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Abstract. Conceptual patterns can be described by graphs, entailment
by graph homomorphism. The mapping of a pattern to its set of instanti-
ations, represented as a table, constitutes one half of a Galois connection.
The join operation is the infimum in a complete lattice of tables, and a
most descriptive pattern can be assigned to each table by means of a
categorial product construction. This construction constitutes the other
half of the Galois connection. In this approach, relational structures as-
sume the role of formal contexts in standard Formal Concept Analysis
(FCA). Concepts arise as connected components of powers of these re-
lational structures. The ordered set of these concepts may be conceived
as a navigation space.

Keywords: Formal Concept Analysis, Relational Structures, Category
Theory, Databases.

1 Introduction

The idea of using concept lattices to browse data can be traced back to [7]. In
[7], a set of attributes is considered a query, and the set of objects having all
the attributes (which is a concept extent) is the corresponding result set. The
downward (upward) edges in a lattice’s line diagram indicate the ways in which
a query can be refined (weakened) to effect a minimal change in the result set.
The capability to successively modify queries in this fashion is thought to make
data more accessible to the information seeker.

More advanced applications of lattice-based browsing make use of conceptual
scales to incorporate and distinguish between different types of values in the
data. Relational scales can be used to account for inter-object relations in the
data. The reader is referred to [1,3] for recent applications that treat relational
data. In this paper, we describe mathematically a navigation space akin to those
underlying the mentioned systems, but it is obtained directly from a relational
structure and not by means of relational scaling.

For an example, consider the family tree in Fig. 1. The nodes represent the
family members A(nne), B(ob), C(hris), D(ora) and E(mily). The arcs say that
Anne is the m(other) of Bob and Chris, and Bob is the f(ather) of Dora and
Emily. This graph defines (and visually represents) a relational structure F with
underlying set {A,B,C,D,E}, unary relations � and � and binary relations m
and f . We assume that F also has a p(arent) relation p, which is not drawn here.
In Fig. 2, the nine nodes arranged as a cube form a particular concept lattice.

The concept intents, drawn to the right of each concept, are relational struc-
tures representing conjunctive queries [2]. The black nodes designate the subject(s)
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Fig. 2. Example: concept lattice CF [{x}] (plus three concepts from CF [{x, y}])
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of a query, variable names are assigned to them (technically by a function ν).
The white nodes correspond to existentially quantified variables. The top con-
cept and its lower neighbors (from left to right) are ’person’, ’child’, ’parent’ and
’female’. The concept extents, drawn to the left of each concept, are result sets
of the intent queries. Each result arises from a homomorphism from the intent
to F . Consider now the three lower neighbors of ’child’. The right one can be
identified with ’granddaughter’, but note that the most precise description (the
intent) tells us more. The middle one can not be identified with ’uncle’ because
we do not (and can not) express that the males are different persons. We could
make up a name ”parentship” for the left one, the intent has two free variables
x, y and the extent consists of all instances of ’parentship’. This concept does
not belong to the ”cube” CF [{x}] (the lattice of all concepts definable with one
free variable x), it belongs to the concept lattice CF [{x, y}]. Only three concepts
of CF [{x, y}] are shown in Fig. 2.

Graphs are a natural candidate for the formal representation of queries over
RDF. Chandra and Merlin’s result on query optimization by graph folding [2]
may exemplify on a more general level the benefits of such representation. Pat-
tern Structures [5] formalize the idea of representing concept intents by some
kind of pattern rather than by an attribute set. In [5], the authors mention
Conceptual Graphs and formalize chemical graphs (see also [4]) as examples for
patterns. The notions of homomorphism which accompany these graphs make
their approach seem very similar to the one presented here. A difference is that
in [5], extents are still sets of objects, while here we use tables for their repre-
sentation (although one-column tables are naturally identified with object sets).
One could argue that such a construction is no longer a concept lattice, but in
fact we have identified concepts in the foregoing example.

