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Abstract.  We develop a graph representation and learning technique for parse 
structures for sentences and paragraphs of text. This technique is used to 
improve relevance answering complex questions where an answer is included in 
multiple sentences. We introduce Parse Thicket as a sum of syntactic parse trees 
augmented by a number of arcs for inter-sentence word-word relations such as 
coreference and taxonomic. These arcs are also derived from other sources, 
including Rhetoric Structure theory, and respective indexing rules are 
introduced, which identify inter-sentence relations and joins phrases connected 
by these relations in the search index. Generalization of syntactic parse trees (as 
a similarity measure between sentences) is defined as a set of maximum 
common sub-trees for two parse trees. Generalization of a pair of parse thickets 
to measure relevance of a question and an answer, distributed in multiple 
sentences, is defined as a set of maximal common sub-parse thickets. The 
proposed approach is evaluated in the product search domain of eBay.com, 
where user query includes product names, features and expressions for user 
needs, and the query keywords occur in different sentences of text. We 
demonstrate that search relevance is improved by single sentence-level 
generalization, and further increased by parse thicket generalization. The 
proposed approach is evaluated in the product search domain of eBay.com, 
where user query includes product names, features and expressions for user 
needs, and the query keywords occur in different sentences of text.  

Keywords: learning taxonomy, learning syntactic parse tree, syntactic 
generalization, search relevance.  

1 Introduction 

The task of answering complex questions, where desired information is distributed 
through multiple sentences in a document, becomes the bottleneck of modern search 
engines.  The demand for access to different types of information have led to a 
renewed interest in answering questions posed in ordinary human language and 
seeking  exact, specific and complete answer. After having made substantial 
achievements in fact-finding and list questions, natural language processing (NLP) 
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community turned their attention to more complex information needs that cannot be 
answered by simply extracting named entities (persons, organization, locations, dates, 
etc.) from single sentences in documents [4]. Complex questions often seek multiple 
different types of information simultaneously, located in multiple sentences, and do 
not presuppose that one single sentence could meet all of its information seeking 
expectations. To systematically analyze how keywords from query occur in multiple 
sentences in a document, one needs to explore coreferences and other relations 
between words within a sentence and between sentences. 

Modern search engines attempt to find the occurrence of query keywords in a 
single sentence in a candidate search results [11]. If it is not possible or has a low 
search engine score, multiple sentences within one document are used. However, 
modern search engines have no means to determine if the found occurrences of the 
query keywords in multiple sentences are related to each other, to the same entity, 
and, being in different sentences, are all related to the query term. 

In this study we attempt to systematically extract semantic features from 
paragraphs of text using a graph-based learning, assuming that an adequate parse trees 
for individual sentences are available. In our earlier studies [8,9] we applied graph 
learning to parse trees at the sentence level, and here we proceed to learning the 
structure of paragraphs, relying on parse thickets. Parse thicket is defined as a sum of 
parse trees with additional arcs between nodes for words in different sentences. We 
have defined the least general generalization of parse trees (we call it syntactic 
generalization), and in this study we extend it to the level of paragraphs. We propose 
parse thicket matching algorithm and apply it to re-rank multi-sentence answers to 
complex questions. Computing generalization of a pair of paragraph, we performed a 
pair-wise generalization for each sentence in paragraphs. This approach ignores the 
richness of coreference information, and in the current study we develop graph 
learning means specifically oriented to represent paragraphs of text as respective 
parse thickets with nodes interconnected by arcs for a number of relations including 
coreference.  We consider a number of discourse-related theories such as Rhetoric 
Structure and Speech Acts as source of arcs to augment the parse thicket. These arcs 
will connect edges for words within as well as between parse trees for sentences.  

Machine learning at the paragraph level is required for text classification problems, 
where handling the meaning (via collection of keywords) at the sentence level is 
insufficient, and taking advantage of coreference information is necessary [6]. In this 
paper we will demonstrate how building adequate paragraph structure is necessary 
when a paragraph is indexed for search.  We will consider two cases for text indexing, 
where establishing proper coreferences inside and between sentences links entities in 
an index for proper match with a question (Fig. 1): 

 
Text for indexing1: … Tuberculosis is usually a lung disease. It is cured by 

doctors specializing in pulmonology.  
Text for indexing2: … Tuberculosis is a lung disease… Pulmonology specialist 

Jones was awarded a prize for curing a special form of disease.  
Question: Which specialist doctor should treat my tuberculosis? 

