
Y. Yuan, X. Wu, and Y. Lu (Eds.): ISCTCS 2012, CCIS 320, pp. 156–162, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic Task Scheduling in Cloud Computing
Based on Greedy Strategy

Liang Ma1,2, Yueming Lu1,2, Fangwei Zhang3, and Songlin Sun1,2

1 School of Information and Communication Engineering,
Beijing University of Posts and Telecommunications, Beijing, China

2 Key Laboratory of Trustworthy Distributed Computing and Service (BUPT),
Ministry of Education, Beijing, China

mal327@sina.com, {ymlu,slsun}@bupt.edu.cn
3 School of Humanities, Beijing University of Posts and Telecommunications, Beijing, China

zhangfangwei@bupt.edu.cn

Abstract. Task scheduling is essentially an NP-completeness problem in cloud
computing and the existing task scheduling strategies can’t fully meet its de-
mands. In this paper, a feasible and flexible dynamic task scheduling scheme
DGS is proposed, which dynamically allocates virtual resources to execute
computing tasks and promptly completes the scheduling and execution process
by using improved greedy strategy. The simulation platform CloudSim is ex-
panded to realize the proposed scheme and the simulation results show that DGS
can speed up the tasks’ completion time and improve the utilization of cloud
resources to achieve load balance.

Keywords: cloud computing, dynamic task scheduling, greedy strategy, load
balance, completion time.

1 Introduction

In cloud computing [1], virtualization technology hides the heterogeneity of the re-
sources. They are no longer physical entities but instead a huge resource pool that
consists of abundant virtual machines (VMs).The basic mechanism of cloud computing
is to distribute computing tasks to the virtual resource pool, which enables a variety of
applications to gain computing power, storage and a variety of software services ac-
cording to their needs [2]. Thus an appropriate task scheduling strategy is needed as a
support.

The traditional scheduling schemes usually assume all computing nodes available
for processing which is not reliable in some scenarios[3],such as round-robin algo-
rithm, max-min algorithm, min-min algorithm and least-connection scheduling algo-
rithm [4].So they don’t meet the characteristics of cloud computing. Fortunately, many
efficient scheduling strategies have been proposed by the major cloud computing
vendors such as IBM’s Tivoli, Amazon’s EC2, Microsoft’s Dryad and Google’s Ma-
pReduce[5]. But a uniform standard to evaluate the methods is yet to be achieved. Task
scheduling in cloud computing is essentially an NP-completeness problem while heu-
ristic intelligent scheduling algorithms have been quite mature in seeking the optimal

 Dynamic Task Scheduling in Cloud Computing Based on Greedy Strategy 157

solution, such as genetic algorithm, simulated annealing algorithm, ant colony algo-
rithm and so on [6].But with the growing number of tasks and resources, the com-
plexity of these algorithms will become very high.

The current research of dynamic resource allocation and task scheduling mainly
focused on dividing onerous tasks into multiple subtasks for optimal solution and
migrating VMs for load balance. But in fact the divided subtasks usually can’t conduct
parallel computing due to strong backward and forward linkages. Furthermore, cloud
platform may be suspended because of the mandatory shutdown of the associated VMs
during migration process [7].

To address the problems, DGS is proposed which is described in detail in section
2.It monitors and calculates the actual amount of resources required by applications,
dynamically adjusts virtual resources to increase resource utilization and achieve load
balance. Meanwhile, improved greedy strategy is used to dynamically distribute tasks
to appropriate computing nodes in order to respond to users quickly. We also conduct
performance studies in CloudSim [8] environment and compare the performance of
DGS with round-robin algorithm and min-min algorithm in section 3.

2 A Feasible and Flexible Dynamic Task Scheduling Scheme DGS

According to the above explanation, DGS mainly focused on dynamically allocating
VMs and distributing tasks by greedy strategy. In order to realize DGS, a task sche-
duling node is divided into four modules to carry on scheduling process, including
Service Request Module (SRM), VMs Monitoring and Managing Module (VMM),
Routing Analysis Module (RAM) and Task Scheduling Module (TSM).

