
A Software Lifecycle Process to Support

Consistent Evolutions

Paola Inverardi1 and Marco Mori2

1 Dip. di Informatica, Università dell’Aquila
paola.inverardi@di.univaq.it

2 IMT Institute for Advanced Studies Lucca
marco.mori@imtlucca.it

Abstract. Ubiquitous software systems evolve their behavior at run-
time because of uncertain environmental conditions and changing user
needs. This paper describes our approach for a model-centric software
evolution process of context-aware adaptive systems. Systems are rep-
resented following the feature engineering perspective and this model-
ing supports foreseen and unforeseen evolution. The first one deals with
foreseen contexts while unforeseen evolutions address new user needs
arising at run-time possibly in response to unforeseen context changes.
The main contribution of this paper is a generic software lifecycle process
for context-aware adaptive systems that allows systems to be managed
both at design time and at execution time by exploiting suitable models.
The approach supports both static and dynamic decision-making mech-
anisms to enact evolutions and to check the evolution consistency.

Keywords: Context-aware adaptive systems, software lifecycle process,
variability model, consistent evolution.

1 Introduction

In the era of ubiquitous computing, software systems have to be designed and
developed taking into account the information coming from the surrounding
environment. This new dimension, called context, has to be exploited to make
systems flexible and adaptive. Context is not completely known at design time
thus making the process of designing and developing ubiquitous applications con-
tinue at execution time [13,18,25]. Software engineers define software alternatives
having in mind a partial representation of the context in which the system is
going to operate. Since it is not always possible to have a complete representa-
tion of the environment, the software engineer cannot provide all the software
alternatives at design time. In addition resource-constrained devices limit the
number of admissible alternatives. Thus the set of software alternatives pro-
vided at design time may have to be augmented in order to face new unforeseen
environmental conditions.

We consider two systems-related characteristics: context-awareness expresses
the ability of accessing and exploiting environmental information [7,21,28], and

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 239–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 P. Inverardi and M. Mori

adaptivity which makes a system flexible by supporting behavioral variations
[47,3,43]. However, systems should evolve in a consistent way with respect to the
context in which they operate. Models can play a key role for developing and
evolving context-aware adaptive applications since they support the consistent
evolution required by context variations. Different models are required to achieve
a consistent evolution:

– a model for representing the system and its variability;
– models to represent the context surrounding the system;
– requirement engineering models;
– models representing executable artifacts;
– a software process model for the adaptive application.

All mentioned models should be exploited and managed at run-time when the
development of the system is still required [10,44]. Therefore, on one hand models
should provide the right level of adaptivity for the system while on the other
hand they should be suitable in terms of required computational effort. This
means that the time required to accomplish the model-based consistency check
should be negligible with respect to the interval between consecutive evolution
requests.

Models should be exploited by an integrated support in order to automate, as
much as possible, the process of developing and evolving adaptive applications.
This would enable the software engineer to reuse a set of “good practice” and
tools for building and maintaining such applications [37].

This paper defines a generic software lifecycle process for context-aware adap-
tive systems. The process we propose supports two kinds of evolution while keep-
ing the system consistent with the context. Foreseen evolution addresses foreseen
context variations whereas unforeseen evolution deals with unforeseen context
variations. Figure 1 shows how context affects both system evolutions. In the
foreseen evolution the system evolves in order to keep satisfied a fixed set of re-
quirements by switching among different software alternatives provided at design

Fig. 1. System evolutions

A Software Lifecycle Process to Support Consistent Evolutions 241

time for different known contexts. In the unforeseen evolution the system evolves
to satisfy changing user needs (requirements) that may emerge as a consequence
of an unforeseen context variation. The system evolves by switching to a new
un-anticipated software alternative whose behavior includes new functionality
necessary to satisfy the emerging requirement. We represent the system following
the Software Product Line Engineering (SPLE) perspective since it breaks the
system complexity into feature components thus reducing the impact that any
change may have on the system [29]. In addition the SPLE perspective already
provides models to manage the system and to support consistent evolution.

This paper extends preliminary work [22] on the use of feature engineering
for modeling the evolutions of context-aware adaptive systems. Our process is
amenable to develop and evolve highly-configurable systems with interfering fea-
tures. It exploits the SPLE perspective in order to provide a uniform abstraction
to all the development approaches that consider a system to be made out of a
combination of basic software entities, such as the Component Off The Shelf
(COTS) approach or the service-oriented one. We assume that we have a set of
basic behavioral elements as input to our software process. These basic elements
will contain implementation artifacts with corresponding requirements specifi-
cations. It is worth stressing that while we do address the problem of managing
model-centric evolution we will only briefly comment on the mechanisms to en-
act the evolution. We will assume that the system may be reconfigured when
it is in a state in which the evolution is allowed (e.g. quiescent state or weaker
notions [30,46]).

In this paper we also define a generic evolution framework to support our
software process in performing its run-time activities. To this end, the framework
implements a control loop to monitor and to evolve the adaptive application.

The contributions of this paper are:

– a process methodology to design and develop context-aware adaptive appli-
cations;

– a set of models to represent the system and the context along with their
evolutions;

– a methodology to check the consistency based on the context;
– an architecture implementing the support for the evolutions.

We will explain our approach by means of an adaptive application which elabo-
rates a Mandelbrot fractal [33] that better fits the characteristics of the mobile
device (CPU, memory, number of display colors,...). The application require-
ments consist in visualizing a fractal image to the user through the device screen.
The higher the level of context resources available, the more beautiful will be
the fractal image shown to the user. The fractal context-aware adaptive system
will be modeled through a set of features which represent the basic alternative
behaviors to color, build and view the fractal image. At run time features may
need to be activated or de-activated based on the context-resource availability
changes. In addition because of environment unpredictability, the user may want
to introduce new unforeseen behavior as the system operates in an unforeseen

242 P. Inverardi and M. Mori

context. For example whenever the unforeseen device characteristics makes the
visualization of the fractal image format impossible, the user may guide the
introduction of a new software plug-in to decode that specific format.

The remainder of this paper is structured as follows. Section 2 describes re-
lated work to address system evolutions while Section 3 introduces the basic
models of our generic evolution framework. In Section 4 we define the soft-
ware lifecycle process to design and develop context-aware adaptive applications.
Section 5 describes how our process supports foreseen and unforeseen evolu-
tions. Section 6 proposes the interface architecture which implements the generic
evolution framework along with a possible instance with current practice tech-
nologies. Section 7 provides a summary of our contribution and a discussion of
future work.

2 Related Work

In the literature several frameworks address system evolution. They exploit
models with different granularity such as context-aware requirements models,
context-aware architectural models and context-aware implementation models.

The Rainbow framework [17] enables architectural self-adaptation by ex-
ploiting predefined adaptation rules. System components are reconfigured based
on decisions taken at design time while no un-anticipated adaptations can be
achieved. The framework supports non-functional reconfigurations while it does
not consider the consistency checking of the evolution. The context is not ex-
plicitly modeled but simple variables are considered in the framework.

