
H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 153–172, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Parse Thicket Representation for Multi-sentence Search

Boris A. Galitsky1, Sergei O. Kuznetsov2, and Daniel Usikov3

1 eBay Inc San Jose CA USA
boris.galitsky@ebay.com

2 Higher School of Economics, Moscow Russia
skuznetsov@hse.ru

3 Dept. of Physics University of Maryland MD USA
usikov@hotmail.com

Abstract. We develop a graph representation and learning technique for parse
structures for sentences and paragraphs of text. This technique is used to
improve relevance answering complex questions where an answer is included in
multiple sentences. We introduce Parse Thicket as a sum of syntactic parse trees
augmented by a number of arcs for inter-sentence word-word relations such as
coreference and taxonomic. These arcs are also derived from other sources,
including Rhetoric Structure theory, and respective indexing rules are
introduced, which identify inter-sentence relations and joins phrases connected
by these relations in the search index. Generalization of syntactic parse trees (as
a similarity measure between sentences) is defined as a set of maximum
common sub-trees for two parse trees. Generalization of a pair of parse thickets
to measure relevance of a question and an answer, distributed in multiple
sentences, is defined as a set of maximal common sub-parse thickets. The
proposed approach is evaluated in the product search domain of eBay.com,
where user query includes product names, features and expressions for user
needs, and the query keywords occur in different sentences of text. We
demonstrate that search relevance is improved by single sentence-level
generalization, and further increased by parse thicket generalization. The
proposed approach is evaluated in the product search domain of eBay.com,
where user query includes product names, features and expressions for user
needs, and the query keywords occur in different sentences of text.

Keywords: learning taxonomy, learning syntactic parse tree, syntactic
generalization, search relevance.

1 Introduction

The task of answering complex questions, where desired information is distributed
through multiple sentences in a document, becomes the bottleneck of modern search
engines. The demand for access to different types of information have led to a
renewed interest in answering questions posed in ordinary human language and
seeking exact, specific and complete answer. After having made substantial
achievements in fact-finding and list questions, natural language processing (NLP)

154 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

community turned their attention to more complex information needs that cannot be
answered by simply extracting named entities (persons, organization, locations, dates,
etc.) from single sentences in documents [4]. Complex questions often seek multiple
different types of information simultaneously, located in multiple sentences, and do
not presuppose that one single sentence could meet all of its information seeking
expectations. To systematically analyze how keywords from query occur in multiple
sentences in a document, one needs to explore coreferences and other relations
between words within a sentence and between sentences.

Modern search engines attempt to find the occurrence of query keywords in a
single sentence in a candidate search results [11]. If it is not possible or has a low
search engine score, multiple sentences within one document are used. However,
modern search engines have no means to determine if the found occurrences of the
query keywords in multiple sentences are related to each other, to the same entity,
and, being in different sentences, are all related to the query term.

In this study we attempt to systematically extract semantic features from
paragraphs of text using a graph-based learning, assuming that an adequate parse trees
for individual sentences are available. In our earlier studies [8,9] we applied graph
learning to parse trees at the sentence level, and here we proceed to learning the
structure of paragraphs, relying on parse thickets. Parse thicket is defined as a sum of
parse trees with additional arcs between nodes for words in different sentences. We
have defined the least general generalization of parse trees (we call it syntactic
generalization), and in this study we extend it to the level of paragraphs. We propose
parse thicket matching algorithm and apply it to re-rank multi-sentence answers to
complex questions. Computing generalization of a pair of paragraph, we performed a
pair-wise generalization for each sentence in paragraphs. This approach ignores the
richness of coreference information, and in the current study we develop graph
learning means specifically oriented to represent paragraphs of text as respective
parse thickets with nodes interconnected by arcs for a number of relations including
coreference. We consider a number of discourse-related theories such as Rhetoric
Structure and Speech Acts as source of arcs to augment the parse thicket. These arcs
will connect edges for words within as well as between parse trees for sentences.

Machine learning at the paragraph level is required for text classification problems,
where handling the meaning (via collection of keywords) at the sentence level is
insufficient, and taking advantage of coreference information is necessary [6]. In this
paper we will demonstrate how building adequate paragraph structure is necessary
when a paragraph is indexed for search. We will consider two cases for text indexing,
where establishing proper coreferences inside and between sentences links entities in
an index for proper match with a question (Fig. 1):

Text for indexing1: … Tuberculosis is usually a lung disease. It is cured by

doctors specializing in pulmonology.
Text for indexing2: … Tuberculosis is a lung disease… Pulmonology specialist

Jones was awarded a prize for curing a special form of disease.
Question: Which specialist doctor should treat my tuberculosis?

