
Modeling Ontological Structures
with Type Classes in Coq

Richard Dapoigny and Patrick Barlatier

LISTIC/Polytech’Annecy-Chambéry
University of Savoie, P.O. Box 80439, 74944 Annecy-le-vieux cedex, France

richard.dapoigny@univ-savoie.fr

Abstract. In the domain of ontology design as well as in Conceptual Modeling,
representing universals is a challenging problem. Most approaches which have
addressed this problem rely either on Description Logics (DLs) or on First Or-
der Logic (FOL), but many difficulties remain especially about expressiveness.
In mathematical logic and program checking, type theories have proved to be ap-
pealing but so far, they have not been applied in the formalization of ontologies.
To bridge this gap, we present here the main capabilities of a theory for represent-
ing ontological structures in a dependently-typed framework which relies both on
a constructive logic and on a functional type system. The usability of the theory
is demonstrated with the Coq language which defines in a precise way what on-
tological primitives such as classes, relations, properties and meta-properties, are
in terms of type classes.

1 Introduction

On the one hand, many researchers are striving for an ontologically well-founded rep-
resentation language e.g., by adding new operators to Description Logics (DL) while
preserving decidability, while on the other hand, mathematical and logical theories built
on the Curry-Howard isomorphism have promoted the well-typedness as a foundational
paradigm (above intuitionistic logic) leading to highly powerful theorem provers. Most
modeling languages that have been proposed so far to express ontological constraints
(or rules) are based on very simple meta-conceptualization as underlined in [21]. These
languages offer appropriate structuring mechanisms such as classes, relationships and
subsumption (subclass relations). However, in the representation of a formula, some
structures have meaning whereas other do not make sense. This aspect requires "suit-
able ontological distinctions" understood as meta-properties of ontological structures as
pointed out in [16] (e.g., the principles of identity or rigidity). In addition, the distinction
of ontological meta-level categories such as types, kinds, roles, relations, etc., further
make accurate and explicit the real-world semantics of the terms that are involved in
domain representations. Not only an ontology is committed to represent knowledge of
reality in a way that is independent of the different uses one can make of it, but it is
intended to provide a certified and coherent map of a domain. All these constraints can
be fulfilled within a highly expressive language built on a solid logical background. For
that purpose in this paper, we propose a two-layered theory including a higher-order de-
pendent type theory as a lower layer and an ontological layer as upper layer. This theory
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referred to, as K-DTT (Knowledge-based Dependent Type Theory) [2] is derived from
[12] for the modeling of contexts. The logic in the lower layer operates on (names of)
types whose meaning is constrained in the upper (ontological) layer.

Dependent types are based on the notion of indexed families of types and provide
a high expressiveness since they can represent subset types, relations or constraints as
typed structures. They will be exploited for representing knowledge in an elegant and
secure way. This last aspect is analyzed in [8] where the authors investigate typing
applied to reasoning languages of the Semantic Web and point out that dependent types
ensure normalization. For example, type theory enjoys the property of subject reduction
which ensures that no illegal term will appear during the execution of a well-typed
query in a well-typed program. Alternatively, in [14], the authors have shown the ability
of the type-theoretical approach to cope with scalability on the SUMO foundational
ontology. Therefore, we introduce a a simple, coherent and decidable theory called K-
DTT (Knowledge-based Dependent Type Theory) departing from the existing ones such
as usual first-order logic theories. We will demonstrate with code fragments written in
the support language Coq that the theory is able to satisfy most of all the constraints
inherent in an expressive conceptual model.

2 Motivations for a Type-Theoretical Framework

In the conceptualization of information systems, Mylopoulos [32] has pointed out that
the related language should be able to "formally represent the relevant knowledge". This
assertion means that the conceptual language should (i) be expressive enough to rep-
resent the "relevant knowledge" and (ii) offer deduction capabilities to provide a valid
model. It follows that there are three possible ways for increasing both the expressive-
ness and the soundness of a conceptual language (i) controlling the semantics of the
conceptual language with a formal ontology (ii) using an expressive language e.g., an
Object-Oriented language or (iii) using existing logic-based approaches such as Con-
ceptual Graphs (CGs) or Description Logics. Let us review the basic features of these
approaches.

Some authors such as [19] claim that a foundational ontology should allow to evalu-
ate the "ontological correctness of a conceptual model" and to develop guidelines telling
how the constructs of a conceptual modeling language should be used (e.g., associa-
tion inclusion, specialization and redefinition). The author suggests that ontology ade-
quacy should be a measure of the distance between the models produced by a modeling
language and the real-world situations they are supposed to represent. To fulfill these
constraints, the author has proposed an ontologically well-founded modeling language
whose formal semantics is defined in a logical system as expressively as possible [20].

