;

Fig. 2. Instrumentation of the state-
ment e.x := e′ on line number j

As two examples we show how the instrumentation of the basic assignment
and method call is performed in Figures 1 and 2. The control structures are
simply instrumented by updates to the variable pc to record the flow of control.
Additionally in a call we pass the line number as a parameter which is used
upon return. Given a line number j, by next(j) we denote the line number of
the statement which will be executed in the next step of the computation.

To instrument a program with a main statement smain and method bodies
B1, . . . , Bn, label first each program statement uniquely. Then apply the instru-
mentation given above to smain to obtain s′main and to each method body Bi

to obtain the statement B′
i. Next, define a statement init which creates new ob-

jects for the auxiliary array variables, and sets |pc| := 0. The final instrumented
program is given by the main statement init; s′main and method bodies B′

i.

Theorem 1. The above instrumentation is faithful to the original program.

4.2 Weak Arithmetic Completeness

Completeness of basic inductive assertion networks has been proven in [6,11],
provided that suitable intermediate assertions exist in the assertion language.
Here we demonstrate how to find such assertions for the class of instrumented
object-oriented programs as defined previously.

Recall that programs start executing in a fixed initial structure (see Section 2
on semantics of statements). Hence from a purely semantic viewpoint, the inter-
mediate assertion at location l can simply be chosen as the set of all structures
reachable in l from the initial structure. Such reachability predicates are remi-
niscent of the most general correctness formulae introduced by Gorelick in [8] to
show completeness for a Hoare logic for recursive programs.

Definition 2. Let P be a program with statement s on line number l. The reach-
ability predicate Rl denotes the set of states {M |〈P,M0〉 −→∗ 〈s; s′,M〉}, where
M0 is a standard model (the initial structure, see Section 2), and s′ is the re-
mainder of the program to be executed.

It remains to show that our first-order assertion language which only assumes
the standard interpretation of Presburger arithmetic is expressive enough to de-
fine the above reachability predicates syntactically. This is indeed the case for
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instrumented programs. For such programs, the state-based encoding of the com-
putation allows recovering the computation of the instrumented program in the
assertion language without using a Gödel encoding (which relies on the presence
of multiplication in the assertion language). Our results are not restricted to the
specific instrumentation defined in the previous section. In general any faith-
ful instrumentation which allows recovering the computation in the assertion
language can be used.

We now describe how the computation of instrumented programs can be re-
covered in the assertion language. Given an uninstrumented program P and
a computation step i (i.e. a number), define an assertion COMPP,i which com-
pletely describes the state change induced by the i-th computation step in the
instrumented version of P . For an assignment u := e with line number j we
define COMPP,i by

pc[i]=j→(pc[i+1]=next(j)∧u′[i+1]=Val(e, i)∧u′′[i+1]= true∧nochangej(i))

Assignments to fields or subscripted variables can be handled similarly to the
variable assignment above. The expression Val(e, i) stands for the value of the
expression e after the i-th computation step. The interesting case is when e is
a (subscripted) variable or field. We show the case when e is a variable u of type T :

Val(u, i) = z ↔ (initT = z ∧ ∀n ≤ |pc| : u′′[n] = false) ∨
(∃n ≤ i : u′′[n] ∧ u′[n] = z ∧ ∀k(n<k < |pc|) : u′′[n] = false)

The first disjunct asserts that Val(u, i) is determined by the last assignment to u
which occurred before or on computation step i. The second disjunct asserts that
if there was no such assignment, the variable has retained its initial value. The
value of a Boolean condition in a given computation step can also be determined
easily using the Val function.

The predicate nochangej(i) asserts that only the auxiliary variables repre-
senting the l.h.s. of the assignment with line number j are affected by the
i-th computation step, i.e., all the other auxiliary variables indicate at the i-
th step that their represented program variables have not changed. For example,
for a program variable u of type T this is expressed simply by the assertion
u′[i] = initT ∧ u′′[i] = false; and for arrays of type T this is expressed by
ArrT [i] = null∧Arr′T [i] = false. Note that we make use of the initial default
values of the auxiliary variables. We denote by nochange(i) that all auxiliary
variables indicate at the i-th step that their program variables have not changed.

To express the reachability predicate at a location l, one must further assert
that the current values of the normal (non-auxiliary) variables, fields and array
access function are those stored in the auxiliary variables at l (but before the
statement at l is executed). Let us abbreviate such an assertion by aux(l). To
see how aux(l) can be defined in our assertion language, note that for a variable
u it simply reduces to the assertion u = Val(u, l) as defined above. For arrays,
a universal quantification ranging over all array indices is necessary. For instance,
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∀n : a[n] = V al(a[n], l) characterizes the full contents of the array a at location
l. Thus aux(l) can now be expressed as the (finite) conjunction of such assertions
for all variables, fields and arrays. The reachability predicates of instrumented
programs can now be readily defined:

Theorem 2. Let P be an arbitrary program, and let P∗ be the instrumented
version of P . Then the reachability predicate Rl of P∗ is defined by the assertion:

aux(l) ∧ pc[|pc|] = l ∧ ∀0 ≤ i < |pc| : COMPP,i ∧ nochange

where nochange stands for nochange(0) ∧ ∀i > |pc| : pc[i] = 0 ∧ nochange(i).

The next theorem now follows by construction of the reachability predicates:

Theorem 3. Let P∗ be a program instrumented with auxiliary variables as de-
scribed above, and let P ′ be its annotation with at each location l an assertion
which defines Rl. A partial correctness formula {p}P*{q} is true in the initial
model if and only if all generated verification conditions for the assertion network
{p}P ′{q} are true.

The above theorem states that we can derive any true correctness formula in
first-order logic. For proving the generated verification conditions we can take as
axioms all first-order sentences true in the initial model2 (and use any off-the-
shelve theorem prover for first-order logic). This normally results in ineffective
proof systems, since by Gödels incompleteness theorem the axioms are typically
not recursively enumerable. However by excluding multiplication from the asser-
tion language, it follows from Presburgers result that the set arithmetical axioms
is recursive. Thus if the other types are also interpreted in such a way that their
first-order theory is recursive, the truth of the generated verification conditions
is decidable.

5 Example: Expressing and Verifying Reachability

In the previous section the reachability predicates were defined uniformly. In
this section we show how to reduce the complexity of the instrumentation sig-
nificantly by exploiting the structure of a given program and property to prove.

Consider a queue data structure where items of type Presburger can be added
to the beginning of the queue and removed from the end of the queue. The queue

Fig. 3. Queue resulting from first.enqueue(2)

is backed up by a linked
list using a next field which
points to the next item in the
queue. The public interface of
such a queue contains of (i)

two global variables pointing to its first and last element, (ii) an enqueue(v)
method which adds v to the beginning of the queue and (iii) a dequeue method

2 This set is sometimes called the first-order theory of a structure.
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which removes the last item from the queue. Figure 3 visualises the result of the
method call first.enqueue(2), where first initially (i.e. before executing the
call) points to an item with value 3, and last points to an item with value 25.
Let reach(f, l, a, n) abbreviate the assertion

n ≥ 0 ∧ a[0] = f �= null �= a[n] = l ∧ l.next = null
∧ ∀j(0 ≤ j < n) : a[j] �= null ∧ a[j].next = a[j + 1]

Intuitively this assertion specifies that an array a stores the linked list, and that
l is reachable from f by repeated dereferencing of field next.

Using an auxiliary array b to store the new linked list, we can now express that
if this reachability property was initially true then it holds again after executing
enqueue(v):

{∃a, n : reach(first, last, a, n)}
z := new; z.next := first ; z. val := v; first := z
b := new; b[0] := first ; i := 0;
while b[i] �= last do b[i+1] := b[i ]. next; i := i+1 od;
{∃a, n : reach(first, last, a, n)}

Strictly speaking this is a property of this particular instrumented version of
enqueue(v): the original version does not even have the auxiliary array b. How-
ever as the above instrumentation is faithful to the original version, it follows
that last is reachable from first in the original program (by repeated derefer-
encing of next), for otherwise ∃a, n : reach(first, last, a, n) would not hold in
any faithful instrumentation.

As our semantics are based on abstract object creation (not yet created objects
play no role in structures, and are not referable in assertions), a correspond-
ing proof theory is needed to verify the above instrumented program. Based
on [1], we have extended their approach to support dynamically created ar-
rays. The new rules are fully implemented in a special version of KeY, available
at http://keyaoc.hats-project.eu. Only one interaction with KeY is required
to verify the specified reachability property for method enqueue(v), namely the
provision of a loop invariant, everything else was fully automatic.

6 Conclusions

Scope of the Programming Language. We want to stress that our core language
contains all necessary primitive constructs from which more intricate features
can be handled by a completely mechanical translation. The features to which
this transformational approach applies include failures and bounded arrays. In-
heritance and dynamic binding have been addressed in [3]. These transforma-
tions allow us to treat object creation orthogonally to such features, and thereby
indicates our approach scales up to modern languages.

http://keyaoc.hats-project.eu
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Expressibility of Weakest Precondition. General results of Olderog [13] show
there is a certain symmetry between the expressibility of strongest postconditions
and weakest preconditions. To prove the result, Olderog makes a constant domain
assumption which requires a different modeling of object creation than in our
case where we support abstract object creation. Hence one cannot in general
refer to the final values of the variables in assertions evaluated in an initial
state. Consequently Olderog’s result does not apply here: object creation breaks
the symmetry between strongest postconditions and weakest preconditions.

Recursive Assertions. Apt et al. [2] prove that even for recursive preconditions
and postconditions, the intermediate assertions cannot be chosen recursively for
general programs, but only for a class of suitably instrumented programs. Our
assertions defining reachability are currently not recursive due to unbounded
quantification over array indices (see Section 4.2). However, if we restrict to
bounded arrays then we only need bounded quantification in the expression of
the reachability predicates. The trade-off is a significantly more complicated in-
strumentation as at each computation step a reallocation of the auxiliary (array)
variables becomes necessary.
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Abstract. The class SLUR (Single Lookahead Unit Resolution) was
introduced in [22] as an umbrella class for efficient SAT solving. [7,2]
extended this class in various ways to hierarchies covering all of CNF
(all clause-sets). We introduce a hierarchy SLURk which we argue is the
natural “limit” of such approaches.

The second source for our investigations is the class UC of unit-refu-
tation complete clause-sets introduced in [10]. Via the theory of (tree-
resolution based) “hardness” of clause-sets as developed in [19,20,1] we
obtain a natural generalisation UCk, containing those clause-sets which
are “unit-refutation complete of level k”, which is the same as having
hardness at most k. Utilising the strong connections to (tree-)resolution
complexity and (nested) input resolution, we develop fundamental meth-
ods for the determination of hardness (the level k in UCk).

A fundamental insight now is that SLURk = UCk holds for all k.
We can thus exploit both streams of intuitions and methods for the
investigations of these hierarchies. As an application we can easily show
that the hierarchies from [7,2] are strongly subsumed by SLURk. We
conclude with a discussion of open problems and future directions.

1 Introduction

The boolean satisfiability problem, SAT for short, in its core version is the prob-
lem of deciding satisfiability of a conjunctive normal form (clause-set); see the
handbook [4] for further information. We bring together two previously uncon-
nected streams of research:

SLUR The search for classes of clause-sets for which one can decide satisfiability
in polynomial time. Especially we consider the SLUR algorithm and class.

UC The search for target classes of clause-sets with good knowledge compilation
properties, i.e., where the clausal entailment problem can be decided quickly.
Especially we consider the class UC of unit-refutation complete clause-sets.

In the year 1995 in [22] the SLUR algorithm was introduced, a simple incomplete
non-deterministic SAT-decision algorithm, together with the class SLUR of in-
puts where it always succeeds. SLUR contains various classes with polynomial-
time SAT decision, where previously only rather complicated algorithms were
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known. The natural question arises, whether SLUR can be turned into a hier-
archy, covering in the limit all clause-sets. In [7,2] the authors finally proved
that membership decision of SLUR is coNP-complete, and presented three
hierarchies, SLUR(k),SLUR∗(k) and CANON(k). It still seemed that none
of these hierarchies is the final answer, though they all introduce a certain
natural intuition. We now present what seems the natural “limit hierarchy”,
which we call SLURk, and which unifies the two basic intuitions embodied in
SLUR(k),SLUR∗(k) on the one hand and CANON(k) on the other hand.

In the year 1994 in [10] the class UC was introduced, containing clause-sets
F such that clause entailment, that is, whether F |= C holds (clause C follows
logically from F , i.e., C is an implicate of F ), can be decided by unit-clause prop-
agation. A second development is important here, namely the development of the
notion of “hardness” hd(F ) in [19,20,1]. As we show in Theorem 1, hd(F ) ≤ k is
equivalent to the property of F , that all implicates of F (i.e., all clauses C with
F |= C) can be derived by k-times nested input resolution from F , a generali-
sation of input resolution as introduced and studied in [19,20]. We obtain that
UC is precisely the class of clause-sets F with hd(F ) ≤ 1 ! It is then natural to
define the hierarchy UCk via the property hd(F ) ≤ k. The hierarchy CANON(k)
is based on resolution trees of height at most k, which is a special case of k-times
nested input resolution, and so we have CANON(k) ⊂ UCk.

The hardness-notion provides the proof-theoretic side of our investigations.
The algorithmic side is given by the reductions rk(F ), which perform certain
forced assignments, with r1 being UCP (unit-clause propagation) as the most
well-known case. For unsatisfiable F the hardness hd(F ) is equal to the minimal
k such that rk(F ) detects unsatisfiability of F . This yields the basic observation
UC ⊆ SLUR — and actually we have UC = SLUR !

So by replacing the use of r1 in the SLUR algorithm by rk (using a re-
fined, semantic, analysis) we obtain a natural hierarchy SLURk, which includes
the previous SLUR-hierarchies SLUR(k) and SLUR∗(k), and where we have
SLURk = UCk. This equality of these two hierarchies is our argument that we
have found the “limit hierarchy” for SLUR.

The underlying report of this paper is [15], where all missing proofs can be
found, and where examples are provided. Also the anticipated main application
of the classes UCk as target classes for SAT translation is discussed there.

2 Preliminaries

We follow the general notions and notations as outlined in [18]. Based on an
infinite set VA of variables, we form the set LIT := VA ·∪VA of positive and
negative literals, using complementation. A clause C ⊂ LIT is a finite set of
literals without clashes, i.e., C ∩ C = ∅, where for L ⊆ LIT we set L := {x :
x ∈ L}. The set of all clauses is denoted by CL. A clause-set F ⊂ CL is a
finite set of clauses, the set of all clause-sets is CLS. A special clause is the
empty clause ⊥ := ∅ ∈ CL, and a special clause-set is the empty clause-set
1 := ∅ ∈ CLS. By lit(F ) :=

⋃
F ∪

⋃
F we denote the set of literals occurring at



222 M. Gwynne and O. Kullmann

least in one polarity in F . We use var : LIT → VA for the underlying variable
of a literal, var(C) := {var(x) : x ∈ C} ⊂ VA for the variables in a clause, and
var(F ) :=

⋃
C∈F var(C) for the variables in a clause-set. The number of variables

in a clause-set is n(F ) := |var(F )| ∈ N0, the number of clauses is c(F ) := |F | ∈
N0, and the number of literal occurrences is �(F ) :=

∑
C∈F |C| ∈ N0. The set of

Horn clause-sets is HO ⊂ CLS, where every clause contains at most one positive
literal. A partial assignment ϕ : V → {0, 1} maps V ⊂ VA to truth-values,
the set of all partial assignments is PASS . We construct partial assignments via
〈v1 → ε1, . . . , vn → εn〉 ∈ PASS for vi ∈ VA and εi ∈ {0, 1}. We use var(ϕ) := V .
For a partial assignment ϕ ∈ PASS and a clause-set F ∈ CLS the application of
ϕ to F is denoted by ϕ∗F ∈ CLS, which results from F by removing all satisfied
clauses (containing at least one satisfied literal), and removing all falsified literals
from the remaining clauses. A clause-set F is satisfiable (i.e., F ∈ SAT ⊂ CLS)
if there exists a partial assignment ϕ with ϕ∗F = 1, otherwise F is unsatisfiable
(i.e., F ∈ USAT := CLS \ SAT ). Two clauses C,D ∈ CL are resolvable if they
clash in exactly one literal x, that is, C ∩D = {x}, in which case their resolvent
is (C ∪D) \ {x, x} (with resolution literal x). A resolution tree is a binary tree
formed by the resolution operation. We write T : F � C if T is a resolution tree
with axioms (the clauses at the leaves) all in F and with derived clause (at the

root) C. By Comp*
R(F ) for unsatisfiable F the minimum number of leaves in

a tree-resolution-refutation T : F � ⊥ is denoted. Finally, by r1 : CLS → CLS
unit-clause propagation is denoted, that is applying F � 〈x→ 1〉 ∗F as long as
there are unit-clauses {x} ∈ F , and reducing F � {⊥} in case of ⊥ ∈ F .

3 The SLUR Class and Extensions

The SLUR-algorithm and the class SLUR ⊂ CLS have been introduced in [22].
For input F ∈ CLS we get an incomplete polynomial-time SAT algorithm, which
either returns “SAT” or “UNSAT” (in both cases correctly) or gives up. This
algorithm is non-deterministic, and SLUR is the class of clause-sets where it
never gives up (whatever the choices are). Thus SAT-decision for F ∈ SLUR
can be done in polynomial time, and due to an observation attributed to Truem-
per in [11], the SLUR-algorithm can actually be implemented such that it runs
in linear time. Decision of membership, that is whether F ∈ SLUR holds, by
definition is in coNP, but only in [7] it was finally shown that this decision prob-
lem is coNP-complete. The original motivation was that SLUR contains several
other classes, including renamable Horn, extended Horn, hidden extended Horn,
simple extended Horn and CC-balanced clause-sets, where for each class it was
known that the SAT problem is solvable in polynomial time, but with in some
cases rather complicated proofs, while it is trivial to see that the SLUR-algorithm
runs in polynomial time. In [11,12] probabilistic properties of SLUR have been
investigated. In this section we first give a semantic definition of SLUR in Sub-
section 3.1. In a nutshell, SLUR is the class of clause-sets where either UCP
(unit-clause propagation aka r1) creates the empty clause, or where otherwise
iteratively making assignments followed by UCP will always yield a satisfying
assignment, given that these transitions do not obviously create unsatisfiable
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results, i.e., do not create the empty clause. In order to understand this defi-
nition clearly, we present a precise mathematical (non-algorithmic) definition,

based on the transition relation F
SLUR−−−−→ F ′ (Definition 2), which represents one

non-deterministic step of the SLUR algorithm: If r1 on input F ∈ CLS does not
determine unsatisfiability (in which case we have F ∈ SLUR), then F ∈ SLUR
iff 1 can be reached by this transition relation, while everything else reachable
from F is not an end-point of this transition relation. In [7,2] recently three
approaches towards generalising SLUR have been considered, and we discuss
them in Subsection 3.2. Our generalisation, called SLURk, which we see as the
natural completion of these approaches, will be presented in Section 6.

3.1 SLUR

The idea of the SLUR-algorithm (“Single Lookahead Unit Resolution”) for input
F ∈ CLS is as follows: First run UCP, that is, reduce F � r1(F ). If now ⊥ ∈ F
then we determined unsatisfiable. If not, then the algorithm guesses a satisfying

assignment for F , by repeated transitions F
SLUR−−−−→ F ′, where F ′ is obtained

by assigning one variable and then performing UCP. The “lookahead” means
that for F ′ = {⊥} this transition is not performed. The algorithm might find
a satisfying assignment in this way, or it gets stuck, in which case it “gives
up”. The SLUR class is defined as the class of clause-sets where this algorithm
never gives up. The precise details are as follows. First we define the underlying
transition relation (one non-failing transition from F to F ′):

Definition 1. For clause-sets F, F ′ ∈ CLS the relation F
SLUR−−−→ F ′ holds if

there is x ∈ lit(F ) such that F ′ = r1(〈x→ 1〉∗F ) and F ′ �= {⊥}. The transitive-

reflexive closure is denoted by F
SLUR−−−→∗ F ′.

Via the transition-relation F
SLUR−−−−→ F ′ we can now easily define the class SLUR,

which will find a natural generalisation in Definition 11 to SLURk for k ∈ N0:

Definition 2. The set of reduced clause-sets reachable from F ∈ CLS is denoted

by slur(F ) := {F ′ ∈ CLS | F SLUR−−−−→∗ F ′ ∧ ¬∃F ′′ ∈ CLS : F ′ SLUR−−−−→ F ′′}. The
class of all clause-sets which are either identified by UCP to be unsatisfiable, or
where by SLUR-reduction always a satisfying assignment is found, is denoted by
SLUR := {F ∈ CLS : r1(F ) �= {⊥} ⇒ slur(F ) = {1}}.

3.2 Previous Approaches for SLUR Hierarchies

In [7,2] three hierarchies SLUR(k),SLUR∗(k) (k ∈ N) and CANON(k) (k ∈
N0) have been introduced. In Section 4 of [2] it is shown that SLUR(k) ⊂
SLUR∗(k) for all k ∈ N and so we restrict our attention to SLUR∗(k) and
CANON(k). CANON(k) is defined to be the set of clause-sets F such that every
prime implicate of F can be derived from F by a resolution tree of height at
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most k. Note that basically by definition (using stability of resolution proofs
under application of partial assignments) we get that each CANON(k) is stable
under application of partial assignments and under variable-disjoint union. The
SLUR∗(k) hierarchy is derived in [2] from the SLUR class by extending the
reduction r1. We provide an alternative formalisation here, in the same manner
as in Section 3.1. The main question is the transition relation F � F ′. The
SLUR∗(k)-hierarchy provides stronger and stronger witnesses that F ′ might be
satisfiable, by longer and longer assignments (making “k decisions”) not yielding
the empty clause:

Definition 3. That partial assignment ϕ ∈ PASS makes k decisions for some
k ∈ N0 w.r.t. F ∈ CLS is defined recursively as follows: For k = 0 this relation
holds if ϕ∗F = r1(F ), while for k > 0 this relation holds if either there is k′ < k
such that ϕ makes k′ decision w.r.t. F and ϕ ∗F = 1, or there exists x ∈ lit(F )
and a partial assignment ϕ′ making k−1 decision for r1(〈x→ 1〉∗F ), and where

ϕ ∗ F = ϕ′ ∗ r1(〈x → 1〉 ∗ F ). Now F
SLUR∗k−−−−−→ F ′ for k ≥ 1 by definition holds

if there is a partial assignment ϕ making k decision w.r.t. F with F ′ = ϕ ∗ F ,

where F ′ �= {⊥}. The reflexive-transitive closure is
SLUR∗k−−−−−→∗.

Finally we can define the hierarchy:

slur∗(k)(F ) := {F ′ ∈ CLS | F SLUR∗k−−−−−→∗ F ′ ∧ ¬∃F ′′ : F ′ SLUR∗k−−−−−→ F ′′}
SLUR∗(k) := {F ∈ CLS : slur∗(k)(F ) �= {F} ⇒ slur∗(k)(F ) = {1}}.

The unsatisfiable elements of SLUR∗(k) are those F �= 1 with slur∗(k)(F ) =
{F}. By definition each SLUR∗(k) is stable under application of partial as-
signments, but not stable under variable-disjoint union, since the number of
decision variables is bounded by k (in Lemma 10 we will see that our hierarchy
is stable under variable-disjoint union, which is natural since it strengthens the
CANON(k)-hierarchy).

4 Generalised Unit-Clause Propagation

In this section we review the approximations of forced assignments, as computed
by the hierarchy of reductions rk : CLS → CLS from [19,20] for k ∈ N0. For
further discussions of these reductions, in the context of SAT decision and in their
relations to various consistency and width-related notions, see [19,20] and Section
3 in [21]. Fundamental is the notion of a forced literal of a clause-set, which are
literals which must be set to true in order to satisfy the clause-set. If x is a forced
literal for F , then the forced assignment 〈x → 1〉 ∗ F yields a satisfiability-
equivalent clause-set. We denote by r∞(F ) ∈ CLS the result of applying all
forced assignments to F . Note that F is unsatisfiable iff r∞(F ) = {⊥}. We now
present the hierarchy rk : CLS → CLS, k ∈ N0, of reductions ([19]), which
achieves approximating r∞ by poly-time computable functions.
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Definition 4 ([19]). The maps rk : CLS → CLS for k ∈ N0 are defined as
follows (for F ∈ CLS):

r0(F ) :=

{
{⊥} if ⊥ ∈ F

F otherwise

rk+1(F ) :=

{
rk+1(〈x→ 1〉 ∗ F ) if ∃x ∈ lit(F ) : rk(〈x→ 0〉 ∗ F ) = {⊥}
F otherwise

.

r1 is unit-clause propagation, r2 is (full) failed literal elimination. In general we
call rk generalised unit-clause-propagation of level k. In [19] one finds the
following basic observations proven (for k ∈ N0 and F ∈ CLS):

– rk : CLS → CLS is well-defined (does not depend on the choices involved).
– rk applies only forced assignments.
– rk(F ) is computable in time O(�(F ) · n(F )2(k−1)) and linear space.

Definition 5 ([19,20]). For k ∈ N0, clause-sets F and clauses C the relation
F |=k C holds if rk(ϕC ∗ F ) = {⊥}, where ϕC := 〈x→ 0 : x ∈ C〉.

F |=1 C iff some subclause of C follows from F via input resolution. In [19]
the levelled height “h(T )” of branching trees T has been introduced, which was
further generalised in [20]. It handles satisfiable as well as unsatisfiable clause-
sets. Here we will only use the unsatisfiable case. Then this measure reduces to
a well-known measure which only considers the structure of the tree. [1] used
the term “Horton-Strahler number”, which is the oldest source (from 1945).

Definition 6. The Horton-Strahler number hs(T ) ∈ N0 for a resolution tree
T is defined as hs(T ) := 0, if T is trivial, while otherwise we have two subtrees
T1, T2, and we set hs(T ) := max(hs(T1), hs(T2)) if hs(T1) �= hs(T2), while in case
of hs(T1) = hs(T2) we set hs(T ) := max(hs(T1), hs(T2)) + 1.

See Sections 4.2, 4.3 in [19] for various characterisations of hs(T ). In [19], Chapter
7 (generalised in [20], Chapter 5), generalised input resolution was introduced:

Definition 7 ([19,20]). For a clause-set F and a clause C the relation F �k C
(C can be derived from F by k-times nested input resolution) holds if there
exists a resolution tree T and C′ ⊆ C with T : F � C′ and hs(T ) ≤ k.

By Parts 1 and 2 of Theorem 7.5 in [19], generalised in Corollary 5.12 in [20]:

Lemma 1 ([19,20]). For clause-sets F , clauses C and k ∈ N0 we have F |=k C
if and only if F �k C.

5 Hardness

This section is devoted to the discussion of hd : CLS → N0. It is the central
concept of the paper, from which the hierarchy UCk is derived (Definition 10).
The basic idea is to start with some measurement h : USAT → N0 of “the

http://en.wikipedia.org/wiki/Strahler_number
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complexity” of unsatisfiable F . This measure is extended to arbitrary F ∈ CLS
by maximising over all “sub-instances” of F , that is, over all unsatisfiable ϕ ∗F
for (arbitrary) partial assignments ϕ. A first guess for h : USAT → N0 is to
take something like the logarithm of the tree-resolution complexity of F . However
this measure is too fine-grained, and doesn’t yield a hierarchy like UCk. Another
approach is algorithmical, measuring how far F is from being refutable by unit-
clause propagation. As shown in [19,20], actually these two lines of thought can
be brought together by the hardness measure hd : USAT → N0.

Definition 8 ([19,20]). The hardness hd(F ) of an unsatisfiable F ∈ CLS is
the minimal k ∈ N0 such that rk(F ) = {⊥}.

As shown in [19], hd(F )+1 is precisely the clause-space complexity of F regarding
tree-resolution. From [16] we gain the insight that for F ∈ USAT holds hd(F ) ≤
1 iff there exists F ′ ⊆ F which is an unsatisfiable renamable Horn clause-set.
By Theorem 7.8 (and Corollary 7.9) in [19] (or, more generally, Theorem 5.14

in [20]) we have for F ∈ USAT that 2hd(F ) ≤ Comp*R(F ) ≤ (n(F ) + 1)hd(F ).
Lemma 1 yields:

Lemma 2 ([19,20]). For an unsatisfiable clause-set F and k ∈ N0 we have
hd(F ) ≤ k iff F |=k ⊥ iff F �k ⊥.

By applying partial assignments we can reach all hardness-levels in a clause-set,
as the following lemma shows (see [15] for the straightforward proof):

Lemma 3. For an unsatisfiable clause-set F and every 0 ≤ k ≤ hd(F ) there
exists a partial assignment ϕ with n(ϕ) = k and hd(ϕ ∗ F ) = hd(F )− k.

The hardness hd(F ) of arbitrary clause-sets can now be defined as the maximum
hardness over all unsatisfiable instances obtained by partial assignments.

Definition 9. The hardness hd(F ) ∈ N0 for F ∈ CLS is the minimal k ∈ N0

such that for all clauses C with F |= C we have F |=k C (recall Definition 5; by
Lemma 1 this is equivalent to F �k C).

In other words, if F �= 1 then hd(F ) is the maximum of hd(ϕ ∗ F ) for partial
assignments ϕ such that ϕ ∗ F ∈ USAT . The measure hd(F ) for satisfiable
F apparently was mentioned the first time in the literature in [1], Definition
8, where there in Lemma 9 it was related to another hardness-alternative for
satisfiable F . Note that one can restrict attention in Definition 9 to prime im-
plicates C. Hardness 0 means that all prime clauses are there, i.e., hd(F ) = 0 iff
prc0(F ) ⊆ F , where prc0(F ) is the set of prime implicates of F .

Definition 10. For k ∈ N0 let UCk := {F ∈ CLS : hd(F ) ≤ k} (the class of
unit-refutation complete clause-sets of level k).

The class UC1 has been introduced in [10] for knowledge compilation. Various
(resolution-based) algorithms computing for clause-sets F some equivalent set
F ′ ∈ UC1 of prime implicates are discussed. Based on the results from [19,20],
we can now give a powerful proof-theoretic characterisation for all classes UCk:
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Theorem 1. For k ∈ N0 and F ∈ CLS holds F ∈ UCk if and only if ∀C ∈
prc0(F ) : F �k C. Thus if every C ∈ prc0(F ) has a tree-resolution refutation

using at most 2k+1 − 1 leaves (i.e., Comp*R(ϕC ∗ F ) < 2k+1), then hd(F ) ≤ k.

Proof. The equivalence F ∈ UCk ⇔ ∀C ∈ prc0(F ) : F �k C follows from
Lemma 1. And if hd(F ) > k, then there is C ∈ prc0(F ) with F ��k C, and then
every tree-resolution derivation of C from F needs at least 2k+1 leaves due to
2hd(ϕC∗F ) ≤ Comp*R(ϕC ∗ F ) (as stated before). �

The following basic lemma follows directly by definition:

Lemma 4. If two clause-sets F and F ′ are variable-disjoint, then we have:

1. If F, F ′ ∈ SAT , then hd(F ∪ F ′) = max(hd(F ), hd(F ′)).
2. If F ∈ SAT and F ′ ∈ USAT , then hd(F ∪ F ′) = hd(F ′).
3. If F, F ′ ∈ USAT , then hd(F ∪ F ′) = min(hd(F ), hd(F ′)).

Via full clause-sets An (clause-sets such that each clause contains all variables)
with n variables and 2n clauses we obtain (unsatisfiable, simplest) examples with
hd(An) = n, and when removing one clause for n ≥ 1, then we obtain satisfiable
examples A′

n with hd(A′
n) = n− 1 (see [15] for the proof):

Lemma 5. Consider a full clause-set F (each clause contains all variables).

1. If F is unsatisfiable then hd(F ) = n(F ).
2. If F �= 1, then hd(F ) = n(F )−minC∈prc0(F )|C|.
3. If for F no two clauses are resolvable, then hd(F ) = 0.

The next lemma yields a way of increasing hardness (see [15] for the proof):

Lemma 6. Consider F ∈ CLS and v ∈ VA \ var(F ). Let F ′ := {C ∪ {v} : C ∈
F} ∪ {C ∪ {v} : C ∈ F}. Then hd(F ′) = hd(F ) + 1.

5.1 Containment and Stability Properties

The following fundamental lemma is obvious from the definition:

Lemma 7. Consider C ⊆ CLS stable under partial assignment and k ∈ N0 such
that for F ∈ C ∩ USAT we have hd(F ) ≤ k. Then hd(F ) ≤ k for all F ∈ C.

We apply Lemma 7 to various well-known classes C (stating in brackets the
source for the bound on the unsatisfiable cases).

Lemma 8. Consider F ∈ CLS.

1. For ϕ ∈ PASS we have hd(ϕ ∗ F ) ≤ hd(F ) (by Lemma 3.11 in [19]).
2. hd(F ) ≤ n(F ) (by Lemma 3.18 in [19]).
3. If F ∈ 2–CLS = {F ∈ CLS | ∀C ∈ F : |C| ≤ 2}, then hd(F ) ≤ 2 (by Lemma

5.6 in [19]).
4. If F ∈ HO = {F ∈ CLS | ∀C ∈ F : |C ∩ VA| ≤ 1} (Horn clause-sets), then

hd(F ) ≤ 1 by (Lemma 5.8 in [19]).
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5. More generally, if F ∈ QHO, the set of q-Horn clause-sets (see Section
6.10.2 in [8], and [23]), then hd(F ) ≤ 2 (by Lemma 5.12 in [19]).

6. Generalising Horn clause-sets to the hierarchy HOk from [17] (with HO1 =
HO): if F ∈ HOk for k ∈ N, then hd(F ) ≤ k (by Lemma 5.10 in [19]).

By a standard autarky-argument for 2–CLS (see [18]) we can sharpen the
hardness-upper-bound 2 for satisfiable clause-sets:

Lemma 9. For F ∈ 2–CLS ∩ SAT we have hd(F ) ≤ 1.

Proof. Consider ϕ ∈ PASS with unsatisfiable ϕ ∗ F . We have r1(ϕ ∗ F ) = {⊥},
since otherwise r1(ϕ ∗ F ) ⊆ F , and thus r1(ϕ ∗ F ) would be satisfiable. �

We have the following stability properties:

Lemma 10. Consider k ∈ N0.

1. UCk is stable under application of partial assignments (with Lemma 8, Part
1; this might reduce hardness).

2. UCk is stable under variable-disjoint union (with Lemma 4).
3. UCk is stable under renaming variables and switching polarities.
4. UCk is stable under subsumption-elimination.
5. UCk is stable under addition of inferred clauses (this might reduce hardness).

A fundamental tool, underlying all inclusion relations presented here, are the
hierarchies Gk(U ,S) ⊆ CLS introduced in [19,20], using oracles U ⊆ USAT ,
S ⊆ SAT for (un)satisfiability decision. Only the unsatisfiable instances are
relevant here (and thus S is not employed in our context): The Gk-hierarchies
contain (finally all) satisfiable instances, as does UCk, but with a different aim, as
can be seen from the fact, that for fixed k, membership in Gk(U ,S) is decidable
in polynomial time, while it is coNP-complete for UCk. See [15] for more details,
and for the relations to the hierarchies presented in [6], which can be understood
as special cases. These considerations lead to

Lemma 11. For all k ∈ N0 we have Πk ⊂ UCk+1 and Υk ⊂ UCk+2 for the
hierarchies Πk, Υk introduced in [6].

5.2 Determining Hardness Computationally

By the well-known computation of prc0(F ) via resolution-closure we obtain:

Lemma 12. Whether for F ∈ CLS we have hd(F ) = 0 or not can be decided
in polynomial time, namely hd(F ) = 0 holds if and only if F is stable under
resolution modulo subsumption (which means that for all resolvable C,D ∈ F
with resolvent R there exists E ∈ F with E ⊆ R).

Thus if the hardness is known to be at most 1, we can compute it efficiently:

Corollary 1. Consider a class C ⊆ CLS of clause-sets where C ⊆ UC1 is known.
Then for F ∈ C one can compute hd(F ) ∈ {0, 1} in polynomial time.
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Examples for C are given by HO ⊂ UC1 and in Subsection 3.1. Another example
class with known hardness is given by 2–CLS ⊂ UC2 (Lemma 8), and also here
we can compute the hardness efficiently (see [15] for the proof):

Lemma 13. For F ∈ 2–CLS the hardness is computable in polynomial time.

See Theorem 3 for coNP-completeness of computing an upper bound.

6 The SLUR Hierarchy

We now define the SLURk hierarchy, generalising SLUR (recall Subsection
3.1) in a natural way, by replacing r1 with rk. In Subsection 6.1 we show
SLURk = UCk, and as application obtain coNP-completeness of membership
decision for UCk for k ≥ 1. In Section 6.2 we determine the relations to the
previous hierarchies SLUR∗(k) and CANON(k) as discussed in Subsection 3.2.

Definition 11. Consider k ∈ N0. For clause-sets F, F ′ ∈ CLS the relation

F
SLUR:k−−−−→ F ′ holds if there is x ∈ lit(F ) such that F ′ = rk(〈x → 1〉 ∗ F ) and

F ′ �= {⊥}. The transitive-reflexive closure is denoted by F
SLUR:k−−−−→∗ F ′. The

set of all fully reduced clause-sets reachable from F is denoted by slurk(F ) :=

{F ′ ∈ CLS | F SLUR:k−−−−−→∗ F ′ ∧ ¬∃F ′′ ∈ CLS : F ′ SLUR:k−−−−−→ F ′′}. Finally the
class of all clause-sets which are either identified by rk to be unsatisfiable, or
where by k-SLUR-reduction always a satisfying assignment is found, is denoted
by SLURk := {F ∈ CLS : rk(F ) �= {⊥} ⇒ slurk(F ) = {1}}.

We have SLUR1 = SLUR. Obviously 1 ∈ slurk(F ) ⇔ F ∈ SAT for F ∈ CLS
and all k. And by definition we get:

Lemma 14. We have for F ∈ CLS, k ∈ N0 and a partial assignment ϕ with

rk(ϕ ∗ F ) �= {⊥} that F
SLUR:k−−−−−→∗ rk(ϕ ∗ F ) holds.

6.1 SLUR = UC

For F ∈ UCk there is the following polynomial-time SAT decision: F is unsatis-
fiable iff rk(F ) = {⊥}. And a satisfying assignment can be found for satisfiable
F via self-reduction, that is, probing variables, where unsatisfiability again is
checked for by means of rk. For k = 1 this means exactly that the nondetermin-
istic “SLUR”-algorithm will not fail. And that implies that F ∈ SLUR holds,
where SLUR is the class of clause-sets where that algorithm never fails. So
UC1 ⊆ SLUR. Now it turns out, that actually this property characterises UC1,
that is, UC1 = SLUR holds, which makes available the results on SLUR. We
now show that this equality between UC and SLUR holds in full generality for
the UCk and SLURk hierarchies.

Theorem 2. For all k ∈ N0 holds SLURk = UCk.
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Proof. Consider F ∈ CLS. We have to show F ∈ SLURk ⇔ hd(F ) ≤ k. For
F ∈ USAT this follows from the definitions, and thus we assume F ∈ SAT . First
consider F ∈ SLURk. Consider a partial assignment ϕ such that ϕ∗F ∈ USAT .
We have to show rk(ϕ ∗ F ) = {⊥}, and so assume rk(ϕ ∗ F ) �= {⊥}. It follows

F
SLUR−−−−→∗ rk(ϕ∗F ) by Lemma 14. In general we have that F ∈ SLURk together

with F ∈ SAT and F
SLUR:k−−−−−→∗ F ′ implies F ′ ∈ SAT . Whence rk(ϕ ∗ F ) ∈

SAT , contradicting ϕ ∗ F ∈ USAT . Now assume hd(F ) ≤ k, and we show

F ∈ SLURk. For F
SLUR:k−−−−−→∗ F ′ we have F ′ ∈ SAT by Lemma 8, Part 1, and

thus slurk(F ) = {1}. �

Theorem 3. For fixed k ∈ N the decision whether hd(F ) ≤ k (i.e., whether
F ∈ UCk, or, by Theorem 2, whether F ∈ SLURk) is coNP-complete.

Proof. The decision whether F /∈ SLURk is in NP by definition of SLURk (or
use Lemma 3). By Theorem 3 in [7] we have that SLUR is coNP-complete,
which by Lemma 6 can be lifted to higher k. �

6.2 Comparison to the Previous Hierarchies

The alternative hierarchies SLUR∗(k) and CANON(k) (recall Subsection 3.2)
extend r1 in various ways (maintaining linear-time computation for the (non-
deterministic) transitions). We give now short proofs that these alternative hi-
erarchies are subsumed by our hierarchy, while already the second level of our
hierarchy is (naturally) not contained in any levels of these two hierarchies (nat-
urally, since the time-exponent for deciding whether a (non-deterministic) tran-
sition can be done w.r.t. hierarchy SLURk depends on k). First we simplify and
generalise the main result of [2], that CANON(1) ⊆ SLUR.

Theorem 4. For k ∈ N0 we have: CANON(k) ⊆ UCk and UC1 �⊆ CANON(k)
(and thus CANON(k) ⊂ UCk for k ≥ 1).

Proof. By Theorem 1 and the fact, that the Horton-Strahler number of a tree is
at most the height, we see CANON(k) ⊆ UCk. There are formulas inHO∩USAT
with arbitrary resolution-height complexity and soHO �⊆ CANON(k). ByHO ⊂
UC1 we get UC1 �⊆ CANON(k). �

Also the other hierarchy SLUR∗(k) is strictly contained in our hierarchy:

Theorem 5. For all k ∈ N0 we have SLUR∗(k) ⊂ SLURk+1 and SLUR2 �⊆
SLUR∗(k).

Proof. The inclusion follows most easily by using Lemma 7 together with the
simple fact that slur∗(k)(F ) = {F} for F �= 1 implies rk+1(F ) = {⊥}. The
non-inclusion follows from CANON(2) �⊆ SLUR∗(k) (Lemma 13 in [2]), while
by Theorem 4 we have CANON(2) ⊆ SLUR2. �

In [15] we show that SLUR∗(k) and SLURk are incomparable in general.
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7 Conclusion and Outlook

We brought together two streams of research, one started by [10] in 1994, intro-
ducing UC for knowledge compilation, one started by [22] in 1995, introducing
SLUR for polytime SAT decision. Two natural generalisations, UCk and SLURk

have been provided, and the (actually surprising) identity SLURk = UCk pro-
vides both sides of the equation with additional tools. Various basic lemmas have
been shown, providing a framework for elegant and powerful proofs. Regarding
computational problems, we solved the most basic questions. The next steps
for us, which have already been partially accomplished, consist in the following
investigations:

1. Complementary to “unit-refutation completeness” there is the notion of
“propagation completeness”, as investigated in [9,5]. This will be captured
and generalised by a corresponding measure phd : CLS → N0 of propaga-
tion-hardness.

2. The real power of SAT representations comes with new variables. Expres-
sive power and limitations of the “good representations” have to be studied.
Relevant here is [3], which shows that for example the satisfiable pigeonhole
formulas PHPm

m do not have polysize representations of bounded hardness.
3. Applications of representations of bounded hardness to cryptographic prob-

lems has to be experimentally evaluated. We consider especially attacking
AES/DES, as preliminary discussed in [14,13].

4. The theory started here has to be generalised via the use of oracles as in
[19,20] (this is one way of overcoming the principal barriers shown in [3], by
employing oracles which can handle pigeonhole formulas).
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17. Büning, H.K.: On generalized Horn formulas and k-resolution. Theoretical Com-
puter Science 116, 405–413 (1993)
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Abstract. The NP-hard 2-Club problem is, given an undirected graph
G = (V,E) and a positive integer �, to decide whether there is a vertex
set of size at least � that induces a subgraph of diameter at most two.
We make progress towards a systematic classification of the complex-
ity of 2-Club with respect to structural parameterizations of the input
graph. Specifically, we show NP-hardness of 2-Club on graphs that be-
come bipartite by deleting one vertex, on graphs that can be covered by
three cliques, and on graphs with domination number two and diameter
three. Moreover, we present an algorithm that solves 2-Club in |V |f(k)
time, where k is the so-called h-index of the input graph. By showing
W [1]-hardness for this parameter, we provide evidence that the above
algorithm cannot be improved to a fixed-parameter algorithm. This also
implies W [1]-hardness with respect to the degeneracy of the input graph.
Finally, we show that 2-Club is fixed-parameter tractable with respect
to “distance to co-cluster graphs” and “distance to cluster graphs”.

1 Introduction

In the analysis of social and biological networks, one important task is to find co-
hesive subnetworks since these could represent communities or functional subnet-
works within the large network. There are several graph-theoretic formulations
for modeling these cohesiveness demands such as s-cliques [1], s-plexes [21], and
s-clubs [15]. In this work, we study the problem of finding large s-clubs within
the input network. An s-club is a vertex set that induces a subgraph of diameter
at most s. Thus it is a distance-based relaxation of complete graphs, cliques,
which are exactly the graphs of diameter one. For constant s ≥ 1, the problem
is defined as follows.

s-Club

Input: An undirected graph G = (V,E) and an integer � ≥ 1.
Question: Is there a vertex set S ⊆ V of size at least � such that G[S]
has diameter at most s?

In this work, we focus on studying the computational complexity of 2-Club.
This is motivated by the following two considerations. First, 2-Club is an im-
portant special case concerning the applications: For biological networks, 2-clubs

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 233–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and 3-clubs have been identified as the most reasonable diameter-relaxations of
cliques [18]. 2-Club also has applications in the analysis of social networks [14].
Consequently, experimental evaluations concentrate on finding 2-clubs and
3-clubs [13]. Second, 2-Club is the most basic variant of s-Club that is different
from Clique. For example, being a clique is a hereditary graph property, that
is, it is closed under vertex deletion. In contrast, being a 2-club is not hereditary,
since deleting vertices can increase the diameter of a graph. Hence, it is interest-
ing to spot differences in the computational complexity of the two problems.

In the spirit of multivariate algorithmics [11,17], we aim to describe how
structural properties of the input graph determine the computational comple-
xity of 2-Club. We want to determine sharp boundaries between tractable and
intractable special cases of 2-Club, and whether some graph properties, espe-
cially those motivated by the structure of social and biological networks, can
be exploited algorithmically. The structural properties, called structural graph
parameters, are usually described by integers; well-known examples of such pa-
rameters are the maximum degree or the treewidth of a graph. Our results use the
classical framework of NP-hardness as well as the framework of parameterized
complexity to show (parameterized) tractability and intractability of 2-Club

with respect to the structural graph parameters under consideration.

Related Work. For all s ≥ 1, s-Club is NP-complete on graphs of diame-
ter s + 1 [3]; 2-Club is NP-complete even on split graphs and, thus, also on
chordal graphs [3]. For all s ≥ 1, s-Club is NP-hard to approximate within a
factor of n

1/2−ε [2]; a simple approximation algorithm obtains a factor of n
1/2 for

even s ≥ 2 and a factor n
2/3 for odd s ≥ 3 [2]. Several heuristics [6] and integer

linear programming formulations [3, 6] for s-Club have been proposed and ex-
perimentally evaluated [13]. 1-Club is equivalent to Clique and thus W[1]-hard
with respect to �. In contrast, for s ≥ 2, s-Club is fixed-parameter tractable
with respect to � [7, 19], with respect to n− � [19]1, and also with respect to the
parameter treewidth of G [20]. Moreover, s-Club does not admit a polynomial-
size kernel with respect to � (unless NP ⊆ coNP/poly), but admits a so-called
Turing-kernel with at most k2-vertices for even s and at most k3-vertices for
odd s [19]. 2-Club is solvable in polynomial time on bipartite graphs, on trees,
and on interval graphs [20]. In companion work [12], we considered different
structural parameters: For instance, we presented fixed-parameter algorithms
for the parameters “treewidth” and “size of a vertex cover” and polynomial-size
kernels for the parameters “feedback edge set” and “cluster editing number”.
Furthermore, we presented an efficient implementation for 2-Club based on the
fixed-parameter algorithm for the dual parameter n− �.

Our Contribution. We make progress towards a systematic classification of
the complexity of 2-Club with respect to structural graph parameters. Figure 1

1 Schäfer et al. [19] actually considered finding an s-club of size exactly �. The claimed
fixed-parameter tractability with respect to n−� however only holds for the problem
of finding an s-club of size at least �. The other fixed-parameter tractability results
hold for both variants.
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FPT and polynomial-size kernels

NP-hard with constant parameter values

W[1]-
hard

FPT,

but no polynomial-
size kernel unless
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Fig. 1. Overview of the relation between structural graph parameters and of our results
for 2-Club. An edge from a parameter α to a parameter β below of α means that β can
be upper-bounded in a polynomial (usually linear) function in α. The boxes indicate
the complexity of 2-Club with respect to the enclosed parameters. 2-Club is FPT with
respect to “distance to clique”, but it is open whether it admits a polynomial size kernel.
The complexity with respect to “distance to interval” and “distance to cograph” is still
open. Results obtained in this work are marked with �. (For the parameters bandwidth
and maximum degree, taking the disjoint union of the input graphs is a composition
algorithm that proves the non-existence of polynomial-size kernels [5].)

gives an overview of our results and their implications. Therein, for a set of
graphs Π (for instance the set of bipartite graphs) the parameter distance to Π
measures the number of vertices that have to be deleted in order to obtain
a graph that is isomorphic to one in Π .

In Section 2, we consider the graph parameters minimum clique cover number,
minimum dominating set of G, and some related graph parameters. We show
that 2-Club is NP-hard even if the minimum clique cover number of G is three,
that is, the vertices of G can be covered by three cliques. In contrast, we show
that if the minimum clique cover number is two, then 2-Club is polynomial-time
solvable. Then, we show that 2-Club is NP-hard even if G has a dominating
set of size two, that is, there are two vertices u, v in G such that every vertex
in V \ {u, v} is a neighbor of one of the two. This result is tight in the sense that
2-Club is trivially solvable in case G has a dominating set of size one.

In Section 3, we study the parameter distance to bipartite graphs.We show that
2-Club is NP-hard even if the input graph can be transformed into
a bipartite graph by deleting only one vertex. This is somewhat surprising since
2-Club is polynomial-time solvable on bipartite graphs [20]. Then, in Section 4,
we consider the graph parameter h-index : a graph G has h-index k if k is the
largest number such thatG has at least k vertices of degree at least k. The study of
this parameter is motivated by the fact that the h-index is usually small in social
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networks (see Section 4 for a more detailed discussion). On the positive side, we
show that 2-Club is polynomial-time solvable for constant k. On the negative side,
we show that 2-Club parameterized by the h-index k of the input graph is W[1]-
hard. Hence, a running time of f(k) · nO(1) is probably not achievable. This also
implies W[1]-hardness with respect to the parameter degeneracy of G.

Finally, we describe fixed-parameter algorithms for the parameters distance to
cluster and co-cluster graphs. Herein, a cluster graph is a vertex-disjoint union of
cliques, and a co-cluster graph is the complement graph of a cluster graph, that
is, it is either an independent set or a complete p-partite graph for some p ≤ n.
Interestingly, distance to cluster/co-cluster graph are rare examples for struc-
tural graph parameters, that are unrelated to treewidth and still admit a fixed-
parameter algorithm (see Figure 1).

Preliminaries. We only consider undirected and simple graphs G = (V,E)
where n := |V | and m := |E|. For a vertex set S ⊆ V , let G[S] denote
the subgraph induced by S and G − S := G[V \ S]. We use distG(u, v) to
denote the distance between u and v in G, that is, the length of a shortest
path between u and v. For a vertex v ∈ V and an integer t ≥ 1, denote
by NG

t (v) := {u ∈ V \ {v} | distG(u, v) ≤ t} the set of vertices within distance
at most t to v. If the graph is clear from the context, we omit the superscript G.
Moreover, we set Nt[v] := Nt(v) ∪ {v}, N [v] := N1[v] and N(v) := N1(v). Two
vertices v and w are twins if N(v) \ {w} = N(w) \ {v} and they are twins with
respect to a vertex set X if N(v)∩X = N(w)∩X . The twin relation is an equiva-
lence relation; the corresponding equivalence classes are called twin classes. The
following observation is easy to see.

Observation 1. Let S be a s-club in a graph G = (V,E) and let u, v ∈ V be
twins. If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.

For the relevant notions of parameterized complexity we refer to [9, 16]. For the
parameters distance to cluster/co-cluster graph we assume that a deletion set is
provided as an additional input. Note that for both of these parameters there is
a polynomial-time constant factor approximation algorithm since cluster graphs
and co-cluster graphs are characterized by forbidden induced subgraphs on three
vertices. Due to the space restrictions, some proofs are deferred to a long version.

2 Clique Cover Number and Domination Number

In this section, we prove that on graphs of diameter at most three, 2-Club is
NP-hard even if either the clique cover number is three or the domination num-
ber is two. We first show that these bounds are tight. The size of a maximum
independent set is at most the size of a minimum clique cover. Moreover, since
each maximal independent set is a dominating set, a minimum dominating set
is also at most the size of a minimum clique cover.

Proposition 1. 2-Club is polynomial-time solvable on graphs where the size
of a maximum independent set is at most two.
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Proof. Let G = (V,E) be a graph. If a maximum independent set in G has
size one or it has diameter two, then V is a 2-club. Otherwise, if the maximum
independent set in G is of size two, then iterate over all possibilities to choose
two vertices v, u ∈ V . Denoting by G′ the graph that results from deleting
N(v) ∩ N(u) in G, output a maximum size set NG′

[v] ∪ (NG′
(u) ∩ NG′

2 (v))
among all iterations.

We next prove the correctness of the above algorithm. For a maximum
size 2-club S ⊂ V in G, there are two vertices v, u ∈ V such that v ∈ S
and dG[S∪{u}](v, u) > 2, implying that N(v) ∩N(u) ∩ S = ∅. Moreover, NG′

[v]

and NG′
[u] are cliques: Two non-adjacent vertices in NG′

(v) (in NG′
(u)) would

form together with u (with v) an independent set.
Since NG′

[v] is a clique and v ∈ S, G[S ∪ NG′
(v)] is a 2-club and thus

NG′
[v] ⊆ S by the maximality of S. Moreover, since {v, u} is a maximum in-

dependent set and thus also a dominating set it remains to specify N(u) ∩ S.
However, since NG′

[u] is a clique and each vertex in S has to be adjacent to at
least one vertex in NG′

(v), it follows that S = NG′
[v] ∪ (NG′

(u) ∩NG′
2 (v)). "#

The following theorem shows that the bound on the maximum independent set
size in Proposition 1 is tight.

Theorem 1. 2-Club is NP-hard on graphs with clique cover number three and
diameter three.

Proof. We describe a reduction fromClique. Let (G = (V,E), k) be aClique in-
stance. We construct a graphG′ = (V ′, E′) consisting of three disjoint vertex sets,
that is, V ′ = V1∪V2∪VE . Set Vi, i ∈ {1, 2}, to Vi = V V

i ∪V
big
i , where V V

i is a copy

of V and V big
i is a set of n5 vertices. Let u, v ∈ V be two adjacent vertices inG and

let u1, v1 ∈ V1, u2, v2 ∈ V2 be the copies of u and v inG′. Then add the vertices euv
and evu to VE and add the edges {v1, evu}, {u2, evu}, {u1, euv}, {v2, euv} toG′. Fur-
thermore, add for each vertex v ∈ V the vertices V v

E = e1v, e
2
v, . . . , e

n3

v to VE and
make v1 and v2 adjacent to all these new vertices. Finally, make the following ver-
tex sets to cliques: V1, V2, VE , and V big

1 ∪V big
2 . Observe thatG′ has diameter three

and that it has a clique cover number of three.
We now prove that G has a clique of size k ⇔ G′ has a 2-club of size k′ =

2n5 + kn3 + 2k + 2
(
k
2

)
.

“⇒:” Let S be a clique of size k in G. Let Sc contain all the copies of the
vertices of S. Furthermore, let SE := {euv | u1 ∈ Sc ∧ v2 ∈ Sc} and Sb := {eiv |
v1 ∈ Sc ∧ 1 ≤ i ≤ n3}. We now show that S′ := Sc ∪ SE ∪ Sb ∪ V big

1 ∪ V big
2 is a

2-club of size k′. First, observe that |V big
1 ∪ V big

2 | = 2n5 and |Sc| = 2k. Hence,
|Sb| = kn3 and |SE | = 2

(
k
2

)
. Thus, S′ has the desired size. With a straightforward

case distinction one can check that S′ is indeed a 2-club.
“⇐:” Let S′ be a 2-club of size k′. Observe that G′ consists of |V ′| = 2n5 +

2n + 2m + n4 vertices. Since k′ > 2n5 at least one vertex of V big
1 and of V big

2

is in S. Since all vertices in V big
1 and in V big

2 are twins, we can assume that

all vertices of V big
1 ∪ V big

2 are contained in S′. Analogously, it follows that at

least k sets V v1

E , V v2

E , V v3

E , . . . , V vk

E are completely contained in S′. Since S′ is
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a 2-club, the distance from vertices in V big
i to vertices in V vj

E is at most two.

Hence, for each set V vj

E in S′ the two neighbors vj1 and vj2 of vertices in V vj

E are

also contained in S′. Since the distance of vi1 and vj2 for vi1, v
j
2 ∈ S′ is also at

most two, the vertices evivj and evjvi are part of S′ as well. Consequently, vi

and vj are adjacent in G. Therefore, the vertices v1, . . . , vk form a size-k clique
in G. "#

Since a maximum independent set is also a dominating set, Theorem 1 implies
that 2-Club is NP-hard on graphs with domination number three and diameter
three. In contrast, for domination number one 2-Club is trivial. The following
theorem shows that this cannot be extended.

Theorem 2. 2-Club is NP-hard even on graphs with domination number two
and diameter three.

Proof. We present a reduction from Clique. Let (G = (V,E), k) be a Clique

instance and assume that G does not contain isolated vertices. We construct the
graph G′ as follows. First copy all vertices of V into G′. In G′ the vertex set V
will form an independent set. Now, for each edge {u, v} ∈ E add an edge-vertex
e{u,v} to G′ and make e{u,v} adjacent to u and v. Let VE denote the set of edge-
vertices. Next, add a vertex set C of size n+ 2 to G′ and make C ∪ VE a clique.
Finally, add a new vertex v∗ to G′ and make v∗ adjacent to all vertices in V .
Observe that v∗ plus an arbitrary vertex from VE ∪C are a dominating set of G′

and that G′ has diameter three. We complete the proof by showing that G has
a clique of size k ⇔ G′ has a 2-club of size at least |C|+ |VE |+ k.

“⇒:” LetK be a size-k clique inG. Then, S := K∪C∪VE is a size-|C|+|VE|+k
2-club in G: First, each vertex in C ∪VE has distance two to all other vertices S.
Second, each pair of vertices u, v ∈ K is adjacent in G and thus they have the
common neighbor e{u,v} in VE .

“⇐:” Let S be a 2-club of size |C| + |VE | + k in G′. Since |C| > |V ∪ {v∗}|,
it follows that there is at least one vertex c ∈ S ∩ C. Since c and v∗ have dis-
tance three, it follows that v∗ �∈ S. Now since S is a 2-club, each pair of vertices
u, v ∈ S ∩ V has at least one common neighbor in S. Hence, VE contains the
edge-vertex e{u,v}. Consequently, S ∩ V is a size-k clique in G. "#

3 Distance to Bipartite Graphs

A 2-club in a bipartite graph is a biclique and, thus, 2-Club is polynomial-time
solvable on bipartite graphs [20]. However, 2-Club is already NP-hard on graphs
that become bipartite by deleting only one vertex.

Theorem 3. 2-Club is NP-hard even on graphs with distance one to bipartite
graphs.

Proof. We reduce from the NP-hard Maximum 2-SAT problem: Given a
positive integer k and a set C := {C1, . . . , Cm} of clauses over a variable set
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X = {x1, . . . , xn} where each clause Ci contains two literals, the question is
whether there is an assignment β that satisfies at least k clauses.

Given an instance of Maximum 2-SAT where we assume that each clause
occurs only once, we construct an undirected graph G = (V,E). The vertex
set V consists of the four disjoint vertex sets VC , VF , V

1
X , V 2

X , and one additional
vertex v∗. The construction of the four subsets of V is as follows.

The vertex set VC contains one vertex ci for each clause Ci ∈ C. The vertex
set VF contains for each variable x ∈ X exactly n5 vertices x1 . . . xn5

. The vertex
set V 1

X contains for each variable x ∈ X two vertices: xt which corresponds to
assigning true to x and xf which corresponds to assigning false to x. The vertex
set V 2

X is constructed similarly, but for every variable x ∈ X it contains 2 · n3

vertices: the vertices x1
t , . . . x

n3

t which correspond to assigning true to x, and the

vertices x1
f , . . . x

n3

f which correspond to assigning false to x.
Next, we describe the construction of the edge set E. The vertex v∗ is made ad-

jacent to all vertices in VC ∪ VF ∪ V 1
X . Each vertex ci ∈ VC is made adjacent to the

two vertices in V 1
X that correspond to the two literals in Ci. Each vertex xi ∈ VF

is made adjacent to xt and xf , that is, the two vertices of V 1
X that correspond to

the two truth assignments for the variable x. Finally, each vertex xi
t ∈ V 2

X is made
adjacent to all vertices of V 1

X except to the vertex xf . Similarly, each xi
f ∈ V 2

X is

made adjacent to all vertices of V 1
X except to xt. This completes the construction

ofGwhich can clearly be performed in polynomial time. Observe that the removal
of v∗ makesG bipartite: each of the four vertex sets is an independent set and the
vertices of VC , VF , and V 2

X are only adjacent to vertices of V 1
X .

The main idea behind the construction is as follows. The size of the 2-club forces
the solution to contain themajority of the vertices in VF and V 2

X . As a consequence,
for eachx ∈ X exactly one ofxt or xf is in the 2-club.Hence, the vertices fromV 2

X in
the 2-club represent a truth assignment. In order to fulfill the bound on the 2-club
size, at least k vertices from VC are in the 2-club; these vertices can only be added
if the corresponding clauses are satisfied by the represented truth assignment. It
remains to show the following claim (we omit the details).

Claim. (C, k) is a yes-instance of Maximum 2-Sat ⇔ G has a 2-club of size n6+
n4 + n+ k + 1. "#

4 Average Degree and h-Index

2-Club is fixed-parameter tractable for the parameter maximum degree [19]. In
social networks, the degree distribution often follows a power law, implying that
there are some high-degree vertices but most vertices have low degree [4]. This
suggests considering stronger parameters such ash-index, degeneracy, and average
degree. Unfortunately, 2-Club is NP-hard even with constant average degree.

Proposition 2. For any constant α > 2, 2-Club is NP-hard on connected
graphs with average degree at most α.

Proof. Let (G, �) be an instance of 2-Club where Δ is the maximum degree
of G. We can assume that � > Δ+2 since, as shown for instance in the proof of
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Theorem 1, 2-Club remains NP-hard in this case. We add a path P to G and an
edge from an endpoint p of P to an arbitrary vertex v ∈ V . Since � > Δ+2, any
2-club of size at least � contains at least one vertex that is not in P . Furthermore,
it cannot contain p and v since in this case it is a subset of either N [v] or N [p]
which both have size at most Δ+ 2 (v has degree at most Δ in G). Hence, the
instances are equivalent. Putting at least � 2m

α−2 − n� vertices in P ensures that
the resulting graph has average degree at most α. "#

Proposition 2 suggests considering “weaker” parameters such as degeneracy or
h-index [10] of G. Recall that having h-index k means that there are at most k
vertices with degree greater than k. Since social networks have small h-index [12],
fixed-parameter tractability with respect to the h-index would be desirable. Un-
fortunately, we show that 2-Club is W[1]-hard when parameterized by the h-
index. Following this result, we show that there is “at least” an algorithm that
is polynomial for constant h-index.

Theorem 4. 2-Club parameterized by h-index is W[1]-hard.

Since the reduction in the proof of Theorem 4 is from Multicolored Clique

and in the reduction the new parameter is linearly bounded in the old one, the
results of Chen et al. [8] imply the following.

Corollary 1. 2-Club cannot be solved in no(k)-time on graphs with h-index k
unless the exponential time hypothesis fails.

We next prove that there is an XP-algorithm for the parameter h-index.

Theorem 5. 2-Club can be solved in f(k)·n2k ·nm time where k is the h-index
of the input graph and f solely depends on k.

Proof. We give an algorithm that finds a maximum 2-club in G = (V,E) in
the claimed running time. Let X ⊆ V be the set of all vertices with degree
greater than k. By definition, |X | ≤ k. In a first step, branch into the at most
2k cases to guess a subset X ′ ⊆ X that is contained in a maximum 2-club S
for G. In case X ′ = ∅, one can apply the fixed-parameter algorithm for the
parameter maximum degree. In each other branch, proceed as follows. First,
delete all vertices from X \ X ′ and while there are vertices that have distance
greater than two to any vertex in X ′, delete them. Denote the resulting graph
by G′ = (V ′, E′). We next describe how to find a maximum 2-club in G′ =
(V ′, E′) that contains X ′.

Partition all vertices in V ′\X ′ into the at most 2k twin classes T1, . . . , Tp with
respect to X ′. Two twin classes T and T ′ are in conflict if N(T )∩N(T ′)∩X ′ = ∅.
Now, the crucial observation is that, if T and T ′ are in conflict, then all vertices
in (T ∪ T ′) ∩ S are contained in the same connected component of G′[S \ X ′].
Then, since all vertices in T ∩ S have in G′[S \X ] distance at most two to all
vertices in T ′ ∩ S, it follows that all vertices in T ∩ S have pairwise distance at
most four in G′[S \X ′].

Now, branch into the O(n2k) cases to choose for each twin class T a center c,
that is, a vertex from T ∩ S. Clearly, if T ∩ S = ∅, then there is no center c and
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we delete all vertices in T . Consider a remaining twin class T that is in conflict
to any other twin class. By the observation above, T ∩ S is contained in one
connected component of G′[S \X ′] and in this component all vertices in T ∩ S
have pairwise distance at most four. Moreover, the graphG[V ′\X ′] has maximum
degree at most k. Thus for the center c of T one can guess NS

4 (c) := N4(c) ∩ S

by branching into at most 2k
4

cases. Guess the set NS
4 (c) for all centers c where

the corresponding twin class is in conflict to at least one other twin class and fix
them to be contained in the desired 2-club S. Delete all vertices in T guessed to
be not contained in NS

4 (c).
Let S̃ be the set of vertices guessed to be contained in S. Next, while there

is a vertex v ∈ V ′ \ S̃ that has distance greater than two to any vertex in S̃,
delete v. Afterwards, check whether all vertices in S̃ have pairwise distance at
most two. (If this check fails, then this branch cannot lead to any solution.) We
next prove that the remaining graph is a 2-club.

In the remaining graph, each pair of vertices in V ′\S̃ has distance at most two
and thus the graph is a 2-club: Suppose that two remaining vertices v, w ∈ V ′ \ S̃
have distance greater than two. Let T and T ′ be the twin classes with the corre-
sponding centers c, c′ such that v ∈ T and w ∈ T ′. In case T = T ′, it follows that
N(T )∩X ′ = ∅ (since X ′ ⊆ S̃). However, since T cannot be in conflict with any
other twin class (otherwise v, w ∈ NS

4 (c) ⊆ S̃), it follows that S only contains
the twin class T . This implies that v and w have distance greater than two to
all vertices in X ′ (note that X ′ �= ∅), a contradiction. In case T �= T ′, since
N(v) ∩N(w) = ∅ it follows that T is in conflict to T ′, implying that v ∈ NS

4 (c)
and w ∈ NS

4 (c
′), a contradiction to v, w ∈ V ′ \ S̃. "#

5 Distance to Cluster and Co-cluster Graphs

We now present a simple fixed-parameter algorithm for 2-Club parameterized
by distance to co-cluster graphs. The algorithm is based on the fact that each
co-cluster graph is either an independent set or a 2-club.

Theorem 6. 2-Club is solvable in O(2k · 22k · nm) time where k denotes the
distance to co-cluster graphs.

Proof. Let (G,X, �) be an 2-Club instance where X with |X | = k and G −X
is a co-cluster graph. Note that the co-cluster graph G−X is either a connected
graph or an independent set. In the case that G−X is an independent set, the
set X is a vertex cover and we thus apply the algorithm we gave in companion

work [12] to solve the instance in O(2k · 22k · nm) time.
Hence, assume that G − X is connected. Since G − X is the complement

of a cluster graph, this implies that G − X is a 2-club. Thus, if � ≤ n − k,
then we can trivially answer yes. Hence, assume that � > n− k or, equivalently,
k > n − �. Schäfer et al. [19] showed that 2-club can be solved in O(2n−nm)
(simply choose a vertex pair having distance at least three and branch into the
two cases of deleting one of them). Since k > n− � it follows that 2-club can be
solved in O(2knm) time in this case. "#
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Next, we present a fixed-parameter algorithm for the parameter distance to
cluster graphs.

Theorem 7. 2-Club is solvable in O(2k ·32k ·nm) time where k denotes distance
to cluster graphs.

6 Conclusion

Although the complexity status of 2-Club is resolved for most of the parameters
in the complexity landscape shown in Figure 1, some open questions remain.
What is the complexity of 2-Club parameterized by “distance to interval graphs”
or “distance to cographs”? The latter parameter seems particularly interesting
since every induced subgraph of a cograph has diameter two. Hence, the distance
to cographs measures the distance from this trivial special case. In contrast to the
parameter h-index, it is open whether 2-Club parameterized by the degeneracy
is in XP or NP-hard on graphs with constant degeneracy. Finally, it would be
interesting to see which results carry over to 3-Club [13, 18].
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Abstract. A one-dimensional tile with overlaps is a standard finite word
that carries some more information that is used to say when the con-
catenation of two tiles is legal. Known since the mid 70’s in the rich
mathematical field of inverse monoid theory, this model of tiles with the
associated partial product have yet not been much studied in theoretical
computer science despite some implicit appearances in studies of two-way
automata in the 80’s.

In this paper, after giving an explicit description of McAlister monoid,
we define and study several classical classes of languages of tiles: from
recognizable languages (REC) definable by morphism into finite monoids
up to languages definable in monadic second order logic (MSO).

We show that the class of MSO definable languages of tiles is both
simple: these languages are finite sums of Cartesian products of rational
languages, and robust : the class is closed under product, iterated product
(star), inverse and projection on context tiles. A equivalent notion of
extended regular expression is deduced from these results.

The much smaller class of REC recognizable languages of tiles is then
studied. We describe few examples and we prove that these languages
are tightly linked with covers of periodic bi-infinite words.

1 Introduction

Background
In this paper, we study languages of one-dimensional discrete overlapping tiles.
These tiles already appear in the 70’s as elements of McAlister’s monoid in the
rich mathematical field of inverse monoid theory (see 9.4. in [7]). In particular,
though sometimes implicitly, they are used for studying the structure of (zigzag)
covers of finite, infinite or bi-infinite words [1]. McAlister’s monoid also appears
in studies of the structure of tiling (in the usual sense with no overlaps) of the
d-dimensional Euclidian space IRd [6,1].

In a field more closely related with computer science, overlapping tiles also
appear decades ago in study of two-way automata on words (they are called
word bisections in [11]). But there the underlying monoid structure is left at most
implicit. Only recently, it has been shown that one can relevantly defined two-way
� Partially funded by French ANR, projet ContInt 2012: INEDIT.
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word automata semantics by mapping partial runs to elements of McAslister’s
Monoid [3].

Oddly enough to be mentioned, our interest in studying languages of positive
tiles came from application perspectives in computational music theory [5]. In
particular, tiles and their continuous variants, can be used to describe advanced
synchronization mechanisms between musical patterns [2].

Our purpose here is to provide the computer science flavored basis for the
systematic study of languages of tiles. In this paper, we especially focus our
attention on characterizing two classical classes of languages that are defined on
tiles. The class REC and the class MSO.

Outline
We first define the monoid of overlapping tiles and prove it isomorphic to the
inverse monoid of McAlister. Three classes of languages of tiles are then consid-
ered:

• the class REC of languages definable as pre-images of monoid morphisms
into finite monoids,

• the class REG (resp. REGC) of languages definable by means of finite
Kleene’s regular expressions (Kleene ’s regular expression extended with
some projection operators),

• the classMSO of languages of tiles definable by means of formula of monadic
second order logic.

The largest class MSO is shown to be both simple: these languages are finite
sums of Cartesian products of rational languages of words (Theorem 4), and
robust : this class is closed under sum, product, star, inverse and context pro-
jection operators (Theorem 5). As a consequence of robustness, we show that
REGC ⊆ MSO (corollary 6). As a consequence of simplicity, we show that
MSO ⊆ REGC (corollary 7).

The class REC is studied in the last part. Compared to the class MSO, it
really collapses. A simple example shows that it is strictly included into MSO
(Lemma 8). Still a non trivial example of an onto morphism from the monoid of
tiles to a finite monoid is provided (Theorem 11). It illustrates the fact, gener-
alized in Theorem 12, that recognizable languages of tiles are necessarily sort of
languages of covers of finitely many bi-infinite words.

For the picture to be complete, let us mention that the intermediate class
REG is characterized in a compagnon paper [3] by means of finite state two-way
automata. It is strictly included in the class REGC as witnessed (with a simple
pumping lemma argument) by the language of idempotent tiles. In other words
REC ⊂⊂ REG ⊂ REGC = MSO.

Preliminaries
The free monoid. Given a finite alphabet A, A∗ denotes the free monoid gen-
erated by A, 1 denotes the neutral element. The concatenation of two words u
and v is denoted by uv.
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Prefix and suffix lattices. ≤p stands for the prefix order over A∗, ≤s for the
suffix order. ∨p (resp. ∨s) denotes the joint operator for the prefix (resp. suffix)
order: thus for all words u and v, u ∨p v (resp. u ∨s v) is the least word whose
both u and v are prefixes (resp. suffixes).

The extended monoid A∗ + {0} (with 0u = u0 = 0 for every word u), ordered
by ≤p (extended with u ≤p 0 for every word u), is a lattice; in particular,
u ∨p v = 0 whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric
properties hold in the suffix lattice.

Syntactic inverses. Given A a disjoint copy of A, u �→ u denotes the mapping
from (A + A)∗ to itself inductively defined by 1 = 1, for every letter a ∈ A, a
is the copy of a in A and a = a, for every word u ∈ (A + A)∗, au = u.a. The
mapping u �→ u is involutive (u = u for every word u); it is an antimorphism of
the free monoid (A+A)∗, i.e. for all words u and v ∈ (A+A)∗, uv = v.u.

Free group. The free group FG(A) generated by A is the quotient of (A+A)∗

by the least congruence 	 such that, for every letter a ∈ A, aa 	 1 and aa 	 1.

2 The Monoid of Overlapping Tiles

We give in this section a description of the monoid of overlapping tiles. It is
shown to be isomorphic to McAlister’s monoid [8].

Positive, Negative and Context Tiles
A tile over the alphabet A is a triple of words u = (u1, u2, u3) ∈ A∗ × (A∗ +
A

∗
)×A∗ such that, if u2 ∈ A

∗
, its inverse u2 is a suffix of u1 and a prefix of u3.

When u2 ∈ A∗ we say that u is a positive tile. When u2 ∈ A
∗

we say that u is
a negative tile. When u2 = 1, i.e. when u is both positive and negative, we say
that u is a context tile.

A positive tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidirec-
tional and left to right) Munn’s birooted word tree [10]:

u1 u3u2

where the dangling input arrow (marking the beginning of the root) appears on
the left of the dangling output arrow (marking the end of the root). A negative
tile of the form u = (u1u2, u2, u2u3) ∈ A∗ ×A

∗ ×A∗ is also drawn as a birooted
word tree

u1 u3u2

where the dangling input arrow appears on the right of the dangling output
arrow. A context tile of the form u = (u1, 1, u3) ∈ A∗ × 1 ×A∗ is then drawn as
follows:

u1 u3

The domain of a tile u = (u1, u2, u3) is the reduced form of u1u2u3 (always
a word of A∗). Its root is the word u2.
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Sets TA, T+
A , T−

A and CA will respectively denote the set of tiles, the set of
positive tiles, the set of negative tiles and the set of context tiles over A.

A Product of Tiles
Intuitively, the sequential product of two tiles is their superposition in such
a way that the end of the root of the first tile coincides with the beginning of the
root of the second tile; the superposition requires pattern-matching conditions
to the left and to the right of the synchronization point. When both tiles are
positive, this can be drawn as follows:

u1 u3u2

v1 v3v2

sync

The product can be extended to arbitrary tiles, as illustrated by the following
figure (positive u and negative v):

u1 u3u2

v1 v3v2

sync

Formally, we extend the set TA with a zero tile to obtain T 0
A = TA + {0}. The

sequential product of two non-zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) is
defined as

u.v = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both u1u2 ∨s v1 
= 0 and u3 ∨p v2v3 
= 0, and u.v = 0 otherwise, where, in
this formula, words in (A+A)∗ are implicitly considered as reduced elements of
FG(A). We also let u.0 = 0.u = 0 for every u ∈ T 0

A.

Example 1. Let a, b, c and d ∈ A be distinct letters. Then (a, b, c).(b, c, d) =
(a, bc, d) whereas (a, b, c).(a, c, d) = 0. In the latter case, the left matching con-
straint is violated because a 
= b.

Set T 0
A equipped with the above sequential product is a monoid. But the proof

of that fact is postponed to the proof that it is even isomorphic to the monoid
of McAlister.

The Inverse Monoid of McAlister
McAlister’s monoid is defined as the quotient of the free inverse monoid FIM(A)
by the ideal ⊥ of all tiles which are non unidirectional or not linear.

More precisely, following Munn’s result [10], elements of FIM(A) are seen as
birooted word trees, i.e. pairs (u, P ) where P is a non empty finite and prefix-
closed subset of (reduced elements of) the free group FG(A) generated by A,
with u ∈ P . The product of two birooted trees (u, P ) and (v,Q) is defined by
(u, P ).(v,Q) = (uv, P ∪ uQ).

A birooted word tree (u, P ) is said unidirectional when P ⊆ A∗ + A
∗
, and

linear when both P ∩ A∗ and P ∩ A
∗

are totally ordered by the prefix order.
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It is straightforward that the set ⊥ of non-unidirectional or non-linear birooted
trees is an ideal.

The monoid of McAlister is then defined as the Rees quotient FIM(A)/⊥, i.e.
the monoid obtained from FIM(A) by merging into a single zero all elements
of ⊥. In that monoid, given two linear and unidirectional birooted word trees
(u, P ) and (v,Q), the product of these two tiles is defined to be (uv, P ∪ uQ) as
in FIM(A) when the resulting birooted tree is linear and unidirectional, and 0
otherwise.

Theorem 1. The set T 0
A equipped with the sequential product is a monoid iso-

morphic to the monoid of McAlister.

Proof. (sketch of) For all non zero tile u = (u1, u2, u3) ∈ TA let tu = (u2, Pu) be
the resulting birooted tree defined by Pu = {x ∈ A

∗
: x ≤p u1} ∪ {x ∈ A∗ : x ≤p

u2u3}.
We observe that tu is a well-defined unidirectional and linear birooted tree.

Indeed, when u is a positive tile, we have u2 ≤ u2u3 hence u2 ∈ Pu. When u is
a negative tile, i.e. with u2 ∈ A

∗
we have both u1u2 and u2u3 ∈ A∗ and thus

u2 ≤p u1 hence u2 ∈ Pu.
We conclude then by showing that the mapping ϕ : T 0

A → FIM(A)/⊥ defined
by ϕ(0) = 0 and for any non-zero tile u = (u1, u2, u3) ∈ TA, ϕ(u) = (u2, Pu) is
an isomorphism.

First, it is easy to check that it is a bijection. In fact, given a linear and
unidirectional tile (u, P ) one check that ϕ−1((u, P )) is the tile (u1, u2, u3) defined
by u2 = u, u1 =

∨
s P ∩A∗

and u3 = u2

∨
p P ∩A∗.

It remains to show ϕ preserves products. For this, it is enough to check that
for any two non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) ∈ TA, one indeed
has tu.v = (u2v2, Pu ∪ u2Pv) which essentially follows from definitions. �

Corollary 2. Monoid T 0
A is an inverse monoid with (pseudo) inverses given by

0−1 = 0 and for every non zero tile u = (u1, u2, u3) ∈ TA, u−1 = (u1u2, u2, u2u3).

Proof. (sketch of) For every u = (u1, u2, u3) ∈ TA, given tu = (u2, Pu), this
amounts to check that tu−1 = (tu)−1 = (u2, u2Pu) and thus this just amounts
to check that u2Pu = Pu−1 . �

An immediate property worth being mentioned:

Lemma 3. The mapping u �→ (1, u, 1) from A∗ to TA is a one-to-one morphism
and the monoid T 0

A is finitely generated from the image of the set of letters A
and their inverses.

In other words, the free monoid A∗ can be seen as a submonoid of T 0
A. In the

remainder of the text we may use the same notation for words of A∗ and their
images in T 0

A.
Remark. One can also observe that positive (resp. negative) tiles extended
with 0 form a submonoid T+0

A (resp. T−0
A ) of T 0

A. However, this submonoid is
not finitely generated. One need extra operators.
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More precisely, for every u = (u1, u2, u3) ∈ T+
A , let uL = u−1u = (u1u2, 1, u3),

the canonical left context tile associated to tile u and let uR = uu−1 = (u1, 1,
u2u3), the canonical right context tile associated to tile u.

By construction, we have uRu = uuL = u for every u ∈ TA. Moreover,
submonoid T+0

A (resp. T−0
A ) is finitely generated by (embeddings of) A (resp.

A), product and left and right context operators.

3 MSO-Definable and Regular Languages of Tiles

We consider in this section the class MSO of languages of tiles definable by
means of monadic second order formulae.

MSO Definability
We need FO-models for positive tiles. For this, we use a typical encoding of
words into FO-structures that amounts to encode each letter a ∈ A as a relation
between elements of the domain. This way, there is no need of end markers and
the empty word is simply modeled by the structure with singleton domain and
empty relations. Then we raise models of words to models of tiles just by marking
(as pictured in birooted trees) entry and exit points.

For instance, the triple u = (ba, aa, bb) is modeled as indicated by the following
picture

b a a a bb

where, as before, a dangling input arrow marks the entry point and a dangling
output arrow marks the exit point.

The model of a tile u is denoted by tu. The associated domain of its underlying
FO-structure is written dom(tu), the entry point in written in(tu) and the exit
point is written out(tu).

A language L ⊆ TA is MSO definable when there is a MSO formula of the
form ϕL(U, x, y) where U is a set variable and x and y are two FO-variables such
that, for all t ∈ TA, t ∈ L if and only if t |= ϕL(dom(t), in(t), out(t)).

A Word Congruence for Languages of Tiles
We aim at achieving a simple characterization of MSO definable language of
tiles. For this purpose, we first define a notion of congruence relation over A∗

which is defined for all language of tiles. It occurs that this congruence is of finite
index if and only if the language of tile is definable in MSO.

Given a language L ⊆ TA on non zero tiles, we define the word congruence
	L associated to L that tells when two words can be replaced one by the other
in any tile without altering membership in L.

Formally, 	L is the least relation over words such that, for all u0 and v0 ∈ A∗,
u0 	L v0 when for all w0, w2, w3 and w4 ∈ A∗, if u = (w1u0w2, w3, w4) and
v = (w1v0w2, w3, w4), or if u = (w1, w2u0w3, w4) and v = (w1, w2v0w3, w4), or
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if u = (w1, w2, w3u3w4) and v = (w0, w2, w3v3w4) then u ∈ L ⇔ v ∈ L and
u−1 ∈ L⇔ v−1 ∈ L.

Relation 	L is a congruence on words. For every for u ∈ A∗, let [u]L be the
equivalence class of u defined by [u]L = {v ∈ A∗ : u 	L v}.
Theorem 4. For every language L ⊆ TA of non zero tiles:

L = Σ(u1,u2,u3)∈L∩T+
A

[u1]L × [u2]L × [u3]L

+Σ(u1,u2,u3)−1∈L∩T−
A

([u1]L × [u2]L × [u3]L)−1

Moreover, L is definable in MSO if and only if relation 	L is of finite index.

Proof. The first statement is an immediate consequence of the definition of 	L.
Moreover, if 	L is of finite index, then this sum is finite, and any language of the
form [w]L ⊆ A∗ with w ∈ A∗ is rational henceforth MSO definable. It follows
that L is thus definable in MSO.

Conversely, assume L is definable in MSO. Given L+ = L ∩ T+
A and L− =

L ∩ T−
A , we observe that both L+ and (L−)−1 ⊆ A∗ × A∗ ×A∗ can be encoded

into languages of words M+ and M− ⊆ A∗
LA

∗
CA

∗
R where AL, AC and AR are

three disjoint copies of the alphabet A for encoding the left, center and right
elements of each tiles.

Now, since L is definable in MSO, so are L+ and L− and thus, their encoding
M+ and M− are also definable in MSO. By Büchi theorem, this means that
they are regular and thus their syntactic congruences 	M+ and 	M− are of
finite index. This implies that 	L is also of finite index. Indeed, for all word u
and v ∈ A∗, we have u 	L v if and only if uX 	M+ vX and uX 	M− vX for X
being L, C or R and with wX denoting the renaming of any word w ∈ A∗ in the
copy alphabet AX . �

Extended Regular Languages
For every langage L and M ⊆ TA of non zero tiles, let L+M = L∪M , L.M =
{u.v ∈ TA : u ∈ L, v ∈ M,u.v 
= 0}, L∗ =

⋃
k≥0 L

k, L−1 = {u−1 ∈ TA : u ∈ L}
and LC = {u ∈ TA : u ∈ L ∩CA} (called context projection).

Theorem 5. For every languages L and M ⊆ TA on non zero tiles, if L and
M are MSO definable then so are L+M , L.M , L∗, L−1 and LC .

Proof. Let ϕL(U, x, y) and ϕM (U, x, y) be two formulae defining respectively the
language of tiles L and M . We assume that these formulae also check that both
x and y belongs to U that, moreover, U is connected.
Case of L+M : take ψ(U, x, y) defined by ϕL(U, x, y) ∨ ϕM (U, x, y).
Case of L.M : take ψ(U, x, y) stating that there exist two sets X and Y such that
U = X ∪ Y and there is z such that both ϕL(X,x, z) and ϕM (Y, z, y) hold.
Case of L∗: in order to define ϕ(U, x, y), the main idea is to consider the re-
flexive transitive closure R+(x, y) of the binary relation R(x1, x2) defined by
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∃XϕL(X,x1, x2); one must take care, however, that set U is completely cov-
ered by (sub)tiles’ domains; this is equivalent to the fact, as domains necessarily
overlap, that each extremity (left most or right most element) of the domain U
belongs to one of these sets X at least. This is easily encoded by a disjunction
of the three possible cases: extremities are reached in a single intermediate tile,
left extremity is reached first or right extremity is reached first.
Case of L−1: take ψ(U, x, y) defined by ϕL(U, y, x).
Case of LC : take ψ(U, x, y) defined by (x = y) ∧ ϕL(U, x, y). �

Let then REG (resp. REGC) be the class of regular (resp. extended regular)
languages of tiles that is the class of languages definable by means of finite sets
of non zero tiles, sum, product, iterated product (or star), inverse and context
projection.

Since finite tile languages are indeed definable in MSO we can state the fol-
lowing corollary of Theorem 5:

Corollary 6. Extended regular languages of tiles are MSO definable.

Moreover, since for every regular languages L, M and R ⊆ A∗, one has L×C ×
R = (L−1.L)C .M.(R.R−1)C where, on the right side, words are embedded into
tiles as in Lemma 3, we can also state immediate corollary of Theorem 4:

Corollary 7. MSO definable languages of tiles are extended regular.

In other words, REGC = MSO.
Remark. Observe that, in the above proof, we use the fact that for every lan-
guages L ⊆ A∗ of (embeddings of) words into tiles, (L.L−1)C = {uu−1 : u ∈ L}
and (L−1.L)C = {u−1u : u ∈ L}. This property is not true for arbitrary lan-
guages of TA.

4 Recognizable Languages of Tiles

In this section, we consider languages of non zero tiles that are (up to adding
the zero tile) recognizable in the algebraic sense. Although the theory of tiles
can be seen as part of the theory of inverse monoid, the results we obtain rather
differ from the former studies of languages of words recognized by finite inverse
monoids [9] or free inverse monoid languages [12]. Morphisms from T 0

A (or even
T+0

A ) to arbitrary monoids turns out to be even more constrained than mor-
phisms from A∗ to finite inverse monoids.

A Non Recognizable Language of Tiles
The next result, negative, tells us that rather simple (MSO definable) languages
of tiles are not recognizable.

Lemma 8. Language L = {(bam, an, ap) ∈ TA : m,n, p ∈ IN} with a and b two
distinct letters, is not recognizable.
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Proof. We prove that the syntactical congruence 	L (and not the word congru-
ence defined above) associated to L in T 0

A is of infinite index.
For all m ∈ IN, let um be the tile um = (bam, 1, 1). It is an easy observation

that for allm and n ∈ IN, um 	L un if and only if m = n hence the claim. Indeed,
for all k ∈ IN let vk = (ak, 1, 1). We have for any given m ∈ IN, umvk ∈ L if and
only if k ≤ m. Now if for some m and n ∈ IN one has um 	L un then for all
k ∈ IN, umvk ∈ L if and only if unvk ∈ L. It follows that, for all k, k ≤ m if and
only if k ≤ n, hence m = n. �

Since L = b−1(a−1)∗ba∗, it belongs to the class REG. Since recognizable lan-
guages are definable by regular expressions [3], we have the strict inclusion:

Corollary 9. REC ⊂ REG

A (Non-Trivial) Recognizable Language
Before studying in the next section recognizable languages in full generality, we
provide in this section a non trivial example of such a language. It illustrates
the main characteristic of all recognizable languages of tiles : a strong link with
tiles’s cover of periodic bi-infinite words.

Building such an example essentially amounts to provide a (onto) monoid
morphism from T 0

A onto some non-trivial finite (inverse) monoid M . Here, the
main idea is to type tiles, by means of a monoid morphism, according to their
capacity to cover the bi-infinite word ω(ab)(ab)ω with a and b two distinct letters.

In order to do so, let M = {0, 1, (a, 1, b), (b, 1, a), (b, a, b), (a, b, a)} with prod-
uct � defined as expected for 0 and 1 and defined according to the following
product table:

� (a, 1, b) (b, 1, a) (b, a, b) (a, b, a)
(a, 1, b) (a, 1, b) 0 0 (a, b, a)
(b, 1, a) 0 (b, 1, a) (b, a, b) 0
(b, a, b) (b, a, b) 0 0 (b, 1, a)
(a, b, a) 0 (a, b, a) (a, 1, b) 0

Lemma 10. Monoid (M,�) is an inverse monoid.

Proof. We easily check that product � is associative hence M is a monoid.
Given E(M) = {0, 1, (a, 1, b), (b, 1, a)} the set of idempotents of S, the commu-
tation of idempotents immediately follows from unique non trivial case (a, 1, b)�
(b, 1, a) = (b, 1, a)�(a, 1, b) = 0. Last, we check that (a, b, a)�(b, a, b)�(a, b, a) =
(a, b, a) and (b, a, b) � (a, b, a) � (b, a, b) = (b, a, b). It follows that (a, b, a)−1 =
(b, a, b) and (b, a, b)−1 = (a, b, a). All other element is idempotent and thus
self-inverse. �

The expected monoid morphism ϕ : T 0
A → M is then defined by ϕ(0) = 0,

ϕ(1) = 1 and for all (u, v, w) ∈ T 0
A such that uvw 
= 1, ϕ(u, v, w) = 0 when uvw

is not a factor of (ab)ω and, otherwise, when u is a positive tile:
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1. ϕ(u, v, w) = (a, 1, b) when |v| is even with a ≤s u,b ≤p v, a ≤s v or b ≤p w,
2. ϕ(u, v, w) = (b, 1, a) when |v| is even with b ≤s u,a ≤p v, b ≤s v or a ≤p w,
3. ϕ(u, v, w) = (b, a, b) when |v| is odd with a ≤p v,
4. ϕ(u, v, w) = (a, b, a) when |v| is odd with b ≤p v,

and ϕ(u, v, w) = (ϕ(uv, v, vw))−1 when (u, v, w) is a negative tile.

Theorem 11. The mapping ϕ : T 0
A →M is a onto morphism.