We will stipulate that concepts are described by connected graphs. However,
the Galois connection in Sect. 5 extends to all windowed structures (i.e. conjunc-
tive queries, Sect. 3), it does not harm to allow even infinite ones. The concept
lattices lie embedded in the complete lattice that arises from this Galois con-
nection (Sect. 6). Before the Galois connection is defined, the preordered class
of windowed structures (Sect. 3) and the complete lattice of tables (Sect.4) are
introduced independent of each other.

2 Preliminaries

A relational signature is a set S of relation symbols. The arity of a symbol R ∈ S
is a natural number |R| ≥ 1. A relational structure over the signature S, also
called an S-structure, is a pair A = (A, (A(R))R∈S), where A(R) ⊆ A|R| for all
R ∈ S. The set A is called the underlying set of A and can also be denoted by
|A|. A homomorphism from an S-structure G1 to an S-structure G2 is a map
ϕ : |G1| → |G2| such that for all R ∈ S and (x1, . . . , x|R|) ∈ G1(R) we have
(ϕ(x1), . . . , ϕ(x|R|)) ∈ G2(R).
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The product
∏

i∈I Gi of S-structures is defined by

|
∏

i∈I

Gi| =×
i∈I

|Gi|

and, for all symbols R of S,
(x1, . . . , x|R|) ∈ (

∏

i∈I

Gi)(R) :⇔ ∀i ∈ I : (x1(i), . . . , x|R|(i)) ∈ Gi(R) .

The I-th power of a structure G is the product ×i∈I G and is denoted by GI .
The product of relational structures is a product in the sense of category theory:

Proposition 1. Let (Gi)i∈I be a family of S-structures. Then each projection

πi : ×i∈I |Gi| → |Gi| is a homomorphism from
∏

i∈I Gi to Gi. Furthermore,
for each S-structure H and family (ϕi : H → Gi)i∈I , there exists a unique
ϕ : H → ∏

i∈I Gi such that ϕi = πi ◦ ϕ for all i ∈ I.

When we talk about the nodes of A, what we mean are the elements of |A|. A
sequence (a1, . . . , an) of nodes of A is called a path from a1 to an in A, if for all
1 ≤ i < n there exists an R ∈ S such that {ai, ai+1} ⊆ {x1, . . . , x|R|} for some
(x1, . . . , x|R|) ∈ A(R). We call a structure A connected if there exists a path
from a to b for all a, b ∈ |A|. We define an equivalence relation

a ∼ b ⇔ there exists a path from a to b

over |A|. A connected component of A, or simply a component of A, is an S-
structure C for which |C| is a class of ∼ and C(R) = A(R) ∩ |C||R| for all R ∈ S.

Throughout the paper, we will use Var to denote a countably infinite set
of variables. By ι (or any variety such as ι̃, ι1, . . . ) we shall always denote an
inclusion map from some set X1 to some set X2, i.e. a map with ι(x) = x for all
x ∈ X1, where X1 ⊆ X2 is implied. The sets X1 and X2 will be clear from the
context.

3 Windowed Structures

Definition 1. Let S be a relational signature. A windowed S-structure is
a triple (X, ν,G) consisting of a set X ⊆ Var, an S-structure G and a map
ν : X → |G|.
Definition 2. Let W1 = (X1, ν1,G1) and W2 = (X2, ν2,G2) be windowed S-
structures. A homomorphism ϕ : W1 → W2 of windowed structures is a
structure homomorphism ϕ : G1 → G2 with ϕ ◦ ν1 = ν2 ◦ ι, where X1 ⊆ X2 is
assumed.

Homomorphisms of windowed S-structures are closed under composition. Also,
the identity id : |G| → |G| is a homomorphism of any windowed S-structure
(X, ν,G) onto itself. These two facts imply that windowed S-structures with
homomorphisms form a category. Furthermore, they imply that the following
relation on the class of windowed S-structures is a preorder:
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Definition 3 (Homomorphism Preorder). For windowed S-structures W1

and W2, we set
W1 � W2 :⇔ ∃ ϕ : W1 → W2 .

