
Y. Yuan, X. Wu, and Y. Lu (Eds.): ISCTCS 2012, CCIS 320, pp. 482–489, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Overtime-Detection Model-Checking Technique
for Interrupt Processing Systems

Xiaoyu Zhou and Jianhua Zhao

State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
Dept. of Computer Sci. and Tech. Nanjing University, Nanjing, China

sandzhou@seg.nju.edu.cn, zhaojh@nju.edu.cn

Abstract. This paper presents an overtime-detection model-checking technique
for interrupt processing systems. It is very important to verify real-time proper-
ties of such systems because many of them are safety-critical. This paper gives
a method to check that critical interrupts can be handled within their timeout pe-
riods. Interrupt processing systems are modeled as extended timed automata.
Our technique checks whether the system under check can handle critical inter-
rupts in time using symbolic model-checking techniques. Taking an aerospace
control system as an example, we show that our technique can find time-
scheduling problems in interrupt processing systems.

Keywords: interrupt processing system, overtime detection, model checking.

1 Introduction

Nowadays, real-time embedded systems are widely used in safety-critical systems,
such as flight control, railway signaling, health care and so on. Interrupt processing
systems play important roles in such safety-critical systems.

In interrupt processing systems [1, 2], it is vital to handle interrupts within given
time limits. Fully testing these systems is unrealistic because of the randomly-arrived
interrupt sequence, the varying interrupt processing period, and the complexity of
both hardware and software systems. For such systems, testing is expensive and low-
efficient. Test can only cover a small fraction of state space of the interrupt processing
systems under test. Model checking [3] has been introduced as a promising tool to
analysis and verify (the models) of interrupt processing systems. It is possible to
check whether the specified deadline for the interrupt-handling could be met by ex-
haustive exploration of the state-spaces of system models [4].

In this paper, we present a new approach to model interrupt processing systems and
to detect the overtime situation of interrupt-handling by exhaustively exploring the
state spaces of interrupt processing systems.

2 Preliminary

Many existing formal models can be used to model real-time interrupt processing
systems, for example, timed automata [5] or hybrid automata [6]. In this paper, we
extend timed automata to model such systems.

 An Overtime-Detection Model-checking Technique for Interrupt Processing Systems 483

2.1 Timed Automata

Timed automata can be used to simulate time behaviors of real-time systems by add-
ing a finite set of real-valued clocks and time guards to conventional finite-state au-
tomata.

Let ࣝ be a set of clock variables. A clock valuation ݑ over ࣝ is a map from ࣝ to Թ. For א Թ , ݑ ൅ ሻݔሺݑ in ࣝ to ݔ is also a map. It maps each ݐ ൅ We use ࣡ሺ ࣝሻ .ݐ
to stand for time guards over ࣝ, which is a conjunction of atomic formulas of the
form ݔ ׽ ݊, where ݔ א א׽ ,ࣝ ሼ൑, ൏, ൌ, ൐, ൒ሽ and ݊ is an integer.

A timed automaton ࣛ is a tuple ൏ ,ܮ ݈଴, ࣝ, ,ߑ ,ܧ ܨ ൐, where ܮ is a finite set of lo-
cations; ݈଴ א ߑ ;is the initial location; ࣝ is a finite set of clocks ܮ ك ࣡ሺ ࣝሻ ൈ 2ࣝ is a
finite set of transitions, i.e. a transition ݁ in ߑ is a tuple ݁ ൌ ሺ݃, ݃ ሻ, whereݎ ݎ ሺ ࣝሻ is the time guard of ݁ and࣡ك ك ࣝ is the set of clocks reset by ݁; ܧ ك ൈ ܮ ߑ ൈܮ is a finite set of edges; ܨ ك .is the set of acceptance locations ܮ

We write 'el l⎯⎯→ if (l, e, l’)א -We also use ܾ݈݁݊ܽ݁ሺ݈ሻ to denote the transi .ܧ

tion set { | 'ee l l⎯⎯→ for some '}l . We say ݁ is enabled at ݈ if ݁ א ܾ݈݁݊ܽ݁ሺ݈ሻ.

