
Y. Yuan, X. Wu, and Y. Lu (Eds.): ISCTCS 2012, CCIS 320, pp. 436–442, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Automatic Approach to Detect Anti-debugging
in Malware Analysis

Peidai Xie, Xicheng Lu, Yongjun Wang, Jinshu Su, and Meijian Li

1 School of Computer, National University of Defense Technology, Changsha, China
peidaixie@gmail.com, xclluu@163.com, wwyyjj1971@126.com

Abstract. Anti-debugging techniques are broadly used by malware authors to
prevent security researchers from reversing engineering their created malware
samples. However, the countermeasures to identify anti-debugging code pat-
terns are insufficient, and mainly manual, which is an expensive,
time-consuming, and error-prone process. There are no automatic approaches
which can be used to detect anti-debugging code patterns in malware samples
effectively. In this paper, we present an approach, based on instruction traces
derived from dynamic malware analysis and an instruction-based pattern
matching method, to detect anti-debugging tricks automatically. We evaluate
this approach with a large number of malware samples collected in the wild.
The experience shows that our proposed approach is effective and about 40% of
malware samples in our experimental data set has been embedded an-
ti-debugging code.

Keywords: malware analysis, anti-debugging, instruction trace, obfuscation,
dynamic analysis.

1 Introduction

Malicious software (malware) is a generic term to denote all kinds of unwanted soft-
ware that fulfills the deliberately harmful intent of attackers. Terms such as viruses,
worms, Trojan horses, spywares or bots are used to describe malware samples that
exhibit some specific malicious behavior[1]. Attackers create malware in order to
infiltrate computer systems, collect users’ private-sensitive information and attack
internet infrastructures. To gain financial benefits is their ultimate goal, and the finan-
cial loss caused by malware can be billions of dollars in a year[2]. Nowadays, the sheer
number of unique malware samples grows exponentially every year[2] and poses a
major security threat to internet.

To detect and mitigate malware effectively, the first step is the dissection of the
target, means to extract malicious behavior patterns of malware accurately, a process
of malware analysis[3]. There are two major approaches which have been established:
static analysis and dynamic analysis. Static analysis techniques, when used for mal-
ware, have several weaknesses, such as it is time-consuming, reliant on disassembling
heavily and vulnerable to code obfuscations, and the code being analyzed is possible
not the code executed actually, etc.

 An Automatic Approach to Detect Anti-debugging in Malware Analysis 437

Dynamic malware analysis techniques are proposed to gain a briefly understanding
of malware sample, and at the same time, the syntactic signatures are extracted for
malware detection. Several specific debuggers, such as WinDBG[4], OllyDBG[5],
etc., are playing a significant role as restricted environments for dynamic malware
analysis.

However, malware authors use anti-analysis techniques broadly to impede revers-
ing engineering of their creations in order to evade analysis and detection. If a mal-
ware sample is aware of an unreal environment in which it is running, it will quit or
suspend running to avert exposure of its malicious behavior. In this paper, we focus
on anti-debugging techniques. Lots of tricks can be played by a malware sample to
detect if the running is in debug-mode. When a huge number of malware samples use
anti-debugging techniques, the effectiveness of impeding malware analysis cannot be
undervalued.

The existing countermeasures proposed in literatures are insufficient. For example,
some plugins for OllyDBG are developed in [5] to tackle the problem of debugger detec-
tion, but they can only detect whether a Windows API IsDebuggerPresent() is
invoked. A stealthy debugger based on Virtual Machine environment or a hardware-level
emulator such as QEMU[6] can avoid debugger detection, but the dynamic analysis tool
aims at the effects performed by the sample under analysis on operation system resources
(e.g., which files or register hives are created or modified). There is not a general method
for detecting the anti-debugging code fragments automatically and efficiently.

In this paper, we present an automatic approach, named as ITPM, to detect an-
ti-debugging in malware samples. This approach is based on Instruction Trace
derived from a dynamic analysis tool and Pattern Matching algorithm between the
instruction trace and predefined rules which is configured into a database to describe
the anti-debugging code patterns. We implement a prototype to demonstrate its effec-
tiveness and the experiment shows that more than 40% of malware samples use
anti-debugging techniques even though the packers are broadly used.

This paper makes the following contributions:

• ITPM, an approach based on instruction trace and pattern matching technique, is
proposed for identifying automatically anti-debugging in malware samples. The
instruction trace is derived from a dynamic analysis tool implemented by ourselves
and the patterns of anti-debugging code are in the form of predefined rules confi-
gured into a database. ITPM is scalable for new form of anti-debugging patterns.

• A prototype system is designed and implemented to demonstrate ITPM’s effec-
tiveness. The dynamic analysis tool used for generation of instruction trace is built
on top of QEMU.

The remainder of this paper is structured as follows. In section 2, we introduce related
work of detection methods of anti-debugging in malware analysis. In section 3, we
describe detailed ITPM, including rule generation, the instruction tracer, the trace
refiner, and an instruction-based matching algorithm. Section 4 evaluates our detec-
tion approach. Finally, section 5 concludes this paper.