Proof. This follows from the fact that, for all u and v ∈ T 0
A, ϕ(u) � ϕ(v) =

ϕ(uv) = ϕ(ϕ(u)ϕ(v)). �

Given LS = (ab)∗ + b(ab)∗, given LC = (ab)∗, given LP = (ab)∗ + (ab)∗a, this
theorem says, in particular, that the non trivial tile language LS ×LC ×LP − 1
is recognizable since it equals ϕ−1((b, 1, a)).

More on Recognizable Languages of Tiles
We conclude our study by showing that recognizable languages of tiles are es-
sentially generalization of the example described above.

We say that L ⊆ TA is recognizable when there is a monoid morphism ϕ :
T 0

A →M with finite monoid M such that L = ϕ−1(ϕ(L)) − 0.
Since we can always restrict M to ϕ(T 0

A) and ϕ(0) is a zero in the submonoid
ϕ(T 0

A), we assume, without loss of generality, that M = ϕ(T 0
a ) with ϕ(0) = 0.

Now, by complement, understanding the structure of languages of non zero tiles
recognizable by ϕ amounts to understand the structure of languages of the form
ϕ−1(s) for all non-zero element s ∈ S.

Moreover, we can restrict our attention to recognizable languages of positive
tiles. It can indeed by shown that ϕ(T 0

A) is necessarily an inverse monoid and,
for every s ∈M − 0, ϕ−1(s) = ϕ−1(s) ∩ T+

A + (ϕ−1(s−1) ∩ T+
A )−1.

In the theorem below, we even consider the more difficult case of a onto monoid
morphism ϕ : T+0

A →M from the submonoid of positive tiles to a finite monoid
M . However, in order to avoid undesirable effect due to the fact that, contrary to
T 0

A, T+0
A is not finitely generated, we assume that ϕ is safe in the sense, for every

u ∈ T+
A , if ϕ(u) 
= 0 then both ϕL(u) = ϕ(u−1u) 
= 0 and ϕR(u) = ϕ(uu−1) 
= 0.

One can check that an onto morphism from all tiles T 0
A to a monoid M is always

safe.

Theorem 12. Let ϕ : T+0
A → M be a safe monoid morphism. Let s ∈ M be

a non-zero element. Let Ls = ϕ−1(s). Then either Ls is finite with Ls ⊆ {u ∈
T+

A : v ≤ u} for some (non zero) v ∈ T+
A , or there are two finite words x ∈ A∗

and y ∈ A+ and some integer k ≥ 0 such that, Ls is a co-finite subset of one of
the following set of non-zero tiles:

1. S(ω(xy)) × x× P (w) for some finite w <p (yx)ω,
2. S(w) × x× P ((yx)ω) for some finite w <s

ω(xy),
3. S(ω(xy)) × x× P ((xy)ω),
4. or S(ω(xy)) × x(yx)k(yx)∗ × P ((yx)ω),
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with, for all w ∈ A∗ + ωA, S(w) = {z ∈ A∗ : z ≤s w}, i.e. the set of suffix of w,
and for all w ∈ A∗ +Aω, P (w) = {z ∈ A∗ : z ≤p w}, i.e. the set of prefix of w.

In particular, domains of tiles of Ls are factors of the bi-infinite periodic word
ω(xy)x(yx)ω .

Proof. The rest of this section is dedicated to the proof of this theorem. In order
to do so, we first prove several closure properties of Ls.

Lemma 13. For all u = (u1, u2, u3) ∈ Ls and v = (v1, v2, v3) ∈ Ls, (u1 ∨s

v1, u2, u3) ∈ Ls and (u1, u2, u3 ∨p v3) ∈ Ls.

Proof. Weknow that (v1)Lv = v hence (v1)u ∈ Ls sinceϕ((v1)Lv) = ϕL(v1)ϕ(v) =
ϕL(v1)ϕ(u) = ϕ((v1)Lu). Moreover, 0 /∈ Ls hence (v1)Lu = (u1∨s v1, u2, u3) with
u1 ∨S v1 
= 0. Symmetrical arguments prove the prefix case. �

Lemma 14. For all u = (u1, u2, u3) and v = (v1, v2, v3) ∈ Ls such that |u2| ≤
|v2|, either u2 = v2 or there exists x ∈ A∗, y ∈ A+ and k ≥ 0 such that
u2 = x(yx)k, v2 = x(yx)k+1. In that latter case, there is u′ ∈ Ls such that
u′((xy)C)∗ ⊆ Ls.

Proof. Let u and v as above. We have (v2)Rv(v2)L = v hence, by a similar
argument as in Lemma 13, (v2)Ru(v2)L ∈ Ls. Since |u2 ≤ |v2| this means that
u2 ≤p v2 and u2 ≤s v2, i.e. roots of elements of Ls are totally by both prefix and
suffix.

In the case u2 
= v2 this means v2 = wu2 = u2w
′ for w and w′ ∈ A+. Let then

k ≥ 0 be the greatest integer such that |wk| < |u2|.
When k = 0, this means w = u2y for some y ∈ A∗ and we take x = u2.

Otherwise, by a simple inductive argument over k, this means u2 = wkx for
some x ∈ A∗ with |x| < |w|. In that latter case, we have v2 = wk+1x = wkxw′.
Since |w′| = |w| it follows that w′ = yx for some y ∈ A+ and thus w = xy. In
all cases, u2 = x(yx)k and v2 = x(yx)k+1.

By applying Lemma 13, with v′1 = u1∨s v1, v′3 = u3∨p v3 and v′ = (v′1, v2, v′3),
we have v′ ∈ Ls. But we known that (v2v′3)Lv

′ = v′ hence we also have
(v2v′3)Lu ∈ Ls. By applying product definition, this means that u′ =
(v′1, u2, yxv

′
3) ∈ Ls hence v′ = u′(yx)C ∈ Ls hence, by an immediate pump-

ing argument, u′((yx)C)∗ ⊆ Ls. �

Lemma 14 already proves the finite case of Theorem 12. We assume now Ls is
infinite.

In the case a single root appears in elements of Ls, for all u = (u1, x, u3) ∈ Ls

we have (u1)Lu(u3)L = u hence, because s 
= 0, ϕL(u1) 
= 0 and ϕL(u3) 
= 0.
By safety assumption, this means that ϕC(u1) 
= 0 and ϕC(u3) 
= 0. Since M

is finite, while Ls is finite, this means that two distinct constraints have same
images by ϕC . Applying Lemma 14 this implies all domains of tiles of Ls are
factors of the same periodic bi-infinite word of the form ω(xy)x(yx)ω for some x
and y ∈ A∗ with xy 
= 0.

Depending on the case elements of Ls have infinitely many left constraints,
right constraints or both left and right constraints, we conclude by showing
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that for all v1 ≤s
ω(xy) and v3 ≤p (yx)ω there is v ∈ Ls such that either (v1)Lv,

v(v3)R or (v1)Lv(v3)R ∈ Ls hence, given a given fixed u = (u1, x, u3) ∈ LS , either
(v1)Lu, u(v3)R or (v1)Lu(v3)R ∈ Ls. This proves the co-finiteness inclusion in
case 1, 2 and 3 in Theorem 12.

In the case two distinct roots (hence infinitely many) appears in tiles of Ls.
Applying Lemma 14 there is x ∈ A∗, y ∈ A+ and k ≥ 0 with u = (u1, u2, xyu3)
such that u((xy)C)∗ ⊆ Ls. By choosing properly the initial u and v in Lemma 14,
we may assume that u2 = x(yx)k is the least root of elements of Ls and that
y(yx)k+1 is the second least. Then we claim that all roots of elements of Ls

belongs to x(yx)k(yx)∗.
Indeed, let then (v1, v2, v3) ∈ Ls and let m ≥ 0 be the unique integer such

that v2 = x(yx)m+kx′ with x′ <p x hence x = x′y′ for some y′ ∈ A+. By an
argument similar with the argument in the proof of Lemma 14, we can show that
there is u′ = (v′1, x(yx)

m+k, x′v′3) ∈ Ls with v′ = (v′1, v2, v
′
3) ∈ Ls henceforth

with v′ = u′x′C ∈ Ls. But this also means that ux′C = (u1, u2x
′, y′yu3) ∈ Ls

which, by minimality of u2xy as second least roots, forces x′ to be equal to 1.
This proves the inclusion stated in case 4 in Theorem 12.

Co-finiteness of the inclusion follows from the finiteness of M with arguments
similar to the arguments for case 3 above. �

Remark. As a conclusion, let us mention that, for languages of positive tiles,
a weakening of the notion of recognizability by means of premorphisms instead
of morphisms has been shown to capture MSO [4]. However, how such a more
expressive notion can be relevantly applied to languages of arbitrary tiles is still
an open problem.
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Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
{mamadou.kante,laforest,momege}@isima.fr

Abstract. A graph with forbidden transitions is a pair (G, FG) where
G := (VG, EG) is a graph and FG is a subset of the set {({y, x}, {x, z}) ∈
E2

G}. A path in a graph with forbidden transitions (G,FG) is a path in G
such that each pair ({y, x}, {x, z}) of consecutive edges does not belong
to FG. It is shown in [S. Szeider, Finding paths in graphs avoiding for-
bidden transitions, DAM 126] that the problem of deciding the existence
of a path between two vertices in a graph with forbidden transitions is
Np-complete. We give an exact exponential time algorithm that decides
in time O(2n ·n5 ·log(n)) whether there exists a path between two vertices
of a given n-vertex graph with forbidden transitions. We also investigate
a natural extension of the minimum cut problem: we give a polynomial
time algorithm that computes a set of forbidden transitions of minimum
size that disconnects two given vertices (while in a minimum cut prob-
lem we are seeking for a minimum number of edges that disconnect the
two vertices). The polynomial time algorithm for that second problem
is obtained via a reduction to a standard minimum cut problem in an
associated allowed line graph.

1 Introduction

Algorithms manipulating graphs are often used to solve concrete situations in
many applied fields. Finding a path between two given points/vertices is a fun-
damental basic tool that often serves as subroutine in many more complex al-
gorithms and software (for example in flows (improving paths between a source
and a sink), in scheduling (notion of constraint and critical path), in network
for routing operations, etc.). Several well-known polynomial time algorithms are
able to do this task: DFS, BFS (to find shortest paths in unweighted graphs),
Dijkstra (for weighted graphs). They are widely available in software packages
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(like Maple and Mathematica1 for example) and are taught in most of first level
computer science or engineering courses all around the world (see a reference
book on algorithms like [6]).

A path (simple or elementary) P in a graph G is just a list of consecutive
(incident) edges (or arcs) of G between a given first vertex s and a final vertex
t. To construct such a path P given G, s and t, the classical algorithms use
all the potentiality of the graph: namely, when a given intermediate vertex u is
reached, there is no restrictions on the following vertex that can be reached: any
neighbour of u. Of course, BFS for example does not explore an already explored
(and marked) vertex w but, as w is a neighbour of u, this possibility is taken
into account among all possibilities.

This is a strong hypothesis in several real applications. Indeed, in some con-
crete networks, it is not possible, coming from a point a towards a point b to
continue towards point c. For example in several large streets of cities, it is for-
bidden to turn left at point b (towards point c) and to cross a road (if one come
from point a preceding b). Many such transits are forbidden in all the countries;
several other restrictions exist (no “U” turn for example).

All these concrete limitations are due to the system modelled by graphs
(routes, systems of production, etc.) in which all the paths are not possible
because they have a local transition that is not allowed.

These forbidden transitions must be added into the knowledge of the graph.
Then the algorithms that are supposed to construct paths between two vertices
must take them into account. The hard part of the work starts at this point. In-
deed, unlike the classical situation where there are several algorithms mentioned
above, adding forbidden transitions strongly increases the complexity of the sit-
uation: In [8], Szeider shows that knowing whether there exists a path between
two nodes avoiding forbidden transitions is Np-Complete while it is polynomial
without these constraints (see [6]).

Several other studies have been done on graphs with forbidden transitions. For
example, in [3] the authors want to find an Eulerian path in a graph representing
biological data (from DNA sequencing) where all transitions between these bio-
logical elements are not allowed. Later, in [4], this practical problem serves as a
motivation for a graph theoretic study. The authors prove, among other results,
that finding an Eulerian path is Np-Complete when the graph contains forbidden
transitions. In [7] the problem of finding two-factors2 is considered. The author
gives conditions on the type of transitions under which deciding whether there is
a two-factor avoiding forbidden transitions in G is polynomial or Np-complete.
In [1,9] the authors investigate a more general form of transitions; they propose
polynomial time algorithms to find a shortest path avoiding forbidden subpaths.
However, their paths are not elementary (we will call walks these objects later).
This is a huge difference with the study of [8] where Szeider consider elementary
paths.

1 See http://www.maplesoft.com/ and http://www.wolfram.com/
2 A subgraph such that for any vertex its in-degree and its out-degree is exactly one.

http://www.maplesoft.com/
http://www.wolfram.com/
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Summary. In Section 2 of our paper, we give preliminary definitions, notations
and concepts. In Section 3 we propose an exponential time algorithm based on
inclusion-exclusion principle having a complexity of O(2n · n5 · log(n)) (where n
is the number of vertices) to decide if the graph contains or not a (elementary)
path between two given vertices avoiding forbidden transitions. In Section 4 we
investigate an equivalent problem to the minimum cut problem: we propose a
polynomial time algorithm to compute the minimum number of allowed transi-
tions to transform into forbidden ones to disconnect a given vertex s to a given
vertex t (instead of cutting edges as in the original well-known cut problem).

2 Preliminaries

In this paper we consider only simple graphs. If A and B are two sets, A\B
denotes the set {x ∈ A | x /∈ B}. The size of a set A is denoted by |A|.

We refer to [5] for graph terminology not defined in this paper. The vertex-set
of a graph G (directed or not) is denoted by VG and its edge-set (or arc-set if
it is directed) by EG. An edge between two vertices x and y in an undirected
graph G is denoted by {x, y} and an arc from x ∈ VG to y ∈ VG in a directed
graph G is denoted by (x, y). For a vertex x ∈ VG we let EG(x) be the set of
edges or arcs incident with x; the degree of x, defined as |EG(x)|, is denoted by
dG(x).

If C is a class of graphs, we denote by Cind the class of graphs {H | H is an
induced subgraph of some graph G ∈ C}. We denote by P3, K3, 2K2, P4 and
L4 the undirected graphs depicted in Figure 1.

L4P3 K3 2K2 P4

Fig. 1.

In the undirected case, a graph with forbidden transitions is a pair (G,FG)
where G is a graph and FG is a subset of the set TG := {({y, x}, {x, z}) ∈ E2

G}
of transitions of G. Transitions of FG are called the forbidden transitions and
the transitions of AG := TG \FG are called the allowed transitions. We will also
denote a transition ({y, x}, {x, z}) by the triplet (y, x, z). If for all the transitions
({y, x}, {x, z}) ∈ FG we have ({y, x}, {x, z}) ∈ FG ⇔ ({x, z}, {y, x}) ∈ FG the
forbidden transitions are called symmetric and in this case we define for each
vertex x a transition graph Ax with VAx := EG(x) and EAx := {{ei, ej} ⊆ VAx |
(ei, ej) ∈ AG}. The set AG := {Ax | x ∈ VG} is called the system of allowed
transitions.

A walk between s and t or an (s, t)-walk in (G,FG) is a sequence of vertices
(s = x1, x2, . . . , xk = t) such that {xi, xi+1} ∈ EG for every 1 ≤ i ≤ k − 1
and ({xi−1, xi}, {xi, xi+1}) ∈ AG for every 2 ≤ i ≤ k − 1. Such a walk is called
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a walk on k vertices and it may also be represented by the sequence of edges
({x1, x2}, . . . , {xi, xi+1}, . . . {xk−1, xk}).

In the directed case, a directed graph with forbidden transitions is a pair
(G,FG) where G is a graph and FG is a subset of the set TG := {((y, x), (x, z)) ∈
E2

G} of transitions of G. Transitions of FG are called the forbidden transi-
tions and the transitions of AG := TG \ FG are called the allowed transi-
tions. We will also denote a transition ((y, x), (x, z)) by the triplet (y, x, z).
A walk from s to t or an (s, t)-walk in (G,FG) is a sequence of vertices (s =
x1, x2, . . . , xk = t) such that (xi, xi+1) ∈ EG for every 1 ≤ i ≤ k − 1 and
((xi−1, xi), (xi, xi+1)) is a transition of AG for every 2 ≤ i ≤ k − 1. Such a walk
is called a walk on k vertices and it may also be represented by the sequence of
arcs ((x1, x2), . . . , (xi, xi+1), . . . , (xk−1, xk)).

In the two cases, a shortest (s, t)-walk is a walk for which k is minimum.
A path is a walk where each vertex appears once. If there is an (s, t)-walk in G
we say that G is (s, t)-connected; s and t are called disconnected if there is no
(s, t)-walk.

We can apply these definitions to a “classic” graph G by noting that G is
a graph with forbidden transitions where FG = ∅.

The path problem in graphs with forbidden transitions consists in, given
a graph with forbidden transitions (G,FG), and two vertices s and t, asking
for the existence of an (s, t)-path.

Until the end of this section we consider only undirected graphs with sym-
metric forbidden transitions.

Theorem 1 ([8]). Let C be a class of graphs closed under isomorphism and
let G(C) be the set of graphs with symmetric forbidden transitions (G,FG) with
AG ⊆ C. The path problem is Np-complete in G(C) if Cind contains at least one of
the sets {K3, 2K2}, {K3, 2K2}, {P4}, {L4}. In all other cases the path problem
is solvable in linear time, and a path can be constructed in linear time.

Remark 2. One can even prove that Theorem 1 is still true if we consider
bipartite graphs with symmetric forbidden transitions. Indeed, let (G,FG) be
a graph with symmetric forbidden transitions, and let (G′, FG′) where

VG′ := VG ∪ EG,

EG′ := {{x, {x, y}} | {x, y} ∈ EG},
FG′ := {({{x, y}, y}, {y, {y, z}}) | ({x, y}, {y, z}) ∈ FG}.

One easily proves that P := (x1, . . . , xk) is a path in (G,FG) if and only if
(x1, {x1, x2}, x2, . . . , xk−1, {xk−1, xk}, xk) is a path in (G′, FG′).

An easy corollary of Theorem 1 is the following.

Corollary 3. Let (G,FG) be a graph with symmetric forbidden transitions such
that, for every vertex x of G, the transition graph Ax is a complete graph when-
ever dG(x) ≥ 4. Then, for every two vertices x and y, one can construct in linear
time a path between x and y, if one exists.
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Proof. Let x be a vertex of G. If dG(x) ≥ 4, then Ax is a complete graph, and
each graph in the set {P3, P4, L4, 2K2} is not an induced subgraph of Ax. If
dG(x) ≤ 3, then P4, L4 and 2K2 cannot be induced subgraphs of Ax. Therefore,
any of these sets {K3, 2K2}, {K3, 2K2}, {P4}, {L4} is included in Aind

G . And
by Theorem 1, one can find a path, if it exists, between every two vertices of G
in linear time. "#

3 Exact Exponential Time Algorithm

Our algorithm will count the number of paths between two vertices using the
principle of inclusion-exclusion as in [2]. Let us introduce some notations.

Let (G,FG) be a graph (directed or not) with forbidden transitions and let s
and t be two vertices of G. For every positive integer �, we denote by W(s, t)
the set of (s, t)-walks on � vertices, and by P(s, t) the set of paths in W(s, t).
For Y ⊆ VG, we denote by W,Y (s, t) the walks in W(s, t) that do not intersect
Y and similarly for P,Y (s, t).

We propose Algorithm 1 to verify the existence of an (s, t)-path.

Algorithm 1. PathProblem(G,FG)

Data: A graph with forbidden transitions (G,FG) and two vertices s and t.
Result: Does there exist an (s, t)-path in (G,FG)? If yes, how many vertices

the shortest path contain?
begin

1 Let n be |VG|
2 for � ← 1 to n do
3 R := 0
4 foreach A ⊆ VG with |A| ≥ n− � do

5 R := R +
( |A|
n−�

) · (−1)|A|−(n−�) · |W�,A(s, t)|
end

6 if R ≥ 1 then
7 return (YES, �)

end

end
8 return NO

end

Theorem 4. Algorithm 1 is correct and runs in time O(2n ·n5 · log(n)) for every
n-vertex graph with forbidden transitions.

The rest of this section is devoted to the proof of Theorem 4. So, we assume
that we are given an n-vertex graph with forbidden transitions (G,FG) and two
vertices s and t.
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Lemma 5. Let � be a fixed positive integer. Then

|P(s, t)| =
∑

Y⊆VG

|Y |=n−

∑
X⊆VG\Y

(−1)|X| · |W,Y ∪X(s, t)|.

Proof. Since a path on � vertices is a walk that goes through � vertices and
avoids n− � other vertices, we have that

|P(s, t)| =
∑

Y⊆VG

|Y |=n−

|P,Y (s, t)|. (1)

A walk on � vertices that is not a path is a walk that repeats at least one vertex.
Then,

|P,Y (s, t)| = |W,Y (s, t)| −

∣∣∣∣∣∣
⋃

x∈VG\Y
W,Y ∪{x}(s, t)

∣∣∣∣∣∣ .
And, by the inclusion-exclusion principle∣∣∣∣∣∣

⋃
x∈VG\Y

W,Y ∪{x}(s, t)

∣∣∣∣∣∣ =
∑

X⊆VG\Y
X �=∅

(−1)|X| · |W,Y ∪X(s, t)|.

Therefore,

|P,Y (s, t)| =
∑

X⊆VG\Y
(−1)|X| · |W,Y ∪X(s, t)|.

By Eq. (1), we can conclude. "#
As a corollary of Lemma 5, we get the following which proves the correctness of
the algorithm.

Corollary 6. Let � be a fixed positive integer. Then,

|P(s, t)| =
∑

A⊆VG

|A|≥n−

(
|A|
n− �

)
· (−1)|A|−(n−) · |W,A(s, t)|.

Proof. Choosing a subset Y of VG of size n − � and then choosing a subset of
VG \ Y , is similar to choosing a subset A of VG of size at least n − �, and then
choosing a subset Y of A of size n− �. Hence,∑

Y⊆VG

|Y |=n−

∑
X⊆VG\Y

(−1)|X| · |W,Y ∪X(s, t)|

=
∑

A⊆VG

|A|≥n−

(
|A|
n− �

)
· (−1)|A|−(n−) · |W,A(s, t)|.

By Lemma 5, we can conclude. "#
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It remains now to bound the time complexity of Algorithm 1.

Lemma 7. Let � be a fixed positive integer and let Y be a subset of VG. Then
one can compute |W,Y (s, t)| in time O(n4 · log(n)).

Proof. We can assume that � ≥ 3 since the statement is clear for � ≤ 2. If
{s, t} ∩ Y �= ∅, then |W,Y (s, t)| = 0. So, assume that s and t do not belong to
Y . Let us use the notation W,Y (s, x, t) to denote walks in W,Y (s, t) having x
as penultimate vertex. Then,

|W,Y (s, t)| =
∑

x∈VG\Y
|W,Y (s, x, t)|.

If we know the multiset {|W,Y (s, x, t)| | x ∈ VG \ Y }, then we can compute
|W,Y (s, t)| in time O(n). We will prove that the multiset {|W,Y (s, x0, x1)| |
(x0, x1) ∈ (VG \ Y )2} can be computed in time O(n4 · log(n)). If � = 3, then
|W,Y (s, x0, x1)| = 1⇔ (s, x0, x1) ∈ AG. Assume now that � ≥ 4. Then

|W,Y (s, x0, x1)| =
∑

y∈VG\Y
(y,x0,x1)∈AG

|W−1,Y (s, y, x0)|. (2)

We will compute the multiset {|W,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y )2} by dy-
namic programming using Eq. (2). We first compute {|W3,Y (s, x0, x1)| | (x0, x1) ∈
(VG \ Y )2} in time O(n2 · log(n)) (there are O(n2) possible transitions and
a search can be done in time O(log(n)) if TG is lexicographically ordered).
Now, if {|W−1,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y )2} is known, one can compute
|W,Y (s, x0, x1)|, for some pair (x0, x1) ∈ (VG\Y )2, in time O(n·log(n)) (by using
Eq. (2)), and then one can compute the multiset {|W,Y (s, x0, x1)| | (x0, x1) ∈
(VG \Y )2} from {|W−1,Y (s, x0, x1)| | (x0, x1) ∈ (VG \Y )2} in time O(n3 · log(n))
and from {|W3,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y )2} in time O(n4 · log(n)). This
finishes the proof. "#

Proof (Proof of Theorem 4). By Corollary 6, Algorithm 1 is correct. And, by
Corollary 6 and Lemma 7, the time complexity is bounded by

n∑
=1

n∑
i=n−

(
n

i

)
·O(n4 · log(n)) ≤ O(2n · n5 · log(n)).

This concludes the proof. "#

4 Generalisation of the Minimum Cut Problem

Paths and walks are related to notions of connectivity. A classical problem in
graph theory is to cut a minimum number of edges to disconnect two given
vertices s and t. In our context, there is another way to disconnect s and t: we
can just transform some allowed transitions into forbidden ones. In this section
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we propose a polynomial time algorithm to find a minimum number of such
transitions that must be turned into forbidden.

Let (G,FG) be a directed graph with forbidden transitions, and s, t two
non-adjacent vertices of G. We first define a new graph associated to (G,FG),
and s, t that we will use in the rest of this section.

Definition 1. We denote by G∗
s,t the directed graph defined by:

VG∗
s,t

:= EG ∪ {s′} ∪ {t′} ,
EG∗

s,t
:= AG ∪ {(s′, (s, v)) | (s, v) ∈ EG} ∪ {((v, t), t′) | (v, t) ∈ EG}

In the following we simply denote G∗
s,t by G∗.

Remark 8. We call the subgraph of G∗ induced by EG the allowed line graph
of (G,FG). It admits as vertex-set EG and as edge-set AG.

For example for the following graph with forbidden transition (G,FG) with FG =
{(e1, e2)}:

we obtain the following graph G∗:

The proof of the following proposition is straightforward.

Proposition 9. The function

f :

{
{(s, t)-walks in G} → {(s′, t′)-walks in G∗}

(e1 ∈ EG, ..., ek ∈ EG) �→ (s′, e1 ∈ VG∗ , ..., ek ∈ VG∗ , t′)

is well defined and bijective.

So we have the following immediate corollary.

Corollary 10. G is (s, t)-connected if and only if G∗ is (s′, t′)-connected.

Remark 11. We see that f is a bijection between the shortest (s, t)-walks in G
and the shortest (s′, t′)-walks in G∗ and therefore to obtain in polynomial time
a shortest (s, t)-walk in G (if it exists) we can find a shortest path in G∗ (if it
exists) and return its fibre under f.
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Lemma 12. There exists an (s′, t′)-cut ( i.e. a set of arcs disconnecting s′ and
t′) in G∗ having no outgoing arc of s′ and no incoming arc of t′. By definition
the size of a cut is its number of arcs.

Proof. Since s and t are not adjacent in G an (s, t)-walk in G takes at least
one transition. By making these transitions forbidden we obtain a new graph
which is not (s, t)-connected. Hence by removing the corresponding arcs in G∗

we obtain a graph which is not (s′, t′)-connected by Corollary 10. Finally these
arcs form a cut and as they correspond to transitions of G, there is no outgoing
arc of s′ or incoming arc of t′. "#

Lemma 13. In G∗, the arcs of a minimum (s′, t′)-cut having no outgoing arc of
s′ and no incoming arc of t′, correspond to a minimum set of allowed transitions
in G sufficient to forbid to disconnect s and t, and reciprocally.

Proof. G∗ deprived of these arcs is no longer (s′, t′)-connected and so G deprived
of the corresponding transitions is also no longer (s, t)-connected according to
Corollary 10 and reciprocally. Moreover as the size of this cut is equal to the
size of the set of corresponding transitions, if one is minimum, the other is also
minimum. "#

Theorem 14. Let m be the number of arcs of G∗. Assign to each arc of G∗

a capacity equal to one except for the outgoing arcs of s′ and the incoming arcs
of t′ for which it is taken equal to m. The arcs of an (s′, t′)-cut of minimum
capacity correspond to a minimum set of allowed transitions in G sufficient to
forbid to disconnect s and t.

Proof. According to Lemma 12, there exists an (s′, t′)-cut in G∗ having no out-
going arc of s′ and no incoming arc of t′. This cut has less than m arcs (each
having a capacity equal to one) and thus admits a capacity less than m. Thus,
the minimum capacity of an (s′, t′)-cut is strictly less than m, and therefore an
(s′, t′)-cut of minimum capacity contains no outgoing arc of s′ or incoming arc
of t′ because its capacity would be greater than or equal to m. Now for such
a cut, the capacity is equal to its size and if its size is minimum, it corresponds
to a minimum set of allowed transitions in G sufficient to forbid to disconnect s
and t by Lemma 13. "#

We are now able to give an algorithm that takes as input a graph with forbid-
den transitions (G,FG), and s, t ∈ VG two non-adjacent vertices, and returns a
minimum set of allowed transitions sufficient to forbid to disconnect s and t.

Theorem 15. Algorithm 2 is correct and runs in time polynomial in the size
of G.

Proof. The correctness of Algorithm 2 follows from Theorem 14. For the time
complexity, the steps 1, 2, and 4 run in time O(|EG|2) and step 3 can be done
using a polynomial time algorithm which computes an (s′, t′)-cut of minimum
capacity in G∗ as the Edmonds-Karp algorithm. "#
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Algorithm 2. GeneralisedCutProblem(G,FG)

Data: A directed graph with forbidden transitions (G,FG), and two
non-adjacent vertices s and t.

Result: A minimum set of allowed transitions sufficient to forbid to disconnect
s and t.

begin
1 Construct the graph G∗;
2 Assign to each arc of G∗ a capacity equal to one except for the outgoing

arcs of s′ and the incoming arcs of t′ for which it is taken equal to |EG|;
3 Compute an (s′, t′)-cut of minimum capacity in G∗ with these capacities;
4 return Transitions of G corresponding to the arcs of the cut.

end

Now if (G,FG) is an undirected graph with forbidden transitions and s, t two
non-adjacent vertices of VG, we introduce the directed graph with forbidden
transitions Gd defined formally as follows:

VGd
:= VG,

EGd
:= {(v, w), (w, v) | {v, w} ∈ EG} ,

FGd
:= {((v, w), (w, x)) | ({v, w}, {w, x}) ∈ FG} .

AsG andGd have the same walks (sequences of vertices) just apply the algorithm
2 to Gd to obtain a minimum set of allowed transitions sufficient to forbid to
disconnect s and t in G.

Remark 16. To obtain (if it exists) in polynomial time a shortest (s, t)-walk
in an undirected graph with forbidden transitions G we can find (if it exists)
a shortest path in G∗

d and return its fibre under f.

5 Conclusion and Perspectives

Including forbidden transitions into graphs strongly extend the capacities to
model real situations but also increases the complexity of a priori simple tasks
such as finding elementary (and shortest) paths. When the total number k of
forbidden transitions in G is low one can apply a simple branch and bound algo-
rithm to find (if there is one) such a path. Up to k = O(log n), this elementary
algorithm remains polynomial. However, as k can be much larger than n, we
proposed in Section 3 another method with time complexity O(2n · poly(n)).

In Section 4 we transposed a classical cutting problem: instead of cutting a
minimum number of edges to disconnect two given vertices s and t, we proposed
a polynomial time algorithm to turn a minimum number of allowed transitions
into forbidden ones in such a way that there is no more walk between s and t.
This is another measure of connectivity between s and t and can be used for
example in preliminary studies to prevent to disconnect two parts of a city when
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there are temporary traffic restrictions due for example to a punctual event or
due to works in streets.

In conclusion, we can see graphs with forbidden transitions as graphs with
“reduced connection capabilities”. Due to the potential applications, we plan
to further investigate this subject. We hope to decrease the O(2n · poly(n))
complexity of the exact algorithm. Our result on the equivalent cutting problem
in Section 4 motivates us to try to generalise the flow problem in graphs with
forbidden transitions. In a more general way we intend to generalise classical
algorithmic problems into graphs with forbidden transitions.
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Abstract. We give linear and polynomial time algorithms for compu-
ting a minimum hull-set in distance-hereditary and chordal graphs re-
spectively. Prior to our result a polynomial time algorithm was only
known for sub-classes of considered graph classes. Our techniques allow
us to give at the same time a linear time algorithm for computing a
minimum geodetic set in distance-hereditary graphs.

1 Introduction

In this paper we consider convexity related to shortest paths in graphs. For an
undirected graph G and a subset X of the vertex-set of G, let I[X ] be the set of
vertices that lie in a shortest path between two vertices of X . The closure of X
is the smallest X ′ ⊇ X such that I[X ′] = X ′. The hull number [16] of a graph
G is defined as the minimum k such that there exists a set X of size k whose
closure is the set of vertices of G. The notion of hull number has been introduced
in [16] and has attracted many interest in the years [1,3,12,13]. Computing the
minimum hull number of graphs is NP-complete [1,12] and polynomial time
algorithms have been proposed for some graph classes: proper interval graphs,
cographs, split graphs [12], cobipartite graphs [1].

In this paper we give polynomial time algorithms for computing a minimum
hull set in distance-hereditary and chordal graphs. The computational complex-
ity of the hull number of chordal graphs has been left open since [12] and to our
knowledge no polynomial time algorithm for the computation of the hull number
of distance-hereditary graphs is known. Surprisingly, the related notion geodetic
number has been proven to be NP-complete in chordal graphs [14] and a poly-
nomial time algorithm for interval graphs is open (polynomial time algorithms
for split graphs and proper interval graphs are given in [14] and [15]).

Our linear time (in the size of the graph) algorithm for distance-hereditary
graphs can be summarised as follows. We will first give a monadic second-order
formula HullSet(X) that holds in a connected distance-hereditary graph G if
and only if X is a hull set of G. We will then use Courcelle et al.’s theorem
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stating that monadic second-order properties can be solved in linear time in
distance-hereditary graphs (see [7]). In order to write the formula HullSet(X)
we will express in monadic second-order logic the property “z is in a short-
est path between x and y" and we will use for that the well-known notion of
split decomposition [8] and a characterisation of the property “being in a shortest
path" by means of split decomposition.

The algorithm for chordal graphs is based upon the notion of functional de-
pendencies which are constraints used in relational database design and specially
in normalisation process [5].

Summary. Section 2 is devoted to preliminaries and basic facts. A linear time
algorithm for distance-hereditary graphs, based on logical tools, is given in Sec-
tion 3. Section 4 is devoted to the polynomial time algorithm for chordal graphs.
We finish by some concluding remarks and open questions in Section 5.

2 Preliminaries

Graphs. If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The
power set of a set V is denoted by 2V . The size of a set A is denoted by |A|.

We refer to [10] for our graph terminology. A graph G is a pair (VG, EG) where
VG is the set of vertices and EG ⊆ (VG × VG) \ ({(x, x) | x ∈ VG}) is the set of
edges. A graph G is said to be undirected if (x, y) ∈ EG implies (y, x) ∈ EG; an
edge (x, y) is hence written xy (equivalently yx). For a graph G, we denote by
G[X ], called the subgraph of G induced by X ⊆ VG, the graph (X,EG∩(X×X)).
The size of a graph G, denoted by ‖G‖, is defined as |VG|+ |EG|.

A path of length k in a graph G from the vertex x to the vertex y is a sequence
(x = x0, x1, . . . , xk = y) such that the set {(xi, xi+1) | 0 ≤ i ≤ k− 1} is a subset
of EG; this path is said chordless if (xi, xj) /∈ EG whenever j > i+1 or j < i−1.
It is worth noticing that whenever G is undirected, if P := (x0, . . . , xk) is a path
from x to y, (xk, . . . , x0) is also a path from y to x and we will say in this case
that P is between x and y. A graph G is said strongly connected if for every pair
(x, y) of vertices there exists a path from x to y and also a path from y to x.
A strongly connected component of a graph G is a maximal strongly connected
induced subgraph of G. Strongly connected undirected graphs are simply said
to be connected and their strongly connected components are called connected
components.

The distance between two vertices x and y in an undirected graph G, denoted
by dG(x, y), is the minimum k such that there exists a path of length k between
x and y; if no such path exists then dG(x, y) =∞ (this does happen if G is not
connected). Any path between two vertices x and y of length dG(x, y) is called
a shortest path and is by definition a chordless path.

An undirected graph G is said complete if EG = (VG×VG)\({(x, x) | x ∈ VG})
(it is denoted Kn if it has n vertices), and it is called a cycle of length n if its
edge-set is the set {xixi+1 | 1 ≤ i ≤ n−1}∪{x1xn} with (x1, . . . , xn) an ordering
of its vertex-set. An undirected graph G is called distance-hereditary if for every



270 M.M. Kanté and L. Nourine

two vertices x and y of G all the chordless paths between x and y have the
same length, and it is called chordal if it has no induced cycle of length greater
than or equal to 4. A vertex x of an undirected graph G is called simplicial if
G[{y | xy ∈ EG}] is a complete graph. A tree is an acyclic connected undirected
graph and a star is a tree with a distinguished vertex adjacent to the other
vertices (it is denoted Sn if it has n vertices).

Betweenness Relations. Let V be a finite set. A betweenness relation on V
is a ternary relation B ⊆ V 3 such that for every x, y, z ∈ V , we have B(x, z, y)
holds if and only if B(y, z, x) holds; z is said to be between x and y. Several
betweenness relations, particularly in graphs, are studied in the literature (see
[4,20]).

Let B be a betweenness relation on a finite set V . For every subset X of V , we
let Bo(X) be

⋃
x,y∈X{z ∈ V | B(x, z, y)}. A subset X of V is said B-convex if

Bo(X) = X and its B-convex hull, denoted by B+(X), is the smallest B-convex
set that contains X . A subset X of V is a B-hull set (resp. B-geodetic set) if
B+(X) = V (resp. Bo(X) = V ).

In this paper we deal with the following betweenness relation. For every
undirected graph G, we define the betweenness relation SPG on VG where
SPG(x, z, y) holds if and only if z is in a shortest path between x and y. We are
interested in computing the hull number of an undirected graph G defined as the
size of a minimum SPG-hull set of VG [16]. The computation of the hull number
of a graph is NP-complete [12] and polynomial time algorithms exist for some
graph classes (see for instance [1,12,13]). We give polynomial time algorithms for
distance-hereditary and chordal graphs. Our techniques will allow us to derive
a linear time algorithm for computing the geodetic number of a distance-here-
ditary graph G, defined as the SPG-geodetic set of VG [14].

Fact 1. A SPG-hull set of a non connected undirected graph G is the union of
SPG-hull sets of its connected components. Similarly for SPG-geodetic sets.

Proof. This follows from the fact that for every triple x, y, z of VG, z is in
a shortest path between x and y if and only if dG(x, y) = dG(x, z) + dG(z, y).

Fact 2. Any SPG-hull set (or SPG-geodetic set) of an undirected graph G must
contain the set of simplicial vertices of G.

Proposition 3. Let G be a connected undirected graph and let x be a vertex of
G. Then, we can compute all the sets SPo

G({x, y}), for all vertices y ∈ VG \ {x},
in time O(‖G‖ +

∑
y∈VG\{x}

∣∣SPo
G({x, y})

∣∣).
Monadic Second-Order Logic. We refer to [7] for more information. A re-
lational signature is a finite set R := {R,S, T, . . .} of relation symbols, each
of which given with an arity ar(R) ≥ 1. A relational R-structure A is a tu-
ple (A, (RA)R∈R) with RA ⊆ Aar(R) for every R ∈ R and A is called its do-
main. Examples of relational structures are graphs that can be seen as relational
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{edg}-structures with ar(edg) = 2, i.e., a graph G is seen as the relational {edg}-
structure (VG, edgG) with VG its set of vertices and edgG(x, y) holds if and only
if (x, y) ∈ EG.

We will use lower case variables x, y, z, . . . (resp. upper case variables X,Y, Z,
. . . ) to denote elements of domains (resp. subsets of domains) of relational
structures. Let R be a relational signature. The atomic formulas over R are
x = y, x ∈ X and R(x1, . . . , xar(R)) for R ∈ R. The set MSR of monadic
second-order formulas over R is the set of formulas formed from atomic for-
mulas over R with Boolean connectives ∧, ∨, ¬, =⇒, ⇐⇒, element quan-
tifications ∃x and ∀x, and set quantifications ∃X and ∀X . An occurrence of
a variable which is not under the scope of a quantifier is called a free vari-
able. We will write ϕ(x1, . . . , xm, Y1, . . . , Yq) to express that the formula ϕ has
x1, . . . , xm, Y1, . . . , Yq as free variables and A |= ϕ(a1, . . . , am, Z1, . . . , Zq) to say
that ϕ(a1, . . . , am, Z1, . . . , Zq) holds in A when substituting (a1, . . . , am) ∈ Am

to element variables (x1, . . . , xm) and (Z1, . . . , Zq) ∈ (2A)q to set variables
(Y1, . . . , Yq) in ϕ(x1, . . . , xm, Y1, . . . , Yq). The following is an example of a for-
mula expressing that two vertices x and y are connected by a path

∀X(x ∈ X ∧ ∀z, t(z ∈ X ∧ edg(z, t) =⇒ t ∈ X) =⇒ y ∈ X).

If ϕ(x1, . . . , xm, Y1, . . . , Yq) is a formula in MSR, we let optϕ, with opt ∈
{min,max}, be the problem that consists in, given a relational R-structure A,
to finding a tuple (Z1, . . . , Zq) of (2A)q such that

∑
1≤i≤q

|Zi| = opt

⎧⎨⎩ ∑
1≤i≤q

∣∣Wj

∣∣ | A |= ϕ(a1, . . . , am,W1, . . . ,Wq)

⎫⎬⎭ .

Many optimisation graph problems, e.g., minimum dominating set, maximum
clique, . . . , correspond to optϕ for some MS{edg} formula ϕ.

Let A be a finite set. An A-coloured graph is a graph with its edges and vertices
labelled with elements in A. Let RA be the relational signature {(edga)a∈A,
(nlaba)a∈A} with ar(edga) = 2 and ar(nlaba) = 1 for every a ∈ A. Every
A-coloured graph G can be represented by the relational RA-structure (VG,
(edgaG)a∈A, (nlabaG)a∈A) where edgaG(x, y) holds if and only if (x, y) ∈ EG is
labelled with a ∈ A and nlabaG(x) holds if and only if x ∈ VG is labelled with
a ∈ A.

Clique-width is a graph complexity measure introduced by Courcelle et al.
and that is important in complexity theory (we refer to [7] for more information
on clique-width). We recall the following important theorem that is the base of
our algorithm for distance-hereditary graphs.

Theorem 4. [7] Let A be a fixed finite set and let k be a fixed constant. For
every MSRA formula ϕ(x1, . . . , xm, Y1, . . . , Yq), optϕ, for opt ∈ {min,max}, can
be solved in time O(f(k, |A|, ϕ) · |VG|), for some function f , in any A-coloured
graph of clique-width at most k, provided the clique-width expression is given.
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3 Distance-Hereditary Graphs

We will first use the well-known notion of split-decomposition defined by Cun-
ningham and Edmonds [8] to associate with every distance-hereditary graph G
an A-coloured graph SG for some finite set A. In a second step, we will prove
that there exists a formula BetSP(x, z, y) in MSRA that holds in SG if and only
if z is in a shortest path in G between x and y. These two constructions com-
bined with Theorem 4 and the next proposition will give rise to the linear time
algorithm.

Proposition 5. Let B be a betweenness relation on a finite set V and assume
there exists a relational R-structure A with V ⊆ A, for some relational signature
R that contains a relation nlabV representing V . Assume also that there exists
an MSR formula Bet(x, z, y) that holds in A if and only if B(x, z, y) holds.
Then, there exist MSR formulas HullSet(X) and GeodeticSet(X) expressing
that X is a B-hull set and a B-geodetic set respectively.

3.1 Split Decomposition

We will follow [6] (see also [18]) for our definitions. Two bipartitions {X1, X2}
and {Y1, Y2} of a set V overlap if Xi ∩ Yj �= ∅ for all i, j ∈ {1, 2}. A split
in a connected undirected graph G is a bipartition {X,Y } of the vertex set
VG such that |X |, |Y | ≥ 2, and there exist X1 ⊆ X and Y1 ⊆ Y such that
EG = EG[X]∪EG[Y ]∪X1×Y1 (see Figure 1). A split {X,Y } is strong if there is
no other split {X ′, Y ′} such that {X,Y } and {X ′, Y ′} overlap. Notice that not
all graphs have a split. Those that do not have a split are called prime.

Y1

X Y

X1

Fig. 1. A schematic view of a split

If {X,Y } is a split of an undirected graph G, then we let G[X ] and G[Y ] be
respectively (X ∪ {hX}, EG[X] ∪ {xhX | x ∈ X and ∃y ∈ Y, xy ∈ EG}) and
(Y ∪ {hY }, EG[Y ] ∪ {yhY | y ∈ Y and ∃x ∈ X, xy ∈ EG}) where hX and hY

are new vertices. The vertices hX and hY are called neighbour markers of G[X ]
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and G[Y ]. Notice that given G[X ] and G[Y ] with neighbour markers hX and hY

distinguished, we can reconstruct G as follows

VG = (VG[X] ∪ VG[Y ]) \ {hX , hY },
EG = (EG[X] ∪EG[Y ]) \ ({xhX ∈ EG[X]} ∪ {xhY ∈ EG[Y ]) ∪

{xy | x ∈ VG[X], y ∈ VG[Y ] and xhX ∈ EG[X], yhY ∈ EG[Y ]}.

Fact 6. Let {X,Y } be a split in a connected undirected graph G and let P :=
(x0, . . . , xk) be a path in G.

1. If x0 ∈ X and xk ∈ Y , then P is a shortest path if and only if there exists
xi ∈ P such that (x0, . . . , xi, hX) and (hY , xi+1, . . . , xk) are shortest paths
in G[X ] and G[Y ] respectively.

2. If x0, xk ∈ X, then P is a shortest path if and only if either P is a shortest
path in G[X ] or (x0, . . . , xi−1, hX , xi+1, . . . , xk) is a shortest path in G[X ]
with xi ∈ Y . Similarly for x0, xk ∈ Y .

A decomposition of a connected undirected graph G is defined inductively as
follows: {G} is the only decomposition of size 1. If {G1, . . . , Gn} is a decompo-
sition of size n of G and Gi has a split {X,Y }, then {G1, . . . , Gi−1,Gi[X ],Gi[Y ],
Gi+1, . . . , Gn} is a decomposition of size n + 1. Notice that the decomposition
process must terminate because the new graphs Gi[X ] and Gi[Y ] are smaller
than Gi. The graphs Gi of a decomposition are called blocks. If two blocks have
neighbour markers, we call them neighbour blocks.

A decomposition is canonical if and only if: (i) each block is either prime
(called prime block), or is isomorphic to Kn (called clique block) or to a Sn

(called star block) for n ≥ 3, (ii) no two clique blocks are neighbour, and (iii)
if two star blocks are neighbour, then either their markers are both centres or
both not centres.

Theorem 7 ([8,9]). Every connected undirected graph has a unique canonical
decomposition, up to isomorphism. It can be obtained by iterated splitting relative
to strong splits. This canonical decomposition can be computed in time O(‖G‖)
for every undirected graph G.

The canonical decomposition of a connected undirected graph G constructed in
Theorem 7 is called split-decomposition and we will denote it by DG.

3.2 Definition of BetSP(x, z, y) and the Linear Time Algorithm

We let A be the set {s, ε,V,M}. For every connected undirected graph G we
associate the A-coloured graph SG where VSG =

⋃
Gi∈DG

VGi , ESG =
(⋃

Gi∈DG

EGi) ∪ {xy | x, y are neighbour markers}, a vertex x is labelled V if and only
if x ∈ VG, otherwise it is labelled M, and an edge xy is labelled s if and only if
xy ∈ EGi for some Gi ∈ DG, otherwise it is labelled ε. Figure 2 gives an example
of the graph SG.

A path (x0, x1, . . . , xk) in SG is said alternating if, for every 1 ≤ i ≤ k − 1,
the labels of the edges xi−1xi and xixi+1 are different.
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Fig. 2. Solid lines are edges labelled by s and the dashed ones are labelled by ε. The
vertices labelled by V are those with a number and those labelled by M are the rest.

Lemma 8. [6] Let G be a connected undirected graph. Then, xy ∈ EG if and
only if there exists an alternating path between x and y in SG. This alternating
path is moreover unique.

The following gives a characterisation of the property "z is in a shortest path in
G between x and y" with respect to shortest paths in SG.

Proposition 9. Let G be a connected undirected graph and let x, y, z be vertices
of G. Then, SPG(x, z, y) holds if and only if

(i) SPSG(x, z, y) holds, or
(ii) there exists a marker h such that SPSG(x, h, y) holds and there exists an

alternating path between h and z in SG starting with an edge labelled by ε.

We now return to distance-hereditary graphs. We will use the following theorem
that characterises distance-hereditary graphs (among the several ones).

Theorem 10 ([2]). A connected undirected graph is a distance-hereditary graph
if and only if each block of its split decomposition is either a clique or a star block.

As a corollary we get the following (the proof is an easy induction on the size of
the split decomposition).

Corollary 11. Let G be a connected distance-hereditary graph. Then, a sequence
P := (x0, . . . , xk) is a shortest path in SG if and only if P is a chordless path in
SG. Moreover, a shortest path between two vertices in SG is unique.

We can therefore prove the following.
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Proposition 12. There exists an MSRA formula BetSP(x, z, y) that expresses
that z is in a shortest path between x and y in connected distance-hereditary
graphs.

By Corollary 11 the graph obtained from SG by forgetting the labels of the
vertices and of the edges is a distance-hereditary graph, and then has clique-
width at most 3 (see [19]). We can in fact prove that the A-coloured graph SG
has clique-width at most 3 as stated below (its proof is an easy induction).

Proposition 13. For every connected distance-hereditary graph G, the A-colour-
ed graph SG has clique-width at most 3. Moreover, a clique-width expression of
SG can be computed in time O(‖SG‖).

Theorem 14. For every distance-hereditary graph G one can compute in time
O(‖G‖) a minimum SPG-hull set and a minimum SPG-geodetic set of G.

Proof. From Fact 1 it is enough to prove the theorem for connected distance-
hereditary graphs. So assume that G is connected. By Theorem 10 one can
compute in time O(‖G‖) the split decomposition DG of G. By [18, Lemma 2.2]
we have ‖SG‖ = O(‖G‖), and therefore one can compute SG in time O(‖G‖). By
Theorem 4 and Propositions 5, 12 and 13, one can compute a minimum SPG-
hull set and a minimum SPG-geodetic set of G in time O(‖SG‖) = O(‖G‖). "#

4 Chordal Graphs

The algorithm for chordal graphs is based on the notion of functional dependen-
cies, borrowed from database community. Before introducing them, let us recall
some properties of chordal graphs.

Lemma 15. [11] Every chordal graph has at least two simplicial vertices.

A perfect elimination ordering of a graph G is an ordering σ := (x1, . . . , xn) of
VG such that for every 1 ≤ i ≤ n, the vertex xi is simplicial in G[{xi, . . . , xn}].
The following is a well-known result.

Theorem 16. [17,21] A graph G is chordal if and only if it has a perfect elim-
ination ordering. Moreover, a perfect elimination ordering can be computed in
time O(‖G‖).

We now define functional dependencies. Let V be a finite set. A functional de-
pendency on V is a pair (X, y), often written X → y, where X ⊆ V is called
the premise, and y ∈ V is called the conclusion. If X → z is a functional depen-
dency with X = {x, y} (or X = {x}), we will write xy → z (or x → z) instead
of {x, y} → z (or {x} → z). A model for X → y is a subset F of V such that
y ∈ F whenever X ⊆ F .

A set Σ of functional dependencies on V is called an implicational system on
V . If an implicational system is composed only of functional dependencies with
premises of size 1 we call it a unit-premise implicational system. A set X ⊆ V is
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said Σ-closed if it is a model for each functional dependency in Σ. The Σ-closure
of a set X , noted Σ(X), is the smallest Σ-closed set that contains X . A superkey
for Σ is a subset K of V such that Σ(K) = V and a key is an inclusionwise
minimal superkey.

If Σ is an implicational system on a finite set V , we let G (Σ), called the
dependence graph of Σ, be the directed graph (V ′, E′) with

V ′ := V ∪ {PX | X is a premise in Σ},

E′ :=
⋃

X→y∈Σ

((
{(x, PX) | x ∈ X}

)
∪ {(PX , y)}

)
.

One observes that G (Σ) has size O

(
|V |+

∑
X→y∈Σ

(
|X |+ 1

))
and can be com-

puted in time O

(
|V |+

∑
X→y∈Σ

(
|X |+ 1

))
.

Proposition 17. Let Σ be a unit-premise implicational system on a finite set
V . Then a minimum key of Σ can be computed in time O(|V |+ |Σ|).

We now borrow some ideas from [22]. Let Σ be an implicational system on a finite
set V . A strongly connected component S of G (Σ) is called a source component
if for all x, y ∈ VG (Σ), if (x, y) ∈ EG (Σ) and y ∈ VS , then x ∈ VS . That means
that all edges between a vertex in S and a vertex in VG (Σ) \ S is always from S.

Let R be a subset of V . We let ΣR, called the restriction of Σ to R, be the
implicational system on R defined as {X → y ∈ Σ | X∪{y} ⊆ R}. A contraction
of Σ to R is the implicational system ΣR on V \Σ(R) defined as{

X → y | X ∪ S → y ∈ Σ, and S ⊆ Σ(R) and X ∪ {y} ⊆ V \Σ(R)
} ⋃

{
X → y ∈ Σ | X ∪ {y} ⊆ V \Σ(R)

}
.

Proposition 18. [22] Let Σ be an implicational system on a finite set V . Let
S be a source component of G (Σ). Then each minimum key of Σ is a union of
a minimum key of ΣVS and of a minimum key of ΣVS . Moreover, all such unions
are minimum keys of Σ.

If Σ is an implicational system on V , then x ∈ V is called an extreme point if
x is not the conclusion of any functional dependency in Σ. It is straightforward
to verify that any extreme point is a source component in G (Σ) and then is in
any minimum key of Σ. (Notice that a similar notion of extreme points has been
already used in the literature, see for instance [4].)

Example 1. Let V := {1, 2, 3, 4, 5, 6} and let Σ := {{1, 2} → 3, {2, 4} → 1,
{1, 3, 5} → 6, {1, 4} → 3, 1 → {2, 4}}. 5 is an extreme point, and indeed it
must be in any key of Σ, but 6 cannot be in any key. Examples of keys are
{1, 5}, {2, 4, 5}, and examples of Σ-closed sets are {2}, {1, 2, 3, 4}, {3, 6}.
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We can now explain the algorithm for connected chordal graphs. We will asso-
ciate with every graph G the implicational system on VG

ΣG :=
⋃

x,y∈V

{xy → z | z ∈ SPo
G({x, y}) \ {x, y}}.

One notices that a vertex x of a graph G is simplicial if and only if x is an
extreme point in ΣG.

Fact 19. Let G be an undirected graph. Then, SP+
G(X) = ΣG(X) for every

X ⊆ VG. Then, K is a minimum SPG-hull set of G if and only if K is
a minimum key of ΣG.

According to Proposition 18, our strategy is recursively.

1. Take a source component S of ΣG and decompose ΣG into ΣVS

G and ΣVS

G .
2. Compute a minimum key K1 of ΣVS

G .
3. Compute a minimum key K2 of ΣVS

G .
4. Return K1 ∪K2.

The first difficulty is here when the source component is not a single element.
The second difficulty is to iterate this process in Σ := ΣVS

G . We overcome these
difficulties by first constructing an elimination ordering σ := (x1, . . . , xn) of G
and the algorithm treats the vertices of G, in this order, and decides at each
step whether the current vertex can be in a minimum key (that is updated at
each step). At the beginning Σ is set up to ΣG. At each step i, if xi is in the
closure of the already computed key, then we go to the next step (the current
vertex cannot be in a minimum key). Otherwise, if xi is an extreme point in
Σ, then it is a source component and then we can include it in a minimum key
of Σ and use Proposition 18 to update Σ for the next iteration. If xi is not an
extreme point, then since it is a simplicial vertex in G[{xi, . . . , xn}], it cannot
be a conclusion in any functional dependencies with premises of size 2 in Σ. So,
that means it appears as a conclusion in functional dependencies with premises
of size 1 in Σ (those latter are created during the process by Proposition 18).
Since we cannot decide whether to include xi in the computed minimum key, we
update Σ, according to Lemma 20 below, in order to remove xi in the premises
of functional dependencies in Σ. At the end of the n iterations, Σ is reduced
to a unit-premise implicational system and by Proposition 17 we can compute
minimum keys of such implicational systems.

Lemma 20. Let Σ := Σ1∪Σ2 be an implicational system on a finite set V with
Σ1 := {z → t ∈ Σ} and Σ2 := {zt→ y ∈ Σ}. Let x in V be an extreme point in
Σ2 and not in Σ1 and let Σ′ :=

(
Σ \ {xz → y ∈ Σ}

)
∪
(
{tz → y | xz → y, t →

x ∈ Σ}
)
. Then, any minimum key K ′ of Σ′ is a minimum key of Σ. Conversely,

to any minimum key K of Σ, one can associate a minimum key K ′ of Σ′.

We can therefore state the following.
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Theorem 21. For any connected chordal graph G, one can compute a minimum

SPG-hull set of G in time O

(
‖G‖+

∑
x,y∈VG

∣∣SPo
G({x, y})

∣∣), which is less than

O(|VG|3). Therefore, one can compute a minimum SPG-hull set of any chordal
graph G in time O(|VG|3).

5 Concluding Remarks

In this paper we have given a linear time algorithm and a cubic-time algorithm for
computing a minimum SPG-hull set in distance-hereditary and chordal graphs
respectively. The techniques used to get these two algorithms are different from
the ones known in the literature, specially those techniques based on functional
dependencies borrowed from database community. We hope these techniques
will be fruitful to obtain new algorithms for graph classes where the complexity
of computing a minimum SPG-hull set is open. We can cite among them graph
classes of bounded tree-width and more generally those of bounded clique-width,
weakly chordal graphs, degenerate graphs, . . .

We conclude by pointing out that our techniques for distance-hereditary
graphs can be applied to compute a minimum SPG-hull set or SPG-geodetic
set in other graph classes. We have for instance the following.

Proposition 22. Let k be a fixed integer. Let G be an undirected graph such
that G(ΣG) has clique-width at most k. Then, one can compute in time O(|VG|6)
a minimum SPG-hull set and a minimum SPG-geodetic set of G.

A question that arises then is which graphs have dependence graphs of bounded
clique-width?

The logical tools can be also applied to other betweenness relations. For in-
stance, for an undirected graph G, we let PG be the betweenness relation where
PG(x, z, y) holds if and only if z is in a chordless path between x and y. We can
prove the following.

Proposition 23. Let k be a fixed positive integer. Let G be an undirected graph
of clique-width at most k. Then, one can compute in time O(|VG|3) a minimum
PG-hull set and a minimum PG-geodetic set of G.

References

1. Araújo, J., Campos, V., Giroire, F., Nisse, N., Sampaio L., Soares, R.P.: On the
hull number of some graph classes. Technical report (2011)

2. Bouchet, A.: Transforming trees by successive local complementations. J. Graph
Theory 12(2), 195–207 (1988)

3. Chartrand, G., Fink, J.F., Zhang, P.: The hull number of an oriented graph. In-
ternational Journal of Mathematics and Mathematical Sciences (36), 2265–2275
(2003)



Computing a Minimum Hull Set in Chordal and DH Graphs 279

4. Chvátal, V.: Antimatroids, betweenness, convexity. In: Cook, W.J., Lovász, L.
(eds.) Research Trends in Combinatorial Optimization, pp. 57–64. Springer (2009)

5. Codd, E.F.: Further normalization of the data base relational model. In: Rustin,
R. (ed.) Data Base Systems, pp. 33–64. Prentice Hall, Englewood Cliffs (1972)

6. Courcelle, B.: The monadic second-order logic of graphs XVI: Canonical graph
decompositions. Logical Methods in Computer Science 2(2) (2006)

7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: a
Language Theoretic Approach. Encyclopedia of Mathematics and its Applications,
vol. 138. Cambridge University Press (2012)

8. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Cana-
dian Journal of Mathematics 32, 734–765 (1980)

9. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to
split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240
(2000)

10. Diestel, R.: Graph Theory, 3rd edn. Springer (2005)
11. Dirac, G.A.: On rigid circuit graphs. Abhandlungen Aus Dem Mathematischen

Seminare der Universität Hamburg 25(1-2), 71–76 (1961)
12. Dourado,M.C.,Gimbel, J.G.,Kratochvíl, J.,Protti,F., Szwarcfiter, J.L.:On the com-

putation of the hull number of a graph. Discrete Mathematics 309(18), 5668–5674
(2009)

13. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number
of triangle-free graphs. SIAM J. Discrete Math. 23(4), 2163–2172 (2010)

14. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the
geodetic number of a graph. Discrete Mathematics 310(4), 832–837 (2010)

15. Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing Minimum
Geodetic Sets of Proper Interval Graphs. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012)

16. Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Mathemat-
ics 57(3), 217–223 (1985)

17. Fulkerson, D.R., Gross, O.A.: Incidence Matrices and Interval Graphs. Pacific J.
Math. 15(3), 835–855 (1965)

18. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete
Mathematics 273(1-3), 115–130 (2003)

19. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int.
J. Found. Comput. Sci. 11(3), 423–443 (2000)

20. Pelayo, I.M.: On convexity in graphs. Technical report (2004)
21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination

on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
22. Saiedian, H., Spencer, T.: An efficient algorithm to compute the candidate keys of

a relational database schema. Comput. J. 39(2), 124–132 (1996)



Permuted Pattern Matching

on Multi-track Strings

Takashi Katsura1, Kazuyuki Narisawa1, Ayumi Shinohara1,
Hideo Bannai2, and Shunsuke Inenaga2

1 Graduate School of Information Science, Tohoku University, Japan
{katsura@shino,narisawa@,ayumi@}ecei.tohoku.ac.jp
2 Department of Informatics, Kyushu University, Japan

{bannai,inenaga}@inf.kyushu-u.ac.jp

Abstract. We propose a new variant of pattern matching on a multi-
set of strings, or multi-tracks, called permuted-matching, that looks for
occurrences of a multi-track pattern of length m with M tracks, in
a multi-track text of length n with N tracks over Σ. We show that the
problem can be solved in O(nN log |Σ|) time and O(mM + N) space,
and further in O(nN) time and space when assuming an integer alpha-
bet. For the case where the number of strings in the text and pattern
are equal (full-permuted-matching), we propose a new index structure
called the multi-track suffix tree, as well as an O(nN log |Σ|) time and
O(nN) space construction algorithm. Using this structure, we can solve
the full-permuted-matching problem in O(mN log |Σ|+occ) time for any
multi-track pattern of length m with N tracks which occurs occ times.

1 Introduction

Data that can be represented as multi-track strings, or a multi-set of strings,
have recently been rapidly increasing in many areas, e.g., polyphonic music data,
multiple sensor data, multiple genomes, etc. [9, 13–15]. Pattern matching on such
multi-tracks is naturally a fundamental and important problem for retrieving
useful information contained in these data. Since multi-tracks simply consist of
multiple strings, pattern matching algorithms for a single string can be of some
use to such data. However, in order to capture more meaningful characteristics
which lie in the data, it is desirable to consider more sophisticated types of
patterns. For example, when considering polyphonic music data, rather than
finding a pattern in one of the parts of a multi-part music piece, it may be useful
to look for patterns that can capture relationships between different parts.

Lemström et al. addressed the multi-track string pattern matching problem
for music information retrieval [14, 15]. They considered the following type of
matching: given a set of strings T = {t1, . . . , tN} and a single pattern p of length
m, a pattern occurs at position j if there exists i1, . . . , im ∈ {1, . . . , N} such
that ti1 [j] = p[1], ti2 [j + 1] = p[2], . . ., tim [j + m − 1] = p[m]. For example,
given multi-track text T = {t1, t2, t3} = {acccca, bccabc, babccc} and a single
string pattern p = ababa, p = t3[2]t3[3]t2[4]t2[5]t1[6]. Then, pattern p occurs at

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 280–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Permuted Pattern Matching on Multi-track Strings 281

position 2. Their algorithm solves this problem in O(nN�mw �) time, where w is
the size of machine word in bits.

In this paper, we consider a similar but distinct setting. While Lemström et
al. considered matching a string pattern to a multi-track text, we try to match
a multi-track pattern to a multi-track text, allowing the order of the pattern
tracks to be permuted. Formally, given a multi-set of strings T = {t1, . . . , tN}
and a multi-set pattern P = {p1, . . . , pM} where M ≤ N and |pi| = m for
1 ≤ i ≤M , P occurs at position j of T if there exists a permutation (i1, . . . , iM )
of a subsequence of (1, . . . , N) such that p1 = ti1 [j : j + m − 1], . . ., pM =
tiM [j : j+m− 1], where ti[j : k] is the substring of ti from j to k. P is then said
to permuted-match T.

The problem we consider somewhat resembles the two dimensional pattern
matching problem proposed in the context of image retrieval [2, 4, 5]. In our
case, however, we do not fix the order on the strings in the pattern and text
multi-tracks for the matching, and therefore the problem becomes very different.

Consider for example, multi-track text T =

⎛⎝ t1,
t2,
t3

⎞⎠ =

⎛⎝ababa,
aabbb,
bbaab

⎞⎠ and multi-

track pattern P =

(
p1,
p2

)
=

(
ab,
bb

)
. In two dimensional pattern matching, only

the position at the first row and the third column is regarded as a match, since
(t1[3 : 4], t2[3 : 4]) = (ab, bb) = P. In our proposed permuted-matching, the
multi-track pattern occurs at positions 1, 3, and 4, since (t1[1 : 2], t3[1 : 2]),
(t1[3 : 4], t2[3 : 4]), and (t2[4 : 5], t1[4 : 5]) equal to P = (ab, bb). The problem
of computing all these positions can be solved in O(nmN logN) time by the
following simple method: in each position i of T, we sort all substrings of tracks
of T and all tracks of P. Then, we consider whether each substring of tracks
of the text matches each track of the pattern. Can we solve the problem more
efficiently than in O(nmN logN) time?

The contribution of this paper is as follows: We show that the problem can be
solved in O(nN log |Σ|) time and O(mM+N) space for general alphabets, and in
O(nN) time and space for integer alphabets, where |Σ| is the size of the alphabet.
For the case where M = N which we call full-permuted-matching, we propose a
new index structure called the multi-track suffix tree and give an O(nN log |Σ|)
time and O(nN) space algorithm for its construction. Using this data structure,
we can solve the full-permuted-matching problem in O(mN log |Σ|+ occ) time,
where m is the length of the query pattern and occ is the number of occurrences.

2 Preliminaries

2.1 Notation

Let Σ be a finite set of symbols, called an alphabet. An element of Σ∗ is called
a string. Let Σn be the set of strings of length n. For a string w = xyz, strings x,
y, and z are called prefix, substring, and suffix of w, respectively. |w| denotes the
length of w, and w[i] denotes the i-th symbol of w for 1 ≤ i ≤ |w|. Let x·y, briefly
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denote xy, be the concatenation of strings x and y. Then, w = w[1]w[2] . . . w[|w|].
The substring of w that begins at position i and ends at position j is denoted
by w[i : j] for 1 ≤ i ≤ j ≤ |w|, i.e., w[i : j] = w[i] w[i + 1] · · · w[j]. Moreover,
let w[: i] = w[1 : i] and w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. The empty string is
denoted by ε, that is, |ε| = 0. For convenience, let w[i : j] = ε if i > j. For two
strings x and y, we denote by x ≺ y if x is lexicographically smaller than y, and
by x 
 y if x ≺ y or x = y. For a set S, we denote the cardinality of S by |S|.
For a multi-set S, let #S(x) denote the multiplicity of element x ∈ S.

2.2 Multi-track Strings

As was mentioned in the introductory section, our pattern matching problem is
defined over a multi-set of strings. For ease of presentation, however, in what
follows we assume an arbitrary order of the strings in the multi-set and define
a multi-track string as a tuple.

Let ΣN be the set of all N -tuples (a1, a2, . . . , aN ) with ai ∈ Σ for 1 ≤ i ≤ N ,
called a multi-track alphabet. An element of ΣN is called a multi-track character
(mt-character), and an element of Σ∗

N is called a multi-track string (or simply
multi-track), where the concatenation between two multi-track strings is defined
as (a1, a2, . . . , aN ) · (b1, b2, . . . , bN ) = (a1b1, a2b2, . . . , aNbN ).

For a multi-track T = (t1, t2, . . . , tN ) ∈ Σn
N , the i-th element ti of T is called

the i-th track, the length of multi-track T is denoted by �(T) = |t1| = |t2| =
· · · = |tN | = n, and the number of tracks in multi-track T or the track count of
T, is denoted by h(T) = N . Let Σ+

N be the set of all multi-tracks of length at
least 1, and let

EN = (ε, ε, . . . , ε)
denotes the empty multi-track of track count N . Then, Σ∗

N = Σ+
N ∪ {EN}.

For a multi-track T = XYZ, multi-track X, Y, and Z are called prefix, substring,
and suffix of T, respectively. We call a prefix and suffix of a multi-track by an
mt-prefix and mt-suffix of the multi-track, respectively. T[i] denotes the i-th mt-
character of T for 1 ≤ i ≤ �(T), i.e., T = T[1]T[2] . . .T[�(T)]. The substring of T
that begins at position i and ends at position j is denoted by T[i : j] = (t1[i :
j], t2[i : j], . . . , tN [i : j]) for 1 ≤ i ≤ j ≤ �(T). Moreover, let T[: i] = T[1 : i] and
T[i :] = T[i : �(T)], respectively.

Definition 1 (Permuted multi-track). Let X = (x1, x2, . . . , xN ) be a multi-
track of track count N . Let r = (r1, r2, . . . , rK) be a sub-permutation of
(1, . . . , N), where 1 ≤ K ≤ N . A permuted multi-track of X specified by r
is a multi-track (xr1 , xr2 , . . . , xrK ), denoted by either X〈r1, r2, . . . , rK〉 or X〈r〉.
If K = N , r is called a full-permutation and X〈r〉 is called a full-permuted
multi-track of X.

For multi-track X = (x1, x2, . . . , xN ), let SI (X) = (r1, r2, . . . , rN ) be a full-
permutation such that xri 
 xrj for any 1 ≤ i ≤ j ≤ h(X), and let Sort(X) =
X〈SI (X)〉.
Definition 2 (Permuted-match). For any multi-tracks X =
(x1, x2, . . . , xh(X)) and Y = (y1, y2, . . . , yh(Y)) with �(X) = �(Y) and h(X) ≤ h(Y),
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we say that X permuted-matches Y, denoted by X
��
4 Y, if X = Y′ for some

permuted multi-track Y′ of Y. Especially, if h(X) = h(Y), then we say that
X full-permuted-matches Y, and denote it by X ��

= Y. Otherwise, i.e., if
h(X) < h(Y), then we say that X sub-permuted-matches Y.

It holds that X ��
= Y if and only if Sort(X) = Sort(Y).

Example 1. For multi-tracks T = (t1, t2, t3) = (abab, abbb, abba)X = (x1, x2, x3)
= (abba, abab, abbb), and Y = (y1, y2) = (ba, ab), we see that

Sort(T) = Sort(X) = (abab, abba, abbb), SI (T) = (1, 3, 2), SI (X) = (2, 1, 3),
T ��
= X, and Y

��
4 T[3 : 4].

The problem we consider is formally defined as:

Problem 1 (Permuted-Matching). Given multi-tracks T and P, output all posi-
tions i that satisfy P

��
4 T[i : i+m− 1].

When h(T) = h(P), the problem is called the full-permuted-matching problem,
and when h(T) < h(P), it is called the sub-permuted-matching problem.

3 Linear Time Solutions

3.1 O(nN log |Σ|)-Time O(mM + N)-Space Algorithm

We first describe an algorithm based on the Aho-Corasick (AC) automaton [1].
The AC automaton is a well known pattern matching automaton that can find
occurrences of multiple pattern strings in a given text string. The automaton is
traversed with each character T [k] (1 ≤ k ≤ |T |) of the text T , and if an accepting
state is reached, it means that position k is the end position of patterns that
can be identified by the state. (We shall omit technical details of the traversal
involving failure links in this paper, as they are identical to the original work.) It
is known that the AC automaton can be constructed in time linear in the total
length of the pattern strings [1, 7].

We solve the permuted-matching problem as follows. First, construct the AC
automaton for the strings in the pattern multi-track P = (p1, . . . , pM ). Let Q̂ =
{qi1 , . . . , qiM } denote the multi-set of accepting states corresponding to each
track of the pattern. Next, we traverse the automaton with each track of the
text multi-track in a parallel manner. Let Q = {qj1 , . . . , qjN } be the multi-set
of states reached after traversing with T[k]. Then, P

��
4 T[k − �(P) + 1 : k] if

and only if all the M accepting states are included in Q, i.e., for any q ∈ Q̂,
#Q(q) ≥ #Q̂(q). This can be easily checked in O(N) time for each position.

Since the traversal of the AC automaton can be conducted in O(n log |Σ|) time
for each track, the total time required for the traversal is O(nN log |Σ|).

Theorem 1. A multi-track pattern P = (p1, . . . , pM ), where �(P) = m, can be
preprocessed in O(mM log |Σ|)-time and O(mM) space so that the permuted-
matching problem for any multi-track text T = (t1, . . . , tN ) where N ≥ M and
�(T) = n ≥ m, can be solved in O(nN log |Σ|) time and O(N) working space.
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3.2 O(nN)-Time and Space Algorithm for Integer Alphabets

Second, we describe an algorithm using the generalized suffix array for a text
and a pattern and the longest common extension (LCE). The LCE between two
positions i, j respectively in strings t and p, is max{k | t[i : i+ k− 1] = p[j : j +
k− 1]}. Consider all strings in the text and pattern multi-tracks, and preprocess
them in linear time so that LCE queries between arbitrary positions of arbitrary
tracks can be answered in constant time (See e.g. [11]). The preprocessing can
be done in O(nN) time for integer alphabets. Notice that we can determine the
lexicographic order between the two strings t[i :] and p[j :] in constant time as
well, by comparing the characters t[i+k] and p[j+k] which come after the LCE.
Next, we calculate SI (T[1 :]), . . . ,SI (T[n :]), SI (P). This can be performed in
O(nN) time with the following lemma.

Lemma 1. Given a multi-track T = (t1, t2, . . . , tN ) of length n, the permuta-
tions SI (T[i :]) for all (1 ≤ i ≤ n) can be computed in O(nN) time for an integer
alphabet, or in O(nN log |Σ|) time for a general alphabet.

Proof. We can determine the lexicographic order of all the nN suffixes t1[1 :],. . .,
tN [1 :], t1[2 :], . . ., tN [2 :], t1[n :], . . . , tN [n :] as follows: For integer alpha-
bets, in O(nN) time and space using suffix trees (e.g., [8]) or arrays (e.g., [12]),
and for general alphabets, in O(nN log |Σ|) time and O(nN) space using suffix
trees (e.g., [16]).

The permutation SI (T[i :]) for all i’s can be obtained by a simple linear scan
on this order. For each i, the permutation SI (T[i :]) corresponds to the order in
which each track is encountered during the scan. Thus the lemma holds. "#

Finally, for each position 1 ≤ i ≤ n −m + 1 in the text, check whether or not
P

��
4 T[i :]. This check can be conducted in O(N + M) time for each position,

by comparing each text track T[i :] and pattern track P in the order of SI (T[i :
]) = (ri,1, . . . , ri,N ) and SI (P) = (r1, . . . , rM ) respectively, to see if there exists
1 ≤ j1 < · · · < jM ≤ N such that tri,jk [i : i+m−1] = prk for all k (1 ≤ k ≤M).
Each pair of text and pattern tracks can be checked in constant time using an
LCE query. Since the tracks are checked in lexicographic order, the number of
checks required is at most O(N +M) = O(N). The total time for the algorithm
is thus O(nN).

Theorem 2. Given multi-track text T = (t1, . . . , tN ) where �(T) = n, and multi-
track pattern P = (p1, . . . , pM ), where M ≤ N and �(P) = m ≤ n, the permuted-
matching problem can be solved in O(nN) time and space, assuming an integer
alphabet.

4 Suffix Trees for Multi-track Texts

In this section, we present a new data structure called a multi-track suffix tree, as
well as an efficient algorithm for constructing it, with which we can solve the full-
permuted multi-track matching problem efficiently. Namely, we will show that we
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can construct the multi-track suffix tree for any text multi-track T = (t1, . . . , tN)
in O(nN log |Σ|)-time and O(nN) space where �(T) = n. Using the multi-track
suffix tree, we can conduct full permuted-matching for any multi-track pattern
P = (p1, . . . , pN ), where �(P) = m, in O(mN log |Σ|+ occ) time.

The construction algorithm is based on Ukkonen’s suffix tree construction
algorithm [16] for a single string. Prior to introducing the multi-track suffix
tree and its efficient construction algorithm, let us first recall the suffix tree for
a single string and Ukkonen’s construction algorithm.

4.1 Ukkonen’s Suffix Tree Construction Algorithm

The suffix tree STree(w) for a string w is a compacted trie of all suffixes of w,
where w[: n − 1] ∈ Σn−1 and w[n] = $ is lexicographically smaller than any
other symbol in Σ. Using the suffix tree of a text, we can find occurrences of
patterns in the text efficiently (see, e.g., [6, 10]). For a node u and a descendant
node v of u, we denote by label (u, v) the string that is the concatenation of the
labels from u to v. If u is the root, then we abbreviate label (u, v) by label (v).
If, for a substring x of w, there is no explicit node v with label(v) = x, then
traversal from the root spelling out x terminates on an edge, and in this case
we say that x is represented by an implicit node. Assume that for some node v,
label(v) is a prefix of x. We represent x by a reference pair (v, (b, e)) such that
x = label (v)w[b : e]. We can represent any implicit node as well as any explicit
node using a reference pair. If v is the deepest node such that label(v) is a prefix
of w, then the pair (v, (b, e)) is said to be canonical.

The suffix link of a node representing ax, with a ∈ Σ and x ∈ Σ∗, is the
directed edge from the node v representing ax to the node u representing x,
which is denoted by sl(v) = u. For the root node, we let sl(root) = ⊥ for
convenience, where ⊥ is an auxiliary node.

The Ukkonen algorithm consists of n+1 phases. In the initial phase it creates
the root, the auxiliary node, the edge and the suffix link between them. In phase
i ≥ 1, the algorithm updates STree(w[: i − 1]) to STree(w[: i]). The update
operation starts at a location in STree(w[: i− 1]) called the active point, which
we shall refer to as AP. The AP in the i-th phase initially is represented by
a canonical reference pair (v, (b, e)) such that label (v)w[b : e] is the longest suffix
of w[: i−1] that appears at least twice in w[: i−1]. Let w[j : i−1] be this suffix.
In the ith phase we execute the following procedure until finding the longest
suffix of w[: i] that appears at least twice in w[: i].

If the AP is explicit (i.e., b > e), then we find the out-going edge of v that
begins with w[e+1]. If there is such an edge, then w[j : i] is the longest suffix of
w[: i] that appears at least twice in w[: i]. Thus the AP is moved one character
ahead along the edge, and the reference pair (v, (b, e + 1)) is canonized. We go
to the (i+1)th phase. If there is no such edge, then a new edge from v to a new
leaf � is created, with the edge label (e + 1,∞), and label (�) = w[j : ∞], where
∞ represents an arbitrary integer such that ∞ ≥ n. Then the AP is moved to
the location which represents w[j + 1 : i− 1], which can be done by using sl(v),



286 T. Katsura et al.

as (sl(v), (b, e)) represents w[j +1 : i− 1]. This reference pair is then canonized,
and we repeat the procedure.

If the AP is implicit (i.e., b ≤ e), then we check if the next character in the
edge label is equal to w[i], i.e., w[i] = w[e + 1]. If so, then the AP is moved one
character ahead along the edge, and the reference pair (v, (b, e+1)) is canonized.
We go to the (i + 1)th phase. If not, then a new node u for which label (u) =
label(v)w[b : e] is created, and a new edge from u to a new leaf � with edge label
(e + 1,∞) is created, where label (�) = w[j + 1 : ∞]. If the node q such that
label(q) = w[b − |label (v)| − 1 : e] (i.e., the node which may have been created
in the previous step) has no suffix link yet, then we set sl(q) = u. Then the AP
is moved to the location which represents w[j + 1 : i− 1], which can be done by
using sl(v), as (sl(v), (b, e)) represents w[j+1 : i− 1]. The reference pair is then
canonized, and we repeat the procedure.

The cost for inserting a leaf w[j : ∞] for each 1 ≤ j ≤ n is proportional to
the cost for canonizing the reference pair. Ukkonen showed that the amortized
cost for each canonization is O(log |Σ|), and hence STree(w) is constructed in
O(n log |Σ|) time.

4.2 Suffix Trees for Multi-track Texts

We propose a new data structure called the multi-track suffix tree (the mt-suffix
tree, in short), which enables us to efficiently solve the problems concerning
full-permuted-matchings on multi-tracks. For multi-track T = (t1, t2, . . . , tN)
with �(T) = n and h(T) = N , we assume that any track ti terminates with
a special symbol $i, where each $i /∈ Σ is lexicographically smaller than any
character in Σ, and $1 ≺ $2 ≺ · · · ≺ $N . The mt-suffix tree of a multi-track text
T, denoted MTSTree(T), is a compacted trie of all sorted mt-suffixes of T, i.e.
Sort(T[1 :]), Sort(T[2 :]), . . . , Sort(T[n :]). Fig 1 illustrates MTSTree(T) with
T = (ababaab$1, aaababa$2, babaaab$3), where dot-lines denote the suffix links
that we will describe later.

The following lemma shows a simple but important observation regarding
multi-track text T.

Lemma 2. For any multi-track strings X ∈ Σ+
N and Y,Z ∈ Σ∗

N , Sort(XY)[1 :
�(X)] = Sort(XZ)[1 : �(X)].

Proof. Let X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yN). For any 1 ≤ i �= j ≤
N , we consider the following two cases: (1) if xi �= xj : We assume w.l.o.g. that
xi ≺ xj . Then xiyi ≺ xjyj. (2) if xi = xj : We assume w.l.o.g. that yi 
 yj . Then
although xiyi 
 xjyj , we have xiyi[1 : �(X)] = xjyj [1 : �(X)]. In either case,
the lexicographical order between xiyi and xjyj depends only on the prefixes
xi and xj . It is same for xizi and xjzj . Thus, Sort(XY)[1 : �(X)] = Sort(X) =
Sort(XZ)[1 : �(X)]. "#
Due to the above lemma, for any substring X of T, there is a path that spells
out Sort(X) in MTSTree(T). This also implies that a multi-track pattern P with
h(P) = h(T) has an occurrence in T iff there is a path that spells out Sort(P) in
MTSTree(T). More in detail, we can solve the full-permuted-matching as follows:
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Theorem 3. Let T = (t1, . . . , tN ) with �(T) = n. We can augment MTSTree(T)
in O(nN log |Σ|) time and O(nN) space so that the full-permuted-matching prob-
lem for any given multi-track pattern P = (p1, . . . , pN) with �(P) = m can be
solved in O(mN log |Σ|+ occ) time.

Proof. First we compute Sort(P) in O(mN log |Σ|) time using a trie that rep-
resents all tracks in P. We then traverse down MTSTree(T) from the root to
search for a path that corresponds to Sort(P). At each edge of MTSTree(T),
comparisons of mt-characters between T and P can be done in O(N) time pro-
vided that SI (T[1 :]), . . . ,SI (T[n :]) have been already computed by Lemma 1
in O(nN log |Σ|) time and O(nN) space. Since the number of children of a
node in MTSTree(T) is O(n), a straightforward search for occurrences of P

takes a total of O(mN logn + occ) time. However, we can reduce the cost to
O(mN log |Σ| + occ) by the following preprocessing on T : In each node of
MTSTree(T) we maintain a trie that represents the first mt-characters of the
labels of the node. Since each mt-character in T is of length N , searching at
each node can be done in O(N log |Σ|) time. Since there are O(n) edges in
MTSTree(T), these tries for all nodes occupy a total of O(nN) space and can
be constructed in a total of O(nN log |Σ|) time. "#

ClearlyMTSTree(T) has n leaves and each internal node has more than one child
node, and hence the number of all nodes of MTSTree(T) is at most 2n− 1 and
the number of all edges is at most 2n− 2. Each edge of MTSTree(T) is labeled
by S such that T[b : e]〈SI (T[j :])〉 = S, and the label is represented by a triple
(b, e, j). Thus we can represent MTSTree(T) in a total of O(nN) space. Note
that representing edge labels using the triples does not increase the asymptotic
time complexity of the pattern matching algorithm of Theorem 3.

We shall use the next lemma to show the correctness of our algorithm which
constructs MTSTree(T).

Lemma 3. Let AX be a substring of T with A ∈ ΣN and X ∈ Σ∗
N . There are

paths that spell out Sort(AX) and Sort(X) from the root of MTSTree(T).

Proof. Let Y ∈ Σ∗
N be a multi-track s.t. AXY is a suffix of T. Then there is a path

spelling out Sort(AXY) from the root ofMTSTree(T ). By Lemma 2, Sort(AX) =
Sort(AXY)[1 : �(AX)], and therefore there is a path spelling out Sort(AX) from
the root. Since XY is also a suffix of T, paths spelling out Sort(XY) and Sort(X)
from the root exist for the same reasoning as above. "#

4.3 Construction of Multi-track Suffix Tree

In this subsection we propose an efficient O(nN log |Σ|)-time algorithm that
constructs the mt-suffix tree. The algorithm consists of two parts (a pseudo-
code is shown in Algorithm 1). In the first part, we compute the permutation
for the sorted mt-suffixes of T of each length, SI (T[1 :]), . . . , SI (T[n :]). In the
second part, we construct the mt-suffix tree by using the permutations above.

Assume that for a node v of MTSTree(T ) and a substring X of T, label(v) is
a prefix of Sort(X). We represent Sort(X) by a reference pair (v, (b, e, j)) such



288 T. Katsura et al.

Fig. 1. The multi-track suffix tree MTSTree(T) of a multi-track T = (ababaab$1,
aaababa$2, babaaab$3)

that Sort(X) = label(v)T[b : e]〈SI (T[j :])〉. If v is the deepest node such that
label(v) is a prefix of Sort(X), then the pair (v, (b, e, j)) is said to be canonical.

We define the suffix link on the mt-suffix tree as follows:

Definition 3 (Multi-track Suffix Link). Let slink (root) = ⊥. For any non-
root explicit node v of MTSTree(T), if label(v) = Sort(AX) where A ∈ ΣN ,
X ∈ Σ∗

N and AX is a substring of T, then slink(v) = u, where label(u) = Sort(X).

We remark the suffix link of a node of MTSTree(T) may point to an implicit
node:

Let AX be any substring of T with A ∈ ΣN and X ∈ Σ∗
N . If Sort(AX) is

an explicit node v of MTSTree(T), then there are at least two distinct non-
empty multi-track strings Y,Z ∈ Σ+

N for which there exist paths spelling out
Sort(AXY) and Sort(AXZ) from the root. It follows from Lemma 3 that there
also exist paths from the root which spell out Sort(XY) and Sort(XZ). However,
Sort(XY)[: �(X) + 1] may or may not be equal to Sort(XZ)[: �(X) + 1]. Thus,
Sort(X), which is pointed to by slink (v), can be an implicit node.

Still, we can design an algorithm to construct MTSTree(T) for a given multi-
track text T based on the Ukkonen algorithm [16], using similar techniques to
construction of parameterized suffix trees [3].

In the initial phase, we create MTSTree(EN ) that consists only of the root
node, the auxiliary node, and the edge and the suffix link between them (in
Lines 1 and 1). In phase i ≥ 1, our algorithm updates MTSTree(T[1 : i − 1])
to MTSTree(T[1 : i]). The second part basically follows Ukkonen’s suffix tree
construction algorithm, with a distinction that when we insert the jth suf-
fix Sort(T[j :]) into the tree, then the ith mt-character T[i] is read with the
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Algorithm 1. Algorithm to construct multi-track suffix trees

Input: multi-track text T of length n and of track count N
compute SI (T[i :]) for all 1 ≤ i ≤ n;1

create nodes root and ⊥, and an edge with label ΣN from ⊥ to root;2

slink(root) := ⊥;3

(v, (b, e, j)) := (root, (1, 0, 1)); oldu := root;4

foreach i = 1, · · · , n do5

while j ≤ n do6

if b ≤ e and T[i]〈SI (T[j :])〉 = T[e+ 1]〈SI (T[b :])〉 then7

(v, (b, e, j)) := canonize(v, (b, e+ 1, j));8

break;9

if b > e and there is a T[i]〈SI (T[j :])〉-edge from v then10

(v, (b, e, j)) := canonize(v, (i, i, j));11

break;12

u := v;13

if b ≤ e then14

let (v, (p, q, h), z) be the T[b]〈SI (T[j :])〉-edge from v;15

split the edge to two edges (v, (p, p+ e− b, h), u) and16

(u, (p+ e− b+ 1, q, h), z);
if oldu �= root then slink(oldu) := u;17

create a new edge (u, (i,∞, j), �) with a new leaf �;18

oldu := u;19

if slink(u) is defined then20

v := slink(u); j := j + 1 ;21

else (v, (b, e, j)) := canonize(slink(v), (b, e, j + 1));22

23

24

Algorithm 2. Function canonize

Input: reference pair (v, (b, e, j)) for mt-substring X = label(v) · T[b : e]〈T[j :]〉.
Output: canonical reference pair for mt-substring X.
if b > e then return (v, (b, e, j));1

find the T[b]〈T[j :]〉-edge (v, (p, q, h), u) from v;2

while q − p ≤ e− b do3

b := b+ q − p+ 1; v := u;4

if b ≤ e then find the T[b]〈T[j :]〉-edge (v, (p, q, h), u) from v;5

return (v, (b, e, j));6

permutation of the jth mt-suffix, i.e., as T[i]〈SI (T[j :])〉. The AP for the ith
phase initially corresponds to the longest mt-suffix Sort(T[j : i− 1]) of T[: i− 1]
that matches at least two positions 1 ≤ k �= h ≤ i − 1 of T[1 : i − 1], that is,
Sort(T[k : k + i − j − 1]) = Sort(T[j : i − 1]) and Sort(T[h : h + i − j − 1]) =
Sort(T[j : i−1]). Then, we examine whether it is possible to traverse down from
the AP with T[i]〈SI (T[j :])〉. The examination is conducted in Line 1 when the
AP is on an implicit node, and in Line 1 when the AP is on an explicit node. If
it turns out to be possible, then after the reference pair is canonized, we go to
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the (i+ 1)th phase. If it turns out to be impossible, then we create a new node
if the reference pair represents an implicit node (Line 1). Then a new leaf node
representing Sort(T[j :]) is inserted in Line 1, whose parent node is u. The AP is
then moved using the suffix link of u if it exists (in Line 1), and using the suffix
link of the parent v of u if the suffix link of u does not exist yet (in Line 1), and
we go to the (j+1)th step to insert Sort(T[j+1 :]). If follows from the definition
of the suffix link and from Lemma 3 that there always exists a path that spells
out T[b : e]〈SI (T [j + 1 :])〉 from node slink (v) in Line 1.

Theorem 4. Given a multi-track T which �(T) = n and h(T) = N , Algorithm 1
constructs MTSTree(T) in O(nN log |Σ|) time and O(nN) space.

Proof. The correctness follows from the above arguments.
Let us analyze the time complexity. In the first part of Algorithm 1 (in Line 1),

the permutations for all sorted mt-suffixes of T can be computed in O(nN) time
due to Lemma 1. Next, we consider the time complexity of the second part.
The condition of Line 1 can be checked in constant time using the permuta-
tions for sorted suffixes, and that of Line 1 can be checked in O(N log |Σ|)
time using the same way to Theorem 3. At each step the function canonize is
called at most once. A pseudo-code for canonize is given in Algorithm 2. Using
a similar analysis to the Ukkonen algorithm [16], the amortized number of nodes
that are visited at each call of canonize is constant. Since it takes O(N log |Σ|)
time to search a branching node (in Lines 2 and 2), the amortized cost for can-
onizing a reference pair is O(N log |Σ|). We consider the number of steps in the
double loop. Both i and j are monotonically non-decreasing, and they satisfy
1 ≤ i and j ≤ n. Therefore the total number of steps of the algorithm is O(n).
Thus, the second part of the Algorithm 1 takes O(nN log |Σ|) time, and hence
the entire algorithm works in a total of O(nN log |Σ|) time.