Fig. 1. Multi-sentence indexing cases

 Parse Thicket Representation for Multi-sentence Search 155

In the first case, establishing coreference link Tuberculosis → disease → is cured
by doctors pulmonologists helps to match these entities with the ones from the
question. In the second case this portion of text does not serve as a relevant answer to
the question, although it includes keywords from this question. Hence at indexing
time, keywords should be chained not just by their occurrence in individual sentences,
but additionally on the basis of coreferences. If words X and Y are connected by a
coreference relation, an index needs to include the chain of words X0, X1…X, Y0,Y1…
Y, where chains X0 , X1…X and Y0,Y1… Y are already indexed (phrases including X
and Y). Hence establishing coreference is important to extend index in a way to
improve search recall. Notice that usually, keywords from different sentences can
only be matched with a query keywords with a low score (high score is delivered by
inter-sentence match).

Since our problem concerns with finding the best sentence that contains the answer
to any given question, we need some mechanism that can measure how close the a
candidate answer is to the question. This allows us to choose the final answer which is
the one that matches the most closely to the question. To achieve this we need a
representation of the sentences that allows us to capture useful information in order to
accommodate the matching process. We also need an efficient matching process to
work on the chosen representation.

The evaluation of matching mechanism in this study is associated with improvement
of search relevance by checking syntactic similarity between query and sentences in
search hits, obtained via a search engine API. This kind of syntactic similarity is
important when a search query contains keywords which form a phrase, domain-specific
expression, or an idiom, such as “shot to shot time”, “high number of shots in a short
amount of time”. In terms of search implementation, this can be done in two steps:

1) Keywords are formed from query in a conventional manner, and search hits
are obtained taking into account statistical parameters of occurrences these
words in documents, popularity of hits, page rank and others.

2) Above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse thicket generalization comes into play here.

Hence we obtain the results of the conventional search and calculate the score of the
generalization results for the query and each sentence and each search hit snapshot.
Search results are then re-ranked and only the ones syntactically close to search query
are assumed to be relevant and returned to a user.

2 Generalizing Portions of Text

To measure similarity of abstract entities expressed by logic formulas, a least-general
generalization was proposed for a number of machine learning approaches, including
explanation based learning and inductive logic programming. Least general
generalization was originally introduced in [14]. Its realization within the predicate logic
is opposite to the most general unification; therefore it is also called anti-unification.
In this study, to measure similarity between portions of text such as paragraphs,

156 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

sentences and phrases, we extend the notion of generalization from logic
formulas to sets of syntactic parse trees of these portions of text. The purpose of an
abstract generalization is to find commonality between portions of text at various
semantic levels. Generalization operation occurs on the levels of
Article/Paragraph/Sentence/Phrases (noun, verb and others)/Individual word.

At each level except the lowest one, individual words, the result of generalization of
two expressions is a set of expressions. In such set, expressions for which there exist
less general expressions are eliminated. Generalization of two sets of expressions is a set
of sets which are the results of pair-wise generalization of these expressions.

We outline the algorithm for two sentences and then proceed to the specifics for
particular levels (Fig. 2). The algorithm we present in this paper deals with paths of
syntactic trees rather than sub-trees, because it is tightly connected with language
phrases. We refer the reader to [8,9] for more details.

1) Obtain parsing tree for each sentence. For each word (tree node) we have the

word (lemma), part of speech and form of word information. This
information is contained in the node label. We also have an arc to the other
node.

2) Split parse trees for sentences into sub-trees which are phrases for each type:
verb, noun, prepositional and others; these sub-trees are overlapping. The
sub-trees are coded so that information about occurrence in the full tree is
retained.

3) All sub-trees are grouped by phrase types.

4) Extending the list of phrases by adding equivalence transformations

5) Generalize each pair of sub-trees for both sentences for each phrase type.

6) For each pair of sub-trees yield an alignment, and then generalize each node
for this alignment. For the obtained set of trees (generalization results),
calculate the score.

7) For each pair of sub-trees for phrases, select the set of generalizations with
highest score (least general).

8) Form the sets of generalizations for each phrase types whose elements are
sets of generalizations for this type.

9) Filtering the list of generalization results: for the list of generalization for
each phrase type, exclude more general elements from lists of generalization
for given pair of phrases.

Fig. 2. Sentence-level syntactic generalization algorithm

For a pair of phrases, generalization includes all maximum ordered sets of
generalization nodes for words in phrases so that the order of words is retained. In the
following example

To buy digital camera today, on Monday
Digital camera was a good buy today, first Monday of the month

 Parse Thicket Representation for Multi-sentence Search 157

Generalization is {<JJ-digital, NN-camera> ,<NN- today, ADV-*, NN-Monday>}
where the generalization for noun phrases is followed by the generalization by
adverbial phrase. Verb buy is excluded from both generalizations because it occurs in
a different order in the above phrases. Buy - digital - camera is not a generalization
phrase because buy occurs in different sequence with the other generalization nodes.
Further details on sentence level generalization are available in [8].

2.1 Direct Paragraph-Paragraph Match

We build a model of generalizing paragraphs taking into account coreference and
taxonomic relationship between words between sentences, as well as within
sentences. We will provide a number of examples to introduce the representation via
parse thicket. We start with a simple example of how a discourse can be visualized
by a forest.