The PLASTIC approach [4] applies reconfigurations at the implementation
level by exploiting an explicit definition of context model. The approach sup-
ports non-functional reconfigurations of statically defined Java artifacts driven
by context variations. The framework only deals with foreseen evolution while
run-time evolution is not allowed. The Javeleon framework [20] as well as the
JavAdaptor framework [41] aims to support the run-time evolution by means
of transparent dynamic updates of running Java applications. Developers can
simply evolve their applications at run-time and they can trigger an on-line
update without stopping the running application. Javeleon and JavAdaptor do
not support a definition of context for the evolution but the developers is di-
rectly in charge of injecting new behaviors in the application at run-time. These
approaches as well as the PLASTIC framework do not provide a process to
assess the consistency of foreseen and unforeseen evolution. Ali et al. [2] pro-
pose a goal-based framework to enact the evolution among system variants at
requirement level. This approach provides a context analysis phase to discard
variants that are inconsistent based on the context predicates. Nevertheless, it
only supports the design-time analysis on the contextual goal model. Qureshi
and Perini [42] have defined a framework for requirement engineering to distin-
guish activities at design-time from activities at run-time. They have provided
a mechanism to evolve the requirement specification at run-time driven by the
user thus supporting a notion of unforeseen evolution. Nevertheless the proposed

A Software Lifecycle Process to Support Consistent Evolutions 243

method is not applied to a real case study and no definition of consistency is con-
sidered in the framework. Kramer and Magee [31] have presented a three-layered
conceptual model to support the architectural reconfiguration of self-managing
systems. They consider a Component layer, a Change management layer and
a Goal management layer. The Goal layer identifies the plan to execute while
the Change layer enacts the plan execution by interacting with the Component
layer. This feature supports reconfigurations required by new requirements aris-
ing at run-time, i.e. unforeseen evolutions. The framework provides functional
and non-functional evolutions but it lacks a definition of consistency checking
for the composition of components.

To the best of our knowledge the frameworks presented in the literature only
apply reconfigurations at specific granularity levels, either at requirements mod-
els, or at architectural models or at implementation models. Only a few of them
support evolution at run-time while there is almost no support to check the con-
sistency of the evolution. In order to provide high-assurance for context-aware
adaptive applications it is necessary to support a definition of consistency as
proposed by Zowghi and Gervasi [48]. They suggest that an effective support to
consistency is based on system models at the different granularity levels, rang-
ing from the problem space models to the solution space models. We claim that
adaptive applications are not developed and evolved following a software process
which considers all these models together thus making it difficult to effectively
support the consistency of the evolution.

3 Evolution Framework

The evolution framework we propose is characterized by different building blocks
to represent the system along with its variability. The system is represented by
units of behavior which are composed through a feature diagram into different
system configurations. The context model enacts the switching process among
configurations and it supports the consistency checking process for the evolution.

Our evolution framework implements a MAPE (Monitoring Analyze Plan and
Execute) cycle in order to support the supervision, execution and evolution of
adaptive applications [12]. In Figure 2 we show how the framework implements
each of the four phases.

A monitoring phase activity collects information from the environment and
from the user in order to establish if evolution is required or not. On the one
hand, foreseen context variations and user preferences variations may both enact
foreseen evolutions. The first influences the admissibility of the system variants,
whereas the second influences the fitness of the system variants. On the other
hand, unforeseen context variations may force the user to introduce a new re-
quirement into the running variant.

The analyze phase determines if the variant to adopt is consistent or not.
In case of foreseen evolution we consider the set of system variants that are
consistent at the current context state. The consistency at each different context
state is proven at design time. In case of unforeseen evolution the analysis is

244 P. Inverardi and M. Mori

Fig. 2. MAPE cycle

performed at run-time by checking the consistency for the un-anticipated variant.
This variant will contain the same set of features as the current variant plus a
new feature that implements the new requirement specified by the user.

After the analyze phase the planning phase supports the decision-making
process for the variant to adopt. For the foreseen evolution, a ranking mechanism
establishes the most suitable variant based on context and user preferences. For
the unforeseen evolution the new variant which has been proven consistent at
the analyze phase is put forward to the execution phase.

Finally at the execution phase the system switches from the current to the
target variant. The target variant is enacted through its entry point method. For
the unforeseen evolution it is also necessary to incorporate a new code artifact
into the target variant before enacting its execution.

In the following we define the elements of our approach before describing the
software development process for context-aware adaptive systems in Section 4.

3.1 Context Model

In our approach the context model expresses the set of external entities that are
beyond the system’s control but which may influence the system execution. Our
context model consists of key-value pairs and it is defined using two perspectives:
the context structure and the context space. The context structure expresses re-
sources in term of types and categories. We adopt the resource taxonomy where
each context element belongs either to the system, to the user or to the physical
environment. In addition we consider the resource types enumerate, boolean and
natural [32]. In Figure 3 is depicted a context structure which conforms to the
meta-model shown at the left side of the figure.

A Software Lifecycle Process to Support Consistent Evolutions 245

Fig. 3. Context structure: meta-model and model

The context space expresses the variability for the resource assignment. Each
resource is identified through a tag ResId and it can assume one among its
admissible values contained in dom(ResId). The context space for the resources
ResId1, ..., ResIdn is defined as the Cartesian product:

S =
⊗

dom(ResIdi) s.t. i = 1, ..., n (1)

Each valid assignment of resources −→c ∈ S will be considered as a different
context state. Let us consider four different resources respectively expressing
the free memory, the CPU clock rate, the number of screen colors and the
network availability (0 if false, 1 if true): dom(mem) = {100, 150, 250, 350},
dom(cRate) = {200, 400, 600}, dom(sc) = {256, 4096}, dom(conn) = {0, 1}.
The context model space will be composed of 4 ∗ 3 ∗ 2 ∗ 2 = 48 states.

3.2 Unit of Behavior

In our vision we represent context-aware adaptive applications in terms of sets
of dynamic units called features. A feature is the smaller part of a service that
can be perceived by the user. We define a feature by a context-independent re-
quirement, a context-dependent constraint requirement, and an implementation
part. The notion of requirements we adopt follows the taxonomy proposed by
Glinz [19]. The definition of requirements is based on the concern to which a re-
quirement pertains. Given that a concern is a matter of interest in a system, the
taxonomy considers functional requirements which pertain to functional con-
cerns, performance requirements which pertain to performance concerns and
specific quality requirements which pertain to quality concerns. In addition con-
straint requirements limit the solution space of functional, performance and
specific quality requirements. We adopt this taxonomy and we exploit the fea-
ture definition in [14] in order to propose our definition of a feature as a triple
fi = (Ri, Ii, Ci), where:

– Ri is a conjunction of functional, performance and specific quality require-
ments (context-independent); an example of a functional requirement is:

246 P. Inverardi and M. Mori

Compute and visualize each fractal pixel. A quality requirement is: The im-
age is visualized a pixel at a time which in terms of implementation consists
in assigning the value Immediate to the quality property DisplayModel.