2.1 Quantification of Tasks and VMs

When the cloud receive the requests of users, TSM will firstly quantify them to com-
putable tasks by the following data structure.

Task{TaskId, TaskIP, Task Load, Computing Capacity,
 Communication Traffic, Storage Content}; (1)

In (1), Computing Capacity, Communication Traffic and Storage Content indicate the
requirements of each task to the Computing Power, Network Throughput and Storage
Capacity of a VM. Corresponding to it, VMs will also be quantified like this.

VM{VM Id, VM IP, CPU, Memory, Computing Power,
Network Throughput, Storage Capacity, Running Task}; (2)

In this paper, we define the completion time of a task executing on a VM like formula (3).

Completion time = Computing Capacity / Computing Power
+ Communication Traffic / Network Throughput; (3)

Assuming the load of a task is Ltask and the maximum workload of a VM is Lmax, then
the total load of users’ requests is Ltotal and the maximum workload of these existed
VMs is Lbare. Assuming the current workload of a VM is Lnormal, we define two load
factors Ratetotal and Ratenormal to describe the load condition of the whole system and

158 L. Ma et al.

each VM respectively. At the same time, a variable Ratethreshold is defined to indicate the
threshold rate which is the main criterion to identify whether the system or a VM is
overloaded. It’s an empirical value here.

Ltotal = ∑ task; (4)

Lbare = ∑ max; (5)

Ratetotal= Ltotal /Lbare; (6)

Ratenormal= Lnormal / Lmax; (7)

When the problem of load balance is discussed, the load of a server L is often calculated
by formula (8), where Lcpu, Lmemory, Lnetwork and Lstorage mean the load of CPU, Memory,
Network Throughput and Storage Capacity; , , , [0,1]and | +

 | =1, they represent different weights according to the types of applications.

L = *Lcpu + * Lmemory + * Lnetwork+ * Lstorage; (8)

2.2 Dynamic Resource Allocating Method

The main idea of dynamical allocation is to use virtual machine as the minimum re-
source allocation unit [9]. VMM uses pre-prepared image files with different functions
and certain network bandwidth to create new different VMs. As mentioned above, we
will dynamically allocate virtual resources in three situations.

First of all, if VMM detects that there is no VM in cloud or the computing power of
these VMs is limited, new VMs will be created. It firstly calculates the value of Ltotal, Lbare
and Ratetotal through formula (4) (5) (6). Meanwhile the variable Ratethreshold here is defined
as 0.7to avoid the overload of the whole system when new tasks arrive. If Ratetotal is
smaller than Ratethreshold, then the existed virtual resources could swimmingly execute the
tasks and new VMs don’t need to be allocated, or else the number of VMs that we have to
create is N so as to ensure the whole network will not overload. Nis depicted as follows.

N = (Ltotal -Lbare)/ Lmax; (9)

Secondly, after the fist-timescheduling by greedy strategy, if VMM notices some VMs
running in the critical state, it will create new VMs and conduct second-time schedul-
ing. In formula (7), we compute each VM’s Ratenormal and compare it to Ratethreshold

which is defined as 1.0 here to avoid the downtime of a VM. If Ratenormal is more than
Ratethreshold, the VM is overloaded and VMM will create a new and exactly the same one
to it except VM Id. Then TSM will assign these tasks in the task queue on the over-
loaded VM to the two VMs in turn, as shown in Fig.1. If it is still overloaded, the above
procedure will be repeated.

Fig. 1. An example of second-time scheduling

 Dynamic Task Scheduling in Cloud Computing Based on Greedy Strategy 159

Finally, before executing these assigned tasks, idle VMs will be released to reduce
the network load and avoid the waste of resources.