The homomorphism preorder induces an equivalence relation on the class of
windowed S-structures:
Definition 4 (Homomorphic Equivalence). For windowed S-structures W1

and W2, we set
W1 
 W2 :⇔ W1 � W2 ∧W2 � W1 .

Definition 5. The product of a family ((Xi, νi,Gi))i∈I of windowed S-struc-
tures is the windowed S-structure

∏

i∈I

(Xi, νi,Gi) := (
⋂

i∈I

Xi, νI ,
∏

i∈I

Gi) ,

where νI(x) := (νi(x))i∈I .

The product of the empty family is (Var, ν∅, (∅, ({∅}|R|)R∈S)), where ν∅(x) = ∅
for all x ∈ Var.

The product is indeed a product in the category theoretical sense, as the
following proposition shows:

Proposition 2. Let ((Xi, νi,Gi))i∈I be a family of windowed S-structures. Each
projection πi : ×i∈I |Gi| → |Gi| is a homomorphism from

∏
i∈I(Xi, νi,Gi) to

(Xi, νi,Gi). Furthermore, for each windowed S-structure (Y, μ,H) and family
(ϕi : (Y, μ,H) → (Xi, νi,Gi))i∈I , a unique ϕ : (Y, μ,H) → ∏

i∈I(Xi, νi,Gi) exists
such that ϕi = πi ◦ ϕ for all i ∈ I.

Proof. From Prop. 1 we obtain πi :
∏

i∈I Gi → Gi for i ∈ I. The definition of
νI provides πi ◦ νI = νi ◦ ιi for all i ∈ I (see the right circuit in Fig. 4). This
proves the first claim. Now let (ϕi : (Y, μ,H) → (Xi, νi,Gi))i∈I be a family of
homomorphisms on some (Y, μ,H). In particular, we have ϕi ◦ μ = νi ◦ ι̃i for all
i ∈ I (outer circuit). Also, Y must be a subset of each Xi, and so we have an
inclusion map ι : Y → ⋂

i∈I Xi. The equations ι̃i = ιi ◦ ι (upper circuit) hold
trivially. Again from Prop. 1 we obtain ϕ : H → ∏

i∈I Gi with ϕi = πi ◦ϕ (lower
circuit). Altogether, we obtain

πi ◦ ϕ ◦ μ = ϕi ◦ μ = νi ◦ ι̃i = νi ◦ ιi ◦ ι = πi ◦ νI ◦ ι
for all i ∈ I, and thus ϕ ◦ μ = νI ◦ ι (left circuit). Note that this last equation
can not be inferred from the commutativity of the diagram!

We have shown that ϕ is a homomorphism from (Y, μ,H) to
∏

i∈I(Xi, νi,Gi).
From ϕi = πi ◦ ϕ it follows that ϕ(x) := (ϕi(x))i∈I , so ϕ is unique. ��
The coproduct

∐
i∈I(Xi, νi,Gi) of windowed graphs is identical to a pushout of

S-structures, if all Xi are the same. In the general case, it is constructed from
the disjoint union of the Gi, i ∈ I, by identifying all nodes νi(x) and νj(x) where
x ∈ Xi ∩Xj .

The product and coproduct can be understood as infimum and supremum in
the homomorphism preorder. This is made precise in the corollary:
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Corollary 1. Let (Wi)i∈I be a family of windowed S-structures. The following
equivalences hold for all windowed S-structures W :

W �
∏

i∈I

Wi ⇔ ∀i ∈ I : W � Wi , (1)

∐

i∈I

Wi � W ⇔ ∀i ∈ I : Wi � W . (2)

4 Tables

Definition 6. Let G be a set. A table over G is a pair (X,Λ), where X ⊆ Var
and Λ ⊆ GX . The set of all tables over G is denoted by Tab(G).

Definition 7. For tables (X1, Λ1) and (X2, Λ2) over G, we define

(X1, Λ1) ≤ (X2, Λ2) :⇔ X2 ⊆ X1 ∧ Λ1 ◦ ι ⊆ Λ2 .