Lady Gaga has revealed that her next album will be released as an app.
The singer confirmed that the album, called ARTPOP, will be a multimedia

experience.
 She says she wants fans to "fully immerse" themselves in the project.
 Content will include extra music, videos, chat options and games.

To answer cross-sentence questions, we need to establish connections between the

words of different sentences, taking into account that each consecutive sentence
elaborate on the previous one.

Question “multimedia experience from lady gaga” (Fig. 3) will need the path in
Parse Thiket Lad_Gaga <possession>→ album <same entity relation>→ album <is-
a relation> → multimedia_experience. Question “Does Lady Gaga rely on games
content” will involve the path “Lad_Gaga <possession>→ album <has-a
relation>→ content <has-a relation>→ games.

Fig. 3. Parse Thicket- supported search for a concert at StubHub/eBay

To establish the semantic relationships above, we need to use multiple sources.
Notice that we cannot rely on ontologies, only on syntactic information, searching in a
horizontal domain. Within a sentence, we use its parse tree. Same-entity relation is

158 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

based on anaphora resolution, and has-a relation is based on syntactic structure within
a sentence. Between sentences, we use the elaboration assumption that each
consecutive sentence elaborates on some entities from previous sentences. It turns out
that Rhetoric Structure theory provides a systematic framework to do that.

We now show a paragraph which includes four sentences with the relations
between the words. These relations can be established once taxonomy of domain
entities is available [3]. In this Section we are interested in the structure of the
paragraph, encoded by these relations. Below we will be representing and visualizing
arcs for these relations together with edges of constituency parse tree. We use the
relations Same entity/Sub-entity (a partial case)/Super-entity (more general)/Sibling
entity/New predicate for an entity.

We can visualize information flow in a paragraph by just showing the structure of
entities, without original sentences. Then it becomes clear how each sentence brings
in a new form of constraint for the entities from the previous set of sentences in a
paragraph. This structure is fairly important for answering a question: one needs to
determine which level of specificity is best to answer it. The structure of relations
must be taken into account indexing this paragraph for search in addition to keywords
for each sentence. The best match between the parse thicket for a question (usually, a
trivial parse tree) and the set of parse thickets for an answers does not only indicates
the best answer, but also the most appropriate sentences within this answer according
to desired specificity as expressed in the query.

Notice that the answer relevance to a question is measured by the cardinality of
maximal common sub-thicket. In a conventional search engine, the closer the answer
to the question, the higher the number of keywords common between the question and
the answer (weighted according to TF*IDF model and according to distances between
these keywords in the answer. Parse Thicket approach makes similarity measure more
linguistically aware to the structure of text by means of forming maximum common
sub-thicket.

Fig. 4. Parse thicket for a paragraph with super/sub-entity/new predicate relations

 Parse Thicket Representation for Multi-sentence Search 159

This parse thicket (Fig.4) is helpful to answer a question ‘How to serve a
corporation in United States’ where we need to link the second and the third sentences
via the nodes service and lawsuit.

In our third example, we visualize the discourse structure of customer review
(Fig.5). We now draw the detailed constituency parse thicket and augment it by all
possible arcs we discover for relations between words, including coreferences and
sub-entities. The text to be represented as parse thicket is as follows:

After numerous attempts to bring my parents into the digital world, I think I have

finally succeeded. I failed a few years ago with a Sony digital camera that they could
not quite figure out how to use and have succeeded only modestly with regards to the
computer and internet surfing. But, heck I decided to give it another try when they
asked about a digital camera the other day.

3 Extending Parse Thickets with Rhetoric Structure-Based Arcs

We have demonstrated how to build parse thicket based on coreference arcs and
similar/related-words arcs. In this section we attempt to treat computationally, with a
unified framework, two approaches to textual discourse:

• Rhetoric structure theory (RST [12]);

• Speech Act theory;

Although both these theories have psychological observation as foundations and are
mostly of a non-computational nature, we will build a specific computational
framework for them. We will use these theories to find links between sentences to
enhance indexing for search. For the concept structure based formalization of Speech
Act Theory, we refer to our earlier paper [7]. We proposed a graph-based mechanism
to represent a structure of a dialog using nodes for communicative actions and edges
for temporal and other relationships between them. We used a vocabulary of
communicative actions to

1) find their subjects,
2) add respective arcs to the parse thicket,
3) index combination of phrases as subjects of communicative actions

For RST, we introduce explicit indexing rules which will be applied to each
paragraph and:

1) attempt to extract an RST relation,
2) build corresponding fragment of the parse thicket, and
3) index respective combination of formed phrases (noun, verb, prepositional),

including words from different sentences.

People sometimes assume that whenever a text has some particular kind of discourse
structure, there will be a signal indicating that structure. A typical case would be a
conjunction such as ‘but’.

