
Fault-Adaptivity in Hard Real-Time

Component-Based Software Systems�

Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan

Institute for Software-Integrated Systems,
Vanderbilt University,

Nashville, TN 37203, USA

Abstract. Complexity in embedded software systems has reached the
point where we need run-time mechanisms that provide fault
management services. Testing and verification may not cover all possible
scenarios that a system encounters, hence a simpler, yet formally speci-
fied run-time monitoring, diagnosis, and fault mitigation architecture is
needed to increase the software system’s dependability. The approach
described in this paper borrows concepts and principles from the field of
‘Systems Health Management’ for complex aerospace systems and im-
plements a novel two level health management architecture that can be
applied in the context of a model-based software development process.

At the first level, the Component-level Health Manager (CLHM) pro-
vides localized and limited service for managing the health of individ-
ual software components. A higher-level System-level Health Manager
(SLHM) manages the health of the overall system. SLHM includes a
diagnosis engine that uses a Timed Failure Propagation (TFPG) model
automatically synthesized from the system specification built in the
model-based design environment that accompanies the runtime system.
SLHM also includes a reactive timed state machine used for mitigation,
whose code is also generated from the model-based specification. This
paper uses simple examples to illustrate the use of the approach.

1 Introduction and Motivation

Software has become the key enabler for a number of core capabilities and services
inmodern systems [28]. For example, amodern car contains around20million lines
of code, while just the flight control software of modern aircraft like F-22 and F-35
contains 1.7− 5.7 million lines of code [9]. Given the scale of the software systems,
it is not hard to appreciate the challenge of ensuring correct behavior, especially
in avionics where software malfunctions have caused a number of incidents in the

� This paper is based upon work supported by NASA under award NNX08AY49A. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Aeronautics and Space Administration. The authors would like to thank Dr Paul
Miner, Eric Cooper, and Suzette Person of NASA LaRC for their help and guidance
on the project.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 294–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 295

past, including but not limited to those referred to in these reports: [5,6,18,29]. [36]
provides an excellent discussion on the complexity in avionics software.

The state of the art for critical software development includes process stan-
dards such as DO-178B [12] and the emerging standards such as DO-178C [21].
However, it is known that software can contain latent defects or bugs that can
escape the existing rigorous testing and verification techniques and manifest only
under exceptional circumstances. These circumstances may include faults in the
hardware system, including both the computing and non-computing hardware.
Often, systems are not prepared for such faults.

State of the art for safety critical systems is to employ software fault tolerance
techniques that rely on redundancy and voting [8,25,40]. However, it is clear that
existing techniquesdonotprovide adequate coverage forproblems suchas common-
mode faults and latent design bugs triggeredby other faults. Additional techniques
are required to make the systems self-managing, i.e. they have to provide resilience
to faults by adaptively mitigating the functional effects of those faults.

Self-adaptive systems must be able to adapt to faults in software as well as
the hardware (physical equipment) elements of a system, even if they appear si-
multaneously. Conventional Systems Health Management is associated with the
physical elements of the system, and includes anomaly detection, fault source
identification (diagnosis), fault effect mitigation (at runtime/ online during op-
eration), maintenance (offline), and fault prognostics (online or offline) [22,30].
Software Health Management (SHM), borrows concepts and techniques from
Systems Health Management and is a systematic extension of classical software
fault tolerance techniques. Srivastava and Schumann provide a good motivation
for Software Health Management in [38]. SHM is performed at run-time, and just
like Systems Health Management it includes detection, isolation, and mitigation
to remove fault effects. SHM can be considered as a dynamic fault removal tech-
nique [4]. While Systems Health Management also includes prognostics, Software
Health Management could possibly be extended in that direction as well, but we
have not investigated it yet.

We have developed an approach and model-based support tools for imple-
menting software health management functions for component-based systems.
The foundation of the architecture is a real-time component framework that de-
fines a component model for ARINC-653 systems1 [14]. This framework brings
the concept of temporal isolation, spatial isolation, strict deadlines from ARINC-
653 and merges it with the well-defined interaction patterns described in CORBA
Component Model [42]. The health management in the framework is performed
at two levels. The Component-level Health Manager (CLHM) provides localized
and limited service for managing the health of individual software components.
A higher-level System Health Manager (SLHM) manages the health of the overall
system.

1 ARINC-653 (Avionics Application Standard Software Interface) is a specification for
space and time partitioning in Safety-critical avionics Real-time operating systems. It
allows to host multiple applications of different software levels on the same hardware
in the context of an Integrated Modular Avionics architecture.[1,32].

296 A. Dubey, G. Karsai, and N. Mahadevan

SLHM includes a diagnosis engine that uses a Timed Failure Propagation
(TFPG) model automatically synthesized from the component assembly; the
engine reasons about fault effect cascades in the system, and isolates the fault
source components. This is possible because the data / behavioral dependencies
and hence the fault propagation across the assembly of software components can
be deduced from the well-defined and restricted set of interaction patterns sup-
ported by the framework. Once the fault source is isolated, the necessary system
level mitigation action is taken. Similar approaches can be found in [23,41]. The
key difference between those and our work is that we apply an online diagnosis
engine coupled with a two-level mitigation scheme. Furthermore, this approach
is applied to hard real-time systems where all processes run within finite time
bounds and are continuously monitored for deadline violations. This includes,
the health management processes.

Our approach is supported by a model-based design environment where de-
velopers can create models of the system and its components, as well as specify
how fault mitigation will take place. A suite of software generators produce glue
code that allows developer-supplied functional code or ’business logic’ to form a
collection of applications that run on an ARINC-653 platform. The novel con-
tributions of our approach are:

– Model-based development of component-based systems for ARINC-653 plat-
form.

– Automatic synthesis of monitoring code that is executed with the component
operations.

– Automatic synthesis of diagnosis information from the system design models.
– Automatic synthesis of the mitigation code based on system specification.
– Generation and configuration of the distributed architecture required to op-

erate the components in parallel with the component and system level health
managers.

This paper is an extended version of the work presented in [15,27]. It uses simple
examples to describe the approach. A larger case study of applying the SHM prin-
ciples to an InertialMeasurementUnit is available as a technical report [16]. In this
paper, the focus is on the mitigation aspects: the support provided in the frame-
work andmodeling language. The outline of this paper is as follows: Sections 2 dis-
cusses the related research. Overview of the component model and design tools is
given in Section 3. Section 4 presents component health manager and system-level
health manager. Finally we conclude with discussions and future work.

2 Related Research and Background

The work described here fits in the general area of self-adaptive software systems,
for which a research roadmap has been presented in [10]. Our approach focuses on
latent faults in software systems, follows a component-based architecture, with
a model-based development process, and implements all steps in the Collect/
Analyze/Decide/Act loop. In this context of health management, this would

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 297

imply Collect details about anomalies observed), identify/ diagnose the fault
candidate, and Decide on the possible mitigation command and finally Act to
implement the mitigation commands.

Rohr et al. advocate the use of architectural models for self-management [35].
They suggest the use of a runtime model to reflect the system state and provide
reconfiguration functionality. From a development model they generate a causal
graph over various possible states of its architectural entities. At the core of their
approach, they use specifications based on UML to define constraints, monitoring
and reconfiguration operations at development time.

Garlan et al. [17] and Dashofy et al. [11] have proposed an approach which
bases system adaptation on architectural models representing the system as a
composition of several components, their interconnections, and properties of in-
terest. Their work follows the theme of Rohr et al., where architectural models
are used at runtime to track system state and make reconfiguration decisions
using rule-based strategies.

While these works have tended to the structural part of the self-managing
computing components, some have emphasized the need for behavioral mod-
eling of the components. For example, Zhang et al. described an approach to
specify the behavior of adaptable programs in [46]. Their approach is based on
separating the adaptation behavior specification from the non-adaptive behav-
ior specification in autonomic computing software. They model the source and
target models for the program using state charts and then specify an adaptation
model, i.e., the model for the adaptation set connecting the source model to the
target model using a variant of Linear Temporal Logic [45].

Williams’ research [34] concentrates on model-based autonomy. The paper sug-
gests that emphasis should be on developing techniques to enable the software to
recognize that it has failed and to recover from the failure. Their technique lies in
the use of a Reactive Model-based Programming Language (RMPL)[43] for speci-
fying both correct and faulty behavior of the software components. They also use
high-level control programs [44] for guiding the system to the desirable behaviors.