Proposition 3. The pair (Tab(G),≤) is a complete lattice. The infimum of a
family ((Xi, Λi))i∈I of tables is given by the join operation

��
i∈I

(Xi, Λi) := (
⋃

i∈I

Xi, ΛI) , (3)

where ΛI := {λ :
⋃

i∈I Xi → G | ∀i ∈ I : λ ◦ ιi ∈ Λi}. The supremum is

��

i∈I

(Xi, Λi) := (
⋂

i∈I

Xi,
⋃

i∈I

(Λi ◦ ιi)) . (4)

5 Galois Connection

Definition 8. Let D be an S-structure. The solution (in D) of a windowed
S-structure (X, ν,G) is a table over |D|, given by

(X, ν,G)′ := (X,Hom(G,D) ◦ ν) . (5)
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The description (over D) for a table (X,Λ) over |D| is a windowed S-struc-
ture, given by

(X,Λ)′ := (X, νΛ,DΛ) , (6)

where νΛ(x) := (λ(x))λ∈Λ for x ∈ X. The two operations thus defined are both
denoted by the same sign and are called the derivation operations with re-
spect to D.

Proposition 4. Let D be an S-structure. The derivation operators w.r.t. D
form a Galois connection. That is, the following equivalence holds for all win-
dowed S-structures (X, ν,G) and for all tables (Y, Λ) over |D|:

(X, ν,G) � (Y, Λ)′ ⇔ (Y, Λ) ≤ (X, ν,G)′ . (7)

Proof. The left side of the statement can be transformed into the right side by
a series of equivalences (explained below):

(X, ν,G) � (Y, νΛ,DΛ) ⇔ ∀λ ∈ Λ : (X, ν,G) � (Y, λ,D)

⇔ Λ ◦ ι ⊆ Hom(G,D) ◦ ν
⇔ (Y, Λ) ≤ (X,Hom(G,D) ◦ ν) .

To see the first equivalence, use that (Y, Λ)′ is the product of all (Y, λ,D), λ ∈ Λ,
and then apply Cor. 1. For the second equivalence, note that the statements on
either side assert that for each λ ∈ Λ there exists ϕ : G → D with λ ◦ ι = ϕ ◦ ν.
The last equivalence follows from Def. 7. ��

In Props. 5 and 6 we state some consequences of (7) which are well-known in
their general form. Proofs can e.g. be found in the introductory chapter of [6].
These carry over to our case of a Galois connection involving a preordered class
(note Prop.5(iii), however).

Proposition 5. Let D be an S-structure. The following holds for all tables T ,
T1 and T2 over |D|, and for all windowed S-structures W , W1 and W2:

(i) T ≤ T ′′ (i′) W � W ′′

(ii) T1 ≤ T2 ⇒ T ′
2 � T ′

1 (ii′) W1 � W2 ⇒ W ′
2 ≤ W ′

1

(iii) T ′ 
 T ′′′ = T ′′′′′ (iii′) W ′ = W ′′′

Proposition 6. Let D be an S-structure. The following holds for all families
(Wi)i∈I of windowed S-structures and for all families (Ti)i∈I of tables over |D|,
respectively:

(
∐

i∈I

Wi)
′ =��

i∈I

W ′
i ,

( ��

i∈I

Ti)
′ 


∏

i∈I

T ′
i .



308 J. Kötters

6 Concepts and Lattices

As in Formal Concept Analysis, we proceed to define a set of pairs which are
stable under the Galois connection,

LD := {(T,W ) | T ∈ Tab(D) ∧ T ′ = W ∧W ′ = T } , (8)

and define an order on that set,

(T1,W1) ≤ (T2,W2) :⇔ T1 ≤ T2 ⇔ W2 � W1 . (9)

The second equivalence in (9) follows from Prop. 5(ii)(ii’). Note that the elements
of LD are precisely the pairs (W ′,W ′′), or equivalently the pairs (T ′′, T ′′′), gen-
erated by the windowed S-structures W and tables T ∈ Tab(D), respectively
(see Prop. 5(iii)(iii’)). For X ⊆ Var we define

LD[X ] := {((X,Λ)′′, (X,Λ)′′′) | (X,Λ) ∈ Tab(D)} (10)

= {((X, ν,G)′, (X, ν,G)′′) | (X, ν,G) windowed S-structure} .