– Ii is the the component/service implementing the feature. It is expressed as
Java code, e.g. see Figure 4.

pub l i c c l a s s MandelCanvas{
. . .
pub l i c vo id g en e r a t e Immed i a t eF r a c t a l (){
image = Image . c r ea te Image (width , h e i g h t) ;
G raph i c s imageGraph i c s D i r ec tCanva s = image . g e tG r a ph i c s () ;
f o r (i n t x = 0 ; x < width ; x++) {
f o r (i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l D i r e c t C an v a s = d r awF r a c t a l P i x e l (x , y) ;
r e p a i n t () ;

}}
} . . . }

Fig. 4. Example: feature implementation

– Ci is a context-dependent constraint requirement defined as a predicate over
the context entities, e.g. mem ≥ 120kb.

3.3 System Configuration

A system configuration is obtained assembling a set of features. Each configura-
tion expresses the set of functionalities that a system shows to a user at a certain
step of the evolution. Given the set of features F , a system configuration is a triple
obtained combining each feature in F as GF = (RF , IF , CF). At this level of de-
scription we do not explain how to combine features. We just suppose to have an
abstract union operator among features which is defined in terms of union oper-
ators for context-independent requirements, context-dependent requirement and
implementation components. The actual implementation of these union operators
will depend on the specific formalisms that may be used to express these three el-
ements. Given two features f1 =<R1, I1, C1,> and f2 =<R2, I2, C2> their union
is defined as: f1 ∪f f2 =< R1 ∪R R2, I1 ∪I I2, C1 ∪C C2 >. In the following we
show a possible example on how to merge context requirements and implementa-
tion components for a system configuration starting from its features.

The union operator ∪C merges context requirements depending on the nature
of resources. For example if we have two requirements demanding bandwidth
for 20 kbps each one, their union will express a demand of bandwidth for 40
kbps. For the implementation portion I the software engineer combines the code
artifacts in order to have a single access point to the whole configuration. Each
configuration is composed by a Java class for each single feature plus a Java
class which is the entry point for the system configuration. This class entails the
method execute to trigger the execution of the configuration (e.g. see Figure 7).

Given a system definition it is necessary to model in which different future
system configurations the system may evolve. The variability model that we have

A Software Lifecycle Process to Support Consistent Evolutions 247

chosen is inspired by the feature model which has been first introduced in the
Feature-Oriented Domain Analysis method [27]. Since then, feature modeling
has been widely adopted by the SPL engineering community and a number
of extensions have been proposed [45]. In our approach we consider a possible
abstract syntax for the feature model defined starting from nodes (features) and
arcs between nodes:

– The root node of the model is the label which stands for the system.

– Each node expresses a feature which can be either optional or mandatory.

– Each edge between two nodes expresses a decomposition relation (consist-
of) between the parent node and the child node. It enables the possibility to
add behavior to the parent feature. We consider two decomposition relations:
AND decomposition and XOR decomposition.

– “Requires” constraint is a directed relation between two features. If one
feature is present in the configuration the second has to be present as well.

– “Mutex” constraint enables the mutual exclusion between two features; there-
fore they cannot be in the system configuration simultaneously.

Starting from the feature model (abstract syntax), the feature diagram (con-
crete syntax) is commonly expressed as a tree structure. We adopt a subset
of the syntax presented in [15]. In this diagram, features are represented in a
tree-like format. Dark circles represent mandatory features, while white circles
represent optional features. An inverted arc among multiple arcs expresses a
XOR decomposition meaning that exactly one feature can be selected. Multiple
arcs that start from a parent node express an AND decomposition.

Starting from the feature diagram, the set of possible system configurations
is obtained by combining the features in subsets compliant to the diagram. The
diagram shown in Figure 5 concerns our case study and contains 8 features
which give rise to 10 system configurations. Each configuration contains only
one feature to generate the image and only one feature to color it. An admissible
configuration contains the features to download a predefined image from a remote
server. We further discuss the features of the fractal application in Section 4.1.

Each system configuration is mapped to its implementation which enables
its execution. Let us consider the system configuration G4 = {fgenPro, fcolB}
implemented by the class diagram depicted in Figure 6. Each feature in G4 is
implemented as a single Java class. The classMandelCanvas, which implements
fgenPro, provides the interface generateProgressiveFractal that generates and
draws the fractal image progressively a row at a time exploiting the operation
drawFractalP ixel. The class Colouring, which implements fcolB, provides the
interface pixelColourAsBands and the operation initColourAsBands in order
to color the image with different bands of colors. The only class which does not
correspond to any of the features within the configuration is LocalFractalApp
that is the external interface to access the whole application variant. The
configuration is enacted through its method execute which implements the logic
of the variant. Figure 7 shows an excerpt of the Java specification for configura-
tion G4.

248 P. Inverardi and M. Mori

Fig. 5. Feature diagram

Fig. 6. Example: class diagram (G4)

3.4 Consistency Checking

We propose a notion of consistency that is based on the notion of feature inter-
action. A feature interaction occurs when two or more features run correctly in
isolation but they give rise to undesired behavior when jointly executed [1,9,38].
A certain system configuration is consistent if its features does not give rise to
any feature interaction phenomenon. Following the Problem Frame approach
[26] as exploited in [14], we formalize our notion of consistency for a certain
configuration G = (RF , IF , CF) as:

IF , CF � RF (2)

This definition entails three different problems:

– (CF)[−→c /−→x]: this formula checks the joint context requirement (predicate)
CF assigning the current context values −→c to the formal parameters −→x ;

– RF is Satisfiable: this formula checks if the joint context-independent re-
quirement can be satisfied;

– IF � RF : this formula validates the joint implementation with respect to the
joint requirement either by means of model checking or through a testing
process.