Lately, the focus has started to shift to formalize the software engineering
concepts for self-management. In [24], Lightstone suggested that systems should
be made “just sufficiently” self-managing and should not have any unnecessary
complicated function. Shaw proposes a practical process control approach for au-
tonomic systems in [37]. The author maintains that several dependability models
commonly used in autonomic computing are impractical as they require precise
specifications that are hard to obtain. It is suggested that practical systems
should use development models that include the variability and unpredictability
of the environment. Additionally, the development methods should not pursue
absolute correctness (regarding adaption) but should rather focus on the fitness
for the intended task, or sufficient correctness. Several authors have also consid-
ered the application of traditional requirements engineering to the development
of autonomic computing systems [7,39].

The work described here is closely related to the larger field of software
fault tolerance: principles, methods, techniques, and tools that ensure that a

298 A. Dubey, G. Karsai, and N. Mahadevan

system can survive software defects that manifest themselves at run-time [26,33].
Arguably, our approach comes closest to dynamic software fault removal, per-
formed at run-time. The overall architecture presented below shows a specific
implementation of the functions needed to perform this task.

3 Overview of ARINC-653 Component Model

Systems health management and fault tolerance approaches are based on the no-
tion of interacting components. Hence, it is natural to apply this concept to SHM,
where the software is built from components that can be individually developed,
monitored andmanaged at run-time. In our work, the first step was to develop and
implement such a componentmodel. TheARINC-653 componentmodel (ACM) is
built upon the services of ARINC-653; an avionics standard for safety critical op-
erating systems [1]. ARINC-653 systems group processes2 into spatially and tem-
porally separated partitions, with one or more partitions assigned to eachmodule
(i.e. a processor), and one or more modules forming a system.

Spatial partitioning ensures exclusive use of amemory region by anARINC-653
partition. It also guarantees that a faulty process in a partition cannot ruin the data
structures of other processes in other partitions, isolating low-criticality vehicle
management components from safety-critical flight control software components.
Temporal partitioning ensures exclusive use of the processing resources by a parti-
tion. A fixed periodic schedule is used by the RTOS to share the resources between
partitions. This deterministic scheduling ensures that each partition is allowed ex-
clusive access to theprocessor or other hardware resourceswithin its predetermined
execution interval. It also guarantees thatwhen the predetermined execution inter-
val of a partition is over, the partition’s executionwill be interrupted, the partition
will be placed into a dormant state and the next partition in the schedule order will
be granted exclusive access to the computing resource, i.e. the processor.

The ARINC-653 Component Model (ACM) allows the developers to group
a number of ARINC-653 processes into a reusable component. A component is
a group of processes that share state but they do not interact directly. How-
ever, components do interact with each other via well-defined interaction pat-
terns (chosen from a fixed set), facilitated by ports. In ACM, a component can
have four kinds of external ports for interactions: publishers, consumers,
facets (provided interfaces3) and receptacles (required interfaces), see Figure
1. Each port has an interface type (a named collection of methods) or an event
type (a data structure). The component can interact with other components
through synchronous call/return interfaces (associated with facets or recepta-
cles), and/or via asynchronous publish/subscribe event connections (assigned
to publisher and consumer ports). Additionally, a component can host inter-
nal methods that are periodically triggered. Most of these interactions borrow
concepts from other software component frameworks, notably from the CORBA

2 An ARINC-653 process is a unit of concurrency that is analogous to thread in a desk-
top operating system such as Linux.

3 An interface is a collection of related methods.

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 299

Fig. 1. The Component Model

Component Model (CCM) [42]. The component model also provides guidance
on the allocation of activities to a component.

Real-Time Properties. ACM components differ from classical CCM compo-
nent in a number of ways. The underlying operating system layer on which
ACM is built is geared towards hard real-time systems. Therefore, in ACM all
processes have fixed properties that are specified and fixed at the system config-
uration time - these properties include, period, deadline, stack size and priority.
Furthermore, a process can have two kinds of deadlines, HARD deadline and
SOFT deadline. A HARD deadline violation is an error that is handled at the
system level by the health management framework, discussed later in the paper.
A soft deadline violation results in warnings. Due to these restrictions, it is not
possible to dynamically assign component operations or ports to an ARINC-653
system at runtime. Therefore, all ports are statically bound to an ARINC-653
process and no dynamic memory allocation is allowed. Furthermore, the access
to component state is synchronized by a component-wide lock. Priority inversion
issues do not arise because all processes of a component are executed at the same
priority. Please see [14] for detailed description.

The framework implementing ARINC-653 component model consists of two
parts (a) a Linux-based runtime environment, and (b) a modeling environment
and associated design tools. Together these tools allow systems to be developed
in two distinct phases. The first phase is completed by the component developer.
A component is a reusable artifact that provides one or more functionalities. It
can be developed and hosted in a repository for reuse. Often, the component
developer can organize various components into subsystems. The second phase
is completed by the system integrator. The system integration includes the mod-
eling and configuring of the system architecture, deploying the components on
computing hosts, etc. This phase is assisted by a suite of model-driven tools.

3.1 Component Development

The model-based design tools4 allow the developer to design the components.
The first step in designing a component involves defining its interfaces, i.e. the

4 These tools are available for download from
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page

https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page

300 A. Dubey, G. Karsai, and N. Mahadevan

ports associated with the component. Each port, as described earlier, should
belong to one of the four categories: publisher, consumer, provided, required.
The publisher and consumer ports need to be associated with an event (data)
type, while provided and required ports need to be associated with an interface
type. Furthermore, each port needs to be configured with properties related to
its real-time execution: periodicity, deadline, worst case execution time, etc.

The development environment provides tool-support to bring the bare-bones
component model to life. As a first step, a C++ class is generated corresponding
for each component, with methods corresponding to each port. The developer is
provided with specific regions in the generated code to insert the necessary code
and logic to customize the behavior of each port (as per the associated task).
The generated code acts as the ’glue’ between the underlying ACM framework
and the user-specified code to support the operation/execution of each of the
component ports as dedicated ARINC-653 processes.

The component model can be further enriched by specifying the conditions
that must be satisfied for each execution of the port (and its associated ARINC-
653 process). These conditions are divided into three categories: pre-conditions,
invariants, and post-conditions. The design tools generate monitoring code that
is used to ensure and validate the correctness of these conditions during runtime.
Any violation of these conditions is considered an anomaly. More discussion on
this topic will be provided later in Section 3.2. Each component developer can
also specify a local mitigation activity: a component level health manager that
takes local corrective actions when an anomaly is detected. Once fully specified,
the component model captures the component’s interaction ports, conditions
associated with the ports, the real-time properties and resource requirements of
the ports and the component, the data and control flow within the component,
and (optionally) the local component level health management strategy.

Example. Figure 2 shows three components developed in ACM modeling en-
vironment. It also shows portion of the Interface Definition Language (IDL) file
generated by the associated tools. The first component is the sensor component
that publishes a data type “SensorOutput” periodically every 4 sec. The second
component is the GPS component that receives the input from a Sensor, then
filters it, and updates its internal data structure. It publishes the updated in-
formation through a port aperiodically. The GPS has the ability to be queried
remotely via a method call for the current GPS value. The last component is
a Navigation Display component, which receives an updated SensorOutput and
also queries a remote GPS interface. It should be noted that the components
described were developed in isolation, i.e. they are developed as part of a dis-
tributed system.

3.2 Component Execution and Failure Scenarios

Any component, once deployed in the system can be in one of the following three
states: active, inactive and semi-active. When a component is in inactive
state, none of the ports in the Component perform their task. The active state

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 301

Auto-generated
Interface Definition Language (IDL)

struct Timespec{
LONGLONG tv_sec, tv_nsec;};

struct SensorOutput{
Timespec time;
SensorData data; };

struct SensorData{
FLOATINGPOINT alpha, beta, gamma;};

struct GPSData{
FLOAOO TINGPOINT x,y,z;};
struct GPSData{
FLOATINGPOINT x,y,z;};

interface GPSDataSource{
void getGPSData (out GPSData d);};

Component Models and Port Properties

Component Port Period Time Capacity Deadline
Sensor data_out 4 sec 4 sec Hard
GPS data_out aperiodic 4 sec Hard
GPS data_in 4 sec 4 sec Hard
GPS gps_data_src aperiodic 4 sec Hard
Navdisplay data_in aperiodic 4 sec Hard
Navdisplay gps_data_src aperiodic 4 sec Hard

data_out

Sensor

data_out

get

gps_data_src

GPSValue

data_in

reads

invokes

readsupdates GPS

get

gps_data_source
data_in

invokes

Nav
Display

component Sensor {
publishes SensorOutput data_out ; };

component GPS {
publishes SensorOutput data_out;//APERIODIC
consumes SensorOutput data_in;//PERIODIC
provides GPSDataSource gps_data_src;};

component NavDisplay {
consumes SensorOutput data_in;//APERIODIC
uses GPSDataSource gps_data_source;} ;

Fig. 2. Components developed using ACM Design Tools. This figure contains the in-
ternal ports of the components, including the internal data flow and control flow. Also
shown are the snapshots of generated Interface Definition Language (IDL) files and the
associated real-time properties for each port.

of a component is the exact opposite of the inactive, and all the component ports
perform their task. In a semi-active state, only the Consumer and Receptacle
ports of a component are operational, the Publisher and Provided ports are
disabled. During nominal operation, a component is either in the active state, or
semi-active state. The semi-active state is typically assigned to passive replicas,
if any, in the system by the system integrator. Typically, a component is made
inactive only if it is diagnosed as faulty at runtime.