Object-Oriented languages [5], are the most significant formalisms for representing
knowledge. They stem from frames which are seen as data structures that glue pieces
of information together in their slots. In other words, OO languages are a computa-
tional implementation of frames. Classes correspond to frame descriptions while ob-
jects are identified to frame instances after filling in the slots. OO models offer two
salient properties (i) the analogy between software models and physical models and (ii)
the reusability of their components. The design of the program appears to be isomor-
phic to the components which result from the analysis of a given application with e.g.,
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the UML tool. The central paradigm of OO languages is the notion of class. Classes
encapsulate data (fields) and their properties (methods) in a single structure. classes
are instantiated into objects which are designed to represent anything. Classes can be
arranged into hierarchies using inheritance. A class can inherit behavior (i.e., data and
properties) from another class called its superclass or parent class. Subsumption (i.e.,
polymorphism), is the ability to use a subclass where an object of its superclass is ex-
pected. However, many if not most, knowledgeable computing professionals recognize
that the object-oriented paradigm is not the best one for every problem. In particular, de-
spite some tentatives to add some logic to OO languages (e.g., F-logic [26]), the major
weakness is that it lacks an expressive logical background for reasoning. For example,
F-logic is very expressive but is generally undecidable.

The logical formalism of Conceptual Graphs (CGs)[43,7] originates in semantic net-
works and in the existential graphs of C.S. Peirce. It includes classes, relations, indi-
viduals and quantifiers with the purpose of providing a form humanly readable and
computationally tractable. A CG has direct translation to the language of first order
predicate logic, from which it takes its semantics. It results that CGs have the same
expressing power as predicate logic. Labeled graphs with entities and relationships be-
tween them describe knowledge. CGs offer a significant advantage over concurrent for-
malisms, they are easily interpreted by end-users provided that they are not too com-
plex. The model-theoretic semantics for the CGs is also specified in the ISO standard
for Common Logic (CL). Common Logic includes the usual predicate-calculus nota-
tion for first-order logic. While CL semantics may represent entities of any type, it lacks
ability for relating such entities to the internal structure of CL sentences. Reasoning in
CGs relies on six canonical formation rules at the semantic level [43]. One can extend
semantic operations with combinations of the rules, i.e., projection and maximal join.
Graph operations such as projections (i.e., graph homomorphisms) are a major form of
reasoning. A fundamental problem in simple CGs, i.e., deduction, starts with two simple
CGs as input and searches whether a projection from the first to the second exists. The
problem can be extended to a set of simple CGs (i.e., a knowledge base) and a simple
CG representing a query (query answering). In querying simple conceptual graphs with
negation, it has been shown that in the case of incomplete knowledge intuitionistic logic
can be very attractive for capturing an answer to the query [31]. Finally, while CGs are
efficient for representing natural language semantics, they do not support modality [44]
and contexts are not taken into consideration when reasoning with CGs.

Alternatively, Description logics (DLs) refers to a family of knowledge representa-
tion formalisms that represent the relevant concepts of the domain (its terminology)
together with properties of objects and individuals occurring in the domain. Semanti-
cally they are fragments of predicate logic, but their language is formed so that it would
be enough for practical modeling purposes and also so that the logic would have good
computational properties such as decidability. Very expressive DLs are likely to meet
inference problems of high complexity, or to become undecidable.

We follow the idea of using an ontology for controlling the semantics of a conceptual
model and will show in this paper how a well-founded model for the semantics, i.e., an
ontologically correct conceptual model can be designed. Alternatively, the conceptual
model must also be syntactically correct w.r.t. a set of rules and here we speak of a
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well-formed model (this part has widely been explored in the literature and will not be
addressed here). The analysis of ontological correctness boils down to design specifica-
tions. A specification has the same status as axioms of a mathematical theory, i.e., they
can be proved. More precisely, one can prove that a specification is consistent (it does
not include a contradiction), just as one can prove that the axioms of a theory are consis-
tent. For that purpose, a strong theoretical framework together with a core foundational
ontology are required. This ontology will rely on the classical dichotomy between uni-
versals and particulars. While some approaches exist, the selected framework should
emphasize expressiveness while assuming a strong formal theory.

Most philosophers have only some knowledge about First-Order Logic (FOL) and as
a consequence, most claims about universals, particulars, properties and relations have
a FOL-based logical bias. If now we rather adopt a constructive logic, then the picture
is different and if we associate this logic to a rich type system rooted in the lambda-
calculus, then a different but coherent picture can be drawn. Therefore, we exploit here
the Knowledge-based Dependent Type Theory (K-DTT) theory already introduced in
[2]. The interesting point is that available tools exist (e.g., the Coq theorem prover)
making more exploitable the theoretical picture. We will demonstrate with code frag-
ments, written in the support language Coq, that the theory is able to satisfy most of
all the constraints inherent in an expressive conceptual model. Using a higher-order
polymorphic type theory provides a lot of benefits. First, higher-order is useful (i) to
permit instances of categorization types to be types themselves, (ii) to abstract away
from level distinctions and (iii) to directly support quantification over sets and general
concepts. Second, the typed framework enjoys (i) the reduction of the search space
by restricting the domains/ranges of functions, predicates and variables to subsets of
the universe of discourse, (ii) a structured knowledge representation facilitating both
assertions and class-hierarchies and (iii) the detection of type errors with well-typed
formulas. Finally, using dependent types is crucial to offer a high expressiveness and
to enforce semantic conditions. The approach of [24] combining an order-sorted logic
with the ontological property classification is a first step in this direction. But we can
do more by including a type system with a strong proof theory. Using an unified theory
providing high expressiveness together with the ability to constrain semantics will give
the knowledge engineer the tools to produce models with certain guaranteed properties
in terms of ontological transparency, well-foundedness and re-usability. These aspects
are possible since properties are treated on a par with meta-properties (see section 6.2).
In addition, there are available theorem provers (e.g., Coq) which can be used to check
the well-formedness of user-defined typed structures.