Fig. 1. Multi-sentence indexing cases 
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In the first case, establishing coreference link Tuberculosis → disease → is cured 
by doctors pulmonologists helps to match these entities with the ones from the 
question. In the second case this portion of text does not serve as a relevant answer to 
the question, although it includes keywords from this question. Hence at indexing 
time, keywords should be chained not just by their occurrence in individual sentences, 
but additionally on the basis of coreferences. If words X and Y are connected by a 
coreference relation, an index needs to include the chain of words X0, X1…X, Y0,Y1… 
Y, where chains X0 , X1…X and Y0,Y1… Y are already indexed (phrases including X 
and Y).  Hence establishing coreference is important to extend index in a way to 
improve search recall. Notice that usually, keywords from different sentences can 
only be matched with a query keywords with a low score (high score is delivered by 
inter-sentence match). 

Since our problem concerns with finding the best sentence that contains the answer 
to any given question, we need some mechanism that can measure how close the a 
candidate answer is to the question. This allows us to choose the final answer which is 
the one that matches the most closely to the question. To achieve this we need a 
representation of the sentences that allows us to capture useful information in order to 
accommodate the matching process. We also need an efficient matching process to 
work on the chosen representation. 

The evaluation of matching mechanism in this study is associated with improvement 
of search relevance by checking syntactic similarity between query and sentences in 
search hits, obtained via a search engine API. This kind of syntactic similarity is 
important when a search query contains keywords which form a phrase, domain-specific 
expression, or an idiom, such as “shot to shot time”, “high number of shots in a short 
amount of time”. In terms of search implementation, this can be done in two steps: 

1) Keywords are formed from query in a conventional manner, and search hits 
are obtained taking into account statistical parameters of occurrences these 
words in documents, popularity of hits, page rank and others.  

2) Above hits are filtered with respect to syntactic similarity of the snapshots of 
search hits with search query. Parse thicket generalization comes into play here. 

Hence we obtain the results of the conventional search and calculate the score of the 
generalization results for the query and each sentence and each search hit snapshot. 
Search results are then re-ranked and only the ones syntactically close to search query 
are assumed to be relevant and returned to a user.   

2 Generalizing Portions of Text 

To measure similarity of abstract entities expressed by logic formulas, a least-general 
generalization was proposed for a number of machine learning approaches, including 
explanation based learning and inductive logic programming. Least general 
generalization was originally introduced in [14]. Its realization within the predicate logic 
is opposite to the most general unification; therefore it is also called anti-unification.  
In this study, to measure similarity between portions of text such as paragraphs, 



156 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov 

sentences and phrases, we extend the notion of generalization from logic  
formulas to sets of syntactic parse trees of these portions of text. The purpose of an 
abstract generalization is to find commonality between portions of text at various  
semantic levels. Generalization operation occurs on the levels of 
Article/Paragraph/Sentence/Phrases (noun, verb and others)/Individual word. 

At each level except the lowest one, individual words, the result of generalization of 
two expressions is a set of expressions. In such set, expressions for which there exist 
less general expressions are eliminated. Generalization of two sets of expressions is a set 
of sets which are the results of pair-wise generalization of these expressions. 

We outline the algorithm for two sentences and then proceed to the specifics for 
particular levels (Fig. 2). The algorithm we present in this paper deals with paths of 
syntactic trees rather than sub-trees, because it is tightly connected with language 
phrases. We refer the reader to [8,9] for more details. 

 
1) Obtain parsing tree for each sentence. For each word (tree node) we have the 

word (lemma), part of speech and form of word information. This  
information is contained in the node label.  We also have an arc to the other 
node.   

2) Split parse trees for sentences into sub-trees which are phrases for each type: 
verb, noun, prepositional and others; these sub-trees are overlapping. The  
sub-trees are coded so that information about occurrence in the full tree is 
retained. 

3) All sub-trees are grouped by phrase types.  

4) Extending the list of phrases by adding equivalence transformations  

5) Generalize each pair of sub-trees for both sentences for each phrase type. 

6) For each pair of sub-trees yield an alignment, and then generalize each node 
for this alignment. For the obtained set of trees (generalization results), 
calculate the score.  