While the component is executing i.e. it is in active or semi-active state,
component ports can introduce faults in the system. We consider two root failure
sources for each component port (a) a concurrency fault: caused by the timeout
in the act of obtaining the lock associated with the component, (b) a latent
defect in the code written by the developer for handling the activity of the port.

Both of the above fault scenarios can lead to several secondary anomalies in
either the same component or in a connected component. In our framework, the
design tools allow the system designer to specify monitors which can be con-
figured to detect deviations from expected behavior, violations of specifications
and conditions of an interaction port or component. Based on these monitors,
following discrepancies can be currently identified:

– Lock timeout : The framework implicitly generates monitors to check for re-
source starvation. Each component has a lock (to avoid interference among
callers), and if a caller does not get through the lock within a specified time,

302 A. Dubey, G. Karsai, and N. Mahadevan

an anomaly is declared. The value for timeout is either set to a default value
equal to the deadline of the process associated with component port or can
be specified by the system designer.

– Data validity violation (only applicable to consumers): Any event data token
consumed by a consumer port has an associated expiration age. This is
also known as the validity period in ARINC-653 sampling ports. We have
extended this to be applicable to all types of component consumer ports,
both periodic and aperiodic.

– Pre-condition violation: Developers can specify conditions that should be
checked before executing. These conditions can be expressed over the current
value or the historical change in the value, or rate of change of values of vari-
ables (with respect to previously known value for same parameter) such as
1. the event data of asynchronous calls,
2. function parameters of synchronous calls, and
3. (monitored) state variables of the component.

– User-code failure: Any error or exception raised in the user code can be
abstracted by the software developer as an error condition which can then be
reported to the framework. Any unreported error is recognized as a potential
unobservable discrepancy.

– Post-condition violation: Similar to pre-condition violations, but these con-
ditions are checked after the execution of the function associated with the
component port.

– Deadline violation: Any process execution must finish within the specified
deadline.

These monitors can be specified via (1) attributes of model elements (e.g. Dead-
line, Data Validity, Lock time out), and (2) via a simple expression language.
The expressions can be formed over the (current) values of variables (parameters
of the call, or state variables of the component), their change (delta) since the
last invocation, their rate of change (change divided by a time interval). Table 1
provides the summary of anomalies that can be observed on a component port
and the component as a whole. Code generators included in the design tools
generate the appropriate code for the monitors. While most of the monitors de-
scribed above are evaluated in the same thread executing the component port,
the monitors associated with resource usage (i.e. CPU time) are run in parallel
by framework. Figure 3 shows the flowchart of the code generated to handle in-
coming messages on a consumer port. The failed monitored discrepancy is always
reported to the local component health manager. Deadline violation is always
monitored in parallel by the runtime framework.

Note 1. It is necessary to point out that the pre-conditions and post-conditions,
if specified, should be verified against the formal system specification. We argue
that it is easier to verify these conditions at run-time compared to formally veri-
fying the full system. However, the full system should undergo rigorous testing5.

5 While formal verification covers all the possible behavior and environment interleav-
ing traces, testing only covers the subset of all possible traces.

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 303

Validity? Precon
ditions?

Get
component

Lock?

 Read data
from port

Execute
User CodeSt

ar
t

En
dPostcon

ditions? OK

Framework Monitors Deadline Violation

Fig. 3. Flow chart describing the interleaving of monitor and business logic provided
by the user for a consumer port. The generated sequence is similar for other ports.

Table 1. Monitoring Specification. Comments are shown in italics.

<Pre-condition>::=<Condition>

<Post-condition>::=<Condition>

<Deadline>::=<double value> /* from the start of the process associated with the
port to the end of that method */

<Data Validity>::=<double value> /* Max age from time of publication of data to
the time when data is consumed*/

<Lock timeout>::=<double value> /* from start of obtaining lock*/

<Condition>::=<Primitive Clause><op><Primitive Clause>|<Condition><logical
op><Condition>| !<Condition> | True| False
<Primitive Clause>::=<double value>| Delta(Var)| Rate(Var)|Var
/* A Var can be either the component State Variable, or the data received by the
publisher, or the argument of the method defined in the facet or the receptacle*/

<op>::= < | > | <= | >= | == | !=
<logical op>::=&& | ||

During runtime, the formally verified conditions provide a blueprint for ensuring
that the system/components are working without any discrepancy.

Example. In the GPS assembly shown in Figure 4, the ACM ports are config-
ured with monitors of different kinds. Publisher and Consumer ports in Sensor,
GPS, and NavDisplay are configured with monitors to track any violation of CPU
resource usage (detected as Deadline Violation), the Publisher port in the Sensor
component is configured to detect any violations/ problems with the user code
(detected as User Code Violation), the Consumer ports in GPS and NavDisplay
are configured to monitor problems with the age of the received data (detected
as Data-Validity Violation), and Consumer and Receptacle port in NavDisplay
are configured to detect Post-condition Violations.

3.3 System Integration

The modeling tools allow the system integrator to construct a system model
by using the library of component models created by component developers.
The modeling tool allows the system integrator to define the functionalities ex-
pected in the system and identify the appropriate components to provide these
functionalities. The integrator creates the assembly model by instantiating and
connecting the components, thereby capturing the interactions across the com-
ponent assembly. At this time, the design constraints in the tools ensure that all

304 A. Dubey, G. Karsai, and N. Mahadevan

Partition 1

Partition 2

Partition 3

Partition 4

HYPERPERIOD = 2.0 Sec
PARTITION_NAME = Partition2
PARTITION_NAME = Partition1
PARTITION_NAME = Partition3
PARTITION_NAME = Partition4
///SCHEDULING INFORMATION /
Partition2_SCHEDULE = 0.5, 0.5
Partition1_SCHEDULE = 0, 0.5
Partition3_SCHEDULE = 1.0, 0.5
Partition4_SCHEDULE = 1.5, 0.5

Fig. 4. Example: GPS Software Assembly. Unit of time is seconds.

ports are properly connected, e.g. the type of publisher matches the subscriber.
The modeling tool also allows the system integrator to organize connected com-
ponents into subsystems, which could then be reused to build more complex
assemblies.

Once the assembly is specified logically the integrator can model the details
of the platform and capture the deployment information. The modeling tool al-
lows the specification of the platform in terms of the modules (i.e. processors)
and the ARINC-653 partitions within each module. The integrator can specify
the deployment of each component into an appropriate partition such that the
temporal partitioning concerns are satisfied. At this time the integrators can use
the integrated system model (assembly, platform, deployment models) to per-
form an end-to-end timing study on the system to check the logical correctness
of design. Design tools are also used to fully generate the integration code and
configuration files. These tools also generate the required build system along
with necessary files to use the Eclipse IDE for final compilation and editing.

Example. Figure 4 shows the integration model for the three GPS components
showed in Figure 2. This model shows the connection between the components
and their deployment on four different partitions. Partition 1 contains the Sensor
Component. Partition 2 contains the GPS and Partition 4 contains the Naviga-
tion Display component. The sensor component publishes an event every 4 sec.
The GPS component consumes the event published by sensor at a periodic rate
of 4 sec. Afterwards it publishes an event, which is sporadically consumed by the
Navigation Display (abbreviated as display). Thereafter, the display component
updates its location by using getGPSData facet of the GPS Component. The
publisher-consumer interaction between sensor and GPS components is imple-
mented via a sampling port (Sampling ports are basic inter-partition commu-
nication mechanism in ARINC-653 platforms). A Channel connects the source
sampling port from partition 1 to destination sampling port in partition 2. In
this example, a redundant GPS is also connected in the assembly. The redundant
component in this case shares the port structure with the other GPS. However,
their internal behaviors are different. In this particular example, GPS 2 is set to
the semi-active State i.e. it can consume but not publish.

