
The Logic of XACML

Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and Flemming Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet Lyngby, Denmark

{cdpu,riis,nielson}@imm.dtu.dk

Abstract. We study the international standard XACML 3.0 for describing se-
curity access control policy in a compositional way. Our main contribution is to
derive a logic that precisely captures the idea behind the standard and to formally
define the semantics of the policy combining algorithms of XACML. To guard
against modelling artefacts we provide an alternative way of characterizing the
policy combining algorithms and we formally prove the equivalence of these ap-
proaches. This allows us to pinpoint the shortcoming of previous approaches to
formalization based either on Belnap logic or on D-algebra.

1 Introduction

XACML (eXtensible Access Control Markup Language) is an approved OASIS 1 Stand-
ard access control language [1,14]. XACML describes both an access control policy lan-
guage and a request/response language. The policy language is used to express access
control policies (who can do what when) while the request/response language expresses
queries about whether a particular access should be allowed (requests) and describes
answers to those queries (responses).

In order to manage modularity in access control, XACML constructs policies into
several components, namely PolicySet, Policy and Rule. A PolicySet is a collection of
other PolicySets or Policies whereas a Policy consists of one or more Rules. A Rule is
the smallest component of XACML policy and each Rule only either grants or denies
an access. As an illustration, suppose we have access control policies used within a
National Health Care System. The system is composed of several access control policies
of local hospitals. Each local hospital has its own policies such as patient policy, doctor
policy, administration policy, etc. Each policy contains one or more particular rules, for
example, in the patient policy there is a rule that only the designated patient can read
his or her record. In this illustration, both the National Health Care System and local
hospital policies are PolicySets. However the patient policy is a Policy and one of its
rules is the patient record policy. Every policy is only applicable to a certain target and a
policy is applicable when a request matches to its target, otherwise, it is not applicable.
The evaluation of composing policies is based on a particular combining algorithm –
the procedure for combining decisions from multiple policies. There are four standard

1 OASIS (Organization for the Advancement of Structured Information Standard) is a non-for-
profit, global consortium that drives the development, convergence, and adoption of e-business
standards. Information about OASIS can be found at http://www.oasis-open.org.

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 205–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.oasis-open.org

206 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

combining algorithms in XACML i.e., (i) permit-overrides, (ii) deny-overrides, (iii)
first-applicable and (iv) only-one-applicable.

The syntax of XACML is based on XML format [2], while its standard semantics is
described normatively using natural language in [12,14]. Using English paragraphs in
standardization leads to misinterpretation and ambiguity. In order to avoid this draw-
back, we define an abstract syntax of XACML 3.0 and a formal XACML components
evaluation based on XACML 3.0 specification in Section 2. Furthermore, the evaluation
of the XACML combining algorithms is explained in Section 3.

Recently there are some approaches to formalizing the semantics of XACML. In [8],
Halpern and Weissman show XACML formalization using First Order Logic (FOL).
However, their formalization does not capture whole XACML specification. It is too
expensive to express XACML combining algorithms in FOL. Kolovski et al. in [10,11]
maps a large fragment of XACML to Description Logic (DL) – a subset of FOL –
but they leave out the formalization of only-one-applicable combining algorithm. An-
other approach is to represent XACML policies in term of Answer Set Programming
(ASP). Although Ahn et al. in [3] show a complete XACML formalization in ASP,
their formalization is based on XACML 2.0 (see [12]), which is out-of-date nowadays.
More particular, the combining algorithms evaluation in XACML 2.0 is simpler than
XACML 3.0. Our XACML 3.0 formalization is closer to multi-valued logic approach
such as Belnap logic [4] and D-algebra [13]. Bruns et al. in [5,6] and Ni et al. in [13]
define a logic for XACML using Belnap logic and D-algebra, respectively. In some
cases, both works show different results from the XACML standard specification. We
discuss the shortcoming of formalization based either on Belnap logic or on D-algebra
in Section 4 and we conclude in Section 5.

2 XACML Components

The syntax of XACML is described verbosely in XACML format (see XACML 3.0
specification in [14]). For our analysis purpose, first of all we do abstracting XACML
components. From the XACML abstraction, we show how XACML evaluates policies.
For illustration we give an example at the end of this section.

2.1 Abstracting XACML Components

There are three main policy components in XACML, namely PolicySet, Policy and
Rule2. PolicySet is the root of all XACML policies. A PolicySet contains of a sequence
of other PolicySets or Policies. The sequence of PolicySets (or Policies) is combined
with a combining algorithm function that has been defined already in XACML. A Poli-
cySet is applicable if its Target matches with the Request.

A Policy contains a sequence of Rules. It is the same case like PolicySet, the se-
quence of Rules is combined with a combining algorithm function. A Policy is applic-
able if its Target matches with the Request.

2 We use uppercase for Rule, Policy and PolicySet to denote XACML entities. Lowercase ”rule”
and ”policy” are used as common English terminologies

The Logic of XACML 207

Rule is the smallest policy entity in XACML that defines an individual rule in the
policy. A Rule only has one effect, i.e., either deny or permit an access. When Rule’s
Target matches with the Request, the applicability of the Rule is refined by Rule’s
Condition.

