
Y. Yuan, X. Wu, and Y. Lu (Eds.)
© Springer-Verlag Berlin Heidelb

Vulnerability

Chunlu Wang1,2,

1 School of Compute
and

2 Key Laboratory of Tr
M

Abstract. Networked
vulnerabilities. Every
bilities discovered in s
ties because of the hig
user environments base
three aspects: confiden
to reflect the vulnerabi
weight on the three as
We use attack graph to
and calculate on the co
results indicate that ou

Keywords: vulnerabil

1 Introduction

Over the past decade, we h
reported as well as the vuln
official web site, a vulnerab
hacker to gain access to a s
the number of vulnerabilitie

Fig. 1. R

One may consider the s
patched, but for many orga

): ISCTCS 2012, CCIS 320, pp. 555–563, 2013.
erg 2013

Evaluating Based on Attack Graph

Yu Bao1,2, Xuesen Liang1,2, and Tianle Zhang1,2

er Science and Technology, Beijing University of Posts
d Telecommunications, Beijing, China
rustworthy Distributed Computing and Service (BUPT)，

Ministry of Education, Beijing, China
wangcl@bupt.edu.cn

hosts are facing more and more threats due to software
year, there are an increasing number of security vulnera-
oftware. It is impractical that we patch all the vulnerabili-

gh cost of patching procedure. In this paper, we propose a
ed scoring method. We analyze vulnerability impact from

ntiality, integrity and availability. The score is customized
ility’s risk under certain security request by assigning the
pects according to the host’s function in an organization.

o analyze the relationships among vulnerabilities in a host,
ontext to get each vulnerability’s threat. The experimental
ur scoring method can better reflect the real situation.

ity, network security, risk assessment.

have seen an ever-increasing number of security incide
erabilities discovered in software. As described by CVE

bility is “a mistake in software that can be directly used b
ystem”. According to the statistics published by CERT

es has grown in the last five years as shown in Fig. 1.

Reported vulnerabilities from 2003 to 2008

system is secure from attacks after all vulnerabilities
anizations, keeping each vulnerability patched is unreali

ents
E [1]
by a
[2],

are
istic

556 C. Wang et al.

and sometimes undesirable. Firstly, there are so many new vulnerabilities discovered
each year. Existing scanners can find the latest vulnerability by keeping them update,
but for some vulnerabilities, they only provide the characteristics but no solutions.
System managers are also incompetent to solve these problems. Secondly, uncon-
firmed patches may bring the system into instability and introduce more bugs. Third-
ly, patching on OS kernel level often needs to be rebooted, and some organizations
are intolerant of availability being affected.

In order to keep the organizations safe, the security managers must have a clear
image of which hosts are most critical and execute system security checks when new
vulnerabilities are published or when new hosts are installed in strict rotation. Securi-
ty manager has to ensure that any un-patched vulnerabilities will not be exploited, or
would not cause much cost even exploited. Since it’s not practical that we patch all
discovered vulnerabilities, we have to face the following problem: Which vulnerabili-
ty needs to be patched first? To answer this question, the managers need to understand
the risk and potential damage of each vulnerability to the hosts. Such an understand-
ing is hard to achieve only by reading daily vulnerability reports from various sources
even from the automated security tools. Modern sophisticated intrusions usually con-
sist of multi-stage attacks which combine multiple vulnerabilities, while most security
tools typically focus on identifying individual vulnerabilities, and have no clue about
which and how vulnerabilities can be combined for an attack.

This paper introduces a way to analyze vulnerabilities based on the host’s custo-
mizable security request of Confidentiality (C), Integrity (I) and Availability (A) and
the combined effect of vulnerabilities. We calculate the threat of individual vulnera-
bilities to certain host by using the context provided by the attack graph, and then
prioritize them and give advice to the manager. The rest of the paper is organized as
follows. In section 2, related work of this paper is discussed. In Section 3, we present
how we evaluate the vulnerabilities and explain the related concepts. The calculations
of analysis using attack graphs are given in section 4. Section 5 shows the detail of the
method a through an experiment. Conclude in Section 6.