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 305

Fig. 5. Timing diagram for execution in the example

Sensor data out GPS data in GPS data out NV Display data in NV Display request NV Display data in endGPS data src facet start GPS data src facet return

Fig. 6. The Chain of Events associated with data production and consumption across
components in a hyper period

Figure 4 also describes the periodic schedule followed by the partitions, over-
seen by a controller process called Module Manager [14]. This schedule is re-
peated every 2 s (hyper period). In each cycle, Partition 1 runs with a phase of 0
sec for 500 ms. (duration). Partition 2’s phase is 500 ms. It runs for 500 ms. Then
Partition 3 and Partition 4 run for next 1 second. This schedule ensures that
the two partitions are temporally isolated. Figure 6 shows the timing diagram.
Notice that the partitions are temporally isolated from each other. Ports are
suspended when their partition is context switched. The GPS data in and Sen-
sor Data out’s execution time is very low. That is why they appear as impulses
on the graph. The NavDisplay data in consumer takes longer to run because
it invokes the Receptacle port to send a synchronous request to the GPS facet
port, which cannot be fulfilled until GPS’s partition becomes active.

Note 2. The temporal isolation and partition time allocation in this architecture
is strict, i.e. activities in one partition do not affect activities in another partition
unless there is an explicit data dependency. Even with data dependencies the
time allocated to partitions remains as specified during design. Another point
to note is that due to the use of model-driven tools and auto generation of
the integration code, the system integrator can quickly change the deployment
scenario by allocation each component to a different partition and regenerating
the code. However, such a change requires the recompilation of affected partitions
and can have an effect on the timing of the system.

306 A. Dubey, G. Karsai, and N. Mahadevan

4 Health Managers

In component-based systems, anomalies in a component can be either local or
secondary effect of an anomaly in an upstream component. Identifying this pat-
tern is important in order to isolate the root failure source. While the com-
ponent level mitigation code (provided by a component developer) can quickly
react to the local anomaly and possibly arrest any problems that could arise
because of the anomaly, this mitigation action may not remove the primary
source of failure. A system wide response/ mitigation engine would be ill-suited
to react to every local anomaly but would be better positioned to identify and
mitigate the real-fault source, especially when the failure effects cascade across
component boundaries. Realizing the benefits and limitations of each strategy,
we implemented a two level health management strategy in our framework with
a component level that is local to a component, and the system level that covers
the entire assembly of components. While the component level health manager
is specified by the component developers, the system level health manager is
provided by the system integrator. Both health managers are specified as hier-
archical timed state machines using the modeling tools. Please refer to [15] for
a formal description of these state machines.

Code generators are responsible for mapping the specified management logic
to the runtime system, which ensures that the specified state machine logic is
executed using a variation of the Harel state chart semantics [19]. Discussion of
these semantics is not included in this paper. It should be noted that these man-
agers are reactive because they are triggered by either an event, e.g. occurrence
of an anomaly, or passage of time (i.e. a timeout). When triggered, the machine
reevaluates its current state and in the process executes actions specified on the
transition or for the state (entry, exit, or during). The next two sections describe
both the component and system level health managers.

4.1 Component Level Health Manager

Component-Level Health Manager(CLHM) provides localized and limited func-
tionality for managing the health of the internals of a component. The health
manager reacts with appropriate mitigation action to the anomalies detected
within the component. As described in the previous section, CLHM is imple-
mented as a timed state machine. It is triggered by anomalies detected by the
monitors deployed inside the component, as shown in Table 1.

In addition to these monitors that detect and report anomalies, monitors to
report ENTRY into and EXIT out of a port’s process can also be specified using
the modeling tool. These monitors aid in building observer models to track the
execution sequence of component processes (ports) and report any deviations
from the expected sequence. Observers are modeled as parallel state machines
within the CLHM with one machine acting as an observer and another as the
health manager. Each of the parallel state machines could be triggered by their
relevant monitor events. While the observer tracks the state evolution, the health
manager issues appropriate mitigation action for the anomalies detected. When

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 307

Table 2. CLHM Mitigation Actions

CLHM Action Semantics

IGNORE() Continue as if nothing has happened

ABORT() Discontinue current operation, but operation can run again

USE PAST DATA() Use most recent data (only for operations that expect fresh data)

STOP(p) p is the process id. Default value is current process.
This commands discontinues operation in process ‘p’.
Aperiodic processes (ports): operation can run again
Periodic processes (ports): operation must be enabled by a future
START HM action

START(p) ‘p’ is the same as defined in context of STOP (above).
Re-enable a STOP-ped periodic operation

RESTART(p) ‘p’ is the same as defined in context of STOP (above).
A Macro for STOP followed by a START for the current opera-
tion

an anomaly is detected in the observer, it triggers the health manager portion
of the CLHM state machine to take the appropriate mitigation action.

The mitigation commands that can be expressed in the timed state machine
model for CLHM are described in the Table 2. These commands can be issued
as a transition action (executed when a state transition succeeds) or as entry,
exit or during action of a state.

The CLHM associated with each component is hosted on a separate high
priority ARINC-653 process. When a monitor reports a violation, the report is
communicated to the relevant manager using the methods supported by the
framework, e.g. an ARINC-653 buffer, see Figure 7. The buffer provides an
intra-partition FIFO message queue for communication. This rerport triggers
the execution of the CLHM state machine code which responds with an ap-
propriate mitigation action. Depending on the nature of the mitigation action,
the appropriate command is communicated either to the framework or to a rel-
evant process which then executes it. Commands such as IGNORE, ABORT,

HM Response

Component

NOMINAL ERROR CHECK
RESULT FAILURE

Error
Message /Action

Action Successful

Timeout or
Action Failed

Component Health Manager (High priority ARINC-653 process)

B
U
F
F
E
R

Incoming
Events

Process 1Process 3
Component

Port (653
PRocess)

HM Response
BlackBoard
BlackBoardBlackBoard

Blocking
 Read

Fig. 7. Component Health Manager

308 A. Dubey, G. Karsai, and N. Mahadevan

Fig. 8. Component Level Health Management Strategy for Sensor Component. Event
e1 implies a user code exception in data out port.

Fig. 9. Component Level Health Management Strategy for GPS Component. Event e1
implies deadline violation of data in port. Event e2 implies validity violation of data
in port. Any other anomaly is sent the default IGNORE action.

USE PAST DATA are communicated to the managed process executing the
monitor using a shared memory resource called (a “blackboard” in [1]). START,
STOP and RESTART commands are directly executed using the APIs of the
framework.

Example. Figure 8 shows the component health manager associated with the
sensor component in the assembly shown in Figure 4. The timed-state machine
specifying the CLHM for Sensor Component is triggered when a violation in
the Publisher’s (data out) User-Code is detected. The monitor associated with
detecting this violation is run on the same ARINC-653 process as the Pub-
lisher port. When the violation is detected, it is reported to the CLHM and the
Publisher code blocks for a response/ command from the CLHM. The reported
user code violation triggers the event e1 in CLHM state machine. In this case,
the state-machine issues an IGNORE event which is translated as an IGNORE
command and sent back to the Publisher port. Upon receipt of the command,
the publisher port executes the command. In this case the IGNORE command
results in the publisher continuing with its task (as per the semantics of the
IGNORE command explained in the Table 2).

The timed-statemachine associatedwithGPSCLHM is shown in Figure 9. This
state machine is triggered whenever the input events e1 or e2 is triggered. The
event e1 is triggered when a violation is detected in the resource usage (Deadline
Violation) of the Consumer port (data in). Event e2 is triggered when the age of

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 309

the data-token received by the consumer port (data in) is beyond its usable-time
(Data-Validity Violation). The event e1 is triggered when the underlying frame-
work detects a deadline violation and reports it to the CLHM. In this case, since
the consumer port is configuredwith aHARDDeadline Type, the framework stops
the process and then reports the violation to CLHM. This triggers the input event
e1 in the state-machine. The state-machine executes the transition corresponding
to the event e1 and issues a START event. This event results in a command to the
framework to START the failed process associated with the consumer port. The
event e2 in the CLHM state-machine is triggeredwhen the Data-Validity violation
is detected in a token received by the Consumer port. The Consumer port reports
the same to the CLHMand blocks for a response from the CLHM. The CLHM exe-
cutes the transition corresponding to the event e2 and triggers aUSE PAST DATA
output event which is sent as a USE PAST DATA command to the consumer port.
The consumer port executes this command by replacing the current tokenwith the
past token and continues its operation. The Nav display machine is modeled in a
similar fashion and is not shown here.