160 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Fig. 5. Parse thicket for coreference, sub-entity and part-of relations

What structure is seen depends vitally on the words and sentences of the text are,
but the relationship between words and text structure is extremely complex. Phrases
and syntactic patterns can also be used to signal discourse structure. One expects
discourse structure to be conveyed by signals. So the idea that discourse structure can
be conveyed without signals is unexpected. Even more unexpected is the fact that for
the discourse structure that RST represents, more than half is conveyed without
explicit signals. On a relation-by-relation basis, it appears that every relation can be
signaled in some contexts, and also that every relation can be conveyed without an
explicit signal.

 Parse Thicket Representation for Multi-sentence Search 161

RST was originally developed as part of studies of computer-based text generation
at Information Sciences Institute (part of University of Southern California) in about
1983 by Bill Mann, Sandy Thompson and Christian Matthiessen. The theory is
designed to explain the coherence of texts, seen as a kind of function, linking parts of
a text to each other. This coherence is explained by assigning a structure to the text,
which slightly resembles a conventional sentence structure. We adjust this structure
for the purpose of multi-sentence search ability.

 We write Syntactic template

Index(Part-of- Syntactic template)

where Syntactic template indicates how to extract a particular RST relation from text,
in syntactic generalization format, and

Index(Part-of- Syntactic template) is a set of expressions which will be indexed in
addition to the original sequence of words. Part-of- Syntactic template is a set of sub-
lists of Syntactic template.

For the purpose of search, we build syntactic templates to express RST Relational
classes. We don’t have to cover all RST relation, and we don’t have to be precise in
establishing them, unless relation type is matched with query term. We give examples
of some relations and respective templates we use to detect an RST links, and specify
respective indexing rules for how to add additional joined phrases to the search index.

- Consequence (N/S), Result, Cause, Cause-Result

Nonvolitional-cause: ImperMentalVB ...NP. Maybe... VP
--

index(NP, VP), {remember, recall, notice} ∈ ImperMentalVB.

In-response to NP ResponseVP
--

index(NP, ResponseVP)

NP AllowVP to ResultVP
--

index(NP, ResultVP), {allow, help, assist, give-ability}∈ ResultVP
- Manner, Means, Medium (‘Medium demonstrates … feature … of the

system’)

MeansNP DemoVB NP to ToNP

index(NP, ToNP), {show, demonstrate, indicate} ∈ DemoVB
- Temporal-before, Temporal-same-time, Temporal-after

VP until UntilVP

index(NP, UntilNP)

For the following text, we build parse thicket for RST (Fig. 6) and SpActT (Fig. 7).

162 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Recently I tried to log into my account.
I received an error message that my account had been locked.
The site informed me to contact their appeal email address.
I have done so several times; however:
I get an email message back from Paypal stating that I cannot receive an answer of how to

get into my account until I go to the site and login.
Well, this is impossible because my account is locked.

For the latter ParseThicket, we have the following structure of communicative

actions which form the inter-sentence arcs in Fig.7:

try [log-into-my-account]→ receive [error-message]
 /

Inform [to-contact…]-
contact [their-appeal-email-address] → do [contact … however]
 /
get [email message back]
state [I cannot]→ receive []
 answer [how to …]
 get [get into my account until I go to the site and login]

We can now define a generalization operation on two parse thickets.
Given two parse thickets Cx=(Vx, Ex) and Cy=(Vy, Ey), generalization denoted

Cx^Cy is defined as the set {G1, G2,…,Gk} of all inclusion-maximal common
subgraphs of Cx and Cy, such that each graph Gi ∈ Cx^Cy = (Vx, Ex) is characterized as
follows:

1) vi is a vertex in Gi iff vi is a vertex in both Cx and Cy which
corresponds to CAs of the same party (opponent or proponent;

2) (vx,vy) is a thick (resp. thin) arc in Gi iff (vi, vj) is a thick (resp. thin)
arc in Cx and Cy;

3) (vx,vy) is a thick (resp. thin) arc in Gi iff (vi, vj) is a thick (resp. thin)
arc in Cx and (vi, vj) is a thin (resp. thick) arc in Cy

4) Gi contains at least one thick arc (vi, vj).

Note that when (vi, vj) is of the same type (thin or thick) in both Cx and Cy, then that
type is adopted for (vi, vj) in Gi.

Condition 3) specifies that a thin arc (vi, vj). is adopted as an arc in Gi whenever
there are arcs (vi, vj) in Cx and Cy of different types (thin arcs are seen thus as a
weaker generalization of both thick and thin arcs).

By applying this definition of generalization we are now able to provide a criterion
for accepting/rejecting an answer by generalizing it with the question and earlier
approved/rejected answers. We outline a nearest neighbor approach to relating a new
answer to the class of relevant/irrelevant answer classes, on the basis of its similarity
with previous question-answer pairs in the training dataset.

 Parse Thicket Representation for Multi-sentence Search 163

Fig. 6. RST-based parse thicket

164 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Fig. 7. SpActT-based parse thicket

Full parse thicket for the same paragraph we used for RST is depicted in Fig.7.