438 P. Xie et al.

2 Related Work

In this section, we briefly explain previous studies related to detection methods of
anti-debugging in malware analysis. A malware analyst usually removes an-
ti-debugging code manually depending on the reverse engineering experience during
analyzing a malware sample in a debugger. It is time-consuming and error-prone, and
special skills of malware analysis in a certain level are required[7].

Kawakoya[8] implemented a stealthy debugger for automatically unpacking. A
stealthy debugger is a debugger which uses original debugging functionalities em-
bedded in a virtual machine monitor in order to hide from the malware running on a
guest OS. This method is effective but cannot known what anti-debugging techniques
are used in malware samples.

3 The ITPM Approach

In this section, we describe our proposed approach, ITPM, in detail. The work flow of
ITPM approach is shown in Fig. 1. The rules of anti-debugging code patterns are
generated from corresponding code fragments identified by experts. Instruction traces
are recorded from a dynamic analysis tool and be deobfuscated to match with the
predefined rules. One instruction trace should be matched with all rules.

Fig. 1. The work flow of ITPM approach

3.1 Rule Generation

In order to detect the anti-debugging in malware samples, patterns of anti-debugging
code fragment should be known as a prior knowledge. All rules are generated from
well-known code fragments implemented for anti-debugging by malware authors.

A rule used in ITPM is defined as <id, I, D, desc>. The id is an identification of a
rule; the I is an instruction sequence i1; i2; i3…, a set of instructions; the D is the bi-
nary data corresponding instructions, printed with hex value if needed; the last desc is
a description of the rule.

 An Automatic Approach to Detect Anti-debugging in Malware Analysis 439

When generating a rule with a code pattern of anti-debugging techniques, it is ne-
cessary to get rid of uncorrelated instructions imbedded in the code fragment. Uncor-
related instructions include obfuscation code, some redundant branch instructions and
so on. It is very difficult to refine a pattern of anti-debugging code fragment as more
or less instructions in a rule are all not expected for pattern matching.

As anti-debugging code pattern is varied, the form of rules can be upgrade to deal
with corresponding scenarios.

3.2 Instruction Tracer

The tracer implemented in host OS is responsible for recording the instructions ex-
ecuted in the process of a malware sample. It is a dynamic analysis tool for malware
analysis built on top of QEMU, an open source CPU emulator, that there are several
features due to the hardware-level implementation which are exceeding appropriate
for malware analysis. Certainly, there is a semantic gap between guest OS and host
OS. In instruction tracer, we bridge the semantic gap by installing a kernel module in
the guest OS, a very common solution.

Given the OS semantic information, the tracer reads 15 bytes to a buffer from the
EIP in memory when CPU executes an instruction which belongs to a thread whose
process is under monitoring. A third party open source library is used to disassemble
data in the buffer. And then the EIP, the binary data according to length of current
instruction and the instruction denotation are logged as a single line. The instruction
trace only includes instructions which belong to the executable under analysis. If the
running jumps to a DLL module, all instructions will be omitted.

A timeout interval is set for each analysis. The process which is still running when
the interval elapsed will be killed. A clean snapshot of guest OS is loaded for next
analysis.

3.3 The Trace Refiner

Code obfuscation techniques are heavily applied in malware samples for evading
analysis and detection. If a sample under analysis is obfuscated with syntactic trans-
formation, the trace is too rough to match rules which ought to be matched[9].

On the other side, a trace may include a large number of loops unfolded during ac-
tually execution. Those instructions are redundant and should be removed.

The trace refiner is responsible for trimming instruction traces by deobfusca-
tion[10] and loop identification algorithm[11]. Two obfuscations, i.e. code reordering
and junk code insertion[12], are detected and replaced by NOP instruction. Loops are
pruned to one loop iteration.

3.4 Instruction-Based Matching Algorithm

The last step of ITPM is matching the trimmed instruction traces with rules. We
present an instruction-based matching algorithm, as is show in Table 1.

440 P. Xie et al.

Table 1. Instruction-based Matching Algorithm

Algorithm 1: Instruction-based matching.
Input：The rule set R and a trimmed instruction trace T.
Output：A set O, the element of which is <r, p>, r is a matched rule and p is value of EIP.

Begin
while R is not empty do

Let r is one element of R
R R\r
j0, k0
Foreach ij∈Ir and tk∈T do
 if tk is NOP then

kk+1
continue

if ij == tk then
if ij is the last instruction of Ir then
 O O∪<r, EIPT>
 break

 else jj+1
else j0
kk+1

return O
End

In the instruction-based matching algorithm, the instruction in a rule and an in-
struction trace is compared one by one. We do not use the corresponding bytes. Al-
though the comparison between instructions is more cost than bytes, the number of
comparison operation is reduced by a great amount. Instruction-based matching algo-
rithm is effective according to the experiment shown in next section.