Scope of Component Level Health Manager. Inputs (anomaly detected)
and outputs (commands issued) of CLHM are local to a component. While this
provides a quick fix to the detected problem which could prevent the effect of the
problem from being propagated, it might not solve the root-cause of the problem.
In the examples discussed above, it is quite possible that an anomaly detected
in one component (e.g. validity violation in GPS) could have resulted from a
problem in an upstream component (e.g. Sensor’s Publisher user code that is
responsible for data published). Also, an anomaly observed in one component
could be the effect of a CLHM mitigation action executed in another component.
A higher level health management unit is required to tackle the problem of fault
cascades across component boundaries. The next section deals with this second
(or higher) level health management unit.

4.2 System-Level Health Manager

System Level Health Manager (SLHM), as the name suggests, is the health
management strategy at the system-level. This section discusses in detail the
enhancements that need to be made to the existing system made up of ACM
components to enable System Level Health Management.

Architecting the Assembly Model with the SLHM Layer. Architecting
support for SLHM into the existingmodel involves adding special components that
provide the core SLHM functionality and instrumenting the existing components
in the assemblywith the capability to exchange informationwith these special com-
ponents. As shown in the Figure 10, the three special SLHM components include:

– Alarm Aggregator : It is responsible for collecting and aggregating inputs from
the component level health managers (local alarms and the corresponding
mitigation actions). It hosts an aperiodic consumer that is triggered by the

310 A. Dubey, G. Karsai, and N. Mahadevan

CLHM

Partition

CLHM

Module

CLHM

Partition

CLHM

Module

Alarm
Aggregator

Diagnosis
Engine

System HM
Response

Engine

SLHM

M

g
Engine Response

Engine

SSLHM

Fig. 10. SLHM Architecture. SLHM Components are automatically configured by the
ACM design tools.

data (alarm, and local mitigation command) provided by the Component
Level Health Managers. The Alarm Aggregator assimilates the information
received from the CLHM-s in a moving window, whose default value is same
as the hyperperiod, and sorts them based on their time of occurrence. A
periodic publisher in the Alarm Aggregator feeds this sorted data to the
Diagnosis Engine.

– Diagnosis Engine: It hosts an instance of a Timed Failure Propagation Graph
reasoning engine. This engine is initialized by an auto-generated Timed
Failure Propagation Graph (TFPG) model that captures the failure-modes,
discrepancies and the failure propagation across the entire system. The rea-
soner uses this model to isolates the most plausible fault-source (component)
that could explain the observations i.e. monitors triggered and the CLHM
commands issued. The diagnosis result i.e. faulty component(s) is reported
through an aperiodic publisher to the next component: the SystemHMRe-
sponse Engine that hosts the system level mitigation strategy.

– SystemHM Response Engine: It receives the diagnosis results: the set of
faulty components and responds with an appropriate system-level command
to mitigate the fault and its effects. This engine hosts a timed state-machine
that executes the SLHM mitigation strategy specified by the user (described
later in this section). The updated fault-status of the components in the as-
sembly is used to trigger the SLHM state-machine. The output generated by
the state machine is translated and sent (published) as mitigation commands
to the appropriate components.

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 311

In order to enable communication between the existing component assembly
and the SLHM layer, each components in the existing assembly is instrumented
with an additional publisher (HMPublisher) and consumer (HMConsumer).
More specifically, the special publisher (HMPublisher) in these components
feeds CLHM output (alarm detected and local mitigation action) to the Alarm
Aggregator component. The special consumer (HMConsumer) in these com-
ponents receives the mitigation command issued by the SystemHM Response
Engine and executes it.

The modeling and generator support tools automatically update the design
of the entire system with the special SLHM components, additional publisher
and consumer in each of the existing components, and inter-connections between
the components to capture the SLHM related information flow. Two additional
pieces of information are required to complete the SLHM generation - the cus-
tomized mitigation strategy to be executed by the SystemHM Response Engine
and the deployment information for the three SLHM components. While the
deployment information can be captured in a manner similar to the other (regu-
lar/functional) components in the assembly, the design tools allow the mitigation
strategy to be specified as a state machine model. The code generators use the
updated model to complete the generation and customization of the SLHM layer.

Example. Figure 11 shows the GPS assembly described earlier in Figure 4
augmented with the three system health management components. Notice that
each functional component i.e. Sensor, GPS, GPS2 and NavDisplay gets an ad-
ditional publisher and Consumer. Anomaly/ alarms and mitigation commands
are communicated through these ports. This process is completely automated.
The integrator only specified the internal of the response/ mitigation engine
using as a timed state machine model and specifies the SLHM deployment. In

HMC
HMP

dat

Sensor

HMP
dat

dat
gps
HMC

GPS

dat
gps

HMP
HMC

NavDisplay

Alarm Hypothesi

Diagnosis

Sensor
GPS
GPS2
NavD

Alarm

AlarmAgg

HMP
dat

dat
gps
HMC

GPS2

Hypothesi

Sensor
GPS
GPS2
NVD

MitigationEngine

Sensor Module1 Partition1
GPS Module1 Partition2
GPS2 Module1 Partition3
Nav DisplayModule1 Partition4

AlarmAgg Module2 Partition1
Diagnoser Module2 Partition2
MitigationEModule2 Partition3

///Module 2
SYSTEM_MODULE=TRUE
HYPERPERIOD = 2.0 Sec
PARTITION_NAME = Partition1
PARTITION_NAME = Partition2
PARTITION_NAME = Partition3
///SCHEDULING INFORMATION /
Partition1_SCHEDULE = 0,0.66
Partition2_SCHEDULE = 0.66, 1.4
Partition3_SCHEDULE = 1.4,2.0

Fig. 11. GPS Assembly (ref, Figure 4) augmented with the SLHM components. This
process is completely automated. The integrator only specified the internal of the re-
sponse/ mitigation engine using as a timed state machine model and specifies the
SLHM deployment.

312 A. Dubey, G. Karsai, and N. Mahadevan

this particular example, SLHM components are deployed on a different processor
(module) and divided into three partitions. This ensures that each stage of the
SLHM gets a fixed time slice. The hyper period of this module is synchronized
with the hyper period of the module containing the functional components of the
GPS-Assembly. This ensures that system diagnosis, mitigation and transmission
of message across the two modules run synchronously.

The following sections provide more detailed information with examples on
the Diagnosis and Mitigation aspects of the SLHM layer.

4.3 Diagnosis : Isolation and Identification of the Fault Source

This section focuses in more detail on the diagnosis and mitigation aspects of
system health manager. Our implementation of SLHM uses a reasoning scheme
based on the Timed Failure Propagation Graph (TFPG) model[3,20].Timed fail-
ure propagation graphs (TFPG) are causal models that capture the temporal
characteristics of failure propagation in dynamic systems. A TFPG is a labeled
directed graph. Nodes in graph represent either failure modes (fault causes), or
discrepancies (off-nominal conditions that are the effects of failure modes). Edges
between nodes capture the propagation of the failure effect.

The TFPG model serves as the basis for a robust online diagnosis scheme that
reasons about the system failures based on the events (alarms and modes) ob-
served in real-time[2,3,20]. The TFPG approach has been applied and evaluated
for various aerospace and industrial systems[31].

Example. Figure 12 shows a simple non-hierarchical TFPG model. It shows the
root causes of the failure (Failure-Modes FM FM1, FM FM2) and the anoma-
lies (Discrepancies DISC RD1, DISC D1, DISC SD12, DISC D12, DISC RD2,
DISC D2) that would be triggered when one or more of these failures occur.
While failure modes are depicted as a box, unobserved OR-Discrepancies

Fig. 12. An Illustrative TFPG Example. Doubled lined octagons are observed dis-
crepancy. Single Line octagon are unobserved OR discrepancies. Unobserved AND
discrepancy are denoted by circle. Rectangles are root failure nodes. Graph edge shows
propagation link. Edge can be annotated with min and max propagation time. Absence
of this annotation implies propagation delay lies within the interval (0,∞).

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 313

(e.g. DISC RD1, DISC RD2 etc.) are depicted as octagons, unobserved AND
Discrepancies (DISC SD12) are drawn as circles. Observable discrepancies (e.g.
DISC D1, DISC D2, and DISC D12) are drawn with a double-boundary. Edges
in the graph capture the failure propagation starting from the Failure Modes to
Discrepancies and then to subsequent Discrepancies downstream. Some of these
links depict additional constraints related to activation-condition and timing for
failure propagation. The activation condition (a Boolean expression over the
modes) captures when failure can propagate over a link. The timing constraint
expresses the time bounds within which the failure effect is expected to propa-
gate over that link. When these constraints are absent, the failure can propagate
over the link at any time or in any mode.