We assume a layered structure including a logical level subsumed by an ontological
level. The lowest level is an intensional type theory based on previous works [9,36,46]
giving rise to a computational theory and, at the highest level, to knowledge struc-
tures whose semantics relies on a hierarchy of concepts ( e.g., the DOLCE hierarchy
of particular categories) and the so-called meta-properties (as e.g., in Ontoclean). As a
consequence, all the ontological classes introduced in the following must have corre-
sponding structures satisfying typing mechanisms provided at the logical level. Unlike
most representation languages, K-DTT provide constructs able to distinguish among
terms having similar logical structure but different ontological meaning [18].
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3 K-DTT: The Type-Theoretical Layer

The Type-Theoretical layer of K-DTT is both rooted in a constructive logic and on a
typed λ-calculus using dependent types. Dependent type theories allow a type to be
predicated on a value which makes them much more flexible and expressive than con-
ventional type systems [30]. The constructive logic pre-supposes a logic centered on
the concept of proof rather than truth and follows the Curry-Howard isomorphism [22]
in which proving is "equivalent" to computing (or querying a database). Reasoning in
K-DTT consists either in reducing types to their normal form or finding proofs for re-
duced types. In K-DTT, the type of a type is called a universe. Universes are partially
ordered and are organized into an infinite hierarchy of predicative type universes Typei
for data types together with an impredicative1 universe noted Prop for logic. This hi-
erarchy follows a kind of cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ .... A universe is
seen as a type that is closed under the type-forming operations of the calculus. Using
the Curry-Howard isomorphism, terms of the type-theoretical layer can represent data
structures as well as properties of these structures and proofs of these properties.

Definition 1. Let Γ be a valid environment.
A term T is called a type in Γ if Γ � T : U for some universe U .
A term M is called a proof object in Γ if Γ � M : T for some type T .

The underlying theory, i.e., the Calculus of Constructions with inductive types and uni-
verses (see e.g., [3]), has given rise to the Coq language2 [10] which has recently pro-
moted very powerful primitives such as Types Classes (TCs) [41,45] for describing data
structures. TCs in Coq are a lot like type classes in Haskell, however Coq allows us to do
better by specifying the rules inside TCs. Coq both combines a higher-order logic and a
richly-typed functional programming language. All logical judgments in Coq are typing
judgments such as x : T , where x is a variable and T , a term. The type-checker checks
the correctness of proofs, that is, it checks using proof search that a data structure com-
plies to its specification. The proof engine also provides an interactive proof assistant
to build proofs using specific programs called tactics. The language of the Coq theorem
prover consists in a sequence of declarations and definitions. A declaration associates
a name with a specification. Specifications can be either logical propositions which re-
side in the universe Prop, mathematical collections which are in Set or abstract types
which belong to a universe Typei with i ∈ N . The theory includes dependent types
generalizing function spaces and Cartesian products.

Lemma 1. [10] Let A,B, two types defined in the current context Γ such that Γ � s :
φ(x : A,B[x]) where φ denotes a dependent type, then the universe of φ(x : A,B[x])
is the maximum universe among the universes of A and B w.r.t. coercions.

Dependent types give new power to TCs while types and values are unified. TCs have
a structure derived from record types with fields, but they are more powerful by allow-
ing parametric arguments, inheritance and multiple fields. For example if one wants to
represent reflexive relations, we can introduce the Reflexive TC with:

1 Impredicativity is a kind of conceptual circularity.
2 The Coq language has reached a state where it is well usable as a research tool.
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Class Reflexive {A} {R : relation A} :=
reflexivity : forall x, R x x.

where { ... } denotes implicit arguments, A stands for any type and R : A → A →
Prop is a dependent type expressing mathematical relations. Notice that (i) the implicit
type of variable x is automatically resolved in Coq to x : A and (ii) relation refers
to the basic Coq library and complies with the above definition of R.

4 K-DTT: The Ontological Layer

To explain how to represent an ontology with K-DTT, we take the example of the
DOLCE taxonomy of particulars [29,15] which does not classify universals and leaves
room for conceptual choices about universal structures. The hierarchical taxonomy of
particular categories will serve as a backbone, referred to as DOLCE backbone. The
DOLCE backbone plus ontological commitments on appropriate structures expressed
within type theory will form the ontological layer of the K-DTT theory. It can be used
to express knowledge as long as the added features respect the core structures together
with their logical constraints (see e.g., [11]). All data structures will be expressed either
with operational TCs having a single field and returning a value in Typei or predicate
classes returning a truth value in Prop.