The permutations for each sorted mt-suffix require O(nN) space, and the tries
for searching branches of each node require a total of O(nN) space. Hence the
overall space complexity is O(nN). "#

5 Conclusion

We introduced a new form of string pattern matching called the permuted-
matching on multi-track strings. We showed that the permuted-matching prob-
lem on multi-track strings can be solved in O(nN log |Σ|) time and O(mM +N)
space using the AC-automaton. Furthermore, by using constant time longest
common extension queries after linear time pre-processing, we can solve the
problem in O(nN) time and space for integer alphabets. However, these solu-
tions do not allow a linear pre-processing of the text multi-tracks so that pattern
matching cannot be performed in worst case linear time with respect to the pat-
tern length plus output size, as do various string indices (e.g., suffix trees, suffix
arrays) for normal string pattern matching.

For this problem, we proposed a new indexing structure called multi-track
suffix trees (mt-suffix tree). Given the mt-suffix tree for a text multi-track, we can
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solve the full-permuted-matching (i.e., M = N) problem for any pattern multi-
track in O(mN log |Σ|+ occ) time, where occ is the number of positions of the
text where the pattern permuted-matches. We also developed an algorithm for
constructing the mt-suffix tree, based on the Ukkonen algorithm [16], running in
O(nN log |Σ|) time and O(nN) space. For constant size alphabets, the proposed
algorithm performs in optimal linear time in the total size of the input texts.

The problem of developing a text index that can be used for solving sub-
permuted-matching (i.e., M < N) in O(mM log |Σ| + occ) time is an open
problem. Boyer-Moore type algorithms for permuted-matching may also be of
interest for further research.
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Abstract. We consider proper online colorings of hypergraphs defined
by geometric regions. We prove that there is an online coloring method
that colors N intervals of the real line using Θ(logN/k) colors such that
for every point p, contained in at least k intervals, not all the intervals
containing p have the same color. We also prove the corresponding re-
sult about online coloring quadrants in the plane that are parallel to
a given fixed quadrant. These results contrast to recent results of the
first and third author showing that in the quasi-online setting 12 colors
are enough to color quadrants (independent of N and k). We also con-
sider coloring intervals in the quasi-online setting. In all cases we present
efficient coloring algorithms as well.

1 Introduction

The study of proper colorings of geometric hypergraphs has attracted much at-
tention, not only because this is a very basic and natural theoretical problem but
also because such problems often have important applications. One such appli-
cation area is resource allocation: to determine the number of CPUs necessary to
run several jobs, each with fixed starting and stopping times is exactly the prob-
lem of finding the chromatic number of the associated interval graph. Similarly,
the coloring of geometric shapes in the plane is related to the problems of cover
decomposability and conflict free colorings; these problems have applications in
sensor networks and frequency assignment as well as other areas. For surveys on
these and related problems see [23,25,22].

Despite the well-known applications of the study of colorings of geometric
graphs and hypergraphs, relatively little attention has been paid to the online
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and quasi online versions of these problems. In online coloring problems, the set
of objects to be colored is not known beforehand; objects come to be colored
one-by-one and a proper coloring must be maintained at all times. We give
asymptotically tight bounds on the number of colors necessary to properly online
color wedges in the plane and then relate these to bounds on the number of colors
necessary to properly online color intervals.

In quasi-online coloring, objects come online and must be colored one by one,
such that a valid coloring is maintained at each step, yet the objects and their
order are known in advance. Such problems can be used to solve corresponding
offline higher dimensional problems. In [11] it was shown that coloring wedges
in the plane in a quasi-online manner is equivalent to coloring wedges in the
space offline. This motivated us to revisit a problem about quasi-online coloring
intervals.

1.1 Definitions and Description of Main Results

A wedge in the plane is the set of points {(x, y) ∈ R×R|x ≤ x0 y ≤ y0} for fixed
x0, y0. We are interested in coloring with c colors a set of wedges (or intervals)
such that for any point contained in at least k wedges (respectively intervals)
not all the wedges (intervals) containing that point have the same color. We will
often refer to this as simply a coloring of the set of points; the parameters k
and c will be obvious from the context. For a collection of c-colored points in
the plane, we define the associated color-vector to be a vector of length c where
the ith coordinate is the size of the largest wedge consisting only of points with
color i. The size of the color-vector refers to the sum of its coordinates.

Note that given a set of wedges (or intervals) we can define a hypergraph
whose vertices are the wedges (intervals) and whose edges consist exactly of
those subsets of the vertices such that there exists a point contained exactly in
the corresponding wedges (intervals.) Then the coloring problem above is exactly
the problem of finding a proper coloring of this hypergraph if we disregard those
edges which contain less than k points.

For convenience we will work with the equivalent dual-form of the wedge-
coloring: a finite set of points S in the plane is called k-properly c-colored if S is
colored with c colors such that every wedge intersecting S in at least k points
contains at least two points of different colors. A wedge containing points of only
one color is said to be monochromatic.

In [11] the following theorem was proved.

Theorem 1. [11] Any finite family of wedges in the plane can be colored quasi-
online with 2 colors such that any point contained by at least k = 12 of these
wedges is not monochromatic.

Gábor Tardos [26] asked whether such a coloring can be achieved in a completely
online setting, possibly with a larger k and more colors (again such that all large
wedges are non-monochromatic). It is easy to see that 2 colors are not enough
to guarantee colorful wedges (i.e. there may be arbitrarily large monochromatic
wedges) even when the points are restricted to a diagonal line. However, 3 colors
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(and k = 2) are enough if the points are restricted to a diagonal, see [11]. We
prove that in general, for any c and k, there exists a method of placing points in
the plane such that any online-coloring of these points with c colors will result
in the creation of monochromatic wedges of size at least k.

Next we consider the cases when either c or k is fixed. In the former we derive
upper bounds on k (in terms of n) for which there is always a k-proper online
c-coloring of a set of n points. For fixed k, we derive bounds on c for which there
is always a k-proper online c-coloring of n points.

In Section 2.2 we show how our results on online colorings of wedges directly
relates to the online coloring of intervals and in the Section 3 we describe our
results on quasi-online colorings of intervals.

2 Online Coloring Wedges and Intervals

2.1 Online Coloring Wedges

Our first result is a negative answer to the question of Tardos [26]: for every c
and k, there exists a method of placing points in the plane such that any online-
coloring of these points with c colors will result in the creation of monochromatic
wedges of size at least k. Actually we prove a stronger statement.

Theorem 2. There exists a method to give N = 2n−1 points in a sequence such
that for any online-coloring method using c colors there will be c monochromatic
wedges, W1,W2, . . . ,Wc, and nonnegative integers x1, . . . , xc such that for each
i, the wedge Wi contains exactly xi points colored with color i and

∑
xi ≥ n+1

if n ≥ 2.

Corollary 1. No online-coloring method using c colors can avoid to make
a monochromatic wedge of size k + 1 for some sequence of N = 2ck − 1 points.

Proof (of Theorem 2). By induction on the size of the color-vector. Clearly, one
point gives a color-vector of size 1. Two points guarantee a color-vector of size
2 if they are placed diagonally from each other. Now we can place the third
point diagonally between the first two if they had a different color or place it
diagonally below them to get a color-vector of size 3 for three points.

By the inductive hypothesis, using at most 2n−1 − 1 points, we can force
a color-vector with size n. Moving southeast (i.e. so that all the new points are
southeast from the previous ones) we repeat the procedure, again using at most
2n−1− 1 points we can force a second color-vector with sum n. If the two color-
vectors are different then the whole point set has a color-vector of size at least
n+ 1. If they are the same then we put an additional point southwest from all
the points of the first set of points but not interfering with the second set of
points. Then as this point is colored with some color, i, the ith coordinate of the
first color-vector increases. (The rest of its coordinates will becomes 0.) Together
with the wedges found in the second set of points, we can see that the size of
the color-vector of the whole point set increased by one. Altogether we used at
most 2(2n−1 − 1) + 1 = 2n − 1 points, as desired.
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What happens if c or k is fixed? The case when c = 2 was considered, e.g.,
in [11]. It is not hard to see that using 2k − 1 points, the size of the largest
monochromatic wedge can be forced to be at least k and this is the best possible.
For c = 3 a quadratic (in k) number of points is needed to force a monochromatic
wedge of size k:

Proposition 1. The following statements hold.

1. There exists a method of placing k2 points such that any online 3-coloring
of these points produces a monochromatic wedge of size at least k.

2. There exists a method of online 3-coloring k2 − 1 points such that all
monochromatic wedges have size less than k.

We use the following terminology. Given a collection of 3-colored points in the
plane, we say a new, uncolored point x is a potential member of a monochromatic
wedge W , if by giving x the color of W , the size of W increases. Furthermore if
x is a potential member of W , and giving x a color different from the color of
W destroys the wedge W , then x threatens the wedge W .

Proof. To prove the first statement, consider the largest monochromatic wedge
of each color after some points have already been placed and colored. Moving
in the northwest / southeast directions label the wedges W1,W2 and W3. It is
clear that W2 lies between the other two wedges. Note that it is possible to
place a new point directly southwest of the points in W2 such that the point is
a potential member of all three wedges but only threatensW2. Thus if the point is
assigned the color of one of the other wedges (say W1), the size of W1 increments
while W3 remains the same and W2 is destroyed (it is no longer monochromatic).
Now suppose W2 is not larger than either of the other two wedges. In this case,
a point is placed, as described above, such that it is a potential member of
all three wedges. If the point is assigned the color of W1 or W3 then W2 is
destroyed and while W1 (or W3) moves from size i to i + 1, the j ≤ i points
of W2 are rendered ineffective for forming monochromatic wedges. On the other
hand suppose W2 has size larger than (at least) one of the other wedges (say
W3). Then we forget the wedge W3 and proceed as above where there is a new
wedge W0 (of size 0) between W1 and W2. (We can think that in the previous
step W2 increased from i to i + 1 while the j ≤ i points of W3 are destroyed.)
As we proceed in this way, the sizes of the two “side” wedges only increase at
each step while the “middle” wedge may be reduced to size 0 at some steps.
However, the j points of the middle wedge are only destroyed when a side wedge
increases from i to i+ 1 when i ≥ j. Thus by destroying at most 2

(
k
2

)
points we

can guarantee that the two side wedges have size k− 1. Adding at most k more
points to the middle, a monochromatic wedge of size k is guaranteed.

To prove the second statement we must assign colors to the points to avoid
a monochromatic k-wedge. When a new point, x is given, consider those wedges
of which x is a potential member. Note that at most two of these are not threat-
ened by x. Let s be the size of the smallest wedge, W which is not threatened by
x but of which x is a potential member. If by giving x the color of W at least s
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points are destroyed among the wedge(s) threatened by x, then give x this color.
Otherwise give x the color different from the two non-threatened wedges. In this
way we guarantee that a wedge only increases in size from i to i + 1 if at the
same time i other points are destroyed (i.e. rendered ineffective) or if two other

wedges of size i+1 already exist. Therefore if only 2
∑k−2

i=1 i+3(k− 1) = k2− 1
vertices are online-colored, we can avoid a monochromatic k-wedge.

For c ≥ 4 we can give an exponential (in ck) lower bound for the worst case:

Theorem 3. For c ≥ 4 we can online color with c colors any set of N =
O(1.22074ck) points such that throughout the process there is no monochromatic
wedge of size k. Moreover, if c is large enough, then we can even online color
N = O(1.46557ck) points.

Proof. Denote the colors by the numbers {1, . . . , c}. A wedge refers to both an
area in the plane as well as the collection of placed points which fall within
that area. For brevity, we will often refer to maximal monochromatic wedges as
simply wedges. If a wedge is not monochromatic, we will specifically note it. At
each step, we define a partition of all the points which have come online in such
a way that each set in the partition contains exactly one maximal monochromatic
wedge. Two maximal monochromatic wedges are called neighbors if they are
contained within a larger (non-monochromatic) wedge which contains no other
monochromatic wedges. If the placement and coloring of a point cause a wedge
to no longer be monochromatic, that wedge has been killed.

We now describe how to color a new point given that we have already colored
some (or possibly no) points. If the new point is Northeast of an earlier point,
it is given a different color from the earlier point. In this case no new wedges are
created and no wedges increase in size. Otherwise the new point will eventually be
part of a wedge. We want to make sure that the color of the point is distinct from
its neighbors colors. In particular, consider the (at most) two wedges which are
neighbors of wedges containing the point but which do not actually contain the
point. From the c colors we disregard these two colors. From the remaining, we
choose the color which first minimizes the size of the wedge containing the point
and secondly minimizes the color (as a number from 1 to c.) This means that our
order of preference is first to have size 1 wedge of color 1, then a size 1 wedge of
color 2, . . ., size 1 wedge of color c, size 2 wedge of color 1, . . . etc. These rules
determine our algorithm. For an illustration see Figure 2.1 for a 5-coloring, where
the new vertex v cannot get the neighboring colors 2 and 4 and by our order of
preference it gets color 3, thus introducing a (monochromatic) wedge (of color 3)
of size 2. Now we have to see how effective this coloring algorithm is.

To prove the theorem we show that the partition set associated with the
newly created (or incremented) wedge is relatively large. Suppose this wedge is
of color i and size j. Let Ai,j denote the smallest possible size of the associated
partition set. One can regard Ai,j as the least number of points that are required
to “build” a wedge W of size i of color j. For simplicity, we also use the notation
Bc(i−1)+j = Ai,j . Note that this notation is well defined as j is always less than
c. Thus we have B1 = B2 = B3 = 1 and B4 = 2.
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Fig. 1. A general step of the coloring in the proof of Theorem 3

It follows from our preferences that Bi ≤ Bj if i ≤ j. Our goal is to give
a good lower bound on Ak,1 = Bc(k−1)+1.

Notice that when we create a new wedge, it will kill many points that were
contained in previous wedges. More precisely, from our preferences we have Bi ≥
1 + Bi−3 + Bi−4 + . . . + Bi−c (where Bi = 0 for i ≤ 0). Note that Bi−1 and
Bi−2 is missing from this sum because the coloring method must choose a color
different from the new points two to-be-neighbors’.

From the solution of this recursion we know that the magnitude of Bi is at
least qi where q is the (unique, real,> 1) solution of qc = (qc−2−1)/(q−1), which
is equivalent to qc+1 = qc + qc−2 − 1. Moreover, since trivially Bi ≥ 1 ≥ qi−c if
i ≤ c, from the recursion we also have Bi ≥ qi−c for all i. If we suppose c ≥ 4,
then q ≥ 1.22074 and from this Bc(k−1)+1 ≥ 2.22074k−2. As c tends to infinity,
q tends (from below) to the real root of q3 = q2 + 1, which is ≥ 1.46557. From
this we obtain that Bc(k−1)+1 ≥ 1.46557c(k−2) if c is large. Also, in the special
case k = 2, we get the well known sequence A000930 (see [20]), which is at least
1.46557c, if c is big enough.

Summarizing, if we have c ≥ 4 colors, the smallest N0 number of points that
forces a monochromatic wedge of size k is exponential in ck. Thus, if the number
of colors, c, is given, these bounds give an estimate of Θ(logN/c) on the size of
the biggest monochromatic wedge in the worst case.

If we consider k fixed (and we want to use as few colors as possible), by the
above bound the number of colors needed to avoid a monochromatic wedge of
size k is Θ(logN/k) for k ≥ 1.

Corollary 2. There is a method to color online N points in the plane using
Θ(logN/k) colors such that all monochromatic wedges have size strictly less
than k.

Recall that Theorem 2 stated that N = 2n − 1 points can always force a size
n + 1 color-vector (for the definition see the proof of Theorem 2). We remark
that Theorem 3 implies a lower bound close to this bound too. Indeed, fix, e.g.,
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c = 4 and k = �n/4�. If the number of points is at most N = O(1.22074n) =
O(1.22074ck) then by Theorem 3 there is an online coloring such that at any
time there is no monochromatic wedge of size k, thus the color-vector is always
at most 4(k − 1) < n.

Suppose now that k is fixed and we want to use as few colors as possible
without knowing in advance how many points will come, i.e. for k fix we want to
minimize c without knowing N . To solve this, we alter our previous algorithm.
(Note that we could also easily adjust the algorithm if for an unknown N we
want to minimize min(c, k), or ck, the answer would be still logarithmic in N .)
All this comes with the price of loosing a bit on the base of the exponent. The
following theorem implies that for k = 2 (and thus also for any k ≥ 2) we can
color any set of N = O(1.0905ck) points and if k is big enough then we can color
any set of N = O(1.1892ck) points.

Theorem 4. For fixed k ≥ 1 we can color a countable set of points such that
for any c, and any n < 2�(c+1)/4�(k−1), the first n points of the set are k-properly
c-colored.

Proof. We need to define a coloring algorithm and prove that it uses many colors
only if there were many points. The coloring and the proof is similar to the proof
of Theorem 3, we only need to change our preferences when coloring and because
of this the analysis of the performance of the algorithm differs slightly too. We fix
a c and an N < 2�(c+1)/4�(k−1) for which we will prove the claim of the theorem
(the coloring we define can obviously not depend on c or N , but it depends on
k). Denote the colors by the numbers {1, 2, . . . , c− 1, c, . . .}.

We can suppose again that every new point will be on the actual diagonal.
When we add a point its color must still be different from its to-be-neighbors’
and together with this point we still cannot have a monochromatic wedge of size
k. Our primary preference now is that we want to keep ,c/4- small where c is
the color of the new point (as a number). Our secondary preference is that the
size of the biggest wedge containing the new point should be small.

This means that our order of preference is first to have size 1 wedge of color
1, then a size 1 wedge of color 2, size 1 wedge of color 3, a size 1 wedge of color
4, a size 2 wedge of color 1, . . ., a size k− 1 wedge of color 1, size k− 1 wedge of
color 2, a size k − 1 wedge of color 3, a size k − 1 wedge of color 4, size 1 wedge
of color 5, size 2 wedge of color 5, . . . etc. These rules determine our algorithm,
now we have to see how effective it is.

Ai,j is defined as in the proof of Theorem 3. We only need to prove that
Ai,j ≥ 2(k−1)(�j/4�+i−1) as this means that if the algorithm uses the color c+ 1,
then we had at least A1,c+1 ≥ 2(k−1)�(c+1)/4� > N points, a contradiction. Recall
that Ai,j denotes the least number of points that are required to “build” a wedge
W of size i of color j.

We prove by induction. First, A1,1 = A1,2 = A1,3 = A1,4 = 1 in-
deed. By our preferences, whenever we introduce a size one wedge with
color j, we had to kill at least two (four minus the two forbidden colors of
the neighbors of the new point) points that have colors from the previous 4-tuple
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of colors and are contained in monochromatic wedges of size k − 1. Thus
A1,j ≥ Ak−1,4(�j/(4−1)�+1) + Ak−1,4(�j/(4−1)�+2 ≥ 2 · 2(k−1)(�j/(4−1)�+k−2) = 2 ·
2(k−1)(�j/4�−1 = 2(k−1)(�j/4�+1−1. If we introduce a wedge of size i > 1 with color
j, we had to kill at least two points that have colors from the same 4-tuple of col-
ors as j and are contained in monochromatic wedges of size i−1. Thus in this case
Ai,j ≥ Ai−1,4(�j/4�+1 +Ai−1,4(�j/4�+2 ≥ 2 · 2(k−1)(�j/4�+i−2) = 2(k−1)(�j/4�+i−1.

Proposition 2. The online coloring methods guaranteed by the second part of
Proposition 1, Theorem 3 and Theorem 4 run in O(n logn) time to color the
first n points (even if we have a countable number of points and n is not known
in advance).

The proof of this proposition is omitted as it follows easily from the analysis of
the algorithms.

2.2 Online Coloring Intervals

This section deals with the following interval coloring problem. Given a finite
family of intervals on the real line, we want to online color them with c colors
such that throughout the process if a point is covered by at least k intervals,
then not all of these intervals have the same color.

Proposition 3. The interval coloring problem is equivalent to a restricted case
of the point with respect to wedges coloring problem, where we care only about
the wedges with apex on the line L defined by y = −x.

Proof. Consider the natural bijection of the real line and L. Associate to
every point p of L the wedge with apex p and associate with every interval
I = (x1,−x1), (x2,−x2) of L the point (x1,−x2). It is easy to see that p ∈ I if
and only if the point associated to I is contained in the wedge associated to p.

Corollary 3. Any upper bound on the number of colors necessary to (online)
color wedges in the plane is also an upper bound for the number of colors neces-
sary to (online) color intervals in R.

Also the lower bounds of Theorem 2 and of Proposition 1 follow for intervals
easily by either repeating the proofs for intervals or by Observation 1:

Observation 1. The proofs of Theorem 2 and of the first part of Proposition
1 can be easily modified such that all the relevant wedges have their apex on the
line y = −x.

In particular, we have the following.

Corollary 4. There is a method to online color N intervals in R using
Θ(logN/k) colors such that for every point x, contained in at least k intervals,
there exist two intervals containing x of different colors.
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As we have seen the results about intervals follow in a straightforward way from
the results about wedges. Thus all the statements we proved hold for online
coloring wedges, also hold for intervals, however, it seems unlikely that the exact
bounds are the same. Thus, we would be happy to see (small) examples where
there is a distinction. As the next section shows, there is a difference between
the exact bounds for quasi-online coloring wedges and intervals.

3 Quasi-online Coloring Intervals

A quasi-online coloring of an ordered collection of intervals {It}nt=1, is a coloring
φ such that for every k, the sub-collection {It}kt=1 is properly colored under φ.
Proofs of the following Theorems are omitted from this conference version.

Theorem 5. Any finite family of intervals on the line can be colored quasi-
online with 2 colors such that at any time any point contained by at least 3 of
these intervals is not monochromatic.

Theorem 6. Any finite family of intervals on the line can be colored quasi-
online with 3 colors such that at any time any point contained by at least 2 of
these intervals is not monochromatic.

Theorem 7. Colorings guaranteed by Theorem 5 and Theorem 6 can be found
in O(n logn) time.

These problems are equivalent to (offline) colorings of bottomless rectangles in
the plane. Using this notation, Theorem 6 and Theorem 5 were proved already
in [14] and [13], yet those proofs are quite involved and they only give quadratic
time algorithms, so these results are improvements regarding simplicity of proofs
and efficiency of the algorithms.
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5. Chen, K., Fiat, A., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M.,
Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals,
Siam. J. Comput. 36, 545–554 (2006)

6. Chrobak, M., Slusarek, M.: On some packing problems related to dynamic storage
allocation. RAIRO Inform. Thor. Appl. 22(4), 487–499 (1988)



Online and Quasi-online Colorings of Wedges and Intervals 301

7. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput. 33(1), 94–136 (2003)
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A Proofs of Theorems 5-7

We exploit an idea used in [11]; instead of online coloring the intervals we online
build a labelled acyclic graph (i.e., a forest) with the following properties. Each
interval will correspond to a vertex in this graph (there might be other vertices
in the graph as well). The final coloring of the intervals will then be generated
from this graph. In particular, to define a two-coloring, we will assign each edge
in the forest one of two labels, “different” or “same”. For an arbitrary coloring
of exactly one vertex in each component (tree) of the graph, there is a unique
extension to a coloring of the whole graph compatible with the labelling, i.e.,
such that each edge labelled “same” is adjacent to vertices of the same color and
each edge labelled “different” is adjacent to vertices of different colors. In [11]
all the edges were labelled “different” so it was actually a simpler variant of our
current scheme. As we will see, this idea can also be generalized to more than
two colors.

We denote the color of an interval I by φ(I), the left (resp. right) endvertex
of I by l(I) (resp. by r(I)). These vertices are real numbers, and so they can be
compared.

Proof (of Theorem 5). Let {It}nt=1 be the given enumeration of the intervals
to be quasi-online colored. We first build the forest and then show that the
coloring defined by this forest works. As we build the forest we will maintain
also a set of intervals, called the active intervals (not necessarily a subset of the
given set of intervals). At any time t the vertices of the actual forest correspond
to the intervals of {It}nt=1 and the set of current or past active intervals. The
set of active intervals will change during the process, but we maintain that the
following properties hold any time.

1. Every point of the line is covered by at most two active intervals.
2. No active interval contains another active interval.
3. A point is either forced by the labelling to be contained in original intervals

of different colors or it is contained in the same number of active intervals as
original intervals, and additionally the labelling forces these original intervals
to have the same colors as these active intervals.

4. Each tree in the forest contains exactly one vertex that corresponds to an
active interval.

The last property ensures that a coloring of the active intervals determines a
unique coloring of all the intervals which is compatible with the labelling of the
forest.

Note that in the third property one or two of the original intervals can actually
coincide with one or two of the active intervals.

For the first step we simply make the first interval active; our forest will consist
of a single vertex corresponding to this interval. In general, at the beginning of
step t, we have a list of active intervals, Jt−1. Consider the tth interval, It. If
It is covered by an active interval, J ∈ Jt−1, then we add It to the forest and
connect it to J with an edge labelled “different”. Note that there is at most one
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such active interval. If there is no active interval containing It, we add It to the
set of active intervals and also add a corresponding vertex to the forest. Now if
there are active intervals contained in It, these are all deactivated (removed from
the set of active intervals) and each is connected to It in the graph with an edge
labelled “different”. Note that this way any point covered by these inactivated
intervals will be covered by intervals of both colors.

L1

L2

It

L1

L2

N

It

Fig. 2. A general step in the proof of Theorem 5

It remains to ensure that no point is contained within three active intervals.
If there still do exist such points, by induction they must be contained within
It. Let L1 and L2 be the (at most) two active intervals covering l(It) such that
l(L1) < l(L2) (if both of them exist.) Similarly, let R1 and R2 be the (at most)
two active intervals covering r(It) such that l(R1) < l(R2) (if both of them exist.)
We note that the Li and Rj cannot be the same, as such an interval would cover
It. Also, no other active intervals can intersect It, as they would necessarily be
contained in It. Without loss of generality we can assume that both L1 and L2

exist. If R1 and R2 also both exist, deactivate L1, L2, It, R1 and R2 and activate
a new interval N = L1 ∪ It ∪R2 (and add a corresponding vertex to the graph).
In the graph, connect L1, It and R2 to N with edges labelled “same”. Connect
L2 and R1 to N with edges labelled “different”. Otherwise, if at most one active
edge contains r(It) we deactive L1 and L2 and connect these to the new interval
N = L1 ∪ It (again with edges labelled “same” and “different”, respectively),
also we deactive It and connect it to N with an edge labelled “same”. Figure is
an illustration of this case when the active interval N is assigned color blue and
deactivated intervals are shown with dashed lines.

This way within a given step, any point which is contained in (at least) two
intervals deactivated during the step, is forced by the labelling to be contained
in intervals of different colors. For any other point v the number of original
intervals containing v remains the same as the number of active intervals covering
v (both remains the same or both increases by 1). The first three properties were
maintained and also it is easy to check that the graph remains a forest such that
in each component there is a unique active interval.

At the end of the process any coloring of the final set of active intervals extends
to a coloring of all the intervals (compatible with the labelling of the graph).
We have to prove that for this coloring at any time any point contained by at
least 3 of these intervals is not monochromatic. By induction at any time t < n
the coloring is compatible with the graph at that time, thus by induction any
point contained by at least 3 of these intervals is not monochromatic. Now at
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time n, if the active intervals are colored, the extension (by induction) is such
that every point not in In is either covered by at most two original intervals
or it is covered by intervals of both colors. On the other hand, from the way
we defined the graph, we can see that points covered by In and contained in
at least 3 intervals are covered by intervals of both colors as well. Indeed, by
the properties maintained, if a point v is not covered by intervals of both colors
than it is covered by as many active intervals as original intervals. Yet, no point
is covered by more than 2 active intervals at any time, thus v is covered by no
more than 2 active and thus no more than 2 original intervals.

Proof (of Theorem 6)
We proceed similarly to Theorem 5. In particular, we require the same four prop-
erties from active intervals, although the second two need some modifications.
Now instead of a labelled graph we define rules of the following form: some inter-
val I (original or auxiliary) gets a different color from at most two other intervals
J1, J2. We say that I depends from J1, J2, otherwise I is independent. If there
is an order on the intervals such that an interval depends only on intervals later
in this order then starting with any coloring of the independent intervals and
then coloring the dependent ones from the last going backwards we can naturally
extend this coloring to all the intervals such that the coloring is compatible with
the rules (i.e. I gets a color different from the color of J1, J2 for all dependent
triples). For a representation with directed acyclic graphs - showing more clearly
the similarities with the previous proof - see the proof of Theorem 7.

1. Every point of the line is covered by at most two active intervals.
2. No active interval contains another active interval.
3. A point of the line is either forced by the rules to be contained in original

intervals of different colors or it is contained in the same number of active
intervals as original intervals, and additionally the rules force these original
intervals to have the same colors as these active intervals.

4. An interval is independent if and only if it is an active interval.

The first two properties ensure the following structure on the set of active inter-
vals. Define a chain as a sequence of active intervals such that everyone intersects
the one before and after it in the chain. The set of active intervals can be parti-
tioned into disjoint chains. The last property guarantees that any coloring of the
active intervals extends naturally and uniquely to a coloring of all the intervals
which is compatible with the rules.

We will define the rules such that if we start by a proper coloring of the
active intervals then the extension is a quasi-online coloring (as required by
the theorem) of the original set of intervals. Note that in the previous proof
we started with an arbitrary coloring of the active intervals, which was not
necessarily proper, thus now we additionally have to take care that a proper
coloring of the active intervals extends to a coloring which is a proper coloring
of the active intervals at any previous time as well.

In the first step we add I1 and activate it. In the induction step we add It
to the set of active intervals. If It is covered by an active interval or by two
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intervals of a chain, then we deactivate It and the rule is that we give a color
to it differing from the color(s) of the interval(s). If It does not create a triple
intersection, it remains activated. Otherwise, denote by L (resp. R) the interval
with the leftmost left end (resp. rightmost right end) that covers a triple covered
point. We distinguish two cases.

Case i) If It is not covered by one chain, then either L or R is It, or L and R
are not in the same chain. In either case we deactivate all intervals covered by
N = L ∪ It ∪ R, except for L, It and R. The rule to color the now deactivated
intervals is that they get a color different from It, in an alternating way along
their chains starting from L and R.

It is easy to check that the four properties are maintained.
Given a proper coloring of the active intervals at step n by our rules it extends

to a proper coloring of the active intervals in the previous step. Thus by induction
at any time t < n for any point v it is either covered by differently colored
intervals or it is covered by at most one interval. For time n it is either covered
by differently colored intervals or it is covered by as many original intervals as
active intervals, and they have the same set of colors (by the third property).
As the coloring was proper on the active intervals, v is either covered by two
original intervals and then two active intervals which have different colors, thus
the original intervals have different colors as well, or v is covered by at most one
active and thus by at most one original interval.

L

It

RL

It

R

Fig. 3. Case i) of Theorem 6

L

It

R

L′

It

R

L

Fig. 4. Case ii), odd subcase of Theorem 6

Case ii) If It is covered by one chain, then L and R both differ from It. We
deactivate all intervals covered by L∪ It ∪R (including It), except for L and R.
Notice that apart from It these intervals are all between L and R in this chain.

If we deactivated an odd number of intervals this way (so an even number
from the chain), then we insert the new active interval L′ that we get from L by
prolonging the right end of L such that L′ and R intersect in an epsilon short
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interval. We deactivate L and the rule is to color it the same as we color L′. The
rule to color the deactivated It is to color it differently from the color of L′ (or,
equivalently, L) and R. The rule to color the deactivated intervals of the chain is
to color them in an alternating way using the colors of L and R (in a final proper
coloring of the active intervals they get different colors as L′ and R intersect).
If we deactivated an even number of intervals this way (so an odd number from
the chain), then we deactivate L and R as well and add a new active interval
N = L∪It∪R. The rule to color the deactivated It is to color it differently from
the color of N . The rule to color the deactivated intervals of the chain is to color
them in an alternating way using the color of N (L and R get this color) and
the color that is different from the color of N and It.

It is easy to check that the four properties are maintained. Also, similarly to
the previous case, it can be easily checked that if we extend a proper coloring of
the active intervals then for its extension it is true at any time (for time t < n by
induction, otherwise by the way we defined the rules) that every point is either
covered by at most one original interval or it is covered by intervals of different
colors.

Proof (of Theorem 7). Instead of a rigorous proof we provide only a sketch, the
easy details are left to the reader. In both algorithms we have n intervals, thus
n steps. In each step we define a bounded number of new active intervals, thus
altogether we have cn regular and active intervals. We always maintain the (well-
defined) left-to-right order of the active intervals. Also we maintain an order of
the (active and regular) intervals such that an interval’s color depends only on
the color of one or two intervals’ that are later in this order. This order can be
easily maintained as in each step the new interval and the new active intervals
come at the end of the order. We also save for each interval the one or two
intervals which it depends on. This can be imagined as the intervals represented
by vertices on the horizontal line arranged according to this order and an acyclic
directed graph on them representing the dependency relations, thus each edge
goes backwards and each vertex has indegree at most two (at most one in the first
algorithm, i.e. the graph is a directed forest in that case). In each step we have
to update the order of active intervals and the acyclic graph of all the intervals,
this can be done in c logn time plus the time needed for the deletion of intervals
from the order. Although the latter can be linear in a step, yet altogether during
the whole process it remains cn, which is still ok. At the end we just color the
vertices one by one from right to left following the rules, which again takes only
cn time. Altogether this is cn logn time.

We note that the algorithms in [14] and [13] proceed with the intervals in back-
wards order and the intervals are colored immediately (in each step many of
them are also recolored), this might be a reason why a lot of recolorings are
needed there (which we don’t need in the above proofs), adding up to quadratic
time algorithms (contrasting the near-linear time algorithms above).
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Abstract. Operator precedence grammars define a classical Boolean and deter-
ministic context-free language family (called Floyd languages or FLs). FLs have
been shown to strictly include the well-known Visibly Pushdown Languages, and
enjoy the same nice closure properties. In this paper we provide a complete char-
acterization of FLs in terms of a suitable Monadic Second-Order Logic. Tradi-
tional approaches to logic characterization of formal languages refer explicitly to
the structures over which they are interpreted - e.g, trees or graphs - or to strings
that are isomorphic to the structure, as in parenthesis languages. In the case of
FLs, instead, the syntactic structure of input strings is “invisible” and must be
reconstructed through parsing. This requires that logic formulae encode some
typical context-free parsing actions, such as shift-reduce ones.

Keywords: operator precedence languages, deterministic context-free languages,
monadic second-order logic, pushdown automata.

1 Introduction

Floyd languages (FL), as we renamed Operator Precedence Languages and grammars
(FG) after their inventor, were originally introduced to support deterministic parsing
of programming and other artificial languages [7]; then, interest in them decayed for
several decades, probably due to the advent of more expressive grammars, such as LR
ones [8] which also allow for efficient deterministic parsing.

In another context Visual Pushdown Languages (VPL) -and other connected families
e.g. [3]- have been introduced and investigated [1] with the main motivation to extend
to them the same or similar automatic analysis techniques -noticeably, model checking-
that have been so successful for regular languages. Recently we discovered that VPL
are a proper subclass of FL, which in turn enjoy the same properties that make regu-
lar and VP languages amenable to extend to them typical model checking techniques;
in fact, to the best of our knowledge, FL are the largest family closed w.r.t. Boolean
operation, concatenation, Kleene * and other classical operations [5]. Another relevant
feature of FL is their “locality property”, i.e., the fact that partial strings can be parsed
independently of the context in which they occur within a whole string. This enables
more effective parallel and incremental parsing techniques than for other deterministic
languages [2].
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© Springer-Verlag Berlin Heidelberg 2013



308 V. Lonati, D. Mandrioli, and M. Pradella

We also introduced an appropriate automata family that matches FGs in terms of
generative power: Floyd Automata (FA) are reported in [10] and, with more details and
precision, in [9]. In this paper we provide the “last tile of the puzzle”, i.e., a complete
characterization of FL in terms of a suitable Monadic Second-Order (MSO) logic, so
that, as well as with regular languages, one can, for instance, state a language property
by means of an MSO formula; then automatically verify whether a given FA accepts
a language that enjoys that property.

In the literature various other classes of languages (including VPL) and structures
(trees and graphs) have been characterized by means of MSO logic [4] by extending the
original approach of Büchi (presented e.g. in [12]). To the best of our knowledge, how-
ever, all these approaches refer to a tree or graph structure which is explicitly available.
In the case of FLs, instead, the syntax tree is not immediately visible in the string, hence
a parsing phase is needed. In fact, Floyd automata are the only non-real-time automata
we are aware of, characterized in terms of MSO logic.

The paper is structured as follows: Section 2 provides the necessary background
about FL and their automata. Section 3 defines an MSO over strings and provides two
symmetric constructions to derive an equivalent FA from an MSO formula and con-
versely. Section 4 offers some conclusion and hints for future work.

2 Preliminaries

FL are normally defined through their generating grammars [7]; in this paper, however,
we characterize them through their accepting automata [9,10] which are the natural
way to state equivalence properties with logic characterization. Nevertheless we assume
some familiarity with classical language theory concepts such as context-free grammar,
parsing, shift-reduce algorithm, syntax tree [8].

Let Σ = {a1, . . . , an} be an alphabet. The empty string is denoted ε. We use a special
symbol # not in Σ to mark the beginning and the end of any string. This is consistent
with the typical operator parsing technique that requires the look-back and look-ahead
of one character to determine the next parsing action [8].

Definition 1. An operator precedence matrix (OPM) M over an alphabet Σ is a partial
function (Σ ∪ {#})2 → {�,�,�}, that with each ordered pair (a, b) associates the OP
relation Ma,b holding between a and b. We call the pair (Σ,M) an operator precedence
alphabet (OP). Relations �,�,�, are named yields precedence, equal in precedence,
takes precedence, respectively. By convention, the initial # can only yield precedence,
and other symbols can only take precedence on the ending #.

If Ma,b = ◦, where ◦ ∈ {�,�,�}, we write a◦b. For u, v ∈ Σ∗ we write u◦v if u = xa and
v = by with a◦b. M is complete if Ma,b is defined for every a and b in Σ. Moreover in the
following we assume that M is acyclic, which means that c1 � c2 � . . . � ck � c1 does
not hold for any c1, c2, . . . ck ∈ Σ, k ≥ 1. See [6,5,9] for a discussion on this hypothesis.

Definition 2. A nondeterministic Floyd automaton (FA) is a tupleA = 〈Σ,M,Q, I, F, δ〉
where: (Σ,M) is a precedence alphabet; Q is a set of states (disjoint from Σ); I, F ⊆ Q
are sets of initial and final states, respectively; δ : Q × (Σ ∪ Q) → 2Q is the transition
function.
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The transition function is the union of two disjoint functions: δpush : Q × Σ → 2Q, and
δflush : Q × Q → 2Q. A nondeterministic FA can be represented by a graph with Q as
the set of vertices and Σ ∪ Q as the set of edge labelings: there is an edge from state
q to state p labelled by a ∈ Σ if and only if p ∈ δpush(q, a) and there is an edge from
state q to state p labelled by r ∈ Q if and only if p ∈ δ f lush(q, r). To distinguish flush
transitions from push transitions we denote the former ones by a double arrow.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are
called marked symbols. Let Γ = (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q],
[a′q], or [# q], respectively. We set smb([a q]) = smb([a′q]) = a, smb([# q]) = #, and
st([a q]) = st([a′q]) = st([# q]) = q.

A configuration of a FA is any pair C = 〈B1B2 . . . Bn, a1a2 . . . am〉, where Bi ∈ Γ and
ai ∈ Σ ∪ {#}. The first component represents the contents of the stack, while the second
component is the part of input still to be read.

A computation is a finite sequence of moves C � C1; there are three kinds of moves,
depending on the precedence relation between smb(Bn) and a1:

(push) if smb(Bn) � a1 then C1 = 〈B1 . . . Bn[a1 q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(mark) if smb(Bn)�a1 then C1 = 〈B1 . . . Bn[a1

′q], a2 . . .am〉, with q ∈ δpush(st(Bn), a1);
(flush) if smb(Bn) � a1 then let i the greatest index such that smb(Bi) ∈ Σ′.
C1 = 〈B1 . . . Bi−2[smb(Bi−1) q], a1a2 . . . am〉, with q ∈ δ f lush(st(Bn), st(Bi−1)).

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration [# qF]
is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =
{
x | 〈[# qI], x#〉 ∗� 〈[# qF], #〉, qI ∈ I, qF ∈ F

}
.

Notice that transition function δpush is used to perform both push and mark moves. To
distinguish them, we need only to remember the last symbol read (i.e., the look-back),
encoding such an information into the states. Hence, in the graphical representation of
a FA we will use a bold arrow to denote mark moves in the state diagram.

The deterministic version of FA is defined along the usual lines.

Definition 3. A FA is deterministic if I is a singleton, and the ranges of δpush and δflush

are both Q rather than 2Q.

In [9] we proved in a constructive way that nondeterministic FA have the same ex-
pressive power as the deterministic ones and both are equivalent to the original Floyd
grammars.

Example 1. We define here the stack management of a simple programming language
that is able to handle nested exceptions. For simplicity, there are only two procedures,
called a and b. Calls and returns are denoted by calla, callb, reta, retb, respectively.
During execution, it is possible to install an exception handler hnd. The last signal that
we use is rst, that is issued when an exception occurs, or after a correct execution to
uninstall the handler. With a rst the stack is “flushed”, restoring the state right before
the last hnd. Every hnd not installed during the execution of a procedure is managed by
the OS. We require also that procedures are called in an environment controlled by the
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OS, hence calls must always be performed between a hnd/rst pair (in other words, we
do not accept top-level calls). The automaton modeling the above behavior is presented
in Figure 1. Note that every arrow labeled with hnd is bold as it represents a mark
transition. An example run and the corresponding tree are presented in Figure 2.

calla reta callb retb hnd rst #
calla � =̇ � � �

reta � � � � � �

callb � � =̇ � �

retb � � � � � �

hnd � � � � =̇

rst � � � � � � �

# � � � =̇

q0 q1

hnd

q1

reta, retb, rst

calla, callb, hnd

q0

Fig. 1. Precedence matrix and automaton of Example 1

Such a language is not a VPL but somewhat extends their rationale: in fact, whereas
VPL allow for unmatched parentheses only at the beginning of a sentence (for returns)
or at the end (for calls), in this language we can have unmatched calla, callb, reta, retb
within a pair hnd, rst.

Definition 4. A simple chain is a string c0c1c2 . . . c�c�+1, written as c0 [c1c2 . . . c�]c�+1 ,
such that: c0, c�+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . �, and c0 � c1 � c2 . . . c�−1 �
c� � c�+1.

A composed chain is a string c0s0c1s1c2 . . . c�s�c�+1, where c0 [c1c2 . . . c�]c�+1 is a sim-
ple chain, and si ∈ Σ∗ is the empty string or is such that ci [si]ci+1 is a chain (sim-
ple or composed), for every i = 0, 1, . . . , �. Such a composed chain will be written as
c0 [s0c1s1c2 . . . c� s�]c�+1 .

A string s ∈ Σ∗ is compatible with the OPM M if #[s]# is a chain.

Definition 5. LetA be a Floyd automaton. We call a support for the simple chain
c0 [c1c2 . . . c�]c�+1 any path inA of the form

q0
c1−→ q1 −→ . . . −→ q�−1

c�−→ q�
q0
=⇒ q�+1 (1)

Notice that the label of the last (and only) flush is exactly q0, i.e. the first state of the
path; this flush is executed because of relation c� � c�+1.

We call a support for the composed chain c0 [s0c1s1c2 . . . c�s�]c�+1 any path in A of
the form

q0
s0� q′0

c1−→ q1
s1� q′1

c2−→ . . . c�−→ q�
s�� q′�

q′0
=⇒ q�+1 (2)

where, for every i = 0, 1, . . . , �:

– if si � ε, then qi
si� q′i is a support for the chain ci [si]ci+1 , i.e., it can be decomposed

as qi
si� q′′i

qi
=⇒ q′i .

– if si = ε, then q′i = qi.

Notice that the label of the last flush is exactly q′0.
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hnd

calla

rst

hnd

calla reta

callb

rst

〈[# q0] , hnd calla rst hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1] , calla rst hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1] , rst hnd calla reta callb rst#〉
flush 〈[# q0][hnd′ q1] , rst hnd calla reta callb rst#〉
push 〈[# q0][hnd′ q1][rst q1] , hnd calla reta callb rst#〉
flush 〈[# q0] , hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1] , calla reta callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1] , reta callb rst#〉
push 〈[# q0][hnd′ q1][call′a q1][reta q1] , callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1][reta q1][call′b q1] , rst#〉
flush 〈[# q0][hnd′ q1][call′a q1][reta q1] , rst#〉
flush 〈[# q0][hnd′ q1] , rst#〉
push 〈[# q0][hnd′ q1][rst q1] , #〉
flush 〈[# q0] , #〉

Fig. 2. Example run and corresponding tree of the automaton of Example 1

The chains fully determine the structure of the parsing of any automaton over (Σ,M).

Indeed, if the automaton performs the computation 〈[a q0], sb〉 ∗� 〈[a q], b〉, then a[s]b is
necessarily a chain over (Σ,M) and there exists a support like (2) with s = s0c1 . . . c�s�
and q�+1 = q.

Furthermore, the above computation corresponds to the parsing by the automaton of
the string s0c1 . . . c�s� within the context a,b. Notice that such context contains all infor-
mation needed to build the subtree whose frontier is that string. This is a distinguishing
feature of FL, not shared by other deterministic languages: we call it the locality prin-
ciple of Floyd languages.

Example 2. With reference to the tree in Figure 1, the parsing of substring hnd calla rst

hnd is given by computation 〈[# q0] , hnd calla rst hnd〉 ∗� 〈[# q0] , hnd〉 which cor-

responds to support q0
hnd−→ q1

calla−→ q1
q1
=⇒ q1

rst−→ q1
q0
=⇒ q0 of the composed chain

#[hnd calla rst]hnd.
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Definition 6. Given the OP alphabet (Σ,M), let us consider the FA A(Σ,M) = 〈Σ,M,
{q}, {q}, {q}, δmax〉 where δmax(q, q) = q, and δmax(q, c) = q, ∀c ∈ Σ. We callA(Σ,M) the
Floyd Max-Automaton over Σ,M.

For a max-automatonA(Σ,M) each chain has a support; since there is a chain #[s]# for
any string s compatible with M, a string is accepted byA(Σ,M) iff it is compatible with
M. Also, whenever M is complete, each string is compatible with M, hence accepted
by the max-automaton. It is not difficult to verify that a max-automaton is equivalent to
a max-grammar as defined in [6]; thus, when M is complete both the max-automaton
and the max-grammar define the universal language Σ∗ by assigning to any string the
(unique) structure compatible with the OPM.

In conclusion, given an OP alphabet, the OPM M assigns a structure to any string
in Σ∗; unlike parentheses languages such a structure is not visible in the string, and
must be built by means of a non-trivial parsing algorithm. A FA defined on the OP
alphabet selects an appropriate subset within the “universe” of strings compatible with
M. In some sense this property is yet another variation of the fundamental Chomsky-
Shützenberger theorem.

3 Logic Characterization of FL

We are now ready to provide a characterization of FL in terms of a suitable Monadic
Second Order (MSO) logic in the same vein as originally proposed by Büchi for reg-
ular languages and subsequently extended by Alur and Madhusudan for VPL. The
essence of the approach consists in defining language properties in terms of relations
between the positions of characters in the strings: first order variables are used to de-
note positions whereas second order ones denote subsets of positions; then, suitable
constructions build an automaton from a given formula and conversely, in such a way
that formula and corresponding automaton define the same language. The extension
designed by [1] introduced a new basic binary predicate� in the syntax of the MSO
logic, x � y representing the fact that in positions x and y two matching parentheses
–named call and return, respectively in their terminology– are located. In the case of
FL, however, we have to face new problems.

– Both finite state automata and VPA are real-time machines, i.e., they read one input
character at every move; this is not the case with more general machines such as
FA, which do not advance the input head when performing flush transitions, and
may also apply many flush transitions before the next push or mark which are the
transitions that consume input. As a consequence, whereas in the logic characteri-
zation of regular and VP languages any first order variable can belong to only one
second order variable representing an automaton state, in this case –when the au-
tomaton performs a flush– the same position may correspond to different states and
therefore belong to different second-order variables.

– In VPL the� relation is one-to-one, since any call matches with only one return,
if any, and conversely. In FL, instead the same position y can be “paired” with
different positions x in correspondence of many flush transitions with no push/mark

in between, as it happens for instance when parsing a derivation such as A
∗⇒ αkA,
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consisting of k immediate derivations A ⇒ αA; symmetrically the same position x
can be paired with many positions y.

In essence our goal is to formalize in terms of MSO formulas a complete parsing al-
gorithm for FL, a much more complex algorithm than it is needed for regular and VP
languages. The first step to achieve our goal is to define a new relation between (first
order variables denoting) the positions in a string.

In some sense the new relation formalizes structural properties of FL strings in the
same way as the VPL � relation does for VPL; the new relation, however, is more
complex than its VPL counterpart in a parallel way, as FL are richer than VPL.

Definition 7. Consider a string s ∈ Σ∗ and a OPM M. For 0 ≤ x < y ≤ |s| + 1, we
write x � y iff there exists a sub-string of #s# which is a chain a[r]b, such that a is in
position x and b is in position y.

Example 3. With reference to the string of Figure 1, we have 1 � 3, 0 � 4, 6 � 8,
4� 8, and 0� 9. In the parsing of the string, these pairs correspond to contexts where
a reduce operation is executed (they are listed according to their execution order). For
instance, the pair 6� 8 is the context for the reduction of the last callb, whereas 4� 8
encloses calla reta callb.

In general x� y implies y > x+1, and a position x may be in such a relation with more
than one position and vice versa. Moreover, if s is compatible with M, then 0� |s|+ 1.

3.1 A Monadic Second-Order Logic over Operator Precedence Alphabets

Let (Σ,M) be an OP alphabet. According to Definition 7 it induces the relation� over
positions of characters in any words in Σ∗. Let us define a countable infinite set of
first-order variables x, y, . . . and a countable infinite set of monadic second-order (set)
variables X, Y, . . . .

Definition 8. The MSOΣ,M (monadic second-order logic over (Σ,M)) is defined by the
following syntax:

ϕ := a(x) | x ∈ X | x ≤ y | x� y | x = y + 1 | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables and X is a set variable.

MSOΣ,M formulae are interpreted over (Σ,M) strings and the positions of their charac-
ters in the following natural way:

– first-order variables are interpreted over positions of the string;
– second-order variables are interpreted over sets of positions;
– a(x) is true iff the character in position x is a;
– x� y is true iff x and y satisfy Definition 7;
– the other logical symbols have the usual meaning.

A sentence is a formula without free variables. The language defined by ϕ is L(ϕ) =
{s ∈ Σ∗ | #s# |= ϕ} where |= is the standard satisfaction relation.
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Example 4. Consider the language of Example 1, with the structure implied by its
OPM. The following sentence defines it:

∀z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

calla(z) ∨ reta(z)
∨

callb(z) ∨ retb(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⇒ ∃x, y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x� y ∧ x < z < y

∧
hnd(x + 1) ∧ rst(y − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Example 5. Consider again Example 1. If we want to add the additional constraint that
procedure b cannot directly install handlers (e.g. for security reasons), we may state it
through the following formula:

∀z (hnd(z)⇒ ¬∃u (callb(u) ∧ (u + 1 = z ∨ u� z)))

We are now ready for the main result.

Theorem 1. A language L over (Σ,M) is a FL if and only if there exists a MSOΣ,M
sentence ϕ such that L = L(ϕ).

The proof is constructive and structured in the following two subsections.

3.2 From MSOΣ,M to Floyd Automata

This part of the construction follows the lines of Thomas [12], with some extra technical
difficulties due to the need of preserving precedence relations.

Proposition 1. Let (Σ,M) be an operator precedence alphabet and ϕ be an MSOΣ,M
sentence. Then L(ϕ) can be recognized by a Floyd automaton over (Σ,M).

Proof. The proof is composed of two steps: first the formula is rewritten so that no
predicate symbols nor first order variables are used; then an equivalent FA is built in-
ductively.

Let Σ be {a1, a2, . . . , an}. For each predicate symbol ai we introduce a fresh set vari-
able Xi, therefore formula ai(x) will be translated into x ∈ Xi. Following the standard
construction of [12], we also translate every first order variable into a fresh second or-
der variable with the additional constraint that the set it represents contains exactly one
position.

Let ϕ′ be the formula obtained from ϕ by such a translation and consider any subfor-
mula ψ of ϕ′: let X1, X2, . . . , Xn, Xn+1, . . .Xn+m(ψ) be the (second order) variables appear-
ing in ψ. Recall that X1, . . . , Xn represent symbols in Σ, hence they are never quantified.

As usual we interpret formulae over strings; in this case we use the alphabet

Λ(ψ) =
{
α ∈ {0, 1}n+m(ψ) | ∃!i s.t. 1 ≤ i ≤ n, αi = 1

}
A string w ∈ Λ(ψ)∗, with |w| = �, is used to interpret ψ in the following way: the
projection over the j-th component of Λ(ψ) gives an evaluation {1, 2, . . . , �} → {0, 1} of
X j, for every 1 ≤ j ≤ n + m(ψ).

For any α ∈ Λ(ψ), the projection of α over the first n components encodes a symbol
in Σ, denoted as symb(α). The matrix M over Σ can be naturally extended to the OPM
M(ψ) over Λ(ψ) by defining M(ψ)α,β = Msymb(α),symb(β) for any α, β ∈ Λ(ψ).
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We now build a FAA equivalent to ϕ′. The construction is inductive on the structure
of the formula: first we define the FA for all atomic formulae. We give here only the
construction for�, since for the other ones the construction is standard and is the same
as in [12].

Figure 3 represents the FA for atomic formula ψ = Xi � X j (notice that i, j > n). For
the sake of brevity, we use notation [Xi] to represent the set of all tuples Λ(ψ) having the
i-th component equal to 1; notation [X̄] represents the set of all tuples in Λ(ψ) having
both i-th and j-th components equal to 0.

q0 q1 q2

q

q3 qF
[X̄]

[X̄] q2

[Xi]

[Xi]
q1

[X̄]

[X̄]

q0 [X̄]

[X̄]

[X̄]

q

[Xj]

[Xj]q0 [X̄]

[X̄]

q0, qF

Fig. 3. Floyd automaton for atomic formula ψ = Xi � Xj

The automaton, after a generic sequence of moves corresponding to visiting an ir-
relevant portion of the syntax tree, when reading Xi performs either a mark or a push
move, depending on whether Xi is a leftmost leaf of the tree or not; then it visits the
subsequent subtree ending with a flush labeled q1; at this point, if it reads X j, it accepts
anything else will follow the examined fragment.

Then, a natural inductive path leads to the construction of the automaton associated
with a generic MSO formula: the disjunction of two subformulae can be obtained by
building the union automaton of the two corresponding FA; similarly for negation. The
existential quantification of Xi is obtained by projection erasing the i-th component.
Notice that all matrices M(ψ) are well defined for any ψ because the first n compo-
nents of the alphabet are never erased by quantification. The alphabet of the automaton
equivalent to ϕ′ is Λ(ϕ′) = {0, 1}n, which is in bijection with Σ.

3.3 From Floyd Automata to MSOΣ,M

Unlike the previous construction, this part of the theorem sharply departs from tradi-
tional techniques.

LetA be a deterministic FA over (Σ,M). We build an MSOΣ,M sentence ϕ such that
L(A) = L(ϕ). The main idea for encoding the behavior of the FA is based on assign-
ing the states visited during its run to positions along the same lines stated by Büchi
[12] and extended for VPL [1]. Unlike finite state automata and VPA, however, FA do
not work on-line. Hence, it is not possible to assign a single state to every position. Let
Q = {q0, q1, . . . , qN} be the states ofAwith q0 initial; as usual, we will use second order
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variables to encode them. We shall need three different sets of second order variables,
namely P0, P1, . . . , PN , M0,M1, . . . ,MN and F0, F1, . . . , FN : set Pi contains those po-
sitions of s where state i may be assumed after a push transition. Mi and Fi represent
the state reached after a flush: Fi contains the positions where the flush occurs, whereas
Mi contains the positions preceding the corresponding mark. Notice that any position
belongs to only one Pi, whereas it may belong to several Fi or Mi (see Figure 4).

t ∈ M1 ∩ M2

w ∈ F1

z ∈ F2

w ∈ M1

z ∈ M2

t ∈ F1 ∩ F2

Fig. 4. Example trees with a position t belonging to more than one Mi (left) and Fi (right).

We show thatA accepts a string s iff #s# |= ϕ, where

ϕ := ∃P0, P1, . . . , PN ,M0,M1, . . . ,MN , F0, F1, . . . , FN , e (0 ∈ P0 ∧
∧∨i∈F e ∈ Fi ∧ ¬∃x(e + 1 < x) ∧ #(e + 1) ∧ ϕδ ∧ ϕexist ∧ ϕunique).

(3)

The first clause encodes the initial state, whereas the second, third and fifth ones encode
the final states. We use variable e to refer to the end of s, i.e., e equals the last position
|s|. The other remaining clauses are defined in the following: the fourth one encodes the
transition function; the last ones together encode the fact that there exists exactly one
state that may be assumed by a push transition in any position, and exactly one state as
a consequence of a flush transition.

For convenience we introduce the following notational conventions.

x ◦ y :=
∨

Ma,b=◦
a(x) ∧ b(y), for ◦ ∈ {�,�,�}

Tree(x, z,w, y) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x� y∧

(x + 1 = z ∨ x� z) ∧ ¬∃t(x < t < z ∧ x� t)∧
(w + 1 = y ∨ w� y) ∧ ¬∃t(w < t < y ∧ t� y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Succk(x, y) := x + 1 = y ∧ x ∈ Pk

Nextk(x, y) := x� y ∧ x ∈ Mk ∧ y − 1 ∈ Fk

Flushk(x, y) := x� y ∧ x ∈ Mk ∧ y − 1 ∈ Fk ∧

∃z,w

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Tree(x, z,w, y) ∧
N∨

i=0

N∨
j=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
δ(qi, q j) = qk∧

(Succi(w, y) ∨ Nexti(w, y))∧
(Succ j(x, z) ∨ Next j(x, z))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Treei, j(x, z,w, y) := Tree(x, z,w, y) ∧
(

Succi(w, y) ∨ Flushi(w, y))∧
(Succ j(x, z) ∨ Flush j(x, z))

)
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Remark. If a[c1c2 . . . c�]b is a simple chain with support

qi = qt0
c1−→ qt1

c2−→ . . . c�−→ qt�

qt0
=⇒ qk (4)

then Treet0,t� (0, 1, �, �+1) and Flushk(0, �+1) hold; if a[s0c1s1c2 . . . c�s�]b is a composed
chain with support

qi = qt0
s0� q f0

c1−→ qt1
s1� q f1

c2−→ . . . cg−→ qtg

sg
� q fg . . .

c�−→ qt�
s�� q f�

qf0
=⇒ qk (5)

then by induction we can see that Tree f�, f0 (0, x1, x�, |s| + 1) and Flushk(0, |s| + 1) hold,
where xg is the position of cg for g = 1, 2, . . . , �.

On the basis of the above definitions and properties, it is possible to bind A to suit-
able axioms ϕδ, ϕexist, and ϕunique that are satisfied by any chain with a support in A,
and in turn guarantee the existence of anA’s support for every chain.

For the sake of brevity we report here only a (small) part of ϕδ which should provide
enough evidence of the construction and of its correctness. The complete axiomatization
and equivalence proof (based on a natural induction) are given in [11].

The following Forward formulae formalize how A enters new states through push
and flush transitions.

ϕpush f w := ∀x, y
N∧

i=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(x � y ∨ x � y) ∧ a(y)

∧
Succi(x, y) ∨ Flushi(x, y)

⇒ y ∈ Pδ(qi ,a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕ f lush f w := ∀x, z,w, y
N∧

i=0

N∧
j=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Treei, j(x, z,w, y)⇒
x ∈ Mδ(qi ,qj)

∧
y − 1 ∈ Fδ(qi ,qj)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Somewhat symmetric Backward formulae allow to reconstruct (in a unique way) A’s
states that lead to a given state.

Finally, for any chain #s#, by the complete axiom ϕ defined in (3) we obtain the
following proposition which, together with Proposition 1, completes Theorem 1.

Proposition 2. For any Floyd automaton A there exists an MSOΣ,M sentence ϕ such
that L(A) = L(ϕ).

4 Conclusions and Future Work

This paper at last completes a research path that began more than four decades ago
and was resumed only recently with new -and old- goals. FLs enjoy most of the nice
properties that made regular languages highly appreciated and applied to achieve de-
cidability and, therefore, automatic analysis techniques. In this paper we added to the
above collection the ability to formalize and analyze FL by means of suitable MSO
logic formulae. New research topics, however, stimulate further investigation. Here we
briefly mention only two mutually related ones. On the one hand, FA devoted to ana-
lyze strings should be extended in the usual way into suitable transducers. They could
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be applied, e.g. to translate typical mark-up languages such as XML, HTML, LaTeX,
. . . into their end-user view. Such languages, which motivated also the definition of VPL,
could be classified as “explicit parenthesis languages” (EPL), i.e. languages whose syn-
tactic structure is explicitly apparent in the input string. On the other hand, we plan
to start from the remark that VPL are characterized by a well precise shape of the
OPM [5] to characterize more general classes of such EPL: for instance the language of
Example 1 is such a language that is not a VPL. Another notable feature of FL, in fact,
is that they are suitable as well to parse languages with implicit syntax structure such
as most programming languages, as well as to analyze and translate EPL.
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Abstract. Y. Gao et al. studied for the first time the transition com-
plexity of Boolean operations on regular languages based on not nec-
essarily complete DFAs. For the intersection and the complementation,
tight bounds were presented, but for the union operation the upper and
lower bounds differ by a factor of two. In this paper we continue this
study by giving tight upper bounds for the concatenation, the Kleene
star and the reversal operations. We also give a new tight upper bound
for the transition complexity of the union, which refutes the conjecture
presented by Y. Gao, et al.

1 Introduction

The descriptional complexity of regular languages has recently been extensively
investigated. For deterministic finite automata (DFA), the complexity measure
usually studied is the state complexity (number of states of the complete min-
imal DFA) [1,2,8,15,16,17], while for nondeterministic finite automata (NFA)
both state and transition complexity were considered [5,7,8,9,12], being this last
one a more interesting measure. Considering complete DFAs (when the transi-
tion function is total) it is obvious that the transition complexity is the product
of the alphabet size by the state complexity. But in many applications where
large alphabets need to be considered or, in general, when very sparse transition
functions take place, partial transition functions are very convenient. Examples
include lexical analysers, discrete event systems, or any application that uses dic-
tionaries where compact automaton representations are essential [3,4,11]. Thus,
it makes sense to study the transition complexity of regular languages based on
not necessarily complete DFAs.

Y. Gao et al. [6] studied for the first time the transition complexity of Boolean
operations on regular languages based on not necessarily complete DFAs. For
the intersection and the complementation, tight bounds were presented, but
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for the union operation the upper and lower bounds differ by a factor of two.
Nevertheless, they conjectured a tight upper bound for this operation.

In this paper, we continue this study by extending the analysis to the concate-
nation, the Kleene star and the reversal operations. For these operations tight
upper bounds are given. We also give a tight upper bound for the transition
complexity of the union, which refutes the conjecture presented by Y. Gao et
al.. The same study was made for unary languages. The algorithms and the wit-
ness language families used in this work, although new, are based on the ones of
Yu et al. [18] and several proofs required new techniques. In the Tables 1 and 2
we summarize our results (in bold) as well as some known results for other de-
scriptional complexity measures. All the proofs not present in this paper, can be
found in an extended version of this work1

2 Preliminaries

We recall some basic notions about finite automata and regular languages. For
more details, we refer the reader to the standard literature [10,14,13].

A deterministic finite automaton (DFA) is a five-tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is a finite input alphabet, q0 in Q is the initial
state, F ⊆ Q is the set of final states, and δ is the transition function mapping
Q× Σ → Q. The transition function can be extended to sets — 2Q × Σ → 2Q.
A DFA is complete if the transition function (δ) is total. In this paper we consider
the DFAs to be not necessarily complete. For s ∈ Q and τ ∈ Σ, if δ(s, τ) is
defined we write δ(s, τ) ↓, and δ(s, τ) ↑, otherwise, and, when defining a DFA,
an assignment δ(s, τ) =↑ means that the transition is undefined.

The transition function is extended in the usual way to a function δ̂ : Q×Σ� →
Q. This function can also be used in sets — δ̂ : 2Q × Σ� → 2Q. The language
accepted by A is L(A) = {w ∈ Σ� | δ̂(q0, w) ∈ F}. Two DFAs are equivalent if
they accept the same language. For each regular language, considering a total
transition function or not a total one, there exists a unique minimal complete
DFA with a least number of states. The left-quotient of L ⊆ Σ� by x ∈ Σ� is
DxL = {z | xz ∈ L}. The equivalence relation RL ⊆ Σ� × Σ� is defined by
(x, y) ∈ RL if and only if DxL = DyL. The Myhill-Nerode Theorem states that
a language L is regular if and only if RL has a finite number of equivalence
classes, i.e., L has a finite number of left quotients. This number is equal to the
number of states of the minimal complete DFA. The state complexity, sc(L), of
a regular language L is the number of states of the minimal complete DFA of L.
If the minimal DFA is not complete its number of states is the number of left
quotients minus one (the sink state is removed).

The incomplete state complexity of a regular language L (isc(L)) is the number
of states of the minimal DFA, not necessarily complete, that accepts L. Note
that isc(L) is either equal to sc(L) − 1 or to sc(L). The incomplete transition
complexity, itc(L), of a regular language L is the minimal number of transitions

1 http://www.dcc.fc.up.pt/Pubs/TReports/TR12/dcc-2012-02

http://www.dcc.fc.up.pt/Pubs/TReports/TR12/dcc-2012-02
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over all DFAs that accepts L. Whenever the model is explicitly given we refer
only to state or transition complexity, by omitting the term incomplete2 . When
we talk about the minimal DFA, we refer the DFA with the minimal number of
states and transitions because we have the following result:

Proposition 1. The state-minimal DFA, not necessarily complete, which re-
cognizes L has the minimal number of transitions of any DFA that recognizes L.

A transition labeled by τ ∈ Σ is named by τ -transition (represented by δ(s, τ),
where s ∈ Q) and the number of τ -transitions of a DFA A is denoted by t(τ, A).
The τ -transition complexity of L, itcτ (L) is the minimal number of τ -transitions
of any DFA recognizing L. In [6, Lemma 2.1] it was showed that the minimal
DFA accepting L has the minimal number of τ -transitions of any DFA accepting
L. From this and Proposition 1 follows that itc(L) =

∑
τ∈Σ itcτ (L).

The state complexity of an operation on regular languages is the (worst-
case) state complexity of a language resulting from the operation, considered as
a function of the state complexities of the operands. The (worst-case) transition
complexity of an operation is defined in the same way. Usually an upper bound is
obtained by providing an algorithm, which given DFAs as operands, constructs
a DFA that accepts the language resulting from the referred operation. The
number of states or transitions of the resulting DFA are upper bounds for the
state or the transition complexity of the operation, respectively. To prove that
an upper bound is tight, for each operand we can give a family of languages
(parametrized by the complexity measures), such that the resulting language
achieves that upper bound. For determining the transition complexity of a lan-
guage operation, we also consider the following measures and refined numbers
of transitions. Given a DFA A = (Q,Σ, δ, q0, F ) and τ ∈ Σ, let f(A) = |F |,
i(τ, A) be the number of τ -transitions leaving the initial state q0, u(τ, A) be the
number of states without τ -transitions, i.e. u(τ, A) = |Q| − t(τ, A), and ū(τ, A)
be the number of non-final states without τ -transitions. Whenever there is no
ambiguity we omit A from the above definitions. If t(τ, A) = |Q| we say that A is
τ-complete, and τ -incomplete otherwise. All the above measures, can be defined
for a regular language L, considering the measure values for its minimal DFA.
Thus, we have, respectively, f(L), iτ (L), uτ (L), and ūτ (L). We also prove that
the upper bounds are maximal when f(L) is minimal.

3 Incomplete Transition Complexity of the Union

It was shown by Y. Gao et al. [6] that itc(L1∪L2) ≤ 2(itc(L1)itc(L2)+ itc(L1)+
itc(L2)). The lower bound itc(L1)itc(L2)+itc(L1)+itc(L2)−1 was given for par-
ticular ternary language families which state complexities are relatively prime.
The authors conjectured, also, that itc(L1 ∪ L2) ≤ itc(L1)itc(L2) + itc(L1) +
itc(L2), when itc(Li) ≥ 2, i = 1, 2.

In this section we present an upper bound for the state complexity and we
give a new upper bound for the transition complexity of the union of two regular

2 In [6] the author refer sc(L) and tc(L) instead of isc(L) and itc(L).
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languages. We also present families of languages for which these upper bounds
are reached, witnessing that these bounds are tight.

3.1 An Upper Bound

In the following we describe the algorithm for the union of two DFAs that was
presented by Y. Gao et al. [6, Lemma 3.1.]. Let A = (Q,Σ, δA, q0, FA) and B =
(P,Σ, δB, p0, FB) be two DFAs (−1 /∈ Q and −1 /∈ P ). Let C = (R,Σ, δC , r0, FC)
be a new DFA with R = (Q ∪ {−1})× (P ∪ {−1}), r0 = (q0, p0), FC = (FA ×
(Q ∪ {−1})) ∪ ((P ∪ {−1})× FB) and

δC((q
′
A, p

′
B), τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(δA(q

′
A, τ), δB(p

′
B, τ)) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B, τ) ↓,

(δA(q
′
A, τ),−1) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B, τ) ↑,

(−1, δB(p′B, τ)) if δA(q
′
A, τ) ↑ ∧ δB(p

′
B, τ) ↓,

↑ otherwise,

where τ ∈ Σ, q′A ∈ Q ∪ {−1} and p′B ∈ P ∪ {−1}. Note that δA(−1, τ) and
δB(−1, τ) are always undefined, and the pair (−1,−1) never occurs in the image
of δC . It is easy to see that DFA C accepts the language L(A) ∪ L(B). We can
determine the number of states and transitions which are sufficient for any DFA
C resulting from the previous algorithm:

Proposition 2 ([6]). For any m-state DFA A and any n-state DFA B, mn+
m+ n states are sufficient for a DFA accepting L(A) ∪ L(B).

Proposition 3. For any regular languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has

itc(L1 ∪ L2) ≤ itc(L1)(1 + n) + itc(L2)(1 +m)−
∑
τ∈Σ

itcτ (L1)itcτ (L2).

The proof of Proposition 3 follows from Lemma 3.1 in Y. Gao et al.

3.2 Worst-Case Witnesses

In this section, we show that the upper bounds given in Proposition 2 and Propo-
sition 3 are tight. We consider two cases, parameterized by the state complexities
of the language operands: m ≥ 2 and n ≥ 2; and m = 1 and n ≥ 2 (or vice
versa). Note that in all that follows we consider automaton families over a bi-
nary alphabet, Σ = {a, b}. Using Myhill-Nerode theorem, it is easy to prove that
these automata are minimal because all their states correspond to different left
quotients.

Theorem 1. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A with
r = m transitions and an n-state DFA B with s = 2n − 1 transitions such
that any DFA accepting L(A) ∪ L(B) needs, at least, mn + m + n states and
(r + 1)(s+ 1) transitions.



Incomplete Transition Complexity of Some Basic Operations 323

Fig. 1. DFA A with m states Fig. 2. DFA B with n states

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m − 1}, FA = {0}, δA(m −
1, a) = 0, and δA(i, b) = i + 1, 0 ≤ i < m − 1; and B = (P,Σ, δB, 0, FB) with
P = {0, . . . , n− 1}, FB = {n− 1}, δB(i, a) = i+1, 0 ≤ i < n− 1, and δB(i, b) =
i, 0 ≤ i ≤ n− 1 (see Figure 1 and Figure 2). Let C be the DFA constructed by
the previous algorithm, which can be proved to be minimal. We only consider
the part of the theorem corresponding to the transitions. We name τ -transitions
of the DFA A by αi (1 ≤ i ≤ t(τ, A)) and the undefined τ -transitions named by
ᾱi (1 ≤ i ≤ u(τ, A) + 1), the τ -transitions of the DFA B by βj (1 ≤ j ≤ t(τ, B))
and the undefined τ -transitions by β̄j (1 ≤ j ≤ u(τ, B)+1). We need to consider
one more undefined transition in each DFA that corresponds to the τ -transition
of the state −1 added to Q and P in the union algorithm. Then, each of the
τ -transitions of DFA C can only have one of the following three forms: (αi, βj),
(ᾱi, βj), or (αi, β̄j). Thus, the DFA C has: mn+n−m+1 a-transitions because
there exist n − 1 a-transitions of the form (αi, βj); 2 a-transitions of the form
(αi, β̄j); and m(n − 1) a-transitions of the form (ᾱi, βj); and mn + m + n − 1
b-transitions because there exist (m− 1)n transitions of the form (αi, βj); m− 1
b-transitions of the form (αi, β̄j); and 2n b-transitions of the form (ᾱi, βj).

As r = m and n = s+1
2 the DFA C has (r + 1)(s+ 1) transitions. "#

The referred conjecture itc(L1∪L2) ≤ itc(L1)itc(L2)+ itc(L1)+ itc(L2) fails for
these families because one has itc(L1∪L2) = itc(L1)itc(L2)+itc(L1)+itc(L2)+1.
Note that r = itc(L1) and s = itc(L2), thus (r+1)(s+1) = (itc(L1)+1)(itc(L2)+
1) = itc(L1)itc(L2) + itc(L1) + itc(L2) + 1.

Theorem 2. For any integer n ≥ 2, exists an 1-state DFA A with one transition
and an n-state DFA B with s = 2n− 1 transitions such that any DFA accepting
L(A) ∪ L(B) has, at least, 2n+ 1 states and 2(s+ 1) transitions.

Proof (Sketch). Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, a) = 0,
and consider the DFA B defined in the previous case. "#

4 Incomplete Transition Complexity of the Concatenation

In this section we will show how many states and transitions are sufficient and
necessary, in the worst case, for a DFA to accept the concatenation of two DFAs.
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4.1 An Upper Bound

The following algorithm computes a DFA for the concatenation of a DFA A =
(Q,Σ, δA, q0, FA), where−1 /∈ Q and |Q| = n, with a DFAB = (P,Σ, δB, p0, FB),
where |P | = m . Let C = (R,Σ, δC , r0, FC) be a new DFA with R = (Q∪{−1})×
2P − FA × 2P−{p0}, r0 = 〈q0, ∅〉 if q0 /∈ FA or r0 = 〈q0, {p0}〉 if q0 ∈ FA,
FC = {〈q, T 〉 ∈ R | T ∩ FB �= ∅}, and for a ∈ Σ, δC(〈q, T 〉, a) = 〈q′, T ′〉 with
q′ = δA(q, a), if δA(q, a) ↓ or q′ = −1 otherwise, and T ′ = δB(T, a) ∪ {p0} if
q′ ∈ FA or T ′ = δB(T, a) otherwise. DFA C recognizes the language L(A)L(B).

The following results determine the number of states and transitions which
are sufficient for any DFA C resulting from the previous algorithm.

Proposition 4. For any m-state DFA A and any n-state DFA B, (m+1)2n−
f(A)2n−1 − 1 states are sufficient for any DFA accepting L(A)L(B).

Note that the minus one in the formula is due to the removal of the state (−1, ∅).

Corollary 1. The formula in Proposition 4 is maximal when f(A) = 1.

Given an automaton A, the alphabet can be partitioned in two sets ΣA
c and

ΣA
i such that τ ∈ ΣA

c if A is τ -complete, or τ ∈ ΣA
i otherwise. In the same

way, considering two automata A and B, the alphabet can be divided into four
disjoint sets Σci, Σcc, Σii and Σic. As before, these notations can be extended
to regular languages considering their minimal DFA.

Proposition 5. For any regular languages L1 and L2 with isc(L1) = m,
isc(L2) = n, uτ = uτ (L2), f = f(L1) and ūτ = ūτ (L1), one has

itc(L1L2) ≤ |Σ|(m+ 1)2n − |ΣL2
c |(f2n−1 + 1)−

∑
τ∈Σ

L2
i

(2uτ + f2itcτ (L2))−

−
∑

τ∈Σii

ūτ2
uτ −

∑
τ∈Σic

ūτ .

Proof. Let A and B be the minimal DFAs that recognize L1 and L2, respectively.
Consider the DFA C such that L(C) = L(A)L(B) and C is constructed using
the algorithm described above. We name the τ -transitions of A and B as in
the proof of the Theorem 1, with a slight modification: 1 ≤ j ≤ u(τ, B). The
τ -transitions of C are pairs (θ, γ) where θ is an αi or ᾱi, and γ is a set of βj or
β̄j . By construction, C cannot have transitions where θ is an ᾱi, and γ is a set
with only β̄j , because these would correspond to pairs of undefined transitions.

Let us count the number of τ -transitions of C. If τ ∈ Σci, the number of C
τ -transitions is (t(τ, A)+ 1)2t(τ,B)+u(τ,B)− 2u(τ,B)− f(A)2t(τ,B). The number of
θs is t(τ, A)+1 and the number of γs is 2t(τ,B)+u(τ,B). From the product we need
to remove the 2u(τ,B) sets of transitions of the form (v, ∅) where v corresponds to
the undefined τ -transition leaving the added state −1 of DFA A. If θ corresponds
to a transition that leaves a final state of A, then γ needs to include the initial
state of the B. Thus we also remove the f(A)2t(τ,B) pairs. If τ ∈ Σcc, C has
(t(τ, A) + 1)2t(τ,B) − 1 − f(A)2t(τ,B)−1 τ -transitions. In this case, u(τ, B) = 0.
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The only pair we need to remove is (v, ∅) where v corresponds to the undefined
τ -transition leaving the added state −1 of DFA A. Analogously, if τ ∈ Σii,
C has (t(τ, A) + u(τ, A) + 1)2t(τ,B)+u(τ,B) − (ū(τ, A) + 1)2u(τ,B) − f(A)2t(τ,B)

τ -transitions. Finally, if τ ∈ Σic, C has (t(τ, A)+u(τ, A)+ 1)2t(τ,B)− (ū(τ, A)+
1)− f(A)2t(τ,B)−1 τ -transitions.

Thus, after some simplifications, the right side of the inequality in the propo-
sition holds. "#

4.2 Worst-Case Witnesses

The following results show that the complexity upper bounds found in Propo-
sitions 4 and 5 are tight. As in the previous section we need to consider three
different cases, according to the state and transition complexities of the operands.
All following automaton families have Σ = {a, b, c}. For these automata, it is
easy to prove that they are minimal. It is also possible to prove that there cannot
exist binary language families that reach the upper bounds.

Fig. 3. DFA A with m states and DFA B with n states

Theorem 3. For any integers m ≥ 2 and n ≥ 2 exist an m-state DFA A with
r = 3m− 1 transitions and an n-state DFA B with s = 3n− 1 transitions such
that any DFA accepting L(A)L(B) has, at least, (m+1)2n−2n−1−1 states and

(r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m − 1}, FA = {m− 1}, and
δA(i, a) = i + 1 mod m, if 0 ≤ i ≤ m − 1, δA(i, b) = 0, if 1 ≤ i ≤ m − 1, and
δA(i, c) = i if 0 ≤ i ≤ m− 1; and B = (P,Σ, δB, 0, FB) with P = {0, . . . , n− 1},
FB = {n−1}, δB(i, a) = i if 0 ≤ i ≤ n−1, δB(i, b) = i+1 mod n, if 0 ≤ i ≤ n−1,
and δB(i, c) = 1, 1 ≤ i ≤ n− 1 (see Figure 3). Consider the DFA C, constructed
with the previous algorithm, such that L(C) = L(A)L(B) and which can be
proved to be minimal. We only prove the part of the theorem correspondent to
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the number of transitions. As in Proposition 5, the transitions of C are pairs
(θ, γ). Then, C has: (m + 1)2n − 2n−1 − 1, a-transitions. There are m + 1 θs
and 2n γs, from which we need to remove the transition pair (−1, ∅). If θ is a
transition which leaves a final state of A, γ needs to include the transition that
leaves the initial state of B. Thus, 2n−1 pairs are removed; (m+1)2n−2n−1−2,
b-transitions. Here, the transition (θ̄, ∅) is removed; and (m + 1)2n − 2n−1 − 2,
c-transitions. This is analogous to the previous cases. As m = r+1

3 and n = s+1
3

the DFA C has (r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions. "#

Fig. 4. DFA A with 1 state and DFA B with n states

Theorem 4. For any integer n ≥ 2, exist a 1-state DFA A with 2 transitions
and an n-state DFA B with s = 3n− 1 transitions such that any DFA accepting

L(A)L(B) has, at least, 2n+1−2n−1−1 states and 3(2
s+4
3 −2

s−2
3 )−4 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, b) = δA(0, c) =
0; and define B = (P,Σ, δB, 0, FB) with P = {0, . . . , n − 1}, FB = {n − 1},
δB(i, a) = i if 0 ≤ i ≤ n − 1, δB(i, b) = i + 1 mod n if 0 ≤ i ≤ n − 1, and
δB(i, c) = i + 1 mod n, if 1 ≤ i ≤ n − 1 (see Figure 4). Consider the DFA
C = (R,Σ, δ, 0, F ), constructed by the previous algorithm, such that L(C) =
L(A)L(B). One needs to prove that C is minimal, i.e. all states are reachable
from the initial state and are pairwise distinguishable. The DFA C has states
(s, c) with s ∈ {−1, 0}, c = {i1, . . . , ik}, 1 ≤ k ≤ n, and i1 < · · · < ik. There
are two kinds of states: final states where ik = n− 1; and non-final states where
ik �= n− 1. Note that whenever s = 0, i1 = 0. Taking this form of the states into
account is not difficult to prove that the DFA C is minimal. The proof of the
second part of the theorem is similar to the proof of Theorem 3. "#

Fig. 5. DFA A with m states and DFA B with 1 state
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Theorem 5. For any integer m ≥ 2 exists an m-state DFA A. with r = 3m− 1
transitions and an 1-state DFA B with 2 transitions such that any DFA accepting
L(A)L(B) has at least 2m states and 2r transitions.

Proof (Sketch). Let A = (P,Σ, δA, 0, FA) with P = {0, . . . , n−1}, FA = {m−1},
δA(i,X) = i, if 0 ≤ i ≤ m − 1, δA(i, b) = i + 1 mod m, if 0 ≤ i ≤ m − 1,
δA(i, c) = i+1 mod m if i = 0 or 2 ≤ i ≤ m− 1; and B = (Q,Σ, δB, 0, FB) with
Q = {0}, FB = {0}, and δB(0, b) = δB(0, c) = 0 (see Figure 5). "#

5 Incomplete Transition Complexity of the Star

In this section we give a tight upper bound for the incomplete transition com-
plexity of the star operation. The incomplete state complexity of star coincides
with the one in the complete case.

5.1 An Upper Bound

Let A = (Q,Σ, δ, q0, F ) be a DFA. Let F0 = F \ {q0} and suppose that l =
|F0| ≥ 1. If F = {q0}, then L(A)� = L(A). The following algorithm obtains the
kleene star of a DFA A. Let A′ = (Q′, Σ, δ′, q′0, F

′) be a new DFA where q′0 /∈ Q
is a new initial state, Q′ = {q′0}∪{P | P ⊆ (Q\F0)∧P �= ∅}∪{P | P ⊆ Q∧q0 ∈
P ∧ P ∩ F0 �= ∅}, F ′ = {q′0} ∪ {R | R ⊆ Q ∧R ∩ F �= ∅}, and for a ∈ Σ,

δ′(q′0, a) =

⎧⎪⎨⎪⎩
{δ(q0, a)} if δ(q0, a) ↓ ∧ δ(q0, a) /∈ F0,

{δ(q0, a), q0} if δ(q0, a) ↓ ∧ δ(q0, a) ∈ F0,

∅ if δ(q0, a) ↑ .

and

δ′(R, a) =

⎧⎪⎨⎪⎩
δ(R, a) if δ(R, a) ∩ F0 = ∅,
δ(R, a) ∪ {q0} if δ(R, a) ∩ F0 �= ∅,
∅ if δ(R, a) = ∅.

We can verify that DFA A′ recognizes the language L(A)�.
The following results present upper bounds for the number of states and

transitions for any DFA A′ resulting from the algorithm described above.

Proposition 6. For any integer n ≥ 2 and any n-state DFA A, any DFA ac-
cepting L(A)� needs at least 2n−1 + 2n−l−1 states.

Corollary 2. The formula in Proposition 6 is maximal when l = 1.

Proposition 7. For any regular language L with isc(L) = n, iτ = iτ (L), and
and ūτ = ūτ (L), one has

itc(L�) ≤ |Σ|(2n−1 + 2n−l−1) +
∑
τ∈Σi

(iτ − 2ūτ )
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Proof. Let A be a minimal DFA recognizing a language L. Consider the DFA A′,
constructed with the previous algorithm, such that L(A′) = L(A)�. The number
of τ -transitions of A′ is the summation of:

1. iτ τ -transitions leaving the initial state of A.
2. The number of sets of τ -transitions of A leaving only non-final states:

(a) (2tτ−l) − 1, if A is τ -complete, we have tτ − l τ -transitions of this kind,
and we remove the empty set.

(b) 2tτ−l+uτ − 2ūτ , if A is τ -incomplete: tτ − l + uτ of this kind, and we
subtract number of sets with only undefined τ -transitions of A.

3. The number of sets of τ -transitions of A leaving final and non-final states of
A. We do not count the transition leaving the initial state of A because, by
construction, if a transition of A′ contains a transition leaving a final state of
A then it also contains the one leaving the initial state of A.
(a) (2l − 1)2tτ−l−1, if A is τ -complete.
(b) (2l − 1)2tτ−l−1+uτ , if A is τ -incomplete.

Thus, the inequality in the proposition holds. "#

5.2 Worst-Case Witnesses

Let us present an automaton family for which the upper bounds in Proposition 6
and Proposition 7 are reached. The following automaton family has Σ = {a, b}.
Using Myhill-Nerode theorem, it is easy to prove that these automata are
minimal.

Fig. 6. DFA A with n states

Theorem 6. For any integer n ≥ 2, exists an n-state DFA A with r = 2n− 1
transitions such that any DFA accepting L(A)� has, at least, 2n−1 +2n−2 states

and 2
r+1
2 + 2

r−1
2 − 2 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . , n − 1}, FA = {n − 1},
δA(i, a) = i + 1 mod m for 0 ≤ i ≤ n − 1, and δA(i, b) = i + 1 mod m for
1 ≤ i ≤ n − 1 (see Figure 6). Consider the DFA A′, constructed with the pre-
vious algorithm, such that L(A′) = (L(A))� and which can be proved to be
minimal. We only analyse the transition complexity. The DFA A′ has:

– 2n−1 + 2n−2 a–transitions because i(a) = 1, 2n−1 − 1 a–transitions which
corresponds to case 2 of Proposition 7 and 2n−2 a–transitions which corre-
sponds to case 3 of Proposition 7.
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– 2n−1− 2+ 2n−2 b–transitions because it has 2n−2+1 − 2 b–transitions which
corresponds to case 2 of Proposition 7, and 2n−3+1 b–transitions which cor-
responds to case 3.

As n = r+1
2 , A′ has 2

r+1
2 + 2

r−1
2 − 2 transitions. "#

6 Final Remarks

It is known that considering complete DFAs the state complexity of the reversal
operation reaches the upper bound 2n, where n is the state complexity of the
operand language. By the subset construction, a (complete) DFA resulting from
the reversal has a state which corresponds to the ∅, which is a dead state. There-
fore, if we remove that state the resulting automaton is not complete and the
incomplete state complexity is 2n − 1. Consequently the transition complexity
is |Σ|(2n − 1). Note that the worst case of the reversal operation is when the
operand is complete.

In this paper we presented tight upper bounds for the incomplete state and
incomplete transition complexities for the union, the concatenation, the Kleene
star and the reversal of regular languages, with |Σ| ≥ 2. Transition complexity
bounds are expressed as functions of several more fine-grained measures of the
operands, such as the number of final states, the number of undefined transitions
or the number of transitions that leave initial state.

Table 1. State Complexity

Operation sc isc nsc

L1 ∪ L2 mn mn+m+ n m+ n+ 1

L1 ∩ L2 mn mn mn

LC n n+ 1 2n

L1L2 m2n − f12
n−1 (m+ 1)2n − f12

n−1 − 1 m+ n

L� 2m−1 + 2m−l−1 2m−1 + 2m−l−1 m+ 1

LR 2m 2m − 1 m+ 1

Table 1 and Table 2 summarize some of the results on state complexity and
transition complexity of basic operations on regular languages, respectively. In
Table 1 we present the state complexity, based on complete DFA (sc) [18], DFA
(isc) (new results here presented and [6]); and NFAs (nsc) [7]. Nondeterministic
transition complexity (ntc) of basic operations on regular languages was studied
by Domaratzki and Salomaa [5,12]. They also used refined number of transitions
for computing the operational transition complexity. In Table 2, s(L) is the
minimal number of transitions leaving the initial state of any transition-minimal
NFA M accepting L, and fin(L) is the number of transitions entering the final
states of any transition-minimal NFA M accepting L. The upper bound for the
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Table 2. Transition Complexity

Operation itc ntc

L1 ∪ L2 itc(L1)(1+ n) + itc(L2)(1+m)−∑
τ∈Σ itcτ (L2)itcτ (L1)

ntc(L1) + ntc(L2) +
s(L1) + s(L2)

L1 ∩ L2 itc(L1)itc(L2)
∑
τ∈Σ

ntcτ (L1)ntcτ (L2)

LC |Σ|(itc(L) + 2)
|Σ|2ntc(L)+1

2
ntc(L)

2
−2 − 1

L1L2 |Σ|(m+ 1)2n − |ΣL2
c |(f 2n−1 + 1)− ∑

τ∈Σ
L2
i

(2uτ

+f 2itcτ (L2))− ∑
τ∈Σii

ūτ2
uτ − ∑

τ∈Σic

ūτ

ntc(L1) + ntc(L2) +
fin(L1)

L� |Σ|(2m−l−1 + 2m−1) +
∑

τ∈Σi

(iτ − 2ūτ ) ntc(L) + fin(L)

LR |Σ|(2m − 1) ntc(L) + f(L)

nondeterministic transition complexity of the complementation is not tight, and
thus we inscribe the lower and the upper bounds.

In the case of unary languages, if a DFA is not complete it represents a finite
language. Thus, the worst-case state complexity of operations occurs when the
operand DFAs are complete. For these languages the (incomplete) transition
complexity coincide with the (incomplete) state complexity. The study for union
and intersection was made by Y. Gao et al. [6] and it is similar for the other
operations studied in this article.

In future work we plan to extend this study to finite languages and to other
regular preserving operations. In order to understand the relevance of these par-
tial transition functions based models, some experimental as well as asymptotic
study of the average size of these models must be done.

Acknowledgements. This, as many other subjects, was introduced to us by
Sheng Yu. He will be forever in our mind.
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1 Introduction

A proper k-coloring (or k-coloring) of a graph G is an assignment of k different
colors to the vertices of G, such that no two adjacent vertices receive the same
color. That is, a k-coloring is a partition of the vertices of G into k independent
sets. The corresponding k-coloring problem is the problem of deciding whether
a given graph G admits a k-coloring of its vertices, and to compute one if it
exists. Furthermore, the minimum number k of colors for which there exists
a k-coloring is denoted by χ(G) and is termed the chromatic number of G. The
minimum coloring problem is to compute the chromatic number of a given graph
G, and to compute a χ(G)-coloring of G if one exists.

One of the most well known complexity results is that the k-coloring problem
is NP-complete for every k ≥ 3, while it can be solved in polynomial time for
k = 2 [10]. Therefore, since graph coloring has numerous applications besides
its theoretical interest, there has been considerable interest in studying how
several graph parameters affect the tractability of the k-coloring problem, where
k ≥ 3. In view of this, the complexity status of the coloring problem has been
established for many graph classes. It has been proved that 3-coloring remains
NP-complete even when the input graph is a line graph [13], a triangle-free graph
with maximum degree 4 [18], or a planar graph with maximum degree 4 [10].