A Software Lifecycle Process to Support Consistent Evolutions 249

pub l i c c l a s s Loca lF ra c ta lApp extends MIDlet {
MandelCanvas mandelCanvas ;
. . .
pub l i c Loca lF ra c ta lApp (){
mandelCanvas = new MandelCanvas () ;

}
p ro tected vo id execu te (){
c u r r e n t D i s p l a y = D i s p l a y . g e tD i s p l a y (t h i s) ;
c u r r e n t D i s p l a y . s e tCu r r en t (mandelCanvas) ;
mandelCanvas . g e n e r a t eP r o g r e s s i v e F r a c t a l () ;
e x i t A c t i o n () ;

} . . . }
pub l i c c l a s s MandelCanvas extends Canvas {
. . .
pub l i c vo id g e n e r a t eP r o g r e s s i v e F r a c t a l (){
i n t co lumn ArrayCanvas [] = new i n t [h e i g h t] ;
f o r (i n t x = 0 ; x < width ; x++){
f o r (i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l A r r a yCan va s = d r awF r a c t a l P i x e l (x , y) ;
co lumn ArrayCanvas [y] = p i x e l C o l o r (p i x e l A r r a yCan va s . i s I n s i d e F r a c t a l () ,
p i x e l A r r a yCan va s . g e t I t e r a t i o n s () , p i x e l A r r a yCan va s . g e tD i s t a n c e ()) ;

}
o f f s e t X = x ;
image = Image . createRGBImage (co lumn ArrayCanvas , 1 , h e i gh t , f a l s e) ;
r e p a i n t () ;

}} . . . }
pub l i c c l a s s Co l o u r i n g{
. . .
p r i v a t e i n t p i xe lCo l ou rAsBands (boo lean i n t e r n o , i n t i t e r a z i o n i ,
doub le d i s t){
i n t tmp= (i n t e r n o ? 0 : c o l o r s [i t e r a z i o n i % pa l e t t eNumCo lo r s]) ;
r e tu r n tmp ;

}
p r i v a t e vo id i n i tCo l o u rA sBand s (){
i n t [] tm pCo l o r s I t e r a t i o n s L im i t e d P a l e t t e = { −256, −16711681 ,−65281 ,−256 ,
−4194304 , −16728064 , −16777024 , −8323073 , −32513, −128 } ;
c o l o r s = tmpCo l o r s I t e r a t i o n s L im i t e d P a l e t t e ;
pa l e t t eNumCo lo r s = c o l o r s . l e n g t h ;

} . . . }

Fig. 7. Example: implementation (G4)

Since our aim is to support a notion of consistency that can be performed at run-
time we should take into account the computational effort for the corresponding
three algorithms. Among them, checking the context requirement against a cer-
tain context state is the less expensive in terms of time and space. Although
it is only a necessary but not sufficient condition for a complete notion of con-
sistency it plays a key role to check the consistency of ubiquitous applications.
Indeed, the serendipity of the environment that characterizes this kind of sys-
tems makes them very vulnerable to context variations. Therefore a weak notion
of consistency can be based only on context requirements satisfiability:

Definition 1. G is weakly consistent in −→c iff CG[−→c /−→x] is True

Let us consider the configuration Gx = {fgetRem, fsockConn, ftiffV iewer} where
each feature is characterized by the correspondent context requirement:

(i) CtiffV iewer ::= cRate ≥ 300 ∧mem ≥ 35
(ii) CgetRem ::= mem ≥ 100
(iii) CsockConn ::= conn = 1

250 P. Inverardi and M. Mori

We assume thatGx has to be checked at the context state−→c = (100, 300, 4096, 1).
This state provides 100 Kb of memory, a CPU clock rate of 300 Mhz, a screen
device with 4096 colors and an Internet connection. Although each context re-
quirement is weakly consistent separately at −→c , the whole configuration is not
weakly consistent because of the limited availability of free memory. Indeed, if
we combine the request of memory coming from the context requirement (i)
and (ii) we obtain a total request for 135Kb of memory that cannot be satis-
fied at the context state −→c . Therefore it is not possible to execute the features
fgetRem, fsockConn and ftiffV iewer together at −→c .

In our previous paper [23] we have extended this notion of weak consistency
by defining a mechanism to check the configuration requirements with respect
to the implementation artifacts. This enables us to catch also interactions that
arise at the code level.

4 Software Development Process

In this section we describe how we support the development of a context-aware
adaptive application. We have defined a software lifecycle process which follows
the structure presented by Autili et al. [6]. Our software process implements four
different activities, namely Explore, Integrate, Validate and Evolve as shown in
Figure 8. The exploration phase exploits a feature library containing the code
implementation and the correspondent requirements descriptions. The integra-
tion phase takes these features as input and it produces the space of the system
variants as a feature diagram. Each variant is checked though a validation phase
which performs the context analysis [24] and model checking [23]. Finally, the
evolution phase reconfigures the system by switching from the current configu-
ration to the new one.

Fig. 8. Software process

In the remainder of this section we describe how our generic evolution frame-
work supports the software process. The problem we face is the complexity for
the software engineer to specify the context conditions under which each system

A Software Lifecycle Process to Support Consistent Evolutions 251

configuration is admissible. Given n features it could be required to set the con-
text conditions for 2n configurations in the worst case. Our methodology makes
the generation of the system configuration automatic by exploiting the models
provided in the SPLE as described in Section 3.

At the exploration phase the software engineer defines the set of features of
interest. Starting from a standard component it is possible to define a feature
f = (R, I, C) by considering the requirements of the component and its code.
The feature code will be exactly the same as the code of the component. R
will contain the requirements of the component that are not context-dependent.
In general the requirements of the component will always contain requirements
about the execution context, thus they will be added to C. Further context
requirements, for example concerning resources consumptions can be obtained
through suitable static code analysis. For example in our environment we use
the Chameleon framework [5] in order to extract the consumption of resources
caused by I (e.g. memory and CPU clock rate). At the end of the exploration
phase we obtain a set of features defined in terms of their basic components, i.e.
A = {f1, .., fn}.

At integration phase the software engineer combines the features in A through
the feature diagram definition. Architectural constraints will be defined here at
the integration phase. Starting from the feature diagram an automatic process
generates all the system configurations:

G = {G1, G2, ..., Gm} s.t. m ≤ 2|A| (3)

We assume that the requirements belonging to each configuration imply the
system requirements. We further assume that each configuration satisfies its re-
quirements: IGi � RGi ∀i = 1, ..,m. An automatic process generates the context
structure and the context space S considering the context entities exploited by
the context requirements belonging to the created configurations.

At validation phase we create the data structure to support the evolution.
This phase takes place by means of two main steps. The first step consists in
labeling each context state −→c in S with all the features which are consistent in−→c (Eq. 2). The feature consistency table is built inserting value 1 each time a
feature is consistent in the corresponding context state. The second step consists
in labeling each context state −→c in S with all the system configurations that
are consistent in −→c . The configuration consistency table is built inserting value
1 each time a configuration is consistent in the correspondent context state.
Finally, we aggregate the context states that make the same set of configurations
consistent. Nevertheless, we do not address the scalability problems arising from
the number of context states and configurations within the mentioned tables.
Different approaches [11] have been presented to reason about the configurations
belonging to the feature diagram. Moreover the exponential growth of context
states could be mitigated by clustering the states [16].

The evolution phase reconfigures the system whenever either a foreseen or
an unforeseen evolution is required. In the first case we query the configuration

252 P. Inverardi and M. Mori

consistency table to retrieve the space of the admissible configurations. Among
them we select the most suitable one based on the data structures provided at
the validation phase. In the second case we have to re-iterate the first three
phases of our software process in order to evolve the system. We query a remote
feature library to retrieve the feature implementing the new requirement and we
integrate the new feature with the current configuration. Finally, we have to val-
idate the new unforeseen configuration before we can add it to the configuration
consistency table. The evolution processes are further discussed in Section 5.