4.1 Representing Ontological Classes

We follow the position adopted by most formal ontologies in computer science, i.e.,
that universals are general entities which are further refined in subcategories (e.g., re-
lations) and that particulars are specific entities which exemplify universals but which
cannot have themselves instances. K-DTT objects are equipped with meanings using
the Curry-Howard isomorphism and assuming that any type (or typed structure) corre-
sponds to a universal. Notice that "type" here is a mathematical notion and is not itself
an object for ontological modeling. The fundamental ontological distinction between
universals and particulars can be informally understood using the typing relation ":".
Possible worlds which is a way of characterizing the distinction between descriptions
(i.e., intensions) and particulars corresponding to the descriptions (i.e., extensions) is
implicitly accounted for in K-DTT respectively with typed structures and sets of proof
objects3. Properties and relations which correspond to predicates in a logical language
are usually considered as universals. Terms of the ontological layer of K-DTT are built
from the category Universal, (the highest universe in the lower layer) which includes
the four basic categories (sub-universes in the lower layer), C, Rel, P and Rol which
stand respectively for concept types, relation types, property types and role types (see
fig 1). The last category is not discussed here but more details can be found in [2].

The universe of concepts includes the set of universes for the foundational ontol-
ogy {PT,AB,R, TR, T, PR, . . . , STV, ST, PRO, . . . , } which refers to the DOLCE
taxonomy. It classifies categories of particulars such as APO which stands for Agen-
tive Physical Object. Each of these universes is closed under the type formation rule

3 Proof objects are e.g., the result of queries on a database related to the ontology.
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Fig. 1. Ontological categories in K-DTT

(lemma 1) and includes itself a set of sub-universes which can be defined in a domain
ontology. All universes are partially ordered by subsumption formalized here by co-
ercions [38] (e.g., ED is subsumed by PT , ...). In TCs, inheritance is implemented
with (i) implicit arguments and (ii) the :> operator. Concepts can be either primitive
or compound. Primitive concepts are in line with the existence of "natural types", i.e.,
they can be identified as types in isolation (see e.g., [42]). Each category of particulars
which belong to the DOLCE taxonomy is described with a TC where their position in
the hierarchy is computed w.r.t. the coercion rules. All terms of the ontological layer
must be well-formed.

Definition 2. (Well-formed concepts) A term T is well-formed if for some formal on-
tology O providing the environment, we have either O � T : C or O � T : R or
O � T : P for some C ∈ C, R ∈ Rel and P ∈ P .

In the following, we often forget the environment for the sake of clarity, while any
assertion will be relative to an explicit environment (e.g., a foundational ontology).
For example, the judgment LegalPerson : SAG � x : LegalPerson where SAG
denotes a Social AGent asserts that the variable x belongs to the concept LegalPerson
provided that it is a well-formed term, i.e., that LegalPerson belongs to the universe
SAG. A value for the variable x which can be e.g., JohnDoe, is called a proof object
because it is both considered as an object (from the programming language side) and as
a proof (from the logical side).

The relation of instantiation (:) between a universal and its instance corresponds here
to type inhabitation. However, when this relation connects a type and its universe, it
behaves like a Grothendieck universe [6] w.r.t. lemma 1. Unlike FOL-based ontologies,
it describes in a natural and simple way the relation between universals and particulars
without the need to introduce specialized ad hoc formulations. For example, in [40], the
proposed theory of Is_a and Part_of is based on a relation of instantiation between an
instance and a class and requires axioms for governing its use. In K-DTT, the relation
of instantiation is already part of the theory and does not require any further axioms.

The equality between terms in the ontological layer is ascribed to be coherent w.r.t.
the Leibniz equality of the lower layer (two types are logically identical iff they have
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the same properties). It relates to the usual definition of the identity condition for an
arbitrary property P , i.e., P (x) ∧ P (y) → (R(x, y) ↔ x = y) with a relation R satis-
fying this formula. This definition is carried out for any type in K-DTT since equality
between types requires the Leibniz equality. The major reason is that identity can be
uniquely characterized if the language is an higher-order language in which quantifica-
tion over all properties is possible [34]. This property yields that Leibniz’s Law, which
is at the basis of identity in the lower layer of K-DTT is expressible in this language.

Relation types are rooted in the mathematical structure of a relation over a set A.
The set is replaced by a general type A : Type and rules can be defined over the basic
TC relation as described in section 3. It can be seen as a generalization of the work
already presented in [11]. Specifications are a restriction of TCs with a first field for data
structure and a second field for the property. Furthermore, fields of TCs can reside in
any universe assuming the rule of lemma 1. Notice that proof objects for relation types
are tuples and are closely related to lines of a table in a database. Universes of relation
types are closed under type forming operations, i.e., Π-types and TCs constructs.