7) For each pair of sub-trees for phrases, select the set of generalizations with 
highest score (least general). 

8) Form the sets of generalizations for each phrase types whose elements are  
sets of generalizations for this type. 

9) Filtering the list of generalization results: for the list of generalization for  
each phrase type, exclude more general elements from lists of generalization 
for given pair of phrases. 

Fig. 2. Sentence-level syntactic generalization algorithm 

For a pair of phrases, generalization includes all maximum ordered sets of 
generalization nodes for words in phrases so that the order of words is retained. In the 
following example  

To buy digital camera today, on Monday  
Digital camera was a good buy today, first Monday of the month 
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Generalization is {<JJ-digital,  NN-camera> ,<NN- today, ADV-*, NN-Monday>} 
where the generalization for noun phrases is followed by the generalization by 
adverbial phrase.  Verb buy is excluded from both generalizations because it occurs in 
a different order in the above phrases. Buy - digital - camera is not a generalization 
phrase because buy occurs in different sequence with the other generalization nodes. 
Further details on sentence level generalization are available in [8]. 

2.1 Direct Paragraph-Paragraph Match 

We build a model of generalizing paragraphs taking into account coreference and 
taxonomic relationship between words between sentences, as well as within 
sentences. We will provide a number of examples to introduce the representation via 
parse thicket.   We start with a simple example of how a discourse can be visualized 
by a forest.  
 

Lady Gaga has revealed that her next album will be released as an app. 
The singer confirmed that the album, called ARTPOP, will be a multimedia 

experience. 
    She says she wants fans to "fully immerse" themselves in the project. 
    Content will include extra music, videos, chat options and games. 

 
To answer cross-sentence questions, we need to establish connections between the 

words of different sentences, taking into account that each consecutive sentence 
elaborate on the previous one. 

Question “multimedia experience from lady gaga” (Fig. 3) will need the path in 
Parse Thiket Lad_Gaga <possession>→ album <same entity relation>→ album <is-
a relation> → multimedia_experience. Question “Does Lady Gaga rely on games 
content” will involve the path “Lad_Gaga <possession>→ album <has-a 
relation>→ content <has-a relation>→ games. 

 

 

Fig. 3. Parse Thicket- supported search for a concert at StubHub/eBay 

To establish the semantic relationships above, we need to use multiple sources. 
Notice that we cannot rely on ontologies, only on syntactic information, searching in a 
horizontal domain. Within a sentence, we use its parse tree. Same-entity relation is 
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based on anaphora resolution, and has-a relation is based on syntactic structure within 
a sentence.  Between sentences, we use the elaboration assumption that each 
consecutive sentence elaborates on some entities from previous sentences. It turns out 
that Rhetoric Structure theory provides a systematic framework to do that.   

We now show a paragraph which includes four sentences with the relations 
between the words. These relations can be established once taxonomy of domain 
entities is available [3]. In this Section we are interested in the structure of the 
paragraph, encoded by these relations. Below we will be representing and visualizing 
arcs for these relations together with edges of constituency parse tree.  We use the 
relations Same entity/Sub-entity (a partial case)/Super-entity (more general)/Sibling 
entity/New predicate for an entity. 

We can visualize information flow in a paragraph by just showing the structure of 
entities, without original sentences. Then it becomes clear how each sentence brings 
in a new form of constraint for the entities from the previous set of sentences in a 
paragraph. This structure is fairly important for answering a question: one needs to 
determine which level of specificity is best to answer it. The structure of relations 
must be taken into account indexing this paragraph for search in addition to keywords 
for each sentence. The best match between the parse thicket for a question (usually, a 
trivial parse tree) and the set of parse thickets for an answers does not only indicates 
the best answer, but also the most appropriate sentences within this answer according 
to desired specificity as expressed in the query.  

Notice that the answer relevance to a question is measured by the cardinality of 
maximal common sub-thicket. In a conventional search engine, the closer the answer 
to the question, the higher the number of keywords common between the question and 
the answer (weighted according to TF*IDF model and according to distances between 
these keywords in the answer. Parse Thicket approach makes similarity measure more 
linguistically aware to the structure of text by means of forming maximum common 
sub-thicket. 

 

 

Fig. 4. Parse thicket for a paragraph with super/sub-entity/new predicate relations 
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This parse thicket (Fig.4) is helpful to answer a question ‘How to serve a 
corporation in United States’ where we need to link the second and the third sentences 
via the nodes service and lawsuit. 