A concrete state of this timed automaton is a tuple ሺ݈, ݈ ሻ, whereݑ א is a ݑ and ܮ
clock valuation over ࣝ. A timed automaton may evolve by either time-elapsing or
concrete transitions.

• Time-elapsing: ሺ݈, ሻݑ t⎯⎯→ ሺ݈, ݑ ൅ .ሻݐ

• Concrete transition: ሺ݈, ሻݑ e⎯⎯→ ሺ݈ᇱ, ݁ ᇱሻ whereݑ ൌ ሺ݃, ሻ if following conditionsݎ
hold:

─ (l, e, l’)א ;ܧ
─ For each time guard ݔ ׽ ݊ in ݃, ݑሺݔሻ ׽ ݊;
─ For each clock ݔ א ሻݔᇱሺݑ ,ݎ ൌ 0; and for each ݔ א ࣝ െ ሻݔԢሺݑ ,ݎ ൌ .ሻݔሺݑ

The basic reachability analysis calculates symbolic successors of every enabled tran-
sition at each reachable state till no more new state can be generated [7].

3 Modeling Interrupt Processing Systems

3.1 Modeling Interrupt Sources

In an interrupt processing system, there are usually two kinds of interrupt sources: regu-
lar interrupts which occur repeatedly with fixed time intervals; and contingency inter-
rupts which occur randomly. Each interrupt source is assigned with a unique priority.

Regular interrupts are spontaneous activities which are issued every 0.5s, 1s, 2s
and 4s respectively. Regular interrupts are usually used to maintain the system state. It
includes routine tasks such as information backup, time-triggered communications,
etc. Each regular interrupt is assigned a fixed priority in direct proportion to its fre-
quency. So, the assigned priority of 0.5s-interrupts is higher than that of 1s-, 2s- and
4s-interrupts and so on.

484 X. Zhou and J. Zhao

Contingency interrupts a
example, start or shut-down
occurrence frequency of th
priority of a contingency in

Fig. 1. Th

In Figure 1, we use time
automata modeling a regula
Supposing the interval of th
2000 respectively.

3.2 Modeling the Interr

The interrupt vector table i
scriptors that associates an
specific way. In our wor
as ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ, to ma
The elements in this table a
with the priority ݌௜ the m
corresponding interrupt hanݑݎݎ݁ݐ݊ܫ
3.3 Modeling Interrupt

In response to each interruݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ, as a
bounds. Each task in the t
some time units to execut݇ݏܽݐଶ ௡݇ݏܽݐ , … , , where
exists a time constraint as fo

ܪݐ݌ݑݎݎ݁ݐ݊ܫሺ݀݊ݑ݋ܤݎ݁ݓ݋݈

are used to dealing with events that happen randomly,
n of the engine, adjusting the direction of the aircraft. T
he contingency interrupt is unpredictable. Generally,
terrupt is higher than that of regular interrupts.

he timed automata model of interrupt sources

ed automata to model two kinds of interrupt sources. T
ar interrupt consists of a local clock x and a self-loop st
he regular interrupt source is 2s, c1 and c2 are set to 0

rupt Vector Table

in an interrupt processing system is a table of interrupt
n interrupt handler with an interrupt request in a machi
rk, we simplify this concept and use a table, deno
ap interrupt sources to corresponding interrupt procedu
are sorted by interrupt priorities. Given an interrupt sou

mapping relation in the ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ points out
ndler, ݎ݋ݐܸܿ݁ݐ݌ݑሾ݌௜ሿ ൌ ௜ௗݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ .

t Handlers

upt source, we abstract the interrupt handler, denoted
list of to-do tasks with upper and lower execution ti
to-do list is viewed as an atomic transaction which ta
te. Let the ݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ௜ contains ݊ tasks:ݏܽݐ
e ݇ݏܽݐ௞ takes ݐ௞ time units to be accomplished. Th
ollow.