A Request contains a set of attributes information about access request. There are
four attributes categories used in XACML, namely subject attributes, action attributes,
resource attributes and environment attributes. A Request also contains additional in-
formation about external state, e.g. the current time, the temperature, etc. A Request
contains error message when there is an error during attribute evaluation.

We present in Table 1 a succinct syntax of XACML 3.0 that is faithful to the more
verbose syntax used in the standard [14].

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components
PolicySet ::= 〈Target, 〈PolicySet1, . . . , PolicySetm〉,CombID〉

| 〈Target, 〈Policy1, . . . , Policym〉,CombID〉 where m ≥ 0
Policy ::= 〈Target, 〈Rule1, . . . ,Rulem〉,CombID〉 where m ≥ 1
Rule ::= 〈Effect,Target,Condition〉
Condition ::= propositional formulae
Target ::= Null

| AnyOf1 ∧ . . . ∧ AnyOfm where m ≥ 1
AnyOf ::= AllOf1 ∨ . . . ∧ AllOfm where m ≥ 1
AllOf ::= Match1 ∧ . . . ∧ Matchm where m ≥ 1
Match ::= att(val)
CombID ::= po | do | fa | ooa
Effect ::= d | p
att ::= subject | action | resource | enviroment
val ::= attribute value

XACML Request Component
Request ::= {A1, . . . , Am } where m ≥ 1
A ::= att(val) | error | external state

2.2 XACML Evaluation

The evaluation of XACML components starts from Match evaluation and it is continued
iteratively until PolicySet evaluation. The Match, AllOf, AnyOf, and Target values are
either match, not match or indeterminate. Indeterminate value takes place if there is an
error during the evaluation so that the decision cannot be made at that moment. The
Rule evaluation depends on Target evaluation and Condition evaluation. The Condition
component is a set of propositional formulae which each formula is evaluated to either
true, false or indeterminate. An empty Condition is always evaluated to true. The result
of Rule is either applicable, not applicable or indeterminate. An applicable Rule has
effect either deny or permit. Finally, the evaluation of Policy and PolicySet are based
on a combining algorithm of which the result can be either applicable (with its effect
either deny or permit), not applicable or indeterminate.

208 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

2.2.1 Three-Valued Lattice

We modelling the XACML evaluation using lattice theory. We define L3 = 〈V3,≤〉 be
three-valued lattice where V3 is the set { �, I,⊥ } and ⊥ ≤ I ≤ �. Given a subset S
of V3, we denote the greatest lower bound (glb) and the least upper bound (lub) at S
(w.r.t. L3) by

�
S and

⊔
S, respectively. Recall that

�
∅ = � and

⊔
∅ = ⊥.

We use �.� notation to map XACML elements into their evaluation values. The eval-
uation of XACML components to values in V3 is summarized in Table 2.

Table 2. Mapping V3 into XACML Evaluation Values

V3 Match and Target value Condition value Rule, Policy and PolicySet value
� match true applicable (either deny or permit)
⊥ not match false not applicable
I indeterminate indeterminate indeterminate

2.2.2 Match Evaluation

A Match element M is an attribute value that a request should fulfil. Given a Request
component Q, the evaluation of Match element is as follows:

�M�(Q) =

⎧
⎪⎨

⎪⎩

� M ∈ Q and error /∈ Q
⊥ M 	∈ Q and error /∈ Q
I error ∈ Q

(1)

2.2.3 Target Evaluation

Let M be a Match, A = M1 ∧ . . . ∧ Mm be an AllOf, E = A1 ∨ . . . ∨ An be an
AnyOf, T = E1 ∧ . . . ∧ Eo be a Target and Q be a Request. Then, the evaluations of
AllOf, AnyOf, and Target are as follows:

�A�(Q) =

m�

i=1

�Mi�(Q) (2)

�E�(Q) =

n⊔

i=1

�Ai�(Q) (3)

�T �(Q) =

o�

i=1

�Ei�(Q) (4)

In summary, we can simplify the Target evaluation as follows:

�T �(Q) =
�⊔�

�M�(Q) (5)

An empty Target – indicated by Null – is always evaluated to �.

The Logic of XACML 209

2.2.4 Condition Evaluation

We define the conditional evaluation function eval as an arbitrary function to evaluate
Condition to value in V3 given a Request component Q. The evaluation of Condition is
defined as follows:

�C�(Q) = eval(C,Q) (6)

2.2.5 Extended Values

In order to distinguish an applicable policy that deny an access (i.e., has value d) from
applicable policy that permit an access (i.e., has value p), we extend � in V3 to �d

and �p, respectively. The same case also applies to indeterminate value. The extended
indeterminate value contains potential effect value(s) that could have been returned had
there been no error during evaluation. The possible extended indeterminate values are
[14]:

– Indeterminate Deny (Id): an indeterminate from a policy which could have evalu-
ated to deny but not permit, e.g., a Rule which evaluates to indeterminate and its
effect is deny.

– Indeterminate Permit (Ip): an indeterminate from a policy which could have eval-
uated to permit but not deny, e.g., a Rule which evaluates to indeterminate and its
effect is permit.

