
Y. Yuan, X. Wu, and Y. Lu (Eds.): ISCTCS 2012, CCIS 320, pp. 522–529, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Composition of AADL Components by Transformation
to Interface Automata

Jiangwei Li1,2, Jizhou Zhao1,2, Qingqing Sun1,2, Xiaopu Huang1,2, Yan Zhang3,
and Tian Zhang1,2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Department of Computer Science and Technology, Nanjing University,

Nanjing, P.R. China
{ljw,zjz,sunqq,hxp}@seg.nju.edu.cn,

ztluck@nju.edu.cn
3 Department of Computer Science and Technology,
Beijing Electronic Science and Technology Institute,

Beijing, P.R. China
zhangyan@besti.edu.cn

Abstract. AADL, an industrial standard in embedded field, is a component-
based semi-formal modeling language. Incompatibility of behaviors is a prob-
lem that we must face up with when the AADL components composite, because
the sequence of some interactive activities may not match with each other.
Shielding the incompatible behavior and reusing the compatibly behavior max-
imally are main problems to increase the reusability of AADL components.
This paper proposes an MDE based method to implement the transformation
from AADL to IA using the heterogeneous model transformation framework.
Then we can use the IA model to derive available behavior all out from incom-
patible component compositions through construct the environment, and now
the environment maps back to AADL component to solve the AADL compo-
nents composition problems we proposed.

Keywords: AADL, Interface Automata, components composition, model
transformation.

1 Introduction

With the development of embedded system, the complexity of embedded software
continuously increases. The traditional development method cannot adapt to the re-
quirement. MDE [1], proposed by OMG, is a software development framework,
which highlights the usage of models. MDE technology have been introduced to the
embedded software development, so the developers have to consider the correctness
of the software model, and then lots of problems will be found and solved at the early
stage of software development. Then the development cycle will be shortened and
development cost will be reduced.

SAE (Society of Automotive Engineers) presented the real time embedded system
model language---AADL (Architecture Analysis and Design Language) [4] at 2004

 Composition of AADL Components by Transformation to Interface Automata 523

and it was released as SAE AS5506 Standard. AADL, a component-based semi-
formal modeling language, supports software model, hardware model and NFP
(non-function property) analysis. Because of simple grammar and extensible annex,
AADL has been supported by many organizations. At 2006 and 2011, SAE released
AS5506/1[5] and AS5506/2[6] AADL annex to complement AADL specification.
The AADL components behavior description was presented in the AS5506/2.

As a components-based model language, AADL has to face the components com-
position problem which decides whether the components can be composited or not.
Many ideas to solve this problem are to give up the incompatible components or to
construct the interface wrapper for them; however, these ideas will bring the devel-
opment cost increasing and development cycle extending problems. IA (Interface
Automata)[7] is proposed to solve these problems. As a formal modeling language,
IA uses an optimistic approach to solve components composition problems. In our
early study [2], we had given an IA-based method to utmost reuse the available beha-
vior of two incompatible components by constructing an environment for them.

In this paper, components are described by AADL, and we transform AADL mod-
els to IA models using ATL (Atlanmod Transformation Language) [8, 9]; IA is used
to verify the components composition problems, and then we use the method given
in[2] to construct an environment for two incompatible IA. Finally, the environment
is mapped back to AADL models, and then the AADL components composition prob-
lems and components behavior compatibility problems are solved.

The paper is structured as follows: Section 2 introduces the AADL and Interface
Automata simply. Section 3 describes the approach of transforming AADL compo-
nents models to IA models. In Section 4, we present a case study on the approach.
The concluding remarks are shown in Section 5.

2 Background

2.1 AADL

Architecture Analysis and Design Language (AADL) is a kind of architecture design
language based on MDA. AADL can be applied in the field of embedded software
system.

There are three kinds of components in AADL: software components, execution
platform components and system components. Components are defined through
type and implementation declarations. A component type declaration defined a
component's interface elements and externally observable attributes. A component
implementation declaration defines a component's internal structure in terms of sub-
components, subcomponent connections, subprogram call sequences, modes, flow
implementations and properties.

In the AS5506/2 annex, the behavior specification of components is presented for
the first time. The behavior specifications can be attached to any AADL components
types and components implementations using an annex subclause. When defined
within component type specifications, it represents behavior common to all the asso-
ciated implementations. If a component type or implementation is extended, behavior

524 J. Li et al.

annex subclause defined in the ancestor are applied to the descendent except if the
later defines its own behavior annex subclause.

The detailed description and examples of the AADL behavior have been provided
in the AS5506/2 annex, so we will not provide in this paper.