In our third example, we visualize the discourse structure of customer review 
(Fig.5). We now draw the detailed constituency parse thicket and augment it by all 
possible arcs we discover for relations between words, including coreferences and 
sub-entities. The text to be represented as parse thicket is as follows: 

 
After numerous attempts to bring my parents into the digital world, I think I have 

finally succeeded. I failed a few years ago with a Sony digital camera that they could 
not quite figure out how to use and have succeeded only modestly with regards to the 
computer and internet surfing. But, heck I decided to give it another try when they 
asked about a digital camera the other day. 

3 Extending Parse Thickets with Rhetoric Structure-Based Arcs 

We have demonstrated how to build parse thicket based on coreference arcs and 
similar/related-words arcs. In this section we attempt to treat computationally, with a 
unified framework, two approaches to textual discourse: 

• Rhetoric structure theory (RST [12]); 

• Speech Act theory; 

Although both these theories have psychological observation as foundations and are 
mostly of a non-computational nature, we will build a specific computational 
framework for them. We will use these theories to find links between sentences to 
enhance indexing for search.  For the concept structure based formalization of Speech 
Act Theory, we refer to our earlier paper [7]. We proposed a graph-based mechanism 
to represent a structure of a dialog using nodes for communicative actions and edges 
for temporal and other relationships between them. We used a vocabulary of 
communicative actions to 

1) find their subjects, 
2) add respective arcs to the parse thicket, 
3) index combination of phrases as subjects of communicative actions 

For RST, we introduce explicit indexing rules which will be applied to each 
paragraph and: 

1) attempt to extract an RST relation,  
2) build corresponding fragment of the parse thicket, and  
3) index respective combination of formed phrases (noun, verb, prepositional), 

including words from different sentences. 

People sometimes assume that whenever a text has some particular kind of discourse 
structure, there will be a signal indicating that structure. A typical case would be a 
conjunction such as ‘but’.  
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Fig. 5. Parse thicket for coreference, sub-entity and part-of relations 

What structure is seen depends vitally on the words and sentences of the text are, 
but the relationship between words and text structure is extremely complex. Phrases 
and syntactic patterns can also be used to signal discourse structure.  One expects 
discourse structure to be conveyed by signals. So the idea that discourse structure can 
be conveyed without signals is unexpected. Even more unexpected is the fact that for 
the discourse structure that RST represents, more than half is conveyed without 
explicit signals. On a relation-by-relation basis, it appears that every relation can be 
signaled in some contexts, and also that every relation can be conveyed without an 
explicit signal. 
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RST was originally developed as part of studies of computer-based text generation 
at Information Sciences Institute (part of University of Southern California) in about 
1983 by Bill Mann, Sandy Thompson and Christian Matthiessen. The theory is 
designed to explain the coherence of texts, seen as a kind of function, linking parts of 
a text to each other. This coherence is explained by assigning a structure to the text, 
which slightly resembles a conventional sentence structure. We adjust this structure 
for the purpose of multi-sentence search ability. 

  We write                              Syntactic template 
------------------------- 

Index(Part-of- Syntactic template) 

where Syntactic template indicates how to extract a particular RST relation from text, 
in syntactic generalization format, and 

Index(Part-of- Syntactic template) is a set of  expressions which will be indexed in 
addition to the original sequence of words. Part-of- Syntactic template is a set of sub-
lists of Syntactic template. 

For the purpose of search, we build syntactic templates to express RST Relational 
classes. We don’t have to cover all RST relation, and we don’t have to be precise in 
establishing them, unless relation type is matched with query term. We give examples 
of some relations and respective templates we use to detect an RST links, and specify 
respective indexing rules for how to add additional joined phrases to the search index. 

- Consequence (N/S), Result, Cause, Cause-Result 

Nonvolitional-cause: ImperMentalVB ...NP.  Maybe... VP 
---------------------------------------------------------------- 

index(NP, VP),  {remember, recall, notice} ∈ ImperMentalVB. 
 