2 Related Work

When analyzing the system risk, we can get the information about vulnerabilities
from various vulnerability databases, for example OSVDB [5], Security Focus’s vul-
nerability database [9], and Public Cooperative Vulnerability Database [6]. But until
the creation of CVE which is a common identifier, it is hard to share data across sepa-
rate databases. Now CVE Identifiers are frequently used and are easily cross-linking
with other repositories that also use CVE identifiers. In our work, attack graph will be
talked about. Phillips and Swiler first proposed the method that uses attack graphs for
analyzing network security [8]. In the graph, nodes represent network states, and its
edges represent the application of an exploit. The path is a series of exploits leading to
the goal of an attacker. Since this method can not automatically generate attack graph,
it can not be used in large-scale network security analysis. Ritchey and Ammann [9]
first used model checker to analyze network vulnerabilities. The advantage of using
model-checking approach is that we can use existing model checkers rather than write

 Vulnerability Evaluating Based on Attack Graph 557

an analysis engine. A model checker can check the model against a security formula,
and then a counterexample shows the attack path that leads to the violation of the
security property. In Ritchey’s method it can only give one counterexample. Sheyner
[10] improves the model checker which can give all the counterexamples. However,
in model checking, most state transition sequences are unnecessary for network secu-
rity analysis and lead to combinatorial explosion. In order to cut down the space and
time complexity, the monotonicity is proposed. It states that gaining more privileges
can only help the attacker in further compromising the system and there is no need for
backtracking. Based on the monotonicity, Ammann, et al. proposed an approach
where dependencies among exploits are modeled in a graph structure [11]. The me-
thod described in this paper assumes the same monotonicity property, and is compati-
ble with other attack graph generation method.

3 Evaluating Aindividle Vulnerability

There are many vulnerability “scoring” systems, for example, CERT/CC [2], SANS
[12], Microsoft’s proprietary scoring system [13] and CVSS [4], each of which has its
metrics and vulnerability database. Organizations use different labels to index the
vulnerabilities. In this paper we choose CVSS as our vulnerability scoring system,
which is designed to provide an open and standardized method for rating IT vulnera-
bilities. The National Vulnerability Database [3] (NVD) provides CVSS metrics for
almost all known vulnerabilities, e.g. Fig. 2.

Fig. 2. A vulnerability example

An attack scenario is a series of vulnerability exploitation with the attacker’s privi-
lege escalated. Detailed privilege classification method was determined by operating
systems. In order to eliminate the diversity of privilege levels, most vulnerability data-
bases only provide three levels: admin, user and other. The risk levels are in a decreas-
ing order of admin > user > other. We think that the actual situation could not be
properly described only by privilege and it may lead to an underestimation of potential
risk. Instead of privilege, our method divides vulnerability impact into three aspects: C,
I and A, and uses a three-dimensional vector(x1, x2, x3) to characterize vulnerability’s
degree of loss on C, I and A. Each component has three levels of degree: None (N),
Partial (P), and Complete (C). The corresponding values are listed in Table 1.

{ }1 2 3 1,2,3(, ,); , ,v x x x x N P C= ∈ (1)

Vulnerability: CVE-2007-3168
Access Vector: Network exploitable
Access Complexity: Low
Authentication: Not required to exploit

558 C. Wang et al.

Table 1. Impact degrees and values

Level Value

N 0
P 0.275
C 0.660

When a vulnerability cause complete loss of confidentiality, integrity, and availa-
bility, it equals to providing a root privilege, while vulnerabilities that give user privi-
lege can be represented with only partial loss of C, I and A. Let Impact (v) denotes the
impact value of v, and the formula is:

1 2 3Impact() 1 (1) (1) (1)v x x x= − − × − × − (2)

The above formula came from CVSS equations, and we made little change. A ratio that
makes a score rang from 1 to 10 was removed from the old equations. Because we think
it is unnecessary in our model and doesn’t affect the relationship of vulnerabilities.