– Indeterminate Deny Permit (Idp): an indeterminate from a policy which could have
effect either deny or permit.

We extend the set V3 to V6 = { �d,�p, Id, Ip, Idp,⊥ } and we use V6 for XACML
policies evaluations.

2.2.6 Rule Evaluation

Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the evaluation of Rule is
determined as follows:

�R�(Q) =

⎧
⎪⎨

⎪⎩

�∗ �T �(Q) = � and �C�(Q) = �
⊥

(
�T �(Q) = � and �C�(Q) = ⊥

)
or �T �(Q) = ⊥

I∗ otherwise

(7)

Let F and G be two values in V3. We define a new operator �: V3 × V3 → V3 as
follows:

F � G =

{
G F = �
F otherwise

(8)

We define a function σ : V3 × { d,p } → V6 that maps a value in V3 into a value in V6

given a particular Rule’s grant as follows:

σ(X, ∗) =
{
X X = ⊥
X∗ otherwise

(9)

210 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Proposition 1. Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the following
equation holds

�R�(Q) = σ (�T �(Q) � �C�(Q), ∗) (10)

2.2.7 Policy Evaluation

The standard evaluation of Policy element taken from [14] is as follows

Target value Rule value Policy Value
match At least one Rule value is applicable Specified by the combining algorithm
match All Rule values are not applicable not applicable
match At least one Rule value is indeterminate Specified by the combining algorithm

not match Don’t care not applicable
indeterminate Don’t care indeterminate

Let P = 〈T ,R,CombID〉 be a Policy where R = 〈R1, . . . ,Rn〉 is a sequence of Rules.
Let Q be a Request and R

′ = 〈�R1�(Q), . . . , �Rn�(Q)〉. The evaluation of Policy is
defined as follows:

�P�(Q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I∗ �T �(Q) = I and
⊕

CombID(R
′) ∈ { �∗, I∗ }

⊥ �T �(Q) = ⊥ or

�T �(Q) = � and ∀Ri : �Ri�(Q) = ⊥
⊕

CombID(R
′) otherwise

(11)

Note 1. The combining algorithms denoted by
⊕

is explained in Section 3.

2.2.8 PolicySet Evaluation

The evaluation of PolicySet is similar to Policy evaluation. However, the input of the
combining algorithm is a sequence of either PolicySets or Policies.

Let PS = 〈T ,P,CombID〉 be a PolicySet where P = 〈P1, . . . ,Pn〉 is a sequence of
PolicySets (or Policies). Let Q be a Request and P

′ = 〈�P1�(Q), . . . , �Pn�(Q)〉. The
evaluation of PolicySet is defined as follows:

�PS�(Q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I∗ �T �(Q) = I and
⊕

CombID(P
′) ∈ { �∗, I∗ }

⊥ �T �(Q) = ⊥ or

�T �(Q) = � and ∀Pi : �Pi�(Q) = ⊥
⊕

CombID(P
′) otherwise

(12)

2.3 Example

The following example simulates briefly how a policy is built using the abstraction. The
example is motivated by [7,9] which presents a health information system for a small
nursing home in New South Wales, Australia.

The Logic of XACML 211

Example 1 (Patient Policy). The general policy in the hospital in particular:

1. Patient Record Policy
RP1: only designated patient can read his or her patient record except that if the

patient is less than 18 years old, the patient’s guardian is permitted also read
the patient’s record,

RP2: patients may only write patient surveys into their own records
RP3: both doctors and nurses are permitted to read any patient records,

2. Medical Record Policy
RM1: doctors may only write medical records for their own patients and
RM2: may not write any other patient records,

The encoding of this example using our abstraction is shown below. The topmost policy
in this example is the Patient PolicySet that contains two policies, namely the Patient
Record Policy and the Medical Record Policy. The access is granted if either one of the
Patient Record Policy or the Medical Record Policy gives a permit access. Thus in this
case, we use permit-overrides combining algorithm to combine those two policies. In
order to restrict the access, each policy denies an access if there is a rule denies it. Thus,
we use deny-overrides combining algorithms to combine the rules.

PS_patient = <Null , <P_patient_record , P_medical_record>, po>
P_patient_record = <Null , <RP1 , RP2 , RP3>, do>
P_medical_record = <Null , <RM1 , RM2>, do>

RP1a =
< p ,

subject (patient) ∧ action (read) ∧ resource (patient_record) ,
patient (id , X) ∧ patient_record (id , X) >

RP1b =
< p ,

subject (guardian) ∧ action (read) ∧ resource (patient_record) ,
guardian (id , X) ∧ patient_record (id , Y) ∧ guardian_patient (X , Y) ∧ (age (Y) > 18) >

RP2 =
< p ,

subject (patient) ∧ action (write) ∧ resource (patient_survey) ,
patient (id , X) ∧ patient_survey (id , X)>

RP3=
< p ,

(subject (doctor) ∨ subject (nurse)) ∧ action (read) ∧ resource (patient_record) ,
true>

RM1 =
< p ,

subject (doctor) ∧ action (write) ∧ resource (medical_record) ,
doctor (id ,X) ∧ patient (id , Y) ∧ medical_record (id , Y) ∧ doctor_patient (X , Y)>