On the positive side, one of the most famous result in this context has been
that the minimum coloring problem can be solved in polynomial time for perfect
graphs using the ellipsoid method [11]. Furthermore, polynomial algorithms for
3-coloring have been also presented for classes of non-perfect graphs, such as AT-
free graphs [23] and P6-free graphs [22] (i.e. graphs that do not contain any path
on 6 vertices as an induced subgraph). Furthermore, although the minimum
coloring problem is NP-complete on P5-free graphs, the k-coloring problem is
polynomial on these graphs for every fixed k [12]. Courcelle’s celebrated theorem
states that every problem definable in Monadic Second-Order logic (MSO) can
be solved in linear time on graphs with bounded treewidth [8], and thus also the
coloring problem can be solved in linear time on such graphs.

For the cases where 3-coloring is NP-complete, considerable attention has been
given to devise exact algorithms that are faster than the brute-force algorithm
(see e.g. the recent book [9]). In this context, asymptotic lower bounds of the
time complexity have been provided for the main NP-complete problems, based
on the Exponential Time Hypothesis (ETH) [14,15]. ETH states that there exists
no deterministic algorithm that solves the 3SAT problem in time 2o(n), given a
boolean formula with n variables. In particular, assuming ETH, 3-coloring can
not be solved in time 2o(n) on graphs with n vertices, even when the input is
restricted to graphs with diameter 4 and radius 2 (see [17,21]). Therefore, since
it is assumed that no subexponential 2o(n) time algorithms exist for 3-coloring,
most attention has been given to decrease the multiplicative factor of n in the
exponent of the running time of exact exponential algorithms, see e.g. [4, 9, 20].

One of the most central notions in a graph is the distance between two vertices,
which is the basis of the definition of other important parameters, such as the
diameter, the eccentricity, and the radius of a graph. For these graph parameters,
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it is known that 3-coloring is NP-complete on graphs with diameter at most 4
(see e.g. the standard proof of [21]). Furthermore, it is straightforward to check
that k-coloring is NP-complete for graphs with diameter at most 2, for every
k ≥ 4: we can reduce 3-coloring on arbitrary graphs to 4-coloring on graphs
with diameter 2, just by introducing to an arbitrary graph a new vertex that is
adjacent to all others.

In contrast, in spite of the extensive studies of the 3-coloring problem with
respect to several basic parameters, the complexity status of this problem on
graphs with small diameter, i.e. with diameter at most 2 or at most 3, has been
a longstanding and challenging open question, see e.g. [5,7,16]. The complexity
status of 3-coloring is open also for triangle-free graphs of diameter 2 and of
diameter 3. It is worth mentioning here that a graph is triangle-free and of
diameter 2 if and only if it is a maximal triangle free graph. Moreover, it is
known that 3-coloring is NP-complete for triangle-free graphs [18], however it
is not known whether this reduction can be extended to maximal triangle free
graphs. Another interesting result is that almost all graphs have diameter 2 [6];
however, this result can not be used in order to establish the complexity of
3-coloring for graphs with diameter 2.

Our Contribution. In this paper we provide subexponential algorithms and
hardness results for the 3-coloring problem on graphs with low diameter, i.e. with
diameter 2 and 3. As a preprocessing step, we first present two reduction rules
that we apply to an arbitrary graph G, such that the resulting graph G′ is 3-
colorable if and only G is 3-colorable. We call the resulting graph irreducible
with respect to these two reduction rules. We use these reduction rules to reduce
the size of the given graph and to simplify the algorithms that we present.

For graphs with diameter at most 2, we first provide a subexponential algo-
rithm for 3-coloring with running time 2O(min{δ,nδ log δ}), where n is the number
of vertices and δ is the minimum degree of the input graph. This algorithm is
simple and has worst-case running time 2O(

√
n logn), which is asymptotically the

same as the currently best known time complexity of the graph isomorphism
problem [3]. To the best of our knowledge, this algorithm is the first subexpo-
nential algorithm for graphs with diameter 2. We demonstrate that this is indeed
the worst-case of our algorithm by providing, for every n ≥ 1, a 3-colorable graph
Gn = (Vn, En) with Θ(n) vertices, such that Gn has diameter 2 and both its
minimum degree and the size of a minimum dominating set is Θ(

√
n). In ad-

dition, this graph is triangle-free and irreducible with respect to the above two
reduction rules. Finally, we present a subclass of graphs with diameter 2, called
locally decomposable graphs, which admits a polynomial algorithm for 3-coloring.
In particular, we prove that whenever an irreducible graph G with diameter 2
has at least one vertex v such that G−N(v)−{v} is disconnected, then 3-coloring
on G can be decided in polynomial time.

For graphs with diameter at most 3, we establish the complexity of decid-
ing 3-coloring, even for the case of triangle-free graphs. Namely we prove that
3-coloring is NP-complete on irreducible and triangle-free graphs with diame-
ter 3 and radius 2, by providing a reduction from 3SAT. In addition, we provide
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a 3-coloring algorithm with running time 2O(min{δΔ, n
δ log δ}) for arbitrary graphs

with diameter 3, where n is the number of vertices and δ (resp. Δ) is the mini-
mum (resp. maximum) degree of the input graph. To the best of our knowledge,
this algorithm is the first subexponential algorithm for graphs with δ = ω(1)
and for graphs with δ = O(1) and Δ = o(n). Table 1 summarizes the current
state of the art of the complexity of k-coloring, as well as our algorithmic and
NP-completeness results.

Table 1. Current state of the art and our algorithmic and NP-completeness results for
k-coloring on graphs with diameter diam(G). Our results are indicated by an asterisk.

k \ diam(G) 2 3 ≥ 4

3 (∗) 2O(min{δ, n
δ

log δ}) 1
1
1

(∗) NP-complete for bla
3 time algorithm min. degree δ = Θ(nε), bla
3 (∗) polynomial alg. for every ε ∈ [0, 1), NP-complete [21],

3 for locally decompo- even if rad(G) = 2 no 2o(n) algorithm
3 sable graphs and G is triangle-free

3 (∗) 2O(min{δΔ, n
δ

log δ})
1
1
1
1

bla
3 time algorithm bla

≥ 4 NP-complete NP-complete NP-complete

Furthermore, we provide three different amplification techniques that extend
our hardness results for graphs with diameter 3. In particular, we first show that
3-coloring is NP-complete on irreducible and triangle-free graphs G of diame-
ter 3 and radius 2 with n vertices and minimum degree δ(G) = Θ(nε), for every
ε ∈ [ 12 , 1) and that, for such graphs, there exists no algorithm for 3-coloring

with running time 2o(
n
δ ) = 2o(n

1−ε), assuming ETH. This lower bound is asymp-
totically almost tight, due to our above algorithm with running time 2O(n

δ log δ),
which is subexponential when δ(G) = Θ(nε) for some ε ∈ [ 12 , 1). With our second
amplification technique, we show that 3-coloring remains NP-complete also on
irreducible and triangle-free graphs G of diameter 3 and radius 2 with n vertices
and minimum degree δ(G) = Θ(nε), for every ε ∈ [0, 1

2 ). Moreover, we prove
that for such graphs, when ε ∈ [0, 13 ), there exists no algorithm for 3-coloring

with running time 2o(
√

n
δ ) = 2o(n

(
1−ε
2

)), assuming ETH. Finally, with our third
amplification technique, we prove that for such graphs, when ε ∈ [ 13 ,

1
2 ), there

exists no algorithm for 3-coloring with running time 2o(δ) = 2o(n
ε), assuming

ETH. Table 2 summarizes our lower time complexity bounds for 3-coloring on
irreducible and triangle-free graphs with diameter 3 and radius 2, parameterized
by their minimum degree δ.

Organization of the Paper. We provide in Section 2 the necessary nota-
tion and terminology, as well as our two reduction rules and the notion of an
irreducible graph. In Sections 3 and 4 we present our results for graphs with
diameter 2 and 3, respectively. Detailed proofs have been omitted due to space
limitations; a full version can be found in [19].
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Table 2. Our lower time complexity bounds for deciding 3-coloring on irreducible
and triangle-free graphs G with n vertices, diameter 3, radius 2, and minimum de-
gree δ(G) = Θ(nε), where ε ∈ [0, 1), assuming ETH. The lower bound for ε ∈ [ 1

2
, 1)

is asymptotically almost tight, as there exists an algorithm for arbitrary graphs with

diameter 3 with running time 2O(n
δ

log δ) = 2O(n1−ε log n) by Theorem 4.

δ(G) = Θ(nε): 0 ≤ ε < 1
3

1
3
≤ ε < 1

2
1
2
≤ ε < 1

Lower time

.

.

.

.

.
no 2o(n

( 1−ε
2

)
)

.

.

.

.

.

.

.

.

.

.
no 2o(n

ε)

.

.

.

.

.

.

.

.

.

.
no 2o(n

1−ε)

.

.

.

.

.

complexity bound: time algorithm time algorithm time algorithm

2 Preliminaries and Notation

In this section we provide some notation and terminology, as well as two reduc-
tion (or “cleaning”) rules that can be applied to an arbitrary graph G. Through-
out the article, we assume that any given graph G of low diameter is irreducible
with respect to these two reduction rules, i.e. that these reduction rules have
been iteratively applied to G until they can not be applied any more. Note that
the iterative application of these reduction rules on a graph with n vertices can
be done in time polynomial in n.

Notation. We consider in this article simple undirected graphs with no
loops or multiple edges. In a graph G, the edge between vertices u and v
is denoted by uv. Given a graph G = (V,E) and a vertex u ∈ V , denote by
N(u) = {v ∈ V : uv ∈ E} the set of neighbors (or the open neighborhood) of u
and by N [u] = N(u) ∪ {u} the closed neighborhood of u. Whenever the graph G
is not clear from the context, we will write NG(u) and NG[u], respectively. De-
note by deg(u) = |N(u)| the degree of u in G and by δ(G) = min{deg(u) : u ∈ V }
the minimum degree of G. Let u and v be two non-adjacent vertices of G. Then,
u and v are called (false) twins if they have the same set of neighbors, i.e. if
N(u) = N(v). Furthermore, we call the vertices u and v siblings if N(u) ⊆ N(v)
or N(v) ⊆ N(u); note that two twins are always siblings.

Given a graph G = (V,E) and two vertices u, v ∈ V , we denote by d(u, v)
the distance of u and v, i.e. the length of a shortest path between u and v in
G. Furthermore, we denote by diam(G) = max{d(u, v) : u, v ∈ V } the diameter
of G and by rad(G) = minu∈V {max{d(u, v) : v ∈ V }} the radius of G. Given
a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S. We
denote for simplicity by G− S the induced subgraph G[V \S] of G. A complete
graph (i.e. clique) with t vertices is denoted by Kt. A graph G that contains
no Kt as an induced subgraph is called Kt-free. Furthermore, a subset D ⊆ V
is a dominating set of G if every vertex of V \D has at least one neighbor in D.
For simplicity, we refer in the remainder of the article to a proper k-coloring of
a graph G just as a k-coloring of G. Throughout the article we perform several
times the merging operation of two (or more) independent vertices, which is
defined as follows: we merge the independent vertices u1, u2, . . . , ut when we
replace them by a new vertex u0 with N(u0) = ∪k

i=1N(ui).
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Observe that, whenever a graph G contains a clique K4 with four vertices as
an induced subgraph, then G is not 3-colorable. Furthermore, we can check eas-
ily in polynomial time (e.g. with brute-force) whether a given graph G contains
aK4. Therefore we assume in the following that all given graphs areK4-free. Fur-
thermore, since a graph is 3-colorable if and only if all its connected components
are 3-colorable, we assume in the following that all given graphs are connected.
In order to present our two reduction rules of an arbitrary K4-free graph G,
recall first that the diamond graph is a graph with 4 vertices and 5 edges, i.e. it
consists of a K4 without one edge. Suppose that four vertices u1, u2, u3, u4 of
a given graph G = (V,E) induce a diamond graph, and assume without loss
of generality that u1u2 /∈ E. Then, it is easy to see that in any 3-coloring of G
(if such exists), u1 and u2 obtain necessarily the same color. Therefore we can
merge u1 and u2 into one vertex, as the next reduction rule states, and the
resulting graph is 3-colorable if and only if G is 3-colorable.

Reduction Rule 1 (diamond elimination). Let G = (V,E) be a K4-free
graph. If the quadruple {u1, u2, u3, u4} of vertices in G induces a diamond graph,
where u1u2 /∈ E, then merge vertices u1 and u2.

Note that, after performing a diamond elimination in a K4-free graph G, we may
introduce a new K4 in the resulting graph. Suppose now that a graph G has a
pair of siblings u and v and assume without loss of generality that N(u) ⊆ N(v).
Then, we can extend any proper 3-coloring of G − {u} (if such exists) to
a proper 3-coloring of G by assigning to u the same color as v. Therefore, we
can remove vertex u from G, as the next reduction rule states, and the resulting
graph G− {u} is 3-colorable if and only if G is 3-colorable.

Reduction Rule 2 (siblings elimination). Let G = (V,E) be aK4-free graph
and u, v ∈ V , such that N(u) ⊆ N(v). Then remove u from G.

Definition 1. Let G = (V,E) be a K4-free graph. If neither Reduction Rule 1
nor Reduction Rule 2 can be applied to G, then G is irreducible.

Due to Definition 1, a K4-free graph is irreducible if and only if it is diamond-
free and siblings-free. Given a K4-free graph G with n vertices, clearly we can
iteratively execute Reduction Rules 1 and 2 in time polynomial on n, until we
either find a K4 or none of the Reduction Rules 1 and 2 can be further applied.
If we find a K4, then clearly the initial graph G is not 3-colorable. Otherwise,
we transform G in polynomial time into an irreducible (K4-free) graph G′ of
smaller or equal size, such that G′ is 3-colorable if and only if G is 3-colorable.

Observation 1. Let G = (V,E) be a connected K4-free graph and G′ = (V ′, E′)
be the irreducible graph obtained from G. If G′ has more than two vertices, then
δ(G′) ≥ 2, diam(G′) ≤ diam(G), rad(G′) ≤ rad(G), and G′ is 3-colorable if and
only if G is 3-colorable. Moreover, for every u ∈ V ′, NG′(u) induces in G′ a graph
with maximum degree 1.
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3 Algorithms for 3-Coloring on Graphs with Diameter 2

In this section we present our results on graphs with diameter 2. In particular,
we provide in Section 3.1 our subexponential algorithm for 3-coloring on such
graphs. We then provide, for every n, an example of an irreducible and triangle-
free graph Gn with Θ(n) vertices and diameter 2, which is 3-colorable, has mini-
mum dominating set of size Θ(

√
n), and its minimum degree is δ(Gn) = Θ(

√
n).

Furthermore, we provide in Section 3.2 our polynomial algorithm for irreducible
graphs G with diameter 2, which have at least one vertex v, such that G−N [v]
is disconnected.

3.1 An 2O(
√

n logn)-Time Algorithm for Any Graph with Diameter 2

We first provide in the next lemma a well known algorithm that decides the
3-coloring problem on an arbitrary graph G, using a dominating set (DS) of G.

Lemma 1 (the DS-approach). Let G = (V,E) be a graph and D ⊆ V be a
dominating set of G. Then, the 3-coloring problem can be decided in O∗(3|D|)
time on G.

In an arbitrary graph G with n vertices and minimum degree δ, it is well known
how to construct in polynomial time a dominating set D with cardinality |D| ≤
n 1+ln(δ+1)

δ+1 [2] (see also [1]). On the other hand, in a graph with diameter 2, the
neighborhood of every vertex is a dominating set. Thus we can use Lemma 1
to provide in the next theorem an improved 3-coloring algorithm for the case of
graphs with diameter 2.

Theorem 1. Let G = (V,E) be an irreducible graph with n vertices. Let diam(G)
= 2 and δ be the minimum degree of G. Then, the 3-coloring problem can be de-
cided in 2O(min{δ,nδ log δ}) time on G.

Corollary 1. Let G = (V,E) be an irreducible graph with n vertices and let

diam(G) = 2. Then, the 3-coloring problem can be decided in 2O(
√
n logn) time

on G.

Given the statements of Lemma 1 and Theorem 1, a question that arises nat-
urally is whether the worst case complexity of the algorithm of Theorem 1 is
indeed 2O(

√
n logn) (as given in Corollary 1). That is, do there exist 3-colorable

irreducible graphs G with n vertices and diam(G) = 2, such that both δ(G)
and the size of the minimum dominating set of G are Θ(

√
n logn), or close to

this value? We answer this question to the affirmative, thus proving that, in the
case of 3-coloring of graphs with diameter 2, our analysis of the DS-approach
(cf. Lemma 1 and Theorem 1) is asymptotically almost tight. In particular, we
provide in the next theorem for every n an example of an irreducible 3-colorable
graph Gn with Θ(n) vertices and diam(Gn) = 2, such that both δ(Gn) and
the size of the minimum dominating set of G are Θ(

√
n). In addition, each of

these graphs Gn is triangle-free, as the next theorem states. The construction of
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the graphs Gn is based on a suitable and interesting matrix arrangement of the
vertices of Gn.

Theorem 2. Let n ≥ 1. Then there exists an irreducible and triangle-free 3-
colorable graph Gn = (Vn, En) with Θ(n) vertices, where diam(Gn) = 2 and
δ(Gn) = Θ(

√
n). Furthermore, the size of the minimum dominating set of Gn

is Θ(
√
n).

3.2 A Tractable Subclass of Graphs with Diameter 2

In this section we present a subclass of graphs with diameter 2, which admits
an efficient algorithm for 3-coloring. We first introduce the definition of locally
decomposable graphs.

Definition 2. Let G = (V,E) be a graph. If there exists a vertex v0 ∈ V such
that G−N [v0] is disconnected, then G is a locally decomposable graph.

We prove in Theorem 3 that, given an irreducible and locally decomposable
graph G with diam(G) = 2, we can decide 3-coloring on G in polynomial time.
Note here that there exist instances of K4-free graphs G with diameter 2, for
which G−N [v] is connected for every vertex v of G, but in the irreducible
graph G′ obtained by G (by iteratively applying the Reduction Rules 1 and 2),
G′−NG′[v0] becomes disconnected for some vertex v0 of G′. That is, G′ may be
locally decomposable, although G is not. Therefore, if we provide as input to the
algorithm of Theorem 3 the irreducible graph G′ instead of G, this algorithm
decides in polynomial time the 3-coloring problem on G′ (and thus also on G).
The crucial idea of this algorithm is that, since G is irreducible and locally
decomposable, we can prove in Theorem 3 that every connected component of
G − N [v0] is bipartite, and that in every proper 3-coloring of G, all connected
components of G−N [v0] are colored using only two colors.

Theorem 3. Let G = (V,E) be an irreducible graph with n vertices and diam(G)
= 2. If G is a locally decomposable graph, then we can decide 3-coloring on G in
time polynomial on n.

A question that arises now naturally by Theorem 3 is whether there exist any
irreducible 3-colorable graph G = (V,E) with diam(G) = 2, for which G−N [v]
is connected for every v ∈ V . A negative answer to this question would imply
that we can decide the 3-coloring problem on any graph with diameter 2 in
polynomial time using the algorithm of Theorem 3. However, the answer to that
question is positive: for every n ≥ 1, the graph Gn = (Vn, En) that has been
presented in Theorem 2 is irreducible, 3-colorable, has diameter 2, and Gn−N [v]
is connected for every v ∈ Vn. Therefore, the algorithm of Theorem 3 can not
be used in a trivial way to decide in polynomial time the 3-coloring problem
for an arbitrary graph of diameter 2. We leave the tractability of the 3-coloring
problem of arbitrary diameter-2 graphs as an open problem.
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4 Almost Tight Results for Graphs with Diameter 3

4.1 An 2O(min{δΔ, n
δ log δ})-Time Algorithm for Any Graph with

Diameter 3

In the next theorem we use the DS-approach of Lemma 1 to provide an improved
3-coloring algorithm for the case of graphs with diameter 3.

Theorem 4. Let G = (V,E) be an irreducible graph with n vertices and diam(G)
= 3. Let δ and Δ be the minimum and the maximum degree of G, respectively.
Then, the 3-coloring problem can be decided in 2O(min{δΔ, n

δ log δ}) time on G.

To the best of our knowledge, the algorithm of Theorem 4 is the first subex-
ponential algorithm for graphs with diameter 3, whenever δ = ω(1), as well as
whenever δ = O(1) and Δ = o(n). As we will later prove in Section 4.3, the
running time provided in Theorem 4 is asymptotically almost tight whenever
δ = Θ(nε), for any ε ∈ [ 12 , 1).

4.2 The 3-Coloring Problem Is NP-Complete on Graphs with
Diameter 3 and Radius 2

In this section we provide a reduction from the 3SAT problem to the 3-coloring
problem of triangle-free graphs with diameter 3 and radius 2. Let φ be a 3-CNF
formula with n variables x1, x2, . . . , xn and m clauses α1, α2, . . . , αm. We can
assume in the following without loss of generality that each clause has three
distinct literals. We now construct an irreducible and triangle-free graph Hφ =
(Vφ, Eφ) with diameter 3 and radius 2, such that φ is satisfiable if and only if
Hφ is 3-colorable. Before we construct Hφ, we first construct an auxiliary graph
Gn,m that depends only on the number n of the variables and the number m of
the clauses in φ, rather than on φ itself.

We construct the graph Gn,m = (Vn,m, En,m) as follows. Let v0 be a vertex
with 8m neighbors v1, v2, . . . , v8m, which induce an independent set. Consider
also the sets U = {ui,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ 8m} and W = {wi,j : 1 ≤ i ≤
n+5m, 1 ≤ j ≤ 8m} of vertices. Each of these sets has (n+ 5m)8m vertices. The
set Vn,m of vertices of Gn,m is defined as Vn,m = U ∪W ∪ {v0, v1, v2, . . . , v8m}.
That is,|Vn,m| = 2 · (n+ 5m)8m+ 8m+ 1, and thus |Vn,m| = Θ(m2), since
m = Ω(n).

The set En,m of the edges of Gn,m is defined as follows. Define first for ev-
ery j ∈ {1, 2, . . . , 8m} the subsets Uj = {u1,j, u2,j , . . . , un+5m,j} and Wj =
{w1,j , w2,j , . . . , wn+5m,j} of U and W , respectively. Then define N(vj) = {v0}∪
Uj ∪Wj for every j ∈ {1, 2, . . . , 8m}, where N(vj) denotes the set of neighbors
of vertex vj in Gn,m. For simplicity of the presentation, we arrange the vertices
of U ∪W on a rectangle matrix of size 2(n+ 5m)× 8m, cf. Figure 1(a). In this
matrix arrangement, the (i, j)th element is vertex ui,j if i ≤ n+ 5m, and vertex
wi−n−5m,j if i ≥ n+ 5m+ 1. In particular, for every j ∈ {1, 2, . . . , 8m}, the jth
column of this matrix contains exactly the vertices of Uj ∪Wj , cf. Figure 1(a).
Note that, for every j ∈ {1, 2, . . . , 8m}, vertex vj is adjacent to all vertices
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of the jth column of this matrix. Denote now by �i = {ui,1, ui,2, . . . , ui,8m}
(resp. �′i = {wi,1, wi,2, . . . , wi,8m}) the ith (resp. the (n+ 5m + i)th) row of
this matrix, cf. Figure 1(a). For every i ∈ {1, 2, . . . , n+ 5m}, the vertices of �i
and of �′i induce two independent sets in Gn,m. We then add between the ver-
tices of �i and the vertices of �′i all possible edges, except those of {ui,jwi,j :
1 ≤ j ≤ 8m}. That is, we add all possible (8m)2 − 8m edges between the ver-
tices of �i and of �′i, such that they induce a complete bipartite graph without
a perfect matching between the vertices of �i and of �′i, cf. Figure 1(b). Note
by the construction of Gn,m that both U and W are independent sets in Gn,m.
Furthermore note that the minimum degree in Gn,m is δ(Gn,m) = Θ(m) and the
maximum degree is Δ(Gn,m) = Θ(n+m). Thus, since m = Ω(n), we have that
δ(Gn,m) = Δ(Gn,m) = Θ(m). The construction of the graph Gn,m is illustrated
in Figure 1. Moreover, we can prove that Gn,m has diameter 3 and radius 2, and
furthermore that it is irreducible and triangle-free.

v0

v1 v2 . . .

U

W

u1,1
u2,1

w1,1
w2,1

�i

�′i

Uj

Wj

jth column

ui,j

wi,j

8m

v8m

n+ 5m

n+ 5m

un+5m,1

wn+5m,1

un+5m,8m

wn+5m,8m

w2,8m

w1,8m

u1,8m
u2,8m

�i

�′i
wi,1 wi,2 wi,8m

ui,1 ui,2 ui,8m

(a)

(b)

gk,4 gk,3

gk,6

gk,7gk,2

gk,5

gk,8

gk,1

(c)

Fig. 1. (a) The 2(n + 5m) × 8m-matrix arrangement of the vertices U ∪ W of Gn,m

and their connections with the vertices {v0, v1, v2, . . . , v8m}, (b) the edges between the
vertices of the ith row �i and the (n + 5m + i)th row �′i in this matrix, and (c) the
gadget with 8 vertices and 10 edges that we associate in Hφ to the clause αk of φ,
where 1 ≤ k ≤ m.

We now construct the graph Hφ = (Vφ, Eφ) from φ by adding 10m edges to
Gn,m as follows. Let k ∈ {1, 2, . . . ,m} and consider the clause αk = (lk,1 ∨ lk,2 ∨
lk,3), where lk,p ∈ {xik,p

, xik,p
} for p ∈ {1, 2, 3} and ik,1, ik,2, ik,3 ∈ {1, 2, . . . , n}.

For this clause αk, we add on the vertices of Gn,m an isomorphic copy of the
gadget in Figure 1(c), which has 8 vertices and 10 edges, as follows. Let p ∈
{1, 2, 3}. The literal lk,p corresponds to vertex gk,p of this gadget. If lk,p = xik,p

,
we set gk,p = uik,p,8k+1−p. Otherwise, if lk,p = xik,p

, we set gp = wik,p,8k+1−p.
Furthermore, for p ∈ {4, . . . , 8}, we set gk,p = un+5k+4−p,8k+1−p.
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Note that, by construction, the graphs Hφ and Gn,m have the same vertex set,
i.e. Vφ = Vn,m, and that En,m ⊂ Eφ. Therefore diam(Hφ) = 3 and rad(Hφ) = 2,
since diam(Gn,m) = 3 and rad(Gn,m) = 2. Observe now that every positive
literal of φ is associated to a vertex of U , while every negative literal of φ is
associated to a vertex ofW . In particular, each of the 3m literals of φ corresponds
by this construction to a different column in the matrix arrangement of the
vertices of U ∪W . If a literal of φ is the variable xi (resp. the negated variable
xi), where 1 ≤ i ≤ n, then the vertex of U (resp. W ) that is associated to
this literal lies in the ith row �i (resp. in the (n + 5m + i)th row �′i) of the
matrix. Moreover, note by the above construction that each of the 8m vertices
{qk,1, qk,2, . . . , qk,8}mk=1 corresponds to a different column in the matrix of the
vertices of U ∪W . Finally, each of the 5m vertices {qk,4, qk,5, qk,6, qk,7, qk,8}mk=1

corresponds to a different row in the matrix of the vertices of U .

Observation 2. The gadget of Figure 1(c) has no proper 2-coloring, as it con-
tains an induced cycle of length 5.

Observation 3. Consider the gadget of Figure 1(c). If we assign to vertices
gk,1, gk,2, gk,3 the same color, we can not extend this coloring to a proper 3-
coloring of the gadget. Furthermore, if we assign to vertices gk,1, gk,2, gk,3 in
total two or three colors, then we can extend this coloring to a proper 3-coloring
of the gadget.

Observation 4. For every i ∈ {1, 2, . . . , n+5m}, there exists no pair of adjacent
vertices in the same row �i or �′i in Hφ.

Theorem 5. The formula φ is satisfiable if and only if Hφ is 3-colorable.

Moreover we can prove that Hφ is irreducible and triangle-free, and thus we
conclude the main theorem of this section.

Theorem 6. The 3-coloring problem is NP-complete on irreducible and triangle-
free graphs with diameter 3 and radius 2.

4.3 Lower Time Complexity Bounds and General NP-Completeness
Results

In this section we present our three different amplification techniques of the re-
duction of Theorem 5. In particular, using these three amplifications we extend
for every ε ∈ [0, 1) the result of Theorem 6 (by providing both NP-completeness
and lower time complexity bounds) to irreducible triangle-free graphs with di-
ameter 3 and radius 2 and minimum degree δ = Θ(nε). Our extended NP-
completeness results, as well as our lower time complexity bounds are given
in Tables 1 and 2. A detailed presentation of the results in this section can be
found in [19].
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Abstract. We consider the k-splittable capacitated network design problem
(kSCND) in a graph G = (V,E) with edge weight w(e)≥ 0, e ∈ E. We are given
a vertex s ∈V designated as a sink, a cable capacity λ > 0, and a source set S⊆V
with demand q(v) ≥ 0, v ∈ S. For any edge e ∈ E, we are allowed to install an
integer number h(e) of copies of e. The kSCND asks to simultaneously send de-
mand q(v) from each source v ∈ S along at most k paths to the sink s. A set of
such paths can pass through a single copy of an edge in G as long as the total
demand along the paths does not exceed the cable capacity λ. The objective is to
find a set P of paths of G that minimizes the installing cost ∑e∈E h(e)w(e). In this
paper, we propose a ((k+ 1)/k +ρST)-approximation algorithm to the kSCND,
where ρST is any approximation ratio achievable for the Steiner tree problem.

Keywords: approximation algorithm, graph algorithm, routing problems,
network optimization.

1 Introduction

We study a problem of finding routings from a set of sources to a single sink in
a network with an edge installing cost. This problem is a fundamental and economi-
cally significant one that arises in hierarchical design of telecommunication networks
[3] and transportation networks [8,9]. In telecommunication networks this corresponds
to installing transmission facilities such as fiber-optic cables, which represent the edges
of the network. In other applications, optical cables may be replaced by pipes, trucks,
and so on.

Consider the capacitated network design problem (CND), which can be stated as
follows. We are given an undirected graph G such that each edge e ∈ E(G) is weighted
by a nonnegative real w(e), a subset S ⊆ V (G) of sources, and a vertex s ∈ V (G) des-
ignated as a sink. Each source v ∈ S has a nonnegative demand q(v), all of which must
be routed to s through a single path. A cable with a fixed capacity λ is available for
installing on the edges of the graph, where installing i copies of the cable on edge
e = (u,v) costs iw(e) and provides iλ capacity between vertices u and v. The CND asks
to find a minimum cost installation of cables that provides sufficient capacity to route
all of the demands simultaneously to s. The problem requires choosing a single path
from each source to the sink and deciding the number of cables to be installed on each

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 344–355, 2013.
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edge such that all the demands are routed without exceeding the installed cable capa-
cities. Demands of different sources may share the capacity on the installed cables and
the capacity installed on an edge has to be at least as much as the total demand routed
through this edge.

For the CND problem, Mansour and Peleg [7] gave an O(logn)-approximation al-
gorithm for a graph with n vertices. Salman et al. [8] designed a 7-approximation algo-
rithm for the CND based on a construction from [5]. Afterwards Hassin et al. [4] gave
a (2+ρST)-approximation algorithm, where ρST is any approximation ratio achievable
for the Steiner tree problem. By using of a slight intricate version of this algorithm, they
improved the approximation ratio to (1+ρST) when every source has unit demand. The
current best approximation ratio for the Steiner tree problem is at most ln4 [2]. When
all non-sink vertices are sources, the approximation ratio of Hassin et al. [4] becomes 3
for general demands and 2 for unit demands, since the Steiner tree problem in this case
is a minimum spanning tree problem.

In this paper, we study a more flexible version of the CND, in which the demand of
each source is splittable in the sense that it is allowed to be routed to the sink along at
most k paths for a specified integer k. That is, we have a single cable type with a fixed
capacity λ > 0 for all edges, and we are interested in constructing a demand assignment
D and a set P of paths such that, for every source v, the pair (Pv ⊆ P ,Dv ⊆ D) of
paths and demand assignment of v identifies the amount of demand of v to be routed to
a single sink s through each path in Pv. However, the demand of each source is allowed
to be routed to s along at most k paths of P . The cost of installing a copy of an edge e is
represented by the weight of e. A subset of paths of P can pass through a single copy of
an edge e as long as the total demand sent along these paths does not exceed the cable
capacity λ; any integer number of copies of e are allowed to be installed. The cost of
a pair (P ,D) is defined by the minimum cost of installing copies of edges such that the
demand of each source can be routed to the sink under the edge capacity constraint, i.e.,

cost(P ,D) = ∑
e∈E(G)

�qe/λ�w(e),

where qe is the total flow through e. The goal is to find a pair (P ,D) of paths and
demand assignment that minimizes cost(P ,D). We call this problem, the k-splittable
capacitated Network Design problem (kSCND). The kSCND can be formally defined
as follows, where R+ denotes the set of nonnegative reals.

k-Splittable Capacitated Network Design Problem (kSCND)

Input: A connected graph G, an edge weight function w : E(G)→R+, a cable capacity
λ > 0, a set S ⊆V (G) of sources, a demand function q : S→ R+, a sink s ∈V (G), and
a positive integer k.

Feasible Solution: For each v ∈ S, a set Pv of at most k paths of G and a demand
assignment Dv = {qt(v) | Pt ∈ Pv} such that (i) ∑Pt∈Pv qt(v) = q(v), and (ii) For all
Pt ∈ Pv, it holds {s,v} ⊆V (Pt).

Goal: Find a feasible solution (P = ∪v∈SPv,D = ∪v∈SDv) that minimizes cost(P ,D).
Similar flow routing problems have been studied before [1], [6]. The single-source

unspittable flow problem asks to route demands of a specified set of sinks simultaneously
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from a single source in a directed graph with edge capacities and costs at the minimum
possible cost without violating edge capacity. The demand of each vertex must be routed
along a single path. Baier et al. [1] has studied a relaxation of the problem, in which the
demand of each sink is allowed to be routed along k paths.

An instance of the CND is reduced to that of the kSCND with k = 1. Moreover, a
unit demand instance of the CND [4] can be regarded as an instance of the kSCND
with k ≥ maxv∈S q(v). In this paper we assume that 2 ≤ k < maxv∈S q(v), and design
a ((k+ 1)/k+ρST)-approximation algorithm to the kSCND. Our result nearly matches
with the bounds (2+ρST) for the CND and (1+ρST) for the CND with unit demand by
Hassin et al. [4] by setting k = 1 and ∞, respectively.

The rest of this paper is organized as follows. Section 2 introduces terminologies on
graphs and two lower bounds on the optimal value of the kSCND. Section 3 gives a
framework of our approximation algorithm for the kSCND and analyzing its approxi-
mation ratio based on a crucial theorem on routings over trees. In Section 4, we give a
proof to the theorem by presenting a procedure for realizing a demand assignment in
the theorem. Section 5 makes some concluding remarks.

2 Preliminaries

This section introduces some notations and definitions. Let G be a simple undirected
graph. We denote by V (G) and E(G) the sets of vertices and edges in G, respectively.
An edge-weighted graph is a pair (G,w) of a graph G and a nonnegative weight function
w : E(G)→R+. The weight of a shortest path between two vertices u and v in (G,w) is
denoted by d(G,w)(u,v). Given a demand function q : V (G)→ R+ and a subgraph H of
G with vertex set V (H)⊆ V (G), we use q(H) and q(V(H)) interchangeably to denote
the sum ∑v∈V (H) q(v) of demands of all vertices in V (H).

Let T be a tree. A subtree of T is a connected subgraph of T . For a subset X ⊆V (T )
of vertices, let T 〈X〉 denote the minimal subtree of T that contains X (note that T 〈X〉 is
uniquely determined). Now let T be a rooted tree. We denote by L(T ) the set of leaves
in T . For a vertex v in T , let Ch(v) and D(v) (or DT (v)) denote the sets of children and
descendants of v, respectively, where D(v) includes v. A subtree Tv rooted at a vertex v
is the subtree induced by D(v), i.e., Tv = T 〈D(v)〉. For an edge e = (u,v) in a rooted tree
T , where u ∈Ch(v), the subtree induced by {v}∪D(u) is denoted by Te, and is called a
branch of Tv. For a rooted tree Tv, the depth of a vertex u in Tv is the length (the number
of edges) of the path from v to u.

The following lower bound has been proved and used to derive approximation algo-
rithms to the CND in [4].

Lemma 1. For an instance I = (G = (V,E),w,λ,S,q,s,k) of the kSCND, let OPT (I)
be the weight of an optimal solution to I, and T ∗ be a minimum weight tree that spans
S∪{s} in G. Then

max

{
w(T ∗),

1
λ ∑

t∈S

q(t)d(G,w)(s, t)

}
≤ OPT (I),

where w(T ∗) is the sum of weights of edges in T ∗. "#
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3 Approximation Algorithm to the kSCND

This section describes a framework of our approximation algorithm for the kSCND and
then analyzes its approximation ratio.

3.1 Overview

We first try to route a sufficiently large amount of demand from a source v to sink s
along a shortest path SP(s,v) so that at least λk/(k+1) of the capacity λ of each edge is
consumed by the routing. We next construct routing for the sources with the remaining
small demands along a tree T that spans these sources in such a way that the demand
of each source v is routed to at most k (or k− 1) hub vertices in T and then the total
demand collected at each hub vertex t is routed to s along a shorted path SP(s, t). The
crucial point in this approach is how to determine appropriate hub vertices to route
small demands along T under the capacity constraint. To attain such a routing along
T , we design a sophisticated procedure, which will be described in Section 4. We here
summarize mathematical properties of the procedure as follows.

Theorem 1. Given a tree T rooted at s, an edge capacity λ > 0, a positive integer k,
a source set S ⊆ V (T ), a vertex weight function d : S → R+, and a demand function
q : S → R+ such that q(v) < λk/(k+ 1) for all v ∈ S, there are a set H = ∪v∈SHv of
hub vertices and a demand assignment D = ∪v∈SDv, where Dv = {qt(v) | t ∈Hv} and
∑t∈Hv

qt(v) = q(v) for every v ∈ S, such that:

(i) For each v ∈ S, it holds |Hv| ≤ �q(v)(k+ 1)/λ� (≤ k).
(ii) It holds ∑v∈S q(v)d(v)≥ λk/(k+ 1)∑t∈H−{s} d(t).
(iii) When demands of all sources in S are routed to their hub vertices simultaneously,

the total amount of these flows on each edge of T is bounded from above by λ. "#

A proof of the theorem will be given in Section 4. Assuming Theorem 1, we describe
our approximation algorithm and analyze its performance guarantee.

3.2 Algorithm and Analysis

We first handle the vertices v of demand of at least λk/(k+ 1). For each source v ∈ S
with λk/(k+1)≤ q(v)≤ λ, we route the total demand of v through a shortest path to s
by installing a copy of each edge in this path. For each source v ∈ S with q(v)> λ, we
route min{,q(v)/(λk/(k+ 1))-λ,q(v)} of the total demand of v through a shortest path
to s by installing ,q(v)/(λk/(k+ 1))- copies of each edge in this path. Note that, in
the latter case, the remaining amount of demand at v is less than λ(k− 1)/(k+ 1). The
basic idea of the rest of the algorithm is to produce a tree T of minimum cost including
s and all vertices in S with nonzero remaining demand, find a set H of hub vertices
in T , and then assign the remaining demand of each source v ∈ S to a subset Hv of at
most �q(v)(k+ 1)/λ� hub vertices of H such that when the demands of all sources are
routed to their hub vertices simultaneously, the amount of these flows on each edge of T
is at most λ. Next, for each hub vertex t ∈H , we join t to s by installing an appropriate
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number of copies of each edge in a shortest path between s and t in G. Finally, for each
source v ∈ S, we define a set Pv of at most k paths in G and a demand assignment Dv

that identifies the amount of demand of q(v) to be routed to s through each path in Pv.

Algorithm. APPROXKSCND
Input: An instance I = (G,w,λ,S,q,k,s) of the kSCND.
Output: A solution (P ,D) to I.

Step 1. Let S1 = {v ∈ S | λk/(k+ 1) ≤ q(v) ≤ λ}, S2 = {v ∈ S | q(v) > λ}, and S3 =
S− (S1∪S2).
For each v ∈ S1,
Let qv(v) = q(v) and q′(v) = 0.
Choose a shortest path SP(s,v) between s and v in (G,w) and join v to s by in-
stalling a copy of each edge in SP(s,v), and let Pv = SP(s,v).
For each v ∈ S2,
Let qv(v) = min{,q(v)/(λk/(k+ 1))-λ,q(v)} and q′(v) = q(v)− qv(v).
Choose a shortest path SP(s,v) between s and v in (G,w) and join v to s by in-
stalling ,q(v)/(λk/(k+ 1))- copies of each edge in SP(s,v), and let Pv = SP(s,v).
For each v ∈ S3, let q′(v) = q(v).

Step 2. Let S′ = {v ∈ S2 | q′(v)> 0}∪S3.
Compute a Steiner tree T that spans S′ ∪ {s} in G.
Regard T as a tree rooted at s, and define d : V (G)→ R+ by setting

d(v) := d(G,w)(s,v) for each vertex v.

Step 3. Apply Theorem 1 to (T,λ,S′,s,q′,d,k) to obtain, for each v ∈ S′, a set Hv of
hub vertices and a demand assignment Dv = {qt(v) | t ∈Hv} that satisfy the condi-
tions of the theorem.

Step 4. For each t ∈ H = ∪v∈S′Hv, choose a shortest path SP(s, t) between s and t in
(G,w) and join t to s by installing a copy of each edge in SP(s, t).
For each v ∈ S′ and t ∈ Hv, let Pvt be the path consisting of SP(s, t) and the path
between v and t along T .

Step 5. For each v ∈ S1, let Pv = {Pv} and Dv = {qv(v)}.
For each v ∈ S2, let Pv = {Pvt | t ∈Hv}∪{Pv} and Dv = {qt(v) | t ∈Hv}∪{qv(v)}.
For each v ∈ S3, let Pv = {Pvt | t ∈Hv} and Dv = {qt(v) | t ∈Hv}.
Output (P = ∪v∈SPv,D = ∪v∈SDv). "#

Note that, for each vertex v ∈ S1, we install one copy of each edge in the short-
est path Pv between v and s to send an amount of demand of at least λk/(k + 1) to
s. By Theorem 1(i), the total demand of each vertex v ∈ S3 is routed to s through
at most k paths since q(v) < λk/(k + 1). Now, consider a vertex v ∈ S2. We install
,q(v)/(λk/(k+ 1))- copies of each edge in the shortest path Pv between v and s to
send qv(v) = min{,q(v)/(λk/(k+ 1))-λ,q(v)} to s, and hence the average demand
sent through each copy of Pv is at least λk/(k+ 1). If q(v) ≤ ,q(v)/(λk/(k+ 1))-λ,
then the total demand of q(v) is sent to s through Pv and hence q′(v) = 0. Assume that
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q(v)> ,q(v)/(λk/(k+ 1))-λ holds. Then q(v)< (,q(v)/(λk/(k+ 1))-+1)λk/(k+1)
holds, and hence

q′(v) = q(v)− qv(v)< (,q(v)/(λk/(k+ 1))-+ 1)λk/(k+ 1)−,q(v)/(λk/(k+ 1))-λ

≤ λ(k− 1)/(k+ 1),

since ,q(v)/(λk/(k+ 1))-≥ 1. Therefore, by Theorem 1(i), the total demand in q′(v) is
routed to s through at most (k−1) paths, and hence the total amount of demand in q(v)
is routed to s through at most 1+(k− 1) = k paths. This discussion and Theorem 1(ii)
imply that

∑
v∈S

q(v)d(v)≥ λk
k+1

[ ∑
v∈S1

d(v)+ ∑
v∈S2

,q(v)/(λk/(k+1))-d(v)+ ∑
t∈H−{s}

d(t)]. (1)

By the construction of P and Theorem 1(iii), we conclude that

cost(P ,D)≤ w(T )+ ∑
v∈S1

d(v)+ ∑
v∈S2

,q(v)/(λk/(k+ 1))-d(v)+ ∑
t∈H−{s}

d(t).

Now, let OPT (I) denote the weight of an optimal solution. For a minimum Steiner tree
T ∗ that spans S∪{s}, we have w(T ) ≤ ρSTw(T ∗) and w(T ∗) ≤ OPT (I) by Lemma 1.
Hence w(T )≤ ρST ·OPT (I) holds. On the other hand, Equation (1) implies that

OPT (I) ≥ ∑
v∈S

q(v)d(v)/λ

≥ k
k+1

[ ∑
v∈S1

d(v)+ ∑
v∈S2

,q(v)/(λk/(k+1))-d(v)+ ∑
t∈H−{s}

d(t)].

This completes the proof of the following theorem.

Theorem 2. For an instance I = (G,w,λ,S,q,s,k) of the kSCND, algorithm APPROX-
KSCND delivers a ((k+ 1)/k+ρST)-approximate solution (P ,D). "#

4 Demand Assignment in a Tree

The purpose of this section is to prove Theorem 1. To prove the theorem, we can assume
without loss of generality that in a given tree T , (i) all terminals are leaves, i.e., S =
L(T ), by introducing a new edge for each non-leaf terminal, and (ii) |Ch(v)| = 2 holds
for every non-leaf v ∈ V (T ), i.e., T is a binary tree rooted at s, by replicating internal
vertices of degree more than 3, so that each copy of a vertex has the same vertex weight
with the original vertex and the copies of the same vertex induce a connected subgraph.

We present an algorithm for finding a desired demand assignment of the source set S
of a tree. Namely, for each source v ∈ S, we select a set Hv of at most �(k+ 1)q(v)/λ�
hub vertices from S and assign the demand q(v) of each source v ∈ S to some hub
vertices in Hv such that the routing of the demands of all sources to their hub vertices
according to the assignment does not violate edge capacity at any edge in the tree.
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The proposed algorithm for proving Theorem 1 goes through two main stages. In the
first stage (bottom-up stage), for each source v ∈ S, we find a set Hv of hub vertices and
a demand assignment Dv that satisfies Conditions (i)-(ii) of the theorem. The second
stage (top-down stage) modifies Hv of some source v by replacing vertices in Hv with
other hub vertices of H = ∪v∈SHv and reassign the demand of v to the modifed hub
vertex set so that when the demands of all sources are routed to their hub vertices si-
multaneously, the amount of these flows on each edge of T is at most λ (Theorem 1(iii)).

The algorithm may assign the demand of a source vertex to more than one hub vertex.
At any intermediate iteration of the algorithm the demand of any source vertex refers to
the current demand of the vertex (unassigned demands at this time).

4.1 The First Stage

In this section, we give an iterative algorithm for the first stage that delivers H and D
which satisfy Theorem 1(i)-(ii). Given a tree (T̂ ,λ,S,q,d,k,s) defined in Theorem 1, the
algorithm called DEMANDASSIGNMENT is outlined as follows. Recall that qt(u) ∈Du

denotes the amount of demand from a source u ∈ S assigned to a hub vertex t ∈ Hu.
The demand q(u) of a source u will decrease during an execution of the first stage as
part of its demand is assigned to hub vertices; we call a source u positive while it has
a nonzero remaining demand during an execution of the algorithm. At the begining of
each iteration we compute the minimal subtree T of T̂ that spans s and all the positive
sources, i.e., T = T̂ 〈{u ∈ S | q(u)> 0}∪{s}〉. For each vertex u during an execution,
we use the following notations: Su denotes the set of positive sources in the descendants
of u, i.e., Su = DT (u)∩{v∈ S | q(v)> 0}, and we choose a positive source tu ∈ Su with
minimum weight d(tu), which is used as a hub vertex of certain vertex u in the first
stage. To simplify the presentation and avoid tedious technical discussions we assume
that the source tu of the minimum weight in Su is unique (at the end of this section we
show that our results can be extended to the general case). Let Tu denote the minimal
rooted subtree of T that contains Su, i.e., Tu = T 〈Su〉.

During an execution of the algorithm, we compute the following data in the current
tree T : A non-source vertex v which satisfies a certain criteria will be chosen by the
algorithm, and C denotes the set of such chosen vertices during an execution of the
algorithm. In particular, the set C at the begining of the current iteration when a vertex
u is chosen is denoted by Cu. For each vertex u in T , a non-source vertex w ∈ Cu−{u}
is called an immediate support vertex of u if tu (the source of the minimum weight in
Su) is contained in Sw, or is called a support vertex of u if there is a sequence of vertices
u0 (= u),u1, . . . ,u j (= w) ∈ Cu such that each ui+1, i = 0,1, . . . , j− 1, is an immediate
support vertex of ui.

For each vertex u in T , let κu denote the number of the hub vertices tw of all support
vertices w of u, and Qu denote the summation of demands assigned to the hub vertices
tw of all support vertices w of u, i.e.,

Qu = ∑{∑
z∈Sw

qtw(z) | support vertices w of u}.

By definition, κu (resp., Qu) can be computed recursively as the summation of κw + 1
(resp., Qw +∑z∈Sw qtw(z)) overall immediate support vertices w ∈ Cu of u.
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We need to know these values κu and Qu in order to maintain the following condi-
tions at the end of the iteration of the algorithm for each vertex v ∈ C .

any nonzero amount of demand of a positive source z ∈ Sv

assigned to tv is qtv(z) = q(z) or qtv(z) ≥ λ/(k+ 1),
(2)

the total demands ∑z∈Sv qtv(z) assigned to tv satisfies
(κv+1)λk/(k+1)≤ Qv+∑z∈Sv qtv(z) < (κv+1)λk/(k+1)+λ/(k+1),
and

(3)

Qu + q(Su)< (κu + 1)λk/(k+ 1) for each vertex u ∈V (T ′v ) for
the subtree T ′ of T̂ spanning s and all positive sources.

(4)

To maintain the above conditions (2)-(4), we keep the minimal subtree T of T̂ that
spans s and all positive sources in S, and choose a new vertex v to be included into
C as a non-source vertex v in T with maximum depth such that q(Sv)+Qv is at least
(κv + 1)λk/(k+ 1). When we add v to C , we assign an amount of demand of positive
sources in Sv to tv so that the above conditions hold. More formally, for the two children
xv and yv of v in T where tv is a descendant of xv, we assign the entire demand q(x)
of every positive source x ∈ Sv ∩V (Txv) to tv, i.e., qtv(x) = q(x). We then assign the
demands of positive sources in Sv∩V (Tyv) to tv. We repeatedly choose a positive source
y ∈ Sv∩V (Tyv) such that, for each vertex u ∈V (Tyv), the source of the minimum vertex
weight d in Tu is chosen as y only when Tu contains no other positive source, and then
assign min{q(y),λ/(k+ 1)} of the demand of y to tv as long as Qv +∑z∈Sv qtv(z) <
(κv+1)λk/(k+1) (a source y ∈ Sv∩V (Tyv) with q(y)> λ/(k+1) may be chosen more
than once).

Algorithm. DEMANDASSIGNMENT

Input: A binary tree T̂ rooted at s, a capacity λ of each edge, a set S = L(T̂ )
of sources, a positive integer k, a demand function q : S→R+ such that
q(u)< λk/(k+ 1), u ∈ S, and a vertex weight function d : S→ R+.
Output: A set H = ∪u∈SHu of hub vertices and a demand assignment
D = ∪u∈SDu that satisfy the conditions in Theorem 1(i)-(ii).
Initialize Hu := Du := /0 and Qu := κu := 0 for all u ∈ S; T := T̂ ; C := /0;
1 while q(S)≥ λk/(k+ 1) do
2 T := T 〈{u ∈ S | q(u)> 0}∪{s}〉;
3 Choose a non-source vertex v ∈V (T ) with maximum depth such that

q(Sv)≥ (κv + 1)λk/(k+ 1)−Qv, and let C := C ∪{v};
/* the start of assignment to hub vertex tv */

4 Let xv and yv be the two children of v in T where tv ∈V (Txv);
5 Let qtv(x) := q(x) and q(x) := 0 for all x ∈ Sv∩V (Txv);
6 Initialize qtv(y) := 0 for all y ∈ Sv∩V (Tyv);
7 while Qv +∑z∈Sv qtv(z)< (κv + 1)λk/(k+ 1) do
8 Choose a positive source y ∈V (Tyv) such that, for each vertex

u ∈V (Tyv), the source of the minimum vertex weight d in Tu

is chosen as y only when Tu contains no other positive source;
9 qtv(y) := qtv(y)+min{q(y),λ/(k+ 1)};
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10 q(y) := q(y)−min{q(y),λ/(k+ 1)}
11 endwhile;

/* the end of assignment to hub vertex tv */
12 Let Hu := Hu∪{tv}; Du := Du∪{qtv(u)} for all u ∈ Sv with qtv(u)> 0
13 endwhile;

/* assignment to s */
14 Let qs(u) := q(u); Hu := Hu∪{s}; Du := Du∪{qs(u)} for all positive

sources u ∈ S.

Algorithm DEMANDASSIGNMENT correctly delivers a desired pair of H and D which
satisfies Theorem 1(i)-(ii) (the proof is omitted due to space constraints).

We observe that, for each vertex u, the data Su, tu, Qu, κu, and the set of support
vertices of u may change during the execution of the algorithm since their values are
based on the current tree T . Throughout the rest of this paper, for each vertex u∈ C , we
assume that such data refer to their values computed at the time the vertex u is chosen
in line 3 of the outer while-loop of the algorithm.

Throughout the execution of Algorithm DEMANDASSIGNMENT, for each vertex u
in the current tree T , we assumed that the vertex of the minimum weight d in Su is
unique. We can generalize our results to work for the general case as well by fixing an
arbitrary vertex among the sources of the minimum weight in Su as tu (if there are more
than one) throughout the execution of the algorithm as long as it is positive. Moreover,
for each descendant w of u, if tu ∈ Sw and d(tu)≤ d(z) for all z ∈ Sw, then we let tw = tu.

4.2 The Second Stage

Note that the demand assignment (H ,D) output from Algorithm DEMANDASSIGN-
MENT may violate Condition (iii) of Theorem 1. As the second stage, we reassign the
demand of some sources to a different subset of the same set H of hub vertices so that
Theorem 1(iii) is satisfied. In this section, we design an algorithm for this stage.

Let (T,λ,S,q,d,k,s) be a tree defined in Theorem 1, and let (H ,D) and C denote
the demand assignment and the final set of chosen vertices output from Algorithm DE-
MANDASSIGNMENT. For each vertex v ∈ C , we define the following data that will be
used throughout this section. Let Iv denote the set of immediate support vertices of v,
and define Fv = {tu | u ∈ Iv}∪{tv}. Let S̃v denote the set of all sources with nonzero
demands that have been assigned to some hub vertex in Fv.

In the next lemma, the total demands qv(u) = ∑t∈Fv∩Hu
qt(u) of all vertices u ∈ S̃v

(that have been assigned to Fv) will be reassigned to the same set of hub vertices Fv

such that when the total demands qv(u) of all vertices u∈ S̃v are routed to their new hub
vertices the flow on each edge of the subtree

T v = T
〈
(S̃v∪{v})−∪u∈IvV (Txu)−∪u∈Cv−IvSu

〉
is at most λ.

Lemma 2. The amount of demand qv(u) of each vertex u ∈ S̃v can be reassigned to a
subset of hub vertices of Fv such that the resulting demand reassignment Dv

u = {qt(u)>
0 | t ∈ Fv} of qv(u) satisfies:
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Fig. 1. The subtree induced by solid edges form T v in Lemma 2 (u1,u2, . . . ,up are the immediate
support vertices of v)

(i) For every u ∈ S̃v and t ∈ Fv, if qt(u) > 0, then either qt(u) = qv(u), or qt(u) ≥
λ/(k+ 1),

(ii) For every u ∈ Iv, the total demand in Qu plus that reassigned to tu is less than
(κu + 1)λk/(k+ 1)+λ/(k+ 1), and

(iii) when the total demands qv(u) of all vertices u ∈ S̃v are routed to their hub vertices
the flow on each edge of T v is at most λ. "#

The proof of the above lemma is omitted due to space constraints.
Based on the previous lemma we present the following algorithm that update the

demand assignment (H ,D) output from Algorithm DEMANDASSIGNMENT in order to
satisfy Theorem 1(iii).

Algorithm. DEMANDREASSIGNMENT

Input: A tree (T,λ,S,q,d,k,s) defined in Theorem 1. The set C and the
demand assignment (H ′ = ∪u∈SH ′

u ,D ′ = ∪u∈SD ′
u) output from Algorithm

DEMANDASSIGNMENT.
Output: A demand assignment (H = ∪u∈SHu,D = ∪u∈SDu) that satisfies
the conditions in Theorem 1.
Initialize Hu := H ′

u ; Du := D ′
u for all u ∈ S; C ′ := C .

1 while C ′ �= /0 do
2 Choose the closest vertex v ∈ C ′ to s;
3 if the flow on an edge of T v exceeds λ when the total demands qv(u)

of all vertices u ∈ S̃v are routed to their hub vertices then
4 Apply Lemma 2 to (Iv, S̃v) to get, for each vertex u ∈ S̃v, a

demand reassignment Dv
u = {qt(u)> 0 | t ∈ Fv};

5 Let Du := (Du−{qt(u) | t ∈ Fv∩H ′
u})∪Dv

u for all u ∈ S̃v;
6 Let Hu := (Hu−Fv∩H ′

u)∪{t ∈ Fv | qt(u)> 0} for all u ∈ S̃v

7 endif;
8 Let C ′ = C ′ − {v}
9 endwhile.
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We show that the demand assignment (H ,D) output from Algorithm DEMAN-
DREASSIGNMENT satisfies the conditions in Theorem 1. Theorem 1(i) follows directly
from Lemma 2(i). Note that the set H of hub vertices output from Algorithm DE-
MANDASSIGNMENT remains unchanged during the execution of Algorithm DEMAN-
DREASSIGNMENT, and hence Condition (ii) holds for (H ,D). It remains to show that
Theorem 1(iii) holds.

Proof of Theorem 1(iii). First we show that, at the end of Algorithm DEMANDREAS-
SIGNMENT, when the total demands of all vertices in S are routed to their hub vertices
the flow on each edge of the subtree T s = T 〈(S∪{s})−∪v∈C Sv〉 is at most λk/(k+
1). Note that, after the final iteration of Algorithm DEMANDASSIGNMENT, the to-
tal amount of demands of all positive sources that have been assigned to s is less
than λk/(k + 1). On the other hand, by the construction of DEMANDASSIGNMENT,
no demands of any sources in T − T s (resp., T s) have been assigned to any vertex in
V (T s)−{s} (resp., T − T s) during the execution of all iterations of the while-loop.
Therefore, at the end of Algorithm DEMANDASSIGNMENT, when the total demands
of all vertices in S are routed to their hub vertices the flow on each edge of T s is less
than λk/(k+1). We observe that the flow on edges of T s remains unchanged during the
execution of Algorithm DEMANDREASSIGNMENT, and hence the above bound on the
flow on each edge in T s is maintained at the end of DEMANDREASSIGNMENT.

Now, consider a vertex v ∈ C chosen during the execution of an arbitrary iteration
of Algorithm DEMANDREASSIGNMENT. Assume that when the total demands qv(u)
of all vertices u ∈ S̃v are routed to their hub vertices the flow on some edges in T v

exceed λ. We apply Lemma 2 to (Iv, S̃v) to reassign the total demands qv(u) of all
vertices u ∈ S̃v to the set Fv of hub vertices such that when these demands are routed
to their new hub vertices the total flow on each edge of the subtree T v is at most λ.
Define the subtree T yv = T 〈Sv∩V (Tyv)∪{v}−∪u∈CvSu〉. We observe that when the
total demands of all vertices in S are routed to their hub vertices the flow on each edge
of the subtree T v− T yv is from qv(u), u ∈ S̃v (which is at most λ by Lemma 2), and
hence it remains to show that the flow on each edge of the subtree T yv is at most λ.
Note that, at the time v has been chosen in Algorithm DEMANDASSIGNMENT, the total
demand in Sv ∩V (Tyv) is less than λk/(k+ 1). On the other hand, by the construction
of Algorithm DEMANDASSIGNMENT, no demands have been assigned to any vertex
in T yv during the execution of all iterations prior to the iteration in which v has been
chosen in DEMANDASSIGNMENT. Therefore, we have the following two cases.

In the first case, v is not an immediate support vertex of any other vertex in C . Then
there is no demands from T − Tv have been assigned to any vertex in T yv during the
execution of Algorithm DEMANDASSIGNMENT, and hence when the total demands of
all vertices in S are routed to their hub vertices the flow on each edge in T yv is less than
λk/(k+ 1).

In the second case, v is an immediate support vertex of some vertex v′ ∈ C . Clearly,
v ∈ V (Tv′) and Lemma 2 was applied to (Iv′ , S̃v′) in a previous iteration of Algorithm
DEMANDREASSIGNMENT, and hence when the total demands of all vertices in S are
routed to their hub vertices the flow on each edge of the subtree T yv is at most λ.



Approximating the k-Splittable Capacitated Network Design Problem 355

We observe that, during the execution of the subsequent iterations of Algorithm DE-
MANDREASSIGNMENT, the flow on each edge of T v does not change. This completes
the proof of Theorem 1(iii). "#

5 Concluding Remarks

In this paper, we have studied the k-splittable capacitated network design problem
(kSCND), a problem of finding a routing from a set of sources to a single sink in a net-
work with an edge installing cost. The kSCND is a relaxation version of the capacitated
network design problem (CND), in which the demand of each source can be routed to
the sink along at most k paths. We have designed a ((k+1)/k+ρST)-approximation al-
gorithm for the kSCND, where ρST is any approximation ratio achievable for the Steiner
tree problem. A future work may include an interesting version of the kSCND, in which
the demand of each vertex v is allowed to be routed to a single sink through at most kv

paths.
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Abstract. There are several hashing-based data structures whose space
utilization (keys per table cells) directly depends on the edge density
threshold for the appearance of a 2-core in some underlying random k-
uniform hypergraph. We show that by modifying these data structures
such that the k-uniform hypergraphs are replaced by certain non-uniform
hypergraphs their space utilization can be improved. These non-uniform
hypergraphs are a mixture of uniform hypergraphs each with a linear
number of edges but with different edge sizes. In the case of two different
edge sizes we give a solution for the optimal (expected) number of edges
of each size such that the 2-core threshold for the resulting mixed hy-
pergraph is maximized. For suitable edge sizes we obtain optimal thresh-
olds for mixed hypergraphs up to 0.920, improving the maximum 2-core
threshold for any random k-uniform hypergraph, which is about 0.818.

1 Introduction

Motivation: Matchings and Linear Systems. Consider a random bipartite graph
G with m left nodes and n right nodes, where left node i has ki right neighbors,
and the ki’s are small, in particular

∑m
i=1 ki = O(m). Let M from {0, 1}m×n be

the biadjacency matrix of G. The following algorithmic problems have several
applications: (i) We wish to find in linear time a matching in G that covers all
left nodes, or (ii) a solution a of the linear system M ·a = v, for some vector v.
A sufficient condition for both is that M can be transformed into row echelon
form by row and column exchanges only (no addition or multiplication required).
The question whether such a transformation is possible is conveniently expressed
in terms of the hypergraph H that corresponds to G and M = (Mi,j)i,j . This
hypergraph has node set {1, 2, . . . , n} and m edges ei = {j |Mi,j = 1}, 1 ≤ i ≤
m. The matrix can be transformed if and only if H has “an empty 2-core” in the
sense of the following definition.

The 2-core. The 2-core of a hypergraph H is the largest induced sub-hypergraph
(possibly empty) that has minimum degree at least 2. It can be obtained via
a simple peeling procedure (Algorithm 1) that successively removes nodes of
degree 1 together with their incident edge. If H is given as a list of its edges the
� Research supported by DFG grant DI 412/10-2.
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2-core and a peeling order of edges and nodes can be found in linear time; and
if the 2-core is empty a matching in G as well as a solution of M ·a = v can be
determined in linear time from the peeling order. The central question considered
in this paper is how to choose k1, k2, . . . , km so as to get a high probability for
a random hypergraph being completely peelable, i.e., having an empty 2-core.
The starting point for our considerations are random k-uniform hypergraphs.

Algorithm 1. Peeling
In: Hypergraph H Out: 2-core of H
while H has a node v of degree ≤ 1 do

if v is incident to an edge e then
remove e from H

remove v from H
return H

Uniform Hypergraphs. Let Hk
n,p be a random hypergraph with n nodes where

each of the possible
(
n
k

)
edges of size k is present with probability p independent

of the other edges. In the case that the expected number of edges equals c ·n for
some constant c > 0, the following theorem (conjectured e.g. in [16], rigorously
proved in [18] and independently in [12]) gives the threshold for the appearance
of a 2-core in Hk

n,p. Let

t(λ, k) =
λ

k ·
(
Pr (Po [λ] ≥ 1)

)k−1
, (1)

where Po[λ] denotes a Poisson random variable with mean λ.

Theorem 1 ([18, Theorem 1.2]). Let k ≥ 3 be constant, and let c∗(k) =
minλ>0 t(λ, k). Then for p = c · n/

(
n
k

)
with probability 1 − o(1) for n → ∞ the

following holds:
(i) if c < c∗(k) then Hk

n,p has an empty 2-core,
(ii) if c > c∗(k) then Hk

n,p has a non-empty 2-core.

Remark 1. Actually this is only a special case of [18, Theorem 1.2] which covers
�-cores for k-uniform hypergraphs for all � ≥ 2, k and � not both equal to 2.

Consider hypergraphs Hk
n,p with p = c · n/

(
n
k

)
and k ≥ 3, as in Theorem 1. Since

argminλ>0 t(λ, k) ≈ ln(k) + ln(ln(k)), see [16, Section 4.3], the 2-core threshold
c∗(k) can be approximated via

c∗(k) ≈ ln(k) + ln(ln(k))

k ·
(
1− 1

k·ln(k)
)k−1

. (2)

The function c∗(k) is monotonically decreasing. Hence the maximum 2-core
threshold among all k-uniform hypergraphs is c∗(3), which is about 0.818 [11,16,
conjecture], [5, proof].
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Mixed Hypergraphs. Let Hk
n,p be a random hypergraph where each of the possible(

n
ki

)
edges is present with probability pi, given via the vectors k = (k1, k2, . . . , ks)

and p = (p1, p2, . . . , ps). In other words, Hk
n,p is a mixture of hypergraphs Hk

n,p

on n nodes for different values of p and k.
While studying hypergraphs in the context of cuckoo hashing the authors of

[7] described how to extend the analysis of cores of k-uniform hypergraphs, with
(expected) linear number of edges, to mixed hypergraphs, which directly leads
to the following theorem. For α = (α1, α2, . . . , αs) ∈ [0, 1]s with

∑s
i=1 αi = 1 let

t(λ,k,α) =
λ

s∑
i=1

αi · ki ·
(
Pr (Po [λ] ≥ 1)

)ki−1
. (3)

Theorem 2 (generalization of Theorem 1, implied by [7]). Let s ≥ 1
be constant. For each 1 ≤ i ≤ s let ki ≥ 3 be constant, and let αi ∈ [0, 1]
be constant, where

∑s
i=1 αi = 1. Furthermore let c∗(k,α) = minλ>0 t(λ,k,α).

Then for pi = αi · c · n/
(
n
ki

)
with probability 1 − o(1) for n → ∞ the following

holds:
(i) if c < c∗(k,α) then Hk

n,p has an empty 2-core,
(ii) if c > c∗(k,α) then Hk

n,p has a non-empty 2-core.

Using ideas from [7, Section 4] this theorem can be proved along the lines of [18,
Theorem 1.2] utilizing that Hk

n,p is a mixture of a constant number of indepen-
dent hypergraphs.

Remark 2. Analogous to Theorem 1, Theorem 2 can also be generalized such
that it covers �-cores for all � ≥ 2.

Often the 2-core threshold is given for hypergraph models slightly different
from Hk

n,p or Hk
n,p, as for example assumed in the opening of the introduction.

A justification that some “common” hypergraph models are equivalent in terms
of this threshold is given in Section 1.2.

Now consider hypergraphs Hk
n,p as in Theorem 2, i.e., with αi · c · n edges of

size ki in expectation, ki ≥ 3. One can ask the following questions.
1. Assume k is given. What is the optimal vector α∗ such that the threshold

c∗(k,α∗) =: c∗(k) is maximal among all thresholds c∗(k,α)? In other words,
we want to solve the following optimization problem

c∗(k) = min
λ>0

t(λ,k,α∗) = max
α

min
λ>0

t(λ,k,α) . (4)

2. Is there a k such that α∗ gives some c∗(k) that exceeds c∗(3), the maximum
2-core threshold among all k-uniform hypergraphs (not mixed).

1.1 Results

We give the solution for the non-linear optimization problem (4) for s = 2. That
is for each k = (k1, k2) we either give optimal solutions α∗ = (α∗, 1 − α∗) and
c∗(k) in analytical form or identify a subset of the interval (0, 1] where we can



Mixed Hypergraphs for Linear-Time Construction 359

use binary search to determine α∗ and therefore c∗(k) numerically with arbitrary
precision. Interestingly, it turns out that for adequate edge sizes k1 and k2 the
maximum 2-core threshold c∗(k) exceeds the maximum 2-core threshold c∗(k)
for k-uniform hypergraphs. The following table lists some values.

Table 1. Optimal 2-core thresholds c∗(k), k = (k1, k2), and α∗ = (α∗, 1 − α∗), and
k̄ = α∗ · k1 + (1− α∗) · k2. The values are rounded to the nearest multiple of 10−5.

(k1, k2) (3, 3) (3, 4) (3, 6) (3, 8) (3, 10) (3, 12) (3, 14) (3, 16) (3, 21)

c∗ 0.81847 0.82151 0.83520 0.85138 0.86752 0.88298 0.89761 0.91089 0.92004
α∗ 1 0.83596 0.85419 0.86512 0.87315 0.87946 0.88464 0.88684 0.88743
k̄ 3 3.16404 3.43744 3.67439 3.88795 4.08482 4.26898 4.47102 5.02626

More comprehensive tables for parameters 3 ≤ k1 ≤ 6 and k1 ≤ k2 ≤ 50 are
given in the full version of this paper [19]. The maximum threshold found is
about 0.92 for k = (3, 21).
Remark 3. In contrast, for any pair of hypergraphs Hk

n,p and Hk
n,p as above the

following holds. Let ĉ be the threshold where the edge density of the 2-core
switches from below 1 to above 1. If

∑s
i=1 αi · ki ≤ k, then we have ĉ(k) ≤ ĉ(k).

1.2 Extensions to Other Hypergraph Models

While Theorems 1 and 2 are stated for hypergraphs Hk
n,p, one often considers

slightly different hypergraphs, e.g. in the analysis of data structures.
Let Hk

n,m,α and H̃k
n,m,α be random hypergraphs with n nodes and m edges,

where for each 1 ≤ i ≤ s, a fraction of αi of the edges are fully randomly
chosen from the set of all possible edges of size ki. In the case of Hk

n,m,α the
random edge choices are made without replacement and in the case of H̃k

n,m,α

the random edge choices are made with replacement. Using standard arguments,
one sees that if m = c · n, ki ≥ 3, and pi = αi · c · n/

(
n
ki

)
as in the situation of

Theorem 2, the 2-core threshold of Hk
n,m,α is the same as for Hk

n,p (see e.g. [9,
analogous to Proposition 2]), and the 2-core threshold of H̃k

n,m,α is the same as
for Hk

n,m,α (see e.g. [9, analogous to Proposition 1]).

1.3 Related Work

Non-uniform hypergraphs have proven very useful in the design of erasure cor-
recting codes, such as Tornado codes [15,14], LT codes [13], Online codes [17], and
Raptor codes [20]. Each of these codes heavily rely on one or more hypergraphs
where the hyperedges correspond to variables (input/message symbols) and the
nodes correspond to constraints on these variables (encoding/check symbols).
An essential part of the decoding process of an encoded message is the applica-
tion of a procedure that can be interpreted as peeling the hypergraph (see Algo-
rithm 1) associated with the recovery process, where it is required that the result
is an empty 2-core. Given m message symbols, carefully designed non-uniform



360 M. Rink

hypergraphs allow, in contrast to uniform ones, to gain codes where in the exam-
ple of Tornado, Online, and Raptor codes a random set of (1 + ε) ·m encoding
symbols are necessary to decode the whole message in linear time (with high prob-
ability), and in the case of LT codes a random set of m+o(m) encoding symbols
are necessary to decode the whole message in time proportional to m·ln(m) (with
high probability). Tornado codes use explicit underlying hypergraphs designed
for a given fixed code rate, whereas LT codes and its improvements, Online and
Raptor codes, use implicit graph constructions to generate essentially infinite
hypergraphs resulting in what is called rateless codes. In the case of Tornado
codes the size of the hyperedges as well as the degree of the nodes follow pre-
calculated sequences that are optimized to obtain the desired properties. In the
case of LT codes, as well as in the last stage of Raptor and Online codes each
node chooses its degree at random according to some fixed distribution, and
then selects its incident hyperedges uniformly at random. (For Online codes also
a skewed selection of the hyperedges is discussed, see [17, Section 7].) While the
construction of the non-uniform hypergraph used for these codes is not quite the
same as for H̃k

n,m,α (or Hk
n,p, Hk

n,m,α), since, among other reasons, the degree of
the nodes is part of the design, they are similar enough to seemingly make the
optimization methods / heuristics of [14] applicable, see footnote [10, page 796
(5)]. Having said that, compared to e.g. [14], our optimization problem is easier
in the sense that it has fewer free parameters and harder in the sense that we
are seeking a global optimum.

1.4 Overview of the Paper

In the next section we discuss the effect of our results on three hashing-based data
structures. Afterwards, we give our main theorem that shows how to determine
optimal 2-core thresholds for mixed hypergraphs with two different edge sizes. It
follows a section with experimental evaluation of the appearance of 2-cores for
a few selected mixed hypergraphs, which underpins our theoretical results. We
conclude with a short summary and an open question.

2 Some Applications to Hashing-Based Data Structures

Several hashing-based data structures are closely related to the 2-core thresh-
old of k-uniform hypergraphs (often one considers H̃k

n,m,α for s = α1 = 1 and
k1 = 3). More precisely, the space usage of these data structures is inversely pro-
portional to the 2-core threshold c∗(k), while the evaluation time is proportional
to the edge size k. By showing that the value of c∗(3) can be improved using
mixed hypergraphs instead of uniform ones, our result opens a new possibility for
a space–time tradeoff regarding these data structures, allowing to further reduce
their space needs at the cost of a constant increase in the evaluation time. Below
we briefly sketch three data structures and discuss possible improvements, where
we make use of the following definitions.
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Let a = (a1, a2, . . . , an) be a vector with n cells each of size r bits. Let
S = {x1, x2, . . . , xm} be a set of m keys, where S is subset of some universe U
and it holds m = c · n for some constant c < 1. The vector cells correspond to
nodes of a hypergraph and the keys from S are mapped via some function ϕ to
a sequence of vector cells and therefore correspond to hyperedges. We identify
cells (and nodes) via their index i, 1 ≤ i ≤ n, where ai stands for the value of
cell i. The following three data structures essentially consist of a vector a and
a mapping ϕ. For each data structure we compare their performance, depend-
ing if ϕ realizes a uniform or a mixed hypergraph. In the case of a uni-
form hypergraph each key xj is mapped to k = 3 random nodes ϕ(xj) =
(g0(xj), g1(xj), g2(xj)) via functions g0, g1, g2 : U → {1, 2, . . . , n}. In the case
of a mixed hypergraph, for example, a fraction of α∗ = 0.88684 keys are mapped
to 3 random nodes using functions g0, g1, g2 and a fraction of 1 − α∗ keys are
mapped to 16 random nodes via functions g′0, g′1, . . . , g′15 : U → {1, 2, . . . , n}. We
fix c below the 2-core threshold to c = c∗ − 0.005, which gives c = 0.813 in the
uniform case and c = 0.906 in the mixed case, cf. Table 1. The reason why we
use a rather small distance of 0.005 is that for large m one observes a fairly sharp
phase transition from “empty 2-core” to “non-empty 2-core” in experiments, cf.
Section 4.

2.1 Invertible Bloom Lookup Table

The invertible Bloom Lookup Table [10] (IBLT) is a Bloom filter data structure
that, amongst others, supports a complete listing of the inserted elements (with
high probability). We restrict ourselves to the case where the IBLT is optimized
for the listing operation and we assume without loss of generality that the keys
from S are integers. Each vector cell contains a summation counter and a quan-
tity counter, initialized with 0. The keys arrive one by one and are inserted into
the IBLT. Inserting a key xj adds its value to the summation counter and in-
crements the quantity counter at each of the cells given via ϕ(xj). To list the
inserted elements of the IBLT one essentially uses the standard peeling process
for finding the 2-core of the underlying hypergraph (see Algorithm 1). While
there exists a cell where the quantity counter has value 1, extract the value of
the summation counter of this cell which gives some element xj . Determine the
summation counters and quantity counters associated with xj via evaluating
ϕ(xj) and subtract xj from the summation counters and decrement the quantity
counters. With this method a complete listing of the inserted elements is pos-
sible if the 2-core of the hypergraph is empty. Therefore in the case of uniform
hypergraphs we get a space usage of n/m · r ≈ 1.23 · r bits per key. As already
pointed out by the authors of [10], who highlight parallels to erasure correcting
codes (see Section 1.3), a non-uniform version of the IBLT where keys have a dif-
ferent number of associated cells could improve the maximum fraction c = m/n
where a complete listing is successful with high probability. Using our example
of mixed hypergraphs leads to such an improved space usage of about 1.10 · r
bits per key.



362 M. Rink

2.2 Retrieval Data Structure

Given a set of key-value pairs {(xj , vj) | xj ∈ S, vj ∈ {0, 1}r, j ∈ [m]}, the
retrieval problem is the problem of building a function f : U → {0, 1}r such
that for all xj from S it holds f(xj) = vj ; for any y from U \ S the value
f(y) can be an arbitrary element from {0, 1}r. Chazelle et al. [4] gave a simple
and practical construction of a retrieval data structure, consisting of a vector a
and some mapping ϕ that has constant evaluation time, via simply calculating
f(xj) =

⊕
i∈ϕ(xj)

ai. The construction is based on the following observation,
which is stated more explicitly in [3]. Let v = (v1, v2, . . . , vm) be the vector of
the function values and let M be the m× n incidence matrix of the underlying
hypergraph, where the characteristic vector of each hyperedge is a row vector of
M . If the hypergraph has an empty 2-core, then the linear system M · a = v
can be solved in linear time in ({0, 1}r,⊕). For appropriate c this gives expected
linear construction time. As before, in the case of uniform hypergraphs the space
usage is about 1.23 · r bits per key. And in our example of mixed hypergraphs
the space usage is about 1.10 · r bits per key at the cost of a slight increase of
the evaluation time of f .

In [8] it is shown how to obtain a retrieval data structure with space usage
of (1 + ε) · r bits per key, for any fixed ε > 0, evaluation time O(log(1/ε)), and
linear expected construction time, while using essentially the same construction
as above. The central idea is to transfer the problem of solving one large linear
system into the problem of solving many small linear systems, where each system
fits into a single memory word and can be solved via precomputed pseudoinverses.
As shown in [1] this approach is limited in its practicability but can be adapted
to build retrieval data structures with 1.10·r bits per key (and fewer) for realistic
key set sizes. But this modified construction could possibly be outperformed by
our direct approach of solving one large linear system in expected linear time.

2.3 Perfect Hash Function

Given a set of keys S, the problem of perfect hashing is to build a function
h : U → {1, 2, . . . , n} that is 1-to-1 on S. The construction from [3] and [4]
gives a data structure consisting of a vector a and some mapping ϕ that has
constant evaluation time. Formulated in the context of retrieval, one builds a
vector v = (v1, v2, . . . , vm) such that each key xj is associated with a value
f(xj) = vj that is the index ι of a hash function gι used in the sequence ϕ(xj).
This node gι(xj) must have the property that if one applies the peeling process to
the underlying hypergraph (Algorithm 1) it will be selected and removed because
it gets degree 1. If c is below the 2-core threshold then with high probability for
each xj there exists such an index ι, and the linear system M · a = v can be
solved in linear time in Zk. Given the vector a the evaluation of h is done via
h(xj) = ϕ(xj)ι+1, where ι =

∑
i∈ϕ(xj)

ai mod k.
In the case of a 3-uniform hypergraph one gets a space usage of about 1.23 · 2

bits per key, since there are at most k = 3 different entries in a. If one applies
a simple compression method that stores every 5 consecutive elements from a
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in one byte, one gets a space usage of about 1.23 · 8/5 ≈ 1.97 bits per key. The
range of h is n = 1.23 ·m.

In contrast to the examples above, improving this data structure by simply
using a mixed hypergraph is not completely straightforward, since the increase of
the load c is compensated by the increase of the maximum index in the sequence
ϕ(xj), which in our example would lead to a space usage of about 1.10 · 4 bits
per key for uncompressed a, since we use up to k = 16 functions for ϕ(xj).
However, this can be circumvented by modifying the construction of the vector
v as follows. Let G = (S ∪ {1, 2, . . . , n}, E) be a bipartite graph with edge set
E = {{x, gι(xj)} | xj ∈ S, ι ∈ {0, 1, 2}}. According to the results on 3-ary cuckoo
hashing, see e.g. [9,7], it follows that for c < 0.917 (as in our case) the graph
G has a left-perfect matching with high probability. Given such a matching one
stores in v for each key xj the index ι of gι that has the property that {xj , gι(xj)}
is a matching edge. Now given the solution of M ·a = v in Z3, the function h is
evaluated via h(xj) = gι(xj), where ι =

∑
i∈ϕ(xj)

ai mod 3. Since a has at most
three different entries it follows that the space usage in our mixed hypergraph
case is about 1.10 · 2 bits per key. Using the same compression as before, the
space usage can be reduced to about 1.10 ·8/5 = 1.76 bits per key. Moreover, the
range of h is now n = 1.10 ·m. Solving the linear system can be done in expected
linear time. It is conjectured, supported by experimental results, that if G has
a matching then it is found by the (k, 1)-generalized selfless algorithm from [6,
Section 5]; this algorithm can be implemented to work in expected linear time.

A more flexible trade-off between space usage and range yields the CHD algo-
rithm from [2]. This algorithm allows to gain ranges n = (1+ ε) ·m for arbitrary
ε > 0 in combination with a adjustable compression rate that depends on some
parameter λ. For example, using a range of about 1.11 ·m, a space usage of 1.65
bits per key is achievable, see [2, Figure 1(b), λ = 5]. But since the expected
construction time of the CHD algorithm is O(m · (2λ + (1/ε)λ)) [2, Theorem 2],
our approach could be faster for a comparable space usage and range.

3 Maximum Thresholds for the Case s = 2

In this section we state our main theorem that gives a solution for the non-linear
optimization problem (4) for the case s = 2, that is given two edge sizes we show
how to compute the optimal (expected) fraction of edges of each size such that
the threshold of the appearance of a 2-core of a random hypergraph using this
configuration is maximal.

Let k = (a, b) with a ≥ 3, and b > a. Furthermore, let α = (α, 1 − α) and1

α ∈ (0, 1], as well as λ ∈ (0,+∞). Consider the following threshold function as
a special case of (3)

t(λ, a, b, α) =
λ

α · a · (1 − e−λ)a−1 + (1− α) · b · (1− e−λ)b−1
. (5)

1 We can exclude the case α = 0, since if 3 ≤ a < b, then it holds that c∗(a) > c∗(b).
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We transform t(λ, a, b, α) in a more manageable function using a monotonic and
bijective domain mapping via z = 1 − e−λ and λ = − ln(1 − z). Hence the
transformed threshold function is

T (z, a, b, α) =
− ln(1− z)

α · a · za−1 + (1− α) · b · zb−1
, (6)

where z ∈ (0, 1). According to (4) and using T (z, a, b, α) instead of t(λ, a, b, α)
the optimization problem is defined as

max
α∈(0,1]

min
z∈(0,1)

T (z, a, b, α) . (7)

For a short formulation of our results we make use of the following three auxiliary
functions.

f(z) =
− ln(1− z) · (1 − z)

z
(8)

g(z, a, b) = f(z) · (b − 1) · (a− 1) +
1

1− z
+ 2− b− a (9)

h(z, a, b) =
a · za−b − b− f(z) · (a · (a− 1) · za−b − b · (b − 1))

b · ((b − 1) · f(z)− 1)
. (10)

Furthermore we need to define some “special” points.

z′ =
(a
b

) 1
b−a

zl = f−1

(
1

a− 1

)
zr = f−1

(
1

b− 1

)
(11)

z1 = min{z | g(z) = 0} z2 = max{z | g(z) = 0} . (12)

It can be shown that if z1 and z2 exist, then it holds z′ �= z1 and z′ �= z2. Now
we can state our main theorem2.

Theorem 3. Let a, b be fixed and let T (z∗, α∗) = max
α∈(0,1]

min
z∈(0,1)

T (z, α). Then the

following holds:
1. Let minz g(z) ≥ 0.

(i) If h(z′) ≤ 1 then the optimal point is (z∗, α∗) = (zl, 1) and the maxi-
mum threshold is given by

T (z∗, α∗) =
− ln(1 − zl)

a · za−1
l

.

(ii) If h(z′) > 1 then the optimal point is the saddle point

(z∗, α∗) =
((

a
b

) 1
b−a , b−1

b−a −
1

f(z∗)·(b−a)

)
and the maximum threshold is given by

T (z∗, α∗) = − ln

(
1−

(a
b

) 1
b−a

)
·
(
ba−1

ab−1

) 1
b−a

.

2 For any function φ = φ(·, x) we will use φ(·) and φ(·, x) synonymously, if x is consid-
ered to be fixed.
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2. Let minz g(z) < 0.
(i) If h(z′) ≤ 1 then the optimum is the same as in case 1(i).
(ii) If h(z′) ∈ (1, h(z2)] then the optimum is the same as in case 1(ii).
(iii) If h(z′) ∈ (h(z2), h(z1)) then there are two optimal points (z∗, α∗) and

(z∗∗, α∗). It holds 1/α∗ = h(z∗) = h(z∗∗) and T (z∗, α∗) = T (z∗∗, α∗).
The optimal points can be determined numerically using binary search
for the value α that gives T (z̃1, α) = T (z̃2, α), where α is from the
interval [1/h(zup), 1/h(zlo)] and it holds h(z̃1) = h(z̃2) = 1/α, with z̃1
from (zl, zup), and z̃2 from (zlo, zr). The (initial) interval for α is:
� [1/h(z1), 1/h(z2)], if z1 < z′ < z2,
� [1/h(z′), 1/h(z2)], if z′ < z1,
� [1/h(z1), 1/h(z

′)], if z′ > z2.
(iv) If h(z′) ∈ [h(z1),∞) then the optimum is the same as in case 1(ii).

Sketch of Proof. Assume first that α ∈ (0, 1] is arbitrary but fixed, that is
we are looking for a global minimum of (6) in z-direction. Since limz→0 T (z) =
limz→1 T (z) = +∞ and T (z) is continuous for z ∈ (0, 1), a global minimum must
be a point where the first derivative of T (z) is zero, that is a critical point. Let
z̃ be a critical point of T (z) then it must hold z̃ ∈ [zl, zr) and α = 1/h(z̃).

1. Consider the case min g(z) > 0. (The case min g(z) = 0 can be handled
analogously). Since ∂h(z)

∂z > 0⇔ g(z) > 0, the function h(z) is monotonically in-
creasing in ∈ [zl, zr). Furthermore it holds, if g(z̃) > 0 then z̃ is a local minimum
point of T (z). It follows that for each α there is only one critical point z̃ and ac-
cording to the monotonicity of T (z) this must be a global minimum point. Now
consider the function of critical points T̃ (z) := T (z, 1/h(z)) of T (z, α). It holds
that ∀z < z′ : ∂T̃ (z)

∂z > 0⇔ g(z) > 0 and ∀z > z′ : ∂T̃ (z)
∂z < 0 ⇔ g(z) > 0 . It fol-

lows that the function of critical points has a global maximum at z′ = (a/b)
1

b−a ,
where z′ is at the same time a global minimum of T (z, α) in z-direction.
(i) If h(z′) > 1 then α = 1/h(z′) ∈ (0, 1) and the optimum point (z∗, α∗) is

(z′, 1/h(z′)), which is the only saddle point of T (z, α).
(ii) If h(z′) ≤ 1 then because of the monotonicity of T̃ (z) the solution for α∗

is 1 (degenerated solution). Since h(zl) = 1 it follows that that (z∗, α∗) =
(zl, 1).

2. Consider the case min g(z) < 0. The function g(z) has exactly two roots,
z1 and z2, and for z ∈ (zl, zr) the function h(z) is strictly increasing to a local
maximum at z1, is then strictly decreasing to a local minimum at z2, and is
strictly increasing afterwards. Now for fixed α there can be more than one critical
point and one has to do a case-by-case analysis.
A complete proof of the theorem is given in the full version [19]. "#
The distinction between case 1 and case 2 of Theorem 3 can be done via solving
∂g(z)
∂z = 0, for z ∈ (0, 1), since the function g(z) has only one critical point

and this point is a global minimum point. Hence, Theorem 3 can be easily
transformed into an algorithm that determines α∗, z∗ and T (z∗, α∗) for given
k = (a, b). (The pseudocode of such an algorithm is given in [19].) Some re-
sults for c∗(k) = t(λ∗, a, b, α∗) = T (z∗, a, b, α∗) for selected k = (a, b) are given
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in Table 1 and in [19]. They show that the optimal 2-core threshold of mixed
hypergraphs can be above the 2-core threshold for 3-uniform hypergraphs.

4 Experiments

In this section we consider mixed hypergraphs H̃k
n,m,α as described in Section 1.2.

For the parameters k = (k1, k2) ∈ {(3, 4), (3, 8), (3, 16), (3, 21)} and the corre-
sponding optimal fractions of edge size α∗ we experimentally approximated the
point c∗(k) of the phase transition from empty to non-empty 2-core.
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Fig. 1. (k1, k2) = (3, 4)
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Fig. 2. (k1, k2) = (3, 8)
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Fig. 3. (k1, k2) = (3, 16)
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Fig. 4. (k1, k2) = (3, 21)

(k1, k2) (3, 4) (3, 8) (3, 16) (3, 21)

c∗ 0.82151 0.85138 0.91089 0.92004
x 0.82147 0.85135 0.91070 0.91985∑

res 0.00536 0.00175 0.00348 0.01091

Table 2. Comparison of experimentally ap-
proximated and theoretical 2-core thresh-
olds. The values are rounded to the nearest
multiple of 10−5.

For each fixed tuple (k,α∗) we performed the following experiments. We
fixed the number of nodes to n = 107 and considered growing equidistant edge
densities c = m/n. The densities covered an interval of size 0.008 with the
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theoretical 2-core threshold c∗(k) in its center. For each quintuple (k1, k2, α∗, n, c)
we constructed 102 random hypergraphs H̃k

n,m,α with nodes {1, 2, . . . , n} and
α∗ · c · n edges of size k1 and (1 − α∗) · c · n edges of size k2. For the random
choices of each edge we used the pseudo random number generator MT19937
“Mersenne Twister” of the GNU Scientific Library3. Given a concrete hypergraph
we applied Algorithm 1 to determine if the 2-core is empty.

A non-empty 2-core was considered as failure, an empty 2-core was con-
sidered as success. We measured the failure rate and determined an approx-
imation of the 2-core threshold, via fitting the sigmoid function σ(c;x, y) =
(1 + exp(−(c − x)/y))−1 to the measured failure rate using the “least squares
fit” of gnuplot4.The resulting fit parameter x = x(k) is our approximation of
the theoretical threshold c∗(k). Table 2 compares c∗(k) and x(k). The quality
of the approximation is quantified in terms of the sum of squares of residuals∑

res. The results show a difference of theoretical and experimentally estimated
threshold of less than 2 · 10−4. The corresponding plots of the measured failure
rates and the fit function are shown in Figures 1, 2, 3 and 4.

5 Summary and Future Work

We have shown that the threshold for the appearance of a 2-core in mixed hy-
pergraphs can be larger than the 2-core threshold for k-uniform hypergraphs,
for each k ≥ 3. Moreover, for hypergraphs with two given constant edges sizes
we showed how to determine the optimal (expected) fraction of edges of each
size, that maximizes the 2-core threshold. The maximum threshold found for
3 ≤ k1 ≤ 6 and k1 ≤ k2 ≤ 50 is about 0.92 for k = (3, 21). We conjecture that
this is the best possible for two edge sizes.