 Parse Thicket Representation for Multi-sentence Search 165

4 Evaluation of Parse Thicket Generalization

Syntactic generalization and parse thicket-based search has been implemented for
entertainment-related domain at eBay’s site StubHub.com. The query includes the
desired performer, reference to a particular performance, as well as associated
sentiments and feelings. Naturally, all such search criteria occur in different
sentences, so the indexing system needs to find inter-sentence relations to verify that
performers, events and user feelings are all properly related to each other.

The notion of query is rather broad in our case, including a posting in a blog,
Facebook wall posting, or an email expressing an event attendance intent. The system
is designed to answer complex queries about all products and associated sentiments,
not just entertainment events. Queries are expected to include multiple sentences,
where it is essential to track similarity between a query and abstract to improve user
experience in search. In particular, the search is oriented to opinions data in linked
aggregated form from various sources. To search for an opinion, a user specifies a
product class, a name of particular products, a set of its features, specific concerns,
needs or interests. A search can be narrowed down to a particular source, otherwise
multiple sources of opinions (review portals, vendor-owned reviews, forums and
blogs available for indexing) are combined. Search phrase may combine multiple
sentences, for example: “I am a beginner user of digital camera. I want to take
pictures of my kids and pets. Sometimes I take it outdoors, so it should be waterproof
to resist rain”. Obviously, this kind of specific opinion request can hardly be
represented by keywords like ‘beginner digital camera kids pets waterproof rain’.

We conducted evaluation of relevance of syntactic generalization – enabled search
engine, based on Yahoo and Bing search engine APIs. For an individual query, the
relevance was estimated as a percentage of correct hits among the first ten, using the
values: {correct, marginally correct, incorrect} (compare with (Resnik, and Lin
2010)). Accuracy of a single search session is calculated as the percentage of correct
search results plus half of the percentage of marginally correct search results.
Accuracy of a particular search setting (query type and search engine type) is
calculated, averaging through 40 search sessions.

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains, from simple questions referring to a particular product, a particular
user need, as well as a multi-sentence forum-style request to share a recommendation.
In our evaluation we split the totality of queries into noun-phrase class, verb-phrase
class, how-to class, and also independently split in accordance to query length (from 3
keywords to multiple sentences). The evaluation was conducted by the authors.

To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them according
to the score of the given search setting (syntactic generalization score and taxonomy-
based score). To evaluate the performance of a hybrid system, we used the weighted
sum of these two scores (the weights were optimized in an earlier search sessions).

Table 1 shows the search relevance evaluation results for single-sentence answers.
The third and fourth columns show baseline Yahoo and Bing searches. The fifth
column shows relevance of re-ranked search, and the last column shows relevance
improvement compared with the baseline, the averaged Yahoo and Bing relevance.

166 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Table 1. Evaluation of single-sentence search

Query phrase sub-
type

R
el

ev
an

cy

of

ba
se

li
ne

Y

ah
oo

se

ar
ch

,
%

,
av

er
ag

in
g

ov
er

 2
0

se
ar

ch
es

R
el

ev
an

cy

of

ba
se

li
ne

 B
in

g
se

ar
ch

,
%

, a
ve

ra
gi

ng
 o

ve
r

20

se
ar

ch
es

R
el

ev
an

cy

of

re
-

so
rt

in
g

by

ge
ne

ra
li

za
ti

on
,

%
,

av
er

ag
in

g
ov

er

40

R
el

ev
an

cy

im
pr

ov
em

en
t:

re

-
so

rt
ed

re

le
va

nc
e

/(
av

er
ag

ed

fo
r

B
in

g
&

 Y
ah

oo
)

3-4 word
phrases

noun phrase 86.7 85.4 87.1 1.012

verb phrase 83.4 82.9 79.9 0.961

how-to
expression

76.7 78.2 79.5
1.026

Average 82.3 82.2 82.2 0.999

5-10 word
phrases

noun phrase 84.1 84.9 87.3 1.033

verb phrase 83.5 82.7 86.1 1.036

how-to
expression

82.0 82.9 82.1
0.996

Average 83.2 83.5 85.2 1.022

2-3
sentences

one verb one
noun phrases

68.8 67.6 69.1
1.013

both verb
phrases

66.3 67.1 71.2
1.067

one sent of
how-to type

66.1 68.3 73.2
1.089

Average 67.1 67.7 71.2 1.056

We observe that using syntactic generalization improves the relevance of search in

cases where query is relatively complex. For shorter sentences there is a slight drop in
accuracy (-0.1%), for medium-length queries of 5-10 keywords we get 2%
improvement, and 5.6% improvement for multi-sentence query. As the absolute
performance of search naturally drops when queries become more complex, relative
contribution of syntactic generalization increases.

We did not find a significant correlation between a query type, phrase type, and
search performance with and without syntactic generalization for these types of
phrases. Verb phrases in questions did well for multi-sentence queries perhaps
because the role of verbs for such queries is more significant than for simpler queries
where verbs can be frequently ignored.