4.1 Working Example

In this section we show how we design and develop the adaptive application to
visualize a Mandelbrot fractal. To this end, the software engineer defines the set
of features A in terms of requirements and code implementations:

A = {fgenShot, fgenPro, fgenImm, fcolB, fcolNB, fcolS, fremGet, fsockConn}

The set A contains the features to generate and color the fractal pixels and the
features to download a standard fractal image from a remote server. The gener-
ation may be performed by visualizing a pixel at a time (fgenImm), a pixel row
at a time (fgenPro) or the whole fractal image at the end of the drawing process
(fgenShot). The pixel colors are defined following three different schemas: fcolB
colors pixels as bands exploiting a limited number of tones; fcolNB colors pixels
as bands exploiting a wide spectrum of tones while fcolS follows a smooth schema
to color pixels exploiting a wide spectrum of tones. Finally, fsockConn connects
the device to the Internet whereas fremGet retrieves and views a standard fractal
image from a remote server.

Figure 9 shows an excerpt of the features entailed in A. It is possible to define
the context requirement of each feature by exploiting the Chameleon framework
in order to obtain the consumption of resources, e.g. CPU clock rate and memory.
Further, context requirements can be defined by extracting the requirement on
the number of screen colors derived from the requirement of the component.

In order to design the fractal application the software engineer combines the
features and produces the feature diagram as shown in Figure 5. The logic op-
erators in the feature diagram guide the automatic generation of 10 system
configurations as shown in Table 1. The first nine configurations are obtained
combining the three different building mechanisms with three different coloring
schemas. The last one simply gets an already defined fractal image from a re-
mote server. Each configuration is characterized by the context requirement and
by the offered qualities. The DisplayModel quality represents the modality of
showing the fractal while ColorModel quality expresses the coloring modalities.

After creating the configurations, the integration phase generates the context
model which contains the relevant resources for the fractal application as shown
in Figure 3. In our example the context space will be defined as S = mem ×
cRate× sc× conn.

A Software Lifecycle Process to Support Consistent Evolutions 253

fgenPro = (RgenPro, IgenPro,CgenPro)
RgenPro : Compute each f r a c t a l p i x e l and show i t a p i x e l row at a t ime
IgenPro :
pub l i c c l a s s MandelCanvas extends Canvas{ . . .
pub l i c vo id g e n e r a t eP r o g r e s s i v e F r a c t a l (){
i n t co lumn ArrayCanvas [] = new i n t [h e i g h t] ;
f o r (i n t x = 0 ; x < width ; x++){
f o r (i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l A r r a yCan va s = d r awF r a c t a l P i x e l (x , y) ;

}
o f f s e t X = x ;
image = Image . createRGBImage (co lumn ArrayCanvas , 1 , h e i gh t , f a l s e) ;
r e p a i n t () ;

} } . . . }
CgenPro : mem ≥ 200

fcolS = (RcolS, IcolS,CcolS)
RcolS : Pa in t the f r a c t a l p i x e l s as smooth ly n i c e co l o r ed bands
IcolS :
pub l i c c l a s s Co l o u r i n g { . . .
p r i v a t e i n t p i x e l Co l o r Smoo th l y (boo lean i n t e r n o , i n t i t e r a z i o n i , doub le d i s t){
i f (i n t e r n o) r e tu r n 0 ;
i t e r a z i o n i = i t e r a z i o n i + 2 ;
doub le mu I t e r a t i o n sD i s t a n c e = i t e r a z i o n i −
(F l oa t11 . l o g (F l oa t11 . l o g (d i s t))) / l og2 ;
i n t tmp= DBL ToRGB(mu I t e r a t i o n sD i s t a n c e) ;
r e tu r n tmp ;}

p r i v a t e vo id i n i tCo l o r s Smoo t h l y () {
l o g2 = Floa t11 . l o g (2 . 0) ;

} . . . }
CcolS : crate ≥ 500 ∧ sc ≥ 4096

fremGet = (RremGet, IremGet,CremGet)
RremGet :Re t r i e v e and view the f r a c t a l image from the s e r v e r
IremGet :
pub l i c c l a s s RemoteViewer extends Canvas { . . .

pub l i c vo id v i ewRemoteFra c ta l (){
t h i s . image = g e t F r a c t a l (s ta r tT ime ∗1000 , maxExecutionTime) ;
r e p a i n t () ;

} . . . }
CremGet : mem ≥ 100

Fig. 9. Application features

As far as the validation of the fractal application is concerned we only show
the consistency based on context analysis (Def. 1). The validation phase creates
the feature consistency table (Table 2) by checking the weak consistency for
each feature at each context state in S. It evaluates the validity for the context
requirements (predicates) of each feature by assigning all the possible context
values. The table assigns value 1 if it is possible to select a feature in a certain
context state and 0 otherwise. After defining the feature consistency table the
context analysis phase creates the configuration consistency table (Table 3) by
considering the features included in each configuration. This table contains value
1 only if all the features in a certain configuration are jointly weakly consistent
at a certain context state. The process checks the validity of the joint predicate
as shown in Section 3.4.

254 P. Inverardi and M. Mori

Table 1. System configurations

System Configuration Context Requirement Offered Quality

G1 = {fgenShot, fcolB} mem ≥ 300 ∧ cRate ≥ 100 DisplayModel = Shot
ColorModel = BandOfColors

G2 = {fgenShot, fcolNB} mem ≥ 300 ∧ cRate ≥ 300∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = NiceBandOfColors

G3 = {fgenShot, fcolS} mem ≥ 300 ∧ cRate ≥ 500∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G4 = {fgenPro, fcolB} mem ≥ 200 ∧ cRate ≥ 100 DisplayModel = Progressive
ColorModel = BandOfColors

G5 = {fgenPro, fcolNB} mem ≥ 200 ∧ cRate ≥ 300∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = NiceBandOfColors

G6 = {fgenPro, fcolS} mem ≥ 200 ∧ cRate ≥ 500∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G7 = {fgenImm , fcolB} mem ≥ 120 ∧ cRate ≥ 100 DisplayModel = Immediate
ColorModel = BandOfColors

G8 = {fgenImm , fcolNB} mem ≥ 120 ∧ cRate ≥ 300∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = NiceBandOfColors

G9 = {fgenImm , fcolS} mem ≥ 120 ∧ cRate ≥ 500∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G10 = {fremGet, fsockConn} mem ≥ 100 ∧ conn = 1 DisplayModel = Shot
ColorModel = BandOfColors

Table 2. Feature consistency table

C(mem,cRate, sc, conn)/fj fgenShot fgenPro fgenImm fcolB fcolNB fcolS fremGet fsockConn

C0 = (100, 200, 256, 0) 0 0 0 1 0 0 1 0
...
C33 = (150, 400, 4096, 1) 0 0 1 1 1 0 1 1
...
C43 = (350, 200, 4096, 1) 1 1 1 1 0 0 1 1
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1

Table 3. Configuration consistency table

C(mem,cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0
...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1
...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1

5 System Evolution

Our development process supports the system evolution required by the context
variations. In the following we show that in the foreseen evolution system and

A Software Lifecycle Process to Support Consistent Evolutions 255

context models are queried to support the reconfigurations, while in the case of
unforeseen evolution the same models may have to be refined as a consequence
of incoming user needs.