Based on the applications of mixed hypergraphs, as for example discussed in
Section 2, the following question seems natural to ask. Consider the hypergraph
H̃k

n,m,α and some fixed upper bound K̄ on the average edge size k̄ =
∑s

i=1 αi ·ki.
Question. Which pair of vectors k and α that gives an average edge size below
K̄ maximizes the threshold for the appearance of a 2-core? That means we are
looking for the solution of max

k,α
min
λ>0

t(λ,k,α) under the constraint that k̄ ≤ K̄.

Acknowledgment. The author would like to thank Martin Dietzfelbinger for
many helpful suggestions and the time he spent in discussions on the topic. He
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Abstract. Bisimulation-up-to enhances the bisimulation proof method
for process equivalence. We present its generalization from labelled tran-
sition systems to arbitrary coalgebras, and show that for a large class
of systems, enhancements such as bisimulation up to bisimilarity, up to
equivalence and up to context are sound proof techniques. This allows
for simplified bisimulation proofs for many different types of state-based
systems.

1 Introduction

Bisimilarity is a fundamental notion of equivalence between labelled transition
systems. Two processes are bisimilar if they are related by a bisimulation, which
is a relation between states such that related pairs match each others transitions
and their successors (also called derivatives) are again related. Bisimulation-
up-to refers to a family of techniques for proving bisimilarity based on smaller
relations than usual, in many cases reducing the amount of work [13,9,4]. For
example, in a bisimulation up to bisimilarity the derivatives do not need to be
related directly but may be bisimilar to states which are [8]; this is a valid
proof method for bisimulation on labelled transition systems. Bisimulation up
to context [13] is another such technique, in which one can use the algebraic
structure (syntax) of processes to relate derivatives.

The theory of coalgebras provides a mathematical framework for the uniform
study of many types of state-based systems, including labelled transition systems
but also (non)-deterministic automata, stream systems, various types of proba-
bilistic and weighted automata, etc. The type of a coalgebra is expressed by an
endofunctor F . One of the main elements of the theory is the coalgebraic notion
of bisimulation, which generalizes classical bisimulation for labelled transition
systems to arbitrary coalgebras. Another notion of equivalence of coalgebras is
behavioural equivalence. Intuitively, two states are behaviourally equivalent if
they have the same observable behaviour, where the observations depend on
the type functor F . For many types of systems, including labelled transition
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systems, these notions coincide, but for some types, such as certain types of
weighted automata, bisimulation is stronger than behavioural equivalence (see,
e.g., [3]).

In this paper we introduce a generalization of bisimulation-up-to from
labelled transition systems to the theory of coalgebras. In this setting we define
bisimulation up to bisimilarity, up-to-union, up-to-context, up-to-equivalence
and combinations thereof. As it turns out, the general notion of coalgebraic
bisimulation-up-to which we introduce is somewhat problematic: we show that
bisimulation up to bisimilarity is not sound in general, i.e., that it can not be
used as a valid proof principle. So we introduce behavioural equivalence-up-to,
for which all of the aforementioned instances work very well. Then by the cor-
respondence between behavioural equivalence and bisimulation which holds for
many types of systems (for coalgebras for weak pullback preserving functors, to
be precise) we obtain the soundness of bisimulation-up-to for such systems.

Related work. Sangiorgi [13] introduced the first systematic treatment of more
general up-to techniques for labelled transition systems, and discussed the im-
portant notion of bisimulation up to context. A good reference for the current
state of the art in this line of research is [9]. In [4] bisimulation up to con-
text is applied to obtain a very efficient algorithm for checking equivalence of
non-deterministic finite automata. Lenisa [7] developed bisimulation-up-to in the
context of a set-theoretic notion of coinduction. Moreover in loc. cit. a framework
for up-to techniques for coalgebraic bisimulation is studied, but as mentioned in
the paper itself already, the important notion of bisimulation up to bisimilarity
is problematic in this setting. Bisimulation up to context is studied at a general
coalgebraic level in [7].

The up-to-context technique for coalgebraic bisimulation was later derived as
a special case of so-called λ-coinduction: Bartels [2] showed that this technique
can be applied in the context of operators defined by certain natural transforma-
tions, corresponding for example to the well-known GSOS format in the case of
labelled transition systems. A direct corollary of this is the soundness of bisim-
ulation up to context for CCS. However, [2, pages 126, 129] mentions already
that it would be ideal to combine the up-to-context technique with other up-to
techniques. Indeed, combining up-to-context with up-to-bisimilarity or up-to-
equivalence yields powerful proof techniques (see, e.g., [9] and this paper for
examples).

The recent paper [14] introduces bisimulation-up-to, where the notion of
bisimulation is based on a specification language for polynomial functors (which
does not include, for example, labelled transition systems). In contrast, we base
ourselves on the standard notion of bisimulation, and only need to restrict to
weak pullback preserving functors, to obtain our soundness results.

Outline. The following section contains the necessary preliminaries. Then in
Section 3 we introduce bisimulation-up-to for coalgebras, together with impor-
tant instances and examples, and we discuss their soundness in Section 4. In
Section 5 we recall behavioural equivalence and its relation with bisimulation,
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and in Section 6 we present the main soundness results of bisimulation-up-to via
behavioural equivalence-up-to. We conclude in Section 7.

2 Preliminaries

By Set we denote the category of sets and total functions. For a relation R ⊆
X ×X we denote by R the smallest equivalence relation containing R, i.e., its
reflexive, symmetric and transitive closure, or equivalence closure. If R is an
equivalence relation then we denote by qR : X → X/R the quotient map, which
sends each element to its equivalence class. For any relation R ⊆ X × Y we
denote by πR

1 : R → X and πR
2 : R → Y the respective projection maps, and

we omit R if it is clear from the context. Given two functions f : X → Y and
g : X → Z, the pairing of f and g is the unique function 〈f, g〉 : X → Y ×Z with
the property that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g. The kernel of a function
f : X → Y is defined as ker(f) = {(x, y) ∈ X ×X | f(x) = f(y)}.

A coalgebra for a functor F : Set→ Set is a pair (X,α) consisting of a set X
and a function α : X → FX . We call X the carrier or the set of states, and α
the transition structure or dynamics. A function X → Y between the respective
carriers of two coalgebras (X,α) and (Y, β) is a homomorphism if Ff ◦α = β ◦f .
For a coalgebra α : X → FX , a relation R ⊆ X ×X is an (F -)bisimulation if
R itself can be equipped with a transition structure γ : R → FR such that the
following diagram commutes:

X

α

��

R
π1��

γ

��

π2 �� X

α

��
FX FR

Fπ1

��
Fπ1

�� FX

The largest bisimulation on α exists [11] and is denoted by ∼α, or simply by
∼ if α is clear from the context. Two states x, y ∈ X of a coalgebra are called
bisimilar if x ∼ y.

Example 1. We recall several types of coalgebras and their corresponding notions
of bisimulation. In (3) and (4) below we introduce operations on coalgebras; these
will become relevant in the examples in Section 3.

1. Finitely branching labelled transition systems (lts’s) over a set of labels A are
coalgebras for the functor FX = Pf (A×X). For an lts α : X → Pf(A×X)

we write x
a→ x′ iff (a, x′) ∈ α(x). So intuitively, for a state x ∈ X ,

α(x) contains all the outgoing labelled transitions from x. Bisimulation
instantiates to the classical definition. A relation R ⊆ X × X is called
a bisimulation provided that for all (x, y) ∈ R: if x

a→ x′ then there

exists a state y′ such that y
a→ y′ and (x′, y′) ∈ R, and vice versa.
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2. One of the simplest interesting types of coalgebras is given by the functor
FX = X + 1, where 1 is the singleton {∗}. We call such coalgebras deter-
ministic systems with termination. An F -coalgebra α : X → X + 1 can, for
a given state x, either terminate (α(x) = ∗) or make a transition to another
state x′ ∈ X (α(x) = x′). If a state x terminates we write x ↓, otherwise we
write x′ for α(x), and call x′ the derivative of x. In this case a bisimulation
is a relation R ⊆ X ×X such that for all (x, y) ∈ R : either x ↓ and y ↓, or
(x′, y′) ∈ R.

3. Coalgebras for the functor FX = R × X , where R is the set of real num-
bers, are called stream systems (over the reals). For a stream system 〈o, t〉 :
X → R × X and a state x ∈ X , if o and t are clear from the context we
denote o(x) by x0 and t(x) by x′. A relation R ⊆ X × X is a bisimula-
tion if for each (x, y) ∈ R : x0 = y0 and (x′, y′) ∈ R. A special stream
system is formed by taking as carrier the set Rω = {σ | σ : N → R} of
all streams (infinite sequences) of elements of R, and defining the transition
structure 〈o, t〉 : Rω → R×Rω as o(σ) = σ(0) and t(σ)(n) = σ(n+1)). This
F -coalgebra is in fact the final one, that is, every stream system has a unique
homomorphism into it [11]. We may define operations on streams by means
of behavioural differential equations [12], in which an operation is defined by
specifying its initial value and its derivative. Instead of recalling the general
definition we only consider the operations of addition (+), shuffle product
(⊗) and shuffle inverse (−1):

Differential equation Initial value Name
(σ + τ)′ = σ′ + τ ′ (σ + τ)0 = σ0 + τ0 sum
(σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ (σ ⊗ τ)0 = σ0 × τ0 shuffle product
(σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) (σ−1)0 = (σ0)

−1 shuffle inverse

The inverse operation is only defined on streams σ for which σ0 �= 0. With
every real number r we associate a stream [r] = (r, 0, 0, 0, . . .) (we will abuse
notation and denote [r] by r), and we abbreviate (−1)⊗σ by −σ. The set of
terms T (Rω) is defined by the grammar t ::= σ | t1+ t2 | t1⊗ t2 | t−1

1 where
σ ranges over Rω. We can turn T (Rω) into a coalgebra S = (T (Rω), β) by
defining the transition structure by induction according to the final coalgebra
(for the base case) and the above specification (for the other terms).

4. Coalgebras for the functor FX = 2 × XA correspond to deterministic au-
tomata with transitions in A. For a coalgebra 〈o, f〉 : X → 2 × XA and
a state x ∈ X , we have o(x) = 1 iff x is a final or accepting state. The
function f(x) assigns, to each alphabet letter a ∈ A, the next state or
a-derivative, denoted xa. A relation R ⊆ X × X is a bisimulation if for
each (x, y) ∈ R : o(x) = o(y) and for each a ∈ A: (xa, ya) ∈ R. The set
of formal languages P(A∗) can be given an F -transition structure 〈o, f〉 as
follows: o(l) = 1 iff l contains the empty word, and f(l)(a) = {w | aw ∈ L }.
This is the final F -coalgebra.
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Using a suitable format of behavioural differential equations we can define
the operations of regular expressions as follows [10]:

Differential equation Initial value Name
0a = 0 o(0) = 0 zero
1a = 0 o(1) = 1 one

ba =

{
1 if b = a

0 otherwise
o(b) = 0

(x+ y)a = xa + ya o(x + y) = max(o(x), o(y)) union

(x · y)a =

{
xa · y if o(x) = 0

xa · y + ya otherwise
o(x · y) = min(o(x), o(y)) composition

(x∗)a = xa · x∗ o(x∗) = 1 Kleene star

In a similar way as we have done for the operations on streams, we can
construct the set of regular expressions over languages T (P(A∗)) and turn
it into a coalgebra R = (T (P(A∗)), β), defining the transition structure β
by induction according to the final coalgebra and the above specification of
the operators.

Algebras and distributive laws. In this paragraph we shortly recall some concepts
needed for our discussion of bisimulation up to context. These are quite techni-
cal, and we do not have the space to cover them in detail; however, a large part of
the remainder of this paper can be understood without these preliminaries. An
(Eilenberg-Moore) algebra for a monad T on Set is a tuple (X,α) consisting of
a set X and a map TX → X , satisfying some additional laws (see, e.g., [6]). For
an example, recall that in the above Example 1(3), we formed the set of terms
T (Rω) over streams of real numbers. In general, given operation and constant
symbols (with associated arities), the functor T which constructs the correspond-
ing set of terms over sets of variables X , is (part of) a monad, which we call
the term monad (for this signature). The construction of regular expressions in
Example 1(4) is another such example. Moreover for a set X , a monad gives us
an algebra α : TTX → TX . In the case of a term monad this α is called a term
algebra; it turns a term over terms into a single term.

An (F, T )-bialgebra is a triple (X,α, β) consisting of a T -algebra α and an
F -coalgebra β. We can extend the coalgebra S = 〈T (Rω), β〉 from Example 1(3)
above to a bialgebra 〈T (Rω), α, β〉 where α is the term algebra. Similarly R
forms a bialgebra together with its associated term algebra. Given a T -algebra
α, the set of contexts over a relation R ⊆ X×X is defined as Cα(R) ⊆ X×X =
〈α ◦ Tπ1, α ◦ Tπ2〉(TR). If T is a term monad, then Cα(R) can be characterized
concretely as follows: for two terms t1, t2 ∈ TX we have (t1, t2) ∈ Cα(R) iff we
can obtain t2 by substituting the variables of t1 for variables related by R.

The interplay between syntax and semantics can be captured by the categor-
ical notion of a distributive law of a monad T over a functor F × Id , which is
a natural transformation λ : T (F × Id) ⇒ FT × T satisfying some laws (see,
e.g., [2,6] for a definition). Intuitively T models syntax and F models behaviour,
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and distributive laws of this type can in fact be seen as abstract operational se-
mantics. Indeed, for particular functors F they correspond to concrete formats
such as the well-known GSOS format for processes [2,6]. For instance, the defi-
nition of the operations in Example 1 above give rise to distributive laws. For
a distributive law λ, a bialgebra is called a λ-bialgebra if α and β decompose via
λ; for lack of space we again refer to [2,6] for a precise definition. For now we
note that the coalgebras S and R of Example 1, together with their respective
term algebras, form λ-bialgebras.

3 Bisimulation-Up-To

We introduce the following definition, which generalizes the notions of progres-
sion and bisimulation-up-to from labelled transition systems [9] to coalgebras.

Definition 1. Let α : X → FX be an F -coalgebra. Given relations R,S ⊆
X × X, we say that R progresses to S if there exists a transition structure
γ : R→ FS making the following diagram commute:

X

α

��

R
πR
1��

γ

��

πR
2 �� X

α

��
FX FS

FπS
1

��
FπS

2

�� FX

If R progresses to f(R) for a function f : P(X ×X)→ P(X ×X) then we say
R is a bisimulation up to f .

Notice that we have not put any restrictions on the function f in the defini-
tion of bisimulation-up-to, and so in general a bisimulation up to f will not
be a bisimulation, neither will it contain only bisimilar pairs. We continue to
introduce several concrete instances of bisimulation-up-to, inspired by the corre-
sponding techniques for labelled transition systems [9]. For now, these instances
of bisimulations-up-to do not yet guarantee any pairs to be bisimilar; a discussion
of when they do follows afterwards, when we define and study their soundness.

Up-to-identity. For a trivial instance of bisimulation-up-to, consider the identity
function id on relations. A bisimulation up to id is simply a bisimulation.

Up-to-equivalence. Consider the function f(R) = R which takes a relation R
to its equivalence closure. We call a bisimulation up to f a bisimulation up to
equivalence.

Example 2. Let α : X → X + 1 be a deterministic system with termination,
and R ⊆ X × X a relation. Spelling out the definition, we find that R is
a bisimulation up to equivalence if for all (x, y) ∈ R: either x ↓ and y ↓, or
x′ R y′. Thus instead of requiring the respective derivatives of each of the pairs
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to be related in R again, for a bisimulation up to equivalence, they need only to
be related by the reflexive, symmetric and transitive closure of R. Consider the
following three deterministic systems and relations (where x→ y iff x′ = y):

a
��
b�� c

���
��

��
��

e

����������
d��

g

		�
��

��
��

� h



��
��
��
�

i
{(a, b)} {(c, d), (d, e)} {(g, h)}

All three of these relations are bisimulations up to equivalence, whereas none of
them are actual bisimulations. Consider for instance the relation {(a, b)}; when
we compute the respective derivatives of a and b we obtain a′ = b and b′ = a,
but (b, a) �∈ {(a, b)}. However, the pair (b, a) is in the least equivalence relation
containing {(a, b)}. "#

Up-to-union. For S ⊆ X × X a relation, consider the function f(R) = R ∪ S.
We call a bisimulation up to f a bisimulation up to union with S. In order for a
relation R to be a bisimulation up to union with S, the derivatives of R may be
related either by R again or by S.

Example 3. For a deterministic automaton 〈o, f〉 : X → 2 × XA, a relation
R ⊆ X×X is a bisimulation up to union with S if for all (x, y) ∈ R: o(x) = o(y)
and for any alphabet letter a ∈ A: either xaRya or xaSya.

Consider for instance the relation R = {(1∗, 1)} on the automaton R of reg-
ular expressions over languages, introduced in Example 1(4). We first note that
o(1∗) = 1 = o(1); next let a ∈ A be an alphabet letter. Then (1∗)a = 1a·1∗ = 0·1∗
and 1a = 0. Note that (0 · 1∗, 0) �∈ R, so R is not a bisimulation. However sup-
pose S is a relation containing some of the basic equivalences between regular
expressions, such as (0 · r, 0) ∈ S for any regular expression r. Then our relation
R is a bisimulation up to union with S, since the derivatives of the single pair
in R are related by S. Notice that R is also a bisimulation up to union with ∼,
given that 0 · a is bisimilar to 0. "#

Up-to-context. The notion of bisimulation up to context applies to coalgebras
where the state space consists of the elements of an algebra. So let (X,α, β) be
an (F, T )-bialgebra (see the last part of Section 2). If a relation R ⊆ X × X
progresses to the set of contexts Cα(R), then we call R a bisimulation up to
context.

If T is a term monad, such as in the case of the introduced operations on
streams or regular expressions, then in practice this technique only becomes
interesting when combined with other techniques such as up-to-equivalence or
up-to-bisimilarity. A notable exception is when one considers bisimulation up to
context on a final coalgebra, which is the approach taken in the examples in [2]
(e.g., page 126). In that case, combination with up-to-bisimilarity comes for free,
since bisimilarity implies equality on final coalgebras [11].



376 J. Rot, M. Bonsangue, and J. Rutten

Up-to-union-and-equivalence. Let f(R) = R ∪ S for a fixed relation S. If R
progresses to f(R) then we call R a bisimulation up to S-union and equivalence.
By taking the equivalence closure ofR∪S, derivatives may be related by arbitrary
compositions of R and S. If we consider the special case S = ∼ we see that this
is in fact a generalization of bisimulation up to bisimilarity, meaning that the
derivatives may be bisimilar to elements which are related by R. More formally,
a bisimulation up to bisimilarity is based on the function g(R) = ∼ ◦R◦ ∼. Note
that for any relation R, we have g(R) ⊆ f(R). Indeed for a bisimulation up to
∼-union and equivalence we take arbitrary compositions of ∼ and R, including
the specific one ∼ ◦R◦ ∼.

Example 4. For a deterministic automaton 〈o, f〉 : X → 2 × XA, a relation
R ⊆ X ×X is a bisimulation up to S-union and equivalence if for all (x, y) ∈ R:
o(x) = o(y) and for any alphabet letter a ∈ A: (x, y) ∈ R ∪ S. Recall the
automatonR of regular expressions from Example 1(4). Consider the implication
l ∼ al+ b⇒ l ∼ a∗b for a language l ∈ P(A∗) over alphabet symbols A = {a, b},
intuitively expressing that a∗b is the unique solution of the “equation” l ∼ al+b.
Let R = {(l, a∗b) | l ∼ al+ b}, and let l be a language such that l ∼ al+ b. First
we check that the outputs are equal: o(l) = o(al + b) = 0 = o(a∗b). Next we
compute the a- and b-derivatives of l: la ∼ (al + b)a ∼ l and lb ∼ (al + b)b ∼ 1.
Now la ∼ lR(a∗b)a and lb ∼ 1 ∼ (a∗b)b. Thus R is a bisimulation up to ∼-union
and equivalence. It is not a bisimulation, since (lb, (a

∗b)b) �∈ R. "#

Up-to-union-context-and-equivalence. If a relation R ⊆ X ×X on the carrier of
an (F, T )-bialgebra (X,α, β) progresses to Cα(R ∪ S), then R is called a bisim-
ulation up to S-union, context and equivalence. This is an important extension
of bisimulation up to context because the equivalence closure allows us to relate
derivatives of R by equational reasoning, using Cα(R ∪ S) in multiple steps.

Consider again the bialgebra 〈T (Rω), α, β〉 consisting of the stream system S
of Example 1(3) and the term algebra α. A bisimulation up to S-union, context
and equivalence is a relation R ⊆ T (Rω) × T (Rω) such that for all (t1, t2) ∈ R:
o(t1) = o(t2) and (t′1, t

′
2) ∈ Cα(R ∪ S). The following is an example on S.

Example 5. Suppose we are given that ⊗ is associative and commutative (so
σ ⊗ τ ∼ τ ⊗ σ, etc.) and that σ + (−σ) ∼ 0 (notice that these assumptions
actually hold in general [12]). Let R = {(σ ⊗ σ−1, 1) | σ ∈ T (Rω), σ0 �= 0}. We
can now establish thatR is a bisimulation up to ∼-union, context and equivalence
on the coalgebra S. First consider the initial values: (σ ⊗ σ−1)0 = σ0 × σ−1

0 =

0 = σ0 × (σ0)
−1 = 1 = 10. Next we relate the derivatives by Cα(R∪ ∼):

(σ ⊗ σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (−σ′ ⊗ (σ−1 ⊗ σ−1))

Cα(∼)∗ (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ (σ ⊗ σ−1))

Cα(R∪ ∼) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ 1) Cα(∼)∗ 0 = 1′

where Cα(∼)∗ denotes the transitive closure of Cα(∼); in the above we ap-
ply multiple substitutions of terms for bisimilar terms. Notice that R is not a
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bisimulation; here, establishing a bisimulation-up-to is much easier than finding
a bisimulation which contains R. "#

For the special case S = ∅, bisimulation up to f is called bisimulation up to
context and equivalence, or bisimulation up to congruence. Finally notice that
bisimulation up to ∼-union, context and equivalence generalizes the notion of
bisimulation up to context and bisimilarity (see, e.g., [9]), in a similar way as
up-to-union-and-equivalence generalizes up-to-bisimilarity.

4 Soundness

In the above examples, intuitively, establishing that a relationR is a bisimulation-
up-to should imply that R indeed contains only bisimilar pairs, i.e., R ⊆ ∼. How-
ever this depends on the instance of bisimulation-up-to under consideration. For
example, one function f : P(X ×X) → P(X ×X) which, in general, does not
have this property is f(R) = X × X , where any derivatives are related. But
more subtly, for up-to-context, this depends on the bialgebraic structure.

Definition 2. Let α : X → FX be a coalgebra, and f : P(X×X)→ P(X×X)
a function. If R ⊆ ∼ for any relation R ⊆ X×X which is a bisimulation up to f ,
then we say bisimulation up to f is sound for α. If this holds for any coalgebra,
then we say bisimulation up to f is sound.

Bisimulation up to identity is sound, of course. If S is a relation which contains
only bisimilar pairs, then bisimulation up to union with S is sound.

Proposition 1. For any coalgebra α : X → FX, and for any relation S ⊆
X ×X: if S ⊆ ∼ then bisimulation up to union with S is sound.

Proof. If R is a bisimulation up to union with S then it is also a bisimulation
up to union with ∼. For any such R, R∪ ∼ is a bisimulation. "#

As a consequence of the above proposition, Example 3 contains a full proof that
1∗ and 1 are bisimilar, given the knowledge that 0 · 1∗ is bisimilar to 0. From [2]
we obtain a sufficient condition for the soundness of bisimulation up to context:

Proposition 2 ([2], Corollary 4.3.8). If (X,α, β) is a λ-bialgebra for a dis-
tributive law λ of a monad T over a functor F × Id, then bisimulation up to
context is sound for (X, β).

Bisimulation up to bisimilarity is not sound in general. This is illustrated by
the following example, which is based on an example from [1] (introduced there
to show that bisimulation and behavioural equivalence (see Section 5) do not
coincide, in general).

Example 6. Define the functor F : Set → Set as FX = {(x1, x2, x3) ∈ X3 |
|{x1, x2, x3}| ≤ 2} and F (f)(x1, x2, x3) = (f(x1), f(x2), f(x3)). Consider the
F -coalgebra with statesX = {0, 1, 2, 0̃, 1̃} and transition structure {0 �→ (0, 1, 0),
1 �→ (0, 0, 1), 0̃ �→ (0, 0, 0), 1̃ �→ (1, 1, 1), 2 �→ (2, 2, 2)}. Then 0 �∼ 1. To see
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this, note that in order for the pair (0, 1) to be contained in a bisimulation
R, there must be a transition structure on this relation which maps (0, 1) to
((0, 0), (1, 0), (0, 1)). But this triple can not be in FR, because it contains three
different elements. However, it is easy to show that 0 ∼ 2 and 1 ∼ 2: the relation
{(0, 2), (1, 2)} is a bisimulation. Now consider the relation S = {(0̃, 1̃), (2, 2)}.
We can define a transition structure γ : S → FS as follows:

(0̃, 1̃) �→ ((0, 1), (0, 1), (0, 1)) (2, 2) �→ ((2, 2), (2, 2), (2, 2))

But 0 ∼ 2 S 2 ∼ 1 (and 2 ∼ S ∼ 2) so S is a bisimulation up to bisimilarity. Thus
if up-to-bisimilarity is sound, then S ⊆ ∼ so 0 ∼ 1, which is a contradiction. "#

Bisimulation up to equivalence is not sound either, which can be shown by
a similar argument. While the above counterexample is based on a somewhat
“unrealistic” functor, in [3, Figure 1] there is an example of a weighted automa-
ton, which is easily turned into another counterexample, showing that bisimula-
tion up to bisimilarity (or up to equivalence) is not sound in the case of weighted
automata. Fortunately, for a large class of systems (even including certain types
of weighted automata) bisimulation up to equivalence is sound, namely for those
modeled by functors which preserve weak pullbacks; we develop this result in
Section 6.

5 Behavioural Equivalence

In this section we recall a notion of equivalence which is in general weaker than
bisimulation, but in many cases (depending on the type of system) the two no-
tions coincide. Suppose α : X → FX is a coalgebra. Two states s, t are called
(F -)behaviourally equivalent if there exists a homomorphism f : X → Y into
some other coalgebra, such that f(s) = f(t). This notion is pointwise extended
to relations R ⊆ X ×X , i.e., R is an (F -)behavioural equivalence if R ⊆ ker(f).
In the sequel we will base ourselves on a more concrete characterization of be-
havioural equivalence, which can be seen to be a slight variation of a character-
ization from [5] (which considers only equivalence relations in this context, but
the generalization to arbitrary relations is easy).

Proposition 3 ([5], Lemma 4.12). Let α : X → FX be an F -coalgebra.
A relation R ⊆ X × X is a behavioural equivalence iff the following diagram
commutes:

R
π1 ��
π2

�� X
α �� FX

Fq �� F (X/R)

where q is the quotient map of R.

Example 7. Let α : X → X+1 be a deterministic system with termination, and
R ⊆ X ×X a relation with quotient map q; then Fq = q + id. According to the
above proposition, R is a behavioural equivalence if for all (x, y) ∈ R, either x ↓
and y ↓, or q(x′) = q(y′). The latter case is equivalent to x′ R y′. "#
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In [5], behavioural equivalences which are equivalence relations are called con-
gruences, after [1], which introduced this coalgebraic notion of congruence. We
chose not to use the term “congruence” to avoid confusion with the well-known
concept from universal algebra. Behavioural equivalence coincides with the no-
tion of pre-congruence from [1]. We proceed to recall from that paper the precise
relation with bisimulation.

Proposition 4 ([1]). Any F -bisimulation is an F -behavioural equivalence. If
F preserves weak pullbacks, then the equivalence closure of any F -behavioural
equivalence is an F -bisimulation.

For a fixed coalgebra α the greatest behavioural equivalence exists [1], and it
is denoted by ≈α or simply ≈ if α is clear from the context. From the above
proposition we immediately obtain that for weak pullback preserving functors,
the greatest behavioural equivalence and the greatest bisimulation coincide.

Many interesting functors used to model systems coalgebraically actually do
preserve weak pullbacks, including all functors introduced in Example 1. One
example of a relevant functor that does not preserve weak pullbacks is that
of weighted automata over R. Figure 1 of [3] is an example of a weighted au-
tomaton containing states which are behaviourally equivalent, but not bisimilar.
In fact, the notion of equivalence of weighted automata chosen in [3] is indeed
behavioural equivalence, which coincides with so-called weighted bisimilarity.

Example 7 on the one hand illustrates how to obtain a proof method for be-
havioural equivalence for a given functor F , using Proposition 3. On the other
hand, it suggests that in this proof method, we can reason up to equivalence.
Indeed, while bisimulation up to equivalence is problematic (not sound) in gen-
eral, we will see in the next section that for behavioural equivalence this comes
quite naturally.

6 Soundness via Behavioural Equivalence-Up-To

Given a function f : P(X ×X)→ P(X×X), we define behavioural equivalence
up to f as a generalization of the characterization given in Proposition 3. The
quotient map of f(R) is now used to relate derivatives, instead of the quotient
map of R.

Definition 3. Let α : X → FX be an F -coalgebra and R ⊆ X × X. Let
f : P(X × X) → P(X × X). R is a behavioural equivalence up to f if the
following diagram commutes:

R
π1 ��
π2

�� X
α �� FX

Fq �� F (X/f(R))

where q is the quotient map of f(R).

For example, for a deterministic system α : X → X + 1, a relation R ⊆ X ×X
is a behavioural equivalence up to f whenever for all (x, y) ∈ R either x ↓
and y ↓ or x′ f(R) y′. In order to proceed we define soundness of behavioural
equivalence-up-to.
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Definition 4. Let α : X → FX be a coalgebra, and f : P(X×X)→ P(X×X).
If R ⊆ ≈ for any relation R ⊆ X ×X which is a behavioural equivalence up to
f , then we say behavioural equivalence up to f is sound for α. If this holds for
any coalgebra, then we say behavioural equivalence up to f is sound.

Behavioural equivalence up to union, equivalence, context etc. are defined in the
same way as for bisimulation-up-to.

Lemma 1. If (X,α, β) is a λ-bialgebra for a distributive law λ of a finitary1

monad T over a functor F × Id, then behavioural equivalence up to context is
sound for (X, β).

We obtain our main result:

Theorem 1. Suppose S ⊆ ≈. Then (F -)behavioural equivalence up to (S-union
and) equivalence is sound. Moreover, if (X,α, β) is a λ-bialgebra for a distribu-
tive law λ of a finitary monad T over a functor F × Id, then (F -)behavioural
equivalence up to (S-union,) context (and equivalence) is sound for (X, β).

Proof. Let f(R) = Cα(R ∪ S). If R is a behavioural equivalence up to f , then it
is also simply a bisimulation up to f ′, where f ′(R) = Cα(R∪S). If S ⊆ ≈, then
R is a behavioural equivalence up to f ′′(R) = Cα(R∪ ≈) as well. Then R∪≈ is
behavioural equivalence up to context, so R ⊆ ≈ by Lemma 1. "#

Behavioural equivalence-up-to is related to bisimulation-up-to as follows:

Lemma 2. Let f : P(X×X)→ P(X×X). Then (1) any bisimulation up to f is
also a behavioural equivalence up to f , and (2) if F preserves weak pullbacks, then
soundness of behavioural equivalence up to f implies soundness of bisimulation
up to f .

From the above lemma and Theorem 1 we immediately obtain the following:

Corollary 1. If F preserves weak pullbacks, then Theorem 1 holds for
bisimulation-up-to as well.

Consequently, all the examples of bisimulations-up-to in Section 3 contain actual
proofs of bisimilarity, based on smaller relations than any other relations needed
to establish bisimilarity without these techniques.

7 Conclusions and Future Work

We generalized bisimulation-up-to to the theory of coalgebras. By extending the
theory to behavioural equivalence, we established the soundness of bisimulation
up to union and equivalence for systems modeled by functors which preserve
weak pullbacks. For any coalgebra with an algebraically structured state space

1 A monad is finitary if its underlying functor T preserves filtered colimits. If T is a
term monad, this means there may be infinitely many operations, but each of them
must have finite arity.
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which forms a λ-bialgebra for a distributive law λ, we have shown that bisim-
ulation up to union, context and equivalence is sound. Future work includes a
generalization to other categories, investigation of instances of bisimulation-up-to
for concrete types of systems (e.g., [4]), and the integration with the systematic
treatment of enhancements of [9].
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Abstract. In this paper we present a model transformation language
based on logic programming. The language, called PTL (Prolog based
Transformation Language), can be considered as a hybrid language in
which ATL-style rules are combined with logic rules for defining transfor-
mations. The proposal has been implemented so that a Prolog program
is automatically obtained from a PTL program. We have equipped our
language with debugging and tracing capabilities which help developers
to detect programming errors in PTL rules.

1 Introduction

Several transformation languages and tools have been proposed in the literature
(see [3] for a survey). The most relevant is the language ATL (Atlas Transfor-
mation Language) [7], a domain-specific language for specifying model-to-model
transformations. ATL is a hybrid language, and provides a mixture of declarative
and imperative constructs. The declarative part of ATL is based on rules. Such
rules define a source pattern matched over source models and a target pattern
that creates target models for each match.

In this work we present a language, called PTL (Prolog based Transformation
Language), that can be considered as a hybrid language in which ATL-style rules
are combined with logic rules for defining transformations. ATL-style rules are
used to define mappings from source models to target models while logic rules
are used as helpers. From a theoretical point of view, we have studied a declar-
ative semantics for PTL. The declarative semantics interprets meta-models and
identifies models that conform to meta-models while PTL rules interpretation
provides semantics to the main ATL constructors. From a practical point of
view, our proposal can be intended as an application of logic programming to
a context in which rule-based systems are required. Our language provides the
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elements involved in model transformation: meta-models handling and mapping
rules.

The adoption of ATL style syntax facilitates the definition of mappings: basi-
cally, objects are mapped to objects of given models. Nevertheless, we retain logic
programming as basis, for instance, by defining helpers with Prolog code instead
of OCL code, adopted by ATL. It makes that our framework combines model
transformation and logic languages. One of the main ends of helpers in ATL is
to serve as query language against the source models. In a logic programming
based approach, logic (i.e., Prolog style) rules serve as query language. MOF
(Meta Object Facility) is considered in our approach as meta-meta-model, and
source and target meta-models have to be defined in terms of the MOF meta-
model. With this aim, our language can be also used for defining transformations
from (and to) the MOF meta-model to (from) the source (target) meta-models.

The proposal has been implemented so that a Prolog program is automati-
cally obtained from a PTL program. Hence, PTL makes use of Prolog as trans-
formation engine. The encoding of PTL programs with Prolog is based on
a Prolog library for handling meta-models. In order to execute a transformation,
source models have to be stored in XMI format. Source models are loaded from
XMI files, and target models are obtained in XMI format. So, our approach can
be integrated with XMI-compliant tools. We have equipped our language with
debugging and tracing capabilities which help developers to detect program-
ming errors in PTL rules. Debugging detects PTL rules that cannot be applied
to source models, while tracing shows rules and source model elements used to
obtain a given target model element. The Prolog-based compiler, interpreter, de-
bugger and tracer of our PTL language have been developed under SWI-Prolog.
The source code of PTL can be downloaded from http://indalog.ual.es/mdd.

The structure of the paper is as follows. Section 2 will introduce PTL. Section 3
will describe the encoding of PTL with Prolog. Section 4 will give some details
about the PTL interpreter, debugger and tracer. Section 5 will review related
work. Finally, Section 6 will conclude and present future work.

2 Prolog-Based Transformation Language (PTL)

A PTL program consists of (a) meta-model definitions (source and target
meta-models), (b) mapping rules and (c) helpers. Meta-model definitions
define meta-model elements: class and roles together with typed attributes for
classes, and the cardinality of roles. Mapping rules have the form rule rule_name
from pointers where boolean_condition to objects. Helpers are defined by Pro-
log rules. The syntax of elements (a) and (b) is shown in Figure 1, where
mm_name, class_name, attribute_name, role_name, type_name, rule_name,
pointer_name and helper are user defined names and value can be any Boolean,
integer, string, etc. A mapping rule maps a set of objects of the source model into
a set of objects of the target model. The rule can be conditioned by a Boolean
condition, including equality (i.e. ==) and inequality (i.e. =\=), and the and
operator. The rule condition is marked with where. Objects of target models

http://indalog.ual.es/mdd


384 J.M. Almendros-Jiménez and L. Iribarne

metamodel := metamodel ’(’ mm_name ’[’ definitions ’]’ ’)’
definitions := definition | definition definitions
definition := class ’(’ class_name ’[’ attributes ’]’ ’)’ |

role ’(’ role_name ’,’ class_name ’,’ class_name ’,’ lower ’,’ upper ’)’
attributes := attribute | attribute ’,’ attributes
attribute := atttribute_name ’(’ type_name ’)’
rule := rule rule_name from pointers [where condition ] to objects
pointers := pointer | ‘(’ pointer,...,pointer ‘)’
condition := bcondition | condition and condition
bcondition := access == access | access =\= access
pointer := pointer_name : metamodel ! class
objects := object,...,object
object := pointer ‘(’ binding,...,binding ‘)’
access := value | pointer_name | pointer_name@attribute |

pointer_name@role@attribute | helper ‘(’ access,...,access ‘)’ |
resolveTemp‘(’ ‘(’ access,...,access ‘)’, pointer_name‘)’ |
sequence’(’‘[’access,...,access‘]’‘)’

binding := attribute <− access | role <− access

Fig. 1. PTL syntax

are defined assigning values to attributes and roles, and they can make use in
their definition of attribute and role values of the source models, together with
resolveTemp, helpers and the sequence construction. The resolveTemp function
permits to assign objects created by another rule. With this aim, resolveTemp
has as parameters the objects to which the rule is applied, and the name of the
object created by the rule.

2.1 Declarative Semantics of PTL

PTL has a declarative semantics whose basis is the encoding of PTL with logic
programming. The declarative semantics is based on the interpretation of meta-
models and PTL rules.

Assuming a set D of domain values partitioned into d domains d1, . . . , dd, then
a meta-model MM is a quadruple MM = (C,A,R,H) where C is
a set of class names c1, . . . , cn, A is a set attribute names, R is a set of role
names r1, . . . , rm and H is a set of helper names h1, . . . , hs; where each class
name ci has an associated set of attribute names atti1, . . . , attili ∈ A, where
li is the number of attributes of the class ci. In addition, role names rp have
a defined domain (respectively, range), denoted by domain(rp), (respectively,
range(rp)), which is a class name of C. Attributes and helpers have also a do-
main and range, where attij ∈ A has as domain ci and range some of element of
D; and hw : cw1 . . . cwt → cw(t+1) where wi ∈ {1, . . . , n}. Finally, roles rp have an
associated lower and upper cardinality, min(rp) ∈ IN and max(rp) ∈ IN ∪∞.

Now, a model M is a quintuple M = (CM,AM,RM,HM,OM), which in-
stantiates a meta-model, that is, it is an interpretation CM of the elements of C,
an interpretation AM of the elements of A, an interpretation RM of the elements
of R, and an interpretation HM of the elements of H, together with a domain
OM, which is a set of object names. CM is an interpretation of the class names
cM1 , . . . , cMn , which are disjoint subsets of OM. Roles are interpreted as a set of
(partial) functions rM1 , . . . , rMm from OM to subsets of OM, and attributes are
interpreted as a set of (partial) functions att<M,i>

j from OM to elements of D.
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(1) [| rule rn from ps where bc to os |]M = ∪{v∈C,(p,C)∈<<ps>>M,[|bc|]M
(p,v)

is true}[|os|]M
(p,v)

(2) << pn :MM !c >>M= (pn, cM) whenever c ∈ C of MM
(3) << (p1 , ..., pn) >>M= << p >>M
(4) [|bc1 and bc2 |]M(p,v)

if [|bc1 |]M(p,v)
and [|bc2 |]M(p,v)

then true else false
(5) [|ac1==ac2 |]M(p,v)

if [|ac1 |]M(p,v)
= [|ac2 |]M(p,v)

then true else false
(6) [|ac1= \ =ac2 |]M(p,v)

if [|ac1 |]M(p,v)
= [|ac2 |]M(p,v)

then false else true

(7) [|pn:MM !c(b1 , ..., bn)|]M
(p,v)

= M′ ∪1≤i≤n [|bi|]<M,o>

(p,v)
where M′ = ({cM

′}, {}, {}, {}, {o}),
cM

′
= {o} and o = gen_id(v, pn), whenever c ∈ C of MM

(8) [|o1 , ...,on |]M(p,v)
= ∪i=1,...,n[|oi|]M(p,v)

(9) [|v|]M
(p,v)

= v

(10) [|pi|]M(p,v)
= vi

(11) [|pi@att|]M
(p,v)

= attM(vi)

(12) [|pi@r@att|]M
(p,v)

= attM(rM(vi))

(13) [|h(ac1 , ...,acn)|]M
(p,v)

= hM([|ac1|]M(p,v)
, . . . , [|acn|]M(p,v)

)

(14) [|resolveTemp((ac1 , ...,acn), p)|]M
(p,v)

= o where ([|ac1|]M(p,v)
, . . . , [|acn|]M

(p,v)
) →P

p o

(15) [|sequence([ac1 , ...,acn ])|]M
(p,v)

= {[|ac1|]M(p,v)
, . . . , [|acn|]M

(p,v)
}

(16) [|att<−acc|]<M,o>

(p,v)
= M′, where M′ = ({}, {attM

′}, {}, {}, {}), attM
′
(o) = [|acc|]M

(p,v)

(17) [|r<−acc|]<M,o>

(p,v)
= M′, where M′ = ({}, {}, {rM′}, {}, {}), rM′

(o) = [|acc|]M
(p,v)

Fig. 2. Declarative Semantics of PTL

Finally helpers are interpreted as (partial) functions hMw : cMw1
. . . cMwt

→ cMw(t+1)

wi ∈ {1, . . . , n}.
Now, a model M conforms to MM whenever rMp (oi) ∈ cMj and min(rp) ≤

#rMp (oi) ≤ max(rp), for each rp ∈ R and oi ∈ cMi , where domain(rp) = ci and
range(rp) = cj ; and, in addition, att<M,i>

j (oi) ∈ dk whenever oi ∈ cMi where
ci = domain(attij) and range(attij) = dk.

Given two models M1 and M2 of a meta-model MM, we can build the
union of models as follows cM1∪M2 = cM1 ∪ cM2 for each c ∈ C of MM,
AM1∪M2 , RM1∪M2 and HM1∪M2 are the union of the graphs of each function,
and OM1∪M2 = OM1 ∪OM2 . Let us remark that the union of two models that
conform to a meta-model does not necessarily conform to the meta-model due
to cardinality restrictions. Model unions will be used in the definition of the
declarative semantics of PTL.

Now, we can provide declarative semantics to PTL as follows. Given a source
model M, a PTL program P with rules r1, . . . , rn, defines the target model M′ =
∪1≤i≤n[|ri|]M, where [|r|]M denotes the model obtained by r from M, which is
defined in Figure 2.

In Figure 2, the main cases are the following. Case (1) defines the semantics of
a PTL rule. The semantics is defined as the union of the target objects obtained
from bindings to source objects that satisfy the Boolean condition. Cases (2) and
(3) bind pointers to object names of the source model. Finally, case (7) creates the
target object and attribute and role bindings are obtained in cases (16) and (17).
The expression [|e|]M

(p,v)
where (p, v) ≡ (p1, v1), . . . , (pn, vn) denotes the value of

e in the model M, with respect to the assignments p1 → v1, . . . , pn → vn of
pointers to object names of the model M; the expression [|acc|]<M,o>

(p,v)
denotes the
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CourseStudent

DB_CoursesDB_Students

Fig. 3. Entity-relationship modeling of the Case Study

Fig. 4. Relational modeling of the Case Study

value of acc in the object o with respect to the assignments p1 → v1, . . . , pn → vn
in M; the expression (o1, . . . , ok) →P

p o, used in the resolveTemp definition (case
(14)), denotes that a sequence of object names (o1, . . . , ok), oi ∈ OM, 1 ≤ i ≤ k
that is transformed into the object o of pointer p with regard to P , that is,
there exists (rule rn from ps to obs) ∈ P , ps ≡ p1, . . . , pk such that o ∈ OM′

,
M′ = [|obs|]M

(p,o)
and gen_id(ō, p) = o; finally, gen_id is a bijective function that

takes n object names of M and a pointer p and returns a object name of M′.

2.2 Example of Transformation

Now, we would like to show an example of transformation. The model of Figure
3 represents the modeling of a database. We will call this kind of modeling as
“entity-relationship” modeling of a database in contrast to the model of Figure 4
which will be called “relational” modeling of a database. The entity-relationship
modeling of Figure 3 can be summarized as follows. Data are represented by
classes (i.e., Student and Course), including attributes; stores are defined for
each data (i.e., DB_Students and DB_Courses); relations are represented by
associations and relation names are association names. Besides, roles are defined
(i.e., the_students, the_courses, is_registered and register). Relationships can
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metamodel B

-name : String

-type : String

col

-name : String

-type : String

foreign

-name : String

-type : String

key

-name : String

row

-name : String

table

is_col

has_col

is_foreign

has_foreign

is_key

has_key

table

has

*

1

1

1

*

1

*

1

Fig. 5. Meta-model of the Source/Target Models

be adorned with qualifiers and navigability. Qualifiers are used to specify the
key attributes of each entity being foreign keys of the corresponding association.
Figure 4 shows the relational modeling of the same database. Tables are com-
posed of rows, and rows are composed of columns with three roles: cols, keys and
foreign keys. Figure 5 represents the meta-models of both types of modeling. In
the first case, DB_Students and DB_Courses are instances of the class store,
while Student and Course are instances of the class data, and the attributes of
Student class and Course class are instances of the class attribute. In the second
case, tables and rows of the target model are instances of the corresponding
classes, and the same can be said about key, col and foreign classes.

Now, the problem of model transformation is how to transform a class dia-
gram of the type A (like Figure 3) into a class diagram of type B (like Figure 4).
In other words, the PIM conceptual model is transformed into the PSM rela-
tional model. The transformation generates two tables called the_students and
the_courses each including three columns that are grouped into rows. The ta-
ble the_students includes for each student the attributes of Student of Figure 3.
The same can be said for the table the_courses. Given that the association be-
tween Student and Course is navigable from Student to Course, a table of pairs
is generated to represent the assignments of students to courses, using the reg-
isterCourse as name of the cited table. The columns registerCourseid_student
and registerCourseid_course taken from qualifiers, play the role of foreign keys
which are represented by role foreign in the associations of Figure 4.

2.3 Example in PTL

In PTL, meta-model definitions are given in order to define the transforma-
tion (see Figure 6 in the case of the source model). In addition mapping rules are
defined in PTL (see Figure 7). The rule table2_er2rl defines the tables and rows
obtained from navigable roles (in the case study, register and registerCourse). The
name of the table is the name of the role, and the name of the row is built from
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metamodel(er ,
[

class(data , [name ,container ]),
class(store , [name]),
class(attribute , [name ,type ,key]),
class(relation , [name]),
class(role , [name ,navigable ,min ,max]),
class(qualifier , [name ,type]),
role(contains ,store ,data ,"1" ,"1"),
role(contained_in ,data ,store ,"1" ,"1"),
role(attr_of ,data ,attribute ,"0" ,"*"),
role(is,attribute ,data ,"1" ,"1"),
role(has_role ,role ,relation ,"1" ,"1"),
role(is_role ,relation ,role ,"1" ,"*"),
role(has ,qualifier ,role ,"1" ,"1"),
role(is,role ,qualifier ,"0" ,"*"),
role(is_data ,role ,data ,"1" ,"1"),
role(role_of ,data ,role ,"1" ,"1")

]
).

Fig. 6. Source Metamodel

rule table2_er2rl from
p:er!role where (p@navigable ==true and p@max =="*") to
(t:rl!table(

name <- p@name ,
has <- r

),
r:rl!row(

name <- concat(p@name ,p@is_data@name),
table <-t,
is_foreign <- sequence ([ resolveTemp ((p@is ,p),f1),inverse_qualifier(p)])

)
).

rule foreign2_er2rl from
(p:er!qualifier ,q:er!role) where (p@has ==q and q@navigable ==false) to

(f2:rl!foreign(
name <-concat(concat(q@name ,q@is_data@name),p@name),
type <- p@type ,
has_foreign <- inverse_row(p)

)
).

Fig. 7. Examples of PTL Mapping Rules

inverse_row(A, E) :-
associationEnds(er, has , A, B),
associationEnds(er, has_role , B, C),
associationEnds(er, is_role , C, D),
role_navigable(er, D, true),
resolveTemp(D, r, E).

Fig. 8. Helpers

the concatenation of the name of the role, and the name of the role end. More-
over, we have to set the role ends from (to) tables to (from) rows (i.e., has and
table) together with the role is_foreign. The role is_foreign is a sequence of two
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role_id(er , A) :-role(er, A, [name(_), navigable(_), min(_), max(_)]).
data_container(er, A, B) :-data(er , A, [name(_), container(B)]).
attribute_type(er, A, B) :-attribute(er, A, [name(_), type(B), key(_)]).
qualifier_has(er, A, B) :-associationEnds(er , has , A, B).
relation_is_role(er, A, B) :-associationEnds(er, is_role , A, B).

Fig. 9. Prolog library

elements (registerCourseid_student and registerCourseid_course). For this rea-
son the sequence constructor is chosen. Besides, resolveTemp retrieves register-
Courseid_course, and a helper called inverse_qualifier is used for the retrieval of
registerCourseid_student. The rule foreign2_er2rl computes the foreign class reg-
isterCourseid_student, which is computed from roles and qualifiers which are not
navigable. The rule sets the role has_foreign with a helper called inverse_row,
which computes the row registerCourse.

Helpers can be defined with logic rules. For instance, in Figure 8 we can
see the definition of the helper inverse_row. Helpers can make use of the meta-
model Prolog library (see next Section) and the resolveTemp construction. It is
worth observing that helpers are defined with the following convention: we can
define helpers with several arguments, but the last one has to be the result of
the helper. In other words, predicates associated to helpers work as functions.
The previous convention requires that helpers in PTL mapping rules have n
arguments while code of helpers has n+ 1 arguments.

3 Encoding with Prolog

Now, we would like to show how PTL mapping rules are encoded with Prolog
rules. The schema of the encoding is as follows. Given a PTL mapping rule
of the form: rule rn from ps where bc to obs where obs ≡ object1, . . . , ob-
jectn, objecti ≡ pointeri(binding1, . . . , bindingk) and ps ≡ p1, . . . , pm, pj ≡ qj :
mmj !classj then the encoding is as follows:

(1) object(mmj , classj , V ar, V ars, enc[atts], qj) : −rn(V ars), enc[bind_att].

(2) associationObjects(mmj , rolep, V ar1, V ar2) : −rn(V ars), enc[rolep<−access].

(3) rn(V ars) : −enc[bc].

where bind_att is the subset of binding1, . . . , bindingk of bindings of the form
attribute <−access; expressions rolep<−access are each one of the remaining
bindings (p ∈ {1, ..., k}); and finally, the element enc[atts] is the encoding of
attributes, and the elements enc[bind_att], enc[rolep<−access] and enc[bc] are
the encoding of such expressions using the Prolog library for meta-models and
Prolog helpers.

The predicate object encodes the creation of objects of the target model. The
predicate associationObjects encodes the creation of links between objects of the
target model. There are rules object and associationObjects for each object and
each link created by one rule. Hence, one PTL mapping rule is encoded by a set
of Prolog rules, one rule for each object that is created, and one rule for each
role set by the rule.
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(1) object(rl , foreign , L, (A, B),[name(K), type(C)], f2) :-
foreign2_er2rl ((A, B)),
qualifier_type(er, A, C),
qualifier_name(er, A, I),
role_is_data(er , B, E),
data_name(er, E, G),
role_name(er, B, F),
concat(F, G, H),
concat(H, I, K),
gen_id ((A, B), f2 , L).

(2) associationObjects(rl, has_foreign , C, B) :-
foreign2_er2rl ((A, D)),
qualifier_id(er , A),
inverse_row(A, B),
object(rl, foreign , C, (A, D), _, f2).

(3) foreign2_er2rl ((A, B)) :-
qualifier_id(er , A),
role_id(er , B),
qualifier_has(er, A, B),
role_navigable(er, B, false).

Fig. 10. Encoded Rule

With respect to the Prolog library for handling meta-models, the Figure 9
contains (some of) the predicates generated to handle the er metamodel of Figure
6. We have three kinds of predicates: (a) those for accessing class attributes, for
instance, data_container and attribute_type, (b) those for accessing roles, for
instance, qualifier_has and relation_is_role, and (c) a special kind of predicates
that retrieve the identifier of a certain object (for instance, role_id). The first
and third kind of predicates call predicates representing class objects, which are
called as the class name, and they have as arguments: the name of the meta-
model, the object identifier and a Prolog list with the attributes: each attribute
is represented by a Prolog term of the form: attribute_name(value). The second
kind of predicates calls to a predicate called associationEnds, representing role
end objects. The associationEnds element has as arguments: the name of the
meta-model, the name of the role, and the identifiers of the role ends. In other
words, models are stored with Prolog facts.

The Prolog library for meta-models makes possible to encode PTL rules. For
instance, we can see in Figure 10 the encoding of the PTL rule foreign2_er2rl
of Figure 7. Finally, resolveTemp construction of PTL can be easily defined with
our encoding: resolveTemp(B, C, A) :- object(_, _, A, B, _, C).

The encoding has taken into account the declarative semantics defined for
PTL. The following theorem establishes the soundness and completeness of the
encoding (due to the lack of space we only provide an sketch of the proof). Given
a PTL program P we denote by IP (resp. OP) the input (resp. output) meta-
models of P , by enc(RP ) the encoding of the mapping rules of P , by enc(M)
the representation of the elements of M by Prolog facts, and by HP the rules
for helpers. Now, a model M satisfies HP if the interpretation HM coincides
with the logic consequences of HP ∪ enc(M).
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Theorem 1. Given a PTL program P, a model M that satisfies HP , and M′ =
∪1≤i≤n[|ri|]M, where r1, . . . , rn ≡ RP then o ∈ OM′

iff o is a logic consequence
of the program enc(RP) ∪HP ∪ enc(M).
Sketch of Proof:
The idea is to prove that (a) rn(v), (b) object(mm, cj, o, v, [att1(va1), . . . , attlj
(valj )], q) and (c) associationObjects(mm, r, o, o′) are logic consequences of the
program enc(RP ) ∪ enc(M) ∪ HP iff (a) v ∈ C, (p, C) ∈<< ps >>M and
[|bc|]M

(p,v)
is true; (b) o ∈ OM′

, o ∈ cM
′

j , att<M′,j>
i (o) = vai, 1 ≤ i ≤ lj, v →P

q o;

and (c) o′ ∈ rM
′
(o), respectively, where (rule rn from ps where bc to obs) ∈ P.

The conformance of M (resp. M′) to IP (resp. OP) is not required for this
result. In particular, in order to ensure the conformance of M′ we have to require
semantic conditions over the rules of RP and HP , and the conformance of M.
This result is out of the scope of this paper.

4 PTL Interpreter, Debugger and Tracer

Now, we would like to give some details about the PTL interpreter, debug-
ger and tracer (more details can be found in http://indalog.ual.es/mdd).
Firstly, we would like to show how a PTL program is executed from Pro-
log. A predicate ptl is called with the file name in which the PTL code
is included, that is: ?- ptl(’er2rl.ptl’). The ptl predicate automatically
generates the Prolog library of the meta-models defined in the PTL pro-
gram, it encodes PTL rules with Prolog rules, and it generates the target
models from the source models. In order to execute a particular transforma-
tion, we have to specify how source and target meta-models are defined in
terms of the MOF meta-meta-model. Hence a transformation is executed as
follows: ?- transform([’mm2er.ptl’,’er2rl.ptl’,’rl2mm.ptl’]). The full
code of the transformations mm2er, er2rl and rl2mm can be downloaded from
http://indalog.ual.es/mdd.

Debugging is able to find rules that cannot be applied, and provides the
location in which the error is found. PTL mapping rules are not applied due to
Boolean conditions that are not satisfied and objects that cannot be created. A
Boolean condition is not satisfied whenever a certain equality or inequality is
false.

Let us suppose that the PTL rule table2_er2rl of Figure 7 includes p@name-
=="*" instead of p@max=="*". This is a typical programming error and it
cannot be detected by the compiler (i.e, the PTL program is well-typed and
syntactically correct). Now, we find that the target model is wrong. In such
a case we can query the debugger, obtaining:

?- debugging ([’mm2er.ptl ’,’er2rl.ptl ’,’rl2mm.ptl ’]).
Debugger: Rule Condition of: table2_er2rl cannot be satisfied.
Found error in: role_name

http://indalog.ual.es/mdd
http://indalog.ual.es/mdd
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The debugger shows the name of the PTL rule (i.e. table2_er2rl) that cannot
be applied and the error found (i.e. role_name). But the debugger can also
detect that target objects cannot be created, for instance, let us suppose that
we write p@navigable==false, instead of p@navigable==true then the debugger
answers:

?- debugging([’mm2er.ptl ’,’er2rl.ptl ’,’rl2mm.ptl ’]).
Debugger: Objects of: table2_er2rl cannot be created.
Found error in: resolveTemp

In this case the objects of the rule table2_er2rl cannot be created, and the
programming error comes from resolveTemp, because the call does not succeed.

However, we can find a programming error due to the opposite case: a certain
target model element is created but it is wrong. In such a case, we can trace from
the wrong target element to find the reason (i.e., applied rules and source model
elements) of the creation of such element. A target element can be created from
a missing Boolean condition.

Let us suppose that in rule foreign2_er2rl of Figure 7 we omit the Boolean
condition q@navigable==false. We review the target model and find a wrong
element: is_registeredStudentid_student. Now, we can trace the execution from
the XMI identifier of the wrong element, obtaining the applied rules are the XMI
ids of the source model elements as follows:

?- tracing([’mm2er.ptl ’,’er2rl.ptl ’,’rl2mm.ptl ’] , ’275284307 q275325284r2f2c ’).
Tracing the element: 275284307 q275325284r2f2c

Rule: foreign1_rl2mm
Element: foreign
Metamodel: rl
....
Element: property
Metamodel: mm
xmi:id is CrZGO_iGCkzsbhYY

5 Related Work

Logic programming based languages have already been explored in the context
of model engineering in some works. The Tefkat language [9,8] is a declarative
language whose syntax resembles a logic language with some differences (for in-
stance, it incorporates a forall construct for traversing models). VIATRA2 [1] is
a well-known language which has some features which make the proposal close to
our approach. Although the specification of model transformation is supported
by graph transformations, Prolog is adopted as a transformation engine. Thus
XMI models and rules are translated into a Prolog graph notation. Prolog has
been also used in the Model Manipulation Tool (MoMaT) [11] for representing
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and verifying models. In [5], they present a declarative approach for modeling
requirements (designs and patterns) which are encoded as Prolog predicates. A
search routine based on Prolog returns program fragments of the model imple-
mentation. Traceability and code generation are based on logic programming.
They use JTransformer, which is a logic-based query and transformation en-
gine for Java code, based on the Eclipse IDE. Logic programming based model
querying is studied in [4], in which logic-based facts represent meta-models. In
[10] they study a transformation mechanism for the EMF Ecore platform using
Prolog as rule-based mechanism. Prolog terms are used and predicates are used
for deconstructing and reconstructing a term of a model. In [2] the authors have
compared OCL and Prolog for querying UML models. They have found that
Prolog is faster when the execution time of queries is linear. Abductive logic pro-
gramming is used in [6] for reversible model transformations, in which changes
of the source model are computed from a given change of the target model.

Most of the quoted works make use of Prolog for representing meta-models and
model elements. The representation varies from one to another, but in essence
Prolog facts are used for representing model instances while rules are used for
representing transformations and constraints on models. In our case Prolog facts
are also used for representing model instances; however they are not directly
handled by the programmer given that they are automatically generated from
XMI files. Prolog rules are used as helpers in PTL but the main component of
PTL are mapping rules which are rules inspired by ATL.

6 Conclusions and Future Work

In this paper we have presented a model transformation language based on logic
programming. As future work, we could also extend debugging and tracing ca-
pabilities. For instance, we have considered tracing from the target model to the
source model; however, tracing from source model to target model would also be
possible and interesting. We would like also to improve the performance of our
system. The execution times we have obtained for small examples are satisfac-
tory. However, we would like to optimize Prolog code and Prolog representation,
for instance, storing Prolog facts in secondary memory for large models.
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Abstract. Do we have a vendor lock in? How many classes of a framework do
we extend in our code? These questions may be asked by software development
managers. In order to reveal such facts, a lot of effort is needed. We present the
Hypermodelling approach to build software cockpits and use it to reduce the ef-
fort. We show a cockpit for the variance of software that is reflecting facts about
the inheritance of types. We reveal a schematic cockpit view and evaluate the ef-
fort to implement it. Project managers can now use a cockpit to investigate soft-
ware variances more easily. This also enables easy investigations of dependencies
on frameworks. Important indicators about variance can now be investigated at a
central spot. This avoids costly, time-consuming and deep investigations in the
first place. Further research can reveal additional cockpits for other roles to cover
the whole development cycle. Furthermore, the reasonable effort to create such
cockpits enables the possibility to create different kinds of cockpits and evaluate
or compare the usage of those.

Keywords: hypermodelling, software dependency, project controlling.

1 Introduction

The complexity of software development is undoubted. Project managers face the prob-
lem to control the development process. In order to overcome this complexity, project
teams use issue tracking systems. Issue tracking systems enable the specification of de-
sired functionality or needed bug fixes [1]. Researchers come up with solutions, leverag-
ing Data Warehouse (DW) [2] technology to control the data of issue tracking systems
[3]. This enables managers to gain an overview by dashboards. This project control
dashboards, also called cockpits, contain key performance indicators and charts about
the project process.

Besides the issue tracking systems and their data, many challenges are faced within
the development of a system. Often parts of systems or whole systems themselves are
created by offshore development teams without having senior developers checking the
code quality. In case, the foreign code base is merged into the own repository, managers
want to know which frameworks the foreign code is depending on. Currently, programs
need to be parsed to extract information about framework usage. That consumes time
and effort and makes information mining inflexible and static. Furthermore, if you want
to see the dependencies in a clarified way (e.g. dependency counters, statistics), this is
hardly possible. Therefore, the code is currently often merged into a company’s repos-
itory without the needed investigations because the effort is too high. If the code needs
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to be altered at a later time, the box of Pandora is opened: Developers do not have the
necessary knowledge about the used frameworks. That missing knowledge is the main
problem to react accordingly. If a manager knows about such issues, he can take actions
to be ready for it. For instance, such actions can be to validate/check the contracted fea-
tures of the desired system for training purposes of the developers for the used frame-
works. Therefore, an easy way to control a minimum standard for taking over code
developed by an outsourcing company is needed. Currently, the software cockpit can-
not address this issue since it is just based on issue data that is not available in this
case. Furthermore, cockpits are not targeting at source code structure. Hence, software
engineering faces the challenge to provide efficient overviews of code structure.

In prior work, we presented Hypermodelling that utilizes DW technology for source
code inspections and shows that queries on code are is possible [4–6]. Our current
contribution is is: We evaluate the feasibility if Hypermodelling can be used to create
a cockpit as replacement for a code study that was done before manually and revealed
several indicators about inheritance [6]. We also meter the effort to build such a cock-
pit and show how we derived this cockpit systematically. Additionally, we present the
cockpit that we built in this paper online in a video.1 With our cockpit it is possible to
investigate the dependency on frameworks on various abstraction levels just with a few
clicks. This helps project managers to investigate foreign and own code more easily.
Furthermore, out of the whole effort to built this specific cockpit we can conclude that
Hypermodelling allows to build cockpits for code structure in a reasonable timeframe.

First, we describe the needed background about the Hypermodelling approach and
how we use it as basis to create a cockpit. Succeeding, we discuss a concrete cockpit
and evaluate its realization. We compare our work to related research, draw conclusions
and give an outlook to future work.

2 Background

Hypermodelling uses DW-technology for program analysis. A more detailed descrip-
tion is available in [4–6]. DW systems are an integrative component in business com-
puting [2]. They are used to assemble data of different sources together. The integrated
data is arranged into multi-dimensional data structures, i.e. so called cubes, which serve
as base for queries [2]. These queries allow aggregating different relations and hierar-
chies that occur in the data. For instance, revenues for a specific salesman in a specific
area can be computed for a given time period. Thereby, this query aggregates the re-
gion, the salesman and the time in relation to revenue indicators. Likewise, hierarchies
can be abstracted. For instance, the region of the salesman can be split into continents,
countries and counties and the aggregates are associated with the distinct revenues for
those. Likewise, this can be done for other hierarchies, like customer group, year, or
department. Generally, the idea is that different aggregations enable detailed investi-
gations. With Hypermodelling we introduce the idea that programming elements, like
annotations or classes, are similar to the data that is used within a DW. For instance,
classes are defined within a package hierarchy. Annotations are associated with classes

1 Http://hypermodelling.comVideo:http://www.youtube.com/

watch?v=6SSqpYRz 0w

Http://hypermodelling.com Video:http://www.youtube.com/watch?v=6SSqpYRz_0w.
Http://hypermodelling.com Video:http://www.youtube.com/watch?v=6SSqpYRz_0w.
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and their members. They are also defined in their own package. This is like the associ-
ation of a salesman to a region, time period, and revenues. The hierarchies in code are
similar to hierarchies of region or time. All together, we load source code into a DW and
realize the internal semantic associations as a DW cube. This enables us to built queries
on top of this cube and it creates the possibility to compute different aggregations for
code. For this paper, we combine cubes that are presented in our former work [4–6] and
built queries on it. The results of queries on this cube are the reports that we present in
this paper. Figure 1 gives an overview over the general structure. We extract program
structure and issues on code style into a relational database. From this the cubes are
filled. Next, queries on these cubes can be executed. Such queries are used to fill the
contents of the code cockpit that we present in this paper.

Fig. 1. From code to the cockpit

3 Software Variance Cockpit

First, we explain the variance of software with an UML class diagram. Then we go
into detail and discuss main indicators to investigate dependencies based on variance
indicators. Succeeding, we present a schematic view how a cockpit may look like.

3.1 Software Variance

Different aspects of software variance and viewpoints about the dependency are dis-
cussed in former work [6]. Therein, a detailed study about indicators that we present
and use in the following is done. Here, we briefly present relevant facts that reflect
properties of a software system and which we use in the cockpit. We describe the vari-
ance and indicators that are raised later, again. In order to reveal the diverse variance
viewpoints, we present demo called interfaces and methods to explain software variance
in the context of inheritance.

The class diagram in Figure 2 shows two types (NamedEntity class and the Clinic
interface) that get inherited by classes and are defined in the same package. We call the
types that are implemented or extended just supertypes and their children inheritors.
The inheritors occur in different packages for the interface and in the same package
for the class. Methods get overridden and additional methods are contributed in their
child types. Through overriding and addition, the defined standard by the supertypes
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Fig. 2. Variance explained with an UML class diagram

get varied in the children by different means. In the following, we describe diverse
indicators that can be computed out of this diagram.

Total Inheritors

Investigations have shown that the dependency on parent classes is problematic in cases
of software updates [6]. Therefore, one important indicator of software variance and the
dependency on libraries is the total amount of inherited types. The more types are in-
herited the more is the software coupled to the super classes or interfaces. Typically, the
types of libraries that are inherited are structured in a package hierarchy. This makes it
possible to investigate the dependency on a library just by investigating the dependency
on a package hierarchy. Therefore, the total amount of inherited types of a package de-
picts one degree of dependency on the package. If this package belongs to a library the
package dependency is a library dependency. When more types get inherited of a pack-
age the dependency is higher. An example that can be depicted from Figure 2: The total
amount of inheritors of the NamedEntity class is two; and the same goes for the clinic
class. In case we refer to the total variance of the org.springframework.samples.petclinic
package, the total amount is four. If we use the child package as discriminator, we can
compute the amount for that perspective, too. For instance, Pet and PetType is defined in
the same package and the total amount of inheritors that form the org.springframework.
samples.petclinic package is two. Due to the fact that both other types (SimpleJdbc-
Clinic and EntityManagerClinic) are defined in different packages the amount would
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be one for each package. This shows us that the amount of total inheritors and the vari-
ance differs from the viewpoint of the package wherein the children are defined. This is
important, because the packages that are depending on types of another package can be
depicted by numbers, reflecting the viewpoint. Hence, project managers can investigate
the amount/degree of dependency from a package to the supertypes of another package.

Distinct Inheritors

Similarly to measuring total inheritance, but from a different perspective, is the amount
of distinct inherited types. On the contrary to the total inherited types this number re-
flects the diversity of the inherited types. Thus, it answers the question: How many dif-
ferent types are inherited. If plenty of different types serve as parents the number grows.
So, taken Figure 2 as example, the distinct inheritance of the org.springframework.
samples.petclinic package is two, since only two different types are inherited. For the
Pet and PetType package it is one what is likewise the same for the two other types in
their own package. There, one type gets varied for each package.

Implementation Ratio

However, when we want to have an indicator that reflects the “intensity” of used types
we need another perspective. Thus, we introduce the indicator implementation ratio.
With it, we enable a more concrete comparison of distinct supertypes to the amount of
subclasses: The indicator enables to compare the amount of distinct types with the total
inherited types in one number. Since classes or interfaces that implement or extend other
types add commonly new functionality to the existing ones, also the original types get
varied. Therefore, we see figures of implementation ratio as one indicator to measure
the variance and dependency of supertypes. For all the shown types in Figure 2 the
implementation indicator of the org. springframework.samples.petclinic package for all
packages is computed as follows: The amount of inheritors of the package is four. The
distinct implemented supertypes are two. So we can compute 4/2=2 and see that the
indicator is two. Clearly, this can be, like all the other indicators before, computed for
the diverse packages.

The measure of the implementation ratio is useful to depict a standard variation.
A high or low value is a first indicator how intense supertypes are varied. When the
indicator has at a high value, we can conclude that the defined standard of the supertype
gets aligned a lot. This means that the same types are often implemented or extended.
Every time a type is used, it gets adapted to the specific application needs. This way,
developers have a starting point for further investigations to determine the types, re-
sponsible for high variance. This is especially useful, if varied supertypes are updated.
If supertypes with a high ratio get updated, many children are dependent on them. Thus,
it is recommendable to investigate how the children adjust the supertype to keep its fu-
ture version compatible to the inheritors. Furthermore, framework manufacturers can
use the ratio indicator to determine which types are mostly adapted. With that informa-
tion, they can investigate how developers vary the types. It is possible to depict if there
is a common use or functionality in the extending types. If so, this functionality can be
encapsulated into a new version of the supertype.
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Drill Down to Top Inherited Types

When a project is investigated the desire to drill down to concrete types raises regularly.
Investigators ask which specific types are inherited and how often. Therefore, this kind
of drilldown is interesting for investigations. First an investigator focuses an abstract
level of a package and then investigates the concrete inherited types. Therefore, a drill
down of inheritance variance is to look into the specific types that get inherited. For
example a parent package, like the org.springframework. samples.petclinic is corre-
lated with an implementing package, like the one containing the Pet and PetType, we
can compute which types get most inherited. Thus, it is just the total amount of in-
heritors (Section 2) for a specific package. The most inherited types are then the top
inherited types in that package.

Drill Down to Top Overwritten Methods

It is often interesting to determine the most common method names in inheritors. This
knowledge is important to see first, if there are similarities and second to have the possi-
bility to compare it with the original methods in the supertype. Through the inspection
of the amount of used method names in children, conclusions can be drawn how often
a method gets overridden. This way, estimations can be done about how much changes
in the supertype method may affect the children.

The more types inherit a type the more it is important in the implementation. For
instance, we can see that, logically, all methods defined in the Clinic superinterface
get implemented in clients. For the Pet supertype we can see that the original defined
methods do not get overridden in children and thus do not vary. However, we can depict
which other methods are added in children. This gets quite handy, when looking at
a larger number of children, to answer the question: Do many children override the
same methods or add methods with the same name?

3.2 A Schematic Cockpit Proposal

Out of the former described indicators, we formulate the arrangement of different ele-
ments for analysts. All the different variance stats are presented in Figure 3. The views
with the grey diamonds are recommended to be graphical to provide an easier overview
that is more eyes catching than pure tables. In general, we use principles of information
dashboard design [9] as far as they can be applied for our special case.

The Overview Part

The overview part shows an abstract overview and graphical visualization of the cur-
rently investigated package or project. The following numbers refer to the circled num-
bers in Figure 3 and Figure 4 that is following in Section 4. We refer here already to
Figure 4, because Figure 4 shows an actual implementation of Figure 3. This way, the
number’s description corresponds also to the numbers in Figure 4.

1. The package selection enables the user to select packages that he wants to explore.
He can select packages from the hierarchy to have a known navigation.
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Fig. 3. A Schematic Variance Exploration Cockpit

Fig. 4. The cockpit in action
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This selection serves the purpose to define the base that is investigated for
variance. All other views show facts about the package that is selected here. This
selection is the start of the exploration of a projects package hierarchy that
slices/discriminates all the other elements of the report.

2. The general stats show statistic data about the current selected package. How many
classes are in there, how many interfaces and how many method calls are occurring
in a package. The main reason to show these stats is to give the investigator an easy
overview to estimate the ”size” of the investigated package.

3. Here we see a graphical representation about the dependency on different and total
types of the current investigated package. There, the abstract level of packages is
shown and how many types of a package are inherited. We propose to use a pie or
spider-net chart to visualize the total and distinct dependency graphically.

4. Here the user can specify excluded packages. The reason that we see a necessity
to offer this view lies in our previous investigations [6]. There, we recognized that
standard packages are used often and the use density of one package covers the
usage of others. Therefore, users can just exclude dominant packages that contain
parents to gain a clearer view. All the different elements in the cockpit are filtered
to exclude those packages.

5. In order to show also other indicators, we recommend showing them additionally
to the variance issues that are related to the currently selected package. Such issues
can be successful or unsuccessful unit tests of the classes in the package or indi-
cators like code smells. Through the showing of the issues at the same time with
the dependency on parent packages, managers can see correlations between issues
and used parent packages at the same time. For example, when a certain package
is used a certain style issue seems to be occurring with a high amount. When this
thesis is formulated it can be the beginning of an in-detail analysis.

6. The implementation ratio of the current selected package (view 1) is shown with
a graphical visualization. Through this, a direct excelling rate can be determined
easily. So when the rate is low or high, is can be instantly perceived to decide if
another package should be investigated.

The Drill Down Part

This part shows the details about the inheritance and presents specific types, packages
and methods to the user. It is the part where the user can get into details.

1. We show the packages from where the supertypes origin. The user can drill down
into the package hierarchy of the supertypes. When this drill down is done the de-
pending shown measures, are updated. For instance the dependency on the distinct
types (view 3) is now computed for the selected packages.

2. When a package is clicked (in view 7), also view 8 is adjusted. In this view we show
the top parent types that are inherited from this package. This way, users can select
a project and then explore which packages are the most original and then drill down
into the parent packages hierarchy and into the concrete parent types.

3. Like in the case of packages and the drill down to types, this is also a drill down. In
view 8 a type can be clicked and then the top method names in children get listed in
this view. Thereby, the total occurrence of this method name is shown. This way, it
is easily to see which method names are very common in the selected package (1).
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4. However, in view 9 users have the possibility to see the method occurrence in the
selected package. The visualization in 10 gives the users the opportunity to see
the amount of methods of the currently selected supertype (selected in 8) in other
packages. Users can easily see which other packages could be interesting for inves-
tigations about the same type. Most likely if other packages have a high amount of
methods for the children of that type, the other packages share a huge variance, too.

4 Application Evaluation

In order to evaluate our approach to provide a dashboard for the inspection of software
variance we evaluate the feasibility through a demo application. We answer the question
how much effort is needed to realize a cockpit based on the Hypermodelling approach.
Furthermore, we overcome the necessity to create queries and provide a flexible real
world solution and not to stick to a schematic ivory tower. Our cockpit can serve addi-
tionally for further investigations of software variance. In the following, we first line out
the necessary effort to build the cockpit based on the Hypermodelling approach. Then,
we give a brief overview about the implementation that reflects the schematic overview
in Figure 3.

4.1 Realization Evaluation

For the realization, we used the following approach: First, a description, similar to the
one in section 3 was made. We used a schematic picture similar to Figure 3 and a de-
tailed explanation what different elements should represent to provide a holistic goal.
Then, we gave this description, plus a DW that was already filled with source code and
the associated queries for the diverse elements to a reporting specialist with the task to
create the cockpit. The specialist was experienced with the used reporting technology2

and worked in that field for five years. Within 10 hours the specialist realized a first ver-
sion of the cockpit that contained fixed queries. Fixed means that the queries could not
be altered and the view was not dynamic and showed a report without selectable ele-
ments. Out of this first version, we adjusted and specified in detail requirements. Those
requirements how the cockpit should look and behave were precise and well formulated
and given to the specialist. This iteration was done 4 times and every time new require-
ments about behavior were added. For instance, first we defined which elements should
be parameterizable and change dynamically. Then, we defined different selectable ele-
ments and so on. In the last iteration, the loading time of the cockpit came in focus.
It took five minutes with automatically generated queries on an Windows 7 pc with an
Intel code 2 duo with 4 GB RAM. In order to fix this performance issue the expert
rewrote two queries of the cockpit manually, what reduced the loading of the cock-
pit down to acceptable 11 seconds. In order to achieve this performance increase only
a small optimization to exclude empty values was applied. Therefore, even further tun-
ing is possible. This way, we recognized that performance tunings are no real issues
with a query based approach.

2 We used Microsoft Analysis Services and the SQL Server 2008 R2.
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All together, including the first fixed version the specialist needed about 80 hours
to create the demo cockpit. All over, it needs to be mentioned that the specialist is
normally focused on more simple and business related reports and needed to look up
a lot of information for the complexity of the cockpit and its possibilities within that
time. Additionally, the cockpit was built after his normal working hours. Thus, we can
estimate that with a main working task and the complete knowledge about the used
reporting technology the cockpit would have been built much faster. Therefore, we see
indications that cockpits for the internal code structure can be created within reasonable
time and effort.

4.2 Cockpit Usage

We show the cockpit in Figure 4. The numbering of the various elements corresponds to
the schematic view in Figure 2. All the various parameters that are defined in the report
can also be selected through URL parameters, when accessing the report. This has the
advantage that when something of interest is discovered, the current looking report can
be just linked and send to another person. Then, the other person has completely the
same view and can go into further investigations. Also when an interesting issue is
revealed various export formats give the possibility to use the export for presentations
or archival reasons.

We see that the user can select a package for which the various stats are displayed
(1). This is done via a parameter that can, as described before, also be specified via
the URL. When the parameter is altered the whole report changes and shows the new
specified package. The project stats (2) refer to the current package. Currently, it shows
the amount of types (classes and interfaces) and their members (methods and fields).
The different dependency types (total and distinct) are visualized via pie charts to give
a quick graphical insight (3). In order to support estimations if there may be correlations
of style issues and the dependency of packages, the problem bars (5) show the amount of
detected issues. The speed indicator (6) allows gaining a quick overview of the variance
of the selected package to the whole investigated project. All together, the whole charts
can be sliced by excluding packages that contain parent types (4) to avoid a dominance
of certain packages.

In (7) we offer a drill down into the parent packages. Depending on this selection the
top parent types get shown in 8. Also, the dependency within 3 is adjusted. So, if the
user starts to explore a specific package contain parent types he can explore this kind of
hierarchy.

When a specific top inherited type is selected the most common method names are
presented in 9. Additionally, the distribution chart in 10 shows the occurrence of meth-
ods in children in all the packages. Through this chart the user can quickly gain an
insight if the current package that is investigated alters the selected type more than
others.

5 Related Work

Soft-Pits focus on software cockpits for issue tracking systems [3]. More detailed in-
dustrial applications and empirical evaluations indicate further benefits of a software
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cockpit [7]. Our cockpit approach differs since it is not only based on data out of issue
tracking systems. Furthermore, our cockpit enables a direct viewpoint on code structure.
Through the empirical studies we are certain that our cockpit would also be considered
useful. We see our cockpit as an implementation for a specific role: the role of a code
analyst. Thus, generally, we do not see other research as competitive, rather we see it
as supplemental and propose to do further investigations about synergies between the
different approaches and results.

Storing source code in databases [8] describes code queries with a logic program-
ming language. The source code is stored in a relational database and queries in the
logic language are translated into SQL queries. This can be seen as related because re-
lational databases can be queried, too. Hypermodelling uses DW technology to do the
query and the relational model is just used to be the source for the cubes. Therefore, it
was very efficiently possible to create a report for the software dependency, because a
whole DW toolbox could be used. With normal databases the report would have had to
be programmed by hand.

Semmle code3 is a source analysis and investigation tool. It offers a query interface
to investigate source code and its associated elements within the development environ-
ment. Thereby result presentations like heat maps as addition to traditional pie charts
are possible. Our cockpit differs, because it is based on the DW technology and focuses
on the efficient investigation of certain use cases. But generally, the visualizations of-
fered by Semmle should be evaluated if they can be a useful contribution for a software
cockpit.

The IBM Rational Team Concert (RTC) tools4 provide dashboards for projects with
a set of predefined widgets, allowing monitoring of the ’health’ of a project. The main
difference to our proposed cockpits is that we focus on queries for the source code struc-
ture and RTC cockpits show mostly project statistics out of issue tracking. Therefore,
we see possible synergies for further research in extending the RTC dashboards with
Hypermodelling based ones.

We investigate different factors about inheritance already in prior work [6]. There, we
inspect inheritance with manual queries and derive the indicators that we use within the
cockpit of the current paper. Therefore, this paper advances prior research by creating a
cockpit on top or the prior derived queries and indicators.

Finally, our presented cockpit origins “traditional” DW applications. In the area of
DW cockpits are used to give a management overview about business indicators and
offer analysts and managers easy possibilities to gain quick insights about the company
performance [2]. Therefore, deeper comparisons about best practices in this area can
reveal how to create better cockpits for software.

6 Conclusions and Further Work

We described the business case about the difficulties to investigate source code for de-
pendencies on frameworks. A brief description of the Hypermodelling approach was

3 http://semmle.com
4 https://jazz.net/products/rational-team-concert/

http://semmle.com
 https://jazz.net/products/rational-team-concert/
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given. The diverse indicators of software variance that express inheritance dependen-
cies were described. We presented a schematic overview integrating these indicators and
their relation together. We evaluated the feasibility through an implementation. Thereby,
we figured out that this kind of cockpits can be built with reasonable effort and within
a reasonable time range. Related research showed indications that code cockpits are
valuable in real world projects and supported our idea. Now, audits about the depen-
dency and standard variation of software can be done easily. Our contribution enables
further research about different cockpits for various roles about the internal structure of
code.

However, in this paper we presented a cockpit that describes the dependency mainly
on inheritance mechanisms of object oriented programming. Also other mechanisms are
available that are used to couple artifacts in a program together Therefore, we see the
necessity to investigate which kind of other dependency mechanisms exist and integrate
them in a future version of the cockpit.

Furthermore, our cockpit shows that it is generally possible to create a cockpit, visu-
alizing relations in the code structure through ”traditional” management charts. Further
research should focus on studies about the application of cockpits in real world scenar-
ios. First, we see the necessity to investigate how and by whom exactly the cockpit is
used. This can lead to further application business cases for our cockpit. Additionally,
we are working towards real world evaluations within development projects. The goal is
hereby to come up with case studies and adjust the cockpit to specific developer needs.

Another trail of research is to create further cockpits about the code structure to
enable advanced project management support. This way, we see further research to
identify further cockpits within diverse areas of development. For instance, developer
or management centric dashboards can also be developed. As a first step, we plan to
work together with enterprises to reveal the most desired cockpits and the information
that should be shown in them. This way, we are certain that code cockpits can enable
advanced software project management support in the future.

Acknowledgement. Thanks go to Gunter Saake, Veit Köppen, Manuela Fath and the
anonymous reviewers for their comments and help on earlier drafts of this paper.
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Abstract. When programmers write new code, they are often interested in find-
ing definitions of functions, existing, working fragments with the same or similar
functionality, and reusing as much of that code as possible. Short fragments that
are often returned by search engines as results to user queries do not give enough
information to help programmers determine how to reuse them. Understanding
code and determining how to use it, is a manual and time-consuming process.
In general, programmers want to find initial points such as relevant functions.
They want to easily understand how the functions are used and see the sequence
of function invocations in order to understand how concepts are implemented.
Our main goal is to enable programmers to find relevant functions to query terms
and their usages. In our approach, identifying popular fragments is inspired by
PageRank algorithm, where the “popularity” of a function is determined by how
many functions call it. We designed a model based on the vector space model
by which we are able to establish relevance among facts which content contains
terms that match programmer’s queries. The result is an ordered list of relevant
functions that reflects the associations between concepts in the functions and
a programmer’s query.

Keywords: search, source code, reuse, pagerank, ranking, functional
dependencies.

1 Introduction

Software development is one of the most creative things a human can do. Every day,
a programmer needs to answer several questions for the purpose of finding solutions
and making decisions. It requires the integration of different kinds of project (software
system) information, as well as, it depends on the programmer’s knowledge, experi-
ence, skills and inference. The information retrieval is a key area to obtain success on
reuse initiatives. ”To reuse a software component, you first have to find it” [14]. There
were several studies conducted to find out how programmers comprehend software sys-
tems and what information they need to know about source code [11]. The studies deal
with identifying and analysing motivations, strategies, and goals, which developers have
when they search in source code. In [12] authors summarize a list of motivations (search
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forms) for code search. Even though several search forms are used in code search en-
gines, there is still room for innovations.

The structure of code is not conducive to being read in a sequential style. In general,
programmers read code selectively. They identify parts of the source relevant to the tar-
get task. For example, programmers are looking for the usage of an existing piece of
code, the implementation of some functionality or code with some properties (patterns).
Empirical studies indicate that 40 % to 60 % of source code is reusable within one ap-
plication and only 15 % is unique to a specific application [10]. However in software
engineering there is necessity to adopt systematic reuse code. It requires instruments
which facilitate reuse such as source code search tools. The good source code search
tool encourages access to the existing code instead of creating new one. The developer’s
motivation and goals for searches indicate certain functionality, which is required in
such search tools.

In general, the process of identifying the parts of the source code that correspond to
a specific functionality is called concept/feature location, i.e., the aim of the process of
concept location is to find the source code that implements these concepts. The input to
the concept location process is a description of a problem (a change task) expressed in
natural language and the output is a set of software components (elements) that imple-
ment or address the concept. However, there is a difficulty that the input and the output
are in different levels of abstraction, i.e., the input is formulated in nutural language
(domain level) and the output is the source code (implementation level). Therefore,
considerable knowledge is required to translate from one level to another.

The complexity and significance of the concept location process increases with the
size of the software system. The aim of the methods for concept location is to reduce
the search space which the programmer needs to investigate (explore). One common
way of various approaches is a decomposition of the source code into units, such as
classes and functions (methods) which are enriched with additional information (e.g.
relationships between elements of the source code).

Understanding code and determining how to use it is a manual and time-consuming
process. In general, programmers try to find initial points such as relevant functions
(methods in object oriented parlance). They want to easily understand how the func-
tions are used and see the sequence of function invocations in order to understand
how some concepts are implemented [11]. When programmers learn about a program
(source code), the control flow (execution of function calls) needs to be followed. It
means successive jumping from one function to another.

A code query helps to identify locations of interest in the source code. There ex-
ist many developer tools and environments that facilitate a developers’ work. Short
code fragments, which are returned to a programmer’s query in current programming
environments, do not provide enough ”background” to help them how to reuse the frag-
ments, and programmers usually have to invest considerable effort to understand how
to reuse the fragments. When programmers write new code, they are often interested in
finding definitions of functions, existing, working fragments, with the same or similar
functionality and reusing as much of that code as possible. It is important that search
engines support programmers in finding answers to similar questions and issues.
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The most commonly used tools for code queries such as grep are based on purely
text-based pattern matching. Even the present development environments, such as Eclip-
se and Visual Studio, require a great deal of learning effort. When solving a task, pro-
grammers usually have particular questions in their mind, such as ”Who implements this
interface or these abstract methods?” [11]. Such question often cannot be answered
directly using existing functionality offered by development environments. Even if
a particular conceptual query is directly supported, beginning programmers are not
often familiar with their development environment, i.e., they are not yet aware of the
integrated support features. For example, even though there is a feature ”Find refe-
rences...” in a context menu of Eclipse and we can easily answer to the query such
as ”Where is this method called”, novice programmers still need to be aware that the
feature - hidden in the context menu - is what they are looking for.

Keyword-based code search tools face the problem of low precision on their results
due to the fact that a single word of the programmer’s query may not match the desired
functionality. It is because no source code content is analyzed or the programmer’s
needs are not clearly represented in the query.

Our main goal is to enable programmers to find relevant functions to query terms and
their usages. In our approach, identifying popular fragments is inspired by PageRank
algorithm, where the “popularity” of a function is determined by how many functions
call it. We designed a model based on the vector space model, by which we are able
to establish relevance among facts which content contains terms that match program-
mer’s queries directly. The result is an ordered list of relevant functions that reflects the
associations between concepts in the functions and the programmer’s query.

This paper is structured as follows. The second section provides an overview of re-
lated work. The third section presents processing of the source code repository. In the
Section 4, searching for relevant functions is presented. Finally, an evaluation is out-
lined in the Section 5.

2 Related Work

Current source code search engines are based on information retrieval approaches.
Currently, text-based information retrieval systems are successfully used to locate rele-
vant documents. Extraction of keywords from comments, names of functions and vari-
ables were often sufficient for finding reusable routines [5]. However, these source code
search engines process code as plain text and extracted keywords have unknown seman-
tics. In other words, the search engine compares query keywords to the names of the
objects and retrieves matches. It is the most simplistic approach, which does not take
into account additional information such as dependencies among objects.

Programs contain functional abstractions, which provide an essential level for code
reusing. In other words, programmers define functions once and call them from different
places in code. Approaches using functional abstractions to improve code search was
proposed in [6,9]. However, these code search engines do not analyse how functions are
used in the context of other functions, despite the fact that understanding the sequence
of function invocations is one of the important questions that programmers ask [11].

Some approaches are based on programmer’s query refinement. In [13] authors
present approach, where queries and restrictions can be formulated in natural language,
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for example, ”Give me details about the bidding process”. The presented approach
is based on the use of domain models containing the objectives, processes, actions,
actors and an ontology of domain terms, their definitions, and relationships with other
domain-specific terms.

In [15] is presented an approach (CodeBroker) based on tracking what the program-
mer was doing. Instead of waiting for programmers to explore the reuse source code
repository by using explicit queries, information delivery autonomously locates and
presents components (code fragments) by using the programmers’ partially written pro-
grams as implicit queries. Presented tool does the similarity analysis between compo-
nents based on a concept similarity or constraint compatibility. The concept similarity
is identified based on comments in the source code. A constraint similarity is identified
based on the function (method) signatures. It further refines the query with inputs from
the programmer.

An approach presented in [4] is based on using learning techniques. Authors focus on
the task of searching for software in large, complex, and continuously growing libraries.
They introduce the concept of active browsing, where an active agent tries to infer
programmers’ intentions and advise them.

CodeFinder presented in [7] is a tool which uses a query browser to help the pro-
grammer construct queries that can be sent to the repository. This helps the program-
mer make more effective queries. The tool is able to craft the query in a way that can be
best used by the source code repository. CodeFinder is based on Spreading Activation
algorithm to search sample source code. The advantage of CodeFinder is that it helps
the programmer refine and reformulate the query. However, as the repository of sample
code increases, Spreading Activation may provide some unrelated results.

Sourcerer [1] is a search engine for open source code that extracts fine-grained struc-
tural information from the code as a search basis. This information is used to enable
search forms that go beyond conventional keyword-based searches.

Codifier [2] is a programmer-centric search interface (tool), which enable program-
mers to ask specific questions related to programming languages. It is based on index-
ing source code using modified compilers (C, C++, C#, VBScript) to extract lexical and
syntactic metadata.