In-response to  NP ResponseVP 
---------------------------------------------------------------- 

index(NP, ResponseVP) 
 

NP AllowVP to ResultVP 
---------------------------------------------------------------- 

index(NP, ResultVP), {allow, help, assist, give-ability}∈ ResultVP 
- Manner, Means, Medium (‘Medium demonstrates … feature … of the 

system’) 

MeansNP DemoVB NP to ToNP 
----------------------------------------- 

index(NP, ToNP), {show, demonstrate, indicate} ∈ DemoVB 
- Temporal-before, Temporal-same-time, Temporal-after 

VP until UntilVP 
----------------------------------------- 

index(NP, UntilNP) 

For the following text, we build parse thicket for RST (Fig. 6) and SpActT (Fig. 7). 
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Recently I tried to log into my account. 
I received an error message that my account had been locked.  
The site informed me to contact their appeal email address. 
I have done so several times; however: 
I get an email message back from Paypal stating that I cannot receive an answer of how to 

get into my account until I go to the site and login. 
Well, this is impossible because my account is locked. 

 
For the latter ParseThicket, we have the following structure of communicative 

actions which form the inter-sentence arcs in Fig.7: 
 

try [log-into-my-account]→ receive [error-message] 
           / 

Inform [to-contact…]-  
contact [their-appeal-email-address] → do [contact … however] 
               / 
get [email message back] 
state [I cannot ]→ receive [] 
       answer [how to …]  
       get [get into my account until I go to the site and login] 

 
We can now define a generalization operation on two parse thickets.  
Given two parse thickets  Cx=(Vx, Ex) and Cy=(Vy, Ey), generalization denoted 

Cx^Cy is defined as the set {G1, G2,…,Gk} of all inclusion-maximal common 
subgraphs of Cx and Cy, such that each graph Gi ∈ Cx^Cy = (Vx, Ex)  is characterized as 
follows:  

1) vi is a vertex in Gi iff vi is a vertex in both Cx and Cy which 
corresponds to CAs of the same party (opponent or proponent; 

2) (vx,vy) is a thick (resp. thin) arc in Gi iff (vi, vj) is a thick (resp. thin) 
arc in Cx and Cy;  

3) (vx,vy) is a thick (resp. thin)  arc in Gi iff (vi, vj) is a thick (resp. thin) 
arc in Cx and (vi, vj)  is a thin (resp. thick) arc in Cy 

4) Gi contains at least one thick arc (vi, vj).  

Note that when (vi, vj)  is of the same type (thin or thick) in both Cx and Cy, then that 
type is adopted for (vi, vj)  in Gi. 

Condition 3) specifies that a thin arc (vi, vj).  is adopted as an arc in Gi whenever 
there are arcs (vi, vj)  in Cx and Cy of different types (thin arcs are seen thus as a 
weaker generalization of both thick and thin arcs). 

By applying this definition of generalization we are now able to provide a criterion 
for accepting/rejecting an answer by generalizing it with the question and earlier 
approved/rejected answers. We outline a nearest neighbor approach to relating a new 
answer to the class of relevant/irrelevant answer classes, on the basis of its similarity 
with previous question-answer pairs in the training dataset.  



 Parse Thicket Representation for Multi-sentence Search 163 

 

Fig. 6. RST-based parse thicket 
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Fig. 7. SpActT-based parse thicket 

Full parse thicket for the same paragraph we used for RST is depicted in Fig.7. 
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4 Evaluation of Parse Thicket Generalization 

Syntactic generalization and parse thicket-based search has been implemented for 
entertainment-related domain at eBay’s site StubHub.com. The query includes the 
desired performer, reference to a particular performance, as well as associated 
sentiments and feelings. Naturally, all such search criteria occur in different 
sentences, so the indexing system needs to find inter-sentence relations to verify that 
performers, events and user feelings are all properly related to each other.  

The notion of query is rather broad in our case, including a posting in a blog, 
Facebook wall posting, or an email expressing an event attendance intent. The system 
is designed to answer complex queries about all products and associated sentiments, 
not just entertainment events. Queries are expected to include multiple sentences, 
where it is essential to track similarity between a query and abstract to improve user 
experience in search. In particular, the search is oriented to opinions data in linked 
aggregated form from various sources. To search for an opinion, a user specifies a 
product class, a name of particular products, a set of its features, specific concerns, 
needs or interests.  A search can be narrowed down to a particular source, otherwise 
multiple sources of opinions (review portals, vendor-owned reviews, forums and 
blogs available for indexing) are combined. Search phrase may combine multiple 
sentences, for example: “I am a beginner user of digital camera. I want to take 
pictures of my kids and pets. Sometimes I take it outdoors, so it should be waterproof 
to resist rain”.  Obviously, this kind of specific opinion request can hardly be 
represented by keywords like ‘beginner digital camera kids pets waterproof rain’.  