Modern enterprise network consists of many computers and other equipments,
which take different responsibility. For example, some are running a HTTP server,
and some have databases installed for confidential information storage. For the web
server, availability is more important than confidentiality; while for a database server,
quite contrary. Thus availability volatized vulnerability will not have the same effect
on these hosts, but get a same score. More importantly, sometimes sensitive informa-
tion can be obtained by an attacker without privilege escalation. So to make a rational
evaluation, both the vulnerabilities and host’s security requirement should be taken
into consideration. A Weight Group (W) can be assigned to customize the security
requirement on CIA of a certain host by the system administrator.

 (, ,),0 , , 1; 1W α β γ α β γ α β γ= ≤ ≤ + + = (3)

α, β and γ are preference weights for C, I and A respectively. These weights enable
the manager to customize the way we evaluate vulnerabilities depending on the func-
tion of the host to a user’s organization. That is, if a host is used to store confidential
document for which confidentiality is most important, the manager should assign a
higher weights to α, relative to β and γ.

Given a host with specific security requirement, we assign the W. Risk is the
weighted impact of a vulnerability.

 1 2 3Risk(,) 1 (1) (1) (1)W v x x xα β γ= − − × − × − (4)

4 Calculation on Attack Graphs

When analyzing sophisticated intrusions, we find that multiple vulnerabilities can be
combined together for reaching a goal. During the attack, vulnerability may be a step
stone of others and can still keep its effect after the exploitation. In this paper, we use

 Vulnerability Evaluating Based on Attack Graph 559

attack graph to help analyze the threat of a host instead of a large network. After re-
ducing the scale of problem the attack graph analysis can be done in desirable time.
By using the context provided by the attack graph, we calculate each vulnerability’s
contribution to the system’s compromise and get the ranked list of all vulnerabilities
to help the administrator make priority remediation. Another weakness of many
previous approaches is that information used to build the graph is usually freely for-
matted, which requires extensive manual analysis of vulnerabilities and attacks. Our
approach extracts most information from NVD, where well-formed data can be easily
accessed. We try to make our method more compatible with different design and easi-
er to implement. Because the attack in a host is monotonic, the attack graph is a
Directed Acyclic Graph (DAG) or an attack tree. Each node is a vulnerability and the
edges mean the exploitations. A path from root to leaf indicates a successful attack.

Fig. 3. Attack graph

Fig. 4. Attack tree

The root of the tree v0 represents a start point which contains no vulnerability
information.

A. Attack Complexity(AC)

AC measures the complexity of the vulnerability required to be exploited once the
conditions are complied. It can be regard as the likelihood of a successful attack. In
CVSS [4], AC is a variable that has three values: 0.31(H), 0.61(M) and 0.71(L). Let
AC(v) be the function to get the AC of v.

B. Base Score(BS)

BS is an overall score of a vulnerability ranging from 0 to 10. A vulnerability scored
10 is one of the most critical vulnerabilities. We define a function BS(v) to achieve
the base score of v from the databases. Once we give a list of vulnerabilities to
BS(vulnerability list) it returns the sum of each vulnerability’s base score.

Next, we define two functions to manipulate the attack tree:

a) Father(vi) returns the father of the node vi on the tree. Take the example of
Fig.3, Father(v2)= v0, Father(v0)= Ø.

b) Children(vi) is a node list of vi’s direct children, for example, in Fig.3. Child-
ren(v0)=V=(v1, v2, v3), Children(v1)= Ø

C. Attack Factor(AF)

AF describes how likely an attacker is going to exploit each vulnerability under a
certain condition. When building the attack tree the vulnerabilities which have been

560 C. Wang et al.

exploited together with the ones providing less privilege than current one will not be
the next target. Attack factor of v depends on the proportion of BS(v) among all
reachable vulnerabilities.