RM2 =
< d ,

subject (doctor) ∧ action (write) ∧ resource (medical_record) ,
doctor (id ,X) , patient (id ,Y) , medical_record (id , Y) , not doctor_patient (X , Y)>

The XACML Policy for Patient Policy

Suppose now there is an emergency situation and a doctor D asks permission to read
patient record P . The Request is as follows:

212 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

{ subject (doctor) , action (read) , resource (patient_record) ,
doctor (id ,D) , patient (id ,P) , patient_record (id ,P)}

Only Target RP3 matches for this request and the effect of RP3 is permit. Thus, the
final result is doctor D is allowed to read patient record P . Now, suppose that after
doing some treatment, the doctor wants to update the medical record. A request is sent

{ subject (doctor) , action (write) , resource (medical_record) ,
doctor (id ,D) , patient (id ,P) , medical_record (id ,P)}

The Target RM1 and the Target RM2 match for this request, however because doctor
D is not registered as patient P ’s doctor thus Condition RM1 is evaluated to false while
Condition RM2 is evaluated to true. In consequence, Rule RM1 is not applicable while
Rule RM2 is applicable with effect deny.

3 Combining Algorithms

Currently, there are four basic combining algorithms in XACML, namely (i) permit-
overrides (po), (ii) deny-overrides (do), (iii) first-applicable (fa), and (iv) only-one-
applicable (ooa). The input of a combining algorithm is a sequence of Rule, Policy or
PolicySet values. In this section we give formalizations of the XACML 3.0 combining
algorithms based on [14]. To guard against modelling artefacts we provide an alternat-
ive way of characterizing the policy combining algorithms and we formally prove the
equivalence of these approaches.3

3.1 Pairwise Policy Values

In V6 we define the truth values of XACML components by extending � to �p and �d

and I to Id, Ip and Idp. This approach shows straightforwardly the status of XACML
component. However, in general, numerical encoding is more helpful for computing
policy compositions. Thus, we encode all the values returned by algorithms as pairs of
natural numbers.

In this numerical encoding, the value 1 represents an applicable value (either deny
or permit), 1

2 represents indeterminate value and 0 means there is no applicable value.
In each tuple, the first element represents the deny value (�d) and the later represents
permit value (�p). We can say [0, 0] for not applicable (⊥) because neither deny nor
permit is applicable, [1, 0] for applicable with deny effect (�d) because only deny value
is applicable, [12 , 0] for Id because the deny part is indeterminate, [12 ,

1
2] for Idp because

both deny and permit have indeterminate values. The conversion applies also for permit.
A set of pairwise policy values is P =

{
[0, 0], [12 , 0], [0,

1
2], [1, 0], [

1
2 ,

1
2], [0, 1]

}
.

Let [D,P] be an element on P. We denote d([D,P]) = D and p([D,P]) = P for the
function that returns the deny value and permit value, respectively.

3 An extended version of this paper with all the proofs is available at
http://www2.imm.dtu.dk/˜cdpu/Papers/
the logic of XACML-extended.pdf

http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf

The Logic of XACML 213

We define δ : V6 → P as a mapping function that maps V6 into P as follows:

δ(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, 0] X = ⊥
[1, 0] X = �d

[0, 1] X = �p

[12 , 0] X = Id

[0, 12] X = Ip

[12 ,
1
2] X = Idp

(13)

We define δ over a sequence S as δ(S) = 〈δ(s)|s ∈ S〉.
We use pairwise comparison for the order of P. We define an order �P for P as

follows [D1, P1] �P [D2, P2] iff D1 ≤ D2 and P1 ≤ P2 with 0 ≤ 1
2 ≤ 1. We write

PP for the partial ordered set (poset) (P,�P) illustrated in Figure 1.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = �d [1
2
, 1
2
] = Idp [0, 1] = �p

Fig. 1. The Partial Ordered Set PP for Pairwise Policy Values

Let max : 2R → R be a function that returns the maximum value of a set of rational
numbers and let min : 2R → R be a function that returns the minimum value of a
set of rational numbers. We define Max�P : 2P → P as a function that returns the
maximum pairwise policy value which is defined as follows:

Max�P(S) = [max ({ d(X) | X ∈ S }),max ({ p(X) | X ∈ S })] (14)

and Min�P : 2P → P as a function that return the minimum pairwise policy value
which is defined as follows:

Min�P(S) = [min({ d(X) | X ∈ S }),min({ p(X) | X ∈ S })] (15)

3.2 Permit-Overrides Combining Algorithm

The permit-overrides combining algorithm is intended for those cases where a permit
decision should have priority over a deny decision. This algorithm (taken from [14])
has the following behaviour:

214 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

⊥

Ip Id

�d

Idp

�p

⊥

Ip

�p

Id

Idp

�d

⊥

�d

Id

�p

Ip

Idp

Fig. 2. The Lattice Lpo for The Permit-Overrides Combining Algorithm (left), The Lattice Ldo

for The Deny-Overrides Combining Algorithm (middle) and The Lattice Looa for The Only-One-
Applicable Combining Algorithm (right)

1. If any decision is �p then the result is �p,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Ip and another decision is Id or �d, then the result is

Idp,
4. otherwise, if any decision is Ip then the result is Ip,
5. otherwise, if decision is �d then the result is �d,
6. otherwise, if any decision is Id then the result is Id,
7. otherwise, the result is ⊥.