4 Experiment

In this section, we present the results of the experiment to demonstrate that the ITPM
approach to detect anti-debugging is effectiveness. We conducted the experiment as
follows. First, we generate a set of rules according prior studies and our experience, as
is shown in Table 2. To demonstrate its effectiveness, we develop a set of experimen-
tal tiny programs of which each one has a form of anti-debugging code pattern which
is corresponding a rule. After compiled into binaries and obfuscated using
well-known packers, we evaluate the ITPM approach. The result shows that all an-
ti-debugging code patterns are detected.

Second, a set of malware samples are collected from Internet, as is shown in
Table 3, and marked using Kaspersky, an excellent commercial anti-virus product.
We run each sample in the dynamic analysis tool to record an instruction trace with 5
minutes of a timeout interval. And then we trim the set of traces. The length of several
traces after trimmed is too short to be discarded.

Table 2. The rule set for anti-debugging detection

Categories The Mechanism #Rules Average of #Instructions
C1 Windows API 12 9
C2 Flags in windows data structure 6 6
C3 Magic strings of debuggers 5 7
C4 Others 2 7

 An Automatic Approach to Detect Anti-debugging in Malware Analysis 441

Third, the instruction-based matching algorithm is performed to generate the re-
sults. In Table 3, the row #R (Repeated) denotes that some samples have more than
one category of anti-debugging code pattern.

Table 3. The malware samples and detection results of ITPM approach

Categories # #Trace
Results

C1 C2 C3 C4 #Total #R %
Bot 331 328 56 41 35 13 131 14 39.6

Worm 296 290 61 39 23 7 118 22 39.9
Trojan 121 117 34 0 22 5 43 18 35.5

Unknown 20 20 3 2 2 0 7 0 35.0
sum 768 755 154 82 82 25 299 54 38.9

Table 3 shows that about 40% of malware samples have the ability of an-
ti-debugging. We conclude that Trojan is less to use C2 anti-debugging tricks.

5 Conclusion

Anti-debugging techniques are broadly used by malware authors to prevent security
researchers from reversing engineering their creations, means malware. In this paper,
we present ITPM, an automatic approach to detect anti-analysis tricks in order to
make an automated process of malware analysis. The experiment shows that ITPM is
effective and about 40% of malware in the wild have anti-debugging function.

Acknowledgment. This work was partially supported by the National Natural Science
Foundation of China under Grant No. 61003303 and No. 60873215, Hunan Provincial
Natural Science Foundation of China No.s2010J5050 and 11jj7003, the PCSIRT
(NO.IRT1012), and the Aid Program for Science and Technology Innovative Research
Team in Higher Educational Institutions of Hunan Province “network technology”.

References

1. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A Survey on Automated Dynamic Malware
Analysis Techniques and Tools. J. ACM Computing Surveys, 1–49 (2010)

2. Internet Security Threat Report, vol. 16. Symantec Corporation (January 2012),
http://www.symantec.com/business/threatreport/

3. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware Anal-
ysis. In: IEEE Symposium on Security and Privacy, Oakland, pp. 231–245 (2007)

4. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: Identifying loops using DJ graphs (1995)
5. Yuschuk, O.: OllyDbg
6. Bellard, F.: Qemu: A Fast and Portable Dynamic Translator. In: The USENIX Annual

Technical Conference (2005)

442 P. Xie et al.

7. Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an Understanding of
Anti-virtualization and Anti-debugging Behavior in Modern Malware. In: IEEE Interna-
tional Conference on Dependable Systems and Networks With FTCS and DCC (DSN
2008), pp. 177–186 (2008)

8. Kawakoya, Y., Iwamura, M., Itoh, M.: Memory Behavior-Based Automatic Malware Un-
packing in Stealth Debugging Environment. In: Proceeding of the 5th International Confe-
rence on Malicious and Unwanted Software (2010)

9. Santos, I., Ugarte-Pedrero, X., Sanz, B.: Collective Classification for Packed Executable
Identification. In: Proceedings of the 8th Annual Collaboration, Electronic Messaging, An-
tiAbuse and Spam Conference (CEAS 2011), pp. 231–238 (2011)

10. Yoann Guillot, A.G.: Automatic Binary Deobfuscation (2009)
11. Wei, T., Mao, J., Zou, W., Chen, Y.: A New Algorithm for Identifying Loops in Decom-

pilation. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 170–183.
Springer, Heidelberg (2007)

12. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H.: Malware Normaliza-
tion. Tech. Report, No.1539, University of Wisconsin, Madison, Wisconsin, USA (2005)

	An Automatic Approach to Detect Anti-debugging in Malware Analysis
	Introduction
	Related Work
	The ITPM Approach
	Rule Generation
	Instruction Tracer
	The Trace Refiner
	Instruction-Based Matching Algorithm

	Experiment
	Conclusion
	References