Although the mentioned tools are promising, they do not seem to leverage the various
complex relationships which are presented in the source code and therefore have limited
features. Developers have to spend considerable time by tracking relationships and the
tools do not help them effectively organize the presentation of the relationships.

Our proposed method consists of two phases, namely processing of the source code
repository and searching for relevant functions given a programmer’s query.

3 Processing of the Source Code Repository

There are two main elements in the phase of the processing of the source code repos-
itory, namely an index creator and a function graph creator (see Figure 1). The index
creator (A1) creates a document index and a term index (A2) from the source code
repository. The purpose of the index creator is to enable to retrieve relevant functions
based on matches between terms in programmer’s queries and terms in the source code
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files. The function graph creator (B1) creates a directed graph of functional dependen-
cies (B2). The PageRank process (C) is run on the directed graph of functional de-
pendencies, and it calculates a rank vector, in which every element is a score for each
function in the graph.

Fig. 1. Processing of the source code repository

3.1 Index Creator

The index creator creates indexes (document and term indexes) from all source code
files (documents D) of projects in the repository. The creator uses the vector space
model which is used by search engines to rank matching documents according to their
relevance to a search query. By using our parser, from each document d ∈ D, terms t
are extracted from comments, names of functions and identifiers. For each term t, NLP
(natural language processing) techniques, such as stemming and identifier splitting, are
applied. Each document d is modeled as a vector of terms which occur in that document.

For storing the indexes, we have adopted the distributed database management sys-
tem Apache Cassandra1. It is a highly scalable, distributed and structured key-value
store with efficient disk access. It is a hybrid between column-oriented DBMS and
row-oriented store. Cassandra was especially designed to handle very large amounts of
data. The created document index is structured as follows:

Document Document ID Term Term . . .
d1 d1ID tID|T FtID,d1 tID |TFtID,d1 . . .
. . . . . . . . . . . . . . .
dm dmID tID | T FtID,dm

tID |T FtID,dm
. . .

where for each j = 1, . . . ,m (m = |D| is the total number of documents), each row
d j contains a unique document identifier d jID ; a list of pairs such that tID is a unique

1 Apache Cassandra: http://cassandra.apache.org/

 http://cassandra.apache.org/
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identifier of a term which occurs in d j and T Fti ,dID is a calculated term frequency value
for tID and corresponding d j.

The created term index is structured as follows:

Term Term ID IDF Count Document Document . . .
t1 t1ID IDFt1 |dt1 | dID dID . . .
. . . . . . . . . . . . . . . . . . . . .
tn tnID IDFtn |dtn | dID dID . . .

where for each i = 1, . . . n, (n is the total number of extracted terms), each row ti
contains a unique term identifier tiID ; calculated inverse document frequency value IDFti
(for calculation see below); the number of documents where the term ti occurs |dti |; and
a list of document identifiers dID in which ti occurs.

Term frequency (TFi, j) for term ti and document d j is calculated as follows:

T Fi. j =
ni. j

∑k nk, j
, (1)

where ni, j is the number of occurrences of the term ti in the document d j and ∑k nk, j is
the sum of all occurrences of terms nk in the document d j.
Inverse document frequency (IDFi) for term ti is calculated as follows:

IDFi = log
|D|+ 1

|{d|ti ∈ d}| , (2)

where |D| the total number of documents in the corpus and |{d|ti ∈ d}| is the number
of documents where the term ti occurs. The corpus represents the set of all source code
files (documents) of all projects in the repository.

The TF/IDFi, j for term ti and document d j is calculated as follows:

TF/IDFi. j = T Fi, j× IDFi . (3)

3.2 Function Graph Creator

The purpose of the function graph creator is to construct a directed graph of functional
dependencies. Nodes represent functions names (full signature of functions). A directed
edge from the function F to the function Gis created if the function G is invoked in
the function F . In object-oriented programming languages, such as Java, C# or C++,
there are problems, for example, with polymorphism, inheritance and method over-
loading. For solving this problem we use intermediate representation of source code,
i.e., an abstract syntax tree (AST) and control flow graph (CFG) obtained from AST.
The AST structures provide such information as nodes representing class definitions,
member declarations, function (method) definitions, variable declarations, initialization
and assignment statements, and method invocation statements. This allows us clearly to
identify method invocations.

The algorithm of creating the graph of functional dependencies by using our parser
and AST is as follows:
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1. From a document d (source code file), obtain full signature of a defined function f.
2. From the full signature of the function, create unique identifier Fn using function

invocation statement obtained from AST.
3. If there do not exist a node called Fn, create a new node called Fn.

4. For each function g which is invoked in the function f :
(a) Execute step 2 and then 3.
(b) Create a directed edge from the node representing the function f to the node

representing the function g.
5. If there is an unprocessed function in the document d,execute step 1.
6. If there is an unprocessed document in the repository, select this document and

execute step 1.

3.3 Ranking Functional Dependencies

For ranking of the functional dependencies, we use the PageRank algorithm. Using the
PageRank, we are able to determine the “popularity” of a function. The PageRank of
a function is defined recursively and depends on how many functions call (invoke) it.
The rank value indicates importance of a particular function. On the other hand, follow-
ing functional dependencies help programmers to understand how to use found func-
tions, i.e. they can see and trace the sequence of function invocations.

The formula for PageRank of a function fi, denoted r( fi), is the sum of the Page-
Ranks of all functions that invoke fi:

r( fi) = ∑ f j∈Tfi

r( f j)

| f j|
, (4)

where Tfi is the set of functions that invoke fi and | f j | is the number of functions that
the function f j invokes. It is applied iteratively starting with r0( fi) = 1/n, where n is the
number of functions. The algorithm is repeated until the PageRank score converges to
some stable values or it is terminated after some number of iterations. Functions called
from many other functions, have a significantly higher PageRank score than those that
are used infrequently.

4 Searching for Relevant Functions

The search phase (illustrated in Figure 2) enables programmers to find relevant func-
tions to query terms and subsequently to trace their usages. Searching consists of three
main steps. First, (top) relevant documents are retrieved based on a similarity sim(d j,q)
between documents (source code files) and programmer’s query q. Second, each docu-
ment d j is divided into subdocuments, where each one contains only one definition
of a function Fn contained in the “parent” document d j. For each subdocument d jk,
a similarity sim(d jk,q) to the query q is calculated. Finally, an ordered list of relevant
functions is obtained so that, for each function Fn(Fn ∈ d j), a final score sc(Fn,q) is
calculated as the sum of the similarities and a PageRank score pr(Fn).
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Fig. 2. Searching for relevant functions

4.1 Retrieving Relevant Documents

When a programmer enters a query (1), for each query term wi, the NLP techniques
are applied and subsequently a list of (top) relevant documents (source code files) is
retrieved (2). The list contains documents, where at least one query term occurs in each
document. A similarity (3) between two documents (query q and a relevant document
d j) is calculated (4) using the cosine similarity (distance) as follows:

sim(da,db) =
da.db

‖da‖‖db‖
, (5)

where da,db are document vectors. Elements of the vectors are pre-calculated TF/IDF
weights.

4.2 Subdocument Processing

1. Each retrieved relevant document is divided into subdocuments, where each one
contains only one definition of a function with surrounded comments (if any).

2. From each subdocument, terms are extracted from comments, function name and
identifiers.

3. For the extracted terms, TF/IDF weights are calculated (a subdocument vector).
4. For each subdocument d jk, the cosine similarity (5) to the programmer’s query q(6)

is calculated.

4.3 Ranking of the Relevant Functions

1. From the relevant (sub)documents, unique identifiers Fn are created using function
invocation statements obtained from AST.
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2. For each function Fn, a final score sc(Fn,q) is calculated as a sum of:
(a) a similarity sim(d j,q) between the document d j in which the function Fn is

defined (Fn ∈ d j) and the programmer’s query q (4);
(b) a similarity sim(d jk,q) between the subdocument d jk in which the function Fn

is defined (Fn ∈ d jk) and the programmer’s query q (6);
(c) a PageRank score pr(Fn) for the function Fn (7)(8) which represents ”global

popularity” of the function.

Based on our initial experiments we identified a problem with included support libraries
(in the project). Consider the following situation when a programmer wants to find a
function for compressing texture in the target project and she enters, for example, a
query ”compress, texture”. However, ”similar” function can be defined in a source code
of an included support library. Moreover, this function can be called from many other
functions defined in the library, too. In the case that a function for compressing texture
is directly defined in the project we want to prefer this function. We solve this problem
using weighting of functions of the supported libraries, i.e. we multiply their calculated
score by so-called damping factor δ = 0.5.

5 Evaluation and Conclusions

Typically, search engines are evaluated by experts whose task is to determine relevance
of the results for a given query. We implemented a plugin into Microsoft Visual Studio
which allows programmers to formulate a query and the result is an ordered list of rele-
vant code fragments retrieved by our method. To determine how effective our method is,
we conducted an experiment with 6 participants and 2 software projects, namely, AN-
NOR and The Green Game. These projects are written in C# programming language.
ANNOR is an application for automatic image annotation and The Green Game (TGG)
is a strategic computer game. Our goal was to evaluate how well these participants could
find code fragments that matched given tasks. We divided the participants into 2 groups
of 3 members (group#1, group#2) and we performed two experiments.

In the first experiment, we created a set of 6 change tasks, i.e., 3 tasks for each
project. These participants reformulated the target tasks into a sequence of words that
described concepts they needed to find. During performing the target tasks, the par-
ticipants were asked to use only the search engines, i.e., supporting tools, such as the
solution explorer and jumping, were prohibited.

The set of 6 change tasks, which we used in our experiment, is as follows:

1. Find the method for calculating a co-occurrence rank of obtained annotation and
change the damping factor to the value 0.3.

2. Find the method for loading an input image and add a log event if loading the image
fails.

3. Find the code fragment for extracting local features from training images and change
the sigma parameter to the value 0.45.

4. Find the code fragment for changing color of a selected object (building) and
change the current color to yellow.
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5. Find the method which starts playing background music automatically in main
menu and disable this feature.

6. Find the method for rendering a radial cursor and change the radius parameter to
the value 10.

The tasks 1-3 were specified for the ANNOR project (ANNORtasks) and the tasks 4-
6 were specified for the TGG project (TGGtasks). The goal of the participants of the
group#1 was to perform ANNORtasks using our search engine. The goal of the par-
ticipants of group#2 was to perform these change tasks using the built-in search en-
gine. Subsequently, on the contrary, the participants of group#1 were tasked to perform
TGGtasks using the built-in search engine and the participants of group#2 were tasked
to perform these change tasks using our search engine.

After performing these tasks, we compared the number of participants’ queries cre-
ated using our search engine and the built-in search engine. The average number of
participants’ queries is shown in Table 1. We can see that by using our search engine,
the participants had to make less effort for locating target code fragments (methods). It
is confirmed by the average number of created queries for the target change tasks.

Table 1. Comparing average number of participants’ queries

Search engine AVG number of queries
built-in search engine 5
our search engine 2

In the second experiment, we specified 2 implementation tasks. These tasks were
focused on reusing code fragments (methods) and they were formulated as follows:

1. ANNOR: Implement a tool for selecting rectangular area in the target image. Reuse
the tool for selecting irregular polygon area as much as possible.

2. The Green Game: Implement a module for rendering an elliptic cursor. Reuse func-
tionality for rendering the point cursor as much as possible.

The participants of group#1 were tasked to implement the first task using the built-in
search engine whereas the participants of group#2 were tasked to implement the first
task using our search engine. For implementing the second task, the participants of
group#1 used our search engine and the participants of group#2 used the built-in search
engine.

For each query, each participant evaluated relevance of the results. In other words,
once the participants obtained lists of code fragments which were ranked in descending
order, they examined these code fragments to determine if they matched the tasks. For
a query and for each obtained result, a level of confidence, such as completely/mostly
irrelevant, mostly/highly relevant, was assigned by the participant. Retrieved fragments
were evaluated as relevant only if they are ranked with the confidence levels mostly or
highly relevant, i.e., a retrieved code fragment is relevant to a task and the participant
can understand how to reuse it to solve the task or it can be reused directly.
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In our experiment, we used the precision metrics which reflects the accuracy of the
programmer’s search. The precision is the fraction of the top 5 ranked code fragments
which are relevant to the query. The precision P is calculated as follows:

P =
the number o f retrieved relevant code f ragments

the total number o f retrieved code f ragments
. (6)

Since we limited the number of retrieved code fragments to top 5, the recall was not
evaluated in this experiment.

The calculated average precision is shown in Table 2. It illustrates that search re-
sults, obtained using our search engine, were more relevant during performing the tasks
compared with the use of the built-in search engine.

Table 2. Comparing average precision of search results

Search engine AVG precision
built-in search engine 0.37
our search engine 0.64

Programmers often want to locate code fragments which are notable in a software
project. Such fragments may represent, for example, internal patterns which should be
used or reused during implementing certain functionality, and therefore they do not want
to implement their own solutions from beginning. Our approach is able to locate such
fragments, because in addition to the relevance of code fragments to a given query, our
method establishes “popularity” of code fragments, i.e., it prefers such code fragments
which support and motivate programmers in the process of reuse of existing solutions.

Our proposed method could be used in collaborative programming [3,8], too. For
example, programmers can annotate code fragments based on identifying their “popu-
larity” (among several projects). By adding new annotations to the source code such as
pattern/exemplar, good example, there could be improved orientation of the program-
mers in the code through disclosure of the current state. The programmers would be
able to see directly which parts of the code are interesting, stable or (often) reused.
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Abstract. Testing of component-based applications is important in order to en-
sure that third-party components do not compromise the functionality or proper-
ties of the whole system. However, thorough testing of functionality, behaviour
and extra-functional properties is a tedious and time consuming process. In this
paper we present an approach to discrete event simulation testing of compo-
nents and component sets. Its unique feature is the ability to execute a mixture of
real, implemented components and simulated mock-ups of the remaining parts of
the application. Together, this approach allows faster testing on a wide scale of
different inputs for tested components. At the same time, the use of actual com-
ponents increases the confidence in the simulation test results. The approach has
been implemented using the OSGi platform in the form of the SimCo framework
and toolset, for which the key architectural considerations are discussed together
with a short case study illustrating its usage.

Keywords: software component, testing, simulation, performance, OSGi.

1 Introduction

In computer science and software engineering, component based development is be-
coming more and more widespread due to maximized reusability of software and also
development simplified by using third party components. This tendency is more visible
with the expansion of mobile devices. In a mobile device environment, an application
obtained from a third party through an application repository like Apple’s AppStore can
be described as a component which is using the components provided by the device’s
OS and other applications.

Testing of such applications is very important in order to ensure that the third-party
application will not compromise the functionality or properties of the whole system.
Such testing often has to be performed by the maintainer of the application repository
and not only by the author of the application – the maintainer need not be responsible
for the proper functionality of the applications but should ensure that they are safe
and without performance problems for his clients. Therefore black box testing is one
of the important techniques in this field. Also, for this type of cases, extra-functional
properties are more important than the functional ones. However, preparing and exe-
cuting sufficiently thorough tests for large number of applications or components is
a challenging task from technical, process and time perspectives.
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In this paper, we are presenting a tool for testing real software components in
a simulated environment. Because performance of an application is not a simple product
of the performance of each component, we have designed our tool to be able to execute
tests not only on one component but also on an arbitrary set of components or on the
whole application. Using discrete event-based simulation and simulation components,
the tests on real components provide useful information about their real performance
and, at the same time, might be executed in a shorter time.

The rest of this paper is structured as follows. In Section 2 we review the founda-
tional ideas and research work related to component simulations. Section 3 provides
detailed description of the simulation tool and its internal components. Use of the
resulting approach is illustrated by two short case studies in Section 4, after which
a conclusion closes the paper.

2 Background on Component Testing and Simulation

In the component approach, the whole application can be created from a set of indi-
vidual software parts called components. They are considered to be black box entities,
with clear definition of its interface and functionality (sometimes called behaviour) but
without observable inner state [1] and knowledge of their inner working. Because all
communication within component application has to be performed only through defined
interfaces, no hidden dependencies should exist and thus it is easier to substitute one
component with another. Component model specifies how software components look,
behave and interact, while a component framework is an implementation of a specific
component model, providing the required infrastructural functionality.

The designer of a component application usually works with components stored in
a repository [11]. Often, the correctness of the functionality of stored components is
considered to be implied as they should be tested in a standard way by developers before
they are deployed into the repository. For the designer of an application, information
about both component’s interface features and performance or other extra-functional
properties might be useful. The latter information is often obtained by executing simu-
lation tests of the components, as e.g. in the Palladio approach [2–4].

Discrete event simulation is an often used method for simulation based testing or
system analysis. Each event contains a time stamp when it should occur in simulation
time and an action which shall be executed [8]. All events are handled by a calendar.
When the simulation is started, the calendar chooses the event with the earliest time
(the smallest value of the time stamp), sets simulation time to the time of the event and
performs the action of the event. Then, next event according to its time stamp is selected
from the calendar and executed and so on. Each event can cause the creation of one or
more new events, which are being added to the calendar [8].

In discrete event simulation, time between two events can be arbitrary long or short,
thus it allows using a fine division of time. However, it is advantageous mainly when
events are not abundant due to the overhead connected to event execution.

In the area of simulation testing in component oriented development, tools and frame-
works based on component simulation are commonly used. Their development began
before the year 2000 [9–11] but the research in this field continues till today [12–15].
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The frameworks are utilized either for general simulations (such as discrete event simu-
lation [12]) or are focused more specifically (such as simulation of computer networks
[14]).

Generally, the research of component-based simulations is focused on the relation-
ship between the simulated components and their composability while using a specific
framework [12, 13]. The effort to use components in a distributed computing environ-
ment is also very common [16–18]. Besides the focus on specific frameworks, there are
also attempts to create formalism for component-based simulations [17]. The variabi-
lity of such simulations in terms of application reconfiguration is often mentioned as
the most advantageous feature of component-based simulations [14].

Simulation testing of components is rarely focused on the functionality of compo-
nents, since their correct functionality is considered to be implied. Often, the main goal
of simulation tests is verification of quality of services (QoS) and extra-functional prop-
erties, as is described in [15, 20]. All tests of components are black-box tests with ex-
ception of self-testing (see [19] for example). Because distributed use of components is
often expected, there is a need to test them for this usage [21].

However, it is necessary to consider that the component’s functionality may not be
tested properly by its developer, or that black-box component of the third party might be
a security risk [21]. We therefore believe it is important to focus on testing of component
functionality as well as their suitability for different hardware configurations, as they
may be deployed on different devices.

Further, it should be noted that real components are rarely tested in simulation tools.
Instead, only their models are in the vast majority of approaches used for the simulation
purposes as e.g. in Palladio [2]. These models are often created using a static descrip-
tion, such as resource consumption, behaviour description, and so on [15, 20]. Specific
descriptive languages have been created for these purposes [4, 15]. Use of models in-
stead of real components brings the issue that the model may not accurately reflect the
component’s properties and that the results based on its usage cannot be reliably used
for reasoning about the components.

3 The SimCo Simulation Tool

One idea in using of components is to have them stored in repository as stand-alone
applications. This approach is used even in specific domains, e.g. the Openmatics por-
tal [22] where applications form repository are installed into hardware inside vehicles
and provide different kinds of functionality, such as position reporting, telemetry and
so on. Such components can be created by third party and it is important to test their
functionality, behaviour and extra-functional properties (like duration of computations
or amount of data flowing through a network interface) before they are offered to cus-
tomers through the repository, in order to ensure that they will not cause any undesir-
able effects. Black box test with using of simulation tool may provide convenient way
of testing.

Therefore, we designed SimCo simulation framework and toolset for testing of real,
implemented components in simulated environment. Its aim is to enable the use of
obtained results in comparing different components or applications, as well as for



SimCo – Hybrid Simulator for Testing of Component Based Applications 423

calibrating other simulation models such as Palladio. The remainder of this section de-
scribes the overall approach, technical and architectural design of the simulation frame-
work, and its usage.

3.1 General Approach

Components in real applications are expected to perform actions (such is an invoca-
tion of another’s component method) driven by internal component logic, user inputs or
external asynchronous events like sensor interrupts. In other words, the time between
these communication events is unpredictable, variable and can span long intervals in
real time (seconds or even minutes) which makes standard testing of such applications
complicated and time demanding or, alternatively, requires changes in tested compo-
nents or the environment to cause the events to occur more often

Also, we may assume that there will be relatively long periods of time when an
application component waits for the result of another component’s service. This time
slows down the testing process but the results of these services may be important for
the application functionality and control flow, especially when handling of extreme or
invalid values is being tested.

For both of these reasons we are using discrete event simulation which enables us
to (1) speed up the process of testing of components by means of quickly providing
pre-processed values through the simulation environment and performing the tests in
simulation time, and (2) have a way of creating complex simulation scenarios with a
wide range of inputs for components.

The main feature of our approach is however the use of hybrid simulation where
real components and simulated components are mixed during the testing of the whole
application. When the tests are focused only on a part of application or a single compo-
nent, the rest of the application can be replaced by mock-ups (simulated components)
which require a considerably lower amount of time for their execution. The tests will
nevertheless be performed on real components themselves without any changes to their
implementation. This is consistent with the black box understanding of components and
important since the results can be relied on (unlike the model-based approaches).

The simulation tool is designed to test especially extra-functional properties of com-
ponents, such as duration of computation or amount of data flowing through a network
interface. However, it can as well be used to verify standard functionality and state-
based behaviour.

3.2 Component Technologies Used

One of our aims is that the simulation framework itself be component-based (mainly
for extensibility reasons) and that the proposed methods be relevant to the current state
of the art component models. There are several industrial component models that were
consequently considered as good candidates for the framework implementation, and
the following frameworks were chosen since they provide a good balance between the
adherence to the principles of component-based programming and industrial relevance.
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The OSGi Framework and Its Implementation. The OSGi framework [5] describes
a dynamic component model and offers service platform for Java programming lan-
guage where component-based applications and components alone can be remotely in-
stalled, started, stopped, updated and uninstalled without requiring application restart
[6]. The OSGi framework is commonly used in many different industry areas such as
automotive industry, cell phones, portable devices, software development and so on [6].
For SimCo implementation, we use the Equinox OSGi implementation. OSGi com-
ponents (called bundles) communicate through services which are implementations of
specific interfaces. When a bundle is installed into the framework, its exported inter-
faces (services that are provided by the bundle) are registered, so other bundles may
ask framework for bundle providing these services. The registration of a service is done
directly in the code of the bundle, or by the Component Service Runtime for services
declaratively specified in the manifest.

Spring. The Spring framework [6] offers a variety of features to support the devel-
opment of enterprise-grade applications. The most characteristic features of the Spring
framework are inversion of control, aspect-oriented programming, data access, trans-
action management and remote access. Spring also offers easy configuration of class-
based elements called Spring beans as well as their dependencies through an XML
configuration file.

Spring Dynamic Modules. The Spring Dynamic Modules extension for OSGi ser-
vice platform enables the development of OSGi components using Spring framework.
Moreover, SpringDM improves manageability of the OSGi services. The main advan-
tage of using SpringDM is a transfer of bundle service dependencies from the code
of Java classes into XML configuration files. The code of the bundle is then easier to
develop and some changes in registered and used services can be performed only in
configuration files, without the need to change the source code of the bundle.

3.3 Structure of the Simulation Application in SimCo

As was stated above, in the simulation tool, real and simulated components are used
together. In order to provide the needed facilities for component testing and measure-
ments, the whole simulation is composed from four types of components: framework,
real, simulated, and intermediate ones.

The first type are framework components which constitute the SimCo simulation
core and provide supporting features. These components ensure the functionality of the
framework and also provide basic services necessary for the simulation. Among these
components, a component controlling the calendar is the most important one. It contains
all events which occur during the simulation run. Consequently, it controls the progress
of the simulation based on the loaded scenario (the scenarios will be described later).
Additional components ensuring other functionality, such as logging or measuring per-
formance, belong to this group as well.

Second type is represented by the real components of the component-based applica-
tion under test. There can be one or more real components in one simulation experiment.
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They can interact with each other and with the simulation environment. As mentioned
above, SimCo requires no changes in the implementation of these components, so they
are the same as those which will be deployed in the real application.

If testing of real component’s provided or used services is not the goal of the sim-
ulation experiment, they can be replaced by their simulation equivalents. Therefore,
simulated components export the same interface as their real counterparts but the actual
computation is replaced by a model according to decision of the designer of the experi-
ment, e.g. a random number generator or a list or pre-processed results, provided as an
answer for a service call from the real component.

In order to measure real components’ performance and keep the simulation consis-
tent, we need to intercept all events in the simulation even when they are passed directly
between a pair of real components. Hence the fourth type of components has to be used,
called intermediate components, which serve as proxies for the real components. All
calls of the component hidden behind this proxy are noted and then passed to the real
component, and likewise the answers (returned values) are returned through this proxy.
The intermediate component also allows us to model deployment of real components in
the distributed environment, as it may be set to cause delays of calls or even to induce
errors into the communication.

One of the biggest advantages of using SpringDM is that it is possible to change the
components used in the final application only by modifying XML documents that de-
scribes composition of the application. This allows us to easily replace real components
for their simulated counterparts or to place intermediate components between two real
ones.

3.4 Considerations Related to the Hybrid Simulation

Depending on the position of the simulated component, it may be required to provide
a more complex behaviour than described above. An example is passing events to other
components. The settings of each simulated component are stored in its configuration
file which however does not contain the description of its behaviour. The behaviour has
to be implemented inside the component.

Depending on the topology of the tested application, there are several possible con-
figurations of the inter-component connections, described in Figure 1 below. First, the
real components may be connected only to simulated components or to other real com-
ponents (Figure 1-c). If there is a chain of simulated components attached to a real one
(see Figure 1-a), it might be considered to replace the whole chain by implementation
of simulation of component A, as it is the only one which interacts with the real com-
ponent. However, if the simulation models of all components in the chain have been
already created, it saves time of the experimenter to use them instead of creating the
new implementation.

More complex situation occurs when simulation component is surrounded by two
real components (see on Figure 1-b). In this case, it is necessary to consider the possibil-
ity that, in reaction to an action invoked by the real component B, simulated component
invokes after some computation an action upon the real component A (and even that
return value from the component A is passed as a return value for original invocation
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Fig. 1. Deployment of simulated and intermediate components

from the component B). In such case, behaviour of simulated component must respect
this and it cannot be modelled only by using pre-calculated values.

Lastly but probably most importantly, real components within the simulation should
not be aware that they are not the part of a real application but they are deployed in
a simulated environment. Hence, from their point of view, simulation environment must
act as the environment for which they were originally developed. On the other hand,
both the simulation environment and the real components must be under complete con-
trol of the simulation tool. Therefore, all interactions among the real as well as simulated
components must be performed by using the calendar and events so that we can log all
interactions and obtain the desired measurements [23]. For this purpose, all services
provided by the real components are wrapped by intermediate components.

3.5 Scenarios and Events

To support complex testing of components, our tool uses scenarios to drive the simu-
lation tests. They allow us to describe the environment and activities of simulated com-
ponents in a great detail.

The testing scenario is divided into three parts. In the first part, the settings of the
entire simulation are described. An example of such setting is the value of simulation
time at which the simulation should finish.

In the second part, all the components of the simulation are described. The settings
of all components are described separately (one settings XML file per component).
For the simulated components, these additional files also contain the description of
the components’ settings (e.g. seeds and parameters of random number generators).
An example can be the return values of the services provided by the simulated compo-
nents in dependence of their input values.

The third part of the scenario is the description of events which can occur during
the simulation. Each event has a source and a target. The source may lie within the
simulated system (i.e. simulated and real components) or in outer environment, in order
to simulate both behaviour of components and also the actions of users and other outer
inputs. The target is always within the simulated system. The event can have parameters
relevant to its purpose. For example, an event representing processing of some graphical
data would have the path to the data file as its parameter.
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Events can be divided in accordance with their occurrence into three classes – regu-
lar, casual, and rare. The regular events are created periodically during the whole sim-
ulation run or during a selected/certain period of time. They can be events based on
timers (e.g. periodical checking of changes of a component).

The casual events can occur often, but not periodically. However, the time of their
occurrence may be described by probability distribution. They could be for example
used to represent requests of users.

The rare events occurs so infrequently that their probability distribution cannot be
identified easily. They even may not occur at all during the simulation run. An example
of such event may be an accident, failure, damage of network hardware, and so on.
The timestamp of such events can be set differently in different scenarios for one set of
tested components. So, it is possible to observe the behaviour of the tested components
when the events happen in various points of the simulation time.

Use of scenarios is an important benefit of our simulation tool. It allows controlling
the size and length of tests without the necessity to manipulate with tested components.
The scenario allows the tester to induce a large number of rare situations in a short time
if it is necessary and thus speeding up testing. Scenarios are stored in separate files, so
a set of scenarios (and tests) can be stored with the application, to be used when some
component of application is changed.

4 Examples of SimCo Based Experiments

In this section we illustrate the operation and usage of SimCo on an example component-
based application. The experiments were created to represent testing of a typical com-
ponent-based application without dependencies on any specific hardware.

Fig. 2. Tested application – File manager
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For these purposes we are using a simple File Manager application with several func-
tions. Its architecture is outlined in Figure 2. Due to its purpose, the file manager re-
quires a wide variety of different services, which can be implemented with different
quality of services and consequently tested and arbitrarily replaced. It allows us to test
performance of several different algorithms or to test properties of network communi-
cation.

4.1 Performance Experiment

This experiment is designed to demonstrate the use of our simulation tool. The test is
focused on the speed of HEXAViewer component. Two different implementations of
HEXAViewer were implemented. One preloads the whole file before displaying it. The
other one displays only part of the file which will fit to the screen and loads additional
data only when required. (This means that time of opening of the first one has a linear
dependency on the size of opened file and the second one has a constant time). Three
real components are used, HEXAViewer, FileDirManager and LocalFS Access. The
DirViewer component is simulated (see Figure 3). As DirViewer component is a GUI
of the application, its simulation allows us to simulate the behaviour of the user without
the necessity to work directly with the GUI.

Fig. 3. Deployment of components for performance testing of HEXAViewer

The behaviour of the DirViewer is set to open ten times each input file with randomly
generated content. We used 14 input files with different lengths and measured time be-
tween request for opening of the file and moment when the window is created. The

Fig. 4. Measured results
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simulation tool captures the time of invocation of the file opening operation between
DirVewer and FileDirManager and the time of the event created by HEXAViewer in-
forming the application that the window with file is displayed.

The results at Figure 4 show the measured time requirements. An average duration
(in milliseconds) of opening of each file is shown for both implementations of HEXA-
Viewer. The results cannot be interpreted only as time required by HEXAViewer to
open the file, as duration of other activities in the application influences them as well
(e.g. obtaining the file from LocalFS Access), but shows relative performance of two
different variations of the application and thus might be used to decide which one is
more suitable.

4.2 Communication Experiment

This experiment shows the ability of SimCo to measure the amount of communication
of a tested component with outside environment. This is particularly important for test-
ing of component based applications for mobile devices, where communication through
the cell phone network can lead to cost increase for their users.

Fig. 5. Deployment of components for communication measurement

In the experiment, FTP Access component is used, along with simulated FileDirMan-
ager (see Figure 5). FileDirManager provides input for FTP Access and initiates down-
load of ten different files. A probe based on the libpcap library is used to measure the
amount of transferred data. The probe is capable of analyzing packets of transport and
network layer of TCP/IP stack. If analysis of the application protocol is required it has
to be added as a plug-in to the probe. We have tested that all required files were trans-
ferred and no data were lost. More important, we have tested that we are able to measure
amount of such communication with all its overhead.

5 Conclusion

In this paper, we have described the design of SimCo, a component-based hybrid simu-
lation tool for testing real components within a simulated environment. In comparison
with other simulation testing tools and strategies, we enable the possibility to choose
arbitrary part of the tested application and replace the rest by simulation. This enables
to make tests of a specific part of the application faster than when the whole application
would be tested. At the same time, the important tested components are real, not only
their models, so the results describe their real properties. Use of test scenarios which
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drive the simulation also allows us to store a wide range of tests for each application
without the necessity to modify the application itself or to have the application prepared
for testing in the way used by unit tests tools like JUnit.

The core of the simulation tool – which is itself component based – is complete now;
however there is still remaining work on the automation of repeated tasks and especially
on the usability of the tool. So far, the GUI serves only as visualization; we would like to
enhance it to allow at least visual editing of the properties of the simulated components
and on-line display of the measured results. We are also preparing a second case study
to demonstrate the possibilities of the framework.

The remaining issue is handling of API calls problematic from the simulation point
of view (time handling, network communication, etc.), so they will be managed com-
pletely by the simulation tool. The possibilities of such handling and the hazards of
uncontrolled calls are topic of our currently ongoing research.
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Abstract. Refinement is fundamental to software development. An ear-
lier work proposed a refinement relation between sequence diagrams
based on their required behaviors. In this paper, we first generalize the re-
finement relation by taking into account system variable assignment and
event hiding, renaming and substitution. We then give an algorithm as
a system of inference rules that does not just verify refinement relation-
ship between two sequence diagrams but also derives sufficient conditions
under which such a relationship holds. The algorithm makes use of a se-
mantics preserving transformation on sequence diagrams. The usefulness
of refinement inference is demonstrated with a case study.

Keywords: sequence diagrams, semantics of sequence diagrams, refine-
ment of sequence diagrams, refinement verification, refinement inference,
sequence diagram transformation, pattern conformance.

1 Introduction

A fundamental issue in using UML [12] to specify interaction behavior is whether
one sequence diagram (SD in short) refines its predecessor: it possesses all
mandatory behaviors that are required by the predecessor and rejects all pro-
scribed behaviors that are prohibited by its predecessor. Refinement verification
is equally important in other forms of reuse of SD models. Many reusable ar-
tifacts such as design patterns and aspect models make use of SDs to specify
interaction behaviors. If an application uses a reusable artifact, the SDs in the
application must be refinements of their corresponding SDs in the artifact. Oth-
erwise, the intended benefits of the reusable artifact cannot be guaranteed.

There has been some research into refinement of SDs in literature. Refinement
has been studied based on trace semantics [4,6,11]. In [4,11], the semantics of
an SD is a pair consisting of a set of positive traces and a set of negative traces.
Without the fragment operator xalt which Haugen et al. [6] introduced to capture
the mandatory non-determinism, the semantics proposed by Haugen et al. [6] is
equivalent to that of Störrle’s [11]. As pointed in [10,8], the set of positive traces
does not capture precisely good behaviors required by the SD.

In an earlier work [8], we formulated a semantics for SDs that captures pre-
cisely required behaviors of an SD and defined a refinement relation based on
that semantics. An SD is partial in that it describes a number of alternative obli-
gations that an implementation may choose to fulfil. For instance, the fragment
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operator par does not mandate that an implementation must be distributed,
concurrent or multi-threaded. It rather indicates that the implementation can
realize any interleaving of the behaviors of its operands. When an SD is reused,
it is made more defined in that the number of alternatives is reduced. In this
paper, we first generalize the refinement relation in the earlier work by taking
into account system variable assignment and event hiding, renaming and sub-
stitution. We then give an algorithm for refinement inference as a system of
inference rules. We also generalize the abstract syntax for SDs and present a se-
mantics preserving transformation on SDs. This allows a tool to transform SDs
into a normal form. This has the benefits of simplifying design of SD processing
algorithms for refinement inference.

The rest of the paper is organized as follows. Section 2 presents the abstract
syntax, the trace semantics and the refinement relation for SDs. Section 3 de-
scribes a transformation that puts an SD into a normal form. Section 4 presents
the inference rules. Section 5 shows how refinement inference can be used to
check pattern conformance and Section 6 concludes. Proofs are omitted.

2 Syntax, Semantics and Refinement

2.1 Syntax

A simple SD which does not have any combined fragment has been modelled
as a partial order on event occurrences [3]. In [8], a partial order on arbitrary
SDs is used to organize operands of fragment combination operators. This paper
proposes to use two partial orders to organize these operands. This new abstract
syntax admits a normal form of SDs which simplifies SD manipulation tools.

Let ���� be a denumerable set of names of messages, lifelines and sys-
tem variables and ������ the set of possible values for system variables. An
event sending a message with name N ∈ ����, sender S ∈ ����, receiver
R ∈ ����, parameter list P ∈ (���� ∪������)∗ is written as !N(S,R, P ),
and the corresponding receiving event ?N(S,R, P ). We abstract from details of
guard conditions c in 	
� and require that the collection of guard conditions is
closed under classical logical negation (¬), conjunction (∧) and disjunction (∨)
operations. We write c1 |= c2 iff c2 is true in all value assignments in which c1 is
true. Events e ∈ �� are primitive syntactic entities. Other primitive syntactic
entities are labels � in ��� and τ which represents unobservable events. The
abstract syntax for SDs in �� is given below.

D ::= τ | e | opt(c,D1) | alt(c,D1, D2) | loop(c,D1) | par(D1, D2)
| strict(D1, D2) | seq(D1, D2) | block(L, ι,�, ���)

where the interaction operator block is introduced to structure operands of other
interaction operators, L ⊆ ��� is a non-empty set of labels, ι is a mapping
from L to ��, � and ��� are irreflexive and non-transitive relations on L such
that �∗ and ���∗ are partial orders. The relation ��� is included in anticipation
of SD normalization that eliminates weak sequencing interaction operator seq.
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A sequence of events satisfies ��� iff, for all �1, �2 ∈ L such that �1���∗�2, each
event e from ι(�1) occurs before all those events from ι(�2) that share lifelines
with e. 〈L, ι,�∗〉 and 〈L, ι, ���∗〉 are partially ordered multisets. Compared with
[8] which uses one ordering relation � to organize sub-SDs in a block, this new
syntax uses two ordering relations � and ���. This change may seem minor,
but it turns out to be a powerful addition that allows us to normalize SDs by
eliminating strict, par and seq operators.

Fig. 1. An SD for Mandatory Access Control (MAC)

Example 1. Consider the SD in Fig. 1 where fragments and events are labelled.
In particular, the opt fragment is labelled 7. The sending and receiving events
for a message are labelled with two consecutive numbers. Let ei abbreviate the
event labelled i. For instance, e1 abbreviates !request(o, op, {o, r,m}). Then the
SD is expressed in the abstract syntax as DMAC = block({1..7}, {i �→ ei |
1 ≤ i ≤ 6} ∪ {7 �→ f7},�0, ∅) where �0 = {〈i, i+ 1〉 | 1 ≤ i ≤ 6} and
f7 = opt(v = authorized, block({9..18}, {i �→ ei | 9 ≤ i ≤ 18},�1, ∅)) with
�1 = {〈i, i+ 1〉 | 9 ≤ i ≤ 15} ∪ {〈15, 17〉, 〈17, 18〉}. The operand of the opt
operator is the block labelled 8.

2.2 Semantics

We now present a required behavior semantics for SDs generated from the new
abstract syntax by generalizing that in [8] and simplifying its presentation.

Semantic Domain. The required behavior of an SD is a set of obligations one
of which must be fulfilled by an implementation. An obligation is a set of required
traces. A trace is a sequence of events, guard conditions and critical segments
�σ� where σ is a sequence of events and guard conditions. A critical segment
�σ� protects σ from interference. Occurring in a trace, �σ� will be treated as
atomic when the trace is combined with other traces through interleaving and
weak sequencing. The domains of tokens and traces are respectively
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�� = �� ∪	
� ∪ �(�� ∪	
�)∗�
�� = ��

∗

and the domain of semantics is ��� = ℘(℘(��)).
A semantic element M may contain redundant elements. For example, let

O1 = {!m?m!n?n}, O2 = {!m!n?m?n}, O3 = O1 ∪ O2 and M = {O1,O2,O3}.
Then O3 is redundant in M since it is not minimal with respect to set in-
clusion ⊆. Redundant obligations shall be disregarded when semantics of two
SDs are compared with each other. An obligation may contain unnecessary de-
cision points. Consider two required traces c!m and ¬c!m. Then message m
is always sent since it is always the case that either c or ¬c holds. Occurring
in an obligation, they represent an unnecessary decision point. Define � by
O ∪ {αcβ, αc′β} � O ∪ {α(c ∨ c′)β}. Then � is a convergent rewriting rela-
tion [2] on obligations and for a given obligation O there is a unique obligation
denoted O� such that O�∗ O� and O� �� where O� �� means that there
is no O′ such that O� � O′. Define ≡ by

(M1 ≡M2) =

⎛⎝∀O1 ∈M1.∃O2 ∈M2.(O�
1 ⊆ O�

2 )
∧

∀O2 ∈M2.∃O1 ∈M1.(O�
2 ⊆ O�

1 )

⎞⎠
Then ≡ is an equivalence relation on ���.

Semantic Function. The semantic definition uses some auxiliary functions. Let
�� = (��×���)∗ be the set of traces of tagged tokens. Function tag : �� �→ ��

labels each token in a trace by a given label: tag(ε, �) = ε and tag(t · σ, �) =
〈t, �〉 · tag(σ, �) where ε is the empty trace. Function untag : �� �→ �� does the
opposite and is defined untag(ε) = ε and untag(〈t, �〉 · σ̂) = t · untag(σ̂). Let
α, β ∈ �� and σ ∈ ��. Define a rewriting relation � by α�σ�β � ασβ. Then �

is convergent. Define unwrap : �� �→ �� by unwrap(α) = β such that α �∗ β
and β ��. Define wrap : (�� ∪ 	
�)∗ �→ �� by wrap(σ) = �σ�. Functions
unwrap, wrap, tag and untag are lifted to sets of sets as follows: f (M) = {{f (ω) |
ω ∈ O} | O ∈ M} where f ∈ {unwrap,wrap, tag , untag}. Function lines :
�� �→ ℘(����) maps a token to the set of the lifelines associated with the
token: lines(!N(P, S,R)) = {S}, lines(?N(P, S,R)) = {R}, lines(c) = ∅ and
lines(�σ�) =

⋃
i∈dom(σ) lines(σ(i)). Function lb : �� × ��� �→ ��� returns the

label of a tagged token: lb(〈t, �〉) = �. Functions st ,wk : ℘(���×���) �→ ℘(��)
return the set of the traces of tagged tokens satisfying a strict sequencing order
and the set of those satisfying a weak sequencing order respectively.

st(�) = {σ̂ ∈ �� | (lb(σ̂[i])�∗lb(σ̂[j]))⇒ (i ≤ j)}

wk(���) =

⎧⎨⎩σ̂ ∈ ��
(lb(σ̂[i])���∗lb(σ̂[j]))

∧
(lines(σ̂[i]) ∩ lines(σ̂[j]) �= ∅)⇒ (i ≤ j)

⎫⎬⎭
Let ⊕ be a binary operation on S. Then ⊕� is a binary operation on ℘(S).

X ⊕� Y = {x ⊕ y | x ∈ X ∧ y ∈ Y }



436 L. Lu and D.-K. Kim

For instance, ∩�,∪� and •� are respectively pair wise set intersection, set union
and language concatenation where • is the language concatenation operator.

Consider parallel interleave par(D1, D2) of two sub-SDs. Let O1 be an obli-
gation of D1 and O2 of D2. Parallel interleaving produces a set of alternative

obligations from O1 and O2 denoted O1�̂O2.

O1�̂O2 =

⎧⎨⎩O
∀σ1 ∈ O1.∀σ2 ∈ O2.∃σ ∈ O.(σ ∈ σ1 � σ2)

∧
∀σ ∈ O.∃σ1 ∈ O1.∃σ2 ∈ O2.(σ ∈ σ1 � σ2)

⎫⎬⎭
where σ � η is the set of all interleavings of σ and η [11]. The operator ��

is defined M �� N =
⋃

O1∈M,O2∈N (O1�̂O2) and the operator �� is defined

M�� N = untag({wk({〈1, 2〉})} ∩� (tag(M, 1) �� tag(N , 2))).
The semantics of an SD D, denoted [[D]], is defined as

[[e]] = {{e}}
[[τ ]] = {{ε}}

[[strict(D1, D2)]] = [[D1]] •� [[D2]]

[[alt(c,D1, D2)]] = ({{c}} •� [[D1]]) ∪� ({{¬c}} •� [[D2]])

[[opt(c,D)]] = ({{c}} •� [[D]]) ∪� {{¬c}}
[[par(D1, D2)]] = [[D1]] �� [[D2]]

[[block(L, ι,�, ���)]] = untag({st(�)} ∩� {wk(���)} ∩� (��
∈Ltag([[ι(�)]], �)))

[[seq(D1, D2)]] = [[D1]] �
� [[D2]]

[[critical(D)]] = wrap(unwrap([[D]]))

[[loop(c,D)]] = μX.(({{c}} •� ([[D]] �� X)) ∪� {{¬c}})

where μ is the least fixpoint operator, e ∈ ��, c ∈ 	
� and D,D1, D2 ∈ ��.
A context is an SD with one of its fragments replaced by a special symbol

�. For instance, seq(�, e) with e ∈ �� is a context. Let D be an SD and C
a context. The embedding of D into C, denoted C[D] is the SD obtained from
replacing � withD. The following proposition shows that the semantics possesses
substitutivity. Substitutivity is a desirable property since it allows any fragment
in an SD to be replaced with a semantically equivalent fragment.

Proposition 1. Let C be a context and D1, D2 ∈ ��. If [[D1]] ≡ [[D2]] then
[[C[D1]]] ≡ [[C[D2]]].

2.3 Refinement

We now define a refinement relation by generalizing that in [8]. When refining an
SD, the designer may replace one message ( or event) by another knowing that
the latter can simulate the former. For instance, he may add extra parameters
into messages. We address this issue by parameterizing the notion of refinement
by a simulation oracle that embodies the knowledge of the designer. The oracle
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tells which event may simulate which other event. We say a binary relation S
on events is invariant modulo renaming if, for all events e1 and e2 and renaming
substitutions ρ, 〈e1, e2〉 ∈ S implies 〈ρ(e1), ρ(e2)〉 ∈ S.

Definition 1. A binary relation S ⊆ �� ×�� is a simulation oracle if it is
reflexive, transitive and invariant modulo renaming.

Example 2. The identity relation between events S1 = {〈e, e〉 | e ∈ ��} is
an oracle. It is the smallest oracle since the reflexivity requirement on oracles
ensures that it is contained in any other oracle. Let S2 = {〈!N(S,R, P1), !N(S,R,
P2)〉 | P2 ⊆ P1} ∪ {〈?N(S,R, P1), ?N(S,R, P2)〉 | P2 ⊆ P1}. S2 states that e1
simulates e2 iff e1 and e2 have the same kind, name, sender and receiver, and
e1 has all the parameters of e2. S2 allows the designer to add parameters to
a message sent or received by a lifeline. For instance, a message returning no value
in the original model can return a value in the refined model. A more restrictive
oracle S3 can be obtained from S2 by changing P2 ⊆ P1 to the condition that
P2 is a sub-sequence of that of P1.

Trace Simulation. The following definition of a trace simulation relation sim-
plifies that in [8] and parametrizes it with an oracle.

Definition 2. For a given oracle S, �S is defined inductively as follows.

1. e1 �S e2 if 〈e1, e2〉 ∈ S.
2. �α� �S �γ� if α�S γ,
3. α�S γ if there is a trace β such that α � β and β �S γ.
4. c1α�S c2γ if c2 |= c1 and α�S γ.
5. α�S c2γ if α�S γ.
6. c1 · α�S γ if α�S γ and true |= c.
7. ε�S ε.

The refinement relation in [8] is defined in terms of a monotonic function η
between traces and the transitive closure of �, which makes it hard to under-
stand. In addition, it does not take into account the oracle. We say α refines
β under S when α �S β. Intuitively, a refinement α of a trace β can be ob-
tained by oracle verified event substitution (clause 1), protecting subtraces with
�·� (clause 3) and weakening guard conditions (clauses 4, 5 and 6). Clause 2
requires that a critical region be refined only by a critical region. For instance,
�e1 · e3� �S1 c1 · �e1 · c2 · e2� where e1, e2 and e3 are events and c1 and c2 are
guard conditions. But, c · e1 �S1 e1 does not hold unless true |= c since there
is no guarantee that the constraint c is satisfied. Relation �S is reflexive and
transitive since both S and |= are reflexive and transitive.

2.4 Refinement Relation

Reuse of an SD may require a number of changes. These changes include (1)
adding new lifelines and messages, (2) renaming lifelines and messages to avoid
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name conflicts or better convey intention of the designer, (3) introducing new
system variables and associated guard conditions. Those issues were not con-
sidered in [8]. We now generalize the refinement relation in [8] by taking them
into account. The first issue is resolved by parameterizing the refinement relation
with respect to a set U of unobservable events. It induces a hiding function hideU
on �� such that hideU (D) is the SD obtained from replacing all occurrences of e
with τ for each e ∈ U . The second and the third issues are resolved by parameter-
izing the refinement relation with a mapping ρ from ���� to ����∪������.
For D1 to be a refinement of D2 with respect to ρ and U , we need to make
sure that any implementation of ρ(hideU(D1)) is also an implementation of D2.
Thus, for any obligation O1 of ρ(hideU(D1)), we require that there is an obliga-
tion O2 of D2 such that each trace in O2 is simulated by a trace in O2. It is also
necessary to make sure that events in U are not those that are used to simulate
events in D2 modulo ρ.

Definition 3. Let ρ ∈ (���� �→ ����∪������), U ⊆ ��(D1), D1, D2 ∈
�� and S a simulation oracle. We say D1 refines D2 with respect to S, ρ and
U , denoted D1 6S,ρ,U D2, iff both

1. ρ(U) ∩ {e1 | ∃e2 ∈ ��(D2).〈e1, e2〉 ∈ S} = ∅, and
2. ∀O1 ∈ [[ρ(hideU (D1)]].∃O2 ∈ [[D2]].∀t2 ∈ O�

2 .∃t1 ∈ O�
1 .(t1 �S t2).

We write D1 6S D2 if D1 6S,ρ,U D2 for some ρ and U .

E.g., strict(D1, D2)6S1,id ,∅ seq(D1, D2) and seq(D1, D2)6S1,id,∅ par(D1, D2)
where id is the identity function and S1 is given in Example 2.

Theorem 1. 6S is reflexive and transitive, i.e., refinement can be done in
a stepwise manner.

3 SD Transformation

We now present a transformation that transforms an SD with par, strict and
seq operators to an equivalent SD without them and eliminates those block
fragments that are immediate constituents of block fragments.

Let R ⊆ D ×D and d1, d2 ∈ D. If d1Rd2 then d1 is a left neighbor of d2 and
d2 a right neighbor of d1. The set of left (resp. right) neighbors of an element d is
denoted left(R, d) (resp. right(R, d)). Let 4 be a partial order on D and d ∈ D.
Then d is a minimum (resp. maximum) element with respect to 4 if there is not
any other element e in D such that e 4 d (resp. d 4 e). The set of minimum
(maximum) elements in D with respect to 4 is denoted minD(4) (maxD(4)).
The subscript D will be omitted if it is obvious from context.

When a block fragment contains another block fragment as an immediate
constituent, the inner block is dissolved by a transformation introduced be-
low. The labels of a block fragment are like formal parameters of a procedure
and can be changed without affecting the semantics of the block fragment so
long as the change is consistent. Let η be an invertible mapping on ��� and
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D = block(L, ι,�, ���). Define Dη = block(Lη, ιη,�η, ���η) where Lη = η(L),
ιη = ι ◦ η−1, �η = {〈η(�1), η(�2)〉 | 〈�1, �2〉 ∈ �} and ���η = {〈η(�1), η(�2)〉 |
〈�1, �2〉 ∈ ���} and η−1 is the inverse of η. D and Dη are semantically equivalent.

An immediate component block fragment of another block fragmemt can be
dissovled if the labels in the inner block fragment are different from those in
the outer block. Dissolving an inner block labelled � promotes its immediate
constituents to become immediate constituents of the outer block. The strict
sequencing order� for the outer block is modified to become �′′ as follows. The
strict sequencing relationships among old immediate constituents are preserved
and those among new immediate constituents are inherited from the inner block.
Each minimal element of the strict sequencing order �′ for the inner block is
made a right neighbour of each left neighbour of � in �; and each right neighbour
of � in � becomes a right neighbour of each maximal elements of �′. Pairs in
which � occurs are removed. The weak sequencing order ��� for the outer block
is modified to become ���′′ in the same way.

Definition 4 (=⇒). Let D1, D2 ∈ �� and �1, �2 ∈ ��� and D′ a block frag-
ment. Transformation =⇒ is defined as follows.

– C[par (D1, D2)]=⇒C[block({�1, �2}, {�1 �→ D1, �2 �→ D2}, ∅, ∅)]
– C[seq(D1, D2)]=⇒C[block({�1, �2}, {�1 �→ D1, �2 �→ D2}, ∅, {〈�1, �2〉})].
– C[strict(D1, D2)]=⇒C[block({�1, �2}, {�1 �→ D1, �2 �→ D2}, {〈�1, �2〉}, ∅)].
– C[block(L∪ {�}, ι∪ {� �→ D′},�, ���)] =⇒ C[block(L′′, ι′′,�′′, ���′′)] where

η is an invertible mapping η on ��� such that D′
η = block(L′, ι′,�′, ���′)

and L ∩ L′ = ∅, L′′ = L ∪ L′, ι′′ = ι ∪ ι′, �′′ = (� ∪�′ ∪ left(�, �) ×
min(�′) ∪ max (�′) × right(�, �)) ∩ (L′′ × L′′) and ���′′ = (��� ∪ ���′ ∪
left(���, �)×min(���′) ∪max (���′)× right(���, �)) ∩ (L′′ × L′′).

Example 3. Let Login ′ = strict(D1, D2) withD1 = strict(seq(Did, Dpwd), Dchk),
D2 = opt(OK = true,Dcmd),Did = strict(e1, e2),Dpwd = strict(e3, e4),Dchk =
strict(e5, e6), Dcmd = strict(e7, e8). Then Dcmd =⇒ block({7, 8}, {7 �→ e7, 8 �→
e8}, {(7, 8)}, ∅) = D′

cmd and D2 =⇒ opt(OK = true,D′
cmd) = SDa. It can be

verified thatD1 =⇒∗ block({1..6}, {i �→ ei | 1 ≤ i ≤ 6}, {〈1, 2〉, 〈2, 5〉, 〈3, 4〉, 〈4, 5〉,
〈5, 6〉}, {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉 }). By two more steps, we have Login′ =⇒∗

Login where Login = block({1..6, a}, {i �→ ei | 1 ≤ i ≤ 6} ∪ {a �→ SDa},�0, ∅)
and �0 = {〈1, 2〉, 〈1, 3〉, 〈3, 4〉, 〈2, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, a〉}.

Theorem 2. Let D1, D2 ∈ ��. If D1 =⇒ D2 then [[D1]] ≡ [[D2]].

When applied to an SD, =⇒ replaces a fragment of the SD with a semantically
equivalent fragment. It can be repeatedly applied until it is no longer applicable.
By that time, the transformed SD does not contain interaction operator par, seq
or strict. Nor does it have a block that contains other blocks as its immediate
components. As a consequence, an SD refinement reasoning tool only has to deal
with normalized SDs. In the sequel, we shall consider only normalized SDs.
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4 Inference Rules

Table 1 presents an inference system for refinement verification. We now provide
some explanation about the inference rules. That an event e1 refines another e2 is
checked by the rule scheme named M1. M1 contains meta-variables e1 and e2 that
are substituted for during inference. In general, a rule (scheme) has a number
of premises and a conclusion separated by a horizontal line. Both a premise and
a conclusion are of the form ρ,U � H	SI indicating that H refines I (with
respect to S, ρ and U). The condition (〈ρ(e1), e2〉 ∈ S) ∧ ∀e′1 ∈ U .〈ρ(e′1), e2〉 �∈ S
in M1 is called a side condition for its application. The side condition must be
satisfied when meta-variables are substituted for.

Table 1. Inference rules where κ1 = ∀1 ≤ i, j ≤ n.(((�′i�2�
′
j) ⇒ (�i�∗

1�j)) ∧
((�′i���2�′j) ⇒ ((�i���∗1�j) ∨ (�i�∗

1�j)))) and κ2 = ∀� ∈ L.U ⊇ ���(ι(�))

(M1) 〈ρ(e1), e2〉 ∈ S ∧ ∀e′1 ∈ U .〈ρ(e′1), e2〉 �∈ S
ρ,U � e1	Se2

(B1)
ρ,U � ι1(�1)	Sι2(�′1) · · · ρ,U � ι1(�n)	Sι(�′n)

κ1 ∧ κ2

ρ,U � block({�1..�n} ∪ L, ι1,�1, ���1)	S〈block({�′1..�′n}, ι2,�2, ���2)

(B2)
ρ,U � ι(�)	SI

κ2

ρ,U � block({�} ∪ L, ι,�, ���)	SI
(T1) U ⊇ ���(H)

ρ,U � H	Sτ

(A1)
ρ,U � H1	SH2 ρ,U � I1	SI2

C1 ⇔ C2

ρ,U � alt(C1,H1, I1)	Salt(C2,H2, I2)

(A2)
ρ,U � H1	SI2 ρ,U � I1	SH2

C1 ⇔ ¬C2

ρ,U � alt(C1,H1, I1)	Salt(C2,H2, I2)

(A3)
ρ,U � H	SJ

(C2 ⇔ C1) ∧ (U ⊇ ���(I))
ρ,U � alt(C1,H, I)	Sopt(C2, J)

(A4)
ρ,U � I	SJ

(C2 ⇔ ¬C1) ∧ (U ⊇ ���(H))
ρ,U � alt(C1,H, I)	Sopt(C2, J)

(A5)
ρ,U � J	SH ρ,U � J	SI

ρ,U � J	Salt(C,H, I)
(A6)

ρ,U � H	SJ ρ,U � I	SJ

ρ,U � alt(C,H, I)	SJ

(L1)
ρ,U � H1	SH2

C2 ⇔ C1

ρ,U � loop(C1, H1)	S loop(C2,H2)

(L2)
ρ,U � H1	SH2

C2 ⇔ C1

ρ,U � loop(C1, H1)	Sopt(C2,H2)

(O1)
ρ,U � H1	SH2

C2 ⇔ C1

ρ,U � opt(C1,H1)	Sopt(C2,H2)

(R1)
ρ,U � H	SI

ρ,U � critical(H)	Scritical(I)
(R2)

ρ,U � H	SI

ρ,U � critical(H)	SI
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Let H1 = block(L1, ι1,�1, ���1) and H2 = block(L2, ι2,�2, ���2). Then H1

refines H2 if there is a one-to-one mapping η : L2 �→ L1 such that (1) for each
�′ ∈ L2, ι1(η(�

′)) refines ι2(�′), and (2) �2 and ���2 do not impose any sequence
ordering constraint that is not imposed by �1 and ���1, and (3) hideU hides all
events in ι(�) for each � ∈ L1 \ η(L2). This is captured by rule B1 in which the
mapping η is implicit and the condition (2) is expressed as κ1 and the condition
(3) κ2. Note that κ1 allows H2 to have more non-determinism than H1. Rule
B2 expresses that a block block(L, ι,�, ���) refines a fragment I if one of its
components H refines I and hideU hides all events in all other components.

Rules A1 and A2 stipulate the condition for an alternation fragment to refine
another. Furthermore, an option fragment may be refined by one of the branches
of an alternation fragment if the condition in the option fragment is equivalent
to the condition for that branch and all events in the other branch are hidden by
hideU . This is captured by rules A3 and A4. A fragment refines an alternation
fragment if it refines both of its branches. This is captured by rule A5. Rule
A6 states that if both branches of an alternation refines a fragment J then the
alternation refines J .

An option fragment opt(C1, H1) refines another option fragment opt(C2, H2)
when H1 refines H2 and C2 is equivalent to C1 according to rule O1. An option
fragment does not refine other kind of fragment since there is no guarantee that
the condition of the option fragment is satisfied. A loop fragment loop(C1, H1)
refines another loop fragment loop(C2, H2) when H1 refines H2 and C2 is equiv-
alent to C1 according to rule L1. A loop loop(C1, H1) also refines an option
fragment opt(C1, H2) when H1 refines H2 and C2 is equivalent to C1. This is
captured by rule L2. The interaction operator critical designates that the com-
bined fragment represents a critical region. A critical region can only be refined
by a critical region. Rule R2 states that critical(H) refines I if H refines I.
Rule R1 stipulates that critical(H) refines critical(I) if H refines I. Finally,
a fragment refines τ if all of its events are hidden by hideU according to rule T1.

The following proposition establishes the soundness of the inference rules.

Proposition 2. If ρ,U � D1	SD2 then D16S,ρ,UD2.

We do not know whether the refinement inference is decidable or whether the pro-
posed refinement inference system is complete. Both model checking of MSCs [1]
and bisimulation of Triggered MSCs [10] are undecidable, which suggests that
the refinement relation for SDs is likely undecidable as well, implying that any
refinement inference system is likely incomplete.

5 Case Study: Access Control

This section illustrates via an example how the conformance of an SD to an In-
teraction Pattern Specification (IPS) in RBML [5] can be verified. An IPS cap-
tures the interaction behavior of a design pattern in the SD view. It is formed of
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|RequestOp(|Sb,|Ob)

V

opt

|DelegateOp(|Op)|InitOp(|Op)

[V = authorized]

|PerformOp(|Op)

|Sb |Op |SM |OL 2..* |Ob

|ChkAccess(|Sb,|Ob,|Op)

Fig. 2. Simplified MAC IPS

lifeline roles, message roles, UML interaction operators and metamodel oper-
ators. Every role has a realization multiplicity that constrains the number of
elements playing the role. An IPS characterizes a family of SDs and a member
in the family is said to conform to the IPS.

Fig. 2 shows an IPS for Mandatory Access Control (MAC) [7]. Each message
or combined fragment is labelled with a letter. Roles are denoted by the symbol
“|”. The MAC IPS specifies the following. A subject requests an operation. The
request is checked for accessibility by the ChkAccess operation which enforces
the restricted-* property. The opt fragment specifies that if the access is autho-
rized, it is sent to the target object through object liaisons (intermediate lifelines
delegating the requests).

We now outline how the SD in Example 1 is checked to conform to the
IPS. The IPS involves the lifeline role “|OL” which has multiplicity of 2..*.
The multiplicity constraint is dealt with by repeatedly generating a pattern
instance with k instances of the role with k = 2, 3, · · · and verifying the SD
against the instance until the conformance is verified or the instance becomes
too big for the SD to conform to. The pattern instance for k = 2, depicted be-
low, has role instances |OL1 and |OL2 that are the sender and the receiver of
|DelegateOp(Op).

|OL1

|RequestOp(|Sb,|Ob)

V

opt

|InitOp(|Op)

[V = authorized]

|Sb |Op |SM |Ob

|ChkAccess(|Sb,|Ob,|Op)

|OL1

|DelegateOp(|Op)

|PerformOp(|Op)



Refinement Inference for Sequence Diagrams 443

Let D1 be the SD in Example 1 and D2 the above SD. Let S be S2 from
Example 2, the inference system derives ρ,U � D1	SD2 where U contains events
labeled 11, 12, 17 and 18 in Fig. 1, and

ρ =

⎧⎪⎪⎨⎪⎪⎩
request �→ RequestOp, check �→ ChkAccess, perform �→ InitOp,

sendMsg2 �→ DelegateOp, sendMsg3 �→ PerformOp,
result checkresult checkResult ChkAccess, v �→ V, o �→ Sb, op �→ Op,

r �→ Ob, sl �→ SM, s �→ OL1, d �→ OL2

⎫⎪⎪⎬⎪⎪⎭
Since D2 is an instance of the IPS, we conclude that D1 conforms to the IPS.

6 Conclusion and Future Work

Refinement of SDs is an important issue in software development processes.
In this paper, we have defined a formal refinement relation on SDs based on
a semantics for required behavior of SDs, presented an algorithm in the form
of inference rules for refinement inference and verification. A transformation
has been presented that puts an SD into a normal form to simplify design and
implementation of the algorithm.

A future work will be to extend the semantics, the transformations and the
refinement relation to include the interaction operator neg. This requires to take
into account the proscribed behaviors of SDs. Another will be to integrate SD
refinement inference with class diagram refinement inference [9]. A more chal-
lenging task is to study the decidability of the refinement relation and study
completeness of the proposed refinement inference system should it is decidable.

Acknowledgments. This work is supported in part by the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) under the international
collaborative R&D program (20118530020020).
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Abstract. Information growth is faster than ever before. We need to
provide advanced services facilitating information “consumption” (e.g.,
recommendation, personalized navigation). At least a lightweight seman-
tics is necessary for such services. Nowadays keyword paradigm is widely
used and seems to achieve satisfactory results in fields such as social
bookmarking or ontology learning. In this paper we explore impact of web
site visual style on relevant keywords extraction. We propose a method
for relevant keywords extraction from web pages combining traditional
automatic term recognition algorithms with web site’s visual style pro-
cessing. We particularly focus on cascade style sheets. The evaluation
conducted on 200 “wild” Web documents from 12 different web sites
showed that our method increases the relevance of extracted keywords.

Keywords: automatic term recognition, cascade style sheets, keywords
extraction, web documents processing, lightweight semantics.

1 Introduction

Since the dawn of the World Wide Web in 1991 there is a significant leap for-
ward in technology, spread and the way we use the Web. However, the main
’mission’ is the same, to freely access and share any kind of information. Every
year, millions of web sites and even more blogs [12] emerge. We need to assign
descriptive metadata to web pages to facilitate their further utilization. That
introduces the demand for automatic processing of vast collection of web doc-
uments. The RDF standard formerly created for embedding semantics to web
page structure is rarely used1, which makes it not as useful as we would like for
a major part of the Web. It turns out that keywords are suitable representa-
tion of web content, despite that they do not reach the semantic power of more
complex domain representations such as ontologies. Keywords rather constitute
a lightweight semantics and they form a basis for advanced semantic represen-
tations. They are utilized in ontology engineering [4], web search, user modeling
for adaptive web-based systems [2], or in social services to categorize, group and
search in user generated content (e.g., bookmarks space).

1 http://trends.builtwith.com/docinfo/RDF

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 445–456, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Due to the actual size and permanent increase in count of web documents it is
impossible to process whole corpora manually. We need an automatic approach
to keywords acquisition. In offline documents collections there are various ap-
proaches to automatic term recognition (ATR), e.g. [6], [9], [13]. ATR algorithms
are used to get single- or multiword terms from text corpora and are frequently
used in domains such as medicine or biology. ATR algorithms use statistical and
probabilistic features to get relevant keywords and are widely used on plain text
documents (with no internal structure). If used on web documents, they could
possibly benefit from hidden semantic of HTML elements used to format and
visualize text content. It has been already shown that some HTML tags flag
the semantic content [7] and that this information improves ATR algorithms’
accuracy [10]. In our work we consider beside web documents’ representational
structure the visualization of text content to be another promising source of
(lightweight) semantics. Our research aims at cascade style sheets (CSS) as ad-
ditional source for identification or updating relevance of relevant keywords.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents a method for keyword extraction utilizing web site visual style.
Section 4 describes evaluation of our method. Finally, we conclude our work.

2 Related Work

ATR algorithms are used to retrieve keywords from documents in vast document
collections. They typically consider only textual features – linguistic and/or sta-
tistical. We can divide ATR algorithms into the two groups following the measure
used to rank candidate terms [8]: termhood algorithms and unithood algorithms.

Termhood algorithms try to find the degree of domain specificity of linguistic
unit (candidate term) and are based on its frequency in a corpus, e.g., by intro-
ducing the probability of occurrence for every candidate term assuming that a
candidate term occurs more often in a domain specific collection of documents
than in the rest of a corpus (e.g., [1]). In contrast to termhood algorithms,
unithood algorithms measure the strength of collocation in terms, e.g., by inves-
tigating mutual probability of occurrence for words in candidate term [3]. There
are also approaches, which combine both types of measures such as C-value [6],
Glossex [9] and Termex [13] algorithms.

Beside plain text content processing, approaches to keyword extraction seek
to utilize additional source of information – external annotations or internal
document structure. Cascading Style Sheets (CSS) was developed by World
Wide Web Consortium (W3C), to visually format the content of web sites. Re-
search conducted by Opera Software on 3.5 millions of web pages showed that
80.39% of them use either external or internal style sheets [15]. The research also
showed ten most common properties, among which seven are used to format text
content (e.g., color, font-size, font-family, font-weight). We consider style sheet
properties an additional source of information for keyword extraction. The text
highlighted by a different color or by a bold text could refer to information that
is important to reader and therefore should be extracted from the text.
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The state-of-the-art approaches use ATR algorithms to extract potential key-
words from different document collections. They show satisfactory results on
large text corpora with domain specific content. By contrast we use ATR algo-
rithms while processing collections of web documents, which have diverse length
and cover much more different topics. These differences yield lower accuracy of
ATR algorithms that are primarily built for textual corpora [10].

We believe an approach to keyword extraction from web pages could possibly
benefit from other sources of information that the Web offers – either external
such as social annotations [14], or internal, e.g., HTML tags are used to get
potential keywords from web pages [10]; however, the idea of utilization of CSS
in co-operation with ATR algorithms is not well explored. In our work we try
to make use of emergent semantics of cascade style sheets. We see potential in
utilizing such emerging semantics for improving results of ATR algorithms in the
Web environment, especially in web documents containing textual content while
using rich visual formatting such as blogs and news portals. Such content is pre-
sented on the Web using content management systems (CMS). Advantageously,
visual style of web pages for particular CMS is often similar. The number the
blogs exceeds 30 % of the Web [12], hence it is important to consider visual
properties of web pages for relevant keywords extraction.

3 Method for Keyword Extraction

Textual content of a web page typically contains words, phrases, sentences and
paragraphs, which are visually formatted. Parts of content that are emphasized
against style of main textual content could possibly contain words and phrases,
that author of an article wanted to be noticed by readers. Our hypothesis is that
the more visually differentiated a part of text is from the rest of a document,
the more relevant it is for the reader.

Our approach to keyword extraction from web pages is based on ATR algo-
rithms and utilizes visual information stored in style sheets. Extracting relevant
terms from web documents needs extra processing because textual content im-
portant for us resides within HTML mark up and often is mixed with parts of
document, which are not relevant (e.g., navigation, advertisement, footer, . . . ).

Our method consists of the following steps:

1. web document preprocessing,
2. keywords extraction and visually differentiated phrases identification,
3. keywords weights update.

First we get a web document and all external style sheet files used within the doc-
ument. We merge all style definitions to a single virtual style and subsequently
we identify and extract main textual content. We extract keywords using an
ATR algorithm from plain text and identify phrases emphasized within main
textual content. Finally we update weights for keywords which were extracted
by an algorithm and are also emphasized within the text. Top-k keywords with
the highest weights we consider to be the most relevant.
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3.1 Web Document Preprocessing

The preprocessing consists of two parts: style sheets processing and main text
content identification and extraction.

Style Sheets Processing
First, we download all external style sheet files linked from the head section of
a document by the <link> tag or inserted by an import rule either in internal
style declarations or at the beginning of external files. The second step is to
process all style information to create a virtual style for the web document. We
create the virtual style by cascading available style information according to
importance and order in which they appear in a web document. The cascading
order is visualized in Figure 1.

Fig. 1. Style sheets cascading order and priority [11]

Every browser uses a default style sheet if there is no style definition in a web
document. We use the default style recommended by W3C2. Next step in cas-
cading is to process the external style sheet files in an order they were linked to
the document. Styles that were linked to document later override the style defi-
nition in files that were linked before. We apply the internal styles after external
style sheets processing. Internal styles reside within style tag in head section of
HTML document. Finally, the inline style definitions (styles defined within a
style attribute of a particular HTML element) are incorporated.

Creating a virtual style is an important part of our method as we need to
identify the style attributes and style values for particular HTML elements.

2 http://www.w3.org/TR/CSS2/sample.html

http://www.w3.org/TR/CSS2/sample.html
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Main Textual Content Identification and Extraction
It is common that a web document contains besides main content also various
additional information such as navigation or advertisements. The most impor-
tant part is main textual content. In this step we extract such content from
a web document.

3.2 Keyword Extraction and Visually Differentiated Phrase
Identification

The ATR algorithms extract keywords from plain text only, therefore we first
remove HTML markup. By using ATR algorithms we extract weighted candidate
keywords (words and phrases). Different algorithms assign different weights for
extracted terms, based on termhood, unithood or combined approaches.

We perform visually differentiated phrase identification within the main tex-
tual content. We find HTML elements, which have different values for selected
CSS attributes, extract the text from the elements and identify noun phrases.
Text within elements contains prepositions or other insignificant words, the
noun phrases should ensure we will acquire the most descriptive words. The
selected CSS attributes that we consider are: font-size, font-style, font-variant,
font-weight, colour, background-colour, text-decoration and text-transform. We
refer visually differentiated phrases to as CSS phrases.

3.3 Keywords Weight Update

We utilize addition information about text formatting stored in style sheets and
confer visually differentiated candidate keywords an advantage over candidate
keywords which are formatted by a default style (i.e., the selected CSS attributes
and their values that are common for majority text of article).

We adjust candidate keyword relevance weight as follows:

wf (k) = wa(k) + CssRel(k′) · p (1)

where wf (k) is the final weight for candidate term k, wa(k) is the weight of
candidate term k assigned by an ATR algorithm, CssRel(k′) is the CSS relevance
coefficient for phrase k′, k′ is the CSS phrase within main textual content and p
is intersection rate of candidate term k and k′.

Sometimes the candidate term and CSS phrase are equal, but in many situa-
tions they are not. There is an intersection; some words from k are also present
in the k′. For example, let k be the candidate term “job at GuruIT” and k′ be
the phrase “dream job”, the intersection is in the word job which is common
for both phrases. The intersection rate p for candidate term k and phrase k′ is
computed as follows:

p =
|k ∩ k′|
|k′| (2)

The value of CssRel coefficient represents to what extent the CSS phrase is
visually differentiated from the main textual content. It depends on two factors:
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– word count,
– visibility of text – visibility factor.

The first factor is count of words within HTML element that has different format-
ting from main textual content. Visibility factor is derived from CSS attributes
applied to a phrase and represents the degree of visual differentiation from de-
fault style. We compute CssRel(k′) coefficient for CSS phrase k′ as follows:

CssRel(k′) = (1 +
1

logwc
) · vf(k′) (3)

where wc is the word count within HTML element containing the phrase and
vf(k′) is the visibility factor for phrase k′.

Word Count. CssRel negatively correlates with the number of words within
HTML element for which we compute the coefficient. It is based on an assump-
tion that the less words the HTML element contains, the more likely it contains
relevant keyword. Let us see the following example:

<div id=’perex’ style=’font-style:italic’>

A view of Berlin its cycles of destruction and renewal and the evolu-

tion of its food scene through the lens of a one-night gastro tour.

</div>

<div id=’content’>

<h3 style=’font-weight:bold’> Berlin Food: The Cuisine Scene </h3>

This snack cafe catches my eye ...

</div>

The first div element contains 25 words, where is quite a lot of words which are
not considered as keywords, while h3 element contains only five words, which are
considered more relevant to the topic of blog post, which is Berlin food scene.

Visibility Factor. Visibility factor represents a degree of visual differentiation
of the phrase from the main text. It is computed as a combination of selected
CSS attributes applied to the phrase.

vf(k′) = 1 + fsz + fs+ fw + fv + td+ tt+ lum (4)

where vf(k′) is visibility factor for CSS phrase k′, fsz, fs, fw, fv, td, tt are
coefficients for font-size, font-style, font-weight, font-variant, text-decoration and
text-transform attributes, respectively. lum is coefficient for luminosity, which
denotes the contrast between the colour of text and background.

Coefficients fsz and lum are computed proportionally with respect to for-
matting used in main textual content.

fsz(k′) =
fs−min fs

Δfs
· a (5)
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where fsz(k′) is the coefficient for font-size of CSS phrase k′, fs is the font-
size of CSS phrase, min fs is the minimal font-size in main textual content and
Δfs is the difference between the maximal and minimal font-size in main textual
content and a is the weight of font-size attribute according to a weighting scheme.

lum(k′) =
li−min li

Δli
· b (6)

where lum(k′) is the coefficient for luminosity of CSS phrase k′, li is the lumi-
nosity of CSS phrase, min li is the minimal luminosity found in the main textual
content, Δli is the difference between the maximal and minimal luminosity and
b is the weight assigned to luminosity according to a weighting scheme.

Coefficients fs, fw, fv, td, tt, a and b represent a weighting scheme. A weight-
ing scheme can differ for various sets of web resources (web sites). Weights of
coefficients reflect visual formatting specifics for a given web site or data set.
It is possible to set up each coefficient separately. The weighting scheme is de-
signed to be easily changed according to knowledge of style scheme for a specific
web site and employed ATR algorithms. Let us take for example the BBC web
site (bbc.co.uk). It uses bold text in perex and in headings. Those parts tend to
contain descriptive and important terms. It is easy to increase the partial weight
of font-weight property in visibility factor, which results in a higher weight of
the extracted terms present in text that is formatted by bold font.

Since our aim was to devise method performing on a general corpus cover-
ing many different web sites with different formatting, the weighting scheme is
generic and it is not optimized for a specific web site. The potential of the method
lies in its configurability for different web content types. Significant portion of
the Web are blogs and news portals, which are typically presented within content
management systems (CMSs). Web pages in a CMS often have equal or similar
visual styles, hence one method setup may perform correctly for hundreds or
thousands of web pages.

Our approach is based on re-ordering extracted candidate keywords by chang-
ing the weight of keywords which are visually differentiated in text. The idea is
to increase weight to keywords which author of text wanted the readers to notice.
Such keywords are more relevant, therefore better for document representation.
A result is that a final set of extracted keywords may contain keywords not
considered relevant when using ATR algorithm only.

4 Evaluation

When evaluating the proposed method our aim was (i) to verify method per-
formance, i.e., if the proposed method is able to improve the relevance of ex-
tracted keywords, and (ii) to evaluate the most important CSS properties. We
implemented the method in Java language using JATE toolkit v1.03 for ATR
keywords extraction, the Java port of Readability algorithm4 for identification

3 JATE toolkit http://code.google.com/p/jatetoolkit/
4 Java Readability https://github.com/basis-technology-corp/Java-readability

http://code.google.com/p/jatetoolkit/
https://github.com/basis-technology-corp/Java-readability
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of main textual content, OpenNLP toolkit5 for CSS phrase extraction and CSS
Parser library6 for cascade styles processing.

We performed evaluation of the proposed method by conducting a user ex-
periment. Our goal was to assess accuracy of our method and compare relevance
of extracted keywords with baseline ATR algorithms.

The data set used for evaluation consists of 200 web pages from 12 differ-
ent web sites covering various topics from everyday life, e.g., politics, economy,
sport, cooking, business, music or celebrities. The sites could be divided into two
main groups: blogs and news portals. We selected the sites to the data set by
a particular CMS they use. We incorporated the most popular CMSs to date and
divided the web pages as follows: there were 106 web pages for Wordpress, 29 for
Drupal and 5 for Joomla. We also involved a set of pages with no or unknown
CMS consisting of 60 web pages.

We extracted the plain text from each web page and applied ATR algorithms
to acquire list of ranked terms. We chose the top 10 % of ranked terms for
each web page. Then we processed web page content and extracted visually
differentiated CSS phrases. We used our method and changed weights of original
terms if the terms matched with emphasized CSS phrases. Finally we got the
original set of terms with changed weights and we chose the top 10 % of terms
and assigned them to each web page.

We involved four ATR algorithms for relevant term extraction: Weirdness (ter-
mhood based); Cvalue, GlossEx, TermEx (termhood, unithood combination).
For each algorithm we chose 10 % of best rated terms and assigned them to
web page. Used ATR algorithms assign to terms relevance weight values from
an interval ∼ 〈0; 20〉. Our intent was to set CssRel coefficient values, which
were able to effectively change the order of extracted terms. We chose coefficient
values by analysing a randomly selected web site set with respect to relevance
weighs of ATR algorithms to 0.2 for fw, fv, tt and td coefficients. The values of
coefficients a in (5) and coefficient b in (6) we set to 0.5.

To assess accuracy of the method, we let a group of human judges rate the
relevance of extracted keywords. The web page and extracted terms were dis-
played to raters who had to decide, which term is relevant to the content of the
web page and which is not. The judges was presented a merged set of relevant
keywords – the original 10 % of the most relevant terms together with 10 % the
most relevant terms acquired by using our method. The judges did not know an
origin of terms. We developed the web application to enable rating. The judges
had only two options (relevant, not relevant); however, they were not forced to
asses the every term. If they did not answer any term, after submitting the form
a dialog box appeared and notified the judge, that (s)he did not rate all the
terms. If (s)he chose to send the form anyway, we did not force her/him to rate
terms. The experiment lasted until each web page had been rated by at least
three judges. A total number of 55 judges participated on experiment, 602 web
pages were involved and 21,394 terms were assessed.

5 OpenNLP toolkit http://opennlp.apache.org/
6 Cascade style sheet parser http://cssparser.sourceforge.net/

http://opennlp.apache.org/
http://cssparser.sourceforge.net/
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We computed Fleiss’ kappa to determine a degree of an agreement of judges
upon keyword relevance [5]. We obtained κ ∼0.502 denoting moderate agreement
among judges. Note that in contrast to similar measures the Fleiss’ kappa is
pruned of agreement, which judges would achieve by chance. We consider this
value very reasonable. Since the data set was not related to a specific domain
and therefore the judges were not domain experts, some judges’ knowledge of
terms and concepts from different topics was not perfect.

We considered a term relevant if at least two judges marked it as relevant. The
final relevance for particular algorithm and web page we computed as follows:

rela(d) =
cnta,p
cnta,d

(7)

where rela(d) is relevance of algorithm a for web document d, cnta,p is the
number of terms extracted by algorithm a from web document d and marked
as relevant, cnta,d is the number of all terms extracted by algorithm a from
web document d. In fact, relevance is similar to precision measure known from
information retrieval.

The final average relevance for each algorithm we computed as follows:

relavga =

∑|D|
i=1 rela(di)

|D| (8)

where relavga is the average relevance for algorithm a, D is the set of web docu-
ments, rela(di) is the relevance achieved by algorithm a for document di.

We computed the average relevance for each ATR algorithm. The results
are presented in Table 1. Our method improved the relevance of all used ATR
algorithms. We can divide improvement into two groups. The highest average
improvement was achieved by Weirdness 9.62% along with GlossEx 9.34%; the
Cvalue and TermEx achieved improvement 2.46% and 2.73% respectively.

We see the reason of this distribution in the approach to term extraction. The
Weirdness is a termhood-based algorithm taking into account domain specificity
of terms. It works well on scientific corpora (e.g., biochemical and medicine
documents), where it can find terms, which do not appear frequently in back-
ground corpus. We assume the Weirdness algorithm was not as appropriate for
our general data set as other algorithms, because the data set did not contain
as many specific terms as the scientific corpora do. The GlossEx algorithm is

Table 1. Average relevance of ATR algorithms and its improvement

Algorithm (a)
Relevance relavga [%] Relevance

improvement ΔBase ATR alg. Improved ATR alg.

Cvalue 73.22 75.67 2.46
GlossEx 50.87 60.22 9.34
TermEx 72.30 75.03 2.73
Weirdness 59.61 69.23 9.62
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both a termhood- and unithood-based approach, which includes measuring the
strength of terms collocation (if the term appear as a part of a longer term). The
termhood component of GlossEx algorithm is based on the Weirdness algorithm,
what reflects into similar improvement of both GlossEx and Weirdness.

Cvalue and TermEx both consist of termhood and unithood measures; how-
ever none of the algorithms uses as termhood component the Weirdness algo-
rithm. We consider the both algorithms better for general corpus processing and
therefore the average improvement ranges from 2.46% to 2.73%.

In order to determine statistical significance of the results, we performed Stu-
dent’s t-test. For each pair of compared algorithms (baseline ATR, improved
ATR) we obtained statistical significance at p < 0.05 for Cvalue and Termex
and p < 0.001 for Glossex and Weirdness.

We also evaluated the impact of the method on Content Management System
(CMS) used. The results in Table 2 suggest that relevance improvement does not
depend on a particular CMS system used. Despite this finding we confirm our
assumption that keywords extraction from web sites using rich text formatting
will be improved more than from web sites using weak or no formatting within
main textual content. The first two blogs use anchors, bold, italic and different
colored text in the content and achieved the highest improvement among the web
sites. The exception is Joomla-based wrestling web site, which relevance worsen,
despite of quite rich text formatting. The reason we see in the content of web
page; not many people in our country are interested in wrestling, therefore the
judges labelled some domain specific terms and wrestlers names as not relevant.

Table 2. Average relevance improvement among web sites in data set

Content
management system

Web site Relevance
improvement

Wordpress http://blog.ups.com 16.78 %
Wordpress http://dghoang.com 15.25 %

N/A http://www.bbc.co.uk 15.21 %
Drupal http://www.cargoh.com 14.95 %
N/A http://www.csmonitor.com 10.88 %

Wordpress http://brighterlife.ca 9.50 %
Wordpress http://saltandserenity.com 7.38 %
Wordpress http://thepatternedplate.wordpress.com 6.80 %
Wordpress http://techcrunch.com 5.94 %
Drupal http://www.mtv.co.uk 5.18 %
Drupal http://www.fastcompany.com -0.36 %
Joomla http://www.impactwrestling.com -8.70 %

In addition to evaluation of method performance, we also assessed an in-
fluence of particular CSS attributes. During the evaluation the judges labelled
terms which are relevant to the web page content. We explored, which CSS
phrases helped to increase the weight of terms that were labelled as relevant.
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Our goal was to discover which property helps the most in instances classifi-
cation, i.e., which property has the highest information gain. The properties of
CSS phrases was converted into instances, where each instance had following
features: the web site from where it come from, font-style, font-variant, font-
weight, text-decoration, text-transform, font-size and luminosity values and la-
bel whether the phrase helped increase relevance of some extracted terms or not.
We employed well known information gain measure. The top three properties
were font-size (0.0645), luminosity (0.0379) and font-style (0.0092). Those three
attributes contribute the most while deciding if the phrase is relevant or not.

5 Conclusions

In this paper we presented the method for keyword extraction from web sites
combining state-of-the-art ATR algorithms and the semantic potential of web
sites’ visual style realized by cascade style sheets. Our method represents a con-
tribution to ATR algorithms by utilizing the additional information source.

The method was experimentally evaluated on data set of 200 web pages from
the ”wild” Web. The data set was general, consisting of web documents from 12
different web sites. The terms extracted from web pages were labelled as relevant
or non-relevant by 55 judges. Generally, the method performed better when used
on web pages with rich visual formatting. It is applicable only for English texts;
however any language can be processed, if the ATR algorithms support it.

The results showed that in the used general corpus we improved average rele-
vance of each ATR algorithm. Better improvement was achieved for algorithms
with more significant termhood-based component. The highest improvement was
achieved for Weirdness (9.62%) and GlossEx (9.34%). We can conclude that
our method is more suitable to combine with termhood-based ATR algorithms,
which does not perform as well as ATR algorithms utilizing unithood approach.
We observed that intensity of different text formatting usage within main tex-
tual content influences the performance of our method rather than particular
used content management system. We identified the most useful CSS attributes
affecting the relevance of keywords: font-size, luminosity and font-style.

Our method aims to improve relevance of extracted relevant keywords for
general corpus web documents. The potential of our approach lies in ability to
adjust the method for a particular web site and its formatting specifics by modi-
fying values of visibility factor related to particular CSS attributes (changing the
weighting scheme). We strongly believe that customizing the scheme could in-
crease the relevance of keywords even in unithood approach that did not perform
in the experiment as well as termhood approach. Our further research is focused
on further investigation of weighting scheme modification including automation
of weighting scheme creation with respect to various web page properties.

While the large portion of today’s Web is created by blogs and news portals we
see the potential of our method to be used for relevant keywords extraction. Many
pages or blogs share the same visual template scheme; therefore one setup of
weighting scheme could help to find relevant keywords for hundreds of thousands
of web pages.
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Abstract. To allow advanced processing of information available on the Web,
the web content necessitates semantic descriptions (metadata) processable by ma-
chines. Manual creation of metadata even in a lightweight form such as (web
page) relevant terms is for us humans demanding and almost an impossible task,
especially when considering open information space such as the Web. New ap-
proaches are devised continuously to automate the process. In the age of the So-
cial Web an important new source of data to mine emerges – social annotations
of web content. In this paper we utilize microblogs in particular. We present a
method for relevant domain terms extraction for web resources based on process-
ing of the biggest microblogging service to date – Twitter. The method leverages
social characteristics of the Twitter network to consider different relevancies of
Twitter posts assigned to the web resources. We evaluated the method in a user
experiment while observing its performance for different types of web content.

Keywords: automatic term recognition, keyword extraction, user-generated
content, social annotations, microblog, twitter.

1 Introduction

World Wide Web has become one of the most important sources of information. The
amount of information on the Web is huge, so a user is often overloaded and traditional
information retrieval is no longer effective. Web content necessitates semantic descrip-
tions (also referred to as metadata) that allow advanced processing such as intelligent
search and personalization. This vision of machine-processable layer of metadata is for
more than a decade addressed by the Semantic Web movement [3]. However, despite
the increase, “semantization” of the Web is not as spread as we would like [15]. It is due
to the fact, that manual creation of metadata for huge amounts of web content is almost
impossible for a human being. Hence approaches for automated creation of metadata
had emerged. They differ both in source of data they process and in an expressivity of
semantics they produce.

The most fundamental form of metadata is term-based representation that we refer to
as relevant terms (RTs). They constitute a basis for advanced semantic representations
such as ontologies (either lightweight or heavyweight) [18]. With no proper terms that
are relevant for a domain, construction of a more expressive semantic representation is
hardly possible.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 457–468, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Recently there has been a huge spread of data that are an intended or not intended
result of social activities and interaction on the Web. User-created annotations in various
forms are produced by crowds for better creating, enriching, organizing and sharing
additional information often related to existing web resources. Due to their amounts,
social data represent a very promising source for mining and discovery of potentially
useful semantic structures. We believe that despite the fact that they contain more noise,
they can be used with an advantage to supplement traditional approaches to semantics
discovery. In our work we particularly focus on microblogs as a phenomenon of today’s
web.

In this paper we propose a method for relevant domain term extraction for web re-
sources that are referenced in the microblog Twitter by utilizing social aspect of mi-
croblogging. We selected the Twitter since it is the largest microblogging network to
this date and it has less conversational focus than other social networks [9]. Other so-
cial networks like Facebook are used mostly for user interactions, which would result
in metadata of lower quality.

The rest of the paper is structured as follows. In Section 2 we discuss related work.
In Section 3 we present a method for relevant terms extraction from Twitter posts.
Section 4 describes evaluation of the method. Conclusions are drawn in Section 5.

2 Related Work

Approaches related to relevant terms extraction can be divided according to source of in-
formation utilized for processing. There are two basic groups of approaches in keyword
extraction area – extraction directly from web page textual content (utilizing Automatic
Term Recognition algorithms; ATR) and extraction from external sources.

There are two main groups of ATR algorithms: termhood and unithood algorithms.
Termhood algorithms are based on term frequency, for example assuming that the term
candidate will occur more often in domain specific documents than in the rest of them
[1]. Unithood algorithms measure collocation strength in terms. It can be done for
example by investigating mutual occurrence probability of words in term candidate
[8]. Both approaches can be further extended, e.g., by processing document format-
ting or visual style [11]. Another method for keyword extraction from text is TextRank
[13], which utilizes graph-based text representation as a source for keyword relevance
calculation.

Works related to the area of rating (web) resources based on graph analysis are im-
portant to our work. Page and Brin introduced PageRank for web pages’ ranking by pro-
cessing topology of the Web [5]. This method was adapted to Twitter’s characteristics
to calculate user rankings by Tunkelang [16]. Its main idea is that user has big influence
when is followed by many influential users. This recursive algorithm is executed, until
it converges. Another ranking method TwitterRank [17] is used to find topic-sensitive
influential twitterers. It considers topic similarity between users to compute user’s in-
fluence to others. Unfortunately this algorithm is badly scalable for large amounts of
tweets, which arise every day. TweetRank ranking was introduced to measure ranking
of web resources referenced in Twitter posts [12].

Twitter as a social network and microblogging service is used for a lot of tasks nowa-
days, e.g., for topical news recommendation [14], trends detection [6] or user modeling
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[10,19]. To our best knowledge, there are no approaches which acquire keywords about
Web resources using Twitter posts as a source of metadata extraction similarly to our
concept.