Property types reside in a sub-universe of Universal, which means that they are also
universals. Properties of concept instances correspond to quality types (the DOLCE
category Q) while properties of concept types correspond to meta-properties. Prop-
erty types (concept or instance type properties) are divided into two sub-categories
describing respectively mandatory properties (rigid properties) and possible properties
(anti-rigid properties). This choice complies with the constraints of [17] arguing that
anti-rigid properties cannot subsume rigid properties related to ontological distinctions
in the current practice of conceptualization. While we agree with the introduction of
three formal properties, i.e., identity, rigidity and dependence as proposed in [18], we
do not share the view of properties as unary predicates since it relies on the restricted
support of FOL (i.e., it has a logical bias).

4.2 Expressing Generalization

Generalization consists in deciding whether one category is "more general than" an-
other one and is formalized by the subsumption relation "A subsumes B" which says
that being a B logically implies being an A. The notion of subsumption has several
readings, the more important ones being extensional and intensional [47,33]. There are
some drawbacks to the extensional interpretation of subsumption because (i) determin-
ing whether the extension of one concept is included in the extension of another one
is often undecidable and (ii) observing that two concepts have the same extension does
not mean that they are identical.

In K-DTT, generalization and refinement are intensional and take advantage of two
mechanisms (i) the simple mechanism of coercive subtyping [38,28] and (ii) TCs [41].
The hierarchy of generic concept types from DOLCE is isomorphic to a stratified hi-
erarchy of universes in Coq (e.g., PD is (i) defined as a universe with the definition
:= Type (ii) ordered with the typing assertion : PT and (iii) explicitly coerced with
the parameter u1). In such a way, subsumption hierarchies can be designed provided
that the coherence between coercion paths is preserved. This coherence is automati-
cally checked in Coq (see e.g., [38]). The following fragment details this mechanism on
some DOLCE categories showing e.g., that every perdurant (PD) and every endurant
(ED) are also particulars (PT ).
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Definition PT : Concept := Type.
Definition PD : PT := Type.
Definition ED : PT := Type.
Parameter u1 : PD->PT. Coercion u1 : PD>->PT.
Parameter u2 : ED->PT. Coercion u2 : ED>->PT.

...

The other mechanism creates inheritance hierarchies by refining TCs. Using the :>
operator within a field of a TC means that any instance of the actual class is also an
instance of the parent class. It results that TCs are a kind of bounded quantification
where the subtyping relation needs not be internalized. When we represent higher and
higher structures, TCs avoid the set of arguments growing as well. Predicate classes also
support multiple inheritance which can be exploited in e.g., biomedical ontologies. Fur-
thermore, they allow overlapping multiple inheritance which enable inherited structures
to share components [45]. In such a way, very expressive hierarchies can be composed
out of predicate classes and operational classes based on inheritance.

For example, we can add a TC for transitive relations to the operational TC of section
3 in a similar way. Then, a pre-order TC can inherit of these classes as follows:

Class Reflexive {A} {R : relation A} : Prop :=
reflexivity : forall x, R x x.}

Class Transitive {A} {R : relation A} : Prop :=
transitivity : forall x y z, R x y -> R y z -> R x z.}

Class PreOrder {A}{R:relation A} : Prop := {
PreOrder_Reflexive :> @Reflexive A R;
PreOrder_Transitive :> @Transitive A R }.

Here, the syntax :> declares each projection (i.e., each field) of the TC PreOrder as
an instance of the respective TCs Reflexive and Transitive. It follows that each
pre-order can be seen as a reflexive and as a transitive relation. This simple example
highlights how multiple inheritance is implemented with implicit parameters.

5 Representing Relations

The strength of dependent types in type theory allows expressing relations as primi-
tives of the language. The first consequence is that they are terms of the logic and can
be involved in complex predicates. At the ontological level, relations are hierarchical
(e.g., subsumption or part-of relations4) or non-hierarchical (e.g., domain relations).
For the sake of simplicity, we only discuss here binary relations. Hierarchical relations
are discussed in detail in section 6.2 since they require the specification of properties.
Non-hierarchical relations denote tuples involving particulars and precisely correspond
to instances of TCs having a first and a second field which detail their component types
and a third one explaining how they are constructed and possibly other field(s) giving
the additional properties they are subject to (see section 6.2). The basic TC BinaryRel
defines the generic structure built out of a type A, another type B and a predicate type.
For example, a domain relation type expressing persons which may suffer from a given

4 We refer here to the part-of relation which is transitive by contrast with the partonomic relation
which is usually not (see [11] for more explanations).
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(or multiple) disease(s) inherits this basic structure through their implicit arguments.
The specification Class Person : APO assumes that Person belongs to the universe
APO which itself is a sub-universe of Concept. Implicit respective parameters A and
B are automatically resolved5 with Person and Disease giving rise to the relation
type SufferFrom:

Definition Disease : PRO := Type.
Parameter u20 : Disease->PRO. Coercion u20: Disease>->PRO.
Class Person : APO := { }.