5.1 Foreseen Evolution

In the foreseen evolution we consider only configurations that have already been
proven weakly consistent. A monitoring process notifies the context variations
which invalidate the context requirement belonging to the running configura-
tion. Whenever such a new assignment of resources is discovered, the framework
queries the configuration consistency table to get the possibly new admissible
configurations. In order to perform the static decision-making process among
weakly consistent configurations we take into consideration context and user
preferences. Since we want to make our mechanism resilient to future contexts
we take into consideration which is the probable future evolution for each context
state. We consider the predictions for the user centric information (user task,
user mobility) and the predictions for the evolution laws of resources obtained as
explained in [40]. Exploiting such information we build a probabilistic automa-
ton according to the approaches in [34,8]. Each different state corresponds to a
different context and each arc expresses the probability to move from a context
to another (e.g. Figure 10).

Fig. 10. Probabilistic evolution automata

If the user preferences are not fixed but they change over the execution we can
include the possible preference variations within the automaton. Then we exploit
the probabilistic model to evaluate the degree of suitability of each configuration
to the context and to the user preferences. In [36] we have formalized and we
have experimented a decision mechanism process that considers both factors
within our probabilistic model.

5.2 Working Example

In the following we show a possible decision-making process that considers fixed
user preferences and probable context evolutions in order to evaluate the overall
fitness of each configuration Gi. Starting from the automaton in Figure 10 we
evaluate the steady-state probability vector −→p = [0.2794 0.2794 0.2647 0.1765]

256 P. Inverardi and M. Mori

which expresses how often the context belongs to a certain state. Then we ob-
tain the context fitness vector by multiplying the vector −→p with the matrix m
representing the configuration consistency table:

f = p ·m (4)

This vector assigns a fitness value at each configuration that depends on the
number of states in which the configuration is admissible and on the relevance
for the states as evaluated by the steady-state probability vector. This rank-
ing mechanism considers only how often the context belongs to a certain state
whereas it ignores which is the current state and its future transitions thus lead-
ing to globally optimum solutions. Parallel to f we also evaluate a user fitness
vector t expressing how each configuration is suitable with respect to the user
preferences. We express preferences as weights over the quality attributes which
characterize the variants. Each weight wq (from 0 to 1) indicates the interest
for the user towards a certain quality q. We use a predefined utility function
uq(Gi) to assign a value from 0 to 1 at each quality dimension q provided by
each Gi. The software engineer defines the utility functions and the weights for
each quality since they are strictly application dependent. The user fitness vector
is evaluated as:

t(Gi) =
∑

q∈Qualities

wq × uq(Gi) (5)

Our decision-making process will consider together the user fitness t(Gi) and
context fitness f(Gi) to evaluate the overall fitness of each configuration Gi.

Let us consider the scenario as depicted in Table 3 and let us suppose that
the configuration G4 = {fgenPro, fcolB} is running at the context state C43 =
(350, 200, 4096, 1) whereas the user preferences assign higher weight to the
DisplayModel quality. The system is producing a fractal image drawing a row at
a time and coloring pixels as bands of colors. Let us now suppose that because of
a new application started on the mobile device, the current memory availability
changes and the monitoring detects a context variation. By looking at the new
context state C33 = (150, 400, 4096, 1) in Table 3 we obtain the set of admissi-
ble (weakly consistent) configurations. Among them we select the one with the
highest overall fitness. Therefore the current fractal application is stopped and
it is evolved towards the configuration G7 = {fgenImm, fcolB} which represents
the best trade-off between user and context fitness.

5.3 Unforeseen Evolution

Let us assume that during the execution phase the set of requirements the system
needs to satisfy evolves because of changing user needs. For example the user
has to deal with a new context situation that has not been foreseen by the
software engineer at design time. Since a new behavior may have to be injected
into the system it is necessary to modify at run-time the context-based decision
table presented in the earlier sections. In addition also the models related to

A Software Lifecycle Process to Support Consistent Evolutions 257

the system variability and context may have to be refined at run-time. Two
different cases can arise: either a new requirement has to be added to the current
configuration or an already existing requirement has to be deleted from the
current configuration. We suppose that the requirement to add or to delete does
not imply other requirements causing side effect phenomena to be managed.
Thus, in order to evolve the application with a new requirement we augment
the current selected configuration with a new feature implementing the new
requirement. This leads to a new configuration that has not been anticipated
at design time. Adding new requirements is more problematic than deleting
requirements, thus we only discuss the first. Further, adding new behaviors seems
to be appropriate for facing unforeseen situations.

In our approach we only evolve the current selected configuration whereas
we do not consider how to augment the whole space of variants with the new
requirement. We neither discuss how the addition of a new requirement to a
configuration may affect the qualities attributes offered from the configuration.

The user may press a specific button within the application interface in or-
der to communicate to the framework the variation of his/her needs. Then the
user should specify the new requirement RNew, for example in natural lan-
guage. The unforeseen evolution phase has to upgrade the running configuration
with a new feature implementing the requirement RNew. We assume to have
a search engine that given a requirement is able to return the set of features
implementing it (exploration phase). Among them, we select the first feature
fNew = (RNew , INew, CNew) that is weakly consistent with the current running
system configuration GF = (RF , IF , CF) at the current context −−→ccurr:

(CF ∪C Cnew)[−−→ccurr/−→x] (6)

The integration phase creates the new configuration GF ∪f fNew and the val-
idation phase checks the weak consistency of the configuration at the current
context state. The configuration is added to the configuration consistency table
and since new resources may be required by the new feature it could be nec-
essary to augment the context. Also the feature diagram is kept up-to-date by
adding the incoming feature. We recall that in our approach, the integration of
a new feature to the feature diagram only leads to a new configuration. We do
not consider how to perform the integration of the new feature with all possible
configurations since we only evolve the current configuration.

5.4 Working Example

Let us suppose that at the context state C33 = (150, 400, 4096, 1), our framework
completes a foreseen evolution for the fractal application. It puts in execution the
configuration G10={fremGet, fsockConn} which visualizes a precomputed fractal
image after it has been downloaded from a remote server. The retrieved image
complies to the TIFF image format. Because of unforeseen characteristics of the
mobile device, the user cannot visualize the retrieved image. The device cannot
decode TIFF images and therefore the fractal application has to be upgraded.