3 Utilizing Twitter for Relevant Domain Term Extraction

Acquiring metadata from microblogs has a lot in common with ordinary methods,
which extract keywords from documents, but it has its specifics.

3.1 Twitter – Source of Annotations for the Web Content

We can see the structure of the microblog in the context of our approach in Figure 1.
Users are interconnected by a followership relationship, i.e., they subscribe for content
produced by others. Followers value content of followees, they can be influenced by
them. We can compute authors’ rating or popularity using this kind of a relationship.
There is also a relationship between a user and posts – tweets – he or she published. It
is important, because author’s relevance can be a good indicator of tweet’s relevance.
Another relationship is present between tweets and web resources they refer to. When
the web resource is referred by the tweet, it can be described by that tweet. We believe
that tweet could contain useful metadata about the resources.

Fig. 1. Twitter posts as web resources’ annotations. We leverage Twitter graph consisting of users
and tweets to extract relevant terms for a resources the tweets refer to.

The most important cons of Twitter are presence of slang, risk of user account abused
for advertisement and spam spread. Specifics of microblogs that can be used with an
advantage are the hashtags (descriptive tags in tweets marked by symbol #), mentions
(references to particular users marked by symbol @), retweets (re-posted tweets) and
structure of implicit social network of microblog.

We see Twitter posts as annotations of web resource they refer to. Tweets’ content,
Twitter graph and aforementioned Twitter specifics we consider a potential source of
data to mine in order to improve relevant term acquisition from web resources refer-
enced on Twitter.
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3.2 Method for Web Page Relevant Terms Extraction

We proposed a method for web page1 relevant terms extraction utilizing Twitter posts.
It consists of the following steps:

1. Tweet processing,
(a) Web resource lookup,
(b) Tweet ranking,
(c) Relevant terms extraction,

2. Web resource content processing,
3. Combining results.

In the first step we process tweets – we look up the web resource’s URL in tweets
and get tweets referring to the resource, we rank the tweets and extract terms with
relevance weights. Then we extract relevant terms from web resource’s content. Finally,
we combine the results and select top-k relevant terms according to relevance weight.

Tweet Processing

Web Resource Lookup
In this step we find all occurrences of a given web resource’s URL in tweets. We con-
sider public tweets, which we access through Twitter search API. Twitter search API
allows searching in tweets, which are not older than one week (approximately). This is
a problem not only because we have a limited number of user annotations to exploit,
but also because they are influenced by trends of that short time period. To overcome
this drawback, we have to store tweets for relevant terms extraction purposes. However,
the number of tweets produced daily is so big that it is very difficult to store all the
Tweets. Since our method leverages social network of the Twitter, reasonable trade-off
is to store only relevant tweets, e.g., tweets produced by relevant users (authorities), or
tweets meeting stricter requirements related to content quality.

Tweet Relevance Ranking
In this step we rank tweets to distinguish more and less relevant ones. Our assump-
tion here is the more relevant post, the more accurate terms it contains. The relevance
of a tweet we compute by considering relevance of an author of the tweet. We utilize
TunkRank algorithm [16], which basically is PageRank [5] adapted to Twitter authors
ranking. We selected this algorithm since it is scalable, simple and has reasonable re-
sults in author ranking.

Besides TunkRank, we also consider user ranking that reflects frequency of author’s
posts. We slightly changed the TunkRunk computation to reflect frequency of posting
tweets. Our change is based on the assumption that users who post tweets very often
may write tweets with less valuable information, while authors, who tweets less often,
write about the topics, they are highly interested in and they can contribute more valu-
able content [7]. We compute user ranking dependent on time gap between published
tweets as follows:

1 In this paper we use terms web page and web resources interchangeably.
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T TunkRank(u) = ∑
f∈Foll(u)

1+
p

log(TG)
T TunkRank( f )

|Foll( f )| , (1)

where T TunkRank(u) is the time-aware TunkRank for user (author) u, Foll(u) is the set
of users following u, p is convergence constant and TG is time gap median, which is
defined as:

T G = Med(T G0,T G1, ...,T Gn) , (2)

where TGi is the time gap between published tweets of the author. TG0 is time gap
between publishing first and second tweet, TG1 is time gap between second a third
tweet etc. TTunkRank can be of value from an interval < 0;1 >.

For each tweet referencing a web resource we compute tweet ranking as a maximal
ranking of a user who either created or retweeted the tweet.

TweetRelRank(t) = maxu∈Ut (URank(u)) , (3)

where TweetRelRank(t) is relevance ranking of tweet t, URank(u) is user rating of
user u. (note that we can use any known user ranking algorithm, e.g., URank(u) =
TTunkRank(u)) and Ut is a set of all users who created or retweeted the tweet t.

In addition to user ranking tweet ranking can be determined by considering other
structural properties, e.g., number of retweets, or properties of content, e.g., formal
quality of tweet (less slang) or emotional characteristics derived by natural language
processing. These features have not yet been incorporated to our method since we cur-
rently focus on exploring an impact of user rating.

Relevant Term Extraction from Tweets
In this step we extract the relevant terms from the gathered tweet posts. In contrast with
traditional text processing methods we consider information about tweet relevance. For
extraction of relevant terms we can use any known automatic text recognition (ATR)
algorithm or their combination.

In our implementation we use TextRank algorithm [13], but we could use another
algorithm for textual ranking of words from documents (in our case tweets), or a text
processing service such as AlchemyAPI or OpenCalais2.

We compute final microblog-based relevance MBRel of a relevant term rt for web
resource d as follows:

MBRel(rt,d) = maxt∈Td (TweetRelRank(t))∗TRank(rt,Td) , (4)

where TweetRelRank(t) is relevance ranking of tweet t and TRank is textual ranking
of a relevant term rt in a set of tweets Td referencing a web resource d. Note that for
computation of TRank the whole set of tweets is considered. We follow an approach of
Wu et al., who showed that multiple posts processing results in better performance of
term extraction [19].

Relevant Term Extraction from Content of Web Resources. In addition to microblog-
based term extraction we extract terms from a web resource’s content. This step is a

2 http://www.alchemyapi.com/,http://www.opencalais.com/

http://www.alchemyapi.com/, http://www.opencalais.com/
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part of our method since the content of the resource remains a very relevant source for
relevant term extraction and our aim is to leverage microblog to enrich relevant domain
terms extracted from content and provide more accurate results.

Similarly to tweets’ content processing, we can employ any existing method to con-
tent processing in order to extract relevant terms from the content. We denote the rele-
vance of relevant domain terms extracted from content as CRel. The detailed description
of relevant domain terms extraction from a web resource content is beyond the scope of
this paper.

Combining Results. An input of this step is set of top-k relevant terms acquired from
microblogs and the set of top-l relevant terms obtained by the resource content pro-
cessing. We combine relevant terms’ relevancies from the both sources by computing
combined ranking.

For every relevant term extracted from microblog we have relevance MBRel and for
every keyword gained from textual content analysis, we have relevance CRel. Final
relevance Rel of relevant term rt in web resource d we compute as follows:

Rel(rt,d) = αMBRel(rt)+ (1−α)CRel(rt,d) , (5)

where MBRel(rt,d) and CRel(rt,d) are a microblog-based relevance and content-based
relevance of relevant term rt in a web resource d, respectively. α is weighting coefficient
determining the importance of both rankings.

Finally, we select top-m ranking relevant terms to be a final set of relevant terms for
a given resource.

4 Evaluation

We evaluated our method by conducting a user experiment, where accuracy of the re-
sults provided by the method was assessed by a selected group of users – experts in
particular domains selected.

4.1 Experiment Setup

We obtained more than 90 GB dataset from Twitter using its streaming API during 10
days. We selected the set of 60 web resources (URLs) for evaluation. The main criteria
of choosing the web resources for evaluation were (i) our ability to judge if the key-
words are appropriate, and (ii) the representativeness of the web resource set (i.e., we
chose different types of resources – videos, pictures, news articles, etc.). We preferred
to choose web resources with rather higher PageRank, because we were not intended to
gain metadata about spam pages. We utilized TextRank algorithm for tweets’ content
processing and the Web service AlchemyAPI for relevant term extraction from web re-
sources’ content. We set the weighting coefficient α determining the importance of the
both relevancies to balanced value 0.5.

Since our aim was to evaluate the method with respect to different types of web
resources’ content, we classified web resources into the following groups:
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• Comprehensive text – news articles or other types of dense text. This type represents
approximately 20% of evaluated set.

• Brief text – pages, which consist of different types of sparse text, page navigation
etc. This type represents approximately 20% of evaluated set.

• Product pages – pages, which describe products. One of the typical characteristics
of this product is highlighting of products’ important features in text. This type
represents approximately 20% of evaluated set.

• Minimal text content pages – this type involves videos, pictures, music, radios etc.
Due to big variety of particular subtypes of this category, it represents approxi-
mately 40% of evaluated set.

We evaluated our method by an experiment in which independent experts fulfilled sur-
veys, where they rated extracted terms as relevant or irrelevant to shown web pages. Our
survey was completed by 46 active users, who produced 4400 assessments of offered
terms. The assessment in this context means marking a term as relevant or irrelevant.
For evaluation we considered only terms, which had three or more assessments.

We employed three measures that evaluate precision of the whole set of extracted
terms, enrichment rate based on tweets and the extension proportion of relevant terms
from tweets. Precision of the method in web resource d we define as follows:

prec(d) =
|RTrel(d)|
|RT (d)| , (6)

where RTrel(d) is set of all relevant terms from web resource d judged really as relevant
ad RT (d) is set of all relevant terms extracted by our method. The second measure is
the enrichment rate enr, which shows the rate of enrichment, how terms from Twitter
enrich the whole set of web resource relevant terms obtained by our method.

enr(d) =
|RTT (d)\RTc(d)|
|RTT (d)∪RTT (d)|

, (7)

where RTT (d) is the set of relevant terms for web resource d obtained from microblog
Twitter and a RTc(d) is the set of terms obtained from the content of the web resource.
We consider enrichment rate very important because it shows, how much the terms
from Twitter participate in the whole set of relevant terms – it shows the potential of
user-generated data for relevant terms acquisition.

The third measure we observed shows the proportion of the relevant terms from
microblog Twitter, which are not present in the web resource’s content.

ext(d) = 1− |RTT (d)∩AT (d)|
|RTT (d)|

, (8)

where RTT (d) is the set of relevant terms obtained from microblog Twitter and AT (d)
is the set of all terms which are present in the web resource’s content. This measure
shows the extension proportion of metadata set by terms acquired externally, i.e., those
not present in the web resource’s content and relevant for the resource.
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4.2 Results and Discussion

For all aforementioned measures we computed averaged values per web resource.
Results obtained for the whole set of web resources, which were involved in the ex-
periment, are shown in Table 1. We are particularly interested in precision of terms
acquired from both content and microblog (precmerged), precision of terms acquired
from microblog only (prectwitter), enrichment rate (enr) and extension proportion (ext).

Table 1. Results of experiment for the whole set of evaluated web resources

precmerged prectwitter enr ext
Comprehensive text 0.700 0.760 0.387 0.770
Brief text 0.590 0.594 0.429 0.207
Product pages 0.595 0.550 0.211 0.810
Minimal text content pages 0.645 0.685 0.448 0.224
All 0.639 0.663 0.380 0.155

Average precision obtained seems to be high, despite the fact that we offered users all
terms excluding only those with zero relevance. Interesting and quite surprising finding
was that precision of terms extracted from microblog was higher than precision of the
whole set of terms merged with terms extracted from web resource’s content. Another
positive observation is that Twitter terms enrich the whole content with 38% rate, which
means that 38% of relevant terms were present only in the set originating from Twitter.
Terms extracted in duplicate by both methods were considered as obtained from con-
tent to show the improvement made by Twitter terms. To deal with the fact that terms
extracted from content and terms extracted from Twitter can be similar but not equal
(while representing the same thing), we measured the equality of terms with a small
toleration based on Levenshtein distance.

Precision. We obtained the best precision for comprehensive text. It is not surpris-
ing because web resources of this type are mostly described in microblog posts using
words that describe the content. This type of resource is also frequently shared by users
of microblog, who tend to express to/comment the content of page objectively. Some-
times they are authors themselves and use microblog posts to promote the web resource
they created while providing additional useful descriptions. The fact that content based
method we used for term extraction is successful for this type is not surprising at all,
because these methods have in general good results for comprehensive content.

The worst precision we obtained for product pages, which are in microblogs men-
tioned probably by persons, who are interested in sale of products and profiting from the
sale. They can provide descriptions, which could be confusing. However, the merged
precision is higher because the basic characteristics of product on the page are often
appropriate. The precision comparison we can see in Figure 2.

Enrichment Rate. The highest enrichment rate enr was obtained for web resources
with minimal text content, i.e., pictures, videos or similar content. The method was able
to reasonably improve results for resources where traditional content-based methods are
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Fig. 2. Precision comparison for particular types of pages

not very successful. Surprising is the fact, that this rate is not significantly higher than
for other types of web resources. This can be explained by our focus on web resources,
which contain at least few words (e.g., a picture with at least some description). We
were particularly interested in improvement comparison and by considering non textual
web resources only, the enrichment rate would be obviously 100%.

The lowest enrichment rate we obtained for product pages. This is caused by the fact,
that these pages are shared together with advertisement phrases and they are published
in the same form by many salesmen. We obtained only narrow set of terms. Moreover,
they could be even confusing. Comparison of improvement rate for individual types of
pages we can see in Figure 3.

Extension Rate. The highest extension rate was obtained for pages with minimal text
content and brief text as we supposed, because there are only few words contained
within, so Twitter terms extend the merged set a lot. On the other hand, the lowest
extension rate was achieved for comprehensive text containing rich text, and product
pages, which often include different phrases, trying to confuse search engines. We can
see the comparison of the extension rate in Figure 4.

Fig. 3. Comparison of enrichment rate for individual types of web resources
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Fig. 4. Comparison of the extension rate for individual types of resources

Finally, Figure 5 shows the correlation of extracted terms’ relevance calculated by
our method and relevance assessed by human judges (we computed average judge rating
for each resource). As we can see, the measures are correlated, i.e., our method succeeds
in extracting relevant terms that are considered relevant also by the human judges.

Fig. 5. Correlation of relevance computed by our method and ratings of judges

5 Discussion and Conclusions

Relevant domain terms are the cornerstone of domain and user representation for ad-
vanced information processing web-based applications [4,2]. In this paper we pre-
sented the method for web resources’ relevant domain terms acquisition by utilizing
microblogs created by huge masses of various users. We see microblog posts as web
resources’ annotation with a tremendous potential for relevant information to mine. In-
creasing amount of such data together with ability to select only relevant contributions
makes microblog a potential source for improvement of traditional content-based ap-
proaches to relevant terms extraction.

Our method is able to enrich the set of relevant terms extracted from web resource’s
content, especially for resources, which do not contain a lot of self-describing text. We
rely on the Twitter graph, which enables us to filter extracted terms by considering
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tweets relevance derived from authors’ ranking. A further enhancements of the method
can be done by more complex processing of tweets, e.g. by considering their language
features (hence recognizing informal and emotional posts from objective ones) or em-
ploying additional data mining while considering Twitter specifics (e.g., by clustering
related tweets by hashtags or using other similarity measure).

We showed that our approach significantly enriches the relevant terms extracted from
web resource’s content. Depending on the type of a resource to extract relevant terms
for, the results differ. The potential of the method is to treat different content type differ-
ently. Our future work covers further analysis of different resource types and incorpo-
ration of resource type identification into the method. Currently we investigate setting
of parameter α and its automatic derivation with respect to a web resource type.

Such massive data sources as microblogs deserve a special attention when consider-
ing scalability and efficiency of processing. User rating computation represents a partic-
ular challenge, when more advanced criteria or hybrid approaches would be considered
to select the most relevant users. This also calls for further research in adopting such
approaches to take full advantage of parallel computing and cloud-based services.
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-2014, APVV-0208-10 and it is the partial result of the Research & Development Ope-
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10. Kanta, M., Šimko, M., Bieliková, M.: Trend-Aware User Modeling with Location-Aware
Trends on Twitter. In: Proc. of Semantic Media Adaptation and Personalization, SMAP 2012.
IEEE Computer Society (to appear, 2012)
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Abstract. State coverage is a relatively new metric to evaluate the quality of test
suites. While most existing test adequacy criteria measure the degree of explo-
ration of the code under test, state coverage estimates the strength of the asser-
tions in the test suite. Initial experiments have shown that there is a correlation
between state coverage and mutation adequacy, and that expert users can discover
new faults by modifying the test suite to increase state coverage. Since the faults
injected by mutation testing are relatively simple, it is not clear whether these
experiment are valid in a broader setting. Furthermore, these results may not be
reproducible by average users, since they usually lack full understanding of the
internals of the tool.

This paper presents a user-based experiment to evaluate whether the state
coverage of a test suite correlates with the number defects it discovers. While the
results of the experiments fail to confirm this hypothesis, they do raises impor-
tant questions. First, test suites with high state coverage should be good in finding
logical software faults, but these faults occur less frequently than structural faults.
Second, state coverage is not monotonic in the size of the test suite. Therefore,
adding new test cases which check new properties and detect new faults can often
reduce state coverage. Based on this, we suggest a number of improvements.

Keywords: state coverage, test adequacy metric, user study.

1 Introduction

In order to detect software faults, programmers often develop test sets. The question that
arises when developing a test set is how the programmer will know when his test set
is sufficiently elaborated to have a good chance that a large amount of faults have been
detected. To make that decision, a lot of test adequacy metrics were defined. Those met-
rics indicate the reliability of a test set with respect to the detection of faults in the code
under test. The existing metrics are divided into three classes based on their underlying
approach [13]: structural metrics, fault-based metrics and error-based metrics.

Although a lot of metrics for test adequacy already exist, there seems to be a void in
the range of available metrics. Currently used metrics tend to focus on measuring a cer-
tain amount of code that is executed by the test set. Both structural and error-based met-
rics apply this technique. On the other hand, test adequacy metrics that verify whether
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a test set sufficiently checks the program’s behavior are rather rare [7]. Checking the
behavior of programs is nevertheless important to verify that the program correctly im-
plements the desired functionality. Fault-based metrics do focus on the behavior of the
code under test, but most fault-based techniques are very expensive in terms of execu-
tion time. State coverage was originally developed to fill up this void in the range of
available metrics for test adequacy. State coverage focuses on checking the behavior of
the code under test like fault-based metrics, but pursues the low execution cost and low
effort in use of structural metrics [7]. Due to its specific focus on behavior checking,
state coverage is best used in combination with a metric that concentrates on measuring
an amount of code executed by the test set [11]. This way, both the amount of executed
code and the behavior of the code are monitored.

While the theory behind state coverage sounds promising, its practical merits still
need to be demonstrated. Previous experiments to evaluate state coverage indicate that
it is a promising metric [7,11]. However, both earlier experiments have disadvantages.
Koster et. al. [7] have shown a correlation between the state coverage of test suites and
their mutation adequacy score [3,5]. Unfortunately, it is unlikely that intricate logical
faults can be created by using simple syntactic mutations. Therefore, the mutation ad-
equacy score may not be a good proxy for measuring a test suites’ capacity to detect
faults. Vanoverberghe et. al. [11] performed a case study on an open source project.
By increasing the state coverage of the test suite, they discovered several new faults.
However, since the user of the case study had expert knowledge about state coverage, it
is not clear whether these results can be reproduced by average users.

In this paper, we perform a two-phase experiment to compare the state coverage of
a test suite with its capacity to detect faults. First, we follow the process of Vanover-
berghe et. al. [11], and try to find new faults by increasing state coverage. Afterward, we
manually inject more faults according to a documented distribution of common faults
in software [8]. Second, we ask external users to write a test suite, and we compare
the state coverage of the resulting test suites with the number of detected faults. This
process avoids the the influence of pre-existing knowledge about state coverage, and it
allows more intricate faults.

Unfortunately, both phases of the experiment fail to confirm that state coverage cor-
relates with the number of detected faults. Therefore, we verify a number of potential
causes for these surprising results. Most importantly, state coverage is designed to mea-
sure the strength of the properties that are checked using assertions. Therefore, test
suites with high state coverage focus on logical software faults, which did not occur
frequently in the experiment. Alternatively, it is surprising that the state coverage of a
test suites can often be reduced by adding new test cases to the test suite. This behavior
occurs when the new test cases perform many write operations, but only check a few of
them using assertion. This lack of monotonicity adversely affects the correlation with
the number of detected faults.

The remainder of this paper is structured as follows. Section 2 introduces the defini-
tion of state coverage and illustrates it by means of an example. Section 3 describes the
design of the experiment. In Section 4, the results of this experiment are presented and
possible causes for the results are discussed. Finally, Section 5 describes the conclusion.
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2 State Coverage

In [11] state coverage is defined as the ratio of the number of state updates which are
read by assertions to the total number of state updates.

For example, consider the class Person in Figure 1a. This class contains a field name
and provides a getter, a setter and a default setter. Figure 1b shows a test case for this
class. During the execution of this test case, there are three status updates to the field
name: in the constructor, setName and setNameDefault. The test case uses getName to
read the values written in the constructor and setName and checks them in an assertion.
Consequently, the test case has 2/3 or 66 percent state coverage.

class Person {
String name;

Person(String name) {
this.name = name;

}
void setName(String name) {

this.name = name;
}

void setNameDefault() {
this.name = "John Doe";

}
}

(a) The Person class

class TestPerson {
@Test void test() {
Person anne = new Person("Anne");
assertEquals("Anne", anne.getName());
//SC Person.ctor: 100%

anne.setName("Anne-Maria");
assertEquals("Anne-Maria", anne.getName());
//SC Person.setName: 100%

anne.setNameDefault();
//SC Person.setNameDefault: 0%
}

}

(b) The TestPerson class

Fig. 1. Example to illustrate state coverage

The existing definitions of state coverage [7,11] use a complex dependency algorithm
to decide whether a test case reads a written value in an assertion. In this paper, we
use lightweight state coverage, a variant which monitors the fields that are read while
evaluating the expression of the assertion and remembers the writes that are responsible
for it. While this is slightly less precise, it is easier to understand and more efficient.

3 Design of the Experiment

3.1 Goal

As discussed in the first chapter, the earlier experiments regarding the efficiency of
state coverage [7,11] show that state coverage could be a promising metric for test
adequacy. However, both experiments exhibit serious disadvantages. The main goal of
the experiment described in this paper is to evaluate the efficiency of state coverage
without the manifestation of these disadvantages so that the results of this experiment
become more generally applicable. The experiment will therefore investigate the direct
relationship between state coverage and the number of detected faults. Furthermore,
non expert users will be employed to develop test sets instead of experts in the matter
of state coverage.
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3.2 Hypotheses

The experiment described in this paper evaluates two different hypotheses. The first
hypothesis, hypothesis 1, states that a user will find more faults in the code under test by
elevating the state coverage percentage than when state coverage is not being applied.
The user will thus discover new faults by applying state coverage to an existing test
set. Hypothesis 2 reads as follows: Consider a given program and different test sets
that verify that program. The higher the state coverage percentage of a test set, the
more faults the test set will detect in the program code when that test set is applied to
the program. In other words, hypothesis 2 states that a correlation between the state
coverage percentage and the number of detected faults in a program exists.

Hypothesis 1 is weaker than hypothesis 2, but can be checked more easily. Hypoth-
esis 1 will therefore serve as a quick check to offer a first indication concerning the
efficiency of state coverage. It simply states that elevating the state coverage percent-
age will cause more faults to be found than when state coverage is not applied. The
experiment is designed so that this hypothesis can quickly be examined. The stronger
hypothesis 2 will further investigate the relation between state coverage and the number
of faults found in the program under test, guided by the results for hypothesis 1.

3.3 Structure of the Experiment

The experiment designed to evaluate the two discussed hypotheses is based on different
existing experiments [1,2,4,9,10,12] to evaluate the efficiency of other test adequacy
metrics. In general, these experiments have the same structure: In a chosen program,
faults are introduced. For that program, different test sets are created. Each of those test
sets has a certain coverage percentage. By executing the test sets and monitoring the
amount of faults in the program code found by the test sets, the relation between the
coverage percentage and the detection of faults in the program can be observed. The
remainder of this section describes the choices that were made regarding the employed
program, the injected faults and the creation of test sets.

For the program, we chose a Java application (the MOP-application) which was de-
veloped in the software design course of the third year of the bachelor in informatics
at the KULeuven. We made this choice because the voluntary users involved in the ex-
periment need to be able to write a test set for the program in a limited amount of time.
Hence, the program needs to be rather small. In addition, it allows minor modifications
to the program to avoid tool-related problems.

In the first phase of the experiment, we developed a test set for the MOP-application.
First, the existing test set for the MOP-application was extended to reach a code cov-
erage percentage1 of approximately 90 percent. The faults discovered in this step were
registered for later consultation. The use of code coverage is important, because state
coverage does not measure the degree of exploration of a test suite. By combining code
coverage and state coverage in the experiment, we ensure that both the amount of exe-
cuted code and the behavior of that executed code is monitored.

In a second step of this first phase, the state coverage percentage of the developed test
set was also increased to reach approximately 90 percent. To that end, assertions were

1 Instruction coverage as measuerd by EclEmma [6].
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added to the existing test set. Thus, the code coverage percentage of the test set stayed
the same. The faults that were found while increasing the state coverage percentage,
were recorded together with the state coverage percentage of the test set on the moment
the fault was found.

In this first phase it became clear that developing a test set for the original MOP-
application was too time-consuming for the voluntary users’ time constraints. The orig-
inal MOP-application was therefore shortened. In the rest of this text, the original MOP-
application will always be referred to using the word “original”. Other occurrences of
the word MOP-application refer to the shortened version. After this shortening, addi-
tional faults were injected manually into the program. In total, 20 faults were present in
the simplified MOP-application. Four of those faults were faults that were discovered
in the first phase of the experiment. Nine faults were explicitly injected in the program
code. The choice of the faults to inject was based on a documented distribution of com-
mon faults in software [8]. A last group contains the additional seven faults that users
of the experiment detected while writing a test set for the program in the second phase
of the experiment.

In this second phase, the users developed a test set for the MOP-application with
injected faults. The users of the experiment were voluntary students in the last year
of the master in computer science. Like in the first phase of the experiment, the users
initially developed a test set for the MOP-application that reached a code coverage
percentage of approximately 90 percent. In this first step, the users were kept in the
dark about the existence and practice of state coverage. After this step, the users were
informed about the existence of state coverage and the Java state coverage tool. They
were asked to use that tool to increase the state coverage percentage of their developed
test sets to approximately 90 percent. During this phase, all the faults that the users
detected were registered together with the code and state coverage percentage on the
moment the fault was found.

3.4 Threats to Validity

As for any other experiment, there are a number of threats to the validity of the conclu-
sions of the experiment.

Internal Validity. The experiment took place in two different sessions. Therefore, there
may be a discrepancy between the results of these sessions. In practice, we have not
observed significant differences between both sessions.
Since the users first tested the program using code coverage, the users may have
become more proficient in the programming language and the testing environment
before using state coverage. However, both the programming language and the test
environment were well-known to the users before the start of the experiment.

External Validity. In the experiment, a self-written application is used. It is possible
that the chosen program is not representative enough for realistic programs. The
chosen application was developed by students instead of experienced programmers.
Moreover, there is a lot of variation in software applications, so a single program
can never represent them all. This threat to validity is inherent to our choice for the
MOP-application and will have to be kept in mind while analyzing the results.
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Another threat is the result of the choice of the injected faults. The faults that were
already present in the MOP-application and that were found by either us or the
users of the experiment are real faults. Although the injected faults were selected
by using a distribution of common software faults, there is no guarantee that this
distribution is correct nor that the injected faults correctly represent the determined
classes. This threat is inherent to our choices and will have to be kept in mind while
analyzing the results.

The last threat to the validity of the experiment is the fact that students may not
be the best users for the experiment. Students may not achieve the same results
as experienced programmers. In addition, experiences state coverage users may
achieve better results. On the other hand, state coverage was developed to help
users develop good test sets, so even less experienced users should be able to benefit
from it.

4 Evaluation of the Results

4.1 Phase 1

The results of phase one of the experiment, where we developed a test set for the origi-
nal MOP-application, are limited. The goal of this phase was to perform a preliminary
evaluation of hypothesis 1 by checking whether increasing the state coverage percent-
age would cause additional faults to be found in the original MOP-application. How-
ever, during the part of this phase where the state coverage percentage was increased, no
additional faults were found. Based on these results, hypothesis 1 can not be accepted.
The results of phase two will further investigate hypothesis 1 and 2 based on the data
gathered from the user experiment, since the data gathered in this phase is too limited
to draw any general conclusions.

Most likely, no additional faults were found because state coverage assists in finding
a specific class of faults, and these faults are rather rare in the original MOP-application.
State coverage was designed to measure the strength of the assertions in a test suite.
Most discovered faults were structural faults, such as null pointer exceptions due to
improper handling of null arguments. This kind of fault can not be detected by adding
new assertions. Instead, test suites with high state coverage focus on logical faults, such
as violations of an invariant or a post condition. Of the 13 discovered faults, only one
could be found by increasing state coverage. However, it was already discovered while
increasing code coverage.

4.2 Phase 2

A first goal of the experiment was to evaluate whether elevating the state coverage
percentage of a test set would lead to more detected faults in the program code (hypo-
thesis 1). In this phase also, like in phase one, none of the 13 users found an additional
fault during the state coverage part of the experiment. This result suggests that the
explicit augmentation of state coverage has little effect on the number of faults found.
However, before such a rigorous conclusion can be drawn, a more detailed investigation
is required.
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Fig. 2. Code coverage evolution

Before proceeding to the evaluation of hypothesis 2, we check a control hypothesis
about code coverage which states that there is a positive correlation between the code
coverage of a test suite and the number of faults it detects. During the experiment, users
were required to gather snapshots of their test set on certain points in the development.
The users were asked to create a snapshot every time they detected a fault, at the end
of the code coverage part of the experiment and at the end of the state coverage part of

Fig. 3. State coverage evolution
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the experiment. These snapshots are the data that is used to evaluate the hypotheses. In
Figure 2, a chart is shown that displays the code coverage percentage of these snapshots
on the y-axis and the number of detected faults on the x-axis. A visual inspection of
the chart reveals a correlation between the code coverage percentage and the number
of faults found. To confirm hypothesis 2, we need a similar correlation between state
coverage and the number of detected faults.

The chart that displays the state coverage percentage of the users’ snapshots on the
y-axis and the number of detected faults on the x-axis is shown in Figure 3. Unfortu-
nately, there is no correlation visible in this chart. There does not seem to be a positive
relation between the state coverage percentage and the number of detected faults. Both
the results for hypothesis 1 and 2 thus seem to indicate that state coverage is not an
efficient test adequacy metric. In the remainder of this section, two possible causes for
these unexpected results will be discussed. Afterwards state coverage will be critically
analyzed and suggestions for the improvement of state coverage will be presented.

4.3 Potential Causes for the Results

Frequency of Logical Faults. As discussed before, state coverage was designed to
measure the strength of the assertions in a test suite. Consequently, it will probably
only correlate with the number of logical faults in the code base. Because state coverage
measures the fraction of the state updates that are read in assertions, it implicitly focuses
on incorrect state updates. After executing the experiment, we can conclude that these
faults are rather rare in the MOP-application. Of the 20 faults in the MOP-application,
only three faults are caused by an incorrect state update. Unfortunately, only one of
those three faults was actually discovered by users. Therefore, there is insufficient data
to be representative for all such faults.

While state coverage focuses on missing state updates, logical faults can also be
caused by missing state updates. Since test suites with high state coverage usually con-
tain more assertions, it is likely that they will also discover more missing state updates
and therefore we can broaden the scope to general logical faults. Of all detected faults
in the MOP-application, 35.7 percent of the total amount of detected faults can be dis-
covered using assertions. When we only consider these faults, there is an indication that
state coverage influences the detection of faults.

To investigate this, the appropriate test classes for finding a fault were divided into
two groups. One group contained the test classes that were implemented by a user, but
were not able to detect a certain fault in the class under test. The other group con-
tained the test classes that were able to detect a certain fault in the class under test.
For both groups, the average state coverage percentage was calculated. On average, test
classes that discover a fault have a higher state coverage percentage (42 percent) than
test classes that do not discover the fault (34 percent). These results indicate that, when
focusing on logical faults, the correlation between state coverage and the detected num-
ber of faults may improve. Since the variance between the state coverage within one
group is rather high and the number of data points is still small, the results are not
significant enough to draw strong conclusions.

The most important question that remains based on this analysis is the question whether
faults that are caused by incorrect state updates are as rare in real applications as they
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were in the MOP-application. If so, the specific focus of state coverage on such faults is
probably not justifiable.

Monotonicity. Another reason why state coverage may not have a correlation with the
number of detected faults is that it is not monotonic in the size of the test suite. Most
test adequacy criteria can only increase when new test cases are added to the test suite.
Since state coverage is relative to the exploration of the test suite, exploring a new path
in the program may introduce new state updates and thus reduce state coverage, even if
it discovers new faults by rereading a small fraction of them in an assertion.

Consider the chart depicted in Figure 4. This chart displays the number of detected
faults on the x-axis and the absolute number of covered state updates on the y-axis. The
represented points are again the snapshots of the users’ test sets. In this chart, there is
a positive correlation between the number of detected faults and the number of covered
state updates. Thus, the absolute number of covered state updates has an influence on the
detection of faults after all. However, this influence is not reflected in the state coverage
percentage, as shown in Figure 3.

Fig. 4. Absolute state coverage evolution

Since the state coverage percentage can both increase and decrease when additional
code is added to the test set, it may require much more effort from the tester to maintain
a high state coverage ration. Therefore, high state coverage may be too strict to discover
a high number of faults.

However, covering state updates in assertions seems promising since a correlation
between the absolute number of covered state updates and the number of detected faults
is present.
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4.4 Analysis of State Coverage

In this section, the current form of state coverage is thoroughly analyzed. First, the ben-
efits and drawbacks of state coverage will be discussed. Afterwards, several suggestions
for the improvement of state coverage will be presented to eliminate some of the current
drawbacks.

Benefits. The most important benefit of state coverage is the fact that the metric fo-
cuses the programmers attention on checking the behavior of the code under test. This
focus is different than the focus of most existing metrics for test adequacy. Hence, state
coverage is not another metric of the same kind, but it is an innovative metric with an
original approach. Another benefit of state coverage is that it is easily understandable.
Comprehensibility is an essential quality for a test adequacy metric. State coverage is
easily explicable by means of a definition and some simple examples. The users of the
experiment confirmed state coverage’s understandability and had little or no problems
learning to work with state coverage.

A last benefit of state coverage is the fact that it can be calculated efficiently. Unlike
the mutation adequacy score, state coverage can be measured by monitoring a single
execution of the test suite. Both state coverage and mutation testing focus on the behav-
ior of the code under test, but the execution cost of state coverage is far lower than that
of mutation testing.

Drawbacks. A first drawback of state coverage that needs to be considered is the fact
that state coverage in its current form always has to be used in combination with another
metric for test adequacy. State coverage only considers the code that is executed by
the test suite to calculate the state coverage percentage. Therefore, state coverage will
always have to be applied in combination with a metric that monitors the amount of
executed code.

A second disadvantage of state coverage is the fact that in the current implementa-
tion of state coverage, a lot of useless assertions may need to be written to achieve a
high state coverage percentage. On the one hand, not all state updates are equally likely
to be incorrect. On the other hand, the state coverage percentage is currently calculated
per test method. If a certain piece of code occurs in different test methods, state cov-
erage will require to check the state updates for that piece of code in each test method
separately, creating a bunch of duplicated assertions.

A last disadvantage arises from the disappointing results of the experiment. State
coverage by design focuses on logical faults. This class is implicitly reduced to incorrect
state update. These faults were rare in the MOP-application. If broader experiments
suggest that logical faults do not occur frequently enough in real applications, achieving
high state coverage may require too much effort with respect to the rewards that can be
gained.

Suggestions for Improvement. A first aspect of state coverage that can be improved
is the implementation. As discussed in the previous section, the current implementation
calculates the state coverage percentage per test method. A possible improvement of
this approach is to calculate state coverage for the whole test and thus join the results of
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all test methods. In this way, a lot of repeated assertions can be avoided by registering
the same state updates only once. A problem that could arise using this new approach
is the fact that the memory usage might increase to unacceptable levels since all state
updates will need to be kept in memory during the entire execution of the test set. In
addition, this requires an intelligent way to join the state updates of different test cases.

As discussed before, the definition of state coverage currently allows the state cove-
rage percentage to increase as well as decrease on expansion of a test set. It may be pos-
sible to create a variant of state coverage that is monotonously increasing.
For example, this can be done by using a more static version of state coverage where
the maximum number of state updates is fixed statically. The advantage is that the new
definition will more strongly comply with the expectations of the users. A drawback of
this approach is that the definition of state coverage may be less dynamic and therefore
easier to achieve.

5 Conclusion and Future Work

State coverage is a promising metric to evaluate the strength of the assertions in a test
suite. Unfortunately, the results of our experiment fail to confirm that there is a correla-
tion between state coverage and the number of detected faults.

Based on an analysis of the results, the main open question is whether logical soft-
ware faults occur frequently enough to justify the increased effort to achieve high state
coverage. In addition, it seems worthwhile to explore new variants of state coverage. On
the one hand, state coverage only helps to find logical software faults which are caused
by incorrect state updates, as opposed to the full spectrum of logical software faults. On
the other hand, a monotonic metric is more convenient to work with and may have a
better correlation with the number of detected faults.
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Abstract. Approximation of costly objective functions by surrogate
models is an increasingly popular method in many engineering optimiza-
tion tasks. Surrogate models can substantially decrease the number of
expensive experiments or simulations needed to achieve an optimal or
near-optimal solution. In this paper, a novel surrogate model is pre-
sented. Compared to the most of the surrogate models reported in the
literature, it has an advantage of explicitly dealing with mixed continu-
ous and discrete variables. The model use radial basis function networks
for continuous and clustering and a generalized linear model for the dis-
crete covariates. The applicability of the model is shown on a benchmark
problem, and the model’s regression performance is further measured on
a dataset from a real-world application.

Keywords: surrogate modelling, RBF networks, genetic algorithms,
mixed-variables optimization, continuous and discrete variables.

1 Introduction

Different kinds of optimization tasks are encountered in many of todays engi-
neering or industrial applications. Frequently, they are characterized by a high
number of both continuous and discrete variables [1, 2]. Such tasks are called
mixed-variables optimization problems, often abbreviated as MVOP, and they are
similar to mixed-variable non-linear programming (MINLP) tasks. These tasks
are common especially in situations where the value of the objective function is
obtained through some measurement, experiment or simulation.

A popular approach to tasks with costly objective functions is substituting
an approximating model for the empirical objective function. This approach,
called surrogate modelling [3, 4], is widely used in connection with evolutionary
algorithms (EAs), in spite of having been originally introduced in the area of
smooth optimization.
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Assessing some of the individuals with not necessary accurate, but much faster
model brings an important benefit: a notably larger population can be evolved
in parallel. Even though the original fitness function can be evaluated only on
a limited number of individuals, the EA can explore a larger part of the input
space.

This paper describes a particular surrogate model based on radial basis func-
tion (RBF) networks. As far as we know, the existing publications about surro-
gate modelling in evolutionary optimization deal with only continuous domains
or combination with integer variables [5]. Outside the evolutionary area, the work
of Holmström [6] is known, for example. Interesting applications can be found
in some articles [7–9], or SO-MI algorithm has appeared recently [10]. However,
we are aware of no surrogate models for MVOP in evolutionary context. And
even outside that context, such models are rather few.

In our model, multiple RBF networks are first trained on the continuous
part of the data – in this phase, discrete variables are used to focus training of
the networks on the most appropriate data. Next, a generalized linear model is
trained taking discrete variables as the independent and residuals of the RBF
networks as the dependent variables for training.

The paper is organized as follows: in the next section, we recall the optimiza-
tion task and GLM principles. Section 3 describes our approach to constructing
a surrogate model and using it in optimization. Finally, Section 4 provides the
results of testing on a benchmark function and real-world data.

2 Optimization Task and Involved Methods

For any given objective function f : S → IR, we consider the mixed-variable
optimization problem as finding x∗ such that

f(x�) = max
x∈S

f(x). (1)

where x� = (x
(C)
1 , . . . , x

(C)
n , x

(D)
1 , . . . , x

(D)
d ) ∈ S. The problem includes n con-

tinuous and d discrete variables; their values belong to corresponding subspaces
S(C) and S(D). This holds for maximization problem, minimization can be defined

analogously. In addition, we suppose that the value sets Vs(X
(D)
i ), i = 1, . . . , d

of the discrete variables are finite and we do not differentiate between ordinal
or nominal categorical variables – we do not require any ordering on any of the

Vs(X
(D)
i ).

2.1 Involved Methods

Evolutionary optimization, RBF networks and surrogate modelling were recalled
already in the preceding paper [11]. For a more detailed treatment of them,
the reader is referred to specialized monographs, in particular to the recent
monograph [12] for global genetic optimization, [13] and [14] for the traditional
linear and polynomial response-surface models, which inspired the modern non-
linear surrogate models such as Gaussian processes and artificial neural networks
[3, 15, 16].
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Generalized Linear Models. The new surrogate model presented in section 3
relies in addition on generalized linear models (GLM). A GLM is a natural gen-
eralization of a linear regression model [17]. It consists of three parts: (1) the
random component – observed values Y following a distribution from an expo-
nential family with mean E(Y) = μ and constant variance σ2, (2) the systematic
component which relates values of explanatory (input) variables (x1,x2, . . . ,xd)
through a linear model with parameters β1, . . . , βd to a linear predictor η

η =
d∑

j=0

xjβj , (2)

and (3) a link function g that connects the random and systematic components
together: η = g(μ).

3 Proposed Surrogate Model for MVOP Evolutionary
Optimization

In the preceding paper [11], we described a surrogate-assisted genetic algorithm
(GA), in which the proposed surrogate model obtained in the following steps:

1. the training data is clustered according to S(D),
2. for each cluster, separate RBF network is trained on S(C).

Let us call this model RBF/discrete clustering, or shortly DSCL.
The DSCL model does not use any relationships of the discrete input variables

to the response variable. That motivated further surrogate models for MVOP,
which already use such relationships. A new version of a model combining RBF
networks and GLM, called a RESID model, is introduced in the following text.

3.1 Model Construction

Construction of the RESID model starts with building previously described
DSCL model f̂DSCL : S → IR which is composed of several RBF networks
fitted on the continuous input variables on respective clusters from clustering
made using the discrete variables. If different combinations of values of the dis-
crete variables are possible, then different RBF networks on S(C) need to be
constructed to reflect the differences in those combinations. In fact, in the rare
situation that there are enough training data to construct separate networks
for all combinations of values of discrete variables, DSCL constructs all those
separate networks.

In the next step, residuals of this DSCL submodel are computed for all N
available training data

δi = yi − f̂DSCL(x
(C)
i ,x

(D)
i ), i = 1, . . . , N. (3)

Further, a GLM is fitted taking discrete variables as independent and these δi’s
as a dependent variable. The final value of the RESID model then sums the
resulting values of DSCL and GLM models.
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FitTheModel(s(1)min, D, e)

Arguments: s(1)min – min. size of clusters,
D – training data, e – type of error estimate:
MSE, AIC, or BIC

Steps of the procedure:
(1) {Cj}mj=1 ← cluster D into clusters of size

at least s(1)min according to discrete variables
(2) for each cluster Cj , j = 1, . . . ,m
(3) rbf j ← parameters of the RBF network with g�j compo-

nents fitted with data from Cj , and with error ej
(4) ej ← e[j, g�j ]

(5) δi ← (yi − f̂DSCL(x
(C)
i , x

(D)
i ; rbf )) for i = 1, . . . , N

(10) glm ← fit the GLM on (δi)
N
i=1

choose the best link function g and coding
of variables via cross-validation

Output: {(rbf j , ej)
m
j=1, glm}

Fig. 1. Pseudo-code of the fitting procedure

A pseudo-code of our algorithm for the RESID model fitting is given in
Figure 1. Important parts of the algorithm are briefly explained below.

3.2 Fitting the RESID Model

RBF networks enable us to use only continuous variables for their fitting. Con-
struction of the DSCL submodel starts with clustering of the available training
data according to their discrete values into several clusters in order to focus the
RBF networks training on the most similar data points. Subsequently, separate
networks are fitted with the data of each such a cluster using the data points’
continuous variables.

Further, relation between values of the discrete input variables and the re-
sponse variable is utilized via GLM which form an important part of our new
RESID surrogate model.

Parameters of the DSCL Model. The sizes of the clusters Cj , j = 1, . . . ,m
have to fulfill

|Cj | ≥ s
(gmin)
min (4)

where s
(g)
min is the minimal number of data needed for fitting an RBF network

with g components, and gmin is the required minimal number of components of
each of the fitted networks (implicitly, gmin = 1, but the user can increase this

value). The value s
(gmin)
min depends on the employed radial basis functions, and on
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the way of estimating the fitting errors e(j, g) of RBF networks In particular, for
Gaussian networks with d-dimensional continuous inputs and e(j, g) estimated
using k-fold cross-validation:

s
(g)
min =

⎧⎪⎨⎪⎩
g k
k−1 (d+ 2) if uncorrelated cont. variables with identical variance,

g k
k−1 (2d+ 1) if uncorrelated cont. variables with diagonal variance,

g k
k−1

d(d+3)+1
2 else.

(5)

If e(j, g) are estimated without cross-validation, the coefficient k
k−1 is left out.

One separate RBF network rbf j is trained on the data of each cluster Cj , j =
1, . . . ,m. The maximal number of components of each network is upper-bounded
by

gmax
j = ,(k − 1

k
|Cj |)/s(gmin)

min -. (6)

GLM Model. Generalized linear model is used in its continuous-response form.
In the constructed GLM, the response’s distribution is assumed to belong to
an exponential family: either normal, gamma or inverse Gaussian distribution
is supported. The most proper distribution is chosen through cross-validation.
Further, the corresponding link function for each of the three distributions is
used.

Before using or fitting the GLM, the discrete values must be converted to
a proper representation. Since we do not assume any ordering of the discrete
values, our default choice is dummy coding [17] which establishes one binary
indicating variable Iij ∈ {0, 1} for each nominal value from the value sets

Vs(X
(D)
i ), i = 1, . . . , d, j = 1, . . . , |Vs(X

(D)
i )| of the original discrete variables.

Needless to say, the number of GLM parameters for GLM fitting can grow
rapidly which restricts the applicability of the dummy coding, moreover default
integer representation with ordering taken from the original integer values can be
beneficial to the regression quality. Therefore, as an alternative representation,
integer coding can be used in situation when there are not enough data for
dummy coding. As default, coding resulting in a higher regression quality in
terms of cross-validation error is used.

3.3 Evaluation with the Surrogate Model

Once the surrogate model is built, it can be used for evaluating individuals
resulting from the evolution. The parameters of the model can be summa-
rized as {(rbf j , ej)mj=1, glm}. Here, rbf j are RBF/DSCL network parameters, ej
are errors obtained from cross-validation, and glm = (β0, . . . , βr; coding, g) are
parameters of the GLM.
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Given a new individual (x(C),x(D)), evaluation with the surrogate model
starts with finding the index c of the cluster with the data closest to the in-
dividual’s discrete values

c = arg min
j=1,...,m

1

|Nj |
∑
y∈Nj

dDISCR(x
(D),y). (7)

Here, dDISCR denotes Hamming (used in testing) or Jaccard metric. Then, the
RBF network with parameters rbf c corresponding to this cluster c is used as
a surrogate model of the original fitness by computing its return value on conti-
nuous dimensions yDSCL = f̂DSCL(x

(C); rbf c). If more than one cluster is at the
same distance from the individual, the RBF network with the lowest error e is
chosen.

The resulting value is obtained by summing with the GLM response on the
discrete variables

ŷ = yDSCL + g−1

⎛⎝ d∑
j=0

xj(D)βj

⎞⎠ (8)

where g−1 is an inverse of the link function chosen during GLM fitting.

4 Implementation and Results of Testing

Our algorithms were implemented in the MATLAB environment. We utilized
the Global Optimization Toolbox whose modified genetic algorithm was used as
a platform for testing the model on a benchmark optimization task. Similarly,
clustering method extends the standard bottom-up hierarchical cluster analysis
from the Statistical Toolbox in order to guarantee clusters of a minimum specified
size. Statistical Toolbox provide us with GLM fitting procedure, too, and we
employ a nonlinear curve-fitting from the Optimization Toolbox for fitting RBF
networks.

4.1 Model Fitting

Our models have been tested on two different kinds of data. The first, real-
world dataset is the same as in our preceding articles [11, 18], and comes from
optimization in the domain of chemical catalysis. In the latter article [18], more
information about this specific real-world application is provided as well as one
particular boosted surrogate model based on multilayer perceptrons. The second
dataset is a set of individuals resulted from one GA optimization run of the
modified Schwefel’s benchmark function [19].

The first dataset comes from a real application in chemical engineering –
optimization of chemical catalysts for Hydrocyanic acid (HCN) synthesis [20].
Solutions of this task are composed of two discrete and 11 continuous variables,
the whole dataset has 696 items. The dataset was randomly split into training
(556) and testing (140) part.
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Table 1. Surrogate-models’ regression results on HCN and Schwefel dataset, average
results from 50 trainings. RMSE on the testing and training set is supplemented by
average medians of residuals on the testing set.

dataset model
RMSE RMSE medians of

(test set) (train set) residuals

HCN
DSCL 8.2918± 0.4373 7.6337 4.9433
RESID 7.6212± 0.3187 6.6131 4.0678
SUMO 115.196± 34.1387 0.5711 35.0051

Schwefel
DSCL 62.712± 3.4248 83.553 4.955
RESID 55.605± 5.4867 73.468 5.411
SUMO 64576± 1.9e+05 33.964 44048

As the second dataset, individuals from the first 10 generations of a run of
GA optimization of modified Schwefel’s function were taken. The original Schwe-
fel’s function y = 1

p

∑p
i=1−xi sin(

√
|x|) was modified in order to be defined on

both continuous (x
(C)
1 , . . . , x

(C)
p ) ∈ [−512,512]p and discrete (x

(D)
1 , . . . , x

(D)
p ) ∈

{−10,−9, . . . , 10} variables in the following form

y =
1

p

p∑
i=1

−x(C)
i sin(

√
|x(C)

i |) + 10

p

p∑
i=1

sin(

√
|π(x(D)

i ). ∗ x(C)
i |)

+
20

p

p∑
i=1

π(x
(D)
i )2

(9)

where π : {−10, . . . , 10} → {−10, . . . , 10} is a random permutation. For simpli-
city, we have chosen only two continuous and two discrete variables (p = 2); the
training set has 681 and testing set 101 data.

Our models (RESID and former DSCL) were compared with the RBF network
from SUMO toolbox [15] using approximately the same computational time.
Each of the three models (DSCL, RESID and SUMO) were 50 times trained on
the training sets of the two tasks.

Results in Table 1 show that the new RESID model achieves about 10% lower
root-mean-square error (RMSE) than the former DSCL model; the improvement
is statistically significant (one-sided Mann–Whitney U test, pHCN = 2.28 ·10−12,
pSchwefel = 1.11 · 10−10). The testing errors of both our models are considerably
lower than errors of RBF networks from SUMO toolbox. Moreover, in the case
of the HCN real-world dataset, the improvement of RESID model is even more
than 25% compared to the results in [11]. Even though SUMO toolbox’s training
error is low, very large testing error shows poor generalization capabilities; see
also Figure 2.

4.2 Genetic Algorithm Performance on the Benchmark Fitness

The Schwefel’s benchmark fitness enabled us to test the model as a surrogate
model for genetic optimization. The parameters of the function, especially the
number of variables, was the same as in the case of the regression test.
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Fig. 2. Scatter plots of the DSCL, RESID and SUMO’s RBF models on testing data
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Fig. 3. The numbers of original evaluations needed to reach 1.2-, 1.1-, 1.05-, 1.02- and
1.01-multiple of minimum, measured on 100 GA runs

Crucial criterion of successful optimization of empirical functions is the num-
ber of original fitness evaluations needed for reaching sufficient near-optimal
solution. Therefore, the number of original fitness evaluations was measured in
each of 100 runs in the moment when the following thresholds were reached:
1.2-, 1.1-, 1.05-, 1.02- and 1.01- multiple of the global minimum (corresponding
to reaching value 20, 10, 5, 2 and 1 per cent above optimal solution). The num-
bers of needed evaluations for these limits are shown in Figure 3. Since not every
single run converged to all of these values, the numbers of evaluations belong-
ing to each threshold were divided by the ratio of runs successfully reaching
respective thresholds.
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The average number of evaluations needed to get 1%-above-optimal solution
has been significantly decreased from 13224 by more than 35% to 8310 with our
RESID model (p = 0.011, one-sided Mann–Whitney U test), and by nearly 25%
(to 10014) with the DSCL model; this result is not significant, though. RBF
networks from the SUMO toolbox did not improve results of this optimization
task (the average number of original evaluations was 13249).

5 Conclusion

This paper presented a novel kind of surrogate model for mixed-variable conti-
nuous and discrete optimization. It utilizes a clustered model with RBF networks
(one network per cluster) and a generalized linear model. The model focuses
training of the RBF networks using clustering on the discrete part of the data.
Generalized linear model trained on the discrete input variables further improves
regression capabilities. Results of testing on two different datasets showed that
the model is a competitive kind of regression for costly objective functions. Us-
ing this surrogate model for the optimization of modified Schwefel’s benchmark
fitness function resulted in saving up to 35 per cent of the original evaluations.
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20. Möhmel, S., Steinfeldt, N., Endgelschalt, S., Holeňa, M., Kolf, S., Dingerdissen,
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Abstract. Measuring semantic similarity of words is of crucial importance in
Natural Language Processing. Although there are many different approaches for
this task, there is still room for improvement. In contrast to many other meth-
ods that use web search engines or large lexical databases, we developed such
methods that solely rely on large static corpora. They create a binary or numer-
ical feature vector for each word making use of statistical information obtained
from the corpora. These vectors contain features based on context words or gram-
matical relations extracted from the corpora and they employ diverse weighting
schemes. After creating the feature vectors, word similarity is calculated using
various vector similarity measures. Beside the individual methods, their combi-
nations were also tested. Evaluated on both the Miller-Charles dataset and the
TOEFL synonym questions, they achieve competitive results to recent methods.

Keywords: semantic similarity, static corpora, co-occurrence statistics.

1 Introduction

For many Natural Language Processing (NLP) tasks, such as information extraction,
spelling correction or word sense disambiguation, knowing the semantic similarity of
words can be very helpful. Therefore, in the last approximately 20 years, much research
has been done on developing methods that can automatically compute the semantic sim-
ilarity of words. Most of the best performing methods employ web search engines (for
example Google or Yahoo!) or large lexical databases (such as WordNet or Roget’s
Thesaurus) in order to compute word similarity. Although their application can be ad-
vantageous for many reasons, and systems using them tend to perform well, they also
have many disadvantages.

Using web search engines in NLP tasks can have many drawbacks, as noted by Kil-
garriff [9] among others. First, the returned page hit counts are not exact counts and they
change over time. Furthermore, queries can have no linguistic restrictions and punctu-
ation cannot be used. Moreover, their use can be limited and time consuming. Finally,
they usually have a constraint on the number of pages returned per query.

Employing large lexical databases induce other problems. Methods that can auto-
matically compute the semantic similarity of words are especially useful for uncom-
mon words not included in lexical databases and thesauri. However, an algorithm that
solely relies on lexical databases is not able to compute the similarity of such words,
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and therefore cannot be used in those cases when the most useful they would be. Fur-
thermore, as languages evolve over time and new words are created every day, these
lexical databases should be revised constantly, which is a costly task. Moreover, every
manually created database is prone to human errors: important words, word meanings
(called synsets in WordNet) and relations can be missing from them.

Summing up, there are situations, where the usage of web search engines or large
lexical databases is not suitable or feasible because of the above mentioned problems.
In those cases, such methods are needed that use neither web search engines nor lexical
databases. Therefore, we constructed methods that solely rely on large static corpora.1

They first process the used corpora and create a feature vector for each word using con-
text words or grammatical relations as features and some weighting scheme. Then, they
compute word similarity based on the similarity of these word vectors. Beside using the
created methods by themselves, a number of combination of the different methods were
also examined. Tested on two different datasets, namely the TOEFL synonym questions
and the Miller-Charles word pairs, they give comparable results to other methods.

The rest of the paper is structured as follows. We first give a short overview of the
different kinds of existing methods used for computing semantic similarity in Section
2. Then, in Section 3, we describe our methods in detail. Finally, in Sections 4 and 5,
we demonstrate our results and draw conclusions from them.

2 Related Methods

The methods computing semantic similarity can use a variety of sources and can com-
pute the semantic similarity of words differently. There exist methods that make use of
large lexical databases, such as the WordNet or the Roget’s Thesaurus. Others issue web
search engine queries and process the results. Further, there are also numerous methods
that employ large static corpora to extract statistical information in order to solve the
problem of semantic similarity. In this section, we would like to give a short overview
of all these approaches.

2.1 Methods Using Large Lexical Databases

The methods using large lexical databases access the information stored in these
databases and compute word similarity based on the extracted information. Most of
them use the WordNet, but others apply the Roget’s Thesaurus.

As an example, Jarmasz and Szpakowicz [8] defines the similarity of two words
based on their distance in Roget’s Thesaurus, i.e. the number of edges between them.

A bag-of-words method based on WordNet was proposed by Patwardhan and Ped-
ersen [15]. For each input word it creates a feature vector from the words contained in
their gloss and the words with distance 1 from that input word. The similarity of words
is then defined as the cosine similarity of their vectors.

Tsatsaronis et al. [19] also defines a similarity score using WordNet. To compute this,
they consider the distance of words in WordNet, the depth of the nodes between them

1 Although WordNet is used for obtaining the lemmas of words, it is not used for anything else.
This could be substituted with other methods though.
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and the types of relations on the route between them (they use all the relation types that
can be found in WordNet). They extended their measure, so that it is able to compare
not only words, but also longer texts.

2.2 Web Search-Based Methods

There are also numerous methods that try to estimate the similarity of words by issuing
web search queries with the given words and then using the returned page hit counts
and snippets. The most important of these are presented next.

Higgins [7] first issues queries with the words to be compared independently. Then,
he also issues queries in which the two words are next to each other. Finally, the sim-
ilarity of these words is defined as their pointwise mutual information computed from
the returned page hit counts.

Sahami and Heilman [18] collect the snippets returned for input queries. For each
snippet they create a vector with TF-IDF weighting. Then, the vectors are normalized
and the centroids of the set of vectors returned for a query are computed. The similarity
of queries is computed as the inner product of the centroids associated with them.

The method of Kulkarni and Caragea [10] is composed of two parts. The first part
assigns to any input word a set of the most associated words with it, thus creating
a concept cloud for each input word. Then, in the second part, these concept clouds are
compared, and the semantic similarity of the words is determined by the similarity of
their concept clouds. In both parts they issue web search queries.

2.3 Methods Employing Large Static Corpora

Methods in this category usually build a vector for each word based on their contexts
found in the used static corpora and define word similarity as the similarity of their vec-
tors. Although our methods are similar to those below, ours use new features, weighting
schemes and vector similarity measures in addition to the existing ones.

The method called Latent Semantic Analysis (LSA), introduced by Landauer and
Dumais [11], is very similar to Latent Semantic Indexing (LSI). It first creates a matrix
of words and chunks of text (e.g. sentences or paragraphs), where the cells contain
the weight of the words regarding the chunks of text. Then, it applies Singular Value
Decomposition (SVD) to compress this matrix. Finally, it computes the similarity of
words based on the similarity of their vectors in this compressed matrix.

The method of Lin [12] assigns a feature set to every input word, which contains
those (grammatical relation, feature word)-pairs that co-occurred with the input word
in a corpus. Similarity is then defined using the information content of the feature sets
of the words as well as the information content of the intersection of their feature sets.

The method proposed by Rapp [16] creates a numerical feature vector for words
based on the contexts they have in a corpus. In these vectors those words are contained,
that occur within a 2 word window in the used corpus, and their score is based on
word association measures such as pointwise mutual information. The matrix formed
by these feature vectors is then compressed using SVD. Finally, the similarity of the
words is computed as the similarity of their compressed feature vectors.
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Gabrilovich and Markovitch [6] maps input texts into weighted vectors over
Wikipedia articles, based on the similarity of the texts and the articles. Then, they com-
pute the similarity of input texts as the cosine similarity of their vectors.

2.4 Combined Methods

All methods of the three categories above have their advantages and disadvantages.
Methods using lexical databases are usually exact for the words included in them but
have poor coverage on specific professional domains. Using large static corpora pro-
vides a great opportunity for inspecting the distribution of neighboring words for any
word, but they can still provide less than enough data for very rare words. By issuing
web search queries there is enough information for almost every word, but such meth-
ods have the many disadvantages described in Section 1. Because of these different
characteristics, a number of researches tried to combine different types of methods in
order to combine the best properties of them, thus creating new methods.

Resnik [17] assigns a probability for each synset in WordNet, based on the proba-
bility of the occurrence of its words in a static corpus. The similarity of words is then
given as the maximum information content of their least common subsumer synset.

Lin [12] defined another measure, which is very similar to Resnik’s [17]. The differ-
ence is that beside the information content of the least common subsumer of the input
words, it employs the information content of the words’ synsets too.

The method of Turney et al. [20] is a combination of 4 different methods. One is the
LSA [11], the second is a web search based method called PMI-IR, the third searches
in an online thesaurus (Wordsmyth thesaurus online) and the last processes the snippets
returned by web queries. These 4 methods were then combined in different ways, such
as with the product rule, to provide a final similarity measure.

The hyperlink structure of the Wikipedia was utilized by Milne and Witten [14].
They employ the anchors found in the articles (links to other articles), and they rep-
resent each article with the set of its incoming and outgoing links. First, they identify
candidate articles for each input word using the text of anchors in the article. Then,
after resolving ambiguities using different approaches, they compute the similarity of
the articles associated with the input words using the page hit counts of web queries.

Agirre et al. [1] use a combination of two methods. The first assigns a vector to each
word by running the PageRank algorithm on WordNet. The other uses statistical co-
occurrence data from a corpus of 1.6 Terawords, and has 3 versions: a bag-of-words
approach, a version using a static context window and another using dependency rela-
tions. In both methods, word similarity is computed using a vector similarity measure.
To combine the two main methods, they train an SVM.

3 Our Methods

The main idea behind our approach, as behind most other ones, is that semantically
similar words behave similarly and occur in similar contexts. Therefore, our algorithms
first create a feature vector for each word based on statistical co-occurrence information
gathered from corpora, which is followed by the comparison of word pairs using a vec-
tor similarity measurement. There are several variations of our method, using different
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features, vector types, weights and vector comparison measures. An earlier version of
some of these methods was previously described in Dobó [4].

3.1 Feature Extraction

For the task of extracting features from the used corpora we applied two main ap-
proaches. The first and simpler one is the bag-of-words approach. It finds each occur-
rence of the selected word in the used corpora, then includes every word in a window
of 3 words within that occurrence in the feature vector. However, it is different from
regular bag-of-words approaches, since (in case of using numerical feature vectors) in
addition to the weighting scheme it uses, described in Section 3.3, it counts the occur-
rences of close words multiple times. Specifically, the frequency this method assigns
to a feature word is based on the distance of the observed word and the feature word.
Several different techniques were tested, the best was found to be using frequencies that
scale quadratically with the distance (with a window size of 3, frequency 9 is assigned
to distance 1, frequency 4 to distance 2 and frequency 1 to distance 3).

Our other approach uses features based on grammatical relations obtained from the
used corpora. Grammatical relations were extracted using the C&C CCG parser [2].
For each word, (grammatical relation, feature word)-pairs are included in the feature
vector, where the feature words are those that are in a grammatical relation with the
original word, similarly as in Lin [12]. Some example features are (subject-of, word),
(object-of, word) and (preposition, word) among others. It is important to note that
in this approach paraphrases, prepositions, patientive ambitransitive verbs and passive
verbs were treated similarly as in Dobó [4] and in Dobó and Pulman [5].

Both approaches were tested using three corpora, namely the British National Corpus
(BNC), the Web 1T 5-gram Corpus (only the 4 and 5-grams), and the corpus of the
English Wikipedia2. Since any corpus can be used to create the feature vectors, our
methods can be easily adapted to different domains and languages if needed.

3.2 Creating and Comparing the Feature Vectors

For creating and comparing the feature vectors of words two main approaches were
tested. First, the approach presented by Lin [12] (the one using static corpora and not
using WordNet, presented in Section 2.3) was re-implemented with some modifications.
This method uses binary feature vectors (i.e. feature sets), indicating whether a feature
has occurred with the given word, without weight. Then, to compute the similarity of
words, it compares these feature vectors using the similarity measure of Lin [12], which
assigns a similarity score of 0 to 1 (inclusive) for a word pair. Although the base of this
approach is the same as described in Lin [12], in order to improve its performance there
were some changes made in its implementation regarding the treatment of paraphrases,
patientive ambitransitive verbs and passive verbs, similarly as in Dobó [4] and in Dobó
and Pulman [5].

2 Pre-processed using the wikipedia2text rsm mods toolkit by Rafael Mudge, available
from http://blog.afterthedeadline.com/2009/12/04/generating-a-plain-text-

corpus-from-wikipedia

http://blog.afterthedeadline.com/2009/12/04/generating-a-plain-text-corpus-from-wikipedia
http://blog.afterthedeadline.com/2009/12/04/generating-a-plain-text-corpus-from-wikipedia
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The previous approach does not take into account the frequency with which a fea-
ture co-occurred with a word. But, this co-occurrence frequency also contains useful
information, so it is logical to try to use that information too. Therefore another method
was created that does not only store the features for a word in a set, rather it creates
a weighted numerical vector from them. Then, the similarity of these vectors provides
the similarity of words. The types of weights and the vector comparison measures used
in this approach are described in Section 3.3 and 3.4, respectively.

3.3 Weighting Inside the Numerical Feature Vectors

Weighting can be used to assign importance to the features, and thus to consider differ-
ent aspects of the features significant. Seven different weighting schemes were tested
inside the numerical feature vectors. The description of these follows now.

The simplest of them is the co-occurrence frequency of the (word, feature) pairs
(freq). In this case, the importance of a feature is based on the number of times it co-
occurred with the word.

The second weighting is a slightly modified version of the first one. Instead of the
simple frequencies of the (word, feature) pairs, the logarithm of this frequency is stored,
with a smoothing parameter of 1 (logfreq). This way, (word, feature) pairs with very
high frequency cannot be overweighted.

The problem of the first two weighting methods is that they assign an overly high
importance to those features that occur very frequently in any context, such as the fea-
tures (subject-of, be) or (object-of, have). It would be better to assign a low importance
to features like these, since they do not tell much information about the words they
are connected to, and assign high importance to those features instead that are specific
to the words. One such measure is the pointwise mutual information (pmi) [3], which
measures association strength. This was chosen as the third type of weight. However,
since it is unstable for very small counts [3], (word, feature) pairs with a frequency of
at most 5 are discarded when using this weighting scheme.

Another way for testing the strength of association is using the log-likelihood ratio
[13], which was also employed as a weight in the numerical feature vectors (loglh).

The fifth measure was a combination of two different measures. The first is the loga-
rithm of the frequency of the (word, feature) pairs. But the problem is, as noted before,
that it assigns a high value for the most common features that are not specific to any
word. This is compensated by the second part, which is the logarithm of the number of
words that occur with the given feature. Both logarithms use a smoothing parameter of
1. The combined measure is calculated as the quotient of the two parts:

qw(x,y) =
ln(1+ cxy)

ln(1+ f (y))
(1)

where cxy is the frequency of the co-occurrence of x and y, and f (y) is the number of
words, with which feature y occurs [12].

The sixth weight is also a combined measure. Its first part is again the logarithm of
the frequency of the (word, feature) pairs. And its second part, which is the logarithm of
the information content of the feature, is again used for compensation. In case of both
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logarithms, a smoothing parameter of 1 was used. The two parts are multiplied together
to form the combined measure:

pw(x,y) = ln(1+ cxy)× ln(1+ I(y)) (2)

where cxy is same as before and I(y) is the information content of feature y [12].
The last implemented weighting measure is the entropy-based measured used by

Rapp [16].

3.4 Similarity Measures for the Numerical Feature Vectors

Two frequently used vector similarity measures were tested in the algorithms with nu-
merical feature vectors. The first was the cosine similarity, which compares two vectors
by computing the cosine of the angle between them [13]. The second was a general-
ization of the Dice coefficient. In its original form, it can only compute the similarity
between Boolean vectors. In order to use it for numerical vectors, we used its general-
ization proposed by Lin [12]. Both similarity measures return a similarity value between
-1 and +1 (inclusive).

3.5 Determining the Part-of-Speech of the Input Words

There are many words that can take more than one part-of-speech (POS). For example,
the words run and bank can be both nouns and verbs. When these types of words are
used with different POSs, different features are relevant. Therefore, first the POS of
the input words needs to be determined, and the feature vectors can only be created
after this. The POS of these controversial words can be inferred from the other words

Table 1. Results on the Miller-Charles dataset (Spearman correlation). Notations: bnc/enwiki
/web1t5gram denotes the corpus; bagofwords/parsed denotes the used feature types (bag-of-
words or grammatical relations); lin/num denotes the method (the one based on Lin [12] or the
one using numerical feature vectors); cos/dice denotes the similarity measure; freq/logfreq/pmi/
loglh/qw/pw/rapp denotes the weighting scheme; + denotes the combination of two methods.

Method Result
bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 0.773
bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 0.750
enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 0.737
enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 0.729
enwiki-parsed-num-cos-pmi 0.727
bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 0.712
enwiki-bagofwords-num-cos-pmi 0.684
enwiki-parsed-num-dice-pmi 0.661
web1t5gram-parsed-num-cos-loglh 0.631
enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 0.616
bnc-parsed-lin 0.417
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contained in the same question. For our methods, we assumed that each input word is
a verb, noun, adjective or adverb and each question contains words of the same POS.

For a question the part-of-speech maximizing the following formula is chosen:

pos = argmax
p

∏
w∈q

ln(1.0001+ fw,p) (3)

where p can take any of the four possible POSs, q denotes the question, w runs through
the words of q and fw,p is the frequency of w having p part-of-speech.

3.6 Combination of the Individual Methods

In order to combine the strengths of the different methods and achieve better results,
not only the above described methods, but their combinations were also tested. When
two methods were combined, the similarity score for each word pair was calculated
separately. Afterwards, the logarithm of the scores (with a smoothing parameter of 1)
were multiplied together to form the similarity score of the combined method. Taking
the logarithm of the scores before multiplying them helps balancing the results: we
consider a word pair having two moderate scores better than a word pair having a very
low and a very high score.

4 Results

All the methods described in the previous section were tested on two different datasets,
namely the Miller-Charles word pairs (MC) and the TOEFL synonym questions. Both
data sets were widely used in the evaluation of methods computing semantic similarity
by others. The first one contains 30 word pairs, for which a similarity score between 0
to 4 was assigned by 38 undergraduate students. Since there were words in 2 word pairs
that were not included in previous WordNet versions, in most research these pairs were
omitted. Consequently, only the remaining 28 word pairs were used here as well. The
other data set contains 80 synonym questions from the TOEFL language exam. In all of
the questions, a question word is given with 4 alternatives, and the task is to determine
the most similar word to the question word.

In case of the MC dataset, the average scores of the 38 students were used, and
the evaluation was done by computing the Spearman correlation of these scores and the
scores returned by our methods. When testing with the TOEFL questions, the evaluation
measure was the percentage of the correct answers given.

The results of some selected methods are presented in Tables 1 and 2. It can be seen
that the best performance was 0.773 on the MC dataset and 88.75% on the TOEFL
questions, both achieved by a combined method. The best results of individual meth-
ods (without combination) were 0.727 and 83.75%, respectively. The scores of the
methods using numerical feature vectors were mostly higher than the scores of the
approach based on Lin [12], and still better results were achieved by combining the dif-
ferent methods. The methods that achieved best performance considering both datasets
were the bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi (MC: 0.712, TOEFL:
88.75%), the enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi (MC:
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Table 2. Results on the TOEFL questions (percent of correct answers)

Method Result
bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 88.75%
enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 87.50%
enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 86.25%
enwiki-bagofwords-num-cos-pmi 83.75%
enwiki-parsed-num-cos-pmi 82.50%
enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 81.25%
enwiki-parsed-num-dice-pmi 78,75%
bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 77.50%
bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 72.50%
bnc-parsed-lin 68.75%
web1t5gram-parsed-num-cos-loglh 60.00%

Table 3. Comparison with other results on the Miller-Charles dataset (Spearman correlation)

Method Result Used data
Human upper bound [17] 0.934
Agirre et al. [1] 0.92 WordNet, corpus
Patwardhan and Pedersen [15] 0.91 WordNet
Jarmasz and Szpakowicz [8] 0.87 Roget’s Thesaurus
Tsatsaronis et al. [19] 0.856 WordNet
Kulkarni and Caragea [10] 0.835 Web search
Lin [12] 0.82 WordNet, corpus
Resnik [17] 0.81 WordNet, corpus
bnc-bagofwords-num-cos-qw+ 0.773 corpus
enwiki-parsed-num-cos-freq
bnc-bagofwords-num-cos-qw+ 0.750 corpus
enwiki-parsed-num-cos-qw
enwiki-bagofwords-num-cos-pmi+ 0.737 corpus
bnc-parsed-num-cos-qw
enwiki-bagofwords-num-cos-pmi+ 0.729 corpus
enwiki-parsed-num-cos-pmi
Gabrilovich and Markovitch [6] 0.72 corpus
bnc-parsed-num-cos-loglh+ 0.712 corpus
enwiki-parsed-num-cos-pmi
Milne and Witten [14] 0.70 Wikipedia links, Web search
Sahami and Heilman [18] 0.618 Web search

0.729, TOEFL: 87.50%) and the enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-
cos-qw (MC: 0.737, TOEFL: 86.25%). Comparison with other methods is shown in
Tables 3 and 4, which shows that our methods had an average performance on the MC
dataset, while one of our methods achieving the 3rd best score on the TOEFL questions.
Most importantly, however, if we only take those methods into account that solely use
static corpora, our methods perform 1st and 2nd best on the two datasets, respectively.
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5 Conclusion and Future Work

In this article we have demonstrated methods computing the semantic similarity of
words that compare favorably to other measures. They use statistical co-occurrence data
extracted from static corpora to create feature vectors for the input words, and then de-
fine the similarity of the words as the similarity of their vectors. Several variations were
created, using different features, vector types, weights and vector comparison measures,
and combinations of our individual methods were also examined.

All these methods were tested on two datasets, namely the Miller-Charles dataset
(MC) and the TOEFL synonym questions. On the MC dataset our best method had an
average performance (0.773), with many others achieving better results. On the other
hand, our best accuracy of 88.75% on the TOEFL questions is 3rd best overall and is
much higher than the score achieved by an average non-English US college applicant.
When comparing our methods with only those methods that solely rely on static cor-
pora, according to our best knowledge they reach 1st and 2nd place on the two datasets,
respectively.

Table 4. Comparison with other results on the TOEFL questions (percent of correct answers)

Method Result Used data
Turney et al. [20] 97.5% Web search, thesaurus
Rapp [16] 92.5% corpus
bnc-parsed-num-cos-loglh+ 88.75% corpus
enwiki-parsed-num-cos-pmi
enwiki-bagofwords-num-cos-pmi+ 87.50% corpus
enwiki-parsed-num-cos-pmi
Tsatsaronis et al. [19] 87.5% WordNet
enwiki-bagofwords-num-cos-pmi+ 86.25% corpus
bnc-parsed-num-cos-qw
enwiki-bagofwords-num-cos-pmi 83.75% corpus
Higgins [7] 81.3% Web search
Jarmasz and Szpakowicz [8] 78.7% Roget’s Thesaurus
Average non-English US college 64.5%
applicant [11]
Landauer and Dumais [11] 64.3% corpus
Lin [12] 24.0% WordNet, corpus
Resnik [17] 20.3% WordNet, corpus

Based on that, we think that our best methods could be successfully used for solving
real-life problems too. The fact that they perform better on the TOEFL questions than
on the MC dataset indicates that they are more suitable for selecting the most similar
word for an input word from a list of candidates than giving an exact similarity value
for a pair of words.

In the future, it would be worthy to test our methods with even larger corpora, as
more data can result in better accuracy (for example, Agirre et al. [1] use a corpus of
1.6 Terawords and run their algorithm on 2000 CPU cores). As any corpus can be used
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to extract co-occurrence information, our methods could easily be adapted to different
languages (especially in case of the bag-of-words approach). Therefore, we would like
to try our algorithms with languages other than English, too. Furthermore, as described
in Section 2.4, methods that are a combination of different types of methods can com-
bine the advantages of those methods combined. We therefore think that by creating
a combined method whose one method is ours and the other method(s) is (are) using
web search engines or large lexical databases, our results could be further improved.
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Abstract. This paper motivates and encourages the simultaneous use of
multiple model repositories in model-driven software. A multi-repository
mechanism is proposed for that. With this mechanism, multiple model
repositories residing in the same or different technical spaces can be
mounted into a single repository (in the same sense as file systems are
mounted in UNIX) and accessed in a uniform way. Relations (including
generalizations) between elements from the mounted repositories are sup-
ported. Some of the repositories may be “computable” (virtual), which
leads to the on-the-fly model transformation concept.

Keywords: models, model repositories, technical spaces, on-the-fly
transformation.

I always imagined that to bring an orchestra to play together
is not enough for a conductor.

— Kurt Masur, a German musician

1 Introduction

Meta-s can be found far and wide — in Linguistics, Mathematics, art, and music
[29]. In Computing, we also have our own meta-s. While data representing some
system are called a model (Level 1), data about models are called a meta-model
(Level 2), data about meta-models are called a meta-metamodel (Level 3), and
so on.

In 2002 I. Kurtev, J. Bézivin and M. Aksit have made an observation that
there are many widely-accepted technologies that organize their artefacts in
such three levels, where a meta-metamodel is usually able to describe itself.
Such an organization of artefacts is called the three-level conjecture (this does
not necessary restrict the number of possible levels to three, however). This
led to the concept of Technical Space (TS), which is an abstraction of all such
technologies [34,25].

Table 1 lists several technical spaces and mentions which data stores (here-
inafter called repositories) they use. We utilize the term models, when referring
to data stored in those repositories.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 503–514, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Technical spaces (TS’s) and their repositories

MOF TS
Characteristics: Models are graphs with attributed nodes and labelled edges.

Inspired by CDIF [27] and IRDS [7], the MOF standard [37] by
OMG is central in this TS. MOF consists of the two main
variants: Essential MOF (EMOF) and Complete MOF (CMOF).
OMG is working also on Semantic MOF (SMOF), which will
support certain features borrowed from the RDF/OWL TS (see
below) [36]. The de facto standard in MOF TS, however, is
ECore from EMF [4,41]. ECore implements MOF concepts in
Java. There is also the KM3 language for defining MOF-like
metamodels. We combine all these standards into a single TS
called MOF TS.

Meta-levels: model ��� metamodel ��� meta-metamodel (MOF, ECore,
KM3)

Repositories: EMF/Ecore [4,41]; Enhanced Model Repository [5]; NetBeans
MDR [35]; MOF 2 for Java [1]; MetaMart Metadata Repository
[18]; CDO [3]; JR [38]

XML TS
Characteristics: Models are trees with attributed nodes.

Meta-levels: XML-file ���XML schema ��� XML meta-schema (XSD.xsd)
Repositories: XML files (there are numerous libraries for parsing/saving XML

files)

Microsoft DSL
Tools TS

Characteristics: Similar to MOF, but classes have to be arranged into a tree by
means of compositions. Relationships may act as classes, and it
is possible to define inheritances between relationships.

Meta-levels: model ���domain model (metamodel) ��� implicit
meta-metamodel, which can be reified [25]

Repositories: In-Memory Store (models are serialized as customizable XMLs)
[26, p. 89]

Grammarware
TS

Characteristics: A model is a string, which can be parsed into an abstract syntax
tree.

Meta-levels: text/string ��� grammar ��� EBNF (or similar meta-grammar)
Repositories: usually text files (tools such as bison or javacc can be used to

generate parsers)
GOPPRR

(MetaEdit+)
TS

Characteristics: Similar to MOF. N-ary relationships between concepts are
possible. Relationships and their ends (roles) may have
properties associated with them.

Meta-levels: model ��� metamodel ��� GOPPRR
(Graph-Object-Property-Port-Role-Relationship)

Repositories: a proprietary GOPPRR repository [9,30]

RDF/OWL TS
Characteristics: This TS consists of knowledge representation systems, where all

data are encoded in triples (subject, predicate, object). These
triples form a graph (subjects and objects are nodes, while
predicates are edges). Elements are identified by URIs (uniform
resource identifiers).

Meta-levels: RDF/OWL individuals[16,14,12]��� RDF vocabulary/OWL
ontology��� RDFS1/some OWL variant2

Repositories: Sesame [17]; Virtuoso [20]; OWLIM [15]; JR [38]

1 RDF Schema, a language that extends RDF and permits describing taxonomies of
classes as RDF vocabularies.

2 There are the following OWL variants: OWL Lite, OWL DL, OWL Full, OWL 2
(direct semantics and RDF-based semantics), OWL 2 EL, OWL 2 QL, OWL 2 RL
(EL/QL/RL can be combined). They differ by expressive power, decidability, and
computational complexity for decidable variants [13]. Besides, pure RDF and OWL
Full permit having multiple meta-levels and mixing them.
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Table 1. Continued

Relational
Database TS

Characteristics: A classical way to encode entities and relationships by means of
tables. No support for generalizations (although they can be
simulated).

Meta-levels: database rows ��� database schema (ER-model) ��� system
tables for storing database schemas

Repositories: numerous database management systems from SQLite to
ORACLE

Typed
Attributed
Graphs TS

Characteristics: Typed graphs, where nodes and edges may have attributes.
Meta-levels: graph ��� graph schema ��� typed attributed graph definition

Repositories: JGraLab [8] and others
Note. The grouping of different technologies into technical spaces is not strict.

The motivation to investigate different technical spaces (TS’s) and to support
them is driven by the following considerations:

– One TS can be more suitable for the given purpose and more convenient
than another. That resembles how one programming language can be more
suitable for certain applications than another.

– A person can be more familiar with (i.e., have skills and knowledge in) one
TS than with (in) another. If the efforts to study a new TS are big enough,
it may be reasonable to stay in a more familiar TS.

– A capability not available in a desired TS can be borrowed from another TS
that implements that capability. This encourages “more cooperation than
competition among alternative technologies” [25].

However, different TS’s store models differently. To ensure interoperability,
Bézivin et al. suggest using projectors and extractors — offline transformations
of models between TS’s. In this paper we propose a mechanism that allows work-
ing with multiple repositories (which may belong to the same or different TS’s)
online. The idea is to mount several repositories into packages in the same way
as file systems are mounted into directories in UNIX. Unlike projectors and ex-
tractors, our approach uses on-the-fly transformations, thus, deep copying of the
data is not required, and all the changes in models become visible immediately.

While mounted repositories can be accessed from their packages (with the
possibility to create relations between their elements), certain manipulations
with packages can be performed as well (for instance, two packages may be
merged). Mounting into packages and manipulating the packages — these are
the two pillars of the proposed multi-repository mechanism.

2 The Main Idea and Design Choices

2.1 The Structure of the Multi-repository Mechanism

The multi-repository mechanism is implemented in a module, which we call
the kernel in this paper. The kernel represents multiple repositories as a single
repository to the clients (model transformation and other modules, which work
with the models stored in repositories). One of the repositories (we call it the
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pivot repository) is used to store the information about inter-repository relations.
The pivot repository acts as a fully fledged repository as well.

Since different repositories have different APIs,3 some common abstraction
layer is needed. We call it Repository Access API, RAAPI (discussed more in
detail in Subsection 3.3). RAAPI consists of primitive low-level operations on
model elements. The modules that implement RAAPI for different types of repos-
itories are called repository adapters. The same RAAPI is used by the kernel to
present multiple repositories to the clients. If it is more convenient for the clients
to work with a different API, a wrapper over RAAPI can be created. Figure 1(a)
summarizes that.

ProxyReference
domesticReference:int64
proxyReference:int64

Kernel

Repository
url:string

InterDirectedLink InterAttributeValue
value:string

InterDirectedAssociation
targetRole:string
targetCardinality:string
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Fig. 1. (a) The structure of the multi-repository mechanism. (b) Kernel Metamodel.

This design is based on the following considerations:
– The clients can access multiple repositories in a uniform way using a single

API (RAAPI or its wrapper) without the need to be aware of different APIs
to access different repositories.

– The clients do not need to switch between different repositories or to specify
the desired repository as an argument for each operation on a model. For
example, to create a link between two objects from different repositories,
a client may assume that the objects are in the same repository: it is the
responsibility of the kernel to store and handle this inter-repository link
correctly.

2.2 Packages as Mount Points

By package we mean a group of model elements similar to UML package.4 We
assume that in any repository all the packages form a tree. This resembles how
directories are usually organized in a file system as trees.
3 Application programming interfaces.
4 If packages are not supported by a particular repository, they can be encoded directly

in class names (e.g., “Package::SubPackage::Class”).
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The kernel maintains a rooted tree of packages called the kernel package tree.
Each kernel package is associated with a package in some repository. The simple
(unqualified) names of kernel packages are usually equal to the simple names
of the corresponding repository packages, but can be changed at runtime. The
names of kernel packages are used by the clients: to refer to a package a client
specifies its fully qualified name consisting of simple names starting from the
root kernel package.

Initially, the kernel package tree corresponds to the package structure of the
pivot repository. When an additional repository is mounted, a new package
(a mount point) is added to the kernel package tree. The content of the reposi-
tory will be available via this mount point. For instance, a class can be accessed
by concatenating a fully qualified mount point name with the fully qualified class
name in the mounted repository.

If a repository can store several models, there are two options:

– treat each model as a separate repository and mount it into a separate
package;

– mount the whole repository with all its models at once, but treat each model
as a package inside that repository. While it may seem more convenient, there
are two shortcomings. First, the repository adapter becomes more complex
since it has to perform all necessary actions to represent models as packages.
Second, if the repository does not support relations between models, the
kernel will not support them as well.

2.3 The Role of the Kernel

The kernel deals with elements from different repositories, but needs to repre-
sent them as if they were in a single (multi-packaged) repository. This can be
performed by introducing proxy references to elements. In RAAPI, model ele-
ments are referenced by 64-bit integers, which may represent indexes or pointers
to elements. Proxy references are also 64-bit RAAPI references, but the kernel
ensures they are unique among all the repositories. The kernel maps each proxy
reference to the corresponding repository and to the corresponding reference
in that repository (proper repository references are called domestic references).
However, the mapping to the repository is not direct. Instead, each proxy ref-
erence maps to a package in the kernel package tree, and each package maps
to a repository. Such a design permits changing the repository associated with
a package at runtime.

When a particular repository returns a domestic reference, the kernel either
creates a new proxy reference, or returns a previously-created one. For this, the
kernel maintains a reverse map, which maps pairs <package, domestic refer-
ence> to proxy references. Translation between proxy and domestic references
is performed by the kernel automatically, thus, repositories do not need to be
aware of proxy references (although, they can, if they need to).

The clients may assume that there is only one (multi-packaged) repository like
UNIX programs assume there is only one file system. When the kernel processes
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an RAAPI operation, the following simple algorithm is used to determine, in
which repository the changes have to be stored:

– if all the elements involved are from the same repository, the kernel forwards
the call to that repository through its adapter;

– if the elements involved are from different repositories (e.g., an association
between two classes from different repositories is being created), the kernel
treats it as an inter-repository change and stores it in the pivot repository.

The kernel stores information about the kernel package tree, mounted repos-
itories and inter-repository relations according to Kernel Metamodel depicted
in Figure 1(b). The kernel performs only minimal constraint checking for inter-
repository relations. More sophisticated constraint checking can be performed
by introducing an additional layer over RAAPI, or by means of external model
transformations.

3 Repository Access API (RAAPI)

Subsections 3.1 and 3.2 introduce notions that are essential for RAAPI. RAAPI
itself is explained in Subsection 3.3.

3.1 Linguistic vs. Ontological Meta-levels

Atkinson and Kühne [21,32,31] noticed that actually there are two types of
meta-levels — linguistic and ontological. All the three levels M1-M3 from the
three-level conjecture are linguistic meta-levels, since the meta-metamodel
from Level M3 can be considered a language for specifying M2 metamodels,
and an M2 metamodel can be considered a language for specifying M1 models.
However, RDF and OWL Full meta-metamodel from RDF/OWL TS as well as
the meta-metamodel of the JR repository permit describing classes and their
instances (individuals) at the same linguistic level M2. Moreover, a class may
act also as an instance. This makes it possible to create multiple ontological
meta-levels within M2 according to the class-instance relationship defined at
M3. In this case M1 is not needed. If a repository supports that, elements from
different ontological meta-levels can be mixed, e.g., an individual can be linked
to a class.

3.2 Šostaks’ Conjecture

While working on a generator for higher order model transformations5, where
multiple meta-levels are involved, A.Šostaks came to the following conclusion
(we refer to it as Šostaks’ conjecture6):
5 These are model transformations that generate other model transformations.
6 Personal communication with Agris Šostaks, June 2012.
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It is difficult for a human to think at more than two meta-levels at a
time. Still, it is pretty easy for a human to focus on any two adjacent
meta-levels.

This conjecture also reveals itself in Java. All Java classes along with their in-
stances (objects) span two meta-levels. Java has the Object class, which is a
common superclass for all other classes — an easy-to-understand OOP con-
struction, which remains within the two meta-levels. At the same time, Java has
the reflection mechanism that permits considering Java classes as objects. The
class named Class has been introduced for that. Actually, it is a meta-class (i.e.,
it brings an additional meta-level to Java), but represented as an ordinary Java
class. At this point those, who are studying Java, encounter difficulties, since
three meta-levels are involved.7

3.3 RAAPI Explained

Taking into a consideration Šostaks’ conjecture, RAAPI consists of functions,
which can access two adjacent meta-levels (either linguistic, or ontological).
Switching between meta-levels can be performed by passing a reference to an
element at one meta-level to an RAAPI function, which expects a reference to
an element at another meta-level. For instance, a reference to a class may be
passed to an RAAPI operation, which expects a reference to an object. This
trick can also be used to mix multiple meta-levels (where the underlying repos-
itory supports that).

Although the detailed description of RAAPI goes beyond the scope of this
paper (the current version of RAAPI can be found at http://tda.lumii.lv/
raapi.html), below we provide some points shedding the light on RAAPI.

– RAAPI is able to read at least ECore and MOF meta-metamodels and their
linguistic instances. This is sufficient to access also all other layers (including
ontological) by means of the meta-level switching trick from above.

– RAAPI supports multiple classification and dynamic reclassification (i.e.,
one object can belong to many classes). Multiple inheritance is supported as
well.

– Every repository adapter has to support at least two meta-levels: if onto-
logical meta-levels are supported, then these are two ontological meta-levels
within M2; otherwise, these are linguistic meta-levels M2 and M1. In case of
RDF and OWL Full, the adapter should support multiple ontological meta-
levels. Support for a linguistic meta-metamodel (Level M3) is not required,
unless there is a need to access technical-space-specific features defined at
M3.

– To create an adapter implementing RAAPI for a particular repository, only
essential functions have to be implemented. For instance, the given repository
may be able to iterate either through proper attributes of a class, or trough all
attributes (including derived). An adapter may implement only one of these

7 Personal communication with Edgars Celms, June 2012.

http://tda.lumii.lv/raapi.html
http://tda.lumii.lv/raapi.html
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cases, and the kernel will implement the other. Also, if the given repository
does not support some capability (e.g., support for enumerations or support
for multiple classification), the adapter may either simulate it, or to discard
it. The latter case resembles how certain file system operations are discarded
for some file systems in UNIX (e.g., when UNIX-style file permissions are
not supported on a mounted file system).

– RAAPI is technically simple, thus, it can be easily adapted to and used from
different platforms and programming languages, facilitating the integration
with different technical spaces.

4 Manipulating the Packages

Instead of forwarding RAAPI calls to a particular physical repository, a repos-
itory adapter can also represent a computable (or virtual) repository, which
does not exist physically, but relies on the data from other repositories. When
a virtual repository is mounted into some kernel package, its repository adapter
transforms RAAPI operations to operations on other kernel packages on-the-fly.
We can say that such a repository adapter implements an on-the-fly model trans-
formation. On-the-fly model transformations can be used to implement certain
manipulations with packages. Here are some examples.