Class BinaryRel {A B:PT} : Association := {
BinaryRel_arg1 : A;
BinaryRel_arg2 : B;
BinaryRel_rule : A->B->Prop}.

Class SufferFrom : Association := {
SufferFrom_struc :> @BinaryRel Person Disease}.

Instances of Person and Disease correspond respectively to a set of persons and
a set of diseases these persons are subject to. Notice that Disease is defined as a
universe since it cannot have direct instances. Each time an object having the type
@BinaryRel Person Disease is introduced, Coq will try to construct an object of
type SufferFrom. To clarify the meaning of relations in the typed framework, let us
consider the appropriate table within a database (proof objects are items in the table):

Person Disease

John_Doe
Influenza

AIDs

Mike_Hammer Herpes_Simplex

Henry_Mann Rhinovirus

Franck_Burch
Hepatitis_A
nail_infection

The relation type SuffersFrom belongs to the universe of (ontological) binary rela-
tions. A tuple 〈John_Doe,AIDs〉 is a proof for the type SuffersFrom. Here proof
objects are (constructively) obtained with requests to the database rather than by math-
ematical computation as usual.

Let us denote Tab and DB the respective contexts of the table related to the relation
and the whole database. The set of persons6 ObjTab(Person) = {John_Doe, Mike
Hammer,Henry_Mann, Franck_Burch} relative to the table does not rule out
the possibility to have other persons involved in other tables. We assume that DB is
a valid context which contains at least every component of Tab. Using the weaken-
ing rule for contexts with DB � Person : Type and Tab � Person : Type, we
can assert DB � x : Person ⊃ Tab � x : Person7. The same reasoning holds

5 Instance resolution is part of the Coq unifier.
6 More formally, the set of proof objects.
7 The symbol ⊃ denotes the logical implication in higher-order logic.
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for the type Disease. Then using the extensionality of computational equality be-
tween inhabited types [9], it follows that ObjTab(Person) ⊂ ObjDB(Person) and
ObjTab(Disease) ⊂ ObjDB(Di sease). Furthermore, the diseases undergone by a
person is a subset of the diseases undergone by any person within the table.

These definitions for binary relations can be extended to n-ary relations but this as-
pect will not be discussed here. The TC BinaryRel is general and applies at any ab-
straction level which is less than PT. Then Coq checks for the coherence of subsumption
paths, for instance the sequence: [u20; u15; u14] : Disease >-> PD, [u20;
u15; u14; u1] : Disease >-> PT, [u20; u15] : Disease >-> STV, [u20]
: Disease >-> PRO] assumes that Disease is a Concept while providing the se-
quence of the coercion hops between these two terms. Notice that Coq checks for the
coherence of these paths by avoiding multiple paths between two terms. This exam-
ple illustrates how the types of the arguments are controlled throughout the refinement
process and highlights the benefit of TCs for capturing knowledge.

6 Representing Properties

6.1 Concept Instances Properties

Concept instance properties or quality types can be attributed to things or predicated
about them and then it can be said that objects exemplify quality types. In OO modeling,
qualities (attributes) are embedded within the scope of a class while in CGs and DLs
they rather have a relational flavor. In DOLCE, these qualities belong to a finite set of
quality types (e.g., color, size, shape, etc.) and inhere in specific individuals. It results
that two particulars cannot have the same properties (due to Leibniz equality) but they
can have the same qualities, and at any time, a quality cannot exist unless the entity
it inheres in also exists. A quality type is close to the "relational moment type" [20]
which is also existentially dependent on other particulars. The inherence relation is
isomorphic with type dependence on values. In K-DTT, the idea is to consider qualities
as represented by TCs and then to attach them to other concepts through dependent
arguments. Let us consider how a moment universal can be captured in K-DTT. We only
consider here (for the sake of simplicity) an intrinsic moment which uniquely depends
on a single particular. For example a person which has an attribute SSN (Social Security
Number) can be conceptualized with first introducing two TCs with their appropriate
coercions as follows:

Class SSN : Q := { SSN_Quale : nat}.
Class Person : APO := { . . . }.
Class HasSSN : Prop := {

SSN_Attr : Person->SSN;
SSN_mul : SelectArity Person (card_0_1 Person)}.

where SSN_Quale is a natural number describing the SSN value. The TC HasSSN
relates a person with its SSN through the type of the first field Person->SSN. The
second field describe the arity of the SSN (we presuppose that a person has 0 or 1
SSN). Each arity has a lower and an upper value. Arity 1 is assumed if the field is
a simple type declaration. Arity 0..1 can be represented with the predefined inductive
type option. This type has two constructors, one referred to as none says that there are
no elements having the type whereas Some t provides a term t having the type. Then,
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any arity value greater than 1, i.e., the arity 1..n is easily represented with the list type.
The resulting encoding formalizes these assumptions:

Inductive Arity (A:Type) : Type :=
card_1 : Arity A

| card_0_1 : Arity A
| card_0_n : Arity A.