௜ሻݎ݈݁݀݊ܽܪ ൑ ෍ ௝௡ݐ
௝ୀଵ ൑ ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫሺ݀݊ݑ݋ܤݎ݁݌݌ݑ

for
The
the

The
tate.
and

de-
ine-
oted
ures.
urce

the

d as
ime

akes ݇ݏଵ ,
here

 ௜ሻݎ݁

 An Overtime-Detection Mod

4 Deadline Detect

4.1 Simulating the Inte

In our algorithm, a stack is
is a snapshot of the current
the interrupt processing mo

Fig. 2

A stack member keeps t
details of execution sitݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ in the
ecute and finish the executi
top such that the ݌ݑݎݎ݁ݐ݊ܫ
while the ݈݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ
4.2 Calculating Symbo

A global state of an interrup

• the state ሺ݈, ሻ of timedܦ
• an interrupt vector table
• a stack contains runtim

Let ݎ݋ݐܿ݁ݒܫܴܲ݌݋ݐ and ݋ݐ
the ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ and ݈݃݁ݐܽݐݏ݈ܾܽ݋ ൌ ൏ ሺ݈, ,ሻܦ ݊ܫ
algorithm enabled(glob
according to different kinds

for each edge l
 add e to glob
if (topPRIvect
 add topPRIvec
else if(topPRIv
 add stack to

del-checking Technique for Interrupt Processing Systems

ion

errupt Processing

 used to model the state of interrupt processing. The st
system context. Figure 2 shows the overall organization
del.

2. The organization of our model system

the information of an ݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ and records
tuation of the task sequence. Each task of
stack has three modes: wait to be executed, begin to

ion. The priority of stack member increases from bottomݎ݈݁݀݊ܽܪݐ݌ at the top of the stack has the highest prior݈݁ݎ at the bottom of the stack has the lowest priority.

olic Successor of Interrupt Processing Systems

pt processing system is consists of three components:

automata modeling interrupt sources; ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ to record interrupt requests;
me context of involved interrupt handles. ݇ܿܽݐݏܫܴܲ݌ be the current highest priority respectively

the ݇ܿܽݐݏ. The set of enabled events of the global s݊ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ, ݇ܿܽݐݏ ൐ is calculated by the follow
balState). The successor of ݈݃݁ݐܽݐݏ݈ܾܽ݋ is calcula
s of enabled events.

leaving e from (l,D)
balState.enabledEvents;
tor > topPRIstack)
ctor to globalState.enabledEvents;
vector <= topPRIstack)
globalState.enabledEvents;

485

tack
n of

the
the
ex-

m to
rity,

y in
tate

wing
ated

486 X. Zhou and J. Zhao

For a transition e leaving from a state ሺ݈, -ሻ of the interrupt source model, the sucܦ
cessor is calculated by the following algorithm successorOf-
TA(globalState).

Let e_i be an enabled transition at (l,D)
(l',D') = sp((l,D),e_i);
if (D' ≠ EMPTYSET)
 p:= the priority of the corresponding TA;
 InterruptVector[p]:= InterruptHandler_i;
 return <(l',D'), InterruptVector, stack>;

The operator ݌ݏ is used to calculate the symbolic successor of a symbolic state ሺ݈, ,ሺሺ݈݌ݏ .ሻܦ ,ሻܦ ݁ሻ represents the set: ሼሺ݈Ԣ, ,ሺ݈ ׌| Ԣሻݑ ሻݑ א ሺ݈, ሻܦ · ሺሺ݈, ሻݑ e⎯⎯→ ሺ݈Ԣ, Ԣሻሻݑ
Using the data structure DBM [8] to represent the symbolic state, the operator ݌ݏ can
be evaluated effectively.