2.2 Interface Automata

[7] presents the Interface Automata which was a new theory to describe interface at
2001. It is different from other theories. There are two main features, one is optimistic
approach and the other is game thinking. The former feature is used to solve the
problem of interface compatibility, the latter feature to describe the semantics of this
problem. The theorems and definition of IA will not be shown in this paper because
IA has been explained in detail in [7].

3 AADL2IA Transformation

In the practical application, components composition problems are ubiquitous. If we
can find out and solve the components composition problems in the modeling stage of
software development, the development time and cost will be reduced. AADL is
components-based modeling language; however, it is not a formal modeling language.
To solve the components composition problems of AADL, we transform AADL
models to the IA models which are easy to verify the components compatibility.

3.1 Transformation Framework

The transformation framework is described in Fig.1 [10]. It shows the general model
transformation process [3]: from the source model Ma, conform to the MMa (meta
model of the Ma), then conform to the MMM (meta-meta model of the Ma). In
the M3 level, we use the ecore as the meta-meta modeling language to describe
the AADL meta-model and IA meta-model, and then we use the mapping rules to
complete the transformation.

3.2 AADL and IA Meta-model

We adopt the AADL meta-model given by AS5506/1 annex, since it has contained all
the AADL components. The meta model of IA in Fig.2, is designed by ourselves us-
ing EMF (Eclipse Modeling Framework).

3.3 Transformation Mapping Rules

To complete transformation from AADL models to IA models, Table 1 has given the
main mapping rules from AADL to IA.

 Composition of AADL Components by Transformation to Interface Automata 525

 Fig. 1. Model Transformation Framework Fig. 2. IA meta-model

4 Case Study

4.1 Scenarios Description

We illustrate the feasible of the proposed rules with an example which describes the
preparation work of docking of spaceship and space station simply.

Table 1. Transformation Mapping Rules

AADL components info IA info
single component an interface automaton

component features IA ports
component states IA state set V_P

component transitions IA transition setT_P
component transitions Guard IA input action set A_P^I
component transitions Action IA output action set A_P^O

…… ……

4.2 Model with AADL

To model this system easily, we consider the space station as Space thread, spaceship
as Ship thread components, the Space thread and the Ship thread composite the
process A. In the model, some components declarations have been removed due to
space limitations.

The Model of The System.

thread Ship
 features
 msg: in event data port ;
 ack: in event port;
 nack: in event port;
 send: out event data port;
 ok: out event port;

526 J. Li et al.

 fail: out event port;
 --Snip
end Ship;

thread implementation Ship.impl
 annex behavior_specification {**
 states
 0:initial complete final state;
 2,3:complete state;
 1,4: state;
 transitions
 0-[on dispatch,msg]->1;
 1-[]->2{send!("send")};
 2-[on dispatch,ack]->3;
 2-[on dispatch,nack]->4;
 3-[]->0{ok!("ok")};
 4-[]->0{fail!("fail")};
 **};
 --Snip
end Ship.impl;

thread implementation Space.impl
 annex behavior_specification {**
 states
 v0:initial final state;
 v1:complete state;
 transitions{**
 v0-[]->v1{msg!("msg")};
 v1-[on dispatch,ok]->v0;
 **};
 --Snip
end Space.impl;

process implementation A.impl
 subcomponents
 SpaceA: thread Space.impl;
 ShipA: thread Ship.impl;
 connections
 A1: event port ShipA.ok -> SpaceA.ok;
 A2: event port ShipA.fail -> SpaceA.fail;
 A3: event data port SpaceA.msg -> ShipA.msg;
 --Snip
end A.impl;

 Composition of AADL Components by Transformation to Interface Automata 527

4.3 Model Transformation to IA

The AADL models we have created can transform to the IA models according to the
transformation mapping rules. We get the IA models of Ship and Space in Fig.3 finally.

Fig. 3. Space station and spaceship IA models

4.4 Verification and Environment Construction

According to the interface automata composition definition [7], we can give the inter-
face automaton C (Fig.4) which is the composition of the Ship and Space interface
automata. In the Fig.4, there is an illegal state , 4 can be reached, according to
the interface automata compatibility definition [2], the interface automata Ship and
Space are incompatible. This problem has been solved in our early research [2], and
then we can use this method directly.

Fig. 4. Maximum legal environment user Fig. 5. Interface Automaton C

According to the construction algorithm of maximum legal environment shown in
[2], we can construct maximum legal environment of the interface automata Ship and
Space, named User in Fig.5.

The interface automaton space ship user is closed, definite and nonblock-
ing in Fig.6. In other words, the behavior incompatible components spaceship and
space station can work compatibly in the environment user.

Finally, the environment user maps back to AADL thread component which make
the behavior incompatible AADL components spaceship and space station can work
compatibly. This process is implemented according to some mapping strategies. Parts
of the rules are listed as follows.

528 J. Li et al.

Rule 1.
An Interface Automaton AADL Component..