We conducted evaluation of relevance of syntactic generalization – enabled search 
engine, based on Yahoo and Bing search engine APIs. For an individual query, the 
relevance was estimated as a percentage of correct hits among the first ten, using the 
values: {correct, marginally correct, incorrect} (compare with (Resnik, and Lin 
2010)). Accuracy of a single search session is calculated as the percentage of correct 
search results plus half of the percentage of marginally correct search results. 
Accuracy of a particular search setting (query type and search engine type) is 
calculated, averaging through 40 search sessions.  

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains, from simple questions referring to a particular product, a particular 
user need, as well as a multi-sentence forum-style request to share a recommendation. 
In our evaluation we split the totality of queries into noun-phrase class, verb-phrase 
class, how-to class, and also independently split in accordance to query length (from 3 
keywords to multiple sentences). The evaluation was conducted by the authors.  

To compare the relevance values between search settings, we used first 100 search 
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them according 
to the score of the given search setting (syntactic generalization score and taxonomy-
based score). To evaluate the performance of a hybrid system, we used the weighted 
sum of these two scores (the weights were optimized in an earlier search sessions). 

Table 1 shows the search relevance evaluation results for single-sentence answers.   
The third and fourth columns show baseline Yahoo and Bing searches. The fifth 
column shows relevance of re-ranked search, and the last column shows relevance 
improvement compared with the baseline, the averaged Yahoo and Bing relevance. 
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Table 1. Evaluation of single-sentence search 
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3-4 word 
phrases 

noun phrase 86.7 85.4 87.1 1.012 

verb phrase 83.4 82.9 79.9 0.961 

how-to 
expression 

76.7 78.2 79.5 
1.026 

Average 82.3 82.2 82.2 0.999 

5-10 word 
phrases 

noun phrase 84.1 84.9 87.3 1.033 

verb phrase 83.5 82.7 86.1 1.036 

how-to 
expression 

82.0 82.9 82.1 
0.996 

Average 83.2 83.5 85.2 1.022 

2-3 
sentences 

one verb one 
noun phrases 

68.8 67.6 69.1 
1.013 

both verb 
phrases 

66.3 67.1 71.2 
1.067 

one sent of 
how-to type 

66.1 68.3 73.2 
1.089 

Average 67.1 67.7 71.2 1.056 

 
We observe that using syntactic generalization improves the relevance of search in 

cases where query is relatively complex. For shorter sentences there is a slight drop in 
accuracy (-0.1%), for medium-length queries of 5-10 keywords we get 2% 
improvement, and 5.6% improvement for multi-sentence query. As the absolute 
performance of search naturally drops when queries become more complex, relative 
contribution of syntactic generalization increases. 

We did not find a significant correlation between a query type, phrase type, and 
search performance with and without syntactic generalization for these types of 
phrases. Verb phrases in questions did well for multi-sentence queries perhaps 
because the role of verbs for such queries is more significant than for simpler queries 
where verbs can be frequently ignored. 

Modern search engines attempt to find the occurrence of query keywords in a 
single sentence in a candidate search results. If it is not possible or has a low search 
engine score, multiple sentences within one document are used. However, modern 
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search engines have no means to determine if the found occurrences of query 
keywords: 

Are related to each other / Are related to the same entity /Being in different 
sentences, all related to the query term. 

 

Fig. 8. Search results for the query requiring PARSE THICKET to provide relevance answers 

To illustrate this statement, we search Google for   ‘microvision laser projector 
which fits in the palm of my hand’. 

The expected/desired answer is as follows: 
 

http://www.popularmechanics.com/technology/gadgets/4244056 
I also saw another projection technology yesterday that looked pretty close to 

production. A company called Microvision produces a tiny, portable projector that 
uses red, green and blue lasers and a single tiny micromirror to project an image 
much the way old cathode ray tube televisions did, by scanning lines to create 60 
frames per second. The whole projector fits in the palm of your hand, but a lot of 
that size comes from the battery; if you had an external power source, such as a USB, 
this thing could be as small as your thumb. 