4.4 Automated Synthesis of TFPG from ACM Assembly Model

The information present in the ACM assembly model allows us to automatically
synthesize the TFPG model of the system. This TFPG model is built on a
hierarchical basis. Initially the TFPGmodels of the component ports are created.
These component port TFPG models are then used to build the TFPG models
of the Components which are then used to build the TFPG model of the entire
Assembly.

The TFPG-model for each component-port type is constructed using the
knowledge of the sequence of operation (for each port-type) and the fault-sources
and anomalies associated with each operation in the sequence. The TFPG model
links the fault-sources/ failure-modes and the anomalies/ discrepancies (moni-
tored/ unmonitored) across the sequence of operations. It also contains input
and output discrepancies that represent anomalies that propagate in or propa-
gate out of the port.

The TFPG model of the component is then constructed by instantiating the
appropriate component-port TFPG model for each component port present in
the component. TFPG model of the component includes additional failure modes
and anomalies specific to the component. The Component TFPG model is com-
pleted by adding the failure propagation links between the fault-sources and
anomalies present in the component and its ports. This is done by using the
data and control flow information captured in the models of the software com-
ponents.

The TFPG model of an assembly is constructed using the TFPG models
of the components present in the assembly. The failure propagation links be-
tween the component TFPG models are added on the basis of the integration
information i.e. inter-component interaction information (publisher-consumer,
facet-receptacle) present in the assembly.

The activation conditions for the failure propagation links in a component-
port are expressed in terms of the mitigation commands issued by the CLHM
e.g. An IGNORE command from the CLHM could imply that the failure could
propagate and trigger anomalies downstream e.g. an invalid data being published
or an invalid state update. An ABORT command from the CLHM could stop
the failure propagation, but it also stops the normal sequence of operation of

314 A. Dubey, G. Karsai, and N. Mahadevan

the port, thereby leading to no data being published or no update to the state.
The failure propagation links across the component boundaries have activation
conditions that are based on the states of the two associated components: active,
inactive, semi-active. A detailed discussion of the TFPG templates associated
with the port is not included in this chapter. Interested readers are referred to
Appendix D in [13] and the example in [27].

4.5 Example

Figure 13 shows a portion of the TFPG model of the entire GPS Assembly. It
shows the TFPG model of the sensor component, the TFPG for GPS data in
port, and the failure propagation between them.

The TFPG models of ports of components have a failure mode: FM USE-
R CODE. This failure mode arises from the latent bug in implementation code.
Both TFPG models also contain anomalies associated with violations observed

Fig. 13. TFPG model for Sensor-Publisher and GPS-Consumer

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 315

in the normal sequence of operation: data validity, pre-condition, user code ex-
ceptions, post-conditions and deadline violations. Causal relation across these
anomalies is dictated by the operation sequence in the port. For example, an
anomaly in the pre-condition could lead to an anomaly in the user code, which
again could lead to a post-condition or deadline-violation. Latent bugs (i.e.
FM USER CODE) can lead to an exception in the user code or can lead to
deadline-violation or post-condition violation.

As stated earlier, port TFPG models here also contain input and output dis-
crepancies that represent anomalies that propagate in or propagate out of the
port. In Figure 13, DISC BAD DATA IN is associated with bad-data
getting into a port from a state variable (in case of a sensor-publisher) or a
publisher (in case of a GPS-consumer). DISC LOCK TIMEOUT FAILURE rep-
resents another input-discrepancy that is associated with inability to secure the
component-lock. Anomalies propagating out of the publisher port are captured
by discrepancies associated with the published data, e.g. DISC NO DATA PUB-
LISHED, DISC LATE DATA PUBLISHED, and DISC INVALID DATA PUBL-
ISHED. Similarly, anomalies out of consumer port are captured by discrepancies
that are associated with problem in the state-update , e.g. DISC PROBLEM -
WITH STATE UPDATE.

Activation conditions on failure propagation links are not shown in Figure
13. These conditions are based on local mitigation commands. For example, an
IGNORE or USE PAST DATA command from CLHM in response to a violation
detected in a pre-condition can cause problems in the user code or post-condition,
or deadline violation. Finally, this could lead to a bad output data. On the
other hand, an ABORT command can arrest the failure propagation in nominal
operation sequence but could introduce other effects such as no output data (e.g
DISC NO DATA PUBLISHED).

Figure 13, also shows the component wide failure modes such as FM LOCK-
PROBLEM. This failure mode represents the problem associated with syn-
chronization among component ports. The effect of this failure manifests in a
component port through the discrepancy: DISC LOCK TIMEOUT FAILURE.
Component TFPG models also contain anomalies associated with bad values
in the state variables: DISC Sensor Bad Value and GPSValue Bad State. These
anomalies help in capturing the failure propagation based on the dataflow model
of the component. The bad data produced in a port could lead to a bad state
variable update in a component. If the state variable is being used by a pub-
lisher port for publishing data, the bad state variable update can lead to an
invalid data being published from the publisher port. This failure propagation
associated with dataflow is not restricted to the component boundary.

Dataflowdue to the componentport interactions captured in the assemblymodel
could lead to failurepropagations across componentboundaries.Figure 13captures
these failure propagations across component boundaries between the sensor’ pub-
lisher port to the GPS’s consumer port (dark edges in the Figure 13). These failure
propagations capture the effect of problems in the sensor’s publisher trickling down

316 A. Dubey, G. Karsai, and N. Mahadevan

Fig. 14. Intra-component and Inter-component Failure Propagation associated with
the control-flow in the GPS Assembly

intoGPS’s consumer leading to a bad input data (DISC BAD DATA IN) or a data
validity violation (DISC DATA VALIDITY).

Failure effects are also propagated along the control flow, e.g. when a port
is not invoked: DISC NOT INVOKED. This happens as the control flow is dis-
rupted when the normal sequence of operation is affected in a port. This can
happen across component boundary if a facet-receptacle interaction exists or
within the component when a port is responsible for invoking another port, e.g.
a periodic consumer can invoke an aperiodic publisher. In Figure 14, this rela-
tionship exists between GPS data in and GPS data out. A lack of invocation of
a port can affect the state update inside the component.

Figure 14 captures the explicit failure propagations across component port
boundaries. These failure propagations include those introduced by dataflow
as well as control flow. To avoid clutter, the Figure 14 restricts the depiction
to anomalies within component ports that are associated with direct failure
propagations across component-port or component boundaries. Other failure
modes, anomalies, and failure propagations within component port boundaries
are not shown.

4.6 System Level Diagnosis Process

The TFPG diagnosis engine hosted inside the SHM component is instantiated
with the generated TFPG model of the system/assembly. When it receives the
first alarm from a fault scenario, it reasons about it by generating all hypotheses

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 317

for failure modes that could have possibly triggered the alarm. Each hypothesis
lists its possible failure modes and their possible timing interval, the triggered
alarms that are supportive of the hypothesis, the triggered alarms that are in-
consistent with the hypothesis, the missing alarms that should have triggered,
and the alarms that are expected to trigger in future. Additionally, the reasoner
computes hypothesis metrics such as plausibility and robustness that provide a
means of comparison. These metrics are used to prune the hypotheses set such
that only those hypotheses with a higher metric and hence better explanation
are retained [2]. At this time only hypothesis with 100 percent plausibility are
used for failure mitigation. Output of diagnosis engine i.e. the hypothesis of
failed component is sent to the timed state machine implementing the System
Level Mitigation Strategy.

Example. Consider a failure scenario such that there is a user code bug in
the sensor data out process such that the code does not publish the data in its
time duration. Since sensor data out process does not have a monitored post-
condition discrepancy (see Figure 13) there will be no alarms generated in the
sensor process. However, due to the user code problem, the silent (unobserved)
discrepancy user code failure will be triggered, which will then lead to either
silent post-condition failure, or late data published, or no data published.

Now, consider the GPS data in process in the same figure. In this process, a va-
lidity violation will be raised as no data is being received from the publisher. This
will cause the local health manager to issue a USE PAST DATA command (Fig-
ure 9). The raised alarm of validity violation along with the USE PAST DATA
command will be reported to the diagnosis engine. Inside the diagnosis engine,
the event of ‘validity violation’ will be used to produce the most plausible hy-
pothesis (root failure sources) that can explain the observed anomaly. In this
particular case the TFPG engine will correctly attribute the problem to either
Sensor Lock failure mode or Sensor user code failure mode, i.e. a faulty sensor
component.