For the enabled event ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ, the successor of ݈݃݁ݐܽݐݏ݈ܾܽ݋ is calcu-
lated by the algorithm successorOfIV(globalState). The ݍ݁ܵ-ݐ݌ݑݎݎ݁ݐ݊ܫ
is a record of the interrupt sequence being added into or removed from the stack. We
use the ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ to record the execution order of tasks in the stack.

InterruptHandler_i := InterruptVector[p];
Create a stack member stMember of InterruptHandler_i;
Push stMember into the stack;
topPRIstack := the priority of InterruptHandler_i;
Execute the first task of InterruptHandler_i;
Record information of task_1 in InterruptHandler_i to
InterruptSeq;
return <(l,D), InterruptVector, stack>;

For an enabled event corresponding to a task of the interrupt handler in the stack, the
successor w.r.t. the interrupt handler is calculated by the following algorithm suc-
cessorOfStack(globalState).

InterruptHandler_i:= the top member of the stack;
TASK_k := the current task in InterruptHandler_i;
if (the mode of TASK_k is wait)
{ change the mode of TASK_k to begin;
 record new TASK_k to InterruptSeq;
} else if (the mode of TASK_k is begin)
{ Change the mode of TASK_k to end;
 Record new TASK_k to InterruptSeq;
 if (TASK_k is not the last task in
 InterruptHandler_i)
 { Set the current task be the one next to TASK_k;

 An Overtime-Detection Model-checking Technique for Interrupt Processing Systems 487

 Set the mode of the current task to wait;
 } else
 { Remove InterruptHandler_i from the stack; }
}
return <(l,D), InterruptVector, stack>;

4.3 The Model Checking Algorithm

The model-checking algorithm exhaustively explores the state space of the interrupt
processing system, using the depth first search method. Initially, the ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ and ݇ܿܽݐݏ are empty, the initial global state is ݈݃݁ݐܽݐݏ݈ܾܽ݋଴ ൌ ൏ሺ݈଴, ,଴ሻܦ ,ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ ݇ܿܽݐݏ ൐. This method guarantees that all permutation of
occurrence sequences of interrupt sources are considered.

Unexplored :={globalState0}
while (Unexplored ≠ NULL) do
{ select a global state curState from Unexplored;
 remove curState from Unexplored;
 for each event e in enabled(curState)
 { if (e is an edge leaving from curState)
 add successorOfTA(curState) to Unexplored;
 else if (event is InterruptVector)
 add successorOfIV(curState) to Unexplored;
 else if (event is stack)
 add successorOfStack(curState) to Unexplored;
 }
}

We only record generated symbolic states into the reachability graph when the stack
is idle. When removing ݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ from the ݇ܿܽݐݏ by the algorithm
successorOfStack(globalState), we retrieve the execution order of tasks
occurred in the ݇ܿܽݐݏ from ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ, and check whether every interrupt has
been processed within its timeout period using the linear programming technique. If
so, we determine the containment relation and record the symbolic state into the
reachability graph if necessary. Otherwise, a counter example of overtime schedule
can be retrieved from ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ. The following algorithm clarifies this method.

Let GRAPH be the generated reachability graph;
Let the current global state be
 <(l,D), InterruptVector, stack> with InterruptSeq;
if(stack is empty)
{ Retrieve a task execution sequence from InterruptSeq;
 for each InterruptHandler_i occurs in InterruptSeq
 { executionTime:=sumOf(taskExecutionTime);
 if(lowerBound(InterruptHandler_i)≤executionTime
 ≤ higherBound(InterruptHandler_i))

488 X. Zhou and J. Zhao

 { if (the

 { add I
 else
 { add (
 }else
 report In
 }
}

However, the state-space ma
observation. An interrupt p
with different frequencies. I
these regular interrupts. As
contingency interrupts, to gu
the interrupts in the ݇ܿܽݐݏ
proportional to the maximal
time period longer than this
is unable to handle all inter
symbolic system state is just
states if an appropriate equ
check whether the stack is al

5 Examples

Here, we present a simplifi
two regular interrupt source
and the 0.5s-interrupt for th
interrupt sources: the navi
highest priority. The corres
is shown in Figure 3.