We call Lpo = (V6,�po) for the lattice using the permit-overrides combining algorithm
where �po is the ordering depicted in Figure 2. The least upper bound operator for Lpo

is denoted by
⊔

po.

Definition 1. The permit-overrides combining algorithm
⊕V6

po is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the permit-overrides combining algorithm under V6 as follows:

V6⊕

po

(S) =
⊔

po

S′ (16)

We are going to show how to express the permit-overrides combining algorithm under
P. The idea is that we inspect the maximum value of deny and permit in the set of pair-
wise policy values. We conclude that the decision is permit if the permit is applicable
(i.e. it has value 1). If the permit is indeterminate (i.e. it has value 1

2) then the decision
is Idp when the deny is either indeterminate (i.e. it has value 1

2) or applicable (i.e. it
has value 1). Otherwise we take the maximum value of deny and permit from the set of
pairwise policy values as the result of permit-overrides combining algorithm.

Definition 2. The permit-overrides combining algorithm
⊕P

po is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.

The Logic of XACML 215

Let S = 〈s1, . . . , sn〉 be a sequence of pairwise policy values and S′ = { s1, . . . , sn }.
We define the permit-overrides combining algorithm under P as follows:

P⊕

po

(S) =

⎧
⎪⎨

⎪⎩

[0, 1] Max�P(S
′) = [, 1]

[12 ,
1
2] Max�P(S

′) = [D, 1
2], D ≥ 1

2

Max�P(S
′) otherwise

(17)

Proposition 2. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

po

(S)) =

P⊕

po

(δ(S))

3.3 Deny-Overrides Combining Algorithm

The deny-overrides combining algorithm is intended for those cases where a deny de-
cision should have priority over a permit decision. This algorithm (taken from [14]) has
the following behaviour:

1. If any decision is �d then the result is �d,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Id and another decision is Ip or �p, then the result is

Idp,
4. otherwise, if any decision is Id then the result is Id,
5. otherwise, if decision is �p then the result is �p,
6. otherwise, if any decision is Ip then the result is Ip,
7. otherwise, the result is ⊥.

We call Ldo = (V6,�do) for the lattice using the deny-overrides combining algorithm
where �do is the ordering depicted in Figure 2. The least upper bound operator for Ldo

is denoted by
⊔

do.

Definition 3. The deny-overrides combining algorithm
⊕V6

do is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under V6 as follows:

V6⊕

do

(S) =
⊔

do

S′ (18)

The deny-overrides combining algorithm can be expressed under P using the same idea
as permit-overrides combining algorithm by symmetry.

Definition 4. The deny-overrides combining algorithm
⊕P

do is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under P as follows:

P⊕

do

(S) =

⎧
⎪⎨

⎪⎩

[1, 0] Max�P(S
′) = [1,]

[12 ,
1
2] Max�P(S

′) = [12 , P], P ≥ 1
2

Max�P(S
′) otherwise

(19)

216 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Proposition 3. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

do

(S)) =
P⊕

do

(δ(S))

3.4 First-Applicable Combining Algorithm

The result of first-applicable algorithm is the first Rule, Policy or PolicySet element
in the sequence whose Target and Condition is applicable. The pseudo-code of the
first-applicable combining algorithm in XACML 3.0 [14] shows that the result of this
algorithm is the first Rule, Policy or PolicySet that is not ”not applicable”. The idea is
that there is a possibility an indeterminate policy could return to be an applicable policy.
The first-applicable combining algorithm under V6 and P are defined below.

Definition 5 (First-Applicable Combining Algorithm). The first-applicable combin-
ing algorithm

⊕V6

fa is a mapping function from a sequence of V6 elements into an ele-
ment in V6 as the result of composing policies. Let S = 〈s1, . . . , sn〉 be a sequence
of policy values in V6. We define the first-applicable combining algorithm under V6 as
follows:

V6⊕

fa

(S) =

{
si ∃i : si 	= ⊥ and ∀j < i : sj = ⊥
⊥ otherwise

(20)

Definition 6. The first-applicable combining algorithm
⊕P

fa is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P. We define the first applicable
combining algorithm under P as follows:

P⊕

fa

(S) =

{
si ∃i : si 	= [0, 0] and ∀j < i : sj = [0, 0]

[0, 0] otherwise
(21)

Proposition 4. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

fa

(S)) =

P⊕

fa

(δ(S))

3.5 Only-One-Applicable Combining Algorithm

The result of the only-one-applicable combining algorithm ensures that one and only
one policy is applicable by virtue of their Target. If no policy applies, then the result is
not applicable, but if more than one policy is applicable, then the result is indeterminate.
When exactly one policy is applicable, the result of the combining algorithm is the result
of evaluating the single applicable policy.

We call Looa = (V6,�ooa) for the lattice using the only-one-applicable combin-
ing algorithm where �ooa is the ordering depicted in Figure 2. The least upper bound
operator for Looa is denoted by

⊔
ooa.