4.7 System Level Mitigation Strategy

The system level mitigation strategy is also modeled as a hierarchical timed
state machine. Table 3 lists the statements (functions) that can be used in the
state machine to express the guard conditions (to check if a component is faulty)
and actions (i.e. mitigation commands). These strategies are reactive in nature
and aim to restore the functionality by cold/warm reset or switching to redun-
dant component. As mentioned earlier in this chapter, each component in the
assembly is assumed to be in one of the three possible states: inactive, active,
and semi-active. When the component is in inactive state, none of the ports in
the component perform their task. The active state of a component is the exact
opposite to inactive state, and all the component ports performing their task. In
a semi-active state, only the consumer and receptacle ports of a component are
operational. The publisher and provided ports are disabled. This state-machine

318 A. Dubey, G. Karsai, and N. Mahadevan

Table 3. SLHM Functions. Here c denotes the component name and s denotes a
subsystem name. Unless otherwise specified usage of the subsystem name in a command
implies apply to all contained components.

Action Semantics

IS FAULTY (c|s) Returns true if the component is faulty.. A subsystem is
marked as faulty if the minimum number of components
required for work is not available.

IS NOT FAULTY (c) Returns false if the component is faulty.1

RESET (c|s) Instructs the component to execute its Reset method.

STOP (c|s) Instructs the component to switch to inactive mode.
Component stops executing the functionality of all its
ports. If subsystem is argument, command is applied to
all its components

START (c|s) Instructs the component to switch to active mode. Com-
ponent starts executing the functionality of all its ports.

DISABLE OUTPUT (c|s) Instructs the component to switch to semi-active mode.
Only Consumer and Receptacle ports are operational.

REWIRE (c,i,pc) i: Interface Name, pc: Provider Component Name. This
command Instructs Component (c) to switch its recep-
tacle Interface (i) to connect to the appropriate facet
interface in another component (pc).

CHECKPOINT (c|s) Instructs the component to Checkpoint its current state-
variables.

RESTORE (c|s) Instructs the component to Restore its state-variables
from the Checkpoint.

[1] A corresponding method can be implemented for the subsystem and used in a
specific example. Currently, implementation of this method is system specific and is
not part of provided API.

is translated into operational code and is hosted inside the runtime of the System
Level Health Management module.

An alternative strategy of health management is to search over available so-
lutions to find the best option that can ensure that the system functionalities
are still met. This strategy is still under active investigation.

Example. Figure 15 shows the state-machine model of the System Level Miti-
gation Strategy associated with the GPS Assembly. In this case the mitigation
strategy involves parallel state machines that deal with problems associated with
Sensor component (parallel-state 1) and GPS component (parallel-state 2). The
top level state machine is triggered when there is updated diagnosis information
(hypothesis) from the diagnosis engine. This information is used by the System
response/ mitigation engine to update the list of faulty components and trigger
the SLHM state machine. When the SLHM state machine (Figure 15) associ-
ated with the GPS Assembly is invoked it triggers Parallel State-1 followed by
Parallel State-2.

In Parallel-State 1, the System Health Manager checks if the GPS compo-
nent is marked as faulty. This is captured in the transition guard condition:

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 319

PARALLEL STATE 2

PARALLEL STATE 1

Fig. 15. System Level Health Manager Mitigation Strategy for GPS Assembly

IS FAULTY(GPS). If this guard condition evaluates to true, then the transition
action statements are executed and the state changed. The transition action
statements direct the reconfiguration to the alternate GPS (GPS2) through a
series of statements. STOP(GPS) results in a STOP command being sent to
the GPS component. START(GPS2) results in a START command being sent
to the GPS2 component. The command REWIRE(NavDisplay,GPSDataSource,
GPS2) directs a rewire command to the NavDisplay component. It instructs the
component to rewire the receptacle interface (GPSDataSource) to the appropri-
ate facet in the component GPS2.

In Parallel-State 2 it checks if the Sensor component has been marked as
faulty. This is captured in the transition guard condition: IS FAULTY(Sensor).
If this guard condition evaluates to true, then an output event is triggered to
reset the sensor component (transition action: RESET(Sensor)). This translates
into a RESET command that is sent to the Sensor component. The Sensor
component then executes the Reset method associated with the component and
reports back to the system health manager.

An additional case study of an Inertial Measurement Unit (IMU)System built
using the ACM design tools is available as a tech report for interested readers [16].

5 Known Limitations and Future Work

While the results of the experiments indicate that the approach is feasible and
very general, and shows the promise of being able to scale to and handle real-
life problems, we do understand that architecting a software health manage-
ment system is contingent upon the availability of extra resources that can be
spared for this purpose. This implies the necessity of scheduling analysis that
considers the future state change of components as part of system mitigation.
On the modeling front, the current state-machine based mitigation strategy re-
quires explicit specification of the mitigation action for each fault in the system.

320 A. Dubey, G. Karsai, and N. Mahadevan

This might become unwieldy beyond a point. We are focusing on alternate
strategies to specify the mitigation action. We are exploring the use of function-
allocation models in conjunction with automated reasoning strategies to tackle
the mitigation problem by identify and switching to available redundancies to
restore the affected functionality. Further, we need to explore effective means
to use the diagnosis result when it is less than perfect i.e. when the hypotheses
are not good enough to accurately determine the faulty component. On the di-
agnosis front, it would be ideal if all the possible monitors (i.e. pre-conditions,
post-conditions, invariants) are configured and available for use with the TFPG
diagnosis model. In an ideal monitoring situation where all monitors are config-
ured correctly and fire in the correct sequence, this will help prune the hypotheses
set faster and come up with a quick and correct diagnosis result. However, we do
understand that it might not be possible to configure all the available monitors
and more importantly and in some cases these monitors could not be reliable.
We plan to work on strategies where less than perfect diagnosis results (lots of
ambiguities and/or lack of hypotheses that have hundred percent plausibility)
can be effectively handled to restore the system functionality.

6 Conclusion

In summary, the paper describes a technology for implementing fault adaptiv-
ity in real-time systems using as software health management approach. The
starting point of the technology is a real-time component model that intro-
duces component-based software engineering techniques into real-time systems.
Components, their interfaces, and interactions are explicitly modeled, and these
models are annotated with observable pre- and post-conditions, as well as tim-
ing requirements. An anomaly detection system is constructed from these spec-
ifications. It performs the monitoring on the software system, and, if needed,
triggers a health management (mitigation) action. Health management can hap-
pen on the component or on the system-level: in the first case the mitigation
is facilitated by a designer-specified reactive state machine, in the second case
a diagnosis process is triggered first, whose results are then used in a reactive
or deliberative response/ mitigation engine. The diagnosis is necessary to iso-
late source of cascading faults that propagate through multiple components. We
have built a model-driven tool chain for developing these systems, and we have
evaluated the approach on several laboratory examples and demonstrated the
effectiveness of the concept on some large ones that replicate real-life incidents.

References

1. ARINC specification 653-2: Avionics application software standard interface part
1 - Required Services. Aeronautical Radio, lnc.