Definition SelectArity (A:Type)(x:Arity A) : Type :=
match x with

| card_1 => A
| card_0_1 => option A
| card_0_n => list A

end.

With these definitions, it becomes easy to understand the second field in the HasSSN

TC. It means that the type person has an arity 0..1, that is he has 0 or 1 SSN. If the SSN
value is 0, then the related person has no SSN while any positive integer will provide
the person as output. In summary, to express that any concept has a quality, a predicate
TC (i) formalizes the dependency of the concept over the quality in a first field and (ii)
formalizes the arity which inheres in the link person-SSN.

For each instance of HasSSN, one must be able to (i) construct an object (e.g., "33")
having the type SSN and (ii) a proof that the cardinality 0..1 has been selected.

Instance SSNPerson : HasSSN := {
SSN_Attr John := (Build_SSN 33);
SSN_mul := Multiplicity0_1 (Build_SSN 33) John }.

with:
Definition Multiplicity0_1 (s:SSN)(p:Person) : option Person :=

match s with Build_SSN 0 => None
| Build_SSN s => Some p end.

On the one hand the dependent type allows to filter out unexpected values as arguments
and unexpected quality types for the structural part of the property seen as a predicate
TC, while on the other hand, inductive types provide a suitable mechanism for arity
checking. Rigid and anti-rigid properties are useful if one can reason about them in
a meta-schema as claimed in [17,18]. While basic constructors of type theory can be
used for that purpose (see e.g., [2]), reasoning can be made easier by supplying a sup-
plementary field to type classes, i.e., Quality_rig. Then this information can be used
in a process which automate the control of domain ontologies resulting in well-formed
hierarchies.

6.2 Concept Type Properties

Properties of concept types or meta-properties are described with rules, that is with
predicate classes. For example to introduce partial order relations (POR), a widely-
used concept in reasoning, one will extend the previous definitions for Reflexive and
Transitive type classes as follows:

Class Antisymmetric { A } {R : relation A} : Prop :=
antisymmetry : forall x y, R x y -> R y x -> x = y.



Modeling Ontological Structures with Type Classes in Coq 147

Class Irreflexive A R : relation A :=
irreflexivity : forall x, R x x -> False.

Class Asymmetric {A}{R:relation A} := {
Asym_Irreflexive :> @Irreflexive A R;
Asym_Antisymmetric :> @Antisymmetric A R }.

Class POR { A }{R:relation A} : Prop := {
POR_Reflexive :> @Reflexive A R;
POR_Antisymmetric :> @Antisymmetric A R;
POR_Transitive :> @Transitive A R }.

First, the coercions over class instances (e.g., @Reflexive A R) in the POR TC ex-
press multiple inheritance diagrams and second, the required types A and relation A

are general and can be applied to any kind of relation. It follows that such a kind of
inheritance diagram can be reused in any ontology-based application and give rise to
modular hierarchies of axiomatic structural properties.

7 Constructing Inheritance Hierarchies

Usual theories about part-whole relations do not consider categories of the entity types
involved in a part-whole relation and subsumption between these relations presuppose
that their arguments are identical. The K-DTT theory is able to control both the types of
each argument if required and inheritance between the type classes representing distinct
relation types. This property extends the expected expressiveness of the theory beyond
the usual power of ontology languages since it involves not only the predicates of re-
lation types but also all arguments for these types. Let us consider mereotopological
relations for endurants such as the has_3D property [25] which refers to both the en-
durant itself and the region (R) it occupies. The authors claim that the contained_in
relation which is widely used in biology, involves both parthood and containment and
can be captured with the first-order formula:

∀x, y(contained_in(x, y) � part_of(x, y) ∧R(x) ∧R(y) ∧
∃z, w(has_3D(z, x) ∧ has_3D(w, y) ∧ ED(z) ∧ ED(w))

In K-DTT, this dual property is expressed using multiple inheritance. The inheritance
diagram requires first the specification of a generic part-of relation. The inheritance
with instances of type classes (i.e., :> @PartOf R rr;) avoids the introduction of
a structural parthood in the taxonomy (see [25] for more details). Furthermore, simple
inheritance with restriction on the type of argument will describe the involved_in
relation, which relates two perdurants (see figure 2).

Definition ED : PT := Type;
Definition AB : PT := Type;
Definition R : AB := Type;
Class PartOf {A:PT}{rr:relation A} : Association := {

PO_prop :> @POR A rr }.
Class ProperPartOf {A:PT}{r:relation A} : Association := {

PPO_propAs :> @Asymmetric A r;
PPO_propTr :> @Transitive A r}.
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Class ContainedIn {rr: relation R} : Association := {
CIpartof_struct :> @PartOf R rr;
CIregion_struct :> @BinaryRel R ED}.

Class InvolvedIn {rt: relation PD} : Association := {
IIpartof_struct :> @PartOf PD rt}.