Through the three steps, both the whole network’sworkload and single resource’s
workload are taken into consideration. In thissituation,resources in cloud will be suf-
ficiently used and network congestion will be avoided.

2.3 Task Scheduling Based on Greedy Strategy

Greedy strategy usually makesthe optimal choice with an optimization measure based
on the current situation butregardless of any possible overall situation.It doesn’t need to
backtrack and the complexity is relatively simple.

Before allocating, TSM will firstly create a Tasks–VMs taboo table, as shown in
Fig.4. The left column of the table are tasks which are sorted by computing capacity in
decreasing order by SRM and the right column is VMs list.In each row, TSM calls
formula (1)(2)(3) to compute the Completion timefor each task on all VMs and sort the
VMs in ascending order.

Table 1. An example of Tasks-VMs taboo table

Tasks VMs
Task2 VM2 VM3 VM5 VM1 VM…
Task1 VM4 VM2 VM3 VM5 VM…
Task3 VM3 VM5 VM2 VM1 VM…
Task4 VM2 VM3 VM5 VM1 VM…

… …

Then we attempt to assign the task to the VM in the first column of virtual machines

list from the first line to ensure thattasks with larger computation quantity will be
executed on the VMs with more powerfulexecuting ability. Normally, the chosen VM
with strong computing power has already gotsome tasks working on it. Sothe comple-
tion time of this being currently assigned task should includetheexecution time of these
tasks assigned before if it is assigned to the VM.

Then the current program will be compared to others in whichthis task is assigned to
other slightly worse VMs.If the current program is optimal compared to other results,
the program is feasible, otherwise we have to choose other optimal programs. In this
case, the more sophisticated tasks will be preferentially executed to solve time bottle-
neck caused by themselves.By recording the parameter Running Task of a VM, when
there are multiple solutions that can achieve optimal, the task will be assigned to the
VM which has the lower resource utilization rate.

In this way, itcannot only quickly complete users’ requests but also take fully advantage
of the current resources existed in cloud so as to implement asimple load balance.

3 Evaluation

In our work, the simulation platform CloudSim is expanded and applied to realize DGS.To
have a better view of the advantages of DGS, a comparison betweenround-robin algorithm

160 L. Ma et al.

(RR) and min-min algorithm (MM) is conducted.In initial situation, there are four types of
tasks and 15VMsin the system.

Fig.3 shows the comparison of three schemes’ completion time inhandling different
number of tasks.If the downtime of each VM is not considered, thenthe completion
time will grow gradually with the increasing of the number of tasks, just like MM and
RR in this figure. But in actual experiments, when the number of tasks increases to 120,
many VMs have been overloaded and stopped working. Then DGS began to create
some new VMs to ensure each VM can work normally and its number is 8 here. Due to
creating new VMs to execute the tasks on overloaded VMs, the completion time will be
shorter. So the completion time of DGSwill not grow obviously with the increasing of
the number of tasks and it is relatively smoother in Fig.2.

Fig. 2. The comparison of three schemes’ Fig. 3. The comparison of three scheme’s com-
pletion time resource utilization with 60 tasks

Fig.3 shows the comparison of three schemes’ resource utilization when there are 60
tasks. In this situation, both the whole system and each VM are not overloaded. The
resource utilization of three schemes is similar in the figure. So DGS doesn’t have
significant advantageswhen the number of tasks is small.

As shown in Fig.4, when the number of tasks reaches 120, many VMs will be
overloaded with the use of MM or RR. And here we set theirutilization to 1, just like
the second VM in this figure. Thenthe load of the whole system will become extremely
unbalanced. At this time,DGS creates8 VMs to make sure no VM is overloaded and the
utilization of each VM is relatively more balanced.