Modern search engines attempt to find the occurrence of query keywords in a
single sentence in a candidate search results. If it is not possible or has a low search
engine score, multiple sentences within one document are used. However, modern

 Parse Thicket Representation for Multi-sentence Search 167

search engines have no means to determine if the found occurrences of query
keywords:

Are related to each other / Are related to the same entity /Being in different
sentences, all related to the query term.

Fig. 8. Search results for the query requiring PARSE THICKET to provide relevance answers

To illustrate this statement, we search Google for ‘microvision laser projector
which fits in the palm of my hand’.

The expected/desired answer is as follows:

http://www.popularmechanics.com/technology/gadgets/4244056
I also saw another projection technology yesterday that looked pretty close to

production. A company called Microvision produces a tiny, portable projector that
uses red, green and blue lasers and a single tiny micromirror to project an image
much the way old cathode ray tube televisions did, by scanning lines to create 60
frames per second. The whole projector fits in the palm of your hand, but a lot of
that size comes from the battery; if you had an external power source, such as a USB,
this thing could be as small as your thumb.

Read more: Innovative Projectors Will Fit in Your Palm, Cellphone: Buzzword @
CES 2008 (With Video) - Popular Mechanics

168 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

First few hits obtained by Google are shown in Fig 8. We observe all of the above
tree problems in each of the search result. All answers are indeed about a ‘Microvison
projector’, but user needs is represented by neither search result snippet. And if the
keywords from the user need part of the query occur, they are not related to the main
entity, ‘Microvison projector’.

One can see that ‘Microvision’ (company name), ‘laser’ (type of product), ‘fits in
the palm of my hand’ (user need) are most likely occur in different sentences, so
matching of parse thicket is required to find a document with relevant information.
Parse thicket approach would work best at indexing time, however in this paper we
evaluate search relevance improvement in horizontal domain, re-ranking search
engine API results.

4.1 Evaluation of Multi-sentence Search

To conduct a multi-sentence search evaluation, we also use Yahoo and Bing search
APIs as for the single-sentence answers. We selected queries from eBay product
searches which included reference to a product and a number of user need. Frequently
expressions for these needs occurred in multiple sentences in product reviews,
shopping forums and blogs. We also automatically filtered out the cases which gave
satisfactory one-sentence answers to build multi-sentence parse thicket-based
evaluation set.

Discovering trivial (in terms of search relevance) links between different
sequences (such as coreferences) is not as important for search as finding more
implicit links provided by text discourse theories. We separately measure search
relevance when parse thicket is RST-based and SpActT-based. Since these theories
are the main sources for establishing non-trivial links between sentences, we limit
ourselves to measuring the contributions of these sources of links. Our hybrid
approach includes both these sources for links.

We now conduct specific evaluation where answers are distributed through two or
more sentences. If it is not the case, we exclude a query from our evaluation set. We
consider all cases of questions (phrase, one, two, and three sentences) and all cases of
search results occurrences (compound sentence, two, and three sentences) and
measured how parse thicket improved the search relevance, compared to original
search results ranking averaged for yahoo and Bing.

One can see that even the simplest cases of short query and a single compound
sentence gives more than 5% improvement. Parse thicket - based relevance
improvement stays within 7-9% as query complexity increases by a few keywords,
and then increases to 9-11% as query becomes one-two sentences. For the same query
complexity, naturally, search accuracy decreases when more sentences are required
for answering this query. However, contribution of the parse thicket does not vary
significantly with the number of sentences the answer occurs in.

 Parse Thicket Representation for Multi-sentence Search 169

Table 2. Search improvement results for parse thicket approach

Query Answer

R
el

ev
an

cy

of

ba
se

lin
e

Y
ah

oo

se
ar

ch
,

%
,

av
er

ag
in

g
ov

er

20

se
ar

ch
es

R
el

ev
an

cy
 o

f
ba

se
lin

e
B

in
g

se
ar

ch
,

%
, a

ve
ra

gi
ng

 o
ve

r
20

 s
ea

rc
he

s

R
el

ev
an

cy

of

re
-s

or
tin

g
by

pa

ir
-

w
is

e
se

nt
en

ce

ge
ne

ra
liz

at
io

n,

%
,

av
er

ag
in

g
ov

er
 4

0
se

ar
ch

es

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 f

or
es

t
ge

ne
ra

liz
at

io
n

ba
se

d
on

 R
ST

,
%

,
av

er
ag

in
g

ov
er

 2
0

se
ar

ch
es

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 f

or
es

t
ge

ne
ra

liz
at

io
n

ba
se

d
on

Sp

A
ct

T
,

%
, a

ve
ra

gi
ng

 o
ve

r
20

 s
ea

rc
he

s

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 h

yb
ri

d
R

ST
+

Sp
A

ct
T

 f
or

es
t g

en
er

al
iz

at
io

n,

%
, a

ve
ra

gi
ng

 o
ve

r
40

 s
ea

rc
he

s

R
el

ev
an

cy
 i

m
pr

ov
em

en
t

fo
r

 p
ar

se

th
ic

ke
t

ap
pr

oa
ch

,
co

m
p.