258 P. Inverardi and M. Mori

To this end, the user interacts with the framework to add a new requirement
in the application. After accessing to the upgrading wizard, he/she specifies the
new requirement in natural language:

RNew = The system shall visualize TIFF format images (7)

This requirement has not been foreseen at design time but arises only at run-
time when the unforeseen device characteristics (context) make the fractal vi-
sualization impossible. Thus after the evolution process, we have to re-iterate
the exploration, integration and validation phases at run-time in order to evolve
the application with the feature (i.e. the software codec) to view TIFF format
images. This will lead to a new configuration with same features of the current
configuration plus the new feature.

The exploration phase queries the search engine in order to retrieve a feature
which implements the new requirement, e.g. see Figure 11.

ItiffV iewer :
pub l i c c l a s s Viewer{ . . .
pub l i c RenderOp t i f f V i e w e r (Object s t ream){
ParameterBlock params = new ParameterBlock () ;
params . add (s t ream) ;
TIFFDecodeParam decodeParam = new TIFFDecodeParam () ;
RenderedOp image = JAI . c r e a t e (” t i f f ” , params) ;
r e tu r n image ;

} . . . }
CtiffV iewer : cRate ≥ 300 ∧ mem ≥ 35

Fig. 11. Example: new feature

The integration phase augments the feature diagram with the new feature as
shown in Figure 12. An optional feature ftiffV iewer is added to the diagramwhich
only leads to a new configuration GNew = {fremGet, ftiffV iewer , fsockConn}.

For the validation phase we consider how the new context requirement affects
the context requirements provided at design time. The new context requirement
CtiffV iewer , that we consider for weak consistency, refers to the resources cRate
and mem which have been already foreseen at design time; thus a context model
extension is not required. To establish if the new configuration GNew = G10 ∪f

ftiffV iewer is weakly consistent we evaluate the new context requirement jointly
with the context requirement for G10, i.e.:

CNew = cRate ≥ 300 ∧mem ≥ 135 ∧ conn = 1

This predicate is true at the context state C33 since this state provides enough
memory, cpu speed and an Internet connection. Only if the new predicate is false
the framework does restart the evolution process by the exploration phase in
order to consider other features. Finally, if the configuration is weakly consistent
(the new predicate is true with the current context values), the validation phase
adds the new configuration GNew to the consistency table as shown in Table 4
by checking the weak consistency property also for the other context states.

A Software Lifecycle Process to Support Consistent Evolutions 259

Fig. 12. Refined feature diagram

Even if it is not shown in the example, a new feature may also require new un-
foreseen context entities in its context requirements. Thus, it may be necessary
to refine also the context model in order to consider the values for the new re-
sources. As a consequence it would be also necessary to augment the consistency
table with the new context states arising from the augmented context space.

Table 4. Refined configuration consistency table

C(mem,cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 GNew

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0 0
...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1 1
...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1 0
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1 1

6 Evolution Framework Architecture

In Figure 13 is shown the architecture that can be implemented by any evolution
framework in order to support the development and the execution of adaptive
applications. This architecture implements the MAPE cycle as described in Sec-
tion 1 and it supports our lifecycle process for context-aware adaptive systems.
The application, configuration and feature blocks represent the basic compo-
nents. They enable the definition of the application along with its variability.
The context manager component is able to monitor the resources and to man-
age their definitions and values by accessing to the context model component. It

260 P. Inverardi and M. Mori

performs the monitoring phase and it triggers the required evolution phases. The
decision-making component maintains the context-based tables and the proba-
bilistic automaton in order to support the decision-making mechanisms; it also
supports the consistency checking phase and the ranking process for the configu-
rations. A component for each kind of evolution is provided in the framework. As
shown by the arrows, while the foreseen evolution accesses the decision-making
component to select the most suitable configuration, the unforeseen evolution
interacts with the user who specifies variation to the requirements. Finally the
execution component enacts the system reconfiguration for both evolutions.

6.1 Framework Instantiation

We have instantiated the architecture in Figure 13 by exploiting current practices
technologies available in the literature. We represent requirement R as Linear
Time Temporal Logic expressions [39], whereas we represent the context require-
ments as predicates. We evaluate the context states in which a configuration is
admissible by formalizing and solving a Constraint Satisfaction Problem (CSP)
[35] by using the Java API available with the JaCoP tool1. Implementation ar-
tifacts are coded in Java, thus making it possible to verify the implementation
components I with respect to the requirement R. To this end, our approach
proposed in [23] defines a model checking phase which exploits the Java Path
Finder tool2.

Our framework supports the foreseen evolution by deciding which is the most
suitable variant to execute whenever the current context state makes the running
configuration not anymore admissible. To this end, the framework stops the
execution of the running configuration and it puts the target variant in execution.
Our earlier approach [36] describes how to select the most suitable variant based
on the trade-off between user benefit and reconfiguration cost. The framework
presented in this paper also supports the unforeseen evolution by exploiting a
mechanism for the dynamic loading of Java classes. The user interacts with the
application to specify a new requirement in a similar way as a programmer can
add a new plug-in to the Eclipse or NetBeans IDE. If there is no configuration
that can satisfy the augmented set of requirements, then the framework searches
for a feature which implements the new requirement by interacting with a remote
library of features. It creates a new configuration that contains the same set
of features of the current configuration plus the new feature. The framework
checks if the new set of features is free from interactions by evaluating context
requirements. Once the framework has found such a new feature it gives as
result the implementation for the new configuration. The framework supports
the code replacement for the configuration and a mechanism for re-loading the
new compiled classes (based on Javeleon3). Finally, the new configuration will
be enacted trough its entry point method.

1 http://jacop.osolpro.com/
2 http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
3 http://javeleon.org/

http://jacop.osolpro.com/
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://javeleon.org/

A Software Lifecycle Process to Support Consistent Evolutions 261

Fig. 13. Evolution framework architecture

7 Conclusion and Future Work

We have defined a generic model-centric software lifecycle process for context-
aware adaptive systems. Our process supports concrete mechanisms to achieve
consistent evolution both at design time and at run-time through a static and a
dynamic decision-making procedure. We have proposed feature-oriented models
to represent the system along with its variability and we have modeled context
entities as the basis for the notion of weak consistent evolution.

We have defined a generic evolution framework in order to support the soft-
ware process for adaptive systems. We have implemented a possible instance of
the evolution framework applying current practice technologies.

As for future work, we will carry out extensive experimentations in order to
evaluate advantages and disadvantages of adopting the framework to develop
adaptive applications.

Acknowledgments. This work has been partially supported by the EU IST
CONNECT (http://connect-forever.eu/) No 231167 of the FET - FP7 program
and the EU IST CHOReOS (http://www.choreos.eu/) No 257178 of the FP7
program.