2. Abdelwahed, S., Karsai, G., Mahadevan, N., Ofsthun, S.C.: Practical considera-
tions in systems diagnosis using timed failure propagation graph models. IEEE
Transactions on Instrumentation and Measurement 58(2), 240–247 (2009)

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 321

3. Abdelwahed, S., Karsai, G., Biswas, G.: A consistency-based robust diagnosis ap-
proach for temporal causal systems. In: 16th International Workshop on Principles
of Diagnosis, pp. 73–79 (2005)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

5. Bureau, A.T.S.: In-flight upset; 240km NW Perth, WA; Boeing Co 777-200, 9M-
MRG. Tech. rep. (August 2005), http://www.atsb.gov.au/publications/
investigation reports/2005/AAIR/aair200503722.aspx

6. Bureau, A.T.S.: AO-2008-070: In-flight upset, 154 km west of Learmonth, WA, 7,
VH-QPA, Airbus A330-303. Tech. rep (October 2008), http://www.atsb.gov.au/
publications/investigation reports/2008/AAIR/aair200806143.aspx

7. Bustard, D.W., Sterritt, R.: A requirements engineering perspective on autonomic
systems development. In: Autonomic Computing: Concepts, Infrastructure, and
Applications, pp. 19–33 (2006)

8. Butler, R.: A primer on architectural level fault tolerance. Tech. rep., NASA Sci-
entific and Technical Information (STI) Program Office, Report No. NASA/TM-
2008-215108 (2008), http://shemesh.larc.nasa.gov/
fm/papers/Butler-TM-2008-215108-Primer-FT.pdf

9. Charette, R.: This car runs on code. IEEE Spectrum (February 2009)
10. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,

Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

11. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-
healing systems. In: WOSS 2002: Proceedings of the First Workshop on Self-healing
Systems, pp. 21–26. ACM Press, New York (2002)

12. DO-178B, Software considerations in airborne systems and equipment certification.
RTCA, Incorporated (1992)

13. Dubey, A., Karsai, G., Mahadevan, N.: Towards model-based software
health management for real-time systems. Tech. Rep. ISIS-10-106, Insti-
tute for Software Integrated Systems, Vanderbilt University (August 2010),
http://isis.vanderbilt.edu/node/4196

14. Dubey, A., Karsai, G., Mahadevan, N.: A component model for hard real-time
systems: CCM with ARINC-653. Software: Practice and Experience 41(12), 1517–
1550 (2011), http://dx.doi.org/10.1002/spe.1083

15. Dubey, A., Karsai, G., Mahadevan, N.: Model-based Software Health Management
for Real-Time Systems. In: IEEE Aerospace Conference, pp. 1–18. IEEE (2011)

16. Dubey, A., Mahadevan, N., Karsai, G.: The inertial measurement unit exam-
ple: A software health management case study. Tech. Rep. ISIS-12-101, Insti-
tute for Software Integrated Systems, Vanderbilt University (February 2012),
http://isis.vanderbilt.edu/node/4496

17. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing System Dependability Through
Architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A.
(eds.) Architecting Dependable Systems. LNCS, vol. 2677, pp. 61–89. Springer,
Heidelberg (2003), http://dl.acm.org/citation.cfm?id=1768179.1768183

http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/aair200806143.aspx
http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/aair200806143.aspx
http://shemesh.larc.nasa.gov/fm/papers/Butler-TM-2008-215108-Primer-FT.pdf
http://shemesh.larc.nasa.gov/fm/papers/Butler-TM-2008-215108-Primer-FT.pdf
http://isis.vanderbilt.edu/node/4196
http://dx.doi.org/10.1002/spe.1083
http://isis.vanderbilt.edu/node/4496
http://dl.acm.org/citation.cfm?id=1768179.1768183

322 A. Dubey, G. Karsai, and N. Mahadevan

18. Greenwell, W.S., Knight, J., Knight, J.C.: What should aviation safety incidents
teach us? In: SAFECOMP 2003, The 22nd International Conference on Computer
Safety, Reliability and Security (2003)

19. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987),
http://www.sciencedirect.com/science/article/pii/0167642387900359

20. Hayden, S., Oza, N., Mah, R., Mackey, R., Narasimhan, S., Karsai, G., Poll, S.,
Deb, S., Shirley, M.: Diagnostic technology evaluation report for on-board crew
launch vehicle. Tech. rep., NASA (2006)

21. Jaffe, M., Busser, R., Daniels, D., Delseny, H., Romanski, G.: Progress report on
some proposed upgrades to the conceptual underpinnings of do-178b/ed-12b. In:
2008 3rd IET International Conference on System Safety, pp. 1–6. IET (2008)

22. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A., Reichard, K.,
Scandura Jr., P.: System Health Management: With Aerospace Applications. John
Wiley & Sons, Inc. (2011)

23. de Lemos, R.: Analysing failure behaviours in component interaction. Journal of
Systems and Software 71(1-2), 97–115 (2004)

24. Lightstone, S.: Seven software engineering principles for autonomic computing de-
velopment. ISSE 3(1), 71–74 (2007)

25. Lyu, M.R.: Software Fault Tolerance. John Wiley & Sons, Inc., New York (1995),
http://www.cse.cuhk.edu.hk/~lyu/book/sft/

26. Lyu, M.R.: Software reliability engineering: A roadmap. In: 2007 Future of Software
Engineering, FOSE 2007, pp. 153–170. IEEE Computer Society, Washington, DC
(2007), http://dx.doi.org/10.1109/FOSE.2007.24

27. Mahadevan, N., Dubey, A., Karsai, G.: Application of software health management
techniques. In: Proceedings of the 2011 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2011. ACM, New York (2011)

28. Potocti de Montalk, J.: Computer software in civil aircraft. In: IEEE/AIAA 10th
Digital Avionics Systems Conference, pp. 324–330 (October 1991)

29. NASA: Report on the loss of the mars polar lander and deep space 2 missions.
Tech. rep., NASA (2000),
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf

30. Ofsthun, S.: Integrated vehicle health management for aerospace platforms. IEEE
Instrumentation Measurement Magazine 5(3), 21–24 (2002)

31. Ofsthun, S.C., Abdelwahed, S.: Practical applications of timed failure propagation
graphs for vehicle diagnosis. In: Proc. IEEE Autotestcon, September 17-20, pp.
250–259 (2007)

32. Prisaznuk, P.: Arinc 653 role in integrated modular avionics (IMA). In:
IEEE/AIAA 27th Digital Avionics Systems Conference, DASC 2008, pp. 1.E.5–
1 – 1.E.5–10. IEEE (2008)

33. Pullum, L.L.: Software fault tolerance techniques and implementation. Artech
House, Inc., Norwood (2001)

34. Robertson, P., Williams, B.: Automatic recovery from software failure. Commun.
ACM 49(3), 41–47 (2006)

35. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven develop-
ment of self-managing software systems. In: Proceedings of the Workshop “Mod-
els@run.time” at the 9th International Conference on model Driven Engineering
Languages and Systems, MoDELS/UML 2006 (2006)

36. Sha, L.: The complexity challenge in modern avionics software. In: National Work-
shop on Aviation Software Systems: Design for Certifiably Dependable Systems
(2006)

http://www.sciencedirect.com/science/article/pii/0167642387900359
http://www.cse.cuhk.edu.hk/~lyu/book/sft/
http://dx.doi.org/10.1109/FOSE.2007.24
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf

Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 323

37. Shaw, M.: “self-healing”: softening precision to avoid brittleness: position paper
for woss 2002: workshop on self-healing systems. In: WOSS 2002: Proceedings of
the First Workshop on Self-healing Systems, pp. 111–114. ACM Press, New York
(2002)

38. Srivastava, A., Schumann, J.: The Case for Software Health Management. In:
Fourth IEEE International Conference on Space Mission Challenges for Informa-
tion Technology, SMC-IT 2011, pp. 3–9 (August 2011)

39. Taleb-Bendiab, A., Bustard, D.W., Sterritt, R., Laws, A.G., Keenan, F.: Model-
based self-managing systems engineering. In: DEXA Workshops, pp. 155–159
(2005)

40. Torres-Pomales, W.: Software fault tolerance: A tutorial. Tech. rep., NASA (2000),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307

41. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electron. Notes Theor. Comput. Sci. 141(3), 53–71 (2005)

42. Wang, N., Schmidt, D.C., O’Ryan, C.: Overview of the CORBA component model.
In: Component-based Software Engineering: Putting the Pieces Together, pp. 557–
571 (2001)

43. Williams, B., Ingham, M., Chung, S., Elliott, P.: Model-based programming of
intelligent embedded systems and robotic space explorers. Proceedings of the
IEEE 91(1), 212–237 (2003)

44. Williams, B.C., Ingham, M., Chung, S., Elliott, P., Hofbaur, M., Sullivan, G.T.:
Model-based programming of fault-aware systems. AI Magazine 24(4), 61–75
(2004)

45. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: WADS 2005: Pro-
ceedings of the 2005 Workshop on Architecting Dependable Systems, pp. 1–7.
ACM, New York (2005)

46. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE 2006: Proceeding of the 28th International Conference on Software
Engineering, pp. 371–380. ACM, New York (2006)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307

	Fault-Adaptivity in Hard Real-Time Component-Based Software Systems
	Introduction and Motivation
	Related Research and Background
	Overview of ARINC-653 Component Model
	Component Development
	Component Execution and Failure Scenarios
	System Integration

	Health Managers
	Component Level Health Manager
	System-Level Health Manager
	Diagnosis : Isolation and Identification of the Fault Source
	Automated Synthesis of TFPG from ACM Assembly Model
	Example
	System Level Diagnosis Process
	System Level Mitigation Strategy

	Known Limitations and Future Work
	Conclusion
	References

