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Abstract. This paper presents an overtime-detection model-checking technique 
for interrupt processing systems. It is very important to verify real-time proper-
ties of such systems because many of them are safety-critical. This paper gives 
a method to check that critical interrupts can be handled within their timeout pe-
riods. Interrupt processing systems are modeled as extended timed automata. 
Our technique checks whether the system under check can handle critical inter-
rupts in time using symbolic model-checking techniques. Taking an aerospace 
control system as an example, we show that our technique can find time-
scheduling problems in interrupt processing systems. 
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1 Introduction 

Nowadays, real-time embedded systems are widely used in safety-critical systems, 
such as flight control, railway signaling, health care and so on. Interrupt processing 
systems play important roles in such safety-critical systems. 

In interrupt processing systems [1, 2], it is vital to handle interrupts within given 
time limits. Fully testing these systems is unrealistic because of the randomly-arrived 
interrupt sequence, the varying interrupt processing period, and the complexity of 
both hardware and software systems. For such systems, testing is expensive and low-
efficient. Test can only cover a small fraction of state space of the interrupt processing 
systems under test. Model checking [3] has been introduced as a promising tool to 
analysis and verify (the models) of interrupt processing systems. It is possible to 
check whether the specified deadline for the interrupt-handling could be met by ex-
haustive exploration of the state-spaces of system models [4]. 

In this paper, we present a new approach to model interrupt processing systems and 
to detect the overtime situation of interrupt-handling by exhaustively exploring the 
state spaces of interrupt processing systems. 

2 Preliminary 

Many existing formal models can be used to model real-time interrupt processing 
systems, for example, timed automata [5] or hybrid automata [6]. In this paper, we 
extend timed automata to model such systems. 
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2.1 Timed Automata 

Timed automata can be used to simulate time behaviors of real-time systems by add-
ing a finite set of real-valued clocks and time guards to conventional finite-state au-
tomata. 

Let ࣝ be a set of clock variables. A clock valuation ݑ over ࣝ is a map from ࣝ to Թ. For א Թ , ݑ ൅ ሻݔሺݑ  in ࣝ to ݔ is also a map. It maps each ݐ ൅   We use  ࣡ሺ ࣝሻ .ݐ
to stand for time guards over ࣝ, which is a conjunction of atomic formulas of the 
form ݔ ׽ ݊, where ݔ א א׽ ,ࣝ ሼ൑, ൏, ൌ, ൐, ൒ሽ and ݊ is an integer. 

A timed automaton ࣛ is a tuple ൏ ,ܮ ݈଴, ࣝ, ,ߑ ,ܧ ܨ ൐, where ܮ is a finite set of lo-
cations; ݈଴ א ߑ ;is the initial location; ࣝ is a finite set of clocks ܮ ك ࣡ሺ ࣝሻ ൈ 2ࣝ is a 
finite set of transitions, i.e. a transition ݁  in ߑ  is a tuple ݁ ൌ ሺ݃, ݃ ሻ, whereݎ ݎ ሺ ࣝሻ is the time guard of ݁ and࣡ك ك  ࣝ is the set of clocks reset by ݁; ܧ ك ൈ ܮ ߑ ൈܮ is a finite set of edges; ܨ ك  .is the set of acceptance locations ܮ

We write 'el l⎯⎯→  if (l, e, l’)א -We also use ܾ݈݁݊ܽ݁ሺ݈ሻ to denote the transi .ܧ

tion set { | 'ee l l⎯⎯→  for some '}l . We say ݁ is enabled at ݈ if  ݁ א ܾ݈݁݊ܽ݁ሺ݈ሻ. 

A concrete state of this timed automaton is a tuple ሺ݈, ݈ ሻ, whereݑ א  is a ݑ and ܮ
clock valuation over ࣝ. A timed automaton may evolve by either time-elapsing or 
concrete transitions.  

• Time-elapsing: ሺ݈, ሻݑ t⎯⎯→ ሺ݈, ݑ ൅  .ሻݐ

• Concrete transition: ሺ݈, ሻݑ e⎯⎯→ ሺ݈ᇱ, ݁ ᇱሻ whereݑ ൌ ሺ݃,  ሻ if following conditionsݎ
hold:  
 
─ (l, e, l’)א   ;ܧ
─ For each time guard ݔ ׽ ݊ in ݃, ݑሺݔሻ ׽ ݊;  
─ For each clock ݔ א ሻݔᇱሺݑ ,ݎ ൌ 0; and for each ݔ א ࣝ െ ሻݔԢሺݑ  ,ݎ ൌ  .ሻݔሺݑ

The basic reachability analysis calculates symbolic successors of every enabled tran-
sition at each reachable state till no more new state can be generated [7]. 

3 Modeling Interrupt Processing Systems 

3.1 Modeling Interrupt Sources 

In an interrupt processing system, there are usually two kinds of interrupt sources: regu-
lar interrupts which occur repeatedly with fixed time intervals; and contingency inter-
rupts which occur randomly. Each interrupt source is assigned with a unique priority. 

Regular interrupts are spontaneous activities which are issued every 0.5s, 1s, 2s 
and 4s respectively. Regular interrupts are usually used to maintain the system state. It 
includes routine tasks such as information backup, time-triggered communications, 
etc. Each regular interrupt is assigned a fixed priority in direct proportion to its fre-
quency. So, the assigned priority of 0.5s-interrupts is higher than that of 1s-, 2s- and 
4s-interrupts and so on. 
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For a transition e leaving from a state ሺ݈, -ሻ of the interrupt source model, the sucܦ
cessor is calculated by the following algorithm successorOf-
TA(globalState).  