The Logic of XACML 217

Definition 7. The only-one-applicable combining algorithm
⊕V6

ooa is a mapping func-
tion from a sequence of V6 elements into an element in V6 as the result of compos-
ing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under V6 as follows

V6⊕

ooa

(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Id ∃i, j : i 	= j, si = sj = �d and

∀k : sk 	= �d → sk = ⊥
Ip ∃i, j : i 	= j, si = sj = �p and

∀k : sk 	= �p → sk = ⊥
⊔
ooa S

′ otherwise

(22)

We are going to show how to express the only-one-applicable combining algorithm
under P. The idea is that we inspect the maximum value of deny and permit returned
from the given set of pairwise policy values. By inspecting the maximum value for
each element, we know exactly the combination of pairwise policy values i.e., if we
find that both deny and permit are not 0, it means that the deny value and the permit
value are either applicable (i.e. it has value 1) or indeterminate (i.e. it has value 1

2).
Thus, the result of this algorithm is Idp (based on the XACML 3.0 Specification [14]).
However if only one element is not 0 then there is a possibility that many policies have
the same applicable (or indeterminate) values. If there are at least two policies with the
deny (or permit) are either applicable or indeterminate value, then the result is Id (or
Ip). Otherwise we take the maximum value of deny and permit from the given set of
pairwise policy values as the result of only-one-applicable combining algorithm.

Definition 8. The only-one-applicable combining algorithm
⊕P

ooa is a mapping func-
tion from a sequence of P elements into an element in P as the result of compos-
ing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under P as follows

P⊕

ooa

(S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[12 ,
1
2] Max�P(S

′) = [D,P], D, P ≥ 1
2

[12 , 0] Max�P(S
′) = [D, 0], D ≥ 1

2 and

∃i, j : i 	= j, d(si), d(sj) ≥ 1
2

[0, 1
2] Max�P(S

′) = [0, P], P ≥ 1
2 and

∃i, j : i 	= j, p(si), p(sj) ≥ 1
2

Max�P(S
′) otherwise

(23)

Proposition 5. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

ooa

(S)) =
P⊕

ooa

(δ(S))

4 Related Work

We will focus the discussion on the formalization of XACML using Belnap logic [4]
and D-Algebra [13] – those two have a similar approach to the pairwise policy values
approach explained in Section 3. We show the shortcoming of the formalization on
Bruns et al. work in [6] and Ni et al. work in [13].

218 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

4.1 XACML Semantics under Belnap Four-Valued Logic

Belnap in his paper [4] defines a four-valued logic over four = { ��, tt, ff ,⊥⊥ }.
There are two orderings in Belnap logic, i.e., the knowledge ordering (≤k) and the truth
ordering (≤t) (see Figure 3).

⊥⊥

tt ff

��

ff

�� ⊥⊥

tt

≤k ≤t

glb = ⊗B

lub = ⊕B

glb = ∧
lub = ∨

knowledge ordering truth ordering

Fig. 3. Bi-lattice of Belnap Four-Valued Logic

Bruns et al. in PBel [5,6] and also Hankin et al. in AspectKB [9] use Belnap four-
valued logic to represent the composition of access control policies. The responses of
an access control system are tt when the policy is granted or access permitted, ff when
the policy is not granted or access is denied, ⊥⊥ when there is no applicable policy
and �� when conflict arises, i.e., an access is both permitted and denied. Additional
operators are added as follows [6]:

– overwriting operator [y �→ z] with y, z ∈ four. Expression x[y �→ z] yields x if
x 	= y, and z otherwise.

– priority operator x > y; it is a syntactic sugar of x[⊥⊥ �→ y].

Bruns et al. defined XACML combining algorithms using Belnap four-valued logic as
follows [6]:

– permit-overrides: (p⊕B q)[�� �→ ff]
– first-applicable: p > q
– only-one-applicable: (p⊕B q)⊕B ((p⊕B ¬p)⊗B (q ⊕B ¬q))

Bruns et al. suggested that the indeterminate value is treated as ��. However, with
indeterminate as ��, the permit-overrides combining algorithm is not defined correctly.
Suppose we have two policies: p and q where p is permit and q is indeterminate. The
result of the permit-overrides combining algorithm is as follows (p⊕B q)[�� �→ ff] =
(tt ⊕B ��)[�� �→ ff] = ��[�� �→ ff] = ff . Based on the XACML 2.0 [12] and the
XACML 3.0 [14], the result of permit-overrides combining algorithm should be permit
(tt). However, based on Belnap four-valued logic, the result is deny (ff).

Bruns et al. tried to define indeterminate value as a conflict by formalizing it as
��. However, their formulation of permit-overrides combining algorithm is inconsist-
ent based on the standard XACML specification. Moreover, they said that sometimes
indeterminate should be treated as ⊥⊥ and sometimes as �� [5], but there is no ex-
planation about under which circumstances that indeterminate is treated as �� or as

The Logic of XACML 219

⊥⊥. The treatment of indeterminate as �� is too strong because indeterminate does not
always contains information about deny and permit in the same time. Only Idp con-
tains information both deny and permit. However, Id and Ip only contain information
only about deny and permit, respectively. Even so, the value ⊥⊥ for indeterminate is
too weak because indeterminate is treated as not applicable despite that there is inform-
ation contained inside indeterminate value. The Belnap four-valued logic has no expli-
cit definition of indeterminate. In contrast, the Belnap four-valued has a conflict value
(i.e. ��).