B S ()
A F ()

B S (C h ild re n (F a th e r ()))

v
v

v
= (5)

D. Success Probability(Prob)

Success probability measures the likelihood of a vulnerability to be successfully ex-
ploited. The Prob of v to be exploited equals is the product of the probability of its
conditions to be met and the probability to be chosen multiplying the attack complexi-
ty. So the formula goes like:

Prob() Prob(()) () ()v Father v AF v AC v= ∗ ∗ (6)

and we set Prob(v0) equals to one.

E. Threat

Threat is an overall score of vulnerability in its host. It integrates the possible harm
and successful probability.

T h rea t () R isk (,) P ro b ()v W v v= ∗ (7)

5 The Experiment

In this section, we perform an experiment based on real situation. A server runs Serv-
U under Windows XP to provide a FTP service. In order to make our demonstration
short and clear, all the operating system vulnerabilities have been patched. After a full
vulnerability scan is done, five Serv-U vulnerabilities are found: CVE-1999-0219,
CVE-2000-1033, CVE-2001-0054, CVE-2005-3467 and CVE-2004-2111. There are
many vulnerability scanners available such as Nessus and OVAL Scanner, the usage
will not be elaborated here. Here we use v1 to v5 to represent these vulnerabilities.
Some characteristic are listed in the Table 2.

Table 2. Sample vulnerabilities’ characteristic

Node CVE-ID Privi-
lege

Impact
on C, I, A

Description

v1 1999-0219 / (N,N,C) Buffer overflow caused dos

v2 2000-1033 user (P,P,P) Unrestricted brut forcing of
user accounts.

v3 2001-0054 / (P,N,N) Directory traversal

v4 2005-3467 / (N,N,P) Denial of service

v5 2004-2111 admin (C,C,C) Stack-based buffer overflow

 Vulnerability Evaluating Based on Attack Graph 561

v1 is a buffer overflow vulnerability that could allow a remote attacker to create a
denial of service, causing a complete loss of availability on the host. v2 allows remote
attackers to guess the passwords of other users. v3 can cheat the server into allowing a
remote attacker access to any directory on the FTP server's disk partition by a com-
mand containing specially crafted hexadecimal encoding, causing a partial loss of
confidentiality. v4 is an unspecified Denial of Service vulnerability. v5 could be ex-
ploited by a remote authorized attacker to ultimately execute instructions with the
privileges of the Serv-U server process, typical administrator or system. It could pos-
sibly be exploited by the use of the booty of v2.

A simple attack graph is generated, as shown in Fig. 4.
Here we consider a normal attacker who has neither privilege nor any authorized

account. And there are no firewalls between the FTP server and the attacker. This
server is used to store and share public business data. If this server can not provide
stable service, it will affect daily work. So the administrator set the security request a
higher weight on availability rather than on confidentiality and integrity, the value
of w is (0.2, 0.2, 0.6). First of all, we calculate each vulnerability’s impact score and
risk score based on (2) and (4), the base score of vulnerability (defined by CVSS) is
also listed in Table 3.

Table 3. Sample vulnerabilities’ scores

Node Base Score Impact score Risk score
v1 7.8 0.6600 0.3960

v2 7.5 0.6189 0.2543

v3 5.0 0.2750 0.0550

v4 5.0 0.2750 0.1650

v5 8.5 0.9607 0.5449

The outcome clearly shows the improvement after we introduced the weight group
based on the user environment. v4’s risk is three times higher than v3’s risk. Thus vul-
nerability’s risk is no longer constant, but changeable under different security requests.
This enables the analysis closer to our actual situation. Then the correlations of the
vulnerabilities are calculated by formulas (5), (6), (7).