Let e_i be an enabled transition at (l,D) 
(l',D') = sp((l,D),e_i); 
if (D' ≠ EMPTYSET) 
 p:= the priority of the corresponding TA; 
 InterruptVector[p]:= InterruptHandler_i;  
 return <(l',D'), InterruptVector, stack>; 

The operator ݌ݏ  is used to calculate the symbolic successor of a symbolic state ሺ݈, ,ሺሺ݈݌ݏ .ሻܦ ,ሻܦ ݁ሻ represents the set: ሼሺ݈Ԣ, ,ሺ݈ ׌| Ԣሻݑ ሻݑ א ሺ݈, ሻܦ ·  ሺሺ݈, ሻݑ e⎯⎯→ ሺ݈Ԣ,  Ԣሻሻݑ
Using the data structure DBM [8] to represent the symbolic state, the operator ݌ݏ can 
be evaluated effectively. 

For the enabled event ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ, the successor of ݈݃݁ݐܽݐݏ݈ܾܽ݋ is calcu-
lated by the algorithm successorOfIV(globalState). The  ݍ݁ܵ-ݐ݌ݑݎݎ݁ݐ݊ܫ 
is a record of the interrupt sequence being added into or removed from the stack. We 
use the ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ to record the execution order of tasks in the stack. 

InterruptHandler_i := InterruptVector[p]; 
Create a stack member stMember of InterruptHandler_i; 
Push stMember into the stack;  
topPRIstack := the priority of InterruptHandler_i; 
Execute the first task of InterruptHandler_i;  
Record information of task_1 in InterruptHandler_i to 
InterruptSeq; 
return <(l,D), InterruptVector, stack>; 

For an enabled event corresponding to a task of the interrupt handler in the stack, the 
successor w.r.t. the interrupt handler is calculated by the following algorithm suc-
cessorOfStack(globalState). 

InterruptHandler_i:= the top member of the stack; 
TASK_k := the current task in InterruptHandler_i; 
if (the mode of TASK_k is wait) 
{ change the mode of TASK_k to begin; 
  record new TASK_k to InterruptSeq; 
} else if (the mode of TASK_k is begin) 
{  Change the mode of TASK_k to end; 
   Record new TASK_k to  InterruptSeq; 
   if (TASK_k is not the last task in  
        InterruptHandler_i) 
  { Set the current task be the one next to TASK_k; 



 An Overtime-Detection Model-checking Technique for Interrupt Processing Systems 487 

    Set the mode of the current task to wait; 
   } else 
   { Remove InterruptHandler_i from the stack; } 
} 
return <(l,D), InterruptVector, stack>; 

4.3 The Model Checking Algorithm 

The model-checking algorithm exhaustively explores the state space of the interrupt 
processing system, using the depth first search method. Initially, the ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ and ݇ܿܽݐݏ are empty, the initial global state is ݈݃݁ݐܽݐݏ݈ܾܽ݋଴ ൌ ൏ሺ݈଴, ,଴ሻܦ ,ݎ݋ݐܸܿ݁ݐ݌ݑݎݎ݁ݐ݊ܫ ݇ܿܽݐݏ ൐. This method guarantees that all permutation of 
occurrence sequences of interrupt sources are considered.  

Unexplored :={globalState0} 
while (Unexplored ≠ NULL) do 
{ select a  global state curState from Unexplored; 
  remove curState from Unexplored;  
   for each event e in enabled(curState) 
   { if (e is an edge leaving from curState) 
     add successorOfTA(curState) to Unexplored; 
     else if (event is InterruptVector) 
     add successorOfIV(curState) to Unexplored; 
    else if (event is stack) 
     add successorOfStack(curState) to Unexplored; 
   } 
} 

We only record generated symbolic states into the reachability graph when the stack 
is idle. When removing ݎ݈݁݀݊ܽܪݐ݌ݑݎݎ݁ݐ݊ܫ  from the ݇ܿܽݐݏ  by the algorithm  
successorOfStack(globalState), we retrieve the execution order of tasks 
occurred in the ݇ܿܽݐݏ from ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ, and check whether every interrupt has 
been processed within its timeout period using the linear programming technique. If 
so, we determine the containment relation and record the symbolic state into the  
reachability graph if necessary. Otherwise, a counter example of overtime schedule 
can be retrieved from ݍ݁ܵݐ݌ݑݎݎ݁ݐ݊ܫ. The following algorithm clarifies this method. 

Let GRAPH be the generated reachability graph; 
Let the current global state be  
  <(l,D), InterruptVector, stack> with InterruptSeq; 
if(stack is empty) 
{ Retrieve a task execution sequence from InterruptSeq; 
   for each InterruptHandler_i occurs in InterruptSeq  
   { executionTime:=sumOf(taskExecutionTime); 
    if(lowerBound(InterruptHandler_i)≤executionTime 
       ≤ higherBound(InterruptHandler_i)) 
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by two contingency interrupts continuously, it cannot be finished before the time 
deadline. 

We also checked that if the execution time upper-bound of the second interrupt 
handler is 200݉ݏ, all interrupts could be accomplished within its time limits. 

6 Conclusion 

In this paper, we present a technique to model and check interrupt processing systems 
using extended timed automata. The state space of the model system can be explored 
exhaustively to check whether the schedule of interrupt processing can meet the time 
requirements. A simplified real example is used to demonstrate how our method 
works. 
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