4.2 XACML Semantics under D-Algebra

Ni et al. in [13] define D-algebra as a decision set together with some operations on it.

Definition 9 (D-algebra [13]). Let D be a nonempty set of elements, 0 be a constant
element of D, ¬ be a unary operation on elements in D, and ⊕D,⊗D be binary op-
erations on elements in D. A D-algebra is an algebraic structure 〈D,¬,⊕D,⊗D, 0〉
closed on ¬,⊕D,⊗D and satisfying the following axioms:

1. x⊕D y = y ⊕D x
2. (x⊕D y)⊕D z = x⊕D (y ⊕D z)
3. x⊕D 0 = x
4. ¬¬x = x
5. x⊕D ¬0 = ¬0
6. ¬(¬x ⊕D y)⊕D y = ¬(¬y ⊕D x)⊕D x

7. x⊗D y =

{
¬0 : x = y

0 : x 	= y

In order to write formulae in a compact form, for x, y ∈ D, x �D y = ¬(¬x ⊕D ¬y)
and x�D y = x�D ¬y.

Ni et al. [13] show that XACML decisions contain three different value, i.e. permit
({p}), deny ({d}) and not applicable ({n

a}). Those decision are deterministic decisions.
The non-deterministic decisions such as Id, Ip and Idp are denoted by

{
d, na

}
,{

p, n
a

}
, and

{
d,p, n

a

}
, respectively. The interpretation of a D-algebra on XACML

decisions is as follows [13]:

– D is represented by P(
{
p,d, n

a

}
)

– 0 is represented by ∅
– ¬x is represented by

{
p,d, n

a

}
− x where x ∈ D

– x⊕D y is represented by x ∪ y where x, y ∈ D
– ⊗D is defined by axiom 7

There are two values which are not in XACML, i.e. ∅ and { p,d }. Simply we say ∅ for
empty policy (or there is no policy) and { p,d } for a conflict.

The composition function of permit-overrides using D-Algebra is as follows:

fpo(x, y) = (x ⊕D y)
�D(((x⊗D { p })⊕D (y ⊗D { p }))�D {

d, n
a

}
)

�D(¬((x �D y)⊗D {
n
a

}
)�D {

n
a

}
�D ¬((x ⊗D ∅)⊕D (y ⊗D ∅)))

220 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

The composition function that Ni et al. proposed is inconsistent with neither the
XACML 3.0 [14] nor the XACML 2.0 [12] as they claimed in [13]. Below we show
an example that compares all of the results of permit-overrides combining algorithm
under the logics discussed in this paper.

Example 2. Given two policies P1 and P2 where P1 is Indeterminate Permit and P2

is Deny. Let us use the permit-overrides combining algorithm to compose those two
policies. Table 3 shows the result of combining polices under Belnap logic, D-algebra,
V6 and P.

Table 3. Result of Permit-Overrides Combining Algorithm for Composing Two Policies P1 (In-
determinate Permit) and P2 (Deny) Under Various Approaches

Logic P1 P2 Permit-Overrides Function Result
Belnap logic �� ff (��⊕B ff)[�� �→ ff] ff
D-algebra

{
p, n

a

} { d } fpo(
{
p, n

a

}
, { d }) { p,d }

V6 Ip �d

⊕V6
po (〈Ip,�d〉) Idp

P [0, 1
2
] [1, 0]

⊕P
po(〈[0, 1

2
], [1, 0]〉) [1

2
, 1
2
]

The result of permit-overrides combining algorithm under Belnap logic is ff and un-
der D-algebra is { p,d }. Under Bruns et al. approach using Belnap logic, the access
is denied while under Ni et al. approach using D-algebra, a conflict occurs. Both Bruns
et al. and Ni et al. claim that their approaches fit with XACML 2.0 [12]. Moreover
D-algebra claims that it fits with XACML 3.0 [14]. However based on XACML 2.0
the result should be Indeterminate and based on XACML 3.0 the result should be In-
determinate Deny Permit and neither Belnap logic nor D-algebra fits the specifications.
We have illustrated that Belnap logic and D-algebra in some cases give different result
with the XACML specification. Conversely, our approach gives consistent result based
on the XACML 3.0 [14] and on the XACML 2.0 [12].

5 Conclusion

We have shown the formalization of XACML 3.0 step by step. We believe that with
our approach, the reader can understand better about how XACML works especially in
the behaviour of combining algorithms. We show two approaches to formalizing stand-
ard XACML combining algorithms, i.e., using V6 and P. To guard against modelling
artifacts, we formally prove the equivalence of these approaches.