Table 4. Sample vulnerabilities’ prob

Node Attack com-
plexity

Attack
factor

Prob(
Fther(Vi))

Prob

v1 Low (0.71) 0.3084 1.0000 0.2190

v2 Low (0.71) 0.2964 1.0000 0.2104

v3 Low (0.71) 0.1976 1.0000 0.1403

v4 Low (0.71) 0.1976 1.0000 0.1403

v5 Medium (0.61) 1.0000 0.2104 0.1283

562 C. Wang et al.

Table 5. Threat of each vulnerability

Node Threat
v1 0.0867
v2 0.0535
v3 0.0077
v4 0.0232
v5 0.0699

Finally we calculate threats from v1 to v5, ranked as v1> v5> v2> v4> v3.

6 Conclusion

In this paper, a new methodology for vulnerability analysis has been presented. This
methodology correlates the vulnerabilities and the possibility of successful attacks
and the security requests of certain asset. In order to make our method widely appli-
cable, we describe our work at an abstract level. The risk of a particular vulnerability
was analyzed based on user environment, and the threat was calculated according to
the context of attack graph. Other methods can be compatible too if essential informa-
tion can be provided. Vulnerability databases can be changed dynamically. In our
method, the thread of a vulnerability is getting high either its risk is high or the total
vulnerability number is small. Our task is to provide a priority remediation list, only
used for host patch up.

Acknowledgements. The research is supported by China Natural Science Foundation
(60973009) and China Postdoctoral Science Foundation(20100470256).

References

1. CVE, http://cve.mitre.org/
2. CERT/CC,CERT/CC Statistics (2004-2008),

http://www.cert.org/stats/cert_stats.html/
3. NVD, http://nvd.nist.gov/
4. CVSS, http://www.first.org/cvss/
5. Open Source Vulnerability Database (OSVDB), http://osvdb.org/
6. Public Cooperative Vulnerability Database,

https://cirdb.cerias.purdue.edu/coopvdb/public/
7. Security Focus Vulnerability Database,

http://www.securityfocus.com/vulnerabilities
8. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis. In: Pro-

ceedings of the New Security Paradigms Workshop, NSPW 1998 (1998)
9. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabilities. In:

Proceedings of the IEEE Symposium on Security and Privacy, pp. 156–165 (2001)

 Vulnerability Evaluating Based on Attack Graph 563

10. Sheyner, Haines, J., Jha, S., Lippmann, R.: Automated generation and analysis of attack
graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 254–
265 (2002)

11. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability
analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, Washington, DC, USA, pp. 217–224 (2002)

12. SANS Institute. SANS Critical Vulnerability Analysis Archive. Undated (cited March 16,
2007)

13. Microsoft Corporation. Microsoft Security Response Center Security Bulletin Severity
Rating System (November 2002) (cited March 16, 2007)

14. Sheyner, O., Wing, J.: Tools for Generating and Analyzing Attack Graphs. In: Proc. of
Workshop on Formal Methods for Comp. and Objects, pp. 344–371 (2004)

15. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceedings of
the 15th IEEE Computer Security Foundations Workshop, pp. 49–63 (2002)

16. Ingols, K., Lippmann, R., Piwowarski, K.: Practical Attack Graph Generation for Network
Defense. In: Proc.of Comp. Sec. App. Conf., pp. 121–130 (2006)

17. Noel, S., Jacobs, M., Kalapa, P.: Multiple Coordinated Views for Network Attack Graphs.
In: Workshop on Visualization for Computer Security, Minneapolis, MN, USA, October
26, pp. 99–106 (2005)

18. Dawkins, J., Hale, J.: A Systematic Approach to Multi-Stage Network Attack Analysis. In:
Proceedings of the Second IEEE International Information Assurance Workshop (IWIA
2004) (2004)

19. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnerability. In:
Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Ap-
proaches and Challenges. Kluwer Academic Publishers, Dordrecht (2003)

20. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs.
Computer Communications 29(18), 3812–3824 (2006)

	Vulnerability Evaluating Based on Attack Graph
	Introduction
	Related Work
	Evaluating Aindividle Vulnerability
	Calculation on Attack Graphs
	The Experiment
	Conclusion
	References