Virtual Copy. Having an existing package P , the “virtual copy” manipulation
creates a virtual package P ′, which acts as a copy of P . However, in reality, no
data is copied! This manipulation can be implemented by mounting two special
virtual repositories into P and P ′, but keeping pointer to the old package P .
When the old data is accessed, both repositories forward the call to the old P .
At the same time, both virtual repositories record changes in new P and P ′,
and provide an illusion that P and P ′ are being modified independently. One
of the use cases for “virtual copy” is implementing transactions. First, a virtual
copy of a package is created to fix its state without deep copying of the data.
Then, some transactional changes are performed, and, finally, these changes are
either discarded, or stored in the old P . Another use case is providing the space
for semantic reasoning. If a package contains an ontology, its virtual copy can
be created, and a semantic reasoner can be launched on that copy. When the
reasoner finishes, the original package and its copy will contain the data before
and the data after the reasoning, respectively.

Virtual Merge. A virtual repository can be mounted into an existing package
P , keeping a pointer to the old P and a pointer to some other package Q. The
repository provides an illusion that P and Q are merged (in the sense of UML
package merge).

Introducing derived (calculated) properties and relations. To create a calculated
relation between classes A and B from a package P , another virtual repository
is introduced. This repository also contains classes A and B, but also adds the
required calculated association, which is computed on-the-fly when this virtual
repository is accessed via RAAPI. To complete the picture, the repository has



The Orchestra of Multiple Model Repositories 511

to be mounted into some package Q, and then P and Q have to be virtually
merged.

Symbolic links. Although the kernel package tree is a tree, packages can be
organized into a graph-like structure by means of UNIX-style symbolic links.
A symbolic link L on package P may be implemented by introducing a virtual
repository, which is mounted into L, but forwards all RAAPI calls to P .

Using volatile temporary data in models. A volatile temporary repository, whose
content is lost on exit, may be introduced. Temporary data can be transparently
combined with the persistent data by means of “virtual merge”.

Indexing of model elements. Certain calculated relations can just reorder the el-
ements from the relations they rely on. Thus, when traversing the corresponding
calculated element list, elements will appear in the desired order. To implement
this behaviour, the virtual repository can use indexes internally.

Views on metamodels. One metamodel (say, a complex one) can be represented
as another metamodel (e.g., simpler) by means of views. Like file systems can
be read-write and read-only (e.g., CD-ROM), views can be read-write (imple-
menting bi-directional on-the-fly transformations) and read-only (implementing
unidirectional on-the-fly transformations). Read-only views simply discard mod-
ificating RAAPI operations.

5 Related Work

The need for a common API for accessing different types of repositories has
already been realized by some teams. For example, ATL Virtual Machine [2],
Epsilon Model Connectivity level (EML) [33,6], and the CDO [3] repository
use some kind of common API, which plays the same role as RAAPI in the
proposed multi-repository mechanism. In contrast to ATL and EML (which use
a few API functions being able to work with lists) as well as ECore (which uses
object-oriented API), RAAPI is procedural and uses only primitive data types.
Also, RAAPI was designed to support SCMOF capabilities.

The megamodel concept (a terminal model, which stores information about
other models) introduced by the ATLAS/AMMA team resembles how the kernel
stores information about the mounted repositories and the relations between
them in the pivot repository [24,23].

Repository adapters used by the kernel resemble how ModelBus uses tool
adapters to connect multiple modelling tools [28,10]. In ModelBus, adapters
are mainly used to access the data according to the check-in/check-out prin-
ciple, while RAAPI adapters are intended to perform their functions on-the-
fly (especially, when virtual repositories are used). To implement repository
adapters for certain technical spaces, numerous existing technologies, such as
ORM-technologies (Java Persistence API, .NET Persistence API), D2RQ [22],
object-oriented databases [11], etc. can be utilized. If on-the-fly data access is
impossible, the check-in/check-out principle can be used as well.
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Certain research on model merge is being performed, but in a different con-
text than the proposed “virtual merge” operation. For instance, Epsilon Merge
Language is an excellent language intended for describing merge-like operations
on models, which are then later executed in an offline mode (not on-the-fly)
[33,6]. MOF 2 for Java implements the merge capability, but the goal was MOF
2 compliance, not merging different repositories [1].

The live model transformation framework proposed by the VIATRA team
treats complex model changes as elementary changes [40,19]. This resembles on-
the-fly transformations, which could be considered split into a set of elementary
RAAPI operations.

The “virtual copy” operation is based on the concept of worlds, which is
a way to control side effects arising of using the same data from different parts
of the program [42].

Interesting ideas about read-only views have been presented by E. Rencis
[39]. His mechanism modifies the code of a model transformation in such a way
that the view is executed on-the-fly. On-the-fly transformations mentioned in
this paper are intended to perform the same job, but without modifying client
code (thus, on-the-fly transformations are not tied to a particular transformation
language, but only to RAAPI). Ideas and code fragments provided by E. Rencis
can be adapted to generate code for virtual repositories implementing views
through RAAPI.

6 Conclusion

The implementation of the proposed multi-repository mechanism is in progress.
While the development of repository adapters is straightforward, the development
of the multi-repository mechanism itself is technically difficult: we need to consider
numerous details (e.g., distinguish between ordinary and inter-repository links),
while keeping the overhead low. For further development of the multi-repository
mechanism, refer to the web-page http://tda.lumii.lv.

We strongly believe that like in a symphony orchestra different musical instru-
ments, each with its timbre and specific ways to get certain tones and overtones,
playing together, are able to perform a rich sounding symphony, multiple model
repositories, each with its specific features and application domains, can enrich
the capabilities of model-driven software by being used simultaneously and in
harmony with each other.
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Abstract. In this paper, we present a methodology for integrating workflow-
driven information system with an ontology-based knowledge repository, where
both the above specified systems are built upon the fuzzy set theory, and hence
capable of dealing with vagueness and uncertainty. Furthermore, we introduce
some workflow activities that use fuzzy logic for human-friendly communica-
tion with business process participants. We also present a technique of workflow
execution log analysis, and subsequent fuzzy ontology reasoning to provide an
automated feedback to the workflow, and thus to achieve its evolution. We also
report on prototypical implementations, namely a component for hybrid integra-
tion of fuzzy ontology with the information system, and a component for building
fuzzy workflows in a workflow designer.

Keywords: workflow, ontology, fuzzy, knowledge.

1 Introduction

With the breakthrough of information technology into industry and commerce, we can
notice the trend of supporting various business processes by underlying information
systems. This support is referred to as workflow management, and with no doubt makes
the processes more efficient. However, knowledge-intensive or unstructured processes
are sometimes hard to be supported by standard workflow management techniques. In
the past, there have been numerous proposals to handle these challenges with goal-
driven, flexible, evolutionary, or fuzzy workflows, as well as by close integration of
the workflow management with organizational knowledge. Yet, these approaches have
not been widely adopted by the IT industry because of their overall complexity, com-
mercial impracticability, or just partial nature of the solution. By other words, there is
a lack of easy-to-implement, holistic solution which would combine a flexible workflow
management system with a knowledge-representation capable of handling imprecision
and uncertainty similar to human way of thinking and reasoning.

In this work, we present a methodology which integrates an ordinary information
system with a workflow management system as well as with ontology, introducing
vagueness in all these elements by means of fuzzy logic. More precisely, we pro-
pose to extend the information system with a software component facilitating opera-
tions over fuzzy sets and relations. The same component can be used in the workflow
man-agement system to enable fuzzy conditions in the flow control. We claim that the
communication between workflow management system and human participants can be

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 515–527, 2013.
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supported by fuzzy set theory, and thus reflect the imprecise nature of human reasoning
and decision-making.

This paper recalls background knowledge on object-oriented programming, work-
flow management, fuzzy logic, description logic, and ontology language OWL2. The
rest of this paper is organized as follows: Section 2 outlines the background and reports
on related work. In Section 3, we introduce the methodology which integrates workflow
and ontology modelling with respect to their vague nature. Section 4 reports on proto-
typical implementations of some components required for evalution of the methodology
in practice. Section 5 sets out conclusions and ideas for future research.

2 Background and Related Work

2.1 Workflow Management Systems

Workflow is the automation of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant to another to perform
a specific action, according to a set of procedural rules [1]. A workflow can (but may not
be) part of a business process. Workflow Management System (WfMS) is a set of tools
providing support for definition, enactment, administration and monitoring of work-
flows [1]. The enactment involves both direct invocation of computer systems as well
as indirect interaction with human participants via a task distribution and assignment.
There exist several ways of how an ordinary information system can be enriched with
some workflow management functionalities, ranging from dedicated information sys-
tems with workflow management functionality to versatile business process manage-
ment suites.

Workflow flexibility is defined as an ability of the workflow system to quickly react
to: i) incorrect or imprecise model, ii) exceptional or rare situation, iii) alteration of
organizational structure as well as on any other change in data structure, iv) continu-
ously changing process goals [2]. A continuous change of workflow definition during its
execution is also referred to as workflow evolution [3,4], and is currently sup-ported by
vast majority of commercial workflow systems. One example of area re-quiring flexible
workflows are knowledge-intensive processes, which are goal-driven, less structured,
with less predictable transitions, and in fact contradictory to classical, rigidly recurring
process flows.

2.2 Enhancing Workflow Management with Knowledge

While process maps represent a sort of externalized knowledge, another kind of know-
ledge is exposed outside the boundaries of the WfMS. It is sometimes codified in
standard information systems. On other occasions, it is present only in minds of the
employees. According to [5], examples of information desirable during workflow ex-
ecution are flexible models of organizational structure (people, roles, skills, teams,
tasks), patterns of interaction between team members, and models of general tasks with
assigned document templates.

Audit trails of workflow enactment, sometimes referred to as workflow execution
logs, are also part of organizational memory and may help in organizational learning
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[6]. Organizational memory has the potential to enhance decision-making within work-
flow junctions. A concept of WfMS and Organizational Memory Information System
(OMIS) integration described in [7] requires interlaced workflow design and enact-
ment. Organizational learning begins at the workflow execution phase. The execution
outcome is repeatedly stored in OMIS to improve quality and effectiveness of the work-
flow model.

2.3 Ontology Modeling

One way of capturing and storing knowledge in a structured and machine-interpretable
way is the use of ontology engineering. Ontology is a concrete form of a conceptuali-
sation of communitys knowledge in a specific domain. Ontology includes a vocabulary
of terms together with a specification of their meaning. An inference mechanism imple-
mented in reasoners allows eliciting additional implicit knowledge from the explicitly
declared facts. OWL 2 is nowadays a popular language for authoring ontologies. There
are numerous OWL-supporting ontology editors available, such as open-source Protg,
as well as various reasoners like FaCT++, HermiT or Pellet. Formal semantics of OWL
2 is based on Description Logic (DL), a subset of First Order Logic, of type SROIQ(D).
OWL comes with three variants (sublanguages), ordered by increasing expressiveness
as OWL Lite, OWL DL and OWL Full.

2.4 Integration of Object, Workflow, and Ontology Model

A connection between workflow model and object model has so far received de-tailed
study, and is thoroughly described in a literature [8,9].

Speaking about workflow-ontology integration, term workflow ontology denotes on-
tology in service of WfMS. Such ontology is designed to store the following infor-
mation: i) presupposition rules to traverse unavailable information, ii) consistency rules
to assess the above presuppositions iii) semantic proximity properties to help finding al-
ternative subworkflows, resources or users if the defaults are not available, iv) semantic
rules to evaluate the proximity properties in a particular execution con-text [10].

Regarding the object-ontology integration, a comparison of ontology and object-
oriented modeling reveals handful of similarities. Indeed, integration of ontology with
mainstream object-oriented programming languages (OOPL) like C# or Java, sug-gests
itself quite obviously. There are, however, also several differences, such as an absence
of multiple inheritance, strict object conformance and type-safety in OOPLs, and, on the
other hand, static nature of ontologies. In general, there are two types of object-oriented
modeling: i) direct (traditional) models use classes and instances to represent concepts
and individuals of the real world, respectively. ii) Indirect models keep both concepts
and individuals in OOPL instances, whereas OOPL classes represent real world meta-
concepts [11]. Similar to these models, one can speak about direct or indirect OOPL-
ontology integration, depending if ontology concepts map OOPL classes or OOPL
instances, respectively. There is also a third option: hybrid integration as a combination
of direct and indirect integration [12].
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2.5 Fuzzy Logic

Fuzzy set theory [13] was introduced by L.A. Zadeh in the 1960s to represent and
manipulate vague, unclear, ambiguous, imprecise, noisy, or missing data. Unlike ap-
proaches based on the first order logic and probability theory which do not provide
framework for dealing with imprecise and non-categorial knowledge, fuzzy logic facil-
itates approximate human reasoning analogous to human cognitive processes. In clas-
sical set theory, the membership of an element in a set is strictly described by true(1)
or f alse(0). Fuzzy set theory moreover accepts other values between 0 and 1. Fur-
thermore, it is possible to assign linguistic variables together with linguistic terms to
a specific fuzzy membership functions to help formulate logical statements in natural
language. Alike the traditional, two-valued logic, fuzzy logic defines several operators
on fuzzy sets.

Fuzzy logic has definitely found its application in various knowledge based sys-tems
in business, finance, and management, yet with a very limited adoption in the field
of workflow modeling and management. Still, business processes are often steered by
soft human preferences, which are way from being formal, structured or determinable.
Hence WfMS can certainly benefit from fuzzy conditions when split-ting the flow into
several branches based on a set of procedural rules.

2.6 Application of Fuzzy Set Theory in the above Discussed Domains

Uncertainty and Imprecision in Workflow Management. In the design phase, it
sometimes proved hard for workflow designers to define a promising workflow model.
Hence, it could be convenient to design the processes during its execution or even ex
post. Concept of weak workflows [14] allows building the workflow design simulta-
neously with its enactment. With this concept, it is possible to model processes with
incomplete information. Weak workflows provide for interlaced design and enactment
- initial abstract model is being gradually refined. Examples of implementations are
projects FRODO [15] or DeFlex [16].

Aslo workflows based on progressive model [17] do not need any detailed workflow
model in advance. It uses the enactment phase to record data inserted step-by-step by
users, as well as additional information about these steps. This information is then avail-
able as a template for analogous processes in the future. Other similar approaches are
Retroactive workflows [18], and Teleo-Reactive workflows [19].

The fuzzy business process management approach [20][21] translates the vague-ness
and ambiguity of human thinking into workflow automation by extending Event-Driven
Process Chain (EPC) modeling notation with fuzzy rule sets. These rule sets are af-
terwards used in the decisions about future process-flow. The discussed approach can
even be enhanced with a sort of organizational learning, provided that the fuzzy rules
are generated automatically out from statistical evaluations [22]. Analysis of workflow
audit trail with the help of fuzzy logic is also presented in [23].

In [24], Autonomic Object (AO) Intelligence Algorithm based on Extensive Mamdani
Fuzzy Reasoning System is used to enhance workflow flexibility by employment of
fuzzy reasoning. AO intelligence and autonomic computing is used for the workflow
model updates.
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Fuzzy Logic in Ontology Modeling. Classical ontology languages are not appropriate
for dealing with imprecision or vagueness in knowledge. Therefore, Description Logics
(DL) have been enhanced by various approaches to handle probabilistic uncertainty,
possibilistic uncertainty, and vagueness.

Regarding handling of vagueness, popular is the fuzzy generalization of SHOIN(D),
so called fuzzy SHOIN(D). With this generalization, concrete domains (data types)
are represented by fuzzy sets. It also introduces fuzzy modifiers, fuzzy axioms, fuzzy
RBoxes, fuzzy TBoxes, and fuzzy ABoxes. Besides the research on the theoretical frame-
work, number of fuzzy DL reasoners has also been implemented. Examples are FuzzyDL
[25][26] and DeLorean [27].

3 Ontology-Driven Fuzzy Workflows

We propose a methodology which integrates fuzzy workflows with fuzzy ontology, to
design a WfMS that meets the following requirements:

– is goal-driven rather than process driven,
– is flexible, i.e. can divert from a predefined workflow
– capitalizes on the knowledge of the organization,
– deals with imprecise and vague information,
– boosts initiative, and cooperation of human participants,
– provides feedback and so contributes to the workflow evolution and improvement.

The overall methodology can be decomposed into the following steps, as also illus-
trated by Figure 1:

Fig. 1. Schema of Ontology-Based Fuzzy Workflows
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– Introduction of fuzzy logic support to an information system (IS), including its
WfMS component, as well as to the ontology-based knowledge repository,

– introduction of human-centric workflow activities (i.e. basic workflow building
blocks) that are aware of human-nature of the business process participants,

– integration of the WfMS with the IS and with the fuzzy ontology, so that the
workflow conditions can be evaluated both against the IS, and the ontology-based
knowledge,

– provision of feedback from the workflow execution log back to the ontology.

3.1 Fuzzy WfMS

The application of fuzzy logic in WfMS brings the following advantages:

• Classical, crisp set theory is a special case of fuzzy theory. Thanks to this fact,
even a fuzzy workflow can be subject of strict limits and boundaries. On the other
hand, fuzzy workflow can flexibly react to the vague reality. Example is an internal
regulation to process all tasks within 24 hrs. Still, it often does not mean that the
customer would be totally satisfied with 23hrs, and disappointed after 25hrs dura-
tion. Hence the resolution time is a suitable candidate for being represented by a
fuzzy number.

• In accordance to the existing concept of weak and retroactive workflows, unclear
workflow transitions can be left unspecified in the design phase. Taking it to the
extreme, any workflow can be modelled as a complete graph of activities at the first
stage, where every pair of activites is connected by an edge, with its subsequent
reduction.

3.2 Human-Centric Workflow Activities

With the help of fuzzy logic, it is feasible to design workflow activities that are aware of
human-nature of the process participants. Both for the information flow from a human
to WfMS (E. g. processing of human decisions, authorizing approvals) and backwards
(E. g. task distribution, message announcement). For the task assignment, for example,
we propose to enhance the ordinary workflow task distribution list with a rich format-
ting. As shown in Figure 2, tasks are distinguished by various font colours and sizes.

Fig. 2. Example of fuzzy task distribution list
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This way, we can represent their membership degree in two distinct fuzzy sets. The
formatting can reflect task semantic proximity, urgency, impact, etc.

3.3 Integration of Object-Oriented, Workflow and Ontological Model

We eventually deal with three different paradigms. Table 1 compares various features
of ontological modelling, object-oriented modelling, and workflow modelling.

OOPL-Ontology Integration. As shown in Figure 3, we propose to use of hybrid
integration, where some OWL concepts are mapped 1:1 to predefined OOPL classes,
wheres others are mapped N:N.

Fig. 3. UML metaclass diagram of hybrid OOPL-ontology integration as implemented in Fuzzy
Ontology Framework
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For direct mapping, we can specify that every OOPL object class C belongs to spe-
cific OWL concept by defining the concept as the one whose individuals have property
ClassFullName = C.FullName. On the other hand, we can have several OOPL classes
mapped to a single OWL concept and vice versa. To reveal such a relationship in the IS,
we can request a fuzzy set of OWL concepts for specific individual, or the other way
around a fuzzy set of individuals for a specific concept.

WfMS-Ontology Integration. The main purpose of the WfMS-ontology integration
is to evaluate semantic rules defined in the ontology in order to find out proximity of
particular individuals towards a specific concept. We typically know that an individual
belongs to a basic concept like Employee or CustomerOrder. Yet we need to evaluate its
proximity to several other sub-concepts like SalesPerson or HighValueCustomerOrder.
This in turn influences the workflow execution.

Lets take an example of OWL concept Employee that is linked to an appropriate C#
class and to a database table of the same name. Of course, there can be several subsumed
concepts like CheapSalesPerson, CapableSalesPerson, or CheapAndCapableSalesPer-
son. Axioms defining these subconcepts can alter during the course of time, and so we
want to keep the concepts neither hard-coded in the OOPL nor in a relational database.
We need more flexible way to define what a low commission or a high sales amount
is, as well as how the particular properties interact. This can be achieved by means of
the fuzzy ontology, and its hybrid integration with fuzzy IS. For the above purposes, we
need to be able to express two kinds of fuzzy axioms in the ontology:

– Concept subsumption is a statement type TBox of form C4D>α, denoting inf x∈7I
{C(x)⇒ D(x)} > α. Example is a statement stating that Cs 4Ce > 0.8, where Ce

is a concept representing employees, Cs represents sales persons, and 7I is an in-
terpretation domain. It declares that every employee is at least a 0.8 sales person.

– Instance-concept affiliation is an ABox type statement of form C(a) > α, where
C denotes a fuzzy concept, a is an individual, and α is a degree of membership.
C(a) tells us to what extent the individual a can be considered an element of fuzzy
concept C. If C stays for a concept representing managers, for example, then every
employee a belongs to this concept to degree α from the interval < 0,1 >.

3.4 Workflow Audit Trail Analysis and Feedback

The proposed methodology is also provides for a feedback from the workflow execution
log back to the ontology. Since the flow control is in turn influenced by knowledge
stored in the ontology, this mechanism can contribute to the workflow evolution.

Figure 4 illustrates typical integration of an information system with WfMS. We
propose a data transfer from the WfMS execution log to the main relational database
(highlighted arrow in Figure 4). More precisely, objects in the main database which
have been involved in the processing of workflow instances will be enhanced with sta-
tistical information about their activities which took place in past. Example is a number
of processed customer orders per employee. Once there are raw statistical data avail-
able for data objects, the rest of the analysis can be easily accomplished as a part of
fuzzy ontology reasoning. We can easily declare a concept ExperiencedEmployee as
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Fig. 4. Transfer of workflow execution statistics from WF execution log to the data
model of the IS

Employee and highNumberOfProcessedOrders, for example, where highNumberOfPro-
cessedOrders is a right-shoulder fuzzy set. If there are order processing tasks assigned
to concept ExperiencedEmployee in a workflow defi-nition, then the higher number of
orders processed by a specific employee in past, the higher degree of assignment of new
tasks in his/her task list.

4 Prototype

We also report on some specific implementations related to the methodology introduced
in the previous section.

4.1 Fuzzy Framework

FuzzyFramework1 is a library facilitating evaluation of fuzzy logic expressions. It is
feasible to implement it into arbitrary existing information systems built upon the Micro-
soft .NET platform. There is a support both for continuous and discrete fuzzy sets. It
works with any fuzzy sets as long as we can describe them by a group of polynomial
functions. Last but not least, there is no special parser required in the .NET environ-
ment, since the library overloads standard .NET operators to work with fuzzy relations.
This facilitates an incorporation of the library into Windows Workflow Foundation, a
Microsoft .NET based workflow management engine.

As apparent from the example in Figure 5, the prototype also offers a graphical rep-
resentation of fuzzy sets and hierarchical representation of fuzzy relations. This is in-
tended to help users get quickly familiar with the internal structure of fuzzy expressions
they deal with in the workflow conditions.

1 http://www.codeproject.com/KB/library/Fuzzy-Framework.aspx

http://www.codeproject.com/KB/library/Fuzzy-Framework.aspx


524 V. Slavı́ček

Fig. 5. Example of graphical representation of fuzzy sets and relations in Fuzzy Framework

4.2 Fuzzy WfMS

We have chosen to use Windows Workflow Foundation (WWF) ver. 4.0 for the concrete
prototypical implementation of fuzzy workflows. The main reason is that WWF work-
flow designer features a native VB.NET parser. The parser is available in all control-
flow as well as data manipulation activities, enabling us to define arbitrary fuzzy expres-
sions directly in the designer, including a defuzzification. Figure 6 illustrates a definition
of fuzzy expression within an If-Else activity condition.

Fig. 6. The If-Else activity executes one of its children based on the result of fuzzy expression

4.3 Fuzzy Ontology Framework

To represent the fuzzy ontology, we have decided to re-use exisitng methodology Fuzzy-
OWL2 introduced in [28]. This approach implements the vagueness into standard OWL2
ontology by means of native OWL2 annotation properties.
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Regarding the integration of fuzzy ontology with fuzzy IS, we have proposed our
own methodology, and implemented a prototype called Fuzzy Ontology Framework2

on platform Microsoft .NET. In a nuthshell, the component loads a collection of OOPL
instances from the business layer, and stores them as individuals in the OWL ontology.
Based on the member (i.e. field or property) values of these instances, and the speci-
fied ontology, a fuzzy reasoner can subsequently assign the individuals (i.e. instances)
to one or more OWL concepts. At present, only reasoner FuzzyDL [25] is supported.
The concept affiliation is returned back to the business layer, which can in turn use this
information at its discretion. It is typically used in workflow procedural rules to deter-
mine the future process flow. More precisely, most of instances are internally stored
in memory rather than in the ontology. The reason is that several thousand individuals
would hamper manipulation with the source ontology file.

5 Conclusion and Future Work

In this paper, we proposed a methodology that integrates a fuzzy workflow management
system with a fuzzy ontology knowledge representation. Unlike the existing related
work, this approach uses a holistic view on fuzzy workflow management within an
organization, including its mutual cooperation with other data and knowledge repo-
sitories. Furthermore, in accordance to the fuzzy nature of the solution, we propose
a number of workflow activities focused on the computer human interaction.

The solution is easy-to-implement to existing information systems. We claim that an
adoption of the proposed methodology by IT industry can positively impact the flexibil-
ity of business processes supported by the systems, as well as the motivation of human
participants to actively cooperate on the workflow evolution.

Fuzzy logic with its linguistic variables gives the workflow designers a powerful tool
for modeling complex flow conditions with ease, still obtaining significant results to
assure an effective process execution. On the other hand, the designers have to keep
in mind that vague workflow model can potentially hamper the establishment of clear
ultimate responsibility for particular workflow tasks.

The natural direction for future work lies in extending the prototype to wider range
of workflow management systems, knowledge-representations, and reasoners. This will
enable an evaluation of the methodology in several practical use cases. Regarding the
methodology itself, it can be further extended with a KPI-based reward system, in order
to motivate the human workflow participants to pick the most benefical tasks out of the
task list. Not only beneficial from the perspective of the business process, but also to
satisfy the participants themselves in a longer perspective.
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Abstract. Many of the tools supporting the OWL ontological language face
complexity problems when handling certain constructs of the language. This
leads to the requirement of automatically changing the ontology, either by remov-
ing a specific type of construct or by adhering (downgrading) the ontology to a
predefined OWL2 profile such as OWL2 EL. We present an approach to construct
replacing and complexity downgrading that relies on transformation patterns pro-
cessed by a generic ontology transformation framework. Transformation patterns
allow to declaratively formulate and transparently execute axiom replacement op-
erations. This potentially preserves derivations that would otherwise be lost due
to simple removal of problematic axioms.

1 Introduction

Existing tools operating on ontologies normally support a certain, well defined, set of
logical operators. In many cases this set of operators is not sufficient to completely
capture the semantics of the OWL language. As a result, these tools cannot be used on
certain ontologies or they provide incomplete reasoning results. In both cases, the trans-
formation of the input ontology can improve the situation. In particular, the ontology
can be transformed into a version that only uses the supported operators. Doing this out-
side the tools gives the user more flexibility because (s)he can design a transformation
that is not directly hard-coded into the tool.

In our previous work on the PatOMat project1 we already addressed the general
need for ‘style’ transformation in ontological engineering. In this paper we are con-
cerned with the ‘language profiling’ scenario of transformation, i.e. replacing certain
OWL constructs that could be hard for some tools. This replacement task is supported
by a general ontology transformation framework [12], a simple transformation pattern
language, and a set of web-based services relying on external tools such as the Ontol-
ogy Pre-Processor Language (OPPL) and OWL-API, see Section. 2. The current paper
extends [12] with a description of the language profiling scenario with its two use cases,

1 http://patomat.vse.cz/

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 528–539, 2013.
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a larger collection of transformation patterns, an experiment, new features of the core
implementation and a new web-based application.

The rest of the paper is structured as follows. Section 2 briefly reviews the PatOMat
framework, transformation language and processing services, in the current form. Sec-
tion 3 introduces the language profiling scenario with its pipeline. This scenario is then
split into two use cases; the first one (Section 4) describes the ‘on purpose’ construct
replacement use case, while the second (Section 5) deals with complexity downgrading.
Complexity downgrading is an extension of the first scenario in terms of applying more
than one transformation pattern dynamically composed into a sequence according to
recommendations from ontology analysis. Furthermore, an experiment is presented in
Section 5.2 that deals with the second use case. Finally, Section 6 surveys related work,
and Section 7 discusses the benefits of the approach and wraps up the paper.

2 PatOMat Transformation Framework

The central notion in the PatOMat framework2 is that of transformation pattern (TP). A
TP contains two ontology patterns (source OP and target OP) and the description of the
transformation betweem them, called pattern transformation (PT). For instance, we can
specify a TP such that a subsumption relation (as source, OP1) should be transformed
to a SKOS3 taxonomic relationship (as target, OP2). A schematic description follows.

OP1: ?OP1_A subClassOf ?OP1_B
OP2: ?OP2_A skos:broader ?OP2_B
PT: ?OP1_A~?OP2_A ?OP1_B~?OP2_B.

The representation of OPs is based on the OWL 2 DL profile. However, while an OWL
ontology refers to particular entities, e.g. to class Person, in the patterns we generally
use placeholders, e.g. ?OP1 A. Entities are specified (i.e. placeholders are instantiated)
at the time of instantiation of a pattern. An OP consists of entity declarations (refer-
ring to placeholders or concrete entities), axioms and naming detection patterns; the
last capture the naming aspect of the OP important for its detection.4 A PT consists
of a set of transformation links and a set of naming transformation patterns. Transfor-
mation links are either logical equivalence relationships or extralogical relationships
holding between pairs of entities of different type (such as class vs. individual, as in our
example above). Naming transformation patterns serve for generating new names for
old or newly created entities. Naming patterns range from passive naming operations
such as detection of a head noun for a noun phrase to active naming operations such as
derivation of a verb form of a noun.

For instance, the abovementioned TP would transform the following OWL ontology
fragment

Paper subClassOf Document. Review subClassOf Document.
ConferencePaper subClassOf Paper. JournalPaper subClassOf Paper.

2 [12] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
3 http://www.w3.org/TR/skos-primer/
4 The naming aspect is less important for language profiling than it is for ontology matching or

importing (merging).

http://owl.vse.cz:8080/tutorial/
http://owl.vse.cz:8080/tutorial/
http://www.w3.org/TR/skos-primer/
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to the SKOS terminology fragment

Paper skos:broader Document. Review skos:broader Document.
ConferencePaper skos:broader Paper. JournalPaper skos:broader Paper.

The framework prototype implementation is available either as a java library or as
three core services.5 The java library is directly used in a web-based application briefly
described in Sec. 5. The whole transformation is divided into three steps, which corre-
spond to the three services:

– The OntologyPatternDetection service takes the transformation pattern and a par-
ticular original ontology on input, and returns the binding of entity placeholders
on output, in XML. The structural/logical aspect is captured in the structure of an
automatically generated SPARQL query;6 the naming aspect is dealt with based on
its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placeholders and
the transformation pattern on input, and returns particular transformation instruc-
tions on output, also in XML. Transformation instructions are generated according
to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation instruc-
tions and the particular original ontology on input, and returns the transformed
ontology on output.

The third service is partly based on OPPL [2] and partly on our specific implementation
over OWL-API.7 Currently we use OPPL for the operations on axioms and for adding
entities, and OWL-API for re/naming entities according to naming transformation pat-
terns and for adding OWL annotations. As far as detection is concerned, the SELECT
part of OPPL could be used to some extent; our naming constraints are however out of
the scope of OPPL. Furthermore, in contrast to OPPL, we decompose the process of
transformation into parts, which enables user intervention within the whole workflow.

The framework has been recently enriched with several advanced features such as
recursive processing of structures in ontologies in a single step both in the detection
phase and in the actual transformation phase. Furthermore, multiple alternative strate-
gies can be applied in handling additional axioms, i.e. axioms that are not a literal part
of an input pattern but get affected by its transformation; in this case removal can be
allowed for both axioms and entities (with additional options that we omit for brevity),
axioms only, or none.

The framework was previously explored for two other scenarios. The ontology match-
ing scenario, where two ontologies are to be matched, is based on the idea that we can
transform the modelling style of one ontology so as to make automated matching to
the other ontology easier [12]. Another scenario deals with importing (merging) a best-
practice ontology content pattern into an existing ‘provisional’ ontology, which thus
needs to be adequately adapted [11].

5 All accessible via the web interface at http://owl.vse.cz:8080/
6 http://www.w3.org/TR/rdf-sparql-query/
7 http://owlapi.sourceforge.net/

http://owl.vse.cz:8080/
http://www.w3.org/TR/rdf-sparql-query/
http://owlapi.sourceforge.net/
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3 PatOMat in Use: Language Profiling Scenario

In comparison with those other scenarios, the language profiling scenario leads to a fully
automatic pipeline. First, a source ontology is pre-processed in order to syntactically
decompose the constructs that can hinder querying in a unified way. In our case we
decompose (→) the following constructs:

– intersection: A subClassOf (B and C)→ A subClassOf B. A subClassOf C.8

– disjointness: DisjointClasses(B, C, D)→
B disjointWith C. C disjointWith D. B disjointWith D.

– and disjoint union: DisjointUnion(B, C, D)9 →
B equivalentTo C or D. C disjointWith D.

The next step is a detection performed by the OntologyPatternDetection service. There
is typically more than one pattern instance as a result of the detection step. Furthermore,
it is usually precise, because in the case of the language profiling scenario, detection is
merely based on structural/logical aspects and naming detection patterns are mostly not
needed. The following step amounts to generation of transformation instructions by the
InstructionGenerator service. Finally, the application of instructions is carried out by
the OntologyTransformation service according to the selected transformation strategy.
By default, it uses the ‘progressive’ transformation strategy, which enables the removal
of axioms but not the removal of entities.

This is the basic pipeline of the language profiling scenario as applied in the first use
case (cf. Section 4). In contrast, the complexity downgrading use case (cf. Section 5)
slightly modifies the pipeline by adding an analysis of the source ontology to specify
which transformation patterns should be applied. Consequently, selected transformation
patterns are dynamically composed into a sequence. Finally, a post-processing step is
performed for ensuring completness of the process.

The transformation of language profiling constructs can be generally done in three
ways: either they can be replaced with an equivalent different representation, or they
can be replaced with an approximate different representation, or they can be removed.
The first option is obviously the best one. However, it is only rarely possible to find
an equivalent representation using other constructs when in need to eliminate a prob-
lematic construct during complexity downgrading. The second option is more realistic.
However, there is often no (even approximate) alternative way of representation and the
problematic construct has to be simply removed.

4 Ontology Transformation for Specific Language Construct
Replacement

Transformation can be driven by a request for replacing a specific language construct.
In this section we provide an example dealing with nominals. Tackling nominals can be

8 For writing axioms we use the intuitive Manchester syntax available at:
http://www.w3.org/TR/owl2-manchester-syntax/

9 B is the disjoint union of C and D.

http://www.w3.org/TR/owl2-manchester-syntax/
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problematic for some reasoners. In the following example we will show how nominals
can be replaced rather than removed. Let us assume that we have nominals describ-
ing continents and the Continent class defined as ‘one of’ those nominals (implicitly
assuming their mutual difference):

Continent equivalentTo {Africa, America, Antarctica, Asia, Australia, Europe}.

Let us further assume that we have the AfricanRedSlip class,10 defined via the
hasContinentOfOrigin property:

AfricanRedSlip subClassOf Ware.
AfricanRedSlip subClassOf (hasContinentOfOrigin value Africa).

Nominals could be simply removed; however then we would lose e.g. part of the de-
scription of AfricanRedSlip. Instead, we can replace a set of nominals by union of
helper classes xxx nc each one accomodating exactly one original instance of the nom-
inal class:

OneOfContinent equivalentTo (Africa_nc or America_nc or
Antarctica_nc or Asia_nc or Australia_nc or Europe_nc).

Africa a Africa_nc. America a America_nc.
Antarctica a Antarctica_nc. Asia a Asia_nc.
Australia a Australia_nc. Europe a Europe_nc.

This transformation is approximate because it is no longer assured that e.g. Africa nc

could not have other individuals than Africa. Due to this change we should also modify
the description of AfricanRedSlip:

AfricanRedSlip subClassOf Ware.
AfricanRedSlip subClassOf (hasContinentOfOrigin some Africa_nc).

This can be done automatically using our framework with a specific TP.11 It is worth
noting that, historically, nominals used to be represented in this (‘transformed’) way.

Further off-the-shelf transformation patterns for replacing different OWL constructs
are available online.12 They can be divided into three groups: equivalent, approximate
and removed representations (cf. Section 3).

5 Ontology Transformation for Complexity Downgrading
of an Ontology

The transformation can also be driven by an ontology complexity requirement of some
tool. In such a case, transformation usually comprises more than one transformation
pattern in order to achieve the required complexity level. In this work we focus on the

10 African red slip is a kind of ancient pottery, see http://open.vocab.org/docs/

AfricanRedSlip
11 The pattern is available from

http://nb.vse.cz/~svabo/patomat/tp/lr/tp_nominals-6a.xml
12 http://nb.vse.cz/~svabo/patomat/tp/lr/; there is a link to the XML serialization of

each pattern, a short description, and an ontology on which the pattern can be tested.

http://open.vocab.org/docs/AfricanRedSlip
http://open.vocab.org/docs/AfricanRedSlip
http://nb.vse.cz/~svabo/patomat/tp/lr/tp_nominals-6a.xml
http://nb.vse.cz/~svabo/patomat/tp/lr/
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complexity level corresponding to the OWL2EL profile [7], since this profile is sup-
ported by many tools, e.g. the ELOG-reasoner [8]. In comparison with the use case
from the previous section there are two more steps. Based on a given list of forbidden
constructs, ontology analysis figures out (by using the OWL-API library) which trans-
formation patterns have to be executed. These patterns are added into a sequence of
transformation patterns and then executed by the transformation in a sequential order.
Additionally there is a post-processing step where the remaining forbidden constructs
are removed using the OWL-API library. This step ensures completeness of the down-
grading process.

Both use cases from Section 4 and 5 are supported by a web-based application13.
Following the input of the source ontology URI (and selected TP in the first use case),
the transformed ontology is displayed (together with a brief transformation log) and
a link to its code is also provided.

5.1 Transformation Patterns Employed in Downgrading to OWL2EL Profile

There are several OWL 2 constructs that are not supported in the OWL2EL profile [7]:
universal quantifications to a class expression, cardinality restrictions, disjunctions,
class negations, enumerations involving more than one individual, disjoint properties,
irreflexive object properties, inverse object properties, functional and inverse-functional
object properties, (a)symmetric object properties.

It is generally difficult to find some replacement of unsupported constructs since their
replacement usually leads to using other unsupported constructs, e.g. ObjectMaxCardi-
nality could be replaced by a complemented ObjectMinCardinality restriction, which is
equally forbidden in OWL2EL.

In the following, we go through three different language constructs that can be re-
placed using our transformation patterns (replacement transformation). We describe
them briefly and exemplify the preserved implications. However, let us note that differ-
ent solution as a transformation pattern can be suggested and applied in the framework.
Finally, we provide an experiment illustrating the effect of transformation on query
answering results.

Complement of Universal Restriction. The complement construct is not allowed in
OWL2EL at all. We can approximately replace it using existential restriction wrt. the
top concept, i.e. instead of having

PizzaWithTopping subClassOf (not (hasTopping only Tomato))

we will have the following

PizzaWithTopping subClassOf (hasTopping some Thing)

In order to exemplify the preservation of derivations, let us consider that we also have
the following axioms in our TBox:

(hasPizzaIngredient some Thing) subClassOf Pizza

hasTopping subPropertyOf hasPizzaIngredient

13 Available from http://owl.vse.cz:8080/Downgrading/

http://owl.vse.cz:8080/Downgrading/
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If the problematic axiom were only removed and not replaced the following subsump-
tion could not be inferred:

PizzaWithTopping subClassOf Pizza

The corresponding transformation patterns described in this paper are available on-
line14.

Minimum Cardinality. Cardinality restrictions are not allowed in OWL2EL. Mini-
mum cardinality of 1 can be equivalently replaced by an existential restriction applied
on the same filler class. In the case that the minimum cardinality is higher than one, an
approximate transformation can be applied.

For example, instead of having

AcceptedPaper subClassOf (hasDecision min 2 Acceptance)

we will have the following

AcceptedPaper subClassOf (hasDecision some Acceptance)

In order to exemplify the preservation of derivations, let us consider that we also have
the following axioms in our TBox:

EvaluatedPaper = hasDecision some Decision

Acceptance subClassOf Decision

This implies

AcceptedPaper subClassOf EvaluatedPaper

Enumerations of More than One Individual. The OWL2EL profile only permits enu-
meration of one individual, therefore transformation must be carried out in the cases
with higher number of individuals. We suggest the following approximate transforma-
tion. Instead of having

EurAsia = {europe, asia}

we will have the following

Europe_nc = { europe }. Asia_nc = { asia }.

Europe_nc subClassOf EurAsia

Asia_nc subClassOf EurAsia

We assume that the individuals Europe and Asia are different. However, in this way
we cannot express that every EurAsia is either Europe nc or Asia nc.

In order to exemplify the preservation of derivations, let us consider that we also
have the following axioms in our TBox:

EuropeanWatch = ( hasContinentOfOrigin hasValue europe )

EurAsiaWatch = ( hasContinentOfOrigin some EurAsia )

This implies

EuropeanWatch subClassOf EurAsiaWatch

14 http://nb.vse.cz/~svabo/SOFSEM2013/

http://nb.vse.cz/~svabo/SOFSEM2013/


Constructs Replacing and Complexity Downgrading 535

5.2 Experiment

We performed an experiment about the effects of replacement transformation in com-
parison with removal transformation, which simply removes the axioms involving for-
bidden constructs by OWL-API. The experiment had three steps:

1. Ontology collection gathering. In order to gather collection of ontologies we used
the Watson semantic search15. We applied four selection criteria for selecting on-
tologies into the collection: OWL ontology language (target language of the frame-
work), more than 10 classes, more than 5 properties (ontologies should not be too
small), and absence of imports (current limitation of the OPPL tool and thus of
the framework). This gives us 328 ontologies. Final criterion says that an ontology
must have at least one forbidden construct transformable by transformation pat-
terns. This reduced the set of ontologies to 63. However, due to parsing problems
(in OWL-API or Jena16), other syntactical problems in ontologies and inconsistent
ontologies, we had finally 38 ontologies in our experimental collection.

2. Transformation of ontologies. We transformed each of these original ontologies (O
variant of an ontology; see in the ontologies directory17) into the OWL2EL pro-
file using removal transformation (R variant of an ontology; see in the
ontologiesR directory), using simple modifications of ontologies such as adding
declarations of classes and properties using OWL-API (ST variant of an ontology;
see in theontologiesST directory) and using replacement transformation with an
application of our transformation patterns (T variant of an ontology; see in the
ontologiesT directory).

3. Comparison of number of preserved subsumption relations. Finally, for each trans-
formed version of an ontology we computed the subsumption relations included in
the ontology explicitly (using ARQ in Jena) or implicitly (using ARQ in Jena and
Pellet reasoner18). The generated query was in the following shape: ASK Class1
rdfs:subClassOf Class2 19. Then we automatically compared the preserved sub-
sumption relations in the R variant wrt. subsumption relations in the original ontol-
ogy, preserved subsumption relations in the ST variant wrt. subsumption relations
in the original ontology, and, finally, preserved subsumption relations in the T vari-
ant wrt. subsumption relations in the original ontology.

The number of problematic axioms (obtained using OWL-API) ranged from 11 to 2133.
Besides the forbidden constructs listed in Section 5.1 there were forbidden datatypes in
data range and undeclared classes or properties20. The number of minimum cardinality

15 http://kmi-web05.open.ac.uk:8080/WatsonWUI/
16 http://jena.apache.org/
17 Detail web-page report about the experiment along with downloadable collection of ontologies

is at: http://nb.vse.cz/~svabo/SOFSEM2013/
18 http://clarkparsia.com/pellet
19 Class1 and Class2 were iteratively bound with all combinations of named classes from given

ontology.
20 Although a declaration is not matter of logic, an OWL ontology without declarations is incom-

plete and thus in the OWL Full profile.

http://kmi-web05.open.ac.uk:8080/WatsonWUI/
http://jena.apache.org/
http://nb.vse.cz/~svabo/SOFSEM2013/
http://clarkparsia.com/pellet
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Table 1. Effects summary

number of ontologies
no difference between O and R variants 17
no positive effect wrt. saved subsumption relations 13
saved subsumptions due to simple modifications 7
saved subsumptions due to replacement transformations 1

replacement transformations ranged from 1 to 120 applied on all ontologies in the col-
lection and the number of enumeration replacement transformations ranged from 1 to
27 only applied on 8 analysed ontologies.

In total, there were 17 ontologies in which removal transformation had no nega-
tive effect on subsumption relations (Table 1), including 3 ontologies which had no
subsumption relation in the original ontology at all. Next, for 13 ontologies any kind of
transformation did not save subsumption relations. It turns out that simple modifications
(ST variant) improved 7 ontologies with regard to lost subsumption relations ranging
from 1 to 75 saves. Detailed analysis showed that those seven ontologies missed classes
or properties declarations and these were simply added using OWL-API. Without these
modifications the removal transformation by OWL-API simply removed all axioms in
which the problematic entities were involved. Consequently, this also removed asserted
subsumption relations. Finally, there was only one positive effect caused by minimum
cardinality replacement transformation, in which the number of missing subsumption
relations decreased from 74 to 62.

Let us have a closer look at one example of preserved subsumptions there. The re-
placement transformation preserved, for instance, the following subsumption relations
(an equivalence is decomposed into (1) and (2)):
(1) Module subClassOf StructuralElement

(2) StructuralElement subClassOf Module

These subsumption relations are derived based on the following axioms:

Module subClassOf (element min 1).

StructuralElement subClassOf (element min 1).

element Domain Module.

element Domain StructuralElement.

Thanks to replacement transformation in which “Module subClassOf (element min 1)”
was replaced by “Module subClassOf (element some Thing )” (analogically for Struc-
turalElement) the (1) and (2) relations were preserved.

This weak overall effect (potentially even intensified considering the 265 ontolo-
gies in which no replaceable forbidden constructs were identified 21) can be explained
by the fact that the current replacement transformation patterns cover a small set of
all problematic issues only. However, any newly designed transformation pattern can
be employed within the process in the future. Next, the replacement trasformation can
only have a positive impact (in the setting of our experiment) if there are further ax-
ioms due to which subsumption relations can be derived (as demonstrated step-by-step

21 On the other hand, we did not check how many of them have forbidden constructs.
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for each replacement transformation in Section 5.1). Last but not least, we should also
consider that this experiment only evaluates the effect of preserved subsumption rela-
tions but it does not evaluate the first mentioned use case, which is an “on purpose”
construct replacement use case (Section 4). This should be accordingly reflected in
a future experiment.

Regarding the time performance, which includes pattern detection, instructions gen-
eration and transformation, a cardinality replacement transformation takes approxi-
mately ten seconds, while an enumeration replacement transformation takes twenty
seconds. In the case of enumeration replacement transformation the time increases with
a number of transformations because it is applied iteratively over an ontology, while
a cardinality replacement transformation runs only once for all applicable cardinality
transformations in an ontology.

6 Related Work

Prior research on ontology simplification can be divided into generic approaches and
those specifically tailored for a certain (popular) reasoner. Additionally we also consider
general approaches to ontology transformation (not confined to simplification). The
following three paragraphs reflect this distinction.

[6] aimed at elimination of transitivity axioms from an ontology in order to reduce its
expressivity. [1] presented an inference service for approximate translation of a concept
from one Description Logic to (typically) less expressive Description Logic. In com-
parison with our approach, both these approaches center on logical features, while we
follow a more engineering-oriented approach, taking into account the view of the human
modeller. There is also the approach published in [10], which aims at tractable TBox rea-
soning over a very expressive Description Logic. They proposed approximate TBox rea-
soning using EL rules and additional deduction rules. Transformation of badly tractable
constructs are realized as additional data structures. In comparison, our approach ad-
dresses general transformation and is centered around the idea of transformation patterns
as reusable transformation rules, while reasoning as such is left to reasoning tools. Thus,
while in our approach a tool obtains a transformed ontology, in the case of the approach
in [10] the transformation is used for an approximate reasoning algorithm and there is no
transformed version of an ontology on the output. Furthermore, [10] does not consider
nominals replacement and does not remove every non-EL axiom.

Regarding the tricky expressions for a particular reasoner, in [4] there has been pre-
sented the lint tool Pellint applicable on ontologies incurring reasoning performance
problems to the Pellet reasoner. 22 Particularly, Pellint detects problematic modeling
constructs as patterns. There are two groups of patterns: axiom-based patterns dealing
with a single axiom, and ontology-based patterns dealing with two or more axioms in
the whole ontology. These patterns could be captured by means of our transformation
patterns to some extent.

The most prominent project in ontology transformation in general (i.e. aside the sim-
plification setting) is probably OPPL [2], which we introduced in Section 2; we directly
reuse it in our framework. In [9] the authors consider ontology translation from the

22 http://clarkparsia.com/pellet/

http://clarkparsia.com/pellet/
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Model Driven Engineering perspective. The basic shape of our transformation pattern
(as described in detail in [12]) is very similar to their meta-model. However, the trans-
formation is considered at the data level rather than at the schema level as (primarily) in
our approach. In [5] the authors presented an ontology update framework that can au-
tomatically apply change patterns capturing the evolution of a domain of interest. Their
approach is however based on the RDF model and SPARQL update language, while our
approach is built on the top of the OWL model.

7 Conclusions and Future Work

This paper presents an approach to ontology construct replacing and complexity down-
grading where pattern-based transformation is applied on the source ontology to derive
a target ontology. We explained these two use cases and demonstrated their usefulness
on examples. We also performed a tiny experiment from the reasoning perspective; the
positive effect of our approach was only weak there, which is attributed to the fact
that the current replacement transformation patterns only cover a small subset of prob-
lematic issues and the ontologies do not contain additional axioms needed for deriva-
tion of subsumption relations with replaceable forbidden constructs. The strong point
of the presented approach is however that, in contrast to research focused on solving
widely the ‘notorious’ problems of logical inference, the users can easily design their
own transformation patterns 23 to address a certain, specific and unforeseen, construct-
replacing use case, such as that specifically dealing with nominals (Section 4) or com-
plexity downgrading for a certain, newly introduced profile (Section 5). If such patterns
are shared, other users could easily apply them through the online transformation web
services (i.e. without the necessity to install a particular reasoner as in the logic-centric
approaches to transformation).

We plan to investigate what other kinds of transformation patterns and use cases
and, moreover, other complexity downgrading tasks, could be addressed by the pre-
sented framework. Our approach could be further improved e.g. by precomputing the
subsumptions of named classes in the source ontology and adding them into the tar-
get ontology. Regarding practical implementation, we plan to extend the support of the
framework for analogous datatype-related constructs in OWL such as DataOneOf.

This research has been partially supported by the DAAD grant “Pattern-based ontology transfor-
mation supporting ontology matching and reasoning tasks” and by CSF grant No. P202/10/1825,
“PatOMat – Automation of Ontology Pattern Detection and Exploitation”.
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Abstract. Nowadays it is not unusual, that applications for mobile devices are
using various sensors such as touch screen and accelerometer for their control.
We aim to use these mobile sensors for music creation in a way that is intuitive
to users. The main contribution of this paper is proposed formula for real-time
tempo adaptation for a single user. We also dealt with the control design of musi-
cal instruments of different types (to make it similar to their real counterparts) so
that users can easily adapt to the device. To test it, we have implemented an appli-
cation simulating three musical instruments: piano, flute and drums ex-tended by
a metronome, editable rhythms and other configuration settings in-cluding tempo
adaptation.

Keywords: mobile device sensors, music, tempo adaptation.

1 Introduction

Mobile devices are undoubtedly one of the phenomena of our time. Mobile development
is accessible to almost everybody, not only in developed countries, as almost everybody
can now own some type of mobile device. As of 2012, it is relatively easy to obtain a
device with a large screen, GPS navigation and with multiple integrated sensors. This
technological shift significantly increases the range of applications on mobiles in terms
of computing, but also in ways that users are interacting with the device.

All of these devices can be used for interactive music creation. Creating sound out-
put using mobile device sensors is relatively young and, therefore, studied only in the
last few years. This area of research can be further developed and that is the aim of this
work.

Our first challenge was to create musical instruments with controls similar to those
on real instruments so that the interface is intuitive for users. There are different types
of musical instruments; we focus on the following three classes – keyboard, wind and
percussions. We have explored the potential of today’s mobile devices (in way of sen-
sors combination) to achieve intuitive control, however the available computing power,
device memory and sensors offer space to create additional features that a user might
like. For our second challenge we decided to look at metronome, rhythms and automatic
tempo adjustment.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 540–551, 2013.
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2 Related Work

2.1 Sensors for Mobile Music Performance

Modern mobile devices contain variety of sensors that can be used to generate music
in very different ways. Michael Rohs and Georg Essl described this in their publication
named Interactivity for Mobile Music-Making [1]. This work contains classification of
available sensors in mobile devices that are relevant to making music according to dif-
ferent dimensions. A simplified matrix of the classified sensors is presented in Figure 1.

Fig. 1. Design space of sensors for mobile music performance [1]

In general, sensors can measure linear or rotational movement. Additionally, there are
sensors that can measure both linear and rotational movement; these are represented as
connections between cells in the matrix.

In context of mobile music creation it is also very important how particular sen-
sors are utilized. Many sensors are usable only if they work within the available con-
straints of the user. This means that in some cases users are limited by sensor (e.g. in
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optical sensing at low frame rates), which is shown in the figure by dimension lim-
ited/unlimited velocity. Some musical phrases, which rely on speeds faster than the
sensor technology can reliably track, may be unavailable to the user. Sensors placed in
unlimited velocity dimension are able to detect rapid movements so this limitation does
not apply.

Dimension limited/unlimited reach means that sensor is limited (or not) by physical
interaction space. For example, touch screen is limited by its size, or proximity sensor
is limited by maximum sensing distance. In musical context this means that mapping
specific sounds to interaction is more difficult on sensors with limited reach.

Data provided by sensors can be absolute or relative. Absolute data sensors are gen-
erally easier to work with in musical context because they can be easily mapped to
particular tone pitch or volume. The same is possible with relative data, but it is nec-
essary to propose more complex transformation of data to get specific sounds [1].

When we looked at existing applications, several interactive applications aimed on cre-
ating musical tones directly on mobile devices have been created. They mainly repre-
sent an individual musical instrument, like piano, guitar, acoustic drums, ocarina. In
next lines we mention applications, which we consider as interesting (simply by using
them) from their group of type. All of these applications are for iPhone OS, but simi-
lar application with the same control principles can be found also for other operating
systems.

Keyboard musical instruments

– Piano+ (1. . . /piano+/id430119524)
– Virtuoso (1. . . /virtuoso-piano-free-2-hd/id304075989)
– WaveSynth (1. . . /wavesynth/id310846058
– Gyro Piano (1. . . /gyro-piano/id382551316

All of these applications are controlled mostly by a touch-screen. They usually include a
simple graphical interface showing one or two octaves of piano keyboard on the screen.
Some of them support multi-touch. In piano it is crucial to change between octaves –
it is implemented either as a manual switch (touch the button) or, e.g. in Gyro Piano, it
uses the accelerometer and gyroscope – to move across the piano keys the device has
to be moved in the x-axis.

Wind musical instruments

– Smule’s iPhone Ocarina (1. . . /ocarina/id293053479

This Ocarina [2] is probably the most famous application of this kind. It is controlled
via the touch screen (multi-touch, by touching the screen at those places where are the
holes and this contact will ”cover” them) and blowing into a microphone. It also uses
accelerometer to simulate vibrato of played tone.

Percussions

– Amazing Drums (1. . . /amazing-drums-lite/id424438240)
– Drums Deluxe Light (1. . . /drums-deluxe-light/id399326714))

1 http://itunes.apple.com/us/app/...

http://itunes.apple.com/us/app/...
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– Gyro Air Drums (1. . . /gyro-air-drums/id383027843 or
http://www.gyroairdrums.com/)

– vDrummer (1. . . /drums/id311549739 or http://www.v-drummer.com)
– Drum Meister (1. . . /drum-meister-pro-lite/id384869832)

Most of these applications play the drums and percussion through interaction with mul-
tiple sensors of the device. In the first case, the touch screen with displayed image of
drum set. This allows a user to create sound by touching respective drum. The second
and much more interesting way of sound creation is if a user can “play” on the in-
strument by inclination and “hitting” in space. For this purpose is used the built-in
gyroscope that makes it possible to determine to which particular part of the instru-
ment was “hitting” and also to recognize gestures representing the strike, but there is
a drawback – there is not entirely accurate detection of beats of drums.

2.2 Tempo Adaptation Based on User’s Interaction

There are several types of algorithms that detects tempo of the song. Tempo is measured
in units called BPM (Beats per Minute), which determines the number of “beats” (or
more precisely – quarter notes) per minute. The process which is behind the detection
of beats (hence the tempo) is an audio signal analysis, including finding the positions
with greater amplitude, which usually represents snare drum hits in tempo. Song can be
split to parts and then the process of finding regional maxima can separate “real” beats
in tempo from soft dynamics hits [3].

There are several algorithms that are applicable to tempo detection [4,5] but these
algorithms are used to find out tempo of existing track and not during its formation as
in our case. To detect tempo we are using our suggested algorithm (see Section 3.3),
inspired by Goto and Muraoka [4]. This algorithm is based on regular analysis of IBI
(inter-beat interval - interval between two successive strokes in rhythm). The tempo is
not changed if the last interval is a multiple of the current interval. It is evident that
human is not capable of playing tones accurately to milliseconds in the tempo so in
this algorithm we use an error tolerance value. Tempo is changed if the IBI maintains
approximately the same value specified number of times in a row, and is different from
the current tempo.

2.3 Audio Output Playing

To have a sound (music instrument) we had to deal also with audio output. In prin-
ciple, audio output can be played via MIDI interface on external device, operating as
a sequencer or by direct playback of prepared audio samples stored on device. The
first approach was used in application Camus [6]. However, this application is not de-
signed to generate music, but only to modify existing songs with musical effects. But
our application should use only the iPhone audio playback capabilities, therefore we
have decided to use the sound samples. They are stored in memory of device as files
containing samples of tones. The great advantage of this approach is that it possible to
use high-quality music samples, which could significantly improve the quality of au-
dio output. However, to minimize memory requirements (our average sample file has
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84 kilobytes), application contains only a small number of samples (e.g. virtual piano
contains only 20 samples out of 88). Then we can increase or decrease the frequency
(pitch) of these samples by so-called pitch shifting algorithm. This algorithm adjusts
pitch of any tone in playback in real time by a selected interval. Tone frequency change
is also related the change of song duration. Pitch shifting algorithms are designed to
adjust only frequency and sound duration is maintained (the reverse process of this
algorithm is known as time stretching).

3 Interaction Improvements and Algorithms

3.1 Sensors for Mobile Music Performance

Today’s mobile phones contain these useful sensors: touch screen, accelerometer, gyro-
scope, camera and microphone. We propose the following improvements:

Keyboard musical instruments: To move along the keyboard, the user can either use
swipe gesture or shift the keyboard (detected by gyroscope) by changing the tilt of
device which can be detected by 3-axis accelerometer.

Wind musical instruments: Our plan was to use a camera of device as a sensor which
will detect “covering” of flute’s thumbhole by real-time analysis of captured images.
But in most of devices, the camera is in opposite position to microphone, therefore it
would be very hard for user to control it. Moreover this type of instruments is used to
have many holes. This is also a problem, because operating systems allows detecting
only five touches at one time.

Percussions: Enhance it by shaking which can be detected by accelerometer – user’s
shaking gestures with device can play sounds of e.g. shaker or tambourine.

3.2 Sound Playback Algorithm

In addition to standard instruments mentioned in previous section (we call them “inter-
active”), there are also others that the user does not control directly – “non-interactive”,
and these instruments are used to create a sound playback, for example metronome
or different rhythms. They play pre-defined sounds without user’s interaction. During
the playback the algorithm has to determine the time when concrete sound should be
played. This can be done by simple formula:

timen = timen−1 +
240

tempo
durationn−1 (1)

where timen is n-th tone, tempo is tempo of non-interactive instrument durationn−1 is
duration of n-1 tone. Using this recursive formula we can calculate the specific time
when should be n-th tone played. This time is represented in seconds and so the nu-
merator has to be 240, which is the multiplication of seconds in a minute with number
four, because in music theory tempo is defined as number of quarter tones played in one
minute. Our equation is similar to Reidsma et al. [7] equation 1 with conductor, but in
our case the system follows user’s tempo and does not try to lead him/her.
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3.3 Automatic Tempo Adjustment Algorithm

Tempo of selected rhythm adapts during user interaction with one of three virtual in-
struments that results in a different tempo. As mentioned earlier, if new tempo is in
same ratio (usually multiple of powers of two, but it is not a rule) to the original value,
tempo change is considered natural and therefore it will not be changed. So the situation
can be divided into two cases. In first case, if new tempo is in natural ratio to original
it should not be changed and in second case, if is it not tempo is changed. To find this
information was used and experimental fine-tuned following formula:

changetempo=

⎧⎨⎩1 if ∀i

∣∣∣∣newIBI
oldIBI

−multii

∣∣∣∣> error
multii

0 else
(2)

where changetempo is information whether is necessary or not to change the tempo,
newIBI is time interval between the last played tones, oldIBI is time interval between
the tones in the original tempo. Variable multii stores i-th multiple of old tempo which
can be considered in natural ratio with new tempo and error is time error value which
can be tolerated musical timing of user. The result says that the tempo change is neces-
sary if in tempo variable is number 1; otherwise new tempo is in natural ratio to original.
In application we are using five multiples stored in variables multi1-multi5, namely the
numbers: 1/4, 1/2, 1, 2 and 4. We also use value 0.2 stored in variable error, because
during the tests it gives us the best and most natural results for tempo adaptation. From
implementation point of view automatic tempo adjustment algorithm is based on ob-
server design patterns.

4 Evaluation

To test our ideas we implemented three interactive musical instruments - piano, flute
with five holes, drums and two non-interactive – metronome and drum rhythm with

Fig. 2. The basic screenshots of our application, from left: piano, flute, drums, settings of non-
interactive instruments and automatic tempo
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ability to adapt to user’s tempo (see Figure 2). We implemented it for iPhone and we
have used a number of frameworks (Core Motion, Core Media, AVFoundation, UIKit
etc.) and for audio playback was used OpenAL API.

We conducted three types of testing – quantitative, qualitative and comparative. The
number of testers was 10 – 3 women and 7 men, most of them of age 23 (the youngest
was 19 and the oldest 48 years old). One of them had high IT skills and had experiences
with iPhone. Other testers usually at least had experience with the touch screen but not
with iPhone. Two testers did not have experiences with touch screen at all. We did not
compare the adaptation, because there is no other application with such feature.

4.1 Quantitative Testing

The first test we conducted was aimed at tracking the time respondents needed to per-
form specified tasks. The results of this testing should point out how easy and intuitive
interface our applications can be controlled. The average length of individual tasks re-
veals if there are some the poorly designed parts. The tasks were designed to cover most
areas application functions (see Table 1).

Table 1. Tasks and their performance times realized by 10 testers

Task / Tester 1 2 3 4 5 6 7 8 9 10
1. Push ,,c3“ key on the piano 8.9 20.6 11.6 7.4 8.2 8.2 7.5 13.7 5.9 6.8
2. Play a tone on the flute 7.9 10.2 40.5 9.5 5.6 35.4 6.7 106 14.7 19.6
3. Play a sound of shaker from percussion set 37.3 100 71.7 81.7 72.1 46.2 41.3 17.9 18.7 138
4. Record sound of drums in file “drums” 33.7 92.1 39.1 27.1 47.8 60 39.2 36.5 42.8 34.9
5. Play the file 7.0 15.4 6.3 3.5 4.1 43.2 3.9 4.1 38.2 5.5
6. Create a new rhythm using editor 45.4 94.9 90.7 58.1 48.8 72.9 45.1 79.1 71.5 82.4
7. Set this rhythm to the piano 46 55.7 45.3 8.1 63.7 34.5 13.7 130 53.1 56.1
8. Open the flute help screen 6.2 8.3 5.6 3.4 4.1 5.9 3.5 6.6 8.2 3.3

This test had to run first, because otherwise these people would already be familiar
with graphical interface and control and thus would have been significantly distorted
by time. Before carrying out a specific task, it was explained and then a tester was
asked to realize it. The following diagram (Figure 3) shows the minimum, maximum
and average time of testers’ performance for each of the eight tasks.

As can be seen from the results, all respondents were able to perform each task
under 140 seconds. The tasks also differed in the number of steps that had to be done to
properly complete the task. It can also be seen that in addition to the task number three
(play a sound of shaker on percussion set) and number six (create a new rhythm using
editor) respondents were able to complete each task on average in under one minute. It
also can be said that this was a task that most showed deficiencies in the GUI design,
because testers usually looked for given functionality on another place or expected more
highlighted settings.

The left side of Figure 3 shows which tasks had the biggest difference in the ratio
between the minimum and maximum time. Generally speaking, this kind of tasks feel
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Fig. 3. Minimum, maximum and average time of testers’ performance

completely natural to certain users (they have either prior experience or good intuition),
however other users have considerable problems solving it. An example of such task is
task number two, where a tester was asked to play a flute tone. Some respondents did
not expect the tool to be controlled by blowing into the microphone, which revealed
additional problems of application. Although the testers had no problem to check it in
Help, they did not bother to do it. We solved this problem by adding a blowing icon on
a flute screen.

Our qualitative test results are relatively good because the measured times showed
that the application is fairly intuitive and easy to operate.

4.2 Qualitative Testing

The qualitative testing allowed testers to go through the whole application and then
they were asked to fill out our questionnaire. Questions were asked about every major
applications features (see Table 2).

Before each survey question we first presented to the tester all the (feature-) given
functionality and how it can be controlled. Then the tester was free to test the intended
functionality, which then he had to evaluate from 1 (worst) to 10 (best). On the next
picture you can see a graph (Figure 4) showing the average grade for each question
within a questionnaire. In addition, it shows the difference between the highest and
lowest grade of the matter.

As can be seen, the average of all questions is located around the values of 7 and 8.
This also means that on average respondents were very satisfied with each feature of the
application. In this graph we also show the difference between the highest and lowest
grades for testing. This difference indicates which questions were more and which less
tester-subjective (dependent on the individual user’s taste or subjective opinion). The
biggest difference was the value 5 in next three questions: evaluation of piano control,
flute control and the way of rhythm creation using the editor. On the other side, the
lowest difference in combination with high average probably shows the best part of the
system (see e.g. question. 9 - graphical design of applications).
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Table 2. Questions and tester’s grades of qualitative testing

Question / Tester 1 2 3 4 5 6 7 8 9 10
1. Piano GUI 7 7 7 8 7 8 7 8 8 9
2. Flute GUI 7 9 7 6 6 6 7 8 6 7
3. Drums GUI 8 8 8 7 7 7 9 7 7 9
4. Piano control 8 8 8 8 9 5 8 9 10 8
5. Flute control 6 8 9 6 7 9 4 8 8 8
6. Drums control 9 7 7 8 9 7 8 8 9 10
7. The way of rhythm creation using editor 6 9 7 7 7 7 4 7 8 8
8. Hierarchy of screens 8 7 7 8 6 5 6 8 6 6
9. Graphical design of application 9 8 8 7 8 7 8 9 9 9
10. Overall application control 7 7 7 8 7 6 7 8 7 8
11. The way of combination of interactive and 7 9 8 8 8 8 7 7 8 7
non-interactive instruments
12. Realization of rhythm adaptation 9 8 8 7 9 7 8 9 8 6

Fig. 4. Minimum, maximum and average time of testers’ performance

These results indicate that the application can be considered as very good quality
including GUI design, control and other features.

4.3 Comparative Testing

The last type of testing was based on a comparison of our application with other appli-
cations designed for similar purposes. Comparing functionality, we compared all three
of our interactive instruments. Moreover, we let our testers to use two other different
pianos and ask them to evaluate GUI, control and sounds.

Flute: Our Flute was compared with the Ocarina iPhone application, which utility is
much more manageable than it is in our case (therefore no other tests provided), but on
the other hand we consider our flute more graphically appealing.
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Drums: Our drums were compared (obvious pros and cons, no other test provided) with
applications Amazing Drums and Drums Deluxe Light, which both offer free versions
of just ordinary acoustic set (see Figure 5).

Fig. 5. Amazing Drums (left) and Drums Deluxe Light (right)

Application Amazing Drums has very unattractive main screen (picture of drums)
and the same goes for the sounds of this program. On the other hand, application Drums
Deluxe Light creates sounds very similar to acoustic drums and the main screen also
resembles the real drum set. The downside of this application (comparing to ours) is,
that it does not show the visual feedback when played on any part of the drum set. But
its advantage is that it offers a number of component sounds of the same drum that
plays in dependence of touched space (e.g. in the middle of the drum or on the side of
it). Both compared application can be controlled only by touch-screen.

Piano: Comparison of our piano program was conducted with applications Piano+ and
Piano Virtuoso, both of which are available free on the App Store. Both applications
provide only the functionality to play this instrument. The visual of their main screens
shows Figure 6:

Fig. 6. Piano + (left) and Virtuoso (right) application

The comparison of our piano with two other applications, we proceed similarly as
in the qualitative tests. Since we were not able to provide the absolute correctness of
this test (testers and developer knew personally each other and testers have already
completed two previous tests), we tried to at least establish the conditions that would
minimize the impact on incorrect evaluation. Therefore we first demonstrated (function-
ality and control) all three applications to the testers. Then they were asked to play a
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few of chords and tones in each application (to make the comparison was the most rele-
vant). When testing the application, they have also highlighted the three main attributes
(graphical user interface, control and sounds) that were evaluated in each application
by grades from 1 (completely wrong) to 10 (excellent).

The testers’ grades and questions are in Table 3. The average evaluation of these
attributes for all three applications can be seen on Figure 7.

Table 3. Questions and tester’s grades of qualitative testing

Question / Tester 1 2 3 4 5 6 7 8 9 10
Our piano GUI 7 7 7 8 7 8 7 7 8 9
Piano+ GUI 5 9 4 5 3 5 3 7 3 6
Virtuoso GIO 8 6 8 6 7 3 8 9 6 7
Our piano control 8 8 8 8 9 5 8 9 10 8
Piano+ control 6 5 4 5 5 7 3 3 2 4
Virtuoso control 8 6 6 7 6 5 8 6 7 6
Our piano sounds 9 8 8 8 9 8 7 7 7 8
Piano+ sounds 3 6 5 6 5 2 3 4 3 6
Virtuoso sounds 7 6 8 7 7 5 7 8 8 8

Figure 7 shows average grade for each of the tested feature in each of tested piano.
As can be seen, our piano received the highest grades (in all three features) from our
testers. In contrast, Piano+ with a relatively great distance determined in all features
for the worst. Virtuoso received relatively similar grades as our piano; the noticeable
difference is only in control.

Fig. 7. Average evaluations of GUI, control and sounds in our piano, Piano+ a Virtuoso

These test results show that our instruments were created in a similar or better quality
as well as in compared applications. The main difference still remains – our application
combine more musical instruments and offer even rhythm adaptation.
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5 Conclusions

In this paper we described our research which consists of study how mobile device can
be used as a smart virtual music instrument. We proposed several improvements for
three different types of musical instruments and implemented them (each is controlled
by variety of sensors), with which we have conducted experiments. In addition, we
focused on design and implementation of non-interactive instruments in which we had
successfully implemented our formula for automatic tempo adjustment.

Our application was tested by ten users and three types of tests. From quantitative test
(time of tasks performance) we realized some design errors but they were not critical (to
improve intuitiveness, highlighting of some of the graphic elements or their move them
to other place is needed). The qualitative test consists of a questionnaire covering all
important parts of the system features. These were in average graded to be very good.
At the end of testing, we asked testers to compare our piano with two other applications.
Here our piano seems to have the best GUI, control and sounds. This is a very good
result considering that those other two applications were designed only to play this one
instrument.

It is crucial to note that during the test, the parts of the system that we have not
found in similar types of applications were graded as excellent e.g., rate adaptation,
a combination of two types of instruments or multiple music instruments within one
application. Therefore, the quality of our application can be considered as equivalent
to other existing applications or even comparably better thanks to its unique features
including tempo adaptation.

This application could be used for entertainment or also as a simple educational
musical instrument application.

Acknowledgement. This work was partially supported by the grants VG1/0971/11 and
APVV 0208-10.
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Abstract. The rise in popularity of social media along with new web technolo-
gies has presented designers and developers with tremendous new interface op-
portunities for evaluating user-generated content. One of these new interface
designs found in social media today, is the dynamic voting interface; voting re-
sults are public from the initiation of an evaluation procedure and are constantly
being updated. However, it is currently unclear on whether these interfaces affect
the outcome of a voting process and to what degree. This study employed a mixed
methods survey as an attempt to try and answer these questions and provide ex-
ploratory evidence for the effects of dynamic voting interfaces on social media
communities. Findings coming from this study are able to provide support for the
“no effect” hypothesis.

Keywords: dynamic, voting, interface, social, media, design.

1 Introduction

For every group that is collaborating online, the time to decide and reach consensus
may be the most crucial step in a decision-making scenario. In turn, this helps to
finalize a group’s position on a topic. Software designers and developers that produce
Group Decision Support Systems (GDSSs) should always take into account the different
voting mechanisms that can be developed for a community. The implications of voting
mechanisms in GDSSs are numerous and each has a potential to affect the outcome of
a decision making process [1]. A trend that was seen in recent years with the develop-
ment of social media is voting while results remain publicly available and are interac-
tively evolving as new votes come in. This feature of a voting design can be defined as
a dynamic voting interface. This is something that became popular along with freshly
designed mechanisms such as the Social Decision Support Systems [2], or Delphi vot-
ing structures [3] that became more possible due to the nature of computer-mediated
communication systems. However, there have been no studies that investigated what
effect a dynamic voting interface has had to an outcome of a voting process.

At its simplest form today, this voting process takes a form of social buttons in social
media which in turn play a decisive role in what information is shared. These fea-
tures essentially created a like economy on the Web [4]. While arguably, these voting
processes are not contributing to critical decisions as the ones made in more business-
oriented GDSSs, the underlying processes remain the same. This makes them particu-
larly interesting to study because of the fact that at their purest and simplest form, one
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can observe if they indeed can affect voting opinions. In addition, one can also investi-
gate what is the power of the effect. If they do affect individual votes, then this may be
in clear violation of one of the voting standards that requires people to freely express
their true voting preference [5].

This study attempted to assert if dynamic voting interfaces in social media can affect
the outcome of a voting process. Having this knowledge, software engineers should pay
close attention when implementing voting mechanisms. In addition, I follow a different
approach in evaluating results from HCI research by shifting away from traditional null-
hypothesis statistical testing (NHST), and apply a Bayesian hypothesis testing analysis
instead. Bayesian methods were preferred over NHST since this study did not neces-
sarily want to assert that there is a dependency between experimental conditions and
the variables involved. As such, while in NHST “p-values are incapable of provid-
ing support for the null hypothesis” [6], Bayesian hypothesis testing does quantify the
probability that the null hypothesis is true [6, 7]. Further, Bayesian statistical analysis
“enables us to distinguish between cases where the data is inconclusive [. . . ] and cases
where there is strong evidence regarding the null hypothesis” such as when sample size
is inadequate [7]. Additional qualitative data was obtained in order to increase internal
validity [8].

2 Theoretical Background

Social media software includes a variety of classifications such as blogs, collaborative
projects, social networking sites, virtual social worlds, virtual game worlds, content
communities and even micro blogging [9, 10]. Some of the collaborative features have
connections with GDSSs which cover a broad spectrum of tools and are generally de-
fined as collaboration technologies, designed to support meetings and group work [11].
There has been an extensive amount of research on GDSSs [12–17]. There are many
gains for online collaborators such as; more precise communication, members are em-
powered to build on the ideas of others, and a more objective evaluation of ideas [18].
In addition, distance stops becoming a factor which in turn could give rise for a new
GDSSs type, distributed by group support systems [19]. The outcome from an online
collaborating process is usually extracted by a final decision-making voting process.

Voting mechanisms have been described in literature before the advent of informa-
tion technologies [20, 21]. However, GDSSs provided brand new opportunities and
unknown implications in the design and effects of the new voting mechanisms [1].
A number of factors can affect the outcome of a voting process such as the decision
on one of the numerous voting criteria [5, 22] or even the option of anonymity that
may or may not be provided to individuals [23]. Studies have also been developed for
integrating voting techniques in GDSSs [1]. Most of the studies found online revolved
around internet voting. However, research on internet voting for GDSSs research has
been limited [5].

Internet voting comes with benefits and disadvantages. Apparent convenience,
24-hour availability over several days, and the ability of Internet voting to be unaffected
by traffic and weather issues make this to be tremendously advantageous over traditional
voting methods [24]. On the other hand, there are a couple of potential problems that
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rise with internet voting such as ”the identification of users, the security and the reli-
ability of the voting system, the accessibility of the Internet, privacy issues, and voter
training” [5]. Regardless, some argue that with internet voting, “the majority of citizens
will eventually start voting in the way that they book their holidays nowadays.” [25].

Today, online voting is not just restricted for elections but for evaluation of infor-
mation such as user-generated content. Rated content along with social bookmarking
features can also be extremely helpful for search engines for finding content that is cur-
rently unreachable [26]. Additionally, modern techniques that allow for dynamic voting
status interfaces are also becoming popular with a suspicion that this may influence
users to vote [27]. As such, it’s not hard to imagine that it may as well, have the power
to influence individual votes.

3 Hypotheses

One of the most popular websites today, YouTube, uses a dynamic voting interface in
order to evaluate the content being uploaded by users, which is currently at an uploading
rate of 60 hours’ worth of video, per every one minute [28]. Video can also be evaluated
by users who are responsible for the 4 billion views of videos every day. This makes
YouTube a website that puts the design of a dynamic voting interface to the test every
day. In addition, the simplistic nature of a vote, liking or disliking a video, is ideal for
discovering if such a voting design has any influence on how many individuals vote.

YouTube’s design uses visuals in order to show whether most votes were in favor
of a video or against as well as text. However, it is not clear if users are actually using
both the visual and textual information when voting, or if even they use any of the
information at all. In literature, it is known that people in general do not read but scan
pages [29] but this was never studied in terms of a voting process. As such it was an
additional opportunity to determine on whether visuals or text have power (if any) on
the way individuals vote. Two hypotheses were formulated.

H1: There is a dependency between the votes presented in text by a dynamic voting
interface and the way individuals vote.

H2: There is a dependency between the votes presented in text and graphically by
a dynamic voting interface and the way individuals vote.

However, as this study used a Bayesian framework to evaluate results, corresponding
null hypotheses that claim independence are just as likely.

4 Research Design

4.1 Survey

In order to evaluate the likelihood of the above hypotheses, I created and administered
a survey. This method provides standardization for collecting similar data from groups
[30]. The type of survey was a randomized controlled trial “in which participants are
allocated truly randomly to an experimental group and a control group” which strength-
ens the claims for internal validity [31].
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For this study, two videos that already existed and had already been evaluated on
YouTube by users were selected in order to form two survey parts. This established
a baseline for the videos, namely if people perceived them as likeable or not. One video
was likeable by most of those that watched it and rated it, and the second was disliked
by the majority of the people that rated it.

Fig. 1. Dynamic voting interface used for the two treatments for the second video. On the left is
treatment A and on the right treatment B.

However, these two videos alone would not provide sufficient evidence for the in-
fluence of a dynamic voting interface. Two variations of these videos were produced,
with everything remaining identical except the results of the vote indicator. These were
reversed for each treatment. Hence, an individual may have viewed the likeable first
video while the voting results favored the video, while another may have viewed the
video but the voting indicator did not favor the video. The same was applied for the
second video. Examples of these two treatments for the second video are shown on
Figure 1 and a summary of the treatments of the experimental design can be seen on
Table 1. The extreme proportions between likes and dislikes were established in order
to investigate the maximum potential for influencing votes. Participants were allocated
in each treatment randomly based on automated algorithms.

Table 1. Treatments formed by the survey’s experimental design

Experimental Condition First Video (Originally Second Video (Originally
favored on YouTube) not favored on YouTube)

Treatment A Votes favor video both Votes favor video both
graphically and in text graphically and in text

Treatment B Votes favor video only Votes do not favor video
graphically, text does not graphically or in text
favor video

An additional alteration was made in the survey for the first video. While the text that
showed the results based on the likes and dislikes was reversed between treatments, the
color indicator on top of the text always remained green, as opposed to changing to
red which would indicate more negative votes. This was made in order to assert the
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H1 hypothesis. If most individuals scanned the indicator and never read the text, it was
expected that the two treatments for the first video would have produced virtually iden-
tical results. On the other hand, the second video was expected to produce significant
differences between the two treatments if indeed dynamic voting interface had an effect
on individual voting. Figure 2 depicts the two treatments for the first video.

Moreover, further demographic information was obtained by the participants with an
additional question that asked them if they have ever watched a video on Youtube. This
would help assert users were familiar with the process. Finally, a qualitative question
was added in order to determine the motives for people’s votes (“Why did you like or
dislike the video? Please elaborate.”).

Fig. 2. Dynamic voting interface used in the two treatments for the first video. On the left is
treatment B and on the right treatment A.

4.2 Context

The survey was administered through a Facebook application, and invitations for the
survey were circulated in several academic and non-academic groups and fan pages on
the social networking service. In addition, a snowball sampling method was employed
through allowing users to invite their friends in order to reach farther users within the
network. This method of using a combination of a volunteer and snowball sampling
technique has proven to be relatively successful in a previous study [32] and in theory,
as long as people are willing to invite others and participate in the survey, one can reach
any node within a social network based on the theory of six degrees of separation [29,
33]. Moreover, the survey was developed in English but also translated further into other
languages such as Greek and Spanish, and the language was detected automatically and
adapted to the survey depending on the user’s profile settings. The survey took place
during the period of February 15th to March 19th, 2012.

5 Results

In total, 123 people visited the application during the survey. Out of the 123 that visited
the application, 89 went through the whole survey. Most of the participants who did not
complete the survey abandoned it in the first page. I then decided that the 89 partici-
pants will effectively become the sample that will be used for further analysis since the
individual responses to the survey contained complete results without any missing data.
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The sample’s age groups were: 13-17 (2.2%), 18-25 (52.8%), 26-39 (33.7%), and 40-59
(11.2%). No respondents reported that their age group was 60 and above. The sample
contained an almost equal amount of male (50.6%) and female (48.3%) respondents
while 1.1% of the sample refused to report their sex. The majority of respondents came
from Europe (75.3%), followed by South America (12.4%), North America (7.9%),
Africa (2.2%) and Asia (1.1%). One point one percent (1.1%) of respondents chose not
to disclose their location. In addition, all participants in the survey stated that they had
watched a video on YouTube at some point in the past. This was an indication that the
participants were familiar with the service.

5.1 Bayesian Hypothesis Testing

While the purpose of this paper is not to educate on Bayesian methods, a brief intro-
duction is given here since it is rarely seen in HCI research [7].

At the core of all Bayesian statistics lies the idea of Bayes’ rule. Having a prior belief
and given a set of data, one can obtain a posterior belief [34]. This idea can be expanded
further by establishing various models that produce different posterior probabilities for
our data.

Having multiple models or hypotheses is particularly useful when one wants to be
able to instantly state which model is more probable given the evidence. To do this, the
ratio of marginal likelihoods or else the Bayes factor is used [35].

Before seeing the data one has a ratio of prior beliefs about the two models which
are usually given an equal probability [36]. Priors should always be chosen in Bayesian
statistics, and their value depends on two point of views, namely subjectivist and ob-
jectivist, with the latter having the need to satisfy requirements of rationality and con-
sistency [37, 38]. An uninformative prior favors objectivity by asserting that no model
is perceived as better than the other. On the other hand, an informative prior values the
researcher’s prior knowledge.

After seeing the data, posterior odds for the two models are obtained. As a result,
the ratio of those posterior and prior odds for the two models produces the odds of one
model being more likely to occur than the other.

There is some resemblance between a Bayes Factor and the significance value in
NHST. However, since this represents a ratio it becomes the odds of one model being
likely against another; a claim that cannot be made for the p-value obtained by NHST.
Finally, by containing the odds for a likelihood of a model, Bayes Factor is perceived
as the weight of evidence coming from the data [39].

5.2 Bayesian Analysis

The experimental treatments formed two two-way contingency tables. These are pre-
sented on Tables 2 and 3.

One approach for conducting Bayesian hypothesis testing for this data is by cre-
ating a model in software and then directly sample from the posterior distribution of
interest using algorithms based on the computer-driven sampling methodology known
as Markov chain Monte Carlo. To do this, a combination of the statistical computing
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Table 2. Contingency table for the first video

Treatment/Response Like Dislike Total

Like treatment 38 2 40

-percentage within treatment 95% 5% 100%

-percentage within response 45.8% 33.3% 44.9%

Dislike treatment 45 4 49

-percentage within treatment 91.8% 8.2% 100%

-percentage within response 54.2% 66.7% 55.1%

Total 83 6 89

-percentage within treatment 93.3% 6.7% 100%

-percentage within response 100% 100% 100%

Table 3. Contingency table for the second video

Treatment/Response Like Dislike Total

Like treatment 6 40 46

-percentage within treatment 13% 87% 100%

-percentage within response 40% 54.1% 51.7%

Dislike treatment 9 34 43

-percentage within treatment 20.9% 79.1% 100%

-percentage within response 60% 45.9% 48.3%

Total 15 74 89

-percentage within treatment 16.9% 83.1% 100%

-percentage within response 100% 100% 100%

software R and OpenBUGS was used for this study. OpenBUGS is an open source soft-
ware with similar functionality to WinBUGS, a general-purpose program that facilitates
Bayesian analysis for statistical models.

For the purposes of this study, an already established model for binomial hypothesis
testing was used [40]. In short, each treatment is perceived as a binomial distribution and
a model is built in order to establish if there is an equality of proportions. Each binomial
distribution is being affected by the rate parameters θ1 and θ2. Their difference δ, and
its posterior distribution provides information which helps in obtaining the Bayes factor
at the point δ=0. This is the point where the differences between the two treatments
eliminate each other. Put simply, the point at which the proportions of treatments A
and B are absolutely equal. Additionally, the prior chosen for both θ parameters is
uninformative. This was selected in order to remove subjectivity in the overall process
when selecting an otherwise ”informative” prior.

Using R and OpenBUGS, sampling procedures were employed with 50,000 itera-
tions and a burnin of 5,000 samples while thinning was set to 1. A good description
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of the background process and algorithms can be found in most-recent Bayesian books
[34,36,40,41]. The outcome of the prior and posterior distribution for δ can be seen on
Figure 3. The dots mark the prior and posterior points at δ = 0, the point of the null hy-
pothesis where the differences become 0. It is visually evident that at the specific point
where δ = 0, the belief is reinforced. Put simply, the posterior belief is higher than the
prior belief. The Bayes Factor in support of the null hypothesis BF01 is showing that
given the data, the null hypothesis of independence (H0) is 6.51 times more likely than
the dependence hypothesis (H1 where δ �= 0). This provides a substantial strength of
evidence in favor of the null hypothesis [6, 35].

Fig. 3. Prior and posterior distribution for the first video based on the Bayesian Binomial model

Applying the same procedure for the second video is also illuminating. The Bayes
factor in support of the null hypothesis BF02 is showing that given the data the null hy-
pothesis of independence (H0) is 3.20 times more likely than the dependence hypothe-
sis (H2 where δ �= 0). In terms of strength of evidence, this is still substantial [6, 35].
Prior and posterior distribution plots are also shown for this analysis on Figure 4.

Fig. 4. Prior and posterior distribution for the second video based on the Bayesian Binomial
model

5.3 Qualitative Data

Qualitative questions for both videos shed a light over the behaviors of the respondents
seen in the quantitative analysis. All responses within the sample had an emotional or
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logical basis. For example, a respondent for the first video, under treatment B voted
against it and stated that it “Shows aggression and I dont [sic] like that.” Coincidentally,
the same participant also voted against the second video when under treatment A, and
the statement was similar along the lines that it “shows aggression also and I dont [sic]
like.” This demonstrates that the respondent demonstrated a consistency in his or her
opinion and in the way that he or she voted regardless of the treatment.

Similarly, two respondents under treatment A for the first video voted against it stat-
ing that “There was no meaning for me” and that it was “pointless.” Others rationalized
their choice to an impressive degree. The following respondent voted in favor of the
first video under treatment A: “1- It contained Ice [sic] and water and this is something
i don’t see too much 2- It talked about travel and this is something I like 3- It show
that a smart idea , which is unity is power.” Finally, one respondent also managed to
surprise by his or her power of observation. Under treatment B for the first video while
voting favorably he or she wrote: “Funny commercial. I don’t get why it got so many
dislikes though. People must hate the bus.” Against all odds, while the expectation of
this study was that people scan pages without reading text, this respondent noticed that
text results were not favoring the video. While the results produced for the first video
between treatments were nearly identical, this qualitative find may suggest that some
individuals do pay attention to textual indications for votes but still vote independently
of what others voted.

Patterns similar to the ones found for the first video also exist for the second video.
“i [sic] hate these orange clips” stated one respondent under treatment A while voting
against the video. Another respondent stated that “It didn’t have any useful information,
material nor artistic value in it :) [sic].” However, cases also existed where people voted
in favor of the second video although under treatment B. One respondent stated ”it [sic]
was okay. i like attempts at freakiness, so it worked for me.” The detailed response
dismisses any considerations that treatment B had any effect on the favorable vote of
this individual.

6 Discussion

Quantitative results coming from the first video show that users are substantially ig-
noring textual information when voting. Evidence was against the H1 which seems to
indicate that users seem to rely more on graphical representations of votes instead of
text. This may be positive evidence for demonstrating that people scan pages rather than
reading them. Moreover, the outcome from the voting for both treatments show that the
majority of respondents agreed with the actual original estimate that exists on YouTube
for the first video.

The second video showed a similar support for the null hypothesis. Findings showed
no effect between treatments and no change in the overall outcome of the voting pro-
cess. Most users in the survey regardless of treatment found the video unlikeable which
is similar to the original estimate from the YouTube community.

Finally, qualitative finds seem to be in agreement with quantitative results. Put sim-
ply, people acted in the way they thought best and provided justifications that were in
accordance with their decisions. While this factor still cannot possibly assert that there
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is not an underlying process in which judgment is distorted, the body of work coming
from this study seems to point to a clear answer; dynamic voting interface as seen on
YouTube does not affect the evaluation of user generated content. In terms of YouTube,
it means that when a video has many negative or positive votes, one can be fairly cer-
tain, these votes where independent of the dynamic voting interface being present in its
design.

6.1 Recommendations

Based on the evidence provided by the study, it is recommended for software developers
and designers to consider their choices of using a dynamic voting interface. There are
positive indications that a voting indicator would not affect the outcome of a voting
process. However, while it is rendered safe, more evidence needs to be brought to light
in order to rule out any definitive effect on the majority outcome or even individual
votes.

Additionally, this study has also found a strong connection between graphical indi-
cators and individual votes. A safer approach for a dynamic voting interface may be
to include just textual information on the votes instead of graphical. However, qualita-
tive finds seem to indicate that some individuals may still pay strong attention to other
individual votes.

6.2 Limitations

This study investigated a voting process taken from a real social media implementa-
tion of a dynamic voting interface. However, results may have been different in a more
complicated voting process where the choices may have been more. In addition, exper-
imental design surveys are not as efficient in demonstrating impulsive action in voting
procedures that may occur in real life scenarios.

7 Conclusion

Human-computer interaction research has investigated many aspects of online collabo-
ration but research into online voting processes is still limited. In addition, most of the
evaluations rely on traditional statistical procedures, which arguably have several weak-
nesses compared to Bayesian statistics. This study not only demonstrated that Bayesian
hypothesis testing can be easily applied in HCI research, but has also established this
fact by conducting novel research in a previously unexplored aspect of online collab-
oration. In addition, these results paint a promising picture for users who collaborate
online and for software engineers who consider using an dynamic voting interfaces for
their communities.
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Pradella, Matteo 307
Presutti, Valentina 86

Reis, Rogério 319
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