Read more: Innovative Projectors Will Fit in Your Palm, Cellphone: Buzzword @ 
CES 2008 (With Video) - Popular Mechanics  
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First few hits obtained by Google are shown in Fig 8.  We observe all of the above 
tree problems in each of the search result. All answers are indeed about a ‘Microvison 
projector’, but user needs is represented by neither search result snippet. And if the 
keywords from the user need part of the query occur, they are not related to the main 
entity, ‘Microvison projector’. 

One can see that ‘Microvision’ (company name), ‘laser’ (type of product), ‘fits in 
the palm of my hand’ (user need) are most likely occur in different sentences, so 
matching of parse thicket is required to find a document with relevant information.  
Parse thicket approach would work best at indexing time, however in this paper we 
evaluate search relevance improvement in horizontal domain, re-ranking search 
engine API results. 

4.1 Evaluation of Multi-sentence Search 

To conduct a multi-sentence search evaluation, we also use Yahoo and Bing search 
APIs as for the single-sentence answers. We selected queries from eBay product 
searches which included reference to a product and a number of user need. Frequently 
expressions for these needs occurred in multiple sentences in product reviews, 
shopping forums and blogs. We also automatically filtered out the cases which gave 
satisfactory one-sentence answers to build multi-sentence parse thicket-based 
evaluation set. 

Discovering  trivial (in terms of search relevance) links between different 
sequences (such as coreferences) is not as important for search as finding more 
implicit links provided by text discourse theories. We separately measure search 
relevance when parse thicket is RST-based and SpActT-based. Since these theories 
are the main sources for establishing non-trivial links between sentences, we limit 
ourselves to measuring the contributions of these sources of links. Our hybrid 
approach includes both these sources for links. 

We now conduct specific evaluation where answers are distributed through two or 
more sentences. If it is not the case, we exclude a query from our evaluation set. We 
consider all cases of questions (phrase, one, two, and three sentences) and all cases of 
search results occurrences (compound sentence, two, and three sentences) and 
measured how parse thicket improved the search relevance,  compared to original 
search results ranking averaged for yahoo and Bing.  

One can see that even the simplest cases of short query and a single compound 
sentence gives more than 5% improvement. Parse thicket - based relevance 
improvement stays within 7-9% as query complexity increases by a few keywords, 
and then increases to 9-11% as query becomes one-two sentences. For the same query 
complexity, naturally, search accuracy decreases when more sentences are required 
for answering this query. However, contribution of the parse thicket does not vary 
significantly with the number of sentences the answer occurs in. 
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Table 2. Search improvement results for parse thicket approach 
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3-4 word 
phrases 