The pairwise policy values approach is useful in defining new combining algorithms.
For example, suppose we have a new combining algorithm ”all permit”, i.e., the result
of composing policies is permit if all policies give permit values, otherwise it is deny.
Using pairwise policy values approach the result of composing a set of policies values
S is permit ([0,1]) if Min�P(S) = [0, 1] = Max�P(S), otherwise, it is deny ([1,0]).

Ni et al. proposes a D-algebra over a set of decisions for XACML combining al-
gorithms in [13]. However, there are some mismatches between their results and the

The Logic of XACML 221

XACML specifications. Their formulations are inconsistent based both on the XACML
2.0 [12] and on the XACML 3.0 [14].4

Both Belnap four-valued logic and D-Algebra have a conflict value. In XACML, the
conflict will never occur because the combining algorithms do not allow that. Conflict
value might be a good indication that the policies are not well design. We propose an
extended P which captures a conflict value in Appendix A.

References

1. eXtensible Access Control Markup Language (XACML),
http://xml.coverpages.org/xacml.html

2. XML 1.0 specification. w3.org, http://www.w3.org/TR/xml/; (retrieved August 22,
2010)

3. Ahn, G.-J., Hu, H., Lee, J., Meng, Y.: Reasoning about xacml policy descriptions in answer
set programming (preliminary report). In: 13th International Workshop on Nonmonotonic
Reasoning, NMR 2010 (2010)

4. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of
Multiple-Valued Logic, pp. 8–37. D. Reidel, Dordrecht (1977)

5. Bruns, G., Dantas, D.S., Huth, M.: A simple and expressive semantic framework for policy
composition in access control. In: Proceedings of the 2007 ACM Workshop on Formal Meth-
ods in Security Engineering, FMSE 2007, pp. 12–21. ACM, New York (2007)

6. Bruns, G., Huth, M.: Access-control via belnap logic: Effective and efficient composition
and analysis. In: 21st IEEE Computer Security Foundations Symposium (June 2008)

7. Evered, M., Bögeholz, S.: A case study in access control requirements for a health informa-
tion systems. In: Proceedings of the Second Workshop on Australasian Information Security,
Data Mining and Web Intelligence, and Software Internationalisation, ACSW Frontiers 2004,
vol. 32, pp. 53–61. Australian Computer Society, Inc., Darlinghurst (2004)

8. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. ACM Transac-
tion on Information and System Security (TISSEC) 11(4), 1–41 (2008)

9. Hankin, C., Nielson, F., Nielson, H.R.: Advice from belnap policies. In: Computer Security
Foundations Symposium, pp. 234–247. IEEE (2009)

10. Kolovski, V., Hendler, J.: Xacml policy analysis using description logics. In: Proceedings of
the 15th International World Wide Web Conference, WWW (2007)

11. Kolovski, V., Hendler, J., Parsia, B.: Formalizing xacml using defeasible description logics.
In: Proceedings of the 15th International World Wide Web Conference, WWW (2007)

12. Moses, T.: eXtensible Access Control Markup Language (XACML) version 2.0. Technical
report. OASIS (August 2010), http://docs.oasis-open.org/xacml/2.0/
access control-xacml-2.0-core-spec-os.pdf

13. Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy decisions. In:
ASIACCS 2009: Proceedings of the 4th International Symposium on Information, Computer,
and Communications Security, pp. 298–309. ACM, New York (2009)

14. Rissanen, E.: eXtensible Access Control Markup Language (XACML) version 3.0 (committe
specification 01). Technical report. OASIS (August 2010),
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cd-03-en.pdf

4 The detail of all of XACML decisions under D-algebra can be seen in extended paper at
http://www2.imm.dtu.dk/˜cdpu/Papers/
the logic of XACML-extended.pdf

http://xml.coverpages.org/xacml.html
http://www.w3.org/TR/xml/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf

222 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

A Extended Pairwise Policy Values

We add three values into P, i.e. deny with indeterminate permit ([1, 12]), permit with
indeterminate deny ([12 , 1]) and conflict ([1, 1]) and we call the extended pairwise policy
values P9 = P ∪

{
[1, 12], [

1
2 , 1], [1, 1]

}
. The extended pairwise policy values shows

all possible combination of pairwise policy values. The ordering of P9 is illustrated in
Figure 4.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = �d [1
2
, 1
2
] = Idp [0, 1] = �p

[1
2
, 1] = Id�p[1, 1

2
] = �dIp

[1, 1] = �d�p

Fig. 4. Nine-Valued Lattice

We can see that P9 forms a lattice (we call this L9) where the top element is [1, 1]
and the bottom element is [0, 0]. The ordering of this lattice is the same as �P where
the greatest lower bound and the least upper bound for S ⊆ P9 are defined as follows:

�

L9

S = Max�P(S) and
⊔

L9

S = Min�P(S)

	The Logic of XACML
	Introduction
	XACML Components
	Abstracting XACML Components
	XACML Evaluation
	Example

	Combining Algorithms
	Pairwise Policy Values
	Permit-Overrides Combining Algorithm
	Deny-Overrides Combining Algorithm
	First-Applicable Combining Algorithm
	Only-One-Applicable Combining Algorithm

	Related Work
	XACML Semantics under Belnap Four-Valued Logic
	XACML Semantics under D-Algebra

	Conclusion
	References