The following definition of concept is suggested:

Definition 9. A concept is a pair (T, (X, ν,G)) ∈ LD for which all nodes ν(x),
x ∈ X, belong to the same component of G. The set of all concepts of the rela-
tional structure D is denoted by CD.

In analogy to (10), we define

CD[X ] := LD[X ] ∩ CD . (11)

We may identify a concept intent with the component containing ν(X).

Theorem 1. The ordered set (LD ,≤) is a complete lattice. Infimum and supre-
mum are given by

∧

i∈I

(Ti,Wi) =

(

��
i∈I

Ti, (
∐

i∈I

Wi)
′′
)

, (12)

∨

i∈I

(Ti,Wi) =

(

( ��

i∈I

Ti)
′′, (

∏

i∈I

Wi)
′′
)

. (13)

For all X ⊆ Var, the suborders (LD[X ] ∪ {�},≤) and (CD[X ] ∪ {�},≤), where
� denotes the maximum of (LD,≤), are

∧
-sublattices of (LD,≤).

Proof. The formulas for the infimum and supremum follow from Prop. 6. Now
let (Ci)i∈I be a family in LD[X ] ∪ {�} and C :=

∧
i∈I Ci, and let us further

define Ci =: ((X,Λi), (X, νi,Gi)). If Ci = � for all i ∈ I, the infimum is �. Else
(3) simplifies to

��
i∈I

(X,Λi) = (X,
⋂

i∈I

Λi) , (14)

which means in particular that C ∈ LD[X ]. We write C =: ((X,Λ), (X, ν,G)).
If (Ci)i∈I is a family in CD[X ]∪{�}, we have to show in addition that C ∈ CD

if Ci ∈ CD for some i ∈ I. In this case, there exists ϕ : Gi → G. Homomorphisms
preserve paths, so C must also be a concept. ��
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7 Construction

In this section, a brute force construction algorithm for CD[X ] is given (X and D
finite), where intents are (and need be) computed up to homomorphical equiv-
alence only. A key observation is that all concept intents are components of
powers of D, complemented by some assignment from X to the nodes (cf. (6)).
It can be shown that conversely, each windowed structure (X, ν, C), where C is
a component of a power of D and ν is chosen arbitrarily, is homomorphically
equivalent to some concept intent. If we pick one of these windowed structures
from each 
-class, we have determined all concept intents up to homomorphical
equivalence. Note that the components C can be taken from the power structures
D1, . . . ,Dn, n := ||D|X |, because a power DΛ, Λ ⊆ |D|X , is isomorphic to D|Λ|.
The following terminating condition can be proven: If we compute the powers
D1, . . . ,Dn in sequence and reach some Di, 1 < i ≤ n, such that every windowed
structure obtained from a component of Di is homomorphically equivalent to one
computed earlier, then the set of concept intents (up to isomorphism) is com-
plete. To build the line diagram (or check for homomorphical equivalence), it
may be more convenient to compare extents. If data is stored in a database,
extents could be computed by the query engine (this would involve translating
windowed structures into some other form of query).

The nine concepts of CD[{x}] from our initial example are obtained from the
ten components of F and F2 (see Figs. 1 and 5). Thirty windowed structures
are obtained from these components (as many as there are nodes), each can be
folded onto some equivalent graph in Fig. 2. Higher powers of F do not yield
any further concepts.
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Fig. 5. Example: family tree (squared)
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8 Conclusion

We have generated concept lattices directly from a relational structure. The
representation of concept intents and extents by graphs and tables establishes
connections to graph theory and database theory with their proven formalisms.
This gives hope that notions and results from these areas may produce new
insights into questions related to lattice-based navigation, and thus guide the
development of applications. The similarity of the model to well-known Pattern
Structures requires further, detailed comparison. The model will also have to be
compared with other formal approaches dealing with relational data, including
Concept Graphs [9,8] and Relational Semantic Systems [10].
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