1 comp. 
sentence 

81.7 82.4 86.6 88.0 87.2 91.3 1.054 

2 sent 79.2 79.9 82.6 86.2 84.9 89.7 1.086 

3 sent 76.7 75.0 79.1 85.4 86.2 88.9 1.124 

Average 79.2 79.1 82.8 86.5 86.1 90.0 1.087 

5-10 word 
phrases 

1 comp. 
sentence 

78.2 77.7 83.2 87.2 84.5 88.3 1.061 

2 sent 76.3 75.8 80.3 82.4 83.2 87.9 1.095 

3 sent 74.2 74.9 77.4 81.3 80.9 82.5 1.066 

Average 76.2 76.1 80.3 83.6 82.9 86.2 1.074 

1 sentence 1 comp. 
sent 

77.3 76.9 81.1 85.9 86.2 88.9 1.096 

2 sent 74.5 73.8 78. 82.5 83.1 86.3 1.101 

3 sent 71.3 72.2 76.5 80.7 81.2 83.2 1.088 

Average 74.4 74.3 78.7 83.0 83.5 86.1 1.095 

2 sentences 1 comp. 
sent 

75.7 76.2 82.2 87.0 83.2 83.4 1.015 

2 sent 73.1 71.0 76.8 82.4 81.9 82.1 1.069 

3 sent 69.8 72.3 75.2 80.1 79.6 83.3 1.108 

Average 72.9 73.2 78.1 83.2 81.6 82.9 1.062 

3 sentences 1 
sentence 

73.6 74.2 78.7 85.4 83.1 85.9 1.091 

2 
sentences 

73.8 71.7 76.3 84.3 83.2 84.2 1.104 

3 
sentences 

67.4 69.1 74.9 79.8 81.0 84.3 1.126 

Average 71.6 71.7 76.6 83.2 82.4 84.8 1.107 

Average for all Query and Answer type 1.085 
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Notice that there is a noticeable improvement of accuracy in the comparable  
cases between Tables 1 and 2. While single-sentence syntactic match gives 5.6% 
improvement, multi-sentences parse thickets provides 8.7% for the comparable query 
complexity (5.4% for single-sentence answer) and up to 10% for the cases with more 
complex answers. One can see that parse thicket improves single sentence syntactic 
generalization by at least 2%. On average through the cases of Table 2, parse thickets 
outperforms single sentence syntactic generalization by 6.7%, whereas RST on its 
own gives 4.6% and SpActT-4.0% improvement respectively.  Hybrid RST + SpActT 
gives 2.1% improvement over RST-only and 2.7% over SpActT only. We conclude 
that RST links compliment SpActT links to properly establish relations between 
entities in sentences for the purpose of search. 

5 Related Work and Conclusions  

Usually, classical approaches to semantic inference rely on complex logical 
representations. However, practical applications usually adopt shallower lexical or 
lexical-syntactic representations, but lack a principled inference framework. [2] 
proposed a generic semantic inference framework that operates directly on syntactic 
trees. New trees are inferred by applying entailment rules, which provide a unified 
representation for varying types of inferences. The current work deals with syntactic 
tree transformation in the graph learning framework, treating various phrasings for the 
same meaning in a more unified and automated manner.  

The set of semantic problems addressed in this paper is of a much higher semantic 
level compared to SRL, therefore more sensitive tree matching algorithm is required 
for such semantic level. In terms of this study, semantic level of classification classes 
is much higher than the level of semantic role labeling or semantic entailment. SLR 
does not aim to produce complete formal meanings, in contrast to our approach. 
Unlike  [19] who uses edit distance for finding optimal dependency tree matching, we 
use maximal set of common sub-graphs which obeys logical properties of least 
general generalization and is therefore better suited to ascend to semantic level (of 
logical forms representation). This study operates on the level of paragraphs instead 
of sentences and our previous studies [7, 8]. Also, we apply re-ranking to search 
engine results and not a raw index.  Lexical chain formalism can be considered as a 
special case of parse thicket. Paper [5] considered keywords as condensed versions of 
documents and short forms of their summaries. The authors treat the problem of 
automatic extraction of keywords from documents as a supervised learning task.    

In this study we introduced the notion of syntactic generalization to learn from 
parse trees for a pair of sentences, and extended it to learning augmented parse 
thickets for two paragraphs. Parse thicket is intended to represent syntactic structure 
of text as well as a number of semantic relations for the purpose of indexing for 
search. To accomplish this, parse thicket includes relations between words in different 
sentences, such that these relations are essential to match queries with portions of 
texts to serve as an answer.  

 



 Parse Thicket Representation for Multi-sentence Search 171 

We considered the following sources of relations between words in sentences: 
Coreferences, Taxonomic relations such as sub-entity, partial case, predicate for 

subject etc.; Rhetoric structure relation and Speech acts. Since the first and second 
source of relations has been explored in details, we focus our evaluation on the 
contribution of third and fourth sources.  We demonstrated that search relevance can 
be improved, if search results are subject to confirmation by sentence-level syntactic 
generalization, if answer occurs in a single sentence, and by parse thicket 
generalization, if answer occurs in multiple sentences. 

Traditionally, machine learning of linguistic structures is limited to keyword forms 
and frequencies. At the same time, most theories of discourse are not computational, 
they model a particular set of relations between consecutive states. In this work we 
attempted to achieve the best of both worlds: learn complete parse tree information 
augmented with an adjustment of discourse theory allowing computational treatment.   

Graphs have been used extensively to formalize ranking of NL texts [18]. Graph-
based ranking algorithms are a way of deciding the importance of a vertex within a 
graph, based on global information recursively drawn from the entire graph.  Using 
semantic information for query ranking has been proposed in [1]. Moreover, relying 
on matching of parse trees of a question and an answer has been the subject of [13]. 
However, we believe the current study leads the way in multi-sentence relevance 
improvement, relying on learning parse trees and linguistic theories of the nature of 
the coherence of texts.  
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