When the number of tasks increase to 210, the whole system will be overloaded.
Then users’ requests will not be respond timely either MM or RR is used. But with DGS
it can work normally no matter what the number of requests is. In this situation, DGS
will firstly allocate some new VMs to ensure the whole system is able to work and the
number here is 5. Then another 5 new VMs are created during the scheduling process to
avoid the overload of each VM. As a result, there are 25 VMs here after the accom-
plishment of scheduling. As shown in Fig.5, the resource utilization of each VM is high
and under the critical point.

 Dynamic Task Scheduling in Cloud Computing Based on Greedy Strategy 161

Fig. 4. The comparison of three schemes’ Fig. 5. The resource utilization of DGS resource
utilization with 120 tasks with 210 tasks

From the simulation, we can see DGS plays a significant role if the number of tasks
is large. It can promptly deal with the requests of users and relatively achieve load
balance at the same time. With the growing number of tasks, DGS will have better-
performance and adapt to the characteristics of cloud computing better. But the premise
is to consume more hardware resources because more VMs are allocated during the
process.

4 Conclusions

In this paper, an efficient dynamic task scheduling scheme based on greedy strategy
named DGS is proposed to deal with the requests of users as soon as possible on the
premise of load balance. Through the expansionofCloudSim, DGShas been simulated
and the experiment results show that the new scheme can dynamically allocate VMs to
reach load balance rate and rapidly finish executing tasks by greedy strategy.Moreover,
it’s easy to implement in the realistic situation and will achieve great effect. During the
research we haven’t taken the cost of virtual resources and the prediction of users’
requests into consideration.That will be studied in the future research.

Acknowledgments. This research was supported in part by National 863 Program (No.
2011AA01A204), National 973 Program (No. 2011CB302702), P. R. China. Thanks
for the great help.

References

1. Armbrust, M., Fox, A., Griffith, R., et al.: Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report, No. UCB/EECS-2009-28 (2009)

2. Baomin, X., Chunyan, Z., Enzhao, H., Bin, H.: Job scheduling algorithm based on Berger
model in cloud environment. J. Advances in Engineering Software (2011)

3. Xiangzhen, K., Chuang, L., Yixin, J., Wei, Y., Xiaowen, C.: Efficient dynamic task sche-
duling in virtualized data centers with fuzzy prediction. Journal of Network and Computer
Applications 34(4), 1068–1077 (2011)

162 L. Ma et al.

4. Chauhan, S.S., Joshi, R.C.: A Weighted Mean Time Min-Min Max-Min Selective Scheduling
Strategy for Independent Tasks on Grid. In: 2010 IEEE 2nd International Advance Compu-
ting Conference on (IACC), pp. 4–9. IEEE Press, Patiala (2010)

5. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Com-
munications of the ACM - 50th Anniversary Issue: 1958–2008 51(1), 107–113 (2008)

6. Abdulal, W., Ramachandram, S.: Reliability-Aware Genetic Scheduling Algorithm in Grid
Environment. In: 2011 International Conference on Communication Systems and Network
Technologies (CSNT), pp. 673–677. IEEE Press, Katra (2011)

7. Warneke, D., Kao, O.: Exploiting Dynamic Resource Allocation for Efficient Parallel Data
Processing in the Cloud. IEEE Transactions on Parallel and Distributed Systems 22(6),
985–997 (2011)

8. Calheiros, R.N., Ranjan, R., Rose, C.A.F.D., Buyya, R.: CloudSim: A Novel Framework for
modeling and Simulation of Cloud Computing Infrastructures and Services. Technical report
(2009)

9. Weiwei, L., James, Z.W., Chen, L., Deyu, Q.: A Threshold-based Dynamic Resource
Allocation Scheme for Cloud Computing. J. Procedia Engineering 23, 695–703 (2011)

	Dynamic Task Scheduling in Cloud Computing Based on Greedy Strategy
	Introduction
	A Feasible and Flexible Dynamic Task Scheduling Scheme DGS
	Quantification of Tasks and VMs
	Dynamic Resource Allocating Method
	Task Scheduling Based on Greedy Strategy

	Evaluation
	Conclusions
	References