to

pa

ir
-

w
is

e
ge

ne
ra

liz
at

io
n

3-4 word
phrases

1 comp.
sentence

81.7 82.4 86.6 88.0 87.2 91.3 1.054

2 sent 79.2 79.9 82.6 86.2 84.9 89.7 1.086

3 sent 76.7 75.0 79.1 85.4 86.2 88.9 1.124

Average 79.2 79.1 82.8 86.5 86.1 90.0 1.087

5-10 word
phrases

1 comp.
sentence

78.2 77.7 83.2 87.2 84.5 88.3 1.061

2 sent 76.3 75.8 80.3 82.4 83.2 87.9 1.095

3 sent 74.2 74.9 77.4 81.3 80.9 82.5 1.066

Average 76.2 76.1 80.3 83.6 82.9 86.2 1.074

1 sentence 1 comp.
sent

77.3 76.9 81.1 85.9 86.2 88.9 1.096

2 sent 74.5 73.8 78. 82.5 83.1 86.3 1.101

3 sent 71.3 72.2 76.5 80.7 81.2 83.2 1.088

Average 74.4 74.3 78.7 83.0 83.5 86.1 1.095

2 sentences 1 comp.
sent

75.7 76.2 82.2 87.0 83.2 83.4 1.015

2 sent 73.1 71.0 76.8 82.4 81.9 82.1 1.069

3 sent 69.8 72.3 75.2 80.1 79.6 83.3 1.108

Average 72.9 73.2 78.1 83.2 81.6 82.9 1.062

3 sentences 1
sentence

73.6 74.2 78.7 85.4 83.1 85.9 1.091

2
sentences

73.8 71.7 76.3 84.3 83.2 84.2 1.104

3
sentences

67.4 69.1 74.9 79.8 81.0 84.3 1.126

Average 71.6 71.7 76.6 83.2 82.4 84.8 1.107

Average for all Query and Answer type 1.085

170 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Notice that there is a noticeable improvement of accuracy in the comparable
cases between Tables 1 and 2. While single-sentence syntactic match gives 5.6%
improvement, multi-sentences parse thickets provides 8.7% for the comparable query
complexity (5.4% for single-sentence answer) and up to 10% for the cases with more
complex answers. One can see that parse thicket improves single sentence syntactic
generalization by at least 2%. On average through the cases of Table 2, parse thickets
outperforms single sentence syntactic generalization by 6.7%, whereas RST on its
own gives 4.6% and SpActT-4.0% improvement respectively. Hybrid RST + SpActT
gives 2.1% improvement over RST-only and 2.7% over SpActT only. We conclude
that RST links compliment SpActT links to properly establish relations between
entities in sentences for the purpose of search.

5 Related Work and Conclusions

Usually, classical approaches to semantic inference rely on complex logical
representations. However, practical applications usually adopt shallower lexical or
lexical-syntactic representations, but lack a principled inference framework. [2]
proposed a generic semantic inference framework that operates directly on syntactic
trees. New trees are inferred by applying entailment rules, which provide a unified
representation for varying types of inferences. The current work deals with syntactic
tree transformation in the graph learning framework, treating various phrasings for the
same meaning in a more unified and automated manner.

The set of semantic problems addressed in this paper is of a much higher semantic
level compared to SRL, therefore more sensitive tree matching algorithm is required
for such semantic level. In terms of this study, semantic level of classification classes
is much higher than the level of semantic role labeling or semantic entailment. SLR
does not aim to produce complete formal meanings, in contrast to our approach.
Unlike [19] who uses edit distance for finding optimal dependency tree matching, we
use maximal set of common sub-graphs which obeys logical properties of least
general generalization and is therefore better suited to ascend to semantic level (of
logical forms representation). This study operates on the level of paragraphs instead
of sentences and our previous studies [7, 8]. Also, we apply re-ranking to search
engine results and not a raw index. Lexical chain formalism can be considered as a
special case of parse thicket. Paper [5] considered keywords as condensed versions of
documents and short forms of their summaries. The authors treat the problem of
automatic extraction of keywords from documents as a supervised learning task.

In this study we introduced the notion of syntactic generalization to learn from
parse trees for a pair of sentences, and extended it to learning augmented parse
thickets for two paragraphs. Parse thicket is intended to represent syntactic structure
of text as well as a number of semantic relations for the purpose of indexing for
search. To accomplish this, parse thicket includes relations between words in different
sentences, such that these relations are essential to match queries with portions of
texts to serve as an answer.