Then, assuming for example that we declare variable regions : relation R, we
can prove with a tactic that any relation of type ContainedIn is transitive. The fact
that we can apply transitivity to the arguments which belong to the class ContainedIn,
means that it is propagated along the TC hierarchy until it reaches the TC Transitive.
Then, applying twice the unification yields the result. Notice that tactics may be regis-
tered and reused which makes designer’s task more easy by abstracting away the logical
part.

Goal forall c:@ContainedIn regions, forall x y z:R, regions x y->
regions y z -> regions x z.

Proof.
intros.
eapply transitivity.
eassumption.
assumption.
Qed.

Fig. 2. An inheritance diagram in K-DTT

In a similar way, wider inheritance hierarchies can be investigated for describing ex-
pressive knowledge hierarchies in which type checking allow for proving well-formed
ontologies. Automated proof-search could be improved by specifying ad’hoc requests
on a database using parametrized requests (this aspect will be soon investigated).

8 Related Works

A subset of the CG theory called Prolog+CG is a Java implementation of Prolog where
CGs are first-class datatypes on a par with terms [23]. It includes also Object oriented
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extensions. This approach is based on typed hierarchy of concepts which is a lattice
(The Sowa ontology) while our approach stems from the DOLCE foundational on-
tology and Ontoclean for the meta reasoning. Both approaches are using types but in
Prolog+CG, typing requires multiple programming layers since Prolog does not natu-
rally work with types. Instead, the K-DTT approach has a native typing system. While
Prolog+CG has a Prolog core, nothing is said about negation whose handling is prob-
lematic. Due to the intuitionistic framework of K-DTT based on proof construction
rather than discovering truth values, this problem is avoided. For that purpose, Coq has
a lot of built-in tactics, and many more are available in libraries. Typically in Prolog,
one expects the result(s) of the resolution and obtains a truth value while in Coq, one
has to say what type has to be proved and obtains more information since a type is iden-
tified with the set of its proof objects. The creation of instances requires a primitive goal
(CreateInstance) while Coq has a built-in notion of instanciation (:). The higher order
capabilities of the type-theoretical layer are a crucial advantage for meta-reasoning.

Description logics are widely described and many tools exist which allow develop-
ers of to export their ontologies into a DL formalism. However, in DL-based biomedi-
cal ontologies, analysis have been investigated to check how their terminology complies
with a basic set of ontological principles [4]. The authors have pointed out some inaccu-
racies of subsumption links, incomplete description and other conceptual ambiguities.
Alternatively, in spatial reasoning [1], some limitations of OWL (and therefore of DL)
are identified such as the difficulty of the language to represent the constraints which
govern the coordinates of spatial objects in containment hierarchies. The comparison of
datatype properties of individuals is the result of the lack of variables in DLs. Moreover,
since DLs are conceptually oriented, they lack a rule-based reasoning mechanism such as
the one found in logic programming (e.g., Horn clauses). Therefore, various approaches
have been proposed for integrating logic programming and description logics such as
[13,27,37]. Nevertheless, these reasoning techniques suffer from some limitations such
as the restriction of DLs to "safe rules" and complicate the reasoning process by adding
a translation mechanism between DLs and logic programming. More precisely, using
these languages for practical applications raises several challenges [35]. The restriction
to binary predicates in both SWRL and OWL is a first difficulty leading to violate safe
rules for expressing the higher-order nature of the rules that have to be constructed. The
main advantage of the present approach holds in the unified framework in which numer-
ical values can be manipulated, rules can be applied and proved and multiple inheritance
can be exploited while offering an expressive higher-order language.

9 Conclusion

The K-DTT theory is an attempt at constraining the semantics of knowledge repre-
sentation based on expressive typed structures. While the logical part of the repre-
sentation languages is neutral as concerns ontological choices, typing is not (e.g., the
DOLCE backbone). K-DTT is a unifying theory both sufficiently expressive and logi-
cally founded together with a logic which supports different abstraction levels. We have
(i) introduced the basic features of K-DTT and (ii) illustrated how modeling ontologi-
cal knowledge can be checked in the Coq theorem prover. It is demonstrated that type
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classes can model several non-trivial aspects of classes such as meta-level properties
and multiple inheritance. TCs unify the two representations of relations, i.e., the logi-
cal view in which relations are predicates and the conceptual modeling view where a
relation is seen as a set of tuples.

On the one hand, the present theory is more expressive than usual predicate logic
in which it is neither possible to apply a function symbol to a proposition, nor to bind
a variable except with a quantifier. In addition, the language of K-DTT is richer than
FOL-based languages in allowing proofs to appear as parts of the propositions so that
the propositions can express properties of proofs (and not only of individuals like in
FOL). On the other hand, the distinction between usual Object Oriented programming
and type theory relies on the ability of their representative computational structures
to correctly express the semantics of ontological components. While their expressive-
ness is comparable, many aspects of object-oriented programming can be preserved in
type theory since it unifies functional programming, component based programming,
meta-programming (MDA), and logical verification (see [39] for more details). Further
works include the realization of an interface between Coq and databases to collect proof
objects with requests and a tool for proving well-formed ontologies.
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