262 P. Inverardi and M. Mori

References

1. Alférez, M., Moreira, A., Kulesza, U., Araújo, J., Mateus, R., Amaral, V.: Detecting
feature interactions in spl requirements analysis models. In: FOSD, pp. 117–123
(2009)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requir. Eng. 15(4), 439–458 (2010)

3. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: SEAMS, pp. 27–47 (2009)

4. Autili, M., Di Benedetto, P., Inverardi, P.: Context-Aware Adaptive Services: The
PLASTIC Approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 124–139. Springer, Heidelberg (2009)

5. Autili, M., Benedetto, P.D., Inverardi, P.: Hybrid approach for resource-based com-
parison of adaptable java applications. Journal of Science of Computer Program-
ming (SCP) - Special issue of BElgian-NEtherlands software eVOLution seminar
(BENEVOL) on Software Evolution, Adaptability and Maintenance (2012)

6. Autili, M., Cortellessa, V., Ruscio, D.D., Inverardi, P., Pelliccione, P., Tivoli, M.:
Eagle: engineering software in the ubiquitous globe by leveraging uncertainty. In:
SIGSOFT FSE, pp. 488–491 (2011)

7. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems.
IJAHUC 2(4), 263–277 (2007)

8. Berardinelli, L., Cortellessa, V., Di Marco, A.: Performance Modeling and Analysis
of Context-Aware Mobile Software Systems. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 353–367. Springer, Heidelberg (2010)

9. Bisbal, J., Cheng, B.H.C.: Resource-based approach to feature interaction in adap-
tive software. In: WOSS, pp. 23–27 (2004)

10. Blair, G.S., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10),
22–27 (2009)

11. Brataas, G., Hallsteinsen, S.O., Rouvoy, R., Eliassen, F.: Scalability of decision
models for dynamic product lines. In: SPLC (2), pp. 23–32 (2007)

12. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feed-
back Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

13. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Self-
Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)

14. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a Feature: A Requirements
Engineering Perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 16–30. Springer, Heidelberg (2008)

15. Czarnecki, K., Eisenecker, U.W.: Generative programming: Methods, Tools and
Applications. Addison-Wesley (2000)

16. Dorn, C., Dustdar, S.: Weighted fuzzy clustering for capability-driven service ag-
gregation. In: SOCA, pp. 1–8 (2010)

17. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenkiste, P.: Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. IEEE Com-
puter 37(10), 46–54 (2004)

18. Ghezzi, C., Inverardi, P., Montangero, C.: Dynamically Evolvable Dependable Soft-
ware: From Oxymoron to Reality. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 330–353. Springer,
Heidelberg (2008)

A Software Lifecycle Process to Support Consistent Evolutions 263

19. Glinz, M.: On non-functional requirements. In: RE, pp. 21–26 (2007)
20. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of java applications - balanc-

ing change flexibility vs programming transparency. Journal of Software Mainte-
nance 21(2), 81–112 (2009)

21. Hong, J., Suh, E., Kim, S.-J.: Context-aware systems: A literature review and
classification. Expert Syst. Appl. 36(4), 8509–8522 (2009)

22. Inverardi, P., Mori, M.: Feature oriented evolutions for context-aware adaptive
systems. In: EVOL/IWPSE, pp. 93–97 (2010)

23. Inverardi, P., Mori, M.: Model checking requirements at run-time in adaptive sys-
tems. In: Proceedings of the 8thWorkshop on Assurances for Self-adaptive Systems,
ASAS 2011, pp. 5–9 (2011)

24. Inverardi, P., Mori, M.: Requirements models at run-time to support consistent
system evolutions. In: Proceedings of the 2nd International Workshop on Require-
ments@Run.Time, pp. 1–8 (2011)

25. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 1–31.
Springer, Heidelberg (2009)

26. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

27. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented do-
main analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21 SEI
Carnegie Mellon University (1990)

28. Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D., Venieris, I.S.: Context-aware
service engineering: A survey. JSS 82(8) (2009)

29. Keck, D.O., Kühn, P.J.: The feature and service interaction problem in telecom-
munications systems. a survey. IEEE TSE 24(10), 779–796 (1998)

30. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Trans. Software Eng. 16(11), 1293–1306 (1990)

31. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE,
Washington, DC, USA, pp. 259–268 (2007)

32. Mancinelli, F., Inverardi, P.: A resource model for adaptable applications. In:
SEAMS, New York, NY, USA, pp. 9–15 (2006)

33. Mandelbrot, B.: The fractal geometry of nature. Freeman (1982)
34. Marco, A.D., Mascolo, C.: Performance analysis and prediction of physically mobile

systems. In: WOSP, pp. 129–132 (2007)
35. Marriott, K., Stuckey, P.: Programming with Constraints: An introduction. MIT

Press (1998)
36. Mori, M., Li, F., Dorn, C., Inverardi, P., Dustdar, S.: Leveraging State-Based

User Preferences in Context-Aware Reconfigurations for Self-Adaptive Systems.
In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp.
286–301. Springer, Heidelberg (2011)

37. Osterweil, L.: Software processes are software too. In: ICSE, Los Alamitos, CA,
USA, pp. 2–13 (1987)

38. Parra, C., Cleve, A., Blanc, X., Duchien, L.: Feature-Based Composition of Soft-
ware Architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 230–245. Springer, Heidelberg (2010)

39. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
40. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., Sousa, J.:

Leveraging resource prediction for anticipatory dynamic configuration. In: SASO,
Washington, DC, USA, pp. 214–223 (2007)

264 P. Inverardi and M. Mori

41. Pukall, M., Grebhahn, A., Schröter, R., Kästner, C., Cazzola, W., Götz, S.:
Javadaptor: unrestricted dynamic software updates for java. In: ICSE, pp. 989–
991 (2011)

42. Qureshi, N., Perini, A.: Requirements Engineering for Adaptive Service Based Ap-
plications. In: RE, pp. 108–111 (2010)

43. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. TAAS 4(2) (2009)

44. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: A research agenda for re for self-adaptive systems. In: RE, pp.
95–103 (2010)

45. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Computer Networks 51(2), 456–479 (2007)

46. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans.
Software Eng. 33(12), 856–868 (2007)

47. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE, New York, NY, USA, pp. 371–380 (2006)

48. Zowghi, D., Gervasi, V.: The three cs of requirements: Consistency, completeness,
and correctness. In: REFSQ (2002)

	A Software Lifecycle Process to Support Consistent Evolutions
	Introduction
	Related Work
	Evolution Framework
	Context Model
	Unit of Behavior
	System Configuration
	Consistency Checking

	Software Development Process
	Working Example

	System Evolution
	Foreseen Evolution
	Working Example
	Unforeseen Evolution
	Working Example

	Evolution Framework Architecture
	Framework Instantiation

	Conclusion and Future Work
	References