 Parse Thicket Representation for Multi-sentence Search 171

We considered the following sources of relations between words in sentences:
Coreferences, Taxonomic relations such as sub-entity, partial case, predicate for

subject etc.; Rhetoric structure relation and Speech acts. Since the first and second
source of relations has been explored in details, we focus our evaluation on the
contribution of third and fourth sources. We demonstrated that search relevance can
be improved, if search results are subject to confirmation by sentence-level syntactic
generalization, if answer occurs in a single sentence, and by parse thicket
generalization, if answer occurs in multiple sentences.

Traditionally, machine learning of linguistic structures is limited to keyword forms
and frequencies. At the same time, most theories of discourse are not computational,
they model a particular set of relations between consecutive states. In this work we
attempted to achieve the best of both worlds: learn complete parse tree information
augmented with an adjustment of discourse theory allowing computational treatment.

Graphs have been used extensively to formalize ranking of NL texts [18]. Graph-
based ranking algorithms are a way of deciding the importance of a vertex within a
graph, based on global information recursively drawn from the entire graph. Using
semantic information for query ranking has been proposed in [1]. Moreover, relying
on matching of parse trees of a question and an answer has been the subject of [13].
However, we believe the current study leads the way in multi-sentence relevance
improvement, relying on learning parse trees and linguistic theories of the nature of
the coherence of texts.

Acknowledgments. The second author was supported by the project "Mathematical
Models, Algorithms, and Software Tools for Intelligent Analysis of Structural and
Textual Data" within the framework of the Basic Research Program at the National
Research University Higher School of Economics, Moscow, Russia.

References

1. Aleman-Meza, B., Halaschek, C., Arpinar, I., Sheth, A.: A Context-Aware Semantic
Association Ranking. In: Proc. First Int’l Workshop Semantic Web and Databases (SWDB
2003), pp. 33–50 (2003)

2. Bar-Haim, R., Dagan, I., Greental, I., Shnarch, E.: Semantic Inference at the Lexical-
Syntactic Level AAAI (2005)

3. Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion.
Information Processing & Management 43(4), 866–886 (2007)

4. Chali, Y., Hasan, S.A., Joty, S.R.: Improving graph-based random walks for complex
question answering using syntactic, shallow semantic and extended string subsequence
kernels. Inf. Process. Manage. 47(6), 843–855 (2011)

5. Ercan, G., Cicekli, I.: Using lexical chains for keyword extraction. Information Processing
& Management 43(6), 1705–1714 (2007)

6. Galitsky, B.: Natural Language Question Answering System: Technique of Semantic
Headers. Advanced Knowledge International, Australia (2003)

7. Galitsky, B., González, M.P., Chesñevar, C.I.: A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decision Support
Systems 46(3), 717–729 (2009)

172 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

8. Galitsky, B., Dobrocsi, G., de la Rosa, J.L.: Inferring semantic properties of sentences
mining syntactic parse trees. Data & Knowledge Engineering 81-82, 21–45 (2012)

9. Galitsky, B., Dobrocsi, G., de la Rosa, J.L., Kuznetsov, S.O.: Using Generalization of
Syntactic Parse Trees for Taxonomy Capture on the Web. In: 19th International
Conference on Conceptual Structures, ICCS 2011, pp. 104–117 (2011)

10. Kapoor, S., Ramesh, H.: Algorithms for Enumerating All Spanning Trees of Undirected
and Weighted Graphs. SIAM J. Computing 24, 247–265 (1995)

11. Kim, J.-J., Pezik, P., Rebholz-Schuhmann, D.: MedEvi: Retrieving textual evidence of
relations between biomedical concepts from Medline. Bioinformatics 24(11), 1410–1412
(2008)

12. Mann, W.C., Christian, M.I., Matthiessen, M., Thompson, S.A.: Rhetorical Structure
Theory and Text Analysis. In: Mann, W.C., Thompson, S.A. (eds.), pp. 39–78. John
Benjamins, Amsterdam (1992)

13. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic
Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

14. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 5, pp. 153–163. Elsevier North-Holland, New York (1970)

15. Punyakanok, V., Roth, D., Yih, W.: The Necessity of Syntactic Parsing for Semantic Role
Labeling. In: IJCAI (2005)

16. OpenNLP (2012), http://incubator.apache.org/opennlp/
documentation/manual/opennlp.html

17. Marcu, D.: From Discourse Structures to Text Summaries. In: Mani, I., Maybury, M. (eds.)
Proceedings of ACL Workshop on Intelligent Scalable Text Summarization, Madrid,
Spain, pp. 82–88 (1997)

18. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Empirial Methods in
NLP (2004)

19. Punyakanok, V., Roth, D., Yih, W.: Mapping dependencies trees: an application to
question answering. In: Proceedings of AI & Math., Florida, USA (2004)

	Parse Thicket Representation for Multi-sentence Search
	Introduction
	Generalizing Portions of Text
	Direct Paragraph-Paragraph Match

	Extending Parse Thickets with Rhetoric Structure-Based Arcs
	Evaluation of Parse Thicket Generalization
	Evaluation of Multi-sentence Search

	Related Work and Conclusions
	References