Rule 2.
The Interface Automaton Port Set The Feature of AADL Component.

Rule 3.
The Interface Automaton State Set The States of AADL Component.

Rule 4.
The Interface Automaton Input Action The Guard of AADL Component

Transition.

Fig. 6. Space ship user
5 Related Work

There have been many works about AADL behavior and IA component composition.
Reference [11] proposed a formal semantics for the AADL behavior annex using
Timed Abstract State Machine (TASM), and used UPPAAL [12] by mapping TASM
to timed automata to verify the AADL behavior models. Bernard Berthomieu [13]
mapped AADL models into the Fiacre language, which contains assignments, condi-
tionals, while loops and sequential composition constructs. In [14], R.Passerone has
developed a game-theoretical approach to find out whether incompatible component
interfaces can be made compatible by inserting a converter between them which satis-
fies specified requirements.

In summary, there are few works on the problems of AADL components composi-
tion which are important, and interface automata have been widely used to solve
components composition problem. Therefore, it is a new attempt to use IA to solve
the AADL components composition problems.

6 Conclusion

Although AADL is a widely used component-based model language, it cannot solve
the component composition problems expediently. On the other hand, IA is a formal
model for describing software components behavior and it uses the optimistic ap-
proach to solve the components composition problems effectively. We study the

 Composition of AADL Components by Transformation to Interface Automata 529

transformation from AADL model to IA through ATL heterogeneous model trans-
formation framework, present the meta-model of interface automata and propose a
series of transformation rules. IA can be used to verify the behavior compatible of
components and construct the compatible working environment. The environment can
be mapped back to AADL components which make the behavior incompatible com-
ponents can work together. In the future, we plan to analyze the semantics of AADL
behavior in detail, try to verify the AADL components behavior compatibly and con-
struct the environment which makes the behavior incompatible components can work
together on the AADL directly.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (No.61003025, 91118002), and by the Jiangsu Province Research
Foundation (BK2010170).

References

1. OMG, Inc. Model Driven Architecture (MDA), http://www.omg.org/gov
2. Zhang, Y., Hu, J., Yu, X.F., Zhang, T., Li, X.D., Zheng, G.L.: Deriving available behavior

all out from incompatible component compositions. In: Liu, Z., Barbosa, L. (eds.) Proc.of
the 2nd Int’l Workshop on Formal Aspects of Component Software (FACS 2005).
ENTCS, vol. 160, pp. 349–361. Elsevier, Netherlands (2006)

3. Zhang, T., Jouault, F., Attiogb, C., Li, X.D.: MDE-based model transformation: from
MARTE model to FIACRE model. Journal of Software 20(2), 214–233 (2009)

4. SAE Aerospace. SAE AS5506: Architecture Analysis and Design Language (AADL),
Version 1.0 (2004)

5. SAE Aerospace. SAE AS5506/1: Architecture Analysis and Design Language (AADL)
Annex vol.1 (2006)

6. SAE Aerospace. SAE AS5506/2: Architecture Analysis and Design Language (AADL)
Annex vol. 2 (2011)

7. de Alfaro, L., Henzinger, T.A.: Interface Automata. ACM Sigsoft Software Engineering
Notes 26(5), 109–120 (2001)

8. The ATL Model Transformation Language, http://www.emn.fr/z-info/
atlanmod/index.php/Model_Transformation

9. ATLAS group LINA and INRIA.: ATL: Atlas Transformation Language (2006)
10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science

of Computer Programming 72(1/2), 31–39 (2008)
11. Yang, Z., Hu, K., Ma, D., Pi, L.: Towards a formal semantics for the AADL behavior an-

nex. In: Proc. DATE 2009. IEEE, Los Alamitos (2009)
12. UPPAAL, http://www.uppaal.org/
13. Berthomieu, B., Bodeveix, J.-P., Chaudet, C., Dal Zilio, S., Filali, M., Vernadat, F.: For-

mal Verification of AADL Specifications in the Topcased Environment. In: Kordon, F.,
Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 207–221. Springer, Heidel-
berg (2009)

14. Passerone, R., de Alfaro, L., Henzinger, T., Sangiovanni-Vincentelli, A.L.: Convertibility
Verification and Converter Synthesis: Two Faces of the Same Coin. In: Proceedings of the
International Conference on Computer Aided Design, ICCAD 2002 (2002)

	Composition of AADL Components by Transformation to Interface Automata
	Introduction
	Background
	AADL
	Interface Automata

	AADL2IA Transformation
	Transformation Framework
	AADL and IA Meta-model
	Transformation Mapping Rules

	Case Study
	Scenarios Description
	Model with AADL
	Model Transformation to IA
	Verification and Environment Construction

	Related Work
	Conclusion
	References