Each interrupt contains s
interrupt-handlers are 500݉
requires that each regular
period. Our algorithm chec
The algorithm finds that wh

ere exist a node (l,D') in GRAPH such
that (l,D)ك(l,D'))
nterruptSeq to (l,D') in GRAPH;}

l,D) with InterruptSeq to GRAPH;}

nterruptSeq as a counter example;

ay be infinite. We solve this problem based on the follow
processing system contains several regular interrupt sour
It implies that there exists a periodical interrupt sequence
s the priorities of regular interrupts are lower than that
uarantee that these regular interrupts are handled in time
must be finished within some time period. This period
interval of the regular interrupts. If the stack keeps busy f
period, we can already conclude that the system under-ch
rrupts within time limits. When the stack becomes idle,
t a state for timed automata. There are finite number of s

uivalence relation is applied. We add an auxiliary timer
lways busy. The termination of our algorithm is guarantee

ed example taken from an aerospace control system. It
es: the 2s-interrupt for the satellite-ground communicat
he system information backup. It also has two continge
igation interrupt and the mode-switch interrupt with
sponding timed automata model of these interrupt sour

Fig. 3. The timed automata model

several to-do tasks. The maximum execution-time of th݉ݏ100݉ ,ݏ250݉ ,ݏ, and 100݉ݏ respectively. The syst
interrupt must be handled within 80 percent of its ti

cks this model by exploring the state-space exhaustive
hen an execution of the regular interrupt handler is nes

wing
rces
e of
t of
, all
d is

for a
heck

the
such
r to

ed.

has
tion
ncy
the

rces

hese
tem
ime
ely.
sted

 An Overtime-Detection Model-checking Technique for Interrupt Processing Systems 489

by two contingency interrupts continuously, it cannot be finished before the time
deadline.

We also checked that if the execution time upper-bound of the second interrupt
handler is 200݉ݏ, all interrupts could be accomplished within its time limits.

6 Conclusion

In this paper, we present a technique to model and check interrupt processing systems
using extended timed automata. The state space of the model system can be explored
exhaustively to check whether the schedule of interrupt processing can meet the time
requirements. A simplified real example is used to demonstrate how our method
works.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China (No.91118002).

References

1. Silberschatz, A., Galvin, P.B.: Operating System Concepts (1998)
2. Walker, W., Cragon, H.G.: Interrupt Processing in Concurrent Processors. IEEE Comput-

er 28(6), 36–46 (1995)
3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
4. Brylow, D., Palsberg, J.: Deadline Analysis of Interrupt-driven Software (2003)
5. Alur, R., Dill, D.: A Theroy of Timed Automata. Theoretical Computer Science 126,

183–235 (1994)
6. Henzinger, T.A.: The Theory of Hybrid Automata. LICS, 278–292 (1996)
7. Zhao, J., Li, X., Zheng, T., Zheng, G.: Removing Irrelevant Atomic Formulas for Checking

Timed Automata Efficiently. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS,
vol. 2791, pp. 34–45. Springer, Heidelberg (2004)

8. Dill, D.L.: Timing Assumptions and Verification of Finite-state Concurrent Systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

	An Overtime-Detection Model-Checking Technique for Interrupt Processing Systems
	Introduction
	Preliminary
	Timed Automata

	Modeling Interrupt Processing Systems
	Modeling Interrupt Sources
	Modeling the Interr rupt Vector Table
	Modeling t Interrupt Handlers

	Deadline Detect ion
	Simulating the Inte errupt Processing
	Calculating Symbo olic Successor of Interrupt Processing Systems
	The Model Checking Algorithm

	Examples
	Conclusion
	References

